Praise for the First Edition

“What's significant about this book is that the examples are nontrivial. It’s clear that
much effort went into thinking out useful designs that both demonstrate the technolo-
gies and leave the reader with a practical starting point for professional development ...
the book is full of pragmatic solutions ... the very kind you need to address in produc-
tion and can't typically find answers for anywhere. I recommend this book to any serious
Swing developer. If youre a Swing beginner, you'll get something out of this book, thanks
to its frank, no-nonsense approach to teaching Swing development. What impressed me
most was the focus on developing comprehensive examples. .. All in all, this is a real value
for any Swing developer.”
~Claude Duguay
JavaZone

“UI development is a very time consuming business. Even with such a powerful next gen-
eration API at your fingertips it can be still overwhelming. Swing is a wonderful book that
lightens the burden. It presents a complex subject in smaller manageable portions for the
programmer who has learnt the basics and wants to go much further. This excellent book
is impossible to take in at the first reading, because of the scope and breadth of its subject
matter. I think you will find that it hits its target audience and goals repeatedly. A massive
quality and quantity win for the publisher, Manning.”

—Peter Pilgrim

C Vu Journal

“How many times have you opened a book in search of a solution and found not only an

answer, but also an elegant enhancement to your application? How many times have

you ignored an O’Reilly book on the same subject lying on your table? The answer is

Manning’s new book Swing authored by Matthew Robinson and Pavel Vorobiev. And
that is my final answer.”

—Jayakrishnan

Slashdot

“An excellent resource for the developer of mid-level and advanced Swing applications. Many

of the techniques I've had to investigate and develop over the last two years are described in

this text. One of the few books to address the needs of serious Java 2 apps (e.g. printing,

tables, trees, threads and Swing). Especially useful are the real-world NOTES and
WARNINGsS describing issues and anomalies.”

—Christian Forster

Amazon

“This book covers everything there is to know about Swing. Here you will go deep into

the internal workings of Swing to do some amazing things that frankly I, as a Windows

programmer of five years, cannot do in Windows. The book has real good coverage of all

the different classes in the Swing library, how they are used, and most importantly, how
they are useful...”

—Robert Hansen

Amazon

“...The book is considered a classic in Java Swing developers community and is highly
recommended to anyone with some basic Swing understanding...”

—Vadim Shun

Amazon

“I bought this book three weeks ago (right before our mission critical project). I was given
just two weeks to finish the coding and unit testing. It was not a big project, yet, I thought
I would like to use Swing for it and I came across your book... I spent four continuous
days reading the book and in another four days I was done. You won't believe the excite-
ment I felt when I finished the project on time and the users were very astonished by the
GUIL I would like to let you know that I am very grateful for this great book. It could not
have been written in a more simple way than this.”
~Unni Krishnan
Amazon

“One of the best books for understanding the Swing components. I have had problems

with rendering in JList and JTree, and after reading this book, everything seems so
simple. The material is very unique.”

—Kirthi Venkatraman

Amazon

“I would recommend this book to anyone who wants to find out more about advanced

Swing. It is packed full with good examples and explanations of those examples. The

examples are very detailed and can be used as a starting point for your own projects.”
—John Sullivan

Amazon

“...one of the best books available for learning the more advanced Swing features.”
~Marty Hall
Johns Hopkins University

“I strongly recommend this book ... especially for developers serious about getting
into Java.”

—Mark Newman
GTE

“I love the use of detailed examples ... sets it apart from all the other books on Swing.”
—Joel Goldberg
FedEx

“This is a must-have book for any kind of sophisticated UI development using Swing.”
—Jaideep Baphna

Dataware Technologies

“The JTree text and detailed examples alone have already saved me many hours of work
and have expedited my research code development.”

—P. Pazandak, Ph.D.

Object Services and Consulting

<

‘...will satisfy readers from beginner to advanced ... starts with easy-to-understand
. qep . -
concepts and then drills down until it hits advanced intellectual pay dirt.
—Kirk Brown
Sun Microsystems

“Looking for a book on Swing with in-depth coverage of the how’s and why’s? Then

Swing by Matthew Robinson and Pavel Vorobiev is it. ...Overall this is an excellent book,

and I would recommend it for the intermediate to advanced Swing developer.
—AnnMarie Ziegler

JavaRanch.com

Swing

SECOND EDITION

MATTHEW ROBINSON
PAVEL VOROBIEV

UI Guidelines by David Anderson
Code Notes by David Karr

M
MANNING

Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, visit
http://www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts to
that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Aleksandra Sikora
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110-88-X
Printed in the United States of America
123456789 10 - VHG - 07 06 05 04 03

10 Deirdre—
Matt

10 my wife, Maria—
Pavel

brief contents

Part I Foundation 1

1 Swing overview 3

2 Swing mechanics 15

Part IT The basics 71

Frames, panels, and borders 73
Layout managers 89

Labels and buttons 155

Tabbed panes 187

Scrolling panes 202

Split panes 220

Combo boxes 227

10 List boxes and Spinners 256

11 Text components and undo 292
12 Menus, toolbars, and actions 332
13 Progress bars, sliders, and scroll bars 373
14 Dialogs 418

O % NN WA W

ix

Part IIl Advanced topics 469

15 Layered panes 471

16 Desktops & internal frames 476

17 Trees 498

18 Tables 536

19 Inside text components 605

20 Constructing an HTML Editor Application 634
21 Pluggable look and feel 723

Part IV Special topics 755

22 Printing 757
23 Constructing XML.editor 789
24 Drag & Drop 826

X BRIEF CONTENTS

contents

Joreword xxiii
preface xxv

acknowledgments xxix
about the cover illustration xxxi

Part I Foundations 1

1 Swing overview 3

1.1 AWT 3

1.2 Swing 4
Z-order 5, Platform independence 5,
Swing package overview 5

1.3 MVC architecture 7
Model 7, View 8, Controller 8, Custom view
and controller 8, Custom models 9

1.4 UI delegates and PLAF 11
The ComponentUI class 11, Pluggable look and feel 12,
Where are the UI delegates? 13

2 Swing mechanics 15
2.1 JComponent properties, sizing, and positioning 15
Properties 15, Size and positioning 18

2.2 Event handling and dispatching 19
EventListenerList 22, Event-dispatching thread 22
2.3 Muldthreading 23

Special cases 26, How do we build our own
thread-safe methods 26,

2.4 Timers 27
2.5 AppContext services 28

xi

2.6 Inside Timers and the TimerQueue 30

2.7 JavaBeans architecture 31
The JavaBeans component model 31, Introspection 31,
Properties 32, Customization 32, Communication 32,
Persistency 32, A simple Swing-based JavaBean 33

2.8 Fonts, colors, graphics, and text 38
Fonts 38, Colors 40, Graphics and text 40

2.9 Using the Graphics clipping area 47

2.10 Graphics debugging 49
Graphics debugging options 50, Graphics debugging caveats 51,
Using graphics debugging 51

2.11 Painting and validation 54
Double buffering 55, Optimized drawing 55,
Root validation 56, RepaintManager 57, Revalidation 57,
Repainting 58, Painting 59, Custom painting 61

2.12 Focus Management 61
KeyboardFocusManager 64, Key events and focus management 64,
Focus and Window events 64,
Focusability and traversal policies 65

2.13 Keyboard input 66
Listening for keyboard input 66,
KeyStrokes 67, Scopes 68, Actions 68,
InputMaps and ActionMaps 68
The flow of keyboard input 69

Part I The basics 71
3 Frames, panels, and borders 73

3.1 Frames and panels overview 73
JFrame 73, JRootPane 74, RootlLayout 75,
The RootPaneContainer interface 76,
The WindowConstants interface 76, The WindowListener
interface 76, WindowEvent 77, WindowAdapter 77,
Custom frame icons 78, Centering a frame on the screen 78,
Headless frames and extended frame states 79,
Look and feel window decorations 79,
JApplet 80, JWindow 80, JPanel 80

3.2 Borders 81
Inside borders 85

3.3 Creating a custom border 86
Understanding the code 87, Running the code 88

xii CONTENTS

4 Layout managers 89

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Layouts overview 89

LayoutManager 90, LayoutManager2 90,

BoxLayout 91, Box 91, Filler 91, FlowLayout 92,
GridLayout 92, GridBaglayout 92, BorderLayout 93,
CardLayout 93, Springlayout 93, JPanel 94

Comparing common layout managers 94
Understanding the code 97, Running the code 97

Using GridBagLayout 98

Default behavior of GridBaglayout 98, Introducing
GridBagConstraint 98, Using the gridx, gridy, insets,
ipadx and ipady constraints 99, Using weightx and
weighty constraints 100, Using gridwidth and gridheight
constraints 101, Using anchor constraints 102, Using fill
constraints 103, Putting it all together: constructing a
complaints dialog 104, A simple helper class example 109

Choosing the right layout 114

Understanding the code 119, Running the code 121
Custom layout manager, part I: labels/field pairs 121
Understanding the code 125, Running the code 128
Custom layout manager, part II: common interfaces 128
Understanding the code 136, Running the code 139

Dynamic layout in a JavaBeans container 140
Understanding the code 151, Running the code 153

5 Labels and buttons 155

5.1

5.2

5.3

5.4

CONTENTS

Labels and buttons overview 155

JLabel 155, Textalignment 157, Iconsand icon
alignment 158, GrayFilter 158, The labelFor and the
displayedMnemonic properties 158, AbstractButton 158,
The ButtonModel interface 159, JButton 159,
JToggleButton 161, ButtonGroup 161, JCheckBox and
JRadioButton 162, JToolTip and ToolTipManager 163,
Labels and buttons with HTML text 163

Custom buttons, part I: transparent buttons 165
Understanding the code 168, Running the code 170
Custom buttons, part II: polygonal buttons 171
Understanding the code 176, Running the code 178
Custom buttons, part III: tooltip management 180
Understanding the code 183, Running the code 186

xiit

6 Tabbed panes 187

6.1 JTabbedPane 187

6.2 A dynamically changeable tabbed pane 189
Understanding the code 195, Running the code 196,
Interesting JTabbedPane characteristics 197

6.3 Tab validation 197
Understanding the code 200

7 Scrolling panes 202

7.1 JScrollPane 202
The ScrollPaneConstants interface 204, JViewport 204,
ScrollPaneLayout 206, The Scrollable interface 209
7.2 Grab-and-drag scrolling 211
Understanding the code 212
7.3 Scrolling programmatically 213
Understanding the code 217, Running the code 219

8 Split panes 220

8.1]SplitPane 220

8.2 Basic split pane example 221
Understanding the code 223, Running the code 224

8.3 Synchronized split pane dividers 224
Understanding the code 226, Running the code 226

9 Combo boxes 227

9.1 JComboBox 227
The ComboBoxModel interface 230,
The MutableComboBoxModel interface 230,
DefaultComboBoxModel 230, The ListCellRenderer
interface 231, DefaultListCellRenderer 231,
The ComboBoxEditor interface 231

9.2 Basic JComboBox example 232
Understanding the code 237, Running the code 238

9.3 Custom model and renderer 238
Understanding the code 243, Running the code 245

9.4 Combo boxes with memory 246
Understanding the code 250, Running the code 252

9.5 Custom editing 253
Understanding the code 255, Running the code 255

Xiv

CONTENTS

10 List boxes and Spinners 256

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

JList 256

The ListModel interface 259, AbstractListModel 259,
DefaultListModel 259, The ListSelectionModel

interface 259, DefaultListSelectionModel 260,

The ListCellRenderer interface 260, The ListDataListener
interface 261, ListDataEvent 261, The ListSelectionListener
interface 261, ListSelectionEvent 261

Basic JList example 261

Understanding the code 263, Running the code 263
Custom rendering 264

Understanding the code 271, Running the code 273
Processing keyboard input and searching 273
Understanding the code 275, Running the code 276

List of check boxes 276

Understanding the code 279, Running the code 281
JSpinner 281

The SpinnerModel interface 282, AbstractSpinnerModel 283
SpinnerDateModel 283, SpinnerListModel 283
SpinnerNumberModel 283

Using JSpinner to select numbers 283

Understanding the code 284, Running the code 284
Using JSpinner to select dates 285

Understanding the code 286, Running the code 286
Using JSpinner to select a value from a lisc 286
Understanding the code 287, Running the code 287
Extending the functionality of JSpinner 288
Understanding the code 292, Running the code 1

11 Text components and undo 292

11.1

11.3

11.4

CONTENTS

Text components overview 294

JTextComponent 292, JTextField 294, JPasswordField 298,
JTextArea 298, JEditorPane 299, JTextPane 301

Using the basic text components 304

Understanding the code 305, Running the code 306
JFormattedTextField 306

JFormatted TextField.AbstractFormatter 307, DefaultFormatter 308,
MaskFormatter 308, InternationalFormatter 309, DateFormatter 309,
NumberFormatter 309, JFormattedTextField.AbstractFormatterFactory 309,
DefaultFormatterFactory 310

Basic JFormatted TextField example 310

Understanding the code 311, Running the code 311

XU

11.5

11.6

11.7

Using Formats and InputVerifier 312
InputVerifier 312, Understanding the code 318

Formatted Spinner example 319
Understanding the code 320, Running the code 320

Undo/redo 321

The UndoableEdit interface 321, AbstractUndoableEdit 321,
CompoundEdit 324, UndoableEditEvent 325,

The UndoableEditListener interface 325, UndoManager 325,

The StateEditable interface 328, StateEdit 328,
UndoableEditSupport 329, CannotUndoException 329,
CannotRedoException 329, Using built-in text component undo/redo

functionality 329

12 Menus, toolbars, and actions 332

12.1

12.2

12.3

12.4

12.5

Menus, toolbars, and actions overview 332

The SingleSelectionModel interface 332,
DefaultSingleSelectionModel 333, JMenuBar 333, JMenultem 333,
JMenu 334, JPopupMenu 335,]Separator 337,
JCheckBoxMenultem 337, JRadioButtonMenultem 337,

The MenuElement interface 338, MenuSelectionManager 339,
The MenuDragMouseListener interface 340,
MenuDragMouseEvent 340, The MenuKeyListener interface 340,
MenuKeyEvent 340, The MenulListener interface 341,
MenuEvent 341, The PopupMenulListener interface 341,
PopupMenuEvent 341, JToolBar 341, Custom JToolBar
separators 343, Changing JToolBar’s floating frame behavior 344,
The Action interface 345, AbstractAction 345

Basic text editor, part I: menus 346

Understanding the code 353, Running the code 354

Basic text editor, part II: toolbars and actions 355
Understanding the code 358, Running the code 358

Basic text editor, part III: custom toolbar components 359
Understanding the code 364, Running the code 366

Basic text editor, part IV: custom menu components 366
Understanding the code 370, Running the code 371

13 Progress bars, sliders, and scroll bars 373

xXvi

13.1

Bounded-range components overview 373

The BoundedRangeModel interface 373,
DefaultBoundedRangeModel 374,]ScrollBar 374,
JSlider 375, JProgressBar 377, ProgressMonitor 381,
ProgressMonitorInputStream 381

CONTENTS

13.2 Basic JScrollBar example 382
Understanding the code 386, Running the code 387
13.3]Slider date chooser 387
Understanding the code 391, Running the code 393
13.4]JSliders in a JPEG image editor 394
The JPEGDecodeParam interface 394, The JPEGEncodeParam
interface 394, The JPEGImageDecoder interface 395,
The JPEGImageEncoder interface 395, JPEGCodec 395,
Understanding the code 403, Running the code 405
13.5 JProgressBar in an FTP client application 406
FtpClient 406, Understanding the code 414,
Running the code 417

14 Dialogs 418

14.1 Dialogs and choosers overview 418
JDialog 419,]JOptionPane 421,]JColorChooser 425,
The ColorSelectionModel interface 425,
DefaultColorSelectionModel 426,
AbstractColorChooserPanel 426,
ColorChooserComponentFactory 427,
JFileChooser 427, FileFilter 430,
FileSystemView 431, FileView 431
14.2 Constructing a Login dialog 432
Understanding the code 435, Running the code 436
14.3 Adding an About dialog 436
Understanding the code 438, Running the code 439
144 JOptionPane message dialogs 439
Understanding the code 444
14.5 Customizing JColorChooser 445
Understanding the code 449, Running the code 450
14.6 Customizing JFileChooser 451
ZiplnputStream 451, ZipOutputStream 451, ZipFile 451,
ZipEntry 452, The java.util.jar package 452, Manifest 452,
Understanding the code 465, Running the code 468

Part IIl Advanced topics 469

15 Layered panes 471

15.1 JLayeredPane 473
15.2 Using JLayeredPane to enhance interfaces 473
15.3 Creating a custom MDI 475

CONTENTS xvii

16 Desktops & internal frames 476

16.1]JDesktopPane and JInternalFrame 476
JDesktopPane 476, JlnternalFrame 476,
JInternalFrame.JDesktoplcon 477, The DesktopManager
interface 477, DefaultDesktopManager 479, Capturing
internal frame close events 479, The InternalFrameListener
interface 480, InternalFrameEvent 480,
InternalFrameAdapter 481, Outline dragging mode 481

16.2 Cascading and outline dragging mode 484
Understanding the code 485, Running the code 487

16.3 Adding MDI to a text editor application 487
Understanding the code 494, Running the code 495

16.4 Examples from the first edition 495

17 Trees 498
17.1 JTree 498

Tree concepts and terminology 498, Tree traversal 499,
JTree 499, The TreeModel interface 500,
DefaultTreeModel 501, The TreeNode interface 501,
The MutableTreeNode interface 501, DefaultMutableTreeNode 501,
TreePath 502, The TreeCellRenderer interface 502,
DefaultTreeCellRenderer 502, CellRenderPane 503,
The CellEditor interface 501, The TreeCellEditor interface 504,
DefaultCellEditor 504, DefaultTreeCellEditor 504,
The RowMapper interface 505, The TreeSelectionModel
interface 505, DefaultTreeSelectionModel 506,
The TreeModelListener interface 506, The TreeSelectionListener
interface 506, The TreeExpansionListener interface 500,
The TreeWillExpandListener interface 506, TreeModelEvent 507,
TreeSelectionEvent 507, TreeExpansionEvent 507
ExpandVetoException 508, JTree client properties and
Ul defaults 508, Controlling JTree appearance 508

17.2 Basic JTree example 509
Understanding the code 513, Running the code 514

17.3 Directory tree, part I: dynamic node retrieval 514
Understanding the code 521, Running the code 526

17.4 Directory tree, part II: popup menus, programmatic navigation,
node creation, renaming, and deletion 526
Understanding the code 532, Running the code 535

17.5 Directory tree, part III: tooltips 533
Understanding the code 535, Running the code 535

Xviii CONTENTS

18 Tables
18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

536

JTable 536

JTable 536, The TableModel interface 538,
AbstractTableModel 539, DefaultTableModel 539,
TableColumn 539, The TableColumnModel interface 541,
DefaultTableColumnModel 542, The TableCellRenderer
interface 543, DefaultTableCellRenderer 544,

The TableCellEditor interface 544, DefaultCellEditor 545,
The TableModelListener interface 545, TableModelEvent 546,
The TableColumnModelListener interface 546,
TableColumnModelEvent 546, JTableHeader 547,

JTable selection 548, Column width and resizing 550,
JTable Appearance 551, JTable scrolling 552

Stocks table, part I: basic JTable example 552
Understanding the code 557, Running the code 559
Stocks table, part II: custom renderers 559
Understanding the code 563, Running the code 564
Stocks table, part III: sorting columns 564

Understanding the code 569, Running the code 570
Stocks table, part IV: JDBC 571

Understanding the code 575, Running the code 576
Stocks table, part V: column addition and removal 576
Understanding the code 579, Running the code 580
Expense report application 580

Understanding the code 589, Running the code 591
Expense report application with variable height rows 591
Understanding the code 594, Running the code 594

A JavaBeans property editor 595

Understanding the code 601, Running the code 603

19 Inside text components 605

19.1

CONTENTS

Text package overview 605

More about JTextComponent 605, The Document interface 608,
The StyledDocument interface 608, AbstractDocument 609,
The Content interface 612, The Position interface 613,

The DocumentEvent interface 613, The DocumentListener
interface 614, The Element interface 614, PlainDocument 615,
DefaultStyledDocument 617, The AttributeSet interface 620,
The MutableAttributeSet interface 622, The Style interface 622,
StyleConstants 623, StyleContext 623, The Highlighter
interface 624, DefaultHighlighter 625, The Caret interface 625,
DefaultCaret 625, The CaretListener interface 627,

CaretEvent 627, The Keymap interface 627, TextAction 628,
EditorKit 629, DefaultEditorKit 629, StyledEditorKit 630,
View 631, The ViewFactory interface 633

Xix

20 Constructing an HTML Editor Application 634

20.1 HTML editor, part I: introducing HTML 635
Understanding the code 641, Running the code 642

20.2 HTML editor, part II: managing fonts 642
Understanding the code 648, Running the code 650

20.3 HTML editor, part III: document properties 650
Understanding the code 664, Running the code 667

20.4 HTML editor, part IV: working with HTML styles and tables 667
Understanding the code 676, Running the code 677

20.5 HTML editor, part V: clipboard and undo/redo 677
Understanding the code 681, Running the code 682

20.6 HTML editor, part VI: advanced font management 682
Understanding the code 691, Running the code 694

20.7 HTML editor, part VII: find and replace 695
Understanding the code 704, Running the code 708

20.8 HTML editor, part IX: spell checker (using JDBC and SQL) 708
Understanding the code 718, Running the code 721

21 Pluggable look and feel 723

21.1 Pluggable look and feel overview 723
LookAndFeel 724, UlDefaults 724, UlManager 725,
The UlResource interface 725, ComponentUI 726,
BasicLookAndFeel 726, How look and feel works 726,
Selecting a look and feel 727, Creating a custom LookAndFeel
implementation 728, Defining default component
resources 729, Defining class defaults 730,
Creating custom Ul delegates 730, Metal themes 732

21.2 Custom look and feel, part I: using custom resources 733
Understanding the code 740, Running the code 741

21.3 Custom look and feel, part II: creating custom Ul delegates 741
Understanding the code 749, Running the code 751

21.4 Examples from the first edition 751

Part IV Special topics 755

22 Printing 757

22.1 Java printing overview 757
PrinterJob 758, The Printable interface 758,
The Pageable interface 759, The PrinterGraphics
interface 760, PageFormat 760, Paper 761,

XX CONTENTS

Book 761, PrinterException 762
22.2 Printing images 762

Understanding the code 765, Running the code 767
22.3 Print preview 767

Understanding the code 773, Running the code 776
224 Printing text 776

Understanding the code 780, Running the code 781
22.5 Printing tables 781

Understanding the code 785, Running the code 787

23 Constructing an XML editor 789

23.1 XML editor, part I: viewing nodes 790
Understanding the code 795, Running the code 796
23.2 XML editor, part II: viewing attributes 796
Understanding the code 800, Running the code 801
23.3 XML editor, part III: editing nodes and attributes 801
Understanding the code 807, Running the code 808
23.4 XML editor, part IV: adding, editing,
and removing nodes and attributes 808
Understanding the code 817, Running the code 818

23.5 XML editor, part V: custom drag and drop 818
Understanding the code 824

24 Drag and drop 826

24.1 Drag and drop overview 826
The Transferable interface 827, Clipboard 827,
The ClipboardOwner interface 827, TransferHandler 828,
DropTarget 829, The DropTargetListener interface 830

24.2 Adding drag and drop support within Basic Text Editor 830
Understanding the code 832, Running the code 832

24.3 Drag and drop files to Base Text Editor 832
Understanding the code 834, Running the code 834

244 Drag and drop with Java objects 834
Understanding the code 841, Running the code 843

A Java Web Start 845
B Resources 849
index 853

CONTENTS XX1

foreword

It’s been amazing to see the applications that have been built using Swing. It is an extraordinarily
sophisticated user interface toolkit that gives great power to developers. This power leads to the
biggest problem with Swing: the wide variety of facilities can be intimidating. One’s first contact
with the Swing APIs can be a little like sticking your head into the cockpit of a 747: a dizzying
array of levers and dials that can be confusing. But there is a logic to it all. Once you know the
territory, it’s easy to get around and the available facilities will make your job much easier.

The authors of this book have done a great job mapping out the territory and explaining the
standard patterns that make Swing great. I love the way they have gone beyond just laying out
the APIs to covering issues about what makes a good user interface, and what makes an applica-
tion easy to understand and use. They also go beyond the usual snippets of code to develop com-
plete applications. This is a great way to inter-relate all of the parts of the Swing APL.

JamEs GOSLING
Vice President and Fellow

Sun Microsystems

XX111

preface

This book is best described as a programmer’s guide, serving both as a reference and a tutorial.

Emphasis is placed on using Swing to solve a broad selection of realistic and creative problems.
We assume an intermediate knowledge of Java, including the basics of putting together an AWT-
based GUI, how the event model works, and familiarity with anonymous and explicit inner
classes. Those who do not have this background can pick it up in any beginner book on AWT or
Swing. However, the first edition of this book has proven to be most useful to those who come to
it with an intermediate understanding of Swing. For this reason we do not recommend this book
to Swing beginners. For beginners we suggest Manning’s own Up to Speed with Swing by Steven
Gutz.

Our goal was to produce a book that contains enough explanation and examples to satisfy
the most demanding Swing developer. We feel we have accomplished this goal again with the
updates in this edition, but please judge for yourself and we welcome all constructive feedback.
Unlike the first edition, however, this version is not freely available on the publisher’s web site.
The first edition will remain available online at www.manning.com/sbe, but we hope that we
have developed enough of a following to generate more sales with the second edition without giv-
ing it away for free. Let’s hope this is true!

What's changed since the first edition?

Java 1.4 (aka Merlin) is the first major release of the Java platform that was planned through a
Java Community Process (JCP), allowing participants outside of Sun to have an influence on the
overall feature set. Each new feature, whether an addition or a change, had a dedicated expert
group which handled the description of that functionality according to certain rules underlying
Java Specification Requests (JSRs), which are the building blocks of any JCP. Similar to an open-
source project, but with actual development still done by Sun engineers, this process allowed Java
1.4 to evolve for the first time in a democratic fashion. The result is a platform containing
improvements that the Java community as a whole voted for, not just Sun.

This updated edition of Swing contains many new examples, revised text, and additional
material to bring the book up to date with Java 1.4. This includes complete coverage of the new
JSpi nner and JFor mat t edText Fi el d components, the new focus and keyboard architec-
tures, scrollable tabbed panes, indeterminate progress bars, variable height JTabl e rows, and
many other new features. Larger changes to the book include the addition of three new chapters:
“Constructing an HTML Editor Applications,” “Constructing an XML Editor,” and “Drag and

XXV

Drop” with Swing. A new appendix on Java Web Start has also been added and all examples
throughout the book have been enhanced to conform to the Java look and feel design guidelines.

Organization

In general, each chapter starts with class and interface explanations occasionally interspersed with
small examples to demonstrate key features. The bulk of each chapter is then devoted to the con-
struction of several larger examples, often building on top of previous examples, illustrating more
complex aspects of the components under investigation.

Part I contains two chapters that introduce Swing and discuss the most significant mecha-
nisms underlying it. The first chapter is a brief overview that we suggest for all Swing newcomers.
More experienced developers will want to read straight through most of chapter 2, as it provides
an understanding of Swing’s most significant underlying behavior. This chapter is referenced
throughout the book, and we expect all readers to refer to it often. At minimum we recommend
that all readers skim this chapter to at least get a rough idea of what is covered.

Part II consists of twelve chapters covering all the basic Swing components with detailed
descriptions and helpful examples of each. These chapters discuss the bread and butter of Swing-
based GUIs, and each includes usage guidelines written by a usability and interface design expert.

Part III contains seven chapters dealing with the more advanced components. These chap-
ters are significantly more complex than those in part II, and they require a thorough under-
standing of Swing's architecture, as well as the basic Swing components.

Part IV consists of three chapters on special topics with a focus on Swing, including print-
ing, constructing an XML editor application, and implementing Drag and Drop.

Most examples are presented in three distinct parts:

The code: After a general introduction to the example, including one or more screenshots,
the underlying code is listed. Annotations appear to the right of significant blocks of code to pro-
vide a brief summary of its purpose. Each annotation has a number which links it to the explana-
tion of that code in the Understanding the code section.

Understanding the code: This section contains a detailed explanation of the code. Most
paragraphs are accompanied by a number which links that text with the associated annotated
code listed in the code section.

Running the code: After the code is explained, this brief section provides suggestions for
testing the program. This section may also include references and suggestions for taking the
example further.

Conventions

NOTE Throughout the book we point out specific behaviors or functionality that either differs
from what is expected or that can be achieved through alternate techniques. We also use this icon
to denote various other types of notes, such as a reference or suggested background knowledge
for the material being discussed.

JAVA13 We use this mark wherever a new feature or update is introduced from Java 1.3.
JAVA 1.4 We use this mark wherever a new feature or update is introduced from Java 1.4.

BUG ALERT Occasionally, incorrect or unexpected behavior is caused by known Swing bugs. We
do not attempt to hide or gloss over these; rather, we explicitly discuss these bugs and explain
possible workarounds or fixes where applicable.

xxvi PREFACE

David Anderson, a usability and interface design expert, has provided detailed
usage guidelines throughout the book. These guidelines do not represent hard-
and-fast rules, but they are highly recommended for the development of
consistent, user-friendly interfaces (see appendix B for David's references and recommended Ul
design readings).
All source code appears in Courier font. For example:
public void main(String args[]) {
Exanpl e nyExanpl e = new Exanpl e();
}
We prefix all instance variables with “m_,” and capitalize all static variables with underscores sep-
arating compound words. For example:

protected int m.index;
protected static int | NSTANCE_ COUNT;

Many examples are built from examples presented earlier in the book. In these cases we have
minimized the amount of repeated code by replacing all unchanged code with references to the
sections that contain that code. All new and modified code of any class is highlighted in bold.
When a completely new class is added, we do not highlight that class in bold (the only exceptions
to this rule are anonymous inner classes).

Author Online

Purchase of Swing Second Edition includes free access to a private Internet forum where you can
make comments about the book, ask technical questions, and receive help from the authors and
from other Swing users. To access the forum, point your web browser to www.manning.com/rob-
inson. There you will be able to subscribe to the forum. This site also provides information on
how to access the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

Matt can be contacted directly at matt@mattrobinson.com.

Pavel can be contacted directly at pvorobiev@yahoo.com.

David Anderson, author of the UI Guidelines, can be contacted through www.uidesign.net.

Obtaining the source code

All source code for the examples presented in Swing Second Edition is available from www.-
manning.com/sbe.

PREFACE Xxvii

acknowledgments

First we'd like to thank James Gosling for writing the foreword to this edition. Java has changed
our careers in many ways and it is an honor to have its creator introduce our book.

Thanks to the readers of the first edition, especially those who bought the book. Without
you this edition would not exist. Thanks to the translators who have made our work available in
languages accessible to other cultures and regions. Thanks to those professors and instructors at
instututions around the globe who have used our book as a course reference.

Special thanks to our publisher, Marjan Bace, as well as Syd Brown, Leslie Haimes, Ted
Kennedy, Elizabeth Martin, Mary Piergies, Aleksandra Sikora and the whole Manning team for
transforming our manuscript updates and penciled-in margin notes into an organized, presentable
form.

Last but not least we'd like to thank David Karr and Laurent Michalkovic for their many
valuable suggestions and corrections that have improved the manuscript significantly.

XXIX

about the cover illustration

The illustration on the cover of Swing Second Edition is taken from the 1805 edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs. This book was first published in
Paris in 1788, one year before the French Revolution. Each illustration is colored by hand. The
caption for this illustration reads “Homme Salamanque,” which means man from Salamanca, a
province in Western Spain, on the border with Portugal. The region is known for its wild beauty,
lush forests, ancient oak trees, rugged mountains, and historic old towns and villages.

The Homme Salamanque is just one of many figures in Maréchal’s colorful collection.
Their diversity speaks vividly of the uniqueness and individuality of the world’s towns and
regions just 200 years ago. This was a time when the dress codes of two regions separated by a
few dozen miles identified people uniquely as belonging to one or the other. The collection
brings to life a sense of the isolation and distance of that period and of every other historic
period—except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps,
trying to view it optimistically, we have traded a cultural and visual diversity for a more varied
personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the computer busi-
ness with book covers based on the rich diversity of regional life of two centuries ago brought
back to life by the pictures from this collection.

XXX

PART

Foundations

Et I consists of two chapters that lay the foundation for a successful and productive journey
through the JFC Swing class library. The first chapter begins with a brief overview of what Swing
is and an introduction to its architecture. The second chapter contains a detailed discussion of
the key mechanisms underlying Swing, and it shows you how to interact with them. There are
several sections on topics that are fairly advanced, such as multithreading and painting. This
material is central to many areas of Swing and by introducing it in chapter 2, your understanding
of what is to come will be significantly enhanced. We expect that you will want to refer back to
this chapter quite often, and we explicitly refer you to it throughout the text. At the very least, we
recommend that you know what chapter 2 contains before moving on.

1.1

CHAPTEHR 1

Swing overview

1.1 AWT 3 1.3 MVC architecture 7
1.2 Swing 4 1.4 Ul delegates and PLAF 11

AWT

The Abstract Window Toolkit (AWT) is the part of Java designed for creating user interfaces
and painting graphics and images. It is a set of classes intended to provide everything a devel-
oper needs to create a graphical interface for any Java applet or application. Most AWT com-
ponents are derived from the j ava. awt . Conponent class, as figure 1.1 illustrates. (Note that
AWT menu bars and menu bar items do not fit within the Conponent hierarchy.)

Component
H>Button
»Canvas
I CheckBox
Ly Cchoice Panel ——» Applet
>Container ScrollPane Dialog —p FileDialog
H>Label Window —<:: Frame
HList
H»Scrollbar TextArea Figure 1.1
» TextComponent TextField Partial component hierarchy

The Java Foundation Classes (JFC) consist of five major parts: AWT, Swing, Accessibility,
Java 2D, and Drag and Drop. Java 2D has become an integral part of AWT, Swing is built on
top of AWT, and Accessibility support is built into Swing. The five parts of JEC are certainly

1.2

not mutually exclusive, and Swing is expected to merge more deeply with AWT in future ver-
sions of Java. Thus, AWT is at the core of JEC, which in turn makes it one of the most impor-
tant libraries in Java 2.

SwiNnG

Swing is a large set of components ranging from the very simple, such as labels, to the very
complex, such as tables, trees, and styled text documents. Almost all Swing components are
derived from a single parent called JConponent which extends the AWT Cont ai ner class.
For this reason, Swing is best described as a layer on top of AWT rather than a replacement for
it. Figure 1.2 shows a partial JConponent hierarchy. If you compare this with the AWT
Conponent hierarchy of figure 1.1, you will notice that each AWT component has a Swing
equivalent that begins with the prefix “J.” The only exception to this is the AWT Canvas
class, for which JConponent , JLabel , or JPanel can be used as a replacement (we discuss
this in detail in section 2.8). You will also notice many Swing classes that don’t have AWT
counterparts.

Figure 1.2 represents only a small fraction of the Swing library, but this fraction contains
the classes you will be dealing with the most. The rest of Swing exists to provide extensive sup-
port and customization capabilities for the components these classes define.

JComponent JToggleButton JChe?kBox
JRadioButton

[—AbstractButton JButton

[—JColorChooser JMenultem

[— JComboBox JMenu

— JFileChooser JRadioButtonMenultem

[—JInternalFrame JCheckButtonMenulItem
[—JLabel

[—JLayeredPane ——» JDesktopPane

[JList

[—JMenuBar

— JOptionPane

[— JPanel

— JPopupMenu

— JProgressBar

—JRootPane

—>JScrollBar

—JScrollPane

— JSeparator

F+>JSlider

—JSpinner

[—JSplitPane

— JTabbedPane

—JTable

I JTableHeader JTextArea _I_C: JFormattedTextField
— JTextComponent JTextField JPasswordField
— JToolBar JEditorPane ——— JTextPane
—JToolTip

> JTree

— JViewport

Figure 1.2 Partial JConponent hierarchy

CHAPTER 1 SWING OVERVIEW

1.2.1

1.2.2

1.2.3

SWING

Z-order

Swing components are referred to as lightweights while AWT components are referred to as
heavyweights. One difference between lightweight and heavyweight components is z-order: the
notion of depth or layering. Each heavyweight component occupies its own z-order layer. All
lightweight components are contained inside heavyweight components, and they maintain
their own layering scheme as defined by Swing. When you place a heavyweight inside another
heavyweight container, it will, by definition, overlap all lightweights in that container.

What this ultimately means is that you should avoid using both heavyweight and light-
weight components in the same container whenever possible. The most important rule to fol-
low is that you should never place heavyweight components inside lightweight containers that
commonly support overlapping children. Some examples of these containers are JI nt er nal -
Frane, JScrol | Pane, JLayer edPane, and JDeskt opPane. Secondly, if you use a pop-up
menu in a container holding a heavyweight component, you need to force that pop-up to be
heavyweight. To control this for a specific JPopupMenu instance, you can use its set Li ght -
Wi ght PopupEnabl ed() method.

NOTE For JMenus (which use JPopupMenus to display their contents) you first have to use
the get PopupMenu() method to retrieve the associated pop-up menu. Once it is
retrieved, you can then call set Li ght Wi ght PopupEnabl ed(f al se) on that
pop-up to enforce heavyweight functionality. This needs to be done with each
JMenu in your application, including menus contained within menus.

Alternatively, you can call JPopupMenu’s static set Def aul t Li ght Wi ght PopupEnabl ed()
method, and pass it a value of f al se to force all popups in a Java session to be heavyweight.
Note that this will only affect pop-up menus created affer this call is made. It is therefore a
good idea to call this method early within initialization.

Platform independence

The most remarkable thing about Swing components is that they are written in 100% Java
and they do not directly rely on peer components, as most AW'T components do. This means
that a Swing button or text area can look and function identically on Macintosh, Solaris,
Linux, and Windows platforms. This design reduces the need to test and debug applications
on each target platform.

NOTE The only exceptions to this are four heavyweight Swing components that are direct
subclasses of AWT classes that rely on platform-dependent peers: JAppl et , JDi al og,
JFrame, and JW ndow. See chapter 3 for more information.

Swing package overview

j avax. swi ng
Contains the most basic Swing components, default component models and inter-

faces. (Most of the classes shown in figure 1.2 are contained in this package.)
j avax. swi ng. bor der

Contains the classes and interfaces used to define specific border styles. Note that
borders can be shared by any number of Swing components, as they are not
components themselves.

j avax. swi ng. col or chooser

Contains classes and interfaces that support the JCol or Chooser component, which
is used for color selection. (This package also contains some interesting undocu-
mented private classes.)

j avax. swi ng. event

Contains all Swing-specific event types and listeners. Swing components also sup-
port events and listeners defined in j ava. awt . event and j ava. beans.

javax. swi ng. fil echooser

Contains classes and interfaces supporting the JFi | eChooser component used for
file selection.

j avax. swi ng. pl af

Contains the pluggable look and feel API used to define custom Ul delegates. Most
of the classes in this package are abstract. They are subclassed and implemented by
look and feel implementations such as Metal, Motif, and Basic. The classes in this
package are intended for use only by developers who, for one reason or another, can-
not build on top of an existing look and feel.

j avax. swi ng. pl af . basi c

j avax.

j avax.

j avax.

j avax.

j avax.

j avax.

j avax.

This package is the Basic look and feel implementation on top of which all look and
feels provided with Swing are built. We are normally expected to subclass the classes

in this package if we want to create our own customized look and feel.
swi ng. pl af . et al

Metal is the default look and feel of Swing components; it is also known as the Java
look and feel. It is the only look and feel that ships with Swing which is not designed
to be consistent with a specific platform.

swi ng. plaf. mul ti

This package is the Multiplexing look and feel. This is not a regular look and feel
implementation in that it does not define the actual look or feel of any components.
Instead, it provides the ability to combine several look and feels for simultanteous
use. A typical example might be using an audio-based look and feel in combination
with metal or motif.

swi ng. t abl e

Contains classes and interfaces that support the JTabl e control. This component is
used to manage tabular data in spreadsheet form. It supports a high degree of cus-
tomization without requiring look and feel enhancements.

swWi ng. t ext

Contains classes and interfaces used by the text components, including support for
plain and styled documents, the views of those documents, highlighting, caret con-

trol and customization, editor actions, and keyboard customization.
swing. text. htm

Contains support for parsing, creating, and viewing HTML documents.
sSwi ng. text. htm . parser

Contains support for parsing HTML.

swing.text.rtf

Contains support for RTF (rich text format) documents.

CHAPTER 1 SWING OVERVIEW

javax.swing.tree

Contains classes and interfaces that support the JTr ee component. This compo-
nent is used for the display and management of hierarchical data. It supports a high

degree of customization without requiring look and feel enhancements.
j avax. swi ng. undo
Contains support for implementing and managing undo/redo functionality.

13 MVC ARCHITECTURE

The Model-View-Controller architecture (MVC) is a well known object-oriented user inter-

face design decomposition that dates back to the late 1970s. Components are broken down

into three parts: a model, a view, and a controller. Each Swing component is based on a more

modern version of this design. Before we discuss how MVC works in Swing, we need to

understand how it was originally designed to work.

NOTE The three-way separation described here, and illustrated in figure 1.3, is used

today by only a small number of user interface frameworks, VisualWorks being

the most notable.

Controller

ESHAEEAHEEHAEDHE] BaNA

- -Telel=l-0- e e 11 - d .

EAMANBENDDEEHEIE DA Figure 1.3

_Eﬂﬂﬂﬂ'ﬂ? al] Model-View-Controller
architecture

1.3.1 Model

The model is responsible for maintaining all aspects of the component state. This includes,
for example, such values as the pressed/unpressed state of a push button, and a text

component’s character data and information about how it is structured. A model may be

responsible for indirect communication with the view and the controller. By indirect, we mean

that the model does not “know” its view and controller—it does not maintain or retrieve
references to them. Instead, the model will send out notifications or broadcasts (what we know

as events). In figure 1.3 this indirect communication is represented by dashed lines.

MVC ARCHITECTURE

1.3.2

1.3.3

1.34

View

The view determines the visual representation of the component’s model. This is a compo-
nent’s “look.” For example, the view displays the correct color of a component, whether the
component appears raised or lowered (in the case of a button), and the rendering of a desired
font. The view is responsible for keeping its on-screen representation updated, which it may
do upon receiving indirect messages from the model or messages from the controller.

Controller

The controller is responsible for determining whether the component should react to any
input events from input devices such as the keyboard or mouse. The controller is the “feel” of
the component, and it determines what actions are performed when the component is used. The
controller can receive messages from the view, and indirect messages from the model.

For example, suppose we have a checked (selected) check box in our interface. If the con-
troller determines that the user has performed a mouse click, it may send a message to the view.
If the view determines that the click occurred on the check box, it sends a message to the model.
The model then updates itself and broadcasts a message, which will be received by the view,
to tell it that it should update itself based on the new state of the model. In this way, a model
is not bound to a specific view or controller; this allows us to have several views and controllers
manipulating a single model.

Custom view and controller

One of the major advantages Swing’s MVC architecture provides is the ability to customize
the “look” and “feel” of a component without modifying the model. Figure 1.4 shows a group
of components using two different user interfaces. The important point to know about this
figure is that the components shown are actually the same, but they are shown using two dif-
ferent look and feel implementations (different views and controllers).

Malachite look-and-feel Windows look-and-feel
| Click Me | Don'tTouch Me ‘
I'm checked I'm unchecked v I'm checked [I'm unchecked

B option1 B optionz [options © Ofion T & Option2 € Option 3

Figure 1.4 Malachite and Windows look and feels
of the same components

Some Swing components also provide the ability to customize specific parts of a component
without affecting the model. For example, some components allow us to define custom cell
renderers and editors used to display and accept specific data, respectively. Figure 1.5 shows

CHAPTER 1 SWING OVERVIEW

the columns of a table containing stock market data rendered with custom icons and colors.
We will examine how to take advantage of this functionality in our study of Swing combo
boxes, lists, spinners, tables, and trees.

Sun Microsystems 140 518 10,625 £ suNw 130 15/16 10/ 17,734,600
Lucent Technology 64 5/8 565 LU 53 15/16 411/16| 29,856,300
Dell Computers 46 3116 5.24| § DELL 44172 111/16| 47,310,000
Sany Corp. 96 3/16 118/ § SNE 95 5/8 11/8 330,600
Hitachi, Ltd. 78142 112[§ HIT 77 508 716 49,400
Enamelon Inc. 4718 0.0 T ENML 5 -1/8 35,900
AT&T 65 3116 01T T 66 -13/16 554,000
Intl. Bus. Matchines 183 051 T 1BM 183 1/8 -1/6| 4,371,400
Microsof Carp. 94 1/16 -0.92| T MSFT 95 316 -1 1/8| 19,836,900
Egghead.com 17 144 -1.43| T EGGS 17 716 -3M16| 2,146,400
Sprint 104 9116 -1.82[T FON 106 318 -1 1316 1,135,100
Hewlett-Packard 70 201 T HwiP 711016 -1 7116 2,410,700
Compag Camputers 30 7i8 218/ I crPa 31 144 -3/a] 11,853,900

Figure 1.5 Custom rendering

135 Custom models

Another major advantage of Swing’s MVC architecture is the ability to customize and replace
a component’s data model. For example, we can construct our own text document model that
enforces the entry of a date or phone number in a very specific form. We can also associate the
same data model with more than one component. For instance, two JText Ar eas can store
their textual content in the same document model, while maintaining two different views of
that information.

We will design and implement our own data models for JComboBox, JLi st , JSpi nner,
JTree, and JTabl e throughout our coverage of text components. We've listed some of
Swing’s model interface definitions along with a brief description of what data the implemen-
tations are designed to store and what components they are used with:

BoundedRangeMbdel
Used by: JPr ogr essBar, JScrol | Bar, JS| i der.
Stores: 4 integers: val ue, ext ent, i n, max.
The val ue and the ext ent must be between specified ni n and max values. The
extent is always <= max and >=val ue. The value of extent is not necessarily
larger than val ue. Also, the extent represents the length of the zhumb in

JScrol | Bar (see chapter 7).
But t onMbdel

Used by: All Abst r act But t on subclasses.
Stores: A boolean representing whether the button is selected (armed) or unselected
(disarmed).
Li st Model
Used by: JLi st .

Stores: A collection of objects.

MVC ARCHITECTURE 9

10

ConboBoxModel
Used by: 3JComboBox.

Stores: A collection of objects and a selected object.
Mut abl eConmboBoxModel

Used by: JComboBox.

Stores: A Vect or (or another mutable collection) of objects and a selected object.
Li st Sel ecti onModel
Used by: JLi st , Tabl eCol urmMbdel .
Stores: One or more indices of selected list or table items. Allows single, single-inter-
val, or multiple-interval selections.
Spi nner Model
Used by: 3Spi nner .
Stores: A sequenced collection that can be bounded or unbounded, and the currently
selected element in that sequence.
Si ngl eSel ecti onModel
Used by: IvenuBar, JPopupMenu, JVenul t em JTabbedPane.
Stores: The index of the selected element in a collection of objects owned by the

implementor.
Col or Sel ect i onMbdel

Used by: JCol or Chooser.

Stores: A Col or.
Tabl eModel
Used by: JTabl e.
Stores: A two-dimensional array of objects.
Tabl eCol utmModel
Used by: 3Tabl e.
Stores: A collection of Tabl eCol umm objects, a set of listeners for table column
model events, the width between columns, the total width of all columns, a selection

model, and a column selection flag.
Tr eeModel

Used by: 3Tr ee.
Stores: Objects that can be displayed in a tree. Implementations must be able to
distinguish between branch and leaf objects, and the objects must be organized

hierarchically.
Tr eeSel ect i onMbdel

Used by: JTr ee.

Stores: Selected rows. Allows single, contiguous, and discontiguous selection.
Docunent

Used by: All text components.

Stores: Content. Normally this is text (character data). More complex
implementations support styled text, images, and other forms of content (such as
embedded components).

Not all Swing components have models. Those that act as containers, such as JAppl et,
JFrame, JLayer edPane, JDesktopPane, and Jlnternal Frame, do not have models.
However, interactive components such as JBut t on, JText Fi el d, and JTabl e do have mod-
els. In fact, some Swing components have more than one model (for example, JLi st uses one

CHAPTER 1 SWING OVERVIEW

14

1.4.1

model to hold selection information and another model to store its data). The point is that
MVC is not a hard-and-fast rule in Swing. Simple components, or complex components that
don’t store lots of information (such as JDeskt opPane), do not need separate models. The
view and controller of each component is, however, almost always separate for each compo-
nent, as we will see in the next section.

So how does the component itself fit into the MVC picture? The component acts as a
mediator between the model(s), the view, and the controller. It is neither the M, the V, nor the C,
although it can take the place of any or all of these parts if we so design it. This will become
more clear as we progress through this chapter, and throughout the rest of the book.

Ul DELEGATES AND PLAF

Almost all modern user interface frameworks coalesce the view and the controller, whether
they are based on Smalltalk, C++, or Java. Examples include MacApp, Smalltalk/V, Inter-
views, and the X/Motif widgets used in IBM Smalltalk. Swing is the newest addition to this
crowd. Swing packages each component’s view and controller into an object called a UI dele-
gate. For this reason Swing’s underlying architecture is more accurately referred to as model-
delegate rather than model-view-controller. Ideally, communication between both the model
and the UI delegate is indirect, allowing more than one model to be associated with one Ul
delegate, and vice versa. Figure 1.6 illustrates this principle.

Ul Delegate
Controller

x

COBEHAHEENNEDEE SO0A g

BodDocEnnoDESRRE AR i

EAAREDDODEEEHEIE] BAD Figure 1.6

ENEEERRN BEID e Model-delegate
architecture

The ComponentUI class

Each UI delegate is derived from an abstract class called Conponent Ul . Conponent Ul meth-
ods describe the fundamentals of how a UT delegate and a component using it will communi-
cate. Note that each method takes a JConponent as a parameter.

Here are the Conponent U methods:

UI DELEGATES AND PLAF 11

14.2

12

static ConponentU createU (JConponent c)
Returns an instance of the UI delegate defined by the defining Conponent Ul sub-
class itself, in its normal implementation. This instance is often shared among com-
ponents of the same type (for example, all JBut t ons using the Metal look and feel
share the same static Ul delegate instance defined in javax. swing.
pl af . net al . Met al But t onUl by defaul).

install U (JConponent c)
Installs this Conponent Ul on the specified component. This normally adds listeners
to the component and/or its model(s), to notify the Ul delegate when changes in
state occur that require a view update.

uni nstal | Ul (JConmponent c)
Removes this Conponent Ul and any listeners added in i nstal | Ul () from the
specified component and/or its model(s).

updat e(Gr aphi cs g, JComponent c)
If the component is opaque, this method paints its background and then calls
pai nt (Graphics g, JConponent c).

pai nt (G aphi cs g, JConponent c)
Gets all information it needs from the component and possibly its model(s) to ren-
der it correctly.

get Pref erredSi ze(JConponent c)
Returns the preferred size for the specified component based on this Conponent Ul .

get M ni munti ze(JConponent c)
Returns the minimum size for the specified component based on this Conponent Ul .

get Maxi munsi ze(JConponent c¢)

Returns the maximum size for the specified component based on this Conponent Ul .

To enforce the use of a specific UI delegate, we can call a components set Ul () method:

JButton mbutton = new JButton();
m but t on. set Ul ((Mal achi t eButtonUl)
Mal achi t eButtonUl . creat eUl (m_ button));

Most UI delegates are constructed so that they know about a component and its models only
while performing painting and other view-controller tasks. Swing normally avoids associating
UI delegates on a per-component basis by using a shared instance.

NOTE The JConponent class defines methods for assigning UI delegates because the
method declarations required do not involve component-specific code. However,
this is not possible with data models because there is no base interface that all mod-
els can be traced back to (for example, there is no base abstract class such as Com
ponent Ul for Swing models). For this reason, methods to assign models are
defined in subclasses of JConponent where necessary.

Pluggable look and feel

Swing includes several sets of Ul delegates. Each set contains Conponent Ul implementations
for most Swing components; we call each of these sets a look and feel or a pluggable look and
feel (PLAF) implementation. The j avax. swi ng. pl af package consists of abstract classes
derived from Conponent U, and the classes in the j avax. swi ng. pl af . basi ¢ package

CHAPTER 1 SWING OVERVIEW

1.4.3

extend these abstract classes to implement the Basic look and feel. This is the set of UI dele-
gates that all other look and feel classes are expected to use as a base for building from. (Note
that the Basic look and feel cannot be used on its own, as Basi cLookAndFeel is an abstract
class.) There are three main pluggable look and feel implemenations derived from the Basic

look and feel:

Windows: com sun. j ava. swi ng. pl af . wi ndows. W ndowsLookAndFeel
CDE\Motif: com sun. j ava. swi ng. pl af . noti f. Mot i f LookAndFeel
Metal (default): j avax. swi ng. pl af . met al . Met al LookAndFeel

There is also a MacLookAndFeel for simulating Macintosh user interfaces, but this does not
ship with Java 2—it must be downloaded separately. The Windows and Macintosh pluggable
look and feel libraries are only supported on the corresponding platform.

The Multiplexing look and feel, j avax. swing. plaf.multi.MiltiLookAndFeel,
extends all the abstract classes in j avax. swi ng. pl af . It is designed to allow combinations
of look and feels to be used simultaneously, and it is intended for, but not limited to, use with
Accessibility look and feels. The job of each Multiplexing UT delegate is to manage each of its
child UI delegates.

Each look and feel package contains a class derived from the abstract classj avax. swi ng.
LookAndFeel ; these include Basi cLookAndFeel , Met al LookAndFeel , and W ndows Look-
AndFeel . These are the central points of access to each look and feel package. We use them
when changing the current look and feel, and the Ul Manager class (used to manage installed
look and feels) uses them to access the current look and feel’s Ul Def aul t s table (which con-
tains, among other things, UI delegate class names for that look and feel corresponding to each
Swing component). To change the current look and feel of an application we can simply call
the Ul Manager ’s set LookAndFeel () method, passing it the fully qualified name of the Look-
AndFeel to use. The following code can be used to accomplish this at run-time:

try {
Ul Manager . set LookAndFeel (

"com sun. java. swing. pl af. noti f. Moti f LookAndFeel ") ;
Swi ngUtilities. updateConponent TreeUl (nyJFrane);

}
catch (Exception e) {
Systemerr.println("Could not |oad LookAndFeel ");

}

SwingUtilities.updat eConponent TreeU () informs all children of the specified com-
ponent that the look and feel has changed and they need to discard their Ul delegate in
exchange for a different one of the new look and feel. Note that the call to updat eConpo-
nent Tree() is only necessary if the frame is already visible.

Where are the Ul delegates?

We've discussed Conponent Ul and the packages that LookAndFeel implementations reside in,
but we haven’t really mentioned anything about the specific UI delegate classes derived from
Conponent Ul . Each abstract class in the j avax. swi ng. pl af package extends Conponent Ul
and corresponds to a specific Swing component. The name of each class follows the general

Ul DELEGATES AND PLAF 13

14

scheme of class name (without the “J” prefix) plus a “UI” suffix. For instance, Label Ul
extends Conponent Ul and is the base delegate used for JLabel .

These classes are extended by concrete implementations such as those in the basi ¢ and
mul ti packages. The names of these subclasses follow the general scheme of the look and feel
name prefix added to the superclass name. For instance, Basi cLabel U and Mul ti Label Ul
both extend Label Ul and reside in the basi ¢ and nul ti packages respectively. Figure 1.7
illustrates the Label Ul hierarchy.

ComponentUI

LabelUI

BasicLabelUI
MetalLabelUT
MotifLabelUI

WindowsLabelUTI

MultiLabelUI

Figure 1.7
Label U hierarchy

Most look and feel implementations are expected to either extend the concrete classes defined
in the basi ¢ package, or use them directly. The Metal, Motif, and Windows Ul delegates are
built on top of Basic versions. The Multi look and feel, however, is unique in that each imple-
mentation does not extend from Basic; each is merely a shell allowing an arbitrary number of
UI delegates to be installed on a given component.

Figure 1.7 should emphasize the fact that Swing supplies a very large number of UI del-
egate classes. If we were to create an entirely new pluggable look and feel implementation, some
serious time and effort would be required. In chapter 21 we will learn all about this process,
as well as how to modify and work with the existing look and feels.

NOTE We do not detail the complete functionality and construction of any of the provided
UI delegate classes in this book.

CHAPTER 1 SWING OVERVIEW

2.1

2.1.1

CHAPTEHR 2

A
Y

%

Swing mechanics

2.1 JComponent properties, sizing, and 2.7 JavaBeans architecture 31
positioning 15 2.8 Fonts, colors, graphics, and text 38

2.2 Event handling and dispatching 19 2.9 Using the graphics clipping area 47

2.3 Multithreading 23 2.10 Graphics debugging 49

2.4 Timers 27 2.11 Painting and validation 54

2.5 AppContext services 28 2.12 Focus management 61

2.6 Inside Timers and the TimerQueue 30 213 Keyboard input 66

JCOMPONENT PROPERTIES, SIZING, AND POSITIONING

All Swing components conform to the JavaBeans specification, which we'll discuss in detail in
section 2.7. Among the five features a JavaBean is expected to support is a set of properties and
associated accessor methods.

Properties

A property is a member variable, and its accessor methods are normally of the form set Pr op-
ertynane(), get Propertynanme(), or i sPropertyname() where Propertynane is the
name of the variable. There are five types of properties we refer to throughout this book: sim-
ple, bound, constrained, change, and client. We will discuss each of these in turn.

Many classes are designed to fire events when the value of a property changes. A property
for which there is no event firing associated with a change in its value is called a simple property.

A bound property is one for which Proper t yChangeEvent s are fired after the property
changes value. We can register PropertyChangelLi st eners to listen for Propert yChan-
geEvent s through JConponent ’s addPr oper t yChangelLi st ener () method.

15

16

A constrained property is one for which PropertyChangeEvent s are fired before the
property changes value. We can register Vet oabl eChangeLi st ener s to listen for Pr oper -
tyChangeEvent s through JConponent’s addVet oabl eChangeli st ener () method. A
change can be vetoed in the event handling code of a Vet oabl eChangeli st ener () by throw-
ing Proper t yVet oExcept i on. (As of JDK1.4 JI nt er nal Frane is the only Swing class with
constrained properties.)

NOTE Each of these event and listener classes is defined in the j ava. beans package.

Pr oper t yChangeEvent s carry three pieces of information with them: the name of the property,
the old value, and the new value. Beans can use an instance of j ava. beans. Property-
ChangeSupport to manage the dispatching, to each registered listener, of the Property-
ChangeEvents corresponding to each bound property. Similarly, an instance of
Vet oabl eChangeSupport can be used to manage the dispatching of all PropertyChan-
geEvent s corresponding to each constrained property.

JAVAL4 Java 1.4 has added two APIs to allow access to the property change listeners of a
JConponent .
Pr opertyChangeli st ener[] get PropertyChangeli st eners()
PropertyChangeLi stener[] get PropertyChangeli steners(String
pr o- pert yNane)
This change is part of an effort from Sun to offer a more complete solution to man-
age event listeners within AWT and Swing by providing getXXXListeners() meth-
ods in addition to the existing add/remove convention.

Swing includes an additional property support class called Swi ngPr oper t yChangeSuppor t
(defined in j avax. swi ng. event) which is a subclass of, and almost identical to, Pr oper -
t yChangeSupport . The difference is that Swi ngPr oper t yChangeSupport has been built
to be more efficient. It does this by sacrificing thread safety, which, as we will see later in this
chapter, is not an issue in Swing if the multithreading guidelines are followed consistently
(because all event processing should occur on only one thread—the event-dispatching thread).
So if you are confident that your code has been constructed in a thread-safe manner, we
encourage you to use this more efficient version, rather than Pr oper t yChangeSupport .

NOTE There is no Swing equivalent of Vet oabl eChangeSuppor t because there are current-
ly very few constrained properties defined in Swing.

Swing also introduces a new type of property which we will call a change property, for lack of
a given name. We use ChangeLi st eners to listen for ChangeEvent s that get fired when
these properties change state. A ChangeEvent only carries one piece of information with it:
the source of the event. For this reason, change properties are less powerful than bound or
constrained properties, but they are more widely used throughout Swing. A JButton, for
instance, sends change events whenever it is armed (pressed for the first time), pressed, and
released (see chapter 5).

NOTE You can always find out which properties have change events associated with them,
as well as any other type of event, by referencing the Swing source code. Unless you
are using Swing for building very simple GUIs, we strongly suggest getting used to
referencing source code.

CHAPTER 2 SWING MECHANICS

Another new property-like feature Swing introduces is the notion of client properties. These
are basically key/value pairs stored in a Hasht abl e provided by each Swing component. (The
client properties Hasht abl e is actually inherited from JConponent.) This feature allows
properties to be added and removed at run-time.

WARNING Client properties may seem like a great way to extend a component by essentially
adding member variables. However, we are explicitly advised against this in the API
documentation: “The cl i ent Property dictionary is not intended to support
large scale extensions to JConponent nor should it be considered an alternative to
subclassing when designing a new component.” In other words, it is better to create
a subclass with new properties rather than use client properties to add meaningful
state. Client properties are best used for experimentation.

Client properties are also bound properties: when a client property changes, a Pr oper t yChange-
Event is dispatched to all registered PropertyChangeLi st eners. To add a property to a
component’s client properties you can do something like the following:

myConponent . put G i ent Property("nynanme", nyVal ue);
To retrieve a client property:
Obj ect obj = myConponent.getd ientProperty("nynanme");
To remove a client property you can provide a nul | value:
myConponent . put G i ent Property("nykey", null);

Five Swing components have special client properties that only the Metal look and feel pays
attention to. We've listed these property key names along with a brief description of their values.

NOTE These property key names are actually the values of protected fields defined in the
corresponding Met a1XXUl delegates in the j avax. swi ng. pl af . net al package.
Unfortunately the only way to make use of them is to either hardcode them into
your application or subclass the corresponding Metal UI delegates to make these

fields available.

“Tree.lineStyle”
A String used to specify whether node relationships are displayed as angular con-
necting lines (“Angled”), horizontal lines defining cell boundaries (“Horizontal”
(default)), or no lines at all (“None”).

“IScrollBar.isFreeStanding”
A Bool ean value used to specify whether all sides of a JScrol | bar will have an
etched border (Bool ean. FALSE (default)) or only the top and left edges (Bool -
ean. TRUE).

“ISlider.isFilled”
A Bool ean value used to specify whether the lower portion of a slider should be
filled (Bool ean. TRUE) or not (Bool ean. FALSE (default)).

“T1o0lBar.isRollover”
A Bool ean value used to specify whether a toolbar button displays an etched border
only when the mouse is within its bounds and no border if it is not (Bool ean.
TRUE), or whether to always use an etched border (Bool ean. FALSE (default)).

JCOMPONENT PROPERTIES, SIZING, AND POSITIONING 17

18

“ IInternalFrame.isPalette”
A Bool ean value used to specify whether a very thin border is used (Bool ean.
TRUE) or the regular border is used (Bool ean. FALSE (default)).

NOTE There are also other non Metal-specific client properties used by various UI dele-
gates such as JTabl e. aut oSt ar t sEdi t . The best way to find out about more cli-
ent properties is to look at the actual UI delegate source code. However, the use of
client properties often changes from release to release and for this reason avoid them
whenever possible.

Size and positioning

Because JConponent extends j ava. awt . Cont ai ner, it inherits all the sizing and position-
ing functionality we are used to. We suggest you manage a component’s preferred, minimum,
and maximum sizes using the following methods:

set PreferredSi ze(), getPreferredSi ze()
The most comfortable size of a component. Used by most layout managers to size

each component.
set M ni nunti ze(), get M ni munti ze()

Used during layout to act as a lower bounds for a component’s dimensions.
set Maxi munti ze(), get Maxi munti ze()

Used during layout to act as an upper bounds for a component’s dimensions.

Each set XX()/ get XX() method accepts/returns a Di nensi on instance. We will learn more
about what these sizes mean in terms of each layout manager in chapter 4. Whether a layout
manager pays attention to these sizes is solely based on that layout manager’s implementation.
It is perfectly feasible to construct a layout manager that simply ignores all of them, or pays
attention to only one. The sizing of components in a container is layout-manager specific.
JConponent ’s set Bounds () method can be used to assign a component both a size and
a position within its parent container. This overloaded method can take either a Rect angl e
parameter (j ava. awt . Rect angl e) or four i nt parameters representing the x-coordinate,
y-coordinate, width, and height. For example, the following two code segments are equivalent:

ny Conponent . set Bounds (120, 120, 300, 300);

Rectangl e rec = new Rectangl e(120, 120, 300, 300);
nmy Conponent . set Bounds(rec);

Note that set Bounds() will not override any layout policies in effect due to a parent con-
tainer’s layout manager. For this reason, a call to set Bounds() may appear to have been ignored
in some situations because it tried to do its job and was forced back to its original size by the
layout manager (layout managers always have the first crack at setting the size of a compo-
nent).

set Bounds() is commonly used to manage child components in containers with no lay-
out manager (such as JLayer edPane, JDeskt opPane, and JConponent itself). For instance,
we normally use set Bounds() when adding a JI nt er nal Fr ame to a JDeskt opPane.

A component’s size can safely be queried in typical AWT style, such as this:

i nt height = nyConponent. get Hei ght ();
int width = nyConponent.getWdth();

CHAPTER 2 SWING MECHANICS

NOTE This information is only meaningful after the component has been realized.
Size can also be retrieved as a Rect angl e or a Di mensi on instance:

Rect angl e rec = myConponent . get Bounds();
Di mensi on di m = myConponent . get Si ze();

Rect angl e contains four publicly accessible properties describing its location and size:

int recX = rec.Xx;

int recY =rec.y;

int recWdth = rec.w dth;
int recHeight = rec. hei ght;

Di mensi on contains two publicly accessible properties describing size:

int dimMNdth = di mw dth;

int dinHei ght = di m hei ght;
The coordinates returned in the Rect angl e instance using get Bounds() represent a com-
ponent’s location within its parent. These coordinates can also be obtained using the get X()
and get Y() methods. Additionally, you can set a component’s position within its container
using the set Location(int x, int y) method (but as with set Bounds(), this method
may or may not have any effect depending on the layout manager in use).

JConponent also maintains an alignment. Horizontal and vertical alignments can be

specified by float values between 0.0 and 1.0: 0.5 means center, closer to 0.0 means left or top,
and closer to 1.0 means right or bottom. The corresponding JConponent methods are:

set Al i gnment X(float f)
set Al i gnment Y(fl oat f)

Alignment values are used only in containers managed by BoxLayout and Over | ayLayout .

2.2 EVENT HANDLING AND DISPATCHING

Events occur any time a key or mouse button is pressed. The way components receive and
process events has not changed from JDK1.1. Swing components can generate many different
types of events, including those in j ava. awt . event and even more in j avax. swi ng. event .
Many of the j ava. Swi ng. event event types are component-specific. Each event type is rep-
resented by an object that, at the very least, identifies the source of the event. Some events
carry additional information such as an event type name and identifier, and information
about the state of the source before and after the event was generated. Sources of events are
most commonly components or models, but different kinds of objects can also generate
events.

In order to receive notification of events we need to register listeners with the source
object. A listener is an implementation of any of the XXLi st ener interfaces (where XX is an
event type) defined in the j ava. awt . event, j ava. beans, and j avax. swi ng. event pack-
ages. There is always at least one method defined in each interface that takes a corresponding
XXEvent as a parameter. Classes that support notification of XXEvent s generally implement
the XXLi st ener interface, and have support for registering and unregistering those listeners
through the use of the addXXLi st ener () and r enoveXXLi st ener () methods, respectively.

EVENT HANDLING AND DISPATCHING 19

20

Most event sources allow any number of listeners to be registered with them. Similarly, any

listener instance can be registered to receive events from any number of event sources.

Usually classes that support XXEvent s provide protected fireXX() methods used for
constructing event objects and sending them to event handlers for processing (see section 2.7.7
for an example of this). Application-defined events should use this same pattern.

JAVA 13

JAVAL4

In Java 1.2 there was no way to access the listeners of a component without
subclassing. For this reason the getlisteners() method was added to
Conponent in Java 1.3. This method takes a listener Cl ass instance as its
argument and returns an array of Event Li steners (EventLi stener is the
interface all XXLi st ener s extend). For example, to obtain all Acti onLi st eners
attached to a given component we can do the following;

ActionListener[] actionListeners = (ActionListener[])
nyConponent . get Li st ener s(Acti onLi st ener. cl ass);

The get Li st ener s() methods were stop gap measures created in the Java 1.3 to
allow direct access to the list of Event Li st ener s registered with a specific compo-
nent, while keeping the changes to the AWT/Swing public API minimal. In version
1.4, the design team has opted for a more complete solution, more in line with the
JavaBean convention. We've listed the additions here:

j ava. awt . Conponent

InJava 1.3:

get Li st eners()

addHi er archylLi stener ()

renoveHi er ar chylLi st ener ()

addHi er ar chyBoundsLi st ener ()
renoveH er ar chyBoundsLi st ener ()

Java 1.4 added the following:

get Conponent Li st eners()
get FocusLi st eners()

get Hi erarchylLi st eners()
get Hi er ar chyBoundsLi st eners()
get KeyLi st eners()

get Mouseli st eners()

get MbuseMbt i onLi st eners()
addMbuseWeel Li st ener ()
renoveMouseWheel Li st ener ()
get MouseWeel Li st eners()
get | nput Met hodLi st ener s()
get Cont ai ner Li st eners()

j avax. swi ng. JConponent

InJava 1.3:
get Li steners()

Java 1.4 added the following:

get Ancest or Li st eners()

get Vet oabl eChangelLi st eners
get PropertyChangeLi st eners()

CHAPTER 2 SWING MECHANICS

For purposes of completeness, in tables 2.1 and 2.2 below we summarize the event listeners in
the j ava. awt . event and j avax. swi ng. event packages (for more detail, please refer to

the JavaDoc documentation).

Table 2.1 Event listener interfaces in j ava. awt . event s

Event
Acti onLi st ener

Adj ust ment Li st ener
AWTrEvent Li st ener
Conponent Li st ener
Cont ai ner Li st ener
FocusLi st ener

Hi er ar chyBoundsLi st ener
Hi erarchyli st ener

I nput Met hodLi st ener
I tenli st ener
KeyLi st ener
Mouseli st ener
MouseMbt i onLi st ener
MbuseWheel Li st ener
Text Li st ener

W ndowFocusLi st ener
W ndowLi st ener

W ndowSt at eLi st ener

Related to

Action events

Adjustment events

Observe passively all events dispatched within AWT
Component (move, size, hide, show) events
Container (ad, remove component) events

Focus (gain, loss) events

Hierarchy (ancestor moved/resized) events
Hierarchy (visibility) events

Input method events (multilingual framework)

Item events

Keyboard events

Mouse buttons events

Mouse motion events

Mouse wheel events

Text events

Window focus events (new focus management framework)
Window events (non focus related)

Window state events

Table 2.2 Event listener interfaces in j avax. swi ng. event

Event
Ancest or Li st ener

Car et Li st ener

Cel | Edi t or Li st ener
Changeli st ener
Docunent Li st ener
Hyperl i nkLi st ener

I nt er nal FraneLi st ener
Li st Dat aLi st ener

Li st Sel ecti onLi st ener
MenuDr agMbuseli st ener
MenuKeyLi st ener
MenuLi st ener
Mousel nput Li st ener
PopupMenulLi st ener
Tabl eCol uimmMbdel Li st ener
Tabl eModel Li st ener

Tr eeExpansi onLi st ener
Tr eeModel Li st ener
TreeSel ecti onLi st ener
TreeW | | ExpandLi st ener
Undoabl eEdi t Li st ener

Related to

Changes to location and visible state of a JComponent or its parents
Text cursor movement events

Cell editor events

Change events (see p. 16)

Text document events

Hyperlink events

Internal frame events

List data events

List selection events

Menu mouse movement events
Menu keyboard events

Menu selection events

Aggregrated mouse and mouse motion events
Popup meny events

Table column events

Table model data events

Tree expand/collapse events

Tree model data events

Tree selection events

Tree expand/collapse pending events
Undo/Redo events

EVENT HANDLING AND DISPATCHING

21

2.2.1

222

22

EventListenerList

class javax.swing.event. EventListenerList

Event Li st ener Li st is an array of XXEvent / XXLi st ener pairs. JConponent and each of
its descendants use an Event Li st ener Li st to maintain their listeners. All default models
also maintain listeners and an Event Li st ener Li st. When a listener is added to a Swing
component or model the associated event’s Cl ass instance (used to identify event type) is
added to its Event Li st ener Li st array, followed by the listener instance itself. Since these
pairs are stored in an array rather than a mutable collection (for efficiency purposes), a new
array is created on each addition or removal using the Syst em arrayCopy() method. For
thread safety the methods for adding and removing listeners from an Event Li st ener Li st
synchronize access to the array when it is manipulated.

When events are received the array is traversed and events are sent to each listener with
a matching type. Because the array is ordered in an XXEvent , XXLi st ener, YYEvent, YYLi s-
tener fashion, a listener corresponding to a given event type is always next in the array. This
approach allows very efficient event-dispatching routines (see section 2.7.7 for an example).

JConponent defines its Event Li st ener Li st as a protected field called I i st ener Li st
so that all subclasses inherit it. Swing components manage most of their listeners directly
through | i st ener Li st.

Event-dispatching thread

class java.awt. EventDispatch Thread [package private]

By default all AWT and Swing-based applications start off with two threads. One is the main
application thread which handles execution of the mai n() method. The other, referred to as
the event-dispatching thread, is responsible for handling events, painting, and layout. All events
are processed by the listeners that receive them within the event-dispatching thread. For
example, the code you write inside the body of an act i onPer f or med() method is executed
within the event-dispatching thread automatically (you don’t have to do anything special to
make this happen). This is also the case with all other event-handling methods. All painting
and component layout also occurs within this thread. For these reasons the event-dispatching
thread is of primary importance to Swing and AWT, and plays a fundamental role in keeping
updates to component state and display under control

Associated with the event-dispatching thread is a FIFO (first in first out) queue of events
called the system event queue (an instance of j ava. awt . Event Queue). This gets filled up, as
does any FIFO queue, in a serial fashion. Each request takes its turn executing event-handling
code, whether it is updating component properties, layout, or painting. All events are processed
serially to avoid such situations as a component’s state being modified in the middle of a
repaint. Knowing this, you must be careful not to dispatch events outside of the event-
dispatching thread. For instance, calling a fi r eXX() method directly from within a separate
(either the main application thread or one that you created yourself) is unsafe.

Since the event-dispatching thread executes all listener methods, painting and layout, it
is important that event-handling, painting, and layout methods be executed quickly. Other-
wise the whole system event queue will be blocked waiting for one event process, repaint, or
layout to finish, and your application will appear to be frozen or locked up.

CHAPTER 2 SWING MECHANICS

NOTE If you are ever in doubt whether or not event-handling code you have written is
being handled in the right thread, the following static method comes in handy:

Swi ngUtilities.isEventDispatchThread(). Thiswill returntrue orfal se
indicating whether or not the method was called from within the event-dispatching

thread.

To illustrate this point, let’s say you have a Swing application running in front of you with a
button and table of data. The button has an attached Acti onLi st ener and inside this lis-
tener’s act i onPer f or med() method a database access occurs. After the data is retrieved it is
then added to the table’s model and the table updates its display accordingly. The problem
with this is that if the connection to the database is slow or not working when we press the
button, or if the amount of data retrieved is large and takes a while to send, the GUI will
become unresponsive until the send finishes or an exception is thrown. To solve this problem
and ensure that the acti onPer f or med() method gets executed quickly, you need to create
and use your own separate thread for doing this time-consuming work.

2.3 MULTITHREADING

Multithreading is necessary when any time-consuming work occurs in a GUI application.
The following code shows how to create and start a separate thread:

Thread workHard = new Thread() {
public void run() {
doToughWork(); // do sonme tine-intensive work

}

b

wor kHard. start(); {
However, designing multithreaded GUI applications is not just simply creating separate
threads for time-consuming work (although this is a big part of it). There are several other
things that need to be kept in mind when designing such applications. The first is that all
updates to any components state should be executed from within the event-dispatching
thread only (see 2.2.2). For example, let’s say you have created your own separate thread that
starts when the user presses a button. This thread accesses a database to gather data for display
in a table. When the data is retrieved the table model and display must be updated, but this
update must occur in the event-dispatching thread, not within our separate thread. To
accomplish this we need a way of wrapping up code and sending it to the system event queue
for execution in the event-dispatching thread.

NOTE Use i nvokeLater () instead of i nvokeAndWai t () whenever possible. If you
must use i nvokeAndVai t () make sure that there are no locks held by the calling
thread that another thread might need during the operation.

Swing provides a very helpful class that, among other things, allows us to add Runnabl e
objects to the system event queue. This class is called Swi ngUti i ti es and it contains two
methods that we are interested in: i nvokeLater () and i nvokeAndWait (). The first
method adds a Runnabl e to the system event queue and returns immediately. The second

MULTITHREADING 23

24

method adds a Runnabl e and waits for it to be dispatched, then returns after it finishes. The
basic syntax of each follows:

Runnabl e trivial Runnabl e = new Runnabl e() {
public void run() {
dowork(); // do sone work

}

b

SwingUtilities.invokeLater(trivialRunnable);

try {
Runnabl e trivial Runnabl e2 = new Runnabl e() {

public void run() {
dowrk(); // do sone work

}
b
SwingUtilities.invokeAndWait (trivial Runnabl e2);
}
catch (InterruptedException ie) {
Systemout.printin("...waiting thread interrupted!");
}

catch (lnvocationTarget Exception ite) {
System out . println(
"...uncaught exception within Runnable's run()");

}

So, putting this all together, the following code shows a typical way to build your own sepa-
rate thread to do some time-intensive work while using i nvokeLat er () or i nvokeAnd-
Wi t () in order to safely update the state of any components in the event-dispatching thread:

Thread workHard = new Thread() {
public void run() {
doToughWork(); // do sone tine-intensive work
SwingUtilities.invokeLater(new Runnable () {
public void run() {
updat eConponents(); // do some work in event thread

}
19N
}
b
wor kHar der . start ();

NOTE It is often necessary to explicitly lower the priority of a separate thread so that the
event-dispatching thread will be given more processor time and thus allow the GUI
to remain responsive. If you have created a separate thread for time-consuming
work and you notice that the GUI is still slow or freezes often, try lowering the
priority of your separate thread before starting it:

wor kHar d. set Priority(Thread. M N_PRI ORI TY) ;

This use of a separate thread solves the problem of responsiveness and it correctly dispatches
component-related code to the event-dispatching thread. However, in an ideal solution the
user should be able to interrupt the time-intensive procedure. If you are waiting to establish a

CHAPTER 2 SWING MECHANICS

network connection you certainly dont want to continue waiting indefinitely if the
destination is not responding. So in most circumstances the user should have the ability to
interrupt the thread. The following pseudocode shows a typical way to accomplish this, where
the Acti onLi st ener attached to st opBut t on causes the thread to be interrupted, updating
component state accordingly:

JButton stopButton = new JButton(“Stop”);
/1 Before starting the thread make sure

/'l the stop button is enabl ed.

st opBut t on. set Enabl ed(true);

Thread workHard = new Thread() {
public void run() {
doToughWor k() ;
SwingUtilities.invokeLater {new Runnable() {
public void run() {
updat eConponent s() ;

}
1)
}
b
wor kHar d. start () ;

Public void doToughwork() {
try {
while(job is not finished) {
/1 W nust do at |east one of the follow ng:
/1 1. Periodically check Thread.interrupted()
/1 2. Periodically sleep or wait
if (thread.interrupted()) {
throw new | nterruptedException();
}
Thr ead. wai t (1000) ;
}
}
catch (InterruptedException e) {
/1 Notify the application that the thread has
/'l has been interrupted
}
/1 No matter what happens, disable the
/1 stop button when finished
finally {
st opBut t on. set Enabl ed(f al se);
}
}

actionLi stener stopListener = new ActionListener() {
public void actionPerforned(ActionEvent e) {
wor kHard. i nterrupt();
}
b

st opbut t on. addAct i onLi st ener (st opLi stener);

MULTITHREADING 25

2.3.1

2.3.2

26

st opBut t on interrupts the wor kHar d thread when it is pressed. There are two ways that do-
ToughWor k() will know whether wor kHar d (the thread that doToughWor k() is executed in)
has been interrupted by stopButton. If the thread is currently sleeping or waiting, an
I nt err upt edExcept i on will be thrown which you can catch and process accordingly. The
only other way to detect interruption is to periodically check the interrupted state by calling
Thread. i nt errupt ed() . Both cases are handled in the doToughWor k() method.

This approach is often used for constructing and displaying complex dialogs, 1/0O
processes that result in component state changes (such as loading a document into a text
component), intensive class loading or calculations, waiting for messages, and to establish
network or database connections.

