
Praise for the First Edition

“What’s significant about this book is that the examples are nontrivial. It’s clear that
much effort went into thinking out useful designs that both demonstrate the technolo-
gies and leave the reader with a practical starting point for professional development …
the book is full of pragmatic solutions … the very kind you need to address in produc-
tion and can’t typically find answers for anywhere. I recommend this book to any serious
Swing developer. If you’re a Swing beginner, you’ll get something out of this book, thanks
to its frank, no-nonsense approach to teaching Swing development. What impressed me
most was the focus on developing comprehensive examples… All in all, this is a real value
for any Swing developer.”

–Claude Duguay
 JavaZone

“UI development is a very time consuming business. Even with such a powerful next gen-
eration API at your fingertips it can be still overwhelming. Swing is a wonderful book that
lightens the burden. It presents a complex subject in smaller manageable portions for the
programmer who has learnt the basics and wants to go much further. This excellent book
is impossible to take in at the first reading, because of the scope and breadth of its subject
matter. I think you will find that it hits its target audience and goals repeatedly. A massive
quality and quantity win for the publisher, Manning.”

–Peter Pilgrim
C Vu Journal

“How many times have you opened a book in search of a solution and found not only an
answer, but also an elegant enhancement to your application? How many times have
you ignored an O’Reilly book on the same subject lying on your table? The answer is
Manning’s new book Swing authored by Matthew Robinson and Pavel Vorobiev. And
that is my final answer.”

–Jayakrishnan
Slashdot

“An excellent resource for the developer of mid-level and advanced Swing applications. Many
of the techniques I’ve had to investigate and develop over the last two years are described in
this text. One of the few books to address the needs of serious Java 2 apps (e.g. printing,
tables, trees, threads and Swing). Especially useful are the real-world NOTES and
WARNINGs describing issues and anomalies.”

–Christian Forster
Amazon

“This book covers everything there is to know about Swing. Here you will go deep into
the internal workings of Swing to do some amazing things that frankly I, as a Windows
programmer of five years, cannot do in Windows. The book has real good coverage of all
the different classes in the Swing library, how they are used, and most importantly, how
they are useful…”

–Robert Hansen
Amazon

“…The book is considered a classic in Java Swing developers community and is highly
recommended to anyone with some basic Swing understanding…”

–Vadim Shun
Amazon

“I bought this book three weeks ago (right before our mission critical project). I was given
just two weeks to finish the coding and unit testing. It was not a big project, yet, I thought
I would like to use Swing for it and I came across your book… I spent four continuous
days reading the book and in another four days I was done. You won’t believe the excite-
ment I felt when I finished the project on time and the users were very astonished by the
GUI. I would like to let you know that I am very grateful for this great book. It could not
have been written in a more simple way than this.”

–Unni Krishnan
Amazon

“One of the best books for understanding the Swing components. I have had problems
with rendering in JList and JTree, and after reading this book, everything seems so
simple. The material is very unique.”

–Kirthi Venkatraman
Amazon

“I would recommend this book to anyone who wants to find out more about advanced
Swing. It is packed full with good examples and explanations of those examples. The
examples are very detailed and can be used as a starting point for your own projects.”

–John Sullivan
Amazon

“…one of the best books available for learning the more advanced Swing features.”
–Marty Hall

Johns Hopkins University

“I strongly recommend this book … especially for developers serious about getting
into Java.”

–Mark Newman
GTE

“I love the use of detailed examples … sets it apart from all the other books on Swing.”
–Joel Goldberg

FedEx

“This is a must-have book for any kind of sophisticated UI development using Swing.”
–Jaideep Baphna

Dataware Technologies

“The JTree text and detailed examples alone have already saved me many hours of work
and have expedited my research code development.”

–P. Pazandak, Ph.D.
Object Services and Consulting

“…will satisfy readers from beginner to advanced ... starts with easy-to-understand
concepts and then drills down until it hits advanced intellectual pay dirt.”

–Kirk Brown
Sun Microsystems

“Looking for a book on Swing with in-depth coverage of the how’s and why’s? Then
Swing by Matthew Robinson and Pavel Vorobiev is it. ...Overall this is an excellent book,
and I would recommend it for the intermediate to advanced Swing developer.

–AnnMarie Ziegler
JavaRanch.com

Swing
SECOND EDITION

MATTHEW ROBINSON

PAVEL VOROBIEV

UI Guidelines by David Anderson
Code Notes by David Karr

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, visit
http://www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts to
that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Aleksandra Sikora
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110-88-X
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 07 06 05 04 03

To Deirdre—
Matt

To my wife, Maria—
Pavel

ix

brief contents

Part I Foundation 1

1 Swing overview 3

2 Swing mechanics 15

Part II The basics 71

3 Frames, panels, and borders 73

4 Layout managers 89

5 Labels and buttons 155

6 Tabbed panes 187

7 Scrolling panes 202

8 Split panes 220

9 Combo boxes 227

10 List boxes and Spinners 256

11 Text components and undo 292

12 Menus, toolbars, and actions 332

13 Progress bars, sliders, and scroll bars 373

14 Dialogs 418

x BRIEF CONTENTS

Part III Advanced topics 469

15 Layered panes 471

16 Desktops & internal frames 476

17 Trees 498

18 Tables 536

19 Inside text components 605

20 Constructing an HTML Editor Application 634

21 Pluggable look and feel 723

Part IV Special topics 755

22 Printing 757

23 Constructing XML.editor 789

24 Drag & Drop 826

xi

contents

foreword xxiii
preface xxv
acknowledgments xxix
about the cover illustration xxxi

Part I Foundations 1

1 Swing overview 3

1.1 AWT 3
1.2 Swing 4

Z-order 5, Platform independence 5,
Swing package overview 5

1.3 MVC architecture 7
Model 7, View 8, Controller 8, Custom view
and controller 8, Custom models 9

1.4 UI delegates and PLAF 11
The ComponentUI class 11, Pluggable look and feel 12,
Where are the UI delegates? 13

2 Swing mechanics 15

2.1 JComponent properties, sizing, and positioning 15
Properties 15, Size and positioning 18

2.2 Event handling and dispatching 19
EventListenerList 22, Event-dispatching thread 22

2.3 Multithreading 23
Special cases 26, How do we build our own
thread-safe methods 26,

2.4 Timers 27
2.5 AppContext services 28

xii CONTENTS

2.6 Inside Timers and the TimerQueue 30
2.7 JavaBeans architecture 31

The JavaBeans component model 31, Introspection 31,
Properties 32, Customization 32, Communication 32,
Persistency 32, A simple Swing-based JavaBean 33

2.8 Fonts, colors, graphics, and text 38
Fonts 38, Colors 40, Graphics and text 40

2.9 Using the Graphics clipping area 47
2.10 Graphics debugging 49

Graphics debugging options 50, Graphics debugging caveats 51,
Using graphics debugging 51

2.11 Painting and validation 54
Double buffering 55, Optimized drawing 55,
Root validation 56, RepaintManager 57, Revalidation 57,
Repainting 58, Painting 59, Custom painting 61

2.12 Focus Management 61
KeyboardFocusManager 64, Key events and focus management 64,
Focus and Window events 64,
Focusability and traversal policies 65

2.13 Keyboard input 66
Listening for keyboard input 66,
KeyStrokes 67, Scopes 68, Actions 68,
InputMaps and ActionMaps 68
The flow of keyboard input 69

Part II The basics 71
3 Frames, panels, and borders 73

3.1 Frames and panels overview 73
JFrame 73, JRootPane 74, RootLayout 75,
The RootPaneContainer interface 76,
The WindowConstants interface 76, The WindowListener
interface 76, WindowEvent 77, WindowAdapter 77,
Custom frame icons 78, Centering a frame on the screen 78,
Headless frames and extended frame states 79,
Look and feel window decorations 79,
JApplet 80, JWindow 80, JPanel 80

3.2 Borders 81
Inside borders 85

3.3 Creating a custom border 86
Understanding the code 87, Running the code 88

CONTENTS xiii

4 Layout managers 89

4.1 Layouts overview 89
LayoutManager 90, LayoutManager2 90,
BoxLayout 91, Box 91, Filler 91, FlowLayout 92,
GridLayout 92, GridBagLayout 92, BorderLayout 93,
CardLayout 93, SpringLayout 93, JPanel 94

4.2 Comparing common layout managers 94
Understanding the code 97, Running the code 97

4.3 Using GridBagLayout 98
Default behavior of GridBagLayout 98, Introducing
GridBagConstraint 98, Using the gridx, gridy, insets,
ipadx and ipady constraints 99, Using weightx and
weighty constraints 100, Using gridwidth and gridheight
constraints 101, Using anchor constraints 102, Using fill
constraints 103, Putting it all together: constructing a
complaints dialog 104, A simple helper class example 109

4.4 Choosing the right layout 114
Understanding the code 119, Running the code 121

4.5 Custom layout manager, part I: labels/field pairs 121
Understanding the code 125, Running the code 128

4.6 Custom layout manager, part II: common interfaces 128
Understanding the code 136, Running the code 139

4.7 Dynamic layout in a JavaBeans container 140
Understanding the code 151, Running the code 153

5 Labels and buttons 155

5.1 Labels and buttons overview 155
JLabel 155, Text alignment 157, Icons and icon
alignment 158, GrayFilter 158, The labelFor and the
displayedMnemonic properties 158, AbstractButton 158,
The ButtonModel interface 159, JButton 159,
JToggleButton 161, ButtonGroup 161, JCheckBox and
JRadioButton 162, JToolTip and ToolTipManager 163,
Labels and buttons with HTML text 163

5.2 Custom buttons, part I: transparent buttons 165
Understanding the code 168, Running the code 170

5.3 Custom buttons, part II: polygonal buttons 171
Understanding the code 176, Running the code 178

5.4 Custom buttons, part III: tooltip management 180
Understanding the code 183, Running the code 186

xiv CONTENTS

6 Tabbed panes 187

6.1 JTabbedPane 187
6.2 A dynamically changeable tabbed pane 189

Understanding the code 195, Running the code 196,
Interesting JTabbedPane characteristics 197

6.3 Tab validation 197
Understanding the code 200

7 Scrolling panes 202

7.1 JScrollPane 202
The ScrollPaneConstants interface 204, JViewport 204,
ScrollPaneLayout 206, The Scrollable interface 209

7.2 Grab-and-drag scrolling 211
Understanding the code 212

7.3 Scrolling programmatically 213
Understanding the code 217, Running the code 219

8 Split panes 220

8.1 JSplitPane 220
8.2 Basic split pane example 221

Understanding the code 223, Running the code 224

8.3 Synchronized split pane dividers 224
Understanding the code 226, Running the code 226

9 Combo boxes 227

9.1 JComboBox 227
The ComboBoxModel interface 230,
The MutableComboBoxModel interface 230,
DefaultComboBoxModel 230, The ListCellRenderer
interface 231, DefaultListCellRenderer 231,
The ComboBoxEditor interface 231

9.2 Basic JComboBox example 232
Understanding the code 237, Running the code 238

9.3 Custom model and renderer 238
Understanding the code 243, Running the code 245

9.4 Combo boxes with memory 246
Understanding the code 250, Running the code 252

9.5 Custom editing 253
Understanding the code 255, Running the code 255

CONTENTS xv

10 List boxes and Spinners 256

10.1 JList 256
The ListModel interface 259, AbstractListModel 259,
DefaultListModel 259, The ListSelectionModel
interface 259, DefaultListSelectionModel 260,
The ListCellRenderer interface 260, The ListDataListener
interface 261, ListDataEvent 261, The ListSelectionListener
interface 261, ListSelectionEvent 261

10.2 Basic JList example 261
Understanding the code 263, Running the code 263

10.3 Custom rendering 264
Understanding the code 271, Running the code 273

10.4 Processing keyboard input and searching 273
Understanding the code 275, Running the code 276

10.5 List of check boxes 276
Understanding the code 279, Running the code 281

10.6 JSpinner 281
The SpinnerModel interface 282, AbstractSpinnerModel 283
SpinnerDateModel 283, SpinnerListModel 283
SpinnerNumberModel 283

10.7 Using JSpinner to select numbers 283
Understanding the code 284, Running the code 284

10.8 Using JSpinner to select dates 285
Understanding the code 286, Running the code 286

10.9 Using JSpinner to select a value from a list 286
Understanding the code 287, Running the code 287

10.10 Extending the functionality of JSpinner 288
Understanding the code 292, Running the code 1

11 Text components and undo 292

11.1 Text components overview 294
JTextComponent 292, JTextField 294, JPasswordField 298,
JTextArea 298, JEditorPane 299, JTextPane 301

11.2 Using the basic text components 304
Understanding the code 305, Running the code 306

11.3 JFormattedTextField 306
JFormattedTextField.AbstractFormatter 307, DefaultFormatter 308,
MaskFormatter 308, InternationalFormatter 309, DateFormatter 309,
NumberFormatter 309, JFormattedTextField.AbstractFormatterFactory 309,
DefaultFormatterFactory 310

11.4 Basic JFormattedTextField example 310
Understanding the code 311, Running the code 311

xvi CONTENTS

11.5 Using Formats and InputVerifier 312
 InputVerifier 312, Understanding the code 318

11.6 Formatted Spinner example 319
Understanding the code 320, Running the code 320

11.7 Undo/redo 321
The UndoableEdit interface 321, AbstractUndoableEdit 321,
CompoundEdit 324, UndoableEditEvent 325,
The UndoableEditListener interface 325, UndoManager 325,
The StateEditable interface 328, StateEdit 328,
UndoableEditSupport 329, CannotUndoException 329,
CannotRedoException 329, Using built-in text component undo/redo
functionality 329

12 Menus, toolbars, and actions 332

12.1 Menus, toolbars, and actions overview 332
The SingleSelectionModel interface 332,
DefaultSingleSelectionModel 333, JMenuBar 333, JMenuItem 333,
JMenu 334, JPopupMenu 335, JSeparator 337,
JCheckBoxMenuItem 337, JRadioButtonMenuItem 337,
The MenuElement interface 338, MenuSelectionManager 339,
The MenuDragMouseListener interface 340,
MenuDragMouseEvent 340, The MenuKeyListener interface 340,
MenuKeyEvent 340, The MenuListener interface 341,
MenuEvent 341, The PopupMenuListener interface 341,
PopupMenuEvent 341, JToolBar 341, Custom JToolBar
separators 343, Changing JToolBar’s floating frame behavior 344,
The Action interface 345, AbstractAction 345

12.2 Basic text editor, part I: menus 346
Understanding the code 353, Running the code 354

12.3 Basic text editor, part II: toolbars and actions 355
Understanding the code 358, Running the code 358

12.4 Basic text editor, part III: custom toolbar components 359
Understanding the code 364, Running the code 366

12.5 Basic text editor, part IV: custom menu components 366
Understanding the code 370, Running the code 371

13 Progress bars, sliders, and scroll bars 373

13.1 Bounded-range components overview 373
The BoundedRangeModel interface 373,
DefaultBoundedRangeModel 374, JScrollBar 374,
JSlider 375, JProgressBar 377, ProgressMonitor 381,
ProgressMonitorInputStream 381

CONTENTS xvii

13.2 Basic JScrollBar example 382
Understanding the code 386, Running the code 387

13.3 JSlider date chooser 387
Understanding the code 391, Running the code 393

13.4 JSliders in a JPEG image editor 394
The JPEGDecodeParam interface 394, The JPEGEncodeParam
interface 394, The JPEGImageDecoder interface 395,
The JPEGImageEncoder interface 395, JPEGCodec 395,
Understanding the code 403, Running the code 405

13.5 JProgressBar in an FTP client application 406
FtpClient 406, Understanding the code 414,
Running the code 417

14 Dialogs 418

14.1 Dialogs and choosers overview 418
JDialog 419, JOptionPane 421, JColorChooser 425,
The ColorSelectionModel interface 425,
DefaultColorSelectionModel 426,
AbstractColorChooserPanel 426,
ColorChooserComponentFactory 427,
JFileChooser 427, FileFilter 430,
FileSystemView 431, FileView 431

14.2 Constructing a Login dialog 432
Understanding the code 435, Running the code 436

14.3 Adding an About dialog 436
Understanding the code 438, Running the code 439

14.4 JOptionPane message dialogs 439
Understanding the code 444

14.5 Customizing JColorChooser 445
Understanding the code 449, Running the code 450

14.6 Customizing JFileChooser 451
ZipInputStream 451, ZipOutputStream 451, ZipFile 451,
ZipEntry 452, The java.util.jar package 452, Manifest 452,
Understanding the code 465, Running the code 468

Part III Advanced topics 469

15 Layered panes 471

15.1 JLayeredPane 473
15.2 Using JLayeredPane to enhance interfaces 473
15.3 Creating a custom MDI 475

xviii CONTENTS

16 Desktops & internal frames 476

16.1 JDesktopPane and JInternalFrame 476
JDesktopPane 476, JInternalFrame 476,
JInternalFrame.JDesktopIcon 477, The DesktopManager
interface 477, DefaultDesktopManager 479, Capturing
internal frame close events 479, The InternalFrameListener
interface 480, InternalFrameEvent 480,
InternalFrameAdapter 481, Outline dragging mode 481

16.2 Cascading and outline dragging mode 484
Understanding the code 485, Running the code 487

16.3 Adding MDI to a text editor application 487
Understanding the code 494, Running the code 495

16.4 Examples from the first edition 495

17 Trees 498

17.1 JTree 498
Tree concepts and terminology 498, Tree traversal 499,
JTree 499, The TreeModel interface 500,
DefaultTreeModel 501, The TreeNode interface 501,
The MutableTreeNode interface 501, DefaultMutableTreeNode 501,
TreePath 502, The TreeCellRenderer interface 502,
DefaultTreeCellRenderer 502, CellRenderPane 503,
The CellEditor interface 501, The TreeCellEditor interface 504,
DefaultCellEditor 504, DefaultTreeCellEditor 504,
The RowMapper interface 505, The TreeSelectionModel
interface 505, DefaultTreeSelectionModel 506,
The TreeModelListener interface 506, The TreeSelectionListener
interface 506, The TreeExpansionListener interface 506,
The TreeWillExpandListener interface 506, TreeModelEvent 507,
TreeSelectionEvent 507, TreeExpansionEvent 507
ExpandVetoException 508, JTree client properties and
UI defaults 508, Controlling JTree appearance 508

17.2 Basic JTree example 509
Understanding the code 513, Running the code 514

17.3 Directory tree, part I: dynamic node retrieval 514
Understanding the code 521, Running the code 526

17.4 Directory tree, part II: popup menus, programmatic navigation,
node creation, renaming, and deletion 526
Understanding the code 532, Running the code 535

17.5 Directory tree, part III: tooltips 533
Understanding the code 535, Running the code 535

CONTENTS xix

18 Tables 536
18.1 JTable 536

JTable 536, The TableModel interface 538,
AbstractTableModel 539, DefaultTableModel 539,
TableColumn 539, The TableColumnModel interface 541,
DefaultTableColumnModel 542, The TableCellRenderer
interface 543, DefaultTableCellRenderer 544,
The TableCellEditor interface 544, DefaultCellEditor 545,
The TableModelListener interface 545, TableModelEvent 546,
The TableColumnModelListener interface 546,
TableColumnModelEvent 546, JTableHeader 547,
JTable selection 548, Column width and resizing 550,
JTable Appearance 551, JTable scrolling 552

18.2 Stocks table, part I: basic JTable example 552
Understanding the code 557, Running the code 559

18.3 Stocks table, part II: custom renderers 559
Understanding the code 563, Running the code 564

18.4 Stocks table, part III: sorting columns 564
Understanding the code 569, Running the code 570

18.5 Stocks table, part IV: JDBC 571
Understanding the code 575, Running the code 576

18.6 Stocks table, part V: column addition and removal 576
Understanding the code 579, Running the code 580

18.7 Expense report application 580
Understanding the code 589, Running the code 591

18.8 Expense report application with variable height rows 591
Understanding the code 594, Running the code 594

18.9 A JavaBeans property editor 595
Understanding the code 601, Running the code 603

19 Inside text components 605
19.1 Text package overview 605

More about JTextComponent 605, The Document interface 608,
The StyledDocument interface 608, AbstractDocument 609,
The Content interface 612, The Position interface 613,
The DocumentEvent interface 613, The DocumentListener
interface 614, The Element interface 614, PlainDocument 615,
DefaultStyledDocument 617, The AttributeSet interface 620,
The MutableAttributeSet interface 622, The Style interface 622,
StyleConstants 623, StyleContext 623, The Highlighter
interface 624, DefaultHighlighter 625, The Caret interface 625,
DefaultCaret 625, The CaretListener interface 627,
CaretEvent 627, The Keymap interface 627, TextAction 628,
EditorKit 629, DefaultEditorKit 629, StyledEditorKit 630,
View 631, The ViewFactory interface 633

xx CONTENTS

20 Constructing an HTML Editor Application 634
20.1 HTML editor, part I: introducing HTML 635

Understanding the code 641, Running the code 642

20.2 HTML editor, part II: managing fonts 642
Understanding the code 648, Running the code 650

20.3 HTML editor, part III: document properties 650
Understanding the code 664, Running the code 667

20.4 HTML editor, part IV: working with HTML styles and tables 667
Understanding the code 676, Running the code 677

20.5 HTML editor, part V: clipboard and undo/redo 677
Understanding the code 681, Running the code 682

20.6 HTML editor, part VI: advanced font management 682
Understanding the code 691, Running the code 694

20.7 HTML editor, part VII: find and replace 695
Understanding the code 704, Running the code 708

20.8 HTML editor, part IX: spell checker (using JDBC and SQL) 708
Understanding the code 718, Running the code 721

21 Pluggable look and feel 723

21.1 Pluggable look and feel overview 723
LookAndFeel 724, UIDefaults 724, UIManager 725,
The UIResource interface 725, ComponentUI 726,
BasicLookAndFeel 726, How look and feel works 726,
Selecting a look and feel 727, Creating a custom LookAndFeel
implementation 728, Defining default component
resources 729, Defining class defaults 730,
Creating custom UI delegates 730, Metal themes 732

21.2 Custom look and feel, part I: using custom resources 733
Understanding the code 740, Running the code 741

21.3 Custom look and feel, part II: creating custom UI delegates 741
Understanding the code 749, Running the code 751

21.4 Examples from the first edition 751

Part IV Special topics 755

22 Printing 757

22.1 Java printing overview 757
PrinterJob 758, The Printable interface 758,
The Pageable interface 759, The PrinterGraphics
interface 760, PageFormat 760, Paper 761,

CONTENTS xxi

Book 761, PrinterException 762

22.2 Printing images 762
Understanding the code 765, Running the code 767

22.3 Print preview 767
Understanding the code 773, Running the code 776

22.4 Printing text 776
Understanding the code 780, Running the code 781

22.5 Printing tables 781
Understanding the code 785, Running the code 787

23 Constructing an XML editor 789

23.1 XML editor, part I: viewing nodes 790
Understanding the code 795, Running the code 796

23.2 XML editor, part II: viewing attributes 796
Understanding the code 800, Running the code 801

23.3 XML editor, part III: editing nodes and attributes 801
Understanding the code 807, Running the code 808

23.4 XML editor, part IV: adding, editing,
and removing nodes and attributes 808
Understanding the code 817, Running the code 818

23.5 XML editor, part V: custom drag and drop 818
Understanding the code 824

24 Drag and drop 826

24.1 Drag and drop overview 826
The Transferable interface 827, Clipboard 827,
The ClipboardOwner interface 827, TransferHandler 828,
DropTarget 829, The DropTargetListener interface 830

24.2 Adding drag and drop support within Basic Text Editor 830
Understanding the code 832, Running the code 832

24.3 Drag and drop files to Base Text Editor 832
Understanding the code 834, Running the code 834

24.4 Drag and drop with Java objects 834
Understanding the code 841, Running the code 843

A Java Web Start 845

B Resources 849

index 853

xxiii

foreword

It’s been amazing to see the applications that have been built using Swing. It is an extraordinarily
sophisticated user interface toolkit that gives great power to developers. This power leads to the
biggest problem with Swing: the wide variety of facilities can be intimidating. One’s first contact
with the Swing APIs can be a little like sticking your head into the cockpit of a 747: a dizzying
array of levers and dials that can be confusing. But there is a logic to it all. Once you know the
territory, it’s easy to get around and the available facilities will make your job much easier.

The authors of this book have done a great job mapping out the territory and explaining the
standard patterns that make Swing great. I love the way they have gone beyond just laying out
the APIs to covering issues about what makes a good user interface, and what makes an applica-
tion easy to understand and use. They also go beyond the usual snippets of code to develop com-
plete applications. This is a great way to inter-relate all of the parts of the Swing API.

James Gosling
Vice President and Fellow

Sun Microsystems

xxv

preface

This book is best described as a programmer’s guide, serving both as a reference and a tutorial.
Emphasis is placed on using Swing to solve a broad selection of realistic and creative problems.
We assume an intermediate knowledge of Java, including the basics of putting together an AWT-
based GUI, how the event model works, and familiarity with anonymous and explicit inner
classes. Those who do not have this background can pick it up in any beginner book on AWT or
Swing. However, the first edition of this book has proven to be most useful to those who come to
it with an intermediate understanding of Swing. For this reason we do not recommend this book
to Swing beginners. For beginners we suggest Manning’s own Up to Speed with Swing by Steven
Gutz.

Our goal was to produce a book that contains enough explanation and examples to satisfy
the most demanding Swing developer. We feel we have accomplished this goal again with the
updates in this edition, but please judge for yourself and we welcome all constructive feedback.
Unlike the first edition, however, this version is not freely available on the publisher’s web site.
The first edition will remain available online at www.manning.com/sbe, but we hope that we
have developed enough of a following to generate more sales with the second edition without giv-
ing it away for free. Let’s hope this is true!

What’s changed since the first edition?
Java 1.4 (aka Merlin) is the first major release of the Java platform that was planned through a
Java Community Process (JCP), allowing participants outside of Sun to have an influence on the
overall feature set. Each new feature, whether an addition or a change, had a dedicated expert
group which handled the description of that functionality according to certain rules underlying
Java Specification Requests (JSRs), which are the building blocks of any JCP. Similar to an open-
source project, but with actual development still done by Sun engineers, this process allowed Java
1.4 to evolve for the first time in a democratic fashion. The result is a platform containing
improvements that the Java community as a whole voted for, not just Sun.

This updated edition of Swing contains many new examples, revised text, and additional
material to bring the book up to date with Java 1.4. This includes complete coverage of the new
JSpinner and JFormattedTextField components, the new focus and keyboard architec-
tures, scrollable tabbed panes, indeterminate progress bars, variable height JTable rows, and
many other new features. Larger changes to the book include the addition of three new chapters:
“Constructing an HTML Editor Applications,” “Constructing an XML Editor,” and “Drag and

xxvi PREFACE

Drop” with Swing. A new appendix on Java Web Start has also been added and all examples
throughout the book have been enhanced to conform to the Java look and feel design guidelines.

Organization
In general, each chapter starts with class and interface explanations occasionally interspersed with
small examples to demonstrate key features. The bulk of each chapter is then devoted to the con-
struction of several larger examples, often building on top of previous examples, illustrating more
complex aspects of the components under investigation.

Part I contains two chapters that introduce Swing and discuss the most significant mecha-
nisms underlying it. The first chapter is a brief overview that we suggest for all Swing newcomers.
More experienced developers will want to read straight through most of chapter 2, as it provides
an understanding of Swing’s most significant underlying behavior. This chapter is referenced
throughout the book, and we expect all readers to refer to it often. At minimum we recommend
that all readers skim this chapter to at least get a rough idea of what is covered.

Part II consists of twelve chapters covering all the basic Swing components with detailed
descriptions and helpful examples of each. These chapters discuss the bread and butter of Swing-
based GUIs, and each includes usage guidelines written by a usability and interface design expert.

Part III contains seven chapters dealing with the more advanced components. These chap-
ters are significantly more complex than those in part II, and they require a thorough under-
standing of Swing's architecture, as well as the basic Swing components.

Part IV consists of three chapters on special topics with a focus on Swing, including print-
ing, constructing an XML editor application, and implementing Drag and Drop.

Most examples are presented in three distinct parts:
The code: After a general introduction to the example, including one or more screenshots,

the underlying code is listed. Annotations appear to the right of significant blocks of code to pro-
vide a brief summary of its purpose. Each annotation has a number which links it to the explana-
tion of that code in the Understanding the code section.

Understanding the code: This section contains a detailed explanation of the code. Most
paragraphs are accompanied by a number which links that text with the associated annotated
code listed in the code section.

Running the code: After the code is explained, this brief section provides suggestions for
testing the program. This section may also include references and suggestions for taking the
example further.

Conventions
NOTE Throughout the book we point out specific behaviors or functionality that either differs
from what is expected or that can be achieved through alternate techniques. We also use this icon
to denote various other types of notes, such as a reference or suggested background knowledge
for the material being discussed.

JAVA 1.3 We use this mark wherever a new feature or update is introduced from Java 1.3.

JAVA 1.4 We use this mark wherever a new feature or update is introduced from Java 1.4.

BUG ALERT Occasionally, incorrect or unexpected behavior is caused by known Swing bugs. We
do not attempt to hide or gloss over these; rather, we explicitly discuss these bugs and explain
possible workarounds or fixes where applicable.

PREFACE xxvii

David Anderson, a usability and interface design expert, has provided detailed
usage guidelines throughout the book. These guidelines do not represent hard-
and-fast rules, but they are highly recommended for the development of

consistent, user-friendly interfaces (see appendix B for David's references and recommended UI
design readings).

All source code appears in Courier font. For example:

 public void main(String args[]) {
 Example myExample = new Example();
 }

We prefix all instance variables with “m_,” and capitalize all static variables with underscores sep-
arating compound words. For example:

 protected int m_index;
 protected static int INSTANCE_COUNT;

Many examples are built from examples presented earlier in the book. In these cases we have
minimized the amount of repeated code by replacing all unchanged code with references to the
sections that contain that code. All new and modified code of any class is highlighted in bold.
When a completely new class is added, we do not highlight that class in bold (the only exceptions
to this rule are anonymous inner classes).

Author Online
Purchase of Swing Second Edition includes free access to a private Internet forum where you can
make comments about the book, ask technical questions, and receive help from the authors and
from other Swing users. To access the forum, point your web browser to www.manning.com/rob-
inson. There you will be able to subscribe to the forum. This site also provides information on
how to access the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

Matt can be contacted directly at matt@mattrobinson.com.
Pavel can be contacted directly at pvorobiev@yahoo.com.
David Anderson, author of the UI Guidelines, can be contacted through www.uidesign.net.

Obtaining the source code
All source code for the examples presented in Swing Second Edition is available from www.-
manning.com/sbe.

xxix

acknowledgments

First we’d like to thank James Gosling for writing the foreword to this edition. Java has changed
our careers in many ways and it is an honor to have its creator introduce our book.

Thanks to the readers of the first edition, especially those who bought the book. Without
you this edition would not exist. Thanks to the translators who have made our work available in
languages accessible to other cultures and regions. Thanks to those professors and instructors at
instututions around the globe who have used our book as a course reference.

Special thanks to our publisher, Marjan Bace, as well as Syd Brown, Leslie Haimes, Ted
Kennedy, Elizabeth Martin, Mary Piergies, Aleksandra Sikora and the whole Manning team for
transforming our manuscript updates and penciled-in margin notes into an organized, presentable
form.

Last but not least we’d like to thank David Karr and Laurent Michalkovic for their many
valuable suggestions and corrections that have improved the manuscript significantly.

xxxi

about the cover illustration

The illustration on the cover of Swing Second Edition is taken from the 1805 edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs. This book was first published in
Paris in 1788, one year before the French Revolution. Each illustration is colored by hand. The
caption for this illustration reads “Homme Salamanque,” which means man from Salamanca, a
province in Western Spain, on the border with Portugal. The region is known for its wild beauty,
lush forests, ancient oak trees, rugged mountains, and historic old towns and villages.

The Homme Salamanque is just one of many figures in Maréchal’s colorful collection.
Their diversity speaks vividly of the uniqueness and individuality of the world’s towns and
regions just 200 years ago. This was a time when the dress codes of two regions separated by a
few dozen miles identified people uniquely as belonging to one or the other. The collection
brings to life a sense of the isolation and distance of that period and of every other historic
period—except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time, has
faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps,
trying to view it optimistically, we have traded a cultural and visual diversity for a more varied
personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the computer busi-
ness with book covers based on the rich diversity of regional life of two centuries ago brought
back to life by the pictures from this collection.

P A R T I

Foundations
Part I consists of two chapters that lay the foundation for a successful and productive journey
through the JFC Swing class library. The first chapter begins with a brief overview of what Swing
is and an introduction to its architecture. The second chapter contains a detailed discussion of
the key mechanisms underlying Swing, and it shows you how to interact with them. There are
several sections on topics that are fairly advanced, such as multithreading and painting. This
material is central to many areas of Swing and by introducing it in chapter 2, your understanding
of what is to come will be significantly enhanced. We expect that you will want to refer back to
this chapter quite often, and we explicitly refer you to it throughout the text. At the very least, we
recommend that you know what chapter 2 contains before moving on.

3

C H A P T E R 1

Swing overview
1.1 AWT 3
1.2 Swing 4

1.3 MVC architecture 7
1.4 UI delegates and PLAF 11

1.1 AWT

The Abstract Window Toolkit (AWT) is the part of Java designed for creating user interfaces
and painting graphics and images. It is a set of classes intended to provide everything a devel-
oper needs to create a graphical interface for any Java applet or application. Most AWT com-
ponents are derived from the java.awt.Component class, as figure 1.1 illustrates. (Note that
AWT menu bars and menu bar items do not fit within the Component hierarchy.)

The Java Foundation Classes (JFC) consist of five major parts: AWT, Swing, Accessibility,
Java 2D, and Drag and Drop. Java 2D has become an integral part of AWT, Swing is built on
top of AWT, and Accessibility support is built into Swing. The five parts of JFC are certainly

Figure 1.1
Partial component hierarchy

4 CHAPTER 1 SWING OVERVIEW

not mutually exclusive, and Swing is expected to merge more deeply with AWT in future ver-
sions of Java. Thus, AWT is at the core of JFC, which in turn makes it one of the most impor-
tant libraries in Java 2.

1.2 SWING

Swing is a large set of components ranging from the very simple, such as labels, to the very
complex, such as tables, trees, and styled text documents. Almost all Swing components are
derived from a single parent called JComponent which extends the AWT Container class.
For this reason, Swing is best described as a layer on top of AWT rather than a replacement for
it. Figure 1.2 shows a partial JComponent hierarchy. If you compare this with the AWT
Component hierarchy of figure 1.1, you will notice that each AWT component has a Swing
equivalent that begins with the prefix “J.” The only exception to this is the AWT Canvas
class, for which JComponent, JLabel, or JPanel can be used as a replacement (we discuss
this in detail in section 2.8). You will also notice many Swing classes that don’t have AWT
counterparts.

Figure 1.2 represents only a small fraction of the Swing library, but this fraction contains
the classes you will be dealing with the most. The rest of Swing exists to provide extensive sup-
port and customization capabilities for the components these classes define.

Figure 1.2 Partial JComponent hierarchy

SWING 5

1.2.1 Z-order

Swing components are referred to as lightweights while AWT components are referred to as
heavyweights. One difference between lightweight and heavyweight components is z-order: the
notion of depth or layering. Each heavyweight component occupies its own z-order layer. All
lightweight components are contained inside heavyweight components, and they maintain
their own layering scheme as defined by Swing. When you place a heavyweight inside another
heavyweight container, it will, by definition, overlap all lightweights in that container.

What this ultimately means is that you should avoid using both heavyweight and light-
weight components in the same container whenever possible. The most important rule to fol-
low is that you should never place heavyweight components inside lightweight containers that
commonly support overlapping children. Some examples of these containers are JInternal-
Frame, JScrollPane, JLayeredPane, and JDesktopPane. Secondly, if you use a pop-up
menu in a container holding a heavyweight component, you need to force that pop-up to be
heavyweight. To control this for a specific JPopupMenu instance, you can use its setLight-
WeightPopupEnabled() method.

NOTE For JMenus (which use JPopupMenus to display their contents) you first have to use
the getPopupMenu() method to retrieve the associated pop-up menu. Once it is
retrieved, you can then call setLightWeightPopupEnabled(false) on that
pop-up to enforce heavyweight functionality. This needs to be done with each
JMenu in your application, including menus contained within menus.

Alternatively, you can call JPopupMenu’s static setDefaultLightWeightPopupEnabled()
method, and pass it a value of false to force all popups in a Java session to be heavyweight.
Note that this will only affect pop-up menus created after this call is made. It is therefore a
good idea to call this method early within initialization.

1.2.2 Platform independence

The most remarkable thing about Swing components is that they are written in 100% Java
and they do not directly rely on peer components, as most AWT components do. This means
that a Swing button or text area can look and function identically on Macintosh, Solaris,
Linux, and Windows platforms. This design reduces the need to test and debug applications
on each target platform.

NOTE The only exceptions to this are four heavyweight Swing components that are direct
subclasses of AWT classes that rely on platform-dependent peers: JApplet, JDialog,
JFrame, and JWindow. See chapter 3 for more information.

1.2.3 Swing package overview

 javax.swing

Contains the most basic Swing components, default component models and inter-
faces. (Most of the classes shown in figure 1.2 are contained in this package.)

 javax.swing.border

Contains the classes and interfaces used to define specific border styles. Note that
borders can be shared by any number of Swing components, as they are not
components themselves.

6 CHAPTER 1 SWING OVERVIEW

 javax.swing.colorchooser

Contains classes and interfaces that support the JColorChooser component, which
is used for color selection. (This package also contains some interesting undocu-
mented private classes.)

 javax.swing.event

Contains all Swing-specific event types and listeners. Swing components also sup-
port events and listeners defined in java.awt.event and java.beans.

 javax.swing.filechooser

Contains classes and interfaces supporting the JFileChooser component used for
file selection.

 javax.swing.plaf

Contains the pluggable look and feel API used to define custom UI delegates. Most
of the classes in this package are abstract. They are subclassed and implemented by
look and feel implementations such as Metal, Motif, and Basic. The classes in this
package are intended for use only by developers who, for one reason or another, can-
not build on top of an existing look and feel.

 javax.swing.plaf.basic

This package is the Basic look and feel implementation on top of which all look and
feels provided with Swing are built. We are normally expected to subclass the classes
in this package if we want to create our own customized look and feel.

 javax.swing.plaf.metal

Metal is the default look and feel of Swing components; it is also known as the Java
look and feel. It is the only look and feel that ships with Swing which is not designed
to be consistent with a specific platform.

 javax.swing.plaf.multi

This package is the Multiplexing look and feel. This is not a regular look and feel
implementation in that it does not define the actual look or feel of any components.
Instead, it provides the ability to combine several look and feels for simultanteous
use. A typical example might be using an audio-based look and feel in combination
with metal or motif.

 javax.swing.table

Contains classes and interfaces that support the JTable control. This component is
used to manage tabular data in spreadsheet form. It supports a high degree of cus-
tomization without requiring look and feel enhancements.

 javax.swing.text

Contains classes and interfaces used by the text components, including support for
plain and styled documents, the views of those documents, highlighting, caret con-
trol and customization, editor actions, and keyboard customization.

 javax.swing.text.html

Contains support for parsing, creating, and viewing HTML documents.
 javax.swing.text.html.parser

Contains support for parsing HTML.
 javax.swing.text.rtf

Contains support for RTF (rich text format) documents.

MVC ARCHITECTURE 7

 javax.swing.tree

Contains classes and interfaces that support the JTree component. This compo-
nent is used for the display and management of hierarchical data. It supports a high
degree of customization without requiring look and feel enhancements.

 javax.swing.undo

Contains support for implementing and managing undo/redo functionality.

1.3 MVC ARCHITECTURE

The Model-View-Controller architecture (MVC) is a well known object-oriented user inter-
face design decomposition that dates back to the late 1970s. Components are broken down
into three parts: a model, a view, and a controller. Each Swing component is based on a more
modern version of this design. Before we discuss how MVC works in Swing, we need to
understand how it was originally designed to work.

NOTE The three-way separation described here, and illustrated in figure 1.3, is used
today by only a small number of user interface frameworks, VisualWorks being
the most notable.

1.3.1 Model

The model is responsible for maintaining all aspects of the component state. This includes,
for example, such values as the pressed/unpressed state of a push button, and a text
component’s character data and information about how it is structured. A model may be
responsible for indirect communication with the view and the controller. By indirect, we mean
that the model does not “know” its view and controller—it does not maintain or retrieve
references to them. Instead, the model will send out notifications or broadcasts (what we know
as events). In figure 1.3 this indirect communication is represented by dashed lines.

Figure 1.3
Model-View-Controller
architecture

8 CHAPTER 1 SWING OVERVIEW

1.3.2 View

The view determines the visual representation of the component’s model. This is a compo-
nent’s “look.” For example, the view displays the correct color of a component, whether the
component appears raised or lowered (in the case of a button), and the rendering of a desired
font. The view is responsible for keeping its on-screen representation updated, which it may
do upon receiving indirect messages from the model or messages from the controller.

1.3.3 Controller

The controller is responsible for determining whether the component should react to any
input events from input devices such as the keyboard or mouse. The controller is the “feel” of
the component, and it determines what actions are performed when the component is used. The
controller can receive messages from the view, and indirect messages from the model.

For example, suppose we have a checked (selected) check box in our interface. If the con-
troller determines that the user has performed a mouse click, it may send a message to the view.
If the view determines that the click occurred on the check box, it sends a message to the model.
The model then updates itself and broadcasts a message, which will be received by the view,
to tell it that it should update itself based on the new state of the model. In this way, a model
is not bound to a specific view or controller; this allows us to have several views and controllers
manipulating a single model.

1.3.4 Custom view and controller

One of the major advantages Swing’s MVC architecture provides is the ability to customize
the “look” and “feel” of a component without modifying the model. Figure 1.4 shows a group
of components using two different user interfaces. The important point to know about this
figure is that the components shown are actually the same, but they are shown using two dif-
ferent look and feel implementations (different views and controllers).

Some Swing components also provide the ability to customize specific parts of a component
without affecting the model. For example, some components allow us to define custom cell
renderers and editors used to display and accept specific data, respectively. Figure 1.5 shows

Figure 1.4 Malachite and Windows look and feels
of the same components

MVC ARCHITECTURE 9

the columns of a table containing stock market data rendered with custom icons and colors.
We will examine how to take advantage of this functionality in our study of Swing combo
boxes, lists, spinners, tables, and trees.

1.3.5 Custom models

Another major advantage of Swing’s MVC architecture is the ability to customize and replace
a component’s data model. For example, we can construct our own text document model that
enforces the entry of a date or phone number in a very specific form. We can also associate the
same data model with more than one component. For instance, two JTextAreas can store
their textual content in the same document model, while maintaining two different views of
that information.

We will design and implement our own data models for JComboBox, JList, JSpinner,
JTree, and JTable throughout our coverage of text components. We’ve listed some of
Swing’s model interface definitions along with a brief description of what data the implemen-
tations are designed to store and what components they are used with:
 BoundedRangeModel

Used by: JProgressBar, JScrollBar, JSlider.
Stores: 4 integers: value, extent, min, max.
The value and the extent must be between specified min and max values. The
extent is always <= max and >=value. The value of extent is not necessarily
larger than value. Also, the extent represents the length of the thumb in
JScrollBar (see chapter 7).

 ButtonModel

Used by: All AbstractButton subclasses.
Stores: A boolean representing whether the button is selected (armed) or unselected
(disarmed).

 ListModel

Used by: JList.
Stores: A collection of objects.

Figure 1.5 Custom rendering

10 CHAPTER 1 SWING OVERVIEW

 ComboBoxModel

Used by: JComboBox.
Stores: A collection of objects and a selected object.

 MutableComboBoxModel

Used by: JComboBox.
Stores: A Vector (or another mutable collection) of objects and a selected object.

 ListSelectionModel

Used by: JList, TableColumnModel.
Stores: One or more indices of selected list or table items. Allows single, single-inter-
val, or multiple-interval selections.

 SpinnerModel

Used by: JSpinner.
Stores: A sequenced collection that can be bounded or unbounded, and the currently
selected element in that sequence.

 SingleSelectionModel

Used by: JMenuBar, JPopupMenu, JMenuItem, JTabbedPane.
Stores: The index of the selected element in a collection of objects owned by the
implementor.

 ColorSelectionModel

Used by: JColorChooser.
Stores: A Color.

 TableModel

Used by: JTable.
Stores: A two-dimensional array of objects.

 TableColumnModel

Used by: JTable.
Stores: A collection of TableColumn objects, a set of listeners for table column
model events, the width between columns, the total width of all columns, a selection
model, and a column selection flag.

 TreeModel

Used by: JTree.
Stores: Objects that can be displayed in a tree. Implementations must be able to
distinguish between branch and leaf objects, and the objects must be organized
hierarchically.

 TreeSelectionModel

Used by: JTree.
Stores: Selected rows. Allows single, contiguous, and discontiguous selection.

 Document

Used by: All text components.
Stores: Content. Normally this is text (character data). More complex
implementations support styled text, images, and other forms of content (such as
embedded components).

Not all Swing components have models. Those that act as containers, such as JApplet,
JFrame, JLayeredPane, JDesktopPane, and JInternalFrame, do not have models.
However, interactive components such as JButton, JTextField, and JTable do have mod-
els. In fact, some Swing components have more than one model (for example, JList uses one

UI DELEGATES AND PLAF 11

model to hold selection information and another model to store its data). The point is that
MVC is not a hard-and-fast rule in Swing. Simple components, or complex components that
don’t store lots of information (such as JDesktopPane), do not need separate models. The
view and controller of each component is, however, almost always separate for each compo-
nent, as we will see in the next section.

So how does the component itself fit into the MVC picture? The component acts as a
mediator between the model(s), the view, and the controller. It is neither the M, the V, nor the C,
although it can take the place of any or all of these parts if we so design it. This will become
more clear as we progress through this chapter, and throughout the rest of the book.

1.4 UI DELEGATES AND PLAF

Almost all modern user interface frameworks coalesce the view and the controller, whether
they are based on Smalltalk, C++, or Java. Examples include MacApp, Smalltalk/V, Inter-
views, and the X/Motif widgets used in IBM Smalltalk. Swing is the newest addition to this
crowd. Swing packages each component’s view and controller into an object called a UI dele-
gate. For this reason Swing’s underlying architecture is more accurately referred to as model-
delegate rather than model-view-controller. Ideally, communication between both the model
and the UI delegate is indirect, allowing more than one model to be associated with one UI
delegate, and vice versa. Figure 1.6 illustrates this principle.

1.4.1 The ComponentUI class

Each UI delegate is derived from an abstract class called ComponentUI. ComponentUI meth-
ods describe the fundamentals of how a UI delegate and a component using it will communi-
cate. Note that each method takes a JComponent as a parameter.

Here are the ComponentUI methods:

Figure 1.6
Model-delegate
architecture

12 CHAPTER 1 SWING OVERVIEW

 static ComponentUI createUI(JComponent c)

Returns an instance of the UI delegate defined by the defining ComponentUI sub-
class itself, in its normal implementation. This instance is often shared among com-
ponents of the same type (for example, all JButtons using the Metal look and feel
share the same static UI delegate instance defined in javax.swing.

plaf.metal.MetalButtonUI by default).
 installUI(JComponent c)

Installs this ComponentUI on the specified component. This normally adds listeners
to the component and/or its model(s), to notify the UI delegate when changes in
state occur that require a view update.

 uninstallUI(JComponent c)

Removes this ComponentUI and any listeners added in installUI() from the
specified component and/or its model(s).

 update(Graphics g, JComponent c)

If the component is opaque, this method paints its background and then calls
paint(Graphics g, JComponent c).

 paint(Graphics g, JComponent c)

Gets all information it needs from the component and possibly its model(s) to ren-
der it correctly.

 getPreferredSize(JComponent c)

Returns the preferred size for the specified component based on this ComponentUI.
 getMinimumSize(JComponent c)

Returns the minimum size for the specified component based on this ComponentUI.
 getMaximumSize(JComponent c)

Returns the maximum size for the specified component based on this ComponentUI.

To enforce the use of a specific UI delegate, we can call a component’s setUI() method:

 JButton m_button = new JButton();
 m_button.setUI((MalachiteButtonUI)
 MalachiteButtonUI.createUI(m_button));

Most UI delegates are constructed so that they know about a component and its models only
while performing painting and other view-controller tasks. Swing normally avoids associating
UI delegates on a per-component basis by using a shared instance.

NOTE The JComponent class defines methods for assigning UI delegates because the
method declarations required do not involve component-specific code. However,
this is not possible with data models because there is no base interface that all mod-
els can be traced back to (for example, there is no base abstract class such as Com-
ponentUI for Swing models). For this reason, methods to assign models are
defined in subclasses of JComponent where necessary.

1.4.2 Pluggable look and feel

Swing includes several sets of UI delegates. Each set contains ComponentUI implementations
for most Swing components; we call each of these sets a look and feel or a pluggable look and
feel (PLAF) implementation. The javax.swing.plaf package consists of abstract classes
derived from ComponentUI, and the classes in the javax.swing.plaf.basic package

UI DELEGATES AND PLAF 13

extend these abstract classes to implement the Basic look and feel. This is the set of UI dele-
gates that all other look and feel classes are expected to use as a base for building from. (Note
that the Basic look and feel cannot be used on its own, as BasicLookAndFeel is an abstract
class.) There are three main pluggable look and feel implemenations derived from the Basic
look and feel:

Windows: com.sun.java.swing.plaf.windows.WindowsLookAndFeel
CDE\Motif: com.sun.java.swing.plaf.motif.MotifLookAndFeel
Metal (default): javax.swing.plaf.metal.MetalLookAndFeel

There is also a MacLookAndFeel for simulating Macintosh user interfaces, but this does not
ship with Java 2—it must be downloaded separately. The Windows and Macintosh pluggable
look and feel libraries are only supported on the corresponding platform.

The Multiplexing look and feel, javax.swing.plaf.multi.MultiLookAndFeel,
extends all the abstract classes in javax.swing.plaf. It is designed to allow combinations
of look and feels to be used simultaneously, and it is intended for, but not limited to, use with
Accessibility look and feels. The job of each Multiplexing UI delegate is to manage each of its
child UI delegates.

Each look and feel package contains a class derived from the abstract class javax.swing.
LookAndFeel; these include BasicLookAndFeel, MetalLookAndFeel, and WindowsLook-
AndFeel. These are the central points of access to each look and feel package. We use them
when changing the current look and feel, and the UIManager class (used to manage installed
look and feels) uses them to access the current look and feel’s UIDefaults table (which con-
tains, among other things, UI delegate class names for that look and feel corresponding to each
Swing component). To change the current look and feel of an application we can simply call
the UIManager’s setLookAndFeel() method, passing it the fully qualified name of the Look-
AndFeel to use. The following code can be used to accomplish this at run-time:

 try {
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 SwingUtilities.updateComponentTreeUI(myJFrame);
 }
 catch (Exception e) {
 System.err.println("Could not load LookAndFeel");
 }

SwingUtilities.updateComponentTreeUI() informs all children of the specified com-
ponent that the look and feel has changed and they need to discard their UI delegate in
exchange for a different one of the new look and feel. Note that the call to updateCompo-
nentTree() is only necessary if the frame is already visible.

1.4.3 Where are the UI delegates?

We’ve discussed ComponentUI and the packages that LookAndFeel implementations reside in,
but we haven’t really mentioned anything about the specific UI delegate classes derived from
ComponentUI. Each abstract class in the javax.swing.plaf package extends ComponentUI
and corresponds to a specific Swing component. The name of each class follows the general

14 CHAPTER 1 SWING OVERVIEW

scheme of class name (without the “J” prefix) plus a “UI” suffix. For instance, LabelUI
extends ComponentUI and is the base delegate used for JLabel.

These classes are extended by concrete implementations such as those in the basic and
multi packages. The names of these subclasses follow the general scheme of the look and feel
name prefix added to the superclass name. For instance, BasicLabelUI and MultiLabelUI
both extend LabelUI and reside in the basic and multi packages respectively. Figure 1.7
illustrates the LabelUI hierarchy.

Most look and feel implementations are expected to either extend the concrete classes defined
in the basic package, or use them directly. The Metal, Motif, and Windows UI delegates are
built on top of Basic versions. The Multi look and feel, however, is unique in that each imple-
mentation does not extend from Basic; each is merely a shell allowing an arbitrary number of
UI delegates to be installed on a given component.

Figure 1.7 should emphasize the fact that Swing supplies a very large number of UI del-
egate classes. If we were to create an entirely new pluggable look and feel implementation, some
serious time and effort would be required. In chapter 21 we will learn all about this process,
as well as how to modify and work with the existing look and feels.

NOTE We do not detail the complete functionality and construction of any of the provided
UI delegate classes in this book.

Figure 1.7
LabelUI hierarchy

15

C H A P T E R 2

Swing mechanics
2.1 JComponent properties, sizing, and

positioning 15
2.2 Event handling and dispatching 19
2.3 Multithreading 23
2.4 Timers 27
2.5 AppContext services 28
2.6 Inside Timers and the TimerQueue 30

2.7 JavaBeans architecture 31
2.8 Fonts, colors, graphics, and text 38
2.9 Using the graphics clipping area 47
2.10 Graphics debugging 49
2.11 Painting and validation 54
2.12 Focus management 61
2.13 Keyboard input 66

2.1 JCOMPONENT PROPERTIES, SIZING, AND POSITIONING

All Swing components conform to the JavaBeans specification, which we’ll discuss in detail in
section 2.7. Among the five features a JavaBean is expected to support is a set of properties and
associated accessor methods.

2.1.1 Properties

A property is a member variable, and its accessor methods are normally of the form setProp-
ertyname(), getPropertyname(), or isPropertyname() where Propertyname is the
name of the variable. There are five types of properties we refer to throughout this book: sim-
ple, bound, constrained, change, and client. We will discuss each of these in turn.

Many classes are designed to fire events when the value of a property changes. A property
for which there is no event firing associated with a change in its value is called a simple property.

A bound property is one for which PropertyChangeEvents are fired after the property
changes value. We can register PropertyChangeListeners to listen for PropertyChan-
geEvents through JComponent’s addPropertyChangeListener()method.

16 CHAPTER 2 SWING MECHANICS

A constrained property is one for which PropertyChangeEvents are fired before the
property changes value. We can register VetoableChangeListeners to listen for Proper-
tyChangeEvents through JComponent’s addVetoableChangeListener() method. A
change can be vetoed in the event handling code of a VetoableChangeListener()by throw-
ing PropertyVetoException. (As of JDK1.4 JInternalFrame is the only Swing class with
constrained properties.)

NOTE Each of these event and listener classes is defined in the java.beans package.

PropertyChangeEvents carry three pieces of information with them: the name of the property,
the old value, and the new value. Beans can use an instance of java.beans.Property-
ChangeSupport to manage the dispatching, to each registered listener, of the Property-
ChangeEvents corresponding to each bound property. Similarly, an instance of
VetoableChangeSupport can be used to manage the dispatching of all PropertyChan-
geEvents corresponding to each constrained property.

JAVA 1.4 Java 1.4 has added two APIs to allow access to the property change listeners of a
JComponent.
PropertyChangeListener[] getPropertyChangeListeners()
PropertyChangeListener[] getPropertyChangeListeners(String
pro-pertyName)

This change is part of an effort from Sun to offer a more complete solution to man-
age event listeners within AWT and Swing by providing getXXXListeners() meth-
ods in addition to the existing add/remove convention.

Swing includes an additional property support class called SwingPropertyChangeSupport
(defined in javax. swing.event) which is a subclass of, and almost identical to, Proper-
tyChangeSupport. The difference is that SwingPropertyChangeSupport has been built
to be more efficient. It does this by sacrificing thread safety, which, as we will see later in this
chapter, is not an issue in Swing if the multithreading guidelines are followed consistently
(because all event processing should occur on only one thread—the event-dispatching thread).
So if you are confident that your code has been constructed in a thread-safe manner, we
encourage you to use this more efficient version, rather than PropertyChangeSupport.

NOTE There is no Swing equivalent of VetoableChangeSupport because there are current-
ly very few constrained properties defined in Swing.

Swing also introduces a new type of property which we will call a change property, for lack of
a given name. We use ChangeListeners to listen for ChangeEvents that get fired when
these properties change state. A ChangeEvent only carries one piece of information with it:
the source of the event. For this reason, change properties are less powerful than bound or
constrained properties, but they are more widely used throughout Swing. A JButton, for
instance, sends change events whenever it is armed (pressed for the first time), pressed, and
released (see chapter 5).

NOTE You can always find out which properties have change events associated with them,
as well as any other type of event, by referencing the Swing source code. Unless you
are using Swing for building very simple GUIs, we strongly suggest getting used to
referencing source code.

JCOMPONENT PROPERTIES, SIZING, AND POSITIONING 17

Another new property-like feature Swing introduces is the notion of client properties. These
are basically key/value pairs stored in a Hashtable provided by each Swing component. (The
client properties Hashtable is actually inherited from JComponent.) This feature allows
properties to be added and removed at run-time.

WARNING Client properties may seem like a great way to extend a component by essentially
adding member variables. However, we are explicitly advised against this in the API
documentation: “The clientProperty dictionary is not intended to support
large scale extensions to JComponent nor should it be considered an alternative to
subclassing when designing a new component.” In other words, it is better to create
a subclass with new properties rather than use client properties to add meaningful
state. Client properties are best used for experimentation.

Client properties are also bound properties: when a client property changes, a PropertyChange-
Event is dispatched to all registered PropertyChangeListeners. To add a property to a
component’s client properties you can do something like the following:

 myComponent.putClientProperty("myname", myValue);

To retrieve a client property:

 Object obj = myComponent.getClientProperty("myname");

To remove a client property you can provide a null value:

 myComponent.putClientProperty("mykey", null);

Five Swing components have special client properties that only the Metal look and feel pays
attention to. We’ve listed these property key names along with a brief description of their values.

NOTE These property key names are actually the values of protected fields defined in the
corresponding Meta1XXUI delegates in the javax.swing.plaf.metal package.
Unfortunately the only way to make use of them is to either hardcode them into
your application or subclass the corresponding Metal UI delegates to make these
fields available.

“JTree.lineStyle”
A String used to specify whether node relationships are displayed as angular con-
necting lines (“Angled”), horizontal lines defining cell boundaries (“Horizontal”
(default)), or no lines at all (“None”).

 “JScrollBar.isFreeStanding”
A Boolean value used to specify whether all sides of a JScrollbar will have an
etched border (Boolean.FALSE (default)) or only the top and left edges (Bool-
ean.TRUE).

 “JSlider.isFilled”
A Boolean value used to specify whether the lower portion of a slider should be
filled (Boolean.TRUE) or not (Boolean.FALSE (default)).

 “JToolBar.isRollover”
A Boolean value used to specify whether a toolbar button displays an etched border
only when the mouse is within its bounds and no border if it is not (Boolean.
TRUE), or whether to always use an etched border (Boolean.FALSE (default)).

18 CHAPTER 2 SWING MECHANICS

“ JInternalFrame.isPalette”
A Boolean value used to specify whether a very thin border is used (Boolean.
TRUE) or the regular border is used (Boolean.FALSE (default)).

NOTE There are also other non Metal-specific client properties used by various UI dele-
gates such as JTable.autoStartsEdit. The best way to find out about more cli-
ent properties is to look at the actual UI delegate source code. However, the use of
client properties often changes from release to release and for this reason avoid them
whenever possible.

2.1.2 Size and positioning

Because JComponent extends java.awt.Container, it inherits all the sizing and position-
ing functionality we are used to. We suggest you manage a component’s preferred, minimum,
and maximum sizes using the following methods:

 setPreferredSize(), getPreferredSize()

The most comfortable size of a component. Used by most layout managers to size
each component.

 setMinimumSize(), getMinimumSize()

Used during layout to act as a lower bounds for a component’s dimensions.
 setMaximumSize(), getMaximumSize()

Used during layout to act as an upper bounds for a component’s dimensions.

Each setXX()/getXX() method accepts/returns a Dimension instance. We will learn more
about what these sizes mean in terms of each layout manager in chapter 4. Whether a layout
manager pays attention to these sizes is solely based on that layout manager’s implementation.
It is perfectly feasible to construct a layout manager that simply ignores all of them, or pays
attention to only one. The sizing of components in a container is layout-manager specific.

JComponent’s setBounds() method can be used to assign a component both a size and
a position within its parent container. This overloaded method can take either a Rectangle
parameter (java.awt.Rectangle) or four int parameters representing the x-coordinate,
y-coordinate, width, and height. For example, the following two code segments are equivalent:

 myComponent.setBounds(120,120,300,300);

 Rectangle rec = new Rectangle(120,120,300,300);
 myComponent.setBounds(rec);

Note that setBounds() will not override any layout policies in effect due to a parent con-
tainer’s layout manager. For this reason, a call to setBounds() may appear to have been ignored
in some situations because it tried to do its job and was forced back to its original size by the
layout manager (layout managers always have the first crack at setting the size of a compo-
nent).

setBounds() is commonly used to manage child components in containers with no lay-
out manager (such as JLayeredPane, JDesktopPane, and JComponent itself). For instance,
we normally use setBounds() when adding a JInternalFrame to a JDesktopPane.

A component’s size can safely be queried in typical AWT style, such as this:

 int height = myComponent.getHeight();
 int width = myComponent.getWidth();

EVENT HANDLING AND DISPATCHING 19

NOTE This information is only meaningful after the component has been realized.

Size can also be retrieved as a Rectangle or a Dimension instance:

 Rectangle rec = myComponent.getBounds();
 Dimension dim = myComponent.getSize();

Rectangle contains four publicly accessible properties describing its location and size:

 int recX = rec.x;
 int recY = rec.y;
 int recWidth = rec.width;
 int recHeight = rec.height;

Dimension contains two publicly accessible properties describing size:

 int dimWidth = dim.width;
 int dimHeight = dim.height;

The coordinates returned in the Rectangle instance using getBounds() represent a com-
ponent’s location within its parent. These coordinates can also be obtained using the getX()
and getY() methods. Additionally, you can set a component’s position within its container
using the setLocation(int x, int y) method (but as with setBounds(), this method
may or may not have any effect depending on the layout manager in use).

JComponent also maintains an alignment. Horizontal and vertical alignments can be
specified by float values between 0.0 and 1.0: 0.5 means center, closer to 0.0 means left or top,
and closer to 1.0 means right or bottom. The corresponding JComponent methods are:

 setAlignmentX(float f)
 setAlignmentY(float f)

Alignment values are used only in containers managed by BoxLayout and OverlayLayout.

2.2 EVENT HANDLING AND DISPATCHING

Events occur any time a key or mouse button is pressed. The way components receive and
process events has not changed from JDK1.1. Swing components can generate many different
types of events, including those in java.awt.event and even more in javax.swing.event.
Many of the java.Swing.event event types are component-specific. Each event type is rep-
resented by an object that, at the very least, identifies the source of the event. Some events
carry additional information such as an event type name and identifier, and information
about the state of the source before and after the event was generated. Sources of events are
most commonly components or models, but different kinds of objects can also generate
events.

In order to receive notification of events we need to register listeners with the source
object. A listener is an implementation of any of the XXListener interfaces (where XX is an
event type) defined in the java.awt.event, java.beans, and javax.swing.event pack-
ages. There is always at least one method defined in each interface that takes a corresponding
XXEvent as a parameter. Classes that support notification of XXEvents generally implement
the XXListener interface, and have support for registering and unregistering those listeners
through the use of the addXXListener() and removeXXListener() methods, respectively.

20 CHAPTER 2 SWING MECHANICS

Most event sources allow any number of listeners to be registered with them. Similarly, any
listener instance can be registered to receive events from any number of event sources.

Usually classes that support XXEvents provide protected fireXX() methods used for
constructing event objects and sending them to event handlers for processing (see section 2.7.7
for an example of this). Application-defined events should use this same pattern.

JAVA 1.3 In Java 1.2 there was no way to access the listeners of a component without
subclassing. For this reason the getlisteners() method was added to
Component in Java 1.3. This method takes a listener Class instance as its
argument and returns an array of EventListeners (EventListener is the
interface all XXListeners extend). For example, to obtain all ActionListeners
attached to a given component we can do the following:

ActionListener[] actionListeners = (ActionListener[])
myComponent.getListeners(ActionListener.class);

JAVA 1.4 The getListeners() methods were stop gap measures created in the Java 1.3 to
allow direct access to the list of EventListeners registered with a specific compo-
nent, while keeping the changes to the AWT/Swing public API minimal. In version
1.4, the design team has opted for a more complete solution, more in line with the
JavaBean convention. We’ve listed the additions here:

java.awt.Component

In Java 1.3:
getListeners()
addHierarchyListener()
removeHierarchyListener()
addHierarchyBoundsListener()
removeHierarchyBoundsListener()

Java 1.4 added the following:
getComponentListeners()
getFocusListeners()
getHierarchyListeners()
getHierarchyBoundsListeners()
getKeyListeners()
getMouseListeners()
getMouseMotionListeners()
addMouseWheelListener()
removeMouseWheelListener()
getMouseWheelListeners()
getInputMethodListeners()
getContainerListeners()

javax.swing.JComponent

In Java 1.3:
getListeners()

Java 1.4 added the following:
getAncestorListeners()
getVetoableChangeListeners
getPropertyChangeListeners()

EVENT HANDLING AND DISPATCHING 21

For purposes of completeness, in tables 2.1 and 2.2 below we summarize the event listeners in
the java.awt.event and javax.swing.event packages (for more detail, please refer to
the JavaDoc documentation).

Table 2.1 Event listener interfaces in java.awt.events

Event Related to

ActionListener Action events
AdjustmentListener Adjustment events
AWTEventListener Observe passively all events dispatched within AWT
ComponentListener Component (move, size, hide, show) events
ContainerListener Container (ad, remove component) events
FocusListener Focus (gain, loss) events
HierarchyBoundsListener Hierarchy (ancestor moved/resized) events
HierarchyListener Hierarchy (visibility) events
InputMethodListener Input method events (multilingual framework)
ItemListener Item events
KeyListener Keyboard events
MouseListener Mouse buttons events
MouseMotionListener Mouse motion events
MouseWheelListener Mouse wheel events
TextListener Text events
WindowFocusListener Window focus events (new focus management framework)
WindowListener Window events (non focus related)
WindowStateListener Window state events

Table 2.2 Event listener interfaces in javax.swing.event

Event Related to

AncestorListener Changes to location and visible state of a JComponent or its parents
CaretListener Text cursor movement events
CellEditorListener Cell editor events
ChangeListener Change events (see p. 16)
DocumentListener Text document events
HyperlinkListener Hyperlink events
InternalFrameListener Internal frame events
ListDataListener List data events
ListSelectionListener List selection events
MenuDragMouseListener Menu mouse movement events
MenuKeyListener Menu keyboard events
MenuListener Menu selection events
MouseInputListener Aggregrated mouse and mouse motion events
PopupMenuListener Popup meny events
TableColumnModelListener Table column events
TableModelListener Table model data events
TreeExpansionListener Tree expand/collapse events
TreeModelListener Tree model data events
TreeSelectionListener Tree selection events
TreeWillExpandListener Tree expand/collapse pending events
UndoableEditListener Undo/Redo events

22 CHAPTER 2 SWING MECHANICS

2.2.1 EventListenerList

class javax.swing.event.EventListenerList
EventListenerList is an array of XXEvent/XXListener pairs. JComponent and each of
its descendants use an EventListenerList to maintain their listeners. All default models
also maintain listeners and an EventListenerList. When a listener is added to a Swing
component or model the associated event’s Class instance (used to identify event type) is
added to its EventListenerList array, followed by the listener instance itself. Since these
pairs are stored in an array rather than a mutable collection (for efficiency purposes), a new
array is created on each addition or removal using the System.arrayCopy() method. For
thread safety the methods for adding and removing listeners from an EventListenerList
synchronize access to the array when it is manipulated.

When events are received the array is traversed and events are sent to each listener with
a matching type. Because the array is ordered in an XXEvent, XXListener, YYEvent, YYLis-
tener fashion, a listener corresponding to a given event type is always next in the array. This
approach allows very efficient event-dispatching routines (see section 2.7.7 for an example).

JComponent defines its EventListenerList as a protected field called listenerList
so that all subclasses inherit it. Swing components manage most of their listeners directly
through listenerList.

2.2.2 Event-dispatching thread

class java.awt.EventDispatchThread [package private]
By default all AWT and Swing-based applications start off with two threads. One is the main
application thread which handles execution of the main() method. The other, referred to as
the event-dispatching thread, is responsible for handling events, painting, and layout. All events
are processed by the listeners that receive them within the event-dispatching thread. For
example, the code you write inside the body of an actionPerformed() method is executed
within the event-dispatching thread automatically (you don’t have to do anything special to
make this happen). This is also the case with all other event-handling methods. All painting
and component layout also occurs within this thread. For these reasons the event-dispatching
thread is of primary importance to Swing and AWT, and plays a fundamental role in keeping
updates to component state and display under control

Associated with the event-dispatching thread is a FIFO (first in first out) queue of events
called the system event queue (an instance of java.awt.EventQueue). This gets filled up, as
does any FIFO queue, in a serial fashion. Each request takes its turn executing event-handling
code, whether it is updating component properties, layout, or painting. All events are processed
serially to avoid such situations as a component’s state being modified in the middle of a
repaint. Knowing this, you must be careful not to dispatch events outside of the event-
dispatching thread. For instance, calling a fireXX() method directly from within a separate
(either the main application thread or one that you created yourself) is unsafe.

Since the event-dispatching thread executes all listener methods, painting and layout, it
is important that event-handling, painting, and layout methods be executed quickly. Other-
wise the whole system event queue will be blocked waiting for one event process, repaint, or
layout to finish, and your application will appear to be frozen or locked up.

MULTITHREADING 23

NOTE If you are ever in doubt whether or not event-handling code you have written is
being handled in the right thread, the following static method comes in handy:

SwingUtilities.isEventDispatchThread(). This will return true or false
indicating whether or not the method was called from within the event-dispatching
thread.

To illustrate this point, let’s say you have a Swing application running in front of you with a
button and table of data. The button has an attached ActionListener and inside this lis-
tener’s actionPerformed() method a database access occurs. After the data is retrieved it is
then added to the table’s model and the table updates its display accordingly. The problem
with this is that if the connection to the database is slow or not working when we press the
button, or if the amount of data retrieved is large and takes a while to send, the GUI will
become unresponsive until the send finishes or an exception is thrown. To solve this problem
and ensure that the actionPerformed() method gets executed quickly, you need to create
and use your own separate thread for doing this time-consuming work.

2.3 MULTITHREADING

Multithreading is necessary when any time-consuming work occurs in a GUI application.
The following code shows how to create and start a separate thread:

Thread workHard = new Thread() {
 public void run() {
 doToughWork(); // do some time-intensive work
}

};
workHard.start(); {

However, designing multithreaded GUI applications is not just simply creating separate
threads for time-consuming work (although this is a big part of it). There are several other
things that need to be kept in mind when designing such applications. The first is that all
updates to any component’s state should be executed from within the event-dispatching
thread only (see 2.2.2). For example, let’s say you have created your own separate thread that
starts when the user presses a button. This thread accesses a database to gather data for display
in a table. When the data is retrieved the table model and display must be updated, but this
update must occur in the event-dispatching thread, not within our separate thread. To
accomplish this we need a way of wrapping up code and sending it to the system event queue
for execution in the event-dispatching thread.

NOTE Use invokeLater() instead of invokeAndWait() whenever possible. If you
must use invokeAndWait() make sure that there are no locks held by the calling
thread that another thread might need during the operation.

Swing provides a very helpful class that, among other things, allows us to add Runnable
objects to the system event queue. This class is called SwingUtilities and it contains two
methods that we are interested in: invokeLater() and invokeAndWait(). The first
method adds a Runnable to the system event queue and returns immediately. The second

24 CHAPTER 2 SWING MECHANICS

method adds a Runnable and waits for it to be dispatched, then returns after it finishes. The
basic syntax of each follows:

 Runnable trivialRunnable = new Runnable() {
 public void run() {
 doWork(); // do some work
 }
 };
 SwingUtilities.invokeLater(trivialRunnable);

 try {
 Runnable trivialRunnable2 = new Runnable() {
 public void run() {
 doWork(); // do some work
 }
 };
 SwingUtilities.invokeAndWait(trivialRunnable2);
 }
 catch (InterruptedException ie) {
 System.out.println("...waiting thread interrupted!");
 }
 catch (InvocationTargetException ite) {
 System.out.println(
 "...uncaught exception within Runnable’s run()");
 }

So, putting this all together, the following code shows a typical way to build your own sepa-
rate thread to do some time-intensive work while using invokeLater() or invokeAnd-
Wait() in order to safely update the state of any components in the event-dispatching thread:

 Thread workHard = new Thread() {
 public void run() {
 doToughWork(); // do some time-intensive work
 SwingUtilities.invokeLater(new Runnable () {
 public void run() {
 updateComponents(); // do some work in event thread
 }
 });
 }
 };
 workHarder.start();

NOTE It is often necessary to explicitly lower the priority of a separate thread so that the
event-dispatching thread will be given more processor time and thus allow the GUI
to remain responsive. If you have created a separate thread for time-consuming
work and you notice that the GUI is still slow or freezes often, try lowering the
priority of your separate thread before starting it:

workHard.setPriority(Thread.MIN_PRIORITY);

This use of a separate thread solves the problem of responsiveness and it correctly dispatches
component-related code to the event-dispatching thread. However, in an ideal solution the
user should be able to interrupt the time-intensive procedure. If you are waiting to establish a

MULTITHREADING 25

network connection you certainly don’t want to continue waiting indefinitely if the
destination is not responding. So in most circumstances the user should have the ability to
interrupt the thread. The following pseudocode shows a typical way to accomplish this, where
the ActionListener attached to stopButton causes the thread to be interrupted, updating
component state accordingly:

JButton stopButton = new JButton(“Stop”);
// Before starting the thread make sure
// the stop button is enabled.
stopButton.setEnabled(true);

Thread workHard = new Thread() {
public void run() {
doToughWork();
SwingUtilities.invokeLater {new Runnable() {
public void run() {
updateComponents();

}
});

}
};
workHard.start();

Public void doToughwork() {
try {
while(job is not finished) {
// We must do at least one of the following:
// 1. Periodically check Thread.interrupted()
// 2. Periodically sleep or wait
if (thread.interrupted()) {
throw new InterruptedException();

}
Thread.wait(1000);

}
}
catch (InterruptedException e) {

// Notify the application that the thread has
// has been interrupted

}
// No matter what happens, disable the
// stop button when finished
finally {

stopButton.setEnabled(false);
}

}

actionListener stopListener = new ActionListener() {
public void actionPerformed(ActionEvent e) {
workHard.interrupt();

}
};
stopbutton.addActionListener(stopListener);

26 CHAPTER 2 SWING MECHANICS

stopButton interrupts the workHard thread when it is pressed. There are two ways that do-
ToughWork() will know whether workHard (the thread that doToughWork() is executed in)
has been interrupted by stopButton. If the thread is currently sleeping or waiting, an
InterruptedException will be thrown which you can catch and process accordingly. The
only other way to detect interruption is to periodically check the interrupted state by calling
Thread.interrupted(). Both cases are handled in the doToughWork() method.

This approach is often used for constructing and displaying complex dialogs, I/O
processes that result in component state changes (such as loading a document into a text
component), intensive class loading or calculations, waiting for messages, and to establish
network or database connections.

REFERENCE Members of the Swing team have written a few articles about using threads with
Swing, and have provided a class called SwingWorker that makes managing the
type of multithreading described here more convenient. See http://java.sun.com/
products/jfc/tsc.

Additionally, progress bars are often used to further enhance the user experience by visually
displaying how much of a time-consuming process is complete. Chapter 13 covers this in detail.

2.3.1 Special cases

There are some special cases in which we do not need to delegate code affecting the state of
components to the event-dispatching thread:

1 Some methods in Swing, although few and far between, are marked as thread-safe in the
API documentation and do not need special consideration. Some methods are thread-
safe but are not marked as such: repaint(), revalidate(), and invalidate().

2 A component can be constructed and manipulated in any fashion we like, without
regard for threads, as long as it has not yet been realized (meaning it has been displayed
or a repaint request has been queued). Top-level containers (JFrame, JDialog, JApplet)
are realized after any of setVisible(true), show(), or pack() have been called on
them. Also note that a component is considered realized as soon as it is added to a
realized container.

3 When dealing with Swing applets (JApplets), all components can be constructed and
manipulated without regard for threads until the start() method has been called; this
occurs after the init() method.

2.3.2 How do we build our own thread-safe methods?

Building our own thread-safe cases is quite easy. Here is a thread-safe method template we can
use to guarantee that a method’s code only executes in the event-dispatching thread:

 public void doThreadSafeWork() {
 if (SwingUtilities.isEventDispatchThread()) {
 //
 // do all work here...
 //
 }
 else {

TIMERS 27

 Runnable callDoThreadSafeWork = new Runnable() {
 public void run() {
 doThreadSafeWork();
 }
 };
 SwingUtilities.invokeLater(callDoThreadSafeWork);
 }
 }

2.4 TIMERS

class javax.swing.Timer
You can think of the Timer as a unique thread conveniently provided by Swing to fire
ActionEvents at specified intervals (although this is not exactly how a Timer works inter-
nally, as you will see in section 2.6). ActionListeners can be registered to receive these
events just as you register them on buttons and other components. To create a simple Timer
that fires ActionEvents every second, you can do something like the following:

import java.awt.event.*;
import javax.swing.*;

class TimerTest
{
 public TimerTest() {
 ActionListener act = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Swing is powerful!!");
 }
 };
 Timer tim = new Timer(1000, act);
 tim.start();

 while(true) {};
 }

 public static void main(String args[]) {
 new TimerTest();
 }
}

First we set up an ActionListener to receive ActionEvents. Then we build a new Timer
by passing the following parameters to the constructor: the time in milliseconds between
events, (the delay time), and an ActionListener to send Timer events to. Finally, we call
the Timer’s start() method to turn it on. Since a GUI isn’t running for us, the program will
immediately exit; therefore, we set up a loop to let the Timer continue to do its job indefi-
nitely (we will explain why this is necessary in section 2.6).

When you run this code, you will see “Swing is powerful!!” sent to standard output every
second. Note that the Timer does not fire an event right when it is started. This is because its
initial delay time defaults to the delay time passed to the constructor. If you want the Timer
to fire an event right when it is started, you need to set the initial delay time to 0 using the
setInitialDelay() method.

28 CHAPTER 2 SWING MECHANICS

At any point, you can call stop() to stop the Timer and start() to start it (start()
does nothing if the Timer is already running). You can call restart() on a Timer to start
the whole process over. The restart() method is just a shortcut way to call stop() and
start() sequentially.

You can set a Timer’s delay using the setDelay() method and tell it whether to repeat
using the setRepeats() method. Once a Timer has been set to non-repeating, it will fire
only one action when started (or if it is currently running), and then it will stop.

The setCoalesce() method allows several Timer event postings to be combined (coa-
lesced) into one. This can be useful under heavy loads when the TimerQueue thread (see 2.6)
doesn’t have enough processing time to handle all its Timers.

Timers are easy to use and can often be used as convenient replacements for building our
own threads. However, there is a lot more going on behind the scenes that deserves to be
revealed. Before we are ready to look at how Timers work under the hood, we’ll take a look
at how Swing’s AppContext service class mapping works.

JAVA 1.3 A new Timer class, and an associated TimerTask class, have been added to the
java.util package in Java 1.3. The java.util.Timer class differs from the
javax.swing.Timer class in that it has an associated separate thread of execu-
tion. This thread can be specified as either a deamon or non-deamon thread. Tim-
erTasks, which implement the Runnable interface, can be added to a Timer for
execution once or at given intervals at a given future time. This combination adds
yet another means for building multithreaded applications.

2.5 APPCONTEXT SERVICES

class sun.awt.AppContext [platform specific]
This section is of interest only to those seeking a low-level understanding of how service classes
are shared throughout a Java session. Be aware that AppContext is not meant to be used by
any developer, as it is not part of the Java 2 core API. We are discussing it here only to facili-
tate a more thorough understanding of how Swing service classes work behind the scenes.

AppContext is an application/applet (we’ll say app for short) service table that is unique
to each Java session. For applets, a separate AppContext exists for each SecurityContext
which corresponds to an applet’s codebase. For instance, if we have two applets on the same
page, each using code from a different directory, both of those applets would have distinct
SecurityContexts associated with them. If, however, they each were loaded from the same
codebase, they would necessarily share a SecurityContext. Java applications do not have
SecurityContexts. Rather, they run in namespaces which are distinguished by ClassLoaders.
We will not go into the details of SecurityContexts or ClassLoaders here, but suffice it
to say that they can be used by SecurityManagers to indicate security domains. The App-
Context class is designed to take advantage of this by allowing only one instance of itself to
exist per security domain. In this way, applets from different codebases cannot access each
other’s AppContext. So why is this significant?

A shared instance is an instance of a class that can normally be retrieved using a static method
defined in that class. Each AppContext maintains a Hashtable of shared instances available
to the associated security domain, and each instance is referred to as a service. When a service

APPCONTEXT SERVICES 29

is requested for the first time, it registers its shared instance with the associated AppContext,
meaning it creates a new instance of itself and adds it to the AppContext key/value mapping.