REFERENCE Members of the Swing team have written a few articles about using threads with
Swing, and have provided a class called Swi ngWr ker that makes managing the
type of multithreading described here more convenient. See http://java.sun.com/
products/jfc/tsc.

Additionally, progress bars are often used to further enhance the user experience by visually
displaying how much of a time-consuming process is complete. Chapter 13 covers this in detail.

Special cases

There are some special cases in which we do not need to delegate code affecting the state of
components to the event-dispatching thread:

1 Some methods in Swing, although few and far between, are marked as thread-safe in the
API documentation and do not need special consideration. Some methods are thread-
safe but are not marked as such: repai nt (), reval i date(),andinval i date().

2 A component can be constructed and manipulated in any fashion we like, without
regard for threads, as long as it has not yet been realized (meaning it has been displayed
or a repaint request has been queued). Top-level containers (JFr ame, JDi al og, JAppl et)
are realized after any of set Vi si bl e(true), show(), or pack() have been called on
them. Also note that a component is considered realized as soon as it is added to a
realized container.

3 When dealing with Swing applets (JAppl et s), all components can be constructed and
manipulated without regard for threads until the st art () method has been called; this
occurs after the i ni t () method.

How do we build our own thread-safe methods?

Building our own thread-safe cases is quite easy. Here is a thread-safe method template we can
use to guarantee that a method’s code only executes in the event-dispatching thread:

public void doThreadSaf ework() {
if (SwingUilities.isEventDispatchThread()) {

/1

/1 do all work here...
/1

}

el se {

CHAPTER 2 SWING MECHANICS

2.4

TIMERS

Runnabl e cal | DoThr eadSaf eWwor k = new Runnabl e() {
public void run() {
doThr eadSaf eWor k() ;
}
s
Swi ngUtilities.invokeLater(call DoThreadSaf eWrk);

}
}

TIMERS

class javax.swing. Timer

You can think of the Tiner as a unique thread conveniently provided by Swing to fire
Act i onEvent s at specified intervals (although this is not exactly how a Ti mer works inter-
nally, as you will see in section 2.6). Acti onLi steners can be registered to receive these
events just as you register them on buttons and other components. To create a simple Ti ner
that fires Act i onEvent s every second, you can do something like the following:

import java.awt.event.*;
i mport javax.sw ng. *;

cl ass Ti ner Test
{
public TimerTest() {
ActionLi stener act = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Systemout.println("Swing is powerful!!");
}
b
Timer tim= new Ti nmer (1000, act);
timstart();

while(true) {};
}

public static void main(String args[]) {
new Ti mer Test ();

}
}

First we set up an Acti onLi st ener to receive Act i onEvents. Then we build a new Ti mer
by passing the following parameters to the constructor: the time in milliseconds between
events, (the delay time), and an Acti onLi st ener to send Ti ner events to. Finally, we call
the Ti mer’s st art () method to turn it on. Since a GUI isn't running for us, the program will
immediately exit; therefore, we set up a loop to let the Ti mer continue to do its job indefi-
nitely (we will explain why this is necessary in section 2.6).

When you run this code, you will see “Swing is powerful!!” sent to standard output every
second. Note that the Ti mer does not fire an event right when it is started. This is because its
initial delay time defaults to the delay time passed to the constructor. If you want the Ti ner
to fire an event right when it is started, you need to set the initial delay time to 0 using the
setlnitial Del ay() method.

27

2.5

28

At any point, you can call st op() to stop the Ti mer and start () to startic (start()
does nothing if the Ti mer is already running). You can call restart () ona Ti mer to start
the whole process over. The restart () method is just a shortcut way to call st op() and
start () sequendally.

You can set a Ti mer’s delay using the set Del ay() method and tell it whether to repeat
using the set Repeat s() method. Once a Ti mer has been set to non-repeating, it will fire
only one action when started (or if it is currently running), and then it will stop.

The set Coal esce() method allows several Ti mer event postings to be combined (coa-
lesced) into one. This can be useful under heavy loads when the Ti mer Queue thread (see 2.6)
doesn’t have enough processing time to handle all its Ti ners.

Ti mer s are easy to use and can often be used as convenient replacements for building our
own threads. However, there is a lot more going on behind the scenes that deserves to be
revealed. Before we are ready to look at how Ti mer s work under the hood, we'll take a look
at how Swing’s AppCont ext service class mapping works.

JAVA 13 A new Ti ner class, and an associated Ti mer Task class, have been added to the
java.util package in Java 1.3. The j ava. util. Ti ner class differs from the
j avax. swi ng. Ti ner class in that it has an associated separate thread of execu-
tion. This thread can be specified as either a deamon or non-deamon thread. Ti m
er Tasks, which implement the Runnabl e interface, can be added to a Ti mer for
execution once or at given intervals at a given future time. This combination adds
yet another means for building multithreaded applications.

APPCONTEXT SERVICES
class sun.awt. App Context [platform specific]

This section is of interest only to those seeking a low-level understanding of how service classes
are shared throughout a Java session. Be aware that AppCont ext is not meant to be used by
any developer, as it is not part of the Java 2 core API. We are discussing it here only to facili-
tate a more thorough understanding of how Swing service classes work behind the scenes.

AppCont ext is an application/applet (we’'ll say app for short) service table that is unique
to each Java session. For applets, a separate AppCont ext exists for each Securi t yCont ext
which corresponds to an applet’s codebase. For instance, if we have two applets on the same
page, each using code from a different directory, both of those applets would have distinct
Securi t yCont ext s associated with them. If, however, they each were loaded from the same
codebase, they would necessarily share a Securi t yCont ext . Java applications do not have
Securi t yCont ext s. Rather, they run in namespaces which are distinguished by ! assLoader s.
We will not go into the details of Securi t yCont ext s or O assLoader s here, but suffice it
to say that they can be used by Securi t yManager s to indicate security domains. The App-
Cont ext class is designed to take advantage of this by allowing only one instance of itself to
exist per security domain. In this way, applets from different codebases cannot access each
other’s AppCont ext . So why is this significant?

A shared instance is an instance of a class that can normally be retrieved using a static method
defined in that class. Each AppCont ext maintains a Hasht abl e of shared instances available
to the associated security domain, and each instance is referred to as a service. When a service

CHAPTER 2 SWING MECHANICS

is requested for the first time, it registers its shared instance with the associated AppCont ext ,
meaning it creates a new instance of itself and adds it to the AppCont ext key/value mapping.

For example, here are PopupFact or y’s get Shar edl nst anceKey() and set Shar ed-
I nst ance() methods:

private static final Object Sharedl nstanceKey =
new StringBuffer(PopupFact ory. Shar edl nst anceKey”);

public static void setSharedl nstance(PopupFactory factory) {

I'f (factor == null) {
throw new |11 egal Argunent Excepti on(
“PopupFactor can not be null”);
}
SwingUtilities.appContextPut (Sharedl nstance() {
}

public static PopupFactory get Sharedl nstance() {
PopupFactory factory =
(PopupFactory) Swingtilities.appContextGet (
Shar edl nst anceKey) ;
if (factory == null) {
factory = new PopupFactory();
set Shar edl nst ance(factory);

}

return factory;

}

One reason these shared instances are registered with an AppCont ext, instead of being
implemented as normal static instances directly retrievable by the service class, is for security
purposes. Services registered with an AppCont ext can only be accessed by trusted apps,
whereas classes directly providing static instances of themselves allow these instances to be used
on a global basis (therefore requiring us to implement our own security mechanism if we want
to limit access to them). Another reason is robustness. According to Tom Ball of Sun
Microsystems, the less applets interact with each other in undocumented ways, the more
robust they can be.

For example, suppose an app tries to access all of the key events on the system Event Queue
(where all events get queued for processing in the event-dispatching thread) to try to steal pass-
words. By using distinct Event Queues in each AppCont ext , the only key events that the app
would have access to are its own. (There is, in fact, only one Event Queue per AppCont ext .)

So how do you access AppCont ext to add, remove, and retrieve services? AppCont ext
is not meant to be accessed by developers. But you can if you really need to, though it would
guarantee that your code would never be certified as 100% pure, because AppCont ext is not
part of the core API. Nevertheless, here’s what is involved: The static AppCont ext . get App-
Cont ext () method determines the correct AppCont ext to use, depending on whether you
are running an applet or an application. You can then use the returned Appl et Cont ext’s
put (), get(), and renove() methods to manage shared instances. In order to do this, you
would need to implement your own methods, such as the following:

private static Object appContextGet(Cbject key) {
return sun. awt . AppCont ext . get AppCont ext (). get (key);

}

APPCONTEXT SERVICES 29

2.6

30

private static void appContextPut (Object key, Object value) {
sun. awt . AppCont ext . get AppCont ext (). put (key, val ue);

}

private static void appCont ext Renove(Qbj ect key) {
sun. awt . AppCont ext . get AppCont ext (). renove(key);

}

In Swing, this functionality is implemented as three Swi ngUti | i ti es static methods (refer
to SwingUtilities.java source code):

static void appContext Put (Obj ect key, Object val ue)
static void appCont ext Renove(Cbj ect key, Object val ue)
static Object appContext Get(Cbject key)

However, you cannot access these methods because they are package private. They are used by
Swing’s service classes. Some of the Swing service classes that register shared instances with
AppCont ext include PopupFactory, Ti mer Queue, Repai nt Manager, and Ul Man-
ager. LAFSt at e (all of which we will discuss at some point in this book). Interestingly,
SwingUtilities secretly provides an invisible Fr ame instance registered with AppCont ext
to act as the parent to all JDi al ogs and JW ndows with nul | owners.

INSIDE TIMERS AND THE TIMERQUEUE

class javax.swing. TimerQueue [package private]

A Ti mer is an object containing a small Runnabl e capable of dispatching Act i onEvent s to a
list of Act i onLi st ener s (which are stored in an Event Li st ener Li st). Each Ti mer instance
is managed by the shared Ti mer Queue instance (which is registered with AppCont ext).

A Ti mer Queue is a service class whose job it is to manage all Ti mer instances in a Java
session. The Ti mer Queue class provides the static shar edl nst ance() method to retrieve the
Ti mer Queue service from AppCont ext . Whenever a new Ti mer is created and started it is
added to the shared Ti mer Queue, which maintains a singly linked list of Ti ner s sorted by the
order in which they will expire (which is equal to the amount of time before a Ti mer will fire
the next event).

The Ti mer Queue is a daemon thread which is started immediately upon instantiation.
This occurs when Ti mer Queue. shar edl nst ance() is called for the first time (such as when
the first Ti mer in a Java session is started). It continuously waits for the Ti mer with the nearest
expiration time to expire. Once this occurs, it signals that Ti mer to post Act i onEvent s to all
its listeners, it assigns a new Ti mer as the head of the list, and finally, it removes the expired
Ti mer . If the expired Ti mer’s repeat mode is set to t r ue, it is added back into the list at the
appropriate place based on its delay time.

NOTE The real reason why the Ti mer example from section 2.4 would exit immediately
if we didn’t build a loop is because the Ti mer Queue is a daemon thread. Daemon
threads are service threads. When the Java virtual machine has only daemon threads
running, it will exit because it assumes that no real work is being done. Normally,
this behavior is desirable.

CHAPTER 2 SWING MECHANICS

A Ti mer’s events are always posted in a thread-safe manner to the event-dispatching thread by
sending its Runnabl e object to Swi ngUtilities.invokelLater().

2.7 JAVABEANS ARCHITECTURE

Since we are concerned with creating Swing applications in this book, we need to understand
and appreciate the fact that every component in Swing is a JavaBean.
If you are familiar with the JavaBeans component model, you may want to skip to section 2.8.

2.71 The JavaBeans component model

The JavaBeans specification identifies five features that each bean is expected to provide. We
will review these features here, along with the classes and mechanisms that make them possible.
We'll construct a simple component such as a label, and apply what we discuss in this section
to that component. We will also assume that you have a basic knowledge of the Java reflection
AP (the following list comes directly from the API documentation):

* Instances of Ol ass represent classes and interfaces in a running Java application.

e A Met hod provides information about, and access to, a single method of a class or an interface.

* A Fiel d provides information about, and dynamic access to, a single field of a class
or an interface.

2.72 Introspection

Introspection is the ability to discover the methods, properties, and events information of a bean.
This is accomplished through use of the j ava. beans. I nt rospect or class. | nt r ospect or
provides static methods to generate a Beanl nf o object containing all discoverable information
about a specific bean. This includes information from each of a bean’s superclasses, unless we
specify at which superclass introspection should stop (for example, you can specify the “depth”
of an introspection). The following code retrieves all discoverable information of a bean:

Beanl nfo nyJavaBeanl nfo =
I nt rospect or. get Beanl nf o(nyJavaBean) ;

A Beanl nf o object partitions all of a bean’s information into several groups. Here are a few:

* A BeanDescri ptor: Provides general descriptive information such as a display name.

* An array of Event Set Descri pt or s: Provides information about a set of events a bean
fires. These can be used to retrieve that bean’s event-listener-related methods as Met hod
instances, among other things.

* An array of Met hodDescri pt ors: Provides information about the methods of a bean
that are externally accessible (this would include, for instance, all public methods). This
information is used to construct a Met hod instance for each method.

* An array of PropertyDescri ptors: Provides information about each property that a
bean maintains which can be accessed through get, set, and/or i s methods. These
objects can be used to construct Met hod and Cl ass instances corresponding to that
property’s accessor methods and class type respectively.

JAVABEANS ARCHITECTURE 31

2.73

2.74

2.75

2.76

32

Properties

As we discussed in section 2.1.1, beans support different types of properties. Simple properties
are variables that, when modified, mean a bean will do nothing. Bound and constrained prop-
erties are variables that, when modified, instruct a bean to send notification events to any lis-
teners. This notification takes the form of an event object which contains the property name,
the old property value, and the new property value. Whenever a bound property changes, the
bean should send out a Pr opert yChangeEvent . Whenever a constrained property is about
to change, the bean should send out a PropertyChangeEvent before the change occurs,
allowing the change to possibly be vetoed. Other objects can listen for these events and proc-
ess them accordingly; this leads to communication (see 2.7.5).

Associated with properties are a bean’s set XX() , get XX(), and i sXX() methods. If a
set XX() method is available, the associated property is said to be writeable. If a get XX() or
i sSXX() method is available, the associated property is said to be readable. An i sXX() method
normally corresponds to retrieval of a boolean property (occasionally, get XX() methods are
used for this as well).

Customization

A bean’s properties are exposed through its set XX(), get XX(), and i sXX() methods, and
they can be modified at run-time (or design-time). JavaBeans are commonly used in interface
development environments where property sheets can be displayed for each bean, thereby
allowing read/write (depending on the available accessors) property functionality.

Communication

Beans are designed to send events that notify all event listeners registered with that bean
whenever a bound or constrained property changes value. Apps are constructed by registering
listeners from bean to bean. Since you can use introspection to determine event listener infor-
mation about any bean, design tools can take advantage of this knowledge to allow more pow-
erful, design-time customization. Communication is the basic glue that holds an interactive

GUI together.

Persistency

All JavaBeans must implement the Seri al i zabl e interface, either directly or indirectly, to
allow serialization of their state into persistent storage (storage that exists beyond program ter-
mination). All objects are saved except those declared t ransi ent. (Note that JConponent
directly implements this interface.)

Classes which need special processing during serialization need to implement the follow-
ing private methods:

private void witeQbject(java.io.ObjectQutputStream out)

private void readObject(java.io.ObjectlnputStreamin)
These methods are called to write or read an instance of this class to a stream. The default seri-
alization mechanism will be invoked to serialize all subclasses because these are private meth-
ods. (Refer to the APl documentation or Java tutorial for more information about
serialization.)

CHAPTER 2 SWING MECHANICS

JAVA 1.4 Standard serialization of Swing-based classes has not been recommended since
the earliest versions of Swing, and according to the API documentation, it is still
not ready. However, as of Java 1.4. all JavaBeans (and thus all Swing compo-
nents) are serializable into XML form using the j ava. beans. XM.Encoder class:

“Warning: Serialized objects of this class will not be compatible with future
Swing releases. The current serialization support is appropriate for short term
storage or RMI between applications running the same version of Swing. As of
1.4, support for long-term storage of all JavaBeans'™ has been added to the
j ava. beans package. Please see XMLEncoder.”

To serialize a component to an XML file you can write code similar to
the following:

XMLEncoder encoder = new XM_Encoder (
new Buf f er edQut put St r ean(
new Fil eQut put Stream(“nmyTextField.xm")));
encoder.witeQbject (nmyTextField);
encoder. cl ose();

Similarly, to recreate an object serialized using XM_LEncoder , the j ava. beans. XM.-
Decoder class can be used:

XM.Decoder decoder = new XM.Decoder (
new Buf f er edl nput St rean(
new Fi |l el nput Strean(“nyTextField.xm")));
myText Field = (JText Fi el d) decoder.readObject();
decoder. cl ose();

Classes that intend to take complete control of their serialization and deserialization should,
instead, implement the Ext er nal i zabl e interface.
Two methods are defined in the Ext er nal i zabl e interface:

public void witeExternal (ObjectQutput out)
public void readExternal (Objectlnput in)

These methods will be invoked when wr i t eQbj ect () and r eadQbj ect () (discussed above)

are invoked to handle any serialization/deserialization.

2.7.7 A simple Swing-based JavaBean

Example 2.1 demonstrates how to build a serializable Swing-based JavaBean with simple,
bound, constrained, and change properties.

Example 2.1

BakedBean.java

see \Chapter2\1

i mport javax.sw ng.*;

i nport javax.sw ng.event.*;
i mport java. beans. *;

JAVABEANS ARCHITECTURE 33

import java.awt.*;
import java.io.*;

public cl ass BakedBean extends JConponent inplenments Externalizable

{

/1 Property nanes (only needed for bound or constrained properties)
public static final String BEAN VALUE = "Val ue";
public static final String BEAN COLOR = "Col or";

/1 Properties

private Font m beanFont; Il sinple
private Dinmensi on m beanDi nension; // sinple
private int mbeanVal ue; /1 bound
private Col or m beanCol or; /1 constrained
private String mbeanString; /'l change

/1l Manages all PropertyChangeli steners
protected Swi ngPropertyChangeSupport m supporter =
new Swi ngPr opertyChangeSupport (this);

/1l Manages all Vetoabl eChangeli steners
prot ect ed Vetoabl eChangeSupport mvetoer =
new Vet oabl eChangeSupport (this);

/1 Only one ChangeEvent is needed since the event's only

/| state is the source property. The source of events generated
/1l is always "this". You'll see this in lots of Sw ng source.
protected transi ent ChangeEvent m changeEvent = null;

/1 This can nmanage all types of listeners, as long as we set
/1 up the firexXX methods to correctly |l ook through this Iist.
/1 This nmakes you appreci ate the XXSupport classes.

protected EventlListenerList mlistenerList =

new EventLi stenerList();

publ i c BakedBean() {
m beanFont = new Font ("SansSerif", Font.BOLD | Font.|TALIC, 12);
m _beanDi mensi on = new Di nensi on(150, 100) ;
m beanVal ue = 0;
m beanCol or = Col or. bl ack;
m beanString = "BakedBean #";

}

public voi d pai nt Conponent (G aphics g) {
super . pai nt Conponent (g) ;
g. set Col or (m_beanCol or);
g. set Font (m_beanFont);
g.drawstri ng(m_ beanString + m beanVal ue, 30, 30);

}

public void setBeanFont(Font font) {
m beanFont = font;

}

public Font getBeanFont() {
return m beanFont;

}

CHAPTER 2 SWING MECHANICS

public void setBeanVal ue(i nt newval ue) {
int oldval ue = m beanVal ue;
m beanVal ue = newval ue;

/1 Notify all PropertyChangelListeners
m supporter.firePropertyChange(BEAN VALUE,
new | nt eger (ol dval ue), new | nteger (newval ue));

}

public int getBeanVal ue() {
return m beanVal ue;

}

public void setBeanCol or (Col or newCol or)
throws PropertyVet oException {
Col or ol dCol or = m beanCol or;

/1 Notify all Vetoabl eChangelListeners before making change
/1 ...an exception will be thrown here if there is a veto

/1l ...if not, continue on and make the change

m vet oer. fireVet oabl eChange(BEAN_COLOR, ol dCol or, newCol or);

m_beanCol or = newCol or;
m supporter.firePropertyChange(BEAN _COLOR, ol dCol or, newCol or);

}

public Col or getBeanCol or() {
return m beanCol or;

}

public void setBeanString(String newString) {
m beanString = newString;

/1 Notify all ChangelListeners

fireStateChanged();
}

public String getBeanString() {
return mbeanString;

}

public void setPreferredSi ze(Dinension dim {
m_beanDi nension = dim

}

public Dimension getPreferredSize() {
return m beanDi nensi on;

}

public void setM ninunsSi ze(Di mension din) {
m_beanDi nension = dim
}

public Di mension getM ni nunti ze() {
return m beanDi nensi on;

}

publ i c voi d addPropertyChangelLi st ener(
PropertyChangeLi stener 1) {

JAVABEANS ARCHITECTURE 35

m support er. addPr opert yChangelLi stener (1) ;
}

public void renpvePropertyChangelLi st ener (
Propert yChangelLi stener 1) {
m supporter.renovePropertyChangeLi stener(l);

}

public voi d addVet oabl eChangeli st ener (
Vet oabl eChangelLi stener 1) {
m vet oer. addVet oabl eChangelLi st ener (1);

}

public void renoveVet oabl eChangeLi st ener (
Vet oabl eChangelLi stener 1) {
m vet oer . r enpveVet oabl eChangelLi st ener (1) ;

}

/'l Rermenber that EventlListenerList is an array of

/'l key/val ue pairs:

/1 key = XXLi stener class reference

/1 value = XXListener instance

public void addChangelLi st ener (ChangeLi stener |) {
m | i st ener Li st. add(ChangelLi stener.class, 1);

}

public void renpveChangelLi st ener (ChangeLi stener |) {
m_| i st enerLi st. renmove(Changeli stener. cl ass, 1);

}
/1 This is typical EventlListenerlList dispatching code.
/1 You'll see this in lots of Sw ng source.

protected void fireStateChanged() {

oject[] listeners = mlistenerlList.getListenerList();
/1 Process the listeners last to first, notifying

/1 those that are interested in this event

for (int i =listeners.length-2; i>=0; i-=2) {
if (listeners[i]==ChangeLi stener.class) {
i f (m.changeEvent == null)

m changeEvent = new ChangeEvent (this);
((ChangelLi stener)listeners[i+1]).stateChanged(m changeEvent);
}
}
}

public void witeExternal (ObjectQutput out) throws | OException {
out.writeCbject(mbeanFont);
out.writeCbject(mbeanDi nension);
out.writelnt(mbeanVal ue);
out.writeCbject(mbeanCol or);
out.writeCbject(mbeanString);

}

public void readExternal (Objectlnput in)
throws | OException, C assNotFoundException {
set BeanFont ((Font)in.readObj ect());
set PreferredSi ze((Di mension)in.readCbject());

CHAPTER 2 SWING MECHANICS

/'l Use preferred size for mninmmsize
set M ni muntSi ze(get Pref erredSi ze());
set BeanVal ue(in.readlnt());

try {
set BeanCol or ((Col or)in.readbject());

}
catch (PropertyVet oException pve) {

Systemout. println("Col or change vetoed.");

}
set BeanString((String)in.readObject());

}
public static void main(String[] args) {
JFrame frame = new JFrame("BakedBean");
frame. get Cont ent Pane(). add(new BakedBean());
frame. set Def aul t Cl oseOper ati on(JFranme. EXI T_ON_CLCSE) ;
frame. setVisible(true);
frame. pack();

}
}

BakedBean has a visual representation (this is not a requirement for a bean). It has properties:
m beanVal ue, m beanCol or, m beanFont, m beanDi mensi on, and m beanString. It
supports persistency by implementing the Ext er nal i zabl e interface and implementing the
witeExternal () and readExternal () methods to control its own serialization (note
that the orders in which data is written and read match). BakedBean supports customization
through its set XX() and get XX() methods, and it supports communication by allowing the
registration of Pr oper t yChangelLi st ener s, Vet oabl eChangeLi st ener s, and ChangeLi s-
t ener s. And, without having to do anything special, it supports introspection.

Attaching a main method to display BakedBean in a frame does not get in the way of any
JavaBeans functionality. Figure 2.1 shows BakedBean when it is executed as an application.

k=i BakedBean [Mj=] EX

BakedBean #0

Figure 2.1
BakedBean in our custom
JavaBeans property editor

In chapter 18, section 18.9, we will construct a full-featured JavaBeans property editing envi-
ronment. Figure 2.2 shows a BakedBean instance in this environment. The BakedBean
shown has had its m beanDi nensi on, m beanCol or, and m beanVal ue properties modi-
fied with our property editor, and it was then serialized to disk. What figure 2.2 really shows is
an instance of that BakedBean after it had been deserialized (loaded from disk). Any Swing
component can be created, modified, serialized, and deserialized using this environment
because every component is JavaBeans compliant.

JAVABEANS ARCHITECTURE 37

2.8

2.8.1

38

<% Bean Container [Properties Table] M=l E3

File Edit Layout
BakedBean #1999
[E5 E diting BakedBean [_ O] x]
Froperty Yalue
hackground |204,204,204
beanGColor 150,0,0
beanFont java.awt Font[famil=Arial hame.
heanString BakedBean # 2
beanvalue 199
horder null f.;

Figure 2.2 BakedBean in our custom JavaBeans property editor

FONTS, COLORS, GRAPHICS, AND TEXT

Now to begin our look at how to render fonts, colors, and text using graphics objects.

Fonts

class java.awt. Font, abstract class java.awt. GraphicsEnvironment

As we saw in the BakedBean example, fonts are quite easy to create:
m beanFont = new Font ("SansSerif", Font.BOLD | Font.|TALIC, 12);

In this code, SansSeri f is the font name, Font . BOLD| Font . | TALI Cis the font szyle (which
in this case is both bold and italic), and 12 is the font size. The Font class defines three
statici nt constants to denote font style: Font. BOLD, Font. | TALI C, and Font. PLAI N.
You can specify font size as any i nt in the Font constructor. Using Java 2, we ask the local
G aphi csEnvi ronnent for a list of available font names at run-time.

Graphi csEnvi ronment ge = G aphi csEnvironnent.
get Local Graphi csEnvi ronnent () ;
String[] fontNanes = ge. get Avai |l abl eFont Fami | yNanes();

NOTE Java 2 introduces a new, powerful mechanism for communicating with devices that
can render graphics, such as screens, printers, or image buffers. These devices are rep-
resented as instances of the G aphi csDevi ce class. Interestingly, 2 G aphi csDevi ce
might reside on the local machine, or it might reside on a remote machine. Each
G aphi csDevi ce has a set of Graphi csConf i gur ati on objects associated with
it. A Graphi csConf i gurat i on describes specific characteristics of the associated
device. Usually each Graphi csConf i gur ati on of a Gr aphi csDevi ce represents
a different mode of operation (for instance, resolution and the number of colors).

CHAPTER 2 SWING MECHANICS

NOTE In JDK1.1 code, getting a list of font names often looked like this:
String[] fontnames = Tool kit. get Def aul t Tool kit ().getFontList();

The get Font Li st () method has been deprecated in Java 2, and this code should
be updated.

G aphi csEnvi ronment is an abstract class that describes a collection of Graphi csDevi ces.
Subclasses of Graphi csEnvi ronnent must provide three methods for retrieving arrays of
Font s and Font information:

Font[] get Al | Fonts(): Retrieves all available Font s in one-point size.

String[] getAvail abl eFont Fani | yNanmes() : Retrieves the names of all available
font families.

String[] getAvail abl eFont Fami | yNames(Local e |): Retrieves the names of all
available font families using the specific Local e (internationalization support).

G aphi csEnvi ronment also provides static methods for retrieving Gr aphi csDevi ces
and the local G- aphi csEnvi r onnment instance. In order to find out what Font s are available to
the system on which your program is running, you must refer to this local G aphi csEnvi r on-
nment instance, as shown above. It is much more efficient and convenient to retrieve the avail-
able names and use them to construct Font s than it is to retrieve an actual array of Font objects
(no less, in one-point size).

You might think that, given a Font object, you can use typical get XX()/ set XX()
accessors to alter its name, style, and size. Well, you would be half right. You can use get XX()
methods to retrieve this information from a Font :

String get Nane()
int getSize()
float getSize2D)
int getStyle()

However, you cannot use typical set XX() methods. Instead, you must use one of the follow-
ing Font instance methods to derive a new Font :

deriveFont (fl oat size)

deriveFont (int style)

deriveFont (int style, float size)

deriveFont (Map attributes)

deri veFont (Affi neTransform trans)

deriveFont (int style, AffineTransformtrans)

Normally, you will only be interested in the first three methods.

NOTE Af fi neTransf or ns are used in the world of Java 2D to perform things such as trans-
lations, scales, flips, rotations, and shears. A Map is an object that maps keys to values
(it does not contain the objects involved), and the azzributes referred to here are key/
value pairs as described in the API documents for j ava. t ext. Text Attri but e.

FONTS, COLORS, GRAPHICS, AND TEXT 39

2.8.2

2.8.3

40

Colors

class java.awt. Color

The Col or class provides several static Col or instances to be used for convenience (Col or . bl ue,
Col or . yel | ow etc.). You can also construct a Col or using the following constructors,
among others:

Color(float r, float g, float b)
Color(int r, int g, int b)

Color(float r, float g, float b, float a)
Color(int r, int g, int b, int a)

Normally you use the first two methods, and if you are familiar with JDK1.1, you will proba-
bly recognize them. The first method allows red, green, and blue values to be specified as
f1 oat s from 0.0 to 1.0. The second method takes these values as i nt s from 0 to 255.

The second two methods are new to Java 2. They each contain a fourth parameter which
represents the Col or ’s alpha value. The alpha value directly controls transparency. It defaults
to 1.0 or 255, which means completely opaque. 0.0 or 0 means completely transparent.

As with Font s, there are plenty of get XX() accessors but no set XX() accessors. Instead
of modifying a Col or object, we are normally expected to create a new one.

NOTE The Col or class does have static bri ght er () and dar ker () methods that return
a Col or brighter or darker than the Col or specified, but their behavior is unpre-
dictable due to internal rounding errors. We suggest staying away from these meth-
ods for most practical purposes.

By specifying an alpha value, you can use the resulting Col or as a component’s background to
make it transparent. This will work for any lightweight component provided by Swing such as
labels, text components, and internal frames. (Of course, there will be component-specific
issues involved, such as making the borders and title bar of an internal frame transparent.)
The next section demonstrates a simple Swing canvas example that uses the alpha value to
paint some transparent shapes.

NOTE A Swing component’s opaque property, controlled using set Opaque(), is not di-
rectly related to Col or transparency. For instance, if you have an opaque JLabel
whose background has been set to a transparent green (Col or (0, 255, 0, 150)) the
label’s bounds will be completely filled with this color only because it is opaque.
You will be able to see through it only because the color is transparent. If you then
turned off opacity, the background of the label would not be rendered. Both need to
be used together to create transparent components, but they are not directly related.

Graphics and text

abstract class java.awt. Graphics, abstract class java.awt. FontMetrics

Painting is different in Swing than it is in AWT. In AWT you typically override Conponent’s
pai nt () method to do rendering, and you override the updat e() method for things like
implementing our own double-buffering or filling the background before pai nt () is called.
With Swing, component rendering is much more complex. Though JConponent is a
subclass of Conponent , it uses the updat e() and pai nt () methods for different reasons. In

CHAPTER 2 SWING MECHANICS

fact, the updat e() method is never invoked at all. There are also five additional stages of
painting that normally occur from within the pai nt () method. We will discuss this process
in section 2.11, but suffice it to say here that any JConponent subclass that wants to take con-
trol of its own rendering should override the pai nt Conponent () method and not the
pai nt () method. Additionally, it should always begin its pai nt Conponent () method with
a call to super . pai nt Conponent ().

Knowing this, it is quite easy to build a JConponent that acts as your own lightweight
canvas. All you have to do is subclass it and override the pai nt Conponent () method. You
can do all of your painting inside this method. This is how to take control of the rendering of
simple custom components. However, do not attempt this with normal Swing components
because Ul delegates are in charge of their rendering (we will show you how to customize Ul
delegate rendering at the end of chapter 6 and throughout chapter 21).

NOTE The AWT Canvas class can be replaced by a simple subclass of JConponent .
See example 2.2.

Inside the pai nt Conponent () method, you have access to that component’s Gr aphi cs
object (often referred to as a component’s graphics context) which you can use to paint shapes
and draw lines and text. The Gr aphi cs class defines many methods used for these purposes;
refer to the API docs for more information on these methods. Example 2.2 shows how to con-
struct a JConponent subclass that paints an | magel con and some shapes and text using var-
ious Font s and Col ors, some completely opaque and some partially transparent (we saw
similar but less interesting functionality in BakedBean). Figure 2.3 illustrates the output of
example 2.2.

[& Graphics demo !EIE:!

Swing

Figure 2.3
A G aphi cs demo
in a lightweight canvas

FONTS, COLORS, GRAPHICS, AND TEXT 41

42

Example 2.2

see \Chapter2\2

nmport java.awt.*;
nport javax.sw ng.*;

cl ass Test Frame extends JFrane

{

public TestFrame() {

super ("Graphi cs demp");

get Cont ent Pane() . add(new JCanvas());
}

public static void main(String args[])
Test Frane mai nFrame = new Test Frane();
mai nFrane. pack();

{

mai nFrame. set Def aul t C oseOper ati on(JFrane. EXI T_ON_CLCSE) ;

mai nFrane. setVisible(true);

}
}

cl ass JCanvas extends JConponent {
private static Color mtRed = new Col or (255, 0, 0, 150);
private static Color mtGeen = new Col or (0, 255, 0, 150) ;
private static Color mtBlue = new Col or (0, 0, 255, 150) ;

private static Font mbi Font =

new Font (" Monospaced", Font.BOLD | Font
private static Font m pFont =

new Font ("SansSerif", Font.PLAIN, 12);

I TALIC, 36);

private static Font mbFont = new Font("Serif", Font.BOLD, 24);

private static Inmagelcon mflight = new I nagelcon("flight.gif");

public JCanvas() {
set Doubl eBuf f ered(true);
set Opaque(true);

}

public voi d pai nt Conponent (G aphics g) {
super . pai nt Conponent (g) ;

/1 Fill the entire conponent with white
g. set Col or (Col or. white);
g.fill Rect(0,0,getWdth(), getHeight());

/1 Filled yellowcircle
g. set Col or (Col or. yel | ow);
g.fillOval (0,0, 240, 240);

/1 Filled magenta circle
g. set Col or (Col or. magent a) ;
g.fill Oval (160, 160, 240, 240) ;

/1 Paint the icon below the bl ue square

CHAPTER 2 SWING MECHANICS

int w= mflight.getlconWdth();
int h = mflight.getlconHeight();
m flight.paintlcon(this,g,280-(w 2),120-(h/2));

/1 Paint the icon below the red square
m flight.paintlcon(this,g,120-(w 2), 280-(h/2));

/1 Filled transparent red square
g.set Col or(m_t Red);
g.fill Rect (60, 220, 120, 120);

/1 Filled transparent green circle
g.setCol or(mtGeen);
g.fill Oval (140, 140, 120, 120);

/Il Filled transparent blue square
g. set Col or (m_t Bl ue);
g.fill Rect (220, 60, 120, 120);

g. set Col or (Col or. bl ack) ;

/1 Bold, lItalic, 36-point "Sw ng"

g. set Font (m_bi Font);

Font Metrics fm= g.get FontMetrics();

w = fmstringWdth("Sw ng");

h = fm get Ascent ();

g.drawString("Swi ng", 120- (w 2), 120+(h/ 4));

/1 Plain, 12-point "is"

g. set Font (m_pFont);

fm= g.getFontMetrics();
w=fmstringWdth("is");

h = fm get Ascent ();
g.drawstring("is", 200-(w 2),200+(h/4));

/1 Bold, 24-point "powerful!!"

g. set Font (m_bFont) ;

fm= g.getFontMetrics();

w = fmstringWdth("powerful!!");

h = fm get Ascent ();
g.drawstring("powerful!'!", 280-(w 2),280+(h/4));
}

/1 Most | ayout nanagers need this information
public D mension getPreferredSize() {
return new Di mensi on(400, 400);

}

public Dinension getM ni nunti ze() {
return getPreferredSi ze();

}

publ i c D mensi on get Maxi munti ze() {
return getPreferredSi ze();

}
}

FONTS, COLORS, GRAPHICS, AND TEXT

44

Note that we overrode JComponent’s get PreferredSi ze(), get M ni nunsi ze(), and
get Maxi nunsi ze() methods so most layout managers can intelligently size this component
(otherwise, some layout managers will set its size to 0x0). It is always a good practice to over-
ride these methods when implementing custom components.

The Gr aphi cs class uses what is called the c/ipping area. Inside a component’s pai nt ()
method, this is the region of that component’s view that is being repainted (we often say that
the clipping area represents the damaged or dirtied region of the component’s view). Only paint-
ing done within the clipping area’s bounds will actually be rendered. You can get the size and
position of these bounds by calling get C i pBounds() , which will give you back a Rect an-
gl e instance describing it. A clipping area is used for efficiency purposes: there is no reason
to paint undamaged or invisible regions when we don’t have to. We will show you how to
extend this example to work with the clipping area for maximum efficiency in the next section.

NOTE All Swing components are double buffered by default. If you are building your own
lightweight canvas, you do not have to worry about double-buffering. This is not
the case with an AWT Canvas.

As we mentioned earlier, Font s and Font manipulation are very complex under the hood. We
are certainly glossing over their structure, but one thing we should discuss is how to obtain
useful information about fonts and the text rendered using them. This involves the use of the
Font Metri cs class. In our example, Font Metri cs allowed us to determine the width and
height of three St ri ngs, rendered in the current Font associated with the Gr aphi cs object,
so that we could draw them centered in the circles.

Figure 2.4 illustrates some of the most common information that can be retrieved from
a Font Metri cs object. The meaning of baseline, ascent, descent, and height should be clear
from the diagram. The ascent is supposed to be the distance from the baseline to the top of
most characters in that font. Notice that when we use g. drawSt ri ng() to render text, the
coordinates specified represent the position in which to place the baseline of the first character.

Font Met ri cs provides several methods for retrieving this and more detailed informa-
tion, such as the width of a St ri ng rendered in the associated Font .

T Idescent
height

Figure 2.4
baseline Using Font Metrics

In order to get a Font Met ri cs instance, you first tell your Gr aphi cs object to use the Font
you are interested in examining using the set Font () method. Then you create the Font Met -
rics instance by calling get Font Met ri cs() on your Gr aphi cs object:

g. set Font (m_bi Font);
Font Metrics fm = g.getFontMetrics();

CHAPTER 2 SWING MECHANICS

A typical operation when rendering text is to center it on a given point. Suppose you want to
center the text “Swing” on 200,200. Here is the code you would use (assuming you have
retrieved the Font Met ri cs object, f m):

int w=fmstringWdth("Sw ng");

int h = fmgetAscent();

g.drawString(" Swi ng", 200- (W 2), 200+(h/ 4));

You get the width of “Swing” in the current font, divide it by two, and subtract it from 200 to
center the text horizontally. To center it vertically, you get the ascent of the current font,
divide it by four, and add 200. The reason you divide the ascent by four is probably NOT so
clear but we'll explain it in the following example.

It is now time to address a common mistake that has arisen with Java 2. Figure 2.4 is not
an entirely accurate way to document Font Met r i ¢s. This is the way we have seen things doc-
umented in the Java tutorial and just about everywhere else that we have referenced. However,
there appear to be a few problems with Font Met ri cs that existed in Java 1.2, and still appear
to exist in Java 1.3 and 1.4. Example 2.3 is a simple program that demonstrates these problems.
Our program draws the text “Swing” in a 36-point bold, monospaced font. We draw lines
where its ascent, ascent/2, ascent/4, baseline, and descent lie. Figure 2.5 illustrates this.

M=l 3
+ ascent
] o« ascent/2
—owWing ascent/4
o+
"_I—bnseline Figure 2.5
Ldescent The real d_eal with
Font Metri cs in Java 2

Example 2.3

TestFrame.java

See \Chapter2\3\fontmetrics

inmport java.awt.*;
i mport javax.sw ng. *;

cl ass Test Frame extends JFrane
{
public TestFrame() {
super("Let's get it straight!");
get Cont ent Pane() . add(new JCanvas());
}

public static void main(String args[]) {
Test Frame mai nFrame = new Test Frane();
mai nFr ame. pack();
mai nFrane. set Def aul t Gl oseOperati on(JFrame. EXIT_ON_CLCSE) ;
mai nFrame. setVisible(true);
}
}

FONTS, COLORS, GRAPHICS, AND TEXT 45

46

cl ass JCanvas extends JConponent

{
private static Font mbi Font = new Font (" Mnospaced", Font.BOLD, 36);

public voi d pai nt Conponent (G aphics g) {
g. set Col or (Col or. bl ack) ;
/1 Bold, 36-point "Sw ng"
g. set Font (m_bi Font);
Font Metrics fm = g.getFontMetrics();
int h = fmgetAscent();

g.drawstring("Sw ng",50,50); // Try these as well: NO U~

/1l Draw ascent line
g. drawLi ne(10, 50- h, 190, 50- h) ;

/1 Draw ascent/2 |line
g. drawLi ne(10, 50- (h/ 2), 190, 50-(h/ 2));

/1 Draw ascent/4 |line
g. drawLi ne(10, 50- (h/ 4), 190, 50- (h/ 4));

/1 Draw baseline |ine
g. drawLi ne(10, 50, 190, 50);

/|l Draw descent |ine
g. drawLi ne(10, 50+f m get Descent (), 190, 50+f m get Descent ());
}

public Di nmension getPreferredSize() {
return new Di nensi on(200, 100);

}
}

We encourage you to try this demo program with various fonts, font sizes, and even characters
with diacritical marks such as N, O, or U. You may find that the ascent is always much higher
than it is typically documented to be, and the descent is always lower. The most reliable
means of vertically centering text we found turned out to be baseline + ascent/4. However,
baseline + descent might also be used, and, depending on the font being used, it may provide
more accurate centering.

The point is that there is no correct way to perform this task because of the current state
of Font Met ri cs. You may experience very different results if you’re using a different platform
or font. It is a good idea to run the sample program we just gave you and verify whether results
similar to those shown in figure 2.5 are produced on your system. If they’re not, you may want
to use a different centering mechanism for your text (depending on the platform used
by your target users); it should be fairly simple to determine through experimentation with
this application.

NOTE In JDKI1.1 code, getting a Font Met ri cs instance often looked like this:
Font Metrics fm= Tool ki t.getDefaul t Tool kit ().getFontMtrics(nyfont);

The get Font Met ri cs() method has been deprecated in Java 2 and this code
should be updated to use the Gr aphi cs class’s get Font Met ri ¢cs method.

CHAPTER 2 SWING MECHANICS

2.9

USING THE GRAPHICS CLIPPING AREA

You can use the clipping area to optimize component rendering. This may not noticeably

on this concept (you will find out more about this in the next section).

improve rendering speed for simple components such as JCanvas, but it is important to
understand how to implement such functionality, as Swing’s whole painting system is based

In example 2.4, we’ll modify JCanvas so that each of our shapes, strings, and images is

Example 2.4

JCanvas.java

see \Chapter2\3

public voi d pai nt Conponent (Graphics g) {
super . pai nt Component (g) ;

/1 Counter
int ¢ = 0;
/'l For use bel ow
int w=0;
int h =0;
int d = 0;

/1 Get damaged region

Rectangle r = g.getd i pBounds();
int clipx =r.x;

int clipy r.y;

int clipw=r.wdth;

int cliph = r.height;

/1 Fill damaged region only
g. set Col or (Col or. white);
g.fill Rect(clipx,clipy,clipw, cliph);

/1 Draw filled yellowcircle if bounding regi on has been damaged
if (clipx <= 240 && clipy <= 240) {

g. set Col or (Col or.yel |l ow);

g.fillOval (0,0, 240, 240); c++;
}

/1l Draw filled magenta circle if bounding regi on has been danaged
if (clipx + clipw >= 160 && clipx <= 400

&& clipy + cliph >= 160 && clipy <= 400) {

g. set Col or (Col or. magent a) ;

g.fillOval (160, 160, 240, 240); c++;
}

USING THE GRAPHICS CLIPPING AREA

only painted if the clipping area intersects its bounding rectangular region. (These intersections
are fairly simple to compute, and it may be helpful for you to work through and verify each
one.) Additionally, we’ll maintain a local counter that is incremented each time one of our
items is painted. At the end of the pai nt Conponent () method, we’ll display the total num-
ber of items that were painted. Our optimized JCanvas pai nt Conponent () method (with
counter) follows.

47

48

w = mflight.getlconWdth();
h = mflight.getlconHeight();
/1 Paint the icon below blue square if bounding region is damaged
if (clipx + clipw >= 280-(w 2) && clipx <= (280+(w 2))
&& clipy + cliph >= 120-(h/2) && clipy <= (120+(h/2))) {
m flight.paintlcon(this,g,280-(w 2),120-(h/2)); c++;
}

/1 Paint the icon below red square if bounding region is damaged
if (clipx + clipw >= 120-(w 2) && clipx <= (120+(w 2))
&& clipy + cliph >= 280-(h/2) && clipy <= (280+(h/2))) {
m flight.paintlcon(this,g,120-(w 2),280-(h/2)); c++;
}

/! Draw filled transparent red square if bounding region is damaged
if (clipx + clipw >= 60 & clipx <= 180
&& clipy + cliph >= 220 && clipy <= 340) {
g. set Col or(m_t Red) ;
g.fill Rect (60, 220, 120, 120); c++;
}

/1 Draw filled transparent green circle if bounding region is damaged
if (clipx + clipw > 140 && clipx < 260
&% clipy + cliph > 140 && clipy < 260) {
g.setCol or(mtGeen);
g.fill Oval (140, 140, 120, 120); c++;
}

/1 Draw filled transparent blue square if bounding region is damaged
if (clipx + clipw > 220 && clipx < 380
&% clipy + cliph > 60 && clipy < 180) {
g. set Col or(m_t Bl ue);
g.fill Rect (220, 60,120, 120); c++;
}

g. set Col or (Col or. bl ack);

g. set Font (m_bi Font);
Font Metrics fm = g.getFontMetrics();
w = fmstringWdth("Swi ng");
h fm get Ascent ();
d f m get Descent () ;
/1 Bold, Italic, 36-point "Swing" if bounding region is danmaged
if (clipx + clipw > 120-(w 2) && clipx < (120+(w 2))
&% clipy + cliph > (120+(h/4))-h && clipy < (120+(h/4))+d)
{
g.drawString("Swi ng", 120- (w 2), 120+(h/ 4)); c++,;

[

g. set Font (m_pFont);

fm= g.getFontMetrics();

fmstringWdth("is");

fm getAscent ();

f m get Descent () ;

// Plain, 12-point "is" if bounding region is danaged
if (clipx + clipw > 200-(w 2) && clipx < (200+(w 2))

o s
nou

CHAPTER 2 SWING MECHANICS

2.10

& clipy + cliph > (200+(h/4))-h & clipy < (200+(h/4))+d)

{
g.drawstring("is", 200-(w 2),200+(h/4)); c++
}
g. set Font (m_bFont);
fm= g.getFontMetrics();
w = fmstringWdth("powerful!!");
h = fm get Ascent ();
d = fmgetDescent ();

/1 Bold, 24-point "powerful!!" if bounding region is damaged
if (clipx + clipw > 280-(w 2) && clipx < (280+(w 2))
&& clipy + cliph > (280+(h/4))-h && clipy < (280+(h/4))+d)

{
g.drawstring("powerful !'!", 280-(w 2),280+(h/4)); c++;
}
Systemout.println("# itens repainted =" + c + "/10");
}

Try running this example and dragging another window in your desktop over parts of the
JCanvas. Keep your console in view so that you can monitor how many items are painted
during each repaint. Your output should be displayed something like the following (of course,
you'll probably see different numbers):

items repainted = 4/10
itenms repainted = 0/10
itenms repainted = 2/10
itenms repainted = 2/10
items repainted = 1/10
itenms repainted = 2/10
items repainted = 10/ 10
items repainted = 10/ 10
itenms repainted = 8/10
itenms repainted = 4/10
Optimizing this canvas wasn't that bad, but imagine how tough it would be to optimize a
container with a variable number of children, possibly overlapping, with double-buffering
options and transparency. This is what JConponent does, and it does it quite efficiently. We
will learn a little more about how this is done in section 2.11. But first we'll finish our high-
level overview of graphics by introducing a very powerful and well-met feature new to Swing:

graphics debugging.

GRAPHICS DEBUGGING

Graphics debugging provides the ability to observe each painting operation that occurs during
the rendering of a component and all of its children. This is done in slow motion, using dis-
tinct flashes to indicate the region being painted. It is intended to help find problems with
rendering, layouts, and container hierarchies—just about any display-related problems. If graph-
ics debugging is enabled, the Graphi cs object used in painting is actually an instance of
DebugGr aphi cs (a subclass of Graphi cs). JConponent, and thus all Swing components,
supports graphics debugging and it can be turned on or off with JConponent s set Debug-

GRAPHICS DEBUGGING 49

2.10.1

50

G aphi cs- Opti ons() method. This method takes an i nt parameter which is normally one
of four static values defined in DebugGr aphi cs (or it’s a bitmask combination using the bit-
wise | operator).

Graphics debugging options

There are four graphics debugging options: DebugGr aphi cs. FLASH_OPTI ON, Debug-
Gr aphi cs. LOG_OPTI ON, DebugGr aphi cs. BUFFERED_OPTI ON, and DebugGr aph-
i cs. NONE_ OPTI ON. They will all be discussed in this section.

With the DebugGr aphi cs. FLASH_OPTI ON, each paint operation flashes a specified num-
ber of times, in a specified flash color, with a specified flash interval. The default flash interval
is 250ms, the default flash number is 4, and the default flash color is red. These values can be
set with the following DebugGr aphi cs static methods:

set Fl ashTi nme(int flashTi ne)
set Fl ashCount (i nt flashCount)
set Fl ashCol or (Col or fl ashCol or)

If you don't disable double-buffering in the Repai nt Manager (which is discussed in the next
section), you will not see the painting as it occurs:

Repai nt Manager . current Manager (nul I').
set Doubl eBuf f eri ngEnabl ed(f al se);

NOTE Turning off buffering in the Repai nt Manager has the effect of ignoring every com-
ponent’s doubl eBuf f er ed property.

The DebugG aphi cs. LOG_OPTI ON sends messages describing each paint operation as it
occurs. By default, these messages are directed to standard output (the console: Syst em out).
However, we can change the log destination with DebugG aphi cs’ static set LogSt r ean()
method. This method takes a Pri nt St r eamparameter. To send output to a file, you would do
something like the following:

Print Stream debugStream = nul | ;

try {
debugStream = new Print Streamn(

new Fi | eQut put St rean("JCDebug. txt"));

}
catch (Exception e) {

Systemout.printin("can't open JCDebug.txt..");

}
DebugG aphi cs. set LogSt r ean{ debugSt r eam ;

If at some point you need to change the log stream back to standard output, you can do this:
DebugG aphi cs. set LogSt rean{ Syst em out) ;

You can insert any string into the log by retrieving it with DebugGr aphi cs’ static | og-
Strean() method, and then printing into it:

Print Stream ps = DebugG aphics. | ogStrean();
ps. println("\ n===> pai nt Conponent ENTERED <===");

WARNING Writing a log to a file will overwrite that file each time you reset the stream.

CHAPTER 2 SWING MECHANICS

2.10.2

2.10.3

Each operation is printed with the following syntax:

"Graphics" + (isDrawingBuffer() ? "" : "") +
"(" + graphicsID + "-" + debugOptions + ")"

Each line starts with “Graphics.” The i sDr awi ngBuf f er () method tells you whether buft-
ering is enabled. If it is, a “” is appended. The gr aphi csl D and debugOpt i ons values
are then placed in parentheses, and separated by a “-.” The gr aphi csl D value represents the
number of DebugG aphi cs instances that have been created during the application’s lifetime
(it’s a static i nt counter). The debugOpt i ons value represents the current debugging mode:

LOG OPTION = 1

LOG _OPTI ON and FLASH OPTION = 3

LOG_OPTI ON and BUFFERED OPTION = 5
LOG OPTI ON, FLASH OPTI ON, and BUFFERED OPTION = 7

For example, with logging and flashing enabled, you see output similar to the following for
each operation:

G aphics(1-3) Setting color: java.aw . Col or[r=0, g=255, b=0]

Calls to each Gr aphi ¢s method will get logged when this option is enabled. The code exam-
ple line was generated when a call to set Col or () was made.

The DebugG aphi ¢s. BUFFERED_OPTI ON is supposed to pop up a frame showing ren-
dering as it occurs in the offscreen buffer if double-buffering is enabled. As of the Java 1.4, this
option is not still functional.

The DebugGr aphi cs. NONE_OPTI ON nullifies graphics debugging settings and shuts off
graphics debugging altogether.

Graphics debugging caveats

There are two issues to be aware of when using graphics debugging. First, graphics debugging
will not work for any component whose Ul is nul I . Thus, if you have created a direct
JConponent subclass without a Ul delegate, as we did with JCanvas above, graphics
debugging will simply do nothing. The simplest way to work around this is to define a trivial
(empty) Ul delegate. We'll show you how to do this in the example below.

Second, DebugGr aphi cs does not properly clean up after itself. By default, a solid red
flash color is used. When a region is flashed, that region is filled in with the red flash color and
it does not get erased—it just gets painted over. This presents a problem because transparent
rendering will not show up as transparent. Instead, it will be alpha-blended with the red below
(or whatever the flash color happens to be set to). This is not necessarily a design flaw, because
there is nothing stopping us from using a completely transparent flash color. With an alpha
value of 0, the flash color will never be seen. The only downside is that we don’t see any flash-
ing. However, in most cases it is easy to follow what is being drawn if we set the f | ashTi me
and f | ashCount to wait long enough between operations.

Using graphics debugging

We'll now enable graphics debugging in our JCanvas example from the last two sections.
Because we must have a non-null UT delegate, we define a trivial extension of Conponent Ul
and implement its cr eat eUl () method to return a static instance of itself:

GRAPHICS DEBUGGING 51

cl ass EnptyU extends Conponent Ul

{
private static final EnptyU sharedlnstance = new EnptyU ();

public static ConponentU createU (JConponent c) {
return sharedl nstance;
}
}

In order to properly associate this Ul delegate with JCanvas, we simply «call
super. set U (EnptyUl . createUl (this)) from the JCanvas constructor. We also set up
a Pri nt St r eamvariable in JCanvas and use it to add a few of our own lines to the log stream
during the pai nt Conponent () method in order to log when the method starts and finishes.
Other than this, no changes have been made to the JCanvas’s pai nt Conponent () code.

In our test application, Test Fr ame (example 2.5), we create an instance of JCanvas and
enable graphics debugging with the LOG_OPTI ON and FLASH_OPTI ON options. We disable
buffering in the Repai nt Manager, set the flash time to 100ms, set the flash count to 2, and
use a completely transparent flash color.

Example 2.5

see \Chapter2\5

import java.awt.*;

i mport javax.sw ng.*;

i mport javax.swi ng. pl af . *;
i nport java.io.*;

cl ass Test Franme extends JFrane
{
public TestFrame() {
super ("G aphi cs demn");
JCanvas jc¢ = new JCanvas();
Repai nt Manager . current Manager (j c) .
set Doubl eBuf f eri ngEnabl ed(f al se);
j c. set DebugG aphi csOpti ons(DebugG aphi cs. LOG_OPTI ON |
DebugG aphi cs. FLASH _OPTI ON) ;
DebugG aphi cs. set Fl ashTi me(100);
DebugG aphi cs. set Fl ashCount (2);
DebugG aphi cs. set Fl ashCol or (new Col or (0,0, 0,0));
get Cont ent Pane() . add(j c);
}

public static void main(String args[]) {
Test Frane mai nFrame = new Test Frame();
mai nFranme. pack();
mai nFrame. set Def aul t G oseOper ati on(JFrane. EXI T_ON_CLOSE) ;
mai nFrane. setVisible(true);

}

CHAPTER 2 SWING MECHANICS

cl ass JCanvas extends JConponent

{
/1 Unchanged code from exanple 2.4

private PrintStream ps;

public JCanvas() {
super.set U (EnptyUl . createUl (this));
}

public voi d pai nt Conponent (Graphics g) {
super . pai nt Component (g) ;

ps = DebugG aphics. | ogStream();
ps. println("\n===> pai nt Conponent ENTERED <===");

/1 Al painting code unchanged

ps.printin("\n# itens repainted =" + c + "/10");
ps. printl n("===> pai nt Conponent FI N SHED <===\n");
}
/1 Unchanged code from exanple 2.4
}
class EnptyU extends Conponent Ul
{

private static final EnptyU sharedl nstance = new EnptyUl ();
public static ComponentUl createU (JConponent c) {
return sharedl nstance;
}
}

By setting the LOG_OPTI ON, graphics debugging provides us with a more informative way of
checking how well our clipping area optimization we discussed in the last section works.
When this example is run, you should see the following output in your console, assuming you
don’t obscure JCanvas’s visible region as it is painted for the first time:

G aphi cs(0-3) Enabling debug

Graphi cs(0-3) Setting color:
j avax. swi ng. pl af . Col or Ul Resour ce[r =0, g=0, b=0]

G aphics(0-3) Setting font:
j avax. swi ng. pl af . Font Ul Resour ce[f am | y=di al og, nane=Di al og,
styl e=pl ai n, si ze=12]

===> pai nt Conponent ENTERED <===
G aphics(1-3) Setting color: java.aw. Col or[r=255, g=255, b=255]
Graphics(1-3) Filling rect: java.aw. Rectangl e[x=0, y=0,
wi dt h=400, hei ght =400]
Graphics(1-3) Setting color: java.aw. Col or[r=255, g=255, b=0]
G aphics(1-3) Filling oval: java.aw. Rectangl e[x=0, y=0,
wi dt h=240, hei ght =240]
Graphics(1-3) Setting color: java.aw. Col or[r=255,g=0, b=255]
Graphics(1-3) Filling oval:
j ava. awt . Rect angl e[x=160, y=160, wi dt h=240, hei ght =240]
Graphi cs(1-3) Drawi ng i mage: sun.aw .w ndows. W nage@2a5625a at:

GRAPHICS DEBUGGING 53

2.11

54

j ava. awt . Poi nt [x=258, y=97]

Graphi cs(1-3) Drawi ng inmage: sun.aw .w ndows. W mage@2a5625a at:
java. awt . Poi nt [x=98, y=257]

Graphi cs(1-3) Setting color: java.awt. Col or[r=255, g=0, b=0]

Graphics(1-3) Filling rect:

j ava. awt . Rect angl e[x=60, y=220, wi dt h=120, hei ght =120]
Graphics(1-3) Setting color: java.aw . Col or[r=0, g=255, b=0]
Graphics(1-3) Filling oval:

j ava. awt . Rect angl e[x=140, y=140, wi dt h=120, hei ght =120]
Graphics(1-3) Setting color: java.aw. Col or[r=0, g=0, b=255]
Graphics(1-3) Filling rect:

j ava. awt . Rect angl e[x=220, y=60, wi dt h=120, hei ght =120]
Graphics(1-3) Setting color: java.aw. Col or[r=0, g=0, b=0]
Graphics(1-3) Setting font:

java. awt . Font [fam | y=nonospaced. bol di tal i ¢, nane=Mono

spaced, styl e=bol ditalic, si ze=36]

Graphics(1-3) Drawing string: "Sw ng" at:
java. awt . Poi nt [x=65, y=129]
Graphics(1-3) Setting font:

java.awt . Font[fam | y=Ari al , nane=SansSeri f, styl e=pl ai n, si ze=12]
Graphics(1-3) Drawing string: "is" at:

java. awt . Poi nt [x=195, y=203]

Graphics(1-3) Setting font:

java.awt . Font [fam | y=seri f. bol d, nane=Seri f, styl e=bol d, si ze=24]
Graphics(1-3) Drawing string: "powerful!!" at:

java. awt . Poi nt [x=228, y=286]

itens repainted = 10/ 10
===> pai nt Conponent Fl Nl SHED <===

PAINTING AND VALIDATION

At the heart of JConponent’s painting and validation mechanism lies a service class called
Repai nt Manager . The Repai nt Manager is responsible for sending painting and validation
requests to the system event queue for dispatching. To summarize, it does this by intercepting
repai nt () and reval i dat e() requests, coalescing any requests where possible, wrapping
them in Runnabl e objects, and sending them to i nvokeLater (). A few issues we have
encountered in this chapter deserve more attention here before we actually discuss details of
the painting and validation processes.

NOTE This section contains a relatively exhaustive explanation of the most complex
mechanism underlying Swing. If you are relatively new to Java or Swing, we
encourage you to skim this section now and come back at a later time for a more
complete reading. If you are just looking for information on how to override and
use your own painting methods, see section 2.8. For customizing Ul delegate
rendering, see chapter 21.

REFERENCE For a higher-level summary of the painting process, see the Swing Connection
article “Painting in AWT and Swing” at http://java.sun.com/products/jfc/tsc/
special_ report/Painting/painting.html.

CHAPTER 2 SWING MECHANICS

2.11.1

2.11.2

Double-buffering

We've mentioned double-buffering, but you may be wondering how to disable it in the
Repai nt Manager and how to specify the double-buffering of individual components with
JConponent’s set Doubl eBuf f er ed() method. In this section, we'll explain how it works.

Double-buffering is the technique of painting into an off-screen image rather than paint-
ing directly to a visible component. In the end, the resulting image is painted to the screen rel-
atively quickly. Using AWT components, developers were required to implement their own
double-buffering to reduce flashing. It was clear that double-buffering should be a built-in fea-
ture because of its widespread use. Thus, it is not much of a surprise to find this feature in Swing.

Behind the scenes, double-buffering consists of creating an | mage (actually a Vol ati | e-
I mage) and retrieving its Gr aphi cs object for use in all painting methods. If the component
being repainted has children, this Graphi c¢s object will be passed down to them to use for
painting, and so on. So if you are using double-buffering for a component, all its children will
also be using double-buffering (regardless of whether they have double-buffering enabled)
because they will be rendering into the same Gr aphi cs object. There is only one off-screen
image per Repai nt Manager, and there is normally only one Repai nt Manager instance per
applet or application (Repai nt Manager is a service class that registers a shared instance of itself
with AppCont ext ; see section 2.5 for details).

JAVA 1.4 The Java2D team has implemented a new class called Vol ati | el mage which
allows Java to take advantage of available graphics acceleration hardware.
Repai nt Manager has a new get Vol at i | eCf f screenBuf f er () method used to
obtain a Vol at i | el mage for use in double-buffering.

As we will discuss in chapter 3, JRoot Pane is the top-level Swing component in any window,
including JI nt er nal Fr ame (which isnt really a window). By enabling double-buffering on
JRoot Pane, all of its children will also be painted using double-buffering. As we saw in the
last section, Repai nt Manager also provides global control over all component double-buffer-
ing. So another way to guarantee that all components will use double-buffering is to call

Repai nt Manager . cur r ent Manager (nul ') . set Doubl eBuf f eri ngEnabl ed(true);

Optimized drawing

We haven't yet really discussed the fact that components can overlap each other in Swing, but
they can. JLayer edPane, for example, is a container that allows any number of components
to overlap each other. Repainting such a container is much more complex than repainting a
container we know does not allow overlapping, mainly because of the ability for components
to be transparent.

What does it mean for a component to be transparent? Technically, this means its i s-
Opaque() method returns f al se. We can set this property by calling set Opaque() . Opacity
means, in this context, that a component will paint every pixel within its bounds. If the opaque
property is set to f al se, we are not guaranteed that this will happen. When it is set to f al se,
it increases the workload of the whole painting mechanism.

JConponent’s i sQpt i mi zedDr awi ngEnabl ed() method is overridden to return t r ue
for almost all JConponent subclasses except JLayer edPane, JVi ewpor t , and JDeskt op-
Pane (which is a subclass of JLayer edPane). Basically, calling this method is equivalent to

PAINTING AND VALIDATION 55

2.11.3

56

asking a component whether it is possible that any of its child components can overlap each
other. If it is possible, then much more repainting work must be done to take into account the
fact that any number of components, from virtually anywhere in our container hierarchy, can
overlap each other. Since components can be transparent, components layered completely
behind others may still show through. Such components are not necessarily siblings (meaning
in the same container) because we could conceivably have several non-opaque containers lay-
ered one on top of another. In situations like this, we must do a whole lot of “tree walking”
to figure out which components need to be refreshed. If i sOpti i zedDr awi ngEnabl ed()
is overridden to return t r ue, then we assume we do not have to consider any situations like
this. Thus, painting becomes more efficient, or optimized.

Root validation

Arevalidate() requestis generated when a component needs to be laid out again. When a
request is received from a certain component, there must be some way of determining whether
laying that component out will affect anything else. JConponent ’si sVal i dat eRoot () method
returns f al se for most components. Calling this method is equivalent to asking it the ques-
tion: If I lay your contents out again, can you guarantee that none of your parents or siblings
will be adversely affected—meaning will they need to be laid out again? By default, only
JRoot Pane, JScr ol | Pane, and JText Fi el d return t r ue. This seems surprising at first, but
it is true that these components are the only Swing components whose contents can be suc-
cessfully laid out in any situation without affecting parents or siblings. No matter how big we
make anything inside a JRoot Pane, JScr ol | Pane, or JText Fi el d, the container will not
change size or location unless some outside influence comes into play, such as a sibling or par-
ent. To help convince you of this, try adding a multiline text component (such as a JTex-
t Area) to a container without placing it in a scroll pane. You may notice that creating new
lines will change its size, depending on the layout. The point is not that it rarely happens or
that it can be prevented, but that it can happen. This is the type of incident thati sVval i dat -
eRoot () is supposed to warn us about. So where is this method used?

A component or its parent is normally revalidated when a property value changes and
that component’s size, location, or internal layout has been affected. By recursively calling
i sval i dat eRoot () on a Swing component’s parent until you obtain true, you will end
with the closest ancestor of that component that guarantees us its validation will not affect its
siblings or parents. We will see that Repai nt Manager relies on this method for dispatching
validation requests.

NOTE When we say siblings, we mean components in the same container. When we say
parents, we mean parent containers.

Cell renderers used in components such as JLi st, JTr ee, and JTabl e are special
in that they are wrapped in instances of Cel | Render er Pane and all validation and
repainting requests do not propogate up through containment hierarchy. See chap-
ter 17 for more information about Cel | Render er Pane and why this behavior ex-
ists. We'll simply say here that cell renderers do not follow the painting and
validation scheme discussed in this section.

CHAPTER 2 SWING MECHANICS

2.11.4

2.11.5

RepaintManager

class javax.swing. RepaintManager

There is usually only one instance of a service class in use per applet or application. So unless
we specifically create our own instance of Repai nt Manager, which we will almost never need
to do, all repainting is managed by the shared instance which is registered with AppCont ext .
We normally retrieve it using Repai nt Manager ’s static cur r ent Manager () method:

myRepai nt Manager = Repai nt Manager . current Manager (nul |);

This method takes a Conponent as its parameter. However, it doesn’t matter what we pass it.
In fact, the component passed to this method is not used anywhere inside the method at all
(see the RepaintManager.java source code), so a value of nul | can safely be used here. (This
definition exists for subclasses to use if they want to work with more than one Repai nt Man-
ager, possibly on a per-component basis.)

Repai nt Manager exists for two purposes: to provide efficient revalidation and repainting
by coalescing the paint/validation requests for all the components of a specific component tree.
It intercepts all repai nt () and reval i dat e() requests. This class also handles all double-
buffering in Swing and maintains a single | mage used for this purpose. This | mage’s maxi-
mum size is, by default, the size of the screen. However, we can set its size manually using
Repai nt Manager ’s set Doubl eBuf f er Maxi munSi ze() method. (All other Repai nt Manager
functionality will be discussed throughout this section where applicable.)

Revalidation

Repai nt Manager maintains a Vect or of components that need to be validated. Whenever
arevalidate() request is intercepted, the source component is sent to the addl nval i dCom
ponent () method and its val i dat eRoot property is checked using i sVal i dat eRoot ().
This occurs recursively on that component’s parent until i sVal i dat eRoot () returns tr ue.
The resulting component, if any, is then checked for visibility. If any one of its parent con-
tainers is not visible, there is no reason to validate it. Otherwise, if no parent container
returns true for i sVal i dat eRoot (), Repai nt Manager “walks down the component’s tree”
until it reaches the root component, which will be a W ndow or an Appl et . Repai nt Man-
ager then checks the invalid components Vect or, and if the component isn’t already there,
it is added. After being successfully added, Repai nt Manager then passes the root container
to the Syst enEvent Queuelti | ities’ queueConponent Wr kRequest () method (we saw
this class in section 2.3). This method checks to see if there is a Conponent Wor kRequest
(this is a private static class in Syst enEvent Queueltilities that implements Runnabl e)
corresponding to that root already stored in the work requests table. If there isn't one, a new one is
created. If one already exists, a reference to it is obtained. Then the queueConponent -
Wor kRequest () method synchronizes access to that Conmponent Wor kRequest , places it in
the work requests table if it is a new one, and checks if it is pending (meaning it has been
added to the system event queue). If it isn’t pending, this method sends it to Swi ng- Ui | i -
ties.invokeLater().Itis then marked as pending and the synchronized block is finished.
When the Conponent Wor kRequest is finally run from the event-dispatching thread, it
notifies Repai nt Manager to execute validatelnvalidConponents(), followed by
pai ntDi rtyRegi ons().

PAINTING AND VALIDATION 57

2.11.6

58

Theval i dat el nval i dConponent s() method checks Repai nt Manager ’s Vect or that
contains the components which are in need of validation, and it calls val i dat e() on each
one. (This method is actually a bit more careful than we describe here, as it synchronizes access
to prevent the addition of invalid components while executing).

NOTE The val i dat el nval i dConponent s() should only be called from within the
event-dispatching thread. Never call this method from any other thread. The same
rules apply for pai nt Di rt yRegi ons() .

The pai nt Di rt yRegi ons() method is much more complicated, and we'll discuss some of its
details in this chapter. For now, all you need to know is that this method paints all the dam-
aged regions of each component maintained by Repai nt Manager.

Repainting

JConponent defines two r epai nt () methods, and the no-argument version of r epai nt ()
is inherited from j ava. awt . Cont ai ner :

public void repaint(long tm int x, int y, int width, int height)
public void repaint(Rectangle r)
public void repaint() // Inherited fromjava.awt. Contai ner

If you call the no-argument version, the whole component is repainted. For small, simple
components, this is fine. But for larger, more complex components, this is often not efficient.
The other two methods take the bounding region to be repainted (the dirtied region) as
parameters. The first method’s i nt parameters correspond to the x-coordinate, y-coordinate,
width, and height of that region. The second method takes the same information encapsu-
lated in a Rect ange instance. The second repai nt () method shown above just sends its
traffic to the first. The first method sends the dirtied region’s parameters to Repai nt Manager’s
addDi rt yRegi on() method.

NOTE The | ong parameter in the first r epai nt () method represents absolutely nothing
and is not used at all. It does not matter what value you use for this. The only reason it
is here is to override the correct r epai nt () method from j ava. awt . Conponent .

Repai nt Manager maintains a Hasht abl e of dirty regions. Each component will have, at
most, one dirty region in this table at any time. When a dirty region is added using addDi rt -
yRegi on(), the size of the region and the component are checked. If either item has a width
or height <= 0, the method returns and nothing happens. If a measurement is bigger than
0x0, the source component’s visibility is then tested, along with each of its ancestors. If they
are all visible, its root component, a W ndow or Appl et , is located by “walking down its tree,”
similar to what occurs in addl nval i dat eConponent (). The dirty regions Hasht abl e is
then asked if it already has a dirty region of our component stored. If it does, it returns its
value (a Rect angl e) and the handy Swi ngUti i ti es. conput eUni on() method is used to
combine the new dirty region with the old one. Finally, Repai nt Manager passes the root to the
Syst enEvent Queuelti | i ti es’ queueConponent Wr kRequest () method. What happens
from here on is identical to what we saw earlier for revalidation.

Now we can talk a bit about the pai nt Di rt yRegi ons() method we summarized earlier.
(Remember that this should only be called from within the event-dispatching thread.) This
method starts out by creating a local reference to Repai nt Manger ’s dirty regions Hasht abl e

CHAPTER 2 SWING MECHANICS

2.11.7

and redirecting Repai nt Manager ’s dirty regions Hasht abl e reference to a different, empty
one. This is all done in a critical section so that no dirty regions can be added while the swap
occurs. The remainder of this method is fairly long and complicated, so we’ll conclude with
a summary of the most significant code (see the RepaintManager.java source code for details).

The pai nt Di rt yRegi ons() method continues by iterating through an Enuner ati on
of the dirty components, calling Repai nt Manager ’s col | ect Di r t yConponent s() method for
each one. This method looks at all the ancestors of the specified dirty component and checks
each one for any overlap with its dirty region using the Swi ngUtilities. conputel nter-
secti on() method. In this way, each dirty region’s bounds are minimized so that only its vis-
ible region remains. (Note that col | ect Di rtyConmponent s() does take transparency into
account.) Once this has been done for each dirty component, the pai nt Di rt yRegi ons()
method enters a loop which computes the final intersection of each dirty component and its
dirty region. At the end of each iteration, pai nt | mredi at el y() is called on the associated
dirty component, which actually paints each minimized dirty region in its correct location
(we’ll discuss this later). This completes the pai nt Di rt yRegi ons() method, but we still have
the most significant feature of the whole process left to discuss: painting.

Painting

JConponent includes an updat e() method which simply calls pai nt (). The updat e()
method is never actually used by any Swing components; it is provided only for backward
compatibility. The JConponent pai nt () method, unlike typical AWT pai nt () implemen-
tations, does not handle all of a component’s painting. In fact, it very rarely handles any of it
directly. The only rendering work JConponent’s pai nt () method is really responsible for is
working with clipping areas, translations, and painting pieces of the Image used by
Repai nt Manager for double-buffering. The rest of the work is delegated to several other
methods. We will briefly discuss each of these methods and the order in which painting oper-
ations occur. But first we need to discuss how pai nt () is actually invoked.

As you know from our discussion of the repainting process above, Repai nt Manager is
responsible for invoking a method called pai nt I mredi at el y() on each component to paint
its dirty region (remember, there is always just one dirty region per component because they
are intelligently coalesced by Repai nt Manager). This method, together with the private ones
it calls, makes an intelligently crafted repainting process even more impressive. It first checks
to see if the target component is visible, as it could have been moved, hidden, or disposed since
the original request was made. Then it recursively searches the component’s non-opaque par-
ents (using i sOpaque()) and it increases the bounds of the region to repaint accordingly until
it reaches an opaque parent. It then has two options.

1 If the parent reached is a JConponent subclass, the private _pai nt | nredi at el y()
method is called and the newly computed region is passed to it. This method queries the
i sOptim zedDr awi ng() method, checks whether double-buffering is enabled (if so, it
uses the off-screen Gr aphi cs object associated with Repai nt Manager s buffered | mage),
and continues working with i sOpaque() to determine the final parent component and
bounds to invoke pai nt () on.

A If double-buffering is 7o enabled, a single call to pai nt () is made on the parent.

PAINTING AND VALIDATION 59

B If double-buffering is enabled, it calls pai nt Wt hBuf f er () , which is another private
method. This method works with the off-screen Gr aphi cs object and its clipping
area to generate many calls to the parent’s pai nt () method, passing it the off-screen
G aphi cs object using a specific clipping area each time. After each call to pai nt (),
it uses the off-screen Gr aphi cs object to draw directly to the visible component.

2 If the parent is not a JConponent subclass, the region’s bounds are sent to that parent’s
repai nt () method, which will normally invoke the j ava. awt . Conponent pai nt ()
method. This method will then forward traffic to each of its lightweight children’s
pai nt () methods. However, before doing this, it makes sure that each lightweight child
it notifies is not completely covered by the current clipping area of the Gr aphi cs object
that was passed in.

In all cases, we have finally reached JConponent ’s pai nt () method!

Inside JConponent’s pai nt () method, if graphics debugging is enabled, a DebugGr aphi cs
instance will be used for all rendering.

NOTE Interestingly, a quick look at JConponent ’s painting code shows heavy use of a
class called Swi ngGr aphi cs. (This isn’t in the API docs because it’s package pri-
vate). It appears to be a very slick class for handling custom translations, clipping
area management, and a St ack of G aphi c¢s objects used for caching, recyclability,
and undo-type operations. Swi ngGr aphi cs actually acts as a wrapper for all
G aphi cs instances used during the painting process. It can only be instantiated
by passing it an existing G aphi cs object. This functionality is made even more
explicit by the fact that it implements an interface called Graphi csW apper,
which is also package private.

The pai nt () method checks whether double-buffering is enabled and whether it was called
by pai nt Wt hBuf fer () (see above). There are two possible scenarios.

1 Ifpai nt () was called from pai nt Wt hBuf f er () or if double-buffering is not enabled,
pai nt () checks whether the clipping area of the current Gr aphi cs object is completely
obscured by any child components. If it isn’t, pai nt Conponent (), pai nt Bor der (),
and pai nt Chi I dren() are called in that order. If it is completely obscured, then only
pai nt Chi | dren() needs to be called. (We will see what these three methods do shortly.)

2 If double-buffering is enabled and this method was not called from pai nt Wt h-
Buf fer (), it will use the off-screen Graphi cs object associated with Repai nt Man-
ager’s buffered 1 mage throughout the remainder of this method. Then it will check
whether the clipping area of the current Gr aphi cs object is completely obscured by any
child components. If it isn’t, pai nt Conponent (), pai nt Bor der (), and pai nt Chi | -
dren() will be called in that order. If it is completely obscured, only pai nt Chi | dren()
needs to be called.

A The pai nt Conponent () method checks to see if the component has a Ul delegate
installed. If it doesn’t, the method just exits. If it does, it simply calls updat e()
on that UI delegate and then exits. The updat e() method of a Ul delegate is
normally responsible for painting a component’s background if it is opaque, and
then calling pai nt () . A Ul delegate’s pai nt () method is what actually paints the

CHAPTER 2 SWING MECHANICS

2.11.8

2.12

corresponding component’s content. (We will see how to customize Ul delegates
throughout this text.)

B The pai nt Bor der () method simply paints the component’s border, if it has one.

¢ The pai nt Chi | dren() method is a bit more involved. To summarize, it searches
through all child components and determines whether pai nt () should be invoked
on them using the current Gr aphi cs clipping area, the i sOpaque() method, and
thei sOpt i ni zedDr awi ngEnabl ed() method. The pai nt () method called on each
child will essentially start that child’s painting process from part 2 above, and this
process will repeat until either no more children exist or none need to be painted.

Custom painting

When building or extending lightweight Swing components, it is normally expected that if you
want to do any painting within the component itself (instead of in the UI delegate where it
normally should be done), you will override the pai nt Conponent () method and immedi-
ately call super . pai nt Conponent () . In this way, the UI delegate will be given a chance to
render the component first. Overriding the pai nt () method, or any of the other methods
mentioned earlier, should rarely be necessary, and it is always good practice to avoid doing so.

Focus MANAGEMENT

With Java 1.4 comes a completely revised focus subsystem. The primary concepts underlying
this subsystem consist of the following.

Focus Owner: A focus owner is the component which currently has the focus and is the uli-
mate target of all keyboard input (except key combinations that indicate a focus
change; detailed here).

Permanent Focus Owner: A permanent focus owner is the same as the current focus owner
unless there is temporary focus change in effect (for example, using a drop—down
menu while editing a text component document).

Focus Cycle: A focus cycle is the sequence in which components within a container receive
focus. It is referred to as a cycle because it acts as a loop—each component in the cycle
will receive the focus once if the cycle is completely traversed from the first compo-
nent in the cycle to the last.

Focus Traversal: Focus traversal is the ability to move the focus from one component to the
next within a focus cycle. This can be accomplished through use of key combina-
tions to move the focus forward or backward.

Focus Cycle Root: A focus cycle root is the uppermost parent container of the components in a
focus cycle. Every W ndow is a focus cycle by default (this includes JI nt ernal -
Fr ane even though it is technically not a W ndow). Normal focus traversal within a
focus cycle cannot extend above or below the focus cycle root with respect to its con-
tainment hierarchy. Distinct traversal options called up cycle and down cycle are used
to change the focus cycle root

In example 2.6, shown in figure 2.6, we construct a container with four focus cycle roots. We
will walk you through using this example to illustrate the above focus management concepts.

FOCUS MANAGEMENT 61

Figure 2.6
Focus Cycle Demo

Example 2.6

FocusTest.java

see \Chapter2\6

i nport java.awt.*;
i mport javax.sw ng. *;
i nport javax.sw ng. border.*;

public class FocusDenp extends JFrane {

public FocusDenmo() {
super (" Focus Denp");

JPanel contentPane = (JPanel) get ContentPane();

cont ent Pane. set Bor der (new Ti t| edBor der (“Focus Cycle A"));
cont ent Pane. add(cr eat eConponent Panel (), BorderLayout.NORTH);
JDeskt opPane desktopl = new JDeskt opPane();

cont ent Pane. add(deskt opl, BorderLayout. CENTER);

Jinternal Frame internal Framel =
new Jl nt ernal Franme(“ Focus Cycle B", true, true, true, true);
content Pane = (JPanel) internal Franmel. get Cont ent Pane();
cont ent Pane. add(cr eat eConponent Panel (), BorderLayout. NORTH,
JDeskt opPane desktop2 = new JDeskt opPane();
cont ent Pane. add(deskt op2, BorderLayout. CENTER);
deskt opl. add(i nt er nal Franel);
i nt er nal Franel. set Bounds(20, 20, 500, 300) ;
i nt ernal Franel. show();

JInternal Frame internal Frane2 =

new Jl nt er nal Frame(“ Focus Cycle C', true, true, true, true);
content Pane = (JPanel) internal Frane2. get Cont ent Pane();
cont ent Pane. add(cr eat eConponent Panel (), BorderLayout. NORTH,
JDeskt opPane desktop3 = new JDeskt opPane();

CHAPTER 2 SWING MECHANICS

cont ent Pane. add(deskt op3, BorderLayout. CENTER);
deskt op2. add(i nt er nal Franme2);

i nt er nal Frane2. set Bounds(20, 20, 400, 200) ;

i nt ernal Frane2. show() ;

Jinternal Frame internal Frame3 =
new Jl nternal Frame(“Focus Cycle D', false, true, true, true);
cont ent Pane = (JPanel) i nternal Franme3. get Cont ent Pane();
cont ent Pane. add(cr eat eConponent Panel (), BorderLayout. NORTH,
deskt op3. add(i nt er nal Frame3);
i nt er nal Frane3. set Bounds(20, 20, 300, 100) ;
i nt ernal Frane3. show() ;
}
public static void main(String[] args) {
FocusDeno frane = new FocusDeno();
frame. set Def aul t Cl oseOper ati on(JFranme. EXI T_ON_CLCSE) ;
frame. set Bounds(0, 0, 600, 450) ;
frame. setVisible(true);

}

protected JPanel createConponentPanel () {
JPanel panel = new JPanel ();
panel . add(new JButton(“Button 1"));
panel . add(new Jbutton(“Button 2"));
Panel . add(new JText Fi el d(10));
return panel;

}

}

When you first run this example don’t use your mouse. Notice that the first component with
the focus, the focus owner, is “Button 17 in Focus Cycle A. This is evident by the blue selection
box drawn around that button’s text. Press TAB to move the focus forward to the next compo-
nent in the cycle. When you move the focus forward from the last component in the cycle
(the text field), notice that the focus moves down a cycle rather than continuing from the
beginning of the current cycle.

Press SHIFT+TAB to move the focus backward through the cycle. When you move the
focus backward the focus stays within the current focus cycle endlessly.

Now try moving the focus forward until you reach Focus Cycle D. At this point there
are no more focus cycle roots to traverse through and cycle D loops endlessly, whether you
move the focus forward or backward. If you minimize the “Focus Cycle D” internal frame, the
“Focus Cycle C” internal frame then becomes the lowest focus cycle root and focus traversal
will loop endlessly there. If you restore the “Focus Cycle D” internal frame then it becomes
the lowest focus cycle root once again.

By default there is no direct way to use the keyboard to move to a higher focus cycle. The
only way to move down a focus cycle with the keyboard is to traverse the focus cycle hierarchy
manually. There is no default way to move up the hierarchy using only the keyboard without
removing cycle roots (in the earlier example minimizing an internal frame accomplishes
this temporarily). However, you can easily use the mouse to jump to any focus cycle. Simply
click on a focusable component and the focus will be transferred to the cycle containing
that component.

FOCUS MANAGEMENT 63

2.12.1

2.12.2

2.12.3

64

Now try typing some text into one of the text fields. Then use your mouse to click on
the Java cup frame icon in the upper left-hand corner of the JFr ame. A popup menu appears
but notice that the cursor still remains blinking in the text area. This is an example of a tem-
porary focus change—focus is temporarily transferred to the popup menu. Once the popup
menu is dismissed you can continue typing in the text field as if a focus change never happened.
In this scenario the text field is a permanent focus owner with respect to the popup menu.

KeyboardFocusManager

abstract class java.awr. KeyboardFocusManager

Central to the focus management system is a new class called keyboar dFocusManager
(an AppCont ext -registered service class—see section 2.5), the default implementation of
which is Def aul t Keyboar dFocusManager . To obtain a reference to the current Keyboar d-
FocusManager in use, the static get Cur r ent Keyboar dFocusManager () method is used.
Once you've obtained this you can programmatically inquire about the current focus state,
change the focus state, and add to or replace focus change event handling functionality.

NOTE We recommend programmatically changing focus through the keyboar dFocus-
Manager rather than calling methods such as r equest Focus() on components
directly.

Vet oabl eChangeLi st ener s (see section 2.1.1) can be added to Keyboar dFocusManager
for the opportunity to veto a component focus or window activation change by throwing a
Propert yVet oExcept i on. In the event that a veto occurs, all Vet oabl eChangelLi st eners
that may have previously approved the change will be notified and will revert any changes to
their original state.

Key events and focus management

abstract class java.awt. KeyFventDispatcher

Implementations of this class can be registered with the current Keyboar dFocusManager
to receive key events before they are sent to the currently focused component. In this way
key events can be redirected to a different target component, consumed, or changed in some
other way.

Keyboar dFocusManager is actually a subclass of KeyEvent Di spat cher and by
default acts as the last KeyEvent Di spat cher to receive key events. This abstract class defines
one method, di spat chKeyEvent (), which returns a bool ean value. If any KeyEvent Di s-
pat cher registered with the Keyboar dFocusManager returns t r ue for this method, indi-
cating that it dispatched the key event, then no further dispatching of that event will take place.
In this way we can define our own KeyEvent Di spat cher to alter the behavior of Keyboar d-
FocusManager .

Focus and Window events

Java.awt.event. FocusEvent and Jjava.awt.event. WindowEvent

FocusEvent and W ndowEvent define several event types that are central to the operation
of the focus management subsystem. They generally occur in the following order during focus

CHAPTER 2 SWING MECHANICS

2.12.4

traversal and can be intercepted by attaching W ndowli st eners and FocusLi st eners
respectively:
e W ndowEvent . W NDOW ACTI VATED: event sent to a Frame or Dial og when it
becomes active.
e W ndowEvent . W NDOW GAl NED_FOCUS: event sent to a Wndow when it
becomes focused.
¢ wi ndowEvent . W NDOW LOST_FOCUS: event sent to a W ndow when it loses focus.
¢ wi ndowevent . W NDOW DEACTI VATED: event sent to a Fr ame or Di al og when it is no
longer the active window.
e FocusEvent. FOCUS_GAI NED: event sent to a Comrponent when it becomes the focus
owner.
* FocusEvent. FOCUS_LGCST: event sent to a Conponent when it loses focus ownership,
whether temporary or permanent.

Focusability and traversal policies

abstract class java.awt. Focus TraversalPolicy

You can easily change whether or not specific components act as part of a focus cycle. Each
Conponent can toggle its traversability with the set Focusabl e() method. Similarly each
W ndow can do the same with the set Focusabl eW ndow() method.

However, if we need to customize focus traversal in a more creative way, the FocusTr a-
versal Pol i cy class provides a way to accomplish this. This abstract class defines several
methods used during focus traversal to determine which component is next, previous, first, last,
and so forth. within a given Cont ai ner’s focus cycle. Once a defined a traversal policy can
be applied to any Cont ai ner with the set Traver sal Pol i cy() method.

Cont ai ner Or der FocusTr aver sal Pol i cy (and its Def aul t FocusTr aver sal Pol -
i cy subclass) is the default policy of most containers. Conmponent s are traversed based on their
order of appearance, from left to right and top to bottom, within the container—corresponding
to the ordering of the array returned by the Contai ner. get Conponents() method.
By default this policy traverses down to lower focus cycles whenever a new focus cycle
root is reached. This behavior can be toggled with the set!|nplicitDownCycl eTra-
versal () method.

I nt er nal FrameFocusTr aver sal Pol i cy is a policy meant for use by JI nt ernal -
Frame to provide a way for determining the initial focus owner when the internal
frame is selected for the first time. Sor t i ngFocusTr aver sal Pol i cy is a subclass of I nt er -
nal FrameFocusTraver sal Pol i cy that determines traversal order by comparing child
components using a given Conpar at or implementation. A subclass of this, Layout Focus-
Traversal Pol i cy, is used to determine traversal order based on size, position, and orienta-
tion. Used in conjunction with a component’s Conponent Ori entation (the language-
sensitive orientation that determines whether text or components should appear from left to
right, top to bottom, etc.), Layout FocusTr aver sal Pol i cy can adjust focus traversal based
on the orientation required by, for instance, the current language in use.

REFERENCE For a more detailed description of focus management in Java 1.4 see “the AWT
Focus Subsystem for Merlin” at http://java.sun.com/j2se/1.4/docs/api/java/awt/
doc-files/FocusSpec.html.

FOCUS MANAGEMENT 65

2.13

2.13.1

66

KEYBOARD INPUT

In this section, we discuss the mechanisms underlying keyboard input and how to intercept
key events.

Listening for keyboard input

KeyEvent s are fired by a component whenever that component has the current focus and the
user presses a key. To listen for these events on a particular component, we can attach KeyLi s-
t ener s using the addKeyLi st ener () method. We can devour these events using the consune()
method before they are handled further by key bindings or other listeners. We'll discuss in this
section exactly who gets notification of keyboard input, and in what order this occurs.

There are three KeyEvent event types, each of which normally occurs at least once per
keyboard activation (such as a press and release of a single keyboard key):

* KEY_PRESSED: This type of key event is generated whenever a keyboard key is pressed.
The key that is pressed is specified by the keyCode property and a virtual key code repre-
senting it can be retrieved with KeyEvent s get KeyCode() method. A virtual key code
is used to report the exact keyboard key that caused the event, such as KeyEvent . VK_
ENTER. KeyEvent defines numerous static i nt constants that each start with the prefix
“VK,” meaning Virtual Key (see the KeyEvent API docs for a complete list). For exam-
ple, if CTRL-C is typed, two KEY_PRESSED events will be fired. The i nt returned by
get KeyCode() corresponding to pressing CTRL will be a value matching KeyEvent .
VK_CTRL. Similarly, the i nt returned by get KeyCode() corresponding to pressing the
C key will be a value matching KeyEvent . VK_C. (Note that the order in which these are
fired depends on the order in which they are pressed.) KeyEvent also maintains a key-
Char property which specifies the Unicode representation of the character that was
pressed (if there is no Unicode representation, KeyEvent . CHAR_UNDEFI NED is used—
for example, the function keys on a typical PC keyboard). We can retrieve the keyChar
character corresponding to any KeyEvent using the get KeyChar () method. For example,
the character returned by get KeyChar () corresponding to pressing the C key will be c.
If SHIFT was pressed and held while the C key was pressed, the character returned by
get KeyChar () corresponding to the C key press would be C. (Note that distinct keyChar s
are returned for upper- and lower-case characters, whereas the same keyCode is used in
both situations—for example, the value of VK_C will be returned by get KeyCode()
regardless of whether SHIFT is held down when the C key is pressed. Also note that there
is no keyChar associated with keys such as CTRL, and get KeyChar () will simply return
an empty char in this case.)

* KEY_RELEASED: This type of key event is generated whenever a keyboard key is released.
Other than this difference, KEY_RELEASED events are identical to KEY_PRESSED events;
however, as we will discuss below, they occur much less frequently.

* KEY_TYPED: This type of event is fired somewhere between a KEY_PRESSED and KEY_
RELEASED event. It never carries a keyCode property corresponding to the actual key
pressed, and 0 will be returned whenever get KeyCode() is called on an event of this type.
For keys with no Unicode representation (such as PAGE UP and PRINT SCREEN), no KEY_
TYPED event will be generated at all.

CHAPTER 2 SWING MECHANICS

2.13.2

JAVAL4 As of Java 1.4 there are several new I|nputEvent modifiers linked to
keyboard events: SHI FT_DOWN_MASK, CTRL_DOAN_MASK, META DOAN_MASK,
ALT_DOWN_MASK, ALT_GRAPH_DOWN_MASK. There are also two new APIs to re-
trieve the extended modifiers: get MbdifiersEx() and get Modifi er sEx-
Text (), making it possible to handle cases in which multiple keys are down
simultaneously.

Most keys with Unicode representations, when held down for longer than a few moments,
repeatedly generate KEY_PRESSED and KEY_TYPED events, in this order. The set of keys
that exhibit this behavior, and the rate at which they do so, cannot be controlled and is
platform-specific.

Each KeyEvent maintains a set of modifiers which specifies the state of the SHIFT, CTRL,
ALT, and META keys. This is an i nt value that is the result of the bitwise OR of | nput Event .
SHI FT_MASK, | nput Event . CTRL_MASK, | nput Event . ALT_MASK, and | nput Event . NETA_
MASK, depending on which keys are pressed at the time of the event. We can retrieve this value
with get Modi fi ers(), and we can query specifically whether any of these keys was pressed
at the time the event was fired using i sShi ft Down(), i sCont rol Down(), i SAl t Down(),
and i sMet aDown() .

KeyEvent also maintains the boolean act i onKey property which specifies whether the
invoking keyboard key corresponds to an action that should be performed by that app (t r ue)
versus data that is normally used for such things as addition to a text component’s document
content (f al se). We can use KeyEvent’s i sActi onKey() method to retrieve the value of
this property.

KeyStrokes

Using KeyLi st ener s to handle all keyboard input on a component-by-component basis was
required prior to Java 2. Because of this, a significant and often tedious amount of time was
spent planning and debugging keyboard operations. The Swing team recognized this, and
thankfully included functionality for key event interception regardless of which component
currently has the focus. This functionality is implemented by binding instances of the j avax.
swi ng. KeySt r oke class with instances of j avax. swi ng. Act i on (discussed next).

NOTE Registered keyboard actions are also commonly referred to as keyboard accelerators.

Each KeySt r oke instance encapsulates a KeyEvent keyCode, a nodi fi ers value (analo-
gous to that of KeyEvent), and a boolean property specifying whether it should be activated
on a key press (f al se, which is the default) or on a key release (t r ue). The Key St r oke class
provides five static methods for creating KeySt r oke objects. Note that all KeySt r okes are
cached, and it is not necessarily the case that these methods will return a brand-new instance.
(Actually KeyStroke provides six static methods for creating KeySt r okes, but get Key-
St roke(char keyChar, bool ean onKeyRel ease) has been deprecated.)

* get KeySt roke(char keyChar)

e get KeyStroke(int keyCode, i nt nodifiers)

e get KeyStroke(int keyCode, i nt nodi fiers, bool ean onKeyRel ease)
* getKeyStroke(Stringrepresentation)

* get KeyStroke(KeyEvent anEvent)

* get KeyStroke(Character Keychar, int nodifiers)

KEYBOARD INPUT 67

2.13.3

2.13.4

2.135

68

The last method will return a KeyStroke with properties corresponding to the given
KeyEvent’s attributes. The keyCode, keyChar, and nodi fi ers properties are taken from
the KeyEvent and the onKeyRel ease property is set to t rue if the event is of type KEY_
RELEASED; otherwise, it returns f al se.

Scopes

There are three scopes defined by JConponent used to determine the conditions under which
a KeySt r oke falls:

* JConponent . WHEN_FOCUSED: the corresponding Act i on will only be invoked if the
component this Key St r oke is associated with has the current focus.

* JConponent . WHEN_ANCESTOR_OF _FOCUSED_COMPONENT: the corresponding Act i on
will only be invoked if the component this KeySt r oke is associated with is the ancestor
of (i.e., it contains) the component with the current focus. Typically this is used to define
Act i ons associated with mnemonics.

* JConponent . WHEN_I N_FOCUSED_W NDOW the corresponding Act i on will be invoked
if the component this KeySt r oke is associated with is anywhere within the peer-level
window (i.e., JFr ame, JDi al og, JW ndow JAppl et , or any other heavyweight compo-
nent) that has the current focus.

Actions

interﬁzce Javax.swing.Action

An Action is an ActionListener implementation that encapsulates a Hasht abl e of
bound properties similar to JConponent ’s client properties. In the context of keyboard bind-
ings each KeySt r oke is associated with at most one Act i on (this relationship is not one-to-
one, however, as one Acti on can be associated with an arbitrary number of KeySt r okes).
When a key event is detected that matches a Key St r oke under a certain scope, the appropri-
ate Acti on is invoked. In chapter 12 we will work with Act i ons in detail; but it suffices to
say here that Act i ons are used for, among other things, handling all component key events in
Swing.

InputMaps and ActionMaps
Javax.swing. InputMap and javax.swing ActionMap

Before Java 1.3 there were two different mechanisms for mapping KeySt r okes to Act i ons.
For JText Conponent s the KeyMap class was used to store a list of Act i on/ Keyst r oke pairs.
For all other JConponent s a Hasht abl e was maintained by the component itself containing
KeySt roke/ Acti onLi st ener pairs.

In Java 1.3 these mechanisms were unified so that all components can be treated the same
with regard to keyboard bindings. To accomplish this two new classes have been added:
| nput Map and Act i onMap. Each component has one Act i onMap and three | nput Maps asso-
ciated with it (one I nput Map for each scope: WHEN_FOCUSED, WHEN_| N_FOCUSED_W NDOW
WHEN_ANCESTOR OF _FOCUSED_COVPONENT).

Each | nput Map associates a Key St r oke with an Obj ect (usually a St ri ng representing
the name of the corresponding action that should be invoked), and the Act i onMap associates

CHAPTER 2 SWING MECHANICS

2.13.6

an Obj ect (also usually a St ri ng representing the name of an action) with an Act i on. In this
way KeySt r okes are mapped to Act i ons based on the current scope.

Each component’s main Act i onMap and | nput Maps are created by its UI Delegate. For
most intents and purposes you will not need to directly access these maps because JConponent
provides methods to easily add and remove Keyst r okes and Act i ons. For example, to bind
the F1 key to the “HOVE” action in a JLi st you would write the following code:

myJLi st. get | nput Map() . put (
KeySt r oke. get KeyStroke(F1"), “HOWE");

To disable an existing key combination, for instance the “F1” key in the previous code, you
would write the following:

myJLi st. get | nput Map() . put (
KeySt r oke. get KeyStroke(F1"), “none”);

Similarly you can create an Act i on or override an existing Act i on as follows:

Action homeAction = new AbstractAction(“HOVE") {
public void actionPerformed() {
/| place custom event-handling code here

}
b
myLi st. get Acti onMap() . put(
honeAct i on. get (Acti on. NAME), honeAction);

Note that the get | nput Map() method used here with no parameters returns the | nput Map
associated with the WHEN_FOCUSED scope. To get the | nput Map corresponding to a different
scope you can use the get I nput Map() method which takes the scope as parameter: get -
I nput Map(int condition) where condition is one of JConmponent . WHEN_FOCUSED,
JConponent . WHEN_ANCESTOR OF_FOCUSED_COMPONENT, JComponent . WHEN_ | N_FOCUS-
ED_W NDOW

In the case of text components, the code will work the same. Under the hood there is an
I nput Map wrapped around the text component’s main KeyMap so that text components still
internally use KeyMaps while conforming to the new keyboard bindings infrastructure.

The flow of keyboard input

Each KeyEvent is first dispatched to the Keyboar dFocusManager (see 2.12). If the Key-
boar dFocusManager does not consume the event it is sent to the focused component.
The event is received in the component’s processKeyEvent () method. Note that this
method will only be invoked if KeyEvent s have been enabled (which is true whenever there is
an | nput Map in use and whenever KeyEvent s are enabled on the component using the
enabl eEvent s() method—true by default for most Swing components) or if there is a Key-
Li st ener registered with the component.

Next any registered KeyLi st ener s get a chance to handle the event. If it is not consumed
by a KeyListener then the event is sent to the component’s processConponent -
KeyEvent () method which allows for any JConponent subclasses to handle key events in spe-
cific ways (JConponent itself has an empty implementation of this method).

KEYBOARD INPUT 69

70

If the event has not been consumed the WHEN_FOCUSED | nput Map is consulted. If there
is a match the corresponding action is performed and the event is consumed. If not the con-
tainer hierarchy is traversed upward from the focused component to the focus cycle root where
the WHEN_ANCESTOR_OF FOCUSED_COVPONENT | nput Map is consulted. If the event is not
consumed there it is sent to Keyboar dManager, a package private service class (note that
unlike most service classes in Swing, Keyboar dManager does not register its shared instance
with AppCont ext, see section 2.5).

Keyboar dManager looks for components with registered KeyStrokes with the
WHEN_| N_FOCUSED_W NDOWcondition and sends the event to them. If none of these are found
then Keyboar dManager passes the event to any JMenuBar s in the current window and lets
their accelerators have a crack at it. If the event is still not handled a check is performed to
determine if the current focus resides in a J1 nt er nal Fr ame (because it is the only focus cycle
root that can be contained inside another lightweight Swing component). If this is the case,
the event is handed to the JI nt er nal Fr ane’s parent. This process continues until either the
event is consumed or the top-level window is reached.

CHAPTER 2 SWING MECHANICS

PART

The basics

Et IT consists of twelve chapters containing discussion and examples of the basic Swing
components.

Chapter 3 introduces frames, panels, and borders, including an example showing how to cre-
ate a custom rounded-edge border.

Chapter 4 is devoted to layout managers with a comparison of the most commonly used lay-
outs, a contributed section on the use of Gr i dBaglLayout , the construction of several custom lay-
outs, and the beginnings of a JavaBeans property editing environment with the ability to change
the layout manager dynamically.

Chapter 5 covers labels and buttons, and presents the construction of a custom transparent
polygonal button designed for use in applets, as well as a custom tooltip manager to provide prop-
er tooltip functionality for these polygonal buttons.

Chapter 6 is about using tabbed panes.

Chapter 7 discusses scroll panes and how to customize scrolling functionality. Examples
show how to use the row and column headers for tracking scroll position, how to change the speed
of scrolling through implementation of the Scr ol | abl e interface, how to implement grab-and-
drag scrolling, and how to programmatically invoke scrolling.

Chapter 8 takes a brief look at split panes with an example showing how to synchronize
two dividers.

Chapter 9 covers combo boxes with examples showing how to build custom combo box mod-
els and cell renderers, add functionlity to the default combo box editor, and serialize a combo box
model for later use.

Chapter 10 is about list boxes and spinners with examples of building a custom tab-based
cell renderer, adding keyboard search functionality for quick item selection, and constructing a
custom check box cell renderer.

Chapter 11 introduces the text components and undo/redo functionality with basic examples
and discussions of each (text package coverage continues in chapters 19 and 20).

Chapter 12 is devoted to menu bars, menus, menu items, toolbars and actions. Examples in-
clude the construction of a basic text editor with floatable toolbar, custom toolbar buttons, and
a custom color chooser menu item.

Chapter 13 discusses progress bars, sliders and scroll bars, including a custom scroll pane, a
slider-based date chooser, a JPEG image quality editor, and an FTP client application.

Chapter 14 covers dialogs, option panes, and file and color choosers. Examples demonstrate
the basics of custom dialog creation and the use of JOpt i onPane, as well as how to add a custom
component to JCol or Chooser , and how to customize JFi | eChooser to allow multiple file se-
lection and the addition of a custom component (a ZIP/JAR archive creation, extraction and pre-
view tool).

72 PART II

\ CHAPTER 3
“3

Frames, panels, and borders

3.1 Frames and panels overview 73
3.2 Borders 81
3.3 Creating a custom border 86

3.1 FRAMES AND PANELS OVERVIEW

Swing applications are built from basic framework components.

3.11 JFrame

class javax.swing. [Frame

The main container for a Swing-based application is JFr ane. All objects associated with a
JFrane are managed by its only child, an instance of JRoot Pane. JRoot Pane is a simple
container for several child panes. When we add components to a JFr ame, we don’t directly
add them to the JFrane as we did with an AWT Frame. Instead we have to specify into
exactly which pane of the JFr ame’s JRoot Pane we want the component to be placed. In most
cases components are added to the cont ent Pane by calling:

get Cont ent Pane() . add(myConponent) ;

Similarly, when setting a layout for a JFr ane’s contents, we usually just want to set the layout
for the cont ent Pane:

get Cont ent Pane() . set Layout (new Fl owLayout ());

73

74

Each JFrame contains a JRoot Pane, which is accessible though the get Root Pane()
method. Figure 3.1 illustrates the hierarchy of a JFr ame and its JRoot Pane. The lines in this
diagram extend downward representing the “has a” relationship of each container.

JFrame

JRootPane

T

glassPane layeredPane
(A gpanel by default) (A JLayeredPane)

Figure 3.1
contentpane menuBar The default JFr ane and
(A gPanel by default) (A null TmenuBar by defaul) ~ JRoOt Pane “has a” relationship

JRootPane

class javax.swing. JRootPane

Each JRoot Pane contains several components referred to here by variable name: gl assPane
(aJPanel by default), | ayer edPane (a JLayer edPane), cont ent Pane (a JPanel by default),
and nmenuBar (a JMenuBar).

NOTE gl assPane and cont ent Pane are just variable names used by JRoot Pane. They
are not unique Swing classes, as some explanations might lead you to believe.

glassPane

4 ‘layeredPane

Figure 3.2
[: gl assPane

The gl assPane is initialized as a non-opaque JPanel that sits on top of the JLayer edPane
as illustrated in figure 3.2. This component is very useful in situations where we need to inter-
cept mouse events to display a certain cursor over the whole frame or to redirect the current
application focus. The gl assPane can be any component, but it is a JPanel by default. To
change the gl assPane from a JPanel to another component, a call to the setd ass-
Pane() method must be made:

set @ assPane(myConponent);

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.1.3

Though the gl assPane does sit on top of the | ayer edPane, it is, by default, not visible. It
can be set visible (show itself) by calling:

get d assPane().set Visible(true);

The gl assPane allows you to display components in front of an existing JFr ane’s contents.

layeradPane
FRAME_CONTENT_LAYER

T JMenuBar
+ {optional)

contentPane

Figure 3.3

Default JFr ane contents
of the JLayer edPane
FRAME_CONTENT_LAYER

The cont ent Pane and optional menuBar are contained within JRoot Pane’s | ayer edPane
at the FRAME_CONTENT_LAVYER (this is layer —30000; see chapter 15). The menuBar does not
exist by default, but it can be set by calling the set IMenuBar () method:

JMenuBar nenu = new JMenuBar ();
set JIMenuBar (nmenu) ;

When the JMenuBar is set, it is automatically positioned at the top of the FRAME_CONTENT
_LAYER. The rest of the layer is occupied by the cont ent Pane as illustrated in figure 3.3.

The cont ent Pane is, by default, an opaque JPanel . It can be set to any other compo-
nent by calling:

set Cont ent Pane(myConponent) ;

NOTE The default layout for the cont ent Pane is Bor der Layout . The default layout for
any other JPanel is Fl owLayout . Be careful not to set the layout of a JFrame
directly. This will generate an exception. You should also avoid setting the layout
of the r oot Pane, because every JRoot Pane uses its own custom layout manager
called Root Layout . We will discuss layout managers further in chapter 4.

RootLayout

class javax.swing. JRootPane. RootLayout

Root Layout is a layout manager built specifically to manage JRoot Pane’s | ayer edPane,
gl assPane, and nenuBar. If it is replaced by another layout manager, that manager must be
able to handle the positioning of these components. Root Layout is an inner class defined
within JRoot Pane and as such, it is not intended to have any use outside of this class. Thus it
is not discussed in this text.

FRAMES AND PANELS OVERVIEW 75

3.1.4

76

The RootPaneContainer interface

abstract interface javax.swing. RootPaneContainer

The purpose of the Root PaneCont ai ner interface is to organize a group of methods that should
be used to access a container’s JRoot Pane and its different panes (refer to the API docs for more
information). Because JFr ane’s main container is a JRoot Pane, it implements this interface (as
do also JAppl et, JI nt er nal Frame, JDi al og, and JW ndow). If we were to build a new
component which uses a JRoot Pane as its main container, we would most likely implement
the Root PaneCont ai ner interface. (Note that this interface exists for convenience, consis-
tency, and organizational purposes. We are encouraged, but certainly not required, to use it in
our own container implementations.)

The WindowConstants interface

abstract interface javax.swing. Window Constants

We can specify how a JFr ane, JI nt er nal Fr ame, or JDi al og act in response to a close using
the set Def aul t Ol oseQper at i on() method. There are four possible settings, as defined by
W ndowConst ant s interface fields:

W ndowConst ant s. DI SPOSE_ON_CLGCSE

W ndowConst ant s. DO_NOTHI NG_ON_CLOSE
W ndowConst ant s. H DE_ON_CLCSE

W ndowConst ants. EXI T_ON_CLOSE

The names are self-explanatory. DI SPOSE_ON_CLOSE disposes of the container and its con-
tents, DO_NOTHI NG_ON_CLOSE causes the window frame’s Close button to not automatically
do anything when pressed, and H DE_ON_CLOSE removes the container from view.
HI DE_ON_CLOSE may be useful if we need the container, or something it contains, at a later
time but do not want it to be visible until then. DO_NOTH NG_ON_CLOSE can be very useful, as
you will see below. EXI T_ON_CLOSE will close the frame and terminate program execution
(we use this close operation in all of the example applications throughout the book).

The Windowlistener interface

abstract interface java.awt.event. WindowListener

Classes that want explicit notification of window events (such as window closing or iconifica-
tion) need to implement this interface. Normally, the W ndowAdapt er class is extended instead.
“When the window’s status changes by virtue of being opened, closed, activated or deacti-
vated, iconified or deiconified, the relevant method in the listener object is invoked, and the
W ndowEvent is passed to it.” (APl documentation)

The methods any implementation of this interface must define are these:

¢ void windowActivated(WindowEvent e)

¢ void windowClosed(WindowEvent e)

¢ void windowClosing(WindowEvent)

¢ void windowDeactivated(WindowEvent e)
¢ void windowDeiconified(WindowEvent e)

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.1.7

3.1.8

¢ void windowlconified(WindowEvent e)
* void windowOpened(WindowEvent e)

WindowEvent

class java.awt.event. WindowEvent

This is the type of event used to indicate that a window has changed state. This event is passed
to every W ndowLi st ener or W ndowAdapt er object which is registered on the source win-
dow to receive such events. The method get W ndow() returns the window that generated the
event. The method paranBt ri ng() retrieves a St ri ng describing the event type and its source,
among other things.

Six types of W ndowEvent s can be generated; each is represented by the following static
W ndowEvent fields: W NDOW ACTI VATED, W NDOW CLOSED, W NDOW CLOSI NG, W NDOW.
DEACTI VATED, W NDOW DEI CONI FI ED, W NDOW | CONI FI ED, and W NDOW OPENED.

WindowAdapter

abstract class java.awt.event. WindowAdapter

This is an abstract implementation of the W ndowLi st ener interface. It is normally more
convenient to extend this class than to implement W ndowLi st ener directly, as it is likely
that most W ndowEvent handlers will not care about all seven event types.

A useful idea for real-world applications is to combine W ndowAdapt er , values from the
W ndowConst ant s interface, and JOpt i onPane, to present the user with an exit confirma-
tion dialog as follows:

nmyJFrane. set Def aul t Cl oseOper ati on(
W ndowConst ant s. DO_NOTH NG_ON_CLOSE) ;
W ndowLi stener | = new W ndowAdapter () {
public void wi ndowd osi ng(W ndowEvent e) {
int confirm= JOptionPane. showOpti onDi al og(nyJFr ane,
"Real ly Exit?", "Exit Confirmation",
JOpt i onPane. YES_NO_OPTI ON,
JOpt i onPane. QUESTI ON_MESSAGE,
null, null, null);
if (confirm== 0) {
nmyJFr ane. di spose();
System exit(0);
}
}
b
nmyJFr ane. addW ndowLi st ener (1) ;

NOTE This can also be done for JDi al og.

Inserting this code into your application will always display the dialog shown in figure 3.4
when the JFr ane Close button is clicked.

REFERENCE Dialogs and JOpt i onPane are discussed in chapter 14.

FRAMES AND PANELS OVERVIEW 77

3.1.10

78

[=% Exit Confirmation E3

Really Exit?

Fi 3.
M Algl;rpli:ation exit

confirmation dialog

Custom frame icons

We might want to use a custom icon to replace the default coffee cup icon. Because JFr ane is a
subclass of j ava. awt . Fr ane, we can set its icon using the set | conl mage() method.

Brand identity Use the frame icon to establish and reinforce your brand iden-
tity. Pick a simple image which can be both effective in the small space and re-
used throughout the application and any accompanying material. Figure 3.4
shows the Sun Coffee Cup which was used as a brand mark for Java.

| magel con i nage = new | nagel con("spiral.gif");

nyFrane. set | conl mage(i mage. get | nage());
There is no limit to the size of the icon that can be used. A JFr ame will resize any image
passed to set | conl mage() to fit the bound it needs. Figure 3.5 shows the top of a JFr ame
with a custom icon.

a# Custom MDI: Part | Figure 3.5

JFr ane custom icon

Centering a frame on the screen

By default, a JFr ane displays itself in the upper left-hand corner of the screen, but we often
want to place it in the center of the screen. Using the get Tool ki t () method of the W ndow
class (of which JFrane is a second-level subclass), we can communicate with the operating
system and query the size of the screen. (The Tool kit methods make up the bridge between
Java components and their native, operating-system-specific, peer components.)

The get Scr eenSi ze() method gives us the information we need:

Di mensi on di m = get Tool ki t (). get ScreenSi ze();

0,0 :
N0;0) 4 7aang ISRARD
+x
PO
Figure 3.6
| A Screen coordinates

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.1.1

3.1.12

When setting the location of the JFr ane, the upper left-hand corner of the frame is the rele-
vant coordinate. So to center a JFr ame on the screen, we need to subtract half its width and
half its height from the center-of-screen coordinate:

nyJFrane. set Location(di mw dth/2 - nyJFrane.getWdth()/2,
di m hei ght/2 - nyJFrane. getHei ght()/2);

Figure 3.6 illustrates how the screen coordinates work.

Headless frames and extended frame states

New to Java 1.4 are features that provide us with the ability to create frames without title bars
and programmatically maximize, both of which were not possible in previous versions of Java.

To create an AWT Fr ane or a Swing JFr ane without a title bar, once you have instan-
tiated the frame call set Undecor at ed(f al se) on it. Note that once you make a frame visible
you can no longer change the decor at ed setting (an | | | egal Conponent St at eExcept i on
will be thrown if you try). Make sure to use the set Undecor at ed() method only when a
frame is not visible.

To programmatically maximize a frame you can use the set Ext endedSt at e() method.
This method takes a bit mask of states. The available states are:

Fr ame. NORMAL: Non—iconified, non—-maximized state

Frame. | CONI FI ED: Iconified state

Frame. MAXI M ZED_HORI Z: maximized horizontally

Frame. MAXI M ZED_VERT: maximized vertically

Frame. MAZI M ZED_BOTH: Maximized both horizontally and vertically

Normally you will only need to use one of the above states at any given time. However, if you
want to do something like iconify a frame while keeping it maximized in the vertical direction
only, you can combine the flags as follows:

nmyFr ane. set Ext endedSt at e(
Frame. | CONl FI ED | Franme. MAXI M ZED VERT) ;

To clear all bits you can use the Fr ame. NORVAL flag by itself.

Look and feel window decorations

New to Java 1.4 is the ability to create JFranes and JDi al ogs with window decorations
(i.e., title bar, icons, borders, etc.) in the style of the currently installed look and feel. To
enable this for all JFr ames and JDi al ogs we use the following new static methods:

JFr ane. set Def aul t LookAndFeel Decor at ed(true);
JDi al og. set Def aul t LookAndFeel Decor at ed(true);

After these methods are called all newly instantiated JFr ames and JDi al ogs will have frame
decorations in the style of the current look and feel. All those existing before the methods
were called will not be affected.

To enable this on a single JFr ane or JDi al og instance we can do the following;

nyJFrame. set Undecor at ed(true);
nmyJFr ame. get Root Pane() . set W ndowDecor ati onSt yl e(JRoot Pane. FRAME) ;

FRAMES AND PANELS OVERVIEW 79

3.1.13

3.1.14

3.1.15

80

Defaultl ookAndFeelDecorated test :

Figure 3.7

A JFr ane created with
def aul t LookAndFeel -
Decor at ed set to true

Figure 3.7 shows an empty JFrane created with def aul t LookAndFeel Decor at ed set to
true (looks jut like a JI nt er nal Frane).

JApplet

class javax.swing. [Applet

JApp! et is the Swing equivalent of the AWT Appl et class. Like JFrane, JAppl et’s main
child component is a JRoot Pane and its structure is the same. JAppl et acts just like Appl et
so we won't go into detail about how applets work.

REFERENCE We suggest that readers unfamiliar with applets refer to the Java tutorial to learn
more: htep://java.sun.com/docs/books/tutorial/.

Several examples in later chapters are constructed as Swing applets, so we will see JAppl et in
action soon enough.

JWindow

class javax.swing. JWindow

JW ndow is very similar to JFr ame except that it has no title bar and it is not resizable, mini-
mizable, maximizable, or closable. Thus it cannot be dragged without writing custom code to
do so in the same way that JTool Bar’s UI delegate provides this functionality for docking
and undocking (see chapter 12). We normally use JW ndow to display a temporary message or
splash screen logo. Since JW ndow is a Root PaneCont ai ner, we can treat it just like JFr ane
or JAppl et when manipulating its contents.

JPanel

class javax.swing. [Panel

This is the simple container component commonly used to organize a group or groups of
child components. JPanel is an integral part of JRoot Pane, as we discussed, and it is used
in each example throughout this book. Each JPanel ’s child components are managed by a
layout manager. A layout manager controls the size and location of each child in a container.
JPanel ’s default layout manager is Fl owLayout (we will discuss this further in chapter 4).
The only exception to this is JRoot Pane’s content Pane, which is managed by a
Bor der Layout by default.

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.2 BORDERS

package javax.swing. border

The bor der package provides us with the following border classes; they can be applied to any
Swing component.

Bevel Bor der
A 3-D border with a raised or lowered appearance.

ConmpoundBor der
A combination of two borders: an inside border and an outside border.

Enpt yBor der
A transparent border used to define empty space (often referred to as white space)
around a component.

Et chedBor der
A border with an etched line appearance.

Li neBor der
A flat border with a specified thickness and color. As of Java 1.3 there is an addi-
tional LineBorder constructor allowing you to specify whether or not the
Li neBor der’s corners should be slightly rounded.

Mat t eBor der
A border consisting of either a flat color or a tiled image.

Sof t Bevel Bor der
A 3-D border with a raised or lowered appearance, and slightly rounded edges.

Ti t| edBor der
A border which allows a St ri ng title in a specific location and position. We can set
the title font, color, and justification, and the position of the title text using Ti t | e-
Bor der methods and constants where necessary (refer to the API docs).

E;’, Border Test !]EI
RAISED BevelBorder LOWERED BevelBorder
Black LineBorder, thickness = 4 EmptyBorder with thickness of 10
RAISED EtchedBorder LOWERED EtchedBorder
RAISED SoftBevelBorder LOWERED SoftBevelBorder
PIDPDIPDDDDIDIDID DD myitie String
= MatteBorder 3
@ @ TitledBorder using LineBorder
DD DIIDIDDDDIDDDD
Title String CompoundBorder Figure 3.8
TitledBorder using EmptyBorder A simple borders
demonstration

BORDERS 81

82

To set the border of a Swing component, we simply call JConponent’s set Bor der ()
method. There is also a convenience class called Border Factory, contained in the
j avax. swi ng package (not the j avax. swi ng. bor der package as you might think), which
contains a group of static methods used for constructing borders quickly. For example, to cre-
ate an Et chedBor der, we can use Bor der Fact or y as follows:

nmy Conponent . set Bor der (Bor der Fact ory. cr eat eEt chedBor der ());

The border classes do not provide methods for setting preferences such as dimensions and col-
ors. Instead of modifying an existing border, we are normally expected to create a new
instance to replace the old one.

Example 3.1 creates a JFr ane containing twelve JPanel s using borders of all types. The
output is shown in figure 3.7.

Example 3.1

BorderTest.java

see \Chapter3\1

import java.awt.*;
i mport javax.sw ng. *;
i mport javax.sw ng. border.*;

cl ass Border Test extends JFrane {

public BorderTest() {
setTitl e("Border Test");
set Si ze(455, 450);

JPanel content = (JPanel) get ContentPane();
content. set Layout (new GidLayout (6, 2, 5, 5));

JPanel p = new JPanel ();

p. set Bor der (new Bevel Border (Bevel Border. RAI SED));
p. add(new JLabel (" RAI SED Bevel Border"));

content. add(p);

p = new JPanel ();

p. set Bor der (new Bevel Bor der (Bevel Border. LONERED)) ;
p. add(new JLabel (" LONERED Bevel Border"));

content. add(p);

p = new JPanel ();

p. set Border (new Li neBorder (Col or.black, 4, true));
p. add(new JLabel ("Bl ack Li neBorder, thickness = 4"));
content. add(p);

p = new JPanel ();

p. set Bor der (new Enpt yBorder (10, 10, 10, 10));

p. add(new JLabel ("EnptyBorder with thickness of 10"));
content. add(p);

p = new JPanel ();
p. set Bor der (new Et chedBor der (EtchedBorder. RAI SED));
p. add(new JLabel (" RAI SED Et chedBorder"));

CHAPTER 3 FRAMES, PANELS, AND BORDERS

content.add(p);

p = new JPanel ();

p. set Bor der (new Et chedBor der (EtchedBorder. LONERED));
p. add(new JLabel (" LONERED Et chedBorder"));

content . add(p);

p = new JPanel ();

p. set Bor der (new Sof t Bevel Border (Soft Bevel Border. RAI SED));
p. add(new JLabel (" RAlI SED Sof t Bevel Border"));

content . add(p);

p = new JPanel ();

p. set Bor der (new Sof t Bevel Bor der (Sof t Bevel Bor der. LOAERED)) ;
p. add(new JLabel ("LONERED Sof t Bevel Border"));

content. add(p);

p = new JPanel ();

p. set Border (new MatteBorder (new |Inmagelcon("ball.gif")));
p. add(new JLabel (" MatteBorder"));

content. add(p);

p = new JPanel ();
p. set Border (new Titl edBorder (
new Li neBorder (Color.black, 5),
"Title String"));
p. add(new JLabel ("Tit| edBorder using LineBorder"));
content. add(p);

p = new JPanel ();
p. set Border (new Titl edBorder (
new EnptyBorder (Col or.black, 5),
"Title String"));
p. add(new JLabel ("Titl edBorder using LineBorder"));
content.add(p);

Col or c¢1 = new col or (86, 86, 86);

Col or c2 new Col or (192, 192, 192); (

Col or c¢3 = new col or (204, 204, 204);

Border bl = new Bevel Bor der (Et chedBor der. RAI SED, c¢3, cl);
Border b2 = new MatteBroder(3,3,3,3,c2);

Border b3 = new Bevel Border (EtchedBorder.LOMNERED, c3, cl);

p = new JPanel ();
P. set Bor der (new ConmpoundBor der (new ConpoundBor der (b1, b2), b3));
p. add(new JLabel (" ConmpoundBor der"));
content. add(p);
}

public static void main(String args[]) {
Bor der Test franme = new BorderTest();
frane. set Def aul t O oseQperati on(JFrane. EXI T_ON_CLOSE) ;
frame. setVisible(true);
}
}

BORDERS

84

Borders for visual layering Use borders to create a visual association between
components in a view. Beveled borders are graphically very striking and can be
used to strongly associate items. The Windows look and feel does this. For exam-
ple, buttons use a raised Bevel Bor der and data fields use a lowered Bevel -
Bor der . If you want to visually associate components or draw attention to a
component, then you can create a visual layer by careful use of Bevel Bor der .
If you want to draw attention to a particular button or group of buttons, you
might consider thickening the RAISED bevel using Bor der | nset s as discussed
in section 3.2.1

Borders for visual grouping Use borders to create group boxes. Et ched-
Bor der and Li neBor der are particularly effective for this, as they are graph-
ically weaker then Bevel Bor der . Enpt yBor der is also very useful for grouping.
It uses the power of negative (white) space to visually associate the contained
components and draw the viewer’s eye to the group.

You may wish to create a visual grouping of attributes or simply signify the
bounds of a set of choices. Grouping related radio buttons and check boxes is
particularly useful.

Achieving visual integration and balance using negative space Use a com-
pound border including an Enpt yBor der to increase the negative (white)
space around a component or panel. Visually, a border sets what is known as a
ground (or area) for a figure. The figure is what is contained within the border.
It is important to keep the figure and the ground in balance by providing ad-
equate white space around the figure. The stronger the border, the more white
space will be required; for example, a Bevel Bor der will require more white
space than an Et chedBor der .

Border for visual grouping with layering Doubly compounded borders can
be used to group information and communicate hierarchy using visual layering.
Consider the following implementation which is shown in figure 3.8. Here we
are indicating a common container for the attributes within the border. They
are both attributes of Customer. Because we have indicated the label Customer
(top left-hand side of the box) in the border title, we do not need to repeat the
label for each field. We are further communicating the type of the Customer

with the VIP label (bottom right-hand side of the box).
Visual layering of the hierachy involved is achieved by position and font.

* DPosition: In western cultures, the eye is trained to scan from top left to bot-
tom right. Thus, something located top left has a visual higher rank than
something located bottom right.

* Font: By bolding the term Customer, we are clearly communicating it as the
highest ranking detail.

What we are displaying is a Customer of type VIP, not a VIP of type Cus-
tomer. The positioning and heavier font reinforcement clearly communicate
this message.

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.2.1

BORDERS

k= =10] x|

Customer
Name | |

Account Number | |
Figure 3.9
Visual grouping

YIP 3 .
with layering

Inside borders

It is important to understand that borders are not components. In fact, Abst r act Bor der,
the abstract class all border classes are derived from, directly extends Obj ect . Therefore, we
cannot attach action and mouse listeners to borders, set tooltips, etc.

NOTE The fact that borders are not components has certain side effects, one of which is
that borders are much less efficient in painting themselves. There is no optimiza-
tion support like there is in JConponent . We can do interesting things like using
a very thick Mat t eBor der to tile a panel with an image, but this is an inefficient
and unreliable solution. In general, don’t use really large borders for anything. If
you need an extremely large border, consider simulating one using JLabel s and a
container managed by Bor der Layout .

One major benefit of Bor der s not being components is that we can use a single Bor der
instance with an arbitrary number of components. In large-scale applications, this can reduce
a significant amount of overhead.

When a Swing component is assigned a border, its | nset s are defined by that border’s
width and height settings. When layout managers lay out JConponent s, as we will see in the next
chapter, they take into account their I nset s; they normally use JConponent ’s get | nset s()
method to obtain this information. Inside the get | nset s() method, the current border is
asked to provide its | nset s using the get Bor der I nset s() method.

The I nset s class consists of four publicly accessible i nt values: bottom I eft, ri ght,
and t op. Ti t| edBor der must compute its | nset s based on its current font and text position
since these variables could potentially affect the size of any of the I nset s values. In the case
of ConpoundBor der , both its outer and inner I nset s are retrieved through calls to get Bor -
der I nsets(), and then they are added up. A Mat t eBor der ’s | nset s are determined by the
width and height of its image. Bevel Bor der and Et chedBor der have I nset s values: 2, 2,
2, 2. Sof t Bevel Bor der has| nset s values: 3, 3, 3, 3. Enpt yBor der ’s | nset s are simply the
values that were passed in to the constructor. Each of Li neBor der’s | nset s values equal the
thickness that was specified in the constructor (or 1 as the default).

Bor der s get painted late in the JConmponent rendering pipeline to ensure that they
always appear on top of each associated component. Abst r act Bor der defines several get -
I nteriorRectangl e() methods to geta Rect angl e representing the interior region of the
component a border is attached to: get | nt eri or Rect angl e() . Any JConponent subclass
implementing its own painting methods may be interested in this area. Combined with the
G aphi cs clipping area, components may use this information to minimize their rendering
work (refer back to chapter 2 for more information).

85

3.3

86

CREATING A CUSTOM BORDER

To create a custom border, we can implement the j avax. swi ng. Bor der interface and define
the following three methods:

* voi d pai nt Bor der (Conponent ¢, G aphi cs g) : Performs the border rendering; only
paint within the | nset s region.

* Insets getBorderlnsets(Conponent c): Returns an | nset s instance representing
the top, bottom, left, and right thicknesses.

* bool ean i sBor der Opaque() : Returns whether or not the border is opaque or transparent.

The following class, shown in example 3.2, is a simple implementation of a custom rounded-
rectangle border which we call Oval Bor der.

E Custom Border: DvalBorder H=] E3

OvalBorder
Figure 3.10
A custom rounded-corner
border implementation
Example 3.2
OvalBorder.java
see \Chapter3\2

import java.awt.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border. *;

public class Oval Border inplenments Border
{
protected int mw=6;
protected i nt m h=6;
protected Col or mtopCol or = Col or. white;
protected Col or m bottonmCol or = Col or. gray;

public Oval Border() {
m W=6;
m_h=6;

}

public Oval Border(int w, int h) {
m W=w,
m_h=h;

}

CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.3.1

public Oval Border(int w, int h, Color topColor,
Col or bottontCol or) {
m wW=w,
m_h=h;
m_t opCol or = topCol or;
m _bot t onmCol or = bott ontCol or;

}

public I nsets getBorderlnsets(Conponent c) {
return new Insets(mh, mw, mh, mw;

}

public bool ean i sBorder Opaque() { return true; }

public voi d paintBorder(Component ¢, G aphics g,
int x, int y, int w int h) {

W -

h--;

}

«

Q@ Q QQ Q Qe

.set Col or (m_t opCol or);

.drawLi ne(x, y+h-mh, x, y+mh);

.drawArc(x, y, 2*mw, 2*mh, 180, -90);
drawki ne(x+mw, y, xtwmw, y);
drawArc(x+w2*mw, y, 2*mw, 2*mh, 90, -90);

. set Col or (m_bot t onCol or) ;

.drawLi ne(x+w, y+mh, x+w, y+h-mh);
.drawArc(x+w2*mw, y+h-2*mh, 2*mw, 2*mh, 0, -90);
.drawLi ne(x+mw, y+h, x+wmw, y+h);

.drawArc(x, y+h-2*mh, 2*mw, 2*mh, -90, -90);

public static void main(String[] args) {

JFrame franme = new JFrane("Custom Border: Oval Border");

JLabel |abel = new JLabel ("COval Border");

((JPanel) frame. get Content Pane()). set Border (new ConpoundBor der (

new EnptyBorder (10, 10, 10, 10), new Oval Bor der (10, 10)));

frame. get Cont ent Pane() . add(I abel) ;

frame. set Bounds(0, 0, 300, 150) ;

frane. set Def aul t O oseQperati on(JFrane. EXI T_ON_CLOSE) ;
frame. set Visible(true);

Understanding the code

This border consists of a raised shadowed rectangle with rounded corners. Instance variables:

Table 3.1 OvalBorder.java instance variables

Variables Description

int mw Left and right inset value.
int mh Top and bottom inset value.
Col or m_t opCol or Non-shadow color.

Col or m bottonCol or Shadow color.

CREATING A CUSTOM BORDER 87

3.3.2

88

Three constructors are provided to allow optional specification of the width and height of the
left/right and top/bottom inset values respectively. We can also specify the shadow color (bot-
tom color) and non-shadow color (top color). The inset values default to 6, the top color
defaults to white, and the shadow color defaults to gray.

Thei sBor der Opaque() method always returnst r ue to signify that this border’s region
will be completely filled. get Bor der | nset s() simply returns an | nset s instance made up
of the left/right and top/bottom inset values.

The pai nt Border () method is responsible for rendering our border, and it simply
paints a sequence of four lines and arcs in the appropriate colors. By reversing the use of
bot t onCol or and t opCol or, we can switch from a raised look to a lowered look (a more
flexible implementation might include a raised/lowered flag and an additional constructor
parameter used to specify this).

The mai n() method creates a JFrame with a content pane surrounded by a Conpound-
Bor der . The outer border is an Enpt yBor der to provide white space, and the inner border
is an instance of our Oval Bor der class with width and height values of 10.

Running the code

Figure 3.9 illustrates the output of example 3.2. Try running this class and resizing the
parent frame. Notice that with a very small width or height, the border does not render
itself perfectly. A more professional implementation will take this into account in the
pai nt Bor der () routine.

CHAPTER 3 FRAMES, PANELS, AND BORDERS

4.1

\ CHAPTEHR a4
%\'-.

Ldyout managers

4.1 Layouts overview 89 4.5 Custom layout manager, part I:
4.2 Comparing common layout label/field pairs 117

managers 94 4.6 Custom layout manager, part II:
4.3 Using GridBaglayout 98 common interfaces 128
4.4 Choosing the right layout 114 4.7 Dynamic layout in a JavaBeans

container 140

LAYOUTS OVERVIEW

In this chapter, we'll present several examples that show how to use various layouts to satisfy
specific goals, and we'll also show how to create two custom layout managers that simplify the
construction of many common interfaces. You'll also learn how to construct a basic container
for JavaBeans which must be able to manage a dynamic number of components. But before
we present these examples, it will help you to understand the big picture of layouts, which
classes use their own custom layouts, and exactly what it means to be a layout manager.

All layout managers implement one of two interfaces defined in the j ava. awt package:
Layout Manager or its subclass, Layout Manager 2. Layout Manager declares a set of methods
that are intended to provide a straightforward, organized means of managing component
positions and sizes in a container. Each implementation of Layout Manager defines these
methods in different ways according to its specific needs. Layout Manager 2 enhances this by
adding methods intended to aid in managing component positions and sizes using constraints-
based objects. Constraints-based objects usually store position and sizing information about
one component, and implementations of Layout Manager 2 normally store one constraints-
based object per component. For instance, Gri dBagLayout uses a Hasht abl e to map each
Conponent it manages to its own Gri dBagConst r ai nt s object.

89

4.1.1

90

Figure 4.1 shows all the classes that implement Layout Manager and Layout Manager 2.
Notice that there are several Ul classes that implement these interfaces to provide custom lay-
out functionality for themselves. The other classes—the classes with which we are most familiar
and concerned—are built solely to provide help in laying out the containers they are assigned to.

Each container should be assigned one layout manager, and no layout manager should
be used to manage more than one container.

LayoutManager — Extends
>GridLayout — Implements
>FlowLayout
—>ViewportLayout

*ScrollPaneLayout

JSpinner.DefaultEditor
>BasicOptionPaneUI.ButtonAreaLayout
*BasicTabbedPaneUI.TabbedPaneLayout
BasicSplitPaneDivider.DividerLayout
*BasicInternalFrameTitlePane.TitlePaneLayout
»BasicScrollBarUI
>BasicComboBoxUI.ComboBoxLayoutManager
—BasicInternalFrameUI.InternalFrameLayout

—>LayoutManager2
CardLayout
GridBagLayout
BorderLayout -
BoxLayout Figure 4.1
JRootPane.RootLayout Layout l\/anager
OverlayLayout]] and Layout Manager 2
Bas%cSplltPaneUI.Bas1cHor1zontalLayoutManager in1p|en1entations
SpringLayout
NOTE We have purposely omitted the discussion of several layout managers in this chapter

(such as Vi ewport Layout, Scrol | PaneLayout, and JRoot Pane. Root Pane-
Layout) because they are rarely used by developers and are more appropriately dis-
cussed in terms of the components that rely on them. For instance, we discuss
Vi ewpor t Layout and Scr ol | PaneLayout in chapter 7.

LayoutManager

abstract interface java.awt. LayoutManager
This interface must be implemented by any layout manager. Two methods are especially note-
worthy:
e | ayout Cont ai ner (Cont ai ner parent) : Calculates and sets the bounds for all com-
ponents in the given container.
* preferredLayout Si ze(Cont ai ner parent): Calculates the preferred size require-
ments to lay out components in the given container and returns a Di mensi on instance
representing this size.

LayoutManager2

abstract interface java.awt. LayourManager2

This interface extends Layout Manager to provide a framework for those layout managers that
use constraints-based layouts. The method addLayout Conponent (Conponent conp, Cbj ect

CHAPTER 4 LAYOUT MANAGERS

413

4.1.4

415

constraints) adds a new component associated with a constraints-based object which car-
ries information about how to lay out this component.

A typical implementation is Bor der Layout , which requires a direction (such as north or
east) to position a component. In this case, the constraint objects used are static St ri ngs such
as Bor der Layout . NORTH and Bor der Layout . EAST. We are normally blind to the fact that
Bor der Layout is constraints-based because we are never required to manipulate the con-
straint objects at all. This is not the case with layouts such as Gri dBagLayout , where we must
work directly with the constraint objects (which are instances of Gri dBagConstr ai nt s).

BoxLayout

class javax.swing. BoxLayout

BoxLayout organizes the components it manages along either the x-axis or y-axis of the
owner panel. The only constructor, BoxLayout (Cont ai ner target, i nt axis), takes a
reference to the Cont ai ner component it will manage and a direction (BoxLayout . X_AXI S
or BoxLayout . Y_AXI S). Components are laid out according to their preferred sizes and they
are not wrapped, even if the container does not provide enough space.

Box

class javax.swing. Box

To make using the BoxLayout manager easier, Swing also provides a class named Box which
is a container with an automatically assigned BoxLayout manager. To create an instance of
this container, we simply pass the desired alignment to its constructor. The Box class also sup-
ports the insertion of invisible blocks (instances of Box. Fi | | er —see below) which allow
regions of unused space to be specified. These blocks are basically lightweight components
with bounds (position and size) but no view.

Filler

static class javax.swing. Box. Filler

This static inner class defines invisible components that affect a container’s layout. The Box
class provides convenient static methods for the creation of three different variations: glue,
struts, and rigid areas.

e createHorizontal G ue(),createVertical G ue(): Returns a component which fills
the space between its neighboring components, pushing them aside to occupy all avail-
able space (this functionality is more analogous to a spring than it is to glue).

* createHorizontal Strut(int width),createVertical Strut(int height):Returns
a fixed-width (height) component which provides a fixed gap between its neighbors.

e createRigi dArea(Di mension d): Returns an invisible component of fixed width
and height.

NOTE All relevant Box methods are static and, as such, they can be applied to any con-
tainer managed by a BoxLayout , not just instances of Box. Box should be thought
of as a utilities class as much as it is a container.

LAYOUTS OVERVIEW 91

92

FlowLayout

class java.awt. FlowLayout

This is a simple layout which places components from left to right in a row using the preferred
component sizes (the size returned by get Pref erredSi ze()), untl no space in the con-
tainer is available. When no space is available a new row is started. Because this placement
depends on the current size of the container, we cannot always guarantee in advance in which
row a component will be placed.

Fl owLayout is too simple to rely on in serious applications where we want to be sure,
for instance, that a set of buttons will reside at the bottom of a dialog and not on its right side.
However, it can be useful as a pad for a single component to ensure that this component will
be placed in the center of a container. Note that Fl owLayout is the default layout for all JPan-
el s (the only exception is the content pane of a JRoot Pane which is always initialized with
a Bor der Layout).

GridLayout

class java.awt. GridLayout

This layout places components in a rectangular grid. There are three constructors:

* GidLayout(): Creates a layout with one column per component. Only one row is
used.

* GridLayout(int rows,int cols): Creates a layout with the given number of rows
and columns.

* GidLayout (int rows,int cols,int hgap,int vgap): Creates a layout with the
given number of rows and columns, and the given size of horizontal and vertical gaps
between each row and column.

GridLayout places components from left to right and from top to bottom, assigning the
same size to each. It forces the occupation of all available container space and it shares this
space evenly between components. When it is not used carefully, this can lead to undesirable
component sizing, such as text boxes three times higher than expected.

GridBaglLayout
class java.awt. GridBagLayout, class java.awt. GridBagConstraints

This layout extends the capabilities of Gri dLayout to become constraints-based. It breaks
the container’s space into equal rectangular pieces (like bricks in a wall) and places each
component in one or more of these pieces. You need to create and fill a Gri dBagCon-
strai nts object for each component to inform Gri dBagLayout how to place and size that
component.

GridBagLayout can be effectively used for placement of components if no special
behavior is required on resizing. However, due to its complexity, it usually requires some
helper methods or classes to handle all the necessary constraints information. James Tan, a
usability expert and Gri dBaglLayout extraordinaire, gives a comprehensive overview of this
manager in section 4.3. He also presents a helper class to ease the burden of dealing with
GridBagConstraints.

CHAPTER 4 LAYOUT MANAGERS

4.1.9

4.1.10

4.1.1

BorderLayout

class java.awt. BorderLayout

This layout divides a container into five regions: center, north, south, east, and west. To
specify the region in which to place a component, we use St rings of the form “Center,”
“North,” and so on, or the static St ri ng fields defined in Bor der Layout , which include
Bor der Layout . CENTER, Bor der Layout . NORTH, etc. During the layout process, compo-
nents in the north and south regions will first be allotted their preferred height (if possible)
and the width of the container. Once north and south components have been assigned sizes,
components in the east and west regions will attempt to occupy their preferred width as well
as any remaining height between the north and south components. A component in the cen-
ter region will occupy all remaining available space. Bor der Layout is very useful, especially
in conjunction with other layouts, as we will see in this and future chapters.

CardLayout

class java.awt. CardLayout

Car dLayout treats all components as similar to cards of equal size overlapping one another.
Only one card component is visible at any given time (see figure 4.2). The methods first (),
I ast (), next (), previous(),and show() can be called to switch between components in
the parent Cont ai ner.

Visible component

Hidden b
components

Figure 4.2
Car dLayout

In a stack of several cards, only the top—most card is visible.

SpringlLayout
class Javax.swing.SpringLayout

This layout, new to Java 1.4, organizes its children according to a set of constraints (four for
each child), each represented by a j avax. swi ng. Spri ng object. An instance of Spri ng-
Layout . Constrai nts is used as the overall constraint object when adding a child to con-
tainer managed by a Spri ngLayout , for example:

cont ai ner. set Layout (new Spri ngLayout());

cont ai ner. add(new JButton(“Button”),

new SpringLayout. Constraints(
Spring. const ant (10),

LAYOUTS OVERVIEW 93

4.1.12

4.2

94

Spring. const ant (10),
Spring. const ant (120),
Spring. constant (70)));

Spri ngLayout . Constrai nt s’ four parameters are Spri ng objects, in this case created with
the static constant () method to represent a minimum, maximum, and preferred value
for each constraint. The first parameter represents the x location of the component, the
second represents the y location, the third represents the component’s width, and the fourth
represents the component’s height.

NOTE The code illustrates one of the simplest uses of Spri ngLayout . See the API Java-
docs for explanations of more detailed functionality such as using constraints to
link the edges of two components in a container.

WARNING SpringLayout does not automatically set the location of child components. If
you do not set constraints on child components in a Spri ngLayout , each child
will be placed at 0,0 in the container, each overlapping the next.

JPanel

class javax.swing. [Panel

This class represents a generic lightweight container. It works in close cooperation with layout
managers. The default constructor creates a JPanel with a Fl owLayout, but different lay-
outs can be specified in a constructor or assigned using the set Layout () method.

NOTE The content pane of a JRoot Pane container is a JPanel , which, by default, is
assigned a Bor der Layout, not a Fl owLayout .

COMPARING COMMON LAYOUT MANAGERS

Example 4.1 demonstrates the most commonly used AWT and Swing layout managers. It
shows a set of JI nt er nal Franes that contain identical sets of components, each using a dif-
ferent layout. The purpose of this example is to allow direct simultaneous layout manager
comparisons using resizable containers.

[Layout Managers [_][O]
[EJFlowiLayout B || | FcriaLayout E [BorderLayout E
1
BN ENINEN| | ;
KN ‘)
3 4
|
1
FlBoxLayout - X =] [ty H

] L

Figure 4.3
Comparing common layouts

[o Il

CHAPTER 4 LAYOUT MANAGERS

Example 4.1

CommonlLayouts.java

see \Chapter4\1

import java.aw.*;
import java.awt.event.*;
inmport java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i nport javax.sw ng.event.*;

public class CommonLayouts extends JFrane {

public | nteger LAYOUT_FRAME _LAYER = new | nteger(1);

publ i ¢ CommonLayouts() {
super (" Cormon Layout Managers");
set Si ze(500, 460);

JDeskt opPane desktop = new JDeskt opPane();

get Cont ent Pane() . add(deskt op);

Jinternal Frane frl =

new Jl nternal Frame("Fl owLayout”, true,

frl.setBounds(10, 10, 150, 150);
Container ¢ = frl.getContentPane();
c. set Layout (new Fl owLayout ());
c.add(new JButton("1"));

c.add(new JButton("2"));

c.add(new JButton("3"));

c.add(new JButton("4"));

desktop. add(fr1, 0);

fri.show();

Jinternal Frane fr2 =

new Jlnternal Frame(" Gi dLayout", true,

fr2.setBounds(170, 10, 150, 150);
c = fr2.get Content Pane();
c.setLayout (new GridLayout (2, 2));
c.add(new JButton("1"));

c.add(new JButton("2"));

c.add(new JButton("3"));

c.add(new JButton("4"));

desktop. add(fr2, 0);

fr2.show();

Jinternal Frame fr3 =

new Jl nt er nal Frame(" Bor der Layout ",
fr3.setBounds(330, 10, 150, 150);
c = fr3.get Content Pane();

O o0 o0 0

COMPARING COMMON LAYOUT MANAGERS

.add(new JButton("1"), BorderlLayout.
.add(new JButton("2"), BorderlLayout.
.add(new JButton("3"), BorderlLayout.
.add(new JButton("4"), BorderlLayout.

true, true);

NORTH) ;
EAST) ;
SQUTH) ;
EST) ;

true);

true);

95

96

deskt op. add(fr3, 0);
fr3.show();

Jinternal Frame fr4 = new Jl nternal Frame("BoxLayout - X',
true, true);

fr4.set Bounds(10, 170, 250, 80);

¢ = fr4. get Content Pane();

. set Layout (new BoxLayout (c, BoxLayout.X AXIS));

.add(new JButton("1"));

. add(Box. creat eHori zontal Strut (12));

.add(new JButton("2"));

. add(Box. create@ ue());

.add(new JButton("3"));

. add(Box. creat eHori zontal d ue());

c.add(new JButton("4"));

deskt op. add(fr4, 0);

frd.show();

O 000000

Jinternal Frame fr5 = new Jl nternal Frame("BoxLayout - Y",
true, true);

fr5. set Bounds(330, 170, 150, 200);

¢ = fr5. get Cont ent Pane();

c. set Layout (new BoxLayout (¢, BoxLayout.Y_AXIS));

c.add(new JButton("1"));

c. add(Box. createVertical Strut(10));

c.add(new JButton("2"));

c. add(Box. created ue());

c.add(new JButton("3"));

c. add(Box. createVertical due());

c.add(new JButton("4"));

deskt op. add(fr5, 0);

fr5. show();

Jinternal Frame fré =
new Jl nternal Frame("“SpringLayout”, true, true);
fré6.set Bounds(10, 260, 250, 170);
c = fr6. get Cont ent Pane();
c. set Layout (new Spri ngLayout ());
c.add(new JButton("1"), new SpringLayout. Constraints(
Spring. const ant (10),
Spring. const ant (10),
Spring. const ant (120),
Spring. constant (70)));
c.add(new JButton("2"), new SpringLayout. Constraints(
Spri ng. const ant (160),
Spri ng. const ant (10),
Spring. constant (70),
Spring. constant (30)));
c.add(new JButton("3"), new SpringlLayout. Constraints(
Spring. const ant (160),
Spri ng. const ant (50),
Spring. constant (70),
Spring. constant (30)));

CHAPTER 4 LAYOUT MANAGERS

c.add(new JButton("4"), new SpringLayout. Constraints(
Spri ng. const ant (10),
Spri ng. const ant (90),
Spri ng. const ant (50),
Spring. constant (40)));
c.add(new JButton("5"), new SpringlLayout. Constraints(
Spri ng. const ant (120),
Spri ng. const ant (90),
Spri ng. const ant (50),
Spring. constant (40)));
desktop. add(fr6, 0);
fr6.show();

deskt op. set Sel ect edFrane(fr6);
}

public static void main(String argv[]) {
CommonLayouts frane = new ConmmonLayout s();
frame. set Def aul t Cl oseCper ati on(JFrame. EXI T_ON_CLCSE) ;
frame. set Visible(true);
}
}

4.2.1 Understanding the code

Class CommonLayouts

The CommonLayouts constructor creates six JI nternal Frames and places them in a
JDeskt opPane. Each of these frames contains several JBut t ons. Each frame is assigned a
unique layout manager: a Fl owLayout, a 2x2 Gri dLayout, a Bor der Layout , an x-oriented
BoxLayout, a y-oriented BoxLayout, and a SpringLayout. Notice that the internal
frames using BoxLayout also use strut and glue filler components to demonstrate their behavior.

4.2.2 Running the code

Figure 4.3 shows CommonLayout s in action. Notice the differences in each frame’s content as
it changes size.
* FlowLayout places components in one or more rows depending on the width of the
container.
* GridLayout assigns an equal size to all components and fills all container space.

* Border Layout places components along the sides of the container, or in the center.

 x-oriented BoxLayout always places components in a row. The distance between the
first and second components is 12 pixels (determined by the horizontal strut
component). Distances between the second, third, and fourth components are equalized
and take up all remaining width (determined by the two glue filler components).

* y-oriented BoxLayout always places components in a column. The distance between the
first and second components is 10 pixels (determined by the vertical strut component).
Distances between the second, third, and fourth components are equalized and take up
all available height (determined by the two glue filler components).

e SpringLayout places components at preassigned coordinates with preassigned
dimensions.

COMPARING COMMON LAYOUT MANAGERS 97

4.3

4.3.1

4.3.2

98

UsING GRIDBAGLAYOUT

This section was written by James Tan, a systems analyst with
United Overseas Bank Singapore (jtan@coruscant.per.sg).

Of all the layouts included with Swing and AWT, Gri dBagLayout is by far the most com-
plex. In this section, we will walk through the various constraints attributes it relies on, along
with several short examples showing how to use them. We'll follow up this discussion with a
comprehensive input dialog example which puts all these attributes together. We'll then con-
clude this section with the construction and demonstration of a helper class designed to make
using Gri dBagLayout more convenient.

Default behavior of GridBaglLayout

By simply setting a container’s layout to a Gri dBagLayout and adding Conponent s to it, the
result will be a row of components, each set to their preferred size, tightly packed and placed
in the center of the container. Unlike FI owLayout , Gri dBagLayout will allow components
to be clipped by the edge of the managing container, and it will not move child components
down into a new row. The following code demonstrates this, and figure 4.4 shows the result:

Jinternal Frame fr1 = new Jlnternal Franme(
"Exanple 1", true, true);

frl.setBounds(5, 5, 270, 100);

cn = frl. get ContentPane();

cn. set Layout (new Gi dBagLayout ());

cn.add(new JButton("Wonderful"));

cn.add(new JButton("World"));

cn.add(new JButton("O"));

cn.add(new JButton("Swing !!'!"));
desktop.add(frl, 0);

fril.show);

[FJExample

Wonderful || World || of || Swing 1!

Figure 4.4
Default G i dBagLayout behavior

Introducing GridBagConstraints

When a component is added to a container which has been assigned a Gri dBagLayout , the
layout manager uses a default Gri dBagConst r ai nt s object to place the component accord-
ingly, as shown in the above example. By creating and setting the attributes of a Gri dBag-
Constrai nt s object and passing it in as an additional parameter in the add() method, we
can flexibly manage the placement of our components.

Listed next are the various attributes we can set in a Gri dBagConstraints object
along with their default values. The behavior of these attributes will be explained in the exam-
ples that follow.

CHAPTER 4 LAYOUT MANAGERS

433

publ i
publ i

int ipadx = 0;
0;

public int gridx = GidBagConstraints. RELATI VE;
public int gridy = GidBagConstraints. RELATI VE;
public int gridwidth = 1;
public int gridheight = 1;
public double weightx = 0.0;
publ i c double weighty = 0.0;
public int anchor = Gi dBagConstraints. CENTER,
public int fill = GidBagConstraints. NONE;
public Insets insets = new Insets(0, 0, 0, 0);
c
c

int ipady

Using the gridx, gridy, insets, ipadx, and ipady constraints

The gri dx and gri dy constraints (or column and row constraints) are used to specify the
exact grid cell location where we want our component to be placed. Component placement
starts from the upper left-hand corner of the container, and gri dx and gri dy begin with
values of 0. Specifying negative values for either of these attributes is equivalent to setting
them to Gri dBagConstrai nts. RELATI VE, which means that the next component added
will be placed directly after the previous gri dx or gri dy location.

The i nset s constraint adds an invisible exterior padding around the associated compo-
nent. Negative values can be used which will force the component to be sized larger than the
cell it is contained in.

The i padx and i pady constraints add an interior padding which increases the preferred
size of the associated component. Specifically, the padding adds i padx * 2 pixels to the pre-
ferred width and i pady * 2 pixels to the preferred height (* 2 because this padding applies to
both sides of the component).

In this example, we place the “Wonderful” and “World” buttons in the first row and the
other two buttons in the second row. We also associate insets with each button so that they
don’t look too cluttered, and they vary in both height and width.

Jinternal Frame fr2 = new Jlnternal Franme("Exanple 2", true, true);
fr2.setBounds(5, 110, 270, 140);

cn = fr2.getContentPane();

cn. set Layout (new Gri dBagLayout ());

¢ = new GidBagConstraints();
c.insets = new Insets(2, 2, 2, 2);
c.gridx 0; /1 Colum O

c.gridy = 0; /!l Row O
[5
[5

.ipadx = /'l 1 ncreases conponent width by 10 pixels
.ipady = 5; /'l I ncreases conponent height by 10 pixels
cn. add(new JButton("Wonderful"), c);

c.gridx = 1; /1 Colum 1
c.ipadx = 0; /'l Reset the padding to O
c.ipady = 0;

cn.add(new JButton("World"), c);

c.gridx = 0; /1 Colum O
c.gridy = 1; /!l Row 1
cn.add(new JButton("O"), c);

USING GRIDBAGLAYOUT 99

43.4

100

c.gridx = 1; /1 Colum 1

cn.add(new JButton("Swing !!!"), c);
desktop.add(fr2, 0);
fr2.show();

We begin by creating a Gri dBagConst r ai nt s object to set the constraints for the first but-
ton component. We pass it in together with the button in the add() method. We reuse this
same constraints object by changing the relevant attributes and passing in again for each
remaining component. This conserves memory, and it also relieves us of having to reassign a
whole new group of attributes. Figure 4.5 shows the result.

[FlExample 2 E
Wonderful World
| of | | Swing ! | Figure 4.5

Using the gri dx, gri dy, i nsets,
i padx, and i pady constraints

Using the weightx and weighty constraints

When the container in the example above is resized, the components respect the constraints
we have assigned, but the whole group remains in the center of the container. Why don’t the
buttons grow to occupy a proportional amount of the increased space surrounding them? The
answer lies in the use of the wei ght x and wei ghty constraints, which both default to zero
when Gri dBagConst r ai nt s is instantiated.

These two constraints specify how any extra space in a container should be distributed
among each component’s cells. The wei ght x attribute specifies the fraction of extra horizontal
space to occupy. Similarly, wei ghty specifies the fraction of extra vertical space to occupy.
Both constraints can be assigned values ranging from 0. 0 to 1. 0.

For example, let’s say we have two buttons, A and B, placed in columns 0 and 1 of row 0
respectively. If we specify wei ght x = 1. 0 for the first button and wei ght x = 0 for the second
button, when we resize the container, all extra space will be distributed to the first button’s
cell—50% on the left of the button and 50% on the right. The other button will be pushed
to the right of the container as far as possible. Figure 4.6 illustrates this concept.

=
’E EN Figure 4.6

Using wei ght x and wei ght y constraints

Getting back to our “Wonderful World Of Swing !!'” example, we now modify all
button cells to share any extra container space equally as the container is resized. Specifying
wei ghtx = 1. 0 and wei ghty = 1. 0, and keeping these attributes constant as each compo-

CHAPTER 4 LAYOUT MANAGERS

nent is added, will tell Gri dBagLayout to use all available space for each cell. Figure 4.7 illus-
trates these changes.

Jinternal Frame fr3 = new Jlnternal Frane("Exanple 3", true, true);
fr3.setBounds(5, 255, 270, 140);

cn = fr3.getContentPane();

cn. set Layout (new Gri dBagLayout ());

¢ = new (i dBagConstraints();
c.insets = new Insets(2, 2, 2, 2);
c.weighty = 1.0;

c.weightx = 1.0;

c.gridx = 0;

c.gridy = 0;

cn.add(new JButton("Wonderful"), c);

c.gridx = 1;
cn.add(new JButton("Wrld"), c);

c.gridx 0;
c.gridy 1;
cn.add(new JButton("O"), c);

c.gridx = 1;
cn.add(new JButton("Swing !!'!"), c);

desktop.add(fr3, 0);
fr3.show);

[F]Example 3

Wonderful World
’E m Figure 4.7

Using wei ght x and wei ght y constraints

4.3.5 Using the gridwidth and gridheight constraints

Gi dBaglLayout also allows us to span components across multiple cells using the gr i dwi dt h
and gri dhei ght constraints. To demonstrate, we'll modify our example to force the “Won-
derful” button to occupy two rows and the “World” button to occupy two columns. Figure
4.8 illustrates this. Notice that occupying more cells forces more rows and/or columns to be
created based on the current container size.

Jinternal Frame fr4 = new Jlnternal Frame("Exanple 4", true, true);
fr4.setBounds(280, 5, 270, 140);

cn = fr4. get Cont ent Pane();

cn. set Layout (new Gri dBagLayout ());

¢ = new GidBagConstraints();
c.insets = new Insets(2, 2, 2, 2);
c.weighty = 1.0;

USING GRIDBAGLAYOUT 101

4.3.6

102

.wei ghtx = 1.0;
.gridx = 0;
.gridy = 0;

.gridheight = 2; // Span across 2 rows
n. add(new JButton("Wonderful"), ¢);

O 0O o000

c.gridx = 1;

c.gridheight = 1; // Renenber to set back to 1 row
c.gridwidth = 2; // Span across 2 colums

cn.add(new JButton("World"), c);

c.gridy = 1,
c.gridwidth = 1; // Remenber to set back to 1 colum
cn.add(new JButton("O"), c);

c.gridx = 2;

cn.add(new JButton("Swing !!!'"), ¢);
desktop. add(fr4, 0);

fra.show();

[F]Example 4

World
Wonderful

Figure 4.8
Using gri dwi dt h and
gri dhei ght constraints

| of | | swingu

Using anchor constraints

We can control how a component is aligned within its cell(s) by setting the anchor con-
straint. By default this is set to Gri dBagConst r ai nt s. CENTER, which forces the component
to be centered within its occupied cell(s). We can choose from the following anchor settings:

Gri dBagConstrai nts. NORTH

Gri dBagConstrai nts. SOUTH

Gri dBagConstrai nts. EAST

G i dBagConstrai nts. VEST

Gri dBagConst r ai nt s. NORTHEAST
Gri dBagConst rai nt s. NORTHWEST
Gri dBagConst rai nt's. SOUTHEAST
Gri dBagConst rai nts. SOUTHVEST
Gri dBagConstrai nt s. CENTER

In the code below, we've modified our example to anchor the “Wonderful” button NORTH and
the “World” button SOUTHVEST. The “Of ” and “Swing !!!” buttons are anchored in the CEN-
TER of their cells. Figure 4.9 illustrates.

Jinternal Frame fr5 = new JI nternal Frame("Exanple 5", true, true);
fr5. set Bounds(280, 150, 270, 140);
cn = fr5. get Content Pane();

CHAPTER 4 LAYOUT MANAGERS

cn. set Layout (new Gri dBagLayout ());

¢ = new GidBagConstraints();
c.insets = new Insets(2, 2, 2, 2);
c.weighty = 1.0;

c.weightx = 1.0;

c.gridx = 0;

c.gridy = 0;

c.gridheight = 2;

c

.anchor = GridBagConstrai nts. NORTH,

cn.add(new JButton("Wonderful"), c);

.gridx = 1;
.gridheight = 1;
.gridwidth = 2;

O 0O 00

c.gridy = 1;
c.gridwidth = 1;

.anchor = Gri dBagConstrai nts. SOUTHVEST;

cn.add(new JButton("World"), c);

c.anchor = Gri dBagConstraints. CENTER;

cn.add(new JButton("O"),

c.gridx = 2;

cn.add(new JButton("Swing !!'!'"), c);
desktop.add(fr5, 0);

fr5.show();

[FJExample 5

Wonderful
World

of | | swing

4.3.7 Using fill constraints

Figure 4.9
Using gri dwi dt h and
gri dhei ght constraints

The most common reason for spanning multiple cells is that we want the component contained
in that cell to occupy the enlarged space. To do this we use the gri dhei ght/gri dwi dt h
constraints as described above, as well as the fill constraint. The fill constraint can be

assigned any of the following values:

Gri dBagConstrai nt's. NONE

Gri dBagConstrai nts. HORI ZONTAL

Gi dBagConstrai nts. VERTI CAL
Gri dBagConstraints. BOTH

NOTE Using fi || without using wei ght { x, y} will have no effect

In the next code, we modify our example to force the “Wonderful” button to occupy all avail-
able cell space, both vertically and horizontally. The “World” button now occupies all available

USING GRIDBAGLAYOUT

103

4.3.8

104

horizontal cell space, but it continues to use its preferred vertical size. The “Of ” button does not
make use of the fill constraing; it simply uses its preferred size. The “Swing !!” button occupies
all available vertical cell space, but it uses its preferred horizontal size. Figure 4.10 illustrates.