For example, here are PopupFactory’s getSharedInstanceKey() and setShared-
Instance() methods:

private static final Object SharedInstanceKey =
new StringBuffer(PopupFactory.SharedInstanceKey”);

public static void setSharedInstance(PopupFactory factory) {
If (factor == null) {
throw new IllegalArgumentException(
“PopupFactor can not be null”);

}
SwingUtilities.appContextPut(SharedInstance() {

}

public static PopupFactory getSharedInstance() {
PopupFactory factory =
(PopupFactory) Swingtilities.appContextGet (
SharedInstanceKey);

if (factory == null) {
factory = new PopupFactory();
setSharedInstance(factory);

}
return factory;

}

One reason these shared instances are registered with an AppContext, instead of being
implemented as normal static instances directly retrievable by the service class, is for security
purposes. Services registered with an AppContext can only be accessed by trusted apps,
whereas classes directly providing static instances of themselves allow these instances to be used
on a global basis (therefore requiring us to implement our own security mechanism if we want
to limit access to them). Another reason is robustness. According to Tom Ball of Sun
Microsystems, the less applets interact with each other in undocumented ways, the more
robust they can be.

For example, suppose an app tries to access all of the key events on the system EventQueue
(where all events get queued for processing in the event-dispatching thread) to try to steal pass-
words. By using distinct EventQueues in each AppContext, the only key events that the app
would have access to are its own. (There is, in fact, only one EventQueue per AppContext.)

So how do you access AppContext to add, remove, and retrieve services? AppContext
is not meant to be accessed by developers. But you can if you really need to, though it would
guarantee that your code would never be certified as 100% pure, because AppContext is not
part of the core API. Nevertheless, here’s what is involved: The static AppContext.getApp-
Context() method determines the correct AppContext to use, depending on whether you
are running an applet or an application. You can then use the returned AppletContext’s
put(), get(), and remove() methods to manage shared instances. In order to do this, you
would need to implement your own methods, such as the following:

 private static Object appContextGet(Object key) {
 return sun.awt.AppContext.getAppContext().get(key);
 }

30 CHAPTER 2 SWING MECHANICS

 private static void appContextPut(Object key, Object value) {
 sun.awt.AppContext.getAppContext().put(key, value);
 }

 private static void appContextRemove(Object key) {
 sun.awt.AppContext.getAppContext().remove(key);
 }

In Swing, this functionality is implemented as three SwingUtilities static methods (refer
to SwingUtilities.java source code):

 static void appContextPut(Object key, Object value)
 static void appContextRemove(Object key, Object value)
 static Object appContextGet(Object key)

However, you cannot access these methods because they are package private. They are used by
Swing’s service classes. Some of the Swing service classes that register shared instances with
AppContext include PopupFactory, TimerQueue, RepaintManager, and UIMan-

ager.LAFState (all of which we will discuss at some point in this book). Interestingly,
SwingUtilities secretly provides an invisible Frame instance registered with AppContext
to act as the parent to all JDialogs and JWindows with null owners.

2.6 INSIDE TIMERS AND THE TIMERQUEUE

class javax.swing.TimerQueue [package private]
A Timer is an object containing a small Runnable capable of dispatching ActionEvents to a
list of ActionListeners (which are stored in an EventListenerList). Each Timer instance
is managed by the shared TimerQueue instance (which is registered with AppContext).

A TimerQueue is a service class whose job it is to manage all Timer instances in a Java
session. The TimerQueue class provides the static sharedInstance() method to retrieve the
TimerQueue service from AppContext. Whenever a new Timer is created and started it is
added to the shared TimerQueue, which maintains a singly linked list of Timers sorted by the
order in which they will expire (which is equal to the amount of time before a Timer will fire
the next event).

The TimerQueue is a daemon thread which is started immediately upon instantiation.
This occurs when TimerQueue.sharedInstance() is called for the first time (such as when
the first Timer in a Java session is started). It continuously waits for the Timer with the nearest
expiration time to expire. Once this occurs, it signals that Timer to post ActionEvents to all
its listeners, it assigns a new Timer as the head of the list, and finally, it removes the expired
Timer. If the expired Timer’s repeat mode is set to true, it is added back into the list at the
appropriate place based on its delay time.

NOTE The real reason why the Timer example from section 2.4 would exit immediately
if we didn’t build a loop is because the TimerQueue is a daemon thread. Daemon
threads are service threads. When the Java virtual machine has only daemon threads
running, it will exit because it assumes that no real work is being done. Normally,
this behavior is desirable.

JAVABEANS ARCHITECTURE 31

A Timer’s events are always posted in a thread-safe manner to the event-dispatching thread by
sending its Runnable object to SwingUtilities.invokeLater().

2.7 JAVABEANS ARCHITECTURE

Since we are concerned with creating Swing applications in this book, we need to understand
and appreciate the fact that every component in Swing is a JavaBean.

If you are familiar with the JavaBeans component model, you may want to skip to section 2.8.

2.7.1 The JavaBeans component model

The JavaBeans specification identifies five features that each bean is expected to provide. We
will review these features here, along with the classes and mechanisms that make them possible.
We’ll construct a simple component such as a label, and apply what we discuss in this section
to that component. We will also assume that you have a basic knowledge of the Java reflection
API (the following list comes directly from the API documentation):

• Instances of Class represent classes and interfaces in a running Java application.
• A Method provides information about, and access to, a single method of a class or an interface.
• A Field provides information about, and dynamic access to, a single field of a class

or an interface.

2.7.2 Introspection

Introspection is the ability to discover the methods, properties, and events information of a bean.
This is accomplished through use of the java.beans.Introspector class. Introspector
provides static methods to generate a BeanInfo object containing all discoverable information
about a specific bean. This includes information from each of a bean’s superclasses, unless we
specify at which superclass introspection should stop (for example, you can specify the “depth”
of an introspection). The following code retrieves all discoverable information of a bean:

 BeanInfo myJavaBeanInfo =
 Introspector.getBeanInfo(myJavaBean);

A BeanInfo object partitions all of a bean’s information into several groups. Here are a few:

• A BeanDescriptor: Provides general descriptive information such as a display name.
• An array of EventSetDescriptors: Provides information about a set of events a bean

fires. These can be used to retrieve that bean’s event-listener-related methods as Method
instances, among other things.

• An array of MethodDescriptors: Provides information about the methods of a bean
that are externally accessible (this would include, for instance, all public methods). This
information is used to construct a Method instance for each method.

• An array of PropertyDescriptors: Provides information about each property that a
bean maintains which can be accessed through get, set, and/or is methods. These
objects can be used to construct Method and Class instances corresponding to that
property’s accessor methods and class type respectively.

32 CHAPTER 2 SWING MECHANICS

2.7.3 Properties

As we discussed in section 2.1.1, beans support different types of properties. Simple properties
are variables that, when modified, mean a bean will do nothing. Bound and constrained prop-
erties are variables that, when modified, instruct a bean to send notification events to any lis-
teners. This notification takes the form of an event object which contains the property name,
the old property value, and the new property value. Whenever a bound property changes, the
bean should send out a PropertyChangeEvent. Whenever a constrained property is about
to change, the bean should send out a PropertyChangeEvent before the change occurs,
allowing the change to possibly be vetoed. Other objects can listen for these events and proc-
ess them accordingly; this leads to communication (see 2.7.5).

Associated with properties are a bean’s setXX(), getXX(), and isXX() methods. If a
setXX() method is available, the associated property is said to be writeable. If a getXX() or
isXX() method is available, the associated property is said to be readable. An isXX() method
normally corresponds to retrieval of a boolean property (occasionally, getXX() methods are
used for this as well).

2.7.4 Customization

A bean’s properties are exposed through its setXX(), getXX(), and isXX() methods, and
they can be modified at run-time (or design-time). JavaBeans are commonly used in interface
development environments where property sheets can be displayed for each bean, thereby
allowing read/write (depending on the available accessors) property functionality.

2.7.5 Communication

Beans are designed to send events that notify all event listeners registered with that bean
whenever a bound or constrained property changes value. Apps are constructed by registering
listeners from bean to bean. Since you can use introspection to determine event listener infor-
mation about any bean, design tools can take advantage of this knowledge to allow more pow-
erful, design-time customization. Communication is the basic glue that holds an interactive
GUI together.

2.7.6 Persistency

All JavaBeans must implement the Serializable interface, either directly or indirectly, to
allow serialization of their state into persistent storage (storage that exists beyond program ter-
mination). All objects are saved except those declared transient. (Note that JComponent
directly implements this interface.)

Classes which need special processing during serialization need to implement the follow-
ing private methods:

 private void writeObject(java.io.ObjectOutputStream out)
 private void readObject(java.io.ObjectInputStream in)

These methods are called to write or read an instance of this class to a stream. The default seri-
alization mechanism will be invoked to serialize all subclasses because these are private meth-
ods. (Refer to the API documentation or Java tutorial for more information about
serialization.)

JAVABEANS ARCHITECTURE 33

JAVA 1.4 Standard serialization of Swing-based classes has not been recommended since
the earliest versions of Swing, and according to the API documentation, it is still
not ready. However, as of Java 1.4. all JavaBeans (and thus all Swing compo-
nents) are serializable into XML form using the java.beans.XMLEncoder class:

“Warning: Serialized objects of this class will not be compatible with future
Swing releases. The current serialization support is appropriate for short term
storage or RMI between applications running the same version of Swing. As of

1.4, support for long-term storage of all JavaBeansTM has been added to the
java.beans package. Please see XMLEncoder.”

To serialize a component to an XML file you can write code similar to
the following:

XMLEncoder encoder = new XMLEncoder(
new BufferedOutputStream(
new FileOutputStream(“myTextField.xml”)));

encoder.writeObject (myTextField);
encoder.close();

Similarly, to recreate an object serialized using XMLEncoder, the java.beans.XML-
Decoder class can be used:

XMLDecoder decoder = new XMLDecoder(
new BufferedInputStream(
new FileInputStream(“myTextField.xml”)));

myTextField = (JTextField) decoder.readObject();
decoder.close();

Classes that intend to take complete control of their serialization and deserialization should,
instead, implement the Externalizable interface.

Two methods are defined in the Externalizable interface:

 public void writeExternal(ObjectOutput out)
 public void readExternal(ObjectInput in)

These methods will be invoked when writeObject() and readObject() (discussed above)
are invoked to handle any serialization/deserialization.

2.7.7 A simple Swing-based JavaBean

Example 2.1 demonstrates how to build a serializable Swing-based JavaBean with simple,
bound, constrained, and change properties.

Example 2.1

see \Chapter2\1

import javax.swing.*;
import javax.swing.event.*;
import java.beans.*;

BakedBean.java

34 CHAPTER 2 SWING MECHANICS

import java.awt.*;
import java.io.*;

public class BakedBean extends JComponent implements Externalizable
{
 // Property names (only needed for bound or constrained properties)
 public static final String BEAN_VALUE = "Value";
 public static final String BEAN_COLOR = "Color";

 // Properties
 private Font m_beanFont; // simple
 private Dimension m_beanDimension; // simple
 private int m_beanValue; // bound
 private Color m_beanColor; // constrained
 private String m_beanString; // change

 // Manages all PropertyChangeListeners
 protected SwingPropertyChangeSupport m_supporter =
 new SwingPropertyChangeSupport(this);

 // Manages all VetoableChangeListeners
 protected VetoableChangeSupport m_vetoer =
 new VetoableChangeSupport(this);

 // Only one ChangeEvent is needed since the event's only
 // state is the source property. The source of events generated
 // is always "this". You’ll see this in lots of Swing source.
 protected transient ChangeEvent m_changeEvent = null;

 // This can manage all types of listeners, as long as we set
 // up the fireXX methods to correctly look through this list.
 // This makes you appreciate the XXSupport classes.
 protected EventListenerList m_listenerList =
 new EventListenerList();

 public BakedBean() {
 m_beanFont = new Font("SansSerif", Font.BOLD | Font.ITALIC, 12);
 m_beanDimension = new Dimension(150,100);
 m_beanValue = 0;
 m_beanColor = Color.black;
 m_beanString = "BakedBean #";
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(m_beanColor);
 g.setFont(m_beanFont);
 g.drawString(m_beanString + m_beanValue,30,30);
 }

 public void setBeanFont(Font font) {
 m_beanFont = font;
 }

 public Font getBeanFont() {
 return m_beanFont;
 }

JAVABEANS ARCHITECTURE 35

 public void setBeanValue(int newValue) {
 int oldValue = m_beanValue;
 m_beanValue = newValue;

 // Notify all PropertyChangeListeners
 m_supporter.firePropertyChange(BEAN_VALUE,
 new Integer(oldValue), new Integer(newValue));
 }

 public int getBeanValue() {
 return m_beanValue;
 }

 public void setBeanColor(Color newColor)
 throws PropertyVetoException {
 Color oldColor = m_beanColor;

 // Notify all VetoableChangeListeners before making change
 // ...an exception will be thrown here if there is a veto
 // ...if not, continue on and make the change
 m_vetoer.fireVetoableChange(BEAN_COLOR, oldColor, newColor);

 m_beanColor = newColor;
 m_supporter.firePropertyChange(BEAN_COLOR, oldColor, newColor);
 }

 public Color getBeanColor() {
 return m_beanColor;
 }

 public void setBeanString(String newString) {
 m_beanString = newString;

 // Notify all ChangeListeners
 fireStateChanged();
 }

 public String getBeanString() {
 return m_beanString;
 }

 public void setPreferredSize(Dimension dim) {
 m_beanDimension = dim;
 }

 public Dimension getPreferredSize() {
 return m_beanDimension;
 }

 public void setMinimumSize(Dimension dim) {
 m_beanDimension = dim;
 }

 public Dimension getMinimumSize() {
 return m_beanDimension;
 }

 public void addPropertyChangeListener(
 PropertyChangeListener l) {

36 CHAPTER 2 SWING MECHANICS

 m_supporter.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener l) {
 m_supporter.removePropertyChangeListener(l);
 }

 public void addVetoableChangeListener(
 VetoableChangeListener l) {
 m_vetoer.addVetoableChangeListener(l);
 }

 public void removeVetoableChangeListener(
 VetoableChangeListener l) {
 m_vetoer.removeVetoableChangeListener(l);
 }

 // Remember that EventListenerList is an array of
 // key/value pairs:
 // key = XXListener class reference
 // value = XXListener instance
 public void addChangeListener(ChangeListener l) {
 m_listenerList.add(ChangeListener.class, l);
 }

 public void removeChangeListener(ChangeListener l) {
 m_listenerList.remove(ChangeListener.class, l);
 }

 // This is typical EventListenerList dispatching code.
 // You’ll see this in lots of Swing source.
 protected void fireStateChanged() {
 Object[] listeners = m_listenerList.getListenerList();
 // Process the listeners last to first, notifying
 // those that are interested in this event
 for (int i = listeners.length-2; i>=0; i-=2) {
 if (listeners[i]==ChangeListener.class) {
 if (m_changeEvent == null)
 m_changeEvent = new ChangeEvent(this);
 ((ChangeListener)listeners[i+1]).stateChanged(m_changeEvent);
 }
 }
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeObject(m_beanFont);
 out.writeObject(m_beanDimension);
 out.writeInt(m_beanValue);
 out.writeObject(m_beanColor);
 out.writeObject(m_beanString);
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 setBeanFont((Font)in.readObject());
 setPreferredSize((Dimension)in.readObject());

JAVABEANS ARCHITECTURE 37

 // Use preferred size for minimum size
 setMinimumSize(getPreferredSize());
 setBeanValue(in.readInt());
 try {
 setBeanColor((Color)in.readObject());
 }
 catch (PropertyVetoException pve) {
 System.out.println("Color change vetoed.");
 }
 setBeanString((String)in.readObject());
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("BakedBean");
 frame.getContentPane().add(new BakedBean());

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 frame.pack();
 }
}

BakedBean has a visual representation (this is not a requirement for a bean). It has properties:
m_beanValue, m_beanColor, m_beanFont, m_beanDimension, and m_beanString. It
supports persistency by implementing the Externalizable interface and implementing the
writeExternal() and readExternal() methods to control its own serialization (note
that the orders in which data is written and read match). BakedBean supports customization
through its setXX() and getXX() methods, and it supports communication by allowing the
registration of PropertyChangeListeners, VetoableChangeListeners, and ChangeLis-
teners. And, without having to do anything special, it supports introspection.

Attaching a main method to display BakedBean in a frame does not get in the way of any
JavaBeans functionality. Figure 2.1 shows BakedBean when it is executed as an application.

In chapter 18, section 18.9, we will construct a full-featured JavaBeans property editing envi-
ronment. Figure 2.2 shows a BakedBean instance in this environment. The BakedBean
shown has had its m_beanDimension, m_beanColor, and m_beanValue properties modi-
fied with our property editor, and it was then serialized to disk. What figure 2.2 really shows is
an instance of that BakedBean after it had been deserialized (loaded from disk). Any Swing
component can be created, modified, serialized, and deserialized using this environment
because every component is JavaBeans compliant.

Figure 2.1
BakedBean in our custom
JavaBeans property editor

38 CHAPTER 2 SWING MECHANICS

2.8 FONTS, COLORS, GRAPHICS, AND TEXT

Now to begin our look at how to render fonts, colors, and text using graphics objects.

2.8.1 Fonts

class java.awt.Font, abstract class java.awt.GraphicsEnvironment
As we saw in the BakedBean example, fonts are quite easy to create:

 m_beanFont = new Font("SansSerif", Font.BOLD | Font.ITALIC, 12);

In this code, SansSerif is the font name, Font.BOLD | Font.ITALIC is the font style (which
in this case is both bold and italic), and 12 is the font size. The Font class defines three
static int constants to denote font style: Font.BOLD, Font.ITALIC, and Font.PLAIN.
You can specify font size as any int in the Font constructor. Using Java 2, we ask the local
GraphicsEnvironment for a list of available font names at run-time.

 GraphicsEnvironment ge = GraphicsEnvironment.
 getLocalGraphicsEnvironment();
 String[] fontNames = ge.getAvailableFontFamilyNames();

NOTE Java 2 introduces a new, powerful mechanism for communicating with devices that
can render graphics, such as screens, printers, or image buffers. These devices are rep-
resented as instances of the GraphicsDevice class. Interestingly, a GraphicsDevice
might reside on the local machine, or it might reside on a remote machine. Each
GraphicsDevice has a set of GraphicsConfiguration objects associated with
it. A GraphicsConfiguration describes specific characteristics of the associated
device. Usually each GraphicsConfiguration of a GraphicsDevice represents
a different mode of operation (for instance, resolution and the number of colors).

Figure 2.2 BakedBean in our custom JavaBeans property editor

FONTS, COLORS, GRAPHICS, AND TEXT 39

NOTE In JDK1.1 code, getting a list of font names often looked like this:

String[] fontnames = Toolkit.getDefaultToolkit().getFontList();

The getFontList() method has been deprecated in Java 2, and this code should
be updated.

GraphicsEnvironment is an abstract class that describes a collection of GraphicsDevices.
Subclasses of GraphicsEnvironment must provide three methods for retrieving arrays of
Fonts and Font information:

Font[] getAllFonts(): Retrieves all available Fonts in one-point size.
String[] getAvailableFontFamilyNames(): Retrieves the names of all available

font families.
String[] getAvailableFontFamilyNames(Locale l): Retrieves the names of all

available font families using the specific Locale (internationalization support).
GraphicsEnvironment also provides static methods for retrieving GraphicsDevices

and the local GraphicsEnvironment instance. In order to find out what Fonts are available to
the system on which your program is running, you must refer to this local GraphicsEnviron-
ment instance, as shown above. It is much more efficient and convenient to retrieve the avail-
able names and use them to construct Fonts than it is to retrieve an actual array of Font objects
(no less, in one-point size).

You might think that, given a Font object, you can use typical getXX()/setXX()
accessors to alter its name, style, and size. Well, you would be half right. You can use getXX()
methods to retrieve this information from a Font:

 String getName()
 int getSize()
 float getSize2D()
 int getStyle()

However, you cannot use typical setXX() methods. Instead, you must use one of the follow-
ing Font instance methods to derive a new Font:

 deriveFont(float size)
 deriveFont(int style)
 deriveFont(int style, float size)
 deriveFont(Map attributes)
 deriveFont(AffineTransform trans)
 deriveFont(int style, AffineTransform trans)

Normally, you will only be interested in the first three methods.

NOTE AffineTransforms are used in the world of Java 2D to perform things such as trans-
lations, scales, flips, rotations, and shears. A Map is an object that maps keys to values
(it does not contain the objects involved), and the attributes referred to here are key/
value pairs as described in the API documents for java.text.TextAttribute.

40 CHAPTER 2 SWING MECHANICS

2.8.2 Colors

class java.awt.Color
The Color class provides several static Color instances to be used for convenience (Color.blue,
Color.yellow, etc.). You can also construct a Color using the following constructors,
among others:

 Color(float r, float g, float b)
 Color(int r, int g, int b)
 Color(float r, float g, float b, float a)
 Color(int r, int g, int b, int a)

Normally you use the first two methods, and if you are familiar with JDK1.1, you will proba-
bly recognize them. The first method allows red, green, and blue values to be specified as
floats from 0.0 to 1.0. The second method takes these values as ints from 0 to 255.

The second two methods are new to Java 2. They each contain a fourth parameter which
represents the Color’s alpha value. The alpha value directly controls transparency. It defaults
to 1.0 or 255, which means completely opaque. 0.0 or 0 means completely transparent.

As with Fonts, there are plenty of getXX() accessors but no setXX() accessors. Instead
of modifying a Color object, we are normally expected to create a new one.

NOTE The Color class does have static brighter() and darker() methods that return
a Color brighter or darker than the Color specified, but their behavior is unpre-
dictable due to internal rounding errors. We suggest staying away from these meth-
ods for most practical purposes.

By specifying an alpha value, you can use the resulting Color as a component’s background to
make it transparent. This will work for any lightweight component provided by Swing such as
labels, text components, and internal frames. (Of course, there will be component-specific
issues involved, such as making the borders and title bar of an internal frame transparent.)
The next section demonstrates a simple Swing canvas example that uses the alpha value to
paint some transparent shapes.

NOTE A Swing component’s opaque property, controlled using setOpaque(), is not di-
rectly related to Color transparency. For instance, if you have an opaque JLabel
whose background has been set to a transparent green (Color(0,255,0,150)) the
label’s bounds will be completely filled with this color only because it is opaque.
You will be able to see through it only because the color is transparent. If you then
turned off opacity, the background of the label would not be rendered. Both need to
be used together to create transparent components, but they are not directly related.

2.8.3 Graphics and text

abstract class java.awt.Graphics, abstract class java.awt.FontMetrics
Painting is different in Swing than it is in AWT. In AWT you typically override Component’s
paint() method to do rendering, and you override the update() method for things like
implementing our own double-buffering or filling the background before paint() is called.

With Swing, component rendering is much more complex. Though JComponent is a
subclass of Component, it uses the update() and paint() methods for different reasons. In

FONTS, COLORS, GRAPHICS, AND TEXT 41

fact, the update() method is never invoked at all. There are also five additional stages of
painting that normally occur from within the paint() method. We will discuss this process
in section 2.11, but suffice it to say here that any JComponent subclass that wants to take con-
trol of its own rendering should override the paintComponent() method and not the
paint() method. Additionally, it should always begin its paintComponent() method with
a call to super.paintComponent().

Knowing this, it is quite easy to build a JComponent that acts as your own lightweight
canvas. All you have to do is subclass it and override the paintComponent() method. You
can do all of your painting inside this method. This is how to take control of the rendering of
simple custom components. However, do not attempt this with normal Swing components
because UI delegates are in charge of their rendering (we will show you how to customize UI
delegate rendering at the end of chapter 6 and throughout chapter 21).

NOTE The AWT Canvas class can be replaced by a simple subclass of JComponent.
See example 2.2.

Inside the paintComponent() method, you have access to that component’s Graphics
object (often referred to as a component’s graphics context) which you can use to paint shapes
and draw lines and text. The Graphics class defines many methods used for these purposes;
refer to the API docs for more information on these methods. Example 2.2 shows how to con-
struct a JComponent subclass that paints an ImageIcon and some shapes and text using var-
ious Fonts and Colors, some completely opaque and some partially transparent (we saw
similar but less interesting functionality in BakedBean). Figure 2.3 illustrates the output of
example 2.2.

Figure 2.3
A Graphics demo
in a lightweight canvas

42 CHAPTER 2 SWING MECHANICS

Example 2.2

see \Chapter2\2

import java.awt.*;
import javax.swing.*;

class TestFrame extends JFrame
{
 public TestFrame() {
 super("Graphics demo");
 getContentPane().add(new JCanvas());
 }

 public static void main(String args[]) {
 TestFrame mainFrame = new TestFrame();
 mainFrame.pack();

mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 mainFrame.setVisible(true);
 }
}

class JCanvas extends JComponent {
 private static Color m_tRed = new Color(255,0,0,150);
 private static Color m_tGreen = new Color(0,255,0,150);
 private static Color m_tBlue = new Color(0,0,255,150);

 private static Font m_biFont =
 new Font("Monospaced", Font.BOLD | Font.ITALIC, 36);
 private static Font m_pFont =
 new Font("SansSerif", Font.PLAIN, 12);
 private static Font m_bFont = new Font("Serif", Font.BOLD, 24);

 private static ImageIcon m_flight = new ImageIcon("flight.gif");

 public JCanvas() {
 setDoubleBuffered(true);
 setOpaque(true);
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Fill the entire component with white
 g.setColor(Color.white);
 g.fillRect(0,0,getWidth(),getHeight());

 // Filled yellow circle
 g.setColor(Color.yellow);
 g.fillOval(0,0,240,240);

 // Filled magenta circle
 g.setColor(Color.magenta);
 g.fillOval(160,160,240,240);

 // Paint the icon below the blue square

TestFrame.java

FONTS, COLORS, GRAPHICS, AND TEXT 43

 int w = m_flight.getIconWidth();
 int h = m_flight.getIconHeight();
 m_flight.paintIcon(this,g,280-(w/2),120-(h/2));

 // Paint the icon below the red square
 m_flight.paintIcon(this,g,120-(w/2),280-(h/2));

 // Filled transparent red square
 g.setColor(m_tRed);
 g.fillRect(60,220,120,120);

 // Filled transparent green circle
 g.setColor(m_tGreen);
 g.fillOval(140,140,120,120);

 // Filled transparent blue square
 g.setColor(m_tBlue);
 g.fillRect(220,60,120,120);

 g.setColor(Color.black);

 // Bold, Italic, 36-point "Swing"
 g.setFont(m_biFont);
 FontMetrics fm = g.getFontMetrics();
 w = fm.stringWidth("Swing");

 h = fm.getAscent();
 g.drawString("Swing",120-(w/2),120+(h/4));

 // Plain, 12-point "is"
 g.setFont(m_pFont);
 fm = g.getFontMetrics();
 w = fm.stringWidth("is");
 h = fm.getAscent();
 g.drawString("is",200-(w/2),200+(h/4));

 // Bold, 24-point "powerful!!"
 g.setFont(m_bFont);
 fm = g.getFontMetrics();
 w = fm.stringWidth("powerful!!");
 h = fm.getAscent();
 g.drawString("powerful!!",280-(w/2),280+(h/4));
 }

 // Most layout managers need this information
 public Dimension getPreferredSize() {
 return new Dimension(400,400);
 }

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 public Dimension getMaximumSize() {
 return getPreferredSize();
 }
}

44 CHAPTER 2 SWING MECHANICS

Note that we overrode JComponent’s getPreferredSize(), getMinimumSize(), and
getMaximumSize() methods so most layout managers can intelligently size this component
(otherwise, some layout managers will set its size to 0x0). It is always a good practice to over-
ride these methods when implementing custom components.

The Graphics class uses what is called the clipping area. Inside a component’s paint()
method, this is the region of that component’s view that is being repainted (we often say that
the clipping area represents the damaged or dirtied region of the component’s view). Only paint-
ing done within the clipping area’s bounds will actually be rendered. You can get the size and
position of these bounds by calling getClipBounds(), which will give you back a Rectan-
gle instance describing it. A clipping area is used for efficiency purposes: there is no reason
to paint undamaged or invisible regions when we don’t have to. We will show you how to
extend this example to work with the clipping area for maximum efficiency in the next section.

NOTE All Swing components are double buffered by default. If you are building your own
lightweight canvas, you do not have to worry about double-buffering. This is not
the case with an AWT Canvas.

As we mentioned earlier, Fonts and Font manipulation are very complex under the hood. We
are certainly glossing over their structure, but one thing we should discuss is how to obtain
useful information about fonts and the text rendered using them. This involves the use of the
FontMetrics class. In our example, FontMetrics allowed us to determine the width and
height of three Strings, rendered in the current Font associated with the Graphics object,
so that we could draw them centered in the circles.

Figure 2.4 illustrates some of the most common information that can be retrieved from
a FontMetrics object. The meaning of baseline, ascent, descent, and height should be clear
from the diagram. The ascent is supposed to be the distance from the baseline to the top of
most characters in that font. Notice that when we use g.drawString() to render text, the
coordinates specified represent the position in which to place the baseline of the first character.

FontMetrics provides several methods for retrieving this and more detailed informa-
tion, such as the width of a String rendered in the associated Font.

In order to get a FontMetrics instance, you first tell your Graphics object to use the Font
you are interested in examining using the setFont() method. Then you create the FontMet-
rics instance by calling getFontMetrics() on your Graphics object:

 g.setFont(m_biFont);
 FontMetrics fm = g.getFontMetrics();

Figure 2.4
Using FontMetrics

FONTS, COLORS, GRAPHICS, AND TEXT 45

A typical operation when rendering text is to center it on a given point. Suppose you want to
center the text “Swing” on 200,200. Here is the code you would use (assuming you have
retrieved the FontMetrics object, fm):

 int w = fm.stringWidth("Swing");
 int h = fm.getAscent();
 g.drawString("Swing",200-(w/2),200+(h/4));

You get the width of “Swing” in the current font, divide it by two, and subtract it from 200 to
center the text horizontally. To center it vertically, you get the ascent of the current font,
divide it by four, and add 200. The reason you divide the ascent by four is probably NOT so
clear but we’ll explain it in the following example.

It is now time to address a common mistake that has arisen with Java 2. Figure 2.4 is not
an entirely accurate way to document FontMetrics. This is the way we have seen things doc-
umented in the Java tutorial and just about everywhere else that we have referenced. However,
there appear to be a few problems with FontMetrics that existed in Java 1.2, and still appear
to exist in Java 1.3 and 1.4. Example 2.3 is a simple program that demonstrates these problems.
Our program draws the text “Swing” in a 36-point bold, monospaced font. We draw lines
where its ascent, ascent/2, ascent/4, baseline, and descent lie. Figure 2.5 illustrates this.

Example 2.3

See \Chapter2\3\fontmetrics

import java.awt.*;
import javax.swing.*;

class TestFrame extends JFrame
{
 public TestFrame() {
 super("Let's get it straight!");
 getContentPane().add(new JCanvas());
 }

 public static void main(String args[]) {
 TestFrame mainFrame = new TestFrame();
 mainFrame.pack();

mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 mainFrame.setVisible(true);
 }
}

TestFrame.java

Figure 2.5
The real deal with
FontMetrics in Java 2

46 CHAPTER 2 SWING MECHANICS

class JCanvas extends JComponent
{
 private static Font m_biFont = new Font("Monospaced", Font.BOLD, 36);

 public void paintComponent(Graphics g) {
 g.setColor(Color.black);

 // Bold, 36-point "Swing"
 g.setFont(m_biFont);
 FontMetrics fm = g.getFontMetrics();
 int h = fm.getAscent();

 g.drawString("Swing",50,50); // Try these as well: Ñ Ö Ü ^

 // Draw ascent line
 g.drawLine(10,50-h,190,50-h);

 // Draw ascent/2 line
 g.drawLine(10,50-(h/2),190,50-(h/2));

 // Draw ascent/4 line
 g.drawLine(10,50-(h/4),190,50-(h/4));

 // Draw baseline line
 g.drawLine(10,50,190,50);

 // Draw descent line
 g.drawLine(10,50+fm.getDescent(),190,50+fm.getDescent());
 }

 public Dimension getPreferredSize() {
 return new Dimension(200,100);
 }
}

We encourage you to try this demo program with various fonts, font sizes, and even characters
with diacritical marks such as Ñ, Ö, or Ü. You may find that the ascent is always much higher
than it is typically documented to be, and the descent is always lower. The most reliable
means of vertically centering text we found turned out to be baseline + ascent/4. However,
baseline + descent might also be used, and, depending on the font being used, it may provide
more accurate centering.

The point is that there is no correct way to perform this task because of the current state
of FontMetrics. You may experience very different results if you’re using a different platform
or font. It is a good idea to run the sample program we just gave you and verify whether results
similar to those shown in figure 2.5 are produced on your system. If they’re not, you may want
to use a different centering mechanism for your text (depending on the platform used
by your target users); it should be fairly simple to determine through experimentation with
this application.

NOTE In JDK1.1 code, getting a FontMetrics instance often looked like this:
FontMetrics fm = Toolkit.getDefaultToolkit().getFontMetrics(myfont);

The getFontMetrics() method has been deprecated in Java 2 and this code
should be updated to use the Graphics class’s getFontMetrics method.

USING THE GRAPHICS CLIPPING AREA 47

2.9 USING THE GRAPHICS CLIPPING AREA

You can use the clipping area to optimize component rendering. This may not noticeably
improve rendering speed for simple components such as JCanvas, but it is important to
understand how to implement such functionality, as Swing’s whole painting system is based
on this concept (you will find out more about this in the next section).

In example 2.4, we’ll modify JCanvas so that each of our shapes, strings, and images is
only painted if the clipping area intersects its bounding rectangular region. (These intersections
are fairly simple to compute, and it may be helpful for you to work through and verify each
one.) Additionally, we’ll maintain a local counter that is incremented each time one of our
items is painted. At the end of the paintComponent() method, we’ll display the total num-
ber of items that were painted. Our optimized JCanvas paintComponent() method (with
counter) follows.

Example 2.4

see \Chapter2\3

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Counter
 int c = 0;

 // For use below
 int w = 0;
 int h = 0;
 int d = 0;

 // Get damaged region
 Rectangle r = g.getClipBounds();
 int clipx = r.x;
 int clipy = r.y;
 int clipw = r.width;
 int cliph = r.height;

 // Fill damaged region only
 g.setColor(Color.white);
 g.fillRect(clipx,clipy,clipw,cliph);

 // Draw filled yellow circle if bounding region has been damaged
 if (clipx <= 240 && clipy <= 240) {
 g.setColor(Color.yellow);
 g.fillOval(0,0,240,240); c++;
 }

 // Draw filled magenta circle if bounding region has been damaged
 if (clipx + clipw >= 160 && clipx <= 400
 && clipy + cliph >= 160 && clipy <= 400) {
 g.setColor(Color.magenta);
 g.fillOval(160,160,240,240); c++;
 }

JCanvas.java

48 CHAPTER 2 SWING MECHANICS

 w = m_flight.getIconWidth();
 h = m_flight.getIconHeight();
 // Paint the icon below blue square if bounding region is damaged
 if (clipx + clipw >= 280-(w/2) && clipx <= (280+(w/2))
 && clipy + cliph >= 120-(h/2) && clipy <= (120+(h/2))) {
 m_flight.paintIcon(this,g,280-(w/2),120-(h/2)); c++;
 }

 // Paint the icon below red square if bounding region is damaged
 if (clipx + clipw >= 120-(w/2) && clipx <= (120+(w/2))
 && clipy + cliph >= 280-(h/2) && clipy <= (280+(h/2))) {
 m_flight.paintIcon(this,g,120-(w/2),280-(h/2)); c++;
 }

 // Draw filled transparent red square if bounding region is damaged
 if (clipx + clipw >= 60 && clipx <= 180
 && clipy + cliph >= 220 && clipy <= 340) {
 g.setColor(m_tRed);
 g.fillRect(60,220,120,120); c++;
 }

 // Draw filled transparent green circle if bounding region is damaged
 if (clipx + clipw > 140 && clipx < 260
 && clipy + cliph > 140 && clipy < 260) {

 g.setColor(m_tGreen);
 g.fillOval(140,140,120,120); c++;
 }

 // Draw filled transparent blue square if bounding region is damaged
 if (clipx + clipw > 220 && clipx < 380
 && clipy + cliph > 60 && clipy < 180) {
 g.setColor(m_tBlue);
 g.fillRect(220,60,120,120); c++;
 }

 g.setColor(Color.black);

 g.setFont(m_biFont);
 FontMetrics fm = g.getFontMetrics();
 w = fm.stringWidth("Swing");
 h = fm.getAscent();
 d = fm.getDescent();
 // Bold, Italic, 36-point "Swing" if bounding region is damaged
 if (clipx + clipw > 120-(w/2) && clipx < (120+(w/2))
 && clipy + cliph > (120+(h/4))-h && clipy < (120+(h/4))+d)
 {
 g.drawString("Swing",120-(w/2),120+(h/4)); c++;
 }

 g.setFont(m_pFont);
 fm = g.getFontMetrics();
 w = fm.stringWidth("is");
 h = fm.getAscent();
 d = fm.getDescent();
 // Plain, 12-point "is" if bounding region is damaged
 if (clipx + clipw > 200-(w/2) && clipx < (200+(w/2))

GRAPHICS DEBUGGING 49

 && clipy + cliph > (200+(h/4))-h && clipy < (200+(h/4))+d)
 {
 g.drawString("is",200-(w/2),200+(h/4)); c++;
 }

 g.setFont(m_bFont);
 fm = g.getFontMetrics();
 w = fm.stringWidth("powerful!!");
 h = fm.getAscent();
 d = fm.getDescent();
 // Bold, 24-point "powerful!!" if bounding region is damaged
 if (clipx + clipw > 280-(w/2) && clipx < (280+(w/2))
 && clipy + cliph > (280+(h/4))-h && clipy < (280+(h/4))+d)
 {
 g.drawString("powerful!!",280-(w/2),280+(h/4)); c++;
 }

 System.out.println("# items repainted = " + c + "/10");
 }

Try running this example and dragging another window in your desktop over parts of the
JCanvas. Keep your console in view so that you can monitor how many items are painted
during each repaint. Your output should be displayed something like the following (of course,
you’ll probably see different numbers):

items repainted = 4/10
items repainted = 0/10
items repainted = 2/10
items repainted = 2/10
items repainted = 1/10
items repainted = 2/10
items repainted = 10/10
items repainted = 10/10
items repainted = 8/10
items repainted = 4/10

Optimizing this canvas wasn’t that bad, but imagine how tough it would be to optimize a
container with a variable number of children, possibly overlapping, with double-buffering
options and transparency. This is what JComponent does, and it does it quite efficiently. We
will learn a little more about how this is done in section 2.11. But first we’ll finish our high-
level overview of graphics by introducing a very powerful and well-met feature new to Swing:
graphics debugging.

2.10 GRAPHICS DEBUGGING

Graphics debugging provides the ability to observe each painting operation that occurs during
the rendering of a component and all of its children. This is done in slow motion, using dis-
tinct flashes to indicate the region being painted. It is intended to help find problems with
rendering, layouts, and container hierarchies—just about any display-related problems. If graph-
ics debugging is enabled, the Graphics object used in painting is actually an instance of
DebugGraphics (a subclass of Graphics). JComponent, and thus all Swing components,
supports graphics debugging and it can be turned on or off with JComponent’s setDebug-

50 CHAPTER 2 SWING MECHANICS

Graphics-Options() method. This method takes an int parameter which is normally one
of four static values defined in DebugGraphics (or it’s a bitmask combination using the bit-
wise | operator).

2.10.1 Graphics debugging options

There are four graphics debugging options: DebugGraphics.FLASH_OPTION, Debug-
Graphics.LOG_OPTION, DebugGraphics.BUFFERED_OPTION, and DebugGraph-
ics.NONE_ OPTION. They will all be discussed in this section.

With the DebugGraphics.FLASH_OPTION, each paint operation flashes a specified num-
ber of times, in a specified flash color, with a specified flash interval. The default flash interval
is 250ms, the default flash number is 4, and the default flash color is red. These values can be
set with the following DebugGraphics static methods:

 setFlashTime(int flashTime)
 setFlashCount(int flashCount)
 setFlashColor(Color flashColor)

If you don’t disable double-buffering in the RepaintManager (which is discussed in the next
section), you will not see the painting as it occurs:

 RepaintManager.currentManager(null).
 setDoubleBufferingEnabled(false);

NOTE Turning off buffering in the RepaintManager has the effect of ignoring every com-
ponent’s doubleBuffered property.

The DebugGraphics.LOG_OPTION sends messages describing each paint operation as it
occurs. By default, these messages are directed to standard output (the console: System.out).
However, we can change the log destination with DebugGraphics’ static setLogStream()
method. This method takes a PrintStream parameter. To send output to a file, you would do
something like the following:

 PrintStream debugStream = null;
 try {
 debugStream = new PrintStream(
 new FileOutputStream("JCDebug.txt"));
 }
 catch (Exception e) {
 System.out.println("can't open JCDebug.txt..");
 }
 DebugGraphics.setLogStream(debugStream);

If at some point you need to change the log stream back to standard output, you can do this:

 DebugGraphics.setLogStream(System.out);

You can insert any string into the log by retrieving it with DebugGraphics’ static log-
Stream() method, and then printing into it:

 PrintStream ps = DebugGraphics.logStream();
 ps.println("\n===> paintComponent ENTERED <===");

WARNING Writing a log to a file will overwrite that file each time you reset the stream.

GRAPHICS DEBUGGING 51

Each operation is printed with the following syntax:

 "Graphics" + (isDrawingBuffer() ? "" : "") +
 "(" + graphicsID + "-" + debugOptions + ")"

Each line starts with “Graphics.” The isDrawingBuffer() method tells you whether buff-
ering is enabled. If it is, a “” is appended. The graphicsID and debugOptions values
are then placed in parentheses, and separated by a “-.” The graphicsID value represents the
number of DebugGraphics instances that have been created during the application’s lifetime
(it’s a static int counter). The debugOptions value represents the current debugging mode:

 LOG_OPTION = 1
 LOG_OPTION and FLASH_OPTION = 3
 LOG_OPTION and BUFFERED_OPTION = 5
 LOG_OPTION, FLASH_OPTION, and BUFFERED_OPTION = 7

For example, with logging and flashing enabled, you see output similar to the following for
each operation:

 Graphics(1-3) Setting color: java.awt.Color[r=0,g=255,b=0]

Calls to each Graphics method will get logged when this option is enabled. The code exam-
ple line was generated when a call to setColor() was made.

The DebugGraphics.BUFFERED_OPTION is supposed to pop up a frame showing ren-
dering as it occurs in the offscreen buffer if double-buffering is enabled. As of the Java 1.4, this
option is not still functional.

The DebugGraphics.NONE_OPTION nullifies graphics debugging settings and shuts off
graphics debugging altogether.

2.10.2 Graphics debugging caveats

There are two issues to be aware of when using graphics debugging. First, graphics debugging
will not work for any component whose UI is null. Thus, if you have created a direct
JComponent subclass without a UI delegate, as we did with JCanvas above, graphics
debugging will simply do nothing. The simplest way to work around this is to define a trivial
(empty) UI delegate. We’ll show you how to do this in the example below.

Second, DebugGraphics does not properly clean up after itself. By default, a solid red
flash color is used. When a region is flashed, that region is filled in with the red flash color and
it does not get erased—it just gets painted over. This presents a problem because transparent
rendering will not show up as transparent. Instead, it will be alpha-blended with the red below
(or whatever the flash color happens to be set to). This is not necessarily a design flaw, because
there is nothing stopping us from using a completely transparent flash color. With an alpha
value of 0, the flash color will never be seen. The only downside is that we don’t see any flash-
ing. However, in most cases it is easy to follow what is being drawn if we set the flashTime
and flashCount to wait long enough between operations.

2.10.3 Using graphics debugging

We’ll now enable graphics debugging in our JCanvas example from the last two sections.
Because we must have a non-null UI delegate, we define a trivial extension of ComponentUI
and implement its createUI() method to return a static instance of itself:

52 CHAPTER 2 SWING MECHANICS

 class EmptyUI extends ComponentUI
 {
 private static final EmptyUI sharedInstance = new EmptyUI();

 public static ComponentUI createUI(JComponent c) {
 return sharedInstance;
 }
 }

In order to properly associate this UI delegate with JCanvas, we simply call
super.setUI(EmptyUI.createUI(this)) from the JCanvas constructor. We also set up
a PrintStream variable in JCanvas and use it to add a few of our own lines to the log stream
during the paintComponent() method in order to log when the method starts and finishes.
Other than this, no changes have been made to the JCanvas’s paintComponent() code.

In our test application, TestFrame (example 2.5), we create an instance of JCanvas and
enable graphics debugging with the LOG_OPTION and FLASH_OPTION options. We disable
buffering in the RepaintManager, set the flash time to 100ms, set the flash count to 2, and
use a completely transparent flash color.

Example 2.5

see \Chapter2\5

import java.awt.*;
import javax.swing.*;
import javax.swing.plaf.*;

import java.io.*;

class TestFrame extends JFrame
{
 public TestFrame() {
 super("Graphics demo");
 JCanvas jc = new JCanvas();
 RepaintManager.currentManager(jc).

 setDoubleBufferingEnabled(false);

 jc.setDebugGraphicsOptions(DebugGraphics.LOG_OPTION |

 DebugGraphics.FLASH_OPTION);

 DebugGraphics.setFlashTime(100);

 DebugGraphics.setFlashCount(2);

 DebugGraphics.setFlashColor(new Color(0,0,0,0));

 getContentPane().add(jc);
 }

 public static void main(String args[]) {
 TestFrame mainFrame = new TestFrame();
 mainFrame.pack();

mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 mainFrame.setVisible(true);
 }
}

TestFrame.java

GRAPHICS DEBUGGING 53

class JCanvas extends JComponent
{
 // Unchanged code from example 2.4

 private PrintStream ps;

 public JCanvas() {

 super.setUI(EmptyUI.createUI(this));

 }

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 ps = DebugGraphics.logStream();

 ps.println("\n===> paintComponent ENTERED <===");

 // All painting code unchanged

 ps.println("\n# items repainted = " + c + "/10");

 ps.println("===> paintComponent FINISHED <===\n");

 }

 // Unchanged code from example 2.4
}

class EmptyUI extends ComponentUI
{
 private static final EmptyUI sharedInstance = new EmptyUI();
 public static ComponentUI createUI(JComponent c) {
 return sharedInstance;
 }
}

By setting the LOG_OPTION, graphics debugging provides us with a more informative way of
checking how well our clipping area optimization we discussed in the last section works.
When this example is run, you should see the following output in your console, assuming you
don’t obscure JCanvas’s visible region as it is painted for the first time:

Graphics(0-3) Enabling debug
Graphics(0-3) Setting color:
 javax.swing.plaf.ColorUIResource[r=0,g=0,b=0]
Graphics(0-3) Setting font:
 javax.swing.plaf.FontUIResource[family=dialog,name=Dialog,
 style=plain,size=12]

===> paintComponent ENTERED <===
Graphics(1-3) Setting color: java.awt.Color[r=255,g=255,b=255]
Graphics(1-3) Filling rect: java.awt.Rectangle[x=0,y=0,
 width=400,height=400]
Graphics(1-3) Setting color: java.awt.Color[r=255,g=255,b=0]
Graphics(1-3) Filling oval: java.awt.Rectangle[x=0,y=0,
 width=240,height=240]
Graphics(1-3) Setting color: java.awt.Color[r=255,g=0,b=255]
Graphics(1-3) Filling oval:
 java.awt.Rectangle[x=160,y=160,width=240,height=240]
Graphics(1-3) Drawing image: sun.awt.windows.WImage@32a5625a at:

54 CHAPTER 2 SWING MECHANICS

 java.awt.Point[x=258,y=97]
Graphics(1-3) Drawing image: sun.awt.windows.WImage@32a5625a at:
 java.awt.Point[x=98,y=257]
Graphics(1-3) Setting color: java.awt.Color[r=255,g=0,b=0]
Graphics(1-3) Filling rect:
 java.awt.Rectangle[x=60,y=220,width=120,height=120]
Graphics(1-3) Setting color: java.awt.Color[r=0,g=255,b=0]
Graphics(1-3) Filling oval:
 java.awt.Rectangle[x=140,y=140,width=120,height=120]
Graphics(1-3) Setting color: java.awt.Color[r=0,g=0,b=255]
Graphics(1-3) Filling rect:
 java.awt.Rectangle[x=220,y=60,width=120,height=120]
Graphics(1-3) Setting color: java.awt.Color[r=0,g=0,b=0]
Graphics(1-3) Setting font:
 java.awt.Font[family=monospaced.bolditalic,name=Mono
 spaced,style=bolditalic,size=36]
Graphics(1-3) Drawing string: "Swing" at:
 java.awt.Point[x=65,y=129]
Graphics(1-3) Setting font:
 java.awt.Font[family=Arial,name=SansSerif,style=plain,size=12]
Graphics(1-3) Drawing string: "is" at:
 java.awt.Point[x=195,y=203]
Graphics(1-3) Setting font:
 java.awt.Font[family=serif.bold,name=Serif,style=bold,size=24]
Graphics(1-3) Drawing string: "powerful!!" at:
 java.awt.Point[x=228,y=286]

items repainted = 10/10
===> paintComponent FINISHED <===

2.11 PAINTING AND VALIDATION

At the heart of JComponent’s painting and validation mechanism lies a service class called
RepaintManager. The RepaintManager is responsible for sending painting and validation
requests to the system event queue for dispatching. To summarize, it does this by intercepting
repaint() and revalidate() requests, coalescing any requests where possible, wrapping
them in Runnable objects, and sending them to invokeLater(). A few issues we have
encountered in this chapter deserve more attention here before we actually discuss details of
the painting and validation processes.

NOTE This section contains a relatively exhaustive explanation of the most complex
mechanism underlying Swing. If you are relatively new to Java or Swing, we
encourage you to skim this section now and come back at a later time for a more
complete reading. If you are just looking for information on how to override and
use your own painting methods, see section 2.8. For customizing UI delegate
rendering, see chapter 21.

REFERENCE For a higher-level summary of the painting process, see the Swing Connection
article “Painting in AWT and Swing” at http://java.sun.com/products/jfc/tsc/
special_ report/Painting/painting.html.

PAINTING AND VALIDATION 55

2.11.1 Double-buffering

We’ve mentioned double-buffering, but you may be wondering how to disable it in the
RepaintManager and how to specify the double-buffering of individual components with
JComponent’s setDoubleBuffered() method. In this section, we’ll explain how it works.

Double-buffering is the technique of painting into an off-screen image rather than paint-
ing directly to a visible component. In the end, the resulting image is painted to the screen rel-
atively quickly. Using AWT components, developers were required to implement their own
double-buffering to reduce flashing. It was clear that double-buffering should be a built-in fea-
ture because of its widespread use. Thus, it is not much of a surprise to find this feature in Swing.

Behind the scenes, double-buffering consists of creating an Image (actually a Volatile-
Image) and retrieving its Graphics object for use in all painting methods. If the component
being repainted has children, this Graphics object will be passed down to them to use for
painting, and so on. So if you are using double-buffering for a component, all its children will
also be using double-buffering (regardless of whether they have double-buffering enabled)
because they will be rendering into the same Graphics object. There is only one off-screen
image per RepaintManager, and there is normally only one RepaintManager instance per
applet or application (RepaintManager is a service class that registers a shared instance of itself
with AppContext; see section 2.5 for details).

JAVA 1.4 The Java2D team has implemented a new class called VolatileImage which
allows Java to take advantage of available graphics acceleration hardware.
RepaintManager has a new getVolatileOffscreenBuffer() method used to
obtain a VolatileImage for use in double-buffering.

As we will discuss in chapter 3, JRootPane is the top-level Swing component in any window,
including JInternalFrame (which isn’t really a window). By enabling double-buffering on
JRootPane, all of its children will also be painted using double-buffering. As we saw in the
last section, RepaintManager also provides global control over all component double-buffer-
ing. So another way to guarantee that all components will use double-buffering is to call

 RepaintManager.currentManager(null).setDoubleBufferingEnabled(true);

2.11.2 Optimized drawing

We haven’t yet really discussed the fact that components can overlap each other in Swing, but
they can. JLayeredPane, for example, is a container that allows any number of components
to overlap each other. Repainting such a container is much more complex than repainting a
container we know does not allow overlapping, mainly because of the ability for components
to be transparent.

What does it mean for a component to be transparent? Technically, this means its is-
Opaque() method returns false. We can set this property by calling setOpaque(). Opacity
means, in this context, that a component will paint every pixel within its bounds. If the opaque
property is set to false, we are not guaranteed that this will happen. When it is set to false,
it increases the workload of the whole painting mechanism.

JComponent’s isOptimizedDrawingEnabled() method is overridden to return true
for almost all JComponent subclasses except JLayeredPane, JViewport, and JDesktop-
Pane (which is a subclass of JLayeredPane). Basically, calling this method is equivalent to

56 CHAPTER 2 SWING MECHANICS

asking a component whether it is possible that any of its child components can overlap each
other. If it is possible, then much more repainting work must be done to take into account the
fact that any number of components, from virtually anywhere in our container hierarchy, can
overlap each other. Since components can be transparent, components layered completely
behind others may still show through. Such components are not necessarily siblings (meaning
in the same container) because we could conceivably have several non-opaque containers lay-
ered one on top of another. In situations like this, we must do a whole lot of “tree walking”
to figure out which components need to be refreshed. If isOptimizedDrawingEnabled()
is overridden to return true, then we assume we do not have to consider any situations like
this. Thus, painting becomes more efficient, or optimized.

2.11.3 Root validation

A revalidate() request is generated when a component needs to be laid out again. When a
request is received from a certain component, there must be some way of determining whether
laying that component out will affect anything else. JComponent’s isValidateRoot() method
returns false for most components. Calling this method is equivalent to asking it the ques-
tion: If I lay your contents out again, can you guarantee that none of your parents or siblings
will be adversely affected—meaning will they need to be laid out again? By default, only
JRootPane, JScrollPane, and JTextField return true. This seems surprising at first, but
it is true that these components are the only Swing components whose contents can be suc-
cessfully laid out in any situation without affecting parents or siblings. No matter how big we
make anything inside a JRootPane, JScrollPane, or JTextField, the container will not
change size or location unless some outside influence comes into play, such as a sibling or par-
ent. To help convince you of this, try adding a multiline text component (such as a JTex-
tArea) to a container without placing it in a scroll pane. You may notice that creating new
lines will change its size, depending on the layout. The point is not that it rarely happens or
that it can be prevented, but that it can happen. This is the type of incident that isValidat-
eRoot() is supposed to warn us about. So where is this method used?

A component or its parent is normally revalidated when a property value changes and
that component’s size, location, or internal layout has been affected. By recursively calling
isValidateRoot() on a Swing component’s parent until you obtain true, you will end
with the closest ancestor of that component that guarantees us its validation will not affect its
siblings or parents. We will see that RepaintManager relies on this method for dispatching
validation requests.

NOTE When we say siblings, we mean components in the same container. When we say
parents, we mean parent containers.

Cell renderers used in components such as JList, JTree, and JTable are special
in that they are wrapped in instances of CellRendererPane and all validation and
repainting requests do not propogate up through containment hierarchy. See chap-
ter 17 for more information about CellRendererPane and why this behavior ex-
ists. We’ll simply say here that cell renderers do not follow the painting and
validation scheme discussed in this section.

PAINTING AND VALIDATION 57

2.11.4 RepaintManager

class javax.swing.RepaintManager
There is usually only one instance of a service class in use per applet or application. So unless
we specifically create our own instance of RepaintManager, which we will almost never need
to do, all repainting is managed by the shared instance which is registered with AppContext.
We normally retrieve it using RepaintManager’s static currentManager() method:

myRepaintManager = RepaintManager.currentManager(null);

This method takes a Component as its parameter. However, it doesn’t matter what we pass it.
In fact, the component passed to this method is not used anywhere inside the method at all
(see the RepaintManager.java source code), so a value of null can safely be used here. (This
definition exists for subclasses to use if they want to work with more than one RepaintMan-
ager, possibly on a per-component basis.)

RepaintManager exists for two purposes: to provide efficient revalidation and repainting
by coalescing the paint/validation requests for all the components of a specific component tree.
It intercepts all repaint() and revalidate() requests. This class also handles all double-
buffering in Swing and maintains a single Image used for this purpose. This Image’s maxi-
mum size is, by default, the size of the screen. However, we can set its size manually using
RepaintManager’s setDoubleBufferMaximumSize() method. (All other RepaintManager
functionality will be discussed throughout this section where applicable.)

2.11.5 Revalidation

RepaintManager maintains a Vector of components that need to be validated. Whenever
a revalidate() request is intercepted, the source component is sent to the addInvalidCom-
ponent() method and its validateRoot property is checked using isValidateRoot().
This occurs recursively on that component’s parent until isValidateRoot() returns true.
The resulting component, if any, is then checked for visibility. If any one of its parent con-
tainers is not visible, there is no reason to validate it. Otherwise, if no parent container
returns true for isValidateRoot(), RepaintManager “walks down the component’s tree”
until it reaches the root component, which will be a Window or an Applet. RepaintMan-
ager then checks the invalid components Vector, and if the component isn’t already there,
it is added. After being successfully added, RepaintManager then passes the root container
to the SystemEventQueueUtilities’ queueComponentWorkRequest() method (we saw
this class in section 2.3). This method checks to see if there is a ComponentWorkRequest
(this is a private static class in SystemEventQueueUtilities that implements Runnable)
corresponding to that root already stored in the work requests table. If there isn’t one, a new one is
created. If one already exists, a reference to it is obtained. Then the queueComponent-
WorkRequest() method synchronizes access to that ComponentWorkRequest, places it in
the work requests table if it is a new one, and checks if it is pending (meaning it has been
added to the system event queue). If it isn’t pending, this method sends it to Swing-Utili-
ties.invokeLater(). It is then marked as pending and the synchronized block is finished.
When the ComponentWorkRequest is finally run from the event-dispatching thread, it
notifies RepaintManager to execute validateInvalidComponents(), followed by
paintDirtyRegions().

58 CHAPTER 2 SWING MECHANICS

The validateInvalidComponents() method checks RepaintManager’s Vector that
contains the components which are in need of validation, and it calls validate() on each
one. (This method is actually a bit more careful than we describe here, as it synchronizes access
to prevent the addition of invalid components while executing).

NOTE The validateInvalidComponents() should only be called from within the
event-dispatching thread. Never call this method from any other thread. The same
rules apply for paintDirtyRegions().

The paintDirtyRegions() method is much more complicated, and we’ll discuss some of its
details in this chapter. For now, all you need to know is that this method paints all the dam-
aged regions of each component maintained by RepaintManager.

2.11.6 Repainting

JComponent defines two repaint() methods, and the no-argument version of repaint()
is inherited from java.awt.Container:

 public void repaint(long tm, int x, int y, int width, int height)
 public void repaint(Rectangle r)
 public void repaint() // Inherited from java.awt.Container

If you call the no-argument version, the whole component is repainted. For small, simple
components, this is fine. But for larger, more complex components, this is often not efficient.
The other two methods take the bounding region to be repainted (the dirtied region) as
parameters. The first method’s int parameters correspond to the x-coordinate, y-coordinate,
width, and height of that region. The second method takes the same information encapsu-
lated in a Rectange instance. The second repaint() method shown above just sends its
traffic to the first. The first method sends the dirtied region’s parameters to RepaintManager’s
addDirtyRegion() method.

NOTE The long parameter in the first repaint() method represents absolutely nothing
and is not used at all. It does not matter what value you use for this. The only reason it
is here is to override the correct repaint() method from java.awt.Component.

RepaintManager maintains a Hashtable of dirty regions. Each component will have, at
most, one dirty region in this table at any time. When a dirty region is added using addDirt-
yRegion(), the size of the region and the component are checked. If either item has a width
or height <= 0, the method returns and nothing happens. If a measurement is bigger than
0x0, the source component’s visibility is then tested, along with each of its ancestors. If they
are all visible, its root component, a Window or Applet, is located by “walking down its tree,”
similar to what occurs in addInvalidateComponent(). The dirty regions Hashtable is
then asked if it already has a dirty region of our component stored. If it does, it returns its
value (a Rectangle) and the handy SwingUtilities.computeUnion() method is used to
combine the new dirty region with the old one. Finally, RepaintManager passes the root to the
SystemEventQueueUtilities’ queueComponentWorkRequest() method. What happens
from here on is identical to what we saw earlier for revalidation.

Now we can talk a bit about the paintDirtyRegions() method we summarized earlier.
(Remember that this should only be called from within the event-dispatching thread.) This
method starts out by creating a local reference to RepaintManger’s dirty regions Hashtable

PAINTING AND VALIDATION 59

and redirecting RepaintManager’s dirty regions Hashtable reference to a different, empty
one. This is all done in a critical section so that no dirty regions can be added while the swap
occurs. The remainder of this method is fairly long and complicated, so we’ll conclude with
a summary of the most significant code (see the RepaintManager.java source code for details).

The paintDirtyRegions() method continues by iterating through an Enumeration
of the dirty components, calling RepaintManager’s collectDirtyComponents() method for
each one. This method looks at all the ancestors of the specified dirty component and checks
each one for any overlap with its dirty region using the SwingUtilities.computeInter-
section() method. In this way, each dirty region’s bounds are minimized so that only its vis-
ible region remains. (Note that collectDirtyComponents() does take transparency into
account.) Once this has been done for each dirty component, the paintDirtyRegions()
method enters a loop which computes the final intersection of each dirty component and its
dirty region. At the end of each iteration, paintImmediately() is called on the associated
dirty component, which actually paints each minimized dirty region in its correct location
(we’ll discuss this later). This completes the paintDirtyRegions() method, but we still have
the most significant feature of the whole process left to discuss: painting.

2.11.7 Painting

JComponent includes an update() method which simply calls paint(). The update()
method is never actually used by any Swing components; it is provided only for backward
compatibility. The JComponent paint() method, unlike typical AWT paint() implemen-
tations, does not handle all of a component’s painting. In fact, it very rarely handles any of it
directly. The only rendering work JComponent’s paint() method is really responsible for is
working with clipping areas, translations, and painting pieces of the Image used by
RepaintManager for double-buffering. The rest of the work is delegated to several other
methods. We will briefly discuss each of these methods and the order in which painting oper-
ations occur. But first we need to discuss how paint() is actually invoked.

As you know from our discussion of the repainting process above, RepaintManager is
responsible for invoking a method called paintImmediately() on each component to paint
its dirty region (remember, there is always just one dirty region per component because they
are intelligently coalesced by RepaintManager). This method, together with the private ones
it calls, makes an intelligently crafted repainting process even more impressive. It first checks
to see if the target component is visible, as it could have been moved, hidden, or disposed since
the original request was made. Then it recursively searches the component’s non-opaque par-
ents (using isOpaque()) and it increases the bounds of the region to repaint accordingly until
it reaches an opaque parent. It then has two options.

1 If the parent reached is a JComponent subclass, the private _paintImmediately()
method is called and the newly computed region is passed to it. This method queries the
isOptimizedDrawing() method, checks whether double-buffering is enabled (if so, it
uses the off-screen Graphics object associated with RepaintManager’s buffered Image),
and continues working with isOpaque() to determine the final parent component and
bounds to invoke paint() on.

A If double-buffering is not enabled, a single call to paint() is made on the parent.

60 CHAPTER 2 SWING MECHANICS

B If double-buffering is enabled, it calls paintWithBuffer(), which is another private
method. This method works with the off-screen Graphics object and its clipping
area to generate many calls to the parent’s paint() method, passing it the off-screen
Graphics object using a specific clipping area each time. After each call to paint(),
it uses the off-screen Graphics object to draw directly to the visible component.

2 If the parent is not a JComponent subclass, the region’s bounds are sent to that parent’s
repaint() method, which will normally invoke the java.awt.Component paint()
method. This method will then forward traffic to each of its lightweight children’s
paint() methods. However, before doing this, it makes sure that each lightweight child
it notifies is not completely covered by the current clipping area of the Graphics object
that was passed in.

In all cases, we have finally reached JComponent’s paint() method!

Inside JComponent’s paint() method, if graphics debugging is enabled, a DebugGraphics
instance will be used for all rendering.

NOTE Interestingly, a quick look at JComponent’s painting code shows heavy use of a
class called SwingGraphics. (This isn’t in the API docs because it’s package pri-
vate). It appears to be a very slick class for handling custom translations, clipping
area management, and a Stack of Graphics objects used for caching, recyclability,
and undo-type operations. SwingGraphics actually acts as a wrapper for all
Graphics instances used during the painting process. It can only be instantiated
by passing it an existing Graphics object. This functionality is made even more
explicit by the fact that it implements an interface called GraphicsWrapper,
which is also package private.

The paint() method checks whether double-buffering is enabled and whether it was called
by paintWithBuffer() (see above). There are two possible scenarios.

1 If paint() was called from paintWithBuffer() or if double-buffering is not enabled,
paint() checks whether the clipping area of the current Graphics object is completely
obscured by any child components. If it isn’t, paintComponent(), paintBorder(),
and paintChildren() are called in that order. If it is completely obscured, then only
paintChildren() needs to be called. (We will see what these three methods do shortly.)

2 If double-buffering is enabled and this method was not called from paintWith-
Buffer(), it will use the off-screen Graphics object associated with RepaintMan-
ager’s buffered Image throughout the remainder of this method. Then it will check
whether the clipping area of the current Graphics object is completely obscured by any
child components. If it isn’t, paintComponent(), paintBorder(), and paintChil-
dren() will be called in that order. If it is completely obscured, only paintChildren()
needs to be called.

A The paintComponent() method checks to see if the component has a UI delegate
installed. If it doesn’t, the method just exits. If it does, it simply calls update()
on that UI delegate and then exits. The update() method of a UI delegate is
normally responsible for painting a component’s background if it is opaque, and
then calling paint(). A UI delegate’s paint() method is what actually paints the

FOCUS MANAGEMENT 61

corresponding component’s content. (We will see how to customize UI delegates
throughout this text.)

B The paintBorder() method simply paints the component’s border, if it has one.

C The paintChildren() method is a bit more involved. To summarize, it searches
through all child components and determines whether paint() should be invoked
on them using the current Graphics clipping area, the isOpaque() method, and
the isOptimizedDrawingEnabled() method. The paint() method called on each
child will essentially start that child’s painting process from part 2 above, and this
process will repeat until either no more children exist or none need to be painted.

2.11.8 Custom painting

When building or extending lightweight Swing components, it is normally expected that if you
want to do any painting within the component itself (instead of in the UI delegate where it
normally should be done), you will override the paintComponent() method and immedi-
ately call super.paintComponent(). In this way, the UI delegate will be given a chance to
render the component first. Overriding the paint() method, or any of the other methods
mentioned earlier, should rarely be necessary, and it is always good practice to avoid doing so.

2.12 FOCUS MANAGEMENT

With Java 1.4 comes a completely revised focus subsystem. The primary concepts underlying
this subsystem consist of the following.

Focus Owner: A focus owner is the component which currently has the focus and is the ulti-
mate target of all keyboard input (except key combinations that indicate a focus
change; detailed here).

Permanent Focus Owner: A permanent focus owner is the same as the current focus owner
unless there is temporary focus change in effect (for example, using a drop–down
menu while editing a text component document).

Focus Cycle: A focus cycle is the sequence in which components within a container receive
focus. It is referred to as a cycle because it acts as a loop–each component in the cycle
will receive the focus once if the cycle is completely traversed from the first compo-
nent in the cycle to the last.

Focus Traversal: Focus traversal is the ability to move the focus from one component to the
next within a focus cycle. This can be accomplished through use of key combina-
tions to move the focus forward or backward.

Focus Cycle Root: A focus cycle root is the uppermost parent container of the components in a
focus cycle. Every Window is a focus cycle by default (this includes JInternal-
Frame even though it is technically not a Window). Normal focus traversal within a
focus cycle cannot extend above or below the focus cycle root with respect to its con-
tainment hierarchy. Distinct traversal options called up cycle and down cycle are used
to change the focus cycle root

In example 2.6, shown in figure 2.6, we construct a container with four focus cycle roots. We
will walk you through using this example to illustrate the above focus management concepts.

62 CHAPTER 2 SWING MECHANICS

Example 2.6

see \Chapter2\6

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class FocusDemo extends JFrame {

public FocusDemo() {
super("Focus Demo");

JPanel contentPane = (JPanel) getContentPane();
contentPane.setBorder(new TitledBorder(“Focus Cycle A”));
contentPane.add(createComponentPanel(), BorderLayout.NORTH);
JDesktopPane desktop1 = new JDesktopPane();
contentPane.add(desktop1, BorderLayout.CENTER);

JInternalFrame internalFrame1 =
new JInternalFrame(“Focus Cycle B”, true, true, true, true);

contentPane = (JPanel) internalFrame1.getContentPane();
contentPane.add(createComponentPanel(), BorderLayout.NORTH;
JDesktopPane desktop2 = new JDesktopPane();
contentPane.add(desktop2, BorderLayout.CENTER);
desktop1.add(internalFrame1);
internalFrame1.setBounds(20,20,500,300);
internalFrame1.show();

JInternalFrame internalFrame2 =
new JInternalFrame(“Focus Cycle C”, true, true, true, true);

contentPane = (JPanel) internalFrame2.getContentPane();
contentPane.add(createComponentPanel(), BorderLayout.NORTH;
JDesktopPane desktop3 = new JDesktopPane();

FocusTest.java

Figure 2.6
Focus Cycle Demo

FOCUS MANAGEMENT 63

contentPane.add(desktop3, BorderLayout.CENTER);
desktop2.add(internalFrame2);
internalFrame2.setBounds(20,20,400,200);
internalFrame2.show();

JInternalFrame internalFrame3 =
new JInternalFrame(“Focus Cycle D”, false, true, true, true);

contentPane = (JPanel) internalFrame3.getContentPane();
contentPane.add(createComponentPanel(), BorderLayout.NORTH;
desktop3.add(internalFrame3);
internalFrame3.setBounds(20,20,300,100);
internalFrame3.show();

}
public static void main(String[] args) {
FocusDemo frame = new FocusDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setBounds(0,0,600,450);
frame.setVisible(true);

}

protected JPanel createComponentPanel() {
JPanel panel = new JPanel();
panel.add(new JButton(“Button 1”));
panel.add(new Jbutton(“Button 2”));
Panel.add(new JTextField(10));
return panel;

}
}

When you first run this example don’t use your mouse. Notice that the first component with
the focus, the focus owner, is “Button 1” in Focus Cycle A. This is evident by the blue selection
box drawn around that button’s text. Press TAB to move the focus forward to the next compo-
nent in the cycle. When you move the focus forward from the last component in the cycle
(the text field), notice that the focus moves down a cycle rather than continuing from the
beginning of the current cycle.

Press SHIFT+TAB to move the focus backward through the cycle. When you move the
focus backward the focus stays within the current focus cycle endlessly.

Now try moving the focus forward until you reach Focus Cycle D. At this point there
are no more focus cycle roots to traverse through and cycle D loops endlessly, whether you
move the focus forward or backward. If you minimize the “Focus Cycle D” internal frame, the
“Focus Cycle C” internal frame then becomes the lowest focus cycle root and focus traversal
will loop endlessly there. If you restore the “Focus Cycle D” internal frame then it becomes
the lowest focus cycle root once again.

By default there is no direct way to use the keyboard to move to a higher focus cycle. The
only way to move down a focus cycle with the keyboard is to traverse the focus cycle hierarchy
manually. There is no default way to move up the hierarchy using only the keyboard without
removing cycle roots (in the earlier example minimizing an internal frame accomplishes
this temporarily). However, you can easily use the mouse to jump to any focus cycle. Simply
click on a focusable component and the focus will be transferred to the cycle containing
that component.

64 CHAPTER 2 SWING MECHANICS

Now try typing some text into one of the text fields. Then use your mouse to click on
the Java cup frame icon in the upper left-hand corner of the JFrame. A popup menu appears
but notice that the cursor still remains blinking in the text area. This is an example of a tem-
porary focus change–focus is temporarily transferred to the popup menu. Once the popup
menu is dismissed you can continue typing in the text field as if a focus change never happened.
In this scenario the text field is a permanent focus owner with respect to the popup menu.

2.12.1 KeyboardFocusManager

abstract class java.awt.KeyboardFocusManager
Central to the focus management system is a new class called keyboardFocusManager
(an AppContext-registered service class–see section 2.5), the default implementation of
which is DefaultKeyboardFocusManager. To obtain a reference to the current Keyboard-
FocusManager in use, the static getCurrentKeyboardFocusManager() method is used.
Once you’ve obtained this you can programmatically inquire about the current focus state,
change the focus state, and add to or replace focus change event handling functionality.

NOTE We recommend programmatically changing focus through the keyboardFocus-
Manager rather than calling methods such as requestFocus() on components
directly.

VetoableChangeListeners (see section 2.1.1) can be added to KeyboardFocusManager
for the opportunity to veto a component focus or window activation change by throwing a
PropertyVetoException. In the event that a veto occurs, all VetoableChangeListeners
that may have previously approved the change will be notified and will revert any changes to
their original state.

2.12.2 Key events and focus management

abstract class java.awt.KeyEventDispatcher
Implementations of this class can be registered with the current KeyboardFocusManager
to receive key events before they are sent to the currently focused component. In this way
key events can be redirected to a different target component, consumed, or changed in some
other way.

KeyboardFocusManager is actually a subclass of KeyEventDispatcher and by
default acts as the last KeyEventDispatcher to receive key events. This abstract class defines
one method, dispatchKeyEvent(), which returns a boolean value. If any KeyEventDis-
patcher registered with the KeyboardFocusManager returns true for this method, indi-
cating that it dispatched the key event, then no further dispatching of that event will take place.
In this way we can define our own KeyEventDispatcher to alter the behavior of Keyboard-
FocusManager.

2.12.3 Focus and Window events

java.awt.event.FocusEvent and java.awt.event.WindowEvent
FocusEvent and WindowEvent define several event types that are central to the operation
of the focus management subsystem. They generally occur in the following order during focus

FOCUS MANAGEMENT 65

traversal and can be intercepted by attaching WindowListeners and FocusListeners
respectively:

• WindowEvent.WINDOW_ACTIVATED: event sent to a Frame or Dialog when it
becomes active.

• WindowEvent.WINDOW_GAINED_FOCUS: event sent to a Window when it
becomes focused.

• windowEvent.WINDOW_LOST_FOCUS: event sent to a Window when it loses focus.
• windowevent.WINDOW_DEACTIVATED: event sent to a Frame or Dialog when it is no

longer the active window.
• FocusEvent.FOCUS_GAINED: event sent to a Component when it becomes the focus

owner.
• FocusEvent.FOCUS_LOST: event sent to a Component when it loses focus ownership,

whether temporary or permanent.

2.12.4 Focusability and traversal policies

abstract class java.awt.FocusTraversalPolicy
You can easily change whether or not specific components act as part of a focus cycle. Each
Component can toggle its traversability with the setFocusable() method. Similarly each
Window can do the same with the setFocusableWindow() method.

However, if we need to customize focus traversal in a more creative way, the FocusTra-
versalPolicy class provides a way to accomplish this. This abstract class defines several
methods used during focus traversal to determine which component is next, previous, first, last,
and so forth. within a given Container’s focus cycle. Once a defined a traversal policy can
be applied to any Container with the setTraversalPolicy() method.

ContainerOrderFocusTraversalPolicy (and its DefaultFocusTraversalPol-
icy subclass) is the default policy of most containers. Components are traversed based on their
order of appearance, from left to right and top to bottom, within the container–corresponding
to the ordering of the array returned by the Container.getComponents() method.
By default this policy traverses down to lower focus cycles whenever a new focus cycle
root is reached. This behavior can be toggled with the setImplicitDownCycleTra-
versal() method.

InternalFrameFocusTraversalPolicy is a policy meant for use by JInternal-
Frame to provide a way for determining the initial focus owner when the internal
frame is selected for the first time. SortingFocusTraversalPolicy is a subclass of Inter-
nalFrameFocusTraversalPolicy that determines traversal order by comparing child
components using a given Comparator implementation. A subclass of this, LayoutFocus-
TraversalPolicy, is used to determine traversal order based on size, position, and orienta-
tion. Used in conjunction with a component’s ComponentOrientation (the language-
sensitive orientation that determines whether text or components should appear from left to
right, top to bottom, etc.), LayoutFocusTraversalPolicy can adjust focus traversal based
on the orientation required by, for instance, the current language in use.

REFERENCE For a more detailed description of focus management in Java 1.4 see “the AWT
Focus Subsystem for Merlin” at http://java.sun.com/j2se/1.4/docs/api/java/awt/
doc-files/FocusSpec.html.

66 CHAPTER 2 SWING MECHANICS

2.13 KEYBOARD INPUT

In this section, we discuss the mechanisms underlying keyboard input and how to intercept
key events.

2.13.1 Listening for keyboard input

KeyEvents are fired by a component whenever that component has the current focus and the
user presses a key. To listen for these events on a particular component, we can attach KeyLis-
teners using the addKeyListener() method. We can devour these events using the consume()
method before they are handled further by key bindings or other listeners. We’ll discuss in this
section exactly who gets notification of keyboard input, and in what order this occurs.

There are three KeyEvent event types, each of which normally occurs at least once per
keyboard activation (such as a press and release of a single keyboard key):

• KEY_PRESSED: This type of key event is generated whenever a keyboard key is pressed.
The key that is pressed is specified by the keyCode property and a virtual key code repre-
senting it can be retrieved with KeyEvent’s getKeyCode() method. A virtual key code
is used to report the exact keyboard key that caused the event, such as KeyEvent.VK_
ENTER. KeyEvent defines numerous static int constants that each start with the prefix
“VK,” meaning Virtual Key (see the KeyEvent API docs for a complete list). For exam-
ple, if CTRL-C is typed, two KEY_PRESSED events will be fired. The int returned by
getKeyCode() corresponding to pressing CTRL will be a value matching KeyEvent.
VK_CTRL. Similarly, the int returned by getKeyCode() corresponding to pressing the
C key will be a value matching KeyEvent.VK_C. (Note that the order in which these are
fired depends on the order in which they are pressed.) KeyEvent also maintains a key-
Char property which specifies the Unicode representation of the character that was
pressed (if there is no Unicode representation, KeyEvent.CHAR_UNDEFINED is used—
for example, the function keys on a typical PC keyboard). We can retrieve the keyChar
character corresponding to any KeyEvent using the getKeyChar() method. For example,
the character returned by getKeyChar() corresponding to pressing the C key will be c.
If SHIFT was pressed and held while the C key was pressed, the character returned by
getKeyChar() corresponding to the C key press would be C. (Note that distinct keyChars
are returned for upper- and lower-case characters, whereas the same keyCode is used in
both situations—for example, the value of VK_C will be returned by getKeyCode()
regardless of whether SHIFT is held down when the C key is pressed. Also note that there
is no keyChar associated with keys such as CTRL, and getKeyChar() will simply return
an empty char in this case.)

• KEY_RELEASED: This type of key event is generated whenever a keyboard key is released.
Other than this difference, KEY_RELEASED events are identical to KEY_PRESSED events;
however, as we will discuss below, they occur much less frequently.

• KEY_TYPED: This type of event is fired somewhere between a KEY_PRESSED and KEY_
RELEASED event. It never carries a keyCode property corresponding to the actual key
pressed, and 0 will be returned whenever getKeyCode() is called on an event of this type.
For keys with no Unicode representation (such as PAGE UP and PRINT SCREEN), no KEY_
TYPED event will be generated at all.

KEYBOARD INPUT 67

JAVA 1.4 As of Java 1.4 there are several new InputEvent modifiers linked to
keyboard events: SHIFT_DOWN_MASK, CTRL_DOWN_MASK, META_DOWN_MASK,
ALT_DOWN_MASK, ALT_GRAPH_DOWN_MASK. There are also two new APIs to re-
trieve the extended modifiers: getModifiersEx() and getModifiersEx-
Text(), making it possible to handle cases in which multiple keys are down
simultaneously.

Most keys with Unicode representations, when held down for longer than a few moments,
repeatedly generate KEY_PRESSED and KEY_TYPED events, in this order. The set of keys
that exhibit this behavior, and the rate at which they do so, cannot be controlled and is
platform-specific.

Each KeyEvent maintains a set of modifiers which specifies the state of the SHIFT, CTRL,
ALT, and META keys. This is an int value that is the result of the bitwise OR of InputEvent.
SHIFT_MASK, InputEvent.CTRL_MASK, InputEvent.ALT_MASK, and InputEvent.META_
MASK, depending on which keys are pressed at the time of the event. We can retrieve this value
with getModifiers(), and we can query specifically whether any of these keys was pressed
at the time the event was fired using isShiftDown(), isControlDown(), isAltDown(),
and isMetaDown().

KeyEvent also maintains the boolean actionKey property which specifies whether the
invoking keyboard key corresponds to an action that should be performed by that app (true)
versus data that is normally used for such things as addition to a text component’s document
content (false). We can use KeyEvent’s isActionKey() method to retrieve the value of
this property.

2.13.2 KeyStrokes

Using KeyListeners to handle all keyboard input on a component-by-component basis was
required prior to Java 2. Because of this, a significant and often tedious amount of time was
spent planning and debugging keyboard operations. The Swing team recognized this, and
thankfully included functionality for key event interception regardless of which component
currently has the focus. This functionality is implemented by binding instances of the javax.
swing.KeyStroke class with instances of javax.swing.Action (discussed next).

NOTE Registered keyboard actions are also commonly referred to as keyboard accelerators.