Jinternal Frame fr6 = new Jlnternal Frame("Exanple 6", true, true);
fré.set Bounds(280, 295, 270, 140);

= fr6. get Cont ent Pane();
cn. setLayout (new Gri dBaglLayout ());

¢ = new GidBagConstraints();

c.insets = new Insets(2, 2, 2, 2);
c.weighty = 1.0;

c.weightx = 1.0;

c.gridx = 0;

c.gridy = 0;

c.gridheight = 2;

c.fill = GidBagConstraints. BOTH,

cn. add(new JButton("Wonderful"), c);
c.gridx = 1;

c.gridheight = 1;

c.gridwidth = 2;

c.fill = GidBagConstraints. HORI ZONTAL;
cn.add(new JButton("World"), c);
c.gridy = 1;

c.gridwidth = 1;

c.fill = GidBagConstraints. NONE;
cn.add(new JButton("O"), c);
c.gridx = 2;

c.fill = GidBagConstraints. VERTI CAL;
cn.add(new JButton("Swing !!!'"), ¢);
desktop. add(fr6, 0);

fré.show();

.E:ample 6

| World |

Jﬂf ERRHES Figure 4.10

Using fill constraints

Wonderful

Putting it all together: constructing a complaints dialog

Figure 4.11 shows a sketch of a generic complaints dialog that can be used for various forms of
user feedback. This sketch clearly shows how we plan to lay out the various components, and
the columns and rows in which they will be placed. In order to set the constraints correctly so
that the components will be laid out as shown, we must do the following:

CHAPTER 4 LAYOUT MANAGERS

* For the “Short Description” text field, we set the gri dwi dt h constraint to 3 and the fi | |
constraint to G i dBagConst r ai nt's. HORI ZONTAL. In order to make this field occupy
all the horizontal space available, we also need to set the wei ght x constraints to 1. 0.

* For the “Description” text area, we set the gri dwi dt h constraint to 3, the gri dhei ght
to 2, and the fill constraint to Gri dBagConstrai nt.BOTH. In order to make this
field occupy all the available horizontal and vertical space, we set the wei ght x and
wei ghty constraints to 1. 0.

* For the “Severity,” “Priority,” “Name,” “Telephone,” “Sex,” and “ID Number” input
fields, we want each to use their preferred width. Since the widths each exceed the width
of one cell, we set gri dwi dt h, and wei ght x so that they have enough space to fit, but
they will not use any additional available horizontal space.

¢ For the Help button, we set the anchor constraint to Gri dBagConst r ai nt . NORTH so
that it will stick together with the upper two buttons, “Submit” and “Cancel.” The fi | |
constraint is set to HORI ZONTAL to force each of these buttons to occupy all available
horizontal cell space.

* All labels use their preferred sizes, and each component in this dialog is anchored WEST.

Sher] Descxt'rh;u E] Subwil | 1

Gnhze J £

e |

Severhy - | | :
I 3

Telephere ___:l
o

Sex o wWiale

L_f Nuwlbey _::I

Fmg ‘ 7
I

—f—

Figure 4.11 A sketch of a generic complaints dialog

Our implementation follows in example 4.2, and figure 4.12 shows the resulting dialog.

USING GRIDBAGLAYOUT 105

Example 4.2

ComplaintsDialog.java
see \Chapter4\Tan

i mport javax.sw ng.*;

i mport javax.sw ng. border.*;
import java.awt.?*;

i mport java.awt.event.*;

public class Conpl ai ntsbhDi al og extends JDi al og
{
public Conpl ai ntsbDi al og(JFrame frame) {
super(frane, true);
setTitle("Sinple Conplaints Dialog");
set Si ze(500, 300);

/'l Creates a panel to hold all conponents
JPanel panel = new JPanel (new BorderLayout ());
panel . set Layout (new Gri dBagLayout ());

/1 Gve the panel a border gap of 5 pixels
panel . set Border (new EnptyBorder(new Insets(5, 5, 5 5)));
get Cont ent Pane() . add(Border Layout. CENTER, panel);

GridBagConstraints ¢ = new GidBagConstraints();

/1 Define preferred sizes for input fields

Di nensi on shortField = new Di nension(40, 20);
Di mensi on medi unfi el d = new Di nmension(120, 20);
Di mensi on | ongFi el d = new Di nensi on(240, 20);
Di mensi on hugeFi el d = new Di mensi on(240, 80);

/1 Spacing between |abel and field
Enpt yBor der border = new EnptyBorder(new Insets(0, 0, 0, 10));
Enpt yBor der border1 = new EnptyBorder(new Insets(0, 20, 0, 10));

/1 Add space around all conponents to avoid clutter
c.insets = new Insets(2, 2, 2, 2);

/1 Anchor all conponents WEST
c.anchor = Gi dBagConstrai nts. WEST;

JLabel Ibl1l = new JLabel ("Short Description");

I bl 1. set Border (border); // Add some space to the right

panel .add(Ibl1, ¢);

JTextField txtl = new JTextField();

txt1l. setPreferredSi ze(longField);

c.gridx = 1;

c.weightx = 1.0; // Use all available horizontal space
c.gridwidth = 3; // Spans across 3 colums

c.fill = GidBagConstraints. HORI ZONTAL; // Fills the 3 col ums
panel .add(txtl1l, c);

JLabel |bl2 = new JLabel ("Description");
| bl 2. set Border (border);

106 CHAPTER 4 LAYOUT MANAGERS

c.gridwidth = 1;

c.gridx = 0;

c.gridy = 1;;

c.weightx = 0.0; // Do not use any extra horizontal space

panel .add(Ibl2, c);
JText Area areal = new JTextArea();

JScrol | Pane scroll = new JScrol | Pane(areal);

scrol | .setPreferredSi ze(hugeField);

c.gridx = 1;

c.weightx = 1.0; // Use all available horizontal space
c.weighty = 1.0; // Use all available vertical space
c.gridwidth = 3; // Span across 3 col umms

c.gridheight = 2; // Span across 2 rows

c.fill = GidBagConstraints.BOTH, // Fills the colums and rows
panel . add(scroll, c);

JLabel 1bl3 = new JLabel ("Severity");
I bl 3. set Border (border);

c.gridx = 0;
c.gridy = 3;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;

c.fill = GidBagConstraints. NONE;
panel .add(Ibl3, c);

JConboBox conmbo3 = new JComboBox();
conbo3. addltem("A");

conbo3. addltem("B");

conbo3. addlitem("C');

conbo3. addltem("D');

conbo3. addltem("E");

conbo3. set PreferredSi ze(shortField);
c.gridx = 1;

panel . add(combo3, c);

JLabel |bl4 = new JLabel ("Priority");

I bl 4. set Border (borderl);
c.gridx = 2;

panel .add(I bl 4, c);

JConmboBox conmbo4 = new JConmboBox();
conbo4. addltem("1");

conbo4. addltem("2");

conbo4. addltem("3");

conbo4. addl ten("4");

conbo4. addltem("5");

conbo4. set Pref erredSi ze(shortField);
c.gridx = 3;

panel . add(conbo4, c);

JLabel 1bl5 = new JLabel ("Nane");
| bl 5. set Border (border);
c.gridx = 0;

USING GRIDBAGLAYOUT 107

c.gridy = 4;

panel .add(Ibl5, ¢);

JTextField txt5 = new JTextFiel d();
txt5.setPreferredSi ze(longField);
c.gridx = 1;

c.gridwidth = 3;

panel . add(txt5, c);

JLabel bl 6 = new JLabel ("Tel ephone");
| bl 6. set Border (border);

c.gridx = 0;

c.gridy = 5;

panel .add(Ibl6, ¢);

JTextField txt6 = new JTextField();

txt 6. setPreferredSi ze(mediunfield);
c.gridx = 1;

c.gridwidth = 3;

panel . add(txt6, c);

JLabel |bl7 = new JLabel ("Sex");
I bl 7. set Border (border);

c.gridx = 0;

c.gridy = 6;

panel .add(Ibl7, c);

JPanel radi oPanel = new JPanel ();

// Create a FlowLayout JPanel with 5 pixel horizontal gaps
/1 and no vertical gaps

radi oPanel . set Layout (new Fl owLayout (Fl owLayout.LEFT, 5, 0));
Butt onGroup group = new ButtonG oup();

JRadi oButton radi o1 = new JRadi oButton("Ml e");

radi ol. set Sel ected(true);

group. add(radiol);

JRadi oButton radi 02 = new JRadi oButton("Female");

group. add(radi o2);

radi oPanel . add(radiol);

radi oPanel . add(radi o2);

c.gridx = 1;

c.gridwidth = 3;

panel . add(radi oPanel, c);

JLabel bl 8 = new JLabel ("I D Nunber");
| bl 8. set Border (border);

c.gridx = 0;

c.gridy = 7;

c.gridwidth = 1;

panel .add(Ibl8, ¢);

JTextField txt8 = new JTextFiel d();
txt 8. setPreferredSi ze(mediunfField);
c.gridx = 1;

c.gridwidth = 3;

panel . add(txt8, c);

JButton subm tBtn = new JButton("Submt");

108 CHAPTER 4 LAYOUT MANAGERS

[&} Simple Complaints Dialog
Short Description | | Submit
Description | Cancel
Help
Severity A Priority |1 w
Name |
Telephone
S ® Male T'F k -
":: | dle e Figure 4.12
umber - -
The Complaints Dialog

c.gridx = 4,

c.gridy = 0;

c.gridwidth = 1;

c.fill = GidBagConstraints. HORI ZONTAL;

panel . add(submitBtn, c);

JButton cancel Btn = new JButton("Cancel");
c.gridy = 1;
panel . add(cancel Btn, c);

JButton hel pBtn = new JButton("Hel p");

c.gridy = 2;

c.anchor = GridBagConstraints. NORTH;, // Anchor north
panel . add(hel pBtn, c)

set Def aul t Cl oseQper ati on(JFrane. EXI T_ON_CLCSE) ;
setVisible(true);

}

public static void main(String[] args) {
new Conpl ai nt sDi al og(new JFrane());

}
}

4.3.9 A simple helper class example

As we can see from example 4.2, constructing dialogs with more than a few components
becomes a very tedious task and reduces source code legibility as well as organization. One
way to make the use of Gri dBagLayout cleaner and easier is to create a helper class that
manages all the constraints for us, and provides self-explanatory method names and pre-
defined parameters.

The source code of a simple helper class we have constructed for this purpose is shown
below in example 4.3. The method names used are easier to understand and laying out our
components using row and column parameters is more intuitive than gri dx and gri dy. The
methods implemented in this class are each a variation of one of the following:

* addConponent : Used to add a component that needs to adhere to its preferred size.

* addAnchor edConponent : Used to add a component that needs to be anchored.

* addFi | | edConponent : Used to add a component that will fill the entire cell space
allocated to it.

USING GRIDBAGLAYOUT 109

Example 4.3

GriddedPanel.java

see \Chapter4\Tan

i mport javax.sw ng.*;
import java.awt.*;

public class GiddedPanel extends JPanel

{

private GidBagConstraints constraints;

/] Default constraints value definitions

private static final int C HORZ = Gi dBagConstrai nts. HORl ZONTAL;
private static final int CNONE = GidBagConstrai nts. NONE;
private static final int CWEST = GidBagConstraints. WEST;
private static final int CWDTH = 1;

private static final int CHEICGHT = 1;

/] Create a GidBagLayout panel using a default insets constraint
public GiddedPanel () {

this(new I nsets(2, 2, 2, 2));
}

/'l Create a GidBagLayout panel using the specified insets
/1 constraint
public GiddedPanel (I nsets insets) {
super (new G'i dBagLayout ());
constraints = new GidBagConstraints();
constraints.anchor = GidBagConstrai nts. VEST;
constraints.insets = insets;

}

/1 Add a conponent to the specified row and col um
public voi d addConponent (JConponent conponent, int row, int col) {
addConponent (conmponent, row, col, C W DTH,
C_HEI GHT, C_WEST, C_NONE);
}

// Add a conponent to the specified row and col um, spanni ng across
/1 a specified nunmber of columms and rows
public voi d addConponent (JConmponent conponent, int row, int col,
int width, int height) {
addConponent (conponent, row, col, w dth,
hei ght, C WEST, C_NONE);
}

/1 Add a conponent to the specified row and colum, using a specified
/1 anchor constraint
public voi d addAnchor edConponent (JConponent conponent, int row,
int col, int anchor) {
addConponent (conponent, row, col, C W DTH,
C_HEI GHT, anchor, C_NONE);
}

/1 Add a conponent to the specified row and col um, spanni ng across

110 CHAPTER 4 LAYOUT MANAGERS

/1 a specified nunber of columms and rows, using a specified
/'l anchor constraint
publ i c void addAnchor edConponent (JConponent conponent,
int row, int col, int width, int height, int anchor) {
addConmponent (conponent, row, col, width,
hei ght, anchor, C_NONE);

}
/1 Add a conponent to the specified row and col um,
/1 filling the colum horizontally

public void addFi || edConponent (JConponent conponent,
int row, int col) {
addConmponent (conponent, row, col, C WDTH,
C _HElI GHT, C_VEST, C HORZ);
}

/1 Add a conponent to the specified row and col um
/1 with the specified fill constraint
public void addFi || edConponent (JConponent conponent,
int row, int col, int fill) {
addConmponent (conponent, row, col, C WDTH,
C HEI GHT, C WEST, fill);
}

/1 Add a conponent to the specified row and col um,
/1 spanning a specified nunber of colums and rows,
/1 with the specified fill constraint
public void addFi || edConponent (JConponent conponent,
int row, int col, int width, int height, int fill) {
addConponent (conponent, row, col, w dth, height, CWEST, fill);
}

/1 Add a conponent to the specified row and col um,
/1 spanning the specified nunber of colums and rows, with

/'l the specified fill and anchor constraints
publ i c voi d addConponent (JConponent conponent,
int row, int col, int width, int height, int anchor, int fill) {

constraints.gridx = col;
constraints.gridy = row
constraints.gridwi dth = wi dth;
constraints. gridhei ght = height;
constraints. anchor = anchor;
doubl e wei ghtx = 0.0;

doubl e weighty = 0.0;

/1 Only use extra horizontal or vertical space if a conponent
/1 spans nore than one col umm and/or row

if(width > 1)
wei ghtx = 1.0;

i f(height > 1)
wei ghty = 1.0;

switch(fill)

{
case Gi dBagConstraints. HORI ZONTAL:

USING GRIDBAGLAYOUT 111

112

}
}

constraints. wei ghtx = wei ghtx;
constraints. wei ghty 0.0;
br eak;

case G i dBagConstraints. VERTI CAL:
constraints.weighty = weighty;
constraints.weightx = 0.0;
br eak;

case GidBagConstraints. BOTH:
constraints. wei ghtx = wei ghtx;
constraints.weighty = weighty;
br eak;

case G i dBagConstraints. NONE:
constraints.weightx = 0.0;

constraints.weighty = 0.0;
br eak;
defaul t:
br eak;
}
constraints.fill = fill;

add(conponent, constraints);

Example 4.4 is the source code used to construct the same complaints dialog as in example

4.2,

using our helper class methods instead of manipulating the constraints directly. Notice

that the length of the code has been reduced and the readability has been improved. Also note

that we add components starting at row 1 and column 1, rather than row 0 and column 0
(see figure 4.11).

Example 4.4

ComplaintsDialog2.java

see \Chapter4\Tan

i mport javax.sw ng.*;

i mport javax.sw ng. border.*;
import java.awt.*;

i mport java.awt.event.?*;

public class Conpl ai ntsDi al 0g2 extends JDi al og

{

publ i c Conpl ai ntsDi al og2(JFrane frame) {

super(franme, true);
setTitle("Sinple Conplaints Dialog");
set Si ze(500, 300);

Gri ddedPanel panel = new Gri ddedPanel ();
panel . set Bor der (new Enpt yBor der (new | nsets(5, 5, 5, 5)));
get Cont ent Pane() . add(Bor der Layout . CENTER, panel);

/1 Input field dinensions
Di mensi on shortField = new Di nension(40, 20);

CHAPTER 4 LAYOUT MANAGERS

Di mensi on nedi unfield = new Di nension(120, 20);
Di mensi on | ongFi el d = new Di nensi on(240, 20);
Di mensi on hugeFi el d = new Di nensi on(240, 80);

/'l Spacing between |abels and fields

Enpt yBor der border = new EnptyBorder (
new I nsets(0, 0, 0, 10));

Enpt yBor der border1 = new Enpt yBorder (
new I nsets(0, 20, 0, 10));

JLabel Ibl1l = new JLabel ("Short Description");
I bl 1. set Border (border);
panel . addConponent (Ibl1, 1, 1);
JTextField txtl = new JTextFiel d();
txt1l.setPreferredSize(longField);
panel . addFi | | edConponent (txt1, 1, 2, 3, 1,

Gri dBagConstrai nts. HORI ZONTAL) ;

JLabel Ibl2 = new JLabel ("Description");

| bl 2. set Border (border);

panel . addConponent (1 bl 2, 2, 1);

JText Area areal = new JTextArea();

JScrol | Pane scroll = new JScrol | Pane(areal);

scrol | .setPreferredSi ze(hugeField);

panel . addFi | | edConponent (scroll, 2, 2, 3, 2,
Gri dBagConstraints. BOTH) ;

JLabel 1bl3 = new JLabel ("Severity");
I bl 3. set Border (border);

panel . addConponent (1 bl 3, 4, 1);
JConboBox conmbo3 = new JComboBox();
conbo3. addltem("A");

conbo3. addlten("B");

conbo3. addlitem("C');

conbo3. addlitem("D');

conbo3. addltem("E");

conbo3. set PreferredSi ze(shortField);
panel . addConponent (combo3, 4, 2);

JLabel Ibl4 = new JLabel ("Priority");
I bl 4. set Border (borderl);

panel . addConponent (1 bl 4, 4, 3);
JConboBox conmbo4 = new JComboBox();
conbo4. addltem("1");

conbo4. addl ten("2");

conbo4. addltem("3");

conbo4. addltem("4");

conbo4. addltem("5");

conbo4. set PreferredSi ze(shortField);
panel . addConponent (cormbo4, 4, 4);

JLabel |bl5 = new JLabel ("Nane");
| bl 5. set Border (border);

panel . addConponent (Ibl5, 5, 1);
JTextField txt5 = new JTextFiel d();

USING GRIDBAGLAYOUT 113

txt5.setPreferredSi ze(longField);
panel . addConponent (txt5, 5, 2, 3, 1);

JLabel |bl6 = new JLabel ("Tel ephone");
| bl 6. set Border (border);

panel . addConponent(I bl 6, 6, 1);
JTextField txt6 = new JTextFiel d();

txt 6. setPreferredSi ze(mediunfField);
panel . addConponent (txt6, 6, 2, 3, 1);

JLabel |bl7 = new JLabel ("Sex");

| bl 7. set Border (border);

panel . addConponent (I bl 7, 7, 1);

JPanel radi oPanel = new JPanel ();

radi oPanel . set Layout (new Fl owLayout (Fl owLayout . LEFT, 5, 0));
Butt onGroup group = new ButtonG oup();

JRadi oButton radi 01 = new JRadi oButton("Ml e");
radi ol. set Sel ected(true);

group. add(radiol);

JRadi oButton radi 02 = new JRadi oButton("Fenale");
group. add(radi o2);

radi oPanel . add(radiol);

radi oPanel . add(radio2);

panel . addConponent (radi oPanel, 7, 2, 3, 1);

JLabel bl 8 = new JLabel ("I D Nunber");
| bl 8. set Border (border);

panel . addConponent(1bl8, 8, 1);
JTextField txt8 = new JTextField();

txt 8. setPreferredSi ze(mediunfField);
panel . addConponent (txt8, 8, 2, 3, 1);

JButton subm tBtn = new JButton("Submt");
panel . addFi | | edConponent (subm tBtn, 1, 5);

JButton cancel Btn = new JButton("Cancel");
panel . addFi | | edConponent (cancel Btn, 2, 5);

JButton hel pBtn = new JButton("Hel p");
panel . addConponent (hel pBtn, 3, 5, 1, 1,
Gri dBagConstrai nts. NORTH, Gi dBagConstrai nts. HORI ZONTAL) ;

set Def aul t Cl oseOper ati on(JFrane. EXI T_ON_CLCSE) ;
setVisible(true);

}

public static void main(String[] args) {
new Conpl ai nt sDi al og2(new JFranme());

}
}

4.4 CHOOSING THE RIGHT LAYOUT

In this section we'll show how to choose the right combination of layouts and intermediate
containers to satisfy a predefined program specification. Consider a sample application which

114 CHAPTER 4 LAYOUT MANAGERS

makes airplane ticket reservations. The following specification describes which components
should be included and how they should be placed in the application frame:

1 A text field labeled “Date:,” a combo box labeled “From:,” and a combo box labeled
“To:” must reside at the top of the frame. Labels must be placed to the left side of their
corresponding component. The text fields and combo boxes must be of equal size, reside
in a column, and occupy all available width.

2 A group of radio buttons entitled “Options” must reside in the top right corner of the
frame. This group must include “First class,” “Business,” and “Coach” radio buttons.

3 A list component entitled “Available Flights” must occupy the central part of the frame
and it should grow or shrink when the size of the frame changes.

4 Three buttons entitled “Search,” “Purchase,” and “Exit” must reside at the bottom of the
frame. They must form a row, have equal sizes, and be center-aligned.

Our Fl i ght Reservat i on example demonstrates how to fulfill these requirements. We do
not process any input from these controls and we do not attempt to put them to work; we just
display them on the screen in the correct position and size. (Three variants are shown to
accomplish the layout of the text fields, combo boxes, and their associated labels. Two are
commented out, and a discussion of each is given below.)

NOTE A similar control placement assignment is part of Sun’s Java Developer certifica-
tion exam.

@Flight Reservation Dialog

Onti
Date: || ‘ ions

{1 First class
A |NEII“II ork v ‘ 1 Business
To: |Ll]ndl]n - ‘ "1 Coach

r Available Flights

Search H Purchase || Exit

Figure 4.13 Fl i ght Reser vati on layout: variant 1

CHOOSING THE RIGHT LAYOUT 115

116

E%‘:Flighl Reservation Dialog

=] E3

Options
Date: | ! First class
:]?m: New York + ||/ Business
LT w | (! Coach
rfvailable Flights
Search Purchase Exit

Figure 4.14 Fl i ght Reservati on layout: variant 2

E%'Flighl Heszervation Dialog
Options
Date: “ |
' First class
|| New York - .
me‘ | I Business
To: ‘Lundun hd | ! Coach
r Availahle Flights
Search ‘ | Purchase ‘ | Exit

Figure 4.15 Fl i ght Reservati on layout: variant 3

CHAPTER 4 LAYOUT MANAGERS

Example 4.5

FlightReservation.java

see \Chapter4\3

import java.aw.*;
import java.awt.event.*;

i mport javax.sw ng. *;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class FlightReservati on extends JFrane

{ -
publ i c FlightReservation() { (1) Constructor positions

super ("Fl i ght Reservation Dialog"); :Lln':ef)‘:ls::t? Gul
set Si ze(400, 300); P

JPanel pl = new JPanel ();

pl. set Layout (new BoxLayout (pl, BoxLayout.X_ AXIS));
North panel with

JPanel plr = new JPanel (); EmptyBorder for
plr. set Bor der (new EnptyBorder (10, 10, 10, 10)); spacing

/'l Variant 1

plr.set Layout (new GidLayout (3, 2, 5, 5)); 0 3 by 2 grid

plr.add(new JLabel ("Date:"));
plr.add(new JTextFiel d());

plr.add(new JLabel ("From™"));

JConmboBox chl = new JComboBox(); Put 3 labeled
cbl. addl ten(" New York"); components in grid
pir.add(cbl); (labels too wide)

plr.add(new JLabel ("To:"));
JConboBox cb2 = new JConboBox();
cb2. addl t en{" London");

plr. add(ch2);

pl.add(plr); f Second variant, using

two vertical BoxLayouts

PELTTEETTTEETT (labels and components
Il Variant 2 // not aligned)
THEEErrrrnrrry

/1 pll.setlLayout (new BoxLayout (pll, BoxLayout.Y_AXIS));

I

/1l JPanel pl2 = new JPanel ();

/1 pl2.setlLayout (new BoxLayout (pl2, BoxLayout.Y_AXIS));
/1

/1 pll.add(new JLabel ("Date:"));

/1 pl2.add(new JTextField());

/1

/1 pll.add(new JLabel ("From™"));

/1 JConmboBox cbl = new JConboBox();

/1 cbl. addl ten{" New York");

CHOOSING THE RIGHT LAYOUT 117

118

11
/1
/1
11
11
/1
/1
11
11
/1

/1
11
/1
/1
11
/1
/1
11
/1
/1
11
/1
/1
11
11
/1
11
11
/1
11
11
/1
11
11
/1
11

JPanel p3 = new JPanel ();
p3. set Layout (new BoxLayout (p3, BoxLayout.Y_AXIS));
p3. set Bor der (new Ti t | edBor der (new Et chedBor der (),

Butt onGroup group = new ButtonG oup();
JRadi oButton r1 = new JRadi oButton("First class"); —

ar

p3.add(r1);

JRadi oButton r2 = new JRadi oButton("Busi ness");

ar

p3. add(r2);

pl2. add(chl);

pll. add(new JLabel ("To:"));
JConboBox ch2 = new JConboBox();
cb2. addl t en{"London");

pl2. add(ch2);

pl. add(pll);
pl. add(Box. creat eHori zontal Strut (10));
pl. add(pl2);

////{/////3/ ;; 0 Third variant, using two
Vari ant 3 by I grids (arranged
HErrrrrrrrrr

correctly, but complex)
JPanel pll = new JPanel ();

pll. set Layout (new GridLayout (3, 1, 5, 5));

JPanel pl2 = new JPanel ();
pl2. set Layout (new GridLayout (3, 1, 5, 5));

pll. add(new JLabel ("Date:"));
pl2. add(new JTextFiel d());

pll. add(new JLabel ("From"));
JConboBox chl = new JConboBox();
cbhl. addl t en{" New York");

pl2. add(chl);

pll. add(new JLabel ("To:"));
JConmboBox ch2 = new JConboBox();
cb2. addl t en{"London");

pl2. add(ch2);

plr.set Layout (new BorderLayout());

plr.add(pll, BorderLayout.\WEST); Vertical BoxLayout
plr.add(pl2, BorderLayout. CENTER); for radio buttons. on 0

pl. add(plr); East side of frame

"Options"));

oup. add(r1l);

oup. add(r2);

CHAPTER 4 LAYOUT MANAGERS

group. add(r3); for radio buttons, on
p3. add(r3); East side of frame

pl. add(p3); ? Place grid with labeled

JRadi oButton r3 = new JRadi oButton("Coach"); Vertical BoxLayout QT

components in North

get Cont ent Pane() . add(pl, BorderLayout.NORTH); side of frame

JPanel p2 = new JPanel (new BorderLayout());

p2. set Bor der (new Ti t | edBor der (new Et chedBor der (),
"Avail abl e Flights")); Scrollable list

JList list = new JList(); /® in titled panel

JScrol | Pane ps = new JScrol | Pane(list); /o

p2. add(ps, BorderLayout.CENTER);
get Cont ent Pane() . add(p2, BorderLayout.CENTER);

JPanel p4 = new JPanel (); (11) Implicitly
JPanel p4c = new JPanel (); FlowLayout
p4c. set Layout (new GidLayout(1, 3, 5, 5));

Place list in
center of frame

JButton bl = new JButton("Search");
p4c. add(bl);

JButton b2 = new JButton("Purchase"); Place row of

p4c. add(b2); /9 push buttonsin
JButton b3 = new JButton("Exit"); South of frame
p4c. add(b3);

p4. add(p4c) ;
get Cont ent Pane() . add(p4, BorderLayout. SOUTH);

set Def aul t Cl oseQperati on(EXI T_ON_CLCSE) ;
setVisible(true);

}

public static void main(String argv[]) {
new Fl i ght Reservation();

}
}

4.41 Understanding the code
Class FlightReservation

@ The constructor of the FI i ght Reser vat i on class creates and positions all necessary GUI
components. We will explain step by step how we've chosen intermediate containers and their
layouts to fulfill the requirements listed at the beginning of this section.

e The frame (more specifically, its cont ent Pane) is managed by a Bor der Layout by default.
A text field, the combo boxes, and associated labels are added in a separate container to the
north along with the radio buttons; push buttons are placed in the south; and the list compo-
nent is placed in the center. This guarantees that the top and bottom (north and south) con-
tainers will receive their natural height, and that the central component (the list) will occupy
all the remaining space.

CHOOSING THE RIGHT LAYOUT 119

120

The intermediate container, JPanel pir, holds the text field, combo boxes, and their associ-
ated labels; it is placed in panel p1 which is managed by a horizontally aligned BoxLayout .
The plr panel is surrounded by an Enpt yBor der to provide typical surrounding whitespace.

This example offers three variants of managing p1r and its six child components. The first
variant uses a 3x2 GridLayout. This places labels and boxes in two columns opposite
one another. Since this panel resides in the north region of the Bor der Layout , it receives
its natural (preferable) height. In the horizontal direction this layout works satisfactorily: it
resizes boxes and labels to occupy all available space. The only remaining problem is that
GridLayout assigns too much space to the labels (see figure 4.13). We do not need to make
labels equal in size to their corresponding input boxes—we need only allow them to occupy
their preferred width.

The second variant uses two vertical BoxLayout s so that one can hold labels and the other
can hold the corresponding text field and combo boxes. If you try recompiling and running
the code with this variant, you'll find that the labels now occupy only their necessary width,
and the boxes occupy all the remaining space. This is good, but another problem arises: now
the labels are not aligned exactly opposite with their corresponding components. Instead, they
are shifted in the vertical direction (see figure 4.14).

The third variant offers the best solution. It places the labels and their corresponding compo-
nents in two columns, but it uses 3x1 Gri dLayout s instead of BoxLayout s. This places all
components evenly in the vertical direction. To provide only the minimum width to the labels
(the first column) and assign all remaining space to the boxes (the second column), we place
these two containers into another intermediate container managed by a Border Layout :
labels in the west, and corresponding components in the center. This solves our problem (see
figure 4.15). The only downside to this solution is that it requires the construction of three
intermediate containers with different layouts. In the next section we'll show how to build a
custom layout manager that simplifies this relatively common layout task.

Now let’s return to the remaining components. A group of JRadi oBut t ons seems to be the
simplest part of our design. They’re placed into an intermediate container, JPanel p3, with a
Ti t1 edBorder containing the required title: “Options”. A vertical BoxLayout is used to
place these components in a column and a But t onGr oup is used to coordinate their selection.
This container is then added to panel p1 (managed by a horizontal BoxLayout) to sit on the
eastern side of panel p1lr.

The JLi st component is added to a JScr ol | Pane to provide scrolling capabilities. It is then
placed in an intermediate container, JPanel p2, with a Ti t| edBor der containing the required
title “Available Flights.”

NOTE We do not want to assign a Ti t | edBor der to the JScr ol | Pane itself because this
would substitute its natural border, resulting in quite an awkward scroll pane view.
So we nest the JScr ol | Pane in its own JPanel with a Ti t | edBor der.

Since the list should grow and shrink when the frame is resized and the group of radio buttons
(residing to the right of the list) must occupy only the necessary width, it only makes sense to
place the list in the center of the Bor der Layout . We can then use the south region for the
three remaining buttons.

CHAPTER 4 LAYOUT MANAGERS

442

4.5

© o

Since all three buttons must be equal in size, they’re added to a JPanel , p4c, with a 1x3
Gri dLayout . However, this Gri dLayout will occupy all available width (fortunately, it’s lim-
ited in the vertical direction by the parent container’s Bor der Layout). This is not exactly the
behavior we are looking for. To resolve this problem, we use another intermediate container,
JPanel p4, with a FI owLayout . This sizes the only added component, p4c, based on its pre-
ferred size, and centers it both vertically and horizontally.

Running the code

Figures 4.13, 4.14, and 4.15 show the resulting placement of our components in the parent frame
using the first and the third variants described above. Note that the placement of variant 3 satisfies
our specification—components are resized as expected when the frame container is resized.
When the frame is stretched in the horizontal direction, the text field, combo boxes, and
list component consume additional space, and the buttons at the bottom are shifted to the center.
When the frame is stretched in the vertical direction, the list component and the panel containing
the radio buttons consume all additional space and all other components remain unchanged.

Harnessing the power of java layouts Layout managers are powerful but

awkward to use. In order to maximize the effectiveness of the visual commu-
ey Dication, we must make extra effort with the code. Making a bad choice of lay-

o out or making sloppy use of default settings may lead to designs which look

poorly or communicate badly.

In this example, we have shown three alternative designs for the same basic

specification. Each exhibits pros and cons and highlights the design trade-offs

which can be made.

A sense of balance This occurs when sufficient white space is used to balance

the size of the components. An unbalanced panel can be fixed by bordering the

components with a compound border that includes an empty border.

A sense of scale Balance can be further affected by the extraordinary size of
some components such as the combo boxes shown in figure 4.14. The combo
boxes are bit too big for the intended purpose. This affects the sense of scale as
well as the balance of the design. It’s important to size combo boxes appropri-
ately. Layout managers have a tendency to stretch components to be larger
than might be desirable.

CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS

This section and its accompanying example are intended to familiarize you with developing
custom layouts. You may find this information useful in cases where the traditional layouts are
not satisfactory or are too complex. In developing large-scale applications, it is often more
convenient to build custom layouts, such as the one we develop here, to help with specific
tasks. This often provides increased consistency, and may save a significant amount of coding
in the long run.

Example 4.5 in the previous section highlighted a problem: what is the best way to lay
out input field components (such as text fields and combo boxes) and their corresponding

CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS 121

122

labels? We have seen that it can be done using a combination of several intermediate containers
and layouts. This section shows how we can simplify the process using a custom-built layout
manager. The goal is to construct a layout manager that knows how to lay out labels and their
associated input fields in two columns, allocating the minimum required space to the column
containing the labels, and using the remainder for the column containing the input fields.
We first need to clearly state our design goals for this layout manager, which we will appro-
priately call Di al ogLayout . It is always a good idea to reserve plenty of time for thinking about
your design. Well-defined design specifications can save you tremendous amounts of time in the
long run, and can help pinpoint flaws and oversights before they arise in the code. (We strongly
recommend that a design-specification stage becomes part of your development regimen.)

Di al ogLayout specification:

1 This layout manager will be applied to a container that has all the necessary components
added to it in the following order: | abel 1, fi el d1, | abel 2, fi el d2, etc. (Note that
when components are added to a container, they are tracked in a list. If no index is spec-
ified when a component is added to a container, it will be added to the end of the list
using the next available index. As usual, this indexing starts from 0. A component can be
retrieved by index using the get Conponent (i nt i ndex) method.) If the labels and fields
are added correctly, all even-numbered components in the container will correspond to
labels, and all odd-numbered components will correspond to input fields.

2 The components must be placed in pairs that form two vertical columns.

3 Components that make up each pair must be placed opposite one another, for example,
I abel 1 and fi el d1. Each pair’s label and field must receive the same preferable height,
which should be the preferred height of the field.

4 Each left component (labels) must receive the same width. This width should be the
maximum preferable width of all left components.

5 Each right component (input fields) must also receive the same width. This width should
occupy all the remaining space left over from that taken by the left component’s column.

Example 4.6, found below, introduces our custom Di al ogLayout class which satisfies the
above design specification. This class is placed in its own package named dI . The code used to
construct the GUI is almost identical to that of the previous example. However, we will now
revert back to variant 1 and use an instance of Di al oglLayout instead of a Gri dLayout to
manage the plr JPanel .

@ Flight Reservation Dialog M=l E3
-
Date: |\ \ —
() First class
Frum:| New York hd ‘ B
To: |Lunuun i ‘ : Coach
Available Flights
Figure 4.16
Search | | Purchase | ‘ Exit USIng D al OgLayOUt :

custom layout manager

CHAPTER 4 LAYOUT MANAGERS

Example 4.6

FlightReservation.java

see \Chapter4\4

import java.awt.*;
import java.aw.event.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i nport javax.sw ng.event.*;

. . Import for
inport dl.*; o DialoglLayout class

public class FlightReservati on extends JFrane
{
public FlightReservation() {
super ("Fl i ght Reservation Dialog [Custom Layout]");

/1 Unchanged code from exanple 4.5

JPanel plr = new JPanel ();
plr. set Bor der (new EnptyBorder (10, 10, 10, 10));

pilr. set Layout (new Di al ogLayout (20, 5)); o ::T;g:rt

plr.add(new JLabel ("Date:"));
plr.add(new JTextFiel d());

plr.add(new JLabel ("From™"));
JConmboBox cbl = new JConmboBox();
cbl. addl t en(" New York");
plr.add(cbhl);

plr.add(new JLabel ("To:"));
JConmboBox cbh2 = new JConmboBox();
cb2. addl t en{" London") ;
plr.add(cbh2);

pl. add(plr);
get Cont ent Pane() . add(pl, BorderLayout. NORTH);

/1 Al remaining code is unchanged from example 4.5

DialogLayout.java
see \Chapter4\4\dl
package dl ;

import java.awt.*;
import java.util.*;

Means DialogLayout
public class Dial ogLayout inplenents Layout Manager can be used anywhere a

{ LayoutManager is used

CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS 123

protected int mdivider = -1; Width and
protected int mhGp = 10; gap values
protected int mvGp = 5;

. . Constructor which
public Dial ogLayout() {} 0 uses default gaps
public Dial ogLayout (int hGap, int vGap) {

m hGap = hGap;
m vGap vGap;
}

Constructor to
set gap values

From base interface,
not managing internal
components list

public voi d addLayout Comrponent (Stri ng nane, Conponent conp) {}

public void renovelLayout Conponent (Conponent conp) {}

public Dinension preferredLayout Si ze(Contai ner parent) {

int divider = getDivider(parent);

int w=0;
int h =0;
for (int k=1 ; k<parent.getConponentCount(); k+=2) {

Conmponent conp = parent. get Conponent (k) ;
Di mensi on d conp. get PreferredSi ze();
w = Math. max(w, d.w dth);
h += d. hei ght + mvGap;

}

h -= mvGap;

I nsets insets parent. getlnsets();
return new Di nensi on(divider+w+i nsets. | eft+insets.
h+i nset s. t op+i nsets. botton;

}

Returns preferred
size to lay out all

managed
components

Determine maximum
input field width and
accumulate height

o

Determine width
of labels column

Calculate
total pre-
ferred size

right,

publ i c Di mension m ni nurLayout Si ze(Cont ai ner parent) {

return preferredLayout Size(parent);

) 1)

public void | ayout Cont ai ner (Cont ai ner parent) { 0
int divider = getDivider(parent);

I nsets insets parent. getlnsets();

12

Minimum size will be the
same as the preferred size

Most important method,
calculates position and size
of each managed component

Determine divider

int w= parent.getWdth() - insets.left size and width of
- insets.right - divider; all input fields

int x = insets.left;

int y = insets.top;

for (int k=1 ; k<parent.getConponent Count(); k+=2) {

Conponent conpl
Conponent conp2
Di mensi on d

par ent . get Conponent (k-1);
par ent . get Conponent (k) ;
conp2. get PreferredSi ze();

di vi der-m hGap, d. height);
y, w, d. height);

conpl. set Bounds(x, v,
conp2. set Bounds(x+di vi der,
y += d. height + mvGap;
}
}

public int getHGap() { return mhGap; }

124 CHAPTER 4

Set each label and
input field to
calculated bounds

LAYOUT MANAGERS

45.1

public int getVGp() { return mvGap; }

public void setDivider(int divider) { Minimum size will
if (divider > 0) be the same as the
m di vi der = di vider; preferred size
}

public int getDivider() { return mdivider; }
protected int getDivider(Container parent) { If no divider
if (mdivider > 0) set yet
return m.divider;
int divider = 0;
for (int k=0 ; k<parent.getConponentCount(); k+=2) {

Determine
Conponent conp = parent. get Conponent (k) ; maximum label
Di mension d = conp. get PreferredSi ze(); size plus gap

di vider = Math. nax(divider, d.w dth);
}
di vi der += m_hGap;
return divider;
} ? Useful debugging
information
public String toString() {
return getd ass().getNane() + "[hgap=" + mhGp + ", vgap="
+ mvGap + ",divider=" + mdivider + "]";
}
}

Understanding the code
Class FlightReservation

This class now imports the dI package and uses the Di al ogLayout layout manager for JPanel
plr, which contains the labels and input fields. The dl package contains our custom layout,
Di al ogLayout .

Class DialogLayout

This class implements the Layout Manager interface to serve as our custom layout manager.
Three instance variables are needed:
e int mdivider: Width of the left components. This can be calculated or set to some
mandatory value.
* int mhGap: Horizontal gap between components.
* int mvGap: Vertical gap between components.

9 Two constructors are available to create a Di al ogLayout : a no-argument default constructor

and a constructor which takes horizontal and vertical gap sizes as parameters. The rest of the
code implements methods from the Layout Manager interface.

o The addLayout Conponent () and r enobvelLayout Conponent () methods are not used in

this class, and they receive empty implementations. We do not support an internal collection
of the components to be managed. Rather, we refer to these components directly from the
container which is being managed.

CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS 125

126

(-1

The purpose of the pref erredLayout Si ze() method is to return the preferable container
size required to lay out the components in the given container according to the rules used in
this layout. In our implementation, we first determine the di vi der size (the width of the first
column plus the horizontal gap, m hGap) by calling our get Di vi der () method.

int divider = getDivider(parent);

If no positive divider size has been specified using our set Di vi der () method (see below),
the get Di vi der () method looks at each even-indexed component in the container (this
should be all the labels if the components were added to the container in the correct order)
and returns the largest preferred width found plus the horizontal gap value, m hGap (which
defaults to 10 if the default constructor is used):
if (mdivider > 0)
return mdivider;
int divider = 0;
for (int k=0 ; k<parent.get Conponent Count(); k+=2) {
Conmponent conp = parent. get Conponent (k) ;
Di mension d = conp. getPreferredSi ze();
di vider = Math. max(divider, d.wdth);

}
di vider += m_hGap;
return divider;

Now, let’s go back to the pr ef err edLayout Si ze() method. Once get Di vi der () returns,
we then examine all the components in the container with odd indices (this should be all the
input fields) and determine the maximum width, w This is found by checking the preferred
width of each input field. While we are determining this maximum width, we are also con-
tinuing to accumulate the height, h, of the whole input fields column by summing each field’s
preferred height (not forgetting to add the vertical gap size, m vGap, each time; notice that
m_vGap is subtracted from the height at the end because there is no vertical gap for the last
field. Also remember that m vGap defaults to 5 if the the default constructor is used.)
int w= 0;
int h =0;
for (int k=1 ; k<parent.getConponentCount(); k+=2) {
Conponent conp = parent. get Conponent (k) ;
Di mension d = conp. getPreferredSi ze();
w = Mat h. max(w, d.w dth);
h += d. hei ght + mvGap;

}
h -= mvGap;

So at this point we have determined the width of the labels column (including the space
between columns), di vi der, and the preferred height, h, and width, w of the input fields col-
umn. So di vi der +w gives us the preferred width of the container, and h gives us the total
preferred height. Not forgetting to take into account any I nsets that might have been
applied to the container, we can now return the correct preferred size:

Insets insets = parent.getlnsets();
return new Di nensi on(divider+w+i nsets. | eft+insets.right,
h+i nset s. t op+i nsets. bottonj;

CHAPTER 4 LAYOUT MANAGERS

The purpose of the mi ni nunLayout Si ze() method is to return the minimum size required

D o lay out the components in the given container according to the rules used in this layout.
We return pr ef err edLayout Si ze() in this method, because we choose not to make a dis-
tinction between minimum and preferred sizes (to avoid over-complication).

@ ! ayout Cont ai ner () is the most important method in any layout manager. This method is
responsible for actually assigning the bounds (position and size) for the components in the

@ container being managed. First it determines the size of the di vi der (as discussed above),
which represents the width of the labels column plus an additional m hGap. From this, it
determines the width, w of the fields column by subtracting the container's left and right
insets and di vi der from the width of the whole container:

int divider = getDivider(parent);

Insets insets = parent.getlnsets();

int w= parent.getWdth() - insets.left
- insets.right - divider;

int x = insets.left;

int y = insets.top;

@ Then all pairs of components are examined in turn. Each left component receives a width
equal to di vi der - m hGap, and all right components receive a width of w Both left and right com-
ponents receive the preferred height of the right component (which should be an input field).

Coordinates of the left components are assigned starting with the container’s | nset's, x and
y. Notice that y is continually incremented based on the preferred height of each right com-
ponent plus the vertical gap, m vGap. The right components are assigned a y-coordinate iden-
tical to their left component counterpart, and an x-coordinate of x+di vi der (remember that
di vi der includes the horizontal gap, m hGap):

for (int k=1 ; k<parent.getConmponentCount(); k+=2) {
Conmponent conpl = parent. get Component (k-1);
Conmponent conp2 = parent. get Conponent (k) ;
Di mension d = conp2. getPreferredSi ze();

conpl. set Bounds(x, y, divider-mhGp, d.height);
conp2. set Bounds(x+di vider, y, w, d.height);
y += d. hei ght + mvGap;

}

m The set Di vi der () method allows us to manually set the size of the left column. The i nt
value, which is passed as a parameter, gets stored in the m di vi der instance variable. When-
ever m di vi der is greater than 0, the calculations of di vi der size are overridden in the get -
Di vi der () method and this value is returned instead.

@ ThetoString() method provides typical class name and instance variable information. (It is
always a good idea to implement informative t oSt ri ng() methods for each class. Although
we don't consistently do so throughout this text, we feel that production code should often
include this functionality.)

CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS 127

4.5.2

4.6

128

Running the code

Figure 4.16 shows the sample interface introduced in the previous section now using Di a-
| ogLayout to manage the layout of the input fields (the text field and two combo boxes) and
their corresponding labels. Note that the labels occupy only their preferred space and they do
not resize when the frame resizes. The width of the left column can be managed easily by
manually setting the di vi der size with the set Di vi der () method, as discussed above. The
input fields form the right column and occupy all the remaining space.

Using Di al ogLayout, all that is required is to add the labels and input fields in the
correct order. We can now use this layout manager each time we encounter label/input field
pairs without worrying about intermediate containers. In the next section, we will build upon
Di al ogLayout to create an even more general layout manager that can be used to create com-
plete dialog GUIs very easily.

Alignment across controls as well as within It is a common mistake in Ul
design to achieve good alignment with a control or component but fail to achieve
imer e thisacross a whole screen, panel, or dialog. Unfortunately, the architecture of
o Swing lends itself to this problem. For example, say you have four custom com-
ponents which inherit from a JPanel , each has its own layout manager and
each is functional in its own right. You might want to build a composite com-
ponent which requires all four. So you create a new component with a Gri d-
Layout , for example, then add each of your four components in turn.

The result can be very messy. The fields within each component will align—
three radio buttons, for example—but those radio buttons will not align with
the three text fields in the next component. Why not? The answer is simple.
With Swing, there is no way for the layout manager within each component to
negotiate with the others, so alignment cannot be achieved across the compo-
nents. The answer to this problem is that you must flatten out the design into
a single panel, as Di al ogLayout achieves.

CUSTOM LAYOUT MANAGER,
PART IlI: COMMON INTERFACES

In section 4.4 we saw how to choose both intermediate containers and appropriate layouts
for placing components according to a given specification. This required the use of several
intermediate containers, and several variants were developed in a search for the best solution.
This raises a question: can we somehow just add components one after another to a container
which is intelligent enough to lay them out as we would typically expect? The answer is yes, to
a certain extent.

In practice, the contents of many Java frames and dialogs are constructed using a scheme
similar to the following (we realize that this is a big generalization, but you will see these sit-
uations arise in other examples later in this text):

1 Groups (or panels) of controls are laid out in the vertical direction.

CHAPTER 4 LAYOUT MANAGERS

2 Labels and their corresponding input fields form two-column structures as described in
the previous section.

3 Large components (such as lists, tables, text areas, and trees) are usually placed in scroll
panes and they occupy all space in the horizontal direction.

4 Groups of buttons, including check boxes and radio buttons, are centered in an interme-
diate container and laid out in the horizontal direction. (In this example we purposefully
avoid the vertical placement of buttons for simplicity.)

Example 4.7, found below, shows how to build a layout manager that places components
according to this specification. Its purpose is to further demonstrate that layout managers can
be built to define template-like pluggable containers. By adhering to intelligently designed
specifications, such templates can be developed to help maximize code reuse and increase pro-
ductivity. Additionally, in the case of large-scale applications, several different interface design-
ers may consider sharing customized layout managers to enforce consistency.

Example 4.7 introduces our new custom layout manager, Di al ogLayout 2, which builds
upon Di al ogLayout . To provide boundaries between control groupings, we construct a new
component, Di al ogSepar at or, which is simply a label containing text and a horizontal bar
that is drawn across the container. Both Di al ogLayout 2 and Di al ogSepar at or are added
to our dl package. The Fl i ght Reser vat i on class now shows how to construct the sample
airline ticket reservation interface we have been working with since section 4.4 using Di al og-
Layout 2 and Di al ogSepar at or . In order to comply with our new layout scheme, we are
forced to place the radio buttons in a row above the list component. The main things to note
are that the code involved to build this interface is done with little regard for the existence of
a layout manager, and that absolutely no intermediate containers need to be created.

NOTE Constructing custom layout managers for use in a single application is not recom-
mended. Only build them when you know that they will be reused again and again
to perform common layout tasks. In general, custom layout manager classes belong
within custom packages or they should be embedded as inner classes in custom
components.

@Flighl Reservation Dialog [Custom Layout - 2] [H[=] E3

Date: |

From; |New York - |

To: |Lundon - |

— opti

) First class ' Business) Coach

— fwail Flights

Figure 4.17
Search | | Purchase | | Exi Using the Di al ogLayout 2

custom Iayout manager

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 129

130

Example 4.7

FlightReservation.java

see \Chapter4\5

import java.awt.*;

i mport java.awt.event.*;

i mport javax.sw ng.*;

i mport javax.sw ng. border.*;
i mport javax.sw ng. event. *;

i mport dl.*;

public class FlightReservation extends JFrane

{
public FlightReservation() {

super ("Fl i ght Reservation Dial og [Custom Layout - 2]");

Cont ai ner ¢ = get Cont ent Pane();
c. set Layout (new Di al ogLayout 2(20, 5));

c.add(new JLabel ("Date:"));
c.add(new JTextFiel d());

c. add(new JLabel ("From")); All components o/
JConboBox cbl = new JConboBox(); added directly to
cbl. addl t em(" New York"); the content pane

) and managed by
c.add(cbl); the new layout
c. add(new JLabel ("To:"));

JConmboBox ch2 = new JConboBox();

cbh2. addl ten(" London") ; Separates

c. add(cb2); /o groups of

c. add(new Di al ogSeparator ("Avail able Flights")); components

JList list = new JList();

Jscrol | Pane ps = new JScrol | Pane(list); Separates

c.add(ps); /e groups of
components

c. add(new Di al ogSeparator (" Options"));

Butt onG oup group = new ButtonG oup();

JRadi oButton r1 = new JRadi oButton("First class");
group. add(r1l);

c.add(r1);

JRadi oButton r2 = new JRadi oButton("Busi ness");
group. add(r2);
c.add(r2);

JRadi oButton r3 = new JRadi oButton("Coach");
group. add(r3);
c.add(r3);

c. add(new Di al ogSeparator());

JButton bl = new JButton("Search");

CHAPTER 4 LAYOUT MANAGERS

c.add(bl);

JButton b2 = new JButton("Purchase");

c.add(b2);

JButton b3 = new JButton("Exit");
c.add(b3);

set Def aul t O oseOper ati on(EXI T_ON_CLOSE) ;
pack();

setVisible(true);

}

public static void main(String argv[]) {
new Fl i ght Reservation();

}
}

DialogLayout2.java
see \Chapter4\5\dl
package dl ;

import java.awt.*;
import java.util.*;

i mport javax.sw ng. *;

/o All components
added directly to
the content pane

and managed by
the new layout

Implements
LayoutManager to be a
custom LayoutManager

public class DialoglLayout?2 inplenments Layout Manager

{
protected static final int COWP_TWO COL = O;
protected static final int COW_BIG = 1,
protected static final int COW_BUTTON = 2;

protected int mdivider = -1;
protected int mhGp = 10;

protected int mvGp = 5;

protected Vector mv = new Vector();

public Dial ogLayout2() {}

public Dial ogLayout2(int hGap, int vGp) {
m hGp = hGap;
mvGap = vGap;

}

public voi d addLayout Corponent (String nane,

Constants to specify
/o how to manage specific

component types

Width and gap values
/o and components list

Steps through parent's
components totalling
preferred layout size

Conponent conp) {}

public void renmovelLayout Conponent (Corponent conp) {}

publ i c Di mension preferredLayout Si ze(Cont ai ner

mv.renoveAl | El enents();
int w= 0;
int h =0;

int type = -1;

for (int k=0 ; k<parent.get Conponent Count ();

Conponent conp = parent. get Conponent (K);

parent) {

k++) {

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 131

int newlype = getLayout Type(conp);
if (k ==0)
type = newlype;

Found break in sequence
of component types

if (type !'= newlype) {
Di mension d = preferredLayout Si ze(mv, type);
w = Mat h. max(w, d.width);
h += d. height + mvGap;
myv.renmoveAl | El enents();
type = newlype,;

}
m v. addEl emrent (conp) ;
}
Di nension d = preferredLayout Si ze(mv, type); Process last block
w = Math. max(w, d.w dth); w of same-typed
h += d. hei ght + mvGap; components
h -= mvGap;
Insets insets = parent.getlnsets(); Compute final
return new Di nensi on(w+i nsets. | eft+insets.right, w preferred size
h+i nset s. t op+i nsets. botton;
}
protected Di nensi on preferredLayout Si ze(Vector v, int type) {
int w=0; Steps through a %
int h =0 components list of a
switch (type) specific type, totalling
{ preferred layout size

case COW_TWO COL:
int divider = getDivider(v);
for (int k=1 ; k<v.size(); k+=2) {
Conponent conp = (Conponent)v. el ement At (k) ; /m Assumes two-

Di mensi on d = conp. get PreferredSi ze(); column
w = Math. max(w, d.width): arrangement,
h += d. hei ght + mvGap; computes
} preferred size
h -= mvGap;
return new Di nensi on(divider+w, h);
case COW_BI G
for (int k=0 ; k<v.size(); k++) {
Conmponent conp = (Conponent)v. el ement At (k) ; Assumes

Di mension d = conp. getPreferredSi ze();

> components take
w = Mat h. max(w, d.width);

up entire width,

h += d. hei ght + mvGap; computes
} preferred size
h -= mvGap;
return new Di mension(w, h);
case COVP_BUTTON: Assumes centered
Di nensi on d = get MaxDi nensi on(v); row of equal width
w = d.width + mhGap; components,
h = d. hei ght; computes
return new Di mensi on(w*v. size()-mhGap, h); preferred size

132 CHAPTER 4 LAYOUT MANAGERS

}
throw new |11 egal Argunent Exception("l11egal type "+type);

}

publ i c Di mension mini munmLayout Si ze(Cont ai ner parent) {
return preferredLayout Size(parent);

}
)))) m Lays out container,

public void | ayout Cont ai ner (Cont ai ner parent) { treating blocks of same-

mv. renoveAl | El ements(); typed components

int type = -1; in the same way

Insets insets = parent.getlnsets();

int w= parent.getWdth() - insets.left - insets.right;

int x = insets.left;

int y = insets.top;

for (int k=0 ; k<parent.get Component Count (); k++) {
Conponent conp = parent. get Conponent (k) ;
int newType = getLayout Type(conp);
if (k ==0)
type = newlype;
if (type != newType) ({
y = layout Components(myv, type, X, y, W;
myv.renmoveAl | El enents();
type = newlype;
}
m_v. addEl ement (conp) ;
}
y = layout Components(myv, type, X, y, W;
mv.renoveAl | El ements();

}
protected int |ayoutConponents(Vector v, int type, (B Lays out block
int x, inty, int w of same-typed
{ components, checking

switch (type) for component type

{ case COMP_TWO COL: Assumes tv::o-lcolumr:
int divider = getDivider(v); arrangement, lays ou m\
for (int k=1 : k<v.size(): k+=2) { each pair in that fashion

Conponent conpl = (Conponent)v. el enent At (k-1);
Conponent conp2 = (Conponent)v. el ement At (k) ;

Di mensi on d = conp2. get PreferredSi ze();

conpl. set Bounds(x, y, divider-mhGap, d.height);
conp2. set Bounds(x+di vider, y, wdivider, d.height);
y += d. height + mvGap;

}
return y;
case COW_BI G Assumes
for (int k=0 ; k<v.size(); k++) { components take
Conponent conp = (Conponent)v. el ement At (k) ; up entire width,
Di mension d = conp. getPreferredSi ze(); one component
conp. set Bounds(x, y, w, d.height); per row

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 133

134

} width, one component per row
return y;
case COVP_BUTTON:

Di nensi on d = get MaxDi nensi on(v);

int ww = d.width*v.size() + mhGap*(v.size()-1);

int xx = x + Math. max(0, (w - ww)/2); Assumes

for (int k=0 ; k<v.size(); k++) { /m centered row
Conponent conp = (Conponent)v. el ement At (k) ; of equal width
conp. set Bounds(xx, y, d.w dth, d.height); ;:omp;nents,
xx += d.width + m hGap; ;ays them out

) in that fashion

return y + d. height;

y += d. hei ght + m vGap; Assumes components take up entire Q\T

}
throw new |11 egal Argunent Exception("lllegal type "+type);

}
public int getHGap() { return mhGap; }

public int getVGap() { return mvGap; }

public void setDivider(int divider) {
if (divider > 0)
m di vi der = di vi der;

}
public int getDivider() { return mdivider; }

protected int getDivider(Vector v) {

if (mdivider > 0)
return mdivider;

int divider = 0;

for (int k=0 ; k<v.size(); k+=2) {
Conmponent conp = (Conponent)v. el ement At (k) ;
Di mension d = conp. getPreferredSi ze();
di vider = Math. max(divider, d.wdth);

}

di vider += m_hGap;

return divider;

}

protected Di nensi on get MaxDi mensi on(Vector v) {
int w=0;
int h =0;

for (int k=0 ; k<v.size(); k++) {
Conmponent conp = (Conponent)v. el ement At (k) ;
Di mension d = conp. getPreferredSi ze();
w = Mat h. max(w, d.w dth);
h = Mat h. max(h, d.height);
}
return new Di nension(w, h);

}

protected int getLayout Type(Conponent conp) {
if (conp instanceof AbstractButton)

CHAPTER 4 LAYOUT MANAGERS

return COVP_BUTTON,
else if (conmp instanceof JPanel ||
conp instanceof JScroll Pane ||
conp i nstanceof Dial ogSeparator)
return COVP_BI G
el se
return COW_TWO CO;
}

public String toString() {
return getC ass().getNane() + "[hgap=" + mhGap + ", vgap="
+ mvGap + ", divider=" + mdivider + "]"

} ;
}

see \Chapter4\5\dl
package dl ;
import java.awt.*;

i mport javax.sw ng.*;

public class Di al ogSepar at or extends JLabel @ Implements horizontal
{ separator between
public static final int OFFSET = 15; vertically-spaced
components
public Dial ogSeparator() {}
public Dial ogSeparator(String text) { super(text); } Returns shallow

area with a small
fixed height and
variable width

public Dimension getPreferredSize() {

return new Di mensi on(getParent().getWdth(), 20);
}
public Dimension getM nimunSi ze() { return getPreferredSize(); }
public Dimension get Maxi munSi ze() { return getPreferredSize(); }

public void pai nt Coponent (G aphics g) { @ Draws separating
super . pai nt Conponent (g) ; :al’:\:::n::lsed
g. set Col or (get Background()); PP

g.fillRect (0, O, getWdth(), getHeight());

Di mension d = getSize();

int y = (d.height-3)/2;

g. set Col or (Col or. white);
g.drawtine(l, y, d.width-1, y);

y++

g.drawtine(0, vy, 1, vy);

g. set Col or (Col or. gray);

g.drawti ne(d.width-1, y, d.width, y);
y++

g.drawtine(1, y, d.width-1, y);

String text = getText();
if (text.length()==0)

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 135

4.6.1

136

return;

g. set Font (get Font ());

Font Metrics fm= g.getFontMetrics();
y = (d. height + fmgetAscent())/2;
int | =fmstringWdth(text);

g. set Col or (get Background());
g.fill Rect (OFFSET-5, 0, OFFSET+l, d. height);

g. set Col or (get Foreground());
g.drawString(text, OFFSET, vy);

}
}

Understanding the code
Class FlightReservation

This variant of our airplane ticket reservation sample application uses an instance of Di al ogLayout 2
as a layout for the whole content pane. No other JPanel s are used, and no other layouts are
involved. All components are added directly to the content pane and managed by the new lay-
out. This incredibly simplifies the creation of the user interface. Note, however, that we still
need to add the label/input field pairs in the correct order because Di al ogLayout 2 manages
these pairs the same way that Di al ogLayout does.

Instances of our Di al ogSeparator class are used to provide borders between groups of
components.

Class DialogLayour2

This class implements the Layout Manager interface to serve as a custom layout manager. It
builds on features from Di al ogLayout to manage all components in its associated container.
Three constants declared at the top of the class correspond to the three types of components
which are recognized by this layout:

e int COWP_TWO COL: Text fields, combo boxes, and their associated labels which must be
laid out in two columns using a Di al ogLayout .

* int COMP_BI G Wide components (instances of JPanel , JScrol | Pane, or Di al og-
Separ at or) which must occupy the maximum horizontal container space wherever
they are placed.

* int COMP_BUTTON: Button components (instances of Abstract Butt on) which must
all be given an equal size, laid out in a single row, and centered in the container.

The instance variables used in Di al ogLayout 2 are the same as those used in Di al ogLayout
with one addition: we declare Vect or m v to be used as a temporary collection of components.

To lay out components in a given container we need to determine, for each component,
which category it falls under with regard to our Di al ogLayout 2. COVP_XX constants. All
components of the same type which are added in a contiguous sequence must be processed
according to the specific rules described above.

The pr ef erredLayout Si ze() method steps through the list of components in a given con-
tainer, determines their type with our custom get Layout Type() method (see below), and

CHAPTER 4 LAYOUT MANAGERS

stores it in the newType local variable. The local variable t ype holds the type of the previous
component in the sequence. For the first component in the container, t ype receives the same
value as newType.

public Di mension preferredLayout Si ze(Cont ai ner parent) {
myv.renmoveAl | El enents();
int w=0;
int h=0;
int type = -1,
for (int k=0 ; k<parent.get Conponent Count (); k++) {
Conmponent conp = parent. get Conmponent (k) ;
int newlType = getLayout Type(conp);
if (k ==0)
type = newlype;
© A break in the sequence of types triggers a call to the overloaded pr ef er r edLayout Si ze(Vec-
tor v,int type) method (discussed below) which determines the preferred size for a temporary
collection of the components stored in the Vect or m v. Then wand h local variables, which
are accumulating the total preferred width and height for this layout, are adjusted, and the
temporary collection, m v, is cleared. The newly processed component is then added to m v.
if (type !'= newType) {
Di mension d = preferredLayout Si ze(mv, type);
w = Math. max(w, d.width);
h += d. hei ght + mvGap;
mv.renmoveAl | El ements();
type = newlype;
}

m v. addEl ement (conp) ;
}

o Once our loop finishes, we make the unconditional call to pr ef er r edLayout Si ze() to take
into account the last (unprocessed) sequence of components and update h and w accordingly
(just as we did in the loop). We then subtract the vertical gap value, m vGap, from h because
we know that we have just processed the last set of components and therefore no vertical gap

© s necessary. Taking into account any I nsets set on the container, we can now return the
computed preferred size as a Di mensi on instance:

Di mension d = preferredLayout Si ze(mv, type);

w = Mat h. max(w, d.w dth);
h += d. hei ght + mvGap;

h -= mvGap;
Insets insets = parent.getlnsets();

return new Di mensi on(w+i nsets. | eft+insets.right,
h+i nsets. top+i nsets. botton);

}

@ The overloaded method preferredLayout Si ze(Vector v, int type) computes the
® preferred size to lay out a collection of components of a given type. This size is accumulated in
w and h local variables. For a collection of type COMP_TWO_CCL, this method invokes a

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 137

138

mechanism that should be familiar (see section 4.5). For a collection of type COVP_BI G this

@ method adjusts the preferable width and increments the height for each component, since

®

06

®

these components will be placed in a column:

case COW_BI G
for (int k=0 ; k<v.size(); k++) {
Conponent conp = (Conponent)v. el enment At (k) ;
Di mension d = conp. getPreferredSize();
w = Mat h. max(w, d.width);
h += d. height + mvGap;

}
h -= mvGap;
return new Di mension(w, h);

For a collection of type COVP_BUTTON, this method invokes our get MaxDi mensi on() method
(see below) to calculate the desired size of a single component. Since all components of this
type will have an equal size and be contained in one single row, the resulting width for this
collection is calculated through multiplication by the number of components, v. si ze():

case COVP_BUTTON:
Di mensi on d = get MaxDi nensi on(Vv);
w = d.width + m hGap;
h = d. hei ght;
return new Di mension(wtv. si ze()-m_hGap, h);

The | ayout Cont ai ner (Cont ai ner par ent) method assigns bounds to the components in
the given container. (Remember that this is the method that actually performs the layout of its
associated container.) It processes an array of components similar to the pr ef er r edLayout -
Si ze() method. It steps through the components in the given container, forms a temporary
collection from contiguous components of the same type, and calls our overloaded | ayout -
Conponent s(Vector v,int type,int x,inty,intw method to lay out that collection.

The | ayout Cont ai ner (Vector v, int type,int x,int y,int w) method lays out com-
ponents from the temporary collection of a given type, starting from the given coordinates x
and y, and using the specified width, w of the container. It returns an adjusted y-coordinate
which may be used to lay out a new set of components.

For a collection of type COMP_TWO_COL, this method lays out components in two columns
identical to the way Di al ogLayout did this (see section 4.5). For a collection of type COVP_
Bl G the method assigns all available width to each component:

case COW_BI G
for (int k=0 ; k<v.size(); k++) {
Conponent conp = (Conponent)v. el enment At (k) ;
Di mension d = conp. getPreferredSi ze();
conp. set Bounds(x, y, w, d.height);
y += d. height + mvGap;
}

return vy;

For a collection of type COVP_BUTTON, this method assigns an equal size to each component
and places the components in the center, arranged horizontally:

CHAPTER 4 LAYOUT MANAGERS

4.6.2

case COVP_BUTTON:

Di mension d = get MaxDi nmensi on(v);

int we = d.width*v.size() + mhGp*(v.size()-1);

int xx = x + Math. max(0, (w - ww)/2);

for (int k=0 ; k<v.size(); k++) {
Conponent conp = (Conponent)v. el ement At (k) ;
conp. set Bounds(xx, y, d.width, d.height);
xx += d.width + m hGap;

}
return y + d.height;

NOTE A more sophisticated implementation might split a sequence of buttons into several
rows if not enough space is available. To avoid over-complication, we do not do
that here. This might be an interesting exercise to give you more practice at cus-
tomizing layout managers.

The remainder of the Di al ogLayout 2 class contains methods which were either explained
already, or which are simple enough to be considered self-explanatory.

Class DialogSeparator

This class implements a component that is used to separate two groups of components placed
in a column. It extends JLabel to inherit all its default characteristics such as font and fore-
ground. Two available constructors allow the creation of a Di al ogSepar at or with or with-
out a text label.

The get Pref erredSi ze() method returns a fixed height, and a width equal to the width of
the container. The methods get M ni nuni ze() and get Maxi munsi ze() simply delegate
calls to the get Pref erredSi ze() method.

The pai nt Conponent () method draws a separating bar with a raised appearance across the
available component space, and it draws the title text (if any) at the left-most side, taking into
account a pre-defined offset, 15.

Running the code

Figure 4.17 shows our sample application which now uses Di al ogLayout 2 to manage the
layout of a/l components. You can see that we have the same set of components placed and
sized in accordance with our general layout scheme presented in the beginning of this section.
The most important thing to note is that we did not have to use any intermediate containers
or layouts to achieve this: all components are added directly to the frame’s content pane,
which is intelligently managed by Di al ogLayout 2.

CUSTOM LAYOUT MANAGER, PART II: COMMON INTERFACES 139

4.7

140

Button placement consistency It is important to be consistent with the place-

ment of buttons in dialogs and option panes. In the example shown here, a

inerwe Symmetrical approach to button placement has been adopted. This is a good
o safe choice and it ensures balance. With data entry dialogs, it is also common
to use an asymmetrical layout such as the bottom right-hand side of the dialog.

In addition to achieving balance with the layout, by being consistent with your
placement you allow the user to rely on directional memory to find a specific
button location. Directional memory is strong. Once the user learns where you
have placed buttons, he will quickly be able to locate the correct button in
many dialog and option situations. It is therefore vital that you place buttons
in a consistent order—for example, always use OK, Cancel, never Cancel, OK.
As a general rule, always use a symmetrical layout with option dialogs and be
consistent with whatever you decide to use for data entry dialogs.

It makes sense to develop custom components such as JOKCancel But t ons and
JYesNoBut t ons. You can then reuse these components every time you need
such a set of buttons. This encapsulates the placement and ensures consistency.

DyYNAMIC LAYOUT IN A JAVABEANS CONTAINER

In this section we will use different layouts to manage JavaBeans in a simple container
application. This will help us to further understand the role of layouts in dynamically
managing containers with a variable number of components. Example 4.8 also sets up the
framework for a powerful bean editor environment that we will develop in chapter 18 using
JTabl es. By allowing modification of component properties, we can use this environment to
experiment with preferred, maximum, and minimum sizes, and we can observe the behavior
that different layout managers exibit in various situations. This provides us with the ability to
learn much more about each layout manager, and allows us to prototype simple interfaces
without actually implementing them.

Example 4.8 consists of a frame container that allows the creation, loading, and saving
of JavaBeans using serialization. Beans can be added and removed from this container, and we
implement a focus mechanism to visually identify the currently selected bean. Most importantly,
the layout manager of this container can be changed at run-time. (You may want to review the
JavaBeans material in chapter 2 before attempting to work through this example.) Figures 4.18
through 4.23 show BeanCont ai ner using five different layout managers to arrange four
C ock beans. These figures and figure 4.24 are explained in more detail in section 4.7.2.

CHAPTER 4 LAYOUT MANAGERS

File Edit Layout

NNNS

Figure 4.18

BeanCont ai ner displaying
four clock components
using a FI owLayout

Egg Simple Bean Container _ (O] x|
File Edit Layout

\ \ Figure 4.19
BeanCont ai ner displaying
four clock components
using a Gi dLayout

E‘E Simple Bean Container S [=
File dit Layout

CEEE

|

Figure 4.20

BeanCont ai ner displaying
four clock components
using a horizontal BoxLayout

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 141

142

@ Simple Bean Container _ (O] x|
File Edit Layout
-,
».\
-,
».\
[} Simple Bean Container [_ o[=]
File Edit Layout
™ ™
™ ™
@ Simple Bean Container M=l B3

File Edit Layout

[]

L1

Figure 4.21

BeanCont ai ner displaying
four clock components
using a vertical BoxLayout

Figure 4.22

BeanCont ai ner displaying
four clock components
using a Di al oglLayout

Figure 4.23

BeanCont ai ner displaying
button/input field pairs
using Di al ogLayout

CHAPTER 4 LAYOUT MANAGERS

@Bean Container [Properties Tabl @Editing JTextField

File Evit Layout optimizedDraP\arriangelEn:abled true
paintingTile false
Button 1 prefenedGorallableyiewponsize 4,71
| | | preferred3ize 4,40
registeredkeyStrokes [Ljarvan
[} Editing JButton _ (O] x| };u\;}{s
Property Walue || false
icon null 21| false
insets 17,5178 i
lahel Button 1] | null
layaut jawax swing. CverlayLayoutigad. . 0,00
managingFocus false 204,20
rmargin 14,2142
maxirnumSize 351
minimumsize 35,1
mnemonic errar
madel javax swing DefaultButtonhodel .| |
Example 4.8

BeanContainer.java

see \Chapter4\6

import java.

aw . *;

inmport java.awt.event.?*;
inmport java.io.*;
import java. beans. *;

import java.lang.reflect.*;

i mport javax.sw ng. *;

import dl.*;

{

protected File mcurrentDir = new File(".");

protected Conponent m activeBean;
protected String mclassNane = "cl ock. C ock"; beans in container
protected JFil eChooser m chooser = new JFil eChooser();

publ i ¢ BeanCont ai ner () {
super (" Si npl e Bean Contai ner");
get Cont ent Pane() . set Layout (new Fl owLayout ());

set Si ze(300, 300);

Figure 4.24

The BeanCont ai ner property
editor environment as it is
continued in chapter 18

public class BeanContai ner extends JFrame inplenments FocusLi stener
Provides frame for 3

application and
listens for focus
transfer between

JPopupMenu. set Def aul t Li ght Wi ght PopupEnabl ed(f al se);

JMenuBar

menuBar = createMenuBar();

set JMenuBar (menuBar) ;

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER

143

try {
mcurrentDir = (newFile(“.”)).getCanonical File();
get Canoni cal Fil e();
}
catch(1 OException ex){}
set Def aul t O oseQOper ati on(EXI T_ON_CLCSE) ;
set Vi si bl e(true);

}

protected JMenuBar createMenuBar () { Create.s menu bar,
JMenuBar nenuBar = new JMenuBar () ; menu items, and

action listeners
JMenu nFile = new JMenu("File");

JMenultem mtem = new JMenul tenm("New...");
ActionLi stener | st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Thread newt hread = new Thread() {
public void run() {
String result = (String)JOpti onPane. show nput Di al og(

BeanCont ai ner. t hi s,
"Pl ease enter class nane to create a new bean",
"I nput", JOptionPane. | NFORMATI ON_MESSAGE, nul I,

null, mcl assNane);
repaint();
if (result==null)
return;
try {

m cl assNanme = result;
Class cls = Cass.forNane(result);

Load class,
bj ect obj = cls.new nstance(); instantiate it
if (obj instanceof Component) { and add it ’

m acti veBean = (Conponent)obj;
m act i veBean. addFocusLi st ener (

to container

BeanCont ai ner. t hi s); Request focus
m act i veBean. r equest Focus(); and Seif up
get Cont ent Pane() . add(m act i veBean) ; FocusListener
}
val i date();

}
catch (Exception ex) {
ex. printStackTrace();
JOpt i onPane. showessageDi al og(
BeanContainer.this, "Error: "+ex.toString(),
"Warni ng", JOptionPane. WARNI NG_MESSAGE) ;
}
}
b
newt hread. start();
}
b
m t em addAct i onLi stener (I st);
nFile. add(mteny;

144 CHAPTER 4 LAYOUT MANAGERS

mtem = new JMenulten("Load...");
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Thread newt hread = new Thread() {
public void run() {

m chooser.setCurrentDirectory(mecurrentDir);

m chooser. set Di al ogTi t 1 e(

"Pl ease select file with serialized bean");

int result = m_chooser. showOpenDi al og(
BeanCont ai ner. t his);
repaint();

if (result !'= JFil eChooser. APPROVE_CPTI ON)

return;

mcurrentDir = mchooser.getCurrentDirectory();

Fil e fChoosen = m chooser. get Sel ectedFile();

try {
Fil el nput Stream f Stream =
new Fi | el nput St r ean{ f Choosen) ;
bj ectlnput stream =
new Cbj ect | nput Strean(f Stream;
bj ect obj = streamreadObject();
if (obj instanceof Conponent) ({
m acti veBean = (Conponent) obj ;
m act i veBean. addFocusLi st ener (
BeanCont ai ner.this);
m act i veBean. r equest Focus();
get Cont ent Pane() . add(m_ acti veBean);
}
stream cl ose();
fStream cl ose();
val i date();
}
catch (Exception ex) {
ex. printStackTrace();
JOpt i onPane. showivessageDi al og(

BeanContai ner.this, "Error: "+ex.toString(),

/0

"Warni ng", JOptionPane. WARNI NG_MESSAGE) ;

}
repaint();
}
H
new hread. start();
}
H
m t em addAct i onLi stener (I st);
nFile. add(mtemn;

mtem = new JMenulten(" Save...");
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Thread newt hread = new Thread() {
public void run() {

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER

Select a file
containing a
serialized bean

Open a stream, read
the object, and add
it to the container,

if it is a Component

145

146

if (mactiveBean == null)
return;
m chooser . setDi al ogTitl e(

"Pl ease choose file to serialize bean");
m chooser.setCurrentDirectory(mcurrentDir);

int result = mchooser.showSaveDi al og(
BeanCont ai ner.this);
repaint();

if (result != JFil eChooser. APPROVE_OPTI ON)

return;

mecurrentDir = mchooser.getCurrentDirectory();
Fil e f Choosen = m chooser. get Sel ectedFil e();

try {
Fi | eCut put Stream f Stream =

new Fi | eCut put St rean(f Choosen) ;
bj ect Qut put stream =
new Obj ect Qut put Strean(fStream;
stream witeQbject(mactiveBean);
stream cl ose();
f Stream cl ose();
}
catch (Exception ex) {
ex. printStackTrace();
JOpt i onPane. showessageDi al og(

BeanContainer.this, "Error: "+ex.toString(),

"Warni ng", JOptionPane. WARNI NG_MESSAGE) ;

}
}
b
newt hread. start();
}

b
m t em addAct i onLi stener (I st);
nFile. add(mten);

nFi |l e. addSeparat or () ;

mtem= new JMenultenm("Exit");
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
System exit(0);
}
}s
m t em addAct i onLi stener (| st);
nFile. add(mtenj;
nmenuBar . add(nFil e);

JMenu nEdit = new JMenu("Edit");

mtem = new JMenul ten("Del ete");
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
if (mactiveBean == null)
return;

CHAPTER 4 LAYOUT MANAGERS

/0

Serialize
component to
stream and
write it to file

Item and action
to exit application

Delete will remove
the currently active
component from
the container

get Cont ent Pane() . renove(m activeBean);
m activeBean = null;
val i date();
repaint();
}
H
m t em addAct i onLi stener (I st);
nEdit.add(mtemn);
menuBar . add(nEdit);

JMenu nmLayout = new JMenu("Layout");
Butt onGroup group = new ButtonG oup();

m tem = new JRadi oButt onMenul t en{ " Fl owLayout");
m tem set Sel ected(true);
I st = new ActionListener() {
public void actionPerforned(ActionEvent e){
get Cont ent Pane() . set Layout (new Fl owLayout ());
val i date();
repaint();
}
H
m t em addAct i onLi stener (I st);
group. add(m tem;
mLayout . add(m tem;

m tem = new JRadi oButtonMenul ten{"Gi dLayout");
I st = new ActionListener() {
public void actionPerfornmed(ActionEvent e){
int col = 3;
int row = (int)Math.ceil (getContentPane().
get Component Count () / (doubl e) col) ;
get Cont ent Pane() . set Layout (new Gri dLayout (row,
val i date();
repaint();
}
H
m t em addAct i onLi stener (I st);
group. add(mtem;
mLayout . add(m tem ;

m tem = new JRadi oButt onMenul t en{ " BoxLayout -
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
get Cont ent Pane() . set Layout (new BoxLayout (
get Cont ent Pane(), BoxLayout.X AXIS));
val i date();
repaint();

X')

}
H
m t em addAct i onLi stener (I st);
group. add(m tem;
mLayout . add(m tem;

m tem = new JRadi oBut t onMenul t en{ " BoxLayout - Y");

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER

Delete will remove
the currently active
component from
the container

Relayout with
FlowLayout
configuration

Relayout with

GridLayout
configuration
10,

col, 10));

Relayout with
vertical BoxLayout
configuration

147

I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
get Cont ent Pane() . set Layout (new BoxLayout (
get Cont ent Pane(), BoxLayout.Y_AXIS));
val i date();
repaint();
}
b
m t em addAct i onLi stener (I st);
group. add(mtem;
nmLayout . add(m tem;

m tem = new JRadi oButt onMenul t em(" Di al ogLayout");
I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
get Cont ent Pane() . set Layout (new Di al ogLayout ());
val i date();
repaint();
}
b
m t em addAct i onLi stener (I st);
group. add(mtem;
nmLayout . add(m tem;

nmenuBar . add(nLayout);

return nmenuBar; m On focus change,
stores currently

active component

and redisplays

}

public void focusGi ned(FocusEvent e) {
m acti veBean = e. get Conponent ();
repaint();

}

public void focusLost (FocusEvent e) {}

/1 This is a heavywei ght conponent so we override paint
/1 instead of paintConponent. super.paint(g) wll

/1 paint all child conponents first, and then we

[/l sinply draw over top of them

public void paint(Gaphics g) { @ Redraw container
super . pai nt (g) ; with box around
currently active
if (mactiveBean == null) component
return;

Poi nt pt = getLocati onOnScreen();

Point ptl = m.activeBean. getLocati onOnScreen();
int x =ptl.x - pt.x - 2;

int y=mptly- pt.y - 2;

int w= mactiveBean.getWdth() + 2;

int h = mactiveBean. getHeight() + 2;

g. set Col or (Col or. bl ack) ;
g.drawRect (x, y, w, h);

148 CHAPTER 4 LAYOUT MANAGERS

public static void main(String argv[]) {
new BeanCont ai ner () ;
}
}

see \Chapter4\6\clock
package cl ock;

i mport java.applet.*;
import java.awt.*;
import java.awt.event.*;
i mport java. beans. *;
inmport java.io.*;

import java.util.*;

i mport javax.sw ng. *;
i mport javax.sw ng. border.*;

public class C ock extends JButton
i npl enents Custom zer, Externalizable, Runnable

{

protected PropertyChangeSupport m hel per;
protected boolean mdigital = false;
protected Cal endar m cal endar;

protected Dinension mpreffSize;

public O ock() {
m cal endar = Cal endar. get I nstance();
m _hel per = new PropertyChangeSupport (this);

Border br1l = new EtchedBorder (Et chedBor der. RAI SED,

Col or.white, new Color(128, 0, 0));

Border br2 = new MatteBorder (4, 4, 4, 4, Color.red);

set Bor der (new ConpoundBorder (br1, br2));

set Backgr ound(Col or. white);
set For egr ound(Col or. bl ack) ;

(new Thread(this)).start();
}

public void witeExternal (ObjectQutput out)
throws | CException {
out.writeBoolean(mdigital);
out . writeCbject(getBackground());
out.writeObject(getForeground());
out.writeObject(getPreferredSize());

}

public void readExternal (Objectlnput in)
throws | CException, O assNotFoundException {
setDigital (i n.readBool ean());
set Background((Col or)in.readCbject());
set Foreground((Col or)in.readChject());

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER

Clock bean on button
which can listen for
property changes,
manage its own
serialization, and run
on a separate thread

Constructor creates
helper objects, puts
“clock-like” border

on, and starts a new
thread to run on

Managed serialization,
writing out each field
and reading it back in
the same order

149

set PreferredSi ze((Di mension)in.readject());

}

public Di nension getPreferredSize() {
if (mpreffSize !'= null)
return mpreffSize;
el se
return new Di nensi on(50, 50);

}

public void setPreferredSi ze(Di nension preffSize) {
m preffSize = preffSize;

}

public Di mension getM ni munti ze() {
return getPreferredSi ze();

}

publ i c Di mension get Maxi muntsi ze() {
return getPreferredSi ze();

}

public void setDigital (boolean digital) {
m_hel per. firePropertyChange("digital",
new Bool ean(mdigital),
new Bool ean(digital));
mdigital = digital;
repaint();

}

public boolean getDigital () {
return mdigital;

}

public voi d addPropertyChangeli st ener(
PropertyChangeli stener |st) {
if (mhelper !'= null)
m_hel per. addPr opert yChangelLi st ener (I st);
}

public void renovePropertyChangelLi st ener (
PropertyChangelLi stener |st) {
if (mhelper !'= null)
m_hel per. renpvePr opertyChangelLi stener (I st);

}
public void set Obj ect (Ooj ect bean) {}
public void paint Conponent (G aphics g) { @ Displays clock value
super . pai nt Conponent (g) ; in either digital or
analog form

g. set Col or (get Background());
g.fill Rect(0, 0, getWdth(), getHeight());
get Border().paintBorder(this, g, 0, 0, getWdth(), getHeight());

m cal endar . set Ti me(new Date()); // Get current tinme
int hrs = mcal endar. get (Cal endar . HOUR_OF_DAY) ;
int mn = mcal endar. get (Cal endar. M NUTE) ;

150 CHAPTER 4 LAYOUT MANAGERS

4.7.1

g. set Col or (get Foreground());
if (mdigital) {
String time = ""+hrs+":"+nmn;
g. set Font (getFont ());
FontMetrics fm= g.get FontMetrics();
int y = (getHeight() + fmgetAscent())/2;
int x = (getWdth() - fmstringWdth(tinme))/2;
g.drawstring(tine, x, y);
}
el se {
int x = getWdth()/2;
int y = getHeight()/2;
int rh = getHeight()/4;
int rm= getHeight()/3;

doubl e ah = ((doubl e)hrs+mni n/60.0)/6.0*Math. Pl ;
doubl e am = ni n/ 30. 0*Mat h. PI ;

g.drawti ne(x, y, (int)(x+rh*Math.sin(ah)),
(int)(y-rh*math. cos(ah)));
g.drawli ne(x, y, (int)(x+rnmtMath.sin(am),
(int)(y-rmMath. cos(am));
}
}

public void run() {
while (true) {
repaint();
try {
Thr ead. sl eep(30*1000);
}
catch(l nterruptedException ex) { break; }
}
}
}

Understanding the code

Class BeanContainer

© This class extends JFrane to provide the frame for this application. It also implements the

FocusLi st ener interface to manage focus transfer between beans in the container. Four
instance variables are declared:

* FilemcurrentDir: The most recent directory used to load and save beans.

e Conponent m activeBean: A bean component which currently has the focus.

e String mcl assName: The fully qualified class name of our custom Cl ock bean.

* JFi | eChooser m chooser : Used for saving and loading beans.

The only GUI provided by the container itself is the menu bar. The creat eMenuBar ()
method creates the menu bar, its items, and their corresponding action listeners. Three menus
are added to the menu bar: File, Edit, and Layout.

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 151

152

(5]
0

©0

(S]]

NOTE All code corresponding to New, Load, and Save in the File menu is wrapped in a
separate thread to avoid an unnecessary load on the event-dispatching thread. See
chapter 2 for more information about multithreading.

The New... menu item in the File menu displays an input dialog (using the JOpti on-
Pane. show nput Di al og() method) to enter the class name of a new bean to be added to
the container. Once a name has been entered, the program attempts to load that class, create a
new class instance using a default constructor, and add that new object to the container. The
newly created component requests the focus and receives a t hi s reference to BeanCont ai ner
as a FocusLi st ener. Any exceptions caught will be displayed in a message box.

The Load... menu item from the File menu displays a JFi | eChooser dialog to select a file
containing a previously serialized bean component. If this succeeds, the program opens an
input stream on this file and reads the first stored object. If this object is derived from the
j ava. awt . Conponent class, it is added to the container. The loaded component requests the
focus and receives a t hi s reference to BeanCont ai ner as a FocusLi st ener. Any exceptions
caught will be displayed in a message box.

The Save... menu item from the File menu displays a JFi | eChooser dialog to select a file
destination for serializing the bean component which currently has the focus. If this succeeds,
the program opens an output stream on that file and writes the currently active component to
that stream. Any exceptions caught will be displayed in a message box.

The Exit menu item simply quits and closes the application with Syst em exi t (0).

The Edit menu contains a single item entitled Delete, which removes the currently active
bean from the container:

get Cont ent Pane() . renove(m acti veBean);
m activeBean = null;

validate();

repaint();

The Layout menu contains several JRadi oBut t onMenul t ens managed by a But t onGr oup
group. These items are entitled “FlowLayout,” “GridLayout,” “BoxLayout — X,” “BoxLay-
out — Y,” and “DialogLayout.” Each item receives an Act i onLi st ener which sets the corre-
sponding layout manager of the application frame’s content pane, calls val i dat e() to lay
out the container again, and then r epai nt s it. For example:

get Cont ent Pane() . set Layout (new Di al ogLayout ());
validate();
repaint();

The f ocusGai ned() method stores a reference to the component which currently has the
focus as instance variable m act i vebean. The pai nt () method is implemented to draw a
rectangle around the component which currently has the focus. It is important to note here
the static JPopupMenu method called in the BeanCont ai ner constructor:

JPopupMenu. set Def aul t Li ght Wi ght PopupEnabl ed(f al se);

This method forces all pop-up menus (which menu bars use to display their contents) to use
heavyweight popups rather than lightweight popups. (By default, pop-up menus are light-

CHAPTER 4 LAYOUT MANAGERS

4.7.2

weight unless they cannot fit within their parent container’s bounds.) The reason we disable
this is because our pai nt () method will render the bean selection rectangle over the top of
the lightweight popups otherwise.

Class Clock

This class is a simple bean clock component which can be used in a container just as any other
bean. This class extends the JBut t on component to inherit its focus-grabbing functionality.
This class also implements three interfaces: Cust oni zer to handle property listeners, Ext er -
nal i zabl e to completely manage its own serialization, and Runnabl e to be run by a thread.
Four instance variables are declared:

* PropertyChangeSupport m hel per : An object to manage Pr oper t yChangelLi st eners.

* bool ean m digital: A custom property for this component which manages the dis-
play state of the clock (digital or arrow-based).

* Cal endar m cal endar : A helper object to handle Java’s time objects (instances of Dat e).

* Di mensi on m preffSize: A preferred size for this component which may be assigned
using the set Pref erredSi ze() method.

The constructor of the C ock class creates the helper objects and sets the border for this com-
ponent as a ConpoundBor der that contains an Et chedBor der and a Mat t eBor der. It then
sets the background and foreground colors and starts a new Thr ead to run the clock.

Thew it eExt ernal () method writes the current state of a O ock object into an Cbj ect Qut -
put stream. Four properties are written: m di gi t al , backgr ound, f or egr ound, and pr e-
ferredSi ze. The readExt ernal () method reads the previously saved state of a C ock
object from an Obj ect I nput stream. It reads these four properties and applies them to the
object previously created with the default constructor. These methods are called from the Save
and Load menu bar action listener code in BeanCont ai ner. Specifically, they are called when
writebj ect () and r eadQObj ect () are invoked.

NOTE The serialization mechanism in Swing has not yet fully matured. You can readily
discover that both lightweight and heavyweight components throw exceptions dur-
ing the process of serialization. For this reason, we implement the Ext er nal i zabl e
interface to take complete control over the serialization of the O ock bean. Another
reason is that the default serialization mechanism tends to serialize a substantial
amount of unnecessary information, whereas our custom implementation stores
only the necessities.

The rest of this class need not be explained here, as it does not relate directly to the topic of
this chapter and it represents a simple example of a bean component. If you're interested, take
note of the pai nt Conponent () method which, depending on whether the clock is in digital
mode (determined by m di gi t al), either computes the current position of the clock’s arrows
and draws them, or renders the time as a digital Stri ng.

Running the code

This application provides a framework for experimenting with any available JavaBeans; both
lightweight (Swing) and heavyweight (AWT) components: we can create, serialize, delete, and
restore them.

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 153

154

We can apply several layouts to manage these components dynamically. Figures 4.18 through
4.22 show BeanCont ai ner using five different layout managers to arrange four Cl ock beans.
To create a bean, choose New from the File menu and type the fully qualified name of the class.
For instance, to create a O ock you need to type “clock.Clock” in the input dialog.

Once you've experimented with Cl ock beans, try loading some Swing JavaBeans.
Figure 4.23 shows BeanDi al og with two JButtons and two JText Fi el ds. They were
created in the following order (and thus have corresponding container indices): JBut t on,
JText Fi el d, JBut t on, and JText Fi el d. Try doing this: remember that you need to specify
fully qualified class names such as j avax. swi ng. JBut t on when you add a new bean. This
ordering adheres to our Di al ogLayout label/input field pairs scheme, except that here we are
using buttons in place of labels. That way, when we set BeanCont ai ner’s layout to
Di al ogLayout , we know what to expect.

NOTE You will notice selection problems with components such as JConboBox, JSpl i t -
Pane, and JLabel (which has no selection mechanism). A more complete version
of BeanCont ai ner would take this into account and implement more robust focus-
requesting behavior.

Later in this book, after a discussion of tables, we will add powerful functionality to this
example to allow bean property manipulation. We highly suggest that you skip ahead for a
moment and run example 18.8.

Start the chapter 18 example and create JButton and JText Fi el d beans exactly as
described above. Select Di al ogLayout from the Layout menu and then click on the top-most
JBut t on to give it the focus. Now select Properties from the Edit menu. A separate frame will
pop up with a JTabl e that contains all of the JBut t on’s properties. Navigate to the | abel
property and change it to “Button 1”7 (by double-clicking on its Value field). Now select the
corresponding top-most JText Fi el d and change its pref erredSi ze property to “4,40.”
Figure 4.24 illustrates what you should see.

By changing the preferred, maximum, and minimum sizes, as well as other component
properties, we can directly examine the behavior that different layout managers impose on our
container. Experimenting with this example is a very convenient way to learn more about how
the layout managers behave. It also forms the foundation for an interface development
environment (IDE), which many developers use to simplify interface design.

CHAPTER 4 LAYOUT MANAGERS

5.1

5.1.1

CHAPTEHR 5

A
Y

%

Labels and buttons

5.1 Labels and buttons overview 155 5.3 Custom buttons, part II: polygonal
5.2 Custom buttons, part I: transparent buttons 171
buttons 165 5.4 Custom buttons, part III: tooltip

management 180

LABELS AND BUTTONS OVERVIEW

We start with the basics, the concepts needed to work with Swing labels, buttons, and toolt-
ips. Once we understand the basics, we build on them to create customized versions.

JLabel

class javax.swing. [Label

JLabel is one of the simplest Swing components, and it is most often used to identify other
components. JLabel can display text, an icon, or both in any combination of positions (note
that text will always overlap the icon). The code in example 5.1 creates four different JLabel s
and places them in a Gri dLayout as shown in figure 5.1.

=3 JLabel Demo M= E3

JLabel
JLabel JLabel JLabel X

Figure 5.1 JlLabel demo

155

156

Example 5.1

LabelDemo.java

see \Chapter5\1

import java.awt.*;
i mport javax.sw ng.*;

cl ass Label Deno ext ends JFrane

{
public Label Dermo() {

super ("JLabel Demp");
set Si ze(600, 100);

JPanel content = (JPanel) get ContentPane();
content. set Layout (new GridLayout (1, 4, 4, 4));

JLabel |abel = new JLabel ();

| abel . set Text ("JLabel ");

| abel . set Backgr ound(Col or. white);
content. add(| abel);

| abel = new JLabel ("JLabel ",
Swi ngConst ant s. CENTER) ;
| abel . set Opaque(true);
| abel . set Backgr ound(Col or. white);
content. add(| abel);

| abel = new JLabel ("JLabel ");
| abel . set Font (new Font (" Hel veti ca", Font.BOLD, 18));
| abel . set OQpaque(true);
| abel . set Backgr ound(Col or. white);
content. add(| abel);
I mgel con i nage = new I magel con("flight.gif");
| abel = new JLabel ("JLabel ", image,
Swi ngConst ants. RI GHT) ;
| abel . set Verti cal Text Posi ti on(Swi ngConst ants. TOP) ;
| abel . set OQpaque(true);
| abel . set Backgr ound(Col or. white);
content. add(| abel);

set Def aul t O oseQperati on(JFrane. EXI T_ON_CLCOSE) ;
set Visible(true);

}

public static void main(String args[]) {
new Label Deno();

}
}

The first label is created with the default constructor and its text is set using the set Text ()
method. We then set its background to white, but when we run this program the background
of the label shows up as light gray. This happens because we didn’t force the label to be

CHAPTER 5 LABELS AND BUTTONS

5.1.2

opaque. In chapter 2 we learned that Swing components support transparency, which means
that a component does not have to paint every pixel within its bounds. So when a component
is not opaque, it will not fill its background. A JLabel (as with most components) is non-
opaque by default.

We can also set the font and foreground color of a JLabel using JConponent’s set -
Font () and set Foreground() methods. Refer back to chapter 2 for information about
working with the Font and Col or classes.

The default horizontal alignment of JLabel is LEFT if only text is used, and CENTER if
an image or an image and text are used. An image will appear to the left of the text by default,
and every JLabel is initialized with a centered vertical alignment. Each of these default
behaviors can easily be adjusted, as we will see below.

Text alignment

To specify alignment or position in many Swing components, we use the j avax. swi ng.
Swi ngConst ant s interface. This defines several constant strings, five of which are applicable
to JLabel ’s text alignment settings:

Swi ngConst ant s. LEFT
Swi ngConst ant s. CENTER
Swi ngConst ants. RI GHT
Swi ngConst ant s. TOP

Swi hgConst ant s. BOTTOM

Alignment of both a label’s text and icon can be specified either in the constructor or through
the set Hori zont al Al i gnment () and set Verti cal Al i gnment () methods. The text can
be aligned both vertically or horizontally, independent of the icon (text will overlap the icon
when necessary) using the set Hori zontal Text Al i gnment () and set Verti cal Text -
Ali gnnent () methods. Figure 5.2 shows where a JLabel ’s text will be placed, correspond-
ing to each possible combination of vertical and horizontal text alignment settings.

Vertical = TOP Vertical = TOP Verucal = TOP
Hormzomal = LEFT Honzomal = CENTER Horzontal = RIGHT

Vertical = CENTER Vertical = CENTER Vertical = CENTER
Homzontal = LEFT Hormzontal = CENTER Horzontal = RIGHT

YVertical = BOTTOM Vertical = BOTTOM Vertical = BOTTOM
Honzontal = LEFT Honzontal = CENTER Honzontal = RIGHT

Figure 5.2 JlLabel text alignment

LABELS AND BUTTONS OVERVIEW 157

5.14

158

Icons and icon alignment

The simple example in figure 5.1 included a label with an image of an airplane. This was done
by reading a GIF file in as an | magel con and passing it to a JLabel constructor:
I magel con i mage = new | magel con("flight.gif");
| abel = new JLabel ("JLabel ", image,
Swi ngConst ants. RI GHT) ;

An image can also be set or replaced at any time using the set!con() method (passing
nul I will remove the current icon, if any). JLabel also supports a disabled icon to be used
when a label is in the disabled state. To assign a disabled icon, we use the set Di sabl ed-
I con() method.

NOTE Animated GIFs can be used with | magel cons and labels just as any static GIF can
be, and they don’t require any additional code. | magel con also supports JPGs.

GrayFilter

class javax.swing. GrayFilter
The static cr eat eDi sabl edl mage() method of the G ayFi | t er class can be used to create
“disabled” images.

| magel con di sabl edl mage = new | magel con(
GrayFilter.createDi sabl edl nmage(i mage. getlmage()));

Figure 5.3 shows the fourth label in Label Denp now using a disabled icon generated by
GrayFi | ter.JLabel only displays the disabled icon when it has been disabled using JCom
ponent s set Enabl ed() method.

K Figure 5.3

Demonstrating a disabled icon
using GrayFi |l ter

The labelFor and the displayedlMinemonic properties

JLabel maintains a | abel For property and a di spl ayedMhenoni ¢ property. The dis-
played mnemonic is a character that, when pressed in synchronization with ALT (for example,
ALT+R), will call JConponent s r equest Focus() method on the component referenced by
the | abel For property. The first instance of the displayed mnemonic character (if any) in a
label’s text will be underlined. We can access these properties using typical get/set accessors.

AbstractButton

abstract class javax.swing. AbstractButton

Abstract Button is the template class from which all buttons are defined. This includes
push buttons, toggle buttons, check boxes, radio buttons, menu items, and menus themselves.

CHAPTER 5 LABELS AND BUTTONS

5.1.7

5.1.8

Its direct subclasses are JBut t on, JToggl eBut t on, and JMenul t em There are no subclasses
of JBut t on in Swing. JToggl eBut t on has two subclasses: JCheckBox and JRadi oBut t on.
JMenul t em has three subclasses: JCheckBoxMenul t em JRadi oButt onMenul t em, and
JMenu. The remainder of this chapter will focus on JBut t on and the JToggl eBut t on fam-
ily. Refer to chapter 12 for more information about menus and menu items.

JAVA 1.4 In Java 1.4 a new set Di spl ayedMhenoni cl ndex() method was added to JLa-
bel and Abstract But t on. This allows you to specify the index of the character
you want underlined. For instance, in a menu item with the text “Save As” if you
want the second ‘A’ to be underlined you would use the following code:

myMenul t em set Mhenonic(‘ A’) ;
myMenul t em set Di spl ayedvhenoni cl ndex(5);

Also new to Java 1.4 are the new set | conGap() and get | conGap() methods allow-
ing specification of the size of the space to appear between button text and icon.

The ButtonModel interface

abstract interface javax.swing. ButtonModel

Each button class uses a model to store its state. We can access any button’s model with
AbstractButton’' s get Model () and set Model () methods. The But t onModel interface
is the template interface from which all button models are defined. JButton uses the
Def aul t But t onMbdel implementation. JToggl eBut t on defines an inner class extension of
Def aul t But t onModel ; this extension is JToggl eBut t on. Toggl eBut t onModel , which is
used by JToggl eBut t on and both JToggl eBut t on subclasses.

The following boolean property values represent the state of a button, and they have
associated i sXX() and set XX() accessors in Def aul t But t onMbdel :

* sel ect ed: Switches state on each click (only relevant for JToggl eBut t ons).

e pressed: Returns t r ue when the button is held down with the mouse.

* rol | over: Returns t r ue when the mouse is hovering over the button.

* armed: Stops events from being fired when we press a button with the mouse and then
release the mouse when the cursor is outside that button’s bounds.

* enabl ed: Returns t rue when the button is active. None of the other properties can
normally be changed when this is f al se.

A button’s keyboard mnemonic is also stored in its model, as is the But t onGr oup it belongs
to, if any. (We'll discuss the But t onGr oup class when we discuss JToggl eBut t ons, as it only
applies to this family of buttons.)

JAVA L3 In Java 1.3 a new get G oup() method was added to Def aul t But t onMbdel
allowing access to the But t onGr oup a button belongs to.

JButton

class javax.swing. JButton

JBut t on is a basic push button, which is one of the simplest Swing components. Almost every-
thing we know about JLabel also applies to JBut t on. We can add images, specify text and
image alignment, set foreground and background colors (remember to call set Opaque(true)),

LABELS AND BUTTONS OVERVIEW 159

160

and set fonts, among other tasks. Additionally, we can add Act i onLi st eners, ChangelLi s-
teners, and | t enli st eners to receive Acti onEvents, ChangeEvents, and | t enEvent s
respectively when any properties in its model change value.

In most application dialogs, we might expect to find a button which initially has the focus
and will capture an Enter key press, regardless of the current keyboard focus, unless focus is
within a muld-line text component. This is referred to as the default button. Any JRoot Pane
container can define a default button using JRoot Pane’s set Def aul t But t on() method
(passing nul | will disable this feature). For instance, to make a button, the default button for
a JFrane, we would do the following:

nyJFr ane. get Root Pane() . set Def aul t Butt on(myBut t on) ;

The i sDef aul t But t on() method returns a boolean value indicating whether the button
instance it was called on is a default button for a JRoot Pane.

We most often register an Acti onLi st ener with a button to receive Acti onEvent s
from that button whenever it is clicked (if a button has the focus, pressing the Space bar will
also fire an Acti onEvent). Act i onEvent s carry with them information about the event that
occurred, including, most importantly, which component they came from.

To create an Act i onLi st ener, we need to create a class that implements the Act i on-
Li st ener interface, which requires the definition of its acti onPerfornmed() method.
Once we have built an Acti onLi st ener we can register it with a button using JConpo-
nent’s addAct i onLi st ener () method. The following code segment is a typical inner class
implementation. When an Acti onEvent is intercepted, “Swing is powerful!!” is printed to
standard output.

JButton nyButton = new JButton();
ActionLi stener act = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Systemout.printin("Swing is powerful!!");
}
b
nmyBut t on. addAct i onLi st ener (act);

We primarily use this method throughout this book to attach listeners to components. However,
some developers prefer to implement the Act i onLi st ener interface in the class that owns the
button instance. With classes that have several registered components, this is not as efficient as
using a separate listener class, and it can require writing common code in several places.

JAVA 1.3 In Java 1.3 all buttons have a new constructor that takes an Act i on instance as a
parameter. Act i ons are covered in detail in Chapter 12, but it suffices to say here
that they are Act i onLi st ener implementations that encapsulate all needed infor-
mation to provide an icon, displayed text, enabled state, and event handling code.

An icon can be assigned to a JButton instance via the constructor or the setlcon()
method. We can optionally assign individual icons for the normal, selected, pressed, rollover,
and disabled states. See the AP documentation for more detail on the following methods:

set Di sabl edSel ect edl con()
set Pressedl con()
set Rol | over | con()

CHAPTER 5 LABELS AND BUTTONS

set Rol | over Sel ect edl con()
set Sel ect edl con()

A button can also be disabled and enabled the same way as a JLabel , using set Enabl ed() . As
we would expect, a disabled button will not respond to any user actions.

A button’s keyboard mnemonic provides an alternative means of activation. To add a key-
board mnemonic to a button, we use the set Mhenoni ¢c() method:

but t on. set Mhemonic(' R);

We can then activate a button (equivalent to clicking it) by pressing ALT and its mnemonic key
simultaneously (for example, ALT+R). The first appearance of the assigned mnemonic
character, if any, in the button text will be underlined to indicate which key activates it. In
Java 1.3 the set Di spl ayedvnenoni cl ndex() method was added to allow control over
this. No dis-tinction is made between upper- and lower-case characters. Avoid duplicating
mnemonics for components that share a common ancestor.

5.1.9 JToggleButton
class javax.swing.] ToggleButton

JToggl eBut t on provides a selected state mechanism which extends to its children, JCheckBox
and JRadi oBut t on, and corresponds to the sel ect ed property we discussed in section 5.1.7.
We can test whether a toggle button is selected using Abstract Button’s i sSel ect ed()
method, and we can set this property with its set Sel ect ed() method.

5.1.10 ButtonGroup

class javax.swing. ButtonGroup

JToggl eBut t ons are often used in But t onGr oups. A But t onGr oup manages a set of but-
tons by guaranteeing that only one button within that group can be selected at any given
time. Thus, only JToggl eBut t on and its subclasses are useful in a But t onGr oup because a
JBut t on does not maintain a selected state. Example 5.2 constructs four JToggl eBut t ons
and places them in a single But t onGr oup.

E' ! ToggleButton/ButtonGroup De_ . [l{=] E3 Figure 5.4

JToggl eBut t ons

| Button 1 | | Button 2 | | Button3 | [inaButtonaoup
Newt ocone
Example 5.2
ToggleButtonDemo.java
see \Chapter5\2

inmport java.awt.*;
import java.aw.event.*;
i mport javax.sw ng.*;

LABELS AND BUTTONS OVERVIEW 161

5.1.11

162

cl ass Toggl eButtonDenp extends JFrame {
public Toggl eButtonDeno () {
super (" Toggl eBut t on Denp");
get Cont ent Pane() . set Layout (new Fl owLayout ());
Butt onG oup buttonG oup = new ButtonG oup();
char ch = (char) (‘1" + k);
for (int k=0; k<4; k++) {
JToggl eButton button = new JToggl eButton(“Button “+ch, k==0);
but t on. set Mhenoni c(ch);
but t on. set Enabl ed(k<3);
button. set Tool Ti pText (“This is button “ + ch);

button. setlcon(new | magel con(“bal | _bw. gi f”));

but t on. set Sel ect edl con(new | nagel con(“ball _red.gif"));

button. set Rol | overl con(new | magel con(“ball _blue.gif"));

but t on. set Rol | over Sel ect edl con(nhew | magel con(“ball _blue.gif"));

get Cont ent Pane() . add(button);
butt onG oup. add(button);

}

pack();
}

public static void main(String args[] {
Toggl eButt onDenp frane = new Toggl eButtonDeno();
frame. set Def aul t G oseOper ati on(JFrane. EXI T_ON_CLOSE) ;
frame.setVisible(true);

}
JCheckBox and JRadioButton

class javax.swing. JCheckBox, class javax.swing. JRadioButton

JCheckBox and JRadi oBut t on both inherit all JToggl eBut t on functionality. In fact, the
only significant differences between all three components is their UI delegates (how they are
rendered). Both button types are normally used to select the mode of a particular application
function. Figures 5.5 and 5.6 show the previous example running with JCheckBoxes and
JRadi oBut t ons as replacements for the JToggl eBut t ons.

| Button 1 [v| Button 2| [_| Button 3

Figure 5.5 JCheckBoxes in a ButtonG oup

) Button1 (= Button ? ' Button 3

Figure 5.6 JRadi oButtons in a ButtonG oup

CHAPTER 5 LABELS AND BUTTONS

5.1.12 JToolTip and ToolTipManager
class javax.swing.] ToolTip, class javax.swing. ToolTipManager

A JTool Ti p is a small pop-up window designed to contain informative text about a compo-
nent when the mouse moves over it. We don’t generally create instances of these components
ourselves. Rather, we call set Tool Ti pText () on any JConponent subclass and pass it a descrip-
tive String. This String is then stored as a client property within that component’s client
properties Hasht abl e, and that component is then registered with the Tool Ti pManager
using Tool Ti pManager’s r egi st er Conponent () method. The Tool Ti pManager adds a
MouselLi st ener to each component that registers with it.

To unregister a component, we can pass nul | to that component’s set Tool Ti pText ()
method. This invokes Tool Ti pManager’s unregi st er Conponent () method, which
removes its MouseLi st ener from that component. Figure 5.7 shows a JToggl eBut t on with
simple tooltip text.

Il Figure 5.7

Button 1 (75 is putton 1. | | BUtton 3 JToggl eBut ton
with tooltip text

The Tool Ti pManager is a service class that maintains a shared instance of itself. We can
access the Tool Ti pManager directly by calling its static shar edl nst ance() method:

Tool Ti pManager t ool Ti pManager = Tool Ti pManager. shar edl nst ance();

Internally this class uses three non-repeating Ti mer s with delay times defaulting to 750, 500,
and 4000. Tool Ti pManager uses these Ti mers in coordination with mouse listeners to
determine if and when to display a JTool Ti p with a component’s specified tooltip text.
When the mouse enters a components bounds, Tool Ti pManager will detect this and wait
750ms before displaying a JTool Ti p for that component. This is referred to as the initial delay
time. A JTool Ti p will stay visible for 4000ms or until we move the mouse outside of that
component’s bounds, whichever comes first. This is referred to as the dismiss delay time. The
500ms Ti mer represents the reshow delay time, which specifies how soon the JTool Ti p we
have just seen will appear again when this component is re-entered. These delay times can be
set using Tool Ti pManager’s set Di sni ssDel ay(), setlnitial Delay(), and setRe-
showDel ay() methods.

Tool Ti pManager is a very nice service, but it does have significant limitations. When we
construct our polygonal buttons in section 5.6 below, we will find that it is not robust enough
to support non-rectangular components.

5.1.13 Labels and buttons with HTIVIL text

JDK1.2.2 offers a particularly interesting new feature. Now we can use HTML text in JBut t on
and JLabel components as well as for tooltip text. We don’t have to learn any new methods
to use this functionality, and the Ul delegate handles the HTML rendering for us. If a button/
label’s text starts with <HTML>, Swing knows to render the text in HTML format. We can use
normal paragraph tags (<P> and </ P>), line break tags (
), and other HTML tags. For
instance, we can assign a multiple-line tooltip to any component like this:

LABELS AND BUTTONS OVERVIEW 163

164

@ HTHML Buttons and Labels | [O] x|

JButton JLabel
withy HTIL fesd with HTL fexd

Figure 5.8
A JButton and JLabel
with HTML text

nmyConponent . set Tool Ti pText ("<htm >Mul ti-line tool tips
" +
"are easy!");

The
 tag specifies a line break. Example 5.3 demonstrates this functionality.

Example 5.3

HtmlButtons.java

see \Chapter5\3

import java.awt.*;
i mport java.awt.event.?*;
i mport javax.sw ng.*;

public class Htm Buttons extends JFrane

public Him Buttons() {

super ("HTM. Buttons and Label s");
set Si ze(400, 300);

get Cont ent Pane() . set Layout (new Fl owLayout ());

String htm Text =
"<ht M ><p><font col or=\"#800080\" "+
"size=\"4\" face=\"Verdana\">JButton </ p>"+
"<address><em"+
"with HTM. text</enmp"+
"</ address>";
JButton btn = new JButton(htm Text);
get Cont ent Pane() . add(btn);

ht M Text =
"<ht M ><p><font col or=\"#800080\" "+
"size=\"4\" face=\"Verdana\">JLabel </p>"+
"<address><em"+
"with HTM. text</enmp"+
"</ address>";
JLabel |bl = new JLabel (htm Text);
get Cont ent Pane() . add(| bl);

set Def aul t O oseCperati on(JFrame. EXI T_ON_CLOSE) ;
set Vi si bl e(true);

CHAPTER 5 LABELS AND BUTTONS

5.2

public static void main(String args[]) {
new Ht m Buttons();

}
}

CUSTOM BUTTONS, PART I: TRANSPARENT BUTTONS

Buttons in Swing can adopt almost any presentation we can think of. Of course, some presen-
tations are tougher to implement than others. In the remainder of this chapter we will deal
directly with these issues. Example 5.4 in this section shows how to construct invisible but-
tons which only appear when the user moves the mouse cursor over them. Specifically, a bor-
der will be painted, and tooltip text will be activated in the default manner.

Buttons such as these can be useful in applets for predefined hyperlink navigation, and
we will design our invisible button class with this in mind. Thus, we will show how to create
an applet that reads a set of parameters from the HTML page in which it is embedded and
loads a corresponding set of invisible buttons. For each button, the designer of the HTML
page must provide three parameters: the desired hyperlink URL, the button’s bounds (posi-
tions and size), and the button’s tooltip text. Additionally, our sample applet in example 5.4
will require a background image parameter. Our button’s bounds are intended to directly cor-
respond to an “active” region of this background image, much like the venerable HTML
image mapping functionality.

£+ Helscape
File Edit Miew Go ‘Wwindow Help

i Minnis 1
N Em:gh_mm:e J hatis Earth Science?
&0 CIE Ed SLEIH

ORI
Figure 5.9
Transparent
rectangular
2| buttons
=il | http: £ Ao earth. nasa.govAwhatisindex. htrl 4 in an applet
Example 5.4

ButtonApplet.java

see \Chapter5\4

import java. applet.*;
import java.awt.?*;
import java.aw.event.*;

CUSTOM BUTTONS, PART I: TRANSPARENT BUTTONS 165

166

i mport java.net.*;
import java.util.*;

i mport javax.sw ng. *;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class ButtonApplet extends JAppl et Applet instead of
{ Frame, so it can
public ButtonApplet() {} run on a web page

public synchronized void init() {

String i mageNane

o Reads “image” parameter

= get Paraneter ("i mage") to set background image
nul1) { on label

Systemerr.println("Need \"image\" paraneter");

URL(get Docunent Base(), imageNane);

if (inmageNane ==
return;
}
URL imageUrl = null;
try {
i mgeUr|l = new
}

catch (Ml formedURLException ex) {

ex. print StackTr
return;

}

ace();

| magel con bi gl mage = new | magel con(i mageUrl);
JLabel bigLabel = new JLabel (bi gl nage);
bi gLabel . set Layout (nul 1) ;

int index = 1;
int[] g = new int
whil e(true) {

String parantSi ze = get Paranet er ("button"+i ndex);
String paranNanme = get Par anet er (" nane" +i ndex) ;

String paranirl

if (paransSi ze==null || paramName==null || paranirl==null)
br eak;
try {
StringTokeni zer tokeni zer = new StringTokeni zer (
paranSti ze, ",");
for (int k=0; k<4; k++) {
String str = tokeni zer.next Token().trin(); N
g[k] = Integer.parselnt(str);
} Creates the button
} and adds it to the
catch (Exception ex) { break; } container

Navi gat eBut t on

paranNane, paranmrl);

bi gLabel . add(bt

bt n. set Bounds(q[0], q[1], q[2], q[3]);

i ndex++;

Sets up one e
transparent button

[4]; for each iteration

= get Paraneter ("url " +i ndex);

btn = new Navi gateButton(this,

n);

CHAPTER 5 LABELS AND BUTTONS

get Cont ent Pane() . set Layout (nul 1) ;
get Cont ent Pane() . add(bi gLabel);

bi gLabel . set Bounds(0, 0, biglnmage.getlconWdth(),

bi gl mage. get | conHei ght ());
}

public String getAppletinfo() {

return "Sanpl e applet w th NavigateButtons";

}

public String[][] getParaneterlInfo() {
String pinfo[][] = {

Useful information

{"image", "string", "base image file name"}, for applets, but

{"buttonX","x,y,w, h", "button's bounds"},

{"nanmeX", *"string", "tooltip text"},

{"url X", “url", "link URL"} };
return pinfo;

}
}

not required

Implementation
of invisible
button

cl ass Navi gateButton extends JButton inplenents ActionListener

{
protected Border m activeBorder;
protected Border m. nactiveBorder;

protected Applet m parent;
protected String mtext;
protected String msuUl;
protected URL murl;

Borders shown when
button has and does
not have focus

publ i ¢ Navi gat eButton(Appl et parent, String text, String sUl) {

m parent = parent;
set Text (text);

msUrl = sUrl;
try {
murl = new URL(sUrl);
}
catch(Exception ex) { murl = null; }

set Opaque(fal se);
enabl eEvent s(AWrEvent . MOUSE_EVENT_NMASK) ;

m acti veBorder = new MatteBorder (1, 1, 1,

m i nacti veBorder = new EnptyBorder (1, 1,
set Border (m_i nacti veBorder);

addActi onLi stener(this);
}

public void setText(String text) {
mtext = text;
set Tool Ti pText (text);

}

public String getText() {
return mtext;

}

CUSTOM BUTTONS, PART I: TRANSPARENT BUTTONS

Sets URL
for button

o Sets up to process its
own mouse events
Col or.yel | ow);
1

Overrides methods from
JButton, but to manage
tooltip text, not label text

167

protected void processMuseEvent (MouseEvent evt) { m Gets all mouse events,
switch (evt.getID()) { but only handles mouse

case MouseEvent . MOUSE_ENTERED: enter and exit events,
set Bor der (m act i veBor der); to change the border
set Cur sor (Cur sor . get Predef i nedCur sor (and cursor

Cur sor. HAND_CURSCR)) ;

m par ent. showSt atus(msuUrl);

br eak;

case MouseEvent . MOUSE_EXI TED:

set Bor der (m_i nact i veBor der) ;

set Cursor (Cursor. get Predefi nedCur sor (
Cur sor. DEFAULT_CURSOR)) ;

m parent.showStatus("");

br eak;
}
super. processMuseEvent (evt);
}
public void actionPerfornmed(ActionEvent e) { Called when user presses
if (murl '=null) { button with mouse or keyboard
Appl et Cont ext context = m parent.get Appl et Context ();
if (context !'= null)
cont ext . showDocunent (m.url);
}
}

public voi d pai nt Conponent (G aphics g) {
pai nt Border(g);
}
}

5.2.1 Understanding the code
Class ButtonApplet

This class extends JAppl et to provide web page functionality. The i ni t () method creates
and initializes all GUI components. It starts by reading the applet's i mage parameter, which is
then used along with the applet’s codebase to construct a URL:

i mgeUr| = new URL(get Docunent Base(), i nmageNane);

This URL points to the image file which is used to create our bi gLabel label, which is used
as the applet’s background image.

@ The applet can be configured to hold several invisible buttons for navigating to predefined
URLs. For each button, three applet parameters must be provided:

* but t onN: Holds four comma-delimited numbers for the x, y, width, and height of button N.
* naneN: Tooltip text for button N.
e url N: URL to redirect the browser to when the user clicks the mouse over button N.

© As soon as these parameters are parsed for a given N, a new button is created and added to
bi gLabel :

Navi gat eButton btn = new Navi gateButton(this,

168 CHAPTER 5 LABELS AND BUTTONS

par anName, paranirl);
bi gLabel . add(bt n);
bt n. set Bounds(q[0], q[1], q[2], q[3]);

Finally, the bi gLabel component is added to the applet’s content pane. It receives a fixed size
to avoid any repositioning if the label’s parent is somehow resized.

e The get Appl et | nf o() method returns a St ri ng description of this applet. The get Pa-
ranet er | nf o() method returns a two-dimensional St r i ng array that describes the parame-
ters accepted by this applet. Both are strongly recommended constituents of any applet, but
they are not required for raw functionality.

Class NavigateButton

o This class extends JBut t on to provide our custom implementation of an invisible button. It
implements the Act i onLi st ener interface, eliminating the need to add an external listener, and
it shows how we can enable mouse events without implementing the MouselLi st ener interface.

© Several parameters are declared in this class:

e Border m activeBorder: The border which will be used when the button is active
(when the mouse cursor is moved over the button).

e Border m.inactiveBorder: The border which will be used when the button is inac-
tive (when no mouse cursor is over the button). This will not usually be visible.

e Appl et m parent : A reference to the parent applet.

e String mtext: The tooltip text for this button.

* String msuUrl:Astring representation of the URL (for display in the browser’s status bar).

¢ URL m url : The actual URL to redirect the browser to when a mouse click occurs.

© The constructor of the Navi gat eBut t on class takes three parameters: a reference to the parent
applet, the tooltip text, and a St ri ng representation of a URL. It assigns all instance variables
and creates a URL from the given St ri ng. If the URL address cannot be resolved, it is set to
nul | (this will disable navigation). The opaque property is set to f al se because this component

o is supposed to be transparent. Notice that this component processes its own MouseEvent s,
which is enabled with the enabl eEvent s() method. This button will also receive Act i on-
Event s by way of implementing Act i onLi st ener and adding itself as a listener.

)

The set Text () and get Text () methods manage the m t ext (tooltip text) property. They
also override the corresponding methods inherited from the JBut t on class.

m The processMuseEvent () method will be called for notification about mouse events on
this component. We want to process only two kinds of events: MOUSE_ENTERED and MOUSE _
EXI TED. When the mouse enters the button’s bounds, we set the border to m act i veBor der,
change the mouse cursor to the hand cursor, and display the St ri ng description of the URL
in the browser’s status bar. When the mouse exits the button’s bounds, we perform the oppo-
site actions: set the border to m i nact i veBor der, set the mouse cursor to the default cursor,
and clear the browser’s status bar.

@ The act i onPer f or med() method will be called when the user presses this button (note that
we use the inherited JBut t on processing for both mouse c/icks and the keyboard mnemonic).
If both the URL and Appl et Cont ext instances are not nul | , the showDocument () method
is called to redirect the browser to the button’s URL.

CUSTOM BUTTONS, PART I: TRANSPARENT BUTTONS 169

5.2.2

170

NOTE Do not confuse Appl et Cont ext with the AppCont ext class we discussed in sec-
tion 2.5. Appl et Cont ext is an interface for describing an applet’s environment,
including information about the document in which it is contained, as well as infor-
mation about other applets that might also be contained in that document.

The pai nt Conponent () method used for this button has a very simple implementation. We
just draw the button’s border by calling pai nt Border (). Since this component is not
designed to have a UI delegate, we do not need to call super . pai nt Conponent () from this
method.

Running the code
To run example 5.4 in a web browser, we have constructed the following HTML file:
<htm >

<head>
<title></title>
</ head>

<body>

<OBJECT cl assi d="cl si d: 8AD9C840- 044E- 11D1- B3E9- 00805F499D93"
W DTH = 563 HEI GHT = 275 codebase="http://java.sun. conl products/pl ugi n/
1.2/jinstall-12-w n32. cab#Versi on=1, 2, 0, 0" >
<PARAM NAME = "CODE" VALUE = "ButtonAppl et.class" >
<PARAM NAME = "type" VALUE ="application/x-java-appl et;version=1.2">
<param nanme="buttonl" val ue="49, 134, 161, 22">
<param nanme="but t on2" val ue="49, 156, 161, 22">
<par am nane="button3" val ue="16, 178, 194, 22">
<par am nane="butt on4" val ue="85, 200, 125, 22">
<par am nane="but t on5" val ue="85, 222, 125, 22">
<param nane="i mage" val ue="nasa.gif">
<par am nane="nanel" val ue="What is Earth Sci ence?">
<param nane="nanme2" val ue="Earth Sci ence M ssions">
<par am nane="nanme3" val ue="Sci ence of the Earth Systen>
<par am nane="nanme4" val ue="I|mage Gal |l ery">
<par am nane="nanme5" val ue="For Kids Only">
<param nanme="ur| 1"
val ue="http://ww. eart h. nasa. gov/ whati s/i ndex. htm ">
<par am nane="url 2"
val ue="http://ww. earth. nasa. gov/ m ssi ons/i ndex. htm ">
<param nanme="ur| 3"
val ue="http://ww. eart h. nasa. gov/ sci ence/ i ndex. ht m ">
<par am nane="url 4"
val ue="http://ww. earth. nasa. gov/ gal | ery/index. htm ">
<param nanme="ur| 5"
val ue="http://Kkids. nt pe. hg. nasa. gov/ ">

<COMVENT>
<EMBED type="application/x-java-appl et; versi on=1.2" CODE = "ButtonAp-
pl et.cl ass"

W DTH = "563" HEI GHT = "275"

codebase="./"

CHAPTER 5 LABELS AND BUTTONS

buttonl="49, 134, 161, 22"
button2="49, 156, 161, 22"
button3="16, 178, 194, 22"
but t on4="85, 200, 125, 22"
butt on5="85, 222, 125, 22"
i mmge="nasa.gif"
namel="What is Earth Sci ence?"
nane2="Earth Sci ence M ssions"
nane3="Sci ence of the Earth Systent
name4="1mage Gall ery"
name5="For Kids Only"
url 1="http://ww. earth. nasa. gov/ whati s/index. htm "
url 2="http://ww. earth. nasa. gov/ nm ssi ons/ i ndex. ht mi "
url 3="http://ww. eart h. nasa. gov/ sci ence/ i ndex. htm "
url 4="http://ww. earth. nasa. gov/ gal |l ery/index. htm "
url 5="http://kids. nt pe. hq. nasa. gov/"
pl ugi nspage=
"http://java. sun. cont products/plugin/1l.2/plugin-install.htm ">
<NOEMBED>
</ COVVENT>
al t="Your browser understands the & t; APPLET> tag but isn't
running the applet, for sone reason."
Your browser is conpletely ignoring the & t; APPLET> tag!
</ NOEMBED>
</ EMBED>
</ OBJECT>
</ p>
<p> </ p>
</ body>
</htm >

NOTE The HTML file above works with appletviewer, Netscape Navigator 6.0, and Micro-
soft Internet Explorer 5.5. This compatibility is achieved thanks to Java plug-in
technology. See http://www.javasoft.com/products/plugin for details on how to
write plug-in-compatible HTML files. The downside to this file is that we need
to include all applet parameters two times for each web browser.

REFERENCE For additional information about the Java plug-in and the plug-in HTML
converter (a convenient utility to generate plug-in-compliant HTML), see: http://
java.sun.com/products/plugin/1.3/features.heml.

Figure 5.9 shows But t onAppl et running in Netscape Navigator 4.05 using the Java plug-in.
Notice how invisible buttons react when the mouse cursor moves over them. Click a button
and navigate to one of the NASA sites.

5.3 CUSTOM BUTTONS, PART Il: POLYGONAL BUTTONS

The approach described in the previous section assumes that all navigational buttons have a
rectangular shape. This can be too restrictive for the complex active regions that are needed in
the navigation of images such as geographical maps. In example 5.5, we will show how to

CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS 171

172

extend the idea of transparent buttons, developed in the previous example, to transparent
non-rectangular buttons.
The j ava. awt . Pol ygon class is extremely helpful for this purpose, especially the two
related methods which follow (see the API documentation for more information):
* Pol ygon. contains(int x, int y): Returns true if a point with the given coordi-
nates is contained inside the Pol ygon.
* G aphi cs. drawPol ygon(Pol ygon pol ygon) : Draws an outline of a Pol ygon using
the given Gr aphi cs object.

The first method is used in this example to verify that the mouse cursor is located inside a
given polygon. The second method will be used to actually draw a polygon representing the
bounds of a non-rectangular button.

This seems faitly basic, but there is one significant complication. All Swing components
are encapsulated in rectangular bounds; nothing can be done about this. If some component
receives a mouse event which occurs in its rectangular bounds, the overlapped underlying com-
ponents do not have a chance to receive this event. Figure 5.10 illustrates two non-rectangular
buttons. The part of Button B that lies under the rectangle of Button A will never receive
mouse events and cannot be clicked.

Figure 5.10
lllustration of two overlapping
non-rectangular buttons

To resolve this situation, we can skip any mouse event processing in our non-rectangular com-
ponents. Instead, all mouse events can be directed to the parent container. All buttons can
then register themselves as MouseLi st eners and MouseMt i onLi st ener s with that con-
tainer. In this way, mouse events can be received without worrying about overlapping and all
buttons will receive notification of all events without any preliminary filtering. To minimize
the resulting impact on the system’s performance, we need to provide a quick discard of events
lying outside a button’s bounding rectangle.

CHAPTER 5 LABELS AND BUTTONS

File Edit Wiew Go ‘wWindow Help

ST T

.
etl- i

\ ¥
Aratgan Hill

Benh

manh

ot valley

&

B

=

=il

|http:ffdir.yahno.comeegionaIfU_S_States.f'EaIifornia.n"Counti 5

Figure 5.11 Polygonal buttons in an applet

Example 5.5

ButtonApplet2.java

see \Chapter5\5

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava.
j ava.
j ava.
j ava.
j ava.

appl et. *;
awt . *;

awt . event . *;
net.*;
util.*;

j avax. swi ng. *;
j avax. swi ng. border. *;
j avax. swi ng. event. *;

public class ButtonApplet2 extends JAppl et o

{
public ButtonApplet2() {}

public synchronized void init() {
/'l Unchanged code from exanple 5.4

CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS

Like ButtonApplet, but
buttons are polygons,
instead of just rectangles

173

int index = 1;

whil e(true) {
String parantSi ze = get Paranet er ("button"+i ndex);
String paranNanme = get Paranet er (" nane" +i ndex) ;

String paranJrl = getParaneter("url"+index);
if (paransSi ze==null || paramName==null || paranirl==null)
br eak;

Pol ygon p = new Pol ygon();
try {
StringTokeni zer t okeni zer = new Stri ngTokeni zer (
paranSti ze, ",");
whi | e (tokenizer.hasMoreTokens()) {
String str = tokenizer.next Token().trin();
int x = Integer.parselnt(str);

str = tokenizer.next Token().trim)); /o :::Ir:lf:slyﬁgi?ied
int y = Integer.parselnt(str); numberoI:'integer
p. addPoi nt (x, y); coordinates

}

}
catch (Exception ex) { break; }

Pol ygonButton btn = new Pol ygonButton(this, p,
paranNane, paranmrl);
bi gLabel . add(btn);

i ndex++;

}

get Cont ent Pane() . set Layout (nul I');

get Cont ent Pane() . add(bi gLabel);

bi gLabel . set Bounds(0, 0, biglnmage.getlconWdth(),
bi gl mage. get |l conHei ght());

}

public String getAppletlinfo() {
return "Sanpl e applet w th Pol ygonButtons";

}

public String[][] getParaneterinfo() {
String pinfo[][] = {

{"image", "“string", "base inage file nane"},
{"buttonX","x1,yl, x2,y2, ...", "button's bounds"}, a Forngtofpolygon
{"nameX"', "string", "tooltip text"}, coordinates
{(rurl X', turl", "link URL"} };
return pinfo;
}
}
cl ass Pol ygonButton extends JConponent 6 Replaces NavigateButton from
i npl enents MouseLi stener, MuseMti onLi stener previous example, but gets all
{ mouse events from parent to

static public Color ACTIVE _COLOR = Col or.red; check against polygon
static public Color | NACTIVE COLOR = Col or. darkG ay;

protected JAppl et m parent;

174 CHAPTER 5 LABELS AND BUTTONS

protected String mtext;
protected String msuUrl;
protected URL murl ;

protected Pol ygon m pol ygon;
protected Rectangle mrc;
protected bool ean m acti ve;

protected static Pol ygonButton m currentButton;

publ i ¢ Pol ygonButton(JAppl et parent, Polygon p,
String text, String sUrl)
{
m parent = parent;
m_pol ygon = p;
set Text (text);

msUrl = sUrl;
try {
murl = new URL(sUrl);
}
catch(Exception ex) { murl = null; }

set Opaque(fal se);

This component listens to
m _par ent . addMbuseLi stener(this); parent's events

m _par ent . addvbuseMbt i onLi stener(this);

mrc = new Rectangl e(m pol ygon. get Bounds());
mrc.grom 1, 1);

set Bounds(mrc);
m pol ygon.translate(-mrc.x, -mrc.y);

}

public void setText(String text) { mtext = text;

public String getText() { return mtext; }

public void nouseMoved(MouseEvent e) {

/!l Bug alert!

Create
bounding
rectangle

}

if (!mrc.contains(e.getX(), e.getY()) || e.isConsuned()) {

if (mactive)
set State(fal se);

return; // Quickly return, if outside our rectangle

}
int x = e.getX() - mrc.Xx;
int y=-e.getY() - mrc.y;
bool ean active = mpol ygon. contains(x, y);
if (mactive != active)
set State(active);
if (mactive)
e. consume();

}
public voi d nouseDragged(MuseEvent e) {}

protected void setState(bool ean active) { (7]

m active = active;
repaint();

CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS

Compare against

polygon; fix
activation state

Translate event coordinates
to button coordinates and
set state accordingly

Resets active button;
redraws component,
cursor, and URL

175

5.3.1

176

if (mactive) {
if (mcurrentButton != null)
m currentButton. set State(fal se);
m currentButton = this;
m _par ent . set Cur sor (Cur sor . get Predef i nedCur sor (
Cur sor. HAND_CURSOR)) ;
m par ent . showSt at us(msurl);
}
el se {
m currentButton = null;
m _par ent . set Cur sor (Cur sor . get Predef i nedCur sor (
Cur sor . DEFAULT_CURSOR)) ;
m_par ent . showSt at us(""); If mouse click is for this
} button, then show the
} URL document

public void noused icked(MuseEvent e) {
if (mactive & murl !'= null && !e.isConsumed()) {
Appl et Cont ext context = m parent.get Appl et Context ();
if (context !'= null)
cont ext . showDocunent (m.url);
e.consune();
}
}
public voi d nousePressed(MuseEvent e) {}
public voi d nouseRel eased(MouseEvent e) {}
public void nouseExited(MuseEvent e) { nouseMved(e); }
public voi d nouseEnt er ed(MouseEvent e) { nouseMoved(e); }

publ i c void pai nt Conponent (G aphics g) { Draws Red if
g.set Col or(m.active ? ACTIVE _COLOR : | NACTIVE_COLOR); ?Ct“’?’ Grey if
g. dr awPol ygon(m pol ygon) ; inactive

}

}

Understanding the code
Class ButtonApplet2

This class is a slightly modified version of the But t onAppl et class in the previous section; it
accommodates polygonal button sizes rather than rectangles (the parser has been modified to
read in an arbitrary number of points). Now it creates a Pol ygon instance and parses a data
string, which is assumed to contain pairs of comma-separated coordinates, adding each coor-
dinate to the Pol ygon using the the addPoi nt () method. The resulting Pol ygon instance is
used to create a new Pol ygonBut t on component.

Class PolygonButton

This class serves as a replacement for the Navi gat eBut t on class in the previous example.
Notice that it extends JConmponent directly. This is necessary to disassociate any mouse
handling inherent in buttons (the mouse handling is actually built into the button
UI delegates). Remember, we want to handle mouse events ourselves, but we want them each

CHAPTER 5 LABELS AND BUTTONS

to be sent from within the parent’s bounds to each Pol ygonButton, not from each
Pol ygonBut t on to the parent.

NOTE This is the opposite way of working with mouse listeners than we are used to. The
idea may take a few moments to sink in because directing events from child to
parent is so much more common that we generally don’t think of things the other
way around.

So, to be notified of mouse events from the parent, we'll need to implement the MouselLi s-
t ener and MouseMbt i onLi st ener interfaces.
Four new instance variables are declared:

* Pol ygon m pol ygon: The polygonal region representing this button’s bounds.

* Rectangl e m rc: This button’s bounding rectangle as seen in the coordinate space of
the parent.

* bool ean m act i ve: The flag indicating that this button is active.

e Pol ygonButton m current Button: A static reference to the instance of this class
which is currently active.

© The construcror of the Pol ygonBut t on class takes four parameters: a reference to the parent
applet, the Pol ygon instance representing this component’s bounds, the tooltip text, and a
St ri ng representation of a URL. It assigns all instance variables and instantiates a URL using
the associated Stri ng parameter (similar to what we saw in the last example). This compo-
nent adds itself to the parent applet as a MouseLi st ener and a MouseMot i onLi st ener:

m par ent . addMbuseLi st ener(this);
m par ent . addMbuseMbt i onLi stener(this);

o The bounding rectangle m r ¢ is computed with the Pol ygon. get Bounds() method. This
method does not create a new instance of the Rect angl e class, but it does return a reference to
an internal Pol ygon instance variable which is subject to change. This is not safe, so we must
explicitly create a new Rect angl e instance from the supplied reference. This Rect angl €’s
bounds are expanded (using its gr ow() method) to take border width into account. Finally,
the Rect angl e m rc is set as the button’s bounding region, and the Pol ygon is translated
into the component’s local coordinates by shifting its origin using its t r ansl at e() method.

o The mouseMoved() method is invoked when mouse events occur in the parent container. We
first quickly check whether the event lies inside our bounding rectangle and if it has not yet
been consumed by another component. If both conditions are met, we continue processing
this event; otherwise, our method returns. Before we return, however, we first must check
whether this button is still active for some reason—this can happen if the mouse cursor moves
too fast out of this button’s bounds, and the given component did not receive a MOUSE_
EXI TED MouseEvent to deactivate itself. If this is the case, we deactivate the button and then
exit the nouseMoved() method.

O Ve next manually translate the coordinates of the event into our buttons local system
(remember that this is an event from the parent container) and check whether the point lies
within our polygon. This gives us a boolean result which should indicate whether this
component is currently active or inactive. If our button’s current activation state (m acti ve)
is not equal to this value, we call the set St at e() method to change it so that it is. Finally, if

CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS 177

5.3.2

178

this component is active, we consume the given MouseEvent to avoid activation of two
components simultaneously.

The set St at e() method is called, as described above, to set a new activation state of this
component. It takes a boolean value as a parameter and stores it in the m acti ve instance
variable. Then it repaints the component to reflect a change in state, if any. Depending on the
state of the m acti ve flag in the set St at e() method, one of the following will happen:

* If the m active flag is set to true, this method checks the static reference to the
currently active button stored in the m cur r ent But t on static variable. In the case where
this reference still points to some other component (again, it potentially can happen if
the mouse cursor moves too quickly out of a component’s rectangular bounds), we force
that component to be inactive. Then we store a this reference as the
m_cur r ent But t on static variable, letting all the other buttons know that this button is
now the currently active one. We then change the mouse cursor to the hand cursor (as in
the previous example) and display our URL in the browser’s status bar.

* Ifthem acti ve flagis set to f al se, this method sets the m cur r ent But t on static variable
to nul |, changes the mouse cursor to the default cursor, and clears the browser’s status bar.

The nouseCl i cked() method checks whether this component is active (this implies that the
mouse cursor is located within our polygon, and not just within the bounding rectangle), the
URL is resolved, and the mouse event is not consumed. If all three checks are satisfied, this
method redirects the browser to the component’s associated URL and consumes the mouse
event to avoid processing by any other components.

The rest of this class’s methods, implemented due to the MouseLi st ener and MouseMo-
tionLi stener interfaces, receive empty bodies, except for mouseExi t ed() and nouse-
Ent ered() . Both of these methods send all their traffic to the nouseMoved() method to
notify the component that the cursor has left or has entered the container, respectively.

The pai nt Conponent () method simply draws the component’s Pol ygon in gray if it’s
inactive, and in red if it’s active.

NOTE We've purposefully avoided including tooltip text for these non-rectangular
buttons because the underlying Swing Tool Ti pManager essentially relies on the
rectangular shape of the components it manages. Somehow, invoking the Swing
tooltip API destroys our model of processing mouse events. In order to allow
tooltips, we have to develop our own version of a tooltip manager—this is the
subject of the next example.

Running the code

To run this code in a web browser, we have constructed the following HTML file (see the Java
plug-in and Java plug-in HTML converter notes in the previous example):

<htm >
<head>
<title></title>
</ head>
<body>

CHAPTER 5 LABELS AND BUTTONS

<OBJECT cl assi d="cl si d: 8BAD9C840- 044E- 11D1- B3E9- 00805F499D93"
W DTH = 400 HEI GHT = 380 codebase="http://java.sun.coni products/ pl ugin/
1.2/jinstall-12-wi n32. cab#Version=1, 2,0, 0">
<PARAM NAME = " CODE" VALUE = "ButtonApplet2.class" >
<PARAM NAME = "type"
VALUE ="application/x-java-appl et;versi on=1.2">
<par am name="i nage" val ue="bay_area.gif">

<par am name="but t onl"
val ue="112, 122, 159,131, 184,177, 284,148, 288,248, 158, 250,
100, 152" >
<par am name="nanel" val ue="Al aneda County">
<par am name="ur| 1"
val ue="http://dir.yahoo. coni Regi onal /U_S__St ates/
Cal i f orni a/ Counti es_and_Regi ons/ Al aneda_County/" >

<par am name="but t on2"

val ue="84, 136, 107,177, 76,182, 52,181, 51, 150">
<par am nanme="nanme2" val ue="San Franci sco County">
<par am name="ur| 2"

val ue="http://dir.yahoo. coni Regi onal /U S _States/
Cal i f orni a/ Counti es_and_Regi ons/ San_Franci sco_County/">

<par am name="but t on3"
val ue="156, 250, 129, 267, 142,318, 235,374, 361, 376, 360, 347, 311, 324,
291, 250" >
<par am name="nanme3" val ue="Santa Cl ara County">
<par am name="ur| 3"
val ue="http://dir.yahoo. conl Regi onal /U S __States/
Cal i forni a/ Counti es_and_Regi ons/ Santa_d ara_County/">

<par am name="but t on4"
val ue="54, 187, 111,180, 150, 246, 130, 265, 143,318, 99, 346, 63, 314">
<par am name="nanme4" val ue="San Mateo County">
<par am name="ur| 4"
val ue="http://dir.yahoo. com Regi onal /U_S__St at es/
Cal i forni a/ Counti es_and_Regi ons/ San_Mat eo_County/ ">

<par am name="but t on5"
val ue="91, 71, 225,79, 275,62, 282,147, 185,174, 160,129, 95,116,
79, 97" >
<par am name="nanme5" val ue="Contra Costa County">
<par am name="ur| 5"
val ue="http://dir.yahoo. com Regi onal /U_S__St at es/
Cal i forni a/ Counti es_and_Regi ons/ Contra_Cost a_County/">

<COMMVENT>
<EMBED t ype="application/x-java-appl et; versi on=1.2" CODE =
" But t onAppl et 2. cl ass”
W DTH = "400" HElI GHT = " 380"
codebase="./"
i mmge="bay_area. gif"
buttonl="112, 122, 159, 131, 184,177, 284,148, 288,248, 158, 250, 100, 152"
nanmel="Al amreda County"

CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS 179

5.4

180

url 1="http://dir.yahoo. coml Regional /U S States/Californial
Count i es_and_Regi ons/ Al aneda_County/"
but t on2="84, 136, 107,177, 76,182, 52,181, 51, 150"
nane2="San Franci sco County"
url 2="http://dir.yahoo. coml Regional /U S States/Californial
Count i es_and_Regi ons/ San_Fr anci sco_County/"
but t on3="156, 250, 129, 267, 142,318, 235,374, 361,376, 360,347, 311, 324,
291, 250"
nane3="Santa C ara County"
url 3="http://dir.yahoo. conl Regional /U S _States/Californial/
Count i es_and_Regi ons/ Santa_Cl ara_County/"
button4="54, 187, 111,180, 150,246, 130,265, 143,318, 99, 346, 63, 314"
nane4="San Mateo County"
url4="http://dir.yahoo. conml Regional /U S _States/Californial/
Count i es_and_Regi ons/ San_Mat eo_Count y/ "
button5="91, 71, 225,79, 275,62, 282,147, 185,174, 160,129, 95,116, 79,97"
nane5="Contra Costa County"
url 5="http://dir.yahoo. conl Regional /U S _States/Californial/
Count i es_and_Regi ons/ Contra_Costa_County/"
pl ugi nspage="http://java. sun. com product s/ pl ugi n/ 1. 2/ pl ugi n-
install.htm">
<NOEMBED></ COMVENT>
al t ="Your browser understands the & t; APPLET> tag but isn't running the
applet, for sonme reason."”
Your browser is conpletely ignoring the & t; APPLET> tag!
</ NOEMBED>
</ EMBED>
</ OBJECT>
</ p>
<p> </ p>
</ body>
</htm >

Figure 5.10 shows the ButtonAppl et 2 example running in Netscape 4.05 with the Java
plug-in. Our HTML file has been constructed to display an active map of the San Francisco
bay area. Five non-rectangular buttons correspond to this area’s five counties. Watch how the
non-rectangular buttons react when the mouse cursor moves in and out of their boundaries.
Verify that they behave correctly even if a part of a given button lies under the bounding rect-
angle of another button (a good place to check is the sharp border between Alameda and Con-
tra Costa counties). Click over the button and notice the navigation to one of the Yahoo sites
containing information about the selected county.

It is clear that tooltip displays would help to dispel any confusion as to which county is
which. The next example shows how to implement this feature.

CUSTOM BUTTONS, PART Ill: TOOLTIP MANAGEMENT

In this section we'll discuss how to implement custom management of tooltips in a Swing
application. If youre completely satisfied with the default Tool Ti pManager provided with

CHAPTER 5 LABELS AND BUTTONS

. \‘.

=TT
.:i:n' ’:

521 ARG Lt

Bze San Francisco Cnunw
Pacific an EEnos,
™ 3

.Il"-. = . 5 o A \ * - :
BouldEr Creé @ alorgan Hill' b . Figure 5.12
sentomond] _cehre vty p =N | Polygonal buttons
- - —— with a custom
I@ | | http:/dir.pahoo. com/R egional/U_S__ States/Talfornia/Count

tooltip manager

Swing, you can skip this section. But there may be situations when this default implementa-
tion is not satisfactory, as in our example above using non-rectangular components.

In example 5.6, we will construct our own version of a tooltip manager to display a tooltip
window if the mouse cursor rests over some point inside a button’s polygonal area longer than a
specified time interval. It will be displayed for a specified amount of time; then, to avoid annoy-
ing the user, we will hide the tooltip window until the mouse cursor moves to a new position.
In designing our tooltip manager, we will take a different approach than that taken by Swing’s
default Tool Ti pManager (see 5.1.12). Instead of using three different Ti mer s, we will use just
one. This involves tracking more information, but it is slightly more efficient because it avoids
the handling of multiple Acti onEvent s.

Example 5.6

ButtonApplet3.java

see \Chapter5\6

i nport java. applet.*;
import java.aw.*;
import java.aw.event.*;
import java.net.*;
inmport java.util.*;

i mport javax.sw ng.*;

CUSTOM BUTTONS, PART III: TOOLTIP MANAGEMENT 181

i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class ButtonAppl et3 extends JAppl et
{

prot ect ed Custonilool Ti pManager m nmanager ;
public ButtonApplet3() {}

public synchronized void init() {
/1 Unchanged code fromexanple 5.5

m_rmanager = new Cust onifool Ti pManager (t hi s);
Pol ygonButt on. m t ool Ti p = m_manager. m t ool Ti p;

get Cont ent Pane() . set Layout (nul |);

get Cont ent Pane() . add(bi gLabel) ;

bi gLabel . set Bounds(0, 0, biglmage.getlconWdth(),
bi gl mage. get | conHei ght());

}

/1 Unchanged code from exanple 5.5
}

cl ass Pol ygonButton extends JConponent
i mpl enent's Mouseli st ener, MuseMbti onLi st ener

{

/'l Unchanged code from exanple 5.5
public static JTool Tip mtool Tip;

protected void setState(bool ean active) {
m active active;
repaint();
if (active) {
if (mcurrentButton != null)
m currentButton. set State(fal se);
m _par ent . set Cur sor (Cur sor . get Predef i nedCur sor (
Cur sor. HAND_CURSOR)) ;
m par ent . showSt at us(msurl);
if (mtoolTip !'= null)
m t ool Tip.setTipText (mtext);

}

el se {
m_current Button nul | ;
m _par ent . set Cur sor (Cur sor . get Predef i nedCur sor (
Cur sor. DEFAULT_CURSOR)) ;
m _par ent. showSt atus("");
if (mtoolTip !'= null)
m t ool Tip.setTipText (null);

}
}
}

cl ass Custoniool Ti pManager extends MuselMbti onAdapt er
i mpl enents Acti onLi st ener

{

182

[2]

©

Like ButtonApplet2,
but manages tooltips

Set sole tooltip
instance for all
buttons in applet

Same as in
ButtonApplet2, but
sets “global” tooltip to
tooltip for this button

TooltipManager that
doesn't assume
rectangular
components

CHAPTER 5 LABELS AND BUTTONS

protected Tiner mtiner;

protected int mlastX = -1;
protected int mlastY = -1,
protected bool ean m noved = fal se;
protected int mcounter = 0;

public JTool Tip mtool Tip = new JTool Tip();

Cust onTool Ti pManager (JAppl et parent) { e
par ent . addMbuseMt i onLi st ener (this);
m t ool Ti p. set Ti pText (nul I');
par ent . get Cont ent Pane() . add(m_t ool Ti p);
m_t ool Ti p. set Vi si bl e(fal se);
mtiner = new Timer (1000, this);
mtiner.start();

}

public voi d nobuseMbved(MouseEvent e) {
m nmoved = true;
m counter = -1,
mlastX = e.getX();
mlastY = e.getY();
if (mtoolTip.isVisible()) {
m t ool Ti p. set Vi si bl e(fal se);
m tool Ti p. get Parent (). repaint();
}
}

public void actionPerforned(ActionEvent e) {

Listens for mouse events on
parent; installs tooltip in
parent; installs timer to check
and control tooltip state

Mouse has moved, so
reset tooltip state

Called for Timer
events; hides or
displays tooltip

if (mnoved || mcounter==0 || mtool Tip.getTipText()==null) {

if (mtool Tip.isVisible())

m t ool Ti p. set Vi si bl e(fal se);
m noved = fal se;
return;

}

if (mcounter < 0) {
m counter = 4;
m t ool Ti p. set Visi bl e(true);
Di mension d = mtool Ti p. get PreferredSi ze();
m t ool Ti p. set Bounds(m_| ast X, m | ast Y+20,
d.wi dth, d.height);

}

m _count er —

}
}

5.4.1 Understanding the code
Class ButtonApplet3

If ready to display
tooltip, set it up to
display for about 4
seconds, over the last
mouse position

@ This class requires very few modifications from But t onAppl et 2 in the last section. It declares
and creates Cust onifool Ti pManager m nanager and passes at hi s reference to it:

m_manager = new MyTool Ti pManager (thi s);

CUSTOM BUTTONS, PART IIl: TOOLTIP MANAGEMENT

183

184

As you will see below, our Cust onfool Ti pManager class manages a publicly accessible
JTool Ti p, m tool Ti p. Cust onifool Ti pManager itself is not intended to provide any mean-
ingful content to this tooltip. Rather, this is to be done by other components—in our case,
by Pol ygonBut t ons. Thus, our Pol ygonBut t on class declares a st at i ¢ reference to a JTool -
Ti p component. Whenever a button becomes active, this JTool Ti p’s text will be assigned to
that of the active button. So, when we create our instance of Cust oniTool Ti pManager, we
assign its publicly accessible JTool Ti p as our Pol ygon class’s static JTool Ti p (which is also
publicly accessible):

Pol ygonBut t on. m t ool Ti p = m_nanager . m t ool Ti p;

Thus, only one JTool Ti p instance will exist for the lifetime of this applet, and both Cust om
Tool Ti pManager and our Pol ygonBut t ons have control over it.

Class PolygonButton

9 As we've mentioned earlier, this class now declares the static variable JTool Ti p m t ool Ti p.

The Pol ygonBut t on class does not initialize this reference. However, this reference is checked
during Pol ygonBut t on activation in the set St at e() method. If m t ool Ti p is not nul |
(set to point to a valid tooltip window by some outer class, which, in our example, is done in
the But t onAppl et 3 i ni t () method shown above), the set Ti pText () method is invoked
to set the proper text while the mouse cursor hovers over the button.

Class Custom1oolTipManager

This class represents a custom tooltip manager which is free from assumption of the rectangu-
larity of its child components. It extends the MouseMbt i onAdapt er class and implements
the Act i onLi st ener interface to work as both a MouseMt i onLi st ener and an Acti on-
Li st ener. Six instance variables are declared:
e Timer m.tinmer: Our managing timer.
e int mlastX mlastY: The last coordinates of the mouse cursor, these two variables
are reassigned each time the mouse is moved.
* bool ean m noved: A flag indicating that the mouse cursor has moved.
* int mcounter: The time ticks counter that is used to manage the tooltip’s time to live
(see below).
* JTool Ti p m tool Ti p: The tooltip component to be displayed.

The constructor of the Cust onifool Ti pManager class takes a reference to the parenting
JAppl et as a parameter and registers itself as a MouseMbt i onLi st ener on this component.
Then it creates the JTool Ti p m_t ool Ti p component and adds it to the applet’s content
pane. mtool tip is set invisible, using set Vi si bl e(fal se); it can then be used by any
interested class by repositioning it and calling set Vi si bl e(true) . Finally, a Ti mer with a
1000ms delay time is created and started.

The nouseMoved() method will be invoked when the mouse cursor moves over the applet. It
sets the m noved flag to true, m count er to -1, and stores the coordinates of the mouse
cursor. Then this method hides the tooltip component if it’s visible.

CHAPTER 5 LABELS AND BUTTONS

The acti onPer f or med() method is called when the Ti mer fires events (see section 2.6 for
details). It implements the logic of displaying/hiding the tooltip window based on two instance
variables: m nmoved and m count er:

if (mnoved || mcounter==0 || mtool Tip.getTipText()==null) {
if (mtool Tip.isVisible())
m t ool Ti p. set Vi si bl e(fal se);
m noved = fal se;
return;

}

The block of code above is invoked when any one of the following statements are true:

1 The mouse cursor has been moved since the last time tick.
2 The counter has reached zero.

3 No tooltip text is set.

In any of these cases, the tooltip component is hidden (if it was previously visible), and the
m_noved flag is set to f al se. The m count er variable remains unchanged.

if (mcounter < 0) {
m counter = 4,
m t ool Ti p. set Vi si bl e(true);
Di mension d = mtool Ti p. get PreferredSi ze();
m t ool Ti p. set Bounds(m_| ast X, m | ast Y+20,
d.w dth, d.height);

}

o The above block of code is responsible for displaying the tooltip component. It will be exe-
cuted only when m count er is equal to —1 (set by mouseMoved()), and when the m noved
flag is f al se (cleared by the previous code fragment). m count er is set to 4, which deter-
mines the amount of time the tooltip will be displayed (4000ms in this example). Then we
make the tooltip component visible and place it at the current mouse location with a vertical
offset approximately equal to the mouse cursor's height. This construction provides an arbi-
trary delay between the time when mouse motion stops and the tooltip is displayed.

The last line of code in the acti onPerformed() method is m count er - -, which decre-
ments the counter each time tick until it reaches 0. As we saw above, once it reaches 0 the

tooltip will be hidden.

NOTE The actual delay time may vary from 1000ms to 2000ms since the mouse move-
ments and time ticks are not synchronized. A more accurate and complex imple-
mentation could start a new timer after each mouse movement, as is done in
Swing’s Tool Ti pManager .

The following table illustrates how the m counter and m noved variables control this
behavior.

CUSTOM BUTTONS, PART III: TOOLTIP MANAGEMENT 185

Table 5.1 m count er and m noved variables

Timer m_moved m_counter m_counter Comment

tick flag before after
0 false 0 0

1 true -1 -1 Mouse moved between 0" and 15 ticks.
false -1 Tooltip is displayed.
false

false

false

false Tooltip is hidden.

0 N OO o B~ W N
O O O = N W b

4
3
false 2
1
0
0

false Waiting for the next mouse move.

5.4.2 Running the code

Figure 5.12 shows But t onAppl et 3 running in Netscape Navigator 4.05 with the Java plug-in.
You can use the same HTML file that was presented in the previous section. Move the mouse
cursor over some non-rectangular component and note how it displays the proper tooltip
message. This tooltip disappears after a certain amount of time or when the mouse is moved
to a new location.

186 CHAPTER 5 LABELS AND BUTTONS

6.1

CHAPTTEHR 6

-

labbed panes

6.1 JTabbedPane 182
6.2 A dynamically changeable tabbed pane 184
6.3 Tab validation 197

JTABBEDPANE
class javax.swing. | TabbedPane

JTabbedPane is simply a stack of components in selectable layers. Each layer can contain
one component which is normally a container. Tab extensions are used to move a given layer
to the front of the tabbed pane view. These tab extensions are similar to labels in that they
can have assigned text, an icon (as well as a disabled icon), background and foreground colors,
and a tooltip.

To add a component to a tabbed pane, you use one of its overloaded add() methods.
This creates a new selectable tab and reorganizes the other tab extensions, if necessary, so the
new one will fit. You can also use the addTab() and i nsert Tab() methods to create new
selectable layers. The r emove() method takes a component as a parameter and removes the
tab associated with that component, if there is one.

Tab extensions can reside to the north, south, east, or west of the tabbed pane’s content.
The location is specified using its set TabPl acenent () method and passing one of the cor-
responding Swi ngConst ant s fields as a parameter.

187

188

Vertical or horizontal tabs? When is it best to choose between vertical or
horizontal tabs?

Three possible rules of thumb help make the decision whether to place tabs
horizontally or vertically. First, consider the nature of the data to be displayed.
Is vertical or horizontal space at a premium within the available display space?
If, for example, you have a list with a single column but 200 entries, then clear-
ly vertical space is at a premium. If you have a table with only 10 entries but 15
columns, then horizontal space is at a premium. Simply place the tabs where
space is cheaper to obtain. In the first example with the long list, place the tabs
vertically so they use horizontal space which is available. In the second example,
place the tabs horizontally so you use vertical space which is available while hor-
izontal space is completely taken by the table columns.

The second rule concerns the number and size of the tabs. If you need to dis-
play 12 tabs, for example, each with a long label, then it is unlikely that these
will fit across the screen horizontally. In this case you are more likely to fit them
by placing them vertically. Using space in these ways when introducing a
tabbed pane should minimize the introduction of scroll panes and maximize
ease of use. Finally, the third rule of thumb is to consider the layout and mouse
movements required for operating the software. If, for example, your applica-
tion uses a toolbar, then it may make sense to align the tabs close to the toolbar,
thus minimizing mouse movements between the toolbar buttons and the tabs.
If you have a horizontal toolbar across the top of the screen, then choose a hor-
izontal set of tabs across the top (to the north).

JAVA 1.4

As of Java 1.4 you can choose whether tabs should wrap to form rows of tabs, or
whether they should always form one scrollable row of column. When in the latter
form two buttons appear for scrolling through the existing tabs.

The tab layout policy can be assigned with the new set TabLayout Pol i cy()
method. This method takes either of the following as a parameter:

JTabbedPane. WRAP_TAB_LAYQUT
JTabbedPane. SCROLL_TAB_LAYOUT

Example 6.1, along with the corresponding figures, illustrates this new feature.

You can get and set the selected tab index at any given time using its get Sel ect edl ndex()
and set Sel ect edl ndex() methods respectively. You can get/set the component associated
with the selected tab similarly, using the get Sel ect edConponent () and set Sel ect ed-
Conponent () methods.

One or more Changeli st eners can be added to a JTabbedPane, which gets regis-

tered with its model (an instance of Def aul t Si ngl eSel ecti onMbdel by default—see
chapter 12 for more information about Si ngl eSel ecti onvbdel and Def aul t Si ngl e-
Sel ect i onModel). When a new tab is selected, the model will send out ChangeEvent s to
all registered ChangelLi st eners. The st at eChanged() method of each listener is invoked,
so you can capture and perform any desired actions when the user selects any tab. JTabbed-

CHAPTER 6 TABBED PANES

Pane also fires
change state.