Each KeyStroke instance encapsulates a KeyEvent keyCode, a modifiers value (analo-
gous to that of KeyEvent), and a boolean property specifying whether it should be activated
on a key press (false, which is the default) or on a key release (true). The KeyStroke class
provides five static methods for creating KeyStroke objects. Note that all KeyStrokes are
cached, and it is not necessarily the case that these methods will return a brand-new instance.
(Actually KeyStroke provides six static methods for creating KeyStrokes, but getKey-
Stroke(char keyChar, boolean onKeyRelease) has been deprecated.)

• getKeyStroke(char keyChar)
• getKeyStroke(int keyCode, int modifiers)
• getKeyStroke(int keyCode, int modifiers, boolean onKeyRelease)
• getKeyStroke(String representation)
• getKeyStroke(KeyEvent anEvent)
• getKeyStroke(Character Keychar, int modifiers)

68 CHAPTER 2 SWING MECHANICS

The last method will return a KeyStroke with properties corresponding to the given
KeyEvent’s attributes. The keyCode, keyChar, and modifiers properties are taken from
the KeyEvent and the onKeyRelease property is set to true if the event is of type KEY_
RELEASED; otherwise, it returns false.

2.13.3 Scopes

There are three scopes defined by JComponent used to determine the conditions under which
a KeyStroke falls:

• JComponent.WHEN_FOCUSED: the corresponding Action will only be invoked if the
component this KeyStroke is associated with has the current focus.

• JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT: the corresponding Action
will only be invoked if the component this KeyStroke is associated with is the ancestor
of (i.e., it contains) the component with the current focus. Typically this is used to define
Actions associated with mnemonics.

• JComponent.WHEN_IN_FOCUSED_WINDOW: the corresponding Action will be invoked
if the component this KeyStroke is associated with is anywhere within the peer-level
window (i.e., JFrame, JDialog, JWindow, JApplet, or any other heavyweight compo-
nent) that has the current focus.

2.13.4 Actions

interface javax.swing.Action
An Action is an ActionListener implementation that encapsulates a Hashtable of
bound properties similar to JComponent’s client properties. In the context of keyboard bind-
ings each KeyStroke is associated with at most one Action (this relationship is not one-to-
one, however, as one Action can be associated with an arbitrary number of KeyStrokes).
When a key event is detected that matches a KeyStroke under a certain scope, the appropri-
ate Action is invoked. In chapter 12 we will work with Actions in detail; but it suffices to
say here that Actions are used for, among other things, handling all component key events in
Swing.

2.13.5 InputMaps and ActionMaps

javax.swing.InputMap and javax.swing.ActionMap
Before Java 1.3 there were two different mechanisms for mapping KeyStrokes to Actions.
For JTextComponents the KeyMap class was used to store a list of Action/Keystroke pairs.
For all other JComponents a Hashtable was maintained by the component itself containing
KeyStroke/ActionListener pairs.

In Java 1.3 these mechanisms were unified so that all components can be treated the same
with regard to keyboard bindings. To accomplish this two new classes have been added:
InputMap and ActionMap. Each component has one ActionMap and three InputMaps asso-
ciated with it (one InputMap for each scope: WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW,
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).

Each InputMap associates a KeyStroke with an Object (usually a String representing
the name of the corresponding action that should be invoked), and the ActionMap associates

KEYBOARD INPUT 69

an Object (also usually a String representing the name of an action) with an Action. In this
way KeyStrokes are mapped to Actions based on the current scope.

Each component’s main ActionMap and InputMaps are created by its UI Delegate. For
most intents and purposes you will not need to directly access these maps because JComponent
provides methods to easily add and remove Keystrokes and Actions. For example, to bind
the F1 key to the “HOME” action in a JList you would write the following code:

 myJList.getInputMap().put(
 KeyStroke.getKeyStroke(F1”), “HOME”);

To disable an existing key combination, for instance the “F1” key in the previous code, you
would write the following:

 myJList.getInputMap().put(
 KeyStroke.getKeyStroke(F1”), “none”);

Similarly you can create an Action or override an existing Action as follows:

 Action homeAction = new AbstractAction(“HOME”) {
 public void actionPerformed() {
 // place custom event-handling code here
}

};
myList.getActionMap().put(
homeAction.get(Action.NAME), homeAction);

Note that the getInputMap() method used here with no parameters returns the InputMap
associated with the WHEN_FOCUSED scope. To get the InputMap corresponding to a different
scope you can use the getInputMap() method which takes the scope as parameter: get-
InputMap(int condition) where condition is one of JComponent.WHEN_FOCUSED,
JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, JComponent.WHEN_IN_FOCUS-

ED_WINDOW.
In the case of text components, the code will work the same. Under the hood there is an

InputMap wrapped around the text component’s main KeyMap so that text components still
internally use KeyMaps while conforming to the new keyboard bindings infrastructure.

2.13.6 The flow of keyboard input

Each KeyEvent is first dispatched to the KeyboardFocusManager (see 2.12). If the Key-
boardFocusManager does not consume the event it is sent to the focused component.
The event is received in the component’s processKeyEvent() method. Note that this
method will only be invoked if KeyEvents have been enabled (which is true whenever there is
an InputMap in use and whenever KeyEvents are enabled on the component using the
enableEvents() method–true by default for most Swing components) or if there is a Key-
Listener registered with the component.

Next any registered KeyListeners get a chance to handle the event. If it is not consumed
by a KeyListener then the event is sent to the component’s processComponent-
KeyEvent() method which allows for any JComponent subclasses to handle key events in spe-
cific ways (JComponent itself has an empty implementation of this method).

70 CHAPTER 2 SWING MECHANICS

If the event has not been consumed the WHEN_FOCUSED InputMap is consulted. If there
is a match the corresponding action is performed and the event is consumed. If not the con-
tainer hierarchy is traversed upward from the focused component to the focus cycle root where
the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT InputMap is consulted. If the event is not
consumed there it is sent to KeyboardManager, a package private service class (note that
unlike most service classes in Swing, KeyboardManager does not register its shared instance
with AppContext, see section 2.5).

KeyboardManager looks for components with registered KeyStrokes with the
WHEN_IN_FOCUSED_WINDOW condition and sends the event to them. If none of these are found
then KeyboardManager passes the event to any JMenuBars in the current window and lets
their accelerators have a crack at it. If the event is still not handled a check is performed to
determine if the current focus resides in a JInternalFrame (because it is the only focus cycle
root that can be contained inside another lightweight Swing component). If this is the case,
the event is handed to the JInternalFrame’s parent. This process continues until either the
event is consumed or the top-level window is reached.

P A R T II

The basics
Part II consists of twelve chapters containing discussion and examples of the basic Swing
components.

Chapter 3 introduces frames, panels, and borders, including an example showing how to cre-
ate a custom rounded-edge border.

Chapter 4 is devoted to layout managers with a comparison of the most commonly used lay-
outs, a contributed section on the use of GridBagLayout, the construction of several custom lay-
outs, and the beginnings of a JavaBeans property editing environment with the ability to change
the layout manager dynamically.

Chapter 5 covers labels and buttons, and presents the construction of a custom transparent
polygonal button designed for use in applets, as well as a custom tooltip manager to provide prop-
er tooltip functionality for these polygonal buttons.

Chapter 6 is about using tabbed panes.
Chapter 7 discusses scroll panes and how to customize scrolling functionality. Examples

show how to use the row and column headers for tracking scroll position, how to change the speed
of scrolling through implementation of the Scrollable interface, how to implement grab-and-
drag scrolling, and how to programmatically invoke scrolling.

Chapter 8 takes a brief look at split panes with an example showing how to synchronize
two dividers.

Chapter 9 covers combo boxes with examples showing how to build custom combo box mod-
els and cell renderers, add functionlity to the default combo box editor, and serialize a combo box
model for later use.

72 PART II

Chapter 10 is about list boxes and spinners with examples of building a custom tab-based
cell renderer, adding keyboard search functionality for quick item selection, and constructing a
custom check box cell renderer.

Chapter 11 introduces the text components and undo/redo functionality with basic examples
and discussions of each (text package coverage continues in chapters 19 and 20).

Chapter 12 is devoted to menu bars, menus, menu items, toolbars and actions. Examples in-
clude the construction of a basic text editor with floatable toolbar, custom toolbar buttons, and
a custom color chooser menu item.

Chapter 13 discusses progress bars, sliders and scroll bars, including a custom scroll pane, a
slider-based date chooser, a JPEG image quality editor, and an FTP client application.

Chapter 14 covers dialogs, option panes, and file and color choosers. Examples demonstrate
the basics of custom dialog creation and the use of JOptionPane, as well as how to add a custom
component to JColorChooser, and how to customize JFileChooser to allow multiple file se-
lection and the addition of a custom component (a ZIP/JAR archive creation, extraction and pre-
view tool).

73

C H A P T E R 3

Frames, panels, and borders
3.1 Frames and panels overview 73
3.2 Borders 81
3.3 Creating a custom border 86

3.1 FRAMES AND PANELS OVERVIEW

Swing applications are built from basic framework components.

3.1.1 JFrame

class javax.swing.JFrame
The main container for a Swing-based application is JFrame. All objects associated with a
JFrame are managed by its only child, an instance of JRootPane. JRootPane is a simple
container for several child panes. When we add components to a JFrame, we don’t directly
add them to the JFrame as we did with an AWT Frame. Instead we have to specify into
exactly which pane of the JFrame’s JRootPane we want the component to be placed. In most
cases components are added to the contentPane by calling:

 getContentPane().add(myComponent);

Similarly, when setting a layout for a JFrame’s contents, we usually just want to set the layout
for the contentPane:

 getContentPane().setLayout(new FlowLayout());

74 CHAPTER 3 FRAMES, PANELS, AND BORDERS

Each JFrame contains a JRootPane, which is accessible though the getRootPane()
method. Figure 3.1 illustrates the hierarchy of a JFrame and its JRootPane. The lines in this
diagram extend downward representing the “has a” relationship of each container.

3.1.2 JRootPane

class javax.swing.JRootPane
Each JRootPane contains several components referred to here by variable name: glassPane
(a JPanel by default), layeredPane (a JLayeredPane), contentPane (a JPanel by default),
and menuBar (a JMenuBar).

NOTE glassPane and contentPane are just variable names used by JRootPane. They
are not unique Swing classes, as some explanations might lead you to believe.

The glassPane is initialized as a non-opaque JPanel that sits on top of the JLayeredPane
as illustrated in figure 3.2. This component is very useful in situations where we need to inter-
cept mouse events to display a certain cursor over the whole frame or to redirect the current
application focus. The glassPane can be any component, but it is a JPanel by default. To
change the glassPane from a JPanel to another component, a call to the setGlass-
Pane() method must be made:

 setGlassPane(myComponent);

Figure 3.1
The default JFrame and
JRootPane “has a” relationship

Figure 3.2
glassPane

FRAMES AND PANELS OVERVIEW 75

Though the glassPane does sit on top of the layeredPane, it is, by default, not visible. It
can be set visible (show itself) by calling:

 getGlassPane().setVisible(true);

The glassPane allows you to display components in front of an existing JFrame’s contents.

The contentPane and optional menuBar are contained within JRootPane’s layeredPane
at the FRAME_CONTENT_LAYER (this is layer –30000; see chapter 15). The menuBar does not
exist by default, but it can be set by calling the setJMenuBar() method:

 JMenuBar menu = new JMenuBar();
 setJMenuBar(menu);

When the JMenuBar is set, it is automatically positioned at the top of the FRAME_CONTENT
_LAYER. The rest of the layer is occupied by the contentPane as illustrated in figure 3.3.

The contentPane is, by default, an opaque JPanel. It can be set to any other compo-
nent by calling:

 setContentPane(myComponent);

NOTE The default layout for the contentPane is BorderLayout. The default layout for
any other JPanel is FlowLayout. Be careful not to set the layout of a JFrame
directly. This will generate an exception. You should also avoid setting the layout
of the rootPane, because every JRootPane uses its own custom layout manager
called RootLayout. We will discuss layout managers further in chapter 4.

3.1.3 RootLayout

class javax.swing.JRootPane.RootLayout
RootLayout is a layout manager built specifically to manage JRootPane’s layeredPane,
glassPane, and menuBar. If it is replaced by another layout manager, that manager must be
able to handle the positioning of these components. RootLayout is an inner class defined
within JRootPane and as such, it is not intended to have any use outside of this class. Thus it
is not discussed in this text.

Figure 3.3
Default JFrame contents
of the JLayeredPane
FRAME_CONTENT_LAYER

76 CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.1.4 The RootPaneContainer interface

abstract interface javax.swing.RootPaneContainer
The purpose of the RootPaneContainer interface is to organize a group of methods that should
be used to access a container’s JRootPane and its different panes (refer to the API docs for more
information). Because JFrame’s main container is a JRootPane, it implements this interface (as
do also JApplet, JInternalFrame, JDialog, and JWindow). If we were to build a new
component which uses a JRootPane as its main container, we would most likely implement
the RootPaneContainer interface. (Note that this interface exists for convenience, consis-
tency, and organizational purposes. We are encouraged, but certainly not required, to use it in
our own container implementations.)

3.1.5 The WindowConstants interface

abstract interface javax.swing.WindowConstants
We can specify how a JFrame, JInternalFrame, or JDialog act in response to a close using
the setDefaultCloseOperation() method. There are four possible settings, as defined by
WindowConstants interface fields:

 WindowConstants.DISPOSE_ON_CLOSE
 WindowConstants.DO_NOTHING_ON_CLOSE
 WindowConstants.HIDE_ON_CLOSE
 WindowConstants.EXIT_ON_CLOSE

The names are self-explanatory. DISPOSE_ON_CLOSE disposes of the container and its con-
tents, DO_NOTHING_ON_CLOSE causes the window frame’s Close button to not automatically
do anything when pressed, and HIDE_ON_CLOSE removes the container from view.
HIDE_ON_CLOSE may be useful if we need the container, or something it contains, at a later
time but do not want it to be visible until then. DO_NOTHING_ON_CLOSE can be very useful, as
you will see below. EXIT_ON_CLOSE will close the frame and terminate program execution
(we use this close operation in all of the example applications throughout the book).

3.1.6 The WindowListener interface

abstract interface java.awt.event.WindowListener
Classes that want explicit notification of window events (such as window closing or iconifica-
tion) need to implement this interface. Normally, the WindowAdapter class is extended instead.
“When the window’s status changes by virtue of being opened, closed, activated or deacti-
vated, iconified or deiconified, the relevant method in the listener object is invoked, and the
WindowEvent is passed to it.” (API documentation)

The methods any implementation of this interface must define are these:

• void windowActivated(WindowEvent e)
• void windowClosed(WindowEvent e)
• void windowClosing(WindowEvent e)
• void windowDeactivated(WindowEvent e)
• void windowDeiconified(WindowEvent e)

FRAMES AND PANELS OVERVIEW 77

• void windowIconified(WindowEvent e)
• void windowOpened(WindowEvent e)

3.1.7 WindowEvent

class java.awt.event.WindowEvent
This is the type of event used to indicate that a window has changed state. This event is passed
to every WindowListener or WindowAdapter object which is registered on the source win-
dow to receive such events. The method getWindow() returns the window that generated the
event. The method paramString() retrieves a String describing the event type and its source,
among other things.

Six types of WindowEvents can be generated; each is represented by the following static
WindowEvent fields: WINDOW_ACTIVATED, WINDOW_CLOSED, WINDOW_CLOSING, WINDOW_
DEACTIVATED, WINDOW_DEICONIFIED, WINDOW_ICONIFIED, and WINDOW_OPENED.

3.1.8 WindowAdapter

abstract class java.awt.event.WindowAdapter
This is an abstract implementation of the WindowListener interface. It is normally more
convenient to extend this class than to implement WindowListener directly, as it is likely
that most WindowEvent handlers will not care about all seven event types.

A useful idea for real-world applications is to combine WindowAdapter, values from the
WindowConstants interface, and JOptionPane, to present the user with an exit confirma-
tion dialog as follows:

 myJFrame.setDefaultCloseOperation(
 WindowConstants.DO_NOTHING_ON_CLOSE);
 WindowListener l = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 int confirm = JOptionPane.showOptionDialog(myJFrame,
 "Really Exit?", "Exit Confirmation",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);
 if (confirm == 0) {
 myJFrame.dispose();
 System.exit(0);
 }
 }
 };
 myJFrame.addWindowListener(l);

NOTE This can also be done for JDialog.

Inserting this code into your application will always display the dialog shown in figure 3.4
when the JFrame Close button is clicked.

REFERENCE Dialogs and JOptionPane are discussed in chapter 14.

78 CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.1.9 Custom frame icons

We might want to use a custom icon to replace the default coffee cup icon. Because JFrame is a
subclass of java.awt.Frame, we can set its icon using the setIconImage() method.

Brand identity Use the frame icon to establish and reinforce your brand iden-
tity. Pick a simple image which can be both effective in the small space and re-
used throughout the application and any accompanying material. Figure 3.4
shows the Sun Coffee Cup which was used as a brand mark for Java.

 ImageIcon image = new ImageIcon("spiral.gif");
 myFrame.setIconImage(image.getImage());

There is no limit to the size of the icon that can be used. A JFrame will resize any image
passed to setIconImage() to fit the bound it needs. Figure 3.5 shows the top of a JFrame
with a custom icon.

3.1.10 Centering a frame on the screen

By default, a JFrame displays itself in the upper left-hand corner of the screen, but we often
want to place it in the center of the screen. Using the getToolkit() method of the Window
class (of which JFrame is a second-level subclass), we can communicate with the operating
system and query the size of the screen. (The Toolkit methods make up the bridge between
Java components and their native, operating-system-specific, peer components.)

The getScreenSize() method gives us the information we need:

 Dimension dim = getToolkit().getScreenSize();

Figure 3.4
An application exit
confirmation dialog

Figure 3.5
JFrame custom icon

Figure 3.6
Screen coordinates

FRAMES AND PANELS OVERVIEW 79

When setting the location of the JFrame, the upper left-hand corner of the frame is the rele-
vant coordinate. So to center a JFrame on the screen, we need to subtract half its width and
half its height from the center-of-screen coordinate:

 myJFrame.setLocation(dim.width/2 - myJFrame.getWidth()/2,
 dim.height/2 - myJFrame.getHeight()/2);

Figure 3.6 illustrates how the screen coordinates work.

3.1.11 Headless frames and extended frame states

New to Java 1.4 are features that provide us with the ability to create frames without title bars
and programmatically maximize, both of which were not possible in previous versions of Java.

To create an AWT Frame or a Swing JFrame without a title bar, once you have instan-
tiated the frame call setUndecorated(false) on it. Note that once you make a frame visible
you can no longer change the decorated setting (an IllegalComponentStateException
will be thrown if you try). Make sure to use the setUndecorated() method only when a
frame is not visible.

To programmatically maximize a frame you can use the setExtendedState() method.
This method takes a bit mask of states. The available states are:

Frame.NORMAL: Non–iconified, non–maximized state
Frame.ICONIFIED: Iconified state
Frame.MAXIMIZED_HORIZ: maximized horizontally
Frame.MAXIMIZED_VERT: maximized vertically
Frame.MAZIMIZED_BOTH: Maximized both horizontally and vertically

Normally you will only need to use one of the above states at any given time. However, if you
want to do something like iconify a frame while keeping it maximized in the vertical direction
only, you can combine the flags as follows:

 myFrame.setExtendedState(
 Frame.ICONIFIED | Frame.MAXIMIZED_VERT);

To clear all bits you can use the Frame.NORMAL flag by itself.

3.1.12 Look and feel window decorations

New to Java 1.4 is the ability to create JFrames and JDialogs with window decorations
(i.e., title bar, icons, borders, etc.) in the style of the currently installed look and feel. To
enable this for all JFrames and JDialogs we use the following new static methods:

JFrame.setDefaultLookAndFeelDecorated(true);
JDialog.setDefaultLookAndFeelDecorated(true);

After these methods are called all newly instantiated JFrames and JDialogs will have frame
decorations in the style of the current look and feel. All those existing before the methods
were called will not be affected.

To enable this on a single JFrame or JDialog instance we can do the following;

myJFrame.setUndecorated(true);
myJFrame.getRootPane().setWindowDecorationStyle(JRootPane.FRAME);

80 CHAPTER 3 FRAMES, PANELS, AND BORDERS

Figure 3.7 shows an empty JFrame created with defaultLookAndFeelDecorated set to
true (looks jut like a JInternalFrame).

3.1.13 JApplet

class javax.swing.JApplet
JApplet is the Swing equivalent of the AWT Applet class. Like JFrame, JApplet’s main
child component is a JRootPane and its structure is the same. JApplet acts just like Applet,
so we won’t go into detail about how applets work.

REFERENCE We suggest that readers unfamiliar with applets refer to the Java tutorial to learn
more: http://java.sun.com/docs/books/tutorial/.

Several examples in later chapters are constructed as Swing applets, so we will see JApplet in
action soon enough.

3.1.14 JWindow

class javax.swing.JWindow
JWindow is very similar to JFrame except that it has no title bar and it is not resizable, mini-
mizable, maximizable, or closable. Thus it cannot be dragged without writing custom code to
do so in the same way that JToolBar’s UI delegate provides this functionality for docking
and undocking (see chapter 12). We normally use JWindow to display a temporary message or
splash screen logo. Since JWindow is a RootPaneContainer, we can treat it just like JFrame
or JApplet when manipulating its contents.

3.1.15 JPanel

class javax.swing.JPanel
This is the simple container component commonly used to organize a group or groups of
child components. JPanel is an integral part of JRootPane, as we discussed, and it is used
in each example throughout this book. Each JPanel’s child components are managed by a
layout manager. A layout manager controls the size and location of each child in a container.
JPanel’s default layout manager is FlowLayout (we will discuss this further in chapter 4).
The only exception to this is JRootPane’s contentPane, which is managed by a
BorderLayout by default.

Figure 3.7
A JFrame created with
defaultLookAndFeel-
Decorated set to true

BORDERS 81

3.2 BORDERS

package javax.swing.border
The border package provides us with the following border classes; they can be applied to any
Swing component.

 BevelBorder

A 3-D border with a raised or lowered appearance.
 CompoundBorder

A combination of two borders: an inside border and an outside border.
 EmptyBorder

A transparent border used to define empty space (often referred to as white space)
around a component.

 EtchedBorder

A border with an etched line appearance.
 LineBorder

A flat border with a specified thickness and color. As of Java 1.3 there is an addi-
tional LineBorder constructor allowing you to specify whether or not the
LineBorder’s corners should be slightly rounded.

 MatteBorder

A border consisting of either a flat color or a tiled image.
 SoftBevelBorder

A 3-D border with a raised or lowered appearance, and slightly rounded edges.
 TitledBorder

A border which allows a String title in a specific location and position. We can set
the title font, color, and justification, and the position of the title text using Title-
Border methods and constants where necessary (refer to the API docs).

Figure 3.8
A simple borders
demonstration

82 CHAPTER 3 FRAMES, PANELS, AND BORDERS

To set the border of a Swing component, we simply call JComponent’s setBorder()
method. There is also a convenience class called BorderFactory, contained in the
javax.swing package (not the javax.swing.border package as you might think), which
contains a group of static methods used for constructing borders quickly. For example, to cre-
ate an EtchedBorder, we can use BorderFactory as follows:

 myComponent.setBorder(BorderFactory.createEtchedBorder());

The border classes do not provide methods for setting preferences such as dimensions and col-
ors. Instead of modifying an existing border, we are normally expected to create a new
instance to replace the old one.

Example 3.1 creates a JFrame containing twelve JPanels using borders of all types. The
output is shown in figure 3.7.

Example 3.1

see \Chapter3\1

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

class BorderTest extends JFrame {

 public BorderTest() {
 setTitle("Border Test");
 setSize(455, 450);

 JPanel content = (JPanel) getContentPane();
 content.setLayout(new GridLayout(6, 2, 5, 5));

 JPanel p = new JPanel();
 p.setBorder(new BevelBorder (BevelBorder.RAISED));
 p.add(new JLabel("RAISED BevelBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new BevelBorder (BevelBorder.LOWERED));
 p.add(new JLabel("LOWERED BevelBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new LineBorder (Color.black, 4, true));
 p.add(new JLabel("Black LineBorder, thickness = 4"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new EmptyBorder (10,10,10,10));
 p.add(new JLabel("EmptyBorder with thickness of 10"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new EtchedBorder (EtchedBorder.RAISED));
 p.add(new JLabel("RAISED EtchedBorder"));

BorderTest.java

BORDERS 83

 content.add(p);

 p = new JPanel();
 p.setBorder(new EtchedBorder (EtchedBorder.LOWERED));
 p.add(new JLabel("LOWERED EtchedBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new SoftBevelBorder (SoftBevelBorder.RAISED));
 p.add(new JLabel("RAISED SoftBevelBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new SoftBevelBorder (SoftBevelBorder.LOWERED));
 p.add(new JLabel("LOWERED SoftBevelBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new MatteBorder (new ImageIcon("ball.gif")));
 p.add(new JLabel("MatteBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new TitledBorder (
 new LineBorder (Color.black, 5),
 "Title String"));
 p.add(new JLabel("TitledBorder using LineBorder"));
 content.add(p);

 p = new JPanel();
 p.setBorder(new TitledBorder (
 new EmptyBorder (Color.black, 5),
 "Title String"));
 p.add(new JLabel("TitledBorder using LineBorder"));
 content.add(p);

 Color c1 = new color(86, 86, 86);
 Color c2 = new Color(192, 192, 192); (
 Color c3 = new color(204, 204, 204);
 Border b1 = new BevelBorder(EtchedBorder.RAISED, c3, c1);
 Border b2 = new MatteBroder(3,3,3,3,c2);
 Border b3 = new BevelBorder (EtchedBorder.LOWERED, c3, c1);

 p = new JPanel();
 P.setBorder(new CompoundBorder(new CompoundBorder(b1, b2), b3));
 p.add(new JLabel("CompoundBorder"));
 content.add(p);
 }

 public static void main(String args[]) {
 BorderTest frame = new BorderTest();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

84 CHAPTER 3 FRAMES, PANELS, AND BORDERS

Borders for visual layering Use borders to create a visual association between
components in a view. Beveled borders are graphically very striking and can be
used to strongly associate items. The Windows look and feel does this. For exam-
ple, buttons use a raised BevelBorder and data fields use a lowered Bevel-
Border. If you want to visually associate components or draw attention to a
component, then you can create a visual layer by careful use of BevelBorder.
If you want to draw attention to a particular button or group of buttons, you
might consider thickening the RAISED bevel using BorderInsets as discussed
in section 3.2.1

Borders for visual grouping Use borders to create group boxes. Etched-
Border and LineBorder are particularly effective for this, as they are graph-
ically weaker then BevelBorder. EmptyBorder is also very useful for grouping.
It uses the power of negative (white) space to visually associate the contained
components and draw the viewer’s eye to the group.

You may wish to create a visual grouping of attributes or simply signify the
bounds of a set of choices. Grouping related radio buttons and check boxes is
particularly useful.

Achieving visual integration and balance using negative space Use a com-
pound border including an EmptyBorder to increase the negative (white)
space around a component or panel. Visually, a border sets what is known as a
ground (or area) for a figure. The figure is what is contained within the border.
It is important to keep the figure and the ground in balance by providing ad-
equate white space around the figure. The stronger the border, the more white
space will be required; for example, a BevelBorder will require more white
space than an EtchedBorder.

Border for visual grouping with layering Doubly compounded borders can
be used to group information and communicate hierarchy using visual layering.
Consider the following implementation which is shown in figure 3.8. Here we
are indicating a common container for the attributes within the border. They
are both attributes of Customer. Because we have indicated the label Customer
(top left-hand side of the box) in the border title, we do not need to repeat the
label for each field. We are further communicating the type of the Customer
with the VIP label (bottom right-hand side of the box).

Visual layering of the hierachy involved is achieved by position and font.

• Position: In western cultures, the eye is trained to scan from top left to bot-
tom right. Thus, something located top left has a visual higher rank than
something located bottom right.

• Font: By bolding the term Customer, we are clearly communicating it as the
highest ranking detail.

What we are displaying is a Customer of type VIP, not a VIP of type Cus-
tomer. The positioning and heavier font reinforcement clearly communicate
this message.

BORDERS 85

3.2.1 Inside borders

It is important to understand that borders are not components. In fact, AbstractBorder,
the abstract class all border classes are derived from, directly extends Object. Therefore, we
cannot attach action and mouse listeners to borders, set tooltips, etc.

NOTE The fact that borders are not components has certain side effects, one of which is
that borders are much less efficient in painting themselves. There is no optimiza-
tion support like there is in JComponent. We can do interesting things like using
a very thick MatteBorder to tile a panel with an image, but this is an inefficient
and unreliable solution. In general, don’t use really large borders for anything. If
you need an extremely large border, consider simulating one using JLabels and a
container managed by BorderLayout.

One major benefit of Borders not being components is that we can use a single Border
instance with an arbitrary number of components. In large-scale applications, this can reduce
a significant amount of overhead.

When a Swing component is assigned a border, its Insets are defined by that border’s
width and height settings. When layout managers lay out JComponents, as we will see in the next
chapter, they take into account their Insets; they normally use JComponent’s getInsets()
method to obtain this information. Inside the getInsets() method, the current border is
asked to provide its Insets using the getBorderInsets() method.

The Insets class consists of four publicly accessible int values: bottom, left, right,
and top. TitledBorder must compute its Insets based on its current font and text position
since these variables could potentially affect the size of any of the Insets values. In the case
of CompoundBorder, both its outer and inner Insets are retrieved through calls to getBor-
derInsets(), and then they are added up. A MatteBorder’s Insets are determined by the
width and height of its image. BevelBorder and EtchedBorder have Insets values: 2, 2,
2, 2. SoftBevelBorder has Insets values: 3, 3, 3, 3. EmptyBorder’s Insets are simply the
values that were passed in to the constructor. Each of LineBorder’s Insets values equal the
thickness that was specified in the constructor (or 1 as the default).

Borders get painted late in the JComponent rendering pipeline to ensure that they
always appear on top of each associated component. AbstractBorder defines several get-
InteriorRectangle() methods to get a Rectangle representing the interior region of the
component a border is attached to: getInteriorRectangle(). Any JComponent subclass
implementing its own painting methods may be interested in this area. Combined with the
Graphics clipping area, components may use this information to minimize their rendering
work (refer back to chapter 2 for more information).

Figure 3.9
Visual grouping
with layering

86 CHAPTER 3 FRAMES, PANELS, AND BORDERS

3.3 CREATING A CUSTOM BORDER

To create a custom border, we can implement the javax.swing.Border interface and define
the following three methods:

• void paintBorder(Component c, Graphics g): Performs the border rendering; only
paint within the Insets region.

• Insets getBorderInsets(Component c): Returns an Insets instance representing
the top, bottom, left, and right thicknesses.

• boolean isBorderOpaque(): Returns whether or not the border is opaque or transparent.

The following class, shown in example 3.2, is a simple implementation of a custom rounded-
rectangle border which we call OvalBorder.

Example 3.2

see \Chapter3\2

import java.awt.*;

import javax.swing.*;
import javax.swing.border.*;

public class OvalBorder implements Border
{
 protected int m_w=6;
 protected int m_h=6;
 protected Color m_topColor = Color.white;
 protected Color m_bottomColor = Color.gray;

 public OvalBorder() {
 m_w=6;
 m_h=6;
 }

 public OvalBorder(int w, int h) {
 m_w=w;
 m_h=h;
 }

OvalBorder.java

Figure 3.10
A custom rounded-corner
border implementation

CREATING A CUSTOM BORDER 87

 public OvalBorder(int w, int h, Color topColor,
 Color bottomColor) {
 m_w=w;
 m_h=h;
 m_topColor = topColor;
 m_bottomColor = bottomColor;
 }

 public Insets getBorderInsets(Component c) {
 return new Insets(m_h, m_w, m_h, m_w);
 }

 public boolean isBorderOpaque() { return true; }

 public void paintBorder(Component c, Graphics g,
 int x, int y, int w, int h) {
 w--;
 h--;
 g.setColor(m_topColor);
 g.drawLine(x, y+h-m_h, x, y+m_h);
 g.drawArc(x, y, 2*m_w, 2*m_h, 180, -90);
 g.drawLine(x+m_w, y, x+w-m_w, y);
 g.drawArc(x+w-2*m_w, y, 2*m_w, 2*m_h, 90, -90);

 g.setColor(m_bottomColor);
 g.drawLine(x+w, y+m_h, x+w, y+h-m_h);
 g.drawArc(x+w-2*m_w, y+h-2*m_h, 2*m_w, 2*m_h, 0, -90);
 g.drawLine(x+m_w, y+h, x+w-m_w, y+h);
 g.drawArc(x, y+h-2*m_h, 2*m_w, 2*m_h, -90, -90);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Custom Border: OvalBorder");
 JLabel label = new JLabel("OvalBorder");
 ((JPanel) frame.getContentPane()).setBorder(new CompoundBorder(
 new EmptyBorder(10,10,10,10), new OvalBorder(10,10)));
 frame.getContentPane().add(label);
 frame.setBounds(0,0,300,150);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

3.3.1 Understanding the code

This border consists of a raised shadowed rectangle with rounded corners. Instance variables:

Table 3.1 OvalBorder.java instance variables

Variables Description

int m_w Left and right inset value.

int m_h Top and bottom inset value.

Color m_topColor Non-shadow color.

Color m_bottomColor Shadow color.

88 CHAPTER 3 FRAMES, PANELS, AND BORDERS

Three constructors are provided to allow optional specification of the width and height of the
left/right and top/bottom inset values respectively. We can also specify the shadow color (bot-
tom color) and non-shadow color (top color). The inset values default to 6, the top color
defaults to white, and the shadow color defaults to gray.

The isBorderOpaque() method always returns true to signify that this border’s region
will be completely filled. getBorderInsets() simply returns an Insets instance made up
of the left/right and top/bottom inset values.

The paintBorder() method is responsible for rendering our border, and it simply
paints a sequence of four lines and arcs in the appropriate colors. By reversing the use of
bottomColor and topColor, we can switch from a raised look to a lowered look (a more
flexible implementation might include a raised/lowered flag and an additional constructor
parameter used to specify this).

The main() method creates a JFrame with a content pane surrounded by a Compound-
Border. The outer border is an EmptyBorder to provide white space, and the inner border
is an instance of our OvalBorder class with width and height values of 10.

3.3.2 Running the code

Figure 3.9 illustrates the output of example 3.2. Try running this class and resizing the
parent frame. Notice that with a very small width or height, the border does not render
itself perfectly. A more professional implementation will take this into account in the
paintBorder() routine.

89

C H A P T E R 4

Layout managers
4.1 Layouts overview 89
4.2 Comparing common layout

managers 94
4.3 Using GridBagLayout 98
4.4 Choosing the right layout 114

4.5 Custom layout manager, part I:
label/field pairs 117

4.6 Custom layout manager, part II:
common interfaces 128

4.7 Dynamic layout in a JavaBeans
container 140

4.1 LAYOUTS OVERVIEW

In this chapter, we’ll present several examples that show how to use various layouts to satisfy
specific goals, and we’ll also show how to create two custom layout managers that simplify the
construction of many common interfaces. You’ll also learn how to construct a basic container
for JavaBeans which must be able to manage a dynamic number of components. But before
we present these examples, it will help you to understand the big picture of layouts, which
classes use their own custom layouts, and exactly what it means to be a layout manager.

All layout managers implement one of two interfaces defined in the java.awt package:
LayoutManager or its subclass, LayoutManager2. LayoutManager declares a set of methods
that are intended to provide a straightforward, organized means of managing component
positions and sizes in a container. Each implementation of LayoutManager defines these
methods in different ways according to its specific needs. LayoutManager2 enhances this by
adding methods intended to aid in managing component positions and sizes using constraints-
based objects. Constraints-based objects usually store position and sizing information about
one component, and implementations of LayoutManager2 normally store one constraints-
based object per component. For instance, GridBagLayout uses a Hashtable to map each
Component it manages to its own GridBagConstraints object.

90 CHAPTER 4 LAYOUT MANAGERS

Figure 4.1 shows all the classes that implement LayoutManager and LayoutManager2.
Notice that there are several UI classes that implement these interfaces to provide custom lay-
out functionality for themselves. The other classes—the classes with which we are most familiar
and concerned—are built solely to provide help in laying out the containers they are assigned to.

Each container should be assigned one layout manager, and no layout manager should
be used to manage more than one container.

NOTE We have purposely omitted the discussion of several layout managers in this chapter
(such as ViewportLayout, ScrollPaneLayout, and JRootPane.RootPane-
Layout) because they are rarely used by developers and are more appropriately dis-
cussed in terms of the components that rely on them. For instance, we discuss
ViewportLayout and ScrollPaneLayout in chapter 7.

4.1.1 LayoutManager

abstract interface java.awt.LayoutManager
This interface must be implemented by any layout manager. Two methods are especially note-
worthy:

• layoutContainer(Container parent): Calculates and sets the bounds for all com-
ponents in the given container.

• preferredLayoutSize(Container parent): Calculates the preferred size require-
ments to lay out components in the given container and returns a Dimension instance
representing this size.

4.1.2 LayoutManager2

abstract interface java.awt.LayoutManager2
This interface extends LayoutManager to provide a framework for those layout managers that
use constraints-based layouts. The method addLayoutComponent(Component comp, Object

Figure 4.1
LayoutManager
and LayoutManager2
implementations

LAYOUTS OVERVIEW 91

constraints) adds a new component associated with a constraints-based object which car-
ries information about how to lay out this component.

A typical implementation is BorderLayout, which requires a direction (such as north or
east) to position a component. In this case, the constraint objects used are static Strings such
as BorderLayout.NORTH and BorderLayout.EAST. We are normally blind to the fact that
BorderLayout is constraints-based because we are never required to manipulate the con-
straint objects at all. This is not the case with layouts such as GridBagLayout, where we must
work directly with the constraint objects (which are instances of GridBagConstraints).

4.1.3 BoxLayout

class javax.swing.BoxLayout
BoxLayout organizes the components it manages along either the x-axis or y-axis of the
owner panel. The only constructor, BoxLayout(Container target, int axis), takes a
reference to the Container component it will manage and a direction (BoxLayout.X_AXIS
or BoxLayout.Y_AXIS). Components are laid out according to their preferred sizes and they
are not wrapped, even if the container does not provide enough space.

4.1.4 Box

class javax.swing.Box
To make using the BoxLayout manager easier, Swing also provides a class named Box which
is a container with an automatically assigned BoxLayout manager. To create an instance of
this container, we simply pass the desired alignment to its constructor. The Box class also sup-
ports the insertion of invisible blocks (instances of Box.Filler—see below) which allow
regions of unused space to be specified. These blocks are basically lightweight components
with bounds (position and size) but no view.

4.1.5 Filler

static class javax.swing.Box.Filler
This static inner class defines invisible components that affect a container’s layout. The Box
class provides convenient static methods for the creation of three different variations: glue,
struts, and rigid areas.

• createHorizontalGlue(), createVerticalGlue(): Returns a component which fills
the space between its neighboring components, pushing them aside to occupy all avail-
able space (this functionality is more analogous to a spring than it is to glue).

• createHorizontalStrut(int width), createVerticalStrut(int height): Returns
a fixed-width (height) component which provides a fixed gap between its neighbors.

• createRigidArea(Dimension d): Returns an invisible component of fixed width
and height.

NOTE All relevant Box methods are static and, as such, they can be applied to any con-
tainer managed by a BoxLayout, not just instances of Box. Box should be thought
of as a utilities class as much as it is a container.

92 CHAPTER 4 LAYOUT MANAGERS

4.1.6 FlowLayout

class java.awt.FlowLayout
This is a simple layout which places components from left to right in a row using the preferred
component sizes (the size returned by getPreferredSize()), until no space in the con-
tainer is available. When no space is available a new row is started. Because this placement
depends on the current size of the container, we cannot always guarantee in advance in which
row a component will be placed.

FlowLayout is too simple to rely on in serious applications where we want to be sure,
for instance, that a set of buttons will reside at the bottom of a dialog and not on its right side.
However, it can be useful as a pad for a single component to ensure that this component will
be placed in the center of a container. Note that FlowLayout is the default layout for all JPan-
els (the only exception is the content pane of a JRootPane which is always initialized with
a BorderLayout).

4.1.7 GridLayout

class java.awt.GridLayout
This layout places components in a rectangular grid. There are three constructors:

• GridLayout(): Creates a layout with one column per component. Only one row is
used.

• GridLayout(int rows, int cols): Creates a layout with the given number of rows
and columns.

• GridLayout(int rows, int cols, int hgap, int vgap): Creates a layout with the
given number of rows and columns, and the given size of horizontal and vertical gaps
between each row and column.

GridLayout places components from left to right and from top to bottom, assigning the
same size to each. It forces the occupation of all available container space and it shares this
space evenly between components. When it is not used carefully, this can lead to undesirable
component sizing, such as text boxes three times higher than expected.

4.1.8 GridBagLayout

class java.awt.GridBagLayout, class java.awt.GridBagConstraints
This layout extends the capabilities of GridLayout to become constraints-based. It breaks
the container’s space into equal rectangular pieces (like bricks in a wall) and places each
component in one or more of these pieces. You need to create and fill a GridBagCon-
straints object for each component to inform GridBagLayout how to place and size that
component.

GridBagLayout can be effectively used for placement of components if no special
behavior is required on resizing. However, due to its complexity, it usually requires some
helper methods or classes to handle all the necessary constraints information. James Tan, a
usability expert and GridBagLayout extraordinaire, gives a comprehensive overview of this
manager in section 4.3. He also presents a helper class to ease the burden of dealing with
GridBagConstraints.

LAYOUTS OVERVIEW 93

4.1.9 BorderLayout

class java.awt.BorderLayout
This layout divides a container into five regions: center, north, south, east, and west. To
specify the region in which to place a component, we use Strings of the form “Center,”
“North,” and so on, or the static String fields defined in BorderLayout, which include
BorderLayout.CENTER, BorderLayout.NORTH, etc. During the layout process, compo-
nents in the north and south regions will first be allotted their preferred height (if possible)
and the width of the container. Once north and south components have been assigned sizes,
components in the east and west regions will attempt to occupy their preferred width as well
as any remaining height between the north and south components. A component in the cen-
ter region will occupy all remaining available space. BorderLayout is very useful, especially
in conjunction with other layouts, as we will see in this and future chapters.

4.1.10 CardLayout

class java.awt.CardLayout
CardLayout treats all components as similar to cards of equal size overlapping one another.
Only one card component is visible at any given time (see figure 4.2). The methods first(),
last(), next(), previous(), and show() can be called to switch between components in
the parent Container.

In a stack of several cards, only the top–most card is visible.

4.1.11 SpringLayout

class javax.swing.SpringLayout
This layout, new to Java 1.4, organizes its children according to a set of constraints (four for
each child), each represented by a javax.swing.Spring object. An instance of Spring-
Layout.Constraints is used as the overall constraint object when adding a child to con-
tainer managed by a SpringLayout, for example:
 container.setLayout(new SpringLayout());
 container.add(new JButton(“Button”),
 new SpringLayout.Constraints(

 Spring.constant(10),

Figure 4.2
CardLayout

94 CHAPTER 4 LAYOUT MANAGERS

Spring.constant(10),
Spring.constant(120),
Spring.constant(70)));

SpringLayout.Constraints’ four parameters are Spring objects, in this case created with
the static constant() method to represent a minimum, maximum, and preferred value
for each constraint. The first parameter represents the x location of the component, the
second represents the y location, the third represents the component’s width, and the fourth
represents the component’s height.

NOTE The code illustrates one of the simplest uses of SpringLayout. See the API Java-
docs for explanations of more detailed functionality such as using constraints to
link the edges of two components in a container.

WARNING SpringLayout does not automatically set the location of child components. If
you do not set constraints on child components in a SpringLayout, each child
will be placed at 0,0 in the container, each overlapping the next.

4.1.12 JPanel

class javax.swing.JPanel
This class represents a generic lightweight container. It works in close cooperation with layout
managers. The default constructor creates a JPanel with a FlowLayout, but different lay-
outs can be specified in a constructor or assigned using the setLayout() method.

NOTE The content pane of a JRootPane container is a JPanel, which, by default, is
assigned a BorderLayout, not a FlowLayout.

4.2 COMPARING COMMON LAYOUT MANAGERS

Example 4.1 demonstrates the most commonly used AWT and Swing layout managers. It
shows a set of JInternalFrames that contain identical sets of components, each using a dif-
ferent layout. The purpose of this example is to allow direct simultaneous layout manager
comparisons using resizable containers.

Figure 4.3
Comparing common layouts

COMPARING COMMON LAYOUT MANAGERS 95

Example 4.1

see \Chapter4\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class CommonLayouts extends JFrame {
public Integer LAYOUT_FRAME_LAYER = new Integer(1);

 public CommonLayouts() {
 super("Common Layout Managers");
 setSize(500, 460);

 JDesktopPane desktop = new JDesktopPane();
 getContentPane().add(desktop);

 JInternalFrame fr1 =
 new JInternalFrame("FlowLayout", true, true);
 fr1.setBounds(10, 10, 150, 150);
 Container c = fr1.getContentPane();
 c.setLayout(new FlowLayout());
 c.add(new JButton("1"));
 c.add(new JButton("2"));
 c.add(new JButton("3"));
 c.add(new JButton("4"));
 desktop.add(fr1, 0);
 fr1.show();

 JInternalFrame fr2 =
 new JInternalFrame("GridLayout", true, true);
 fr2.setBounds(170, 10, 150, 150);
 c = fr2.getContentPane();
 c.setLayout(new GridLayout(2, 2));
 c.add(new JButton("1"));
 c.add(new JButton("2"));
 c.add(new JButton("3"));
 c.add(new JButton("4"));
 desktop.add(fr2, 0);
 fr2.show();

 JInternalFrame fr3 =
 new JInternalFrame("BorderLayout", true, true);
 fr3.setBounds(330, 10, 150, 150);
 c = fr3.getContentPane();
 c.add(new JButton("1"), BorderLayout.NORTH);
 c.add(new JButton("2"), BorderLayout.EAST);
 c.add(new JButton("3"), BorderLayout.SOUTH);
 c.add(new JButton("4"), BorderLayout.WEST);

CommonLayouts.java

96 CHAPTER 4 LAYOUT MANAGERS

 desktop.add(fr3, 0);
 fr3.show();

 JInternalFrame fr4 = new JInternalFrame("BoxLayout - X",
 true, true);
 fr4.setBounds(10, 170, 250, 80);
 c = fr4.getContentPane();
 c.setLayout(new BoxLayout(c, BoxLayout.X_AXIS));
 c.add(new JButton("1"));
 c.add(Box.createHorizontalStrut(12));
 c.add(new JButton("2"));
 c.add(Box.createGlue());
 c.add(new JButton("3"));
 c.add(Box.createHorizontalGlue());
 c.add(new JButton("4"));
 desktop.add(fr4, 0);
 fr4.show();

 JInternalFrame fr5 = new JInternalFrame("BoxLayout - Y",
 true, true);
 fr5.setBounds(330, 170, 150, 200);
 c = fr5.getContentPane();
 c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS));
 c.add(new JButton("1"));
 c.add(Box.createVerticalStrut(10));
 c.add(new JButton("2"));
 c.add(Box.createGlue());
 c.add(new JButton("3"));
 c.add(Box.createVerticalGlue());
 c.add(new JButton("4"));
 desktop.add(fr5, 0);
 fr5.show();

 JInternalFrame fr6 =
 new JInternal Frame(“SpringLayout”, true, true);
 fr6.setBounds(10, 260, 250, 170);
 c = fr6.getContentPane();
 c.setLayout(new SpringLayout());
 c.add(new JButton("1"), new SpringLayout.Constraints(
 Spring.constant(10),
 Spring.constant(10),
 Spring.constant(120),
 Spring.constant(70)));
 c.add(new JButton("2"), new SpringLayout.Constraints(
 Spring.constant(160),
 Spring.constant(10),
 Spring.constant(70),
 Spring.constant(30)));
 c.add(new JButton("3"), new SpringLayout.Constraints(
 Spring.constant(160),
 Spring.constant(50),
 Spring.constant(70),
 Spring.constant(30)));

COMPARING COMMON LAYOUT MANAGERS 97

 c.add(new JButton("4"), new SpringLayout.Constraints(
 Spring.constant(10),
 Spring.constant(90),
 Spring.constant(50),
 Spring.constant(40)));
 c.add(new JButton("5"), new SpringLayout.Constraints(
 Spring.constant(120),
 Spring.constant(90),
 Spring.constant(50),
 Spring.constant(40)));
 desktop.add(fr6, 0);
 fr6.show();

 desktop.setSelectedFrame(fr6);
 }

 public static void main(String argv[]) {
 CommonLayouts frame = new CommonLayouts();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

4.2.1 Understanding the code

Class CommonLayouts
The CommonLayouts constructor creates six JInternalFrames and places them in a
JDesktopPane. Each of these frames contains several JButtons. Each frame is assigned a
unique layout manager: a FlowLayout, a 2x2 GridLayout, a BorderLayout, an x-oriented
BoxLayout, a y-oriented BoxLayout, and a SpringLayout. Notice that the internal
frames using BoxLayout also use strut and glue filler components to demonstrate their behavior.

4.2.2 Running the code

Figure 4.3 shows CommonLayouts in action. Notice the differences in each frame’s content as
it changes size.

• FlowLayout places components in one or more rows depending on the width of the
container.

• GridLayout assigns an equal size to all components and fills all container space.

• BorderLayout places components along the sides of the container, or in the center.

• x-oriented BoxLayout always places components in a row. The distance between the
first and second components is 12 pixels (determined by the horizontal strut
component). Distances between the second, third, and fourth components are equalized
and take up all remaining width (determined by the two glue filler components).

• y-oriented BoxLayout always places components in a column. The distance between the
first and second components is 10 pixels (determined by the vertical strut component).
Distances between the second, third, and fourth components are equalized and take up
all available height (determined by the two glue filler components).

• SpringLayout places components at preassigned coordinates with preassigned
dimensions.

98 CHAPTER 4 LAYOUT MANAGERS

4.3 USING GRIDBAGLAYOUT

This section was written by James Tan, a systems analyst with
United Overseas Bank Singapore (jtan@coruscant.per.sg).
Of all the layouts included with Swing and AWT, GridBagLayout is by far the most com-
plex. In this section, we will walk through the various constraints attributes it relies on, along
with several short examples showing how to use them. We’ll follow up this discussion with a
comprehensive input dialog example which puts all these attributes together. We’ll then con-
clude this section with the construction and demonstration of a helper class designed to make
using GridBagLayout more convenient.

4.3.1 Default behavior of GridBagLayout

By simply setting a container’s layout to a GridBagLayout and adding Components to it, the
result will be a row of components, each set to their preferred size, tightly packed and placed
in the center of the container. Unlike FlowLayout, GridBagLayout will allow components
to be clipped by the edge of the managing container, and it will not move child components
down into a new row. The following code demonstrates this, and figure 4.4 shows the result:

 JInternalFrame fr1 = new JInternalFrame(
 "Example 1", true, true);
 fr1.setBounds(5, 5, 270, 100);
 cn = fr1.getContentPane();
 cn.setLayout(new GridBagLayout());
 cn.add(new JButton("Wonderful"));
 cn.add(new JButton("World"));
 cn.add(new JButton("Of"));
 cn.add(new JButton("Swing !!!"));
 desktop.add(fr1, 0);
 fr1.show();

4.3.2 Introducing GridBagConstraints

When a component is added to a container which has been assigned a GridBagLayout, the
layout manager uses a default GridBagConstraints object to place the component accord-
ingly, as shown in the above example. By creating and setting the attributes of a GridBag-
Constraints object and passing it in as an additional parameter in the add() method, we
can flexibly manage the placement of our components.

Listed next are the various attributes we can set in a GridBagConstraints object
along with their default values. The behavior of these attributes will be explained in the exam-
ples that follow.

Figure 4.4
Default GridBagLayout behavior

USING GRIDBAGLAYOUT 99

 public int gridx = GridBagConstraints.RELATIVE;
 public int gridy = GridBagConstraints.RELATIVE;
 public int gridwidth = 1;
 public int gridheight = 1;
 public double weightx = 0.0;
 public double weighty = 0.0;
 public int anchor = GridBagConstraints.CENTER;
 public int fill = GridBagConstraints.NONE;
 public Insets insets = new Insets(0, 0, 0, 0);
 public int ipadx = 0;
 public int ipady = 0;

4.3.3 Using the gridx, gridy, insets, ipadx, and ipady constraints

The gridx and gridy constraints (or column and row constraints) are used to specify the
exact grid cell location where we want our component to be placed. Component placement
starts from the upper left-hand corner of the container, and gridx and gridy begin with
values of 0. Specifying negative values for either of these attributes is equivalent to setting
them to GridBagConstraints.RELATIVE, which means that the next component added
will be placed directly after the previous gridx or gridy location.

The insets constraint adds an invisible exterior padding around the associated compo-
nent. Negative values can be used which will force the component to be sized larger than the
cell it is contained in.

The ipadx and ipady constraints add an interior padding which increases the preferred
size of the associated component. Specifically, the padding adds ipadx * 2 pixels to the pre-
ferred width and ipady * 2 pixels to the preferred height (* 2 because this padding applies to
both sides of the component).

In this example, we place the “Wonderful” and “World” buttons in the first row and the
other two buttons in the second row. We also associate insets with each button so that they
don’t look too cluttered, and they vary in both height and width.

 JInternalFrame fr2 = new JInternalFrame("Example 2", true, true);
 fr2.setBounds(5, 110, 270, 140);
 cn = fr2.getContentPane();
 cn.setLayout(new GridBagLayout());

 c = new GridBagConstraints();
 c.insets = new Insets(2, 2, 2, 2);
 c.gridx = 0; // Column 0
 c.gridy = 0; // Row 0
 c.ipadx = 5; // Increases component width by 10 pixels
 c.ipady = 5; // Increases component height by 10 pixels
 cn.add(new JButton("Wonderful"), c);

 c.gridx = 1; // Column 1
 c.ipadx = 0; // Reset the padding to 0
 c.ipady = 0;
 cn.add(new JButton("World"), c);

 c.gridx = 0; // Column 0
 c.gridy = 1; // Row 1
 cn.add(new JButton("Of"), c);

100 CHAPTER 4 LAYOUT MANAGERS

 c.gridx = 1; // Column 1
 cn.add(new JButton("Swing !!!"), c);

 desktop.add(fr2, 0);
 fr2.show();

We begin by creating a GridBagConstraints object to set the constraints for the first but-
ton component. We pass it in together with the button in the add() method. We reuse this
same constraints object by changing the relevant attributes and passing in again for each
remaining component. This conserves memory, and it also relieves us of having to reassign a
whole new group of attributes. Figure 4.5 shows the result.

4.3.4 Using the weightx and weighty constraints

When the container in the example above is resized, the components respect the constraints
we have assigned, but the whole group remains in the center of the container. Why don’t the
buttons grow to occupy a proportional amount of the increased space surrounding them? The
answer lies in the use of the weightx and weighty constraints, which both default to zero
when GridBagConstraints is instantiated.

These two constraints specify how any extra space in a container should be distributed
among each component’s cells. The weightx attribute specifies the fraction of extra horizontal
space to occupy. Similarly, weighty specifies the fraction of extra vertical space to occupy.
Both constraints can be assigned values ranging from 0.0 to 1.0.

For example, let’s say we have two buttons, A and B, placed in columns 0 and 1 of row 0
respectively. If we specify weightx = 1.0 for the first button and weightx = 0 for the second
button, when we resize the container, all extra space will be distributed to the first button’s
cell—50% on the left of the button and 50% on the right. The other button will be pushed
to the right of the container as far as possible. Figure 4.6 illustrates this concept.

Getting back to our “Wonderful World Of Swing !!!” example, we now modify all
button cells to share any extra container space equally as the container is resized. Specifying
weightx = 1.0 and weighty = 1.0, and keeping these attributes constant as each compo-

Figure 4.5
Using the gridx, gridy, insets,
ipadx, and ipady constraints

Figure 4.6
Using weightx and weighty constraints

USING GRIDBAGLAYOUT 101

nent is added, will tell GridBagLayout to use all available space for each cell. Figure 4.7 illus-
trates these changes.

 JInternalFrame fr3 = new JInternalFrame("Example 3", true, true);
 fr3.setBounds(5, 255, 270, 140);
 cn = fr3.getContentPane();
 cn.setLayout(new GridBagLayout());

 c = new GridBagConstraints();
 c.insets = new Insets(2, 2, 2, 2);
 c.weighty = 1.0;
 c.weightx = 1.0;
 c.gridx = 0;
 c.gridy = 0;
 cn.add(new JButton("Wonderful"), c);

 c.gridx = 1;
 cn.add(new JButton("World"), c);

 c.gridx = 0;
 c.gridy = 1;
 cn.add(new JButton("Of"), c);

 c.gridx = 1;
 cn.add(new JButton("Swing !!!"), c);

 desktop.add(fr3, 0);
 fr3.show();

4.3.5 Using the gridwidth and gridheight constraints

GridBagLayout also allows us to span components across multiple cells using the gridwidth
and gridheight constraints. To demonstrate, we’ll modify our example to force the “Won-
derful” button to occupy two rows and the “World” button to occupy two columns. Figure
4.8 illustrates this. Notice that occupying more cells forces more rows and/or columns to be
created based on the current container size.

 JInternalFrame fr4 = new JInternalFrame("Example 4", true, true);
 fr4.setBounds(280, 5, 270, 140);
 cn = fr4.getContentPane();
 cn.setLayout(new GridBagLayout());

 c = new GridBagConstraints();
 c.insets = new Insets(2, 2, 2, 2);
 c.weighty = 1.0;

Figure 4.7
Using weightx and weighty constraints

102 CHAPTER 4 LAYOUT MANAGERS

 c.weightx = 1.0;
 c.gridx = 0;
 c.gridy = 0;
 c.gridheight = 2; // Span across 2 rows
 cn.add(new JButton("Wonderful"), c);

 c.gridx = 1;
 c.gridheight = 1; // Remember to set back to 1 row
 c.gridwidth = 2; // Span across 2 columns
 cn.add(new JButton("World"), c);

 c.gridy = 1;
 c.gridwidth = 1; // Remember to set back to 1 column
 cn.add(new JButton("Of"), c);

 c.gridx = 2;
 cn.add(new JButton("Swing !!!"), c);

 desktop.add(fr4, 0);
 fr4.show();

4.3.6 Using anchor constraints

We can control how a component is aligned within its cell(s) by setting the anchor con-
straint. By default this is set to GridBagConstraints.CENTER, which forces the component
to be centered within its occupied cell(s). We can choose from the following anchor settings:

 GridBagConstraints.NORTH
 GridBagConstraints.SOUTH
 GridBagConstraints.EAST
 GridBagConstraints.WEST
 GridBagConstraints.NORTHEAST
 GridBagConstraints.NORTHWEST
 GridBagConstraints.SOUTHEAST
 GridBagConstraints.SOUTHWEST
 GridBagConstraints.CENTER

In the code below, we’ve modified our example to anchor the “Wonderful” button NORTH and
the “World” button SOUTHWEST. The “Of ” and “Swing !!!” buttons are anchored in the CEN-
TER of their cells. Figure 4.9 illustrates.

 JInternalFrame fr5 = new JInternalFrame("Example 5", true, true);
 fr5.setBounds(280, 150, 270, 140);
 cn = fr5.getContentPane();

Figure 4.8
Using gridwidth and
gridheight constraints

USING GRIDBAGLAYOUT 103

 cn.setLayout(new GridBagLayout());

 c = new GridBagConstraints();
 c.insets = new Insets(2, 2, 2, 2);
 c.weighty = 1.0;
 c.weightx = 1.0;
 c.gridx = 0;
 c.gridy = 0;
 c.gridheight = 2;
 c.anchor = GridBagConstraints.NORTH;
 cn.add(new JButton("Wonderful"), c);

 c.gridx = 1;
 c.gridheight = 1;
 c.gridwidth = 2;
 c.anchor = GridBagConstraints.SOUTHWEST;
 cn.add(new JButton("World"), c);

 c.gridy = 1;
 c.gridwidth = 1;
 c.anchor = GridBagConstraints.CENTER;
 cn.add(new JButton("Of"), c);

 c.gridx = 2;
 cn.add(new JButton("Swing !!!"), c);

 desktop.add(fr5, 0);
 fr5.show();

4.3.7 Using fill constraints

The most common reason for spanning multiple cells is that we want the component contained
in that cell to occupy the enlarged space. To do this we use the gridheight/gridwidth
constraints as described above, as well as the fill constraint. The fill constraint can be
assigned any of the following values:

 GridBagConstraints.NONE
 GridBagConstraints.HORIZONTAL
 GridBagConstraints.VERTICAL
 GridBagConstraints.BOTH

NOTE Using fill without using weight{x,y} will have no effect

In the next code, we modify our example to force the “Wonderful” button to occupy all avail-
able cell space, both vertically and horizontally. The “World” button now occupies all available

Figure 4.9
Using gridwidth and
gridheight constraints

104 CHAPTER 4 LAYOUT MANAGERS

horizontal cell space, but it continues to use its preferred vertical size. The “Of ” button does not
make use of the fill constraint; it simply uses its preferred size. The “Swing !!!” button occupies
all available vertical cell space, but it uses its preferred horizontal size. Figure 4.10 illustrates.

 JInternalFrame fr6 = new JInternalFrame("Example 6", true, true);
 fr6.setBounds(280, 295, 270, 140);
 cn = fr6.getContentPane();
 cn.setLayout(new GridBagLayout());

 c = new GridBagConstraints();
 c.insets = new Insets(2, 2, 2, 2);
 c.weighty = 1.0;
 c.weightx = 1.0;
 c.gridx = 0;
 c.gridy = 0;
 c.gridheight = 2;
 c.fill = GridBagConstraints.BOTH;
 cn.add(new JButton("Wonderful"), c);

 c.gridx = 1;
 c.gridheight = 1;
 c.gridwidth = 2;
 c.fill = GridBagConstraints.HORIZONTAL;
 cn.add(new JButton("World"), c);

 c.gridy = 1;
 c.gridwidth = 1;
 c.fill = GridBagConstraints.NONE;
 cn.add(new JButton("Of"), c);

 c.gridx = 2;
 c.fill = GridBagConstraints.VERTICAL;
 cn.add(new JButton("Swing !!!"), c);

 desktop.add(fr6, 0);
 fr6.show();

4.3.8 Putting it all together: constructing a complaints dialog

Figure 4.11 shows a sketch of a generic complaints dialog that can be used for various forms of
user feedback. This sketch clearly shows how we plan to lay out the various components, and
the columns and rows in which they will be placed. In order to set the constraints correctly so
that the components will be laid out as shown, we must do the following:

Figure 4.10
Using fill constraints

USING GRIDBAGLAYOUT 105

• For the “Short Description” text field, we set the gridwidth constraint to 3 and the fill
constraint to GridBagConstraints.HORIZONTAL. In order to make this field occupy
all the horizontal space available, we also need to set the weightx constraints to 1.0.

• For the “Description” text area, we set the gridwidth constraint to 3, the gridheight
to 2, and the fill constraint to GridBagConstraint.BOTH. In order to make this
field occupy all the available horizontal and vertical space, we set the weightx and
weighty constraints to 1.0.

• For the “Severity,” “Priority,” “Name,” “Telephone,” “Sex,” and “ID Number” input
fields, we want each to use their preferred width. Since the widths each exceed the width
of one cell, we set gridwidth, and weightx so that they have enough space to fit, but
they will not use any additional available horizontal space.

• For the Help button, we set the anchor constraint to GridBagConstraint.NORTH so
that it will stick together with the upper two buttons, “Submit” and “Cancel.” The fill
constraint is set to HORIZONTAL to force each of these buttons to occupy all available
horizontal cell space.

• All labels use their preferred sizes, and each component in this dialog is anchored WEST.

Our implementation follows in example 4.2, and figure 4.12 shows the resulting dialog.

Figure 4.11 A sketch of a generic complaints dialog

106 CHAPTER 4 LAYOUT MANAGERS

Example 4.2

see \Chapter4\Tan

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

public class ComplaintsDialog extends JDialog
{
 public ComplaintsDialog(JFrame frame) {
 super(frame, true);
 setTitle("Simple Complaints Dialog");
 setSize(500, 300);

 // Creates a panel to hold all components
 JPanel panel = new JPanel(new BorderLayout());
 panel.setLayout(new GridBagLayout());

 // Give the panel a border gap of 5 pixels
 panel.setBorder(new EmptyBorder(new Insets(5, 5, 5, 5)));

 getContentPane().add(BorderLayout.CENTER, panel);

 GridBagConstraints c = new GridBagConstraints();

 // Define preferred sizes for input fields
 Dimension shortField = new Dimension(40, 20);
 Dimension mediumField = new Dimension(120, 20);
 Dimension longField = new Dimension(240, 20);
 Dimension hugeField = new Dimension(240, 80);

 // Spacing between label and field
 EmptyBorder border = new EmptyBorder(new Insets(0, 0, 0, 10));
 EmptyBorder border1 = new EmptyBorder(new Insets(0, 20, 0, 10));

 // Add space around all components to avoid clutter
 c.insets = new Insets(2, 2, 2, 2);

 // Anchor all components WEST
 c.anchor = GridBagConstraints.WEST;

 JLabel lbl1 = new JLabel("Short Description");
 lbl1.setBorder(border); // Add some space to the right
 panel.add(lbl1, c);
 JTextField txt1 = new JTextField();
 txt1.setPreferredSize(longField);
 c.gridx = 1;
 c.weightx = 1.0; // Use all available horizontal space
 c.gridwidth = 3; // Spans across 3 columns
 c.fill = GridBagConstraints.HORIZONTAL; // Fills the 3 columns
 panel.add(txt1, c);

 JLabel lbl2 = new JLabel("Description");
 lbl2.setBorder(border);

ComplaintsDialog.java

USING GRIDBAGLAYOUT 107

 c.gridwidth = 1;
 c.gridx = 0;
 c.gridy = 1;;
 c.weightx = 0.0; // Do not use any extra horizontal space
 panel.add(lbl2, c);
 JTextArea area1 = new JTextArea();
 JScrollPane scroll = new JScrollPane(area1);
 scroll.setPreferredSize(hugeField);
 c.gridx = 1;
 c.weightx = 1.0; // Use all available horizontal space
 c.weighty = 1.0; // Use all available vertical space
 c.gridwidth = 3; // Span across 3 columns
 c.gridheight = 2; // Span across 2 rows
 c.fill = GridBagConstraints.BOTH; // Fills the columns and rows
 panel.add(scroll, c);

 JLabel lbl3 = new JLabel("Severity");
 lbl3.setBorder(border);
 c.gridx = 0;
 c.gridy = 3;
 c.gridwidth = 1;
 c.gridheight = 1;
 c.weightx = 0.0;
 c.weighty = 0.0;
 c.fill = GridBagConstraints.NONE;
 panel.add(lbl3, c);
 JComboBox combo3 = new JComboBox();
 combo3.addItem("A");
 combo3.addItem("B");
 combo3.addItem("C");
 combo3.addItem("D");
 combo3.addItem("E");
 combo3.setPreferredSize(shortField);
 c.gridx = 1;
 panel.add(combo3, c);

 JLabel lbl4 = new JLabel("Priority");
 lbl4.setBorder(border1);
 c.gridx = 2;
 panel.add(lbl4, c);
 JComboBox combo4 = new JComboBox();
 combo4.addItem("1");
 combo4.addItem("2");
 combo4.addItem("3");
 combo4.addItem("4");
 combo4.addItem("5");
 combo4.setPreferredSize(shortField);
 c.gridx = 3;
 panel.add(combo4, c);

 JLabel lbl5 = new JLabel("Name");
 lbl5.setBorder(border);
 c.gridx = 0;

108 CHAPTER 4 LAYOUT MANAGERS

 c.gridy = 4;
 panel.add(lbl5, c);
 JTextField txt5 = new JTextField();
 txt5.setPreferredSize(longField);
 c.gridx = 1;
 c.gridwidth = 3;
 panel.add(txt5, c);

 JLabel lbl6 = new JLabel("Telephone");
 lbl6.setBorder(border);
 c.gridx = 0;
 c.gridy = 5;
 panel.add(lbl6, c);
 JTextField txt6 = new JTextField();
 txt6.setPreferredSize(mediumField);
 c.gridx = 1;
 c.gridwidth = 3;
 panel.add(txt6, c);

 JLabel lbl7 = new JLabel("Sex");
 lbl7.setBorder(border);
 c.gridx = 0;
 c.gridy = 6;

 panel.add(lbl7, c);
 JPanel radioPanel = new JPanel();

 // Create a FlowLayout JPanel with 5 pixel horizontal gaps
 // and no vertical gaps
 radioPanel.setLayout(new FlowLayout(FlowLayout.LEFT, 5, 0));
 ButtonGroup group = new ButtonGroup();
 JRadioButton radio1 = new JRadioButton("Male");
 radio1.setSelected(true);
 group.add(radio1);
 JRadioButton radio2 = new JRadioButton("Female");
 group.add(radio2);
 radioPanel.add(radio1);
 radioPanel.add(radio2);
 c.gridx = 1;
 c.gridwidth = 3;
 panel.add(radioPanel, c);

 JLabel lbl8 = new JLabel("ID Number");
 lbl8.setBorder(border);
 c.gridx = 0;
 c.gridy = 7;
 c.gridwidth = 1;
 panel.add(lbl8, c);
 JTextField txt8 = new JTextField();
 txt8.setPreferredSize(mediumField);
 c.gridx = 1;
 c.gridwidth = 3;
 panel.add(txt8, c);

 JButton submitBtn = new JButton("Submit");

USING GRIDBAGLAYOUT 109

 c.gridx = 4;
 c.gridy = 0;
 c.gridwidth = 1;
 c.fill = GridBagConstraints.HORIZONTAL;
 panel.add(submitBtn, c);

 JButton cancelBtn = new JButton("Cancel");
 c.gridy = 1;
 panel.add(cancelBtn, c);

 JButton helpBtn = new JButton("Help");
 c.gridy = 2;
 c.anchor = GridBagConstraints.NORTH; // Anchor north
 panel.add(helpBtn, c)

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String[] args) {
 new ComplaintsDialog(new JFrame());
 }
}

4.3.9 A simple helper class example

As we can see from example 4.2, constructing dialogs with more than a few components
becomes a very tedious task and reduces source code legibility as well as organization. One
way to make the use of GridBagLayout cleaner and easier is to create a helper class that
manages all the constraints for us, and provides self-explanatory method names and pre-
defined parameters.

The source code of a simple helper class we have constructed for this purpose is shown
below in example 4.3. The method names used are easier to understand and laying out our
components using row and column parameters is more intuitive than gridx and gridy. The
methods implemented in this class are each a variation of one of the following:

• addComponent: Used to add a component that needs to adhere to its preferred size.
• addAnchoredComponent: Used to add a component that needs to be anchored.
• addFilledComponent: Used to add a component that will fill the entire cell space

allocated to it.

Figure 4.12
The Complaints Dialog

110 CHAPTER 4 LAYOUT MANAGERS

Example 4.3

see \Chapter4\Tan

import javax.swing.*;
import java.awt.*;

public class GriddedPanel extends JPanel
{
 private GridBagConstraints constraints;

 // Default constraints value definitions
 private static final int C_HORZ = GridBagConstraints.HORIZONTAL;
 private static final int C_NONE = GridBagConstraints.NONE;
 private static final int C_WEST = GridBagConstraints.WEST;
 private static final int C_WIDTH = 1;
 private static final int C_HEIGHT = 1;

 // Create a GridBagLayout panel using a default insets constraint
 public GriddedPanel() {
 this(new Insets(2, 2, 2, 2));
 }

 // Create a GridBagLayout panel using the specified insets
 // constraint
 public GriddedPanel(Insets insets) {
 super(new GridBagLayout());
 constraints = new GridBagConstraints();
 constraints.anchor = GridBagConstraints.WEST;
 constraints.insets = insets;
 }

 // Add a component to the specified row and column
 public void addComponent(JComponent component, int row, int col) {
 addComponent(component, row, col, C_WIDTH,
 C_HEIGHT, C_WEST, C_NONE);
 }

 // Add a component to the specified row and column, spanning across
 // a specified number of columns and rows
 public void addComponent(JComponent component, int row, int col,
 int width, int height) {
 addComponent(component, row, col, width,
 height, C_WEST, C_NONE);
 }

 // Add a component to the specified row and column, using a specified
 // anchor constraint
 public void addAnchoredComponent(JComponent component, int row,
 int col, int anchor) {
 addComponent(component, row, col, C_WIDTH,
 C_HEIGHT, anchor, C_NONE);
 }

 // Add a component to the specified row and column, spanning across

GriddedPanel.java

USING GRIDBAGLAYOUT 111

 // a specified number of columns and rows, using a specified
 // anchor constraint
 public void addAnchoredComponent(JComponent component,
 int row, int col, int width, int height, int anchor) {
 addComponent(component, row, col, width,
 height, anchor, C_NONE);
 }

 // Add a component to the specified row and column,
 // filling the column horizontally
 public void addFilledComponent(JComponent component,
 int row, int col) {
 addComponent(component, row, col, C_WIDTH,
 C_HEIGHT, C_WEST, C_HORZ);
 }

 // Add a component to the specified row and column
 // with the specified fill constraint
 public void addFilledComponent(JComponent component,
 int row, int col, int fill) {
 addComponent(component, row, col, C_WIDTH,
 C_HEIGHT, C_WEST, fill);
 }

 // Add a component to the specified row and column,
 // spanning a specified number of columns and rows,
 // with the specified fill constraint
 public void addFilledComponent(JComponent component,
 int row, int col, int width, int height, int fill) {
 addComponent(component, row, col, width, height, C_WEST, fill);
 }

 // Add a component to the specified row and column,
 // spanning the specified number of columns and rows, with
 // the specified fill and anchor constraints
 public void addComponent(JComponent component,
 int row, int col, int width, int height, int anchor, int fill) {
 constraints.gridx = col;
 constraints.gridy = row;
 constraints.gridwidth = width;
 constraints.gridheight = height;
 constraints.anchor = anchor;
 double weightx = 0.0;
 double weighty = 0.0;

 // Only use extra horizontal or vertical space if a component
 // spans more than one column and/or row
 if(width > 1)
 weightx = 1.0;
 if(height > 1)
 weighty = 1.0;

 switch(fill)
 {
 case GridBagConstraints.HORIZONTAL:

112 CHAPTER 4 LAYOUT MANAGERS

 constraints.weightx = weightx;
 constraints.weighty = 0.0;
 break;
 case GridBagConstraints.VERTICAL:
 constraints.weighty = weighty;
 constraints.weightx = 0.0;
 break;
 case GridBagConstraints.BOTH:
 constraints.weightx = weightx;
 constraints.weighty = weighty;
 break;
 case GridBagConstraints.NONE:
 constraints.weightx = 0.0;
 constraints.weighty = 0.0;
 break;
 default:
 break;
 }
 constraints.fill = fill;
 add(component, constraints);
 }
}

Example 4.4 is the source code used to construct the same complaints dialog as in example
4.2, using our helper class methods instead of manipulating the constraints directly. Notice
that the length of the code has been reduced and the readability has been improved. Also note
that we add components starting at row 1 and column 1, rather than row 0 and column 0
(see figure 4.11).

Example 4.4

see \Chapter4\Tan

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

public class ComplaintsDialog2 extends JDialog
{
 public ComplaintsDialog2(JFrame frame) {
 super(frame, true);
 setTitle("Simple Complaints Dialog");
 setSize(500, 300);

 GriddedPanel panel = new GriddedPanel();
 panel.setBorder(new EmptyBorder(new Insets(5, 5, 5, 5)));
 getContentPane().add(BorderLayout.CENTER, panel);

 // Input field dimensions
 Dimension shortField = new Dimension(40, 20);

ComplaintsDialog2.java

USING GRIDBAGLAYOUT 113

 Dimension mediumField = new Dimension(120, 20);
 Dimension longField = new Dimension(240, 20);
 Dimension hugeField = new Dimension(240, 80);

 // Spacing between labels and fields
 EmptyBorder border = new EmptyBorder(
 new Insets(0, 0, 0, 10));
 EmptyBorder border1 = new EmptyBorder(
 new Insets(0, 20, 0, 10));

 JLabel lbl1 = new JLabel("Short Description");
 lbl1.setBorder(border);
 panel.addComponent(lbl1, 1, 1);
 JTextField txt1 = new JTextField();
 txt1.setPreferredSize(longField);
 panel.addFilledComponent(txt1, 1, 2, 3, 1,
 GridBagConstraints.HORIZONTAL);

 JLabel lbl2 = new JLabel("Description");
 lbl2.setBorder(border);
 panel.addComponent(lbl2, 2, 1);
 JTextArea area1 = new JTextArea();
 JScrollPane scroll = new JScrollPane(area1);
 scroll.setPreferredSize(hugeField);

 panel.addFilledComponent(scroll, 2, 2, 3, 2,
 GridBagConstraints.BOTH);

 JLabel lbl3 = new JLabel("Severity");
 lbl3.setBorder(border);
 panel.addComponent(lbl3, 4, 1);
 JComboBox combo3 = new JComboBox();
 combo3.addItem("A");
 combo3.addItem("B");
 combo3.addItem("C");
 combo3.addItem("D");
 combo3.addItem("E");
 combo3.setPreferredSize(shortField);
 panel.addComponent(combo3, 4, 2);

 JLabel lbl4 = new JLabel("Priority");
 lbl4.setBorder(border1);
 panel.addComponent(lbl4, 4, 3);
 JComboBox combo4 = new JComboBox();
 combo4.addItem("1");
 combo4.addItem("2");
 combo4.addItem("3");
 combo4.addItem("4");
 combo4.addItem("5");
 combo4.setPreferredSize(shortField);
 panel.addComponent(combo4, 4, 4);

 JLabel lbl5 = new JLabel("Name");
 lbl5.setBorder(border);
 panel.addComponent(lbl5, 5, 1);
 JTextField txt5 = new JTextField();

114 CHAPTER 4 LAYOUT MANAGERS

 txt5.setPreferredSize(longField);
 panel.addComponent(txt5, 5, 2, 3, 1);

 JLabel lbl6 = new JLabel("Telephone");
 lbl6.setBorder(border);
 panel.addComponent(lbl6, 6, 1);
 JTextField txt6 = new JTextField();
 txt6.setPreferredSize(mediumField);
 panel.addComponent(txt6, 6, 2, 3, 1);

 JLabel lbl7 = new JLabel("Sex");
 lbl7.setBorder(border);
 panel.addComponent(lbl7, 7, 1);
 JPanel radioPanel = new JPanel();
 radioPanel.setLayout(new FlowLayout(FlowLayout.LEFT, 5, 0));
 ButtonGroup group = new ButtonGroup();
 JRadioButton radio1 = new JRadioButton("Male");
 radio1.setSelected(true);
 group.add(radio1);
 JRadioButton radio2 = new JRadioButton("Female");
 group.add(radio2);
 radioPanel.add(radio1);
 radioPanel.add(radio2);
 panel.addComponent(radioPanel, 7, 2, 3, 1);

 JLabel lbl8 = new JLabel("ID Number");
 lbl8.setBorder(border);
 panel.addComponent(lbl8, 8, 1);
 JTextField txt8 = new JTextField();
 txt8.setPreferredSize(mediumField);
 panel.addComponent(txt8, 8, 2, 3, 1);

 JButton submitBtn = new JButton("Submit");
 panel.addFilledComponent(submitBtn, 1, 5);

 JButton cancelBtn = new JButton("Cancel");
 panel.addFilledComponent(cancelBtn, 2, 5);

 JButton helpBtn = new JButton("Help");
 panel.addComponent(helpBtn, 3, 5, 1, 1,
 GridBagConstraints.NORTH, GridBagConstraints.HORIZONTAL);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String[] args) {
 new ComplaintsDialog2(new JFrame());
 }
}

4.4 CHOOSING THE RIGHT LAYOUT

In this section we’ll show how to choose the right combination of layouts and intermediate
containers to satisfy a predefined program specification. Consider a sample application which

CHOOSING THE RIGHT LAYOUT 115

makes airplane ticket reservations. The following specification describes which components
should be included and how they should be placed in the application frame:

1 A text field labeled “Date:,” a combo box labeled “From:,” and a combo box labeled
“To:” must reside at the top of the frame. Labels must be placed to the left side of their
corresponding component. The text fields and combo boxes must be of equal size, reside
in a column, and occupy all available width.

2 A group of radio buttons entitled “Options” must reside in the top right corner of the
frame. This group must include “First class,” “Business,” and “Coach” radio buttons.

3 A list component entitled “Available Flights” must occupy the central part of the frame
and it should grow or shrink when the size of the frame changes.

4 Three buttons entitled “Search,” “Purchase,” and “Exit” must reside at the bottom of the
frame. They must form a row, have equal sizes, and be center-aligned.

Our FlightReservation example demonstrates how to fulfill these requirements. We do
not process any input from these controls and we do not attempt to put them to work; we just
display them on the screen in the correct position and size. (Three variants are shown to
accomplish the layout of the text fields, combo boxes, and their associated labels. Two are
commented out, and a discussion of each is given below.)

NOTE A similar control placement assignment is part of Sun’s Java Developer certifica-
tion exam.