Pr oper t yChangeEvent s whenever its model or tab placement properties

Transaction boundaries and tabbed panes If you're using a tabbed pane
within a dialog, the transaction boundary is normally clear—it will be an OK
or Cancel button on the dialog. In this case, it is obvious that the OK and Can-
cel buttons would lie outside the tabbed pane and in the dialog itself. This is
an important point. Place action buttons which terminate a transaction out-
side the tabbed panes. If, for example, you had a tabbed pane which contained
a Save and Cancel button within the first tab, would it be clear that the Save
and Cancel buttons work across all tabs or only on the first? Actually, it can be
very ambiguous. To clearly define the transaction, define the buttons outside
the tabbed pane so it is clear to the user that any changes made to any tab will
be accepted or saved when OK or Save is pressed or discarded when Cancel is
pressed. The action buttons will then apply across the complete set of tabs.

6.2 A DYNAMICALLY CHANGEABLE TABBED PANE

We will now turn to a JTabbedPane example applet that demonstrates a dynamically recon-

figurable tab layout as well as the addition and removal of any number of tabs. A Change-

Li st ener is attached to the tabbed pane to listen for tab selection events and to display the

currently selected tab index in a status bar. For enhanced feedback, audio clips are played

when the tab layout changes and whenever a tab is added and removed. Example 6.1 contains

the code.

Example 6.1

TabbedPaneDemo.java

see \Chapter6\1

import java.aw.*;
i mport java. applet.*;
inmport java.aw.event.?*;

i mport javax.
i mport javax.
i mport javax.

public class

SWi ng. *;
SWi ng. event . *;
Swi ng. border. *;

TabbedPaneDenpo ext ends JAppl et

i npl enents ActionLi stener {

private | mgel con m tabi mage; /o Images for tab

private | magel con m utsguy;

extensions and

private | magelcon mjfcgirl; container
private | magel con m sbeguy;

private | magel con mtiger;

private JTabbedPane m t abbedPane;

A DYNAMICALLY CHANGEABLE TABBED PANE 189

private JRadi oButton m topButton; Buttons to

private JRadi oButton m bottonButton; control tab
private JRadi oButton m| eftButton; alignment
private JRadi oButton mrightButton; Buttons to
private JRadi oButton m w apButton; control tab
layout

private JRadi oButton mscrol |l Button;
private JButton m addButton;

private JButton mrenpveButton;
private JlLabel m status;

private JLabel m. oadi ng;

private Audi oCip m.layoutsound;
private Audi oCip mtabsound;

public void init() {
m_| oadi ng = new JLabel ("Initializing applet...",
Swi ngConst ant s. CENTER) ;
get Cont ent Pane() . add(m_| oadi ng);

Thread initialize = new Thread() {
public void run() {
try {

m t abi mage = new
I magel con(get Cl ass().get Resource("ball.gif"));

m utsguy = new
I magel con(get C ass(). get Resource("utsguy.gif"));

mjfcgirl = new
I magel con(get Cl ass().get Resource("jfcgirl.gif"));

E;; Applet Viewer: TabbedPaneDemo

@ Tabh #17

Tabh 817

® Top O Bottom O Left) Right
) WRAP TABS @ SCROLL TABS Add | Remove

[selected Tab: 17
Applet started.

Figure 6.1 TabbedPaneDenb showing SCROLL_TAB LAYQOUT policy
with TOP alignment

190 CHAPTER 6 TABBED PANES

O]

Egaﬁ\pplel Yiewer: TabbedPaneDemo

Tah #17

) Top ! Bottom)) Right
I WRAP TABS) SCROLL TABS | Add || Remaove

[Selected Tab: 17

Applet started.

Figure 6.2 TabbedPaneDenp showing SCROLL_TAB_LAYCQUT policy
with LEFT alignment

Eg_;a.hpplel Yiewer: TabbedPaneDemo !E[E
Applet

Tah #17

@ {7 Bottom) Left) Right
@) WRAP TABS () SCROLL TABS Add | Remave

[selected Tab: 17
Applet started.

Figure 6.3 TabbedPaneDenp showing WRAP_TAB LAYOQOUT policy
with TOP alignment

191

A DYNAMICALLY CHANGEABLE TABBED PANE

192

m sbeguy = new

I magel con(get d ass() . get Resour ce("sbeguy.gif"));
mtiger = new

| magel con(get C ass().get Resource("tiger.gif"));
m t abbedPane = newJTabbedPane(Swi ngConst ants. TOP) ;

m t opButton = new JRadi oButton("TOP");

m bot t onBut t on = new JRadi oButton("BOTTOM') ;
m | eft Button = new JRadi oButton("LEFT");

m right Button = new JRadi oButton("RlI GHT");
m addButton = new JButton("Add");

m r enpveBut t on = new JButton("Renove");

m w apButton = new JRadi oButton(“WRAP TABS");
m scrol | Button = new JRadi oButton(“SCROLL TABS");

m_t opBut t on. set Sel ect ed(true);

butt onG oup bgAlignnent = new ButtonG oup();
bgAl i gnment . add(m_t opBut t on) ;

bgAl i gnment . add(m_bot onBut t on) ;

bgAl i gnment . add(m_| eft Butt on);

bgAl i gnnment . add(m_ri ght Btton);

m wr apBut t on. set Sel ect ed(true);

Butt onGroup bgScrol | Mode = new ButtonG oup();
bgScr ol | Mode. add(m wr apButton);

bgScrol | Mode. add(m scrol | Button);

m_t opBut t on. addAct i onLi st ener (TabbedPaneDeno. t hi s) ;

m bot t onBut t on. addAct i onLi st ener (TabbedPaneDeno. t hi s) ;
m | ef t But t on. addAct i onLi st ener (TabbedPaneDenv. t hi s) ;

m right Button. addActi onLi st ener (TabbedPaneDeno. t hi s);
m addBut t on. addAct i onLi st ener (TabbedPaneDeno. t hi s);

m renoveBut t on. addAct i onLi st ener (TabbedPaneDeno. t hi s) ;
m wr apBut t on. addAct i onLi st ener (TabbedPaneDenop. t hi s) ;

m scrol | Button. addActi onLi st ener (TabbedPaneDeno. t hi s) ;

JPanel buttonPanel . new JPanel ();

but t onPanel . set Layout (new Gri dLayout (2, 4));
but t onPanel . add(m_ t opButton);

but t onPanel . add(m bot t onBut t on) ; p Buttons in
but t onPanel . add(m_ | ef t Butt on); GridLayout
but t onPanel . add(m. ri ght Button);
but t onPanel . add(m wr apt Button);
but t onPanel . add(m scrol | t Button);
but t onPanel . add(m addBut t on) ;

but t onPanel . add(m renmoveButton);

m status = new JLabel ();

m st at us. set For egr ound(Col or. bl ack) ;

m st at us. set Bor der (new ConpoundBor der (

new EnptyBorder(2, 5, 2, 5),

new Sof t Bevel Bor der (Sof t Bevel Bor der. LOAERED))) ;

JPanel | owerPanel = new JPanel ();
| ower Panel . set Layout (new Bor der Layout ());

CHAPTER 6 TABBED PANES

| ower Panel . add(but t onPanel , Border Layout . CENTER);
| ower Panel . add(m st at us, Borderl ayout. SOUTH);

for (int i=0; i<20; i++) {
createTab();

}

get Cont ent Pane() . renoveAl |l ();

get Cont ent Pane() . set Layout (new Bor der Layout ());

get cont ent Pane(). add(m_tabbedPane, BorderLayout. CENTER);
get Cont ent Pane() . add(| ower Panel , Border Layout. SOUTH) ;

m_t abbedPane. addChangelLi st ener (new TabChangeLi stener());
m | ayout sound = get Audi od i p(get CodeBase(), “switch.wav");
m t absound = get Audi oQl i p(get CodeBase(), “tab.wav”);

get Cont ent Pane() . renove(m_| oadi ng);
get Root Pane().revalidate();
get Root Pane() . repaint();
}
catch (Exception ex) {
ex. printStackTrace();

}
}
H
initialize.start();
}
)) Creates a tab
public void createTab() ({ with image icon
JLabel |abel = null;
switch (m.tabbedPane. get TabCount () %) {
case 0:
| abel = new JLabel ("Tab #" + m_tabbedPane. get TabCount (),
m_ut sguy, Swi ngConst ants. CENTER);
br eak;
case 1:
| abel = new JLabel ("Tab #" + m_tabbedPane. get TabCount (),
mjfcgirl, Sw ngConstants. CENTER);
br eak;
case 2:
| abel = new JLabel ("Tab #" + m_tabbedPane. get TabCount (),
m sbeguy, Swi ngConst ants. CENTER);
br eak;
case 3:
| abel = new JLabel ("Tab #" + m_tabbedPane. get TabCount (),
m tiger, Swi ngConstants. CENTER);
br eak;
}

| abel . set Verti cal Text Positi on(Sw ngConst ants. BOTTOM ;

| abel . set Hori zont al Text Posi ti on(Swi ngConst ant s. CENTER) ;

| abel . set Opaque(true);

| abel . set Backgr ound(Col or. white);

m t abbedPane. addTab(" Tab #" + m_t abbedPane. get TabCount (),
m_t abi nage, | abel);

A DYNAMICALLY CHANGEABLE TABBED PANE 193

194

m_t abbedPane. set Sel ect edl ndex(m_t abbedPane. get TabCount () - 1) ;
set St at us(m_t abbedPane. get Sel ect edl ndex());

}
public void killTab() { Removes tab
i f (m._tabbedPane. get TabCount () > 0) { W.Ith the.
m t abbedPane. r enoveTabAt (m t abbedPane. get TabCount () - 1) ; highest index
set St at us(m_t abbedPane. get Sel ect edl ndex());
}
el se
setStatus(-1);
}

Update status label with

public void setStatus(int index) { selected tab index

if (index > -1)

m st atus. set Text (" Sel ected Tab: " + index);
el se
m st atus. set Text (" No Tab Sel ected");
}
public void actionPerforned(Acti onEvent e) { g?ltlﬁcei ;\:lht::nosne
if (e.getSource() == mtopButton) { is clicked; changes
m_t abbedPane. set TabPl acenment (Swi ngConst ants. TOP) ; tab orientation or
m_| ayout sound. pl ay(); adds/removes tab
}
el se if(e.getSource() == mbottonButton) {
m_ t abbedPane. set TabPl acenent (Swi ngConst ant s. BOTTOW) ;
m_| ayout sound. pl ay();
}
else if(e.getSource() == mleftButton) {
m t abbedPane. set TabPl acenent (Swi ngConst ant s. LEFT) ;
m_| ayout sound. pl ay();
}
else if(e.getSource() == mrightButton) {
m t abbedPane. set TabPl acenent (Swi ngConst ants. Rl GHT) ;
m_| ayout sound. pl ay();
}
el se if(e.getSource() == mwapButton) {
m_t abbedPane. set TabLayout Pol i cy(
JTabbedPane. WRAP_TAB_LAYQUT) ;
m_| ayout sound. pl ay();
}
el se if(e.getSource() == mscrollButton) {
m_ t abbedPane. set TabLayout Pol i cy(
JTabbedPane. SROLL_TAB_LAYQUT) ;
m_| ayout sound. pl ay();
}
el se if(e.getSource() == m addButton)
createTab();
el se if(e.getSource() == mrenoveButton)
kill Tab();

m t abbedPane. reval i date();

CHAPTER 6 TABBED PANES

m_t abbedPane. repai nt () ;

}
cl ass TabChangelLi stener inpl enents ChangelLi stener {
public void stateChanged(ChangeEvent e) { /o Plays sound
set St at us(when tab set
((JTabbedPane) e. get Source()). get Sel ect edl ndex());
m_t absound. pl ay();
}
}

}

6.2.1 Understanding the code
Class TabbedPaneDemo

TabbedPaneDenp extends JAppl et and implements Act i onLi st ener to listen for button
events. Several instance variables are used:

o * I magel con mt abi mage: The image used in each tab extension.
* I magel con m utsguy, mjfcgirl, msbeguy, mtiger: The images used in the tab
containers.
* JTabbedPane m tabbedPane: The main tabbed pane.
* JRadi oButton m topButton: The top tab alignment button.
* JRadi oBut t on m bot t onBut t on: The bottom tab alignment button.
* JRadi oBut t on m | ef t But t on: The left tab alignment button.
* JRadi oBut t on m ri ght But t on: The right tab alignment button.
e JButton m addButt on: The add tab button.
e JButton mrenoveButton: The remove tab button.
* JRadi oButton m w apBut t on: the WRAP_TAB_LAYOUT layout policy button.
* JRadi oButton m scrol | Button: the SCROLL_TAB_LAYOQUT layout policy button.
e JLabel m st at us: The status bar label.

Our JTabbedPane, m t abbedPane, is created with TOP tab alignment. (Note that TOP is
actually the default, so this is really not necessary here. The default JTabbedPane constructor
would do the same thing.)

o Thei ni t () method organizes the buttons inside a JPanel using Gri dLayout , and it associ-
ates Act i onLi st ener s with each one. We wrap all instantiation and GUI initialization proc-
esses in a separate thread and start the thread in this method. (Loading can take several
seconds and it is best to allow the interface to be as responsive as possible during this time.)
We also provide an explicit visual cue to the user that the application is loading by placing an
“I'nitializingapplet...” label in the content pane where the tabbed pane will be placed
once it is initialized. In this initialization, our cr eat eTab() method is called four times. We
then add both the panel containing the tabbed pane controller buttons and our tabbed pane
to the content pane. Finally, an instance of MyChangelLi st ener is attached to our tabbed
pane to listen for tab selection changes.

9 The cr eat eTab() method is called whenever m addBut t on is clicked. Based on the current
tab count, this method chooses between four | magel cons, creates a JLabel containing the

A DYNAMICALLY CHANGEABLE TABBED PANE 195

6.2.2

196

© 00

chosen icon, and adds a new tab containing that label. The ki | | Tab() method is called
whenever m r enoveBut t on is clicked to remove the tab with the highest index.

The set St at us() method is called each time a different tab is selected. The m st at us
JLabel is updated to reflect which tab is selected at all times.

The act i onPer f or med() method is called whenever any of the buttons are clicked. Clicking
m_t opBut t on, m bott onButton, m | ef t Button, or m ri ght Button causes the tab lay-
out of the JTabbedPane to change accordingly, using the set TabPl acement () method.
Clicking mwapButton or mscrollButton changes the tab layout policy to
WRAP_TAB_LAYOUT or SCROLL_TAB_LAYOUT respectively. Each time one of these tab layout
buttons is clicked, a WAV file is played. Similarly, when a tab selection change occurs, a differ-
ent WAV file is invoked. These sounds, m t absound and m | ayout sound, are loaded at the
end of thei ni t () method:

m | ayout sound = get Audi oCl i p(get CodeBase(), "switch.wav");
m t absound = get Audi od i p(get CodeBase(), "tab.wav");

Before the act i onPer f or med() method exits, it revalidates the JTabbedPane. (If this reval-
idation were to be omitted, we would see that a layout change caused by clicking one of our
tab layout buttons will result in incorrect tabbed pane rendering.)

Class TabbedPaneDemo. MyChangeListener

MyChangelLi st ener implements the ChangelLi st ener interface. Only one method must be
defined when implementing this interface: st at eChanged(). This method can process
ChangeEvent s corresponding to when a tabbed pane’s selected state changes. In our st at e-
Changed() method, we update the status bar in TabbedPaneDenp and play an appropriate
tab switching sound:

public void stateChanged(ChangeEvent e) {
set St at us(
((JTabbedPane) e. get Source()). get Sel ect edl ndex());
m t absound. pl ay();

}

Running the code
Figure 6.1, 6.2, and 6.3 show TabbedPaneDeno in action. To deploy this applet, the follow-
ing simple HTML file is used (this is not Java plug-in compliant):

<HTM.> <BODY>
<appl et code=TabbedPaneDenp wi dt h=570 hei ght =400> </ appl et >
</ BODY> </ HTM_>

Add and remove some tabs, and play with the tab layout to get a feel for how it works in dif-
ferent situations. You can use your arrow keys to move from tab to tab (if the focus is currently
on a tab), and remember to turn your speakers on for the sound effects.

NOTE You may have problems with this applet if your system does not support WAV files.
If so, comment out the audio-specific code and recompile the applet.

CHAPTER 6 TABBED PANES

6.2.3

6.3

Interesting JTabbedPane characteristics

In cases where there is more than one row or column of tabs, most of us are used to the situation
where selecting a tab that is not already in the frontmost row or column moves that row or col-
umn to the front. This does not occur in a JTabbedPane using the default Metal look and feel, as
you can see in the TabbedPaneDenp example above. However, this does occur when using the
Windows, Motif, and Basic look and feel tabbed pane Ul delegates. This feature was purposefully
disabled in the Metal look and feel (as can be verified in the Met al TabbedPaneUl source code).

Avoid multiple rows of tabs As a general rule, you should seek to design for
no more than a single row or column of tabs.

There are three key reasons for this. The first is a cognitive reason: the user has
trouble discerning what will happen with the multiple rows of tabs. With the
Windows look and feel for example, the behavior somewhat mimics the behav-
ior of a Rolodex filing card system. For some users this mental model is clear
and the behavior is natural; for others it is simply confusing.

The second reason is a human factors/usability problem. When a rear set of
tabs comes to the front, as with the Windows look and feel, the positions of all
the other tabs change. Therefore the user has to discern the new position of a
tab before visually selecting it and moving the mouse toward it. This makes it
harder for the user to learn the positions of the tabs. Directional memory is a
strong attribute and is highly productive for usability. Thus it is always better
to keep the tabs in the same position. This was the reason why Sun and Apple
designers chose to implement multiple tabs in this fashion.

The final reason is a design problem. When a second or subsequent row or col-
umn of tabs is introduced, the tabbed pane must be resized. Although the lay-
out manager will cope with this, it may not look visually satisfactory when
completed. The size of the tabbed pane becomes dependent on the ability to
render the tabs in a given space. Those who remember the OS2 Warp UT will
recall that the designers avoided this problem by allowing only a single row of
tabs and the ability to scroll them if they didn't fit into the given space. As of
Java 1.4 this design is available by setting JTabbedPane’s tab layout policy to
SCROLL_TAB_LAYOQUT respectively.

TAB VALIDATION

In example 6.2 we show how to programmatically invoke or deny a tab switch. The first tab
contains a hypothetical list of employees. The second tab contains input fields displaying, and
allowing modification to, a specific employee’s personal data. When the application starts the
first tab is selected. If no employee is selected from the list the second tab cannot be selected.
If an employee is selected from the list the second tab is selectable (either by clicking the tab
or double-clicking the employee name in the list). A ChangeLi st ener is responsible for con-
trolling this behavior.

TAB VALIDATION 197

198

Egj Tab Validation Demo

rEmpIDyees n’PersunaI Data |

John Smith (111-1111)
Silvia Glenn (222-2222)
Captain Kirk (333-3333)
Duke Nukem (444-4444) -

Eﬁf’,ﬁ' Tab ¥alidation Demo

[(Employees r Personal Data

First name: |Jc|hn |

Last name: [Smith |

Contact phone: [111-1111 |

Example 6.2

see \Chapter6\2

import java.awt.*;
i mport java.awt.event.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i nport javax.swi ng.eent.*;

i mport dl.*;

public class TabDenp extends JFrane {

public static final int LIST_TAB = O;
public static final int DATA TAB = 1;

protected Person[] m enpl oyee = {
new Person(“John”, “Smth”, “111-1111"),
new Person(“Silvia”, “denn”, “222-2222"),
new Person(“Captain”, “Kirk”, *“333-3333"),
new Person(“Duke”, “Nukent, “444-4444"),
new Person(“Janes”, “Bond”, “000-7777")

}
protected JList mlist;

protected JTextField mfirstTxt;
protected JTextField ml ast Txt;

Figure 6.4
Tab validation demo-
first tab

Figure 6.5
Tab validation demo-
second tab

Array of Person instances
representing employees

CHAPTER 6 TABBED PANES

protected JText Field m phoneTxt;
protected JTabbedPane m t ab;

public TabDeno() ({
super (“Tab Validation Demp”);

JPanel pl = new JPanel (new BorderLayout());

pl. set Bor der (new EnptyBorder (10, 10, 10, 10));

mlist = new JLi st(m enpl oyees);

m | i st.setVisibl eRowCount (4);

Jscrol | Pane sp = newJScrol | Pane(m_|ist);
pl. add(sp, borderLayout. CENTER);

MouseLi stener nl st = new MouseAdapter() {
public void noused icked(MuseEvent evt) {
if (evt.getdickCount() == 2)
m t ab. set Sel ect edl ndex(DATA_TAB) ;
}
H
m | i st.addMouseLi stener(nl st);

JPanel p2 = new JPanel (new di al ogLayout ());
p2. set Bor der (new enpt yBorder (10, 10, 10, 10));

p2. add(new JLabel (“First name:"));
mfirstTxt = new JTextfield(20);
p2.add(m firstTxt);

p2. add(new JLabel (“Last nane:"));

m | ast Txt = new JTextfi el d(20);

p2. add(m | ast Txt);

p2. add(new JLabel (“Contact phone:”));
m phonet Txt = new JTextfiel d(20);;
p2. add(m pnoneTxt);

mtab = new JTabbedPane();
m_ t ab. addTab(“ Enpl oyees”, pl);
mtab. addTab(“Personal Data”, p2);

m t ab. addchangeli st ener (new TabChangel i stener());

JPanel p = new JPanel ();
p. add(m_t ab);
p. set Bor der (new EnptyBorder (5, 5, 5, 5));
get Cont ent Pane() . add(p);
pack();
}

publ i c Person get Sel ect edPerson() {
return (Person)mlist.get Sel ectedVal ue();

}

public static void main(String[] args) {
Jframe frane = new Tabdeno();

Mouselistener used
to change the tab
when a list item

is double-clicked

frane. set Def aul t O oseQperati on(JFrane. EXI T_ON_CLOSE) ;

frame. setVisible(true);

}

TAB VALIDATION

199

cl ass TabChangelLi stener inpl enents Changeli stener { o Changelistener
public void stateChanged(ChangeEvent e) { to control tab

Person sp = get Sel ect edPerson(); switching behavior
swi t ch(m_t ab. get Sel ect edl ndex())
{

case DATA TAB:

if (sp == null) {
m_t ab. set Sel ect edl ndex(LI ST_TAB) ;
return;

}

m firstTxt.set Text (sp. mfirstnane);

m | ast Txt . set Text (sp. m_| ast Nane) ;

m_phoneTxt . set Text (sp. m phone) ;

br eak;

case LI ST_TAB:
if (sp!=null) {
sp.mfirstName = mfirstTxt.getText();
sp. m | ast Nane = m | ast Txt. get Text();
sp. m phone = m phoneTxt. get Text ()
mlist.repaint();

}

br eak;

}
}
}

class Person{ Class representing
public String mfirstName; /o a Person (employee)
public String m.l ast Nane;
public String m phone;

public Person(String firstName, String |astNane, String phone) {
m firstNane = firstNane;
m_| ast Name = | ast Nane;
m_phone =phone;

}

public String toString() {
String str = mfirstName+” “+m.| ast Nane;
if (m_phone.lengh() > 0)

str +=" (”+m_phone+")"”;

return str.trim);

}

}
}

6.3.1 Understanding the code
Class TabDemo

Two class variables and six instance variables are defined. Class variables:

* int LIST_TAB: Index of the tab containing the employee list
* int DATA TAB: Index of the tab containing the selected employee’s data

200 CHAPTER 6 TABBED PANES

Instance variables:

o * Person[] m enpl oyees: Array of Per son instances representing the employees.
e JTextfield mfirstTxt: Text field containing employee’s first name.
e JTextfield mlastTxt: Text field containing employee’s last name.
e JTextfield m phoneTxt: Text field containing employee’s phone number.
e JTabbedPane m tab: The main tabbed pane.

A JLi st is created by passing the array of Per son instances, m enpl oyees, to the JLi st
constructor. As we will discuss soon, the Person class contains a toString() method
responsible for displaying the information for each employee seen in the list. A

@ MouselLi stener is added to this JLi st which is responsible for switching the selected tab to
the personal data tab when an employee is double-clicked.

© Clus 1abChangeListener

An instance of this class is registered with our m t ab tabbed pane to control tab selection
behavior. If a tab change is detected this ChangeLi st ener checks which tab the user is try-
ing to select and reacts accordingly.

If the second tab, (the DATA_TAB) is selected, we check whether there is a selected person
item in the list using our custom get Sel ect edPer son() method. If there isn’t a selected
Per son we switch tab selection back to the first tab. If there is a Per son selected we set the
data in the text fields to match the data corresponding to the selected Per son in the list.

If the first tab (the LI ST_TAB) is selected, we update the selected Per son instance’s data
to reflect any changes that may have been made in the data tab.

O Class Person

This class represents an employee and contains three St ri ng instance variables to hold first
name, last name and phone number data. The t oSt ri ng() method is overridden to return a
St ri ng appropriate for display in a JLi st .

TAB VALIDATION 201

Z1

CHAPTEHR 7

Scrolling panes

7.1 JScrollPane 202
7.2 Grab-and-drag scrolling 211
7.3 Scrolling programmatically 213

JSCROLLPANE

class javax.swing. JScrollPane

Using JScr ol | Pane is normally very simple. Any component or container can be placed in a
JScrol | Pane and scrolled. You can easily create a JScr ol | Pane by passing its constructor
the component youd like to scroll:

JScrol | Pane jsp = new JScrol | Pane(nyLabel) ;

Normally, our use of JScr ol | Pane will not need to be much more extensive than the one line
of code shown above. Example 7.1 is a simple JScr ol | Pane demo application. Figure 7.1
illustrates the output.

=445 crollPane Demo

Figure 7.1
JScrol | Pane demo

202

Example 7.1

ScrollPaneDemo.java

see \Chapter7\1

inmport java.awt.*;

i mport javax.

public class

{

SWi ng. *;

Scrol | PaneDenp ext ends JFrane

public Scroll PaneDenp() {
super ("JScrol | Pane Denp");
I magel con ii = new | nagel con("earth.jpg");
JScrol | Pane jsp = new JScrol | Pane(new JLabel (ii));
get Cont ent Pane() . add(j sp);
set Si ze(300, 250);

set Vi si bl
}

public stat
new Scr ol

}
}

When you run

e(true);

ic void main(String[] args) {
| PaneDeno() ;

this example, try scrolling by pressing or holding down any of the scroll bar

buttons. You will find this unacceptably slow because the scrolling occurs one pixel at a time.
We will see how to control this shortly.

Many components use a JScrol | Pane internally to display their contents, such as
JConboBox and JLi st. On the other hand, we are normally expected to place all multi-line
text components inside scroll panes, as this is not default behavior.

Using scroll panes For many applications, it is best to avoid introducing a
scroll pane; instead, concentrate on placing the required data on the screen
so that scrolling is unnecessary. As you have probably found, however, this
is not always possible. When you do need to introduce scrolling, put some
thought into the type of data and application you have. If possible, try to
introduce scrolling in only one direction. For example, with text docu-
ments, western culture has been used to scrolling vertically since Egyptian
times. Usability studies for world wide web pages have shown that readers
can find data quickly when they are vertically scrolling. Scrolling horizon-
tally, on the other hand, is laborious and difficult with text. Try to avoid it.
With visual information, such as tables of information, horizontal scrolling
may be more appropriate, but try to avoid both horizontal and vertical
scrolling if at all possible.

We can access a JScr ol | Pane’s scroll bars directly with its get XXScr ol | Bar () and set XX-
Scrol | Bar () methods, where XX is either HORI ZONTAL or VERTI CAL.

REFERENCE

JSCROLLPANE

In chapter 13 we'll talk more about JScr ol | Bar s.

203

711

71.2

204

JAVA 1.4 As of Java 1.4 mouse wheel support has been added and is activated by default in
JScrol | Pane. The MouseWeel Li st ener and MouseWeel Event classes have
been added to thej ava. awt . event package and a new addMbuseWheel Li st en-
er () method has been added to j ava. awt . Conponent .

To disable or re-enable mouse wheel scrolling for a particular JScr ol | Pane the
new set Wheel Scrol | i ngEnabl ed() method can be used. There is no need to
create your own MouseWeel Li st ener for use in a JScr ol | Pane unless you'd
like to customize wheel scrolling behavior.

The ScrollPaneConstants interface

abstract interface javax.swing. ScrollPaneConstants
We can specify policies for when and when not to display a JScr ol | Pane’s horizontal and
vertical scroll bars. We simply use its set Ver ti cal Scrol | Bar Pol i cy() and set Hori zont al -
Scrol | Bar Pol i cy() methods, providing one of three constants for each that are defined in
the Scr ol | PaneConst ant s interface:

HORI ZONTAL_SCROLLBAR AS_NEEDED

HORI ZONTAL_SCRCLLBAR_NEVER

HORI ZONTAL_SCRCOLLBAR_ALWAYS

VERTI CAL_SCRCOLLBAR_AS NEEDED

VERTI CAL_SCROLLBAR_NEVER
VERTI CAL_SCROLLBAR_ALWAYS

For example, to enforce the display of the vertical scroll bar at all times and always keep the
horizontal scroll bar hidden, we could do the following where j sp is a JScr ol | Pane:

j sp. set Hori zont al Scrol | Bar Pol i cy(
Scr ol | PaneConst ant s. HORI ZONTAL_SCROLLBAR_NEVER) ;

jsp.setVertical Scrol | Bar Pol i cy(
Scrol | PaneConst ant s. VERTI CAL_SCROLLBAR_ALWAYS) ;

JViewport

class javax.swing. JViewport

The JVi ewport class is the container that is really responsible for displaying a specific visible
region of the component in a JScrol | Pane. We can set/get a viewport's view (the compo-
nent it contains) using its set Vi ew() and get Vi ew() methods. We can control how much
of this component JVi ewport displays by setting its extent size to a specified Di mensi on
using its set Ext ent Si ze() method. We can also specify where the origin (upper left corner)
of a JVi ewport should begin displaying its contained component by providing specific coor-
dinates (as a Poi nt) of the contained component to the set Vi ewPosi ti on() method. In
fact, when we scroll a component in a JScr ol | Pane, this view position is constantly being
changed by the scroll bars.

CHAPTER 7 SCROLLING PANES

NOTE JVi ewport enforces a view position that lies within the view component only. We
cannot set negative or extremely large view positions (as of JDK1.2.2 we can assign
negative view positions). However, since the view position is the upper right hand
corner of the viewport, we are still allowed to set the view position such that only
part of the viewport is filled by the view component. We will show how to watch
for this, and how to stop it from happening, in some of the examples below.

Whenever a change is made to the position or size of the visible portion of the view, JVi ew
port fires ChangeEvents. We can register ChangeLi st ener s to capture these events using
JVi ewpor t’s addChangelLi st ener () method. These are the only events that are associ-
ated with JScr ol | Pane by default. For instance, whenever we scroll using JScr ol | Pane’s
scroll bars, its main viewport, as well as its row and column header viewports (see below), will
each fire ChangeEvent s.

The visible region of JVi ewpor t ’s view can be retrieved as a Rect angl e or Di mensi on
instance using the get Vi ewRect () and get Vi ewSi ze() methods respectively. This will give
us the current view position as well as the extent width and height. The view position alone
can be retrieved with get Vi ewPosi ti on(), which returns a Poi nt instance. To remove a
component from JVi ewport we use its r enove() method.

We can translate specific JVi ewport coordinates to the coordinates of its contained com-
ponent by passing a Poi nt instance to its t oVi ewCoor di nat es() method. We can do the
same for a region by passing a Di mensi on instance to t oVi ewCoor di nat es(). We can also
manually specify the visible region of the view component by passing a Di mensi on instance
to JVi ewport’s scrol | Rect ToVi si bl e() method.

We can retrieve JScr ol | Pane’s main JVi ewpor t by calling its get Vi ewpor t () method,
or assign it a new one using set Vi ewpor t () . We can replace the component in this viewport
through JScr ol | Pane’s set Vi ewpor t Vi ew() method, but there is no get Vi ewpor t Vi ew()
counterpart. Instead, we must first access its JScr ol | Pane’s JVi ewport by calling get Vi ew
port (), and then call getView() on that (as discussed above). Typically, to access a
JScrol | Pane’s main child component, we would do the following:

Conmponent nyConponent = jsp. getViewdort().getView);

JAVA 13 As of Java 1.3 JVi ewport supports three distinct scrolling modes which can be
assigned with its set Scr ol | Mode() method:

JVi ewport . BLI T_SCROLL_MODE: This mode uses the Grahi cs. copyAr ea()
method to repaint the visible area that was visible before the most recent scroll (in-
stead of redrawing it). In general this is the most efficient scroll mode.

JVi ewpor t . BACKI NGSTORE_SCROLL_MODE: This mode renders the viewport
contents in an offscreen image which is then painted to screen. It requires more
memory than BLI T_SCROLL_MODE but, in our experience, this mode is
more reliable.

JVi ewport . SI MPLE_SCROLL_MODE: This mode, while being the most reliable,
is the slowest performer, as it redraws the entire contents of the viewport view each
time a scroll occurs.

JSCROLLPANE 205

The default mode is BLI T_SCROLL_MODE. Occasionally you may find that
this causes rendering problems with tables, images, and so forth. This can usually
be solved by switching to BACKI NGSTORE_SCROLL_MODE. If this doesn’t work
Sl MPLE_SCROLL_MODE will usually do the trick, although some performance
benefits will be sacrificed by doing this.

71.3 ScrollPaneLayout

class javax.swing.ScrollPaneLayout
By default, JScrol | Pane’s layout is managed by an instance of Scrol | PaneLayout .
JScrol | Pane can contain up to nine components and it is Scrol | PaneLayout’s job to
make sure that they are positioned correctly. These components are listed here:
* AJViewport that contains the main component to be scrolled.
e A JViewport that is used as the row header. This viewport’s view position changes
vertically in sync with the main viewport.

* A JViewport that is used as the column header. This viewports view position changes
horizontally in sync with the main viewport.

* Four components for placement in each corner of the scroll pane.

* Two JScrol | Bar s for vertical and horizontal scrolling.

The corner components will only be visible if the scroll bars and headers surrounding them
are also visible. To assign a component to a corner position, we call JScr ol | Pane’s set Cor -
ner () method. This method takes both a String and a component as parameters. The
String is used to identify in which corner this component is to be placed, and it is recog-
nized by Scrol | PaneLayout . In fact, Scrol | PaneLayout identifies each JScrol | Pane
component with a unique St ri ng. Figure 7.2 illustrates this concept.

UPPER_LEFT CORNER UPPER_RIGHT CORNER

ROW_HEADER
VERTICAL SCROLLBAR

4]

Py Kl

o i E Figure 7.2
HORIZONTAL SCROLLBAR JScr ol | Pane components
LOWER_LEFT_CORNER LOWER_RIGHT corngr o identified by Scrol | -

PanelLayout

206 CHAPTER 7 SCROLLING PANES

To assign JVi ewport s as the row and column headers, we use JScrol | Pane’s set Row
Header () and set Col utmHeader () methods respectively. We can also avoid having to cre-
ate a JVi ewport ourselves by passing the component to be placed in the row or column
viewport to JScr ol | Pane’s set RowHeader Vi ew() or set Col urmHeader Vi ew() methods.

Because JScr ol | Pane is often used to scroll images, an obvious use for the row and
column headers is to function as some sort of ruler. In example 7.2, we present a basic example
showing how to populate each corner with a label and create simple rulers for the row and
column headers that display ticks every 30 pixels and render themselves based on their current
viewport position. Figure 7.3 illustrates the result.

&:JSCIDIIPane Demo

- 300
330 .

- 3

14

Figure 7.3 A JScrol | Pane demo with four corners,
a row header, and a column header

Example 7.2

HeaderDemo.java

see \Chapter7\2

import java.awt.*;
i mport javax.sw ng. *;

public class HeaderDenp extends JFrame

{
publ i c Header Deno() {
super ("JScrol | Pane Denp");
I magel con ii = new | magel con("earth.jpg");
JScrol | Pane jsp = new JScrol | Pane(new JLabel (ii));

JLabel [] corners = new JLabel [4];

JSCROLLPANE 207

208

for(int i=0;i<4;i++) {
corners[i] = new JLabel ();
corners[i].setBackground(Col or.yell ow);
corners[i].setQpaque(true);
corners[i].setBorder(BorderFactory. creat eConpoundBor der (
Bor der Fact ory. cr eat eEnpt yBor der (2, 2, 2, 2),
Bor der Fact ory. creat eLi neBorder(Color.red, 1)));

}

JLabel rowheader = new JLabel () {
Font f = new Font("Serif", Font.|TALIC | Font.BOLD, 10);
public voi d pai nt Conponent (Graphics g) {
super . pai nt Conponent (g) ;

Rectangle r = g.getd i pBounds(); Each row header
g.setFont (f); uses clipping for
g. set Col or (Col or.red); speed

for (int i = 30-(r.y %30);i<r.height;i+=30) {

g.drawtine(0, r.y + i, 3, r.y +1i);
g.drawString("" + (r.y +i), 6, r.y +i + 3);

} } Thin and

tall

public Dinmension getPreferredSi ze() { very
return new Di mension(25, | abel . getPreferredSize().getHeight());

}
b
rowheader . set Backgr ound(Col or. yel | ow) ;
rowheader . set Opaque(true);

JLabel col umheader = new JLabel () {
Font f = new Font("Serif", Font.|TALIC | Font.BOLD, 10);
public voi d pai nt Conponent (G aphics g) {
super . pai nt Conponent (Q) ; L
Rectangle r = g.getd i pBounds(); o Clipping for

g.setFont (f); speed
g.set Col or(Col or.red);
for (int i = 30-(r.x %30);i<r.wdth;i+=30) {
g.drawLine(r.x + i, 0, r.x + i, 3);
g.drawstring("" + (r.x + i), r.x +i - 10, 16);
} } Short and
very wide

public Dinension getPreferredSize() {
return new Di nension(| abel . get PreferredSi ze().getWdth(), 25);
}
b
col umheader . set Backgr ound(Col or. yel | ow) ;
col umheader . set Opaque(true);

j sp. set RowHeader Vi ew(r owheader) ;

j sp. set Col umHeader Vi em col utmheader) ;

j sp. set Corner (JScrol | Pane. LONER_LEFT_CORNER, corners[0]);
j sp. set Corner (JScrol | Pane. LOANER_RI GHT_CORNER, corners[1]);
j sp. set Corner (JScrol | Pane. UPPER_LEFT_CORNER, corners[2]);
j sp. set Corner (JScrol | Pane. UPPER_RI GHT_CORNER, corners[3]);

CHAPTER 7 SCROLLING PANES

get Cont ent Pane() . add(j sp);

set Si ze(400, 300);

set Def aul t O oseOper ati on(JFranme. EXI T_ON_CLOSE) ;
setVisible(true);

}
public static void main(String[] args) {
new Header Deno();

}
}

@ Notice that the row and column headers use the graphics clipping area in their pai nt Conpo-

© nent() routine for optimal efficiency. We also override the get Pref erredSi ze() method
so that the proper width (for the row header) and height (for the column header) will be used
by Scrol | PaneLayout . The other dimensions are obtained by simply grabbing the labels
preferred size, as they are completely controlled by Scr ol | PaneLayout .

Note that we are certainly not limited to labels for corners, row headers, or the main viewport
itself. As we mentioned in the beginning of this chapter, any component can be placed in a
JVi ewport.

71.4 The Scrollable interface

abstract interface javax.swing.Scrollable

The Scrol | abl e interface describes five methods that allow us to customize how JScr ol | Pane
scrolls its contents. Specifically, by implementing this interface we can specify how many pix-
els are scrolled when a scroll bar button or scroll bar paging area (the empty region between
the scroll bar #humb and the buttons) is pressed. (The thumb is the part of the scroll bar that
you drag.) Two methods control this functionality: get Scr ol | abl eBl ockl ncrement () and
get Scrol | abl eUni t I ncrenent (). The former is used to return the amount to scroll when
a scroll bar paging area is pressed, and the latter is used when the button is pressed.

NOTE In text components, these two methods are implemented so that scrolling will
move one line of text at a time. (JText Conponent implements the Scrol | abl e
interface.)

The other three methods of this interface involve JScr ol | Pane’s communication with the
main viewport. The get Scrol | abl eTracksVi ewport W dth() and get Scrol | abl e-
TracksHei ght () methods can return t r ue to disable scrolling in the horizontal or vertical
direction respectively. Normally these just return fal se. The getPreferredSize()
method is supposed to return the preferred size of the viewport that will contain this compo-
nent (the component implementing the Scr ol | abl e interface). Normally we just return the
preferred size of the component.
Example 7.3 shows how to implement the Scr ol | abl e interface to create a custom JLabel

whose unitand block increments will be 10 pixels. As we saw in example 7.1, scrolling one pixel
at a time is tedious at best. Increasing this to a 10-pixel increment provides a more natural feel.

JSCROLLPANE 209

Example 7.3

ScrollableDemo.java

see \Chapter7\3

import java.awt.*;
i mport javax.sw ng.*;

public class Scroll abl eDenp extends JFrane

{
public Scroll abl eDenp() {
super ("JScrol | Pane Denmp");
I mgel con ii = new | nmagel con("earth.jpg");
JScrol | Pane jsp = new JScrol | Pane(new MyScrol | abl eLabel (ii));
get Cont ent Pane() . add(j sp);
set Si ze(300, 250) ;
set Def aul t O oseQperati on(JFrane. EXI T_ON_CLCOSE) ;
set Vi si bl e(true);
}
public static void main(String[] args) {
new Scrol | abl eDeno();
}
}
cl ass MyScrol | abl eLabel extends JLabel inplenents Scrollable
{
public MyScroll abl eLabel (1 magel con i){
super (i);
}
publ i c Di mension get PreferredScrol | abl eVi ewport Si ze() {
return getPreferredSi ze();
}
public int getScroll abl eBl ockl ncrenent (Rectangle r,
int orientation, int direction) {
return 10;
}
publ i c bool ean get Scrol | abl eTracksVi ewport Hei ght () {
return fal se;
}
publ i c bool ean get Scrol | abl eTracksVi ewport Wdth() {
return fal se;
}
public int getScrollableUnitlncrenent(Rectangle r,
int orientation, int direction) {
return 10;
}
}

210 CHAPTER 7 SCROLLING PANES

72 GRAB-AND-DRAG SCROLLING

Many paint programs and document readers (such as Adobe Acrobat) support grab-and-drag
scrolling, which is the ability to click on an image and drag it in any direction with the mouse.
It is fairly simple to implement; however, we must take care to make the operation smooth
without allowing users to scroll past the view’s extremities. JVi ewport takes care of the
negative direction for us, as it does not allow the view position coordinates to be less than 0.
But it wil allow us to change the view position to very large values, which can result in the
viewport displaying a portion of the view smaller than the viewport itself.

Example 7.4 demonstrates how to support grab-and-drag scrolling.

Example 7.4

GrabAndDragDemo.java

see \Chapter7\4

import java.awt.*;

import java.aw.event.*;

i mport javax.sw ng.*;

i nport javax.sw ng.event.*;

public class G abAndDragDenp extends JFrane
{
publ i c G abAndDragDenmo() ({
super (" Grab- and-drag Demp");
I magel con ii = new | magel con("earth.jpg");
JScrol | Pane jsp = new JScrol | Pane(new GrabAndScrol | Label (ii));
get Cont ent Pane() . add(j sp);
set Si ze(300, 250);
set Def aul t Cl oseQper ati on(JFrane. EXI T_ON_CLCSE) ;
setVisible(true);

}

public static void main(String[] args) {
new G abAndDr agDeno() ;

}
}
cl ass GrabAndScrol | Label extends JLabel (1) JLabel which can
{ scroll by dragging
publ i ¢ GrabAndScrol | Label (1 magel con i){ the mouse
super (i);

Mousel nput Adapt er mia = new Musel nput Adapter () {
int mXDifference, mYD fference;
Cont ai ner c;

public voi d nobuseDragged(MouseEvent e) {
c = GrabAndScrol | Label .this. getParent();
if (c instanceof JViewport) { @ Scroll the Viewport
JViewport jv = (JViewport) c; the label is
Point p = jv.getViewPosition(); contained in

GRAB-AND-DRAG SCROLLING 211

72.1

212

int newX = p.x - (e.getX()-mXDifference);
int newy = p.y - (e.getY()-mYDifference);

int maxX = GrabAndScrol | Label . this. get Wdth()
- jv.getWdth();

int maxY = GrabAndScrol | Label . this. get Hei ght ()
- jv.getHeight();

if (newX < 0)

newX = 0;
if (newX > maxX) Only scroll
. fnewxw; :HEY to maximum
if (ne) coordinates
newY = 0;

if (newY > maxy)
newY = maxy;

j v.set Vi ewPosi ti on(new Poi nt (maxX, maxY));

}
}
public voi d nousePressed(MuseEvent e) { .
set Cur sor (Cur sor . get Pr edef i nedCur sor (@ Start dragging,
Cur sor . MOVE_CURSOR)) ; saving start

m XDi fference = e.getX(); location

m YDi fference = e.getY();
}

public void nouseRel eased(MbuseEvent e) {
set Cursor (Cursor . get Predefi nedCur sor (
Cur sor. DEFAULT_CURSOR)) ;

}
b
addMbuselMot i onLi st ener (m a);
addMbuseli stener(m a);

}
}

Understanding the code
Class GrabAndScrollLabel

This class extends JLabel and overrides the JLabel (| magei conii) constructor. The Gr ab-
AndScr ol | Label constructor starts by calling the superclass version and then it proceeds to
set up a Mousel nput Adapt er. This adapter is the heart of the G abAndScr ol | Label class.

The adapter uses three variables:
* int mXDifference: The x-coordinate which has been saved on a mouse press event
and used for dragging horizontally.
* int m YDifference: The y-coordinate which has been saved on a mouse press event
and used for dragging vertically.
* Container c: Used to hold a local reference to the parent container in the mouse-
Dr agged() method.

CHAPTER 7 SCROLLING PANES

The nousePressed() method changes the cursor to MOVE_CURSOR and stores the event
o coordinates in the variables m XDi f f erence and m YDi f f er ence, so they can be used in
mouseDr agged() .

e The mouseDr agged() method first grabs a reference to the parent, then it checks to see if it
isa JVi ewpor t . If it isn’t, we do nothing. If it is, we store the current view position and calcu-
late the new view position the drag will bring us into:

Point p = jv.getViewPosition();
int newX = p.x - (e.getX()-mXDifference);
int newy = p.y - (e.getY()-mYDifference);

o When dragging components, this would normally be enough (as we will see in future chapters);
however, we must make sure that we do not move the label in such a way that it does not fill
the viewport. So we calculate the maximum allowable x- and y-coordinates by subtracting the
viewport dimensions from the size of this label (since the view position coordinates start from
the upper-left hand corner):

int maxX = G abAndScrol | Label . t his. get Wdt h()
- jv.getWdth();
int maxY = G abAndScrol | Label . t hi s. get Hei ght ()
- jv.getHeight();
The remainder of this method compares the newX and newY values with the maxX and maxy
values, and adjusts the view position accordingly. If newX or newY is ever greater than the
maxX or maxY values respectively, we use the max values instead. If newX or newy is ever less
than 0, we use O instead. This is necessary to allow smooth scrolling in all situations.

73 SCROLLING PROGRAMMATICALLY

We are certainly not required to use a JScr ol | Pane for scrolling. We can place a component
in a JVi ewport and control the scrolling ourselves if we want to. This is what JVi ewpor t
was designed for; it just happens to be used by JScr ol | Pane as well. We've constructed this
example to show how to implement our own scrolling in a JVi ewpor t . Four buttons are used
for scrolling. We enable and disable these buttons based on whether the view component is at
any of its extremities. These buttons are assigned keyboard mnemonics which we can use as
an alternative to clicking,

This example also shows how to use a ChangelLi st ener to capture ChangeEvent s that
are fired when the JVi ewport changes state. We need to capture these events so that when
our viewport is resized to be bigger than its view component child, the scrolling buttons will
become disabled. If these buttons are disabled and the viewport is then resized so that it is
no longer bigger than its child view component, the buttons should then become enabled. It
is quite simple to capture and process these events, as we will see in example 7.5. (As with
most of the examples we have presented, it may help if you run this example before stepping

through the code.)

SCROLLING PROGRAMMATICALLY 213

E;_,% Scrolling Programmatically _ (O]

Jdid
B

Figure 7.4 Programmatic scrolling with JVi ewpor t

Example 7.5

ButtonScroll.java

see \Chapter7\5

i mport java.
i nport java.

awt . *;
awt . event . *;

i mport javax.sw ng.*;
i mport javax.sw ng. event.*;

public class ButtonScroll

{

prot ect ed
prot ect ed
prot ect ed
prot ect ed
prot ect ed

prot ect ed
prot ect ed

JVi ewport m vi ewport;
JButton m. up;

JButton m down;
JButton mleft;
JButton mright;

int mpgVert;
int mpgHorz;

public ButtonScroll () {
super ("Scrol ling Programmatical ly");
set Si ze(400, 400);
get Cont ent Pane() . set Layout (new Bor der Layout ());

214

ext ends JFrane

/0

Viewport, scroll
buttons, and
scrolling distances

o Constructor places
label with image along
with scroll buttons

CHAPTER 7 SCROLLING PANES

I magel con shuttle = new | nagel con("shuttle.gif");

m pgVert = shuttle.getlconHeight()/5;

m pgHorz = shuttle.getlconWdth()/5;

JLabel 1bl = new JLabel (shuttle); Listen for size changes on
Viewport and reconfigure

m vi ewport = new JVi ewport (); scroll buttons

m vi ewport.setView(lbl);
m_vi ewpor t . addChangeli st ener (new Changeli stener () {
public void stateChanged(ChangeEvent e) {
enabl eBut t ons(
ButtonScrol | .this. mviewport.getViewPosition());
}
K
get Cont ent Pane() . add(m vi ewport, BorderLayout. CENTER);

JPanel pv = new JPanel (new BorderLayout());
mup = createButton("up", 'u');
ActionLi stener |st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
novePanel (0, -1);
}
i
m up. addAct i onLi stener (I st); Create buttons to

pv. add(m_ up, BorderLayout. NORTH); scroll image up

and down
m down = createButton("down", 'd');

I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
novePanel (0, 1);
}
s
m _down. addAct i onLi stener (I st);
pv. add(m down, BorderLayout. SOUTH);
get Cont ent Pane() . add(pv, BorderLayout. EAST);

JPanel ph = new JPanel (new BorderLayout());
mleft = createButton("left", 'I");
I st = new ActionListener() {

public void actionPerforned(ActionEvent e) {

nmovePanel (-1, 0);

}
s
m | eft. addActi onLi stener (I st); Create buttons to
ph. add(m | eft, BorderLayout.WEST); /o scroll image left

. . and right
mright = createButton("right", 'r');

I st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
novePanel (1, 0);
}
b
m right.addActionLi stener(lst);
ph. add(m right, BorderLayout.EAST);
get Cont ent Pane() . add(ph, Border Layout. SOUTH);

SCROLLING PROGRAMMATICALLY 215

216

}

protected JButton createButton(String nane,

}

protected void novePanel (int xmove, int ynove) { o
Poi nt pt = m.viewport. getVi ewPosition();

}

protected void enabl eButtons(Poi nt

}

protected void enabl eConponent (JConponent c,

}

set Def aul t Cl oseOperation (JFrane. EXI T_ON_CLCSE);

set Vi si bl e(true);
nmovePanel (0, 0);

Create scroll button
with direction string
and mnemonic

char menoni cs) {

JButton btn = new JButton(new | magel con(nhane+"1.gif"));

bt n. set Pressedl con(new | nagel con(nane+'

'2.9if"));

bt n. set Di sabl edl con(new | nagel con(nanme+"3.gif"));

bt n. set Tool Ti pText (" Move "+nane);

bt n. set Bor der Pai nt ed(f al se);

bt n. set Margi n(new I nsets(0, 0, 0, 0));
bt n. set Cont ent AreaFi |l | ed(fal se);

bt n. set Mhenoni c(mMmenoni cs) ;

return btn;

pt.x += m_pgHor z*xnove;
pt.y += mpgVert*ynove;

pt. x Mat h. max(0, pt.x);
pt. x Mat h. mi n(get MaxXExt ent (),
pt.y Mat h. max(0, pt.y);
pt.y = Math. m n(get MaxYExtent (),

pt.x);

pt.y);

m vi ewport. set Vi ewPosi ti on(pt);
enabl eBut t ons(pt);

pt) {
if (pt.x == 0)

enabl eConmponent (m | eft, false);

el se enabl eConponent (m | eft,

if (pt.x >= get MaxXExtent())
enabl eConponent (m ri ght, false);

el se enabl eConponent (mright, true);

if (pt.y == 0)
enabl eConponent (m up, false);
el se enabl eConponent (m up, true);

if (pt.y >= get MaxYExtent())
enabl eConmponent (m down, false);
el se enabl eConponent (m down, true);

true);

if (c.isEnabled()
c. set Enabl ed(b);

= b)

protected int get MaxXExtent () {
return mviewport.getView().getWdth()-mviewort.getWdth(); L

}

Move the image panel in
the specified direction,
from which scroll button
was pressed

0 Enable or disable scroll
buttons based on whether
the image is already
scrolled to edge of range

bool ean b) {

Get maximum 0
scrolling dimensions

CHAPTER 7 SCROLLING PANES

protected int get MaxYExtent() {
return myviewport.getView(). getHeight()-myviewport.getHeight(); T

}

public static void main(String argv[]) {
new ButtonScroll ();
}
}

Get maximum
scrolling dimensions

7.3.1 Understanding the code
Class ButtonScroll

o Several instance variables are declared:
* JViewport m.viewport: The viewport used to display a large image.
* JButton m up: The button to scroll up programmatically.
* JButton m down: The button to scroll down programmatically.
* JButton m| eft: The button to scroll left programmatically.
e JButton mright: The button to scroll right programmatically.
e int mpgVert: The number of pixels for a vertical scroll.
e int m pgHorz: The number of pixels for a horizontal scroll.

© The constructor of the But t onScr ol | class creates and initializes the GUI components for this
example. A Bor der Layout is used to manage the components in this frame’s content pane.
JLabel | bl which stores a large image, is placed in the viewport, m vi ewport, to provide
programmatic viewing capabilities. This JVi ewport is added to the center of our frame.

o As we mentioned above, we need to capture the ChangeEvents that are fired when our
JVi ewport changes size so that we can enable and disable our buttons accordingly. We do
this by attaching a ChangeLi st ener to our viewport and calling our enabl eBut t ons()
method (see below) from st at eChanged() :

m_vi ewpor t. addChangeli st ener (new Changeli stener () {
public void stateChanged(ChangeEvent e) {
enabl eBut t ons(
ButtonScrol|l.this. mviewport.getViewPosition());
}
B

o Two buttons, m_up and m down, are created for scrolling in the vertical direction. The
creat eButt on() method is used to create a new JBut t on component and set a group of
properties for it (see below). Each of the new buttons receives an Act i onLi st ener which
calls the novePanel () method in response to a mouse click. These two buttons are added to
the intermediate container, JPanel pv, which is added to the east side of our frame’s content
pane. Similarly, two buttons, m | eft and m ri ght, are created for scrolling in the horizontal
direction and are added to the south region of the content pane.

@ ThecreateButton() method creates a new JBut t on component. It takes two parameters:
the name of the scrolling direction as a St ri ng and the button’s mnemonic as a char. This
method assumes that three image files are prepared:

* namel.gif: The default icon.

SCROLLING PROGRAMMATICALLY 217

218

* name2.gif: The pressed icon.

* name3.gif: The disabled icon.

These images are loaded as | magel cons and attached to the button with the associated
set XX() method:

JButton btn = new JButton(new | magel con(hane+"1.gif"));
bt n. set Pressedl con(new | magel con(nanme+"2.gif"));

bt n. set Di sabl edl con(new | nagel con(nane+"3.gif"));

bt n. set Tool Ti pText (" Move "+nane);

bt n. set Bor der Pai nt ed(f al se);

bt n. set Margi n(new Insets(0, 0, 0, 0));

bt n. set Content AreaFi | | ed(fal se);

bt n. set Mnenoni ¢(Mmenoni c) ;

return btn;

Then we remove any border or content area rendering, so the presentation of our button is
completely determined by our icons. Finally, we set the tooltip text and mnemonic and return
that component instance.

The novePanel () method programmatically scrolls the image in the viewport in the direc-
tion determined by the xmove and ynove parameters. These parameters can have the value
-1, 0, or 1. To determine the actual amount of scrolling, we multiply these parameters by
m_pgHor z (m_pgVert). The local variable Poi nt pt determines a new viewport position. It
is limited so the resulting view will not display any empty space (space not belonging to the
displayed image), similar to how we enforce the viewport view position in the grab-and-drag
scrolling example above. Finally, the set Vi ewPosi ti on() method is called to scroll to the new
position, and enabl eBut t ons() enables/disables buttons according to the new position:

Point pt = m.viewport. getVi ewPosition();
pt.x += m _pgHorz*xnove;
pt.y += mpgVert*ynove;

pt.x = Math. max(0, pt.x);
pt.x = Math. m n(get MaxXExtent (), pt.Xx);
pt.y = Math.max(0, pt.y);

pt.y = Math.m n(get MaxYExtent(), pt.y);

m vi ewport. set Vi ewPosi ti on(pt);
enabl eButt ons(pt);

The enabl eBut t ons() method disables a button if scrolling in the corresponding direction
is not possible; otherwise, it enables the button. For example, if the viewport position’s x-coor-
dinate is 0, we can disable the scroll left button (remember that the view position will never be
negative, as enforced by JVi ewport):
if (pt.x <= 0)
enabl eConponent (m | eft, false);
el se enabl eConponent (m left, true);

Similarly, if the viewport position’s x-coordinate is greater than or equal to our maximum
allowable x-position (determined by get MaxXExt ent ()), we disable the scroll right button:

if (pt.x >= get MaxXExtent())

CHAPTER 7 SCROLLING PANES

enabl eConponent (m ri ght, false);
el se enabl eConponent (mright, true);

o The methods get MaxXExt ent () and get MaxYExt ent () return the maximum coordinates
available for scrolling in the horizontal and vertical directions, respectively, by subtracting the
appropriate viewport dimension from the appropriate dimension of the child component.

73.2 Running the code
NOTE The shuttle image for this example was found at http://shuttle.nasa.gov/sts-95/

images/esc/.

Press the buttons and watch how the image is scrolled programmatically. Use the keyboard
mnemonic as an alternative way to pressing buttons, and notice how this mnemonic is dis-
played in the tooltip text. Also note how a button is disabled when scrolling in the corre-
sponding direction is no longer available, and how it is enabled otherwise. Now try resizing
the frame and see how the buttons will change state depending on whether the viewport is
bigger or smaller than its child component.

SCROLLING PROGRAMMATICALLY 219

8.1

CHAPTEHR 8

Split panes

8.1 JSplicPane 220
8.2 Basic split pane example 221
8.3 Synchronized split pane dividers 224

JSPLITPANE

class javax.swing. JSplitPane

Split panes allow the user to dynamically change the size of two or more components that are
displayed side by side (either within a window or another panel). A divider can be dragged with
the mouse to increase space for one component and decrease the display space for another;
however, the total display area does not change. A familiar example is the combination of a tree
and a table separated by a horizontal divider (such as in file explorer-like applications). The
Swing framework for split panes consists only of JSpl i t Pane.

JSplitPane can hold two components that are separated by a horizontal or vertical
divider. The components on either side of a JSpl i t Pane can be added either in one of the
constructors, or with the proper set XXConponent () methods (where XX is substituted by
Left, Ri ght, Top, or Bot t om). We can also set the orientation to vertical split or horizontal
split at run-time using its set Ori ent ati on() method.

The divider between the components is the only visible part of JSpl i t Pane. Its size can
be managed with the set Di vi der Si ze() method, and its position can be managed by the
two overloaded set Di vi der Locat i on() methods (which take an absolute location in pixels
or a proportional location as a doubl e). The divider location methods have no effect until a
JSplitPane is displayed. JSplitPane also maintains a oneTouchExpandabl e property
which, when t r ue, places two small arrows inside the divider that will move the divider to its
extremities when clicked.

220

Resizable paneled display Split panes are useful when your design has pan-

eled the display for ease of use but you (as designer) have no control over the

= actual window size. The Netscape email reader is a good example of this; a split

o pane is introduced to let the user vary the size of the message header panel
against the size of the message text panel.

An interesting feature of the JSpl it Pane component is that you can specify whether to
repaint side components during the divider’s motion using the set Cont i nuousLayout ()
method. If you can repaint components fast enough, resizing will have a more natural view
with this setting. Otherwise, this flag should be set to f al se, in which case side components
will be repainted only when the divider’s new location is chosen. In this latter case, a divider
line will be shown as the divider location is dragged to illustrate the new position.

JSpl i t Pane will not size any of its constituent components smaller than their minimum
sizes. If the minimum size of each component is larger than the size of the split pane, the divider
will be effectively disabled (unmovable). We can call its r eset ToPr ef err edSi ze() method
to resize its children to their preferred sizes, if possible.

JAVA 1.3 As of Java 1.3 you can specify how JSpl it Pane distributes space when its size
changes. This is controlled with the set Resi zeWi ght () method and can range
from 0 to 1. The default is 0 which means the right/bottom component will be
allocated all the extra/negative space and the left/top component’s size will
remain the same. 1 means just the opposite. This works according to the
following formula:

right/bottom change in size=(resize weight* size change)
left/bottom change in size=((1-resize weight)* size change)

For example, setting the resize weight to 0. 5 will have the effect of distributing
extra space, or taking it away if the split pane is made smaller, equally for both
components.

Using split panes in conjunction with scroll panes It’s important to use a
scroll pane on the panels which are being split with the split pane. Scroll bars
e will then appear automatically as required when data is obscured as the split
o pane is dragged back and forth. With the introduction of the scroll pane, the
viewer has a clear indication that there is hidden data. They can then choose

to scroll with the scroll bar or uncover the data using the split pane.

8.2 BASIC SPLIT PANE EXAMPLE

Example 8.1 shows JSpl i t Pane at work in a basic, introductory demo. We can manipulate
the size of four custom panels placed in three JSpl i t Panes:

BASIC SPLIT PANE EXAMPLE 221

222

Example 8.1

SplitSample.java
see \Chapter8\1

import java.awt.*;
i mport java.awt.event.*;

i mport javax.sw ng. *;

public class SplitSanple extends JFrane

{

public SplitSanple() {
super ("Sinple SplitSanple Exanple");
set Si ze(400, 400);

Conponent cl1ll = new Si npl ePanel ();
Conponent c12 = new Si npl ePanel () ;
JSplitPane spLeft = new JSplit Pane(

JSplitPane. VERTI CAL_SPLIT, c11, c12);

spLeft. set Di vi der Si ze(8);
spLeft. setDividerLocation(150);

spLeft. set Conti nuousLayout (true);

Conponent c21 = new Si npl ePanel ();
Conponent c22 = new Si npl ePanel () ;
JSplitPane spRight = new JSplitPane(

JSplitPane. VERTI CAL_SPLIT, c21, c22);

spRi ght . set Di vi der Si ze(8);
spRi ght . set Di vi der Locat i on(150);
spRi ght . set Conti nuousLayout (true);

JSplitPane sp = new JSplit Pane(
JSpl it Pane. HORI ZONTAL_SPLI T, spLeft,
sp. set Di vi der Si ze(8) ;
sp. set Di vi der Locat i on(200);
sp. set Resi zeWei ght (0. 5);
sp. set Cont i nuousLayout (fal se);
sp. set OneTouchExpandabl e(true);

o Constructor composes
4 SimplePanels into
2 JSplitPanes, 2 panels
in each

Two SimplePanels
/o in left pane

Two SimplePanels
/o in right pane

One JSplitPane
to hold the
other two

spRi ght);

get Cont ent Pane() . add(sp, BorderLayout.CENTER);

set Def aul t O oseCper ati on(JFrane. EXI T_ON_CLOSE) ;

set Vi si bl e(true);
}

public static void main(String argv[]) {
new Split Sanple();
}
}

cl ass Sinpl ePanel extends JPanel

{

public Di mension getPreferredSi ze() {

Simple component
to take up space in
halves of JSplitPane

CHAPTER 8 SPLIT PANES

Qg Simple 5plit5ample Example =0l x]

return new Di mensi on(200, 200);

}

public Di mension getM ni nunti ze() {
return new Di mensi on(40, 40);

}

public voi d pai nt Conponent (Graphics g) {
super . pai nt Component (g) ;
g. set Col or (Col or. bl ack) ;
Di mension sz = getSize();
g.drawLi ne(0, 0, sz.width, sz.height);
g.drawLi ne(sz.width, 0, 0, sz.height);

}

}

8.2.1 Understanding the code
Class SplitSample

Figure 8.1

A split pane example
displaying simple
custom panels

@ Four instances of Si npl ePanel are used to fill a 2x2 structure. The two left components
(c11 and c12) are placed in the spLeft vertically split JSpl i t Pane. The two right compo-
nents (c21 and c22) are placed in the spRi ght vertically splic JSpl i t Pane. The spLeft
and spRi ght panels are placed in the sp horizontally split JSpl i t Pane. The cont i nuous-
Layout property is set to true for spLeft and spRi ght, and fal se for sp. So as the
divider moves inside the left and right panels, child components are repainted continuously,
producing immediate results. However, as the vertical divider is moved, it is denoted by a

black line until a new position is chosen (when the mouse is released). Only then are its child

components validated and repainted. The first kind of behavior is recommended for simple

BASIC SPLIT PANE EXAMPLE

223

components that can be rendered quickly, while the second is recommended for components
whose repainting can take a significant amount of time.

The oneTouchExpandabl e property is set to t rue for the vertical JSpl it Pane sp. This
places small arrow widgets on the divider. By pressing these arrows with the mouse, we can
instantly move the divider to the left-most or right-most position. When the slider is in the
left-most or right-most positions, pressing these arrows will then move the divider to its most
recent location, which is maintained by the | ast Di vi der Locat i on property.

The resi zeVei ght property is set to 0. 5 for the vertical JSpl it Pane sp. This tells the
split pane to increase/decrease the size of the left and right components equally when it
is resized.

Class SimplePanel

e Si npl ePanel represents a simple Swing component whose pai nt Conponent () method
draws two diagonal lines across its area. The overridden get M ni nunsi ze() method defines
the minimum space required for this component. JSpl i t Pane will prohibit the user from
moving the divider if the resulting child size will become less than its minimum size.

NOTE The arrow widgets associated with the oneTouchExpandabl e property will move the
divider to the extreme location without regard to minimum sizes of child components.

8.2.2 Running the code

Notice how child components can be resized with dividers. Also notice the difference between
resizing with continuous layout (side panes) and without it (center pane). Play with the “one
touch expandable” widgets for quick expansion and collapse. Resize the frame and note how
the left and right components share the space proportionately.

8.3 SYNCHRONIZED SPLIT PANE DIVIDERS

In this section example 8.2 shows how to synchronize the left and right split pane dividers
from example 8.1 so that whenever the left divider is moved the right divider moves to an
identical location and vice versa.

Example 8.2

SplitSample.java
see\Chapter8\2

import java.awt.*;
i mport java.awt.event.*;
i mport javax.sw ng.*;

public class SplitSanple
extends JFrame {

private bool ean mresizing = fal se; o Temporary flag used by
Component Adaptors
public SplitSanple() {

224 CHAPTER 8 SPLIT PANES

super ("SplitSanmple Wth Synchroni zation”);
set Si ze(400, 400);
get Cont ent Pane() . set Layout (new Bor der Layout ());

Conponent cl1ll = new Si npl ePanel ()

Conmponent c12 = new Sinpl e Panel ();

final JSplitPane spLeft = new JSplitPane(’»
JSplitPane. VERTI CAL_SPLIT, cl1, cl12);

spLeft.setDividerSize(8);

spLeft. setDi vi der Locati on(150);

splLeft. set Conti nuousLayout (true); e Split pane made
final so they can
Conmponent c21 = new Si npl ePanel () be referenced
Conmponent c22 = new Si npl e Panel (); by anonymous
final JSplitPane spRight = new JSplitPane(}7 inner classes
JSplitPane. VERTI CAL_SPLI T, c21, c22);

spRi ght . set Di vi der Si ze(8);
spRi ght . set Di vi der Locat i on(150) ;
spRi ght . set Conti nuousLayout (true);

Conponent Li st ener calLeft = new Conponent Adapter () {
public voi d conponent Resi zed(Conponent Event e) {
if (!mresizing) {
mresizing = true;
spRi ght . set Di vi der Locati on(spLeft. getDi vi derLocation());
m resi zi ng=f al se
} ComponentListeners
} responsible for keeping
H split panes synchronized
cll. addConponent Li st ener (caLeft);

Conmponent Li st ener caRi ght = new Conponent Adapter () {

public voi d conponent Resi zed(Conponent Event e) {
if (!mresizing) {
mresizing = true;
spLeft.setDividerLocation(spRight.getDividerLocation());
m resi zi ng=f al se
}
}
b
c21. addConponent Li st ener (caRi ght);

JSplitPane sp = new JSplitPane(JSplitPane. HORI ZONTAL_SPLI T,
spLeft, spRight);

sp. set Di viderSi ze(8);

sp. set Di vi der Locat i on(200) ;

sp. set Resi zeWei ght (0. 5) ;

sp. set Conti nuousLayout (fal se);

sp. set OneTouchExpandabl e(true);

get Cont ent Pane() . add(sp, borderLayout.CENTER);
}

public static void main(String argv[]) {

SYNCHRONIZED SPLIT PANE DIVIDERS 225

8.3.1

8.3.2

226

SplitSanple frame = new SplitSanple();
frame. set Def aul t G oseOper ati on(JFrane. EXI T_ON_CLCSE) ;
frame.setVisible(true);
}
}

//class Sinpl ePanel unchanged from exanple 8.1

Understanding the code

The mresizing flag is added to this example for temporary use by the Conmponent -
Li st eners.

The spLeft and spRi ght split panes are made final so that they can be referenced from
within the Conponent Li st ener anonymous inner classes.

In order to synchronize the dividers of spLeft and spRi ght, a Conponent Li stener,
caLeft and caRi ght respectively, is added to the top/right component of each (c11 for
spLeft and c21 for spRi ght). Whenever the divider moves in spLeft or spRi ght, the
conponent Resi zed() method will be invoked in the respective Conponent Li st ener. This
method first checks m resi zi ng. If m resi zi ng is t r ue this means another Conponent -
Li st ener is handling the synchronization, so the method exits (this stops any potential race
conditions). If m r esi zi ng is false it is first set t r ue, then the opposite divider is set to its
new synchronized location, and finally m r esi zi ng is set to f al se again.

Running the code

This example looks just like example 8.1. But try moving the left or right horizontal dividers
and notice that they always sit in the same location no matter which one we move, and no
matter how we resize the frame. Such synchronization produces a cleaner visual design.

CHAPTER 8 SPLIT PANES

9.1

CHAPTEHR 9

A
Y

%

Combo boxes

9.1 JComboBox 227 9.4 Combo boxes with memory 246
9.2 Basic JComboBox example 232 9.5 Custom editing 253
9.3 Custom model and renderer 238

JCovBOBOX

class javax.swing. JComboBox
This class represents a basic GUI component which consists of two parts:

* A pop-up menu (an implementation of j avax. swi ng. pl af . basi c. ConboPopup). By
default, this is a JPopupMenu subclass (j avax. swi ng. pl af . basi c. Basi cConbo-
Popup) that contains a JLi st in a JScrol | Pane.

* A button that acts as a container for an editor or renderer component, and an arrow button
that is used to display the pop-up menu.

The JLi st uses a Li st Sel ecti onMbdel (see chapter 10) that allows SI NGLE_SELECTI ON
only. Apart from this, JConboBox directly uses only one model, a ConboBoxMdel , which
manages data in its JLi st .

A number of constructors are available to build a JConboBox. The default constructor
can be used to create a combo box with an empty list, or we can pass data to a constructor as
a one-dimensional array, a Vect or, or an implementation of the ConboBoxModel interface
(this will be explained later). The last variant allows maximum control over the properties and
appearance of a JConboBox, as we will see.

227

228

As do other complex Swing components, JConboBox allows a customizable renderer for
displaying each item in its drop-down list (by default, this is a JLabel subclass implementation
of Li st Cel | Render er), and it allows a customizable editor to be used as the combo box’s data
entry component (by default, this is an instance of ComboBoxEdi t or which uses a JText -
Fi el d). We can use the existing default implementations of Li st Cel | Render er and Com
boBoxEdi t or , or we can create our own according to our particular needs (as we will see later
in this chapter). Unless we use a custom renderer, the default renderer will display each element
asa St ri ng defined by that object’st oSt ri ng() method; the only exceptions to this are | con
implementations which will be rendered as they would be in any JLabel . Take note that a ren-
derer returns a Conponent , but that component is not interactive and it is only used for display
purposes (meaning it acts as a “rubber stamp,” according to the API documentation). For
instance, if a JCheckBox is used as a renderer, we will not be able to check and uncheck it. Edi-
tors, however, are fully interactive.

JAVA 1.4 As of Java 1.4 JConboBox supports a prototype display value. Without a prototype
display value JConboBox would configure a renderer for each cell. This can be a per-
formance bottleneck when there is a large number of items. If a prototype display val-
ue is used, only one renderer is configured and it is used for each cell. The prototype
display value is configured by passing an Obj ect to JComboBox’s set Pr ot ot ype-
Di spl ayVal ue() method.

For example, if you want your JComboBox’s cells to be no wider than what is re-
quired to display 10 X’ characters, you can do the following:

mJ ConboBox. set Pr ot ot ypeDi spl ayVal ue(
new String (“XXXXXXXXXXX"));

Similar to JLi st, which is discussed in the next chapter, this class uses Li st Dat aEvent s to
deliver information about changes in the state of its drop-down list’s model. I t enEvent s and
Act i onEvent s are fired from any source when the current selection changes—the source can
be programmatic or input from the user. Correspondingly, we can attach It enLi st eners
and Act i onLi st ener s to receive these events.

The drop-down list of a JConboBox is a pop-up menu that contains a JLi st (this is actually
defined in the UI delegate, not the component itself) and it can be programmatically displayed/
hidden using the showPopup() and hi dePopup() methods. As with any other Swing pop-up
menu (which we will discuss in chapter 12), it can be displayed as either heavyweight or light-
weight. JComboBox provides the set Li ght Wi ght PopupEnabl ed() method, which allows us
to choose between these modes.

JAVA 1.4 As of Java 1.4 you can add a PopupMenuLi st ener to JConboBox to listen for
PopupMenuEvent s; these occur whenever the popup is made visible, invisible, or
canceled. JConboBox has the following new public methods to support usage of this
new listener type: addPopupMenulLi st ener (), renovePopupMenuLi st ener (),
and get PopupMenulLi st ener s() . See sections 12.1.18 and 12.1.19 for more on
PopupMenulLi st ener and PopupMenuEvent .

JConboBox also defines an inner interface called KeySel ecti onManager that declares one
method, sel ecti onFor Key(char aKey, ComboBoxModel aMbdel), which we can define to
return the index of the list element that should be selected when the list is visible (meaning
the pop-up is showing) and the given keyboard character is pressed.

CHAPTER 9 COMBO BOXES

The JConboBox Ul delegate represents JConboBox graphically using a container with a
button. This button contains both an arrow button and either a renderer displaying the cur-
rently selected item or an editor that allows changes to be made to the currently selected item.
The arrow button is displayed on the right of the renderer/editor and it will show the pop-up
menu that contains the drop-down list when it is clicked.

NOTE Because of the JConboBox Ul delegate construction, setting the border of a JConbo-
Box does not have the expected effect. Try this and you will see that the container
containing the main JComboBox button gets the assigned border, when in fact we
want that button to receive the border. There is no easy way to set the border of
this button without customizing the UI delegate. We hope to see this limitation
disappear in a future version.

When a JConboBox is editable (which it is not by default) the editor component will allow
modification of the currently selected item. The default editor will appear as a JText Fi el d
that accepts input. This text field has an Acti onLi st ener attached that will accept an edit
and change the selected item accordingly when/if the ENTER key is pressed. If the focus changes
while editing, all editing will be cancelled and a change will not be made to the selected item.

JConboBox can be made editable with its set Edi t abl () method, and we can specify a
custom ComboBoxEdi t or with JConboBox’s set Edi t or () method. Setting the editabl e
property to true causes the Ul delegate to replace the renderer in the button with the assigned
editor. Similarly, setting this property to f al se causes the editor in the button to be replaced by
a renderer.

The cell renderer used for a JConmboBox can be assigned and retrieved with the set Ren-
derer () and get Renderer () methods, respectively. Calls to these methods actually get
passed to the JLi st contained in the combo box’s pop-up menu.

Advice on usage and design

Usage Combo boxes and list boxes are very similar to each other. In fact, a
combo box is an entry field with a drop-down list box. Deciding when to use
one or the other can be difficult. Our advice is to think about reader output
rather than data input. When the reader only needs to see a single item, then
a combo box is the best choice. Use a combo box where a single selection is
made from a collection and users only need to see a single item, such as “Cur-
rency USD.” You'll learn about using list boxes in the next chapter.

Design There are a number of things affect the usability of a combo box. If
it contains more than a few items, it becomes unusable unless the data is sorted
in some logical fashion, such as in alphabetical or numerical order. When a list
gets longer, usability is affected in yet another way. Once a list gets beyond a
couple of hundred items, even when sorted, locating a specific item in the list
becomes a very slow process for the user. Some implementations have solved
this by offering the ability to type in partial text, and the list “jumps” to the
best match or a partial match item; for example, type in “ch” and the combo
box will jump to “Chevrolet” in example 9.1. You may want to consider such
an enhancement to a JConboBox to improve the usability of longer lists.

JCOMBOBOX 229

9.11

230

There are a number of graphical considerations, also. Like all other data entry
fields, combo boxes should be aligned to fit attractively into a panel. However,
this is not always easy. Avoid making a combo box which is simply too big for
the list items it contains. For example, a combo box for a currency code only
needs to be 3 characters long (USD is the code for U.S. dollars), so don’t make
it big enough to take 50 characters. It will look unbalanced. Another problem
concerns the nature of the list items. If you have 50 items in a list where most
items are around 20 characters long but one item is 50 characters long, should
you make the combo box big enough to display the longer one? Possibly, but
for most occasions your display will be unbalanced again. It is probably best to
optimize for the more common length, providing the longer one still has mean-
ing when read in its truncated form. One solution to display the whole length
of a truncated item is to use the tooltip facility. When the user places the mouse
over an item, a tooltip appears that contains the full text.

One thing you must never do is dynamically resize the combo box to fit a vary-
ing length item selection. This will incur alignment problems and it may also
add a usability problem because the pull-down button may become a moving
target, which then makes it harder for the user to learn its position through
directional memory.

The ComboBoxModel interface

abstract interface javax.swing. ComboBoxModel

This interface extends the Li st Mbdel interface which handles the combo box drop-down
list’s data. This model separately handles its selected item with two methods, set Sel ect ed-
Iten() and get Sel ectedl ten().

The MutableComboBoxModel interface

abstract interface javax.swing. MutableComboBoxModel
This interface extends ComboBoxMydel and adds four methods to modify the model’s con-

tents dynamically: addEl enent (), i nsert El ement At (), r enoveEl enent (), and r enove-
El enent At ().

DefaultComboBoxModel

class javax.swing. DefaultComboBoxModel

This class represents the default model used by JComboBox, and it implements Mut abl eCombo-
BoxModel . To programmatically select an item, we can call its set Sel ect edl t en() method.
Calling this method, as well as any of the Mut abl eConboBoxMvdel methods mentioned
above, will cause a Li st Dat aEvent to be fired. To capture these events we can attach Li st -
Dat aLi st eners with Def aul t ComboBoxMbdel ’s addLi st Dat aLi st ener () method. We
can also remove these listeners with its r emoveli st Dat aLi st ener () method.

CHAPTER 9 COMBO BOXES

9.14 The ListCellRenderer interface

abstract interface javax.swing. ListCellRenderer

This is a simple interface used to define the component to be used as a renderer for the JConbo-
Box drop-down list. It declares one method, get Li st Cel | Render er Conponent (JLi st
l'ist, Qbj ect val ue, int | ndex, bool ean i sSel ect ed, bool ean cel | HasFocus),which
is called to return the component used to represent a given combo box element visually. The
component returned by this method is not at all interactive, and it is used for display purposes
only (it’s referred to as a “rubber stamp” in the API documentations).

When a JConmboBox is in noneditable mode, —1 will be passed to this method to return
the component used to represent the selected item in the main JConboBox button. Normally,
this component is the same as the component used to display that same element in the drop-
down list.

9.1.5 DefaultListCellRenderer
class javax.swing. DefaultListCellRenderer

This is the concrete implementation of the Li st Cel | Render er interface that is used by
JLi st by default (and thus by JConboBox’s drop-down JLi st). This class extends JLabel and
its get Li st Cel | Render er () method returns at hi s reference. It also renders the given value
by setting its text to the St ri ng returned by the value’st oSt ri ng() method (unless the value is
an instance of | con, in which case it will be rendered as it would be in any JLabel), and it uses
JLi st foreground and background colors, depending on whether the given item is selected.

NOTE Unfortunately, there is no easy way to access JComboBox’s drop-down JLi st,
which prevents us from assigning new foreground and background colors. Ideally,
JConboBox would provide this communication with its JLi st. We hope to see
this functionality in a future version.

A single static Enpt yBor der instance is used for all cells that do not have the current
focus. This border has top, bottom, left, and right spacing of 1, and unfortunately, it cannot
be reassigned.

9.1.6 The ComboBoxEditor interface

abstract interface javax.swing. ComboBoxEditor

This interface describes the JConboBox editor. The default editor is provided by the only
implementing class, j avax. swi ng. pl af . basi c. Basi cConboBoxEdi t or, but we are cer-
tainly not limited to this. The purpose of this interface is to allow us to implement our own
custom editor. The get Edi t or Conponent () method should be overridden to return the
editor component to use. Basi cConmboBoxEdi t or’s get Edi t or Conponent () method returns
aJText Fi el d that will be used for the currently selected combo box item. Unlike cell renderers,
components returned by the get Edi t or Conponent () method are fully interactive.

Theset | t em() method is intended to tell the editor which element to edit (this is called
when an item is selected from the drop-down list). The getIten() method is used to return
the object being edited (which is a St ri ng using the default editor).

JCOMBOBOX 231

ComboBoxEdi t or also declares functionality for attaching and removing Act i onLi s-
t ener s which are notified when an edit is accepted. In the default editor this occurs when
ENTER is pressed while the text field has the focus.

NOTE Unfortunately, Swing does not provide an easily reusable ComboBoxEdi tor
implementation, forcing custom implementations to manage all Act i onLi st ener
and item selection/modification functionality from scratch. We hope to see this
limitation accounted for in a future Swing release.

9.2 BAsic JCOMBOBOX EXAMPLE

Example 9.1 displays information about popular cars in two symmetrical panels to provide a
natural means of comparison. To be realistic, we need to take into account the fact that any car
model can come in several trim lines which actually determine the car’s characteristics and
price. Numerous characteristics of cars are available on the web. For this simple example, we've
selected the following two-level data structure:

CAR

Name Type Description

Name String Model’s name

Manufacturer String Company manufacturer

Image I con Model’s photograph

Trims Vect or A collection of the model’s trims
TRIM

Name Type Description

Name String Trim’s name

MSRP int Manufacturer’s suggested retail price
Invoice i nt Invoice price

Engine String Engine description

4 Car Combo Example =]

Base Model rCompare to
Model: ‘Nissan Maxima A | Model: ‘Hunda Accord v |
Trim: ‘GXE i ‘ Trim: ‘L}(Sedan - ‘

MSRP: $21499 MSRP: $21700
Invoice: 419658 Invoice: $19303
Engine: 3.0L v6 190-hp Engine: 3.0L V6 200-hp

Figure 9.1 Dynamically changeable JConboBoxes
that allow comparison of car model and trim information

232 CHAPTER 9 COMBO BOXES

Example 9.1

ComboBox1.java

see \Chapter9\1

import java.aw.*;
import java.awt.event.*;
inmport java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i nport javax.sw ng.event.*;

public class ConboBoxl extends JFrane

{
publ i ¢ ConboBox1() ({
super (" ConboBoxes [Conpare Cars]"); One o.fsevc.eral o
get Cont ent Pane() . set Layout (new Bor der Layout ()); Cars with Tl’llms
in car list

Vector cars = new Vector();

Car maxi ma = new Car (" Maxi ma", "“Nissan", new | magel con(
"maxim.gif"));

maxi ma. addTri m(" GXE", 21499, 19658, "3.0L V6 190-hp");

maxi ma. addTri n{"SE", 23499, 21118, "3.0L V6 190-hp");

maxi ma. addTri m(" GLE", 26899, 24174, "3.0L V6 190-hp");

cars. addEl ement (naxi ma) ;

Car accord = new Car ("Accord", "Honda", new | nagel con(
"accord.gif"));

accord. addTri m("LX Sedan", 21700, 19303, "3.0L V6 200-hp");
accord. addTri m("EX Sedan", 24300, 21614, "3.0L V6 200-hp");

cars. addEl ement (accord);

Car canrty = new Car (" Canry", "Toyota", new | nmagel con(
"canry.gif"));

canry. addTri m("LE V6", 21888, 19163, "3.0L V6 194-hp");

canry. addTri m("XLE V6", 24998, 21884, "3.0L V6 194-hp");

cars. addEl enent (canry);

Car lumina = new Car("Lunmi na", "Chevrolet", new | magel con(
"lumna.gif"));

| um na. addTri m("LS", 19920, 18227, "3.1L V6 160-hp");

I um na. addTri n("LTZ", 20360, 18629, "3.8L V6 200-hp");

cars. addEl erment (I um na) ;

Car taurus = new Car("Taurus", "Ford", new | nagel con(
"taurus.gif"));

taurus. addTrim("LS", 17445, 16110, "3.0L V6 145-hp");

taurus. addTrin("SE", 18445, 16826, "3.0L V6 145-hp");

taurus. addTri m("SHO', 29000, 26220, "3.4L V8 235-hp");

cars. addEl ement (t aurus);

Car passat = new Car("Passat", "Vol kswagen", new | nagel con(

"passat.gif"));
passat.addTri m("GLS V6", 23190, 20855, "2.8L V6 190-hp");

BASIC JCOMBOBOX EXAMPLE

233

234

passat.addTrinm("G.X", 26250, 23589, "2.8L V6 190-hp");
cars. addEl enent (passat) ;

get Cont ent Pane() . set Layout (new Gri dLayout(1, 2, 5, 3));
Car Panel pl = new CarPanel ("Base Mdel", cars);

get Cont ent Pane() . add(pl);

Car Panel pr = new CarPanel ("Conpare to", cars);

get Cont ent Pane() . add(pr);

set Def aul t Cl oseOperati on(JFrane. EXI T_ON_CLCSE) ;
pl . sel ect Car (maxi ma) ;

pr.sel ect Car (accord);

set Resi zabl e(f al se);

pack() ;

set Vi si bl e(true);

}

public static void main(String argv[]) {
new ConboBox1();

}
}
cl ass Car e Simple data object with
{ basic car model information,
protected String m name: including list of trims
protected String mnmanufacturer;
protected I|con m i ng;
protected Vector mtrimns;
public Car(String nane, String manufacturer, Icon ing) {
m_nanme = nane;
m manuf acturer = manufacturer;
minmg = ing; Creates new Trim and
m_t rims = new Vector(); adds it to Trims list
}
public void addTrin(String name, int MSRP, int invoice,
String engine) {
Trimtrim= new Trim(this, nane, MSRP, invoice, engine);
mtrins. addEl ement (trim;
}
public String getNane() { return mnane; }
public String get Manufacturer() { return mmanufacturer; }
public lcon getlcon() { return ming; }
public Vector getTrims() { return mtrins; }
public String toString() { return mmanufacturer+" "+mname; }
}
class Trim o Simple data object
{ with Trim information,
protected Car m parent ; including link to owning
. - ' Car object
protected String m nane;
protected int m_MSRP;

CHAPTER 9 COMBO BOXES

protected int m_i nvoi ce;
protected String m engine;
public Trim(Car parent, int
String engine) {

String nane, int MSRP,

m parent = parent;
m nane = nane;
m VSRP = MSRP;
m_i nvoi ce = invoi ce;
m_engi ne = engi ne;
}
public Car getCar() { return mparent; }
public String getNane() { return mnane; }
public int getMSRP() { return m MSRP; }
public int getlnvoice() { return minvoice; }
public String getEngine() { return mengine; }
public String toString() { return mnane; }
}
cl ass CarPanel extends JPanel
{
protected JConmboBox m cbCars;
protected JConboBox m cbTri s;
protected JLabel m.l bl ng;
protected JLabel m_| bl MSRP;
protected JLabel mlbllnvoice;
protected JLabel m.l bl Engi ne;

public CarPanel (String title,
super ();
set Layout (new BoxLayout (this, BoxLayout.Y_AXIS));
set Bor der (new Ti t| edBor der (new Et chedBorder (),

Vector cars) {

JPanel p = new JPanel ();
p. add(new JLabel (" Model : ")) ;
m cbCars = new JConboBox(cars);
ActionListener |st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Car car = (Car)mcbCars. get Sel ectedlten();
if (car !'= null)
showCar (car) ;
}
H
m cbCar s. addActi onLi stener (I st);
p. add(m chbCars);
add(p);

p = new JPanel ();

p. add(new JLabel ("Trim"));
m cbTrinms = new JConmboBox();
I st = new ActionListener() {

BASIC JCOMBOBOX EXAMPLE

i nvoi ce,

by

title));

/B

GUI components
to display Car
information

Vertical BoxLayout
for major
components

FlowLayout for
labels and input
fields

Combo box
to select Car
models

FlowLayout for
labels and input
fields

235

236

}

public void actionPerforned(ActionEvent e) {
Trimtrim= (Trin)mcbTrins. getSel ectedlten();
if (trim!=null)
showTrim(trim;
}
b
m cbTri nms. addActi onLi st ener (I st);
p. add(m cbTrins);
add(p);
p = new JPanel ();
m | bl I ng = new JLabel ();
m_| bl I ng. set Hori zont al Al i gnnent (JLabel . CENTER) ;
m_| bl I ng. set Pref erredSi ze(new Di nensi on(140, 80));
m_| bl | ng. set Bor der (new Bevel Bor der (Bevel Bor der . LOAERED)) ;
p. add(m_| bl I nD) ;
add(p);

p = new JPanel ();

p. set Layout (new Gi dLayout (3, 2, 10, 5));
p. add(new JLabel ("MSRP: ")) ;

m_| bl MSRP = new JLabel ();

p. add(m_| bl MSRP) ;

Labels and values
p. add(new JLabel ("I nvoice:")); /0 in GridLayout
m_| bl I nvoi ce = new JLabel ();
p. add(m_| bl I nvoi ce);

p. add(new JLabel ("Engi ne:"));
m_| bl Engi ne = new JLabel ();
p. add(m_| bl Engi ne) ;

add(p);
}
public void selectCar(Car car) { mchCars.setSel ectedltenmcar); } —I
public void showCar(Car car) { @ For selec.ted Car, Used by client o
m | bl | ng. set | con(car.getlcon()); updates image and of this class
if (mcbTrims. getltenCount() > 0) available Trims to select a

m cbTrins. renoveAl | I tens(); particular Car

Vector v = car.getTrins();

for (int k=0; k<v.size(); k++) Bad to remove items
m cbTri ns. addl ten(v. el enent At (k)); from empty combo box

m cbTri ns. grabFocus();

}

public void showTrim(Trimtrim {
m | bl MSRP. set Text ("$"+tri m get MSRP());
m_| bl I nvoi ce. set Text ("$"+tri m getlnvoice());
m_| bl Engi ne. set Text (tri m get Engi ne());

Updates value labels
for selected Car
and Trim

}

CHAPTER 9 COMBO BOXES

9.2.1

Understanding the code
Class ComboBox1

The ComboBox1 class extends JFr ane to implement the frame container for this example.
It has no instance variables. The constructor creates a data collection with the car informa-
tion as listed above. A collection of cars is stored in Vect or cars, and each car, in turn,
receives one or more Tr i minstances. Other than this, the ComboBox1 constructor doesn’t do
much. It creates two instances of Car Panel (see below) and arranges them in a Gri dLay-
out . These panels are used to select and display car information. Finally, two cars are ini-
tially selected in both panels.

Class Car

The Car class is a typical data object that encapsulates three data fields which are listed at the
beginning of this section: car name, manufacturer, and image. In addition, it holds the
m_t ri ns vector that stores a collection of Tr i minstances.

The addTri m() method creates a new Tri minstance and adds it to the m t ri ms vector. The
rest of this class implements typical get XX() methods to allow access to the prot ect ed data
fields.

Class Trim

The Tri mclass encapsulates four data fields, which are listed at the beginning of this section:
trim name, suggested retail price, invoice price, and engine type. In addition, it holds a refer-
ence to the parent Car instance. The rest of this class implements typical get XX() methods
to allow access to the pr ot ect ed data fields.

Class CarPanel

The Car Panel class extends JPanel to provide the GUI framework for displaying car infor-
mation. Six components are declared as instance variables:

e JComboBox m chCars: Used to select a car model.

e JComboBox m cbTri ms: Used to select a car trim of the selected model.
e JLabel m.bl I mg: Used to display the model’s image.

e JLabel m.| bl MBRP: Used to display the MSRP.

* JLabel m bl Invoice: Used to display the invoice price.

* JLabel m.| bl Engi ne: Used to display the engine description.

Two combo boxes are used to select cars and trims respectively. Note that Car and Tri mdata
objects are used to populate these combo boxes, so the actual displayed text is determined by
their t oSt ri ng() methods. Both combo boxes receive Acti onLi st eners to handle item
selection. When a Car item is selected, this triggers a call to the showCar () method described
below. Similarly, selecting a Tr i mitem triggers a call to the showTri n() method.

The rest of the Car Panel constructor builds JLabel s to display a car’s image and trim data.
Notice how layouts are used in this example. A y-oriented BoxLayout creates a vertical axis
used to align and position all components. The combo boxes and supplementary labels are
encapsulated in horizontal JPanel s. JLabel m | bl I ng receives a custom preferred size to

O rcserve enough space for the photo image. This label is encapsulated in a panel (with its default

BASIC JCOMBOBOX EXAMPLE 237

9.2.2

9.3

238

= 1=

Fl owLayout) to ensure that this component will be centered over the parent container’s space.
The rest of Car Panel is occupied by six labels, which are hosted by a 3x2 Gri dLayout .

The sel ect Car () method allows us to select a car programmatically from outside this class. It
invokes the set Sel ect edl t en{) method on the m cbCar s combo box. This call will trigger
an Act i onEvent which will be captured by the proper listener, resulting in a showCar () call.

The showCar () method updates the car image, and it updates the m cbTri ms combo box to
display the corresponding trims of the selected model. The (get I t enCount () >0) condi-
tion is necessary because Swing throws an exception if r enoveAl | I t ens() is invoked on an
empty JComboBox. Finally, focus is transferred to the m cbTri ms component.

The showTri m() method updates the contents of the labels that display trim information:
MSREP, invoice price, and engine type.

Running the code

Figure 9.1 shows the ComboBox1 application that displays two cars simultaneously for com-
parison. All the initial information is displayed correctly. Try experimenting with various
selections and notice how the combo box contents change dynamically.

Symmetrical layout In example 9.1, the design avoids the problem of hav-

ing to align the different length combo boxes by using a symmetrical layout.

ner e Overall, the window has a good balance and it uses white space well; so do each
o of the bordered panes used for individual car selections.

CUSTOM MODEL AND RENDERER

Ambitious Swing developers may want to provide custom rendering in combo boxes to display
structured data in the drop-down list. Different levels of structure can be identified by differing
left margins and icons; this is also how it’s done in trees, which we will study in chapter 17. Such
complex combo boxes can enhance functionality and provide a more sophisticated appearance.
In this section we will show how to merge the model and trim combo boxes from the pre-
vious section into a single combo box. To differentiate between model and trim items in the
drop-down list, we can use different left margins and different icons for each. Our list should
look something like this:
Nissan Maxima

GXE

SE

GLE
We also need to prevent the user from selecting models (such as “Nissan Maxima” above),
since they do not provide complete information about a specific car, and they only serve as
separators between sets of trims.

NOTE The hierarchical list organization shown here can easily be extended for use in a
JLi st, and it can handle an arbitrary number of levels. We only use two levels in
example 9.2, but the design does not limit us to this.

CHAPTER 9 COMBO BOXES

Eg_;,al:ar Combo Example

~Base Model ~Compare to
Model: Honda Accord Model: Honda Accord
Trim: |9 LX Sedan - | Trim: |% LX Sedan - |
B LEVE =
B, ¥LE V6
#3R Chevrolet Lumina
B LS
) ;
MSRP: % LF;"’ Taurus MSRP: $21700
Invoice: @, SE = Invoice: $19303
Engine: 3.0L V6 200-hp Engine: 3.0L W6 200-hp

Figure 9.2 A JConboBox with a custom model and a custom
hierarchical rendering scheme

Example 9.2

ComboBox2.java

see \Chapter9\2
/1 Unchanged code from exanple 9.1

cl ass CarPanel extends JPanel

{
protected JConmboBox m cbCars;
protected JLabel mtxtNMdel ; o Label to show
protected JlLabel ml bl I ny; Car model name
protected JLabel m.| bl MSRP;
protected JLabel ml bllnvoice;
protected JLabel m.l bl Engi ne;

public CarPanel (String title, Vector cars) {

CUSTOM MODEL AND RENDERER

super ();
set Layout (new BoxLayout (this, BoxLayout.Y_AXIS));
set Bor der (new Ti t | edBor der (new Et chedBorder (), title));

JPanel p = new JPanel ();

m t xt Model = new JLabel ("");

m_t xt Mbdel . set For egr ound(Col or. bl ack) ;
p. add(m_t xt Mbdel) ;

add(p);

Variable length
label will always
be centered

m_cbCars will
show model names

p = new JPanel (); along with icons

p. add(new JLabel ("Car:"));
Car ConboBoxModel nodel = new Car ConboBoxModel (cars);
m cbCars = new JConboBox(nodel) ;
m cbCar s. set Render er (new | conConboRenderer());
ActionLi stener |st = new ActionListener() {
public void actionPerforned(ActionEvent e) {
Li stData data = (ListData)m chCars. getSelectedlten();

239

bj ect obj = data.getject();
if (obj instanceof Trim
showTri n((Trimobj);

} Both Car and Trim o
}: instances, a!though
m cbCar s. addAct i onLi stener (I st); only Trims can
p. add(m.chCars);
add(p);
Finds ListData
/ /' Unchanged code fromexanple 9.1 object in combo
} box whose Car

object is equal to
the parameter, and
selects that one

publ i c synchroni zed void sel ectCar(Car car) {
for (int k=0; k < mcbCars.getltenmCount(); k++) {
Li stData obj = (ListData)mcbhCars. getltemAt(k);
if (obj.getObject() == car) {
m cbCars. set Sel ect edl t en{ obj) ;

br eak;
}
}
}
public synchroni zed void showTrin(Trimtrim {
Car car = trimagetCar();
m t xt Model . set Text (car.toString()); Now displays

Model name in
addition to Trim
name

m | bl I ng. set | con(car.getlcon());

m_| bl MSRP. set Text ("$" + trim get MSRP());

m | bl I nvoi ce. set Text ("$" + trimgetlnvoice());
m_| bl Engi ne. set Text (tri m get Engi ne());

}
}

. Encapsulates
class ListData o combo box data
{ and rendering

protected I|con m i con; information
protected int m i ndex;
prot ect ed bool ean m sel ect abl g;
protected Object mdata;
public ListData(lcon icon, int index, boolean selectable,
bj ect data) {
m.icon = icon;
m_i ndex = index;
m sel ectabl e = sel ectabl e;
m data = data;
}
public lcon getlcon() { return m.icon; }
public int getlndex() { return m.index; }
public bool ean isSelectable() { return mselectable; }
public Object getCbject() { return mdata; }
public String toString() { return mdata.toString(); }
}

240 CHAPTER 9 COMBO BOXES

cl ass Car ComboBoxMbdel extends Def aul t ComboBoxModel Data model for

{ combo box; holds
public static final Inmagelcon | CON CAR = icons for Car
new | magel con("car.gif"); and Trim

public static final |Imagelcon |CON.TRIM =
new | magel con("trimgif");

Dat del fi
publ i ¢ Car ConboBoxMdel (Vector cars) { c:n:b:‘goi- I:’(:Ids

for (int k=0; k<cars.size(); k++) { icons for Car
Car car = (Car)cars. el ement At (k); and Trim
addEl ement (new Li st Data(l CON_CAR, 0, false, car));

Vector v = car.getTrins();
for (int i=0; i < v.size(); i++) {
Trimtrim= (Trinmv.elenmentAt(i);
addEl enent (new ListData(ICON.TRIM 1, true, trim);

}
} Adds list element l

} for Trim; selectable

/1 This nethod only allows trinms to be sel ected
public void setSelectedltemCbject iten {
if (iteminstanceof ListData) {
ListData | data = (ListData)item
if (!ldata.isSelectable()) {
Obj ect newtem = nul | ;
int index = getlndexOi(iten);
for (int kK = index + 1; k < getSize(); k++) {
hj ect itenl = getEl enent At (k) ;
if (iteml instanceof ListData) {
ListData | datal = (ListData)itent;
if (!ldatal.isSel ectable())

conti nue; If not selectable, try
} to move selection to
newltem = itent: next selectable item
br eak-: ' (a Trim object)
}
if (new tenr=null)
return; /1 Selection failed
item= newtem
}
}
super.set Sel ectedlten(iten);
}
}
cl ass | conConboRender er extends JLabel inplenments ListCell Renderer
{ Acts as custom %
public static final int OFFSET = 16; combo box list
protected Col or mtextSel ectionColor = Color.white; item renderer;
protected Col or mtextNonSel ectionCol or = Col or. bl ack; sho.\:l; text
with icon

protected Col or m textNonsel ectabl eCol or = Col or. gray;
protected Col or m bkSel ecti onCol or = new Col or (0, 0, 128);
protected Col or m bkNonSel ecti onCol or = Col or. whi te;

CUSTOM MODEL AND RENDERER 241

protected Col or m border Sel ectionCol or = Col or. yel | ow,

protected Color mtextColor;
protected Col or m bkCol or;

prot ect ed bool ean m hasFocus;
protected Border[] m borders;

public I conConboRenderer () { Creates set of stepped
super (); EmptyBorders
m t ext Col or = m_t ext NonSel ecti onCol or; to provide “indents”
m bkCol or = m bkNonSel ecti onCol or; for list items

m borders = new Border[20];
for (int k=0; k < mborders.length; k++)
m borders[k] = new EnptyBorder (0, OFFSET * k, 0, 0);
set Opaque(fal se);
}

publ i c Conponent get Li st Cel | Render er Conponent (JLi st i st,
oj ect obj, int row, boolean sel, bool ean hasFocus) {
if (obj == null)
return this;
set Text (obj.toString());

bool ean sel ectable = true; .
Use matching @

if (obj instanceof ListData) { EmptyBorder
Li stData | data = (ListData)obj; from list
sel ectable = | data.isSel ectabl e();

setlcon(l data.getlcon());
int index = 0;
if (row >= 0) /1 No offset for editor (rows-1)
index = | data.getlndex();
Border b = (index < mborders.|length ? mborders[index]
new EnptyBorder (0, OFFSET * index, 0, 0));
set Border (b);
}
el se
setlcon(null);

setFont (list.getFont());

m text Col or = (sel ? mtextSelectionCol or
(sel ectabl e ? m textNonSel ecti onCol or
m_t ext Nonsel ect abl eCol or));

m bkCol or = (sel ? m bkSel ecti onCol or
m_bkNonSel ecti onCol or);

m_hasFocus = hasFocus;

return this;

}

public void paint (Gaphics g) { @ Draws background
I con icon = getlcon(); excluding icon, and
Border b = getBorder(); draws focus highlight

g. set Col or (m_bkNonSel ecti onCol or);
g.fill Rect(0, 0, getWdth(), getHeight());

g. set Col or (m_bkCol or);
int offset = 0;

242 CHAPTER 9 COMBO BOXES

9.3.1

if(icon !'= null &% getText() != null) {
Insets ins = getlnsets();
offset = ins.left + icon.getlconWdth() + getlconTextGap();

}
g.fillRect(offset, 0, getWdth() - 1 - offset,
getHeight() - 1);

if (mhasFocus) {
g. set Col or (m_border Sel ecti onCol or);
g.drawRect (of fset, 0, getWdth()-1-offset, getHeight()-1);

}
set For eground(m_t ext Col or) ;

set Backgr ound(m bkCol or);
super. pai nt(Q);

Understanding the code

Class CarPanel

The ConboBox2 (formerly ConboBox1), Car, and Tri mclasses remain unchanged in this
example, so we'll start from the Car Panel class. Compared to example 9.1, we've removed
combo box m cbTri ms and added JLabel m txt Model , which is used to display the cur-
rent model’s name. When the combo box pop-up is hidden, the user can see only the selected
trim, so we need to display the corresponding model name separately. Curiously, the construc-
tor of the Car Panel class places this label component in its own JPanel (using its default
Fl owLayout) to ensure its location in the center of the base panel.

NOTE The reason for this is that JLabel m t xt Model has a variable length, and the Box-
Layout which manages Car Panel cannot dynamically center this component cor-
rectly. Placing this label in a FI owLayout panel will make sure it’s always centered.

The single combo box, m cbCar s, has a bit in common with the component of the same name
in example 9.1. First, it receives a custom model, an instance of the Car ConboBoxModel class,
which will be described below. It also receives a custom renderer, an instance of the | conConbo-
Render er class, which is also described below.

The combo box is populated by both Car and Tri minstances encapsulated in Li st Dat a
objects (see below). This requires some changes in the acti onPer f or med() method which
handles combo box selection. We first extract the data object from the selected Li st Dat a
instance by calling the get Qbj ect () method. If this call returns a Tri mobject (as it should,
since Car s cannot be selected), we call the showTri () method to display the selected data.

The sel ect Car () method has been modified. As we mentioned above, our combo box now
holds Li st Dat a objects, so we cannot pass a Car object as a parameter to the set Sel ect ed-
It em() method. Instead, we have to examine, in turn, all items in the combo box, cast them to
Li st Dat a objects, and verify that the encapsulated data object is equal to the given Car instance.

The showTr i n{) method now displays the model data as well as the trim data. To do this we
obtain a parent Car instance for a given Tri mand display the model’s name and icon.

CUSTOM MODEL AND RENDERER 243

244

Class ListData

The Li st Dat a class encapsulates the data object to be rendered in the combo box and adds
new attributes for our rendering needs.
These are the instance variables:

* lcon m.icon: The icon associated with the data object.

* int m.index: The item’s index which determines the left margin (the hierarchical level,
for example).

* bool ean m sel ect abl e: The flag indicating that this item can be selected.

* (bj ect mdata: The encapsulated data object.

All variables are assigned parameters that have been passed to the constructor. The rest of the
Li st Dat a class contains four get XX() methods and a t oSt ri ng() method, which all dele-
gate calls to the m dat a object.

Class CarComboBoxModel

This class extends Def aul t ComboBoxModel to serve as a data model for our combo box . It
first creates two static | magel cons to represent the model and the trim. The constructor takes
aVector of Car instances and converts them and their trims into a linear sequence of Li st -
Dat a objects. Each Car object is encapsulated in a Li st Dat a instance with an | CON_CAR
icon, the index set to 0, and the m sel ect abl e flag set to f al se. Each Tri mobject is encap-
sulated in a ListData instance with an | CON_TRI M icon, the index set to 1, and the
m sel ect abl e flag set to t r ue.

These manipulations could have been done without implementing a custom ComboBox-
Model , of course. The real reason we implement a custom model here is to override the set -
Sel ect edl t en() method to control item selection in the combo box. As we learned above,
only Li st Dat a instances with the m sel ect abl e flag set to t r ue should be selectable. To
achieve this goal, the overridden set Sel ect edl t en{) method casts the selected object to a
Li st Dat a instance and examines its selection property using i sSel ect abl e() .

If i sSel ect abl e() returns f al se, a special action needs to be handled to move the selec-
tion to the first item following this item for which i sSel ect abl e() returnst r ue. If no such
item is found, our set Sel ect edl t en() method returns and the selection in the combo box
remains unchanged. Otherwise, the i t emvariable receives a new value which is finally passed
to the set Sel ect edl t en() implementation of the superclass Def aul t ComboBoxMbdel .

NOTE You may notice that the sel ect Car () method discussed above selects a Car in-
stance which cannot be selected. This internally triggers a call to set Sel ect ed-
I'ten() of the combo box model, which shifts the selection to the first available
Tri mitem. You can verify this when running the example.

Class IconComboRenderer

@ This class extends JLabel and implements the Li st Cel | Render er interface to serve as a

custom combo box renderer.

Class variable:

* int OFFSET: The offset, in pixels, to use for the left trim margin.

CHAPTER 9 COMBO BOXES

9.3.2

Here are the instance variables:
e Col or m textCol or: The current text color.
* Col or m bkCol or: The current background color.
* bool ean m hasFocus: The flag that indicates whether this item has the focus.
e Border[] m_borders: An array of borders used for this component.

The constructor of the | conConboRender er class initializes these variables. Enpt yBor der s
are used to provide left margins while rendering components of the drop-down list. To avoid
generating numerous temporary objects, an array of 20 Bor der s is prepared with increasing left
offsets corresponding to the array index (incremented by OFFSET). This provides us with a set
of different borders to use for white space in representing data at 20 distinct hierarchical levels.

NOTE Even though we only use two levels in this example, | conConboRender er has been
designed for maximum reusability. We've designed get Li st Cel | Render er -
Conponent () (see below) to create a new Enpt yBor der in the event that more than
20 levels are used.

The get Li st Cel | Render er Conponent () method is called prior to the painting of each
cell in the drop-down list. We first set this component’s text to that of the given object (which
is passed as a parameter). Then, if the object is an instance of Li st Dat a, we set the icon and
left margin by using the appropriate Enpt yBor der from the previously prepared array (which
is based on the given Li st Dat a’s m i ndex property). A call to this method with r ow=—1 will
be invoked prior to the rendering of the combo box button, which is the part of the combo box
that is always visible (see section 9.1). In this case we dont need to use any border offset. Off-
set only makes sense when there are hierarchical differences between items in the list, not
when an item is rendered alone.

The rest of the get Li st Cel | Render er Conponent () method determines the back-
ground and foreground colors to use, based on whether an item is selected and selectable, and
stores them in instance variables to be used within the pai nt () method. Non-selectable items
receive their own foreground to distinguish them from selectable items.

The pai nt () method performs a bit of rendering before invoking the superclass implementa-
tion. It fills the background with the stored m bkCol or, excluding the icon’s area (the left
margin is already taken into account by the component’s Bor der). It also draws a border-like
rectangle if the component currently has the focus. This method then ends with a call to its
superclass’s pai nt () method, which takes responsibility for painting the label text and icon.

Running the code

Figure 9.2 shows our hierarchical drop-down list in action. Note that models and trim lines
can be easily differentiated because of the varying icons and offsets. In addition, models have a
gray foreground to imply that they cannot be selected.

This implementation is more user-friendly than example 9.1 because it displays all avail-
able data in a single drop-down list. Try selecting different trims and notice how this changes
data for both the model and trim information labels. Tty selecting a model and notice that it
will result in the first trim of that model being selected instead.

CUSTOM MODEL AND RENDERER 245

9.4

246

Improved usability From a usability perspective, the solution in figure 9.2
is an improvement over the one presented in figure 9.1. By using a combo box
with a hierarchical data model, the designer has reduced the data entry to a sin-
gle selection and has presented the information in an accessible and logical
manner which also produces a visually cleaner result.

GUIDELINE

Further improvements could be made here by sorting the hierarchical data. In
this example, it would seem appropriate to sort in a two-tiered fashion: alpha-
betically by manufacturer, and alphabetically by model. Thus Toyota would
come after Ford and Toyota Corolla would come after Toyota Camry.

This is an excellent example of how a programmer can improve Ul design and
usability to make the program easier for the user to use.

COMBO BOXES WITH MEMORY

In some situations, you may want to use editable combo boxes which keep a historical list of
choices for future reuse. This conveniently allows the user to select a previous choice rather
than typing the same text over and over. A typical example of an editable combo box with
memory is found in Find/Replace dialogs in many modern applications. Another example,
familiar to almost every modern computer user, is provided in many Internet browsers which
use an editable URL combo-box-with-history mechanism. These combo boxes accumulate
typed addresses so the user can easily return to any previously visited site by selecting it from
the drop-down list instead of manually typing it in again.

Example 9.3 shows how to create a simple browser application using an editable combo
box with memory. It uses the serialization mechanism to save data between program sessions,
and the JEdi t or Pane component (which is described in more detail in chapters 11 and 19)
to display non-editable HTMLfiles.

Egj ComboB ox With Memory o =0 3
Address |http:ijava.sun.com v | E]
http:ijava.sun.com Z

http:iwww.nationalgeographic.com
http:ivwwew. javaworid.com

Products & APls
Developer Connection
Docs & Training

Online Support

Community Discussion

Industry News loring the New Frontier:
Java™ Technolo Pmarersl the ""Post-Genomic"

[4]

L]

Figure 9.3 A JConboBox with memory of previously visited URLs

CHAPTER 9 COMBO BOXES

Example 9.3

Browser.java

see \Chaptero\3

import java.aw.*;
import java.awt.event.*;
inmport java.io.*;
import java.net.*;

i mport javax.sw ng.*;

i nport javax.sw ng.event.*;
import javax.sw ng.text.*;
import javax.sw ng.text.htm.*;

public class Browser extends JFrame
{
protected JEditorPane m browser;
protected MenConboBox m | ocat or;
protected Ani mat edLabel m runner;

public Browser() {
super ("HTM. Browser [ConboBox with Menory]");
set Si ze(500, 300);

JPanel p = new JPanel ();
p. set Layout (new BoxLayout (p, BoxLayout.X AXIS));
p. add(new JLabel (" Address"));

m | ocat or = new MenConboBox();

combo box and

p. add(Box. cr eat eRi gi dAr ea(new Di nensi on(10, 1))); Vo Creates custom

m | ocat or. | oad("addresses. dat");
Browser Li stener |st = new BrowserlListener();
m_ | ocat or. addActi onLi st ener (I st);

p. add(m_| ocator);
p. add(Box. cr eat eRi gi dAr ea(new Di nensi on(10, 1)));

m_runner = new Ani mat edLabel ("cl ock", 8);
p. add(m_runner);
get Cont ent Pane() . add(p, BorderLayout.NORTH);

m browser = new JEditorPane();
m _br owser . set Edi t abl e(f al se);
m _browser . addHyper | i nkLi stener (I st);

JScrol | Pane sp = new JScrol | Pane();
sp. get Vi ewport (). add(m browser);
get Cont ent Pane() . add(sp, BorderLayout.CENTER);

W ndowLi st ener wndCl oser = new W ndowAdapter () {
public void wi ndowd osi ng(W ndowEvent e) {
m | ocat or. save("addresses.dat");
System exit(0);
}
H
addW ndowLi st ener (wndd oser) ;

COMBO BOXES WITH MEMORY

loads it with
some history

e Saves history
list

247

set Vi si bl e(true); Listens for selected URLs, either from

m_| ocat or. grabFocus(); the combo box or from a hyperlink
}
cl ass BrowserListener inplenments ActionListener, HyperlinkListener
{

public void actionPerforned(Acti onEvent evt) {
String sUrl = (String)m.locator.getSelectedlten();

if (sUl == null || sUl.length() == 0 ||
m_runner . get Runni ng())
return;

Browser Loader | oader = new Browser Loader (sUrl);
| oader.start();

}

public void hyperlinkUpdat e(HyperlinkEvent e) {
URL url = e.getURL();
if (url == null || mrunner.getRunning())
return;
Browser Loader | oader = new BrowserLoader (url.toString());
| oader.start();

}
}
cl ass BrowserLoader extends Thread (4] Background thread
{ to load documents from

protected String msUrl: URLs into the browser

public BrowserlLoader(String sUl) { msuUl = suUl; }

public void run() {
set Cur sor (Cur sor. get Predefi nedCur sor (Cur sor. WAl T_CURSOR)) ;
m_runner . set Runni ng(true);

try {
URL source = new URL(msUrl); Retrieves, parses, and
m _browser . set Page(source); renders web page

m | ocator.add(msuUrl);
}
catch (Exception e) {
JOpt i onPane. showMessageDi al og(Browser.this,
"Error: "+e.toString(),
"Warni ng", JOpti onPane. WARNI NG_MESSAGE) ;
}
m runner . set Runni ng(fal se);
set Cur sor (Cur sor. get Predefi nedCur sor (Cur sor. DEFAULT_CURSOR)) ;

}
}
public static void main(String argv[]) { new Browser(); }
}
cl ass MenConboBox extends JComboBox o JComboBox subclass
{ which provides

public static final int MAX _MEMLEN = 30; history mechanism

publ i c MenmConboBox() {
super () ;

248 CHAPTER 9 COMBO BOXES

}

}

set Edi t abl e(true);

public void add(String item { o Add to history list
removelten(iten);

insertitemAt(item O0);
set Sel ectedlten(item;
if (getltenCount() > MAX_MEM LEN)

}

renmovel t emAt (get I tenCount ()-1);

public void load(String fNane) { o Loads history list

}

try {

}

from file, using
if (getltemCount() > 0) object serialization
removeAl | I tens();
File f = new Fil e(fNane);
if (!f.exists())
return;
Fi l el nput Stream f Stream =
new Fil el nput Strean(f);
bj ect I nput stream =
new ObjectlnputStrean(fStrean);
Obj ect obj = stream readObject();
if (obj instanceof ConmboBoxModel)
set Mbdel ((ComboBoxModel) obj) ;
stream cl ose();
fStream cl ose();

catch (Exception e) {

}

e.printStackTrace();

Systemerr.printin("Serialization error: "+e.toString());

public void save(String fName) {
try {

}

}

Fi | eQut put Stream f Stream =

new Fi | eQut put Strean(f Nane) ;
Obj ect Qut put stream =

new ObjectQut put Streanm(fStrean);
stream w it eQbj ect (get Model ());
stream flush();
stream cl ose();
fStream cl ose();

catch (Exception e) {

}

e.printStackTrace();

Stores history list
to file, reverse of
load() method

Systemerr.println("Serialization error: "+e.toString());

cl ass Ani nat edLabel extends JLabel inplenments Runnabl e

{

COMBO BOXES WITH MEMORY

Implements label
which presents

a “slide show”
of several icons
in sequence

249

9.4.1

250

protected Icon[] m.icons;
protected int mindex = O;
protected bool ean m i sRunni ng;

publ i c Ani mat edLabel (String gifNane, int nunG fs) {

m.icons = new |l con[nunG fs];
for (int k=0; k<nunG fs; k++)
m_i cons[k] = new | nagel con(gi f Nane+k+".gif");
setlcon(m.icons[0]);
Thread tr = new Thread(this);

tr.setPriority(Thread. MAX_PRI ORI TY);
tr.start();

}

public void setRunni ng(bool ean i sRunni ng) {
m_i sRunni ng = i sRunni ng;

}

publ i c bool ean get Running() { return m.isRunning; }

public void run() { @ Ir) backgrounq thrc.ead,
while(true) { displays each icon in

't (misRimning) | reduence lecpin
m_i ndex++;

}
}

if (m.index >= m.cons.|ength)
m_index = 0;
setlcon(m.i cons[m.index]);
Graphics g = get G aphics();
m_i cons[m i ndex] . pai ntlcon(this, g, 0, 0);
}
el se {
if (m.index > 0) {
m.index = 0;
setlcon(m.icons[0]);
}
}
try { Thread. sl eep(500); } catch(Exception ex) {}

}

Understanding the code

Class Browser

This class extends JFrane to implement the frame container for our browser. Here are the
instance variables:

JEdi t or Pane m br owser : The text component to parse and render HTML files.
MenConboBox m | ocat or : The combo box to enter/select a URL address.

Ani mat edLabel m runner: The label that contains an icon which becomes animated
when the browser requests a URL.

The constructor creates the custom combo box, m | ocat or, and an associated label. Then it

creates the m runner icon and places all three components in the northern region of our

CHAPTER 9 COMBO BOXES

frame’s content pane. JEdi t or Pane m_br owser is created and placed in a JScr ol | Pane to
provide scrolling capabilities. This is then added to the center of the content pane.

@ A Wndowdistener, which has been used in many previous examples to close the frame and
terminate execution, receives an additional function: it invokes our custom save() method (see
below) on our combo box component before destroying the frame. This saves the list of visited
URL:s that have been entered as a file called addresses.dat in the current running directory.

Class Browser. BrowserListener

e This inner class implements both the Act i onLi st ener and Hyper | i nkLi st ener interfaces
to manage navigation to HTML pages. The act i onPer f or med() method is invoked when
the user selects a new item in the combo box. It verifies that the selection is valid and that the
browser is not currently busy (requesting a URL, for example). If these checks are passed, it
then creates and starts a new Br owser Loader instance (see below) for the specified address.

The hyper| i nkUpdat e() method is invoked when the user clicks a hyperlink in the cur-
rently loaded web page. This method also determines the selected URL address and starts a
new Br owser Loader to load it.

Class Browser. BrowserLoader

@ This inner class extends Thread to load web pages into our JEdi t or Pane component. It
takes a URL address parameter in the constructor and stores it in an instance variable. The
run() method sets the mouse cursor to an hourglass (Cur sor . WAI T_CURSOR) and starts the
animated icon to indicate that the browser is busy.

The core functionality of this thread is enclosed in its try/ cat ch block. If an exception
occurs during the processing of the requested URL, it is displayed in a simple JOpt i onPane
dialog message box (we will discuss JOpt i onPane in chapter 14).

o The actual job of retrieving, parsing, and rendering the web page is hidden in a single call to
the set Page() method. So why do we need to create this separate thread instead of making
that simple call in Br owser Li st ener, for example? As we discussed in chapter 2, by creating
separate threads to do potentally time-consuming operations, we avoid clogging up the
event-dispatching thread.

Class MemComboBox

This class extends JConboBox to add a history mechanism. The constructor simply sets its
edi t abl e property to t r ue.

©

o The add() method adds a new text string to the beginning of the list. If this item is already
present in the list, it is removed from the old position. If the resulting list is longer than the
predefined maximum length, the last item in the list is truncated.

@ Theload() method loads a previously stored ComboBoxMbdel from the addresses.dat file
using the serialization mechanism. The significant portion of this method reads an object
from an Obj ect | nput St r eamand sets it as the ComboBoxMbdel . Any possible exceptions
are printed to the standard output.

Similarly, the save() method serializes our combo box’s ConboBoxMbdel . Any possible
exceptions are, again, printed to standard output.

COMBO BOXES WITH MEMORY 251

9.4.2

252

Class AnimatedLabel

Surprisingly, Swing does not provide any special support for animated components, so we
have to create our own component for this purpose. This provides us with an interesting
example of using threads in Java.

NOTE Animated GIFs are fully supported by I magel con (see chapter 5) but we want

complete control over each animated frame in this example.

Ani mat edLabel extends JLabel and implements the Runnabl e interface. Here are the
instance variables:

* lcon[] m.icons: An array of images to be used for animation.
e int m.index: The index of the current image.
* bool ean m.i sRunni ng: The flag that indicates whether the animation is running.

The constructor takes a common name of a series of GIF files that contain images for anima-
tion, and the number of those files. These images are loaded and stored in an array. When all
images are loaded, a thread with maximum priority is created and started to run this Runna-
bl e instance.

The set Runni ng() and get Runni ng() methods simply manage the m i sRunni ng flag.

In the run() method, we cyclically increment the m i ndex variable and draw an image from
the m_i cons array with the corresponding index, exactly as one would expect from an ani-
mated image. This is done only when the m i sRunni ng flag is set to t r ue. Otherwise, the
image with index 0 is displayed. After an image is painted, Ani mat edLabel yields control to
other threads and sleeps for 500 ms.

The interesting thing about this component is that it runs parallel with other threads which do
not necessarily yield control explicitly. In our case, the concurrent Br owser Loader thread
spends the main part of its time inside the set Page() method, and our animated icon runs
in a separate thread that signals to the user that something is going on. This is made possible
because this animated component is running in the thread with the maximum priority. Of
course, we should use such thread priority with caution. In our case it is appropriate since our
thread consumes only a small amount of the processor’s time and it does yield control to the
lesser-priority threads when it sleeps.

NOTE As a good exercise, try using threads with normal priority or Swing’s Ti mer com-
ponent in this example. You will find that this doesn’t work as expected: the ani-
mated icon does not show any animation while the browser is running.

Running the code

Figure 9.3 shows the Browser application displaying a web page. The animated icon comes
to life when the browser requests a URL. Notice how the combo box is populated with URL
addresses as we navigate to different web pages. Now quit the application and restart it. Notice
that our addresses have been saved and restored by serializing the combo box model, as we dis-
cussed above.

CHAPTER 9 COMBO BOXES

NOTE HTML rendering functionality is not yet matured. Do not be surprised if your fa-
vorite web page looks significantly different in our Swing-based browser. As a matter
of fact, even the JavaSoft home page throws several exceptions while being displayed
in this Swing component. (These exceptions occur outside our code, during the
JEdi t or Pane rendering—this is why they are not caught and handled by our code.)

Memory combo box usage The example given here is a good place to use a
combo box with memory. However, a memory combo box will not always be
appropriate. Remember the advice that the usability of an unsorted combo box
tends to degrade rapidly as the number of items grows. Therefore, it is sensible
to use this technique where the likelihood of more than 20 entries (to pick a
good number) is very small.

If you have a domain problem which is likely to need a larger number of mem-
ory items, but you still want to use a memory combo box, consider adding a
sorting algorithm. Rather than sorting the most recent item first, you sort into
a more meaningful index, such as alphabetical order. Usability will improve
and you could easily populate the list with up to 200 or 300 items.

9.5 CUSTOM EDITING

In this section, we will discuss a custom editing feature to make example 9.3 even more conve-
nient and similar to modern browser applications. We will attach a key event listener to our
combo box’s editor and search for previously visited URLs with matching beginning strings. If a
match occurs, the remainder of that URL is displayed in the editor, and we can accept the sugges-
tion by pressing ENTER. Most modern browsers also provide this functionality.

In example 9.4, the caret position will remain unchanged, as will the text on the left side
of the caret (this is the text the user typed). The text on the right side of the caret represents
the browser’s suggestion, which may or may not correspond to the user’s intentions. To avoid
distracting the user, this portion of the text is highlighted, so any newly typed character will
replace that suggested text.

Eg ComboB ox With Memory !E[]

Address |http:ijava.sun.com E]

NATIONAL O nat
GEOGRAPHIC o
COM i

SEARCH OUR SITE |

T .
St '5;652 ONLINE @ NATIONALGEOGRAPHIC.COM Figure 9.4

AND A JConboBox with

CATALOG a custom editor that

suggests previously
visited URLs

IRéady

CUSTOM EDITING 253

Example 9.4

see\Chapter9\4

public class Browser extends JFrane

{
/'l Unchanged code from exanple 9.3

public Browser() {

super ("HTM. Browser [Advanced Editor]"); Creates KeyAdapter

/1 Unchanged code from exanple 9.3 which attaches itself
to combo box
MenConboAgent agent = new MenConboAgent (m_| ocator);

/1 Unchanged code from exanple 9.3
}
/'l Unchanged code from exanple 9.3

}

cl ass MemConboAgent extends KeyAdapter
{
prot ect ed JConboBox m_conboBox;
protected JTextField meditor;

publ i ¢ MenConboAgent (JConboBox conboBox) {
m_conboBox = conboBox;
m edi tor = (JTextFi el d) conboBox. get Edi tor ().
get Edi t or Conponent () ;
m edi t or. addKeyLi st ener (this);

}

public voi d keyRel eased(KeyEvent e) {

char ch = e.getKeyChar();

if (ch == KeyEvent.CHAR_UNDEFI NED || Character.islSOControl (ch))
return;

int pos = meditor.getCaretPosition();

String str = meditor.getText();

if (str.length() == 0)
return;

for (int k=0; k<m conboBox.getltenmCount(); k++) {
String item = m.conboBox. getltemAt (k).toString();
if (itemstartsWth(str)) {
m editor.setText(item;
m editor.setCaretPosition(itemlength());
m_edi t or. noveCar et Posi ti on(pos);
br eak;

Find list item
that text
begins with

254 CHAPTER 9 COMBO BOXES

9.5.1

9.5.2

Understanding the code

Class Browser

This class has only one change in comparison with the previous example: it creates an instance
of our custom MenConboAgent class and passes it a reference to our m | ocat or combo box.

Class MemComboAgent

This class extends KeyAdapter to listen for keyboard activity. It takes a reference to a
JConboBox component and stores it in an instance variable along with the JText Fi el d
component that is used as that combo box’s editor. Finally, a MenConmboAgent object adds
itself to that editor as a KeyLi st ener to be notified of all keyboard input that is passed to the
editor component.

The keyRel eased() method is the only method we implement. This method first retrieves
the pressed characters and verifies that they are not control characters. We also retrieve the
contents of the text field and check that it is not empty to avoid annoying the user with
suggestions in an empty field. Note that when this method is invoked, the pressed key will
already have been included in this text.

This method then walks through the list of combo box items and searches for an item starting
with the combo box editor text. If such an item is found, it is set as the combo box editor’s
text. Then we place the caret at the end of that string using set Car et Posi ti on() , and move
it back to its initial position, going backward, using the noveCar et Posi ti on() method. This
method places the caret in its original position and highlights all the text to its right.

NOTE A more sophisticated realization of this idea may include the separate processing of
the URL protocol and host, as well as using threads for smooth execution.

Running the code

Figure 9.4 shows our custom combo box’s editor displaying a portion of a URL address taken
from its list. Try entering some new addresses and browsing to them. After some experimenta-
tion, try typing in an address that you have already visited with this application. Notice that the
enhanced combo box suggests the remainder of this address from its pull-down list. Press ENTER
as soon as an address matches your intended selection to avoid typing the complete URL.

CUSTOM EDITING 255

10.1

\ CHAPTEHR 10
ey
%

List boxes and Spinners

10.1 JList 256 10.7 Using JSpinner to select

10.2 Basic JList example 261 numbers 284

10.3 Custom rendering 264 10.8 Using JSpinner to select dates 286

10.4 Processing keyboard input 10.9 Using JSpinner to select a value from
and searching 266 alist 287

10.5 List of check boxes 277 10.10Extending the functionality of

10.6 JSpinner 282 JSpinner 289

JLIST

class javax.swing. [List

This class represents a basic GUI component that allows the selection of one or more items
from a list of choices. JLi st has two models: Li st Model , which handles data in the list, and
Li st Sel ecti onModel , which handles item selection (three different selection modes are
supported; we will discuss them below). JLi st also supports custom rendering, as we learned
in the last chapter, through the implementation of the Li st Cel | Render er interface. We can
use the existing default implementation of Li st Cel | Render er (Def aul t Li st Cel | Ren-
der er) or create our own according to our particular needs, as we will see later in this chapter.
Unless we use a custom renderer, the default renderer will display each element as a Stri ng
defined by that object’s t oSt ri ng() method. The only exceptions to this are | con imple-
mentations which will be rendered as they would be in any JLabel . Keep in mind that a
Li st Cel | Render er returns a Conponent , but that component is not interactive and is only
used for display purposes (it acts as a “rubber stamp”). For instance, if a JCheckBox is used as

256

JLIST

a renderer, we will not be able to check and uncheck it. Unlike JConboBox, however, JLi st
does not support editing of any sort.

A number of constructors are available to create a JLi st component. We can use the
default constructor or pass list data to a constructor as a one-dimensional array, as a Vect or,
or as an implementation of the Li st Model interface. The last variant provides maximum con-
trol over a list’s properties and appearance. We can also assign data to a JLi st using either the
set Model () method or one of the overloaded set Li st Dat a() methods.

JLi st does not provide direct access to its elements, and we must access its Li st Model
to gain access to this data. JLi st does, however, provide direct access to its selection data by
implementing all Li st Sel ecti onModel methods and delegating their traffic to the actual
Li st Sel ecti onModel instance. To avoid repetition, we will discuss selection functionality
in our overview of Li st Sel ect i onMbdel .

JAVA 1.4 In Java 1.4 JLi st has the added get Next Mat ch() method which returns the
index of the next element in the list which starts with a given St ri ng prefix. The
method also takes an index to start the search at and a direction to perform the
search in (either Posi ti on. Bi as. For war d or Posi ti on. Bi as. Backwar d).

JLi st maintains selection foreground and background colors (which are assigned by its Ul
delegate when installed), and the default cell renderer, Def aul t Li st Cel | Render er, will use
these colors to render selected cells. These colors can be assigned with set Sel ect edFor e-
ground() and set Sel ect edBackgr ound() . Nonselected cells will be rendered with the
component foreground and background colors that are assigned to JLi st with set For e-
ground() and set Background().

JLi st implements the Scrol | abl e interface (see chapter 7) to provide vertical unit
incremental scrolling corresponding to the list cell height, and vertical block incremental
scrolling corresponding to the number of visible cells. Horizontal unit increment scrolling
corresponds to the size of the list’s font (1 if the font is nul I), and horizontal block unit
increment scrolling corresponds to the current width of the list. Thus JLi st does not directly
support scrolling, and it is intended to be placed in a JScr ol | Pane.

The vi si bl eRowCount property specifies how many cells should be visible when a
JLi st is placed in a scroll pane. This defaults to 8, and it can be set with the set Vi si -
bl eRowCount () method. Another interesting method provided by JLi st is ensur el n-
dex! sVi si bl e(), which forces the list to scroll itself so that the element corresponding
to the given index becomes visible. JLi st also supports autoscrolling; for example, it will
scroll element by element every 100ms if the mouse is dragged below or above its bounds.

By default, the width of each cell is the width of the widest item, and the height of each
cell corresponds to the height of the tallest item. We can overpower this behavior and specify
our own fixed cell width and height of each list cell using the set Fi xedCel | W dt h() and
set Fi xedCel | Hei ght () methods.

Another way to control the width and height of each cell is through the set Prot o-
typeCel | Val ue() method. This method takes an Obj ect parameter and uses it to automati-
cally determine the fixedCel | Wdt h and fi xedCel | Hei ght. A typical use of this method
would be to give it a St ri ng. This forces the list to use a fixed cell width and height equal to the
width and height of that string when it is rendered in the Font currently assigned to the JLi st .

257

258

JAVA 1.4

As of Java 1.4 JLi st supports two new layouts, for a total of three:

VERTI CAL: The default layout mode—one column of cells.
VERT! CAL_WRAP: Cells flow in columns—the list becomes horizontally scrollable.
HORI ZONTAL_WRAP: Cells flow in rows—the list becomes vertically scrollable.

The layout mode can be set with the new set Layout Ori ent ati on() method.

JLi st also provides a method called | ocati onTol ndex() which will return the index of
a cell at the given Poi nt (in coordinate space of the list). =1 will be returned if the given point
does not fall on a list cell. Unfortunately, JLi st does not provide support for double-clicking,
but this method comes in very handy in implementing our own support for notification of
double clicks. The following pseudocode shows how we can use a MouseAdapter, a
MouseEvent, and the | ocati onTol ndex() method to determine which JLi st cell a
double-click occurs on:

nmyJi st. addMbuseli st ener (new MouseAdapter () {
public void noused i cked(MuseEvent e) {
if (e.getdickCount() == 2) {
int celllndex = myJList.locationTol ndex(e.getPoint());
/1 W now have the index of the double-clicked cell.

1)

Advice on usage and design

Usage Much of the UI Guideline advice for list boxes is similar to that given
for combo boxes. Clearly the two components are different and they are in-
tended for different purposes. Deciding when to use one or another can be dif-
ficult. Again, our advice is to think about reader output rather than data input.
When the reader needs to see a collection of items, a list box is the correct
choice. Use a list box where there is a collection of data which may grow dy-
namically, and when, for reading purposes, it is useful to see the whole collec-
tion or as much of the collection as can reasonably fit in the available space.

Design Like combo boxes, a number of things affect the usability of a list box.
Beyond more than a few items, it becomes unusable unless the data is sorted in
some logical fashion, such as alphabetical or numerical. List boxes are designed to
be used with scroll panes because lists are often too long to display each item in the
available screen space at once. Using a sensible sorted order for the list allows the
user to predict how much he needs to scroll to find what he is looking for.

When a list gets longer, usability is affected yet again. Once a list gets beyond a
couple of hundred items, even when sorted, it becomes very slow for the user to
locate a specific item in the list. When a list becomes that long, you may want to
consider either providing a search facility or grouping the data inside the list using
a tree-like organization.

Graphical considerations for list boxes are much like those for combo boxes.
List boxes should be aligned to fit attractively into a panel. However, you must
avoid making a list box which is simply too big for the list items contained. For

CHAPTER 10 LIST BOXES AND SPINNERS

10.1.1

10.1.2

10.1.3

10.1.4

JLIST

example, a list box showing supported file formats such as “.gif” need only be
a few characters long—don’t make it big enough to handle 50 characters, as it
will look unbalanced.

The nature of the list items must also be considered. If you have 50 items in a list
where most items are around 20 characters but one item is 50 characters long,
then should you make the list box big enough to display the longest item? May-
be, but for most occasions your display will be imbalanced again. It is probably
best to optimize for the more common length, providing the longer one still has
meaning when read in its truncated form. One solution to displaying the whole
length of a truncated item is to use the tooltip facility. When the user places the
mouse over an item, a tooltip appears with the full-length data text.

The ListModel interface

abstract interface javax.swing. ListModel

This interface describes a data model that holds a list of items. The get El enent At () method
retrieves the item at the given position as an Obj ect instance. The get Si ze() method returns
the number of items in the list. Li st Model also contains two methods that allow Li st Dat a-
Li st eners (see below) to be registered and notified of any additions, removals, and changes
that occur to this model. This interface leaves the job of specifying how we store and structure the
data, as well as how we add, remove, or change an item, completely up to its implementations.

AbstractListModel

abstract class javax.swing. AbstractListModel

This class represents a partial implementation of the Li st Model interface. It defines the
default event-handling functionality, and it implements the add/remove Li st Dat aLi st ener
methods, as well as methods to fire Li st Dat aEvent s (see below) when additions, removals,
and changes occur. The remainder of Li st Mbdel , the methods get El enent At () and
get Si ze(), must be implemented in any concrete subclass.

DefaultListModel
class javax.swing. DefaultListModel

This class represents the concrete default implementation of the Li st Model interface. It extends
Abstract Li st Model and uses aj ava. util . Vector to store its data. Almost all of the meth-
ods of this class correspond directly to Vect or methods; we will not discuss them here. Familiar-
ity with Vect ors implies familiarity with how Def aul t Li st Model works (refer to the API
documentation if you need further information).

The ListSelectionModel interface

abstract interface javax.swing. ListSelectionModel

This interface describes the model used for selecting list items. It defines three modes of
selection: single selection, single contiguous interval selection, and multiple contiguous
interval selection. A selection is defined as an indexed range, or set of ranges, of list elements.

259

10.1.5

10.1.6

260

The beginning of a selected range (where it originates) is referred to as the anchor, while the
last item is referred to as the lead (the anchor can be greater than, less than, or equal to the
lead). The lowest selected index is referred to as the minimum, and the highest selected index
is referred to as the maximum, regardless of the order in which selection takes place. Each of
these indices represents a Li st Sel ecti onModel property. The minimum and maximum
properties should be —1 when no selection exists, and the anchor and lead maintain their most
recent value until a new selection occurs.

To change the selection mode we use the set Sel ect i onvbde() method, passing it one
of the fOUOWing constants: MULTI PLE_| NTERVAL_SELECTI ON, SI NGLE_| NTERVAL _SELEC-
TI ON, or SI NGLE_SELECTI ON. In SI NGLE_SELECTI ON mode, only one item can be selected.
In SI NGLE_| NTERVAL_SELECTI ON mode, a contiguous group of items can be selected by
selecting an anchor item, holding down the SHIFT key, and choosing a lead item (which can
be at a higher or lower index than the anchor). In MULTI PLE_| NTERVAL_SELECTI ON mode,
any number of items can be selected regardless of their location by holding down the CTRL key
and clicking. Multiple selection mode also allows you to use SHIFT to select a contiguous inter-
val; however, this clears the current selection.

Li st Sel ecti onMobdel provides several methods for adding, removing, and manipulat-
ing ranges of selections. Methods for registering/removing Li st Sel ecti onLi st eners are
provided as well (see below). Each of these methods is explained clearly in the API documen-
tation, so we will not describe them in detail here.

JAVA 1.4 In Java 1.4 JList has the added get Li st Sel ecti onLi st eners() method
which returns an array containing all registered Li st Sel ectionLi st ener
instances.

JLi st defines all the methods declared in this interface and it delegates all traffic to its Li st -
Sel ecti onMbdel instance, thereby allowing access to selection data without the need to
explicitly communicate with the selection model.

DefaultListSelectionModel
class javax.swing. DefaultListSelectionModel

This class represents the concrete default implementation of the Li st Sel ecti onMbdel
interface. It defines methods to fire Li st Sel ect i onEvent s when a selection range changes.

The ListCellRenderer interface

abstract interface javax.swing. ListCellRenderer

This interface describes a component that is used for rendering a list item. We discussed this
interface, as well as its default concrete implementation, Def aul t Li st Cel | Render er, in the
last chapter (see sections 9.1.4 and 9.1.5). We will show how to construct several custom ren-
derers in the examples that follow.

CHAPTER 10 LIST BOXES AND SPINNERS

10.1.7

10.1.8

10.1.9

10.1.10

10.2

The ListDatalListener interface

abstract interface javax.swing.event. ListDataListener

This interface defines three methods for dispatching Li st Dat aEvent s when list elements are
added, removed, or changed in the Li st Mbdel : i nt er val Added(),i nt er val Renoved(),
and cont ent sChanged() .

ListDataEvent

class Javax.swing.event. ListDataFvent

This class represents the event that is delivered when changes occur in a list’s Li st Model . It
includes the source of the event as well as the indexes of the lowest and highest indexed elements
affected by the change. It also includes the type of event that occurred. Three Li st Dat aEvent
types are defined as static i nts: CONTENTS_CHANGED, | NTERVAL_ADDED, and | NTERVAL _
REMOVED. We can use the get Type() method to discover the type of any Li st Dat aEvent .

The ListSelectionListener interface

abstract interface javax.swing.event. ListSelectionListener

This interface describes a listener which listens for changes in a list’s Li st Sel ect i onMbdel .
It declares the val ueChanged() method, which accepts a Li st Sel ecti onEvent .

ListSelectionEvent

class javax.swing.event. ListSelection Event

This class represents an event that is delivered by Li st Sel ect i onMbdel when changes occur
in its selection. It is almost identical to Li st Dat aEvent , except that the indices specified sig-
nify where there has been a change in the selection model, rather than in the data model.

BAsic JLIST EXAMPLE

Example 10.1 displays a list of the states in the United States using an array of St ri ngs in the
following format:

e 2-character abbreviation<zab character>full state name<tab character>state capital

The states are listed alphabetically by their 2-letter abbreviation.

@Swing List [Base] H=] E3
AkOAlaskaOJuneau :
ALOAlabamaOMontgomery
AROATkansasOLittle Rock
AfAzona0Fhoenix
CAOCalifarniadSacramento
CoOColoradoODernver
CTOConnecticuiOHartford
DEODelawaredDover Figure 10.1
FIJ:IFIDrlda.EITaIIahaSSEE A JLi st that displays
Gmeem_g_'amﬂama | a list of strings containing
HIOHawaiiOHonolulu -

tab characters

BASIC JLIST EXAMPLE 261

Example 10.1

StateslList.java

see \Chapter10\1

import java.awt.*;
import java.awt.event.*;
inmport java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class StatesList extends JFrane

{

protected JLi st m statesList;

public StatesList() {
super ("Swi ng List [Base]");
set Si ze(500, 240);

String [] states = {
"AK\ t Al aska\t Juneau",
" AL\t Al abama\t Mont gonery",
"AR\t Arkansas\tLittl e Rock",
"AZ\t Ari zona\t Phoeni x",
"CA\t California\tSacramento",
"COt Col orado\t Denver",
"CT\t Connecticut\tHartford",
"DE\'t Del awar e\ t Dover",
"FL\t Fl ori da\t Tal | ahassee",
"GA\t Georgi a\tAtl anta",
"Hi\'t Hawai i \ t Honol ul u",
"I A'tl owa\t Des Mbi nes",
"1 D\t daho\t Boi se",
"I'L\t111inois\tSpringfield",
"IN\t | ndi ana\t | ndi anapol i s",
"KS\t Kansas\t Topeka",
"KY\'t Kent ucky\'t Frankfort",
"LA\t Loui si ana\t Bat on Rouge",
"MA\'t Massachuset t s\ t Bost on",
"MD\t Maryl and\ t Annapol i s",
"ME\'t Mai ne\t August a",
"M\tM chigan\tLansing",
"M\t M nnesota\t St. Paul ",
"MOtM ssouril\tJefferson Cty",
"M\t M ssi ssi ppi\tJackson",
"M t Mont ana\ t Hel ena",
"NC\t North Carolina\tRaleigh",
"ND\'t Nort h Dakot a\t Bi smar ck",
"NE\ t Nebr aska\t Li ncol n",
"NH\ t New Hanpshire\t Concord",
"NJ\t New Jersey\t Trenton",

262 CHAPTER 10 LIST BOXES AND SPINNERS

"NM t New Mexi co\t Sant aFe",
"NWt Nevada\t Carson City",
"NY\'t New Yor k\'t Al bany",
" OH\ t Chi o\ t Col unbus",
"OK\t Gkl ahoma\ t Okl ahoma City",
"OR\tOregon\t Sal enf',
"PA\'t Pennsyl vani a\t Harri sburg",
"R\t Rhode | sl and\tProvi dence",
"SC\t Sout h Carolina\t Col umbi a",
"SD\'t Sout h Dakota\tPierre",
"TN\t Tennessee\t Nashvil | e",
"TX\t Texas\t Austin",
"UNtUah\tSalt Lake City",
"VA\'t Vi rgini a\t Ri chnmond",
"VT\t Ver nont\ t Mont pel i er",
"WA\ t Washi ngt on\t A ynpi a",
"WAtWest VirginialtCharl eston",
"W\t W sconsi n\t Madi son",
"W t Womi ng\ t Cheyenne"

b

m statesLi st = new JList(states);

JScrol | Pane ps = new JScrol | Pane();
ps. get Vi ewport (). add(m statesList);
get Cont ent Pane() . add(ps, BorderLayout. CENTER);

seDef aul t 0 oseQper ati on(JFrane. EXI T_ON_CLOSE) ;
setVisible(true);

}

public static void main(String argv[]) {
new StatesList();

}
}

10.2.1 Understanding the code
Class StatesList

The St at esLi st class extends JFr ane to implement the frame container for this example.
One instance variable, JLi st m st at esLi st , is used to store an array of state St ri ngs. This
list is created by passing the states St ri ng array to the JLi st constructor. The list is then added
to a JScr ol | Pane instance to provide scrolling capabilities.

10.2.2 Running the code

Figure 10.1 shows St at esLi st in action displaying the list of states and their capitals.
The separating tab character is displayed as an unpleasant square symbol, but we'll fix this
in the next example.

BASIC JLIST EXAMPLE 263

Unbalanced layout In this example, the design is unbalanced because the

tab character is not displayed correctly. The box is ugly, and the spacing is also

= wrong. The large white space area to the right ought to be avoided. The next
o example corrects these problems.

10.3 CUSTOM RENDERING

264

In this section we'll add the ability to align St ri ngs containing tab separators into a table-like
arrangement. We want each tab character to shift all text to its right, to a specified location
instead of being rendered as the square symbol we saw earlier. These locations should be deter-
mined uniformly for all elements of the list to form columns that line up correctly.

Note that this example works well with proportional fonts as well as with fixed width
fonts (i.e., it doesn’t matter what font we use because alignment is not designed to be font-
dependent). This makes JLi st a powerful but simple component, which can be used in place
of JTabl e in simple cases such as the example presented here (where the involvement of
JTabl e would create unnecessary overhead).

To accomplish the desired rendering we construct a custom rendered, TabLi st Cel | -
Render er , which exposes accessor methods to specify and retrieve tab positions based on the
index of a tab character in a St ri ng being rendered:

* get Defaul t Tab()/ set Def aul t Tab(i nt): manages the default tab size (defaults to
50). In case a position is not specified for a given tab index, we use a default size to deter-
mine how far to offset a portion of text.

* get Tabs()/set Tabs(int[]): manages an array of positions based on the index of a
tab character in a String being rendered. These positions are used in rendering each
element in the list to provide consistent alignment.

This example also demonstrates the use of the Layout Orientation property new to
J2SE 1.4. By using two different list models (one with short abbreviations and the original
model from example 10.1), and allowing dynamic selection between both models as well as
the three different list cell layout modes, this example illustrates how each layout mode
behaves and in which situation each is most useful.

Egi States List !B E
(@ WERTICAL) VERTICAL _WWRAP) HORIZONTAL _WRAP
%) Long Model) Short Model
AK Alaska Juneau
AL Alabama Montgomery
AR Arkansas Little Rock
AL Arizona Phoeniz
CA California Sacramento -
Figure 10.2
CO Colorado Denver s Li !
CT Connecticut Hartford tates List example
DE Delaware Dover with custom rendering,
FL Florida Tallahassee _|| Long model and default
ca fancai Atlant ~|| [VERTICAL] cell layout

CHAPTER 10 LIST BOXES AND SPINNERS

E:‘;f’i States List

=10] x|

) VERTICAL ® VERTICAL _WRAP) HORIZONTAL _WRAP
i@ Long Model _1 Short Model
AK Alaska Juneau FL Florida
AL Alabama Montgomery GA Georgia
AR Arkansas Little Rock HI Hawaii
AZ Arizona Phoenix 1A lowa
[} California Sacramento ()] Idaho
co Colorado Denwver IL lllinois
CT Connecticut Hartford IN Indiana
DE Delaware Dover KS Kansas
1]] [»
E%’, States List M=)

) VERTICAL) VERTICAL WRAP @ HORIZONTAL _\WRAP
@ Long Model) Short Model

AK Alaska Juneau AL Alabama
DE Delaware Dover FL Florida

M Indiana Indianapolis KS Kansas

Ml Michigan Lansing MM Minnesota
ME Mebraska Lincoln HH New Hamps
0K Oklahoma OKklahoma City OR Oregon

T® Texas Austin ut Litah

Lag Whroming Cheyenne

i] [»
E%g States List =]

s VERTICAL
) Long Model

{1 VERTICAL \WRAP
® Short Model

) HORIZONTAL _WRAP

AK
AL
AR
LY
Ca
co
CT
DE
FL

[l 1]

ol

CUSTOM RENDERING

Figure 10.3
Long model and
VERT| CAL_W\RAP
cell layout

Figure 10.4

Long model and
HORI ZONTAL_V\RAP
cell layout

Figure 10.5
Short model
and default
[VERTICAL]
cell layout

265

266

E:{_i-_{'; States List
) VERTICAL
) Long Moddel

(® WMERTICAL _WRAP
(®) Short Model

- [Of]
- HORIZONTAL _WRAP

AK
AL
AR
AZ
CA
cO
CT
DE

FL
GA

Ky
LA

Ma
MD
ME
Mi

MN
MO

MS 5D Wl
MT TH WY
NC ™

ND OK UT

NE OR Vi

NH PA VT

NJ Rl wWa

NM SC W

22E

Eg’,; States List 1 =]

) WERTICAL
_ Long Model

) WERTICAL _WRAP
®) Short Model

(%) HORIZONTAL _WRAP

AK
DE
IN
M
NE
OK
>
Liad

AL
FL
KS
MN
NH
OR
uT

AR
GA
KY
MO
NJ
PA
VA

AZ CA CO CT
H 1A ID IL

LA MA MD ME
MS MT NC ND
NM NV NY OH
SC SD TN
WA W Wil

52

Example 10.2

StatesList.java

see \Chapter10\2

i mport
i mport
i mport

i mport
i mport
i mport

public

protected

protected
protected
protected

protected
protected

java.awt.*;
java. awt . event. *;
java.util.*;

j avax. swing. *;
j avax. swi ng. bor der. *;
javax. swi ng. event.*;

cl ass

JList mstateslList;

St at esLi st extends JFrane {

JRadi oBut t on
JRadi oBut t on
JRadi oBut t on

JRadi oBut t on
JRadi oBut t on

m vertical Rb;
m vertical W apRb;
m_hori zont al W apRb;

m ongRb;
m short Rb;

Figure 10.6
Short model and
VERT| CAL_W\RAP
cell layout

Figure 10.7
Short model and
HORI ZONTAL_\W\RAP
cell layout

Radio buttons to
change layout policy

Radio buttons used to
switch between models

CHAPTER 10 LIST BOXES AND SPINNERS

public static ArrayMbdel LONG MODEL =
new ArrayModel (new String[] {
“AK\ t Al aska\t Juneau”,

“AL\t Al abanma\t Mont gonery”,
“ARt Arkansas\tLittle Rock”,
“AZ\t Ari zona\t Phoeni x”,
“CA\tCalifornia\tSacranmento”,
“COt Col orado\t Denver”,

“CT\t Connecticut\tHartford”,
“DE\t Del awar e\ t Dover”,

“FL\tFl ori da\t Tal | ahassee”,
“GA\t Georgia\tAtlanta”,

“Hi\'t Hawai i \ t Honol ul u”,

“I'Altl owa\t Des Mi nes”,

“I D\t | daho\t Boi se”,
“IL\tIllinois\tSpringfield,
“I'N\t | ndi ana\t | ndi anapolis”,
“KS\t Kansas\t Topeka”,

“KY\ 't Kent ucky\'t Frankfort”,
“LA\t Loui si ana\t Bat on Rouge”,
“MA\t Massachuset t s\t Bost on”,
“MD\t Maryl and\ t Annapol i s”,
“ME\'t Mai ne\t August a”,

“M\tM chigan\tLansing”,

“MM\t M nnesota\tSt. Paul ",
“MOtM ssouril\tJefferson City”,
“MB\t M ssi ssi ppi\tJackson”,

“ M t Mont ana\ t Hel ena”,
“NC\tNorth Carolina\tRaleigh”,
“ND\t North Dakota\tBisnmark”,
“NE\ t Nebr aska\ t Li ncol n”,

“NH\ t New Hanpshi re\t Concord”,
“NJ\t New Jersey\t Trenton”,
“NM t New Mexi co\t Santa Fe”,
“NWtNevada\t Carson City”,
“NY\'t New Yor k\'t Al bany”,

“OH\ t Cni o\t Col unbus”,

“OK\ 't &kl ahoma\ t Okl ahoma City”,
“OR\tOregon\t Sal enf,

“PA\t Pennsyl vani a\t Harri sburg”,
“RI\t Rhode | sl and\tProvi dence”,
“SC\t Sout h Carolina\t Col unbi a”,
“SD\t Sout h Dakota\tPierre”,

“TN\t Tennessee\ t Nashvil |l e”,

“TX\t Texas\t Austin”,
“UNtUah\tSalt Lake City”,
“VA\'t Virginia\tRi chrmond”,

“VT\t Vernont\tMntpelier”,
“WA\ t Washi ngt on\t A ynpi a”,
“WAtWest Virginia\tCharl eston”,
“W\tWsconsin\tMadi son”,
“WN\ t Womi ng\ t Cheyenne”,

CUSTOM RENDERING 267

268

1)

public static arrayMddel SHORT_MODEL =
new ArrayhModel (new String[] {
“AK", “AL", “AR', “AZ", “CA",
“HT,OfTAY, “ID, “IL", “IN,
“KS", “KY', “LA", “MA", “MD",
“MIr’, “NC’, “ND", “NE", “NH,
‘oK', “OR', “PA", “RI", “SC",
“sb’, “TN', “TX", “UTr", “VA",
K

public StatesList() {
super (“States List");
set Si ze(450, 250);

m st at esLi st = new JList();
m st at esLi st. set Model (LONG_MODEL) ;

TabLi st Cel | Renderer renderer = new TabLi st Cel | Renderer();
renderer.set Tabs(new int[] {50, 200, 300});
m st at esLi st. set Cel | Render er (renderer;

JScrol | pane ps = new JScrol | Pane();
ps. get Vi ewport (). add(m statesList);
get cont ent Pane() . add(ps, BorderLayout. CENTER);

JPanel pp = new JPanel (new GridLayout (2, 3));

Butt onG oup bgl = new buttonG oup();

mvertical Rb = new JRadi oButton(“VERTI CAL", true);

pp. add(m verti cal Rb);

bgl. add(mvertical Rb);

myvertical WapRb = new JRadi oButton(“VERTI CAL_WRAP") ;

pp. add(myvertical WapRb);

bgl. add(m vertical WapRb);

m_hori zont al WapRb = new JRadi oButt on(“ HORI ZONTAL_WRAP") ;
pp. add(m_hori zont al W apRb) ;

bgl. add(m hori zont al W apRb) ;

Butt onGroup bg2 = new ButtonG oup();
m | ongRb = new JRadi oButton(“Long Model ", true);
pp. add(m_| ongRb) ;
bg2. add(m | ongRb) ;
m short Rb = new JRadi oButton(“Short Model");
pp. add(m short Rb) ;
bg2. add(m short Rb) ;
ActionListener to
get Cont ent Pane() . add(pp, BorderLayout. NORTH); change prototype
cell value when

Acti onLi stener nodel Li stener = new ActionListener() {
model changes

public void actionPerforned(ActionEvent evt) {
if (mlongRb.isSelected()) {

CHAPTER 10 LIST BOXES AND SPINNERS

m st at esLi st. set Prot ot ypeCel | Val ue(
“OXXXXXXX XXX XXX XXXXX KX XXX XX XX XXXX XXX XXX XXX XXXXXXXXX)
m st at esLi st. set Model (LONG_MODEL) ;

}
}
} Lo
A L
m_| ongRb. addAct i onLi st ener (nodel Li st ener); t:tclzgn::ener
m short Rb. addActi onLi st ener (nodel Li st ener); prototype cell
ActionlLi stener |ayoutListener = new ActionListener() { value when

public void actionPerforned(ActionEvent evt) { model changes

if (mvertical Ro.isSelected()) {
m st at esLi st. set Laout Ori entati on(JLi st. VERTI CAL);
}
else if (mvertical WapRb.isSelected()) {
m st at esLi st. set Layout Ori entati on(JLi st. VERTI CAL_WRAP) ;
}
}
}
m vertical Rb. addActi onLi st ener (| ayout Li stener);
m vertical WapRb. addacti onLi st ener (1 ayout Li stener);
m_hori zont al W apRb. addAct i onLi st ener (| ayout Li st ener);

}

public static void main(String argv[]) {
Stateslist frame = new StatesList();
frame. set Def aul t cl oseCperati on(j Frame. EXI T_ON_CLCSE) ;
frame. setvisible(true);
}
} Custom cell renderer used to align
cl ass TabLi st Cel | Renderer extends JLabel / is:::)nsiss::ll:tc;(l)::la'l‘: tab characters
i mpl enents ListCell Renderer {
protected static Border m noFocusBorder;

protected FontMetrics mfm= null;

protected Insets minsets = new Insets(0, 0, 0, 0);
protected int mdefaultTab = 50;

protected int[]mtabs = null;

publ i c TabLi st Cel | Renderer () {
m noFocusBorder = new EnptyBorder (1, 1, 1, 1);
set Opaque(true);
set Bor der (m_nof ocusbor der) ;

}

publ i ¢ component get Li st Cel | Render er Conponent JLi st |ist,
Obj ect value, int index, boolean isSelected, bool ean cel | HasFocus

{
set Text (val ue.toString());

set Background(i sSel ected ? |ist.getSel ecti onBackground()
i st.getBackground());

set Foreground(i sSel ected ? |ist. getSel ecti onForeground()
i st.getForeground());

CUSTOM RENDERING 269

270

set Font(list.etFont());
set Bor der ((cel | HasFocus) ?
Ul Manager . get Border (“Li st. focusCel | Hi ghl i ght Border™)
m_nof ocusBor der) ;

return this;

}

public void setDefaultTab(int defaultTab) {
m def aul t Tab = def aul t Tab;

}

public int getDefaultTab() {
return mdefaul t Tab;

}

public void setTabs(int[] tabs) {
m tabs = tabs;

}

public int[] getTabs() {
return mtabs;
} Method to calculate the distance to use
public int getTab(int index) { Vo corresponding to a given tab index
if (mtabs == null)
return m.def aul t Tab*i ndex;

int len = mtabs.|ength;
if (index>=0 && i ndex<l en)
return mtabs[index];

return mtabs[len-1] +m defaul t Tab*(i ndex-1en+1);

} Method responsible
public voi d pai nt Conponent (Graphics g) { / for rendering each cell;

. . the getTab() method is used
super. pai nt Conpgnent (9): to retrieve the number
Col or col orRetainer = g.getColor(); of pixels corresponding

m_fm =g. get Font Metri cs(); to a given tab index

g. set Col or (get Background());
g.fillRect (0, O, getWdth(), getHeight());
get Border (). paintBorder(this, g,0, 0, getWdth(), getHeight());

g. set Col or (get Foreground());

g.setFont (getfont());

m.insets = getlnsets();

int x = minsets.left;

int y = minsets.top + mfm getAscent();

StringTokeni zer st = new StringTokeni zer(getText(), “\t");
whi l e (st.hasMreTokens()) {

String sNext = st.nextToken();

g.drawstring(sNext, x,y);

X += mfmstringWdth(sNext);

if (!st.hasMoreTokens())
br eak;

CHAPTER 10 LIST BOXES AND SPINNERS

in index = 0;
while (x >= get Tab(i ndex))

i ndex++;
x = get Tab(i ndex);
}
g. set Col or (col or Ret ai ner) ;
}

} Custom list model to hold
ﬁ f obi
cl ass ArrayModel extends AbstractListMdel { an array of objects

Obj ect[] mdata;

public ArrayModel (Object[] data) {
m data = data;

}

public int getSize() {
return mdata.length;

}
public Object getElementAt(int index) {
if (index < 0 || index >= getSize())
return null;
return mdatalindex];
}

}

10.3.1 Understanding the code
Class StatesList

In this enhanced version of St at esLi st we create an instance of our custom TablLi st Cel | -
Render er, pass it an array of positions and set it as the renderer for our JLi st component.
Three radio buttons, m verti cal Ro, m verti cal WapRb, and m hori zont al W apRb are
used to change the lists LayoutOrientation property. Two more radio buttons are
m | ongRB and m short RB. When switching between these list models we change our list’s
prototype cell value to increase/decrease the width of the cells accordingly.