Figure 4.13 FlightReservation layout: variant 1

116 CHAPTER 4 LAYOUT MANAGERS

Figure 4.14 FlightReservation layout: variant 2

Figure 4.15 FlightReservation layout: variant 3

CHOOSING THE RIGHT LAYOUT 117

Example 4.5

see \Chapter4\3

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class FlightReservation extends JFrame
{
 public FlightReservation() {
 super("Flight Reservation Dialog");
 setSize(400, 300);

 JPanel p1 = new JPanel();
 p1.setLayout(new BoxLayout(p1, BoxLayout.X_AXIS));

 JPanel p1r = new JPanel();
 p1r.setBorder(new EmptyBorder(10, 10, 10, 10));

 // Variant 1
 p1r.setLayout(new GridLayout(3, 2, 5, 5));

 p1r.add(new JLabel("Date:"));
 p1r.add(new JTextField());

 p1r.add(new JLabel("From:"));
 JComboBox cb1 = new JComboBox();
 cb1.addItem("New York");
 p1r.add(cb1);

 p1r.add(new JLabel("To:"));
 JComboBox cb2 = new JComboBox();
 cb2.addItem("London");
 p1r.add(cb2);

 p1.add(p1r);

 ///////////////
 // Variant 2 //
 ///////////////
 // p11.setLayout(new BoxLayout(p11, BoxLayout.Y_AXIS));
 //
 // JPanel p12 = new JPanel();
 // p12.setLayout(new BoxLayout(p12, BoxLayout.Y_AXIS));
 //
 // p11.add(new JLabel("Date:"));
 // p12.add(new JTextField());
 //
 // p11.add(new JLabel("From:"));
 // JComboBox cb1 = new JComboBox();
 // cb1.addItem("New York");

FlightReservation.java

Constructor positions
all necessary GUI
components

North panel with
EmptyBorder for
spacing

3 by 2 grid

Put 3 labeled
components in grid
(labels too wide)

Second variant, using
two vertical BoxLayouts
(labels and components
not aligned)

118 CHAPTER 4 LAYOUT MANAGERS

 // p12.add(cb1);
 //
 // p11.add(new JLabel("To:"));
 // JComboBox cb2 = new JComboBox();
 // cb2.addItem("London");
 // p12.add(cb2);
 //
 // p1.add(p11);
 // p1.add(Box.createHorizontalStrut(10));
 // p1.add(p12);

 ///////////////
 // Variant 3 //
 ///////////////
 // JPanel p11 = new JPanel();
 // p11.setLayout(new GridLayout(3, 1, 5, 5));
 //
 // JPanel p12 = new JPanel();
 // p12.setLayout(new GridLayout(3, 1, 5, 5));
 //
 // p11.add(new JLabel("Date:"));
 // p12.add(new JTextField());
 //
 // p11.add(new JLabel("From:"));
 // JComboBox cb1 = new JComboBox();
 // cb1.addItem("New York");
 // p12.add(cb1);
 //
 // p11.add(new JLabel("To:"));
 // JComboBox cb2 = new JComboBox();
 // cb2.addItem("London");
 // p12.add(cb2);
 //
 // p1r.setLayout(new BorderLayout());
 // p1r.add(p11, BorderLayout.WEST);
 // p1r.add(p12, BorderLayout.CENTER);
 // p1.add(p1r);

 JPanel p3 = new JPanel();
 p3.setLayout(new BoxLayout(p3, BoxLayout.Y_AXIS));
 p3.setBorder(new TitledBorder(new EtchedBorder(),
 "Options"));

 ButtonGroup group = new ButtonGroup();
 JRadioButton r1 = new JRadioButton("First class");
 group.add(r1);
 p3.add(r1);

 JRadioButton r2 = new JRadioButton("Business");
 group.add(r2);
 p3.add(r2);

Third variant, using two
3 by 1 grids (arranged
correctly, but complex)

Vertical BoxLayout
for radio buttons, on

East side of frame

CHOOSING THE RIGHT LAYOUT 119

 JRadioButton r3 = new JRadioButton("Coach");
 group.add(r3);
 p3.add(r3);

 p1.add(p3);

 getContentPane().add(p1, BorderLayout.NORTH);

 JPanel p2 = new JPanel(new BorderLayout());
 p2.setBorder(new TitledBorder(new EtchedBorder(),
 "Available Flights"));
 JList list = new JList();
 JScrollPane ps = new JScrollPane(list);
 p2.add(ps, BorderLayout.CENTER);
 getContentPane().add(p2, BorderLayout.CENTER);

 JPanel p4 = new JPanel();
 JPanel p4c = new JPanel();
 p4c.setLayout(new GridLayout(1, 3, 5, 5));

 JButton b1 = new JButton("Search");
 p4c.add(b1);

 JButton b2 = new JButton("Purchase");
 p4c.add(b2);

 JButton b3 = new JButton("Exit");
 p4c.add(b3);

 p4.add(p4c);
 getContentPane().add(p4, BorderLayout.SOUTH);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String argv[]) {
 new FlightReservation();
 }
}

4.4.1 Understanding the code

Class FlightReservation
The constructor of the FlightReservation class creates and positions all necessary GUI
components. We will explain step by step how we've chosen intermediate containers and their
layouts to fulfill the requirements listed at the beginning of this section.

The frame (more specifically, its contentPane) is managed by a BorderLayout by default.
A text field, the combo boxes, and associated labels are added in a separate container to the
north along with the radio buttons; push buttons are placed in the south; and the list compo-
nent is placed in the center. This guarantees that the top and bottom (north and south) con-
tainers will receive their natural height, and that the central component (the list) will occupy
all the remaining space.

Place grid with labeled
components in North
side of frame

Vertical BoxLayout
for radio buttons, on

East side of frame

Scrollable list
in titled panel

Place list in
center of frame

Implicitly
FlowLayout

Place row of
push buttons in
South of frame

120 CHAPTER 4 LAYOUT MANAGERS

The intermediate container, JPanel p1r, holds the text field, combo boxes, and their associ-
ated labels; it is placed in panel p1 which is managed by a horizontally aligned BoxLayout.
The p1r panel is surrounded by an EmptyBorder to provide typical surrounding whitespace.

This example offers three variants of managing p1r and its six child components. The first
variant uses a 3x2 GridLayout. This places labels and boxes in two columns opposite
one another. Since this panel resides in the north region of the BorderLayout, it receives
its natural (preferable) height. In the horizontal direction this layout works satisfactorily: it
resizes boxes and labels to occupy all available space. The only remaining problem is that
GridLayout assigns too much space to the labels (see figure 4.13). We do not need to make
labels equal in size to their corresponding input boxes—we need only allow them to occupy
their preferred width.

The second variant uses two vertical BoxLayouts so that one can hold labels and the other
can hold the corresponding text field and combo boxes. If you try recompiling and running
the code with this variant, you’ll find that the labels now occupy only their necessary width,
and the boxes occupy all the remaining space. This is good, but another problem arises: now
the labels are not aligned exactly opposite with their corresponding components. Instead, they
are shifted in the vertical direction (see figure 4.14).

The third variant offers the best solution. It places the labels and their corresponding compo-
nents in two columns, but it uses 3x1 GridLayouts instead of BoxLayouts. This places all
components evenly in the vertical direction. To provide only the minimum width to the labels
(the first column) and assign all remaining space to the boxes (the second column), we place
these two containers into another intermediate container managed by a BorderLayout:
labels in the west, and corresponding components in the center. This solves our problem (see
figure 4.15). The only downside to this solution is that it requires the construction of three
intermediate containers with different layouts. In the next section we’ll show how to build a
custom layout manager that simplifies this relatively common layout task.

Now let’s return to the remaining components. A group of JRadioButtons seems to be the
simplest part of our design. They’re placed into an intermediate container, JPanel p3, with a
TitledBorder containing the required title: “Options”. A vertical BoxLayout is used to
place these components in a column and a ButtonGroup is used to coordinate their selection.
This container is then added to panel p1 (managed by a horizontal BoxLayout) to sit on the
eastern side of panel p1r.

The JList component is added to a JScrollPane to provide scrolling capabilities. It is then
placed in an intermediate container, JPanel p2, with a TitledBorder containing the required
title “Available Flights.”

NOTE We do not want to assign a TitledBorder to the JScrollPane itself because this
would substitute its natural border, resulting in quite an awkward scroll pane view.
So we nest the JScrollPane in its own JPanel with a TitledBorder.

Since the list should grow and shrink when the frame is resized and the group of radio buttons
(residing to the right of the list) must occupy only the necessary width, it only makes sense to
place the list in the center of the BorderLayout. We can then use the south region for the
three remaining buttons.

CUSTOM LAYOUT MANAGER, PART I : LABEL/FIELD PAIRS 121

Since all three buttons must be equal in size, they’re added to a JPanel, p4c, with a 1x3
GridLayout. However, this GridLayout will occupy all available width (fortunately, it’s lim-
ited in the vertical direction by the parent container’s BorderLayout). This is not exactly the
behavior we are looking for. To resolve this problem, we use another intermediate container,
JPanel p4, with a FlowLayout. This sizes the only added component, p4c, based on its pre-
ferred size, and centers it both vertically and horizontally.

4.4.2 Running the code

Figures 4.13, 4.14, and 4.15 show the resulting placement of our components in the parent frame
using the first and the third variants described above. Note that the placement of variant 3 satisfies
our specification—components are resized as expected when the frame container is resized.

When the frame is stretched in the horizontal direction, the text field, combo boxes, and
list component consume additional space, and the buttons at the bottom are shifted to the center.
When the frame is stretched in the vertical direction, the list component and the panel containing
the radio buttons consume all additional space and all other components remain unchanged.

Harnessing the power of java layouts Layout managers are powerful but
awkward to use. In order to maximize the effectiveness of the visual commu-
nication, we must make extra effort with the code. Making a bad choice of lay-
out or making sloppy use of default settings may lead to designs which look
poorly or communicate badly.
In this example, we have shown three alternative designs for the same basic
specification. Each exhibits pros and cons and highlights the design trade-offs
which can be made.
A sense of balance This occurs when sufficient white space is used to balance
the size of the components. An unbalanced panel can be fixed by bordering the
components with a compound border that includes an empty border.

A sense of scale Balance can be further affected by the extraordinary size of
some components such as the combo boxes shown in figure 4.14. The combo
boxes are bit too big for the intended purpose. This affects the sense of scale as
well as the balance of the design. It’s important to size combo boxes appropri-
ately. Layout managers have a tendency to stretch components to be larger
than might be desirable.

4.5 CUSTOM LAYOUT MANAGER, PART I: LABEL/FIELD PAIRS

This section and its accompanying example are intended to familiarize you with developing
custom layouts. You may find this information useful in cases where the traditional layouts are
not satisfactory or are too complex. In developing large-scale applications, it is often more
convenient to build custom layouts, such as the one we develop here, to help with specific
tasks. This often provides increased consistency, and may save a significant amount of coding
in the long run.

Example 4.5 in the previous section highlighted a problem: what is the best way to lay
out input field components (such as text fields and combo boxes) and their corresponding

122 CHAPTER 4 LAYOUT MANAGERS

labels? We have seen that it can be done using a combination of several intermediate containers
and layouts. This section shows how we can simplify the process using a custom-built layout
manager. The goal is to construct a layout manager that knows how to lay out labels and their
associated input fields in two columns, allocating the minimum required space to the column
containing the labels, and using the remainder for the column containing the input fields.

We first need to clearly state our design goals for this layout manager, which we will appro-
priately call DialogLayout. It is always a good idea to reserve plenty of time for thinking about
your design. Well-defined design specifications can save you tremendous amounts of time in the
long run, and can help pinpoint flaws and oversights before they arise in the code. (We strongly
recommend that a design-specification stage becomes part of your development regimen.)

DialogLayout specification:

1 This layout manager will be applied to a container that has all the necessary components
added to it in the following order: label1, field1, label2, field2, etc. (Note that
when components are added to a container, they are tracked in a list. If no index is spec-
ified when a component is added to a container, it will be added to the end of the list
using the next available index. As usual, this indexing starts from 0. A component can be
retrieved by index using the getComponent(int index) method.) If the labels and fields
are added correctly, all even-numbered components in the container will correspond to
labels, and all odd-numbered components will correspond to input fields.

2 The components must be placed in pairs that form two vertical columns.

3 Components that make up each pair must be placed opposite one another, for example,
label1 and field1. Each pair’s label and field must receive the same preferable height,
which should be the preferred height of the field.

4 Each left component (labels) must receive the same width. This width should be the
maximum preferable width of all left components.

5 Each right component (input fields) must also receive the same width. This width should
occupy all the remaining space left over from that taken by the left component’s column.

Example 4.6, found below, introduces our custom DialogLayout class which satisfies the
above design specification. This class is placed in its own package named dl. The code used to
construct the GUI is almost identical to that of the previous example. However, we will now
revert back to variant 1 and use an instance of DialogLayout instead of a GridLayout to
manage the p1r JPanel.

Figure 4.16
Using DialogLayout:
custom layout manager

CUSTOM LAYOUT MANAGER, PART I : LABEL/FIELD PAIRS 123

Example 4.6

see \Chapter4\4

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import dl.*;

public class FlightReservation extends JFrame
{
 public FlightReservation() {
 super("Flight Reservation Dialog [Custom Layout]");

 // Unchanged code from example 4.5

 JPanel p1r = new JPanel();
 p1r.setBorder(new EmptyBorder(10, 10, 10, 10));

 p1r.setLayout(new DialogLayout(20, 5));

 p1r.add(new JLabel("Date:"));
 p1r.add(new JTextField());

 p1r.add(new JLabel("From:"));
 JComboBox cb1 = new JComboBox();
 cb1.addItem("New York");
 p1r.add(cb1);

 p1r.add(new JLabel("To:"));
 JComboBox cb2 = new JComboBox();
 cb2.addItem("London");
 p1r.add(cb2);

 p1.add(p1r);
 getContentPane().add(p1, BorderLayout.NORTH);

// All remaining code is unchanged from example 4.5

see \Chapter4\4\dl

package dl;

import java.awt.*;
import java.util.*;

public class DialogLayout implements LayoutManager
{

FlightReservation.java

DialogLayout.java

Import for
DialogLayout class

Import
class

Means DialogLayout
can be used anywhere a
LayoutManager is used

124 CHAPTER 4 LAYOUT MANAGERS

 protected int m_divider = -1;
 protected int m_hGap = 10;
 protected int m_vGap = 5;

 public DialogLayout() {}

 public DialogLayout(int hGap, int vGap) {
 m_hGap = hGap;
 m_vGap = vGap;
 }

 public void addLayoutComponent(String name, Component comp) {}

 public void removeLayoutComponent(Component comp) {}

 public Dimension preferredLayoutSize(Container parent) {
 int divider = getDivider(parent);

 int w = 0;
 int h = 0;
 for (int k=1 ; k<parent.getComponentCount(); k+=2) {
 Component comp = parent.getComponent(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 }
 h -= m_vGap;

 Insets insets = parent.getInsets();
 return new Dimension(divider+w+insets.left+insets.right,
 h+insets.top+insets.bottom);
 }

 public Dimension minimumLayoutSize(Container parent) {
 return preferredLayoutSize(parent);
 }

 public void layoutContainer(Container parent) {
 int divider = getDivider(parent);

 Insets insets = parent.getInsets();
 int w = parent.getWidth() - insets.left
 - insets.right - divider;
 int x = insets.left;
 int y = insets.top;

 for (int k=1 ; k<parent.getComponentCount(); k+=2) {
 Component comp1 = parent.getComponent(k-1);
 Component comp2 = parent.getComponent(k);
 Dimension d = comp2.getPreferredSize();

 comp1.setBounds(x, y, divider-m_hGap, d.height);
 comp2.setBounds(x+divider, y, w, d.height);
 y += d.height + m_vGap;
 }
 }

 public int getHGap() { return m_hGap; }

Width and
gap values

Constructor which
uses default gaps

Constructor to
set gap values

From base interface,
not managing internal

components list

Returns preferred
size to lay out all

managed
components

Determine width
of labels column

Determine maximum
input field width and
accumulate height

Calculate
total pre-
ferred size

Minimum size will be the
same as the preferred size
Most important method,
calculates position and size
of each managed component
Determine divider
size and width of
all input fields

Set each label and
input field to

calculated bounds

CUSTOM LAYOUT MANAGER, PART I : LABEL/FIELD PAIRS 125

 public int getVGap() { return m_vGap; }

 public void setDivider(int divider) {
 if (divider > 0)
 m_divider = divider;
 }

 public int getDivider() { return m_divider; }

 protected int getDivider(Container parent) {
 if (m_divider > 0)
 return m_divider;

 int divider = 0;
 for (int k=0 ; k<parent.getComponentCount(); k+=2) {
 Component comp = parent.getComponent(k);
 Dimension d = comp.getPreferredSize();
 divider = Math.max(divider, d.width);
 }
 divider += m_hGap;
 return divider;
 }

 public String toString() {
 return getClass().getName() + "[hgap=" + m_hGap + ",vgap="

 + m_vGap + ",divider=" + m_divider + "]";
 }
}

4.5.1 Understanding the code

Class FlightReservation
This class now imports the dl package and uses the DialogLayout layout manager for JPanel
p1r, which contains the labels and input fields. The dl package contains our custom layout,
DialogLayout.

Class DialogLayout
This class implements the LayoutManager interface to serve as our custom layout manager.
Three instance variables are needed:

• int m_divider: Width of the left components. This can be calculated or set to some
mandatory value.

• int m_hGap: Horizontal gap between components.
• int m_vGap: Vertical gap between components.

Two constructors are available to create a DialogLayout: a no-argument default constructor
and a constructor which takes horizontal and vertical gap sizes as parameters. The rest of the
code implements methods from the LayoutManager interface.

The addLayoutComponent() and removeLayoutComponent() methods are not used in
this class, and they receive empty implementations. We do not support an internal collection
of the components to be managed. Rather, we refer to these components directly from the
container which is being managed.

Minimum size will
be the same as the
preferred size

If no divider
set yet

Determine
maximum label
size plus gap

Useful debugging
information

126 CHAPTER 4 LAYOUT MANAGERS

The purpose of the preferredLayoutSize() method is to return the preferable container
size required to lay out the components in the given container according to the rules used in
this layout. In our implementation, we first determine the divider size (the width of the first
column plus the horizontal gap, m_hGap) by calling our getDivider() method.

 int divider = getDivider(parent);

If no positive divider size has been specified using our setDivider() method (see below),
the getDivider() method looks at each even-indexed component in the container (this
should be all the labels if the components were added to the container in the correct order)
and returns the largest preferred width found plus the horizontal gap value, m_hGap (which
defaults to 10 if the default constructor is used):

 if (m_divider > 0)
 return m_divider;

 int divider = 0;
 for (int k=0 ; k<parent.getComponentCount(); k+=2) {
 Component comp = parent.getComponent(k);
 Dimension d = comp.getPreferredSize();
 divider = Math.max(divider, d.width);
 }
 divider += m_hGap;
 return divider;

Now, let’s go back to the preferredLayoutSize() method. Once getDivider() returns,
we then examine all the components in the container with odd indices (this should be all the
input fields) and determine the maximum width, w. This is found by checking the preferred
width of each input field. While we are determining this maximum width, we are also con-
tinuing to accumulate the height, h, of the whole input fields column by summing each field’s
preferred height (not forgetting to add the vertical gap size, m_vGap, each time; notice that
m_vGap is subtracted from the height at the end because there is no vertical gap for the last
field. Also remember that m_vGap defaults to 5 if the the default constructor is used.)

 int w = 0;
 int h = 0;
 for (int k=1 ; k<parent.getComponentCount(); k+=2) {
 Component comp = parent.getComponent(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 }
 h -= m_vGap;

So at this point we have determined the width of the labels column (including the space
between columns), divider, and the preferred height, h, and width, w, of the input fields col-
umn. So divider+w gives us the preferred width of the container, and h gives us the total
preferred height. Not forgetting to take into account any Insets that might have been
applied to the container, we can now return the correct preferred size:

 Insets insets = parent.getInsets();
 return new Dimension(divider+w+insets.left+insets.right,
 h+insets.top+insets.bottom);

CUSTOM LAYOUT MANAGER, PART I : LABEL/FIELD PAIRS 127

The purpose of the minimumLayoutSize() method is to return the minimum size required
to lay out the components in the given container according to the rules used in this layout.
We return preferredLayoutSize() in this method, because we choose not to make a dis-
tinction between minimum and preferred sizes (to avoid over-complication).

layoutContainer() is the most important method in any layout manager. This method is
responsible for actually assigning the bounds (position and size) for the components in the
container being managed. First it determines the size of the divider (as discussed above),
which represents the width of the labels column plus an additional m_hGap. From this, it
determines the width, w, of the fields column by subtracting the container's left and right
insets and divider from the width of the whole container:

 int divider = getDivider(parent);

 Insets insets = parent.getInsets();
 int w = parent.getWidth() - insets.left
 - insets.right - divider;
 int x = insets.left;
 int y = insets.top;

Then all pairs of components are examined in turn. Each left component receives a width
equal to divider-m_hGap, and all right components receive a width of w. Both left and right com-
ponents receive the preferred height of the right component (which should be an input field).

Coordinates of the left components are assigned starting with the container’s Insets, x and
y. Notice that y is continually incremented based on the preferred height of each right com-
ponent plus the vertical gap, m_vGap. The right components are assigned a y-coordinate iden-
tical to their left component counterpart, and an x-coordinate of x+divider (remember that
divider includes the horizontal gap, m_hGap):

 for (int k=1 ; k<parent.getComponentCount(); k+=2) {
 Component comp1 = parent.getComponent(k-1);
 Component comp2 = parent.getComponent(k);
 Dimension d = comp2.getPreferredSize();

 comp1.setBounds(x, y, divider-m_hGap, d.height);
 comp2.setBounds(x+divider, y, w, d.height);
 y += d.height + m_vGap;
 }

The setDivider() method allows us to manually set the size of the left column. The int
value, which is passed as a parameter, gets stored in the m_divider instance variable. When-
ever m_divider is greater than 0, the calculations of divider size are overridden in the get-
Divider() method and this value is returned instead.

The toString() method provides typical class name and instance variable information. (It is
always a good idea to implement informative toString() methods for each class. Although
we don’t consistently do so throughout this text, we feel that production code should often
include this functionality.)

128 CHAPTER 4 LAYOUT MANAGERS

4.5.2 Running the code

Figure 4.16 shows the sample interface introduced in the previous section now using Dia-
logLayout to manage the layout of the input fields (the text field and two combo boxes) and
their corresponding labels. Note that the labels occupy only their preferred space and they do
not resize when the frame resizes. The width of the left column can be managed easily by
manually setting the divider size with the setDivider() method, as discussed above. The
input fields form the right column and occupy all the remaining space.

Using DialogLayout, all that is required is to add the labels and input fields in the
correct order. We can now use this layout manager each time we encounter label/input field
pairs without worrying about intermediate containers. In the next section, we will build upon
DialogLayout to create an even more general layout manager that can be used to create com-
plete dialog GUIs very easily.

Alignment across controls as well as within It is a common mistake in UI
design to achieve good alignment with a control or component but fail to achieve
this across a whole screen, panel, or dialog. Unfortunately, the architecture of
Swing lends itself to this problem. For example, say you have four custom com-
ponents which inherit from a JPanel, each has its own layout manager and
each is functional in its own right. You might want to build a composite com-
ponent which requires all four. So you create a new component with a Grid-
Layout, for example, then add each of your four components in turn.

The result can be very messy. The fields within each component will align—
three radio buttons, for example—but those radio buttons will not align with
the three text fields in the next component. Why not? The answer is simple.
With Swing, there is no way for the layout manager within each component to
negotiate with the others, so alignment cannot be achieved across the compo-
nents. The answer to this problem is that you must flatten out the design into
a single panel, as DialogLayout achieves.

4.6 CUSTOM LAYOUT MANAGER,
PART II: COMMON INTERFACES

In section 4.4 we saw how to choose both intermediate containers and appropriate layouts
for placing components according to a given specification. This required the use of several
intermediate containers, and several variants were developed in a search for the best solution.
This raises a question: can we somehow just add components one after another to a container
which is intelligent enough to lay them out as we would typically expect? The answer is yes, to
a certain extent.

In practice, the contents of many Java frames and dialogs are constructed using a scheme
similar to the following (we realize that this is a big generalization, but you will see these sit-
uations arise in other examples later in this text):

1 Groups (or panels) of controls are laid out in the vertical direction.

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 129

2 Labels and their corresponding input fields form two-column structures as described in
the previous section.

3 Large components (such as lists, tables, text areas, and trees) are usually placed in scroll
panes and they occupy all space in the horizontal direction.

4 Groups of buttons, including check boxes and radio buttons, are centered in an interme-
diate container and laid out in the horizontal direction. (In this example we purposefully
avoid the vertical placement of buttons for simplicity.)

Example 4.7, found below, shows how to build a layout manager that places components
according to this specification. Its purpose is to further demonstrate that layout managers can
be built to define template-like pluggable containers. By adhering to intelligently designed
specifications, such templates can be developed to help maximize code reuse and increase pro-
ductivity. Additionally, in the case of large-scale applications, several different interface design-
ers may consider sharing customized layout managers to enforce consistency.

Example 4.7 introduces our new custom layout manager, DialogLayout2, which builds
upon DialogLayout. To provide boundaries between control groupings, we construct a new
component, DialogSeparator, which is simply a label containing text and a horizontal bar
that is drawn across the container. Both DialogLayout2 and DialogSeparator are added
to our dl package. The FlightReservation class now shows how to construct the sample
airline ticket reservation interface we have been working with since section 4.4 using Dialog-
Layout2 and DialogSeparator. In order to comply with our new layout scheme, we are
forced to place the radio buttons in a row above the list component. The main things to note
are that the code involved to build this interface is done with little regard for the existence of
a layout manager, and that absolutely no intermediate containers need to be created.

NOTE Constructing custom layout managers for use in a single application is not recom-
mended. Only build them when you know that they will be reused again and again
to perform common layout tasks. In general, custom layout manager classes belong
within custom packages or they should be embedded as inner classes in custom
components.

Figure 4.17
Using the DialogLayout2
custom layout manager

130 CHAPTER 4 LAYOUT MANAGERS

Example 4.7

see \Chapter4\5

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import dl.*;

public class FlightReservation extends JFrame
{
 public FlightReservation() {
 super("Flight Reservation Dialog [Custom Layout - 2]");

 Container c = getContentPane();

 c.setLayout(new DialogLayout2(20, 5));

 c.add(new JLabel("Date:"));

 c.add(new JTextField());

 c.add(new JLabel("From:"));

 JComboBox cb1 = new JComboBox();

 cb1.addItem("New York");

 c.add(cb1);

 c.add(new JLabel("To:"));

 JComboBox cb2 = new JComboBox();

 cb2.addItem("London");

 c.add(cb2);

 c.add(new DialogSeparator("Available Flights"));

 JList list = new JList();

 JScrollPane ps = new JScrollPane(list);

 c.add(ps);

 c.add(new DialogSeparator("Options"));

 ButtonGroup group = new ButtonGroup();

 JRadioButton r1 = new JRadioButton("First class");

 group.add(r1);

 c.add(r1);

 JRadioButton r2 = new JRadioButton("Business");

 group.add(r2);

 c.add(r2);

 JRadioButton r3 = new JRadioButton("Coach");

 group.add(r3);

 c.add(r3);

 c.add(new DialogSeparator());

 JButton b1 = new JButton("Search");

FlightReservation.java

Separates
groups of
components

Separates
groups of
components

All components
added directly to
the content pane
and managed by

the new layout

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 131

 c.add(b1);

 JButton b2 = new JButton("Purchase");

 c.add(b2);

 JButton b3 = new JButton("Exit");

 c.add(b3);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 pack();
 setVisible(true);
 }

 public static void main(String argv[]) {
 new FlightReservation();
 }
}

see \Chapter4\5\dl

package dl;

import java.awt.*;
import java.util.*;

import javax.swing.*;

public class DialogLayout2 implements LayoutManager
{
 protected static final int COMP_TWO_COL = 0;
 protected static final int COMP_BIG = 1;
 protected static final int COMP_BUTTON = 2;

 protected int m_divider = -1;
 protected int m_hGap = 10;
 protected int m_vGap = 5;
 protected Vector m_v = new Vector();

 public DialogLayout2() {}

 public DialogLayout2(int hGap, int vGap) {
 m_hGap = hGap;
 m_vGap = vGap;
 }

 public void addLayoutComponent(String name, Component comp) {}

 public void removeLayoutComponent(Component comp) {}

 public Dimension preferredLayoutSize(Container parent) {
 m_v.removeAllElements();
 int w = 0;
 int h = 0;

 int type = -1;
 for (int k=0 ; k<parent.getComponentCount(); k++) {
 Component comp = parent.getComponent(k);

DialogLayout2.java

All components
added directly to
the content pane
and managed by
the new layout

Implements
LayoutManager to be a
custom LayoutManager

Constants to specify
how to manage specific
component types

Width and gap values
and components list

Steps through parent's
components totalling
preferred layout size

132 CHAPTER 4 LAYOUT MANAGERS

 int newType = getLayoutType(comp);
 if (k == 0)
 type = newType;

 if (type != newType) {
 Dimension d = preferredLayoutSize(m_v, type);
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 m_v.removeAllElements();
 type = newType;
 }

 m_v.addElement(comp);
 }

 Dimension d = preferredLayoutSize(m_v, type);
 w = Math.max(w, d.width);
 h += d.height + m_vGap;

 h -= m_vGap;

 Insets insets = parent.getInsets();
 return new Dimension(w+insets.left+insets.right,
 h+insets.top+insets.bottom);
 }

 protected Dimension preferredLayoutSize(Vector v, int type) {
 int w = 0;
 int h = 0;
 switch (type)
 {
 case COMP_TWO_COL:
 int divider = getDivider(v);
 for (int k=1 ; k<v.size(); k+=2) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 }
 h -= m_vGap;
 return new Dimension(divider+w, h);
 case COMP_BIG:
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 }
 h -= m_vGap;
 return new Dimension(w, h);
 case COMP_BUTTON:
 Dimension d = getMaxDimension(v);
 w = d.width + m_hGap;
 h = d.height;
 return new Dimension(w*v.size()-m_hGap, h);

Found break in sequence
of component types

Process last block
of same-typed
components

Compute final
preferred size

Steps through a
components list of a

specific type, totalling
preferred layout size

Assumes two-
column
arrangement,
computes
preferred size

Assumes
components take
up entire width,
computes
preferred size

Assumes centered
row of equal width
components,
computes
preferred size

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 133

 }
 throw new IllegalArgumentException("Illegal type "+type);
 }

 public Dimension minimumLayoutSize(Container parent) {
 return preferredLayoutSize(parent);
 }

 public void layoutContainer(Container parent) {
 m_v.removeAllElements();
 int type = -1;
 Insets insets = parent.getInsets();
 int w = parent.getWidth() - insets.left - insets.right;
 int x = insets.left;
 int y = insets.top;
 for (int k=0 ; k<parent.getComponentCount(); k++) {
 Component comp = parent.getComponent(k);
 int newType = getLayoutType(comp);
 if (k == 0)
 type = newType;
 if (type != newType) {
 y = layoutComponents(m_v, type, x, y, w);

 m_v.removeAllElements();
 type = newType;
 }
 m_v.addElement(comp);
 }
 y = layoutComponents(m_v, type, x, y, w);
 m_v.removeAllElements();
 }

 protected int layoutComponents(Vector v, int type,
 int x, int y, int w)
 {
 switch (type)
 {
 case COMP_TWO_COL:
 int divider = getDivider(v);
 for (int k=1 ; k<v.size(); k+=2) {
 Component comp1 = (Component)v.elementAt(k-1);
 Component comp2 = (Component)v.elementAt(k);
 Dimension d = comp2.getPreferredSize();
 comp1.setBounds(x, y, divider-m_hGap, d.height);
 comp2.setBounds(x+divider, y, w-divider, d.height);
 y += d.height + m_vGap;
 }
 return y;
 case COMP_BIG:
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 comp.setBounds(x, y, w, d.height);

Lays out container,
treating blocks of same-
typed components
in the same way

Lays out block
of same-typed
components, checking
for component type

Assumes two-column
arrangement, lays out

each pair in that fashion

Assumes
components take
up entire width,
one component
per row

134 CHAPTER 4 LAYOUT MANAGERS

 y += d.height + m_vGap;
 }
 return y;
 case COMP_BUTTON:
 Dimension d = getMaxDimension(v);
 int ww = d.width*v.size() + m_hGap*(v.size()-1);
 int xx = x + Math.max(0, (w - ww)/2);
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 comp.setBounds(xx, y, d.width, d.height);
 xx += d.width + m_hGap;
 }
 return y + d.height;
 }
 throw new IllegalArgumentException("Illegal type "+type);
 }

 public int getHGap() { return m_hGap; }

 public int getVGap() { return m_vGap; }

 public void setDivider(int divider) {
 if (divider > 0)
 m_divider = divider;
 }

 public int getDivider() { return m_divider; }

 protected int getDivider(Vector v) {
 if (m_divider > 0)
 return m_divider;
 int divider = 0;
 for (int k=0 ; k<v.size(); k+=2) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 divider = Math.max(divider, d.width);
 }
 divider += m_hGap;
 return divider;
 }

 protected Dimension getMaxDimension(Vector v) {
 int w = 0;
 int h = 0;
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h = Math.max(h, d.height);
 }
 return new Dimension(w, h);
 }

 protected int getLayoutType(Component comp) {
 if (comp instanceof AbstractButton)

Assumes components take up entire
width, one component per row

Assumes
centered row
of equal width
components,
lays them out
in that fashion

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 135

 return COMP_BUTTON;
 else if (comp instanceof JPanel ||
 comp instanceof JScrollPane ||
 comp instanceof DialogSeparator)
 return COMP_BIG;
 else
 return COMP_TWO_COL;
 }

 public String toString() {
 return getClass().getName() + "[hgap=" + m_hGap + ",vgap="
 + m_vGap + ",divider=" + m_divider + "]";
 }
}

see \Chapter4\5\dl

package dl;

import java.awt.*;

import javax.swing.*;

public class DialogSeparator extends JLabel
{
 public static final int OFFSET = 15;

 public DialogSeparator() {}

 public DialogSeparator(String text) { super(text); }

 public Dimension getPreferredSize() {
 return new Dimension(getParent().getWidth(), 20);
 }
 public Dimension getMinimumSize() { return getPreferredSize(); }
 public Dimension getMaximumSize() { return getPreferredSize(); }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());

 Dimension d = getSize();
 int y = (d.height-3)/2;
 g.setColor(Color.white);
 g.drawLine(1, y, d.width-1, y);
 y++;
 g.drawLine(0, y, 1, y);
 g.setColor(Color.gray);
 g.drawLine(d.width-1, y, d.width, y);
 y++;
 g.drawLine(1, y, d.width-1, y);

 String text = getText();
 if (text.length()==0)

DialogSeparator.java

Implements horizontal
separator between
vertically-spaced
components

Draws separating
bar with raised
appearance

Returns shallow
area with a small
fixed height and

variable width

136 CHAPTER 4 LAYOUT MANAGERS

 return;

 g.setFont(getFont());
 FontMetrics fm = g.getFontMetrics();
 y = (d.height + fm.getAscent())/2;
 int l = fm.stringWidth(text);

 g.setColor(getBackground());
 g.fillRect(OFFSET-5, 0, OFFSET+l, d.height);

 g.setColor(getForeground());
 g.drawString(text, OFFSET, y);
 }
}

4.6.1 Understanding the code

Class FlightReservation
This variant of our airplane ticket reservation sample application uses an instance of DialogLayout2
as a layout for the whole content pane. No other JPanels are used, and no other layouts are
involved. All components are added directly to the content pane and managed by the new lay-
out. This incredibly simplifies the creation of the user interface. Note, however, that we still
need to add the label/input field pairs in the correct order because DialogLayout2 manages
these pairs the same way that DialogLayout does.

Instances of our DialogSeparator class are used to provide borders between groups of
components.

Class DialogLayout2
This class implements the LayoutManager interface to serve as a custom layout manager. It
builds on features from DialogLayout to manage all components in its associated container.
Three constants declared at the top of the class correspond to the three types of components
which are recognized by this layout:

• int COMP_TWO_COL: Text fields, combo boxes, and their associated labels which must be
laid out in two columns using a DialogLayout.

• int COMP_BIG: Wide components (instances of JPanel, JScrollPane, or Dialog-
Separator) which must occupy the maximum horizontal container space wherever
they are placed.

• int COMP_BUTTON: Button components (instances of AbstractButton) which must
all be given an equal size, laid out in a single row, and centered in the container.

The instance variables used in DialogLayout2 are the same as those used in DialogLayout
with one addition: we declare Vector m_v to be used as a temporary collection of components.

To lay out components in a given container we need to determine, for each component,
which category it falls under with regard to our DialogLayout2.COMP_XX constants. All
components of the same type which are added in a contiguous sequence must be processed
according to the specific rules described above.

The preferredLayoutSize() method steps through the list of components in a given con-
tainer, determines their type with our custom getLayoutType() method (see below), and

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 137

stores it in the newType local variable. The local variable type holds the type of the previous
component in the sequence. For the first component in the container, type receives the same
value as newType.

 public Dimension preferredLayoutSize(Container parent) {
 m_v.removeAllElements();
 int w = 0;
 int h = 0;

 int type = -1;
 for (int k=0 ; k<parent.getComponentCount(); k++) {
 Component comp = parent.getComponent(k);
 int newType = getLayoutType(comp);
 if (k == 0)
 type = newType;

A break in the sequence of types triggers a call to the overloaded preferredLayoutSize(Vec-
tor v, int type) method (discussed below) which determines the preferred size for a temporary
collection of the components stored in the Vector m_v. Then w and h local variables, which
are accumulating the total preferred width and height for this layout, are adjusted, and the
temporary collection, m_v, is cleared. The newly processed component is then added to m_v.

 if (type != newType) {
 Dimension d = preferredLayoutSize(m_v, type);
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 m_v.removeAllElements();
 type = newType;
 }

 m_v.addElement(comp);
 }

Once our loop finishes, we make the unconditional call to preferredLayoutSize() to take
into account the last (unprocessed) sequence of components and update h and w accordingly
(just as we did in the loop). We then subtract the vertical gap value, m_vGap, from h because
we know that we have just processed the last set of components and therefore no vertical gap
is necessary. Taking into account any Insets set on the container, we can now return the
computed preferred size as a Dimension instance:

 Dimension d = preferredLayoutSize(m_v, type);
 w = Math.max(w, d.width);
 h += d.height + m_vGap;

 h -= m_vGap;

 Insets insets = parent.getInsets();
 return new Dimension(w+insets.left+insets.right,
 h+insets.top+insets.bottom);
 }

The overloaded method preferredLayoutSize(Vector v, int type) computes the
preferred size to lay out a collection of components of a given type. This size is accumulated in
w and h local variables. For a collection of type COMP_TWO_COL, this method invokes a

138 CHAPTER 4 LAYOUT MANAGERS

mechanism that should be familiar (see section 4.5). For a collection of type COMP_BIG, this
method adjusts the preferable width and increments the height for each component, since
these components will be placed in a column:

 case COMP_BIG:
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 w = Math.max(w, d.width);
 h += d.height + m_vGap;
 }
 h -= m_vGap;
 return new Dimension(w, h);

For a collection of type COMP_BUTTON, this method invokes our getMaxDimension() method
(see below) to calculate the desired size of a single component. Since all components of this
type will have an equal size and be contained in one single row, the resulting width for this
collection is calculated through multiplication by the number of components, v.size():

 case COMP_BUTTON:
 Dimension d = getMaxDimension(v);
 w = d.width + m_hGap;
 h = d.height;
 return new Dimension(w*v.size()-m_hGap, h);

The layoutContainer(Container parent) method assigns bounds to the components in
the given container. (Remember that this is the method that actually performs the layout of its
associated container.) It processes an array of components similar to the preferredLayout-
Size() method. It steps through the components in the given container, forms a temporary
collection from contiguous components of the same type, and calls our overloaded layout-
Components(Vector v, int type, int x, int y, int w) method to lay out that collection.

The layoutContainer(Vector v, int type, int x, int y, int w) method lays out com-
ponents from the temporary collection of a given type, starting from the given coordinates x
and y, and using the specified width, w, of the container. It returns an adjusted y-coordinate
which may be used to lay out a new set of components.

For a collection of type COMP_TWO_COL, this method lays out components in two columns
identical to the way DialogLayout did this (see section 4.5). For a collection of type COMP_
BIG, the method assigns all available width to each component:

 case COMP_BIG:
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 Dimension d = comp.getPreferredSize();
 comp.setBounds(x, y, w, d.height);
 y += d.height + m_vGap;
 }
 return y;

For a collection of type COMP_BUTTON, this method assigns an equal size to each component
and places the components in the center, arranged horizontally:

CUSTOM LAYOUT MANAGER, PART II : COMMON INTERFACES 139

 case COMP_BUTTON:
 Dimension d = getMaxDimension(v);
 int ww = d.width*v.size() + m_hGap*(v.size()-1);
 int xx = x + Math.max(0, (w - ww)/2);
 for (int k=0 ; k<v.size(); k++) {
 Component comp = (Component)v.elementAt(k);
 comp.setBounds(xx, y, d.width, d.height);
 xx += d.width + m_hGap;
 }
 return y + d.height;

NOTE A more sophisticated implementation might split a sequence of buttons into several
rows if not enough space is available. To avoid over-complication, we do not do
that here. This might be an interesting exercise to give you more practice at cus-
tomizing layout managers.

The remainder of the DialogLayout2 class contains methods which were either explained
already, or which are simple enough to be considered self-explanatory.

Class DialogSeparator
This class implements a component that is used to separate two groups of components placed
in a column. It extends JLabel to inherit all its default characteristics such as font and fore-
ground. Two available constructors allow the creation of a DialogSeparator with or with-
out a text label.

The getPreferredSize() method returns a fixed height, and a width equal to the width of
the container. The methods getMinimumSize() and getMaximumSize() simply delegate
calls to the getPreferredSize() method.

The paintComponent() method draws a separating bar with a raised appearance across the
available component space, and it draws the title text (if any) at the left-most side, taking into
account a pre-defined offset, 15.

4.6.2 Running the code

Figure 4.17 shows our sample application which now uses DialogLayout2 to manage the
layout of all components. You can see that we have the same set of components placed and
sized in accordance with our general layout scheme presented in the beginning of this section.
The most important thing to note is that we did not have to use any intermediate containers
or layouts to achieve this: all components are added directly to the frame’s content pane,
which is intelligently managed by DialogLayout2.

140 CHAPTER 4 LAYOUT MANAGERS

Button placement consistency It is important to be consistent with the place-
ment of buttons in dialogs and option panes. In the example shown here, a
symmetrical approach to button placement has been adopted. This is a good
safe choice and it ensures balance. With data entry dialogs, it is also common
to use an asymmetrical layout such as the bottom right-hand side of the dialog.

In addition to achieving balance with the layout, by being consistent with your
placement you allow the user to rely on directional memory to find a specific
button location. Directional memory is strong. Once the user learns where you
have placed buttons, he will quickly be able to locate the correct button in
many dialog and option situations. It is therefore vital that you place buttons
in a consistent order—for example, always use OK, Cancel, never Cancel, OK.
As a general rule, always use a symmetrical layout with option dialogs and be
consistent with whatever you decide to use for data entry dialogs.

It makes sense to develop custom components such as JOKCancelButtons and
JYesNoButtons. You can then reuse these components every time you need
such a set of buttons. This encapsulates the placement and ensures consistency.

4.7 DYNAMIC LAYOUT IN A JAVABEANS CONTAINER

In this section we will use different layouts to manage JavaBeans in a simple container
application. This will help us to further understand the role of layouts in dynamically
managing containers with a variable number of components. Example 4.8 also sets up the
framework for a powerful bean editor environment that we will develop in chapter 18 using
JTables. By allowing modification of component properties, we can use this environment to
experiment with preferred, maximum, and minimum sizes, and we can observe the behavior
that different layout managers exibit in various situations. This provides us with the ability to
learn much more about each layout manager, and allows us to prototype simple interfaces
without actually implementing them.

Example 4.8 consists of a frame container that allows the creation, loading, and saving
of JavaBeans using serialization. Beans can be added and removed from this container, and we
implement a focus mechanism to visually identify the currently selected bean. Most importantly,
the layout manager of this container can be changed at run-time. (You may want to review the
JavaBeans material in chapter 2 before attempting to work through this example.) Figures 4.18
through 4.23 show BeanContainer using five different layout managers to arrange four
Clock beans. These figures and figure 4.24 are explained in more detail in section 4.7.2.

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 141

Figure 4.18
BeanContainer displaying
four clock components
using a FlowLayout

Figure 4.19
BeanContainer displaying
four clock components
using a GridLayout

Figure 4.20
BeanContainer displaying
four clock components
using a horizontal BoxLayout

142 CHAPTER 4 LAYOUT MANAGERS

Figure 4.21
BeanContainer displaying
four clock components
using a vertical BoxLayout

Figure 4.22
BeanContainer displaying
four clock components
using a DialogLayout

Figure 4.23
BeanContainer displaying
button/input field pairs
using DialogLayout

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 143

Example 4.8

see \Chapter4\6

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.beans.*;
import java.lang.reflect.*;

import javax.swing.*;

import dl.*;

public class BeanContainer extends JFrame implements FocusListener
{

 protected File m_currentDir = new File(".");
 protected Component m_activeBean;
 protected String m_className = "clock.Clock";
 protected JFileChooser m_chooser = new JFileChooser();

 public BeanContainer() {
 super("Simple Bean Container");
 getContentPane().setLayout(new FlowLayout());

 setSize(300, 300);

 JPopupMenu.setDefaultLightWeightPopupEnabled(false);

 JMenuBar menuBar = createMenuBar();
 setJMenuBar(menuBar);

BeanContainer.java

Figure 4.24
The BeanContainer property
editor environment as it is
continued in chapter 18

Provides frame for
application and
listens for focus

transfer between
beans in container

144 CHAPTER 4 LAYOUT MANAGERS

 try {
 m_currentDir = (newFile(“.”)).getCanonicalFile();
 getCanonicalFile();
 }
 catch(IOException ex){}
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);

 }

 protected JMenuBar createMenuBar() {
 JMenuBar menuBar = new JMenuBar();

 JMenu mFile = new JMenu("File");

 JMenuItem mItem = new JMenuItem("New...");
 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Thread newthread = new Thread() {
 public void run() {
 String result = (String)JOptionPane.showInputDialog(
 BeanContainer.this,
 "Please enter class name to create a new bean",
 "Input", JOptionPane.INFORMATION_MESSAGE, null,

 null, m_className);
 repaint();
 if (result==null)
 return;
 try {
 m_className = result;
 Class cls = Class.forName(result);
 Object obj = cls.newInstance();
 if (obj instanceof Component) {
 m_activeBean = (Component)obj;
 m_activeBean.addFocusListener(
 BeanContainer.this);
 m_activeBean.requestFocus();
 getContentPane().add(m_activeBean);
 }
 validate();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(
 BeanContainer.this, "Error: "+ex.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 }
 };
 newthread.start();
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

Creates menu bar,
menu items, and
action listeners

Load class,
instantiate it,
and add it
to container

Request focus
and set up
FocusListener

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 145

 mItem = new JMenuItem("Load...");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Thread newthread = new Thread() {
 public void run() {
 m_chooser.setCurrentDirectory(m_currentDir);
 m_chooser.setDialogTitle(
 "Please select file with serialized bean");
 int result = m_chooser.showOpenDialog(
 BeanContainer.this);
 repaint();
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 m_currentDir = m_chooser.getCurrentDirectory();
 File fChoosen = m_chooser.getSelectedFile();
 try {
 FileInputStream fStream =
 new FileInputStream(fChoosen);
 ObjectInput stream =
 new ObjectInputStream(fStream);
 Object obj = stream.readObject();
 if (obj instanceof Component) {

 m_activeBean = (Component)obj;
 m_activeBean.addFocusListener(
 BeanContainer.this);
 m_activeBean.requestFocus();
 getContentPane().add(m_activeBean);
 }
 stream.close();
 fStream.close();
 validate();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(
 BeanContainer.this, "Error: "+ex.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 repaint();
 }
 };
 newthread.start();
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mItem = new JMenuItem("Save...");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Thread newthread = new Thread() {
 public void run() {

Select a file
containing a
serialized bean

Open a stream, read
the object, and add
it to the container,
if it is a Component

146 CHAPTER 4 LAYOUT MANAGERS

 if (m_activeBean == null)
 return;
 m_chooser.setDialogTitle(
 "Please choose file to serialize bean");
 m_chooser.setCurrentDirectory(m_currentDir);
 int result = m_chooser.showSaveDialog(
 BeanContainer.this);
 repaint();
 if (result != JFileChooser.APPROVE_OPTION)
 return;
 m_currentDir = m_chooser.getCurrentDirectory();
 File fChoosen = m_chooser.getSelectedFile();
 try {
 FileOutputStream fStream =
 new FileOutputStream(fChoosen);
 ObjectOutput stream =
 new ObjectOutputStream(fStream);
 stream.writeObject(m_activeBean);
 stream.close();
 fStream.close();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(
 BeanContainer.this, "Error: "+ex.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 }
 };
 newthread.start();
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mFile.addSeparator();

 mItem = new JMenuItem("Exit");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);
 menuBar.add(mFile);

 JMenu mEdit = new JMenu("Edit");

 mItem = new JMenuItem("Delete");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (m_activeBean == null)
 return;

Serialize
component to
stream and
write it to file

Item and action
to exit application

Delete will remove
the currently active
component from
the container

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 147

 getContentPane().remove(m_activeBean);
 m_activeBean = null;
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 mEdit.add(mItem);
 menuBar.add(mEdit);

 JMenu mLayout = new JMenu("Layout");
 ButtonGroup group = new ButtonGroup();

 mItem = new JRadioButtonMenuItem("FlowLayout");
 mItem.setSelected(true);
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e){
 getContentPane().setLayout(new FlowLayout());
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);

 group.add(mItem);
 mLayout.add(mItem);

 mItem = new JRadioButtonMenuItem("GridLayout");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e){
 int col = 3;
 int row = (int)Math.ceil(getContentPane().
 getComponentCount()/(double)col);
 getContentPane().setLayout(new GridLayout(row, col, 10, 10));
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 group.add(mItem);
 mLayout.add(mItem);

 mItem = new JRadioButtonMenuItem("BoxLayout - X");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getContentPane().setLayout(new BoxLayout(
 getContentPane(), BoxLayout.X_AXIS));
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 group.add(mItem);
 mLayout.add(mItem);

 mItem = new JRadioButtonMenuItem("BoxLayout - Y");

Delete will remove
the currently active
component from
the container

Relayout with
FlowLayout
configuration

Relayout with
GridLayout

configuration

Relayout with
vertical BoxLayout
configuration

148 CHAPTER 4 LAYOUT MANAGERS

 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getContentPane().setLayout(new BoxLayout(
 getContentPane(), BoxLayout.Y_AXIS));
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 group.add(mItem);
 mLayout.add(mItem);

 mItem = new JRadioButtonMenuItem("DialogLayout");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getContentPane().setLayout(new DialogLayout());
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 group.add(mItem);
 mLayout.add(mItem);

 menuBar.add(mLayout);

 return menuBar;
 }

 public void focusGained(FocusEvent e) {
 m_activeBean = e.getComponent();
 repaint();
 }

 public void focusLost(FocusEvent e) {}

 // This is a heavyweight component so we override paint
 // instead of paintComponent. super.paint(g) will
 // paint all child components first, and then we
 // simply draw over top of them.
 public void paint(Graphics g) {
 super.paint(g);

 if (m_activeBean == null)
 return;

 Point pt = getLocationOnScreen();
 Point pt1 = m_activeBean.getLocationOnScreen();
 int x = pt1.x - pt.x - 2;
 int y = pt1.y - pt.y - 2;
 int w = m_activeBean.getWidth() + 2;
 int h = m_activeBean.getHeight() + 2;

 g.setColor(Color.black);
 g.drawRect(x, y, w, h);
 }

On focus change,
stores currently
active component
and redisplays

Redraw container
with box around
currently active
component

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 149

 public static void main(String argv[]) {
 new BeanContainer();
 }
}

see \Chapter4\6\clock

package clock;

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;

public class Clock extends JButton
 implements Customizer, Externalizable, Runnable
{

 protected PropertyChangeSupport m_helper;
 protected boolean m_digital = false;
 protected Calendar m_calendar;
 protected Dimension m_preffSize;

 public Clock() {
 m_calendar = Calendar.getInstance();
 m_helper = new PropertyChangeSupport(this);

 Border br1 = new EtchedBorder(EtchedBorder.RAISED,
 Color.white, new Color(128, 0, 0));
 Border br2 = new MatteBorder(4, 4, 4, 4, Color.red);
 setBorder(new CompoundBorder(br1, br2));

 setBackground(Color.white);
 setForeground(Color.black);

 (new Thread(this)).start();
 }

 public void writeExternal(ObjectOutput out)
 throws IOException {
 out.writeBoolean(m_digital);
 out.writeObject(getBackground());
 out.writeObject(getForeground());
 out.writeObject(getPreferredSize());
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 setDigital(in.readBoolean());
 setBackground((Color)in.readObject());
 setForeground((Color)in.readObject());

Clock.java

Clock bean on button
which can listen for
property changes,
manage its own
serialization, and run
on a separate thread

Constructor creates
helper objects, puts
“clock-like” border
on, and starts a new
thread to run on

Managed serialization,
writing out each field
and reading it back in
the same order

150 CHAPTER 4 LAYOUT MANAGERS

 setPreferredSize((Dimension)in.readObject());
 }

 public Dimension getPreferredSize() {
 if (m_preffSize != null)
 return m_preffSize;
 else
 return new Dimension(50, 50);
 }

 public void setPreferredSize(Dimension preffSize) {
 m_preffSize = preffSize;
 }

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 public Dimension getMaximumSize() {
 return getPreferredSize();
 }

 public void setDigital(boolean digital) {
 m_helper.firePropertyChange("digital",
 new Boolean(m_digital),

 new Boolean(digital));
 m_digital = digital;
 repaint();
 }

 public boolean getDigital() {
 return m_digital;
 }

 public void addPropertyChangeListener(
 PropertyChangeListener lst) {
 if (m_helper != null)
 m_helper.addPropertyChangeListener(lst);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener lst) {
 if (m_helper != null)
 m_helper.removePropertyChangeListener(lst);
 }

 public void setObject(Object bean) {}

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 getBorder().paintBorder(this, g, 0, 0, getWidth(), getHeight());

 m_calendar.setTime(new Date()); // Get current time
 int hrs = m_calendar.get(Calendar.HOUR_OF_DAY);
 int min = m_calendar.get(Calendar.MINUTE);

Displays clock value
in either digital or
analog form

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 151

 g.setColor(getForeground());
 if (m_digital) {
 String time = ""+hrs+":"+min;
 g.setFont(getFont());
 FontMetrics fm = g.getFontMetrics();
 int y = (getHeight() + fm.getAscent())/2;
 int x = (getWidth() - fm.stringWidth(time))/2;
 g.drawString(time, x, y);
 }
 else {
 int x = getWidth()/2;
 int y = getHeight()/2;
 int rh = getHeight()/4;
 int rm = getHeight()/3;

 double ah = ((double)hrs+min/60.0)/6.0*Math.PI;
 double am = min/30.0*Math.PI;

 g.drawLine(x, y, (int)(x+rh*Math.sin(ah)),
 (int)(y-rh*Math.cos(ah)));
 g.drawLine(x, y, (int)(x+rm*Math.sin(am)),
 (int)(y-rm*Math.cos(am)));
 }
 }

 public void run() {
 while (true) {
 repaint();
 try {
 Thread.sleep(30*1000);
 }
 catch(InterruptedException ex) { break; }
 }
 }
}

4.7.1 Understanding the code

Class BeanContainer
This class extends JFrame to provide the frame for this application. It also implements the
FocusListener interface to manage focus transfer between beans in the container. Four
instance variables are declared:

• File m_currentDir: The most recent directory used to load and save beans.
• Component m_activeBean: A bean component which currently has the focus.
• String m_className: The fully qualified class name of our custom Clock bean.
• JFileChooser m_chooser: Used for saving and loading beans.

The only GUI provided by the container itself is the menu bar. The createMenuBar()
method creates the menu bar, its items, and their corresponding action listeners. Three menus
are added to the menu bar: File, Edit, and Layout.

152 CHAPTER 4 LAYOUT MANAGERS

NOTE All code corresponding to New, Load, and Save in the File menu is wrapped in a
separate thread to avoid an unnecessary load on the event-dispatching thread. See
chapter 2 for more information about multithreading.

The New… menu item in the File menu displays an input dialog (using the JOption-
Pane.showInputDialog() method) to enter the class name of a new bean to be added to
the container. Once a name has been entered, the program attempts to load that class, create a
new class instance using a default constructor, and add that new object to the container. The
newly created component requests the focus and receives a this reference to BeanContainer
as a FocusListener. Any exceptions caught will be displayed in a message box.

The Load… menu item from the File menu displays a JFileChooser dialog to select a file
containing a previously serialized bean component. If this succeeds, the program opens an
input stream on this file and reads the first stored object. If this object is derived from the
java.awt.Component class, it is added to the container. The loaded component requests the
focus and receives a this reference to BeanContainer as a FocusListener. Any exceptions
caught will be displayed in a message box.

The Save… menu item from the File menu displays a JFileChooser dialog to select a file
destination for serializing the bean component which currently has the focus. If this succeeds,
the program opens an output stream on that file and writes the currently active component to
that stream. Any exceptions caught will be displayed in a message box.

The Exit menu item simply quits and closes the application with System.exit(0).

The Edit menu contains a single item entitled Delete, which removes the currently active
bean from the container:

 getContentPane().remove(m_activeBean);
 m_activeBean = null;
 validate();
 repaint();

The Layout menu contains several JRadioButtonMenuItems managed by a ButtonGroup
group. These items are entitled “FlowLayout,” “GridLayout,” “BoxLayout – X,” “BoxLay-
out – Y,” and “DialogLayout.” Each item receives an ActionListener which sets the corre-
sponding layout manager of the application frame’s content pane, calls validate() to lay
out the container again, and then repaints it. For example:

 getContentPane().setLayout(new DialogLayout());
 validate();
 repaint();

The focusGained() method stores a reference to the component which currently has the
focus as instance variable m_activebean. The paint() method is implemented to draw a
rectangle around the component which currently has the focus. It is important to note here
the static JPopupMenu method called in the BeanContainer constructor:

 JPopupMenu.setDefaultLightWeightPopupEnabled(false);

This method forces all pop-up menus (which menu bars use to display their contents) to use
heavyweight popups rather than lightweight popups. (By default, pop-up menus are light-

DYNAMIC LAYOUT IN A JAVABEANS CONTAINER 153

weight unless they cannot fit within their parent container’s bounds.) The reason we disable
this is because our paint() method will render the bean selection rectangle over the top of
the lightweight popups otherwise.

Class Clock
This class is a simple bean clock component which can be used in a container just as any other
bean. This class extends the JButton component to inherit its focus-grabbing functionality.
This class also implements three interfaces: Customizer to handle property listeners, Exter-
nalizable to completely manage its own serialization, and Runnable to be run by a thread.
Four instance variables are declared:

• PropertyChangeSupport m_helper: An object to manage PropertyChangeListeners.
• boolean m_digital: A custom property for this component which manages the dis-

play state of the clock (digital or arrow-based).
• Calendar m_calendar: A helper object to handle Java’s time objects (instances of Date).
• Dimension m_preffSize: A preferred size for this component which may be assigned

using the setPreferredSize() method.

The constructor of the Clock class creates the helper objects and sets the border for this com-
ponent as a CompoundBorder that contains an EtchedBorder and a MatteBorder. It then
sets the background and foreground colors and starts a new Thread to run the clock.

The writeExternal() method writes the current state of a Clock object into an ObjectOut-
put stream. Four properties are written: m_digital, background, foreground, and pre-
ferredSize. The readExternal() method reads the previously saved state of a Clock
object from an ObjectInput stream. It reads these four properties and applies them to the
object previously created with the default constructor. These methods are called from the Save
and Load menu bar action listener code in BeanContainer. Specifically, they are called when
writeObject() and readObject() are invoked.

NOTE The serialization mechanism in Swing has not yet fully matured. You can readily
discover that both lightweight and heavyweight components throw exceptions dur-
ing the process of serialization. For this reason, we implement the Externalizable
interface to take complete control over the serialization of the Clock bean. Another
reason is that the default serialization mechanism tends to serialize a substantial
amount of unnecessary information, whereas our custom implementation stores
only the necessities.

The rest of this class need not be explained here, as it does not relate directly to the topic of
this chapter and it represents a simple example of a bean component. If you’re interested, take
note of the paintComponent() method which, depending on whether the clock is in digital
mode (determined by m_digital), either computes the current position of the clock’s arrows
and draws them, or renders the time as a digital String.

4.7.2 Running the code

This application provides a framework for experimenting with any available JavaBeans; both
lightweight (Swing) and heavyweight (AWT) components: we can create, serialize, delete, and
restore them.

154 CHAPTER 4 LAYOUT MANAGERS

We can apply several layouts to manage these components dynamically. Figures 4.18 through
4.22 show BeanContainer using five different layout managers to arrange four Clock beans.
To create a bean, choose New from the File menu and type the fully qualified name of the class.
For instance, to create a Clock you need to type “clock.Clock” in the input dialog.

Once you’ve experimented with Clock beans, try loading some Swing JavaBeans.
Figure 4.23 shows BeanDialog with two JButtons and two JTextFields. They were
created in the following order (and thus have corresponding container indices): JButton,
JTextField, JButton, and JTextField. Try doing this: remember that you need to specify
fully qualified class names such as javax.swing.JButton when you add a new bean. This
ordering adheres to our DialogLayout label/input field pairs scheme, except that here we are
using buttons in place of labels. That way, when we set BeanContainer’s layout to
DialogLayout, we know what to expect.

NOTE You will notice selection problems with components such as JComboBox, JSplit-
Pane, and JLabel (which has no selection mechanism). A more complete version
of BeanContainer would take this into account and implement more robust focus-
requesting behavior.

Later in this book, after a discussion of tables, we will add powerful functionality to this
example to allow bean property manipulation. We highly suggest that you skip ahead for a
moment and run example 18.8.

Start the chapter 18 example and create JButton and JTextField beans exactly as
described above. Select DialogLayout from the Layout menu and then click on the top-most
JButton to give it the focus. Now select Properties from the Edit menu. A separate frame will
pop up with a JTable that contains all of the JButton’s properties. Navigate to the label
property and change it to “Button 1” (by double-clicking on its Value field). Now select the
corresponding top-most JTextField and change its preferredSize property to “4,40.”
Figure 4.24 illustrates what you should see.

By changing the preferred, maximum, and minimum sizes, as well as other component
properties, we can directly examine the behavior that different layout managers impose on our
container. Experimenting with this example is a very convenient way to learn more about how
the layout managers behave. It also forms the foundation for an interface development
environment (IDE), which many developers use to simplify interface design.

155

C H A P T E R 5

Labels and buttons
5.1 Labels and buttons overview 155
5.2 Custom buttons, part I: transparent

buttons 165

5.3 Custom buttons, part II: polygonal
buttons 171

5.4 Custom buttons, part III: tooltip
management 180

5.1 LABELS AND BUTTONS OVERVIEW

We start with the basics, the concepts needed to work with Swing labels, buttons, and toolt-
ips. Once we understand the basics, we build on them to create customized versions.

5.1.1 JLabel

class javax.swing.JLabel
JLabel is one of the simplest Swing components, and it is most often used to identify other
components. JLabel can display text, an icon, or both in any combination of positions (note
that text will always overlap the icon). The code in example 5.1 creates four different JLabels
and places them in a GridLayout as shown in figure 5.1.

Figure 5.1 JLabel demo

156 CHAPTER 5 LABELS AND BUTTONS

Example 5.1

see \Chapter5\1

import java.awt.*;
import javax.swing.*;

class LabelDemo extends JFrame
{
 public LabelDemo() {
 super("JLabel Demo");
 setSize(600, 100);

 JPanel content = (JPanel) getContentPane();
 content.setLayout(new GridLayout(1, 4, 4, 4));

 JLabel label = new JLabel();
 label.setText("JLabel");
 label.setBackground(Color.white);
 content.add(label);

 label = new JLabel("JLabel",

 SwingConstants.CENTER);
 label.setOpaque(true);
 label.setBackground(Color.white);
 content.add(label);

 label = new JLabel("JLabel");
 label.setFont(new Font("Helvetica", Font.BOLD, 18));
 label.setOpaque(true);
 label.setBackground(Color.white);
 content.add(label);

 ImageIcon image = new ImageIcon("flight.gif");
 label = new JLabel("JLabel", image,
 SwingConstants.RIGHT);
 label.setVerticalTextPosition(SwingConstants.TOP);
 label.setOpaque(true);
 label.setBackground(Color.white);
 content.add(label);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }

 public static void main(String args[]) {
 new LabelDemo();
 }
}

The first label is created with the default constructor and its text is set using the setText()
method. We then set its background to white, but when we run this program the background
of the label shows up as light gray. This happens because we didn’t force the label to be

LabelDemo.java

LABELS AND BUTTONS OVERVIEW 157

opaque. In chapter 2 we learned that Swing components support transparency, which means
that a component does not have to paint every pixel within its bounds. So when a component
is not opaque, it will not fill its background. A JLabel (as with most components) is non-
opaque by default.

We can also set the font and foreground color of a JLabel using JComponent’s set-
Font() and setForeground() methods. Refer back to chapter 2 for information about
working with the Font and Color classes.

The default horizontal alignment of JLabel is LEFT if only text is used, and CENTER if
an image or an image and text are used. An image will appear to the left of the text by default,
and every JLabel is initialized with a centered vertical alignment. Each of these default
behaviors can easily be adjusted, as we will see below.

5.1.2 Text alignment

To specify alignment or position in many Swing components, we use the javax.swing.
SwingConstants interface. This defines several constant strings, five of which are applicable
to JLabel’s text alignment settings:

 SwingConstants.LEFT
 SwingConstants.CENTER
 SwingConstants.RIGHT
 SwingConstants.TOP
 SwingConstants.BOTTOM

Alignment of both a label’s text and icon can be specified either in the constructor or through
the setHorizontalAlignment() and setVerticalAlignment() methods. The text can
be aligned both vertically or horizontally, independent of the icon (text will overlap the icon
when necessary) using the setHorizontalTextAlignment() and setVerticalText-
Alignment() methods. Figure 5.2 shows where a JLabel’s text will be placed, correspond-
ing to each possible combination of vertical and horizontal text alignment settings.

Figure 5.2 JLabel text alignment

158 CHAPTER 5 LABELS AND BUTTONS

5.1.3 Icons and icon alignment

The simple example in figure 5.1 included a label with an image of an airplane. This was done
by reading a GIF file in as an ImageIcon and passing it to a JLabel constructor:

 ImageIcon image = new ImageIcon("flight.gif");
 label = new JLabel("JLabel", image,
 SwingConstants.RIGHT);

An image can also be set or replaced at any time using the setIcon() method (passing
null will remove the current icon, if any). JLabel also supports a disabled icon to be used
when a label is in the disabled state. To assign a disabled icon, we use the setDisabled-
Icon() method.

NOTE Animated GIFs can be used with ImageIcons and labels just as any static GIF can
be, and they don’t require any additional code. ImageIcon also supports JPGs.

5.1.4 GrayFilter

class javax.swing.GrayFilter
The static createDisabledImage() method of the GrayFilter class can be used to create
“disabled” images.

 ImageIcon disabledImage = new ImageIcon(
 GrayFilter.createDisabledImage(image.getImage()));

Figure 5.3 shows the fourth label in LabelDemo now using a disabled icon generated by
GrayFilter. JLabel only displays the disabled icon when it has been disabled using JCom-
ponent’s setEnabled() method.

5.1.5 The labelFor and the displayedMnemonic properties

JLabel maintains a labelFor property and a displayedMnemonic property. The dis-
played mnemonic is a character that, when pressed in synchronization with ALT (for example,
ALT+R), will call JComponent’s requestFocus() method on the component referenced by
the labelFor property. The first instance of the displayed mnemonic character (if any) in a
label’s text will be underlined. We can access these properties using typical get/set accessors.

5.1.6 AbstractButton

abstract class javax.swing.AbstractButton
AbstractButton is the template class from which all buttons are defined. This includes
push buttons, toggle buttons, check boxes, radio buttons, menu items, and menus themselves.

Figure 5.3
Demonstrating a disabled icon
using GrayFilter

LABELS AND BUTTONS OVERVIEW 159

Its direct subclasses are JButton, JToggleButton, and JMenuItem. There are no subclasses
of JButton in Swing. JToggleButton has two subclasses: JCheckBox and JRadioButton.
JMenuItem has three subclasses: JCheckBoxMenuItem, JRadioButtonMenuItem , and
JMenu. The remainder of this chapter will focus on JButton and the JToggleButton fam-
ily. Refer to chapter 12 for more information about menus and menu items.

JAVA 1.4 In Java 1.4 a new setDisplayedMnemonicIndex() method was added to JLa-
bel and AbstractButton. This allows you to specify the index of the character
you want underlined. For instance, in a menu item with the text “Save As” if you
want the second ‘A’ to be underlined you would use the following code:

myMenuItem.setMnemonic(‘A’);
myMenuItem.setDisplayedMnemonicIndex(5);

Also new to Java 1.4 are the new setIconGap() and getIconGap() methods allow-
ing specification of the size of the space to appear between button text and icon.

5.1.7 The ButtonModel interface

abstract interface javax.swing.ButtonModel
Each button class uses a model to store its state. We can access any button’s model with
AbstractButton’s getModel() and setModel() methods. The ButtonModel interface
is the template interface from which all button models are defined. JButton uses the
DefaultButtonModel implementation. JToggleButton defines an inner class extension of
DefaultButtonModel; this extension is JToggleButton.ToggleButtonModel, which is
used by JToggleButton and both JToggleButton subclasses.

The following boolean property values represent the state of a button, and they have
associated isXX() and setXX() accessors in DefaultButtonModel:

• selected: Switches state on each click (only relevant for JToggleButtons).
• pressed: Returns true when the button is held down with the mouse.
• rollover: Returns true when the mouse is hovering over the button.
• armed: Stops events from being fired when we press a button with the mouse and then

release the mouse when the cursor is outside that button’s bounds.
• enabled: Returns true when the button is active. None of the other properties can

normally be changed when this is false.

A button’s keyboard mnemonic is also stored in its model, as is the ButtonGroup it belongs
to, if any. (We’ll discuss the ButtonGroup class when we discuss JToggleButtons, as it only
applies to this family of buttons.)

JAVA 1.3 In Java 1.3 a new getGroup() method was added to DefaultButtonModel
allowing access to the ButtonGroup a button belongs to.

5.1.8 JButton

class javax.swing.JButton
JButton is a basic push button, which is one of the simplest Swing components. Almost every-
thing we know about JLabel also applies to JButton. We can add images, specify text and
image alignment, set foreground and background colors (remember to call setOpaque(true)),

160 CHAPTER 5 LABELS AND BUTTONS

and set fonts, among other tasks. Additionally, we can add ActionListeners, ChangeLis-
teners, and ItemListeners to receive ActionEvents, ChangeEvents, and ItemEvents
respectively when any properties in its model change value.

In most application dialogs, we might expect to find a button which initially has the focus
and will capture an Enter key press, regardless of the current keyboard focus, unless focus is
within a multi-line text component. This is referred to as the default button. Any JRootPane
container can define a default button using JRootPane’s setDefaultButton() method
(passing null will disable this feature). For instance, to make a button, the default button for
a JFrame, we would do the following:

 myJFrame.getRootPane().setDefaultButton(myButton);

The isDefaultButton() method returns a boolean value indicating whether the button
instance it was called on is a default button for a JRootPane.

We most often register an ActionListener with a button to receive ActionEvents
from that button whenever it is clicked (if a button has the focus, pressing the Space bar will
also fire an ActionEvent). ActionEvents carry with them information about the event that
occurred, including, most importantly, which component they came from.

To create an ActionListener, we need to create a class that implements the Action-
Listener interface, which requires the definition of its actionPerformed() method.
Once we have built an ActionListener we can register it with a button using JCompo-
nent’s addActionListener() method. The following code segment is a typical inner class
implementation. When an ActionEvent is intercepted, “Swing is powerful!!” is printed to
standard output.

 JButton myButton = new JButton();
 ActionListener act = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Swing is powerful!!");
 }
 };
 myButton.addActionListener(act);

We primarily use this method throughout this book to attach listeners to components. However,
some developers prefer to implement the ActionListener interface in the class that owns the
button instance. With classes that have several registered components, this is not as efficient as
using a separate listener class, and it can require writing common code in several places.

JAVA 1.3 In Java 1.3 all buttons have a new constructor that takes an Action instance as a
parameter. Actions are covered in detail in Chapter 12, but it suffices to say here
that they are ActionListener implementations that encapsulate all needed infor-
mation to provide an icon, displayed text, enabled state, and event handling code.

An icon can be assigned to a JButton instance via the constructor or the setIcon()
method. We can optionally assign individual icons for the normal, selected, pressed, rollover,
and disabled states. See the API documentation for more detail on the following methods:

 setDisabledSelectedIcon()
 setPressedIcon()
 setRolloverIcon()

LABELS AND BUTTONS OVERVIEW 161

 setRolloverSelectedIcon()
 setSelectedIcon()

A button can also be disabled and enabled the same way as a JLabel, using setEnabled(). As
we would expect, a disabled button will not respond to any user actions.

A button’s keyboard mnemonic provides an alternative means of activation. To add a key-
board mnemonic to a button, we use the setMnemonic() method:

 button.setMnemonic('R');

We can then activate a button (equivalent to clicking it) by pressing ALT and its mnemonic key
simultaneously (for example, ALT+R). The first appearance of the assigned mnemonic
character, if any, in the button text will be underlined to indicate which key activates it. In
Java 1.3 the setDisplayedMnemonicIndex() method was added to allow control over
this. No dis-tinction is made between upper- and lower-case characters. Avoid duplicating
mnemonics for components that share a common ancestor.

5.1.9 JToggleButton

class javax.swing.JToggleButton
JToggleButton provides a selected state mechanism which extends to its children, JCheckBox
and JRadioButton, and corresponds to the selected property we discussed in section 5.1.7.
We can test whether a toggle button is selected using AbstractButton’s isSelected()
method, and we can set this property with its setSelected() method.

5.1.10 ButtonGroup

class javax.swing.ButtonGroup
JToggleButtons are often used in ButtonGroups. A ButtonGroup manages a set of but-
tons by guaranteeing that only one button within that group can be selected at any given
time. Thus, only JToggleButton and its subclasses are useful in a ButtonGroup because a
JButton does not maintain a selected state. Example 5.2 constructs four JToggleButtons
and places them in a single ButtonGroup.

Example 5.2

see \Chapter5\2

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

ToggleButtonDemo.java

Figure 5.4
JToggleButtons
in a ButtonGroup
Newtocome

162 CHAPTER 5 LABELS AND BUTTONS

class ToggleButtonDemo extends JFrame {
public ToggleButtonDemo () {

 super("ToggleButton Demo");
 getContentPane().setLayout(new FlowLayout());

 ButtonGroup buttonGroup = new ButtonGroup();
 char ch = (char) (‘1’+ k);

for (int k=0; k<4; k++) {
 JToggleButton button = new JToggleButton(“Button “+ch, k==0);

button.setMnemonic(ch);
 button.setEnabled(k<3);
 button.setToolTipText(“This is button “ + ch);

button.setIcon(new ImageIcon(“ball_bw.gif”));
button.setSelectedIcon(new ImageIcon(“ball_red.gif”));

 button.setRolloverIcon(new ImageIcon(“ball_blue.gif”));
 button.setRolloverSelectedIcon(new ImageIcon(“ball_blue.gif”));

 getContentPane().add(button);
 buttonGroup.add(button);
 }

 pack();
}

public static void main(String args[] {
ToggleButtonDemo frame = new ToggleButtonDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

5.1.11 JCheckBox and JRadioButton

class javax.swing.JCheckBox, class javax.swing.JRadioButton
JCheckBox and JRadioButton both inherit all JToggleButton functionality. In fact, the
only significant differences between all three components is their UI delegates (how they are
rendered). Both button types are normally used to select the mode of a particular application
function. Figures 5.5 and 5.6 show the previous example running with JCheckBoxes and
JRadioButtons as replacements for the JToggleButtons.

Figure 5.5 JCheckBoxes in a ButtonGroup

Figure 5.6 JRadioButtons in a ButtonGroup

LABELS AND BUTTONS OVERVIEW 163

5.1.12 JToolTip and ToolTipManager

class javax.swing.JToolTip, class javax.swing.ToolTipManager
A JToolTip is a small pop-up window designed to contain informative text about a compo-
nent when the mouse moves over it. We don’t generally create instances of these components
ourselves. Rather, we call setToolTipText() on any JComponent subclass and pass it a descrip-
tive String. This String is then stored as a client property within that component’s client
properties Hashtable, and that component is then registered with the ToolTipManager
using ToolTipManager’s registerComponent() method. The ToolTipManager adds a
MouseListener to each component that registers with it.

To unregister a component, we can pass null to that component’s setToolTipText()
method. This invokes ToolTipManager’s unregisterComponent() method, which
removes its MouseListener from that component. Figure 5.7 shows a JToggleButton with
simple tooltip text.

The ToolTipManager is a service class that maintains a shared instance of itself. We can
access the ToolTipManager directly by calling its static sharedInstance() method:

 ToolTipManager toolTipManager = ToolTipManager.sharedInstance();

Internally this class uses three non-repeating Timers with delay times defaulting to 750, 500,
and 4000. ToolTipManager uses these Timers in coordination with mouse listeners to
determine if and when to display a JToolTip with a component’s specified tooltip text.
When the mouse enters a component’s bounds, ToolTipManager will detect this and wait
750ms before displaying a JToolTip for that component. This is referred to as the initial delay
time. A JToolTip will stay visible for 4000ms or until we move the mouse outside of that
component’s bounds, whichever comes first. This is referred to as the dismiss delay time. The
500ms Timer represents the reshow delay time, which specifies how soon the JToolTip we
have just seen will appear again when this component is re-entered. These delay times can be
set using ToolTipManager’s setDismissDelay(), setInitialDelay(), and setRe-
showDelay() methods.

ToolTipManager is a very nice service, but it does have significant limitations. When we
construct our polygonal buttons in section 5.6 below, we will find that it is not robust enough
to support non-rectangular components.

5.1.13 Labels and buttons with HTML text

JDK1.2.2 offers a particularly interesting new feature. Now we can use HTML text in JButton
and JLabel components as well as for tooltip text. We don’t have to learn any new methods
to use this functionality, and the UI delegate handles the HTML rendering for us. If a button/
label’s text starts with <HTML>, Swing knows to render the text in HTML format. We can use
normal paragraph tags (<P> and </P>), line break tags (
), and other HTML tags. For
instance, we can assign a multiple-line tooltip to any component like this:

Figure 5.7
JToggleButton
with tooltip text

164 CHAPTER 5 LABELS AND BUTTONS

 myComponent.setToolTipText("<html>Multi-line tooltips
" +
 "are easy!");

The
 tag specifies a line break. Example 5.3 demonstrates this functionality.

Example 5.3

see \Chapter5\3

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HtmlButtons extends JFrame
{
 public HtmlButtons() {
 super("HTML Buttons and Labels");
 setSize(400, 300);

 getContentPane().setLayout(new FlowLayout());

 String htmlText =
 "<html><p><font color=\"#800080\" "+
 "size=\"4\" face=\"Verdana\">JButton </p>"+
 "<address>"+
 "with HTML text"+
 "</address>";
 JButton btn = new JButton(htmlText);
 getContentPane().add(btn);

 htmlText =
 "<html><p><font color=\"#800080\" "+
 "size=\"4\" face=\"Verdana\">JLabel </p>"+
 "<address>"+
 "with HTML text"+
 "</address>";
 JLabel lbl = new JLabel(htmlText);
 getContentPane().add(lbl);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

HtmlButtons.java

Figure 5.8
A JButton and JLabel
with HTML text

CUSTOM BUTTONS, PART I : TRANSPARENT BUTTONS 165

 public static void main(String args[]) {
 new HtmlButtons();
 }
}

5.2 CUSTOM BUTTONS, PART I: TRANSPARENT BUTTONS

Buttons in Swing can adopt almost any presentation we can think of. Of course, some presen-
tations are tougher to implement than others. In the remainder of this chapter we will deal
directly with these issues. Example 5.4 in this section shows how to construct invisible but-
tons which only appear when the user moves the mouse cursor over them. Specifically, a bor-
der will be painted, and tooltip text will be activated in the default manner.

Buttons such as these can be useful in applets for predefined hyperlink navigation, and
we will design our invisible button class with this in mind. Thus, we will show how to create
an applet that reads a set of parameters from the HTML page in which it is embedded and
loads a corresponding set of invisible buttons. For each button, the designer of the HTML
page must provide three parameters: the desired hyperlink URL, the button’s bounds (posi-
tions and size), and the button’s tooltip text. Additionally, our sample applet in example 5.4
will require a background image parameter. Our button’s bounds are intended to directly cor-
respond to an “active” region of this background image, much like the venerable HTML
image mapping functionality.

Example 5.4

see \Chapter5\4

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

ButtonApplet.java

Figure 5.9
Transparent
rectangular
buttons
in an applet

166 CHAPTER 5 LABELS AND BUTTONS

import java.net.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class ButtonApplet extends JApplet
{
 public ButtonApplet() {}

 public synchronized void init() {
 String imageName = getParameter("image");
 if (imageName == null) {
 System.err.println("Need \"image\" parameter");
 return;
 }
 URL imageUrl = null;
 try {
 imageUrl = new URL(getDocumentBase(), imageName);
 }
 catch (MalformedURLException ex) {
 ex.printStackTrace();
 return;
 }
 ImageIcon bigImage = new ImageIcon(imageUrl);
 JLabel bigLabel = new JLabel(bigImage);
 bigLabel.setLayout(null);

 int index = 1;
 int[] q = new int[4];
 while(true) {
 String paramSize = getParameter("button"+index);
 String paramName = getParameter("name"+index);
 String paramUrl = getParameter("url"+index);
 if (paramSize==null || paramName==null || paramUrl==null)
 break;

 try {
 StringTokenizer tokenizer = new StringTokenizer(
 paramSize, ",");
 for (int k=0; k<4; k++) {
 String str = tokenizer.nextToken().trim();
 q[k] = Integer.parseInt(str);
 }
 }
 catch (Exception ex) { break; }

 NavigateButton btn = new NavigateButton(this,
 paramName, paramUrl);
 bigLabel.add(btn);
 btn.setBounds(q[0], q[1], q[2], q[3]);

 index++;
 }

Applet instead of
Frame, so it can
run on a web page

Reads “image” parameter
to set background image
on label

Sets up one
transparent button

for each iteration

Creates the button
and adds it to the

container

CUSTOM BUTTONS, PART I : TRANSPARENT BUTTONS 167

 getContentPane().setLayout(null);
 getContentPane().add(bigLabel);
 bigLabel.setBounds(0, 0, bigImage.getIconWidth(),
 bigImage.getIconHeight());
 }

 public String getAppletInfo() {
 return "Sample applet with NavigateButtons";
 }

 public String[][] getParameterInfo() {
 String pinfo[][] = {
 {"image", "string", "base image file name"},
 {"buttonX","x,y,w,h", "button's bounds"},
 {"nameX", "string", "tooltip text"},
 {"urlX", "url", "link URL"} };
 return pinfo;
 }
}

class NavigateButton extends JButton implements ActionListener
{
 protected Border m_activeBorder;
 protected Border m_inactiveBorder;

 protected Applet m_parent;
 protected String m_text;
 protected String m_sUrl;
 protected URL m_url;

 public NavigateButton(Applet parent, String text, String sUrl) {
 m_parent = parent;
 setText(text);
 m_sUrl = sUrl;
 try {
 m_url = new URL(sUrl);
 }
 catch(Exception ex) { m_url = null; }

 setOpaque(false);
 enableEvents(AWTEvent.MOUSE_EVENT_MASK);

 m_activeBorder = new MatteBorder(1, 1, 1, 1, Color.yellow);
 m_inactiveBorder = new EmptyBorder(1, 1, 1, 1);
 setBorder(m_inactiveBorder);

 addActionListener(this);
 }

 public void setText(String text) {
 m_text = text;
 setToolTipText(text);
 }

 public String getText() {
 return m_text;
 }

Useful information
for applets, but
not required

Implementation
of invisible

button

Borders shown when
button has and does
not have focus

Sets URL
for button

Sets up to process its
own mouse events

Overrides methods from
JButton, but to manage
tooltip text, not label text

168 CHAPTER 5 LABELS AND BUTTONS

 protected void processMouseEvent(MouseEvent evt) {
 switch (evt.getID()) {
 case MouseEvent.MOUSE_ENTERED:
 setBorder(m_activeBorder);
 setCursor(Cursor.getPredefinedCursor(
 Cursor.HAND_CURSOR));
 m_parent.showStatus(m_sUrl);
 break;
 case MouseEvent.MOUSE_EXITED:
 setBorder(m_inactiveBorder);
 setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));
 m_parent.showStatus("");
 break;
 }
 super.processMouseEvent(evt);
 }

 public void actionPerformed(ActionEvent e) {
 if (m_url != null) {
 AppletContext context = m_parent.getAppletContext();
 if (context != null)
 context.showDocument(m_url);
 }
 }

 public void paintComponent(Graphics g) {
 paintBorder(g);
 }
}

5.2.1 Understanding the code

Class ButtonApplet
This class extends JApplet to provide web page functionality. The init() method creates
and initializes all GUI components. It starts by reading the applet's image parameter, which is
then used along with the applet’s codebase to construct a URL:

 imageUrl = new URL(getDocumentBase(), imageName);

This URL points to the image file which is used to create our bigLabel label, which is used
as the applet’s background image.

The applet can be configured to hold several invisible buttons for navigating to predefined
URLs. For each button, three applet parameters must be provided:

• buttonN: Holds four comma-delimited numbers for the x, y, width, and height of button N.
• nameN: Tooltip text for button N.
• urlN: URL to redirect the browser to when the user clicks the mouse over button N.

As soon as these parameters are parsed for a given N, a new button is created and added to
bigLabel:

 NavigateButton btn = new NavigateButton(this,

Gets all mouse events,
but only handles mouse
enter and exit events,
to change the border
and cursor

Called when user presses
button with mouse or keyboard

CUSTOM BUTTONS, PART I : TRANSPARENT BUTTONS 169

 paramName, paramUrl);
 bigLabel.add(btn);
 btn.setBounds(q[0], q[1], q[2], q[3]);

Finally, the bigLabel component is added to the applet’s content pane. It receives a fixed size
to avoid any repositioning if the label’s parent is somehow resized.

The getAppletInfo() method returns a String description of this applet. The getPa-
rameterInfo() method returns a two-dimensional String array that describes the parame-
ters accepted by this applet. Both are strongly recommended constituents of any applet, but
they are not required for raw functionality.

Class NavigateButton
This class extends JButton to provide our custom implementation of an invisible button. It
implements the ActionListener interface, eliminating the need to add an external listener, and
it shows how we can enable mouse events without implementing the MouseListener interface.

Several parameters are declared in this class:

• Border m_activeBorder: The border which will be used when the button is active
(when the mouse cursor is moved over the button).

• Border m_inactiveBorder: The border which will be used when the button is inac-
tive (when no mouse cursor is over the button). This will not usually be visible.

• Applet m_parent: A reference to the parent applet.
• String m_text: The tooltip text for this button.
• String m_sUrl: A string representation of the URL (for display in the browser’s status bar).
• URL m_url: The actual URL to redirect the browser to when a mouse click occurs.

The constructor of the NavigateButton class takes three parameters: a reference to the parent
applet, the tooltip text, and a String representation of a URL. It assigns all instance variables
and creates a URL from the given String. If the URL address cannot be resolved, it is set to
null (this will disable navigation). The opaque property is set to false because this component
is supposed to be transparent. Notice that this component processes its own MouseEvents,
which is enabled with the enableEvents() method. This button will also receive Action-
Events by way of implementing ActionListener and adding itself as a listener.

The setText() and getText() methods manage the m_text (tooltip text) property. They
also override the corresponding methods inherited from the JButton class.

The processMouseEvent() method will be called for notification about mouse events on
this component. We want to process only two kinds of events: MOUSE_ENTERED and MOUSE_
EXITED. When the mouse enters the button’s bounds, we set the border to m_activeBorder,
change the mouse cursor to the hand cursor, and display the String description of the URL
in the browser’s status bar. When the mouse exits the button’s bounds, we perform the oppo-
site actions: set the border to m_inactiveBorder, set the mouse cursor to the default cursor,
and clear the browser’s status bar.

The actionPerformed() method will be called when the user presses this button (note that
we use the inherited JButton processing for both mouse clicks and the keyboard mnemonic).
If both the URL and AppletContext instances are not null, the showDocument() method
is called to redirect the browser to the button’s URL.

170 CHAPTER 5 LABELS AND BUTTONS

NOTE Do not confuse AppletContext with the AppContext class we discussed in sec-
tion 2.5. AppletContext is an interface for describing an applet’s environment,
including information about the document in which it is contained, as well as infor-
mation about other applets that might also be contained in that document.

The paintComponent() method used for this button has a very simple implementation. We
just draw the button’s border by calling paintBorder(). Since this component is not
designed to have a UI delegate, we do not need to call super.paintComponent() from this
method.

5.2.2 Running the code

To run example 5.4 in a web browser, we have constructed the following HTML file:

<html>

<head>
<title></title>
</head>

<body>

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 563 HEIGHT = 275 codebase="http://java.sun.com/products/plugin/
1.2/jinstall-12-win32.cab#Version=1,2,0,0">
<PARAM NAME = "CODE" VALUE = "ButtonApplet.class" >
<PARAM NAME = "type" VALUE ="application/x-java-applet;version=1.2">
 <param name="button1" value="49, 134, 161, 22">
 <param name="button2" value="49, 156, 161, 22">
 <param name="button3" value="16, 178, 194, 22">
 <param name="button4" value="85, 200, 125, 22">
 <param name="button5" value="85, 222, 125, 22">
 <param name="image" value="nasa.gif">
 <param name="name1" value="What is Earth Science?">
 <param name="name2" value="Earth Science Missions">
 <param name="name3" value="Science of the Earth System">
 <param name="name4" value="Image Gallery">
 <param name="name5" value="For Kids Only">
 <param name="url1"
 value="http://www.earth.nasa.gov/whatis/index.html">
 <param name="url2"
 value="http://www.earth.nasa.gov/missions/index.html">
 <param name="url3"
 value="http://www.earth.nasa.gov/science/index.html">
 <param name="url4"
 value="http://www.earth.nasa.gov/gallery/index.html">
 <param name="url5"
 value="http://kids.mtpe.hq.nasa.gov/">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.2" CODE = "ButtonAp-
plet.class"
 WIDTH = "563" HEIGHT = "275"
 codebase="./"

CUSTOM BUTTONS, PART II : POLYGONAL BUTTONS 171

 button1="49, 134, 161, 22"
 button2="49, 156, 161, 22"
 button3="16, 178, 194, 22"
 button4="85, 200, 125, 22"
 button5="85, 222, 125, 22"
 image="nasa.gif"
 name1="What is Earth Science?"
 name2="Earth Science Missions"
 name3="Science of the Earth System"
 name4="Image Gallery"
 name5="For Kids Only"
 url1="http://www.earth.nasa.gov/whatis/index.html"
 url2="http://www.earth.nasa.gov/missions/index.html"
 url3="http://www.earth.nasa.gov/science/index.html"
 url4="http://www.earth.nasa.gov/gallery/index.html"
 url5="http://kids.mtpe.hq.nasa.gov/"
 pluginspage=
 "http://java.sun.com/products/plugin/1.2/plugin-install.html">
<NOEMBED>
</COMMENT>
alt="Your browser understands the <APPLET> tag but isn't
running the applet, for some reason."
Your browser is completely ignoring the <APPLET> tag!
</NOEMBED>
</EMBED>
</OBJECT>
</p>

<p> </p>
</body>
</html>

NOTE The HTML file above works with appletviewer, Netscape Navigator 6.0, and Micro-
soft Internet Explorer 5.5. This compatibility is achieved thanks to Java plug-in
technology. See http://www.javasoft.com/products/plugin for details on how to
write plug-in-compatible HTML files. The downside to this file is that we need
to include all applet parameters two times for each web browser.

REFERENCE For additional information about the Java plug-in and the plug-in HTML
converter (a convenient utility to generate plug-in-compliant HTML), see: http://
java.sun.com/products/plugin/1.3/features.html.

Figure 5.9 shows ButtonApplet running in Netscape Navigator 4.05 using the Java plug-in.
Notice how invisible buttons react when the mouse cursor moves over them. Click a button
and navigate to one of the NASA sites.

5.3 CUSTOM BUTTONS, PART II: POLYGONAL BUTTONS

The approach described in the previous section assumes that all navigational buttons have a
rectangular shape. This can be too restrictive for the complex active regions that are needed in
the navigation of images such as geographical maps. In example 5.5, we will show how to

172 CHAPTER 5 LABELS AND BUTTONS

extend the idea of transparent buttons, developed in the previous example, to transparent
non-rectangular buttons.

The java.awt.Polygon class is extremely helpful for this purpose, especially the two
related methods which follow (see the API documentation for more information):

• Polygon.contains(int x, int y): Returns true if a point with the given coordi-
nates is contained inside the Polygon.

• Graphics.drawPolygon(Polygon polygon): Draws an outline of a Polygon using
the given Graphics object.

The first method is used in this example to verify that the mouse cursor is located inside a
given polygon. The second method will be used to actually draw a polygon representing the
bounds of a non-rectangular button.

This seems fairly basic, but there is one significant complication. All Swing components
are encapsulated in rectangular bounds; nothing can be done about this. If some component
receives a mouse event which occurs in its rectangular bounds, the overlapped underlying com-
ponents do not have a chance to receive this event. Figure 5.10 illustrates two non-rectangular
buttons. The part of Button B that lies under the rectangle of Button A will never receive
mouse events and cannot be clicked.

To resolve this situation, we can skip any mouse event processing in our non-rectangular com-
ponents. Instead, all mouse events can be directed to the parent container. All buttons can
then register themselves as MouseListeners and MouseMotionListeners with that con-
tainer. In this way, mouse events can be received without worrying about overlapping and all
buttons will receive notification of all events without any preliminary filtering. To minimize
the resulting impact on the system’s performance, we need to provide a quick discard of events
lying outside a button’s bounding rectangle.

Figure 5.10
Illustration of two overlapping
non-rectangular buttons

CUSTOM BUTTONS, PART II : POLYGONAL BUTTONS 173

Example 5.5

see \Chapter5\5

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class ButtonApplet2 extends JApplet
{
 public ButtonApplet2() {}

 public synchronized void init() {
 // Unchanged code from example 5.4

ButtonApplet2.java

Figure 5.11 Polygonal buttons in an applet

Like ButtonApplet, but
buttons are polygons,
instead of just rectangles

174 CHAPTER 5 LABELS AND BUTTONS

 int index = 1;
 while(true) {
 String paramSize = getParameter("button"+index);
 String paramName = getParameter("name"+index);
 String paramUrl = getParameter("url"+index);
 if (paramSize==null || paramName==null || paramUrl==null)
 break;

 Polygon p = new Polygon();

 try {

 StringTokenizer tokenizer = new StringTokenizer(
 paramSize, ",");

 while (tokenizer.hasMoreTokens()) {

 String str = tokenizer.nextToken().trim();

 int x = Integer.parseInt(str);

 str = tokenizer.nextToken().trim();

 int y = Integer.parseInt(str);

 p.addPoint(x, y);

 }

 }

 catch (Exception ex) { break; }

 PolygonButton btn = new PolygonButton(this, p,

 paramName, paramUrl);

 bigLabel.add(btn);

 index++;
 }

 getContentPane().setLayout(null);
 getContentPane().add(bigLabel);
 bigLabel.setBounds(0, 0, bigImage.getIconWidth(),
 bigImage.getIconHeight());
 }

 public String getAppletInfo() {
 return "Sample applet with PolygonButtons";
 }

 public String[][] getParameterInfo() {
 String pinfo[][] = {
 {"image", "string", "base image file name"},
 {"buttonX","x1,y1, x2,y2, ...", "button's bounds"},
 {"nameX", "string", "tooltip text"},
 {"urlX", "url", "link URL"} };
 return pinfo;
 }
}

class PolygonButton extends JComponent
 implements MouseListener, MouseMotionListener
{
 static public Color ACTIVE_COLOR = Color.red;
 static public Color INACTIVE_COLOR = Color. darkGray;

 protected JApplet m_parent;

Form polygon
from unspecified
number of integer
coordinates

Format of polygon
coordinates

Replaces NavigateButton from
previous example, but gets all
mouse events from parent to
check against polygon

CUSTOM BUTTONS, PART II : POLYGONAL BUTTONS 175

 protected String m_text;
 protected String m_sUrl;
 protected URL m_url;

 protected Polygon m_polygon;
 protected Rectangle m_rc;
 protected boolean m_active;

 protected static PolygonButton m_currentButton;

 public PolygonButton(JApplet parent, Polygon p,
 String text, String sUrl)
 {
 m_parent = parent;
 m_polygon = p;
 setText(text);
 m_sUrl = sUrl;
 try {
 m_url = new URL(sUrl);
 }
 catch(Exception ex) { m_url = null; }

 setOpaque(false);

 m_parent.addMouseListener(this);
 m_parent.addMouseMotionListener(this);

 m_rc = new Rectangle(m_polygon.getBounds()); // Bug alert!
 m_rc.grow(1, 1);

 setBounds(m_rc);
 m_polygon.translate(-m_rc.x, -m_rc.y);
 }

 public void setText(String text) { m_text = text; }

 public String getText() { return m_text; }

 public void mouseMoved(MouseEvent e) {
 if (!m_rc.contains(e.getX(), e.getY()) || e.isConsumed()) {
 if (m_active)
 setState(false);
 return; // Quickly return, if outside our rectangle
 }
 int x = e.getX() - m_rc.x;
 int y = e.getY() - m_rc.y;
 boolean active = m_polygon.contains(x, y);

 if (m_active != active)
 setState(active);
 if (m_active)
 e.consume();
 }

 public void mouseDragged(MouseEvent e) {}

 protected void setState(boolean active) {
 m_active = active;
 repaint();

This component listens to
parent's events

Create
bounding
rectangle

Compare against
polygon; fix

activation state

Translate event coordinates
to button coordinates and
set state accordingly

Resets active button;
redraws component,
cursor, and URL

176 CHAPTER 5 LABELS AND BUTTONS

 if (m_active) {
 if (m_currentButton != null)
 m_currentButton.setState(false);
 m_currentButton = this;
 m_parent.setCursor(Cursor.getPredefinedCursor(
 Cursor.HAND_CURSOR));
 m_parent.showStatus(m_sUrl);
 }
 else {
 m_currentButton = null;
 m_parent.setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));
 m_parent.showStatus("");
 }
 }

 public void mouseClicked(MouseEvent e) {
 if (m_active && m_url != null && !e.isConsumed()) {
 AppletContext context = m_parent.getAppletContext();
 if (context != null)
 context.showDocument(m_url);
 e.consume();
 }
 }
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseExited(MouseEvent e) { mouseMoved(e); }
 public void mouseEntered(MouseEvent e) { mouseMoved(e); }

 public void paintComponent(Graphics g) {
 g.setColor(m_active ? ACTIVE_COLOR : INACTIVE_COLOR);
 g.drawPolygon(m_polygon);
 }
}

5.3.1 Understanding the code

Class ButtonApplet2
This class is a slightly modified version of the ButtonApplet class in the previous section; it
accommodates polygonal button sizes rather than rectangles (the parser has been modified to
read in an arbitrary number of points). Now it creates a Polygon instance and parses a data
string, which is assumed to contain pairs of comma-separated coordinates, adding each coor-
dinate to the Polygon using the the addPoint() method. The resulting Polygon instance is
used to create a new PolygonButton component.

Class PolygonButton
This class serves as a replacement for the NavigateButton class in the previous example.
Notice that it extends JComponent directly. This is necessary to disassociate any mouse
handling inherent in buttons (the mouse handling is actually built into the button
UI delegates). Remember, we want to handle mouse events ourselves, but we want them each

If mouse click is for this
button, then show the
URL document

Draws Red if
active, Grey if
inactive

CUSTOM BUTTONS, PART II : POLYGONAL BUTTONS 177

to be sent from within the parent’s bounds to each PolygonButton, not from each
PolygonButton to the parent.

NOTE This is the opposite way of working with mouse listeners than we are used to. The
idea may take a few moments to sink in because directing events from child to
parent is so much more common that we generally don’t think of things the other
way around.

So, to be notified of mouse events from the parent, we’ll need to implement the MouseLis-
tener and MouseMotionListener interfaces.

Four new instance variables are declared:

• Polygon m_polygon: The polygonal region representing this button’s bounds.
• Rectangle m_rc: This button’s bounding rectangle as seen in the coordinate space of

the parent.
• boolean m_active: The flag indicating that this button is active.
• PolygonButton m_currentButton: A static reference to the instance of this class

which is currently active.

The constructor of the PolygonButton class takes four parameters: a reference to the parent
applet, the Polygon instance representing this component’s bounds, the tooltip text, and a
String representation of a URL. It assigns all instance variables and instantiates a URL using
the associated String parameter (similar to what we saw in the last example). This compo-
nent adds itself to the parent applet as a MouseListener and a MouseMotionListener:

 m_parent.addMouseListener(this);
 m_parent.addMouseMotionListener(this);

The bounding rectangle m_rc is computed with the Polygon.getBounds() method. This
method does not create a new instance of the Rectangle class, but it does return a reference to
an internal Polygon instance variable which is subject to change. This is not safe, so we must
explicitly create a new Rectangle instance from the supplied reference. This Rectangle’s
bounds are expanded (using its grow() method) to take border width into account. Finally,
the Rectangle m_rc is set as the button’s bounding region, and the Polygon is translated
into the component’s local coordinates by shifting its origin using its translate() method.

The mouseMoved() method is invoked when mouse events occur in the parent container. We
first quickly check whether the event lies inside our bounding rectangle and if it has not yet
been consumed by another component. If both conditions are met, we continue processing
this event; otherwise, our method returns. Before we return, however, we first must check
whether this button is still active for some reason—this can happen if the mouse cursor moves
too fast out of this button’s bounds, and the given component did not receive a MOUSE_
EXITED MouseEvent to deactivate itself. If this is the case, we deactivate the button and then
exit the mouseMoved() method.

We next manually translate the coordinates of the event into our button’s local system
(remember that this is an event from the parent container) and check whether the point lies
within our polygon. This gives us a boolean result which should indicate whether this
component is currently active or inactive. If our button’s current activation state (m_active)
is not equal to this value, we call the setState() method to change it so that it is. Finally, if

178 CHAPTER 5 LABELS AND BUTTONS

this component is active, we consume the given MouseEvent to avoid activation of two
components simultaneously.

The setState() method is called, as described above, to set a new activation state of this
component. It takes a boolean value as a parameter and stores it in the m_active instance
variable. Then it repaints the component to reflect a change in state, if any. Depending on the
state of the m_active flag in the setState() method, one of the following will happen:

• If the m_active flag is set to true, this method checks the static reference to the
currently active button stored in the m_currentButton static variable. In the case where
this reference still points to some other component (again, it potentially can happen if
the mouse cursor moves too quickly out of a component’s rectangular bounds), we force
that component to be inactive. Then we store a this reference as the
m_currentButton static variable, letting all the other buttons know that this button is
now the currently active one. We then change the mouse cursor to the hand cursor (as in
the previous example) and display our URL in the browser’s status bar.

• If the m_active flag is set to false, this method sets the m_currentButton static variable
to null, changes the mouse cursor to the default cursor, and clears the browser’s status bar.

The mouseClicked() method checks whether this component is active (this implies that the
mouse cursor is located within our polygon, and not just within the bounding rectangle), the
URL is resolved, and the mouse event is not consumed. If all three checks are satisfied, this
method redirects the browser to the component’s associated URL and consumes the mouse
event to avoid processing by any other components.

The rest of this class’s methods, implemented due to the MouseListener and MouseMo-
tionListener interfaces, receive empty bodies, except for mouseExited() and mouse-
Entered(). Both of these methods send all their traffic to the mouseMoved() method to
notify the component that the cursor has left or has entered the container, respectively.

The paintComponent() method simply draws the component’s Polygon in gray if it’s
inactive, and in red if it’s active.

NOTE We’ve purposefully avoided including tooltip text for these non-rectangular
buttons because the underlying Swing ToolTipManager essentially relies on the
rectangular shape of the components it manages. Somehow, invoking the Swing
tooltip API destroys our model of processing mouse events. In order to allow
tooltips, we have to develop our own version of a tooltip manager—this is the
subject of the next example.

5.3.2 Running the code

To run this code in a web browser, we have constructed the following HTML file (see the Java
plug-in and Java plug-in HTML converter notes in the previous example):

<html>
<head>
<title></title>
</head>
<body>

CUSTOM BUTTONS, PART II : POLYGONAL BUTTONS 179

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 400 HEIGHT = 380 codebase="http://java.sun.com/products/plugin/
1.2/jinstall-12-win32.cab#Version=1,2,0,0">
<PARAM NAME = "CODE" VALUE = "ButtonApplet2.class" >
<PARAM NAME = "type"
 VALUE ="application/x-java-applet;version=1.2">
<param name="image" value="bay_area.gif">

<param name="button1"
 value="112,122, 159,131, 184,177, 284,148, 288,248, 158,250,
100,152">
<param name="name1" value="Alameda County">
<param name="url1"
 value="http://dir.yahoo.com/Regional/U_S__States/
California/Counties_and_Regions/Alameda_County/">

<param name="button2"
 value="84,136, 107,177, 76,182, 52,181, 51,150">
<param name="name2" value="San Francisco County">
<param name="url2"
 value="http://dir.yahoo.com/Regional/U_S__States/
California/Counties_and_Regions/San_Francisco_County/">

<param name="button3"
 value="156,250, 129,267, 142,318, 235,374, 361,376, 360,347, 311,324,
291,250">
<param name="name3" value="Santa Clara County">
<param name="url3"
 value="http://dir.yahoo.com/Regional/U_S__States/
California/Counties_and_Regions/Santa_Clara_County/">

<param name="button4"
 value="54,187, 111,180, 150,246, 130,265, 143,318, 99,346, 63,314">
<param name="name4" value="San Mateo County">
<param name="url4"
 value="http://dir.yahoo.com/Regional/U_S__States/
California/Counties_and_Regions/San_Mateo_County/">

<param name="button5"
 value="91,71, 225,79, 275,62, 282,147, 185,174, 160,129, 95,116,
79,97">
<param name="name5" value="Contra Costa County">
<param name="url5"
 value="http://dir.yahoo.com/Regional/U_S__States/
California/Counties_and_Regions/Contra_Costa_County/">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.2" CODE =
"ButtonApplet2.class"
 WIDTH = "400" HEIGHT = "380"
 codebase="./"
 image="bay_area.gif"
 button1="112,122, 159,131, 184,177, 284,148, 288,248, 158,250, 100,152"
 name1="Alameda County"

180 CHAPTER 5 LABELS AND BUTTONS

 url1="http://dir.yahoo.com/Regional/U_S__States/California/
Counties_and_Regions/Alameda_County/"
 button2="84,136, 107,177, 76,182, 52,181, 51,150"
 name2="San Francisco County"
 url2="http://dir.yahoo.com/Regional/U_S__States/California/
Counties_and_Regions/San_Francisco_County/"
 button3="156,250, 129,267, 142,318, 235,374, 361,376, 360,347, 311,324,
291,250"
 name3="Santa Clara County"
 url3="http://dir.yahoo.com/Regional/U_S__States/California/
Counties_and_Regions/Santa_Clara_County/"
 button4="54,187, 111,180, 150,246, 130,265, 143,318, 99,346, 63,314"
 name4="San Mateo County"
 url4="http://dir.yahoo.com/Regional/U_S__States/California/
Counties_and_Regions/San_Mateo_County/"
 button5="91,71, 225,79, 275,62, 282,147, 185,174, 160,129, 95,116, 79,97"
 name5="Contra Costa County"
 url5="http://dir.yahoo.com/Regional/U_S__States/California/
Counties_and_Regions/Contra_Costa_County/"
 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-
install.html">
<NOEMBED></COMMENT>
alt="Your browser understands the <APPLET> tag but isn't running the
applet, for some reason."
 Your browser is completely ignoring the <APPLET> tag!
</NOEMBED>
</EMBED>
</OBJECT>
</p>

<p> </p>
</body>
</html>

Figure 5.10 shows the ButtonApplet2 example running in Netscape 4.05 with the Java
plug-in. Our HTML file has been constructed to display an active map of the San Francisco
bay area. Five non-rectangular buttons correspond to this area’s five counties. Watch how the
non-rectangular buttons react when the mouse cursor moves in and out of their boundaries.
Verify that they behave correctly even if a part of a given button lies under the bounding rect-
angle of another button (a good place to check is the sharp border between Alameda and Con-
tra Costa counties). Click over the button and notice the navigation to one of the Yahoo sites
containing information about the selected county.

It is clear that tooltip displays would help to dispel any confusion as to which county is
which. The next example shows how to implement this feature.

5.4 CUSTOM BUTTONS, PART III: TOOLTIP MANAGEMENT

In this section we’ll discuss how to implement custom management of tooltips in a Swing
application. If you’re completely satisfied with the default ToolTipManager provided with

CUSTOM BUTTONS, PART III : TOOLTIP MANAGEMENT 181

Swing, you can skip this section. But there may be situations when this default implementa-
tion is not satisfactory, as in our example above using non-rectangular components.

In example 5.6, we will construct our own version of a tooltip manager to display a tooltip
window if the mouse cursor rests over some point inside a button’s polygonal area longer than a
specified time interval. It will be displayed for a specified amount of time; then, to avoid annoy-
ing the user, we will hide the tooltip window until the mouse cursor moves to a new position.
In designing our tooltip manager, we will take a different approach than that taken by Swing’s
default ToolTipManager (see 5.1.12). Instead of using three different Timers, we will use just
one. This involves tracking more information, but it is slightly more efficient because it avoids
the handling of multiple ActionEvents.

Example 5.6

see \Chapter5\6

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

import javax.swing.*;

ButtonApplet3.java

Figure 5.12
Polygonal buttons
with a custom
tooltip manager

182 CHAPTER 5 LABELS AND BUTTONS

import javax.swing.border.*;
import javax.swing.event.*;

public class ButtonApplet3 extends JApplet
{
 protected CustomToolTipManager m_manager;

 public ButtonApplet3() {}

 public synchronized void init() {
 // Unchanged code from example 5.5

 m_manager = new CustomToolTipManager(this);

 PolygonButton.m_toolTip = m_manager.m_toolTip;

 getContentPane().setLayout(null);
 getContentPane().add(bigLabel);
 bigLabel.setBounds(0, 0, bigImage.getIconWidth(),
 bigImage.getIconHeight());
 }

 // Unchanged code from example 5.5
}

class PolygonButton extends JComponent
 implements MouseListener, MouseMotionListener
{
 // Unchanged code from example 5.5

 public static JToolTip m_toolTip;

 protected void setState(boolean active) {
 m_active = active;
 repaint();
 if (active) {
 if (m_currentButton != null)
 m_currentButton.setState(false);
 m_parent.setCursor(Cursor.getPredefinedCursor(
 Cursor.HAND_CURSOR));
 m_parent.showStatus(m_sUrl);
 if (m_toolTip != null)

 m_toolTip.setTipText(m_text);

 }
 else {
 m_currentButton = null;
 m_parent.setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));
 m_parent.showStatus("");
 if (m_toolTip != null)

 m_toolTip.setTipText(null);

 }
 }
}

class CustomToolTipManager extends MouseMotionAdapter
 implements ActionListener
{

Like ButtonApplet2,
but manages tooltips

Set sole tooltip
instance for all
buttons in applet

Same as in
ButtonApplet2, but
sets “global” tooltip to
tooltip for this button

TooltipManager that
doesn't assume
rectangular
components

CUSTOM BUTTONS, PART III : TOOLTIP MANAGEMENT 183

 protected Timer m_timer;
 protected int m_lastX = -1;
 protected int m_lastY = -1;
 protected boolean m_moved = false;
 protected int m_counter = 0;

 public JToolTip m_toolTip = new JToolTip();

CustomToolTipManager(JApplet parent) {
 parent.addMouseMotionListener(this);
 m_toolTip.setTipText(null);
 parent.getContentPane().add(m_toolTip);
 m_toolTip.setVisible(false);
 m_timer = new Timer(1000, this);
 m_timer.start();
 }

 public void mouseMoved(MouseEvent e) {
 m_moved = true;
 m_counter = -1;
 m_lastX = e.getX();
 m_lastY = e.getY();
 if (m_toolTip.isVisible()) {

 m_toolTip.setVisible(false);
 m_toolTip.getParent().repaint();
 }
 }

 public void actionPerformed(ActionEvent e) {
 if (m_moved || m_counter==0 || m_toolTip.getTipText()==null) {
 if (m_toolTip.isVisible())
 m_toolTip.setVisible(false);
 m_moved = false;
 return;
 }

 if (m_counter < 0) {
 m_counter = 4;
 m_toolTip.setVisible(true);
 Dimension d = m_toolTip.getPreferredSize();
 m_toolTip.setBounds(m_lastX, m_lastY+20,
 d.width, d.height);
 }
 m_counter—;
 }
}

5.4.1 Understanding the code

Class ButtonApplet3
This class requires very few modifications from ButtonApplet2 in the last section. It declares
and creates CustomToolTipManager m_manager and passes a this reference to it:

 m_manager = new MyToolTipManager(this);

Listens for mouse events on
parent; installs tooltip in
parent; installs timer to check
and control tooltip state

Mouse has moved, so
reset tooltip state

Called for Timer
events; hides or
displays tooltip

If ready to display
tooltip, set it up to
display for about 4
seconds, over the last
mouse position

184 CHAPTER 5 LABELS AND BUTTONS

As you will see below, our CustomToolTipManager class manages a publicly accessible
JToolTip, m_toolTip. CustomToolTipManager itself is not intended to provide any mean-
ingful content to this tooltip. Rather, this is to be done by other components—in our case,
by PolygonButtons. Thus, our PolygonButton class declares a static reference to a JTool-
Tip component. Whenever a button becomes active, this JToolTip’s text will be assigned to
that of the active button. So, when we create our instance of CustomToolTipManager, we
assign its publicly accessible JToolTip as our Polygon class’s static JToolTip (which is also
publicly accessible):

 PolygonButton.m_toolTip = m_manager.m_toolTip;

Thus, only one JToolTip instance will exist for the lifetime of this applet, and both Custom-
ToolTipManager and our PolygonButtons have control over it.

Class PolygonButton
As we’ve mentioned earlier, this class now declares the static variable JToolTip m_toolTip.
The PolygonButton class does not initialize this reference. However, this reference is checked
during PolygonButton activation in the setState() method. If m_toolTip is not null
(set to point to a valid tooltip window by some outer class, which, in our example, is done in
the ButtonApplet3 init() method shown above), the setTipText() method is invoked
to set the proper text while the mouse cursor hovers over the button.

Class CustomToolTipManager
This class represents a custom tooltip manager which is free from assumption of the rectangu-
larity of its child components. It extends the MouseMotionAdapter class and implements
the ActionListener interface to work as both a MouseMotionListener and an Action-
Listener. Six instance variables are declared:

• Timer m_timer: Our managing timer.
• int m_lastX, m_lastY: The last coordinates of the mouse cursor, these two variables

are reassigned each time the mouse is moved.
• boolean m_moved: A flag indicating that the mouse cursor has moved.
• int m_counter: The time ticks counter that is used to manage the tooltip’s time to live

(see below).
• JToolTip m_toolTip: The tooltip component to be displayed.

The constructor of the CustomToolTipManager class takes a reference to the parenting
JApplet as a parameter and registers itself as a MouseMotionListener on this component.
Then it creates the JToolTip m_toolTip component and adds it to the applet’s content
pane. m_tooltip is set invisible, using setVisible(false); it can then be used by any
interested class by repositioning it and calling setVisible(true). Finally, a Timer with a
1000ms delay time is created and started.

The mouseMoved() method will be invoked when the mouse cursor moves over the applet. It
sets the m_moved flag to true, m_counter to –1, and stores the coordinates of the mouse
cursor. Then this method hides the tooltip component if it’s visible.

CUSTOM BUTTONS, PART III : TOOLTIP MANAGEMENT 185

The actionPerformed() method is called when the Timer fires events (see section 2.6 for
details). It implements the logic of displaying/hiding the tooltip window based on two instance
variables: m_moved and m_counter:

 if (m_moved || m_counter==0 || m_toolTip.getTipText()==null) {
 if (m_toolTip.isVisible())
 m_toolTip.setVisible(false);
 m_moved = false;
 return;
 }

The block of code above is invoked when any one of the following statements are true:

1 The mouse cursor has been moved since the last time tick.

2 The counter has reached zero.

3 No tooltip text is set.

In any of these cases, the tooltip component is hidden (if it was previously visible), and the
m_moved flag is set to false. The m_counter variable remains unchanged.

 if (m_counter < 0) {
 m_counter = 4;
 m_toolTip.setVisible(true);
 Dimension d = m_toolTip.getPreferredSize();
 m_toolTip.setBounds(m_lastX, m_lastY+20,
 d.width, d.height);
 }

The above block of code is responsible for displaying the tooltip component. It will be exe-
cuted only when m_counter is equal to –1 (set by mouseMoved()), and when the m_moved
flag is false (cleared by the previous code fragment). m_counter is set to 4, which deter-
mines the amount of time the tooltip will be displayed (4000ms in this example). Then we
make the tooltip component visible and place it at the current mouse location with a vertical
offset approximately equal to the mouse cursor's height. This construction provides an arbi-
trary delay between the time when mouse motion stops and the tooltip is displayed.

The last line of code in the actionPerformed() method is m_counter--, which decre-
ments the counter each time tick until it reaches 0. As we saw above, once it reaches 0 the
tooltip will be hidden.

NOTE The actual delay time may vary from 1000ms to 2000ms since the mouse move-
ments and time ticks are not synchronized. A more accurate and complex imple-
mentation could start a new timer after each mouse movement, as is done in
Swing’s ToolTipManager.

The following table illustrates how the m_counter and m_moved variables control this
behavior.

186 CHAPTER 5 LABELS AND BUTTONS

5.4.2 Running the code

Figure 5.12 shows ButtonApplet3 running in Netscape Navigator 4.05 with the Java plug-in.
You can use the same HTML file that was presented in the previous section. Move the mouse
cursor over some non-rectangular component and note how it displays the proper tooltip
message. This tooltip disappears after a certain amount of time or when the mouse is moved
to a new location.

Table 5.1 m_counter and m_moved variables

Timer m_moved m_counter m_counter Comment

tick flag before after

0 false 0 0

1 true –1 –1 Mouse moved between 0th and 1st ticks.

2 false –1 4 Tooltip is displayed.

3 false 4 3

4 false 3 2

5 false 2 1

6 false 1 0

7 false 0 0 Tooltip is hidden.

8 false 0 0 Waiting for the next mouse move.

187

C H A P T E R 6

Tabbed panes
6.1 JTabbedPane 182
6.2 A dynamically changeable tabbed pane 184
6.3 Tab validation 197

6.1 JTABBEDPANE

class javax.swing.JTabbedPane
JTabbedPane is simply a stack of components in selectable layers. Each layer can contain
one component which is normally a container. Tab extensions are used to move a given layer
to the front of the tabbed pane view. These tab extensions are similar to labels in that they
can have assigned text, an icon (as well as a disabled icon), background and foreground colors,
and a tooltip.

To add a component to a tabbed pane, you use one of its overloaded add() methods.
This creates a new selectable tab and reorganizes the other tab extensions, if necessary, so the
new one will fit. You can also use the addTab() and insertTab() methods to create new
selectable layers. The remove() method takes a component as a parameter and removes the
tab associated with that component, if there is one.

Tab extensions can reside to the north, south, east, or west of the tabbed pane’s content.
The location is specified using its setTabPlacement() method and passing one of the cor-
responding SwingConstants fields as a parameter.

188 CHA PTER 6 TA BB E D PANES

Vertical or horizontal tabs? When is it best to choose between vertical or
horizontal tabs?

Three possible rules of thumb help make the decision whether to place tabs
horizontally or vertically. First, consider the nature of the data to be displayed.
Is vertical or horizontal space at a premium within the available display space?
If, for example, you have a list with a single column but 200 entries, then clear-
ly vertical space is at a premium. If you have a table with only 10 entries but 15
columns, then horizontal space is at a premium. Simply place the tabs where
space is cheaper to obtain. In the first example with the long list, place the tabs
vertically so they use horizontal space which is available. In the second example,
place the tabs horizontally so you use vertical space which is available while hor-
izontal space is completely taken by the table columns.

The second rule concerns the number and size of the tabs. If you need to dis-
play 12 tabs, for example, each with a long label, then it is unlikely that these
will fit across the screen horizontally. In this case you are more likely to fit them
by placing them vertically. Using space in these ways when introducing a
tabbed pane should minimize the introduction of scroll panes and maximize
ease of use. Finally, the third rule of thumb is to consider the layout and mouse
movements required for operating the software. If, for example, your applica-
tion uses a toolbar, then it may make sense to align the tabs close to the toolbar,
thus minimizing mouse movements between the toolbar buttons and the tabs.
If you have a horizontal toolbar across the top of the screen, then choose a hor-
izontal set of tabs across the top (to the north).

JAVA 1.4 As of Java 1.4 you can choose whether tabs should wrap to form rows of tabs, or
whether they should always form one scrollable row of column. When in the latter
form two buttons appear for scrolling through the existing tabs.

The tab layout policy can be assigned with the new setTabLayoutPolicy()
method. This method takes either of the following as a parameter:

JTabbedPane.WRAP_TAB_LAYOUT
JTabbedPane.SCROLL_TAB_LAYOUT

Example 6.1, along with the corresponding figures, illustrates this new feature.

You can get and set the selected tab index at any given time using its getSelectedIndex()
and setSelectedIndex() methods respectively. You can get/set the component associated
with the selected tab similarly, using the getSelectedComponent() and setSelected-
Component() methods.

One or more ChangeListeners can be added to a JTabbedPane, which gets regis-
tered with its model (an instance of DefaultSingleSelectionModel by default—see
chapter 12 for more information about SingleSelectionModel and DefaultSingle-
SelectionModel). When a new tab is selected, the model will send out ChangeEvents to
all registered ChangeListeners. The stateChanged() method of each listener is invoked,
so you can capture and perform any desired actions when the user selects any tab. JTabbed-

A DY NA MI C AL LY CH AN GEAB LE T A BB E D PANE 189

Pane also fires PropertyChangeEvents whenever its model or tab placement properties
change state.

Transaction boundaries and tabbed panes If you’re using a tabbed pane
within a dialog, the transaction boundary is normally clear—it will be an OK
or Cancel button on the dialog. In this case, it is obvious that the OK and Can-
cel buttons would lie outside the tabbed pane and in the dialog itself. This is
an important point. Place action buttons which terminate a transaction out-
side the tabbed panes. If, for example, you had a tabbed pane which contained
a Save and Cancel button within the first tab, would it be clear that the Save
and Cancel buttons work across all tabs or only on the first? Actually, it can be
very ambiguous. To clearly define the transaction, define the buttons outside
the tabbed pane so it is clear to the user that any changes made to any tab will
be accepted or saved when OK or Save is pressed or discarded when Cancel is
pressed. The action buttons will then apply across the complete set of tabs.

6.2 A DYNAMICALLY CHANGEABLE TABBED PANE

We will now turn to a JTabbedPane example applet that demonstrates a dynamically recon-
figurable tab layout as well as the addition and removal of any number of tabs. A Change-
Listener is attached to the tabbed pane to listen for tab selection events and to display the
currently selected tab index in a status bar. For enhanced feedback, audio clips are played
when the tab layout changes and whenever a tab is added and removed. Example 6.1 contains
the code.

Example 6.1

see \Chapter6\1

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class TabbedPaneDemo extends JApplet
 implements ActionListener {

 private ImageIcon m_tabimage;
 private ImageIcon m_utsguy;
 private ImageIcon m_jfcgirl;
 private ImageIcon m_sbeguy;
 private ImageIcon m_tiger;
 private JTabbedPane m_tabbedPane;

TabbedPaneDemo.java

Images for tab
extensions and
container

190 CHA PTER 6 TA BB E D PANES

 private JRadioButton m_topButton;
 private JRadioButton m_bottomButton;
 private JRadioButton m_leftButton;
 private JRadioButton m_rightButton;
 private JRadioButton m_wrapButton;
 private JRadioButton m_scrollButton;
 private JButton m_addButton;
 private JButton m_removeButton;
 private JLabel m_status;
 private JLabel m_loading;
 private AudioClip m_layoutsound;

private AudioClip m_tabsound;

 public void init() {
 m_loading = new JLabel("Initializing applet...",
 SwingConstants.CENTER);
 getContentPane().add(m_loading);

 Thread initialize = new Thread() {
 public void run() {

try {
 m_tabimage = new

ImageIcon(getClass().getResource("ball.gif"));

 m_utsguy = new
ImageIcon(getClass().getResource("utsguy.gif"));

 m_jfcgirl = new
ImageIcon(getClass().getResource("jfcgirl.gif"));

Figure 6.1 TabbedPaneDemo showing SCROLL_TAB_LAYOUT policy
with TOP alignment

Buttons to
control tab
alignment
Buttons to
control tab
layout

A DY NA MI C AL LY CH AN GEAB LE T A BB E D PANE 191

Figure 6.2 TabbedPaneDemo showing SCROLL_TAB_LAYOUT policy
with LEFT alignment

Figure 6.3 TabbedPaneDemo showing WRAP_TAB_LAYOUT policy
with TOP alignment

192 CHA PTER 6 TA BB E D PANES

 m_sbeguy = new
ImageIcon(getClass().getResource("sbeguy.gif"));

 m_tiger = new
ImageIcon(getClass().getResource("tiger.gif"));

 m_tabbedPane = newJTabbedPane(SwingConstants.TOP);

m_topButton = new JRadioButton("TOP");
m_bottomButton = new JRadioButton("BOTTOM");
m_leftButton = new JRadioButton("LEFT");
m_rightButton = new JRadioButton("RIGHT");
m_addButton = new JButton("Add");
m_removeButton = new JButton("Remove");

m_wrapButton = new JRadioButton(“WRAP TABS”);
m_scrollButton = new JRadioButton(“SCROLL TABS”);

m_topButton.setSelected(true);
buttonGroup bgAlignment = new ButtonGroup();
bgAlignment.add(m_topButton);
bgAlignment.add(m_botomButton);
bgAlignment.add(m_leftButton);
bgAlignment.add(m_rightBtton);

m_wrapButton.setSelected(true);
ButtonGroup bgScrollMode = new ButtonGroup();
bgScrollMode.add(m_wrapButton);
bgScrollMode.add(m_scrollButton);

m_topButton.addActionListener(TabbedPaneDemo.this);
 m_bottomButton.addActionListener(TabbedPaneDemo.this);
 m_leftButton.addActionListener(TabbedPaneDemo.this);
 m_rightButton.addActionListener(TabbedPaneDemo.this);
 m_addButton.addActionListener(TabbedPaneDemo.this);
 m_removeButton.addActionListener(TabbedPaneDemo.this);
 m_wrapButton.addActionListener(TabbedPaneDemo.this);
 m_scrollButton.addActionListener(TabbedPaneDemo.this);

 JPanel buttonPanel.new JPanel();
 buttonPanel.setLayout(new GridLayout(2,4));
 buttonPanel.add(m_topButton);
 buttonPanel.add(m_bottomButton);
 buttonPanel.add(m_leftButton);
 buttonPanel.add(m_rightButton);
 buttonPanel.add(m_wraptButton);
 buttonPanel.add(m_scrolltButton);
 buttonPanel.add(m_addButton);
 buttonPanel.add(m_removeButton);

 m_status = new JLabel();
 m_status.setForeground(Color.black);
 m_status.setBorder(new CompoundBorder(
 new EmptyBorder(2, 5, 2, 5),
 new SoftBevelBorder(SoftBevelBorder.LOWERED)));

 JPanel lowerPanel = new JPanel();
 lowerPanel.setLayout(new BorderLayout());

Buttons in
GridLayout

A DY NA MI C AL LY CH AN GEAB LE T A BB E D PANE 193

 lowerPanel.add(buttonPanel, BorderLayout.CENTER);
 lowerPanel.add(m_status, Borderlayout.SOUTH);

 for (int i=0; i<20; i++) {
 createTab();
 }

 getContentPane().removeAll();
 getContentPane().setLayout(new BorderLayout());
 getcontentPane(). add(m_tabbedPane, BorderLayout.CENTER);
 getContentPane().add(lowerPanel, BorderLayout.SOUTH);

 m_tabbedPane.addChangeListener(new TabChangeListener());
 m_layoutsound = getAudioClip(getCodeBase(), “switch.wav”);
 m_tabsound = getAudioClip(getCodeBase(), “tab.wav”);

 getContentPane().remove(m_loading);
 getRootPane().revalidate();
 getRootPane().repaint();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 };
 initialize.start();

 }

 public void createTab() {
 JLabel label = null;
 switch (m_tabbedPane.getTabCount()%4) {
 case 0:
 label = new JLabel("Tab #" + m_tabbedPane.getTabCount(),
 m_utsguy, SwingConstants.CENTER);
 break;
 case 1:
 label = new JLabel("Tab #" + m_tabbedPane.getTabCount(),
 m_jfcgirl, SwingConstants.CENTER);
 break;
 case 2:
 label = new JLabel("Tab #" + m_tabbedPane.getTabCount(),
 m_sbeguy, SwingConstants.CENTER);
 break;
 case 3:
 label = new JLabel("Tab #" + m_tabbedPane.getTabCount(),
 m_tiger, SwingConstants.CENTER);
 break;
 }
 label.setVerticalTextPosition(SwingConstants.BOTTOM);
 label.setHorizontalTextPosition(SwingConstants.CENTER);
 label.setOpaque(true);
 label.setBackground(Color.white);
 m_tabbedPane.addTab("Tab #" + m_tabbedPane.getTabCount(),
 m_tabimage, label);

Creates a tab
with image icon

194 CHA PTER 6 TA BB E D PANES

 m_tabbedPane.setSelectedIndex(m_tabbedPane.getTabCount()-1);
 setStatus(m_tabbedPane.getSelectedIndex());
 }

 public void killTab() {
 if (m_tabbedPane.getTabCount() > 0) {
 m_tabbedPane.removeTabAt(m_tabbedPane.getTabCount()-1);
 setStatus(m_tabbedPane.getSelectedIndex());
 }
 else
 setStatus(-1);
 }

 public void setStatus(int index) {
 if (index > -1)
 m_status.setText(" Selected Tab: " + index);
 else
 m_status.setText(" No Tab Selected");
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == m_topButton) {
 m_tabbedPane.setTabPlacement(SwingConstants.TOP);
 m_layoutsound.play();
 }
 else if(e.getSource() == m_bottomButton) {
 m_tabbedPane.setTabPlacement(SwingConstants.BOTTOM);
 m_layoutsound.play();
 }
 else if(e.getSource() == m_leftButton) {
 m_tabbedPane.setTabPlacement(SwingConstants.LEFT);
 m_layoutsound.play();
 }
 else if(e.getSource() == m_rightButton) {
 m_tabbedPane.setTabPlacement(SwingConstants.RIGHT);
 m_layoutsound.play();
 }
 else if(e.getSource() == m_wrapButton) {
 m_tabbedPane.setTabLayoutPolicy(
 JTabbedPane.WRAP_TAB_LAYOUT);
 m_layoutsound.play();
 }

 else if(e.getSource() == m_scrollButton) {
 m_tabbedPane.setTabLayoutPolicy(
 JTabbedPane.SROLL_TAB_LAYOUT);
 m_layoutsound.play();
 }

 else if(e.getSource() == m_addButton)
 createTab();
 else if(e.getSource() == m_removeButton)
 killTab();
 m_tabbedPane.revalidate();

Removes tab
with the
highest index

Update status label with
selected tab index

Called when one
of the buttons
is clicked; changes
tab orientation or
adds/removes tab

A DY NA MI C AL LY CH AN GEAB LE T A BB E D PANE 195

 m_tabbedPane.repaint();
 }

 class TabChangeListener implements ChangeListener {
 public void stateChanged(ChangeEvent e) {
 setStatus(
 ((JTabbedPane) e.getSource()).getSelectedIndex());
 m_tabsound.play();
 }
 }
}

6.2.1 Understanding the code

Class TabbedPaneDemo
TabbedPaneDemo extends JApplet and implements ActionListener to listen for button
events. Several instance variables are used:

• ImageIcon m_tabimage: The image used in each tab extension.
• ImageIcon m_utsguy, m_jfcgirl, m_sbeguy, m_tiger: The images used in the tab

containers.
• JTabbedPane m_tabbedPane: The main tabbed pane.
• JRadioButton m_topButton: The top tab alignment button.
• JRadioButton m_bottomButton: The bottom tab alignment button.
• JRadioButton m_leftButton: The left tab alignment button.
• JRadioButton m_rightButton: The right tab alignment button.
• JButton m_addButton: The add tab button.
• JButton m_removeButton: The remove tab button.
• JRadioButton m_wrapButton: the WRAP_TAB_LAYOUT layout policy button.
• JRadioButton m_scrollButton: the SCROLL_TAB_LAYOUT layout policy button.
• JLabel m_status: The status bar label.

Our JTabbedPane, m_tabbedPane, is created with TOP tab alignment. (Note that TOP is
actually the default, so this is really not necessary here. The default JTabbedPane constructor
would do the same thing.)

The init() method organizes the buttons inside a JPanel using GridLayout, and it associ-
ates ActionListeners with each one. We wrap all instantiation and GUI initialization proc-
esses in a separate thread and start the thread in this method. (Loading can take several
seconds and it is best to allow the interface to be as responsive as possible during this time.)
We also provide an explicit visual cue to the user that the application is loading by placing an
“Initializing applet...” label in the content pane where the tabbed pane will be placed
once it is initialized. In this initialization, our createTab() method is called four times. We
then add both the panel containing the tabbed pane controller buttons and our tabbed pane
to the content pane. Finally, an instance of MyChangeListener is attached to our tabbed
pane to listen for tab selection changes.

The createTab() method is called whenever m_addButton is clicked. Based on the current
tab count, this method chooses between four ImageIcons, creates a JLabel containing the

Plays sound
when tab set

196 CHA PTER 6 TA BB E D PANES

chosen icon, and adds a new tab containing that label. The killTab() method is called
whenever m_removeButton is clicked to remove the tab with the highest index.

The setStatus() method is called each time a different tab is selected. The m_status
JLabel is updated to reflect which tab is selected at all times.

The actionPerformed() method is called whenever any of the buttons are clicked. Clicking
m_topButton, m_bottomButton, m_leftButton, or m_rightButton causes the tab lay-
out of the JTabbedPane to change accordingly, using the setTabPlacement() method.
Clicking m_wrapButton or m_scrollButton changes the tab layout policy to
WRAP_TAB_LAYOUT or SCROLL_TAB_LAYOUT respectively. Each time one of these tab layout
buttons is clicked, a WAV file is played. Similarly, when a tab selection change occurs, a differ-
ent WAV file is invoked. These sounds, m_tabsound and m_layoutsound, are loaded at the
end of the init() method:

 m_layoutsound = getAudioClip(getCodeBase(), "switch.wav");
 m_tabsound = getAudioClip(getCodeBase(), "tab.wav");

Before the actionPerformed() method exits, it revalidates the JTabbedPane. (If this reval-
idation were to be omitted, we would see that a layout change caused by clicking one of our
tab layout buttons will result in incorrect tabbed pane rendering.)

Class TabbedPaneDemo.MyChangeListener
MyChangeListener implements the ChangeListener interface. Only one method must be
defined when implementing this interface: stateChanged(). This method can process
ChangeEvents corresponding to when a tabbed pane’s selected state changes. In our state-
Changed() method, we update the status bar in TabbedPaneDemo and play an appropriate
tab switching sound:

 public void stateChanged(ChangeEvent e) {
 setStatus(
 ((JTabbedPane) e.getSource()).getSelectedIndex());
 m_tabsound.play();
 }

6.2.2 Running the code

Figure 6.1, 6.2, and 6.3 show TabbedPaneDemo in action. To deploy this applet, the follow-
ing simple HTML file is used (this is not Java plug-in compliant):

<HTML> <BODY>
<applet code=TabbedPaneDemo width=570 height=400> </applet>
</BODY> </HTML>

Add and remove some tabs, and play with the tab layout to get a feel for how it works in dif-
ferent situations. You can use your arrow keys to move from tab to tab (if the focus is currently
on a tab), and remember to turn your speakers on for the sound effects.

NOTE You may have problems with this applet if your system does not support WAV files.
If so, comment out the audio-specific code and recompile the applet.

TAB V AL I DA T IO N 197

6.2.3 Interesting JTabbedPane characteristics

In cases where there is more than one row or column of tabs, most of us are used to the situation
where selecting a tab that is not already in the frontmost row or column moves that row or col-
umn to the front. This does not occur in a JTabbedPane using the default Metal look and feel, as
you can see in the TabbedPaneDemo example above. However, this does occur when using the
Windows, Motif, and Basic look and feel tabbed pane UI delegates. This feature was purposefully
disabled in the Metal look and feel (as can be verified in the MetalTabbedPaneUI source code).

Avoid multiple rows of tabs As a general rule, you should seek to design for
no more than a single row or column of tabs.
There are three key reasons for this. The first is a cognitive reason: the user has
trouble discerning what will happen with the multiple rows of tabs. With the
Windows look and feel for example, the behavior somewhat mimics the behav-
ior of a Rolodex filing card system. For some users this mental model is clear
and the behavior is natural; for others it is simply confusing.
The second reason is a human factors/usability problem. When a rear set of
tabs comes to the front, as with the Windows look and feel, the positions of all
the other tabs change. Therefore the user has to discern the new position of a
tab before visually selecting it and moving the mouse toward it. This makes it
harder for the user to learn the positions of the tabs. Directional memory is a
strong attribute and is highly productive for usability. Thus it is always better
to keep the tabs in the same position. This was the reason why Sun and Apple
designers chose to implement multiple tabs in this fashion.
The final reason is a design problem. When a second or subsequent row or col-
umn of tabs is introduced, the tabbed pane must be resized. Although the lay-
out manager will cope with this, it may not look visually satisfactory when
completed. The size of the tabbed pane becomes dependent on the ability to
render the tabs in a given space. Those who remember the OS2 Warp UI will
recall that the designers avoided this problem by allowing only a single row of
tabs and the ability to scroll them if they didn't fit into the given space. As of
Java 1.4 this design is available by setting JTabbedPane’s tab layout policy to
SCROLL_TAB_LAYOUT respectively.

6.3 TAB VALIDATION

In example 6.2 we show how to programmatically invoke or deny a tab switch. The first tab
contains a hypothetical list of employees. The second tab contains input fields displaying, and
allowing modification to, a specific employee’s personal data. When the application starts the
first tab is selected. If no employee is selected from the list the second tab cannot be selected.
If an employee is selected from the list the second tab is selectable (either by clicking the tab
or double-clicking the employee name in the list). A ChangeListener is responsible for con-
trolling this behavior.

198 CHA PTER 6 TA BB E D PANES

Example 6.2

see \Chapter6\2

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.eent.*;

import dl.*;

public class TabDemo extends JFrame {
 public static final int LIST_TAB = 0;
 public static final int DATA_TAB = 1;

 protected Person[] m_employee = {
 new Person(“John”, “Smith”, “111-1111”),
 new Person(“Silvia”, “Glenn”, “222-2222”),
 new Person(“Captain”, “Kirk”, “333-3333”),
 new Person(“Duke”, “Nukem”, “444-4444”),
 new Person(“James”, “Bond”, “000-7777”)
 }

 protected JList m_list;
 protected JTextField m_firstTxt;
 protected JTextField m_lastTxt;

TabDemo.java

Figure 6.4
Tab validation demo–
first tab

Figure 6.5
Tab validation demo–
second tab

Array of Person instances
representing employees

TAB V AL I DA T IO N 199

 protected JTextField m_phoneTxt;
 protected JTabbedPane m_tab;

 public TabDemo() {
 super(“Tab Validation Demo”);

 JPanel p1 = new JPanel(new BorderLayout());
 p1.setBorder(new EmptyBorder(10, 10, 10, 10));
 m_list = new JList(m_employees);
 m_list.setVisibleRowCount(4);
 JscrollPane sp = newJScrollPane(m_list);
 p1.add(sp, borderLayout.CENTER);

 MouseListener mlst = new MouseAdapter() {
 public void mouseClicked(MouseEvent evt) {
 if (evt.getClickCount() == 2)
 m_tab.setSelectedIndex(DATA_TAB);
 }
 };
 m_list.addMouseListener(mlst);

 JPanel p2 = new JPanel(new dialogLayout());
 p2.setBorder(new emptyBorder(10, 10, 10, 10));
 p2.add(new JLabel(“First name:”));
 m_firstTxt = new JTextfield(20);
 p2.add(m_firstTxt);
 p2.add(new JLabel(“Last name:”));
 m_lastTxt = new JTextfield(20);
 p2.add(m_lastTxt);
 p2.add(new JLabel(“Contact phone:”));
 m_phonetTxt = new JTextfield(20);;
 p2.add(m_pnoneTxt);

 m_tab = new JTabbedPane();
 m_tab.addTab(“Employees”, p1);
 m-tab.addTab(“Personal Data”, p2);
 m-tab.addchangeListener(new TabChangelistener());

 JPanel p = new JPanel();
 p.add(m_tab);
 p.setBorder(new EmptyBorder(5, 5, 5, 5));
 getContentPane().add(p);
 pack();
 }

 public Person getSelectedPerson() {
 return (Person)m_list.getSelectedValue();
 }

 public static void main(String[] args) {
 Jframe frame = new Tabdemo();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

MouseListener used
to change the tab
when a list item
is double-clicked

200 CHA PTER 6 TA BB E D PANES

 class TabChangeListener implements ChangeListener {
 public void stateChanged(ChangeEvent e) {
 Person sp = getSelectedPerson();
 switch(m_tab.getSelectedIndex())
 {
 case DATA_TAB:
 if (sp == null) {
 m_tab.setSelectedIndex(LIST_TAB);
 return;
 }
 m_firstTxt.setText(sp.m_firstname);
 m_lastTxt.setText(sp.m_lastName);
 m_phoneTxt.setText(sp.m_phone);
 break;

 case LIST_TAB:
 if (sp != null) {
 sp.m_firstName = m_firstTxt.getText();
 sp.m_lastName = m_lastTxt.getText();
 sp.m_phone = m_phoneTxt.getText()
 m_list.repaint();
 }

 break;
 }
 }
 }

 class Person{
 public String m_firstName;
 public String m_lastName;
 public String m_phone;

 public Person(String firstName, String lastName, String phone) {
 m_firstName = firstName;
 m_lastName = lastName;
 m_phone =phone;
 }

 public String toString() {
 String str = m_firstName+” “+m_lastName;
 if (m_phone.lengh() > 0)
 str +=” (”+m_phone+”)”;
 return str.trim();
 }
 }
}

6.3.1 Understanding the code

Class TabDemo
Two class variables and six instance variables are defined. Class variables:

• int LIST_TAB: Index of the tab containing the employee list
• int DATA_TAB: Index of the tab containing the selected employee’s data

ChangeListener
to control tab
switching behavior

Class representing
a Person (employee)

TAB V AL I DA T IO N 201

Instance variables:

• Person[] m_employees: Array of Person instances representing the employees.
• JTextfield m_firstTxt: Text field containing employee’s first name.
• JTextfield m_lastTxt: Text field containing employee’s last name.
• JTextfield m_phoneTxt: Text field containing employee’s phone number.
• JTabbedPane m_tab: The main tabbed pane.

A JList is created by passing the array of Person instances, m_employees, to the JList
constructor. As we will discuss soon, the Person class contains a toString() method
responsible for displaying the information for each employee seen in the list. A
MouseListener is added to this JList which is responsible for switching the selected tab to
the personal data tab when an employee is double-clicked.

Class TabChangeListener
An instance of this class is registered with our m_tab tabbed pane to control tab selection
behavior. If a tab change is detected this ChangeListener checks which tab the user is try-
ing to select and reacts accordingly.

If the second tab, (the DATA_TAB) is selected, we check whether there is a selected person
item in the list using our custom getSelectedPerson() method. If there isn’t a selected
Person we switch tab selection back to the first tab. If there is a Person selected we set the
data in the text fields to match the data corresponding to the selected Person in the list.

If the first tab (the LIST_TAB) is selected, we update the selected Person instance’s data
to reflect any changes that may have been made in the data tab.

Class Person
This class represents an employee and contains three String instance variables to hold first
name, last name and phone number data. The toString() method is overridden to return a
String appropriate for display in a JList.

202

C H A P T E R 7

Scrolling panes
7.1 JScrollPane 202
7.2 Grab-and-drag scrolling 211
7.3 Scrolling programmatically 213

7.1 JSCROLLPANE

class javax.swing.JScrollPane
Using JScrollPane is normally very simple. Any component or container can be placed in a
JScrollPane and scrolled. You can easily create a JScrollPane by passing its constructor
the component you’d like to scroll:

 JScrollPane jsp = new JScrollPane(myLabel);

Normally, our use of JScrollPane will not need to be much more extensive than the one line
of code shown above. Example 7.1 is a simple JScrollPane demo application. Figure 7.1
illustrates the output.

Figure 7.1
JScrollPane demo

JSCROLLPANE 203

Example 7.1

see \Chapter7\1

import java.awt.*;
import javax.swing.*;

public class ScrollPaneDemo extends JFrame
{
 public ScrollPaneDemo() {
 super("JScrollPane Demo");
 ImageIcon ii = new ImageIcon("earth.jpg");
 JScrollPane jsp = new JScrollPane(new JLabel(ii));
 getContentPane().add(jsp);
 setSize(300,250);
 setVisible(true);
 }

 public static void main(String[] args) {
 new ScrollPaneDemo();
 }
}

When you run this example, try scrolling by pressing or holding down any of the scroll bar
buttons. You will find this unacceptably slow because the scrolling occurs one pixel at a time.
We will see how to control this shortly.

Many components use a JScrollPane internally to display their contents, such as
JComboBox and JList. On the other hand, we are normally expected to place all multi-line
text components inside scroll panes, as this is not default behavior.

Using scroll panes For many applications, it is best to avoid introducing a
scroll pane; instead, concentrate on placing the required data on the screen
so that scrolling is unnecessary. As you have probably found, however, this
is not always possible. When you do need to introduce scrolling, put some
thought into the type of data and application you have. If possible, try to
introduce scrolling in only one direction. For example, with text docu-
ments, western culture has been used to scrolling vertically since Egyptian
times. Usability studies for world wide web pages have shown that readers
can find data quickly when they are vertically scrolling. Scrolling horizon-
tally, on the other hand, is laborious and difficult with text. Try to avoid it.
With visual information, such as tables of information, horizontal scrolling
may be more appropriate, but try to avoid both horizontal and vertical
scrolling if at all possible.

We can access a JScrollPane’s scroll bars directly with its getXXScrollBar() and setXX-
ScrollBar() methods, where XX is either HORIZONTAL or VERTICAL.

REFERENCE In chapter 13 we’ll talk more about JScrollBars.

ScrollPaneDemo.java

204 CHAPTER 7 SCROLLING PANES

JAVA 1.4 As of Java 1.4 mouse wheel support has been added and is activated by default in
JScrollPane. The MouseWheelListener and MouseWheelEvent classes have
been added to the java.awt.event package and a new addMouseWheelListen-
er() method has been added to java.awt.Component.

To disable or re-enable mouse wheel scrolling for a particular JScrollPane the
new setWheelScrollingEnabled() method can be used. There is no need to
create your own MouseWheelListener for use in a JScrollPane unless you’d
like to customize wheel scrolling behavior.

7.1.1 The ScrollPaneConstants interface

abstract interface javax.swing.ScrollPaneConstants
We can specify policies for when and when not to display a JScrollPane’s horizontal and
vertical scroll bars. We simply use its setVerticalScrollBarPolicy() and setHorizontal-
ScrollBarPolicy() methods, providing one of three constants for each that are defined in
the ScrollPaneConstants interface:

 HORIZONTAL_SCROLLBAR_AS_NEEDED
 HORIZONTAL_SCROLLBAR_NEVER
 HORIZONTAL_SCROLLBAR_ALWAYS

 VERTICAL_SCROLLBAR_AS_NEEDED
 VERTICAL_SCROLLBAR_NEVER
 VERTICAL_SCROLLBAR_ALWAYS

For example, to enforce the display of the vertical scroll bar at all times and always keep the
horizontal scroll bar hidden, we could do the following where jsp is a JScrollPane:

 jsp.setHorizontalScrollBarPolicy(
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

 jsp.setVerticalScrollBarPolicy(
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);

7.1.2 JViewport

class javax.swing.JViewport
The JViewport class is the container that is really responsible for displaying a specific visible
region of the component in a JScrollPane. We can set/get a viewport’s view (the compo-
nent it contains) using its setView() and getView() methods. We can control how much
of this component JViewport displays by setting its extent size to a specified Dimension
using its setExtentSize() method. We can also specify where the origin (upper left corner)
of a JViewport should begin displaying its contained component by providing specific coor-
dinates (as a Point) of the contained component to the setViewPosition() method. In
fact, when we scroll a component in a JScrollPane, this view position is constantly being
changed by the scroll bars.

JSCROLLPANE 205

NOTE JViewport enforces a view position that lies within the view component only. We
cannot set negative or extremely large view positions (as of JDK1.2.2 we can assign
negative view positions). However, since the view position is the upper right hand
corner of the viewport, we are still allowed to set the view position such that only
part of the viewport is filled by the view component. We will show how to watch
for this, and how to stop it from happening, in some of the examples below.

Whenever a change is made to the position or size of the visible portion of the view, JView-
port fires ChangeEvents. We can register ChangeListeners to capture these events using
JViewport’s addChangeListener() method. These are the only events that are associ-
ated with JScrollPane by default. For instance, whenever we scroll using JScrollPane’s
scroll bars, its main viewport, as well as its row and column header viewports (see below), will
each fire ChangeEvents.

The visible region of JViewport’s view can be retrieved as a Rectangle or Dimension
instance using the getViewRect() and getViewSize() methods respectively. This will give
us the current view position as well as the extent width and height. The view position alone
can be retrieved with getViewPosition(), which returns a Point instance. To remove a
component from JViewport we use its remove() method.

We can translate specific JViewport coordinates to the coordinates of its contained com-
ponent by passing a Point instance to its toViewCoordinates() method. We can do the
same for a region by passing a Dimension instance to toViewCoordinates(). We can also
manually specify the visible region of the view component by passing a Dimension instance
to JViewport’s scrollRectToVisible() method.

We can retrieve JScrollPane’s main JViewport by calling its getViewport() method,
or assign it a new one using setViewport(). We can replace the component in this viewport
through JScrollPane’s setViewportView() method, but there is no getViewportView()
counterpart. Instead, we must first access its JScrollPane’s JViewport by calling getView-
port(), and then call getView() on that (as discussed above). Typically, to access a
JScrollPane’s main child component, we would do the following:

 Component myComponent = jsp.getViewport().getView();

JAVA 1.3 As of Java 1.3 JViewport supports three distinct scrolling modes which can be
assigned with its setScrollMode() method:

JViewport.BLIT_SCROLL_MODE: This mode uses the Grahics.copyArea()
method to repaint the visible area that was visible before the most recent scroll (in-
stead of redrawing it). In general this is the most efficient scroll mode.

JViewport.BACKINGSTORE_SCROLL_MODE: This mode renders the viewport
contents in an offscreen image which is then painted to screen. It requires more
memory than BLIT_SCROLL_MODE but, in our experience, this mode is
more reliable.

JViewport.SIMPLE_SCROLL_MODE: This mode, while being the most reliable,
is the slowest performer, as it redraws the entire contents of the viewport view each
time a scroll occurs.

206 CHAPTER 7 SCROLLING PANES

The default mode is BLIT_SCROLL_MODE. Occasionally you may find that
this causes rendering problems with tables, images, and so forth. This can usually
be solved by switching to BACKINGSTORE_SCROLL_MODE. If this doesn’t work
SIMPLE_SCROLL_MODE will usually do the trick, although some performance
benefits will be sacrificed by doing this.

7.1.3 ScrollPaneLayout

class javax.swing.ScrollPaneLayout
By default, JScrollPane’s layout is managed by an instance of ScrollPaneLayout.
JScrollPane can contain up to nine components and it is ScrollPaneLayout’s job to
make sure that they are positioned correctly. These components are listed here:

• A JViewport that contains the main component to be scrolled.

• A JViewport that is used as the row header. This viewport’s view position changes
vertically in sync with the main viewport.

• A JViewport that is used as the column header. This viewport’s view position changes
horizontally in sync with the main viewport.

• Four components for placement in each corner of the scroll pane.

• Two JScrollBars for vertical and horizontal scrolling.

The corner components will only be visible if the scroll bars and headers surrounding them
are also visible. To assign a component to a corner position, we call JScrollPane’s setCor-
ner() method. This method takes both a String and a component as parameters. The
String is used to identify in which corner this component is to be placed, and it is recog-
nized by ScrollPaneLayout. In fact, ScrollPaneLayout identifies each JScrollPane
component with a unique String. Figure 7.2 illustrates this concept.

Figure 7.2
JScrollPane components
as identified by Scroll-
PaneLayout

JSCROLLPANE 207

To assign JViewports as the row and column headers, we use JScrollPane’s setRow-
Header() and setColumnHeader() methods respectively. We can also avoid having to cre-
ate a JViewport ourselves by passing the component to be placed in the row or column
viewport to JScrollPane’s setRowHeaderView() or setColumnHeaderView() methods.

Because JScrollPane is often used to scroll images, an obvious use for the row and
column headers is to function as some sort of ruler. In example 7.2, we present a basic example
showing how to populate each corner with a label and create simple rulers for the row and
column headers that display ticks every 30 pixels and render themselves based on their current
viewport position. Figure 7.3 illustrates the result.

Example 7.2

see \Chapter7\2

import java.awt.*;
import javax.swing.*;

public class HeaderDemo extends JFrame
{
 public HeaderDemo() {
 super("JScrollPane Demo");
 ImageIcon ii = new ImageIcon("earth.jpg");
 JScrollPane jsp = new JScrollPane(new JLabel(ii));

 JLabel[] corners = new JLabel[4];

HeaderDemo.java

Figure 7.3 A JScrollPane demo with four corners,
a row header, and a column header

208 CHAPTER 7 SCROLLING PANES

 for(int i=0;i<4;i++) {
 corners[i] = new JLabel();
 corners[i].setBackground(Color.yellow);
 corners[i].setOpaque(true);
 corners[i].setBorder(BorderFactory.createCompoundBorder(
 BorderFactory.createEmptyBorder(2,2,2,2),
 BorderFactory.createLineBorder(Color.red, 1)));
 }

 JLabel rowheader = new JLabel() {
 Font f = new Font("Serif",Font.ITALIC | Font.BOLD,10);
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Rectangle r = g.getClipBounds();
 g.setFont(f);
 g.setColor(Color.red);
 for (int i = 30-(r.y % 30);i<r.height;i+=30) {
 g.drawLine(0, r.y + i, 3, r.y + i);
 g.drawString("" + (r.y + i), 6, r.y + i + 3);
 }
 }
 public Dimension getPreferredSize() {
 return new Dimension(25,label.getPreferredSize().getHeight());
 }
 };
 rowheader.setBackground(Color.yellow);
 rowheader.setOpaque(true);

 JLabel columnheader = new JLabel() {
 Font f = new Font("Serif",Font.ITALIC | Font.BOLD,10);
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Rectangle r = g.getClipBounds();
 g.setFont(f);
 g.setColor(Color.red);
 for (int i = 30-(r.x % 30);i<r.width;i+=30) {
 g.drawLine(r.x + i, 0, r.x + i, 3);
 g.drawString("" + (r.x + i), r.x + i - 10, 16);
 }
 }
 public Dimension getPreferredSize() {
 return new Dimension(label.getPreferredSize().getWidth(),25);
 }
 };
 columnheader.setBackground(Color.yellow);
 columnheader.setOpaque(true);

 jsp.setRowHeaderView(rowheader);
 jsp.setColumnHeaderView(columnheader);
 jsp.setCorner(JScrollPane.LOWER_LEFT_CORNER, corners[0]);
 jsp.setCorner(JScrollPane.LOWER_RIGHT_CORNER, corners[1]);
 jsp.setCorner(JScrollPane.UPPER_LEFT_CORNER, corners[2]);
 jsp.setCorner(JScrollPane.UPPER_RIGHT_CORNER, corners[3]);

Each row header
uses clipping for
speed

Thin and
very tall

Clipping for
speed

Short and
very wide

JSCROLLPANE 209

 getContentPane().add(jsp);
 setSize(400,300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String[] args) {
 new HeaderDemo();
 }
}

Notice that the row and column headers use the graphics clipping area in their paintCompo-
nent() routine for optimal efficiency. We also override the getPreferredSize() method
so that the proper width (for the row header) and height (for the column header) will be used
by ScrollPaneLayout. The other dimensions are obtained by simply grabbing the label’s
preferred size, as they are completely controlled by ScrollPaneLayout.

Note that we are certainly not limited to labels for corners, row headers, or the main viewport
itself. As we mentioned in the beginning of this chapter, any component can be placed in a
JViewport.

7.1.4 The Scrollable interface

abstract interface javax.swing.Scrollable
The Scrollable interface describes five methods that allow us to customize how JScrollPane
scrolls its contents. Specifically, by implementing this interface we can specify how many pix-
els are scrolled when a scroll bar button or scroll bar paging area (the empty region between
the scroll bar thumb and the buttons) is pressed. (The thumb is the part of the scroll bar that
you drag.) Two methods control this functionality: getScrollableBlockIncrement() and
getScrollableUnitIncrement(). The former is used to return the amount to scroll when
a scroll bar paging area is pressed, and the latter is used when the button is pressed.

NOTE In text components, these two methods are implemented so that scrolling will
move one line of text at a time. (JTextComponent implements the Scrollable
interface.)

The other three methods of this interface involve JScrollPane’s communication with the
main viewport. The getScrollableTracksViewportWidth() and getScrollable-
TracksHeight() methods can return true to disable scrolling in the horizontal or vertical
direction respectively. Normally these just return false. The getPreferredSize()
method is supposed to return the preferred size of the viewport that will contain this compo-
nent (the component implementing the Scrollable interface). Normally we just return the
preferred size of the component.

Example 7.3 shows how to implement the Scrollable interface to create a custom JLabel
whose unit and block increments will be 10 pixels. As we saw in example 7.1, scrolling one pixel
at a time is tedious at best. Increasing this to a 10-pixel increment provides a more natural feel.

210 CHAPTER 7 SCROLLING PANES

Example 7.3

see \Chapter7\3

import java.awt.*;
import javax.swing.*;

public class ScrollableDemo extends JFrame
{
 public ScrollableDemo() {
 super("JScrollPane Demo");
 ImageIcon ii = new ImageIcon("earth.jpg");
 JScrollPane jsp = new JScrollPane(new MyScrollableLabel(ii));
 getContentPane().add(jsp);
 setSize(300,250);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String[] args) {
 new ScrollableDemo();
 }
}

class MyScrollableLabel extends JLabel implements Scrollable
{
 public MyScrollableLabel(ImageIcon i){
 super(i);
 }

 public Dimension getPreferredScrollableViewportSize() {
 return getPreferredSize();
 }

 public int getScrollableBlockIncrement(Rectangle r,
 int orientation, int direction) {
 return 10;
 }

 public boolean getScrollableTracksViewportHeight() {
 return false;
 }

 public boolean getScrollableTracksViewportWidth() {
 return false;
 }

 public int getScrollableUnitIncrement(Rectangle r,

 int orientation, int direction) {
 return 10;
 }
}

ScrollableDemo.java

GRAB-AND-DRAG SCROLLING 211

7.2 GRAB-AND-DRAG SCROLLING

Many paint programs and document readers (such as Adobe Acrobat) support grab-and-drag
scrolling, which is the ability to click on an image and drag it in any direction with the mouse.
It is fairly simple to implement; however, we must take care to make the operation smooth
without allowing users to scroll past the view’s extremities. JViewport takes care of the
negative direction for us, as it does not allow the view position coordinates to be less than 0.
But it will allow us to change the view position to very large values, which can result in the
viewport displaying a portion of the view smaller than the viewport itself.

Example 7.4 demonstrates how to support grab-and-drag scrolling.

Example 7.4

see \Chapter7\4

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class GrabAndDragDemo extends JFrame
{
 public GrabAndDragDemo() {
 super("Grab-and-drag Demo");
 ImageIcon ii = new ImageIcon("earth.jpg");
 JScrollPane jsp = new JScrollPane(new GrabAndScrollLabel(ii));
 getContentPane().add(jsp);
 setSize(300,250);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 }

 public static void main(String[] args) {
 new GrabAndDragDemo();
 }
}

class GrabAndScrollLabel extends JLabel
{
 public GrabAndScrollLabel(ImageIcon i){
 super(i);
 MouseInputAdapter mia = new MouseInputAdapter() {
 int m_XDifference, m_YDifference;
 Container c;

 public void mouseDragged(MouseEvent e) {
 c = GrabAndScrollLabel.this.getParent();
 if (c instanceof JViewport) {
 JViewport jv = (JViewport) c;
 Point p = jv.getViewPosition();

GrabAndDragDemo.java

JLabel which can
scroll by dragging
the mouse

Scroll the Viewport
the label is
contained in

212 CHAPTER 7 SCROLLING PANES

 int newX = p.x - (e.getX()-m_XDifference);
 int newY = p.y - (e.getY()-m_YDifference);

 int maxX = GrabAndScrollLabel.this.getWidth()
 - jv.getWidth();
 int maxY = GrabAndScrollLabel.this.getHeight()
 - jv.getHeight();
 if (newX < 0)
 newX = 0;
 if (newX > maxX)
 newX = maxY;
 if (newY < 0)
 newY = 0;
 if (newY > maxY)
 newY = maxY;

 jv.setViewPosition(new Point(maxX, maxY));
 }
 }

 public void mousePressed(MouseEvent e) {
 setCursor(Cursor.getPredefinedCursor(
 Cursor.MOVE_CURSOR));
 m_XDifference = e.getX();
 m_YDifference = e.getY();
 }

 public void mouseReleased(MouseEvent e) {
 setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));
 }
 };
 addMouseMotionListener(mia);
 addMouseListener(mia);
 }
}

7.2.1 Understanding the code

Class GrabAndScrollLabel
This class extends JLabel and overrides the JLabel(Imageicon ii) constructor. The Grab-
AndScrollLabel constructor starts by calling the superclass version and then it proceeds to
set up a MouseInputAdapter. This adapter is the heart of the GrabAndScrollLabel class.