© Class TabListCel[Renderer

The TablLi st Cel | Renderer class extends JLabel and implements the Li st Cel | Ren-
der er interface for use as our custom renderer.

Class variable:
e Border m noFocusBor der: border to be used when a list item has no focus.
Instance variables:

* FontMetrics mfm used in calculating text positioning when drawing.

* Insets m.insets: insets of the cell being rendered.

e int mdefault Tab: default tab size.

* int[] m._tabs:an array of positions based on tab index in a St ri ng being rendered.

The constructor creates, assigns text, sets its opaque property to t r ue (to render the compo-
nent’s area with the specified background), and sets the border to m noFocusBor der.

CUSTOM RENDERING 271

272

The get Li st Cel | Render er Conponent () method is required when implementing Li st -
Cel | Render er, and is called each time a cell is about to be rendered. It takes five parameters:

e JList list: reference to the list instance.

e (bj ect val ue: data object to be painted by the renderer.

e int index:index of the item in the list.

* bool ean isSel ect ed: true if the cell is currently selected.

* bool ean cel | HasFocus: t r ue if the cell currently has the focus.

Our implementation of this method assigns new text, sets the background and foreground
(depending on whether or not the cell is selected), sets the font to that taken from the parent
list component, and sets the border according to whether or not the cell has input focus.

Four additional methods provide set/get support for the m def aul t Tab and m t abs vari-
ables, and do not require detailed explanation beyond the code listing. Now let’s take a close
look at the get Tab() method which calculates and returns the position for a given tab index.
If no tab array, m t abs, is set, this method returns the m def aul t Tab distance (defaults to
50) multiplied by the given tab index. If the m t abs array is not nul | and the tab index is less
than its length, the proper value from that array is returned. Otherwise, if the tab index is
greater than the array’s length, we have no choice but to use the default tab size again, offset
from the last value in the m t abs array.

Since the JLabel component does not render tab characters properly, we do not benefit a lot
from its inheritance and implement the pai nt Conponent () method to draw tabbed
Stri ngs ourselves. First, our pai nt Component () method requests a reference to the Font -
Metri cs instance for the given Graphi cs. Then we fill the component’s rectangle with the
background color (which is set in the get Li st Cel | Render er Conponent () method depend-
ing on whether or not the cell is selected), and paint the component’s border.

NOTE Alternatively, we could use the drawTabbedText () method from the j av-
ax.swing.text.Uilities classto draw tabbed text. However, this requires us
to implement the TabExpander interface. In our case it’s easier to draw text direct-
ly without using that utility. As an interesting exercise you can modify the code
from this example to use dr awTabbedText () method.

In the next step, we prepare to draw the tabbed String. We set the foreground color and
font, and determine the initial x and y positions for drawing the text, taking into account the
component’s insets.

REMINDER To draw text in Java you need to use a baseline y-coordinate. This is why the get -
Ascent () value is added to the y position. The get Ascent () method returns the
distance from the font’s baseline to the top of most alphanumeric characters. See
chapter 2 for more information on drawing text and Java 1.2 Font Met r i cs caveats.

We then use a Stri ngTokeni zer to parse the St ri ng and extract the portions separated by
tabs. Each portion is drawn with the drawString() method, and the X-coordinate is
adjusted to the length of the text. We cycle through this process, positioning each portion of
text by calling the get Tab() method, until no more tabs are found.

CHAPTER 10 LIST BOXES AND SPINNERS

Class ArrayModel

o This class extends Abstract Li st Model and is a simple, non-mutable (i.e., read-only) list
model used to hold an array of Obj ects. This is the minimal Li st Model implementation
required for this example to function.

10.3.2 Running the code

Figure 10.2 shows St at esLi st displaying an array of tab-separated St ri ngs. Notice that the
tab symbols are not drawn directly, but form consistently aligned columns inside the list.
Figures 10.3 through 10.7 show StatesLi st in all other permutations of short and long
model, and cell layout mode. Note the order in which the items are listed in VERTI CAL_WRAP
and HORI ZONTAL_WRAP modes. As these figures show, you can choose which wrap mode to use
based on whether you want the user to read the list from top to bottom or from left to right.

Improved balance ~ With the tab character being displayed correctly, the list
box has much better balance. The available area for the capital city is still very
large, and as the designer you may want to consider reducing it, thus reducing
the excessive white space on the right-hand side. Such a decision would nor-
mally be made after the list box is seen as it will appear and the necessary align-
ment and overall panel balance is taken into consideration.

10.4 PROCESSING KEYBOARD INPUT AND SEARCHING

In this section we will continue to enhance our JLi st states example by adding the ability to
select an element whose text starts with a character corresponding to a key press. We will also
show how to extend this functionality to search for an element whose text starts with a sequence
of typed key characters.

To do this, we must use a KeyLi st ener to listen for keyboard input, and we need to
accumulate this input in a St ri ng. Each time a key is pressed, the listener must search through
the list and select the first element whose text matches the St ri ng we have accumulated. If
the time interval between two key presses exceeds a certain pre-defined value, the accumulated
St ri ng must be cleared before appending a new character to avoid overflow.

Ega States List =13
® WERTICAL) VERTICAL _WRAP) HORIZONTAL _WRAP
® Long Model i) Short Model
i rLryan LdrrsiIr g -
MH Minnesota St.Paul »
MO Missouri Jefferson City
MS Mississippi Jackson
MT Montana Helena L
NC North Carolina Raleigh Figure 10.8
ND Morth Dakota Bismarck || A JLi st that allows
HE Nebraska Lincoln accumulated keyboard
NH Mew Hampshire Concord o input to search for
HJ Hew Jersey Trenton - - .
a matching item

PROCESSING KEYBOARD INPUT AND SEARCHING 273

274

Example 10.3

StateslList.java

see \Chapter10\3

import java.awt.*;
import java.awt.event.*;
inmport java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class StatesList extends JFrame

{

}

protected JLi st m statesList;

public StatesList() {
/1 Unchanged code from exanple 10.2

m st at esLi st = new JList(states);

TablLi st Cel | Renderer renderer = new TabLi st Cel | Renderer();
renderer.set Tabs(new int[] {50, 200, 300});

m st at esLi st. set Cel | Renderer (renderer);

m st at esLi st . addKeyLi st ener (new Li st Searcher (m st atesList));
/'l Unchanged code from exanple 10.2 Add ListSearcher g
} KeyListener to JList

/1 Unchanged code from exanple 10.2

cl ass Li st Searcher extends KeyAdapter

{

protected JList mlist;
protected ListMdel mnodel;
protected String mkey = "";
protected long mtime = 0;

public static int CHAR _DELTA = 1000;
public ListSearcher(JList list) {

mlist = 1list;
m nmodel = mlist.getMdel ();
}
public void keyTyped(KeyEvent e) { @ !f key s letter/digit, and event
char ch = e.getKeyChar(); occurred shortly after last key,
if (!Character.isLetterQDigit(ch)) append it to'search. string and
. look for list item with that prefix
return;
if (mtime+CHAR DELTA < SystemcurrentTimeMI1is())
m key = "";

mtinme = SystemcurrentTineMIlis();

m key += Character.toLower Case(ch);
for (int k=0; k<m nodel.getSize(); k++) {
String str = ((String)mnodel.getEl enent At (k)).toLowerCase();

CHAPTER 10 LIST BOXES AND SPINNERS

if (str.startsWth(mkey)){
m |ist. set Sel ect edl ndex(Kk);
m | i st.ensurel ndexl sVisi bl e(k);
br eak;

}
}
}
}

10.4.1 Understanding the code
Class StatesList

@ An instance of Li st Sear cher is added to the m stat esLi st component as a KeyLi s-
t ener. This is the only change made to this class with respect to example 10.2.

Class ListSearcher
The Li st Sear cher class extends the KeyAdapt er class and defines one class variable:

e int CHAR_DELTA: A static variable to hold the maximum time interval in ms between
two subsequent key presses before clearing the search key character Stri ng.

Instance variables:

e JList mlist: The list component to search and change the selection based on key-
board input.

e ListMbdel m nodel : The list model of m | i st.

e String mkey: The key character Stri ng that is used to search for a match.

e long mtine: The time in ms of the last key press.

The Li st Sear cher constructor simply takes a reference to a JLi st component and stores it
in instance variable m | i st ; its model is stored in m nodel .

e The keyTyped() method is called each time a new character is typed. Our implementation first
obtains the typed character and returns if that character is not a letter or a digit. keyTyped()
then checks the time interval between now and the time when the previous key type event
occurred. If this interval exceeds CHAR_DELTA, the m key St ri ng is cleared. Finally, this method
walks through the list and performs a case-insensitive comparison of the list St ri ngs and the
searching St ri ng (m key). If an element’s text starts with m key, this element is selected and it is
forced to appear within our current JLi st view using the ensur el ndex| sVi si bl e() method.

Extending usability and list size This technique of allowing accumulated
keyboard input to sift and select a list item improves usability by making the
task of searching and locating an item in the list easier. This extends the number
of items you can put in a list and still have a usable design. A technique like this
can easily improve the usefulness of the list for up to several thousand entries.

This is another good example of the improved usability that is possible when the
developer takes extra time to provide additional code to make the user’s task easier.

PROCESSING KEYBOARD INPUT AND SEARCHING 275

10.4.2 Running the code

Try out the search functionality. Figure 10.8 shows our list’s selection after pressing “n” imme-
diately followed by “j.” As expected, New Jersey is selected.

10.5 LIST OF CHECK BOXES

Lists can certainly be used for more than just St ri ngs. We can easily imagine a list of Swing
components. A list of check boxes is actually common in software packages when users are
prompted to select optional constituents during installation. In Swing, such a list can be
constructed by implementing a custom renderer that uses the JCheckBox component.
The catch is that mouse and keyboard events must be handled manually to check/uncheck
these boxes.

Example 10.4 shows how to create a list of check boxes that represent imaginary optional
program constituents. Associated with each component is an instance of our custom | nst al | -
Dat a class with the following fields:

Field Type Description

m_nane String Option name.

msi ze int Size in KB.

m sel ect ed bool ean Returns t r ue if the option is selected.

@Swing Ligt [Check boxes] H[=]
rPlease select options:

¥| Program executable {118 k)
_| Help files {52 k)

_| Toals and converters {83 k)
v| Source code (133 K)

Space required: 251K Figure 10.9
A JLi st with JCheckBox renderers

Example 10.4

CheckBoxList.java

see \Chapter 10\4

inmport java.awt.*;
inmport java.awt.event.*;
inmport java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

public class CheckBoxLi st extends JFrane

{

276 CHAPTER 10 LIST BOXES AND SPINNERS

protected JList mlist;
protected JLabel mtotal;

publ i ¢ CheckBoxList() {
super ("Swi ng Li st [Check boxes]");
set Si ze(280, 250);

get Cont ent Pane() . set Layout (new Fl owLayout ()); List items

Instal | Data[] options = { for JList

new | nstal | Dat a(" Program execut abl e", 118),
new Install Data("Help files", 52),
new I nstal | Data("Tool s and converters", 83),
new | nstal | Dat a(" Source code", 133)
H
mlist = new JList(options);
CheckLi st Cel | Renderer renderer = new CheckLi st Cel | Renderer();
m |ist.setCell Renderer(renderer);
m | ist.setSel ecti onMbde(Li st Sel ecti onvbdel . SI NGLE_SELECTI ON) ;

CheckLi stener |st = new CheckLi stener(this);
m | i st.addMouseli stener(Ist);
m | i st. addKeyLi stener(lst);

JScrol | Pane ps = new JScrol | Pane();
ps. getViewport().add(mlist);

mtotal = new JLabel ("Space required: OK");

“total” field
JPanel p = new JPanel (); below list,
p. set Layout (new Bor der Layout ()); which is below

p. add(ps, BorderLayout. CENTER); the title label

p. add(m total, BorderLayout.SOUTH);

p. set Border (new Tit| edBor der (new Et chedBorder (),
"Pl ease sel ect options:"));

get Cont ent Pane() . add(p) ;

set Def aul t G oseOper ati on(JFrane. EXI T_ON_CLOSE) ;
set Visible(true);

recal cTotal ();

} o Adds up “size”
public void recal cTotal () { field of checked
Li st Model nodel = m.list.getMdel (); items and sets that
int total = 0; in “total” field

for (int k=0; k<mnodel.getSize(); k++) {
Instal | Data data = (Install Data)nodel.get El ement At (k) ;
if (data.isSelected())
total += data.getSize();
}

m total.setText("Space required: "+total +"K");

}

public static void main(String argv[]) {
new CheckBoxList();

}

LIST OF CHECK BOXES 277

278

}

cl ass CheckLi st Cel | Render er ext ends JCheckBox
i mpl enents ListCell Renderer

{

protected static Border m noFocusBorder =
new EnptyBorder(1, 1, 1, 1);

publ i ¢ CheckLi st Cel | Renderer () {

super (); Renderer shows
set Opaque(true); a check box
set Bor der (m_noFocusBor der) ; with label

}

publ i ¢ Component get Li st Cel | Render er Conponent (JLi st i st,
Obj ect val ue, int index, boolean isSelected, bool ean cel |l HasFocus)

{

set Text (val ue.toString());

set Background(isSel ected ? |ist.getSel ectionBackground()
i st.getBackground());

set Foreground(i sSel ected ? |ist.getSel ecti onForeground()
i st.getForeground());

Instal | Data data = (Install Data)val ue;
set Sel ected(data.isSel ected());

set Font (list.getFont());
set Bor der ((cel | HasFocus) ?
Ul Manager . get Border (" Li st. focusCel | Hi ghl i ght Border")
m noFocusBor der) ;
Processes mouse and
key input to change
check box states

return this;
}
}

cl ass ChecklLi stener inplenments Muselistener, KeylListener
{

protect ed CheckBoxLi st m parent;

protected JList mlist;

publ i ¢ CheckLi st ener (CheckBoxLi st parent) {
m parent = parent;
mlist = parent.mlist;

}

public void noused i cked(MuseEvent e) { If mouse click is less than
if (e.getX() < 20) 20 pixels from left edge,
doCheck() ; consider it a click on check box

}

public voi d nobusePressed(MuseEvent e) {}
public void nobuseRel eased(MouseEvent e) {}
public void nobuseEnt ered(MouseEvent e) {}
public void nouseExited(MuseEvent e) {}

CHAPTER 10 LIST BOXES AND SPINNERS

if (e.getKeyChar() =="' ") same as the check box

public void keyPressed(KeyEvent e) { Space key does the
doCheck(); mouse click

}

public void keyTyped(KeyEvent e) {}
public void keyRel eased(KeyEvent e) {}

protected void doCheck() { e Toggles InstallData
int index = mlist.getSelectedl ndex(); “selected” flag and
if (index < 0) recalculates total
return;

Install Data data = (InstallData)m.list.getMdel ().
get El ement At (i ndex) ;

data.invert Sel ected();

mlist.repaint();

m_parent . recal cTotal () ; Data object to represent

} install item, including
} size and “selected” flag

class InstallData

{

protected String mnane;
protected int msize;
protected bool ean m sel ect ed;

public InstallData(String name, int size) {
m nane = nane;
m si ze = si ze;
m sel ected = fal se;

}

public String getName() { return mnane; }
public int getSize() { return msize; }

public void setSel ected(bool ean sel ected) {
m sel ected = sel ected;

}
public void invertSelected() { mselected = !mselected; }
public bool ean isSelected() { return mselected; }
public String toString() { return mnane+" ("+msize+" K)"; }
}
10.5.1 Understanding the code
Class CheckBoxList

The CheckBoxLi st class extends JFr ame to provide the basic frame for this example. Here are
the instance variables:
e JList mlist: Thelist to display program constituents.
e JLabel mtotal: The label to display the total space required for installation based on
the selected constituents.

LIST OF CHECK BOXES 279

280

(1] An array of four InstallData objects is passed to the constructor of our JLi st

component (note that we use a Def aul t Li st Mbdel , which is sufficient for our purposes
here). SI NGLE_SELECTI ON is used as our list’s selection mode. An instance of our custom
CheckLi st Cel | Render er is created and set as the cell renderer for our list. An instance of
our custom CheckLi st ener is then registered as both a mouse and a key listener to handle
item checking and unchecking for each check box (see below).

The list component is added to a JScr ol | Pane to provide scrolling capabilities. Then JLa-
bel mtotal is created to display the total amount of space required for installation based
on the currently selected check boxes.

In previous examples, the JLi st component occupied all of our frame’s available space. In
this example, however, we are required to consider a different layout. JPanel p is now used to
hold both the list and the label (m total). To ensure that the label will always be placed
below the list we use a Bor der Layout . We also use a Ti t | edBor der for this panel’s border
to provide visual grouping.

The recal cTotal () method steps through the sequence of I nstal | Dat a instances con-
tained in the list, and it calculates the sum of the sizes of the selected items. The result is then
displayed in the m t ot al label.

Class CheckListCellRenderer

This class implements the Li st Cel | Render er interface, and it is similar to our TabLi st -
Cel | Render er class from example 10.2. An important difference is that CheckLi st Cel | -
Render er extends JCheckBox (not JLabel) and it uses that component to render each item
in our list. The get Li st Cel | Render er Corrponent () method sets the check box text, deter-
mines whether the current list item is selected, and sets the check box’s selection state accord-
ingly (using its inherited JCheckBox. set Sel ect ed() method).

NOTE We could alternatively use JLabel s with custom icons to imitate checked and un-
checked boxes. However, the use of JCheckBox is preferred for graphical consis-
tency with other parts of a GUL.

Class CheckListener

This class implements both MouseLi st ener and KeylLi stener to process all user input
which can change the state of check boxes in the list. Its constructor takes a CheckBoxLi st
instance as parameter in order to gain access to the CheckBoxLi st . recal cTot al () method.

We've assumed in this example that an item’s checked state should be changed if:

1 The user clicks the mouse close enough to the item’s check box (for example, up to 20
pixels from the left edge).

2 The user transfers focus to the item (with the mouse or keyboard) and then presses the
SPACE bar.

Bearing this in mind, two methods need to be implemented: noused i cked() and key-
Pressed() . They both call the prot ect ed method doCheck() if either of the conditions
described above are satisfied. All other methods from the MouseLi st ener and KeyLi st ener
interfaces have empty implementations.

CHAPTER 10 LIST BOXES AND SPINNERS

(6]

10.5.2

10.6

JSPINNER

The doCheck() method determines the first selected index (the only selected index—recall
that our list uses single-selection mode) in the list component and it retrieves the correspond-
ing I nst al | Dat a object. This method then callsi nvert Sel ect ed() to change the checked
state of that object. It then repaints the list component and displays the new total by calling
the recal cTot al () method.

Class InstallData

The I nstal | Data class describes a data unit for this example. | nst al | Dat a encapsulates
three variables described at the beginning of this section: m nane, m si ze, and m sel ect ed.
Its only constructor takes three parameters to fill these variables. Besides the obvious set/get
methods, the i nvert Sel ect ed() method is defined to negate the value of m sel ect ed. The
toString() method determines the Stri ng representation of this object to be used by the
list renderer.

Running the code

Figure 10.9 shows our list composed of check boxes in action. Select any item and click over the
check box, or press the Space bar to change its checked state. Note that the total kilobytes
required for these imaginary implementations is dynamically displayed in the label at the bottom.

When to use check boxes in alist Check boxes tend to be used inside bor-
dered panes to show groupings of mutually related binary attributes. This tech-
nique is good for a fixed number of attributes; however, it becomes problematic
when the number of items can vary.

The technique shown here is a good way to solve the problem when the collec-
tion of attributes or data is of an undetermined size. Use a check box list for
binary (true/false) selection of items from a collection of a size which cannot
be determined at design time.

For example, imagine the team selection for a football team. The coach has a
pool of players and he needs to indicate who has been picked for the Saturday
game. You could show the whole pool of players (sorted alphabetically or by
number) in the list and allow the coach to check off each selected player.

JSPINNER

class javax.swing. JSpinner

JSpi nner is a new component added in Java 1.4. It consists of an input text area (by default
a JText Fi el d) and two small buttons with up and down arrows on the right of the input
field. Pressing these buttons, or using up and down arrow keys, moves the selection up or
down through an ordered sequence of items. This basic functionality of selecting from a list of
items is similar to JLi st and JComboBox except there is no need for a drop—down list (which
potentially could obscure other parts of the application), and the data can be unbounded.
JSpi nner’s items are maintained in instances of Spi nner Model which can be set/
retrieved through JSpi nner’s set Model ()/ get Model () methods. The currently shown
item can be changed by typing a new value into the editor and pressing ENTER. Concrete

281

10.6.1

282

Spi nner Model implementations for some commonly used data types are provided: Spi n-
ner Dat eModel , Spi nner Li st Model , and Spi nner Nunber Model . The JSpi nner con-
structor, and the set Model () method, are designed such that JSpi nner will change its editor
based on the type of Spi nner Mbdel in use. There are four default editors used by JSpi nner
(defined as static inner classes):

e JSpi nner. Li st Edi t or: Consists of a text field to display a String in the array or
Li st of a Spi nner Li st Model .

e JSpinner. DateEdit or: Consists of a JFormattedTextFi el d whose format is
defined by a Dat eFor mat t er instance.

e JSpi nner. Nunber Edi t or: Consists of a JFor matt edText Fi el d whose format is
defined by a Number For mat t er instance.

e JSpinner. Def aul t Edi tor: This is used by default for all other Spi nner Model
implementations. It is read-only (i.e., it doesn’t allow changes to the model data) and
consists of a JFor mat t edText fi el d.

The editor component used by JSpi nner is automatically configured by the constructor and
can be assigned with the set Editor() method. As with other Swing components, the
JSpi nner editor component does not need to implement any special interface. Instead it
must register itself as ChangeLi st ener with a Spi nner Model and promptly display updated
values. For this reason, when changing editors we must be careful to deregister the previous
editor’s Changeli st ener from the current Spi nner Mbdel . JSpi nner’s set Editor ()
method handles this for us by default, which is why we must be careful when overriding this
method in subclasses.

NOTE In the first edition David Karr contributed an example of a custom Spi nner com-
ponent, which was basically his own version of JSpi nner. Those who have this
edition may want to take a look at the example in chapter 19. We’ve removed this
example for the second edition due to redundancy. However, David was right-on
in his vision for one of the next Swing components! (In that example David also
implemented a component called Dat eTi meEdi t or which corresponds to JFor -
mat t edText Fi el d, another new component in Java 1.4. See chapter 11.)

The SpinnerModel Interface

abstract interface javax.swing. SpinnerModel

This interface represents the data model used by JSpi nner. The data stored in this model
consists of a contiguous sequence of elements that is not necessarily bounded. For instance,
the get Next Val ue() or get Previ ousVal ue() methods can be overriden to return the
next highest or lowest integer than currently selected value (in this case the data model
is unbounded).

Unlike Li st Model , Spi nner Model doesn’t allow random access to elements. At any
given time only the current, next, and previous values in the sequence can be accessed:
get Val ue(), get Next Val ue(), and get Previ ousVal ue(). The current value can be
changed with the set Val ue() method, which is normally called by JSpi nner’s editor.

A Changeli st ener is normally registered with the current Spi nner Mbdel to be
notified when the current value is changed. In this way a programmatic change in the current
value will still be reflected in the current editor component.

CHAPTER 10 LIST BOXES AND SPINNERS

10.6.2

10.6.3

10.6.4

10.6.5

10.7

AbstractSpinnerModel
abstract class Javax.swing. AbstractSpinnerModel

This class is the default abstract implementation of the Spi nner Model interface. It defines
the default ChangeLi st ener behavior.

SpinnerDateModel
class SpinnerDateModel

A subclass of Abst ract Spi nner Model designed to hold or represent an interval of Dat es
(bounded or unbounded). The constructor takes a current Dat e, maximum Dat €, minimum
Dat e, and date field to increment by (see Javadocs for complete list of valid fields).

SpinnerListModel

class SpinnerListModel

A subclass of AbstractSpinnerModel designed to hold a given sequence of objects. The con-
structor takes an array or Li st .

SpinnerNumberModel
class SpinnerNumberModel

A subclass of Abst r act Spi nner Model designed to hold or represent an interval of numbers
(bounded or unbounded). The constructor takes a current value, maximum value, minimum
value, and increment size as parameters. Values can either be i nts or doubl es. A special
constructor also allows the use of Conparabl e implementations for the maximum and
minimum values, allowing us to further customize sequencing behavior (I nt eger, Fl oat,
Doubl e, and Dat e are few of the classes that implement the Conpar abl e interface).

USING JSPINNER TO SELECT NUMBERS

In this example we'll use IJSpi nner to select an integer from 0 to infinity. Selection can be
made by typing the number into the input field directly, or by using the up/down arrow keys
or buttons.

E%'f, Spinner Demo [Numbers]) = O] x|
Select integer: | h 2|:’

Figure 10.10 JSpi nner number selection

USING JSPINNER TO SELECT NUMBERS 283

Example 10.5

SpinnerDemo.java

see \Chapter 10\5
inmport java.awt.*;
i mport javax.sw ng. *;
i mport javax.sw ng. border.*;
cl ass Spi nnerDenp extends JFrame {
publ i c Spi nnerDeno() {
super (“ Spi nner Deno (Nunbers)”);

JPanel p = new JPanel ();

p. set Layout (new BoxLayout (p, BoxLayout.X AXIS));
p. set Bor der (new Enpt yBorder (10, 10, 10, 10));

p. add(new JLabel (“Sel ect integer: “));

Spi nner Model nodel = new Spi nner Nunber Mbdel (

new | nteger(0), /linitial value

new | nteger(0), /1M ni num val ue

nul |, // Maxi mum val ue - not set
new | nt eger (2) Il Step

)
JSpi nner spn = new JSpi nner (nodel) ;
p. add(spn);
get Cont ent Pane() . add(p, BorderLayout.NORTH);
set Si ze(400, 75);
}

public static void main(String args[]) {
Spi nner Demo mai nFrame = new Spi nner Denp() ;
mai nFramne. set Def aul t Cl oseCper ati on(JFrame. EXI T_ON_CLCSE) ;
mai nFrane. set Vi si bl e(true);
}
}

10.7.1 Understanding the code
Class Demo/Spinner

Class Spi nner Denp extends JFrane to implement the frame container for this example.
A JSpi nner is created with a Spi nner Nunber Model instance. All spinner-related informa-
tion is specified in the model’s constructor: initial value (0), minimum value (0), maximum
value (not set), and step size (2). Note that if we had used a fully bounded interval, we could
have used a simpler constructor which takes primitive i nt types rather than Integers
as parameters.

10.7.2 Running the code

Figure 10.10 shows Spi nner Deno in action displaying an integer value selected by using the
arrow buttons. Note that the interval moves up/down by two, as specified in the constructor.

284 CHAPTER 10 LIST BOXES AND SPINNERS

10.8

USING JSPINNER TO SELECT DATES

In this example we'll use JSpi nner to select a date. Selection can be made by typing the num-
ber into the input field directly, or by using the up/down arrow keys or buttons. The selection
interval in this example is Cal endar . DAY_OF_MONTH.

EggSpinnEI Demo [Dates] M=l B

Select date: |10/14/01 5:12 PM =

Figure 10.11 JSpi nner value selection

Example 10.6

SpinnerDemo.java

see \Chapter 10\6

inmport java.awt.*;
inmport javax.awt.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;

cl ass Spi nnerDenp extends JFrame {

publ i c Spi nnerDeno() {
super (“ Spi nner Denp (Dates)”);

JPanel p = new JPanel ();

p. set Layout (new BoxLayout (p, BoxLayout.X AXIS));
p. set Bor der (new EnptyBorder (10, 10, 10, 10));

p. add(new JLabel (“Sel ect date: “));

Spi nner Model nodel = new Spi nner Dat eMbdel (

new Date(), [linitial value
nul |, /1M ni mum val ue - not set
nul |, [/ Maxi mum val ue - not set

Cal endar. DAY_OF_MONTH // Step
)i
JSpi nner spn = new JSpi nner (nodel) ;
p. add(spn);

get Cont ent Pane() . add(p, BorderLayout. NORTH);
set Si ze(400, 75);
}

public static void main(String args[]) {

USING JSPINNER TO SELECT DATES

However, also note that if you type a new value into the editor, it will not be tested upon the
spinner’s bounded interval. So, for example, in this example try typing in —1. The arrow but-
tons and keys no longer function until it is replaced with positive number (or zero).

285

Spi nner Demo nai nFrane = new Spi nner Deno() ;
mai nFrane. set Def aul t Gl oseCper ati on(JFrame. EXI T_ON_CLCSE) ;
mai nFramne. set Vi si bl e(true);
}
}

10.8.1 Understanding the code
Class SpinnerDemo

Class Spi nner Denp extends JFrane to implement the frame container for this example.
A JSpi nner component is created with a Spi nner Dat eMbdel instance. All spinner-related
information is specified in the model’s constructor: initial value (current date), minimum
value (not set), maximum value (not set), and step component (day of month).

10.8.2 Running the code

Figure 10.11 shows Spi nner Deno in action displaying the date value at the time the screen-
shot was taken. You can type a new date value or use the up/down arrow keys or buttons to
adjust the day component.

10.9 USING JSPINNER TO SELECT A VALUE FROM A LIST

In this example we'll use JSpi nner to select a value from an ordered set of given values
(abbreviations of the United States). Selection can be made by typing the value into the input
field directly, or by using the up/down arrow keys or buttons.

E;*:; Spinner Demo [List] | =] B3
Select state: |AK =

Figure 10.12 JSpi nner value selection

Example 10.7

SpinnerDemo.java

see \Chapter 10\7

import java.aw.*;
import java.util.*;

i mport javax.sw ng. *;
i mport javax.sw ng. border.*;

cl ass Spi nnerDenp extends JFrame {

public spinnerDemp() {
super (“ Spi nner Denp (List)”);

286 CHAPTER 10 LIST BOXES AND SPINNERS

JPanel p = new JPanel ();

p. set Layout (new BoxLayout (p, BoxLayout.X AXIS));
p. set Bor der (new EnptyBorder (10, 10, 10, 10));

p. add(newJLabel (“Sel ect state: “));

String [] states = {
“AK", “AL", “AR’, “AZ", “CA",
SHE", “TAY, “ID, “IL, “IN,
“KS', “KY', “LA", “MA", “MD",
“MI”, “NC’, “ND', “NE", “NH,

‘K, “OR', “PA", “RI", “SC,
“sor, TN, “TX', “UT", “VA",

)i

Spi nner Model nodel = new Spi nner Li st Model (st at es)

JSpi nner spn = new JSpi nner (nodel) ;

p. add(spn);

get Cont ent Pane() . add(p, BorderLayout.NORTH);

set Si ze(400, 75);

}

public static void main(String args[]) {
Spi nner Deno mai nFrame = new Spi nner Denp() ;
mai nFramne. set Def aul t Cl oseCper ati on(JFrame. EXI T_ON_CLCSE) ;
mai nFrane. set Vi si bl e(true);
}
}

10.9.1 Understanding the code
Class SpinnerDemo

Class Spi nner Denp extends JFrane to implement the frame container for this example.
A JSpi nner component is created with a Spi nner Li st Mbdel instance. This model takes an
array of allowed values (abbreviations of the United States) in the constructor.

10.9.2 Running the code

Figure 10.2 shows Spi nner Deno in action. You can type a new value or use the up/down
arrow keys or buttons to select the next state in the sequence. Note that when you first start
the example you need to press the up arrow or key to get to the next value in the sequence.
This feels somewhat unintuitive, but it is based on the index of the values in the array. AK is 0,
AL is 1, and so forth. Note also that you can type anything you want into the editor without
affecting the sequencing and the functionality of the up/down arrow keys and buttons.

USING JSPINNER TO SELECT A VALUE FROM A LIST 287

10.10 EXTENDING THE FUNCTIONALITY OF JSPINNER

In this example we show how to speed up selection by adding functionality to move several
interval steps at once, and to move to the beginning or end of the list quickly. This is achieved
by assigning the following actions to these keys:

* PgUp: move 5 steps up (if new value is less than maximum bound)

* PgDn: move 5 steps down (if new value is greater than minimum bound)

¢ Ctrl-Home: move to the maximum bound (if set)

¢ Ctrl-End: move to the minimum bound (if set)

25 Spinner Demo [Keys) I =]

Use PgUp, PgDn, Ctrl-Home, Ctrl-End: | 25|i|

Figure 10.13 JSpi nner custom selection behavior

Example 10.8

SpinnerDemo.java

see \Chapter 10\8

import java.awt.*;
import java.aw.event.*;

i mport javax.sw ng. *;
i mport javax.sw ng. border.*;

cl ass Spi nner Denp extends JFrame {
public static final int PAGE_SIZE = 5;
Spi nner Nunber Model m nodel ;

public Spi nnerDemp() {
super (“ Spi nner Dermp (Keys)");

JPanel p = new JPanel ();

p. set Layout (new BoxLayout (p, BoxLayout.X AXIS));

p. set Bor der (new Enpt yBorder (10, 10, 10, 10));

p. add(new JLabel (“Use PgUp, PgbDn, Crl-Home, Crl-End: “));

m nodel = new Spi nner Nunber Model (0, 0, 100, 1) New keyboard actions
JSpi nner spn = new JSpi nner (m_nodel) ; to move spinner
p. add(spn) ; selection 5 places
forward or backward;
spn. regi st er Keyboar dActi on(new PgUpMover (), or to the top
KeySt r oke. get KeySt r oke(KeyEvent . VK_PAGE_UP, 0), or bottom item

JConponent . WHEN_| N_FOCUSED_W NDOW ;
spn. regi st er Keyboar dActi on(new PgDnMover (),
KeySt r oke. get KeySt r oke(KeyEvent . VK_PAGE_DOWN, 00),

288 CHAPTER 10 LIST BOXES AND SPINNERS

JConponent . WHEN_| N_FOCUSED_W NDOW ;

spn. regi st er Keyboar dAct i on(new HomeMover (),
KeySt r oke. get KeySt r oke(KeyEvent . VK_HOVE, KeyEvent. CTRL_MASK),
JConponent . WHEN_| N_FOCUSED_W NDOW ;

get Cont ent Pane() . add(p, BorderLayout. NORTH); New keyboard actions
set Si ze(400, 75) ; to move spinner selection
} 5 places forward or backward;

or to the top or bottom item
public static void main(String args[]) {
Spi nner Demo mai nFrame = new Spi nner Deno() ;
mai nFramne. set Def aul t Cl oseCper ati on(JFrame. EXI T_ON_CLCSE) ;
mai nFrane. set Vi si bl e(true);

}

/**

* Moves Spinner’s val ue PAGE_SI ZE steps up

*/ Moves spinner value
class PgUpMover inplenents Actionlistener { Ve forward 5 places
public void actionPerforned(ActionEvent e) { if possible
I nt eger newal ue = new | nteger(
m _nodel . get Nunber (). i ntVal ue() -
PAGE_SI ZE* m nodel . get St epSi ze() . intValue());

/1 Check maxi num val ue, Spi nner Nunber Model won’'t do it for us

Conpar abl e maxi mum = m _nodel . get Maxi munt() ;

if (maximum!= null && maxi mum conpar eTo(newval ue) < 0)
return;

m _nodel . set Val ue(newval ue) ;

}

}

/**

* Moves Spinner’s val ue PAGE_SI ZE steps down M . I
*/ oves spinner value
cl ass PgDnMover inplenments ActionListener { ‘ e :}a,::siiﬁ::ces

public void actionPerforned(ActionEvent e) {
I nt eger newal ue = new | nteger(
m _nodel . get Nmber (). i ntVal ue() -
PAGE_SI ZE* m nodel . get SkpSi ze() . i nt Val ue());

/1 Check mi ni num val ue, Spi nner Nunber Model won’'t do it for us

Conpar abl e m ni rum = m_nodel . get M ni mun() ;

if (mnimm!= null && m ni mum conpareTo(newval ue) > 0)
return;

m _nodel . set Val ue(newval ue) ;
}
}

/**

* Moves Spinner’s value to mni mum

*/ Moves spinner
to the maximum

cl ass HoneMover inplenments ActionListener { 3
possible value

public void actionPerforned(ActionEvent e) {

EXTENDING THE FUNCTIONALITY OF JSPINNER 289

10.10.1

290

Conpar abl e mi ni mum = m nodel . get M ni mun() ;
if (mnimm!= null)
m_nodel . set Val ue(m ni munj ;
}
}

/**

* Moves Spinner’s value to maxi mum

* Moves spinner value
cl ass EndMover inplements ActionListener { /o to maximum possible

public void actionPerforned(ActionEvent e) {

Conpar abl e maxi mum = m_nodel . get Maxi mun() ;
if (maximum!= null)
m _nodel . set Val ue(maxi munj ;

Understanding the code
Class SpinnerDemo

This example extends example 10.7 by registering four keyboard actions:
* PgUpMover on PgUp key
* PgDnMover onPgDn key
* HoneMover on Cul-Home key
e EndMover on Cul-End key

Class PgUpMover

This Act i onLi st ener calculates a new value by adding the current value with the product
of the PAGE_SI ZE and step value. If the maximum value is set and the resulting new value
does not exceed the maximum value, the new value is assigned to the model and will be dis-
played in the spinner’s editor. Note that the Conpar abl e. conpar eTo() method is used for
comparison.

Class PgDnMover

This Acti onLi st ener calculates a new value by subtracting the product of the PAGE_SI ZE
and step value from the current value. If the minimum value is set and the resulting new
value is not smaller than the minimum value, the new value is assigned to the model and will
be displayed in spinner’s editor. Note that the Conpar abl e. conpar eTo() method is used
for comparison.

Class HomeMover

This Act i onLi st ener checks the maximum value, and, if not nul I, uses it for the spinner
model’s new value.

Class EndMover

This Acti onLi st ener checks the minimum value, and, if not nul I , uses it for the spinner
model’s new value.

CHAPTER 10 LIST BOXES AND SPINNERS

10.10.2 Running the code

Figure 10.13 shows Spi nner Deno in action after having pressed PgUp 5 times. Try running
this example and use the PgUp, PgDn, Ctrl-Home, Ctrl-End keypads to speed up the selec-
tion. Note that the arrow buttons and keys function normally.

EXTENDING THE FUNCTIONALITY OF JSPINNER 291

11.1

11.1.1

CHAPTEHR 11

A
iy
5

lext components and undo

11.1 Text components overview 292 11.5 Using Formats and
11.2 Using the basic text InputVerifier 312

components 304 11.6 Formatted Spinner example 319
11.3 JFormattedTextField 306 11.7 Undo/redo 321

11.4 Basic JFormatted TextField
example 310

TEXT COMPONENTS OVERVIEW

This chapter summarizes the most basic and commonly used text component features, and it
introduces the undo package. In the next chapter we'll develop a basic JText Ar ea application
to demonstrate the use of menus and toolbars. In chapter 19, we'll discuss the inner workings
of text components in much more detail. In chapter 20, we'll develop an extensive JText -
Pane html editor application with powerful font, style, paragraph, find and replace, and spell-
checking dialogs.

JTextComponent

abstract class javax.swing.text. [IextComponent

The JText Conponent class serves as the superclass of each Swing text component. All text
component functionality is defined by this class, along with the plethora of supporting
classes and interfaces provided in the t ext package. The text components themselves are
members of the j avax. swi ng package: JText Fi el d, JPasswor dFi el d, JText Ar ea, JEd-
i tor Pane, and JText Pane.

292

NOTE We have purposely left out most of the details behind text components in this
chapter so we could provide only the information that you will most likely need on
a regular basis. If, after reading this chapter, you would like a more thorough
understanding of how text components work, and how to customize them or take
advantage of some of the more advanced features, see chapters 19 and 20.

JText Conponent is an abstract subclass of JConponent, and it implements the Scrol | a-
bl e interface (see chapter 7). Each multi-line text component is designed to be placed in a
JScrol | Pane.

Textual content is maintained in instances of the j avax. swi ng. t ext . Docunent inter-
face, which acts as the text component model. The text package includes two concrete Docunent
implementations: Pl ai nDocunment and St yl edDocunent . Pl ai nDocunent allows one font
and one color, and it is limited to character content. St yl edDocunent is much more complex,
allowing multiple fonts, colors, embedded images and components, and various sets of hier-
archically resolving textual attributes. JText Fi el d, JPasswor dFi el d, and JText Ar ea each
use a Pl ai nDocument model. JEdi t or Pane and JText Pane usea St yl edDocunent model.
We can retrieve a text component’s Docunent with get Docunent (), and assign one with
set Docunent () . We can also attach Docunent Li st ener s to a document to listen for changes
in that document’s content (this is much different than a key listener because all document
events are dispatched affer a change has been made).

We can assign and retrieve the color of a text component’s Car et with set Car et Col or ()
and get Car et Col or () . We can also assign and retrieve the current Car et position in a text
component with set Car et Posi ti on() and get Car et Posi tion().

JAVA L4 In Java 1.4 the new Navi gati onFi |l ter class has been added in the j avax. -
swi ng. t ext package. By installing an instance of Navi gati onFil ter on a text
component, using the new set Navi gati onFi | t er () method, you can control
and restrict caret movement. Navi gat i onFi | t er is most commonly used in com-
bination with an instance of JFor mattedTextFi el d. Abstract Formatter.
See section 11.3.

The di sabl edCol or property assigns a font color to be used in the disabled state. The
f or egr ound and backgr ound properties inherited from JConponent also apply; the fore-
ground color is used as the font color when a text component is enabled, and the back-
ground color is used as the background for the whole text component. The f ont property
specifies the font to render the text in. The font property and the foreground and back-
ground color properties do not overpower any attributes assigned to styled text components
such as JEdi t or - Pane and JText Pane.

All text components maintain information about their current selection. We can retrieve
the currently selected text as a St ri ng with get Sel ect edText (), and we can assign and
retrieve specific background and foreground colors to use for selected text with set Sel ec-
ti onBackgr ound() /get Sel ecti onBackground() and set Sel ecti onForeground()/
get Sel ecti onFor eground() respectively.

JText Conponent also maintains a bound f ocusAccel erat or property, which is a
char that is used to transfer focus to a text component when the corresponding key is pressed
simultaneously with the ALT key. This works internally by calling r equest Focus() on the text
component, and it will occur as long as the top-level window containing the given text compo-

TEXT COMPONENTS OVERVIEW 293

11.1.2

294

nent is currently active. We can assign/retrieve this character with set FocusAccel erat or () /
get FocusAccel erat or (), and we can turn this functionality off by assigning "\ 0’.

Theread() andwite() methods provide convenient ways to read and write text doc-
uments. The read() method takes a j ava. i 0. Reader and an Qbj ect that describes the
Reader stream, and it creates a new document model appropriate to the given text component
containing the obtained character data. The wri t () method stores the content of the doc-
ument model in a given j ava. i 0. Wi ter stream.

WARNING We can customize any text component’s document model. However, it is impor-
tant to realize that whenever the r ead() method is invoked, a new document will
be created. Unless this method is overriden, a custom document that had been pre-
viously assigned with set Docunent () will be lost whenever read() is invoked,
because the current document will be replaced by a default instance.

JTextField
class javax.swing.] TextField

JText Fi el d is a single-line text component that uses a Pl ai nDocunent model. The hori zon-
tal Al i gnment property specifies text justification within the text field. We can assign/retrieve
this property with set Hor i zont al Al i gnment () /get Hor i zont al Al i gnnent . Acceptable val-
ues are JText Fi el d. LEFT, JText Fi el d. CENTER, and JText Fi el d. Rl GHT.

There are several JText Fi el d constructors, two of which allow us to specify a number of
columns. We can also assign/retrieve this number, the col unms property, with set Col umms() /
get Col ums() . Specifying a certain number of columns will set up a text field’s preferred size
to accommodate at least an equivalent number of characters. However, a text field might not
receive its preferred size due to the current layout manager. Also, the width of a column is the
width of the character ‘m’ in the current font. Unless a monospaced font is used, this width
will be greater than most other characters.

The following example creates 14 JText Fi el ds with a varying number of columns. Each
field contains a number of ms equal to its number of columns.

Example 11.1

JTextFieldTest.java

see \Chapter11\1

i mport javax.sw ng.*;
import java.awt.*;

public class JTextFiel dTest extends JFrane

{
public JTextFieldTest() {
super ("JTextField Test");

get Cont ent Pane() . set Layout (new Fl owLayout ());

JTextField textFieldl = new JTextField("nt, 1);
JTextField textField2 = new JTextFiel d("mi, 2);
JTextField textField3 = new JTextFiel d("mmi, 3);

CHAPTER 11 TEXT COMPONENTS AND UNDO

JText Fi
JText Fi
JText Fi
JText Fi
JText Fi
JText Fi

eld
eld
eld
eld
eld
eld

textFi
textFi
textFi
textFi
textFi
textFi

eld4 =
el d5 =
el d6 =

new JText Fi
new JText Fi
new JText Fi
el d7 = new JTextFi
el d8 = new JTextFi
el d9 = new JText Fi

el d(" mmmt', 4);

el d(" mmmmt', 5) ;

el d(" mmmmmt', 6) ;

el d(" mmmmmt', 7) ;
el d(" mmmmmmt', 8) ;
el d(" mmmmmmmt', 9) ;

JText Fi
JText Fi
JText Fi
JText Fi
JText Fi

eld
eld
eld
eld
eld

textFi
textFi
textFi
textFi
textFi

get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .
get Cont ent Pane() .

el d10 =
el d11l =
el di12 =
el d13 =
el di14 =

add(textFi
add(t extFi
add(t extFi
add(textFi
add(textFi
add(textFi
add(t extFi
add(textFi
add(textFi
add(t extFi
add(textFi
add(t extFi
add(textFi
add(t extFi

new JText Fi el d(" mmmmmmmmmmi', 10) ;

new JText Fi el d(" mmmmmmmmmmmd', 11) ;
new JText Fi el d(" mmmmmmmmmmmd', 12) ;
new JText Fi el d(" mmmmmmmmmmmmmd', 13) ;
new JText Fi el d(" mmmmmmmmmmmmmmd', 14) ;

el dl);
el d2);
el d3);
el d4);
el d5);
el d6) ;
el d7);
el d8);
el d9);
el d10);
el d11);
el d12);
el d13);
el d14);

set Def aul t G oseOper ati on(JFrane. EXI T_ON_CLOSE) ;

set Si ze(300, 170) ;
setVisible(true);

}

public static void main(String argv[]) {
new JText Fi el dTest () ;

}
}

Figure 11.1 illustrates the output. Notice that none of the text completely fits in its field. This

happens because JText Fi el d does not factor in the size of its border when calculating its

preferred size, as we might expect. To work around this problem, though this is not an ideal

solution, we can add one more column to each text field. The result is shown in figure 11.2.

This solution is more appropriate when a fixed width font (monospaced) is being used.

Figure 11.3 illustrates this last solution.

4 dTextField Test II=]

E @ @ [mmnmn] [memmime] [

[mmirnrarar] [rrarrmemme] [mmmemmeen e

[rmmmmenrarmmenn] [memememenmmen e

[mmmmrarammememenn] [mmmmmmememmmnmno

|mmmmmmmmmmmmmn|

TEXT COMPONENTS OVERVIEW

Figure 11.1
JText Fi el ds using an equal number
of columns and "m” characters

295

296

ES JTextField Test =] ES
E m |mmm ||mmmm ||mmmmm |

[mmmrnram | [mrmmenmem | [mmmmmm e |

[mmmrmrarammm | [mmmmmmmmmn |

[mmmmmmrarammm | [mmmmmmmmmnnmn |

|mmmmmmmmmmmmm | Figure 11.2

[mmmmmrammmmmmmm | JText Fi el ds using one more column
than the number of “m”characters

o o] e o | | e
|

|mmrmmmnmmmn| |nmmmmmmummmn| Figure 11.3
’— JText Fi el ds using a monospaced font,
B O]
and one more column than the number

of “m” characters

NOTE Using a monospaced font is always more appropriate when a fixed character limit
is desired.

JText Fi el d also maintains a BoundedRangeMbdel (see chapter 13) as its hori zontal -
Vi sibility property. This model is used to keep track of the amount of currently visible
text. The mi ni numis 0 (the beginning of the document), and the maxi numis equal to the
width of the text field or the total length of the text in pixels (whichever is greater). The
val ue is the current offset of the text displayed at the left edge of the field, and the ext ent is
the width of the text field in pixels.

By default, a Key St r oke (see section 2.13.2) is established with the ENTER key that causes
an Act i onEvent to be fired. By simply adding an Acti onLi st ener to a JText Fi el d, we
will receive events whenever ENTER is pressed while that field has the current focus. This is very
convenient functionality, but it may also get in the way of things. To remove this registered
keystroke, do the following:

KeyStroke enter = KeyStroke. get KeyStroke(KeyEvent. VK_ENTER, 0);
Keymap map = nyJText Fi el d. get Keymap() ;
map. r enoveKey St r okeBi ndi ng(enter);

JText Fi el d’s document model can be customized to allow only certain forms of input; this
is done by extending Pl ai nDocument and overriding the i nsert String() method. The
following code shows a class that will only allow six or fewer digits to be entered. We can
assign this document to a JText Fi el d with the set Docunent () method (see chapter 19 for
more about working with Docurment s).

cl ass Si xDi gi t Docunent ext ends Pl ai nDocument

{
public void insertString(int offset,
String str, AttributeSet a)

CHAPTER 11 TEXT COMPONENTS AND UNDO

throws BadLocati onException {
char[] insertChars = str.toCharArray();

bool ean valid = true;
bool ean fit = true;
if (insertChars.length + getlLength() <= 6) {
for (int i =0; i <insertChars.length; i++) {
if (!Character.isDigit(insertChars[i])) {
valid = fal se;
br eak;

}
}
}

el se
fit = fal se;

if (fit && valid)
super.insertString(offset, str, a);

else if (!fit)
get Tool kit (). beep();

}
}

JAVA 1.4 In Java 1.4 the new JFor mat t edText Fi el d component has been added to more
casily allow the creation of customized input fields. We'll discuss this component
along with several examples of its use in sections 11.4, 11.5, and 11.6.

Java 1.4 also includes a new Document Fil ter class in the j avax. swi ng. t ext
package. When an instance of Docunent Fi | t er is installed on a Docunent , all in-
vocations of i nsert String(), remove(), and repl ace() get forwarded on to
the Docunment Fi | t er. This allows clean encapsulation of all custom document
mutation code. So, for instance, the Si xDi gi t Document code would be more ap-
propriately built into a Docunent Fi | t er subclass. In this way different filters can
be applied to various documents without the need to change a given Docunent in-
stance. To support Docunent Fi | ters, Abstract Document includes the new
set Docunent Fi | ter () and get Docunent Fi | ter () methods. Docunent Fi | -
ter is most commonly used in combination with an instance of JFor mat t edTex-
tFi el d. Abstract Formatter. See section 11.3.

Don’t overly restrict input Filtering text fields during data entry is a power-
ful aid to usability. It helps prevent the user from making a mistake and it can
speed operations by removing the need for validation and correction proce-
dures. However, it is important not to overly restrict the allowable input. Make
sure that all reasonable input is expected and accepted.

For example, with a phone number, allow “00 1 44 654 7777,” “00+1 44 654
7777, and “00-1-1-654-7777,” as well as “00144654777.” Phone numbers
can contain more than just numbers!

Another example involves dates. You should allow “04-06-99,” “04/06/99,”
and “04:06:99,” as well as “040699.”

TEXT COMPONENTS OVERVIEW 297

11.1.3

1.14

298

JPasswordField

class javax.swing. [PasswordField

JPasswor dFi el d is a fairly simple extension of JText Fi el d that displays an echo character
instead of the actual content that is placed in its model. This echo character defaults to *, and
we can assign a different character with set EchoChar ().

Unlike other text components, we cannot retrieve the actual content of a JPasswor d-
Fi el d with get Text () (this method, along with set Text (), has been deprecated in JPass-
wor dFi el d). Instead we must use the get Passwor d() method, which returns an array of
chars. JPasswor dFi el d overrides the JText Conponent copy() and cut () methods to do
nothing but emit a beep, for security reasons.

Figure 11.4 shows the JText Fi el dDenp example of section 11.1.2. It uses JPasswor d-
Fi el ds instead, and each is using a monospaced font.

23 JPasswordField Test [_ (O]

]y e | |
| || || |

| || || |

FEEEE AL AL AL Figure 11.4

JPasswor dFi el ds using a mono-
spaced font, and one more column
than number of characters

JTextArea

class javax.swing. [TextArea

JText Area allows multiple lines of text and, like JText Fi el d, it uses a Pl ai nDocunent
model. As we discussed earlier, JText Area cannot display multiple fonts or font colors.
JText Area can perform line wrapping and, when line wrapping is enabled we can specify
whether lines break on word boundaries. To enable/disable line wrapping we set the | i neW ap
property with set Li new ap() . To enable/disable wrapping on boundaries (which will only
have an effect when | i neW ap is set to t r ue) we set the wr apSt yl eWor d property using set -
W apStyl eWord() . Both I i new ap and wr apSt yl eWor d are bound properties.

JText Ar ea overrides i sManagi ngFocus() (see section 2.12) to returnt r ue, indicating
that the FocusManager will not transfer focus out of a JText Area when the TAB key is
pressed. Instead, a tab is inserted into the document (the number of spaces in the tab is equal
tot abSi ze). We can assign/retrieve the tab size with set TabSi ze() /get TabSi ze() respec-
tively. t abSi ze is also a bound property.

There are several ways to add text to a JText Ar ea’s document. We can pass this text in
to one of the constructors, append it to the end of the document using the append() method,
insert a string at a given character offset using the i nsert () method, or replace a given range
of text with the r epl aceRange() method. As with any text component, we can also set the

CHAPTER 11 TEXT COMPONENTS AND UNDO

11.1.5

text with the JText Conponent set Text () method, and we can add and remove text directly
from its Document (see chapter 19 for more details about the Document interface).

JText Ar ea maintains | i neCount and r ows properties which can easily be confused.
The r ows property specifies how many rows of text JText Ar ea is actually displaying. This may
change whenever a text area is resized. The | i neCount property specifies how many lines of text
the document contains. Each line consists of a set of characters ending in a line break (\ n). We
can retrieve the character offset of the end of a given line with get Li neEndCF f set () , the char-
acter offset of the beginning of a given line with get Li neSt art Of f set () , and the line num-
ber that contains a given offset with get Li neOf Of f set () .

The r owHei ght and col umW dt h properties are determined by the height and width of
the current font. The width of one column is equal to the width of the “m” character in the cur-
rent font. We cannot assign new values to the properties, but we can override the get Col umm-
W dt h() and get RowHei ght () methods in a subclass to return any value we like. We can
explicitly set the number of rows and columns a text area contains with set Rows() and set -
Col umms() , and the get Rows() and get Col urms() methods will only return these explicitly
assigned values (not the current row and column count, as we might assume at first glance).

Unless JText Ar ea is placed in a JScrol | Pane or a container using a layout manager
which enforces a certain size, it will resize itself dynamically depending on the amount of text
that is entered. This behavior is rarely desired.

JEditorPane

class javax.swing. JEditorPane

JEdi t or Pane is a multi-line text component capable of displaying and editing various differ-
ent types of content. Swing provides support for HTML and RTE, but there is nothing stop-
ping us from defining our own content type, or implementing support for an alternate format.

NOTE Swing’s support for HTML and RTF is located in the j avax. swi ng. t ext . ht n
and j avax. swi ng. text.rtf packages.

Support for different content is accomplished in part through the use of custom Edi t or Ki t
objects. JEdi t or Pane’s cont ent Type property is a St r i ng that represents the type of docu-
ment the editor pane is currently set up to display. The EditorKit maintains this value
which, for Def aul t Edi t or Ki t , defaults to “text/plain.” HTMLEdi t or Ki t and RTFEdi t or -
Ki t have cont ent Type values of “text/html” and “text/rtf”, respectively (see chapter 19 for
more about Edi t or Ki t s).

In chapter 9 we built a simple web browser using a non-editable JEdi t or Pane by passing
a URL to its constructor. When it’s in non-editable mode, JEdi t or Pane displays HTML
pretty much as we might expect, although it has a long way to go to match Netscape. By allow-
ing editing, JEdi t or Pane will display an HTML document with many of its tags specially
rendered, as shown in figure 11.5 (compare this to figure 9.4).

JEdi t or Pane is smart enough to use an appropriate Edi t or Ki t, if one is available, to
display a document passed to it. When it’s displaying an HTML document, JEdi t or Pane
can fire Hyper | i nkEvent s (which are defined in the j avax. swi ng. event package). We
can attach Hyper | i nkLi steners to JEdi t or Pane to listen for hyperlink invocations, as

TEXT COMPONENTS OVERVIEW 299

300

FE4 HTML Browser [Advanced Editor] [_ o] x]
Address |http:/java.sun.comiproducts fictscindex.html - | E

head |) — | [PBOUTTHIE ML | [| [FOLLOW THESE COMMENTS FOR
INFORMATION ABOUT THE \|5TRUCTUREOFOURTEMPUWES [T [T | [INSERT YOUR TITLE HERE

|‘ END OF TITLE

‘ Inead

VAT FOUNDATICN GLASSES.

The Swing 9 ﬁ

u

® Search @ Index @ Feedback @ Archive W EXTRA

Swing 1.1.1 Beta Z @ March - April

1009

begin main page table |

SERVER SIDE INCLUDE FOR
MAVIGATION MERU AT LEFT Begin Page Data ‘ |- ----------------------- | ‘ EDIT PAGE CONTENT HERE
____________________________ (=== | [---——END-COMTENT-—— | [ENDI OF PAGE DATA
| ‘End Page Data

| begin header table |

Figure 11.5 A JEdi t or Pane displaying HTML in editable mode

demonstrated by the examples at the end of chapter 9. The following code shows how simple
it is to construct an HTML browser using an active Hyper | i nkLi st ener .

m browser = new JEdi t or Pane(
new URL("http://java.sun.conl products/jfc/tsc/index.htm"));
m _br owser . set Edi t abl e(f al se);
m _br owser . addHyper | i nkLi st ener (new HyperlinkLi stener() {
public void hyperlinkUpdat e(HyperlinkEvent e) {

if (e.getEvent Type() == HyperlinkEvent. Event Type. ACTI VATED) {
URL url = e.getURL();
if (url == null)
return;

try { mbrowser. set Page(e.getURL); }
catch (1 Cexception e) { e.printStackTrace(); }
}
}
}

JEdi t or Pane uses a Hasht abl e to store its editor kit/content type pairs. We can query this
table and retrieve the editor kit associated with a particular content type, if there is one, using
the get Edi t or Ki t For Cont ent Type() method. We can get the current editor kit with
get Edi torKi t (), and the current content type with get Cont ent Type() . We can set the
current content type with set Cont ent Type() , and if there is already a corresponding editor
kit in JEdi t or Pane’s hashtable, an appropriate editor kit will replace the current one. We can
also assign an editor kit for a given content type using the set Edi t or Ki t For Cont ent -
Type() method (we will discuss EditorKits, and the ability to construct our own, in
chapter 19).

CHAPTER 11 TEXT COMPONENTS AND UNDO

11.1.6

JEdi t or Pane uses a Def aul t St yl edDocunent as its model. In HTML mode, an HTM.-
Docunent , which extends Def aul t St yl edDocurent , is used. Def aul t St yl edDocunent is
quite powerful, as it allows us to associate attributes with characters and paragraphs, and to

apply logical styles (see chapter 19).

JTextPane

class javax.swing.] TextPane

JText Pane extends JEdi t or Pane and thus inherits its abilities to display various types of
content. The most significant functionalities JText Pane offers are the abilities to program-
matically assign attributes to regions of its content, embed components and images within its
document, and work with named sets of attributes called St yl es (we will discuss St yl es
in chapters 19 and 20).

To assign attributes to a region of document content, we use an At tri but eSet imple-
mentation. We will describe Att ri but eSet s in detail in chapter 19, but we will tell you here
that they contain a group of attributes such as font type, font style, font color, and paragraph and
character properties. These attributes are assigned through the use of various static methods
which are defined in the St yl eConst ant s class, which we will also discuss further in chapter 19.

Example 11.2 demonstrates embedded icons, components, and stylized text. Figure 11.6
illustrates the output.

E%JTeleane Demo !EI
_]'_V Viannineg
/ PRIDIICAaTIONS B0,

History: Distant

Lee Flizpatrick Martjan Bace

When we started doing business under the Manning name, about 10 years
ago, we were @ very different cormpary. What we are now is the end result of
an evolutionary process inwhich accidental events played as big a role, or
higger, a5 planning and foresight)

Visit Manning

Figure 11.6 A JText Pane with inserted | magel cons, text with
attributes, and an active JButt on

TEXT COMPONENTS OVERVIEW 301

Example 11.2

JTextPaneDemo.java

see \Chapter11\2

import java.awt.*;

i mport java.awt.event.*;
import java.io.*;

i mport javax.sw ng.*;

i mport javax.sw ng.text.*;

public class JText PaneDenp extends JFrane

{
// Best to reuse attribute sets as nuch as possible.

static SinpleAttributeSet | TALIC GRAY = new Sinpl eAttributeSet();
static SinpleAttributeSet BOLD BLACK = new Sinpl eAttributeSet();
static SinpleAttributeSet BLACK = new Sinpl eAttributeSet();

static {
Styl eConst ant s. set For egr ound(| TALI C_GRAY, Col or. gray);
Styl eConstants.setltalic(lTALIC GRAY, true);
Styl eConst ant s. set Font Fam | y(| TALI C_GRAY, "Hel vetica");
Styl eConst ant s. set Font Si ze(| TALI C_GRAY, 14);

Styl eConst ant s. set For egr ound(BOLD_BLACK, Col or. bl ack);
Styl eConst ant s. set Bol d(BOLD_BLACK, true);

Styl eConst ant s. set Font Fami | y(BOLD_BLACK, "Hel vetica");
Styl eConst ant s. set Font Si ze(BOLD_BLACK, 14);

Styl eConst ant s. set For egr ound(BLACK, Col or. bl ack) ;
Styl eConst ant s. set Font Fam | y(BLACK, "Hel vetica");
Styl eConst ant s. set Font Si ze(BLACK, 14);

}

JText Pane m editor = new JText Pane();

publ i c JText PaneDeno() {
super (" JText Pane Denp");

JScrol | Pane scrol |l Pane = new JScrol | Pane(m editor);
get Cont ent Pane() . add(scrol | Pane, BorderLayout. CENTER);

set EndSel ecti on();
m editor.insertlcon(new | nagel con("nmanning.gif"));
insertText("\nHi story: Distant\n\n", BOLD BLACK);

set EndSel ecti on();

m edi tor.insertlcon(new | nagel con("Lee_fade.jpg"));

i nsert Text (" ", BLACK);
set EndSel ecti on();

m edi tor.insertlcon(new | magel con("Bace_f ade. jpg"));

insertText("\n Lee Fitzpatrick
s
+ "Marjan Bace\n\n", |TALIC GRAY);

302 CHAPTER 11 TEXT COMPONENTS AND UNDO

i nsert Text ("When we started doing business under " +
"the Manning nane, about 10 years ago, we were a very " +
"different conpany. What we are nowis the end result of " +
"an evol utionary process in which accidental " +
"events played as big a role, or bigger, as planning and " +
"foresight.\n", BLACK);

set EndSel ecti on();
JButton manni ngButton = new JButton("Visit Manning");
manni ngBut t on. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerforned(ActionEvent e) {
m edi tor. set Edi t abl e(f al se);
try { meditor.setPage("http://ww. manni ng. cont'); }
catch (I Oexception ioe) { ioe.printStackTrace(); }
}
IF
m edi t or. i nsert Conponent (manni ngButt on) ;
set Def aul t O oseOper ati on(JFrane. EXI T_ON_CLOSE) ;

set Si ze(500, 450);
setVisible(true);

}
protected void insertText(String text, AttributeSet set) {
try {
m edi t or. get Docunment (). insertString(
m edi t or. get Docunment (). get Length(), text, set);
}

catch (BadLocati onException e) {
e.printStackTrace();

}
}

protected void set EndSel ection() {
m editor.setSel ectionStart (m editor.get Docunent().getLength());
m _edi tor. set Sel ecti onEnd(m_ edi t or. get Docunent (). getLength());

}

public static void main(String argv[]) {
new JText PaneDeno() ;

}
}

As example 11.2 demonstrates, we can insert images and components with JText Pane’s
insertlcon() andinsert Conponent () methods. These methods insert the given object by
replacing the current selection. If there is no current selection, they will be placed at the begin-
ning of the document. This is why we defined the set EndSel ect i on() method in our exam-
ple above to point the selection to the end of the document where we want to do insertions.

When inserting text, we cannot simply append it to the text pane itself. Instead we retrieve
its document and call i nsert String() . To give attributes to inserted text we can construct
AttributeSet implementations, and we can assign attributes to that set using the Styl e-
Constants class. In the example above we do this by constructing three Si npl eAttri -
but eSet s as static instances (so that they may be reused as much as possible).

TEXT COMPONENTS OVERVIEW 303

As an extension of JEdi t or Pane, JText Pane uses a Def aul t St yl edDocunent for its
model. Text panes use a special editor kit, Def aul t Styl edEdi t orKit, to manage their
Act i onsand Vi ews. JText Pane also supports the use of St y!I es, which are named collections
of attributes. We will discuss styles, actions, and views as well as many other advanced features
of JText Pane in chapters 19 and 20.

11.2 USING THE BASIC TEXT COMPONENTS

The following example demonstrates the use of the basic text components (JText Fi el d,
JPasswor dFi el d, and JText Ar ea) in a personal data dialog box.

E%_,%Texl Components Demo

rPersonal Data

First name: |Marjan |

Last name: [Bace |

Login password: |nﬂwm |

rComments:

Publisher

anning Publications
Figure 11.7
Basic text components demo;
a personal data dialog box

Example 11.3

TextDemo.java

see \Chapter11\3

import java.awt.*;
i mport java.awt.event.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;
i mport javax.sw ng.event.*;

i mport dl.*;

public class TextDenp extends JFrame {
protected JTextField mfirstTxt;
protected JText Field m| astTxt;
protect ed JPasswordFi el d m passwor dTxt;
protected JText Area m coment sTxt;

public TextDeno() {
super (" Text Conponents Denp");
Font nonospaced = new Font (“Mnospaced”, Font.PLAIN, 12);
JPanel pp = new JPanel (new Border Layout(0));

JPanel p = new JPanel (new Di al ogLayout ());
p. set Bor der (new JLabel (“First nane:"));

304 CHAPTER 11 TEXT COMPONENTS AND UNDO

p. add(new JLabel (“First name:"));
mfirstTxt = new JTextFi el d(20);
p. add(m firstTxt);

p. add(new JLabel (“Last nane:"));
m | ast Txt = new JText Fi el d(20);
p. add(m firstTxt);

p. add(newdLabel (“Logi n password:"));

m passwor dTxt = new JPasswor dFi el d(20);
m_passwor dTxt . set Font (nonospaced) ;

p. add(m_passwor dTxt) ;

p. set Bor der (new ConpoundBor der (

new Ti t| edBor der (new Et chedBorder (), “personal Data”),
new EnptyBorder (1, 5, 3, 5))
)i
pp. add(p, BorderLayout.NORTH);

m comment sTxt = new JText Area(““, 4, 30); Instructs the text area
m_comrent sTxt . set Font (nmonospaced) ; to wrap lines and words
m coment sTxt . set Li neW ap(true); as more text

m comment sTxt . set WapStyl eWord(true);
p = new JPanel (new Bor der Layout());
p. add(new JScrol | Pane(m conment sTxt));
p. set Bor der (new ConpoundBor der (
new Ti t| edBor der (new Et chedBorder (), “comments”),
new EnptyBorder (3, 5, 3, 5))
)
pp. add(p, BorderLayout. CENTER);

pp. set Bor der (new EnptyBorder (5, 5, 5, 5));
get Cont ent Pane() . add(pp) ;
pack();

}

public static void main(String[] args) {
JFrame frame = new Text Deno();
frame. set Def aul t Cl oseOper ati on(JFrame. EXI T_ON_CLCSE) ;
frame. setVisible(true);

}
}

11.2.1 Understanding the Code
Class TextDemo

This class extends JFr ane to implement the frame container for the following four text com-
ponents used to input personal data:

e JTextField mfirstTxt: text field for the first name.

e JTextField ml ast Txt : text field for the last name.

e JPasswor dFi el d m passwor dTxt : password field.

e JText Area m conment sTxt : text area for comments.

USING THE BASIC TEXT COMPONENTS 305

11.2.2

11.3

306

The Di al ogLayout layout manager described in chapter 4 is used to lay out components in
pairs: label on the left, text components on the right. (Note that you don’t have to supply any
additional constraints or parameters to this layout manager.)

The various settings applied to JText Area m conmment sTxt instruct it to wrap text by lines
and words rather than allow it to scroll horizontally as more text is entered.

Running the code

Figure 11.7 shows this demo in action. Note how text wraps in the comment box. Try com-
menting out the following lines individually and note the effects:

m_conment sTxt . set Li neW ap(true);

M comment sTxt . set WapStyl eWword(true);

JFORMATTEDTEXTFIELD

class javax.swing. [Formatted 1extField

JFor mat t edText Fi el d is a new Swing component introduced in Java 1.4. This component
extends JText Fi el d and adds support for custom formatting.

The simplest way to use JFormattedTextField is to pass an instance of
java. text. Format class to the component’s constructor. This For mat instance will be used
to enforce the format of data input as a number, date, and so forth. Subclasses of For mat
include Dat eFor mat , Nunber For mat , and MessageFor mat among others.

The formatting itself is handled by an instance of the inner JFor mattedText -
Fi el d. Abstract Formatter class which is normally obtained by an instance of the inner
JFor mat t edText Fi el d. Abstract For matt er Factory class. The default JFor mat t ed-
Text Fi el d constructor installs a Def aul t For matt er instance as its JFor mat t edText -
Fi el d. Abstract Formatt er. Def aul t For mat t er. Def aul t For mat t er and its subclasses,
MaskFor mat ter, | nternational Formatter, DateFormatter, and Nunber For mat t er
are described later in this section.

The set Formatter () method is protected, indicating that you should not set the
Abst ract For mat t er directly. Rather, this should be done by setting the Abst r act For mat -
terFactory with the setFormatterFactory() method. If you do not specify an
Abstract For mat t er using this method, or with the appropriate constructor, a concrete
Abstract For mat t er subclass will be used based on the Class of the current JFor mat t ed-
Text Fi el d value. Dat eFor mat t er is used for j ava. uti | . Dat e values, Nunmber For mat t er
is used for j ava. | ang. Nurrber values, and for all other values def aul t For mat t er is used.

The set Val ue() method takes an Obj ect as parameter and assigns it to the value
property. It also sends this object to the AbstractFormatter instance to deal with
appropriately in its setValue() method and assign to its value property.
JFor mat t edText Fi el d and its Abst r act For mat t er have separate value properties. During
editing Abstract Formatter’s value is updated. This value is not pushed to
JFormat t edText Fi el d until the commi t Edi t () method is called. This normally occurs
when ENTER is pressed or after a focus change occurs.

The getVal ue() method returns an appropriate Obj ect representing the current
JFor mat edText Fi el d value. For instance, if a Dat eFor mat t er is in use a Dat e object will

CHAPTER 11 TEXT COMPONENTS AND UNDO

be returned. This may not be the current value maintained by Abst ract For matt er. To get
the currently edited value the commi t Edi t () method must be invoked before get Val ue()
is called.

The i nval i dEdi t () method is invoked whenever the user inputs an invalid value, thus
providing a way to give feedback to the user. The default implementation simply beeps. This
method is normally invoked by Abstract Formatter’s i nval i dEdi t () method, which is
usually invoked whenever the user inputs an invalid character.

The i sVal i dEdi t () method returns a boolean value specifying whether or not the
current field JFormattedTextField value is valid with respect to the current
Abstract For mat t er instance.

The conmi t Edi t () method forces the current value in Abst r act For matt er to be set
as the current value of the JFor mat t edText Fi el d. Most Abst r act For mat t er s invoke this
method when ENTER is pressed or a focus change occurs. This method allows us to force a
commit programmatically. (Note that when editing a value in JFor mat t edText Fi el d, until
a commit occurs JFor mat t edText Fi el d’s value is not updated. The value that is updated
prior to a commit is Abst r act For mat t er ’s value.)

The set FocusLost Behavi or () method takes a parameter specifying what JFor mat -
t edText Fi el d’s behavior should be when it loses the focus. The following JFor mat t ed-
Text Fi el d constants are used for this method:

* JFor mat t edText Fi el d. REVERT: revert to current value and ignore changes made to
Abst ract For mat t er’s value.

e JFormattedTextFiel d. COM T: try to commit the current Abstract Formatter
value as the new JFormattedTextField value. This will only be successful if
Abstract Format t er is able to format its current value as an appropriate return value
from its st ri ngToVal ue() method.

e JFormattedText Fi el d. COW T_OR REVERT: commit the current Abstract For -
mat t er value as the new JFor mat t edText Fi el d value only if Abst r act For matt er is
able to format its current value as an appropriate return value from its stringToV-
al ue() method. If not, Abst r act For mat t er’s value will revert to JFor mat t edText -
Fi el d’s current value and ignore any changes.

e JFor matt edText Fi el d. PERS| ST: leave the current Abst r act For matter value as is
without committing or reverting.

Note that some Abstract For matt er s may commit changes as they happen, versus when
a focus change occurs. In these cases the assigned focus lost behavior will have no effect.
(This happens when Def aul t For mat t er’s conmi t sOnVal i dEdi t property is set to t r ue.)

11.3.1 JFormattedTextField.AbstractFormatter
abstract class javax.swing. [Formatted IextField. AbstractFormatter

An instance of this class is used to install the actual custom formatting and caret movement
functionality in a JFor mat t edText Fi el d. Instances of Abst r act For mat t er have a Docu-
ment Fi | ter and Navi gati onFi |l t er associated with them to restrict get Document Fi | -
ter() and get Navi gati onFi | t er () methods to return custom filters as necessary.

JFORMATTED TEXTFIELD 307

11.3.2

11.3.3

308

WARNING Abstract For matt er normally installs a Docunent Fi | ter on its Docunent in-
stance and a Navi gati onFi | ter on itself. For this reason you should not install
your own, otherwise the formatting and caret movement behavior enforced by Ab-
stract Format t er will be overridden.

The val ueToSt ri ng() and stringToVal ue() methods are used to convert from Obj ect
to Stringand String to Qbj ect . Subclasses must override these methods so that JFor mat -
t edText Fi el d’s get Val ue() and set Val ue() methods know how to behave. These meth-
ods throw Par seExcept i ons if a conversion does not occur successfully.

DefaultFormatter

class javax.swing. text. DefaultFormatter

This Abst ract For mat t er concrete subclass is used by default by JFor mat t edText Fi el d
when no formatter is specified. It is meant for formatting any type of Obj ect . Formatting is
done by calling the t oSt ri ng() method on the assigned value object.

In order for the value returned by the st ri ngToVal ue() method to be of the appropri-
ate object type, the class defining that object type must have a that takes a St ri ng constructor
parameter.

The get Val ued ass() method returns the C ass instance defining the allowed object
type. The set Val ueC ass() allows you to specify this.

The set Overwri t eMode() method allows you to specify whether or not text will over-
write current text in the document when typed into JFor mat t edText Fi el d. By default this
istrue.

The set Commi t sOnVal i dEdi t () method allows you to specify whether or not the cur-
rent value should be committed and pushed to JFor mat t edText Fi el d after each successful
document modification. By default this is f al se.

The get Al | owsl nval i d() method specifies whether the For mat instance should for-
mat the current text on every edit. This is the case if it returns f al se, the default.

MaskFormatter

class javax.swing. text. MaskFormatter

MaskFor mat t er is a subclass of Def aul t For mat t er that is designed to allow editing of cus-
tom formatted St ri ngs. This formatting is controlled by a String mask that declares the
valid character types that can appear in specific locations in the document.
The mask can be set as a String passed to the constructor or to the set Mask method.
The following characters are allowed, each of which represents a set of characters that will be
allowed to be entered in the corresponding position of the document:
* #: represents any valid number character (validated by Character.isDigit())
* *:escape character
* U any character; lowercase letters are mapped to uppercase (validated by Charac-
ter.isLetter())
* L: any character; upper case letters are mapped to lowercase (validated by Charac-
ter.isLetter())

CHAPTER 11 TEXT COMPONENTS AND UNDO

11.3.4

11.3.5

11.3.6

11.3.7

* A: any letter character or number (validated by Character.isLetter() or Charac-
ter.isDigit())

* ?:any letter character (validated by Character.isLetter())

e *:any character

* H: any hex character (i.e., 0-9, a-f or A-F)

Any other characters not in this list that appear in a mask are assumed to be fixed and unchan-
gable. For example, the following mask will enforce the input of a U.S.—style phone number:
“(HitH) B #HHH

The set of valid and invalid characters can be further refined with the set val i dChar -
acters() and set | nval i dCharact er s() methods.

By default the placeholder character is a space * * representing a character location that
needs to be filled in to complete the mask. The set Pl aceHol der Char act er () method pro-
vides a way to specify a different character. For instance, with the phone number mask and a
‘" as the placeholder character, JFor mat t edText f i el d’s content would initially look like:

) "

InternationalFormatter

class javax.swing. text. InternationalFormatter

I nt er nati onal For matt er extends Def aul t Edi t or and uses a For mat instance to handle
conversion to and from a St ri ng. This formatter also allows specification of maximum and
minimum allowed values with the set Maxi mun() and set M ni nun() methods which take
Conpar abl e instances as parameters.

DateFormatter

class javax.swing.text. DateFormatter

Dat eFormatter is an International Formatter subclass which uses a java.-
t ext . Dat eFor mat instance as the For mat used to handle conversion from St ri ng to Dat e
and Dat e to St ri ng.

NumberFormatter

class javax.swing.text. NumberFormatter

Nurber Formatter is an International Formatter subclass which uses a java. -
t ext . Nunber For mat instance as the For mat used to handle conversion from String to
Nunber and Number to Stri ng. Subclasses of Nunber include | nt eger, Doubl e, Fl oat,
and so forth.

JFormattedTextField.AbstractFormatterFactory

abstract class javax.swing. [Formatted IextField. AbstractFormatterFactory

Instances of this class are used by JFornmattedTextField to supply an appropriate
Abstract Formatter instance. An Abstract Formatter Factory can supply a different
Abst ract For mat t er depending on the state of the JFor mat t edText Fi el d, or some other
criteria. This behavior is customizable by implementing the get For mat t er () method.

JFORMATTED TEXTFIELD 309

11.3.8

11.4

310

DefaultFormatterFactory

class javax.swing. text. DefaultFormatterFactory

This concrete subclass of AbstractFormatterFactory is used by default by
JFormat t edText Fi el d when no formatter factory is specified. It allows specification of
different formatters to use when JFor mat t edText fi el d is being edited (i.e., has the focus),
just displayed (i.e., does not have the focus), when the value is null, and one for all other cases
(the default formatter).

BAsic JFORMATTED TEXTFIELD EXAMPLE

The following example demonstrates two JFor mat t edText Fi el ds used for the input of a U.S.
dollar amount and date. For the U.S. dollar amount field a locale-dependent currency format
is used.

E%Furmatted Text Field !EI[E|

Dollar amount: |[§100.00 |

Transaction date: |1 0282001 |

(0],

Figure 11.8
Basic JFor nat t edText Fi el d example

Example 11.4

FTFDemo.java

see \Chapter11\4

import java.awt.*;
i mport java.awt.event.*;
i mport java.text.*;
import java.util.*;

i mport javax.sw ng.*;
i mport javax.sw ng. border.*;

i mport dl.*;
cl ass FTFDenp extends JFranme {

public FTFDeno() {
super (“Formatted TextField”);
Formatted text field
used for a US dollar
amount; a locale-specific
p. add