The adapter uses three variables:

• int m_XDifference: The x-coordinate which has been saved on a mouse press event
and used for dragging horizontally.

• int m_YDifference: The y-coordinate which has been saved on a mouse press event
and used for dragging vertically.

• Container c: Used to hold a local reference to the parent container in the mouse-
Dragged() method.

Only scroll
to maximum
coordinates

Start dragging,
saving start
location

SCROLLING PROGRAMMATICALLY 213

The mousePressed() method changes the cursor to MOVE_CURSOR and stores the event
coordinates in the variables m_XDifference and m_YDifference, so they can be used in
mouseDragged().

The mouseDragged() method first grabs a reference to the parent, then it checks to see if it
is a JViewport. If it isn’t, we do nothing. If it is, we store the current view position and calcu-
late the new view position the drag will bring us into:

 Point p = jv.getViewPosition();
 int newX = p.x - (e.getX()-m_XDifference);
 int newY = p.y - (e.getY()-m_YDifference);

When dragging components, this would normally be enough (as we will see in future chapters);
however, we must make sure that we do not move the label in such a way that it does not fill
the viewport. So we calculate the maximum allowable x- and y-coordinates by subtracting the
viewport dimensions from the size of this label (since the view position coordinates start from
the upper-left hand corner):

 int maxX = GrabAndScrollLabel.this.getWidth()
 - jv.getWidth();
 int maxY = GrabAndScrollLabel.this.getHeight()
 - jv.getHeight();

The remainder of this method compares the newX and newY values with the maxX and maxY
values, and adjusts the view position accordingly. If newX or newY is ever greater than the
maxX or maxY values respectively, we use the max values instead. If newX or newY is ever less
than 0, we use 0 instead. This is necessary to allow smooth scrolling in all situations.

7.3 SCROLLING PROGRAMMATICALLY

We are certainly not required to use a JScrollPane for scrolling. We can place a component
in a JViewport and control the scrolling ourselves if we want to. This is what JViewport
was designed for; it just happens to be used by JScrollPane as well. We’ve constructed this
example to show how to implement our own scrolling in a JViewport. Four buttons are used
for scrolling. We enable and disable these buttons based on whether the view component is at
any of its extremities. These buttons are assigned keyboard mnemonics which we can use as
an alternative to clicking.

This example also shows how to use a ChangeListener to capture ChangeEvents that
are fired when the JViewport changes state. We need to capture these events so that when
our viewport is resized to be bigger than its view component child, the scrolling buttons will
become disabled. If these buttons are disabled and the viewport is then resized so that it is
no longer bigger than its child view component, the buttons should then become enabled. It
is quite simple to capture and process these events, as we will see in example 7.5. (As with
most of the examples we have presented, it may help if you run this example before stepping
through the code.)

214 CHAPTER 7 SCROLLING PANES

Example 7.5

see \Chapter7\5

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.event.*;

public class ButtonScroll extends JFrame
{
 protected JViewport m_viewport;
 protected JButton m_up;
 protected JButton m_down;
 protected JButton m_left;
 protected JButton m_right;

 protected int m_pgVert;
 protected int m_pgHorz;

 public ButtonScroll() {
 super("Scrolling Programmatically");
 setSize(400, 400);
 getContentPane().setLayout(new BorderLayout());

ButtonScroll.java

Figure 7.4 Programmatic scrolling with JViewport

Viewport, scroll
buttons, and
scrolling distances

Constructor places
label with image along
with scroll buttons

SCROLLING PROGRAMMATICALLY 215

 ImageIcon shuttle = new ImageIcon("shuttle.gif");
 m_pgVert = shuttle.getIconHeight()/5;
 m_pgHorz = shuttle.getIconWidth()/5;
 JLabel lbl = new JLabel(shuttle);

 m_viewport = new JViewport();
 m_viewport.setView(lbl);
 m_viewport.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 enableButtons(
 ButtonScroll.this.m_viewport.getViewPosition());
 }
 });
 getContentPane().add(m_viewport, BorderLayout.CENTER);

 JPanel pv = new JPanel(new BorderLayout());
 m_up = createButton("up", 'u');
 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 movePanel(0, -1);
 }
 };
 m_up.addActionListener(lst);
 pv.add(m_up, BorderLayout.NORTH);

 m_down = createButton("down", 'd');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 movePanel(0, 1);
 }
 };
 m_down.addActionListener(lst);
 pv.add(m_down, BorderLayout.SOUTH);
 getContentPane().add(pv, BorderLayout.EAST);

 JPanel ph = new JPanel(new BorderLayout());
 m_left = createButton("left", 'l');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 movePanel(-1, 0);
 }
 };
 m_left.addActionListener(lst);
 ph.add(m_left, BorderLayout.WEST);

 m_right = createButton("right", 'r');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 movePanel(1, 0);
 }
 };
 m_right.addActionListener(lst);
 ph.add(m_right, BorderLayout.EAST);
 getContentPane().add(ph, BorderLayout.SOUTH);

Listen for size changes on
Viewport and reconfigure

scroll buttons

Create buttons to
scroll image up
and down

Create buttons to
scroll image left
and right

216 CHAPTER 7 SCROLLING PANES

 setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 movePanel(0, 0);
 }

 protected JButton createButton(String name, char mnemonics) {
 JButton btn = new JButton(new ImageIcon(name+"1.gif"));
 btn.setPressedIcon(new ImageIcon(name+"2.gif"));
 btn.setDisabledIcon(new ImageIcon(name+"3.gif"));
 btn.setToolTipText("Move "+name);
 btn.setBorderPainted(false);
 btn.setMargin(new Insets(0, 0, 0, 0));
 btn.setContentAreaFilled(false);
 btn.setMnemonic(mnemonics);
 return btn;
 }

 protected void movePanel(int xmove, int ymove) {
 Point pt = m_viewport.getViewPosition();
 pt.x += m_pgHorz*xmove;
 pt.y += m_pgVert*ymove;

 pt.x = Math.max(0, pt.x);
 pt.x = Math.min(getMaxXExtent(), pt.x);

 pt.y = Math.max(0, pt.y);
 pt.y = Math.min(getMaxYExtent(), pt.y);

 m_viewport.setViewPosition(pt);
 enableButtons(pt);
 }

 protected void enableButtons(Point pt) {
 if (pt.x == 0)
 enableComponent(m_left, false);

 else enableComponent(m_left, true);
 if (pt.x >= getMaxXExtent())
 enableComponent(m_right, false);
 else enableComponent(m_right, true);

 if (pt.y == 0)
 enableComponent(m_up, false);
 else enableComponent(m_up, true);

 if (pt.y >= getMaxYExtent())
 enableComponent(m_down, false);
 else enableComponent(m_down, true);
 }

 protected void enableComponent(JComponent c, boolean b) {
 if (c.isEnabled() != b)
 c.setEnabled(b);
 }

 protected int getMaxXExtent() {
 return m_viewport.getView().getWidth()-m_viewport.getWidth();
 }

Create scroll button
with direction string

and mnemonic

Move the image panel in
the specified direction,
from which scroll button
was pressed

Enable or disable scroll
buttons based on whether
the image is already
scrolled to edge of range

Get maximum
scrolling dimensions

SCROLLING PROGRAMMATICALLY 217

 protected int getMaxYExtent() {
 return m_viewport.getView().getHeight()-m_viewport.getHeight();
 }

 public static void main(String argv[]) {
 new ButtonScroll();
 }
}

7.3.1 Understanding the code

Class ButtonScroll
Several instance variables are declared:

• JViewport m_viewport: The viewport used to display a large image.
• JButton m_up: The button to scroll up programmatically.
• JButton m_down: The button to scroll down programmatically.
• JButton m_left: The button to scroll left programmatically.
• JButton m_right: The button to scroll right programmatically.
• int m_pgVert: The number of pixels for a vertical scroll.
• int m_pgHorz: The number of pixels for a horizontal scroll.

The constructor of the ButtonScroll class creates and initializes the GUI components for this
example. A BorderLayout is used to manage the components in this frame’s content pane.
JLabel lbl which stores a large image, is placed in the viewport, m_viewport, to provide
programmatic viewing capabilities. This JViewport is added to the center of our frame.

As we mentioned above, we need to capture the ChangeEvents that are fired when our
JViewport changes size so that we can enable and disable our buttons accordingly. We do
this by attaching a ChangeListener to our viewport and calling our enableButtons()
method (see below) from stateChanged():

 m_viewport.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 enableButtons(
 ButtonScroll.this.m_viewport.getViewPosition());
 }
 });

Two buttons, m_up and m_down, are created for scrolling in the vertical direction. The
createButton() method is used to create a new JButton component and set a group of
properties for it (see below). Each of the new buttons receives an ActionListener which
calls the movePanel() method in response to a mouse click. These two buttons are added to
the intermediate container, JPanel pv, which is added to the east side of our frame’s content
pane. Similarly, two buttons, m_left and m_right, are created for scrolling in the horizontal
direction and are added to the south region of the content pane.

The createButton() method creates a new JButton component. It takes two parameters:
the name of the scrolling direction as a String and the button’s mnemonic as a char. This
method assumes that three image files are prepared:

• name1.gif: The default icon.

Get maximum
scrolling dimensions

218 CHAPTER 7 SCROLLING PANES

• name2.gif: The pressed icon.
• name3.gif: The disabled icon.

These images are loaded as ImageIcons and attached to the button with the associated
setXX() method:

 JButton btn = new JButton(new ImageIcon(name+"1.gif"));
 btn.setPressedIcon(new ImageIcon(name+"2.gif"));
 btn.setDisabledIcon(new ImageIcon(name+"3.gif"));
 btn.setToolTipText("Move "+name);
 btn.setBorderPainted(false);
 btn.setMargin(new Insets(0, 0, 0, 0));
 btn.setContentAreaFilled(false);
 btn.setMnemonic(mnemonic);
 return btn;

Then we remove any border or content area rendering, so the presentation of our button is
completely determined by our icons. Finally, we set the tooltip text and mnemonic and return
that component instance.

The movePanel() method programmatically scrolls the image in the viewport in the direc-
tion determined by the xmove and ymove parameters. These parameters can have the value
–1, 0, or 1. To determine the actual amount of scrolling, we multiply these parameters by
m_pgHorz (m_pgVert). The local variable Point pt determines a new viewport position. It
is limited so the resulting view will not display any empty space (space not belonging to the
displayed image), similar to how we enforce the viewport view position in the grab-and-drag
scrolling example above. Finally, the setViewPosition() method is called to scroll to the new
position, and enableButtons() enables/disables buttons according to the new position:

 Point pt = m_viewport.getViewPosition();
 pt.x += m_pgHorz*xmove;
 pt.y += m_pgVert*ymove;

 pt.x = Math.max(0, pt.x);
 pt.x = Math.min(getMaxXExtent(), pt.x);
 pt.y = Math.max(0, pt.y);
 pt.y = Math.min(getMaxYExtent(), pt.y);

 m_viewport.setViewPosition(pt);
 enableButtons(pt);

The enableButtons() method disables a button if scrolling in the corresponding direction
is not possible; otherwise, it enables the button. For example, if the viewport position’s x-coor-
dinate is 0, we can disable the scroll left button (remember that the view position will never be
negative, as enforced by JViewport):

 if (pt.x <= 0)
 enableComponent(m_left, false);
 else enableComponent(m_left, true);

Similarly, if the viewport position’s x-coordinate is greater than or equal to our maximum
allowable x-position (determined by getMaxXExtent()), we disable the scroll right button:

 if (pt.x >= getMaxXExtent())

SCROLLING PROGRAMMATICALLY 219

 enableComponent(m_right, false);
 else enableComponent(m_right, true);

The methods getMaxXExtent() and getMaxYExtent() return the maximum coordinates
available for scrolling in the horizontal and vertical directions, respectively, by subtracting the
appropriate viewport dimension from the appropriate dimension of the child component.

7.3.2 Running the code

NOTE The shuttle image for this example was found at http://shuttle.nasa.gov/sts-95/
images/esc/.

Press the buttons and watch how the image is scrolled programmatically. Use the keyboard
mnemonic as an alternative way to pressing buttons, and notice how this mnemonic is dis-
played in the tooltip text. Also note how a button is disabled when scrolling in the corre-
sponding direction is no longer available, and how it is enabled otherwise. Now try resizing
the frame and see how the buttons will change state depending on whether the viewport is
bigger or smaller than its child component.

220

C H A P T E R 8

Split panes
8.1 JSplitPane 220
8.2 Basic split pane example 221
8.3 Synchronized split pane dividers 224

8.1 JSPLITPANE

class javax.swing.JSplitPane
Split panes allow the user to dynamically change the size of two or more components that are
displayed side by side (either within a window or another panel). A divider can be dragged with
the mouse to increase space for one component and decrease the display space for another;
however, the total display area does not change. A familiar example is the combination of a tree
and a table separated by a horizontal divider (such as in file explorer-like applications). The
Swing framework for split panes consists only of JSplitPane.

JSplitPane can hold two components that are separated by a horizontal or vertical
divider. The components on either side of a JSplitPane can be added either in one of the
constructors, or with the proper setXXComponent() methods (where XX is substituted by
Left, Right, Top, or Bottom). We can also set the orientation to vertical split or horizontal
split at run-time using its setOrientation() method.

The divider between the components is the only visible part of JSplitPane. Its size can
be managed with the setDividerSize() method, and its position can be managed by the
two overloaded setDividerLocation() methods (which take an absolute location in pixels
or a proportional location as a double). The divider location methods have no effect until a
JSplitPane is displayed. JSplitPane also maintains a oneTouchExpandable property
which, when true, places two small arrows inside the divider that will move the divider to its
extremities when clicked.

BASIC SPLIT PANE EXAMPLE 221

Resizable paneled display Split panes are useful when your design has pan-
eled the display for ease of use but you (as designer) have no control over the
actual window size. The Netscape email reader is a good example of this; a split
pane is introduced to let the user vary the size of the message header panel
against the size of the message text panel.

An interesting feature of the JSplitPane component is that you can specify whether to
repaint side components during the divider’s motion using the setContinuousLayout()
method. If you can repaint components fast enough, resizing will have a more natural view
with this setting. Otherwise, this flag should be set to false, in which case side components
will be repainted only when the divider’s new location is chosen. In this latter case, a divider
line will be shown as the divider location is dragged to illustrate the new position.

JSplitPane will not size any of its constituent components smaller than their minimum
sizes. If the minimum size of each component is larger than the size of the split pane, the divider
will be effectively disabled (unmovable). We can call its resetToPreferredSize() method
to resize its children to their preferred sizes, if possible.

JAVA 1.3 As of Java 1.3 you can specify how JSplitPane distributes space when its size
changes. This is controlled with the setResizeWeight() method and can range
from 0 to 1. The default is 0 which means the right/bottom component will be
allocated all the extra/negative space and the left/top component’s size will
remain the same. 1 means just the opposite. This works according to the
following formula:

right/bottom change in size=(resize weight* size change)
left/bottom change in size=((1-resize weight)* size change)

For example, setting the resize weight to 0.5 will have the effect of distributing
extra space, or taking it away if the split pane is made smaller, equally for both
components.

Using split panes in conjunction with scroll panes It’s important to use a
scroll pane on the panels which are being split with the split pane. Scroll bars
will then appear automatically as required when data is obscured as the split
pane is dragged back and forth. With the introduction of the scroll pane, the
viewer has a clear indication that there is hidden data. They can then choose
to scroll with the scroll bar or uncover the data using the split pane.

8.2 BASIC SPLIT PANE EXAMPLE

Example 8.1 shows JSplitPane at work in a basic, introductory demo. We can manipulate
the size of four custom panels placed in three JSplitPanes:

222 CHAPTER 8 SPLIT PANES

Example 8.1

see \Chapter8\1

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class SplitSample extends JFrame
{

 public SplitSample() {
 super("Simple SplitSample Example");
 setSize(400, 400);

 Component c11 = new SimplePanel();
 Component c12 = new SimplePanel();
 JSplitPane spLeft = new JSplitPane(
 JSplitPane.VERTICAL_SPLIT, c11, c12);
 spLeft.setDividerSize(8);

spLeft.setDividerLocation(150);

spLeft.setContinuousLayout(true);

 Component c21 = new SimplePanel();
 Component c22 = new SimplePanel();
 JSplitPane spRight = new JSplitPane(
 JSplitPane.VERTICAL_SPLIT, c21, c22);
 spRight.setDividerSize(8);

spRight.setDividerLocation(150);
spRight.setContinuousLayout(true);

 JSplitPane sp = new JSplitPane(
 JSplitPane.HORIZONTAL_SPLIT, spLeft, spRight);
 sp.setDividerSize(8);
 sp.setDividerLocation(200);
 sp.setResizeWeight(0.5);
 sp.setContinuousLayout(false);
 sp.setOneTouchExpandable(true);

 getContentPane().add(sp, BorderLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 }

 public static void main(String argv[]) {
 new SplitSample();
 }
}

class SimplePanel extends JPanel
{
 public Dimension getPreferredSize() {

SplitSample.java

Two SimplePanels
in right pane

One JSplitPane
to hold the
other two

Constructor composes
4 SimplePanels into
2 JSplitPanes, 2 panels
in each

Two SimplePanels
in left pane

Simple component
to take up space in
halves of JSplitPane

BASIC SPLIT PANE EXAMPLE 223

 return new Dimension(200, 200);
 }

 public Dimension getMinimumSize() {
 return new Dimension(40, 40);
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(Color.black);
 Dimension sz = getSize();
 g.drawLine(0, 0, sz.width, sz.height);
 g.drawLine(sz.width, 0, 0, sz.height);
 }
}

8.2.1 Understanding the code

Class SplitSample
Four instances of SimplePanel are used to fill a 2x2 structure. The two left components
(c11 and c12) are placed in the spLeft vertically split JSplitPane. The two right compo-
nents (c21 and c22) are placed in the spRight vertically split JSplitPane. The spLeft
and spRight panels are placed in the sp horizontally split JSplitPane. The continuous-
Layout property is set to true for spLeft and spRight, and false for sp. So as the
divider moves inside the left and right panels, child components are repainted continuously,
producing immediate results. However, as the vertical divider is moved, it is denoted by a
black line until a new position is chosen (when the mouse is released). Only then are its child
components validated and repainted. The first kind of behavior is recommended for simple

Figure 8.1
A split pane example
displaying simple
custom panels

224 CHAPTER 8 SPLIT PANES

components that can be rendered quickly, while the second is recommended for components
whose repainting can take a significant amount of time.

The oneTouchExpandable property is set to true for the vertical JSplitPane sp. This
places small arrow widgets on the divider. By pressing these arrows with the mouse, we can
instantly move the divider to the left-most or right-most position. When the slider is in the
left-most or right-most positions, pressing these arrows will then move the divider to its most
recent location, which is maintained by the lastDividerLocation property.

The resizeWeight property is set to 0.5 for the vertical JSplitPane sp. This tells the
split pane to increase/decrease the size of the left and right components equally when it
is resized.

Class SimplePanel
SimplePanel represents a simple Swing component whose paintComponent() method
draws two diagonal lines across its area. The overridden getMinimumSize() method defines
the minimum space required for this component. JSplitPane will prohibit the user from
moving the divider if the resulting child size will become less than its minimum size.

NOTE The arrow widgets associated with the oneTouchExpandable property will move the
divider to the extreme location without regard to minimum sizes of child components.

8.2.2 Running the code

Notice how child components can be resized with dividers. Also notice the difference between
resizing with continuous layout (side panes) and without it (center pane). Play with the “one
touch expandable” widgets for quick expansion and collapse. Resize the frame and note how
the left and right components share the space proportionately.

8.3 SYNCHRONIZED SPLIT PANE DIVIDERS

In this section example 8.2 shows how to synchronize the left and right split pane dividers
from example 8.1 so that whenever the left divider is moved the right divider moves to an
identical location and vice versa.

Example 8.2

see\Chapter8\2

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class SplitSample
extends JFrame {

private boolean m_resizing = false;

 public SplitSample() {

SplitSample.java

Temporary flag used by
Component Adaptors

SYNCHRONIZED SPLIT PANE DIVIDERS 225

 super("SplitSample With Synchronization”);
setSize(400, 400);

 getContentPane().setLayout(new BorderLayout());

 Component c11 = new SimplePanel()
Component c12 = new Simple Panel();
final JSplitPane spLeft = new JSplitPane(
JSplitPane.VERTICAL_SPLIT, c11, c12);

spLeft.setDividerSize(8);
spLeft.setDividerLocation(150);
spLeft.setContinuousLayout(true);

Component c21 = new SimplePanel()
Component c22 = new Simple Panel();
final JSplitPane spRight = new JSplitPane(
JSplitPane.VERTICAL_SPLIT, c21, c22);

spRight.setDividerSize(8);
spRight.setDividerLocation(150);
spRight.setContinuousLayout(true);

ComponentListener caLeft = new ComponentAdapter() {
public void componentResized(ComponentEvent e) {

if (!m_resizing) {

m_resizing = true;

spRight.setDividerLocation(spLeft.getDividerLocation());

m_resizing=false

}

}

};

c11.addComponentListener(caLeft);

ComponentListener caRight = new ComponentAdapter() {

public void componentResized(ComponentEvent e) {

if (!m_resizing) {

m_resizing = true;

spLeft.setDividerLocation(spRight.getDividerLocation());

m_resizing=false

}

}

};

c21.addComponentListener(caRight);

JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
spLeft, spRight);

sp.setDividerSize(8);
sp.setDividerLocation(200);
sp.setResizeWeight(0.5);
sp.setContinuousLayout(false);
sp.setOneTouchExpandable(true);

getContentPane().add(sp, borderLayout.CENTER);
}

public static void main(String argv[]) {

Split pane made
final so they can
be referenced
by anonymous
inner classes

ComponentListeners
responsible for keeping

split panes synchronized

226 CHAPTER 8 SPLIT PANES

 SplitSample frame = new SplitSample();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

//class SimplePanel unchanged from example 8.1

8.3.1 Understanding the code

The m_resizing flag is added to this example for temporary use by the Component-
Listeners.

The spLeft and spRight split panes are made final so that they can be referenced from
within the ComponentListener anonymous inner classes.

In order to synchronize the dividers of spLeft and spRight, a ComponentListener,
caLeft and caRight respectively, is added to the top/right component of each (c11 for
spLeft and c21 for spRight). Whenever the divider moves in spLeft or spRight, the
componentResized() method will be invoked in the respective ComponentListener. This
method first checks m_resizing. If m_resizing is true this means another Component-
Listener is handling the synchronization, so the method exits (this stops any potential race
conditions). If m_resizing is false it is first set true, then the opposite divider is set to its
new synchronized location, and finally m_resizing is set to false again.

8.3.2 Running the code

This example looks just like example 8.1. But try moving the left or right horizontal dividers
and notice that they always sit in the same location no matter which one we move, and no
matter how we resize the frame. Such synchronization produces a cleaner visual design.

227

C H A P T E R 9

Combo boxes
9.1 JComboBox 227
9.2 Basic JComboBox example 232
9.3 Custom model and renderer 238

9.4 Combo boxes with memory 246
9.5 Custom editing 253

9.1 JCOMBOBOX

class javax.swing.JComboBox
This class represents a basic GUI component which consists of two parts:

• A pop-up menu (an implementation of javax.swing.plaf.basic.ComboPopup). By
default, this is a JPopupMenu subclass (javax.swing.plaf.basic.BasicCombo-
Popup) that contains a JList in a JScrollPane.

• A button that acts as a container for an editor or renderer component, and an arrow button
that is used to display the pop-up menu.

The JList uses a ListSelectionModel (see chapter 10) that allows SINGLE_SELECTION
only. Apart from this, JComboBox directly uses only one model, a ComboBoxModel, which
manages data in its JList.

A number of constructors are available to build a JComboBox. The default constructor
can be used to create a combo box with an empty list, or we can pass data to a constructor as
a one-dimensional array, a Vector, or an implementation of the ComboBoxModel interface
(this will be explained later). The last variant allows maximum control over the properties and
appearance of a JComboBox, as we will see.

228 CHAPTER 9 COMBO BOXES

As do other complex Swing components, JComboBox allows a customizable renderer for
displaying each item in its drop-down list (by default, this is a JLabel subclass implementation
of ListCellRenderer), and it allows a customizable editor to be used as the combo box’s data
entry component (by default, this is an instance of ComboBoxEditor which uses a JText-
Field). We can use the existing default implementations of ListCellRenderer and Com-
boBoxEditor, or we can create our own according to our particular needs (as we will see later
in this chapter). Unless we use a custom renderer, the default renderer will display each element
as a String defined by that object’s toString() method; the only exceptions to this are Icon
implementations which will be rendered as they would be in any JLabel. Take note that a ren-
derer returns a Component, but that component is not interactive and it is only used for display
purposes (meaning it acts as a “rubber stamp,” according to the API documentation). For
instance, if a JCheckBox is used as a renderer, we will not be able to check and uncheck it. Edi-
tors, however, are fully interactive.

JAVA 1.4 As of Java 1.4 JComboBox supports a prototype display value. Without a prototype
display value JComboBox would configure a renderer for each cell. This can be a per-
formance bottleneck when there is a large number of items. If a prototype display val-
ue is used, only one renderer is configured and it is used for each cell. The prototype
display value is configured by passing an Object to JComboBox’s setPrototype-
DisplayValue() method.

For example, if you want your JComboBox’s cells to be no wider than what is re-
quired to display 10 ‘X’ characters, you can do the following:

mJComboBox.setPrototypeDisplayValue(
new String (“XXXXXXXXXXX”));

Similar to JList, which is discussed in the next chapter, this class uses ListDataEvents to
deliver information about changes in the state of its drop-down list’s model. ItemEvents and
ActionEvents are fired from any source when the current selection changes—the source can
be programmatic or input from the user. Correspondingly, we can attach ItemListeners
and ActionListeners to receive these events.

The drop-down list of a JComboBox is a pop-up menu that contains a JList (this is actually
defined in the UI delegate, not the component itself) and it can be programmatically displayed/
hidden using the showPopup() and hidePopup() methods. As with any other Swing pop-up
menu (which we will discuss in chapter 12), it can be displayed as either heavyweight or light-
weight. JComboBox provides the setLightWeightPopupEnabled() method, which allows us
to choose between these modes.

JAVA 1.4 As of Java 1.4 you can add a PopupMenuListener to JComboBox to listen for
PopupMenuEvents; these occur whenever the popup is made visible, invisible, or
canceled. JComboBox has the following new public methods to support usage of this
new listener type: addPopupMenuListener(), removePopupMenuListener(),
and getPopupMenuListeners(). See sections 12.1.18 and 12.1.19 for more on
PopupMenuListener and PopupMenuEvent.

JComboBox also defines an inner interface called KeySelectionManager that declares one
method, selectionForKey(char aKey, ComboBoxModel aModel), which we can define to
return the index of the list element that should be selected when the list is visible (meaning
the pop-up is showing) and the given keyboard character is pressed.

JCOMBOBOX 229

The JComboBox UI delegate represents JComboBox graphically using a container with a
button. This button contains both an arrow button and either a renderer displaying the cur-
rently selected item or an editor that allows changes to be made to the currently selected item.
The arrow button is displayed on the right of the renderer/editor and it will show the pop-up
menu that contains the drop-down list when it is clicked.

NOTE Because of the JComboBox UI delegate construction, setting the border of a JCombo-
Box does not have the expected effect. Try this and you will see that the container
containing the main JComboBox button gets the assigned border, when in fact we
want that button to receive the border. There is no easy way to set the border of
this button without customizing the UI delegate. We hope to see this limitation
disappear in a future version.

When a JComboBox is editable (which it is not by default) the editor component will allow
modification of the currently selected item. The default editor will appear as a JTextField
that accepts input. This text field has an ActionListener attached that will accept an edit
and change the selected item accordingly when/if the ENTER key is pressed. If the focus changes
while editing, all editing will be cancelled and a change will not be made to the selected item.

JComboBox can be made editable with its setEditable() method, and we can specify a
custom ComboBoxEditor with JComboBox’s setEditor() method. Setting the editable
property to true causes the UI delegate to replace the renderer in the button with the assigned
editor. Similarly, setting this property to false causes the editor in the button to be replaced by
a renderer.

The cell renderer used for a JComboBox can be assigned and retrieved with the setRen-
derer() and getRenderer() methods, respectively. Calls to these methods actually get
passed to the JList contained in the combo box’s pop-up menu.

Advice on usage and design
Usage Combo boxes and list boxes are very similar to each other. In fact, a
combo box is an entry field with a drop-down list box. Deciding when to use
one or the other can be difficult. Our advice is to think about reader output
rather than data input. When the reader only needs to see a single item, then
a combo box is the best choice. Use a combo box where a single selection is
made from a collection and users only need to see a single item, such as “Cur-
rency USD.” You’ll learn about using list boxes in the next chapter.

Design There are a number of things affect the usability of a combo box. If
it contains more than a few items, it becomes unusable unless the data is sorted
in some logical fashion, such as in alphabetical or numerical order. When a list
gets longer, usability is affected in yet another way. Once a list gets beyond a
couple of hundred items, even when sorted, locating a specific item in the list
becomes a very slow process for the user. Some implementations have solved
this by offering the ability to type in partial text, and the list “jumps” to the
best match or a partial match item; for example, type in “ch” and the combo
box will jump to “Chevrolet” in example 9.1. You may want to consider such
an enhancement to a JComboBox to improve the usability of longer lists.

230 CHAPTER 9 COMBO BOXES

There are a number of graphical considerations, also. Like all other data entry
fields, combo boxes should be aligned to fit attractively into a panel. However,
this is not always easy. Avoid making a combo box which is simply too big for
the list items it contains. For example, a combo box for a currency code only
needs to be 3 characters long (USD is the code for U.S. dollars), so don’t make
it big enough to take 50 characters. It will look unbalanced. Another problem
concerns the nature of the list items. If you have 50 items in a list where most
items are around 20 characters long but one item is 50 characters long, should
you make the combo box big enough to display the longer one? Possibly, but
for most occasions your display will be unbalanced again. It is probably best to
optimize for the more common length, providing the longer one still has mean-
ing when read in its truncated form. One solution to display the whole length
of a truncated item is to use the tooltip facility. When the user places the mouse
over an item, a tooltip appears that contains the full text.

One thing you must never do is dynamically resize the combo box to fit a vary-
ing length item selection. This will incur alignment problems and it may also
add a usability problem because the pull-down button may become a moving
target, which then makes it harder for the user to learn its position through
directional memory.

9.1.1 The ComboBoxModel interface

abstract interface javax.swing.ComboBoxModel
This interface extends the ListModel interface which handles the combo box drop-down
list’s data. This model separately handles its selected item with two methods, setSelected-
Item() and getSelectedItem().

9.1.2 The MutableComboBoxModel interface

abstract interface javax.swing.MutableComboBoxModel
This interface extends ComboBoxModel and adds four methods to modify the model’s con-
tents dynamically: addElement(), insertElementAt(), removeElement(), and remove-
ElementAt().

9.1.3 DefaultComboBoxModel

class javax.swing.DefaultComboBoxModel
This class represents the default model used by JComboBox, and it implements MutableCombo-
BoxModel. To programmatically select an item, we can call its setSelectedItem() method.
Calling this method, as well as any of the MutableComboBoxModel methods mentioned
above, will cause a ListDataEvent to be fired. To capture these events we can attach List-
DataListeners with DefaultComboBoxModel’s addListDataListener() method. We
can also remove these listeners with its removeListDataListener() method.

JCOMBOBOX 231

9.1.4 The ListCellRenderer interface

abstract interface javax.swing.ListCellRenderer
This is a simple interface used to define the component to be used as a renderer for the JCombo-
Box drop-down list. It declares one method, getListCellRendererComponent(JList
list, Object value, int Index, boolean isSelected, boolean cellHasFocus), which
is called to return the component used to represent a given combo box element visually. The
component returned by this method is not at all interactive, and it is used for display purposes
only (it’s referred to as a “rubber stamp” in the API documentations).

When a JComboBox is in noneditable mode, –1 will be passed to this method to return
the component used to represent the selected item in the main JComboBox button. Normally,
this component is the same as the component used to display that same element in the drop-
down list.

9.1.5 DefaultListCellRenderer

class javax.swing.DefaultListCellRenderer
This is the concrete implementation of the ListCellRenderer interface that is used by
JList by default (and thus by JComboBox’s drop-down JList). This class extends JLabel and
its getListCellRenderer() method returns a this reference. It also renders the given value
by setting its text to the String returned by the value’s toString() method (unless the value is
an instance of Icon, in which case it will be rendered as it would be in any JLabel), and it uses
JList foreground and background colors, depending on whether the given item is selected.

NOTE Unfortunately, there is no easy way to access JComboBox’s drop-down JList,
which prevents us from assigning new foreground and background colors. Ideally,
JComboBox would provide this communication with its JList. We hope to see
this functionality in a future version.

A single static EmptyBorder instance is used for all cells that do not have the current
focus. This border has top, bottom, left, and right spacing of 1, and unfortunately, it cannot
be reassigned.

9.1.6 The ComboBoxEditor interface

abstract interface javax.swing.ComboBoxEditor
This interface describes the JComboBox editor. The default editor is provided by the only
implementing class, javax.swing.plaf.basic.BasicComboBoxEditor, but we are cer-
tainly not limited to this. The purpose of this interface is to allow us to implement our own
custom editor. The getEditorComponent() method should be overridden to return the
editor component to use. BasicComboBoxEditor’s getEditorComponent() method returns
a JTextField that will be used for the currently selected combo box item. Unlike cell renderers,
components returned by the getEditorComponent() method are fully interactive.

The setItem() method is intended to tell the editor which element to edit (this is called
when an item is selected from the drop-down list). The getItem() method is used to return
the object being edited (which is a String using the default editor).

232 CHAPTER 9 COMBO BOXES

ComboBoxEditor also declares functionality for attaching and removing ActionLis-
teners which are notified when an edit is accepted. In the default editor this occurs when
ENTER is pressed while the text field has the focus.

NOTE Unfortunately, Swing does not provide an easily reusable ComboBoxEditor
implementation, forcing custom implementations to manage all ActionListener
and item selection/modification functionality from scratch. We hope to see this
limitation accounted for in a future Swing release.

9.2 BASIC JCOMBOBOX EXAMPLE

Example 9.1 displays information about popular cars in two symmetrical panels to provide a
natural means of comparison. To be realistic, we need to take into account the fact that any car
model can come in several trim lines which actually determine the car’s characteristics and
price. Numerous characteristics of cars are available on the web. For this simple example, we’ve
selected the following two-level data structure:

CAR
Name Type Description
Name String Model’s name
Manufacturer String Company manufacturer
Image Icon Model’s photograph
Trims Vector A collection of the model’s trims

TRIM
Name Type Description
Name String Trim’s name
MSRP int Manufacturer’s suggested retail price
Invoice int Invoice price
Engine String Engine description

Figure 9.1 Dynamically changeable JComboBoxes
that allow comparison of car model and trim information

BASIC JCOMBOBOX EXAMPLE 233

Example 9.1

see \Chapter9\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class ComboBox1 extends JFrame
{
 public ComboBox1() {
 super("ComboBoxes [Compare Cars]");
 getContentPane().setLayout(new BorderLayout());

 Vector cars = new Vector();
 Car maxima = new Car("Maxima", "Nissan", new ImageIcon(
 "maxima.gif"));
 maxima.addTrim("GXE", 21499, 19658, "3.0L V6 190-hp");
 maxima.addTrim("SE", 23499, 21118, "3.0L V6 190-hp");
 maxima.addTrim("GLE", 26899, 24174, "3.0L V6 190-hp");
 cars.addElement(maxima);

 Car accord = new Car("Accord", "Honda", new ImageIcon(
 "accord.gif"));
 accord.addTrim("LX Sedan", 21700, 19303, "3.0L V6 200-hp");
 accord.addTrim("EX Sedan", 24300, 21614, "3.0L V6 200-hp");
 cars.addElement(accord);

 Car camry = new Car("Camry", "Toyota", new ImageIcon(
 "camry.gif"));
 camry.addTrim("LE V6", 21888, 19163, "3.0L V6 194-hp");
 camry.addTrim("XLE V6", 24998, 21884, "3.0L V6 194-hp");
 cars.addElement(camry);

 Car lumina = new Car("Lumina", "Chevrolet", new ImageIcon(
 "lumina.gif"));
 lumina.addTrim("LS", 19920, 18227, "3.1L V6 160-hp");
 lumina.addTrim("LTZ", 20360, 18629, "3.8L V6 200-hp");
 cars.addElement(lumina);

 Car taurus = new Car("Taurus", "Ford", new ImageIcon(
 "taurus.gif"));
 taurus.addTrim("LS", 17445, 16110, "3.0L V6 145-hp");
 taurus.addTrim("SE", 18445, 16826, "3.0L V6 145-hp");
 taurus.addTrim("SHO", 29000, 26220, "3.4L V8 235-hp");
 cars.addElement(taurus);

 Car passat = new Car("Passat", "Volkswagen", new ImageIcon(
 "passat.gif"));
 passat.addTrim("GLS V6", 23190, 20855, "2.8L V6 190-hp");

ComboBox1.java

One of several
Cars with Trims

in car list

234 CHAPTER 9 COMBO BOXES

 passat.addTrim("GLX", 26250, 23589, "2.8L V6 190-hp");
 cars.addElement(passat);

 getContentPane().setLayout(new GridLayout(1, 2, 5, 3));
 CarPanel pl = new CarPanel("Base Model", cars);
 getContentPane().add(pl);
 CarPanel pr = new CarPanel("Compare to", cars);
 getContentPane().add(pr);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pl.selectCar(maxima);

 pr.selectCar(accord);
 setResizable(false);
 pack();
 setVisible(true);
 }

 public static void main(String argv[]) {
 new ComboBox1();
 }
}

class Car
{
 protected String m_name;
 protected String m_manufacturer;
 protected Icon m_img;
 protected Vector m_trims;

 public Car(String name, String manufacturer, Icon img) {
 m_name = name;
 m_manufacturer = manufacturer;
 m_img = img;
 m_trims = new Vector();
 }

 public void addTrim(String name, int MSRP, int invoice,
 String engine) {
 Trim trim = new Trim(this, name, MSRP, invoice, engine);
 m_trims.addElement(trim);
 }

 public String getName() { return m_name; }

 public String getManufacturer() { return m_manufacturer; }

 public Icon getIcon() { return m_img; }

 public Vector getTrims() { return m_trims; }

 public String toString() { return m_manufacturer+" "+m_name; }
}

class Trim
{
 protected Car m_parent;
 protected String m_name;
 protected int m_MSRP;

Simple data object with
basic car model information,
including list of trims

Creates new Trim and
adds it to Trims list

Simple data object
with Trim information,
including link to owning
Car object

BASIC JCOMBOBOX EXAMPLE 235

 protected int m_invoice;
 protected String m_engine;

 public Trim(Car parent, String name, int MSRP, int invoice,
 String engine) {
 m_parent = parent;
 m_name = name;
 m_MSRP = MSRP;
 m_invoice = invoice;
 m_engine = engine;
 }

 public Car getCar() { return m_parent; }

 public String getName() { return m_name; }

 public int getMSRP() { return m_MSRP; }

 public int getInvoice() { return m_invoice; }

 public String getEngine() { return m_engine; }

 public String toString() { return m_name; }
}

class CarPanel extends JPanel
{
 protected JComboBox m_cbCars;
 protected JComboBox m_cbTrims;
 protected JLabel m_lblImg;
 protected JLabel m_lblMSRP;
 protected JLabel m_lblInvoice;
 protected JLabel m_lblEngine;

 public CarPanel(String title, Vector cars) {
 super();
 setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
 setBorder(new TitledBorder(new EtchedBorder(), title));

 JPanel p = new JPanel();
 p.add(new JLabel("Model:"));
 m_cbCars = new JComboBox(cars);
 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Car car = (Car)m_cbCars.getSelectedItem();
 if (car != null)
 showCar(car);
 }
 };
 m_cbCars.addActionListener(lst);
 p.add(m_cbCars);
 add(p);

 p = new JPanel();
 p.add(new JLabel("Trim:"));
 m_cbTrims = new JComboBox();
 lst = new ActionListener() {

FlowLayout for
labels and input
fields

Combo box
to select Car
models

FlowLayout for
labels and input
fields

Vertical BoxLayout
for major
components

GUI components
to display Car
information

236 CHAPTER 9 COMBO BOXES

 public void actionPerformed(ActionEvent e) {
 Trim trim = (Trim)m_cbTrims.getSelectedItem();
 if (trim != null)
 showTrim(trim);
 }
 };
 m_cbTrims.addActionListener(lst);
 p.add(m_cbTrims);
 add(p);
 p = new JPanel();
 m_lblImg = new JLabel();
 m_lblImg.setHorizontalAlignment(JLabel.CENTER);
 m_lblImg.setPreferredSize(new Dimension(140, 80));
 m_lblImg.setBorder(new BevelBorder(BevelBorder.LOWERED));
 p.add(m_lblImg);
 add(p);

 p = new JPanel();
 p.setLayout(new GridLayout(3, 2, 10, 5));
 p.add(new JLabel("MSRP:"));
 m_lblMSRP = new JLabel();
 p.add(m_lblMSRP);

 p.add(new JLabel("Invoice:"));
 m_lblInvoice = new JLabel();
 p.add(m_lblInvoice);

 p.add(new JLabel("Engine:"));
 m_lblEngine = new JLabel();
 p.add(m_lblEngine);
 add(p);
 }

 public void selectCar(Car car) { m_cbCars.setSelectedItem(car); }

 public void showCar(Car car) {
 m_lblImg.setIcon(car.getIcon());
 if (m_cbTrims.getItemCount() > 0)
 m_cbTrims.removeAllItems();
 Vector v = car.getTrims();
 for (int k=0; k<v.size(); k++)
 m_cbTrims.addItem(v.elementAt(k));
 m_cbTrims.grabFocus();
 }

 public void showTrim(Trim trim) {
 m_lblMSRP.setText("$"+trim.getMSRP());
 m_lblInvoice.setText("$"+trim.getInvoice());
 m_lblEngine.setText(trim.getEngine());
 }
}

Used by client
of this class

to select a
particular Car

For selected Car,
updates image and
available Trims

Bad to remove items
from empty combo box

Labels and values
in GridLayout

Updates value labels
for selected Car
and Trim

BASIC JCOMBOBOX EXAMPLE 237

9.2.1 Understanding the code

Class ComboBox1
The ComboBox1 class extends JFrame to implement the frame container for this example.
It has no instance variables. The constructor creates a data collection with the car informa-
tion as listed above. A collection of cars is stored in Vector cars, and each car, in turn,
receives one or more Trim instances. Other than this, the ComboBox1 constructor doesn’t do
much. It creates two instances of CarPanel (see below) and arranges them in a GridLay-
out. These panels are used to select and display car information. Finally, two cars are ini-
tially selected in both panels.

Class Car
The Car class is a typical data object that encapsulates three data fields which are listed at the
beginning of this section: car name, manufacturer, and image. In addition, it holds the
m_trims vector that stores a collection of Trim instances.

The addTrim() method creates a new Trim instance and adds it to the m_trims vector. The
rest of this class implements typical getXX() methods to allow access to the protected data
fields.

Class Trim
The Trim class encapsulates four data fields, which are listed at the beginning of this section:
trim name, suggested retail price, invoice price, and engine type. In addition, it holds a refer-
ence to the parent Car instance. The rest of this class implements typical getXX() methods
to allow access to the protected data fields.

Class CarPanel
The CarPanel class extends JPanel to provide the GUI framework for displaying car infor-
mation. Six components are declared as instance variables:

• JComboBox m_cbCars: Used to select a car model.
• JComboBox m_cbTrims: Used to select a car trim of the selected model.
• JLabel m_lblImg: Used to display the model’s image.
• JLabel m_lblMSRP: Used to display the MSRP.
• JLabel m_lblInvoice: Used to display the invoice price.
• JLabel m_lblEngine: Used to display the engine description.

Two combo boxes are used to select cars and trims respectively. Note that Car and Trim data
objects are used to populate these combo boxes, so the actual displayed text is determined by
their toString() methods. Both combo boxes receive ActionListeners to handle item
selection. When a Car item is selected, this triggers a call to the showCar() method described
below. Similarly, selecting a Trim item triggers a call to the showTrim() method.

The rest of the CarPanel constructor builds JLabels to display a car’s image and trim data.
Notice how layouts are used in this example. A y-oriented BoxLayout creates a vertical axis
used to align and position all components. The combo boxes and supplementary labels are
encapsulated in horizontal JPanels. JLabel m_lblImg receives a custom preferred size to
reserve enough space for the photo image. This label is encapsulated in a panel (with its default

238 CHAPTER 9 COMBO BOXES

FlowLayout) to ensure that this component will be centered over the parent container’s space.
The rest of CarPanel is occupied by six labels, which are hosted by a 3x2 GridLayout.

The selectCar() method allows us to select a car programmatically from outside this class. It
invokes the setSelectedItem() method on the m_cbCars combo box. This call will trigger
an ActionEvent which will be captured by the proper listener, resulting in a showCar() call.

The showCar() method updates the car image, and it updates the m_cbTrims combo box to
display the corresponding trims of the selected model. The (getItemCount() > 0) condi-
tion is necessary because Swing throws an exception if removeAllItems() is invoked on an
empty JComboBox. Finally, focus is transferred to the m_cbTrims component.

The showTrim() method updates the contents of the labels that display trim information:
MSRP, invoice price, and engine type.

9.2.2 Running the code

Figure 9.1 shows the ComboBox1 application that displays two cars simultaneously for com-
parison. All the initial information is displayed correctly. Try experimenting with various
selections and notice how the combo box contents change dynamically.

Symmetrical layout In example 9.1, the design avoids the problem of hav-
ing to align the different length combo boxes by using a symmetrical layout.
Overall, the window has a good balance and it uses white space well; so do each
of the bordered panes used for individual car selections.

9.3 CUSTOM MODEL AND RENDERER

Ambitious Swing developers may want to provide custom rendering in combo boxes to display
structured data in the drop-down list. Different levels of structure can be identified by differing
left margins and icons; this is also how it’s done in trees, which we will study in chapter 17. Such
complex combo boxes can enhance functionality and provide a more sophisticated appearance.

In this section we will show how to merge the model and trim combo boxes from the pre-
vious section into a single combo box. To differentiate between model and trim items in the
drop-down list, we can use different left margins and different icons for each. Our list should
look something like this:

Nissan Maxima
 GXE
 SE
 GLE

We also need to prevent the user from selecting models (such as “Nissan Maxima” above),
since they do not provide complete information about a specific car, and they only serve as
separators between sets of trims.

NOTE The hierarchical list organization shown here can easily be extended for use in a
JList, and it can handle an arbitrary number of levels. We only use two levels in
example 9.2, but the design does not limit us to this.

CUSTOM MODEL AND RENDERER 239

Example 9.2

see \Chapter9\2

// Unchanged code from example 9.1

class CarPanel extends JPanel
{
 protected JComboBox m_cbCars;
 protected JLabel m_txtModel;

 protected JLabel m_lblImg;
 protected JLabel m_lblMSRP;
 protected JLabel m_lblInvoice;
 protected JLabel m_lblEngine;

 public CarPanel(String title, Vector cars) {
 super();
 setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
 setBorder(new TitledBorder(new EtchedBorder(), title));

 JPanel p = new JPanel();

 m_txtModel = new JLabel("");

 m_txtModel.setForeground(Color.black);

 p.add(m_txtModel);

 add(p);

 p = new JPanel();
 p.add(new JLabel("Car:"));

 CarComboBoxModel model = new CarComboBoxModel(cars);

 m_cbCars = new JComboBox(model);

 m_cbCars.setRenderer(new IconComboRenderer());

 ActionListener lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 ListData data = (ListData)m_cbCars.getSelectedItem();

ComboBox2.java

Figure 9.2 A JComboBox with a custom model and a custom
hierarchical rendering scheme

Label to show
Car model name

Variable length
label will always
be centered

m_cbCars will
show model names

along with icons

240 CHAPTER 9 COMBO BOXES

 Object obj = data.getObject();

 if (obj instanceof Trim)

 showTrim((Trim)obj);

 }

 };

 m_cbCars.addActionListener(lst);
 p.add(m_cbCars);
 add(p);

 //Unchanged code from example 9.1
 }

 public synchronized void selectCar(Car car) {
 for (int k=0; k < m_cbCars.getItemCount(); k++) {

 ListData obj = (ListData)m_cbCars.getItemAt(k);

 if (obj.getObject() == car) {

 m_cbCars.setSelectedItem(obj);

 break;

 }

 }

 }

 public synchronized void showTrim(Trim trim) {
 Car car = trim.getCar();

 m_txtModel.setText(car.toString());

 m_lblImg.setIcon(car.getIcon());

 m_lblMSRP.setText("$" + trim.getMSRP());
 m_lblInvoice.setText("$" + trim.getInvoice());
 m_lblEngine.setText(trim.getEngine());
 }
}

class ListData
{
 protected Icon m_icon;
 protected int m_index;
 protected boolean m_selectable;
 protected Object m_data;

 public ListData(Icon icon, int index, boolean selectable,
 Object data) {
 m_icon = icon;
 m_index = index;
 m_selectable = selectable;
 m_data = data;
 }

 public Icon getIcon() { return m_icon; }

 public int getIndex() { return m_index; }

 public boolean isSelectable() { return m_selectable; }

 public Object getObject() { return m_data; }

 public String toString() { return m_data.toString(); }
}

Both Car and Trim
instances, although

only Trims can

Finds ListData
object in combo
box whose Car
object is equal to
the parameter, and
selects that one

Now displays
Model name in
addition to Trim
name

Encapsulates
combo box data
and rendering
information

CUSTOM MODEL AND RENDERER 241

class CarComboBoxModel extends DefaultComboBoxModel
{
 public static final ImageIcon ICON_CAR =
 new ImageIcon("car.gif");
 public static final ImageIcon ICON_TRIM =
 new ImageIcon("trim.gif");

 public CarComboBoxModel(Vector cars) {
 for (int k=0; k<cars.size(); k++) {
 Car car = (Car)cars.elementAt(k);
 addElement(new ListData(ICON_CAR, 0, false, car));

 Vector v = car.getTrims();
 for (int i=0; i < v.size(); i++) {
 Trim trim = (Trim)v.elementAt(i);
 addElement(new ListData(ICON_TRIM, 1, true, trim));
 }
 }
 }

 // This method only allows trims to be selected
 public void setSelectedItem(Object item) {
 if (item instanceof ListData) {
 ListData ldata = (ListData)item;
 if (!ldata.isSelectable()) {
 Object newItem = null;
 int index = getIndexOf(item);
 for (int k = index + 1; k < getSize(); k++) {
 Object item1 = getElementAt(k);
 if (item1 instanceof ListData) {
 ListData ldata1 = (ListData)item1;
 if (!ldata1.isSelectable())
 continue;
 }
 newItem = item1;
 break;
 }
 if (newItem==null)
 return; // Selection failed
 item = newItem;
 }
 }
 super.setSelectedItem(item);
 }
}

class IconComboRenderer extends JLabel implements ListCellRenderer
{
 public static final int OFFSET = 16;

 protected Color m_textSelectionColor = Color.white;
 protected Color m_textNonSelectionColor = Color.black;
 protected Color m_textNonselectableColor = Color.gray;
 protected Color m_bkSelectionColor = new Color(0, 0, 128);
 protected Color m_bkNonSelectionColor = Color.white;

Data model for
combo box; holds
icons for Car
and Trim

Data model for
combo box; holds
icons for Car
and Trim

Adds list element
for Trim; selectable

If not selectable, try
to move selection to
next selectable item
(a Trim object)

Acts as custom
combo box list
item renderer;

shows text
with icon

242 CHAPTER 9 COMBO BOXES

 protected Color m_borderSelectionColor = Color.yellow;

 protected Color m_textColor;
 protected Color m_bkColor;

 protected boolean m_hasFocus;
 protected Border[] m_borders;

 public IconComboRenderer() {
 super();
 m_textColor = m_textNonSelectionColor;
 m_bkColor = m_bkNonSelectionColor;
 m_borders = new Border[20];
 for (int k=0; k < m_borders.length; k++)
 m_borders[k] = new EmptyBorder(0, OFFSET * k, 0, 0);
 setOpaque(false);
 }

 public Component getListCellRendererComponent(JList list,
 Object obj, int row, boolean sel, boolean hasFocus) {
 if (obj == null)
 return this;
 setText(obj.toString());
 boolean selectable = true;
 if (obj instanceof ListData) {
 ListData ldata = (ListData)obj;
 selectable = ldata.isSelectable();
 setIcon(ldata.getIcon());
 int index = 0;
 if (row >= 0) // No offset for editor (row=-1)
 index = ldata.getIndex();
 Border b = (index < m_borders.length ? m_borders[index] :
 new EmptyBorder(0, OFFSET * index, 0, 0));
 setBorder(b);
 }
 else
 setIcon(null);

 setFont(list.getFont());
 m_textColor = (sel ? m_textSelectionColor :
 (selectable ? m_textNonSelectionColor :
 m_textNonselectableColor));
 m_bkColor = (sel ? m_bkSelectionColor :
 m_bkNonSelectionColor);
 m_hasFocus = hasFocus;
 return this;
 }

 public void paint (Graphics g) {
 Icon icon = getIcon();
 Border b = getBorder();

 g.setColor(m_bkNonSelectionColor);
 g.fillRect(0, 0, getWidth(), getHeight());

 g.setColor(m_bkColor);
 int offset = 0;

Creates set of stepped
EmptyBorders

to provide “indents”
for list items

Use matching
EmptyBorder

from list

Draws background
excluding icon, and
draws focus highlight

CUSTOM MODEL AND RENDERER 243

 if(icon != null && getText() != null) {
 Insets ins = getInsets();
 offset = ins.left + icon.getIconWidth() + getIconTextGap();
 }
 g.fillRect(offset, 0, getWidth() - 1 - offset,
 getHeight() - 1);

 if (m_hasFocus) {
 g.setColor(m_borderSelectionColor);
 g.drawRect(offset, 0, getWidth()-1-offset, getHeight()-1);
 }

 setForeground(m_textColor);
 setBackground(m_bkColor);
 super.paint(g);
 }
}

9.3.1 Understanding the code

Class CarPanel
The ComboBox2 (formerly ComboBox1), Car, and Trim classes remain unchanged in this
example, so we’ll start from the CarPanel class. Compared to example 9.1, we’ve removed
combo box m_cbTrims and added JLabel m_txtModel, which is used to display the cur-
rent model’s name. When the combo box pop-up is hidden, the user can see only the selected
trim, so we need to display the corresponding model name separately. Curiously, the construc-
tor of the CarPanel class places this label component in its own JPanel (using its default
FlowLayout) to ensure its location in the center of the base panel.

NOTE The reason for this is that JLabel m_txtModel has a variable length, and the Box-
Layout which manages CarPanel cannot dynamically center this component cor-
rectly. Placing this label in a FlowLayout panel will make sure it’s always centered.

The single combo box, m_cbCars, has a bit in common with the component of the same name
in example 9.1. First, it receives a custom model, an instance of the CarComboBoxModel class,
which will be described below. It also receives a custom renderer, an instance of the IconCombo-
Renderer class, which is also described below.

The combo box is populated by both Car and Trim instances encapsulated in ListData
objects (see below). This requires some changes in the actionPerformed() method which
handles combo box selection. We first extract the data object from the selected ListData
instance by calling the getObject() method. If this call returns a Trim object (as it should,
since Cars cannot be selected), we call the showTrim() method to display the selected data.
The selectCar() method has been modified. As we mentioned above, our combo box now
holds ListData objects, so we cannot pass a Car object as a parameter to the setSelected-
Item() method. Instead, we have to examine, in turn, all items in the combo box, cast them to
ListData objects, and verify that the encapsulated data object is equal to the given Car instance.

The showTrim() method now displays the model data as well as the trim data. To do this we
obtain a parent Car instance for a given Trim and display the model’s name and icon.

244 CHAPTER 9 COMBO BOXES

Class ListData
The ListData class encapsulates the data object to be rendered in the combo box and adds
new attributes for our rendering needs.

These are the instance variables:

• Icon m_icon: The icon associated with the data object.
• int m_index: The item’s index which determines the left margin (the hierarchical level,

for example).
• boolean m_selectable: The flag indicating that this item can be selected.
• Object m_data: The encapsulated data object.

All variables are assigned parameters that have been passed to the constructor. The rest of the
ListData class contains four getXX() methods and a toString() method, which all dele-
gate calls to the m_data object.

Class CarComboBoxModel
This class extends DefaultComboBoxModel to serve as a data model for our combo box . It
first creates two static ImageIcons to represent the model and the trim. The constructor takes
a Vector of Car instances and converts them and their trims into a linear sequence of List-
Data objects. Each Car object is encapsulated in a ListData instance with an ICON_CAR
icon, the index set to 0, and the m_selectable flag set to false. Each Trim object is encap-
sulated in a ListData instance with an ICON_TRIM icon, the index set to 1, and the
m_selectable flag set to true.

These manipulations could have been done without implementing a custom ComboBox-
Model, of course. The real reason we implement a custom model here is to override the set-
SelectedItem() method to control item selection in the combo box. As we learned above,
only ListData instances with the m_selectable flag set to true should be selectable. To
achieve this goal, the overridden setSelectedItem() method casts the selected object to a
ListData instance and examines its selection property using isSelectable().

If isSelectable() returns false, a special action needs to be handled to move the selec-
tion to the first item following this item for which isSelectable() returns true. If no such
item is found, our setSelectedItem() method returns and the selection in the combo box
remains unchanged. Otherwise, the item variable receives a new value which is finally passed
to the setSelectedItem() implementation of the superclass DefaultComboBoxModel.

NOTE You may notice that the selectCar() method discussed above selects a Car in-
stance which cannot be selected. This internally triggers a call to setSelected-
Item() of the combo box model, which shifts the selection to the first available
Trim item. You can verify this when running the example.

Class IconComboRenderer
This class extends JLabel and implements the ListCellRenderer interface to serve as a
custom combo box renderer.

Class variable:

• int OFFSET: The offset, in pixels, to use for the left trim margin.

CUSTOM MODEL AND RENDERER 245

Here are the instance variables:
• Color m_textColor: The current text color.
• Color m_bkColor: The current background color.
• boolean m_hasFocus: The flag that indicates whether this item has the focus.
• Border[] m_borders: An array of borders used for this component.

The constructor of the IconComboRenderer class initializes these variables. EmptyBorders
are used to provide left margins while rendering components of the drop-down list. To avoid
generating numerous temporary objects, an array of 20 Borders is prepared with increasing left
offsets corresponding to the array index (incremented by OFFSET). This provides us with a set
of different borders to use for white space in representing data at 20 distinct hierarchical levels.

NOTE Even though we only use two levels in this example, IconComboRenderer has been
designed for maximum reusability. We’ve designed getListCellRenderer-
Component() (see below) to create a new EmptyBorder in the event that more than
20 levels are used.

The getListCellRendererComponent() method is called prior to the painting of each
cell in the drop-down list. We first set this component’s text to that of the given object (which
is passed as a parameter). Then, if the object is an instance of ListData, we set the icon and
left margin by using the appropriate EmptyBorder from the previously prepared array (which
is based on the given ListData’s m_index property). A call to this method with row=–1 will
be invoked prior to the rendering of the combo box button, which is the part of the combo box
that is always visible (see section 9.1). In this case we don’t need to use any border offset. Off-
set only makes sense when there are hierarchical differences between items in the list, not
when an item is rendered alone.

The rest of the getListCellRendererComponent() method determines the back-
ground and foreground colors to use, based on whether an item is selected and selectable, and
stores them in instance variables to be used within the paint() method. Non-selectable items
receive their own foreground to distinguish them from selectable items.

The paint() method performs a bit of rendering before invoking the superclass implementa-
tion. It fills the background with the stored m_bkColor, excluding the icon’s area (the left
margin is already taken into account by the component’s Border). It also draws a border-like
rectangle if the component currently has the focus. This method then ends with a call to its
superclass’s paint() method, which takes responsibility for painting the label text and icon.

9.3.2 Running the code

Figure 9.2 shows our hierarchical drop-down list in action. Note that models and trim lines
can be easily differentiated because of the varying icons and offsets. In addition, models have a
gray foreground to imply that they cannot be selected.

This implementation is more user-friendly than example 9.1 because it displays all avail-
able data in a single drop-down list. Try selecting different trims and notice how this changes
data for both the model and trim information labels. Try selecting a model and notice that it
will result in the first trim of that model being selected instead.

246 CHAPTER 9 COMBO BOXES

Improved usability From a usability perspective, the solution in figure 9.2
is an improvement over the one presented in figure 9.1. By using a combo box
with a hierarchical data model, the designer has reduced the data entry to a sin-
gle selection and has presented the information in an accessible and logical
manner which also produces a visually cleaner result.

Further improvements could be made here by sorting the hierarchical data. In
this example, it would seem appropriate to sort in a two-tiered fashion: alpha-
betically by manufacturer, and alphabetically by model. Thus Toyota would
come after Ford and Toyota Corolla would come after Toyota Camry.

This is an excellent example of how a programmer can improve UI design and
usability to make the program easier for the user to use.

9.4 COMBO BOXES WITH MEMORY

In some situations, you may want to use editable combo boxes which keep a historical list of
choices for future reuse. This conveniently allows the user to select a previous choice rather
than typing the same text over and over. A typical example of an editable combo box with
memory is found in Find/Replace dialogs in many modern applications. Another example,
familiar to almost every modern computer user, is provided in many Internet browsers which
use an editable URL combo-box-with-history mechanism. These combo boxes accumulate
typed addresses so the user can easily return to any previously visited site by selecting it from
the drop-down list instead of manually typing it in again.

Example 9.3 shows how to create a simple browser application using an editable combo
box with memory. It uses the serialization mechanism to save data between program sessions,
and the JEditorPane component (which is described in more detail in chapters 11 and 19)
to display non-editable HTMLfiles.

Figure 9.3 A JComboBox with memory of previously visited URLs

COMBO BOXES WITH MEMORY 247

Example 9.3

see \Chapter9\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
import javax.swing.text.html.*;

public class Browser extends JFrame
{
 protected JEditorPane m_browser;
 protected MemComboBox m_locator;
 protected AnimatedLabel m_runner;

 public Browser() {
 super("HTML Browser [ComboBox with Memory]");
 setSize(500, 300);

 JPanel p = new JPanel();
 p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
 p.add(new JLabel("Address"));
 p.add(Box.createRigidArea(new Dimension(10, 1)));

 m_locator = new MemComboBox();
 m_locator.load("addresses.dat");
 BrowserListener lst = new BrowserListener();
 m_locator.addActionListener(lst);

 p.add(m_locator);
 p.add(Box.createRigidArea(new Dimension(10, 1)));

 m_runner = new AnimatedLabel("clock", 8);
 p.add(m_runner);
 getContentPane().add(p, BorderLayout.NORTH);

 m_browser = new JEditorPane();
 m_browser.setEditable(false);
 m_browser.addHyperlinkListener(lst);

 JScrollPane sp = new JScrollPane();
 sp.getViewport().add(m_browser);
 getContentPane().add(sp, BorderLayout.CENTER);

 WindowListener wndCloser = new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 m_locator.save("addresses.dat");

System.exit(0);
 }
 };
 addWindowListener(wndCloser);

Browser.java

Creates custom
combo box and
loads it with
some history

Saves history
list

248 CHAPTER 9 COMBO BOXES

 setVisible(true);
 m_locator.grabFocus();
 }

 class BrowserListener implements ActionListener, HyperlinkListener
 {
 public void actionPerformed(ActionEvent evt) {
 String sUrl = (String)m_locator.getSelectedItem();
 if (sUrl == null || sUrl.length() == 0 ||
 m_runner.getRunning())
 return;
 BrowserLoader loader = new BrowserLoader(sUrl);
 loader.start();
 }

 public void hyperlinkUpdate(HyperlinkEvent e) {
 URL url = e.getURL();
 if (url == null || m_runner.getRunning())
 return;
 BrowserLoader loader = new BrowserLoader(url.toString());
 loader.start();
 }
 }

 class BrowserLoader extends Thread
 {
 protected String m_sUrl;

 public BrowserLoader(String sUrl) { m_sUrl = sUrl; }

 public void run() {
 setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 m_runner.setRunning(true);

 try {
 URL source = new URL(m_sUrl);
 m_browser.setPage(source);
 m_locator.add(m_sUrl);
 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(Browser.this,
 "Error: "+e.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 m_runner.setRunning(false);
 setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
 }
 }

 public static void main(String argv[]) { new Browser(); }
}

class MemComboBox extends JComboBox
{
 public static final int MAX_MEM_LEN = 30;

 public MemComboBox() {
 super();

Listens for selected URLs, either from
the combo box or from a hyperlink

Background thread
to load documents from
URLs into the browser

Retrieves, parses, and
renders web page

JComboBox subclass
which provides
history mechanism

COMBO BOXES WITH MEMORY 249

 setEditable(true);
 }

 public void add(String item) {
 removeItem(item);
 insertItemAt(item, 0);
 setSelectedItem(item);
 if (getItemCount() > MAX_MEM_LEN)
 removeItemAt(getItemCount()-1);
 }

 public void load(String fName) {
 try {
 if (getItemCount() > 0)
 removeAllItems();
 File f = new File(fName);
 if (!f.exists())
 return;
 FileInputStream fStream =
 new FileInputStream(f);
 ObjectInput stream =
 new ObjectInputStream(fStream);
 Object obj = stream.readObject();
 if (obj instanceof ComboBoxModel)
 setModel((ComboBoxModel)obj);
 stream.close();
 fStream.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 System.err.println("Serialization error: "+e.toString());
 }
 }

 public void save(String fName) {
 try {
 FileOutputStream fStream =
 new FileOutputStream(fName);
 ObjectOutput stream =
 new ObjectOutputStream(fStream);
 stream.writeObject(getModel());
 stream.flush();
 stream.close();
 fStream.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 System.err.println("Serialization error: "+e.toString());
 }
 }
}

class AnimatedLabel extends JLabel implements Runnable
{

Loads history list
from file, using
object serialization

Add to history list

Implements label
which presents
a “slide show”
of several icons
in sequence

Stores history list
to file, reverse of
load() method

250 CHAPTER 9 COMBO BOXES

 protected Icon[] m_icons;
 protected int m_index = 0;
 protected boolean m_isRunning;

 public AnimatedLabel(String gifName, int numGifs) {
 m_icons = new Icon[numGifs];
 for (int k=0; k<numGifs; k++)
 m_icons[k] = new ImageIcon(gifName+k+".gif");
 setIcon(m_icons[0]);

 Thread tr = new Thread(this);
 tr.setPriority(Thread.MAX_PRIORITY);
 tr.start();
 }

 public void setRunning(boolean isRunning) {
 m_isRunning = isRunning;
 }

 public boolean getRunning() { return m_isRunning; }

 public void run() {
 while(true) {
 if (m_isRunning) {
 m_index++;

 if (m_index >= m_icons.length)
 m_index = 0;
 setIcon(m_icons[m_index]);
 Graphics g = getGraphics();
 m_icons[m_index].paintIcon(this, g, 0, 0);
 }
 else {
 if (m_index > 0) {
 m_index = 0;
 setIcon(m_icons[0]);
 }
 }
 try { Thread.sleep(500); } catch(Exception ex) {}
 }
 }
}

9.4.1 Understanding the code

Class Browser
This class extends JFrame to implement the frame container for our browser. Here are the
instance variables:

• JEditorPane m_browser: The text component to parse and render HTML files.
• MemComboBox m_locator: The combo box to enter/select a URL address.
• AnimatedLabel m_runner: The label that contains an icon which becomes animated

when the browser requests a URL.

The constructor creates the custom combo box, m_locator, and an associated label. Then it
creates the m_runner icon and places all three components in the northern region of our

In background thread,
displays each icon in
sequence, sleeping
between each one

COMBO BOXES WITH MEMORY 251

frame’s content pane. JEditorPane m_browser is created and placed in a JScrollPane to
provide scrolling capabilities. This is then added to the center of the content pane.

A WindowListener, which has been used in many previous examples to close the frame and
terminate execution, receives an additional function: it invokes our custom save() method (see
below) on our combo box component before destroying the frame. This saves the list of visited
URLs that have been entered as a file called addresses.dat in the current running directory.

Class Browser.BrowserListener
This inner class implements both the ActionListener and HyperlinkListener interfaces
to manage navigation to HTML pages. The actionPerformed() method is invoked when
the user selects a new item in the combo box. It verifies that the selection is valid and that the
browser is not currently busy (requesting a URL, for example). If these checks are passed, it
then creates and starts a new BrowserLoader instance (see below) for the specified address.

The hyperlinkUpdate() method is invoked when the user clicks a hyperlink in the cur-
rently loaded web page. This method also determines the selected URL address and starts a
new BrowserLoader to load it.

Class Browser.BrowserLoader
This inner class extends Thread to load web pages into our JEditorPane component. It
takes a URL address parameter in the constructor and stores it in an instance variable. The
run() method sets the mouse cursor to an hourglass (Cursor.WAIT_CURSOR) and starts the
animated icon to indicate that the browser is busy.

The core functionality of this thread is enclosed in its try/catch block. If an exception
occurs during the processing of the requested URL, it is displayed in a simple JOptionPane
dialog message box (we will discuss JOptionPane in chapter 14).

The actual job of retrieving, parsing, and rendering the web page is hidden in a single call to
the setPage() method. So why do we need to create this separate thread instead of making
that simple call in BrowserListener, for example? As we discussed in chapter 2, by creating
separate threads to do potentially time-consuming operations, we avoid clogging up the
event-dispatching thread.

Class MemComboBox
This class extends JComboBox to add a history mechanism. The constructor simply sets its
editable property to true.

The add() method adds a new text string to the beginning of the list. If this item is already
present in the list, it is removed from the old position. If the resulting list is longer than the
predefined maximum length, the last item in the list is truncated.

The load() method loads a previously stored ComboBoxModel from the addresses.dat file
using the serialization mechanism. The significant portion of this method reads an object
from an ObjectInputStream and sets it as the ComboBoxModel. Any possible exceptions
are printed to the standard output.

Similarly, the save() method serializes our combo box’s ComboBoxModel. Any possible
exceptions are, again, printed to standard output.

252 CHAPTER 9 COMBO BOXES

Class AnimatedLabel
Surprisingly, Swing does not provide any special support for animated components, so we
have to create our own component for this purpose. This provides us with an interesting
example of using threads in Java.

NOTE Animated GIFs are fully supported by ImageIcon (see chapter 5) but we want
complete control over each animated frame in this example.

AnimatedLabel extends JLabel and implements the Runnable interface. Here are the
instance variables:

• Icon[] m_icons: An array of images to be used for animation.
• int m_index: The index of the current image.
• boolean m_isRunning: The flag that indicates whether the animation is running.

The constructor takes a common name of a series of GIF files that contain images for anima-
tion, and the number of those files. These images are loaded and stored in an array. When all
images are loaded, a thread with maximum priority is created and started to run this Runna-
ble instance.

The setRunning() and getRunning() methods simply manage the m_isRunning flag.

In the run() method, we cyclically increment the m_index variable and draw an image from
the m_icons array with the corresponding index, exactly as one would expect from an ani-
mated image. This is done only when the m_isRunning flag is set to true. Otherwise, the
image with index 0 is displayed. After an image is painted, AnimatedLabel yields control to
other threads and sleeps for 500 ms.

The interesting thing about this component is that it runs parallel with other threads which do
not necessarily yield control explicitly. In our case, the concurrent BrowserLoader thread
spends the main part of its time inside the setPage() method, and our animated icon runs
in a separate thread that signals to the user that something is going on. This is made possible
because this animated component is running in the thread with the maximum priority. Of
course, we should use such thread priority with caution. In our case it is appropriate since our
thread consumes only a small amount of the processor’s time and it does yield control to the
lesser-priority threads when it sleeps.

NOTE As a good exercise, try using threads with normal priority or Swing’s Timer com-
ponent in this example. You will find that this doesn’t work as expected: the ani-
mated icon does not show any animation while the browser is running.

9.4.2 Running the code

Figure 9.3 shows the Browser application displaying a web page. The animated icon comes
to life when the browser requests a URL. Notice how the combo box is populated with URL
addresses as we navigate to different web pages. Now quit the application and restart it. Notice
that our addresses have been saved and restored by serializing the combo box model, as we dis-
cussed above.

CUSTOM EDITING 253

NOTE HTML rendering functionality is not yet matured. Do not be surprised if your fa-
vorite web page looks significantly different in our Swing-based browser. As a matter
of fact, even the JavaSoft home page throws several exceptions while being displayed
in this Swing component. (These exceptions occur outside our code, during the
JEditorPane rendering—this is why they are not caught and handled by our code.)

Memory combo box usage The example given here is a good place to use a
combo box with memory. However, a memory combo box will not always be
appropriate. Remember the advice that the usability of an unsorted combo box
tends to degrade rapidly as the number of items grows. Therefore, it is sensible
to use this technique where the likelihood of more than 20 entries (to pick a
good number) is very small.

If you have a domain problem which is likely to need a larger number of mem-
ory items, but you still want to use a memory combo box, consider adding a
sorting algorithm. Rather than sorting the most recent item first, you sort into
a more meaningful index, such as alphabetical order. Usability will improve
and you could easily populate the list with up to 200 or 300 items.

9.5 CUSTOM EDITING

In this section, we will discuss a custom editing feature to make example 9.3 even more conve-
nient and similar to modern browser applications. We will attach a key event listener to our
combo box’s editor and search for previously visited URLs with matching beginning strings. If a
match occurs, the remainder of that URL is displayed in the editor, and we can accept the sugges-
tion by pressing ENTER. Most modern browsers also provide this functionality.

In example 9.4, the caret position will remain unchanged, as will the text on the left side
of the caret (this is the text the user typed). The text on the right side of the caret represents
the browser’s suggestion, which may or may not correspond to the user’s intentions. To avoid
distracting the user, this portion of the text is highlighted, so any newly typed character will
replace that suggested text.

Figure 9.4
A JComboBox with
a custom editor that
suggests previously
visited URLs

254 CHAPTER 9 COMBO BOXES

Example 9.4

see\Chapter9\4

public class Browser extends JFrame
{
 // Unchanged code from example 9.3

 public Browser() {
 super("HTML Browser [Advanced Editor]");

 // Unchanged code from example 9.3

 MemComboAgent agent = new MemComboAgent(m_locator);

 // Unchanged code from example 9.3
 }
 // Unchanged code from example 9.3
}

class MemComboAgent extends KeyAdapter
{
 protected JComboBox m_comboBox;
 protected JTextField m_editor;

 public MemComboAgent(JComboBox comboBox) {
 m_comboBox = comboBox;
 m_editor = (JTextField)comboBox.getEditor().
 getEditorComponent();
 m_editor.addKeyListener(this);
 }

 public void keyReleased(KeyEvent e) {
 char ch = e.getKeyChar();
 if (ch == KeyEvent.CHAR_UNDEFINED || Character.isISOControl(ch))
 return;
 int pos = m_editor.getCaretPosition();
 String str = m_editor.getText();
 if (str.length() == 0)
 return;

 for (int k=0; k<m_comboBox.getItemCount(); k++) {
 String item = m_comboBox.getItemAt(k).toString();
 if (item.startsWith(str)) {
 m_editor.setText(item);
 m_editor.setCaretPosition(item.length());
 m_editor.moveCaretPosition(pos);
 break;
 }
 }
 }
}

Browser.java

Creates KeyAdapter
which attaches itself
to combo box

Find list item
that text
begins with

CUSTOM EDITING 255

9.5.1 Understanding the code

Class Browser
This class has only one change in comparison with the previous example: it creates an instance
of our custom MemComboAgent class and passes it a reference to our m_locator combo box.

Class MemComboAgent
This class extends KeyAdapter to listen for keyboard activity. It takes a reference to a
JComboBox component and stores it in an instance variable along with the JTextField
component that is used as that combo box’s editor. Finally, a MemComboAgent object adds
itself to that editor as a KeyListener to be notified of all keyboard input that is passed to the
editor component.

The keyReleased() method is the only method we implement. This method first retrieves
the pressed characters and verifies that they are not control characters. We also retrieve the
contents of the text field and check that it is not empty to avoid annoying the user with
suggestions in an empty field. Note that when this method is invoked, the pressed key will
already have been included in this text.

This method then walks through the list of combo box items and searches for an item starting
with the combo box editor text. If such an item is found, it is set as the combo box editor’s
text. Then we place the caret at the end of that string using setCaretPosition(), and move
it back to its initial position, going backward, using the moveCaretPosition() method. This
method places the caret in its original position and highlights all the text to its right.

NOTE A more sophisticated realization of this idea may include the separate processing of
the URL protocol and host, as well as using threads for smooth execution.

9.5.2 Running the code

Figure 9.4 shows our custom combo box’s editor displaying a portion of a URL address taken
from its list. Try entering some new addresses and browsing to them. After some experimenta-
tion, try typing in an address that you have already visited with this application. Notice that the
enhanced combo box suggests the remainder of this address from its pull-down list. Press ENTER

as soon as an address matches your intended selection to avoid typing the complete URL.

256

C H A P T E R 1 0

List boxes and Spinners
10.1 JList 256
10.2 Basic JList example 261
10.3 Custom rendering 264
10.4 Processing keyboard input

and searching 266
10.5 List of check boxes 277
10.6 JSpinner 282

10.7 Using JSpinner to select
numbers 284

10.8 Using JSpinner to select dates 286
10.9 Using JSpinner to select a value from

a list 287
10.10Extending the functionality of

JSpinner 289

10.1 JLIST

class javax.swing.JList
This class represents a basic GUI component that allows the selection of one or more items
from a list of choices. JList has two models: ListModel, which handles data in the list, and
ListSelectionModel, which handles item selection (three different selection modes are
supported; we will discuss them below). JList also supports custom rendering, as we learned
in the last chapter, through the implementation of the ListCellRenderer interface. We can
use the existing default implementation of ListCellRenderer (DefaultListCellRen-
derer) or create our own according to our particular needs, as we will see later in this chapter.
Unless we use a custom renderer, the default renderer will display each element as a String
defined by that object’s toString() method. The only exceptions to this are Icon imple-
mentations which will be rendered as they would be in any JLabel. Keep in mind that a
ListCellRenderer returns a Component, but that component is not interactive and is only
used for display purposes (it acts as a “rubber stamp”). For instance, if a JCheckBox is used as

JLIST 257

a renderer, we will not be able to check and uncheck it. Unlike JComboBox, however, JList
does not support editing of any sort.

A number of constructors are available to create a JList component. We can use the
default constructor or pass list data to a constructor as a one-dimensional array, as a Vector,
or as an implementation of the ListModel interface. The last variant provides maximum con-
trol over a list’s properties and appearance. We can also assign data to a JList using either the
setModel() method or one of the overloaded setListData() methods.

JList does not provide direct access to its elements, and we must access its ListModel
to gain access to this data. JList does, however, provide direct access to its selection data by
implementing all ListSelectionModel methods and delegating their traffic to the actual
ListSelectionModel instance. To avoid repetition, we will discuss selection functionality
in our overview of ListSelectionModel.

JAVA 1.4 In Java 1.4 JList has the added getNextMatch() method which returns the
index of the next element in the list which starts with a given String prefix. The
method also takes an index to start the search at and a direction to perform the
search in (either Position.Bias.Forward or Position.Bias.Backward).

JList maintains selection foreground and background colors (which are assigned by its UI
delegate when installed), and the default cell renderer, DefaultListCellRenderer, will use
these colors to render selected cells. These colors can be assigned with setSelectedFore-
ground() and setSelectedBackground(). Nonselected cells will be rendered with the
component foreground and background colors that are assigned to JList with setFore-
ground() and setBackground().

JList implements the Scrollable interface (see chapter 7) to provide vertical unit
incremental scrolling corresponding to the list cell height, and vertical block incremental
scrolling corresponding to the number of visible cells. Horizontal unit increment scrolling
corresponds to the size of the list’s font (1 if the font is null), and horizontal block unit
increment scrolling corresponds to the current width of the list. Thus JList does not directly
support scrolling, and it is intended to be placed in a JScrollPane.

The visibleRowCount property specifies how many cells should be visible when a
JList is placed in a scroll pane. This defaults to 8, and it can be set with the setVisi-
bleRowCount() method. Another interesting method provided by JList is ensureIn-
dexIsVisible(), which forces the list to scroll itself so that the element corresponding
to the given index becomes visible. JList also supports autoscrolling; for example, it will
scroll element by element every 100ms if the mouse is dragged below or above its bounds.

By default, the width of each cell is the width of the widest item, and the height of each
cell corresponds to the height of the tallest item. We can overpower this behavior and specify
our own fixed cell width and height of each list cell using the setFixedCellWidth() and
setFixedCellHeight() methods.

Another way to control the width and height of each cell is through the setProto-
typeCellValue() method. This method takes an Object parameter and uses it to automati-
cally determine the fixedCellWidth and fixedCellHeight. A typical use of this method
would be to give it a String. This forces the list to use a fixed cell width and height equal to the
width and height of that string when it is rendered in the Font currently assigned to the JList.

258 CHAPTER 10 LIST BOXES AND SPINNERS

JAVA 1.4 As of Java 1.4 JList supports two new layouts, for a total of three:

VERTICAL: The default layout mode–one column of cells.
VERTICAL_WRAP: Cells flow in columns–the list becomes horizontally scrollable.
HORIZONTAL_WRAP: Cells flow in rows–the list becomes vertically scrollable.

The layout mode can be set with the new setLayoutOrientation() method.

JList also provides a method called locationToIndex() which will return the index of
a cell at the given Point (in coordinate space of the list). –1 will be returned if the given point
does not fall on a list cell. Unfortunately, JList does not provide support for double-clicking,
but this method comes in very handy in implementing our own support for notification of
double clicks. The following pseudocode shows how we can use a MouseAdapter, a
MouseEvent, and the locationToIndex() method to determine which JList cell a
double-click occurs on:

 myJist.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 if (e.getClickCount() == 2) {
 int cellIndex = myJList.locationToIndex(e.getPoint());
 // We now have the index of the double-clicked cell.
 }
 }
 });

Advice on usage and design
Usage Much of the UI Guideline advice for list boxes is similar to that given
for combo boxes. Clearly the two components are different and they are in-
tended for different purposes. Deciding when to use one or another can be dif-
ficult. Again, our advice is to think about reader output rather than data input.
When the reader needs to see a collection of items, a list box is the correct
choice. Use a list box where there is a collection of data which may grow dy-
namically, and when, for reading purposes, it is useful to see the whole collec-
tion or as much of the collection as can reasonably fit in the available space.

Design Like combo boxes, a number of things affect the usability of a list box.
Beyond more than a few items, it becomes unusable unless the data is sorted in
some logical fashion, such as alphabetical or numerical. List boxes are designed to
be used with scroll panes because lists are often too long to display each item in the
available screen space at once. Using a sensible sorted order for the list allows the
user to predict how much he needs to scroll to find what he is looking for.

When a list gets longer, usability is affected yet again. Once a list gets beyond a
couple of hundred items, even when sorted, it becomes very slow for the user to
locate a specific item in the list. When a list becomes that long, you may want to
consider either providing a search facility or grouping the data inside the list using
a tree-like organization.

Graphical considerations for list boxes are much like those for combo boxes.
List boxes should be aligned to fit attractively into a panel. However, you must
avoid making a list box which is simply too big for the list items contained. For

JLIST 259

example, a list box showing supported file formats such as “.gif” need only be
a few characters long—don’t make it big enough to handle 50 characters, as it
will look unbalanced.

The nature of the list items must also be considered. If you have 50 items in a list
where most items are around 20 characters but one item is 50 characters long,
then should you make the list box big enough to display the longest item? May-
be, but for most occasions your display will be imbalanced again. It is probably
best to optimize for the more common length, providing the longer one still has
meaning when read in its truncated form. One solution to displaying the whole
length of a truncated item is to use the tooltip facility. When the user places the
mouse over an item, a tooltip appears with the full-length data text.

10.1.1 The ListModel interface

abstract interface javax.swing.ListModel
This interface describes a data model that holds a list of items. The getElementAt() method
retrieves the item at the given position as an Object instance. The getSize() method returns
the number of items in the list. ListModel also contains two methods that allow ListData-
Listeners (see below) to be registered and notified of any additions, removals, and changes
that occur to this model. This interface leaves the job of specifying how we store and structure the
data, as well as how we add, remove, or change an item, completely up to its implementations.

10.1.2 AbstractListModel

abstract class javax.swing.AbstractListModel
This class represents a partial implementation of the ListModel interface. It defines the
default event-handling functionality, and it implements the add/remove ListDataListener
methods, as well as methods to fire ListDataEvents (see below) when additions, removals,
and changes occur. The remainder of ListModel, the methods getElementAt() and
getSize(), must be implemented in any concrete subclass.

10.1.3 DefaultListModel

class javax.swing.DefaultListModel
This class represents the concrete default implementation of the ListModel interface. It extends
AbstractListModel and uses a java.util.Vector to store its data. Almost all of the meth-
ods of this class correspond directly to Vector methods; we will not discuss them here. Familiar-
ity with Vectors implies familiarity with how DefaultListModel works (refer to the API
documentation if you need further information).

10.1.4 The ListSelectionModel interface

abstract interface javax.swing.ListSelectionModel
This interface describes the model used for selecting list items. It defines three modes of
selection: single selection, single contiguous interval selection, and multiple contiguous
interval selection. A selection is defined as an indexed range, or set of ranges, of list elements.

260 CHAPTER 10 LIST BOXES AND SPINNERS

The beginning of a selected range (where it originates) is referred to as the anchor, while the
last item is referred to as the lead (the anchor can be greater than, less than, or equal to the
lead). The lowest selected index is referred to as the minimum, and the highest selected index
is referred to as the maximum, regardless of the order in which selection takes place. Each of
these indices represents a ListSelectionModel property. The minimum and maximum
properties should be –1 when no selection exists, and the anchor and lead maintain their most
recent value until a new selection occurs.

To change the selection mode we use the setSelectionMode() method, passing it one
of the following constants: MULTIPLE_INTERVAL_SELECTION, SINGLE_INTERVAL_SELEC-
TION, or SINGLE_SELECTION. In SINGLE_SELECTION mode, only one item can be selected.
In SINGLE_INTERVAL_SELECTION mode, a contiguous group of items can be selected by
selecting an anchor item, holding down the SHIFT key, and choosing a lead item (which can
be at a higher or lower index than the anchor). In MULTIPLE_INTERVAL_SELECTION mode,
any number of items can be selected regardless of their location by holding down the CTRL key
and clicking. Multiple selection mode also allows you to use SHIFT to select a contiguous inter-
val; however, this clears the current selection.

ListSelectionModel provides several methods for adding, removing, and manipulat-
ing ranges of selections. Methods for registering/removing ListSelectionListeners are
provided as well (see below). Each of these methods is explained clearly in the API documen-
tation, so we will not describe them in detail here.

JAVA 1.4 In Java 1.4 JList has the added getListSelectionListeners() method
which returns an array containing all registered ListSelectionListener
instances.

JList defines all the methods declared in this interface and it delegates all traffic to its List-
SelectionModel instance, thereby allowing access to selection data without the need to
explicitly communicate with the selection model.

10.1.5 DefaultListSelectionModel

class javax.swing.DefaultListSelectionModel
This class represents the concrete default implementation of the ListSelectionModel
interface. It defines methods to fire ListSelectionEvents when a selection range changes.

10.1.6 The ListCellRenderer interface

abstract interface javax.swing.ListCellRenderer
This interface describes a component that is used for rendering a list item. We discussed this
interface, as well as its default concrete implementation, DefaultListCellRenderer, in the
last chapter (see sections 9.1.4 and 9.1.5). We will show how to construct several custom ren-
derers in the examples that follow.

BASIC JLIST EXAMPLE 261

10.1.7 The ListDataListener interface

abstract interface javax.swing.event.ListDataListener
This interface defines three methods for dispatching ListDataEvents when list elements are
added, removed, or changed in the ListModel: intervalAdded(), intervalRemoved(),
and contentsChanged().

10.1.8 ListDataEvent

class javax.swing.event.ListDataEvent
This class represents the event that is delivered when changes occur in a list’s ListModel. It
includes the source of the event as well as the indexes of the lowest and highest indexed elements
affected by the change. It also includes the type of event that occurred. Three ListDataEvent
types are defined as static ints: CONTENTS_CHANGED, INTERVAL_ADDED, and INTERVAL_
REMOVED. We can use the getType() method to discover the type of any ListDataEvent.

10.1.9 The ListSelectionListener interface

abstract interface javax.swing.event.ListSelectionListener
This interface describes a listener which listens for changes in a list’s ListSelectionModel.
It declares the valueChanged() method, which accepts a ListSelectionEvent.

10.1.10 ListSelectionEvent

class javax.swing.event.ListSelectionEvent
This class represents an event that is delivered by ListSelectionModel when changes occur
in its selection. It is almost identical to ListDataEvent, except that the indices specified sig-
nify where there has been a change in the selection model, rather than in the data model.

10.2 BASIC JLIST EXAMPLE

Example 10.1 displays a list of the states in the United States using an array of Strings in the
following format:

• 2-character abbreviation<tab character>full state name<tab character>state capital

The states are listed alphabetically by their 2-letter abbreviation.

Figure 10.1
A JList that displays
a list of strings containing
tab characters

262 CHAPTER 10 LIST BOXES AND SPINNERS

Example 10.1

see \Chapter10\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class StatesList extends JFrame
{
 protected JList m_statesList;

 public StatesList() {
 super("Swing List [Base]");
 setSize(500, 240);

 String [] states = {
 "AK\tAlaska\tJuneau",
 "AL\tAlabama\tMontgomery",
 "AR\tArkansas\tLittle Rock",
 "AZ\tArizona\tPhoenix",
 "CA\tCalifornia\tSacramento",
 "CO\tColorado\tDenver",
 "CT\tConnecticut\tHartford",
 "DE\tDelaware\tDover",
 "FL\tFlorida\tTallahassee",
 "GA\tGeorgia\tAtlanta",
 "HI\tHawaii\tHonolulu",
 "IA\tIowa\tDes Moines",
 "ID\tIdaho\tBoise",
 "IL\tIllinois\tSpringfield",
 "IN\tIndiana\tIndianapolis",
 "KS\tKansas\tTopeka",
 "KY\tKentucky\tFrankfort",
 "LA\tLouisiana\tBaton Rouge",
 "MA\tMassachusetts\tBoston",
 "MD\tMaryland\tAnnapolis",
 "ME\tMaine\tAugusta",
 "MI\tMichigan\tLansing",
 "MN\tMinnesota\tSt.Paul",
 "MO\tMissouri\tJefferson City",
 "MS\tMississippi\tJackson",
 "MT\tMontana\tHelena",
 "NC\tNorth Carolina\tRaleigh",
 "ND\tNorth Dakota\tBismarck",
 "NE\tNebraska\tLincoln",
 "NH\tNew Hampshire\tConcord",
 "NJ\tNew Jersey\tTrenton",

StatesList.java

BASIC JLIST EXAMPLE 263

 "NM\tNew Mexico\tSantaFe",
 "NV\tNevada\tCarson City",
 "NY\tNew York\tAlbany",
 "OH\tOhio\tColumbus",
 "OK\tOklahoma\tOklahoma City",
 "OR\tOregon\tSalem",
 "PA\tPennsylvania\tHarrisburg",
 "RI\tRhode Island\tProvidence",
 "SC\tSouth Carolina\tColumbia",
 "SD\tSouth Dakota\tPierre",
 "TN\tTennessee\tNashville",
 "TX\tTexas\tAustin",
 "UT\tUtah\tSalt Lake City",
 "VA\tVirginia\tRichmond",
 "VT\tVermont\tMontpelier",
 "WA\tWashington\tOlympia",
 "WV\tWest Virginia\tCharleston",
 "WI\tWisconsin\tMadison",
 "WY\tWyoming\tCheyenne"
 };

 m_statesList = new JList(states);

 JScrollPane ps = new JScrollPane();
 ps.getViewport().add(m_statesList);
 getContentPane().add(ps, BorderLayout.CENTER);

seDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }

 public static void main(String argv[]) {
 new StatesList();
 }
}

10.2.1 Understanding the code

Class StatesList
The StatesList class extends JFrame to implement the frame container for this example.
One instance variable, JList m_statesList, is used to store an array of state Strings. This
list is created by passing the states String array to the JList constructor. The list is then added
to a JScrollPane instance to provide scrolling capabilities.

10.2.2 Running the code

Figure 10.1 shows StatesList in action displaying the list of states and their capitals.
The separating tab character is displayed as an unpleasant square symbol, but we’ll fix this
in the next example.

264 CHAPTER 10 LIST BOXES AND SPINNERS

Unbalanced layout In this example, the design is unbalanced because the
tab character is not displayed correctly. The box is ugly, and the spacing is also
wrong. The large white space area to the right ought to be avoided. The next
example corrects these problems.

10.3 CUSTOM RENDERING

In this section we’ll add the ability to align Strings containing tab separators into a table-like
arrangement. We want each tab character to shift all text to its right, to a specified location
instead of being rendered as the square symbol we saw earlier. These locations should be deter-
mined uniformly for all elements of the list to form columns that line up correctly.

Note that this example works well with proportional fonts as well as with fixed width
fonts (i.e., it doesn’t matter what font we use because alignment is not designed to be font-
dependent). This makes JList a powerful but simple component, which can be used in place
of JTable in simple cases such as the example presented here (where the involvement of
JTable would create unnecessary overhead).

To accomplish the desired rendering we construct a custom rendered, TabListCell-
Renderer, which exposes accessor methods to specify and retrieve tab positions based on the
index of a tab character in a String being rendered:

• getDefaultTab()/setDefaultTab(int): manages the default tab size (defaults to
50). In case a position is not specified for a given tab index, we use a default size to deter-
mine how far to offset a portion of text.

• getTabs()/setTabs(int[]): manages an array of positions based on the index of a
tab character in a String being rendered. These positions are used in rendering each
element in the list to provide consistent alignment.

This example also demonstrates the use of the LayoutOrientation property new to
J2SE 1.4. By using two different list models (one with short abbreviations and the original
model from example 10.1), and allowing dynamic selection between both models as well as
the three different list cell layout modes, this example illustrates how each layout mode
behaves and in which situation each is most useful.

Figure 10.2
States List example
with custom rendering,
Long model and default
[VERTICAL] cell layout

CUSTOM RENDERING 265

Figure 10.3
Long model and
VERTICAL_WRAP
cell layout

Figure 10.4
Long model and
HORIZONTAL_WRAP

cell layout

Figure 10.5
Short model
and default
[VERTICAL]
cell layout

266 CHAPTER 10 LIST BOXES AND SPINNERS

Example 10.2

see \Chapter10\2

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class StatesList extends JFrame {

protected JList m_statesList;

protected JRadioButton m_verticalRb;
protected JRadioButton m_verticalWrapRb;
protected JRadioButton m_horizontalWrapRb;

protected JRadioButton mlongRb;
protected JRadioButton m_shortRb;

StatesList.java

Figure 10.6
Short model and
VERTICAL_WRAP
cell layout

Figure 10.7
Short model and
HORIZONTAL_WRAP

cell layout

Radio buttons to
change layout policy

Radio buttons used to
switch between models

CUSTOM RENDERING 267

public static ArrayModel LONG_MODEL =
new ArrayModel(new String[] {
“AK\tAlaska\tJuneau”,
“AL\tAlabama\tMontgomery”,
“AR\tArkansas\tLittle Rock”,
“AZ\tArizona\tPhoenix”,
“CA\tCalifornia\tSacramento”,
“CO\tColorado\tDenver”,
“CT\tConnecticut\tHartford”,
“DE\tDelaware\tDover”,
“FL\tFlorida\tTallahassee”,
“GA\tGeorgia\tAtlanta”,
“HI\tHawaii\tHonolulu”,
“IA\tIowa\tDes Moines”,
“ID\tIdaho\tBoise”,
“IL\tIllinois\tSpringfield”,
“IN\tIndiana\tIndianapolis”,
“KS\tKansas\tTopeka”,
“KY\tKentucky\tFrankfort”,
“LA\tLouisiana\tBaton Rouge”,
“MA\tMassachusetts\tBoston”,
“MD\tMaryland\tAnnapolis”,

“ME\tMaine\tAugusta”,
“MI\tMichigan\tLansing”,
“MN\tMinnesota\tSt. Paul”,
“MO\tMissouri\tJefferson City”,
“MS\tMississippi\tJackson”,
“MT\tMontana\tHelena”,
“NC\tNorth Carolina\tRaleigh”,
“ND\tNorth Dakota\tBismark”,
“NE\tNebraska\tLincoln”,
“NH\tNew Hampshire\tConcord”,
“NJ\tNew Jersey\tTrenton”,
“NM\tNew Mexico\tSanta Fe”,
“NV\tNevada\tCarson City”,
“NY\tNew York\tAlbany”,
“OH\tOhio\tColumbus”,
“OK\tOklahoma\tOklahoma City”,
“OR\tOregon\tSalem”,
“PA\tPennsylvania\tHarrisburg”,
“RI\tRhode Island\tProvidence”,
“SC\tSouth Carolina\tColumbia”,
“SD\tSouth Dakota\tPierre”,
“TN\tTennessee\tNashville”,
“TX\tTexas\tAustin”,
“UT\tUtah\tSalt Lake City”,
“VA\tVirginia\tRichmond”,
“VT\tVermont\tMontpelier”,
“WA\tWashington\tOlympia”,
“WV\tWest Virginia\tCharleston”,
“WI\tWisconsin\tMadison”,
“WY\tWyoming\tCheyenne”,

268 CHAPTER 10 LIST BOXES AND SPINNERS

});

public static arrayModel SHORT_MODEL =
new ArrayModel(new String[] {
“AK”, “AL”, “AR”, “AZ”, “CA”,
“CO”, “CT”, “DE”, “FL”, “GA”,
“HI”, “IA”, “ID”, “IL”, “IN”,
“KS”, “KY”, “LA”, “MA”, “MD”,
“ME”, “MI”, “MN”, “MO”, “MS”,
“MT”, “NC”, “ND”, “NE”, “NH”,
“NJ”, “NM”, “NV”, “NY”, “OH”,
“OK”, “OR”, “PA”, “RI”, “SC”,
“SD”, “TN”, “TX”, “UT”, “VA”,
“VT”, “WA”, “WV”, “WI”, “WY”

});

public StatesList() {
super(“States List”);
setSize(450, 250);

m_statesList = new JList();
m_statesList.setModel(LONG_MODEL);

TabListCellRenderer renderer = new TabListCellRenderer();
renderer.setTabs(new int[] {50, 200, 300});
m_statesList.setCellRenderer(renderer;

JScrollpane ps = new JScrollPane();
ps.getViewport().add(m_statesList);
getcontentPane().add(ps, BorderLayout.CENTER);

JPanel pp = new JPanel(new GridLayout(2,3));

ButtonGroup bg1 = new buttonGroup();
m_verticalRb = new JRadioButton(“VERTICAL”, true);
pp.add(m_verticalRb);
bg1.add(m_verticalRb);
m_verticalWrapRb = new JRadioButton(“VERTICAL_WRAP”);
pp.add(m_verticalWrapRb);
bg1.add(m_verticalWrapRb);
m_horizontalWrapRb = new JRadioButton(“HORIZONTAL_WRAP”);
pp.add(m_horizontalWrapRb);
bg1.add(m_horizontalWrapRb);

ButtonGroup bg2 = new ButtonGroup();
m_longRb = new JRadioButton(“Long Model”, true);
pp.add(m_longRb);
bg2.add(m_longRb);
m_shortRb = new JRadioButton(“Short Model”);
pp.add(m_shortRb);
bg2.add(m_shortRb);

getContentPane().add(pp, BorderLayout.NORTH);

ActionListener modelListener = new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (m_longRb.isSelected()) {

ActionListener to
change prototype
cell value when
model changes

CUSTOM RENDERING 269

m_statesList.setPrototypeCellValue(
“xxx”);

m_statesList.setModel(LONG_MODEL);
}

}
};
m_longRb.addActionListener(modelListener);
m_shortRb.addActionListener(modelListener);

ActionListener layoutListener = new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (m_verticalRb.isSelected()) {
m_statesList.setLaoutOrientation(JList.VERTICAL);

}
else if (m_verticalWrapRb.isSelected()) {
m_statesList.setLayoutOrientation(JList.VERTICAL_WRAP);

}
}

};
m_verticalRb.addActionListener(layoutListener);
m_verticalWrapRb.addactionListener(layoutListener);
m_horizontalWrapRb.addActionListener(layoutListener);

}

public static void main(String argv[]) {
Stateslist frame = new StatesList();
frame.setDefaultcloseOperation(jFrame.EXIT_ON_CLOSE);
frame.setvisible(true);

}
}

class TabListCellRenderer extends JLabel
implements ListCellRenderer {

protected static Border m_noFocusBorder;

protected FontMetrics m_fm = null;
protected Insets m_insets = new Insets(0, 0, 0, 0);
protected int m_defaultTab = 50;
protected int[]m_tabs = null;

public TabListCellRenderer() {
m_noFocusBorder = new EmptyBorder(1, 1, 1, 1);
setOpaque(true);
setBorder(m_nofocusborder);

}

public component getListCellRendererComponentJList list,
Object value, int index, boolean isSelected, boolean cellHasFocus

{
setText(value.toString());

setBackground(isSelected ? list.getSelectionBackground()
: list.getBackground());

setForeground(isSelected ? list.getSelectionForeground()
: list.getForeground());

ActionListener
to change
prototype cell
value when
model changes

Custom cell renderer used to align
strings that contain tab characters
into visual columns

270 CHAPTER 10 LIST BOXES AND SPINNERS

set Font(list.etFont());
setBorder((cellHasFocus) ?
UIManager.getBorder(“List.focusCellHighlightBorder”)
: m_nofocusBorder);

return this;
}

public void setDefaultTab(int defaultTab) {
m_defaultTab = defaultTab;

}

public int getDefaultTab() {
return m_defaultTab;

}

public void setTabs(int[] tabs) {
m_tabs = tabs;

}

public int[] getTabs() {
return m_tabs;

}

public int getTab(int index) {
if (m_tabs == null)
return m_defaultTab*index;

int len = m_tabs.length;
if (index>=0 && index<len)
return m_tabs[index];

return m_tabs[len-1] +m_defaultTab*(index-len+1);
}

public void paintComponent(Graphics g) {
super.paintComponent(g);
Color colorRetainer = g.getColor();
m_fm =g.getFontMetrics();

g.setColor(getBackground());
g.fillRect(0, 0, getWidth(), getHeight());
getBorder().paintBorder(this, g,0, 0, getWidth(), getHeight());

g.setColor(getForeground());
g.setFont(getfont());
m_insets = getInsets();
int x = m_insets.left;
int y = m_insets.top + m_fm.getAscent();

StringTokenizer st = new StringTokenizer(getText(), “\t”);
while (st.hasMoreTokens()) {
String sNext = st.nextToken();
g.drawString(sNext, x,y);
x += m_fm.stringWidth(sNext);

if (!st.hasMoreTokens())
break;

Method to calculate the distance to use
corresponding to a given tab index

Method responsible
for rendering each cell;
the getTab() method is used
to retrieve the number
of pixels corresponding
to a given tab index

CUSTOM RENDERING 271

in index = 0;
while (x >= getTab(index))
index++;

x = getTab(index);
}

g.setColor(colorRetainer);
}

}

class ArrayModel extends AbstractListModel {
Object[] m_data;

public ArrayModel(Object[] data) {
m_data = data;

}

public int getSize() {
return m_data.length;

}

public Object getElementAt(int index) {
if (index < 0 || index >= getSize())
return null;

return m_data[index];
}

}

10.3.1 Understanding the code

Class StatesList
In this enhanced version of StatesList we create an instance of our custom TabListCell-
Renderer, pass it an array of positions and set it as the renderer for our JList component.
Three radio buttons, m_verticalRb, m_verticalWrapRb, and m_horizontalWrapRb are
used to change the list’s LayoutOrientation property. Two more radio buttons are
m_longRB and m_shortRB. When switching between these list models we change our list’s
prototype cell value to increase/decrease the width of the cells accordingly.

Class TabListCellRenderer
The TabListCellRenderer class extends JLabel and implements the ListCellRen-
derer interface for use as our custom renderer.

Class variable:

• Border m_noFocusBorder: border to be used when a list item has no focus.

Instance variables:

• FontMetrics m_fm: used in calculating text positioning when drawing.
• Insets m_insets: insets of the cell being rendered.
• int m_defaultTab: default tab size.
• int[] m_tabs: an array of positions based on tab index in a String being rendered.

The constructor creates, assigns text, sets its opaque property to true (to render the compo-
nent’s area with the specified background), and sets the border to m_noFocusBorder.

Custom list model to hold
an array of objects

272 CHAPTER 10 LIST BOXES AND SPINNERS

The getListCellRendererComponent() method is required when implementing List-
CellRenderer, and is called each time a cell is about to be rendered. It takes five parameters:

• JList list: reference to the list instance.
• Object value: data object to be painted by the renderer.
• int index: index of the item in the list.
• boolean isSelected:true if the cell is currently selected.
• boolean cellHasFocus: true if the cell currently has the focus.

Our implementation of this method assigns new text, sets the background and foreground
(depending on whether or not the cell is selected), sets the font to that taken from the parent
list component, and sets the border according to whether or not the cell has input focus.

Four additional methods provide set/get support for the m_defaultTab and m_tabs vari-
ables, and do not require detailed explanation beyond the code listing. Now let’s take a close
look at the getTab() method which calculates and returns the position for a given tab index.
If no tab array, m_tabs, is set, this method returns the m_defaultTab distance (defaults to
50) multiplied by the given tab index. If the m_tabs array is not null and the tab index is less
than its length, the proper value from that array is returned. Otherwise, if the tab index is
greater than the array’s length, we have no choice but to use the default tab size again, offset
from the last value in the m_tabs array.

Since the JLabel component does not render tab characters properly, we do not benefit a lot
from its inheritance and implement the paintComponent() method to draw tabbed
Strings ourselves. First, our paintComponent() method requests a reference to the Font-
Metrics instance for the given Graphics. Then we fill the component’s rectangle with the
background color (which is set in the getListCellRendererComponent() method depend-
ing on whether or not the cell is selected), and paint the component’s border.

NOTE Alternatively, we could use the drawTabbedText() method from the jav-
ax.swing.text.Utilities class to draw tabbed text. However, this requires us
to implement the TabExpander interface. In our case it’s easier to draw text direct-
ly without using that utility. As an interesting exercise you can modify the code
from this example to use drawTabbedText() method.

In the next step, we prepare to draw the tabbed String. We set the foreground color and
font, and determine the initial x and y positions for drawing the text, taking into account the
component’s insets.

REMINDER To draw text in Java you need to use a baseline y-coordinate. This is why the get-
Ascent() value is added to the y position. The getAscent() method returns the
distance from the font’s baseline to the top of most alphanumeric characters. See
chapter 2 for more information on drawing text and Java 1.2 FontMetrics caveats.

We then use a StringTokenizer to parse the String and extract the portions separated by
tabs. Each portion is drawn with the drawString() method, and the x-coordinate is
adjusted to the length of the text. We cycle through this process, positioning each portion of
text by calling the getTab() method, until no more tabs are found.

PROCESSING KEYBOARD INPUT AND SEARCHING 273

Class ArrayModel
This class extends AbstractListModel and is a simple, non-mutable (i.e., read-only) list
model used to hold an array of Objects. This is the minimal ListModel implementation
required for this example to function.

10.3.2 Running the code

Figure 10.2 shows StatesList displaying an array of tab-separated Strings. Notice that the
tab symbols are not drawn directly, but form consistently aligned columns inside the list.
Figures 10.3 through 10.7 show StatesList in all other permutations of short and long
model, and cell layout mode. Note the order in which the items are listed in VERTICAL_WRAP
and HORIZONTAL_WRAP modes. As these figures show, you can choose which wrap mode to use
based on whether you want the user to read the list from top to bottom or from left to right.

Improved balance With the tab character being displayed correctly, the list
box has much better balance. The available area for the capital city is still very
large, and as the designer you may want to consider reducing it, thus reducing
the excessive white space on the right-hand side. Such a decision would nor-
mally be made after the list box is seen as it will appear and the necessary align-
ment and overall panel balance is taken into consideration.

10.4 PROCESSING KEYBOARD INPUT AND SEARCHING

In this section we will continue to enhance our JList states example by adding the ability to
select an element whose text starts with a character corresponding to a key press. We will also
show how to extend this functionality to search for an element whose text starts with a sequence
of typed key characters.

To do this, we must use a KeyListener to listen for keyboard input, and we need to
accumulate this input in a String. Each time a key is pressed, the listener must search through
the list and select the first element whose text matches the String we have accumulated. If
the time interval between two key presses exceeds a certain pre-defined value, the accumulated
String must be cleared before appending a new character to avoid overflow.

Figure 10.8
A JList that allows
accumulated keyboard
input to search for
a matching item

274 CHAPTER 10 LIST BOXES AND SPINNERS

Example 10.3

see \Chapter10\3

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class StatesList extends JFrame
{
 protected JList m_statesList;

 public StatesList() {
 // Unchanged code from example 10.2

 m_statesList = new JList(states);
 TabListCellRenderer renderer = new TabListCellRenderer();
 renderer.setTabs(new int[] {50, 200, 300});

 m_statesList.setCellRenderer(renderer);
 m_statesList.addKeyListener(new ListSearcher(m_statesList));

 // Unchanged code from example 10.2
 }
}

// Unchanged code from example 10.2

class ListSearcher extends KeyAdapter
{
 protected JList m_list;
 protected ListModel m_model;
 protected String m_key = "";
 protected long m_time = 0;

 public static int CHAR_DELTA = 1000;

 public ListSearcher(JList list) {
 m_list = list;
 m_model = m_list.getModel();
 }

 public void keyTyped(KeyEvent e) {
 char ch = e.getKeyChar();
 if (!Character.isLetterOrDigit(ch))
 return;

 if (m_time+CHAR_DELTA < System.currentTimeMillis())
 m_key = "";
 m_time = System.currentTimeMillis();

 m_key += Character.toLowerCase(ch);
 for (int k=0; k<m_model.getSize(); k++) {
 String str = ((String)m_model.getElementAt(k)).toLowerCase();

StatesList.java

Add ListSearcher
KeyListener to JList

If key is letter/digit, and event
occurred shortly after last key,
append it to search string and
look for list item with that prefix

PROCESSING KEYBOARD INPUT AND SEARCHING 275

 if (str.startsWith(m_key)){
 m_list.setSelectedIndex(k);
 m_list.ensureIndexIsVisible(k);
 break;
 }
 }
 }
}

10.4.1 Understanding the code

Class StatesList
An instance of ListSearcher is added to the m_statesList component as a KeyLis-
tener. This is the only change made to this class with respect to example 10.2.

Class ListSearcher
The ListSearcher class extends the KeyAdapter class and defines one class variable:

• int CHAR_DELTA: A static variable to hold the maximum time interval in ms between
two subsequent key presses before clearing the search key character String.

Instance variables:

• JList m_list: The list component to search and change the selection based on key-
board input.

• ListModel m_model: The list model of m_list.
• String m_key: The key character String that is used to search for a match.
• long m_time: The time in ms of the last key press.

The ListSearcher constructor simply takes a reference to a JList component and stores it
in instance variable m_list; its model is stored in m_model.

The keyTyped() method is called each time a new character is typed. Our implementation first
obtains the typed character and returns if that character is not a letter or a digit. keyTyped()
then checks the time interval between now and the time when the previous key type event
occurred. If this interval exceeds CHAR_DELTA, the m_key String is cleared. Finally, this method
walks through the list and performs a case-insensitive comparison of the list Strings and the
searching String (m_key). If an element’s text starts with m_key, this element is selected and it is
forced to appear within our current JList view using the ensureIndexIsVisible() method.

Extending usability and list size This technique of allowing accumulated
keyboard input to sift and select a list item improves usability by making the
task of searching and locating an item in the list easier. This extends the number
of items you can put in a list and still have a usable design. A technique like this
can easily improve the usefulness of the list for up to several thousand entries.

This is another good example of the improved usability that is possible when the
developer takes extra time to provide additional code to make the user’s task easier.

276 CHAPTER 10 LIST BOXES AND SPINNERS

10.4.2 Running the code

Try out the search functionality. Figure 10.8 shows our list’s selection after pressing “n” imme-
diately followed by “j.” As expected, New Jersey is selected.

10.5 LIST OF CHECK BOXES

Lists can certainly be used for more than just Strings. We can easily imagine a list of Swing
components. A list of check boxes is actually common in software packages when users are
prompted to select optional constituents during installation. In Swing, such a list can be
constructed by implementing a custom renderer that uses the JCheckBox component.
The catch is that mouse and keyboard events must be handled manually to check/uncheck
these boxes.

Example 10.4 shows how to create a list of check boxes that represent imaginary optional
program constituents. Associated with each component is an instance of our custom Install-
Data class with the following fields:

Field Type Description
m_name String Option name.
m_size int Size in KB.
m_selected boolean Returns true if the option is selected.

Example 10.4

see \Chapter 10\4

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class CheckBoxList extends JFrame
{

CheckBoxList.java

Figure 10.9
A JList with JCheckBox renderers

LIST OF CHECK BOXES 277

 protected JList m_list;
 protected JLabel m_total;

 public CheckBoxList() {
 super("Swing List [Check boxes]");
 setSize(280, 250);
 getContentPane().setLayout(new FlowLayout());

 InstallData[] options = {
 new InstallData("Program executable", 118),
 new InstallData("Help files", 52),
 new InstallData("Tools and converters", 83),
 new InstallData("Source code", 133)
 };

 m_list = new JList(options);
 CheckListCellRenderer renderer = new CheckListCellRenderer();
 m_list.setCellRenderer(renderer);
 m_list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 CheckListener lst = new CheckListener(this);
 m_list.addMouseListener(lst);
 m_list.addKeyListener(lst);

 JScrollPane ps = new JScrollPane();
 ps.getViewport().add(m_list);

 m_total = new JLabel("Space required: 0K");

 JPanel p = new JPanel();
 p.setLayout(new BorderLayout());
 p.add(ps, BorderLayout.CENTER);
 p.add(m_total, BorderLayout.SOUTH);
 p.setBorder(new TitledBorder(new EtchedBorder(),
 "Please select options:"));
 getContentPane().add(p);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 recalcTotal();
 }

 public void recalcTotal() {
 ListModel model = m_list.getModel();
 int total = 0;
 for (int k=0; k<model.getSize(); k++) {
 InstallData data = (InstallData)model.getElementAt(k);
 if (data.isSelected())
 total += data.getSize();
 }
 m_total.setText("Space required: "+total+"K");
 }

 public static void main(String argv[]) {
 new CheckBoxList();
 }

List items
for JList

“total” field
below list,
which is below
the title label

Adds up “size”
field of checked
items and sets that
in “total” field

278 CHAPTER 10 LIST BOXES AND SPINNERS

}

class CheckListCellRenderer extends JCheckBox
 implements ListCellRenderer
{
 protected static Border m_noFocusBorder =
 new EmptyBorder(1, 1, 1, 1);

 public CheckListCellRenderer() {
 super();
 setOpaque(true);
 setBorder(m_noFocusBorder);
 }

 public Component getListCellRendererComponent(JList list,
 Object value, int index, boolean isSelected, boolean cellHasFocus)
 {
 setText(value.toString());

 setBackground(isSelected ? list.getSelectionBackground() :
 list.getBackground());
 setForeground(isSelected ? list.getSelectionForeground() :
 list.getForeground());

 InstallData data = (InstallData)value;
 setSelected(data.isSelected());

 setFont(list.getFont());
 setBorder((cellHasFocus) ?
 UIManager.getBorder("List.focusCellHighlightBorder")
 : m_noFocusBorder);

 return this;
 }
}

class CheckListener implements MouseListener, KeyListener
{
 protected CheckBoxList m_parent;
 protected JList m_list;

 public CheckListener(CheckBoxList parent) {
 m_parent = parent;
 m_list = parent.m_list;
 }

 public void mouseClicked(MouseEvent e) {
 if (e.getX() < 20)
 doCheck();
 }

 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

Processes mouse and
key input to change

check box states

Renderer shows
a check box

with label

If mouse click is less than
20 pixels from left edge,
consider it a click on check box

LIST OF CHECK BOXES 279

 public void keyPressed(KeyEvent e) {
 if (e.getKeyChar() == ' ')
 doCheck();
 }

 public void keyTyped(KeyEvent e) {}
 public void keyReleased(KeyEvent e) {}

 protected void doCheck() {
 int index = m_list.getSelectedIndex();
 if (index < 0)
 return;
 InstallData data = (InstallData)m_list.getModel().
 getElementAt(index);
 data.invertSelected();
 m_list.repaint();
 m_parent.recalcTotal();
 }
}

class InstallData
{
 protected String m_name;
 protected int m_size;

 protected boolean m_selected;

 public InstallData(String name, int size) {
 m_name = name;
 m_size = size;
 m_selected = false;
 }

 public String getName() { return m_name; }

 public int getSize() { return m_size; }

 public void setSelected(boolean selected) {
 m_selected = selected;
 }

 public void invertSelected() { m_selected = !m_selected; }

 public boolean isSelected() { return m_selected; }

 public String toString() { return m_name+" ("+m_size+" K)"; }
}

10.5.1 Understanding the code

Class CheckBoxList
The CheckBoxList class extends JFrame to provide the basic frame for this example. Here are
the instance variables:

• JList m_list: The list to display program constituents.
• JLabel m_total: The label to display the total space required for installation based on

the selected constituents.

Space key does the
same as the check box
mouse click

Data object to represent
install item, including
size and “selected” flag

Toggles InstallData
“selected” flag and
recalculates total

280 CHAPTER 10 LIST BOXES AND SPINNERS

An array of four InstallData objects is passed to the constructor of our JList
component (note that we use a DefaultListModel, which is sufficient for our purposes
here). SINGLE_SELECTION is used as our list’s selection mode. An instance of our custom
CheckListCellRenderer is created and set as the cell renderer for our list. An instance of
our custom CheckListener is then registered as both a mouse and a key listener to handle
item checking and unchecking for each check box (see below).

The list component is added to a JScrollPane to provide scrolling capabilities. Then JLa-
bel m_total is created to display the total amount of space required for installation based
on the currently selected check boxes.

In previous examples, the JList component occupied all of our frame’s available space. In
this example, however, we are required to consider a different layout. JPanel p is now used to
hold both the list and the label (m_total). To ensure that the label will always be placed
below the list we use a BorderLayout. We also use a TitledBorder for this panel’s border
to provide visual grouping.

The recalcTotal() method steps through the sequence of InstallData instances con-
tained in the list, and it calculates the sum of the sizes of the selected items. The result is then
displayed in the m_total label.

Class CheckListCellRenderer
This class implements the ListCellRenderer interface, and it is similar to our TabList-
CellRenderer class from example 10.2. An important difference is that CheckListCell-
Renderer extends JCheckBox (not JLabel) and it uses that component to render each item
in our list. The getListCellRendererComponent() method sets the check box text, deter-
mines whether the current list item is selected, and sets the check box’s selection state accord-
ingly (using its inherited JCheckBox.setSelected() method).

NOTE We could alternatively use JLabels with custom icons to imitate checked and un-
checked boxes. However, the use of JCheckBox is preferred for graphical consis-
tency with other parts of a GUI.

Class CheckListener
This class implements both MouseListener and KeyListener to process all user input
which can change the state of check boxes in the list. Its constructor takes a CheckBoxList
instance as parameter in order to gain access to the CheckBoxList.recalcTotal() method.

We’ve assumed in this example that an item’s checked state should be changed if:

1 The user clicks the mouse close enough to the item’s check box (for example, up to 20
pixels from the left edge).

2 The user transfers focus to the item (with the mouse or keyboard) and then presses the
SPACE bar.

Bearing this in mind, two methods need to be implemented: mouseClicked() and key-
Pressed(). They both call the protected method doCheck() if either of the conditions
described above are satisfied. All other methods from the MouseListener and KeyListener
interfaces have empty implementations.

JSPINNER 281

The doCheck() method determines the first selected index (the only selected index—recall
that our list uses single-selection mode) in the list component and it retrieves the correspond-
ing InstallData object. This method then calls invertSelected() to change the checked
state of that object. It then repaints the list component and displays the new total by calling
the recalcTotal() method.

Class InstallData
The InstallData class describes a data unit for this example. InstallData encapsulates
three variables described at the beginning of this section: m_name, m_size, and m_selected.
Its only constructor takes three parameters to fill these variables. Besides the obvious set/get
methods, the invertSelected() method is defined to negate the value of m_selected. The
toString() method determines the String representation of this object to be used by the
list renderer.

10.5.2 Running the code

Figure 10.9 shows our list composed of check boxes in action. Select any item and click over the
check box, or press the Space bar to change its checked state. Note that the total kilobytes
required for these imaginary implementations is dynamically displayed in the label at the bottom.

When to use check boxes in a list Check boxes tend to be used inside bor-
dered panes to show groupings of mutually related binary attributes. This tech-
nique is good for a fixed number of attributes; however, it becomes problematic
when the number of items can vary.

The technique shown here is a good way to solve the problem when the collec-
tion of attributes or data is of an undetermined size. Use a check box list for
binary (true/false) selection of items from a collection of a size which cannot
be determined at design time.

For example, imagine the team selection for a football team. The coach has a
pool of players and he needs to indicate who has been picked for the Saturday
game. You could show the whole pool of players (sorted alphabetically or by
number) in the list and allow the coach to check off each selected player.

10.6 JSPINNER

class javax.swing.JSpinner
JSpinner is a new component added in Java 1.4. It consists of an input text area (by default
a JTextField) and two small buttons with up and down arrows on the right of the input
field. Pressing these buttons, or using up and down arrow keys, moves the selection up or
down through an ordered sequence of items. This basic functionality of selecting from a list of
items is similar to JList and JComboBox except there is no need for a drop–down list (which
potentially could obscure other parts of the application), and the data can be unbounded.

JSpinner’s items are maintained in instances of SpinnerModel which can be set/
retrieved through JSpinner’s setModel()/getModel() methods. The currently shown
item can be changed by typing a new value into the editor and pressing ENTER. Concrete

282 CHAPTER 10 LIST BOXES AND SPINNERS

SpinnerModel implementations for some commonly used data types are provided: Spin-
nerDateModel, SpinnerListModel, and SpinnerNumberModel. The JSpinner con-
structor, and the setModel() method, are designed such that JSpinner will change its editor
based on the type of SpinnerModel in use. There are four default editors used by JSpinner
(defined as static inner classes):

• JSpinner.ListEditor: Consists of a text field to display a String in the array or
List of a SpinnerListModel.

• JSpinner.DateEditor: Consists of a JFormattedTextField whose format is
defined by a DateFormatter instance.

• JSpinner.NumberEditor: Consists of a JFormattedTextField whose format is
defined by a NumberFormatter instance.

• JSpinner.DefaultEditor: This is used by default for all other SpinnerModel
implementations. It is read-only (i.e., it doesn’t allow changes to the model data) and
consists of a JFormattedTextfield.

The editor component used by JSpinner is automatically configured by the constructor and
can be assigned with the setEditor() method. As with other Swing components, the
JSpinner editor component does not need to implement any special interface. Instead it
must register itself as ChangeListener with a SpinnerModel and promptly display updated
values. For this reason, when changing editors we must be careful to deregister the previous
editor’s ChangeListener from the current SpinnerModel. JSpinner’s setEditor()
method handles this for us by default, which is why we must be careful when overriding this
method in subclasses.

NOTE In the first edition David Karr contributed an example of a custom Spinner com-
ponent, which was basically his own version of JSpinner. Those who have this
edition may want to take a look at the example in chapter 19. We’ve removed this
example for the second edition due to redundancy. However, David was right-on
in his vision for one of the next Swing components! (In that example David also
implemented a component called DateTimeEditor which corresponds to JFor-
mattedTextField, another new component in Java 1.4. See chapter 11.)

10.6.1 The SpinnerModel Interface

abstract interface javax.swing.SpinnerModel
This interface represents the data model used by JSpinner. The data stored in this model
consists of a contiguous sequence of elements that is not necessarily bounded. For instance,
the getNextValue() or getPreviousValue() methods can be overriden to return the
next highest or lowest integer than currently selected value (in this case the data model
is unbounded).

Unlike ListModel, SpinnerModel doesn’t allow random access to elements. At any
given time only the current, next, and previous values in the sequence can be accessed:
getValue(), getNextValue(), and getPreviousValue(). The current value can be
changed with the setValue() method, which is normally called by JSpinner’s editor.

A ChangeListener is normally registered with the current SpinnerModel to be
notified when the current value is changed. In this way a programmatic change in the current
value will still be reflected in the current editor component.

USING JSPINNER TO SELECT NUMBERS 283

10.6.2 AbstractSpinnerModel

abstract class Javax.swing.AbstractSpinnerModel
This class is the default abstract implementation of the SpinnerModel interface. It defines
the default ChangeListener behavior.

10.6.3 SpinnerDateModel

class SpinnerDateModel
A subclass of AbstractSpinnerModel designed to hold or represent an interval of Dates
(bounded or unbounded). The constructor takes a current Date, maximum Date, minimum
Date, and date field to increment by (see Javadocs for complete list of valid fields).

10.6.4 SpinnerListModel

class SpinnerListModel
A subclass of AbstractSpinnerModel designed to hold a given sequence of objects. The con-
structor takes an array or List.

10.6.5 SpinnerNumberModel

class SpinnerNumberModel
A subclass of AbstractSpinnerModel designed to hold or represent an interval of numbers
(bounded or unbounded). The constructor takes a current value, maximum value, minimum
value, and increment size as parameters. Values can either be ints or doubles. A special
constructor also allows the use of Comparable implementations for the maximum and
minimum values, allowing us to further customize sequencing behavior (Integer, Float,
Double, and Date are few of the classes that implement the Comparable interface).

10.7 USING JSPINNER TO SELECT NUMBERS

In this example we’ll use JSpinner to select an integer from 0 to infinity. Selection can be
made by typing the number into the input field directly, or by using the up/down arrow keys
or buttons.

Figure 10.10 JSpinner number selection

284 CHAPTER 10 LIST BOXES AND SPINNERS

Example 10.5

see \Chapter 10\5

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

class SpinnerDemo extends JFrame {

public SpinnerDemo() {
super(“Spinner Demo (Numbers)”);

JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(new JLabel(“Select integer: “));

SpinnerModel model = new SpinnerNumberModel (
new Integer(0), //initial value
new Integer(0), //Minimum value
null, //Maximum value - not set
new Integer(2) // Step

);
JSpinner spn = new JSpinner(model);
p.add(spn);

getContentPane().add(p, BorderLayout.NORTH);
setSize(400,75);

}

public static void main(String args[]) {
SpinnerDemo mainFrame = new SpinnerDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setVisible(true);

}
}

10.7.1 Understanding the code

Class Demo/Spinner
Class SpinnerDemo extends JFrame to implement the frame container for this example.
A JSpinner is created with a SpinnerNumberModel instance. All spinner-related informa-
tion is specified in the model’s constructor: initial value (0), minimum value (0), maximum
value (not set), and step size (2). Note that if we had used a fully bounded interval, we could
have used a simpler constructor which takes primitive int types rather than Integers
as parameters.

10.7.2 Running the code

Figure 10.10 shows SpinnerDemo in action displaying an integer value selected by using the
arrow buttons. Note that the interval moves up/down by two, as specified in the constructor.

SpinnerDemo.java

USING JSPINNER TO SELECT DATES 285

However, also note that if you type a new value into the editor, it will not be tested upon the
spinner’s bounded interval. So, for example, in this example try typing in –1. The arrow but-
tons and keys no longer function until it is replaced with positive number (or zero).

10.8 USING JSPINNER TO SELECT DATES

In this example we’ll use JSpinner to select a date. Selection can be made by typing the num-
ber into the input field directly, or by using the up/down arrow keys or buttons. The selection
interval in this example is Calendar.DAY_OF_MONTH.

Example 10.6

see \Chapter 10\6

import java.awt.*;
import javax.awt.util.*;

import javax.swing.*;
import javax.swing.border.*;

class SpinnerDemo extends JFrame {

public SpinnerDemo() {
super(“Spinner Demo (Dates)”);

JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(new JLabel(“Select date: “));

SpinnerModel model = new SpinnerDateModel (
new Date(), //initial value
null, //Minimum value - not set
null, //Maximum value - not set
Calendar.DAY_OF_MONTH // Step

);
JSpinner spn = new JSpinner(model);
p.add(spn);

getContentPane().add(p, BorderLayout.NORTH);
setSize(400,75);

}

public static void main(String args[]) {

SpinnerDemo.java

Figure 10.11 JSpinner value selection

286 CHAPTER 10 LIST BOXES AND SPINNERS

SpinnerDemo mainFrame = new SpinnerDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setVisible(true);

}
}

10.8.1 Understanding the code

Class SpinnerDemo
Class SpinnerDemo extends JFrame to implement the frame container for this example.
A JSpinner component is created with a SpinnerDateModel instance. All spinner-related
information is specified in the model’s constructor: initial value (current date), minimum
value (not set), maximum value (not set), and step component (day of month).

10.8.2 Running the code

Figure 10.11 shows SpinnerDemo in action displaying the date value at the time the screen-
shot was taken. You can type a new date value or use the up/down arrow keys or buttons to
adjust the day component.

10.9 USING JSPINNER TO SELECT A VALUE FROM A LIST

In this example we’ll use JSpinner to select a value from an ordered set of given values
(abbreviations of the United States). Selection can be made by typing the value into the input
field directly, or by using the up/down arrow keys or buttons.

Example 10.7

see \Chapter 10\7

import java.awt.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;

class SpinnerDemo extends JFrame {

public spinnerDemo() {
super(“Spinner Demo (List)”);

SpinnerDemo.java

Figure 10.12 JSpinner value selection

USING JSPINNER TO SELECT A VALUE FROM A LIST 287

JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(newJLabel(“Select state: “));

String [] states = {
“AK”, “AL”, “AR”, “AZ”, “CA”,
“CO”, “CT”, “DE”, “FL”, “GA”,
“HI”, “IA”, “ID”, “IL”, “IN”,
“KS”, “KY”, “LA”, “MA”, “MD”,
“ME”, “MI”, “MN”, “MO”, “MS”,
“MT”, “NC”, “ND”, “NE”, “NH”,
“NJ”, “NM”, “NV”, “NY”, “OH”,
“OK”, “OR”, “PA”, “RI”, “SC”,
“SD”, “TN”, “TX”, “UT”, “VA”,
“VT”, “WA”, “WV”, “WI”, “WY”

);
SpinnerModel model = new SpinnerListModel(states)
JSpinner spn = new JSpinner(model);
p.add(spn);

getContentPane().add(p, BorderLayout.NORTH);
setSize(400,75);

}

public static void main(String args[]) {
SpinnerDemo mainFrame = new SpinnerDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setVisible(true);

}
}

10.9.1 Understanding the code

Class SpinnerDemo
Class SpinnerDemo extends JFrame to implement the frame container for this example.
A JSpinner component is created with a SpinnerListModel instance. This model takes an
array of allowed values (abbreviations of the United States) in the constructor.

10.9.2 Running the code

Figure 10.2 shows SpinnerDemo in action. You can type a new value or use the up/down
arrow keys or buttons to select the next state in the sequence. Note that when you first start
the example you need to press the up arrow or key to get to the next value in the sequence.
This feels somewhat unintuitive, but it is based on the index of the values in the array. AK is 0,
AL is 1, and so forth. Note also that you can type anything you want into the editor without
affecting the sequencing and the functionality of the up/down arrow keys and buttons.

288 CHAPTER 10 LIST BOXES AND SPINNERS

10.10 EXTENDING THE FUNCTIONALITY OF JSPINNER

In this example we show how to speed up selection by adding functionality to move several
interval steps at once, and to move to the beginning or end of the list quickly. This is achieved
by assigning the following actions to these keys:

• PgUp: move 5 steps up (if new value is less than maximum bound)
• PgDn: move 5 steps down (if new value is greater than minimum bound)
• Ctrl-Home: move to the maximum bound (if set)
• Ctrl-End: move to the minimum bound (if set)

Example 10.8

see \Chapter 10\8

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

class SpinnerDemo extends JFrame {

public static final int PAGE_SIZE = 5;

SpinnerNumberModel m_model;

public SpinnerDemo() {
super(“Spinner Demo (Keys)”);

JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(new JLabel(“Use PgUp, PgDn, Crl-Home, Ctrl-End: “));

m_model = new SpinnerNumberModel(0, 0, 100, 1)
JSpinner spn = new JSpinner(m_model);
p.add(spn);

spn.registerKeyboardAction(new PgUpMover(),
KeyStroke.getKeyStroke(KeyEvent.VK_PAGE_UP, 0),
JComponent.WHEN_IN_FOCUSED_WINDOW);

spn.registerKeyboardAction(new PgDnMover(),
KeyStroke.getKeyStroke(KeyEvent.VK_PAGE_DOWN, 00),

SpinnerDemo.java

Figure 10.13 JSpinner custom selection behavior

New keyboard actions
to move spinner
selection 5 places
forward or backward;
or to the top
or bottom item

EXTENDING THE FUNCTIONALITY OF JSPINNER 289

JComponent.WHEN_IN_FOCUSED_WINDOW);
spn.registerKeyboardAction(new HomeMover(),
KeyStroke.getKeyStroke(KeyEvent.VK_HOME, KeyEvent.CTRL_MASK),
JComponent.WHEN_IN_FOCUSED_WINDOW);

getContentPane().add(p, BorderLayout.NORTH);
setSize(400,75);

}

public static void main(String args[]) {
SpinnerDemo mainFrame = new SpinnerDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setVisible(true);

}

/**
* Moves Spinner’s value PAGE_SIZE steps up
*/

class PgUpMover implements ActionListener {
public void actionPerformed(ActionEvent e) {
Integer newValue = new Integer(
m_model.getNumber().intValue() -
PAGE_SIZE*m_model.getStepSize().intValue());

// Check maximum value, SpinnerNumberModel won’t do it for us
Comparable maximum = m_model.getMaximum();
if (maximum != null && maximum.compareTo(newValue) < 0)
return;

m_model.setValue(newValue);
}

}

/**
* Moves Spinner’s value PAGE_SIZE steps down
*/

class PgDnMover implements ActionListener {
public void actionPerformed(ActionEvent e) {
Integer newValue = new Integer(
m_model.getNmber().intValue() -
PAGE_SIZE*m_model.getSkpSize().intValue());

// Check minimum value, SpinnerNumberModel won’t do it for us
Comparable minimum = m_model.getMinimum();
if (minimum != null && minimum.compareTo(newValue) > 0)
return;

m_model.setValue(newValue);
}

}

/**
* Moves Spinner’s value to minimum
*/

class HomeMover implements ActionListener {
public void actionPerformed(ActionEvent e) {

New keyboard actions
to move spinner selection

5 places forward or backward;
or to the top or bottom item

Moves spinner value
forward 5 places
if possible

Moves spinner value
back 5 places
if possible

Moves spinner
to the maximum
possible value

290 CHAPTER 10 LIST BOXES AND SPINNERS

Comparable minimum = m_model.getMinimum();
if (minimum != null)
m_model.setValue(minimum);

}
}

/**
* Moves Spinner’s value to maximum
*/

class EndMover implements ActionListener {
public void actionPerformed(ActionEvent e) {
Comparable maximum = m_model.getMaximum();
if (maximum != null)
m_model.setValue(maximum);

}
}

}

10.10.1 Understanding the code

Class SpinnerDemo
This example extends example 10.7 by registering four keyboard actions:

• PgUpMover on PgUp key
• PgDnMover onPgDn key
• HomeMover on Ctrl-Home key
• EndMover on Ctrl-End key

Class PgUpMover
This ActionListener calculates a new value by adding the current value with the product
of the PAGE_SIZE and step value. If the maximum value is set and the resulting new value
does not exceed the maximum value, the new value is assigned to the model and will be dis-
played in the spinner’s editor. Note that the Comparable.compareTo() method is used for
comparison.

Class PgDnMover
This ActionListener calculates a new value by subtracting the product of the PAGE_SIZE
and step value from the current value. If the minimum value is set and the resulting new
value is not smaller than the minimum value, the new value is assigned to the model and will
be displayed in spinner’s editor. Note that the Comparable.compareTo() method is used
for comparison.

Class HomeMover
This ActionListener checks the maximum value, and, if not null, uses it for the spinner
model’s new value.

Class EndMover
This ActionListener checks the minimum value, and, if not null, uses it for the spinner
model’s new value.

Moves spinner value
to maximum possible

EXTENDING THE FUNCTIONALITY OF JSPINNER 291

10.10.2 Running the code

Figure 10.13 shows SpinnerDemo in action after having pressed PgUp 5 times. Try running
this example and use the PgUp, PgDn, Ctrl-Home, Ctrl-End keypads to speed up the selec-
tion. Note that the arrow buttons and keys function normally.

292

C H A P T E R 1 1

Text components and undo
11.1 Text components overview 292
11.2 Using the basic text

components 304
11.3 JFormattedTextField 306
11.4 Basic JFormattedTextField

example 310

11.5 Using Formats and
InputVerifier 312

11.6 Formatted Spinner example 319
11.7 Undo/redo 321

11.1 TEXT COMPONENTS OVERVIEW

This chapter summarizes the most basic and commonly used text component features, and it
introduces the undo package. In the next chapter we’ll develop a basic JTextArea application
to demonstrate the use of menus and toolbars. In chapter 19, we’ll discuss the inner workings
of text components in much more detail. In chapter 20, we’ll develop an extensive JText-
Pane html editor application with powerful font, style, paragraph, find and replace, and spell-
checking dialogs.

11.1.1 JTextComponent

abstract class javax.swing.text.JTextComponent
The JTextComponent class serves as the superclass of each Swing text component. All text
component functionality is defined by this class, along with the plethora of supporting
classes and interfaces provided in the text package. The text components themselves are
members of the javax.swing package: JTextField, JPasswordField, JTextArea, JEd-
itorPane, and JTextPane.

TEXT COMPONENTS OVERVIEW 293

NOTE We have purposely left out most of the details behind text components in this
chapter so we could provide only the information that you will most likely need on
a regular basis. If, after reading this chapter, you would like a more thorough
understanding of how text components work, and how to customize them or take
advantage of some of the more advanced features, see chapters 19 and 20.

JTextComponent is an abstract subclass of JComponent, and it implements the Scrolla-
ble interface (see chapter 7). Each multi-line text component is designed to be placed in a
JScrollPane.

Textual content is maintained in instances of the javax.swing.text.Document inter-
face, which acts as the text component model. The text package includes two concrete Document
implementations: PlainDocument and StyledDocument. PlainDocument allows one font
and one color, and it is limited to character content. StyledDocument is much more complex,
allowing multiple fonts, colors, embedded images and components, and various sets of hier-
archically resolving textual attributes. JTextField, JPasswordField, and JTextArea each
use a PlainDocument model. JEditorPane and JTextPane use a StyledDocument model.
We can retrieve a text component’s Document with getDocument(), and assign one with
setDocument(). We can also attach DocumentListeners to a document to listen for changes
in that document’s content (this is much different than a key listener because all document
events are dispatched after a change has been made).

We can assign and retrieve the color of a text component’s Caret with setCaretColor()
and getCaretColor(). We can also assign and retrieve the current Caret position in a text
component with setCaretPosition() and getCaretPosition().

JAVA 1.4 In Java 1.4 the new NavigationFilter class has been added in the javax.-
swing.text package. By installing an instance of NavigationFilter on a text
component, using the new setNavigationFilter() method, you can control
and restrict caret movement. NavigationFilter is most commonly used in com-
bination with an instance of JFormattedTextField.AbstractFormatter.
See section 11.3.

The disabledColor property assigns a font color to be used in the disabled state. The
foreground and background properties inherited from JComponent also apply; the fore-
ground color is used as the font color when a text component is enabled, and the back-
ground color is used as the background for the whole text component. The font property
specifies the font to render the text in. The font property and the foreground and back-
ground color properties do not overpower any attributes assigned to styled text components
such as JEditor-Pane and JTextPane.

All text components maintain information about their current selection. We can retrieve
the currently selected text as a String with getSelectedText(), and we can assign and
retrieve specific background and foreground colors to use for selected text with setSelec-
tionBackground()/getSelectionBackground() and setSelectionForeground()/
getSelectionForeground() respectively.

JTextComponent also maintains a bound focusAccelerator property, which is a
char that is used to transfer focus to a text component when the corresponding key is pressed
simultaneously with the ALT key. This works internally by calling requestFocus() on the text
component, and it will occur as long as the top-level window containing the given text compo-

294 CHAPTER 11 TEXT COMPONENTS AND UNDO

nent is currently active. We can assign/retrieve this character with setFocusAccelerator()/
getFocusAccelerator(), and we can turn this functionality off by assigning ‘\0’.

The read() and write() methods provide convenient ways to read and write text doc-
uments. The read() method takes a java.io.Reader and an Object that describes the
Reader stream, and it creates a new document model appropriate to the given text component
containing the obtained character data. The write() method stores the content of the doc-
ument model in a given java.io.Writer stream.

WARNING We can customize any text component’s document model. However, it is impor-
tant to realize that whenever the read() method is invoked, a new document will
be created. Unless this method is overriden, a custom document that had been pre-
viously assigned with setDocument() will be lost whenever read() is invoked,
because the current document will be replaced by a default instance.

11.1.2 JTextField

class javax.swing.JTextField
JTextField is a single-line text component that uses a PlainDocument model. The horizon-
talAlignment property specifies text justification within the text field. We can assign/retrieve
this property with setHorizontalAlignment()/getHorizontalAlignment. Acceptable val-
ues are JTextField.LEFT, JTextField.CENTER, and JTextField.RIGHT.

There are several JTextField constructors, two of which allow us to specify a number of
columns. We can also assign/retrieve this number, the columns property, with setColumns()/
getColumns(). Specifying a certain number of columns will set up a text field’s preferred size
to accommodate at least an equivalent number of characters. However, a text field might not
receive its preferred size due to the current layout manager. Also, the width of a column is the
width of the character ‘m’ in the current font. Unless a monospaced font is used, this width
will be greater than most other characters.

The following example creates 14 JTextFields with a varying number of columns. Each
field contains a number of ms equal to its number of columns.

Example 11.1

see \Chapter11\1

import javax.swing.*;
import java.awt.*;

public class JTextFieldTest extends JFrame
{
 public JTextFieldTest() {
 super("JTextField Test");

 getContentPane().setLayout(new FlowLayout());

 JTextField textField1 = new JTextField("m",1);
 JTextField textField2 = new JTextField("mm",2);
 JTextField textField3 = new JTextField("mmm",3);

JTextFieldTest.java

TEXT COMPONENTS OVERVIEW 295

 JTextField textField4 = new JTextField("mmmm",4);
 JTextField textField5 = new JTextField("mmmmm",5);
 JTextField textField6 = new JTextField("mmmmmm",6);
 JTextField textField7 = new JTextField("mmmmmmm",7);
 JTextField textField8 = new JTextField("mmmmmmmm",8);
 JTextField textField9 = new JTextField("mmmmmmmmm",9);
 JTextField textField10 = new JTextField("mmmmmmmmmm",10);
 JTextField textField11 = new JTextField("mmmmmmmmmmm",11);
 JTextField textField12 = new JTextField("mmmmmmmmmmmm",12);
 JTextField textField13 = new JTextField("mmmmmmmmmmmmm",13);
 JTextField textField14 = new JTextField("mmmmmmmmmmmmmm",14);

 getContentPane().add(textField1);
 getContentPane().add(textField2);
 getContentPane().add(textField3);
 getContentPane().add(textField4);
 getContentPane().add(textField5);
 getContentPane().add(textField6);
 getContentPane().add(textField7);
 getContentPane().add(textField8);
 getContentPane().add(textField9);
 getContentPane().add(textField10);
 getContentPane().add(textField11);
 getContentPane().add(textField12);
 getContentPane().add(textField13);
 getContentPane().add(textField14);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(300,170);

 setVisible(true);
 }

 public static void main(String argv[]) {
 new JTextFieldTest();
 }
}

Figure 11.1 illustrates the output. Notice that none of the text completely fits in its field. This
happens because JTextField does not factor in the size of its border when calculating its
preferred size, as we might expect. To work around this problem, though this is not an ideal
solution, we can add one more column to each text field. The result is shown in figure 11.2.
This solution is more appropriate when a fixed width font (monospaced) is being used.
Figure 11.3 illustrates this last solution.

Figure 11.1
JTextFields using an equal number
of columns and ”m” characters

296 CHAPTER 11 TEXT COMPONENTS AND UNDO

NOTE Using a monospaced font is always more appropriate when a fixed character limit
is desired.

JTextField also maintains a BoundedRangeModel (see chapter 13) as its horizontal-
Visibility property. This model is used to keep track of the amount of currently visible
text. The minimum is 0 (the beginning of the document), and the maximum is equal to the
width of the text field or the total length of the text in pixels (whichever is greater). The
value is the current offset of the text displayed at the left edge of the field, and the extent is
the width of the text field in pixels.

By default, a KeyStroke (see section 2.13.2) is established with the ENTER key that causes
an ActionEvent to be fired. By simply adding an ActionListener to a JTextField, we
will receive events whenever ENTER is pressed while that field has the current focus. This is very
convenient functionality, but it may also get in the way of things. To remove this registered
keystroke, do the following:

 KeyStroke enter = KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0);
 Keymap map = myJTextField.getKeymap();
 map.removeKeyStrokeBinding(enter);

JTextField’s document model can be customized to allow only certain forms of input; this
is done by extending PlainDocument and overriding the insertString() method. The
following code shows a class that will only allow six or fewer digits to be entered. We can
assign this document to a JTextField with the setDocument() method (see chapter 19 for
more about working with Documents).

 class SixDigitDocument extends PlainDocument
 {

 public void insertString(int offset,
 String str, AttributeSet a)

Figure 11.2
JTextFields using one more column
than the number of “m”characters

Figure 11.3
JTextFields using a monospaced font,
and one more column than the number
of “m” characters

TEXT COMPONENTS OVERVIEW 297

 throws BadLocationException {
 char[] insertChars = str.toCharArray();

 boolean valid = true;
 boolean fit = true;
 if (insertChars.length + getLength() <= 6) {
 for (int i = 0; i < insertChars.length; i++) {
 if (!Character.isDigit(insertChars[i])) {
 valid = false;
 break;
 }
 }
 }
 else
 fit = false;

 if (fit && valid)
 super.insertString(offset, str, a);
 else if (!fit)
 getToolkit().beep();
 }
 }

JAVA 1.4 In Java 1.4 the new JFormattedTextField component has been added to more
easily allow the creation of customized input fields. We’ll discuss this component
along with several examples of its use in sections 11.4, 11.5, and 11.6.

Java 1.4 also includes a new DocumentFilter class in the javax.swing.text
package. When an instance of DocumentFilter is installed on a Document, all in-
vocations of insertString(), remove(), and replace() get forwarded on to
the DocumentFilter. This allows clean encapsulation of all custom document
mutation code. So, for instance, the SixDigitDocument code would be more ap-
propriately built into a DocumentFilter subclass. In this way different filters can
be applied to various documents without the need to change a given Document in-
stance. To support DocumentFilters, AbstractDocument includes the new
setDocumentFilter() and getDocumentFilter() methods. DocumentFil-
ter is most commonly used in combination with an instance of JFormattedTex-
tField.AbstractFormatter. See section 11.3.

Don’t overly restrict input Filtering text fields during data entry is a power-
ful aid to usability. It helps prevent the user from making a mistake and it can
speed operations by removing the need for validation and correction proce-
dures. However, it is important not to overly restrict the allowable input. Make
sure that all reasonable input is expected and accepted.

For example, with a phone number, allow “00 1 44 654 7777,” “00+1 44 654
7777,” and “00-1-1-654-7777,” as well as “00144654777.” Phone numbers
can contain more than just numbers!

Another example involves dates. You should allow “04-06-99,” “04/06/99,”
and “04:06:99,” as well as “040699.”

298 CHAPTER 11 TEXT COMPONENTS AND UNDO

11.1.3 JPasswordField

class javax.swing.JPasswordField
JPasswordField is a fairly simple extension of JTextField that displays an echo character
instead of the actual content that is placed in its model. This echo character defaults to *, and
we can assign a different character with setEchoChar().

Unlike other text components, we cannot retrieve the actual content of a JPassword-
Field with getText() (this method, along with setText(), has been deprecated in JPass-
wordField). Instead we must use the getPassword() method, which returns an array of
chars. JPasswordField overrides the JTextComponent copy() and cut() methods to do
nothing but emit a beep, for security reasons.

Figure 11.4 shows the JTextFieldDemo example of section 11.1.2. It uses JPassword-
Fields instead, and each is using a monospaced font.

11.1.4 JTextArea

class javax.swing.JTextArea
JTextArea allows multiple lines of text and, like JTextField, it uses a PlainDocument
model. As we discussed earlier, JTextArea cannot display multiple fonts or font colors.
JTextArea can perform line wrapping and, when line wrapping is enabled we can specify
whether lines break on word boundaries. To enable/disable line wrapping we set the lineWrap
property with setLineWrap(). To enable/disable wrapping on boundaries (which will only
have an effect when lineWrap is set to true) we set the wrapStyleWord property using set-
WrapStyleWord(). Both lineWrap and wrapStyleWord are bound properties.

JTextArea overrides isManagingFocus() (see section 2.12) to return true, indicating
that the FocusManager will not transfer focus out of a JTextArea when the TAB key is
pressed. Instead, a tab is inserted into the document (the number of spaces in the tab is equal
to tabSize). We can assign/retrieve the tab size with setTabSize()/getTabSize() respec-
tively. tabSize is also a bound property.

There are several ways to add text to a JTextArea’s document. We can pass this text in
to one of the constructors, append it to the end of the document using the append() method,
insert a string at a given character offset using the insert() method, or replace a given range
of text with the replaceRange() method. As with any text component, we can also set the

Figure 11.4
JPasswordFields using a mono-
spaced font, and one more column
than number of characters

TEXT COMPONENTS OVERVIEW 299

text with the JTextComponent setText() method, and we can add and remove text directly
from its Document (see chapter 19 for more details about the Document interface).

JTextArea maintains lineCount and rows properties which can easily be confused.
The rows property specifies how many rows of text JTextArea is actually displaying. This may
change whenever a text area is resized. The lineCount property specifies how many lines of text
the document contains. Each line consists of a set of characters ending in a line break (\n). We
can retrieve the character offset of the end of a given line with getLineEndOffset(), the char-
acter offset of the beginning of a given line with getLineStartOffset(), and the line num-
ber that contains a given offset with getLineOfOffset().

The rowHeight and columnWidth properties are determined by the height and width of
the current font. The width of one column is equal to the width of the “m” character in the cur-
rent font. We cannot assign new values to the properties, but we can override the getColumn-
Width() and getRowHeight() methods in a subclass to return any value we like. We can
explicitly set the number of rows and columns a text area contains with setRows() and set-
Columns(), and the getRows() and getColumns() methods will only return these explicitly
assigned values (not the current row and column count, as we might assume at first glance).

Unless JTextArea is placed in a JScrollPane or a container using a layout manager
which enforces a certain size, it will resize itself dynamically depending on the amount of text
that is entered. This behavior is rarely desired.

11.1.5 JEditorPane

class javax.swing.JEditorPane
JEditorPane is a multi-line text component capable of displaying and editing various differ-
ent types of content. Swing provides support for HTML and RTF, but there is nothing stop-
ping us from defining our own content type, or implementing support for an alternate format.

NOTE Swing’s support for HTML and RTF is located in the javax.swing.text.html
and javax.swing.text.rtf packages.

Support for different content is accomplished in part through the use of custom EditorKit
objects. JEditorPane’s contentType property is a String that represents the type of docu-
ment the editor pane is currently set up to display. The EditorKit maintains this value
which, for DefaultEditorKit, defaults to “text/plain.” HTMLEditorKit and RTFEditor-
Kit have contentType values of “text/html” and “text/rtf ”, respectively (see chapter 19 for
more about EditorKits).

In chapter 9 we built a simple web browser using a non-editable JEditorPane by passing
a URL to its constructor. When it’s in non-editable mode, JEditorPane displays HTML
pretty much as we might expect, although it has a long way to go to match Netscape. By allow-
ing editing, JEditorPane will display an HTML document with many of its tags specially
rendered, as shown in figure 11.5 (compare this to figure 9.4).

JEditorPane is smart enough to use an appropriate EditorKit, if one is available, to
display a document passed to it. When it’s displaying an HTML document, JEditorPane
can fire HyperlinkEvents (which are defined in the javax.swing.event package). We
can attach HyperlinkListeners to JEditorPane to listen for hyperlink invocations, as

300 CHAPTER 11 TEXT COMPONENTS AND UNDO

demonstrated by the examples at the end of chapter 9. The following code shows how simple
it is to construct an HTML browser using an active HyperlinkListener.

m_browser = new JEditorPane(
 new URL("http://java.sun.com/products/jfc/tsc/index.html"));
 m_browser.setEditable(false);
 m_browser.addHyperlinkListener(new HyperlinkListener() {
 public void hyperlinkUpdate(HyperlinkEvent e) {
 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 URL url = e.getURL();
 if (url == null)
 return;
 try { m_browser.setPage(e.getURL); }
 catch (IOException e) { e.printStackTrace(); }
 }
 }
 }

JEditorPane uses a Hashtable to store its editor kit/content type pairs. We can query this
table and retrieve the editor kit associated with a particular content type, if there is one, using
the getEditorKitForContentType() method. We can get the current editor kit with
getEditorKit(), and the current content type with getContentType(). We can set the
current content type with setContentType(), and if there is already a corresponding editor
kit in JEditorPane’s hashtable, an appropriate editor kit will replace the current one. We can
also assign an editor kit for a given content type using the setEditorKitForContent-
Type() method (we will discuss EditorKits, and the ability to construct our own, in
chapter 19).

Figure 11.5 A JEditorPane displaying HTML in editable mode

TEXT COMPONENTS OVERVIEW 301

JEditorPane uses a DefaultStyledDocument as its model. In HTML mode, an HTML-
Document, which extends DefaultStyledDocument, is used. DefaultStyledDocument is
quite powerful, as it allows us to associate attributes with characters and paragraphs, and to
apply logical styles (see chapter 19).

11.1.6 JTextPane

class javax.swing.JTextPane
JTextPane extends JEditorPane and thus inherits its abilities to display various types of
content. The most significant functionalities JTextPane offers are the abilities to program-
matically assign attributes to regions of its content, embed components and images within its
document, and work with named sets of attributes called Styles (we will discuss Styles
in chapters 19 and 20).

To assign attributes to a region of document content, we use an AttributeSet imple-
mentation. We will describe AttributeSets in detail in chapter 19, but we will tell you here
that they contain a group of attributes such as font type, font style, font color, and paragraph and
character properties. These attributes are assigned through the use of various static methods
which are defined in the StyleConstants class, which we will also discuss further in chapter 19.

Example 11.2 demonstrates embedded icons, components, and stylized text. Figure 11.6
illustrates the output.

Figure 11.6 A JTextPane with inserted ImageIcons, text with
attributes, and an active JButton

302 CHAPTER 11 TEXT COMPONENTS AND UNDO

Example 11.2

see \Chapter11\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.text.*;

public class JTextPaneDemo extends JFrame
{

 // Best to reuse attribute sets as much as possible.

 static SimpleAttributeSet ITALIC_GRAY = new SimpleAttributeSet();
 static SimpleAttributeSet BOLD_BLACK = new SimpleAttributeSet();
 static SimpleAttributeSet BLACK = new SimpleAttributeSet();

 static {
 StyleConstants.setForeground(ITALIC_GRAY, Color.gray);
 StyleConstants.setItalic(ITALIC_GRAY, true);
 StyleConstants.setFontFamily(ITALIC_GRAY, "Helvetica");
 StyleConstants.setFontSize(ITALIC_GRAY, 14);

 StyleConstants.setForeground(BOLD_BLACK, Color.black);
 StyleConstants.setBold(BOLD_BLACK, true);
 StyleConstants.setFontFamily(BOLD_BLACK, "Helvetica");
 StyleConstants.setFontSize(BOLD_BLACK, 14);

 StyleConstants.setForeground(BLACK, Color.black);
 StyleConstants.setFontFamily(BLACK, "Helvetica");
 StyleConstants.setFontSize(BLACK, 14);
 }

 JTextPane m_editor = new JTextPane();

 public JTextPaneDemo() {
 super("JTextPane Demo");

 JScrollPane scrollPane = new JScrollPane(m_editor);
 getContentPane().add(scrollPane, BorderLayout.CENTER);

 setEndSelection();
 m_editor.insertIcon(new ImageIcon("manning.gif"));
 insertText("\nHistory: Distant\n\n", BOLD_BLACK);

 setEndSelection();
 m_editor.insertIcon(new ImageIcon("Lee_fade.jpg"));
 insertText(" ", BLACK);
 setEndSelection();
 m_editor.insertIcon(new ImageIcon("Bace_fade.jpg"));

 insertText("\n Lee Fitzpatrick "
 + " "
 + "Marjan Bace\n\n", ITALIC_GRAY);

JTextPaneDemo.java

TEXT COMPONENTS OVERVIEW 303

 insertText("When we started doing business under " +
 "the Manning name, about 10 years ago, we were a very " +
 "different company. What we are now is the end result of " +
 "an evolutionary process in which accidental " +
 "events played as big a role, or bigger, as planning and " +
 "foresight.\n", BLACK);

 setEndSelection();
 JButton manningButton = new JButton("Visit Manning");
 manningButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 m_editor.setEditable(false);
 try { m_editor.setPage("http://www.manning.com"); }
 catch (IOException ioe) { ioe.printStackTrace(); }
 }
 });
 m_editor.insertComponent(manningButton);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(500,450);
 setVisible(true);
 }

 protected void insertText(String text, AttributeSet set) {
 try {
 m_editor.getDocument().insertString(
 m_editor.getDocument().getLength(), text, set);
 }
 catch (BadLocationException e) {
 e.printStackTrace();
 }
 }

 protected void setEndSelection() {
 m_editor.setSelectionStart(m_editor.getDocument().getLength());
 m_editor.setSelectionEnd(m_editor.getDocument().getLength());
 }

 public static void main(String argv[]) {
 new JTextPaneDemo();
 }
}

As example 11.2 demonstrates, we can insert images and components with JTextPane’s
insertIcon() and insertComponent() methods. These methods insert the given object by
replacing the current selection. If there is no current selection, they will be placed at the begin-
ning of the document. This is why we defined the setEndSelection() method in our exam-
ple above to point the selection to the end of the document where we want to do insertions.

When inserting text, we cannot simply append it to the text pane itself. Instead we retrieve
its document and call insertString(). To give attributes to inserted text we can construct
AttributeSet implementations, and we can assign attributes to that set using the Style-
Constants class. In the example above we do this by constructing three SimpleAttri-
buteSets as static instances (so that they may be reused as much as possible).

304 CHAPTER 11 TEXT COMPONENTS AND UNDO

As an extension of JEditorPane, JTextPane uses a DefaultStyledDocument for its
model. Text panes use a special editor kit, DefaultStyledEditorKit, to manage their
Actions and Views. JTextPane also supports the use of Styles, which are named collections
of attributes. We will discuss styles, actions, and views as well as many other advanced features
of JTextPane in chapters 19 and 20.

11.2 USING THE BASIC TEXT COMPONENTS

The following example demonstrates the use of the basic text components (JTextField,
JPasswordField, and JTextArea) in a personal data dialog box.

Example 11.3

see \Chapter11\3

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import dl.*;

public class TextDemo extends JFrame {
 protected JTextField m_firstTxt;
 protected JTextField m_lastTxt;
 protected JPasswordField m_passwordTxt;
 protected JTextArea m_commentsTxt;

 public TextDemo() {
 super("Text Components Demo");
 Font monospaced = new Font(“Monospaced”, Font.PLAIN, 12);
 JPanel pp = new JPanel(new BorderLayout(0));

 JPanel p = new JPanel(new DialogLayout());
 p.setBorder(new JLabel(“First name:”));

TextDemo.java

Figure 11.7
Basic text components demo;
a personal data dialog box

USING THE BASIC TEXT COMPONENTS 305

p.add(new JLabel(“First name:”));
m_firstTxt = new JTextField(20);

 p.add(m_firstTxt);

 p.add(new JLabel(“Last name:”));
m_lastTxt = new JTextField(20);

 p.add(m_firstTxt);

 p.add(newJLabel(“Login password:”));
m_passwordTxt = new JPasswordField(20);
m_passwordTxt.setFont(monospaced);
p.add(m_passwordTxt);

p.setBorder(new CompoundBorder(
new TitledBorder(new EtchedBorder(), “personal Data”),
new EmptyBorder(1, 5, 3, 5))

);
pp.add(p, BorderLayout.NORTH);

m_commentsTxt = new JTextArea(““, 4, 30);
m_commentsTxt.setFont(monospaced);
m_commentsTxt.setLineWrap(true);
m_commentsTxt.setWrapStyleWord(true);
p = new JPanel(new BorderLayout());
p.add(new JScrollPane(m_commentsTxt));
p.setBorder(new CompoundBorder(
new TitledBorder(new EtchedBorder(), “comments”),
new EmptyBorder(3, 5, 3, 5))

);
pp.add(p, BorderLayout.CENTER);

pp.setBorder(new EmptyBorder(5, 5, 5, 5));
getContentPane().add(pp);
pack();

}

public static void main(String[] args) {
JFrame frame = new TextDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

11.2.1 Understanding the Code

Class TextDemo
This class extends JFrame to implement the frame container for the following four text com-
ponents used to input personal data:

• JTextField m_firstTxt: text field for the first name.
• JTextField m_lastTxt: text field for the last name.
• JPasswordField m_passwordTxt: password field.
• JTextArea m_commentsTxt: text area for comments.

Instructs the text area
to wrap lines and words
as more text

306 CHAPTER 11 TEXT COMPONENTS AND UNDO

The DialogLayout layout manager described in chapter 4 is used to lay out components in
pairs: label on the left, text components on the right. (Note that you don’t have to supply any
additional constraints or parameters to this layout manager.)

The various settings applied to JTextArea m_commentsTxt instruct it to wrap text by lines
and words rather than allow it to scroll horizontally as more text is entered.

11.2.2 Running the code

Figure 11.7 shows this demo in action. Note how text wraps in the comment box. Try com-
menting out the following lines individually and note the effects:

m_commentsTxt.setLineWrap(true);
M_commentsTxt.setWrapStyleWord(true);

11.3 JFORMATTEDTEXTFIELD

class javax.swing.JFormattedTextField
JFormattedTextField is a new Swing component introduced in Java 1.4. This component
extends JTextField and adds support for custom formatting.

The simplest way to use JFormattedTextField is to pass an instance of
java.text.Format class to the component’s constructor. This Format instance will be used
to enforce the format of data input as a number, date, and so forth. Subclasses of Format
include DateFormat, NumberFormat, and MessageFormat among others.

The formatting itself is handled by an instance of the inner JFormattedText-
Field.AbstractFormatter class which is normally obtained by an instance of the inner
JFormattedTextField.AbstractFormatterFactory class. The default JFormatted-
TextField constructor installs a DefaultFormatter instance as its JFormattedText-
Field.AbstractFormatter. DefaultFormatter.DefaultFormatter and its subclasses,
MaskFormatter, InternationalFormatter, DateFormatter, and NumberFormatter
are described later in this section.

The setFormatter() method is protected, indicating that you should not set the
AbstractFormatter directly. Rather, this should be done by setting the AbstractFormat-
terFactory with the setFormatterFactory() method. If you do not specify an
AbstractFormatter using this method, or with the appropriate constructor, a concrete
AbstractFormatter subclass will be used based on the Class of the current JFormatted-
TextField value. DateFormatter is used for java.util.Date values, NumberFormatter
is used for java.lang.Number values, and for all other values defaultFormatter is used.

The setValue() method takes an Object as parameter and assigns it to the value
property. It also sends this object to the AbstractFormatter instance to deal with
appropriately in its setValue() method and assign to its value property.
JFormattedTextField and its AbstractFormatter have separate value properties. During
editing AbstractFormatter’s value is updated. This value is not pushed to
JFormattedTextField until the commitEdit() method is called. This normally occurs
when ENTER is pressed or after a focus change occurs.

The getValue() method returns an appropriate Object representing the current
JFormatedTextField value. For instance, if a DateFormatter is in use a Date object will

JFORMATTEDTEXTFIELD 307

be returned. This may not be the current value maintained by AbstractFormatter. To get
the currently edited value the commitEdit() method must be invoked before getValue()
is called.

The invalidEdit() method is invoked whenever the user inputs an invalid value, thus
providing a way to give feedback to the user. The default implementation simply beeps. This
method is normally invoked by AbstractFormatter’s invalidEdit() method, which is
usually invoked whenever the user inputs an invalid character.

The isValidEdit() method returns a boolean value specifying whether or not the
current field JFormattedTextField value is valid with respect to the current
AbstractFormatter instance.

The commitEdit() method forces the current value in AbstractFormatter to be set
as the current value of the JFormattedTextField. Most AbstractFormatters invoke this
method when ENTER is pressed or a focus change occurs. This method allows us to force a
commit programmatically. (Note that when editing a value in JFormattedTextField, until
a commit occurs JFormattedTextField’s value is not updated. The value that is updated
prior to a commit is AbstractFormatter’s value.)

The setFocusLostBehavior() method takes a parameter specifying what JFormat-
tedTextField’s behavior should be when it loses the focus. The following JFormatted-
TextField constants are used for this method:

• JFormattedTextField.REVERT: revert to current value and ignore changes made to
AbstractFormatter’s value.

• JFormattedTextField.COMMIT: try to commit the current AbstractFormatter
value as the new JFormattedTextField value. This will only be successful if
AbstractFormatter is able to format its current value as an appropriate return value
from its stringToValue() method.

• JFormattedTextField.COMMIT_OR_REVERT: commit the current AbstractFor-
matter value as the new JFormattedTextField value only if AbstractFormatter is
able to format its current value as an appropriate return value from its stringToV-
alue() method. If not, AbstractFormatter’s value will revert to JFormattedText-
Field’s current value and ignore any changes.

• JFormattedTextField.PERSIST: leave the current AbstractFormatter value as is
without committing or reverting.

Note that some AbstractFormatters may commit changes as they happen, versus when
a focus change occurs. In these cases the assigned focus lost behavior will have no effect.
(This happens when DefaultFormatter’s commitsOnValidEdit property is set to true.)

11.3.1 JFormattedTextField.AbstractFormatter

abstract class javax.swing.JFormattedTextField.AbstractFormatter
An instance of this class is used to install the actual custom formatting and caret movement
functionality in a JFormattedTextField. Instances of AbstractFormatter have a Docu-
mentFilter and NavigationFilter associated with them to restrict getDocumentFil-
ter() and getNavigationFilter() methods to return custom filters as necessary.

308 CHAPTER 11 TEXT COMPONENTS AND UNDO

WARNING AbstractFormatter normally installs a DocumentFilter on its Document in-
stance and a NavigationFilter on itself. For this reason you should not install
your own, otherwise the formatting and caret movement behavior enforced by Ab-
stractFormatter will be overridden.

The valueToString() and stringToValue() methods are used to convert from Object
to String and String to Object. Subclasses must override these methods so that JFormat-
tedTextField’s getValue() and setValue() methods know how to behave. These meth-
ods throw ParseExceptions if a conversion does not occur successfully.

11.3.2 DefaultFormatter

class javax.swing.text.DefaultFormatter
This AbstractFormatter concrete subclass is used by default by JFormattedTextField
when no formatter is specified. It is meant for formatting any type of Object. Formatting is
done by calling the toString() method on the assigned value object.

In order for the value returned by the stringToValue() method to be of the appropri-
ate object type, the class defining that object type must have a that takes a String constructor
parameter.

The getValueClass() method returns the Class instance defining the allowed object
type. The setValueClass() allows you to specify this.

The setOverwriteMode() method allows you to specify whether or not text will over-
write current text in the document when typed into JFormattedTextField. By default this
is true.

The setCommitsOnValidEdit() method allows you to specify whether or not the cur-
rent value should be committed and pushed to JFormattedTextField after each successful
document modification. By default this is false.

The getAllowsInvalid() method specifies whether the Format instance should for-
mat the current text on every edit. This is the case if it returns false, the default.

11.3.3 MaskFormatter

class javax.swing.text.MaskFormatter
MaskFormatter is a subclass of DefaultFormatter that is designed to allow editing of cus-
tom formatted Strings. This formatting is controlled by a String mask that declares the
valid character types that can appear in specific locations in the document.

The mask can be set as a String passed to the constructor or to the setMask method.
The following characters are allowed, each of which represents a set of characters that will be
allowed to be entered in the corresponding position of the document:

• #: represents any valid number character (validated by Character.isDigit())
• ‘: escape character
• U: any character; lowercase letters are mapped to uppercase (validated by Charac-

ter.isLetter())
• L: any character; upper case letters are mapped to lowercase (validated by Charac-

ter.isLetter())

JFORMATTEDTEXTFIELD 309

• A: any letter character or number (validated by Character.isLetter() or Charac-
ter.isDigit())

• ?: any letter character (validated by Character.isLetter())
• *: any character
• H: any hex character (i.e., 0-9, a-f or A-F)

Any other characters not in this list that appear in a mask are assumed to be fixed and unchan-
gable. For example, the following mask will enforce the input of a U.S.–style phone number:
“(###)###-####”.

The set of valid and invalid characters can be further refined with the setValidChar-
acters() and setInvalidCharacters() methods.

By default the placeholder character is a space ‘ ‘ representing a character location that
needs to be filled in to complete the mask. The setPlaceHolderCharacter() method pro-
vides a way to specify a different character. For instance, with the phone number mask and a
‘_’ as the placeholder character, JFormattedTextfield’s content would initially look like:
“(___) ___-____”.

11.3.4 InternationalFormatter

class javax.swing.text.InternationalFormatter
InternationalFormatter extends DefaultEditor and uses a Format instance to handle
conversion to and from a String. This formatter also allows specification of maximum and
minimum allowed values with the setMaximum() and setMinimum() methods which take
Comparable instances as parameters.

11.3.5 DateFormatter

class javax.swing.text.DateFormatter
DateFormatter is an InternationalFormatter subclass which uses a java.-

text.DateFormat instance as the Format used to handle conversion from String to Date
and Date to String.

11.3.6 NumberFormatter

class javax.swing.text.NumberFormatter
NumberFormatter is an InternationalFormatter subclass which uses a java.-
text.NumberFormat instance as the Format used to handle conversion from String to
Number and Number to String. Subclasses of Number include Integer, Double, Float,
and so forth.

11.3.7 JFormattedTextField.AbstractFormatterFactory

abstract class javax.swing.JFormattedTextField.AbstractFormatterFactory
Instances of this class are used by JFormattedTextField to supply an appropriate
AbstractFormatter instance. An AbstractFormatterFactory can supply a different
AbstractFormatter depending on the state of the JFormattedTextField, or some other
criteria. This behavior is customizable by implementing the getFormatter() method.

310 CHAPTER 11 TEXT COMPONENTS AND UNDO

11.3.8 DefaultFormatterFactory

class javax.swing.text.DefaultFormatterFactory
This concrete subclass of AbstractFormatterFactory is used by default by
JFormattedTextField when no formatter factory is specified. It allows specification of
different formatters to use when JFormattedTextfield is being edited (i.e., has the focus),
just displayed (i.e., does not have the focus), when the value is null, and one for all other cases
(the default formatter).

11.4 BASIC JFORMATTEDTEXTFIELD EXAMPLE

The following example demonstrates two JFormattedTextFields used for the input of a U.S.
dollar amount and date. For the U.S. dollar amount field a locale-dependent currency format
is used.

Example 11.4

see \Chapter11\4

import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;

import dl.*;

class FTFDemo extends JFrame {

 public FTFDemo() {
super(“Formatted TextField”);

JPanel p = new JPanel(new DialogLayout2());
p.setBorder(new EmptyBorder(10, 10, 10, 10));

p.add(new JLabel(“Dollar amount:”));
NumberFormat formatMoney=
NumberFormat.getCurrencyInstance(Locale.US);

FTFDemo.java

Figure 11.8
Basic JFormattedTextField example

Formatted text field
used for a US dollar
amount; a locale-specific
NumberFormat instance
is used to regulate

BASIC JFORMATTEDTEXTFIELD EXAMPLE 311

JFormattedTextField ftMoney = new
JFormattedTextField(formatMoney);

ftMoney.setColumns(10);
ftMoney.setValue(new Double(100));
p.add(ftfMoney);

p.add(new JLabel(“Transaction date:”));
DateFormat formatDate = new SimpleDateFormat(“MM/dd/yyyy”);
JFormattedTextField ftfDate = new JFormattedTextField(formatDate);
ftfDate.setColumns(10);
ftfDate.setValue(new Date());
p.add(ftfDate);

JButton btn = new JButton(OK”);
p.add(btn););

getContentPane().add(p, BorderLayout.CENTER);
pack();

}

public static void main(String args[]) {
FTFDemo mainFrame = new FTFDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setvisible(true);

}
}

11.4.1 Understanding the code

Class FTFDemo
This class extends JFrame to implement the frame container for two JFormattedText-
Fields:

• JFormattedTextField ftMoney: used to input a U.S. dollar amount. Constructor
takes an instance of NumberFormat as parameter.

• JFormattedTextField ftDate: used to input a date. Constructor takes an instance
of SimpleDateFormat as parameter.

The NumberFormat instance is created with NumberFormat’s static getCurrency-
Instance() method. This and other Format classes provide such static methods to return
locale-specific Format instances.

The DateFormat instance is easily created as an instance of SimpleDateFormat. Simple-
DateFormat takes a String as its parameter representing how the date should be displayed.
Specific characters such as “M”, “d” and “y” have specific meanings (see Javadoc writeup on
SimpleDateFormat for a complete explanation).

11.4.2 Running the code

Figure 11.8 shows our JFormattedTextfield demo in action. Note that actual formatting
and validation occurs when a field loses its focus. If a field is improperly formatted, it will
revert to its last valid formatted value when it loses focus. Try tweaking the code to experi-
ment with the setFocusLostBehavior() method and note how the various focus lost
behaviors work.

Formatted text field used for a
US dollar amount; a locale-specific
NumberFormat instance is used
to regulate formatting

Formatted text field used
for a date; a DateFormat instance

is used to regulate formatting

312 CHAPTER 11 TEXT COMPONENTS AND UNDO

11.5 USING FORMATS AND INPUTVERIFIER

This example builds on the personal data input dialog concept in section 11.3 to demonstrate
how to develop custom formats for use by JFormattedTextField and how to use Mask-
Formatter to format and verify input. This example also demonstrates the use of the new
InputVerifier class (added in Java 1.3) to control focus transfer between text fields based
on whether or not data input is correct.

11.5.1 InputVerifier

abstract class javax.swing.InputVerifier
Instances of InputVerifier are attached to a JComponent through its new setInputVer-
ifier() method. Before focus is transferred away from that component, the attached
InputVerifier’s shouldYieldFocus() method is called to determine whether or not the
focus transfer should be allowed to occur. If this method returns true the focus transfer
should proceed, indicating that the currently focused component is in a valid state. If this
method returns false the focus transfer should not proceed, indicating that the currently
focused component is not in a valid state. This can be particularly useful when dealing with
text fields and components involving textual input, as example 11.5 shows below.

Note that InputVerifier has two methods, shouldYieldFocus() and verify().
When building an InputVerifier subclass only the verify() method need be imple-
mented, as it is the only abstract method. The shouldYieldFocus() method automatically
calls the verify() method to perform the check.

Figure 11.9
Example demonstrating the use of
custom Formats with JFormatted-
TextField, and the use of
InputVerifier to control focus trans-
fer based on content validation

USING FORMATS AND INPUTVERIFIER 313

Example 11.5

see \Chapter11\5

import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.text.*;

import dl.*;

public class TextDemo extends JFrame {
 protected JFormattedTextField m_firstTxt;
 protected JFormattedTextField m_lastTxt;
 protected JFormattedTextField m_phoneTxt;
 protected JFormattedTextField m_faxTxt;

protected JPasswordField m_passwordTxt;

protected JTextArea m_commentsTxt;
protected JLabel m_status;

 public static final String PHONE_PATTERN = “(###) ###-####”;

public TextDemo() {
super(“Text Components Demo”);
Font monospaced = new Font(“Monospaced”, Font.PLAIN, 12);
JPanel pp = new JPanel(new BorderLayout());

 JPanel p = new JPanel(new DialogLayout2());
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(new JLabel(“First name:”));
m_firstTxt = new JFormattedTextField(
new NameFormat());

m_firstTxt.setInputVerifier(new TextVerifier(
“First name cannot be empty”));

m_firstTxt.setColumns(12);
p.add(m_firstTxt;

p.add(new JLabel(“Last name:”));
m_lastTxt = new JFormattedTextField(
new NameFormat());

m_lastTxt.setColumns(12);
p.add(m_lastTxt);

p.add(new JLabel(Phone number:”));
MaskFormatter formatter = null;
try {
formatter = new Maskformatter(PHONE_PATTERN);

}
catch (ParseException pex) {

TextDemo.java

First and last name
input fields are now
formatted text fields
with NameFormat
instances regulating
formatting

Formatted text
fields using a
MaskFormatter
for phone number
input

314 CHAPTER 11 TEXT COMPONENTS AND UNDO

pex.printStackTrace();
}
m_phoneTxt = new JFormattedTextField(formatter);
m_phoneTxt.setColumns(12);
m_phoneTxt.setInputVerifier(new FTFVerifier(
“Phone format is “+PHONE_PATTERN));

p.add(m_phoneTxt);

p.add(new JLabel(“Fax number:”));
m_faxTxt = new JFormattedTextField(
new Phoneformat());

m_faxTxt.setcolumns(12);
m_faxTxt.setInputVerifier(newFTFVerifier(
“Fax format is “+PHONE_PATTERN));

p.add(m_faxTxt);

p.add(new JLabel(“Login password:”));
m_passwordTxt = new JPasswordField(20)
m_passwordTxt.setfont(monospaced);
m_passwordTxt.setInputVerifier(new TextVerifier(
“Login password cannot be empty”));

p.add(m_passwordTxt);

p.setBorder(new CompoundBorder(
new TitledBorder(new EtchedBorder(), “Personal Data”),
new EmptyBorder(1, 5, 3, 5))

);
pp.add(p, BorderLayout.NORTH));

m_commentsTxt = new JTextArea(““, 4, 30);
m_commentsTxt.setFont(monospaced);
m_commentsTxt.setLineWrap(true);
m_commentsTxt.setWrapStyleWord(true);
p = new JPanel(new BorderLayout());
p.add(new JScrollPane(m_commentsTxt));
p.setBorder(new CompoundBorder(
new TitledBorder(new EtchedBorder(), “Comments”),
new EmptyBorder(3, 5, 3, 5))

);
pp.add(p, BorderLayout.CENTER);

m_status = new JLabel(“Input data”);
m_status.setBorder(new CompoundBorder(
new EmptyBorder(2, 2, 2, 2),
new SoftBevelBorder(SoftBevelBorder.LOWERED)));

pp.add(m_status, BorderLayout.SOUTH);
Dimension d = m_status.getPreferredSize();
m_status.setPreferredSize(new Dimension(150, d.height));

pp.setBorder(new EmptyBorder(5, 5, 5,5))
getContentPane().add(pp);
pack();

}

public static void main(String[] args) {

Formatted text
fields using
a MaskFormatter
for phone
number input

Formatted text fields
using a PhoneFormat
instance for fax
number input

Custom InputVerifier
added to the
password field
to enforce nonempty
password

Label used as
a status bar

USING FORMATS AND INPUTVERIFIER 315

JFrame frame = new TextDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true)

}

/**
*Format to capitalize all words
*/

class NameFormat extends Format {
public StringBuffer format(Object obj, StringBuffer toAppendTo,

FieldPosition fieldPosition) {
fieldPosition.setBeginIndex(toAppendTo.length());
String str = obj.toString();
char prevCh = ‘ ‘;
for (int k=0; k<str.length(); k++) {

char nextCh = str.charAt(k);
if (Character.isLetter(nextCh) && preCh ==’ ‘)

nextCh = Character.toTitleCase(nextCh);
toApendTo.append(nextCh);
prevCh = nextCh;

}
fieldPosition.setEndIndex(toAppendTo.length());
return toAppendTo;

}

/**
*Format phone numbers
*/

class PhoneFormat extends Format {
public StringBuffer format(Object obj, StringBuffer toAppendTo,

FieldPosition fieldPosition) {
fieldPosition.setBeginIndex(toAppendTo.length());

// Get digits of the number
String str = obj.toString();
StringBuffer number = new StringBuffer();
for (int k=0; k<str.length(); k++) {

char nextCh = str.charAt(k);
if (Character.isDigit(nextCh)) {

number.append(nextCh);
else if (Character.isLetter(nextCh)) {

nextCh = Character.toUpperCase(nextCh);
switch (nextCh) {
case ‘A’:
case ‘B’:
case ‘C’:

number.append(‘2’);
break;

case ‘D’:
case ‘E’:
case ‘F’:

number.append(‘3’);
break;

Custom Format to capitalize
each word separated by a space

Custom Format for phone numbers
allowing extension and converting letter
characters to their digit equivalents

316 CHAPTER 11 TEXT COMPONENTS AND UNDO

case ‘G’:
case ‘H’:
case ‘I’:

number.append(‘4’);
break;

case ‘J’:
case ‘K’:
case ‘L’:

number.append(‘5’);
break;

case ‘M’:
case ‘N’:
case ‘O’:

number.append(‘6’);
break;

case ‘P’:
case ‘Q’:
case ‘R’:
case ‘S’:

number.append(‘7’);
break;

case ‘T’:
case ‘U’:
case ‘V’:

number.append(‘8’);
break;

case ‘W’:
case ‘X’:
case ‘Y’:
case ‘Z’:

number.append(‘9’);
break;

}
}

}

// Format digits according to the pattern
int index = 0
for (int k=0; k<PHONE_PATTERN.length(); k++) {

char ch = PHONE_PATTERN.charAt(k);
if (ch == ‘#’) {

if (index >=number.length())
break;

toAppendTo.append(number.charAt(index++));
}
else

toAppendTo.append(ch);
}

fieldPosition.setEndIndex(toAppendTo.length());
return toAppend(ch);

}

USING FORMATS AND INPUTVERIFIER 317

public Object parseObject(String text, ParsePosition pos) {
pos.setIndex(pos.getIndex()+text.length());
return text;

}
}

/**
* Verify input to JTextField
*/

class TextVerifier extends InputVerifier {
private String m_errMsg;

public TextVerifier(String errMsg) {
m_errMsg = errMsg;

}

public boolean verify(JComponent input) {
m_status.setText(““);
if (!input instanceof JTextField))

return true;
JTextField txt = (JTextField)input;
String str = txt.getText();
if (str.length() == 0) {

m_status.setText(m_errMsg);
return false;

}
return true;

}
}

/**
* Verify input to JFormattedTextField
*/

class FTFVerifier extends InputVerifier {
private String m_errMsg;

public FTFVerifier(String errMsg) {
m_errMsg = errMsg;

}

public boolean verify(JComponent input) {
m_status.setText(““);
if (!input instanceof JFormattedTextField))

return true;
JFormattedTextField ftf = (JFormattedTextField)input;
JFormattedTextField.AbstractFormatter formatter =

ftf.getFormatter();
if (formatter == null)

return true;
try {

formatter.stringToValue(ftf.getText());
return true;

}
catch (ParseException pe) {

m_status.setText(m_errmsg);

Input Verifier to enforce
nonempty text fields

Input Verifier to enforce
validation against
current formatter

318 CHAPTER 11 TEXT COMPONENTS AND UNDO

return false;
}

}
}

}

11.5.2 Understanding the code

Class TextDemo
This example extends the TextDemo example from section 11.3. The following changes have
been made:

• m_firstTxt and m_lastTxt are now JFormattedTextFields with an instance of
our custom NameFormat class attached as the Format. Also, m_firstTxt receives an
instance of our TextVerifier as an InputVerifier.

• JFormattedTextField m_phoneTxt has been added for phone number input. This
component’s Format is an instance of MaskFormatter with phone number mask
PHONE_PATTERN. Also, m_phoneTxt receives an instance of our custom FTFVerifier
as an InputVerifier.

• JFormattedTextField m_faxTxt has been added to allow input of a fax number.
Unlike m_phoneTxt, this component’s Format is an instance of our custom PhoneFor-
mat class.

• JPasswordField m_passwordTxt receives an instance of TextVerifier as an
InputVerifier.

• JLabel m_status has been added to the bottom of the frame to display input errors in
formatted fields.

Class NameFormat
The purpose of this custom Format is to capitalize all words in an input string. The for-
mat() method splits the input string into space-separated words and replaces the first letter of
each word by its capitalized equivalent one. Note how the FieldPosition parameter is used.

Class PhoneFormat
This custom Format presents an alternative to using MaskFormatter to format phone num-
bers. The advantages PhoneFormat provides are:

• Does not always display empty mask: “() - “ in our case.

• Allows input of various lengths to allow for telephone extensions, for instance. (This can
be viewed as either an advantage or disadvantage, depending on your situation.)

• Replaces letter characters in a phone number with the corresponding digits (anyone who
deals with 1-800-numbers will appreciate this).

Class TextVerifier
This class extends InputVerifier to verify that the input in a JTextField is not empty. If
it is empty, this verifier does not allow focus to leave the JTextField and displays an error
message (provided in the constructor) in the status bar.

FORMATTED SPINNER EXAMPLE 319

Class FTFVerifier
This class extends InputVerifier to verify that input in a JFormattedTextField can be
formatted by its associated formatter. If a formatting error occurs, this verifier does not allow
the focus to leave the JFormattedTextField and displays an error message (provided in the
constructor) in the status bar.

BUG ALERT! From another application such as a text editor, try copying the string
“1234567890” into the clipboard (a 10-digit string). Then, position the text cursor
in the phone number field as far left as it will go and paste into the field. You will
see “(123) 456-789”. The last digit is left off, even though you can type it in man-
ually. The behavior of this has something to do with the number of “filler” charac-
ters in the mask, but we did not dig deep enough to figure out the exact
relationship. Thanks to David Karr for pointing this out.

11.6 FORMATTED SPINNER EXAMPLE

This example demonstrates how to apply formatting to a JSpinner component (a new com-
ponent added to Java 1.4, covered in chapter 10). JSpinner does not extend JTextCompo-
nent. However, some of its editors (see section 10.6) contain a JFormattedTextField
component within, allowing us to assign a Format instance to them to manage spinner input
and display.

Example 11.6

see \Chapter11\6

import java.awt.*;
import java.text.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.text.*;

class FormattedSpinnerDemo extends JFrame {

 public FormattedSpinnerDemo() {
 super(“Spinner Demo (Formatted)”);

 JPanel p = new JPanel();
 p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS))

p.setBorder(new EmptyBorder(10, 10, 10, 10));
 p.add(new JLabel(“Dollar amount: “));

FormattedSpinnerDemo.java

Figure 11.10
Formatted JSpinner example

320 CHAPTER 11 TEXT COMPONENTS AND UNDO

SpinnerModel model = new SpinnerNumberModel(
new Double(100.01),
new Double(0),
null,
new Double(20)

);
JSpinner spn = new JSpinner(model);
JFormattedTextField ftf = ((JSpinner.DefaultEditor)spn.
getEditor()).getTextField();

ftf.setColumns(10);

NumberFormatter nf = new NumberFormatter(
NumberFormat.getCurrencyInstance(Locale.US));

DefaultFormatterFactory dff = new DefaultFormatterFactory();
dff.setDefaultFormatter(nf);
dff.setDisplayFormatter(nf);
dff.setEditFormatter(nf);
ftf.setFormatterFactory(dff);

p.add(spn);

 getContentPane().add(p, BorderLayout.NORTH);
pack();

}

public static void main(String args[]) {
FormattedSpinnerDemo mainFrame = new FormattedSpinnerDemo();
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setVisible(true);

}
}

11.6.1 Understanding the code

Class FormattedSpinnerDemo
This class extends JFrame to implement the frame container for this example. A JSpinner
is created with a SpinnerNumberModel. Therefore this spinner will use a JSpinner.Num-
berEditor as its editor. We know from section 10.6 that this editor contains a JFormat-
tedTextField component. In order to access this JFormattedTextField instance, we
obtain the editor with JSpinner’s getEditor() method, and than call getTextField(),
which gives us a reference to the JFormattedTextField.

It turns out there is no simple method to assign a Format instance to the existing JFormat-
tedTextField component within a JSpinner’s editor. We have to create a DefaultFor-
matterFactory instance, set our NumberFormatter as the default, display, and edit
formatters, and than call the JFormattedTextField’s setFormatterFactory() method.

11.6.2 Running the code

Figure 11.10 shows our example in action. By accessing JSpinner’s JFormattedTextField
and assigning it a new Format, we are able to create a spinner for selection/input of a U.S.
dollar amount.

Obtain a
reference to
JSpinner’s
formatted
text field

UNDO/REDO 321

11.7 UNDO/REDO

Undo/redo options are commonplace in applications such as paint programs and word proces-
sors, and they have been used extensively throughout the writing of this book. It is interesting
that this functionality is provided as part of the Swing library, as it is completely Swing inde-
pendent. In this section we will briefly introduce the javax.swing.undo constituents and,
in the process of doing so, we will present an example showing how undo/redo functionality
can be integrated into any type of application. The text components come with built-in undo/
redo functionality, and we will also discuss how to take advantage of this.

11.7.1 The UndoableEdit interface

abstract interface javax.swing.undo.UndoableEdit
This interface acts as a template definition for anything that can be undone/redone. Imple-
mentations should normally be very lightweight, as undo/redo operations commonly occur
quickly in succession.

UndoableEdits are designed to have three states: undoable, redoable, and dead. When
an UndoableEdit is in the undoable state, calling undo() will perform an undo operation.
Similarly, when an UndoableEdit is in the redoable state, calling redo() will perform a redo
operation. The canUndo() and canRedo() methods provide ways to see whether an Undo-
ableEdit is in the undoable or redoable state. We can use the die() method to explicitly
send an UndoableEdit to the dead state. In the dead state, an UndoableEdit cannot be
undone or redone, and any attempt to do so will generate an exception.

UndoableEdits maintain three String properties, which are normally used as menu
item text: presentationName, undoPresentationName, and redoPresentationName.
The addEdit() and replaceEdit() methods are meant to be used to merge two edits and
replace an edit, respectively. UndoableEdit also defines the concept of significant and insig-
nificant edits. An insignificant edit is one that UndoManager (see section 11.7.6) ignores when
an undo/redo request is made. CompoundEdit (see section 11.7.3), however, will pay attention
to both significant and insignificant edits. The significant property of an UndoableEdit
can be queried with isSignificant().

11.7.2 AbstractUndoableEdit

class javax.swing.undo.AbstractUndoableEdit
AbstractUndoableEdit implements UndoableEdit and defines two boolean properties
that represent the three UndoableEdit states. The alive property is true when an edit is
not dead. The done property is true when an undo can be performed, and false when a
redo can be performed.

The default behavior provided by this class is good enough for most subclasses. All
AbstractUndoableEdits are significant, and the undoPresentationName and redoPre-
sentationName properties are formed by simply appending “Undo” and “Redo” to presen-
tationName.

The following example demonstrates a basic square painting program with undo/redo
functionality. This application simply draws a square outline wherever a mouse press occurs. A
Vector of Points is maintained which represents the upper left-hand corner of each square

322 CHAPTER 11 TEXT COMPONENTS AND UNDO

that is drawn on the canvas. We create an AbstractUndoableEdit subclass to maintain a ref-
erence to a Point, with undo() and redo() methods that remove and add that Point from
the Vector. Figure 11.11 illustrates the output of example 11.7.

Example 11.7

see \Chapter11\7

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.undo.*;

public class UndoRedoPaintApp extends JFrame
{
 protected Vector m_points = new Vector();
 protected PaintCanvas m_canvas = new PaintCanvas(m_points);
 protected UndoablePaintSquare m_edit;
 protected JButton m_undoButton = new JButton("Undo");
 protected JButton m_redoButton = new JButton("Redo");

 public UndoRedoPaintApp() {
 super("Undo/Redo Demo");

UndoRedoPaintApp.java

Figure 11.11 A square painting application with one level of undo/redo

UNDO/REDO 323

 m_undoButton.setEnabled(false);
 m_redoButton.setEnabled(false);

 JPanel buttonPanel = new JPanel(new GridLayout());
 buttonPanel.add(m_undoButton);
 buttonPanel.add(m_redoButton);

 getContentPane().add(buttonPanel, BorderLayout.NORTH);
 getContentPane().add(m_canvas, BorderLayout.CENTER);

 m_canvas.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 Point point = new Point(e.getX(), e.getY());
 m_points.addElement(point);
 m_edit = new UndoablePaintSquare(point, m_points);
 m_undoButton.setText(m_edit.getUndoPresentationName());
 m_redoButton.setText(m_edit.getRedoPresentationName());
 m_undoButton.setEnabled(m_edit.canUndo());
 m_redoButton.setEnabled(m_edit.canRedo());
 m_canvas.repaint();
 }
 });

 m_undoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_edit.undo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 m_canvas.repaint();
 m_undoButton.setEnabled(m_edit.canUndo());
 m_redoButton.setEnabled(m_edit.canRedo());
 }
 });

 m_redoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_edit.redo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 m_canvas.repaint();
 m_undoButton.setEnabled(m_edit.canUndo());
 m_redoButton.setEnabled(m_edit.canRedo());
 }
 });

 setSize(400,300);
setVisible(true);

 }

 public static void main(String argv[]) {
 new UndoRedoPaintApp();
 }
}

class PaintCanvas extends JPanel
{
 Vector m_points;
 protected int width = 50;

324 CHAPTER 11 TEXT COMPONENTS AND UNDO

 protected int height = 50;

 public PaintCanvas(Vector vect) {
 super();
 m_points = vect;
 setOpaque(true);
 setBackground(Color.white);
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(Color.black);
 Enumeration enum = m_points.elements();
 while(enum.hasMoreElements()) {
 Point point = (Point) enum.nextElement();
 g.drawRect(point.x, point.y, width, height);
 }
 }
}

class UndoablePaintSquare extends AbstractUndoableEdit
{
 protected Vector m_points;
 protected Point m_point;

 public UndoablePaintSquare(Point point, Vector vect) {
 m_points = vect;
 m_point = point;
 }

 public String getPresentationName() {
 return "Square Addition";
 }

 public void undo() {
 super.undo();
 m_points.remove(m_point);
 }

 public void redo() {
 super.redo();
 m_points.add(m_point);
 }
}

One thing to note about example 11.7 is that it is extremely limited. Because we are not
maintaining an ordered collection of UndoableEdits, we can only perform one undo/redo.
CompoundEdit and UndoManager directly address this limitation.

11.7.3 CompoundEdit

class javax.swing.undo.CompoundEdit
This class extends AbstractUndoableEdit to support an ordered collection of Undoable-
Edits, which are maintained as a protected Vector called edits. UndoableEdits can be

UNDO/REDO 325

added to this vector with addEdit(), but they cannot so easily be removed (for this, a sub-
class would be necessary).

Even though CompoundEdit is more powerful than AbstractUndoableEdit, it is far
from the ideal solution. Edits cannot be undone until all edits have been added. Once all
UndoableEdits are added, we are expected to call end(), at which point CompoundEdit will
no longer accept any additional edits. Once end() is called, a call to undo() will undo all edits,
whether they are significant or not. A redo() will then redo them all, and we can continue to
cycle back and forth like this as long as the CompoundEdit itself remains alive. For this reason,
CompoundEdit is useful for a predefined or intentionally limited set of states.

CompoundEdit introduces an additional state property called inProgress, which is
true if end() has not been called. We can retrieve the value of inProgess with isIn-
Progress(). The significant property, inherited from UndoableEdit, will be true if
one or more of the contained UndoableEdits is significant, and it will be false otherwise.

11.7.4 UndoableEditEvent

class javax.swing.event.UndoableEditEvent
This event encapsulates a source Object and an UndoableEdit, and it is meant to be passed
to implementations of the UndoableEditListener interface.

11.7.5 The UndoableEditListener interface

class javax.swing.event.UndoableEditListener
This listener is intended for use by any class wishing to listen for operations that can be
undone/redone. When such an operation occurs, an UndoableEditEvent can be sent to an
UndoableEditListener for processing. UndoManager implements this interface so we can
simply add it to any class that defines undoable/redoable operations. It is important to empha-
size that UndoableEditEvents are not fired when an undo or redo actually occurs, but when
an operation occurs which has an UndoableEdit associated with it. This interface declares
one method, undoableEditHappened(), which accepts an UndoableEditEvent. We are
generally responsible for passing UndoableEditEvents to this method. Example 11.8 in the
next section demonstrates this.

11.7.6 UndoManager

class javax.swing.undo.UndoManager
UndoManager extends CompoundEdit and relieves us of the limitation where undos and
redos cannot be performed until edit() is called. It also relieves us of the limitation where all
edits are undone or redone at once. Another major difference from CompoundEdit is that
UndoManager simply skips over all insignificant edits when undo() or redo() is called,
effectively not paying them any attention. Interestingly, UndoManager allows us to add edits
while inProgress is true, but if end() is ever called, UndoManager immediately starts act-
ing like a CompoundEdit.

UndoManager introduces a new state called undoOrRedo which, when true, signifies
that calling undo() or redo() is valid. This property can only be true if there is more than

326 CHAPTER 11 TEXT COMPONENTS AND UNDO

one edit stored, and only if there is at least one edit in the undoable state and one in the redo-
able state. The value of this property can be retrieved with canUndoOrRedo(), and the get-
UndoOrRedoPresentationName() method will return an appropriate name for use in a
menu item or elsewhere.

We can retrieve the next significant UndoableEdit that is scheduled to be undone or
redone with editToBeUndone() or editToBeRedone(). We can kill all stored edits with
discardAllEdits(). The redoTo() and undoTo() methods can be used to programmati-
cally invoke undo() or redo() on all edits from the current edit to the edit that is provided
as parameter.

We can set the maximum number of edits that can be stored with setLimit(). The
value of the limit property (100 by default) can be retrieved with getLimit(), and if it is
set to a value smaller than the current number of edits, the edits will be reduced using the pro-
tected trimForLimit() method. Based on the index of the current edit within the edits
vector, this method will attempt to remove the most balanced number of edits, in undoable
and redoable states, as it can in order to achieve the given limit. The further away an edit is
(based on its vector index in the edits vector), the more of a candidate it is for removal when
a trim occurs, as edits are taken from the extreme ends of the edits vector.

It is very important to note that when an edit is added to the edits vector, all edits in
the redoable state (those appearing after the index of the current edit) do not simply get moved
up one index. Rather, they are removed. So, for example, suppose in a word processor appli-
cation you enter some text, change the style of ten different regions of that text, and then undo
the five most recent style additions. Then a new style change is made. The first five style
changes that were made remain in the undoable state, and the new edit is added, also in the
undoable state. However, the five style changes that were undone (moved to the redoable state)
are now completely lost.

NOTE All public UndoManager methods are synchronized to enable thread safety, and to
make UndoManager a good candidate for use as a central undo/redo manager for
any number of functionalities.

Example 11.8 shows how we can modify our UndoRedoPaintApp example to allow multiple
undos and redos using an UndoManager. Because UndoManager implements UndoableEdit-
Listener, we should normally add UndoableEditEvents to it using the undoableEdit-
Happened() method rather than addEdit()—undoableEditHappened() calls addEdit()
for us, and at the same time allows us to keep track of the source of the operation. This enables
UndoManager to act as a central location for all undo/redo edits in an application.

Example 11.8

see \Chapter11\8

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.undo.*;

UndoRedoPaintApp.java

UNDO/REDO 327

import javax.swing.event.*;

public class UndoRedoPaintApp extends JFrame
{
 protected Vector m_points = new Vector();
 protected PaintCanvas m_canvas = new PaintCanvas(m_points);
 protected UndoManager m_undoManager = new UndoManager();

 protected JButton m_undoButton = new JButton("Undo");
 protected JButton m_redoButton = new JButton("Redo");

 public UndoRedoPaintApp() {
 super("Undo/Redo Demo");

 m_undoButton.setEnabled(false);
 m_redoButton.setEnabled(false);

 JPanel buttonPanel = new JPanel(new GridLayout());
 buttonPanel.add(m_undoButton);
 buttonPanel.add(m_redoButton);

 getContentPane().add(buttonPanel, BorderLayout.NORTH);
 getContentPane().add(m_canvas, BorderLayout.CENTER);

 m_canvas.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 Point point = new Point(e.getX(), e.getY());
 m_points.addElement(point);

 m_undoManager.undoableEditHappened(new UndoableEditEvent(m_canvas,

 new UndoablePaintSquare(point, m_points)));

 m_undoButton.setText(m_undoManager.getUndoPresentationName());

 m_redoButton.setText(m_undoManager.getRedoPresentationName());

 m_undoButton.setEnabled(m_undoManager.canUndo());

 m_redoButton.setEnabled(m_undoManager.canRedo());

 m_canvas.repaint();

 }
 });

 m_undoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_undoManager.undo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 m_canvas.repaint();
 m_undoButton.setEnabled(m_undoManager.canUndo());

 m_redoButton.setEnabled(m_undoManager.canRedo());

 }
 });

 m_redoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_undoManager.redo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 m_canvas.repaint();
 m_undoButton.setEnabled(m_undoManager.canUndo());

 m_redoButton.setEnabled(m_undoManager.canRedo());

 }

328 CHAPTER 11 TEXT COMPONENTS AND UNDO

 });

 setSize(400,300);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }

 public static void main(String argv[]) {
 new UndoRedoPaintApp();
 }
}

// Classes PaintCanvas and UndoablePaintSquare are unchanged
// from example 11.7

Run this example and notice that we can have up to 100 squares in the undoable or redoable
state at any given time. Also notice that when several squares are in the redoable state, adding
a new square will eliminate them, and the redo button will become disabled, indicating that
no redos can be performed.

11.7.7 The StateEditable interface

abstract interface javax.swing.undo.StateEditable
The StateEditable interface is intended to be used by objects that wish to maintain specific
before (pre) and after (post) states. This provides an alternative to managing undos and redos in
UndoableEdits. Once a before and after state is defined, we can use a StateEdit object to
switch between the two states. Two methods must be implemented by StateEditable imple-
mentations. storeState() is to be used by an object to store its state as a set of key/value
pairs in a given Hashtable. Normally this entails storing the name of an object and a copy of
that object (unless a primitive is stored). restoreState() is to be used by an object to restore
its state according to the key/value pairs stored in a given Hashtable.

11.7.8 StateEdit

class javax.swing.undo.StateEdit
StateEdit extends AbstractUndoableEdit, and it is meant to store the before and after
Hashtables of a StateEditable instance. When a StateEdit is instantiated, it is passed a
StateEditable object, and a protected Hashtable called preState is passed to that
StateEditable’s storeState() method. Similarly, when end() is called on a StateEdit,
a protected Hashtable called postState is passed to the corresponding StateEditable’s
storeState() method. After end() is called, undos and redos toggle the state of the
StateEditable between postState and preState by passing the appropriate Hashtable
to that StateEditable’s restoreState() method.

UNDO/REDO 329

11.7.9 UndoableEditSupport

class javax.swing.undo.UndoableEditSupport
This convenience class is used for managing UndoableEditListeners. We can add and
remove an UndoableEditListener with addUndoableEditListener() and removeUn-
doableEditListener(). UndoableEditSupport maintains an updateLevel property which
specifies how many times the beginUpdate() method has been called. As long as this value is
above 0, UndoableEdits added with the postEdit() method will be stored in a temporary
CompoundEdit object without being fired. The endEdit() method decrements the update-
Level property. When updateLevel is 0, any calls to postEdit() will fire the edit that is
passed in, or the CompoundEdit that has been accumulating edits up to that point.

WARNING The endUpdate() and beginUpdate() methods may call undoableEditHap-
pened() in each UndoableEditListener, possibly resulting in deadlock if these
methods are actually invoked from one of the listeners themselves.

11.7.10 CannotUndoException

class javax.swing.undo.CannotUndoException
This exception is thrown when undo() is invoked on an UndoableEdit that cannot be undone.

11.7.11 CannotRedoException

class javax.swing.undo.CannotRedoException
This exception is thrown when redo() is invoked on an UndoableEdit that cannot be redone.

11.7.12 Using built-in text component undo/redo functionality

All default text component Document models fire UndoableEdits. For PlainDocu-
ments, this involves keeping track of text insertions and removals, as well as any structural
changes. For StyledDocuments, however, this involves keeping track of a much larger group of
changes. Fortunately this work has been built into these document models for us. The following
example, 11.9, shows how easy it is to add undo/redo support to text components. Figure 11.9
illustrates the output.

Figure 11.12
Undo/redo functionality
added to a JTextArea

330 CHAPTER 11 TEXT COMPONENTS AND UNDO

Example 11.9

see \Chapter11\9

import java.awt.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.undo.*;
import javax.swing.event.*;

public class UndoRedoTextApp extends JFrame
{
 protected JTextArea m_editor = new JTextArea();
 protected UndoManager m_undoManager = new UndoManager();
 protected JButton m_undoButton = new JButton("Undo");
 protected JButton m_redoButton = new JButton("Redo");

 public UndoRedoTextApp() {
 super("Undo/Redo Demo");

 m_undoButton.setEnabled(false);
 m_redoButton.setEnabled(false);

 JPanel buttonPanel = new JPanel(new GridLayout());
 buttonPanel.add(m_undoButton);
 buttonPanel.add(m_redoButton);

 JScrollPane scroller = new JScrollPane(m_editor);

 getContentPane().add(buttonPanel, BorderLayout.NORTH);
 getContentPane().add(scroller, BorderLayout.CENTER);

 m_editor.getDocument().addUndoableEditListener(
 new UndoableEditListener() {
 public void undoableEditHappened(UndoableEditEvent e) {
 m_undoManager.addEdit(e.getEdit());
 updateButtons();
 }
 });

 m_undoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_undoManager.undo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 updateButtons();
 }
 });

 m_redoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try { m_undoManager.redo(); }
 catch (CannotRedoException cre) { cre.printStackTrace(); }
 updateButtons();
 }

UndoRedoTextApp.java

UNDO/REDO 331

 });

 setSize(400,300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);
 }

 public void updateButtons() {
 m_undoButton.setText(m_undoManager.getUndoPresentationName());
 m_redoButton.setText(m_undoManager.getRedoPresentationName());
 m_undoButton.setEnabled(m_undoManager.canUndo());
 m_redoButton.setEnabled(m_undoManager.canRedo());
 }

 public static void main(String argv[]) {
 new UndoRedoTextApp();
 }
}

332

C H A P T E R 1 2

Menus, toolbars
and actions
12.1 Menus, toolbars, and actions

overview 332
12.2 Basic text editor, part I: menus 346
12.3 Basic text editor, part II: toolbars and

actions 355

12.4 Basic text editor, part III: custom
toolbar components 359

12.5 Basic text editor, part IV: custom
menu components 366

12.1 MENUS, TOOLBARS, AND ACTIONS OVERVIEW

Drop-down menu bars, context-sensitive popup menus, and draggable toolbars have become
commonplace in many modern applications. It is no surprise that Swing offers these features,
and in this section we will discuss the classes and interfaces that lie beneath them. The
remainder of this chapter is then devoted to the step-wise construction of a basic text editor
application which demonstrates each feature discussed here.

12.1.1 The SingleSelectionModel interface

abstract interface javax.swing.SingleSelectionModel
This simple interface describes a model which maintains a single selected element from a given
collection. Methods to assign, retrieve, and clear a selected index are declared, as well as methods
for attaching and removing ChangeListeners. Implementations are responsible for the storage
and manipulation of the collection to be selected from, maintaining an int property representing
the selected element, and maintaining a boolean property specifying whether an element is
selected. They are expected to fire ChangeEvents whenever the selected index changes.

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 333

12.1.2 DefaultSingleSelectionModel

class javax.swing.DefaultSelectionModel
This is the default implementation of SingleSelectionModel that is used by JMenuBar and
JMenuItem. The selectedIndex property represents the selected index at any given time,
and it is –1 when nothing is selected. As expected, we can add and remove ChangeListeners,
and the protected fireStateChanged() method is responsible for dispatching ChangeEvents
whenever the selectedIndex property changes.

12.1.3 JMenuBar

class javax.swing.JMenuBar
JMenuBar is a container for JMenus that are laid out horizontally in a row; menu bars typically
reside at the top of a frame or applet. We use the add(JMenu menu) method to add a new JMenu
to a JMenuBar. We use the setJMenuBar() method in JFrame, JDialog, JApplet, JRoot-
Pane, and JInternalFrame to set the menu bar for these containers (remember from
chapter 3 that each of these containers implements RootPaneContainer, which enforces the
definition of setJMenuBar()). JMenuBar uses a DefaultSingleSelectionModel to enforce
the selection of only one child at any given time.

A JMenuBar is a JComponent subclass and, as such, it can be placed anywhere in a container
just as with any other Swing component (this functionality is not available with AWT menu bars).

WARNING JMenuBar defines the method setHelpMenu(JMenu menu), which is intended to
mark a single menu contained in a JMenuBar as the designated Help menu. The
JMenuBar UI delegate may be responsible for positioning and somehow treating
this menu differently than other menus. However, this is not implemented as of
Java 1.4, and it generates an exception if it’s used.

NOTE One feature missing in the current JMenuBar implementation, or its UI delegate, is
the ability to easily control the spacing between its JMenu children. As of Java 2 FCS,
the easiest way to control this is by overriding JMenuBar and manually taking con-
trol of its layout. (JDK 1.2.2 addressed this problem by minimizing the amount of
white space between menus.) By default, JMenuBar uses an x-oriented BoxLayout.

JMenuBar provides several methods to retrieve its child components, set/get the currently
selected item, and register/unregister with the current KeyBoardManager (see section 2.13). It
also provides the isManagingFocus() method which simply returns true to indicate that
JMenuBar handles focus management internally. The public methods processKeyEvent()
and processMouseEvent() are implemented only to satisfy the MenuElement interface
requirements (see section 12.1.10), and they do nothing by default.

12.1.4 JMenuItem

class javax.swing.JMenuItem
This class extends AbstractButton (see section 4.1) and it represents a single menu item.
We can assign icons and keyboard mnemonics just as we can with buttons. A mnemonic is
represented graphically by underlining a specific character, just as it is in buttons. Icon and
text placement can be dealt with in the same way we deal with this functionality in buttons.

334 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

We can also attach keyboard accelerators to a JMenuItem. When an accelerator is assigned
to a JMenuItem, it will appear as small text to the right of the menu item text. An accelerator
is a combination of keys that can be used to activate a menu item. Contrary to a mnemonic,
an accelerator will invoke a menu item even when the popup containing it is not visible. The
only necessary condition for accelerator activation is that the window containing the target
menu item must be currently active. To add an accelerator corresponding to CTRL+A we can
do the following:

 myJMenuItem.setAccelerator(KeyStroke.getKeyStroke(
 KeyEvent.VK_A, KeyEvent.CTRL_MASK, false);

NOTE JMenuItem is the only Swing component that graphically displays an assigned key-
board accelerator.

We normally attach an ActionListener to a menu item. As with buttons, whenever the
menu item is clicked the ActionListener is notified. Alternatively we can use Actions (dis-
cussed in section 12.1.23 and briefly in section 2.13), which provide a convenient means of
creating a menu item as well as definining the corresponding action-handling code. A single
Action instance can be used to create an arbitrary number of JMenuItems and JButtons
with identical action-handling code. We will see how this is done soon enough. It’s enough to
say here that when an Action is disabled, all JMenuItems associated with that Action are
disabled, and, as buttons always do in the disabled state, they appear grayed out.

Like any other AbstractButton descendant, JMenuItem fires ActionEvents and
ChangeEvents and allows the attachment of ActionListeners and ChangeListeners
accordingly. JMenuItem will also fire MenuDragMouseEvents (see section 12.1.13) when the
mouse enters, exits, or is dragged, or when a mouse button is released inside its bounds. It will
fire MenuKeyEvents when a key is pressed, typed, or released. Both of these Swing-specific
events will only be fired when the popup containing the corresponding menu item is visible.
As expected, we can add MenuDragMouseListeners and MenuKeyEventListeners for
notification of these events. Several public processXXEvent() methods are also provided to
receive and respond to events dispatched to a JMenuItem, some of which are forwarded from
the current MenuSelectionManager (see section 12.1.11).

12.1.5 JMenu

class javax.swing.JMenu
This class extends JMenuItem and is usually added to a JMenuBar or to another JMenu. In
the former case it will act as a menu item which pops up a JPopupMenu containing child
menu items. If a JMenu is added to another JMenu, it will appear in that menu’s correspond-
ing popup as a menu item with an arrow on its right side. When that menu item is activated
by mouse movement or keyboard selection, a popup will appear that displays its correspond-
ing child menu items. Each JMenu maintains a topLevelMenu property which is false for
submenus and true otherwise.

JMenu uses a DefaultButtonModel to manage its state, and it holds a private instance
of JPopupMenu (see section 12.1.6) to display its associated menu items when it is activated
with the mouse or a keyboard mnemonic.

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 335

NOTE Unlike its JMenuItem parent, JMenu specifically overrides setAccelerator()
with an empty implementation to disallow keyboard accelerators. This happens be-
cause it assumes that we will only want to activate a menu when it is already visible;
for this, we can use a mnemonic.

We can display/hide the associated popup programmatically by setting the popupMenuVisi-
ble property, and we can access the popup using getPopupMenu(). We can set the coordi-
nate location where the popup is displayed with setMenuLocation(). We can also assign a
specific delay time in milliseconds using setDelay() to specify how long a JMenu should
wait before displaying its popup when activated.

We use the overloaded add() method to add JMenuItems, Components, Actions (see
section 12.1.23), or Strings to a JMenu. (Adding a String simply creates a JMenuItem child
with the given text.) Similarly we can use several variations of the overloaded insert() and
remove() methods to insert and remove child components. JMenu also directly supports the
creation and insertion of separator components in its popup, using addSeparator(), which
provides a convenient means of visually organizing child components into groups.

The protected createActionChangeListener() method is used when an Action is
added to a JMenu to create a PropertyChangeListener for internal use in responding to
bound property changes that occur in that Action (see section 12.1.23). The createWinLis-
tener() method is used to create an instance of the protected inner class JMenu.WinListener,
which is used to deselect a menu when its corresponding popup closes. We are rarely concerned
with these methods; only subclasses desiring a more complete customization will override them.

Along with the event dispatching/handling that is inherited from JMenuItem, JMenu
adds functionality for firing and capturing MenuEvents that are used to notify attached
MenuListeners when its selection changes (see section 12.1.5).

Flat and wide design Usability research has shown that menus with too
many hierarchical levels don't work well. Features get buried under too many
layers. Some operating systems restrict menus to three levels—for example, the
main menu bar, a pull down menu, and a single walking popup menu.
A maximum of three levels appears to be a good rule of thumb. Don’t let your-
self be tempted to use popup menus to create a complex series of hierarchical
choices. Instead, keep menus more flat.
For each menu, another good rule of thumb is to provide 7 ± 2 options. How-
ever, if you have too many choices that must be displayed, it is better to break
this rule and go to 10 or more items than to introduce additional hierarchy.

12.1.6 JPopupMenu

class javax.swing.JPopupMenu
This class represents a small popup window that contains a collection of components laid out
in a single column by default using, suprisingly, a GridBagLayout (there is nothing stopping
us from changing JPopupMenu’s layout manager). JPopupMenu uses a DefaultSingle-
SelectionModel to enforce the selection of only one child at any given time.

JMenu simply delegates all its calls such as add(), remove(), insert(), and add-
Separator() to its internal JPopupMenu. As expected, JPopupMenu provides similar methods.

336 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

The addSeparator() method inserts an instance of the inner class JPopupMenu.Separator
(a subclass of JSeparator, which is discussed in section 12.1.7). The show() method displays
a JPopupMenu at a given position within the coordinate system of a given component. This com-
ponent is referred to as the invoker component; JPopupMenu can be assigned an invoker by set-
ting its invoker property. JComponent’s setVisible() method is overridden to display a
JPopupMenu with respect to its current invoker (by passing the invoker component as a param-
eter to the show() method), and we can change the location in which it will appear using set-
Location(). We can also control a JPopupMenu’s size with the overloaded
setPopupSize() methods, and we can use the pack() method (similar to the
java.awt.Window method of the same name) to request that a popup change size to the min-
imum required for the correct display of its child components.

NOTE JComboBox’s UI delegate uses a JPopupMenu subclass to display its popup list.

When we need to display our own JPopupMenu, it is customary, but certainly not necessary,
to do so in response to a platform-dependent mouse gesture (such as a right-click on Windows
platforms). The java.awt.event.MouseEvent class provides a simple method we can use in
a platform-independent manner to check whether a platform-dependent popup gesture has
occurred. This method, isPopupTrigger(), will return true if the MouseEvent it is called
on represents the current operating system’s popup trigger gesture.

JAVA 1.3 Java 1.3 added the new method isPopupTrigger() to JPopupMenu. This
method takes a MouseEvent as a parameter and simply calls the isPopupTrig-
ger() method on the passed-in MouseEvent.

JPopupMenu has the unique ability to act as either a heavyweight or lighweight component. It
is smart enough to detect when it will be displayed completely within a Swing container and
adjust itself accordingly. However, the default behavior may not be acceptable in some cases.
You might recall from chapter 2 that we must set JPopupMenu’s lightWeightPopupEn-
abled property to false to force it to be heavyweight and to allow the overlapping of other
heavyweight components that might reside in the same container. Setting this property to
true will force a JPopupMenu to remain lightweight. The static setDefaultLightWeight-
Popup-Enabled() method serves the same purpose, but it effects all JPopupMenus created
from that point on (in the current implementation, all popups that exist before this method is
called will retain their previous lightweight/heavyweight settings).

BUG FIX Due to an AWT bug, in Java 1.2 all popups were forced into lightweight mode
when they were displayed in dialogs, regardless of the state of the lightWeight-
PopupEnabled property. This has been fixed in Java 1.3.

The protected createActionChangeListener() method is used when an Action is
added to a JPopupMenu to create a PropertyChangeListener for internal use in respond-
ing to bound property changes that occur in that Action.

A JPopupMenu fires PopupMenuEvents (discussed in section 12.1.19) whenever it is
made visible, hidden, or cancelled. As expected, we can attatch PopupMenuListeners to cap-
ture these events.

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 337

JAVA 1.4 The Popup class is used to display a Component at a particular location. JPop-
upMenu and JToolTip use this class rather than contain the same functionality
within themselves. The PopupFactory class is a factory class used to provide Pop-
up instances which, after show() and hide() have been called, should no longer
be reused because PopupFactory recycles them. We didn’t discuss these classes
earlier because up until Java 1.4 they were package private. As of Java 1.4 the Popup
and PopupFactory classes have been exposed (i.e., made public) in the javax.-
swing package.

12.1.7 JSeparator

class javax.swing.JSeparator
This class represents a simple separator component with a UI delegate responsible for displaying
it as a horizontal or vertical line. We can specify which orientation a JSeparator should use by
changing its orientation property. This class is most often used in menus and toolbars; but it is a
JComponent subclass, and nothing stops us from using JSeparators anywhere we want.

We normally do not use JSeparator explicitly. Rather, we use the addSeparator()
method of JMenu, JPopupMenu, and JToolBar. JMenu delegates this call to its JPopupMenu
which, as we know, uses an instance of its own custom JSeparator subclass which is rendered
as a horizontal line. JToolBar also uses its own custom JSeparator subclass which has no
graphical representation, and it appears as just an empty region. Unlike menu separators, how-
ever, JToolBar’s separator allows explicit instantiation and provides a method for assigning
a new size in the form of a Dimension.

Use of a separator Use a separator to group related menu choices and sepa-
rate them from others. This provides better visual communication and better
usability by providing a space between the target areas for groups of choices. It
also reduces the chance of an error when making a selection with the mouse.

12.1.8 JCheckBoxMenuItem

class javax.swing.JCheckBoxMenuItem
This class extends JMenuItem and it can be selected, deselected, and rendered the same way as
JCheckBox (see chapter 4). We use the isSelected()/setSelected() or getState()/
setState() methods to determine/set the selection state. ActionListeners and Change-
Listeners can be attached to a JCheckBoxMenuItem for notification about changes in its state
(see the JMenuItem discussion for inherited functionality).

12.1.9 JRadioButtonMenuItem

class javax.swing.JRadioButtonMenuItem
This class extends JMenuItem and it can be selected, deselected, and rendered the same way
as JRadioButton (see chapter 4). We use the isSelected()/setSelected() or get-
State()/setState() methods to determine/set the selection state. ActionListeners and
ChangeListeners can be attached to a JRadioButtonMenuItem for notification about

338 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

changes in its state (see the JMenuItem discussion for inherited functionality). We often use
JRadioButtonMenuItems in ButtonGroups to enforce the selection of only one item in a
group at any given time.

Component overloading As a general UI design rule, it is not good to over-
load components by using them for two purposes. By adding check boxes or
radio buttons to a menu, you are changing the purpose of a menu from one of
navigation to one of selection. This is an important point to understand.
Making this change is an acceptable design technique when it will speed opera-
tion and enhance usability by removing the need for a cumbersome dialog or op-
tion pane. However, it is important to assess that it does not otherwise adversely
affect usability.
Groups of radio button or check box menu items are probably best isolated
using a JSeparator.

12.1.10 The MenuElement interface

abstract interface javax.swing.MenuElement
This interface must be implemented by all components that want to act as menu items. By
implementing the methods of this interface, any components can act as menu items, making it
quite easy to build our own custom menu items.

The getSubElements() method returns an array of MenuElements that contains the
given item’s sub-elements. The processKeyEvent() and processMouseEvent() methods
are called to process keyboard and mouse events when the implementing component has the
focus. Unlike methods with the same name in the java.awt.Component class, these two
methods receive three parameters: the KeyEvent or MouseEvent, which should be processed; an
array of MenuElements which forms the path to the implementing component; and the current
MenuSelectionManager (see section 12.1.11). The menuSelectionChanged() method is
called by the MenuSelectionManager when the implementing component is added or
removed from its current selection state. The getComponent() method returns a reference to
a component that is responsible for rendering the implementing component.

NOTE The getComponent() method is interesting, as it allows classes that are not Com-
ponents themselves to implement the MenuElement interface and act as menu ele-
ments when necessary. Such a class would contain a Component used for display in
a menu, and this Component would be returned by getComponent(). This design
has powerful implications, as it allows us to design robust JavaBeans that encapsulate
an optional GUI representation. We can imagine a complex spell-checker or diction-
ary class implementing the MenuElement interface and providing a custom compo-
nent for display in a menu; this would be a powerful and highly object-oriented
bean, indeed.

JMenuItem, JMenuBar, JPopupMenu, and JMenu all implement this interface. Note that
each of their getComponent() methods simply returns a this reference. By extending any
of these implementing classes, we inherit MenuElement functionality and are not required to

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 339

implement it. (We won’t explicitly use this interface in any examples, as the custom compo-
nent we will build at the end of this chapter is an extension of JMenu.)

12.1.11 MenuSelectionManager

class javax.swing.MenuSelectionManager
MenuSelectionManager is a service class that is responsible for managing menu selection
throughout a single Java session. (Unlike most other service classes in Swing, MenuSelec-
tionManager does not register its shared instance with AppContext—see chapter 2.) When
MenuElement implementations receive MouseEvents or KeyEvents, these events should not be
processed directly. Rather, they should be handed off to the MenuSelectionManager so that it
may forward them to subcomponents automatically. For instance, whenever a JMenuItem is
activated by the keyboard or mouse, or whenever a JMenuItem selection occurs, the menu item
UI delegate is responsible for forwarding the corresponding event to the MenuSelectionMan-
ager, if necessary. The following code shows how BasicMenuItemUI deals with mouse releases:

 public void mouseReleased(MouseEvent e) {
 MenuSelectionManager manager =
 MenuSelectionManager.defaultManager();
 Point p = e.getPoint();
 if(p.x >= 0 && p.x < menuItem.getWidth() &&
 p.y >= 0 && p.y < menuItem.getHeight()) {
 manager.clearSelectedPath();
 menuItem.doClick(0);
 }
 else {
 manager.processMouseEvent(e);
 }
 }

The static defaultManager() method returns the MenuSelectionManager shared
instance, and the clearSelectedPath() method tells the currently active menu hierarchy
to close and unselect all menu components. In the code shown above, clearSelected-
Path() will only be called if the mouse release occurs within the corresponding JMenuItem
(in which case there is no need for the event to propagate any further). If this is not the case,
the event is sent to MenuSelectionManager’s processMouseEvent() method, which for-
wards it to other subcomponents. JMenuItem doesn’t have any subcomponents by default, so
nothing very interesting happens in this case. However, in the case of JMenu, which considers
its popup menu a subcomponent, sending a mouse-released event to the MenuSelection-
Manager is expected no matter what (the following code is from BasicMenuUI):

 public void mouseReleased(MouseEvent e) {
 MenuSelectionManager manager =
 MenuSelectionManager.defaultManager();
 manager.processMouseEvent(e);
 if (!e.isConsumed())
 manager.clearSelectedPath();
 }

340 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

MenuSelectionManager will fire ChangeEvents whenever its setSelectedPath()
method is called (for example, each time a menu selection changes). As expected, we can
attach ChangeListeners to listen for these events.

12.1.12 The MenuDragMouseListener interface

abstract interface javax.swing.event.MenuDragMouseListener
This listener receives notification when the mouse cursor enters, exits, is released, or is moved
over a menu item.

12.1.13 MenuDragMouseEvent

class javax.swing.event.MenuDragMouseEvent
This event class is used to deliver information to MenuDragMouseListeners. It encapsulates
the following information:

• The component source.
• The event ID.
• The time of the event.
• A bitwise OR-masked int specifying which mouse button and/or keys (CTRL, SHIFT,

ALT, or META) were pressed at the time of the event.
• The x and y mouse coordinates.
• The number of clicks immediately preceding the event.
• Whether the event represents the platform-dependent popup trigger.
• An array of MenuElements leading to the source of the event.
• The current MenuSelectionManager.

This event inherits all MouseEvent functionality (see the API documentation) and it adds
two methods for retrieving the array of MenuElements and the MenuSelectionManager.

12.1.14 The MenuKeyListener interface

abstract interface javax.swing.event.MenuKeyListener
This listener is notified when a menu item receives a key event corresponding to a key press,
release, or type. These events don’t necessarily correspond to mnemonics or accelerators; they
are received whenever a menu item is simply visible on the screen.

12.1.15 MenuKeyEvent

class javax.swing.event.MenuKeyEvent
This event class is used to deliver information to MenuKeyListeners. It encapsulates the fol-
lowing information:

• The component source.
• The event ID.
• The time of the event.
• A bitwise OR-masked int specifying which mouse button and/or keys (CTRL, SHIFT,

or ALT) were pressed at the time of the event.
• An int and char identifying the source key that caused the event.

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 341

• An array of MenuElements leading to the source of the event.
• The current MenuSelectionManager.

This event inherits all KeyEvent functionality (see the API documentation) and it adds two
methods for retrieving the array of MenuElements and the MenuSelectionManager.

12.1.16 The MenuListener interface

abstract interface javax.swing.event.MenuListener
This listener receives notification when a menu is selected, deselected, or canceled. Three
methods must be implemented by MenuListeners, and each takes a MouseEvent
parameter: menuCanceled(), menuDeselected(), and menuSelected().

12.1.17 MenuEvent

class javax.swing.event.MenuEvent
This event class is used to deliver information to MenuListeners. It simply encapsulates a
reference to its source Object.

12.1.18 The PopupMenuListener interface

abstract interface javax.swing.event.PopupMenuListener
This listener receives notification when a JPopupMenu is about to become visible or hidden,
or when it is canceled. Canceling a JPopupMenu also causes it to be hidden, so two PopupMenu-
Events are fired in this case. (A cancel occurs when the invoker component is resized or when the
window containing the invoker changes size or location.) Three methods must be implemented by
PopupMenuListeners, and each takes a PopupMenuEvent parameter: popupMenuCanceled(),
popupMenuWillBecomeVisible(), and popupMenuWillBecomeInvisible().

12.1.19 PopupMenuEvent

class javax.swing.event.PopupMenuEvent
This event class is used to deliver information to PopupMenuListeners. It simply encapsu-
lates a reference to its source Object.

12.1.20 JToolBar

class javax.swing.JToolBar
This class represents the Swing implementation of a toolbar. Toolbars are often placed directly
below menu bars at the top of a frame or applet, and they act as a container for any compo-
nent (buttons and combo boxes are most common). The most convenient way to add buttons
to a JToolBar is to use Actions; this is discussed in section 12.1.23.

NOTE Components often need their alignment setting tweaked to provide uniform posi-
tioning within JToolBar. This can be accomplished using the setAlignmentY()
and setAlignmentX() methods. The need to tweak the alignment of components
in JToolBar has been alleviated for the most part, as of JDK 1.2.2.

342 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

JToolBar also allows the convenient addition of an inner JSeparator subclass, JTool-
Bar.Separator, to provide an empty space for visually grouping components. These separa-
tors can be added with either of the overloaded addSeparator() methods, one of which
takes a Dimension parameter that specifies the size of the separator.

Two orientations are supported, VERTICAL and HORIZONTAL, and the current orientation
is maintained by JToolBar’s orientation property. It uses a BoxLayout layout manager which
is dynamically changed between Y_AXIS and X_AXIS when the orientation property changes.

JToolBar can be dragged in and out of its parent container if its floatable property
is set to true. When it is dragged out of its parent, a JToolBar appears as a floating window
(during a mouse drag) and its border changes color depending on whether it can re-dock in
its parent at a given location. If a JToolBar is dragged outside of its parent and released, it
will be placed in its own JFrame which will be fully maximizable, minimizable, and closable.
When this frame is closed, JToolBar will jump back into its most recent dock position in its
original parent, and the floating JFrame will disappear. We recommend that you place
JToolBar in one of the four sides of a container using a BorderLayout and leave the other
sides unused, to allow the JToolBar to be docked in any of that container’s side regions.

The protected createActionChangeListener() method is used when an Action
(see section 12.1.23) is added to a JToolBar to create a PropertyChangeListener for inter-
nal use in responding to bound property changes that occur in that Action.

Uses for a toolbar Toolbars have become ubiquitious in modern software.
They are often overused or misused, and therefore, they fail to achieve their
objective of increased usability. The three key uses have subtle differences and
implications.

Tool selection or mode selection Perhaps the most effective use of a toolbar
is, as the name suggests, for the selection of a tool or operational mode. This is
most common in drawing or image manipulation packages. The user selects
the toolbar button to change the mode from “paintbrush” to “filler” to “draw
box” to “cut,” for example. This is a highly effective use of toolbar, as the small
icons are usually sufficient to render a suitable tool image. Many images for
this purpose have been adopted as a defacto standard. If you are developing a
tool selection toolbar, we advise you to stick closely to icons which have been
used by similar existing products.

Functional selection The earliest use of a toolbar was to replace the selection
of a specific function from the menu. This led to them being called “speedbars”
or “menubars.” The idea was that the small icon button was faster and easier
to acquire than the menu selection and that usability was enhanced as a result.
This worked well for many common functions in file-oriented applications,
such as Open File, New File, Save, Cut, Copy, and Paste. In fact, most of us
would recognize the small icons for all of these functions. However, with other
more application-specific functions, it has become more difficult for icon de-
signers to come up with appropriate designs. This often leads to applications
which have a confusing and intimidating array of icons across the top of the
screen, which therefore detracts from usability. As a general rule of thumb,
stick to common cross-application functions when you’re overloading menu

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 343

selections with toolbar buttons. If you do need to break the rule, consider select-
ing annotated buttons for the toolbar.

Navigational selection The third use for toolbars has been for navigational
selection. This often means replacing or overloading menu options. These
menu options are used to select a specific screen to move to the front. The tool-
bar buttons replace or overload the menu option and allow the navigational se-
lection to be made by supposedly faster means. However, this usage also suffers
from the problem of appropriate icon design. It is usually too difficult to devise
a suitable set of icons which have clear and unambiguous meaning. Therefore,
as a rule of thumb, consider the use of annotated buttons on the toolbar.

12.1.21 Custom JToolBar separators

Unfortunately, Swing does not include a toolbar-specific separator component that will dis-
play a vertical or horizontal line depending on current toolbar orientation. The following
pseudocode shows how we can build such a component under the assumption that it will
always have a JToolBar as a direct parent:

 public class MyToolBarSeparator extends JComponent
 {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 if (getParent() instanceof JToolBar) {
 if (((JToolBar) getParent()).getOrientation()
 == JToolBar.HORIZONTAL) {
 // Paint a vertical line
 }
 else {
 // Paint a horizontal line
 }
 }
 }

 public Dimension getPreferredSize() {
 if (getParent() instanceof JToolBar) {
 if (((JToolBar) getParent()).getOrientation()
 == JToolBar.HORIZONTAL) {
 // Return horizontal size
 }
 else {
 // Return vertical size
 }
 }
 }
 }

344 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

Use of a separator The failure to include a graphical separator for toolbars
really was an oversight on the part of the Swing designers. Again, the separator
is used to group related functions or tools. For example, if the functions all
belong on the same menu, then group them together, or if the tools (or modes)
are related, such as Cut, Copy, and Paste, then group them together and
separate them from others with a separator.

Grouping like this improves perceived separation by introducing a visual layer.
The viewer can first acquire a group of buttons and then a specific button. He
will also learn, using directional memory, the approximate position of each
group. By separating the groups, you will improve the usability by helping the
user to acquire the target better when using the mouse.

12.1.22 Changing JToolBar’s floating frame behavior

The behavior of JToolBar’s floating JFrame is certainly useful, but whether the maximiza-
tion and resizability should be allowed is arguable. Though we cannot control whether a
JFrame can be maximized, we can control whether it can be resized. To enforce non-resizabil-
ity in JToolBar’s floating JFrame (and to set its displayed title while we’re at it), we need to
override its UI delegate and customize the createFloatingFrame() method as follows:

 public class MyToolBarUI
 extends javax.swing.plaf.metal.MetalToolBarUI {
 protected JFrame createFloatingFrame(JToolBar toolbar) {
 JFrame frame = new JFrame(toolbar.getName());
 frame.setTitle("My toolbar");
 frame.setResizable(false);
 WindowListener wl = createFrameListener();
 frame.addWindowListener(wl);
 return frame;
 }
 }

To assign MyToolBarUI as a JToolBar’s UI delegate, we can do the following:

 mytoolbar.setUI(new MyToolBarUI());

To force the use of this delegate on a global basis, we can do the following before any JTool-
Bars are instantiated:

 UIManager.getDefaults().put(
 "ToolBarUI","com.mycompany.MyToolBarUI");

Note that we may also have to add an associated Class instance to the UIDefaults table for
this to work (see chapter 21).

Use of a floating frame It is probably best to restrict the use of a floating
toolbar frame to toolbars being used for tool or mode selection (see the UI
Guideline in section 12.1.20).

MENUS, TOOLBARS, AND ACTIONS OVERVIEW 345

JAVA 1.3 In Java 1.3 two new constructors were added to JToolBar allowing specification
of a String title to use for the floating frame.

12.1.23 The Action interface

abstract interface javax.swing.Action
This interface describes a helper object which extends ActionListener and which supports
a set of bound properties. We use appropriate add() methods in the JMenu, JPopupMenu,
and JToolBar classes to add an Action which will use information from the given instance
to create and return a component that is appropriate for that container (a JMenuItem in the
case of the first two, a JButton in the case of the latter). The same Action instance can be
used to create an arbitrary number of menu items or toolbar buttons.

Because Action extends ActionListener, the actionPerformed() method is inher-
ited and it can be used to encapsulate appropriate ActionEvent handling code. When a menu
item or toolbar button is created using an Action, the resulting component is registered as a
PropertyChangeListener with the Action, and the Action is registered as an Action-
Listener with the component. Thus, whenever a change occurs to one of that Action’s
bound properties, all components with registered PropertyChangeListeners will receive
notification. This provides a convenient means for allowing identical functionality in menus,
toolbars, and popup menus with minimum code repetition and object creation.

The putValue() and getValue() methods are intended to work with a Hashtable-
like structure to maintain an Action’s bound properties. Whenever the value of a property
changes, we are expected to fire PropertyChangeEvents to all registered listeners. As
expected, methods to add and remove PropertyChangeListeners are provided.

The Action interface defines five static property keys that are intended to be used by
JMenuItems and JButtons created with an Action instance:

• String DEFAULT: [Not used].
• String LONG_DESCRIPTION: Used for a lengthy description of an Action.
• String NAME: Used as the text displayed in JMenuItems and JButtons.
• String SHORT_DESCRIPTION: Used for the tooltip text of associated JMenuItems and

JButtons.
• String SMALL_ICON: Used as the icon in associated JMenuItems and JButtons.

12.1.24 AbstractAction

class javax.swing.AbstractAction
This class is an abstract implementation of the Action interface. Along with the properties inher-
ited from Action, AbstractAction defines the enabled property which provides a means of
enabling/disabling all associated components registered as PropertyChangeListeners. A
SwingPropertyChangeSupport instance is used to manage the firing of Property-
ChangeEvents to all registered PropertyChangeListeners (see chapter 2 for more about
SwingPropertyChangeSupport).

NOTE Many UI delegates define inner class subclasses of AbstractAction, and the Text-
Action subclass is used by DefaultEditorKit to define action-handling code
corresponding to specific KeyStroke bindings (see chapter 19).

346 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

12.2 BASIC TEXT EDITOR, PART I: MENUS

In example 12.1 we begin the construction of a basic text editor application using a menu bar and
several menu items. The menu bar contains two JMenus labeled “File” and “Font.” The File menu
contains JMenuItems for creating a new (empty) document, opening a text file, saving the cur-
rent document as a text file, and exiting the application. The Font menu contains JCheckBox-
MenuItems for making the document bold and/or italic, as well as JRadioButtonMenuItems
organized into a ButtonGroup that allows the selection of a single font.

Figure 12.1
Menu containing
JMenuItems with
mnemonics and icons

Figure 12.2
JMenu containing
JRadioButtonMenuItems
and JCheckBoxMenuItems

BASIC TEXT EDITOR, PART I : MENUS 347

Example 12.1

see \Chapter12\1

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;

public class BasicTextEditor
extends JFrame {

public static final String APP_NAME = "Basic Text Editor";

public static final String FONTS[] = { "Serif", "SansSerif",
"Courier" };

protected Font m_fonts[];

protected JTextArea m_editor;
protected JMenuItem[] m_fontMenus;
protected JCheckBoxMenuItem m_bold;
protected JCheckBoxMenuItem m_italic;

protected JFileChooser m_chooser;
protected File m_currentFile;

protected boolean m_textChanged = false;

public BasicTextEditor() {
super(APP_NAME+": Part I - Menus");
setSize(450, 350);

m_fonts = new Font[FONTS.length];
for (int k=0; k<FONTS.length; k++)

m_fonts[k] = new Font(FONTS[k], Font.PLAIN, 12);

m_editor = new JTextArea();
JScrollPane ps = new JScrollPane(m_editor);
getContentPane().add(ps, BorderLayout.CENTER);

JMenuBar menuBar = createMenuBar();
setJMenuBar(menuBar);

m_chooser = new JFileChooser();
try {

File dir = (new File(".")).getCanonicalFile();
m_chooser.setCurrentDirectory(dir);

} catch (IOException ex) {}

updateEditor();
newDocument();

WindowListener wndCloser = new WindowAdapter() {

BasicTextEditor.java

Creates list
of fonts from
font names

348 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

public void windowClosing(WindowEvent e) {
if (!promptToSave())

return;
System.exit(0);

}
};
addWindowListener(wndCloser);

}

protected JMenuBar createMenuBar() {
final JMenuBar menuBar = new JMenuBar();

JMenu mFile = new JMenu("File");
mFile.setMnemonic('f');

JMenuItem item = new JMenuItem("New");
item.setIcon(new ImageIcon("New16.gif"));
item.setMnemonic('n');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_N, InputEvent.CTRL_MASK));
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (!promptToSave())

return;
newDocument();

}
};
item.addActionListener(lst);
mFile.add(item);

item = new JMenuItem("Open...");
item.setIcon(new ImageIcon("Open16.gif"));
item.setMnemonic('o');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_O, InputEvent.CTRL_MASK));
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (!promptToSave())

return;
openDocument();

}
};
item.addActionListener(lst);
mFile.add(item);

item = new JMenuItem("Save");
item.setIcon(new ImageIcon("Save16.gif"));
item.setMnemonic('s');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_S, InputEvent.CTRL_MASK));
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (!m_textChanged)

return;

Creates menu bar
with menu items
to manipulate files
and fonts

“New” menu item
clears contents
of editor but prompts
user to save changes
before proceeding

“Open” menu item
allows user to open
an existing file;
prompts user
to save changes
before proceeding

“Save” menu item
saves current
document; if it hasn’t
been saved a file
chooser is used for
user to select file
name and destination

BASIC TEXT EDITOR, PART I : MENUS 349

saveFile(false);
}

};
item.addActionListener(lst);
mFile.add(item);

item = new JMenuItem("Save As...");
item.setIcon(new ImageIcon("SaveAs16.gif"));
item.setMnemonic('a');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
saveFile(true);

}
};
item.addActionListener(lst);
mFile.add(item);

mFile.addSeparator();

item = new JMenuItem("Exit");
item.setMnemonic('x');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
System.exit(0);

}
};
item.addActionListener(lst);
mFile.add(item);
menuBar.add(mFile);

ActionListener fontListener = new ActionListener() {
public void actionPerformed(ActionEvent e) {

updateEditor();
}

};

JMenu mFont = new JMenu("Font");
mFont.setMnemonic('o');

ButtonGroup group = new ButtonGroup();
m_fontMenus = new JMenuItem[FONTS.length];
for (int k=0; k<FONTS.length; k++) {

int m = k+1;
m_fontMenus[k] = new JRadioButtonMenuItem(

m+" "+FONTS[k]);
m_fontMenus[k].setSelected(k == 0);
m_fontMenus[k].setMnemonic('1'+k);
m_fontMenus[k].setFont(m_fonts[k]);
m_fontMenus[k].addActionListener(fontListener);
group.add(m_fontMenus[k]);
mFont.add(m_fontMenus[k]);

}

mFont.addSeparator();

 ActionListener invoked whenever
a font menu item is selected;

calls updateEditor() to change
the current font in the editor

“Save As” menu item
uses a file changer for
user to select file
name and location
to save the current
document to

“Save” menu item
saves current
document; if it hasn’t
been saved a file
chooser is used for
user to select file
name and destination

Create a
JRadioButton
corresponding
to each font

350 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

m_bold = new JCheckBoxMenuItem("Bold");
m_bold.setMnemonic('b');
Font fn = m_fonts[1].deriveFont(Font.BOLD);
m_bold.setFont(fn);
m_bold.setSelected(false);
m_bold.addActionListener(fontListener);
mFont.add(m_bold);

m_italic = new JCheckBoxMenuItem("Italic");
m_italic.setMnemonic('i');
fn = m_fonts[1].deriveFont(Font.ITALIC);
m_italic.setFont(fn);
m_italic.setSelected(false);
m_italic.addActionListener(fontListener);
mFont.add(m_italic);

menuBar.add(mFont);

return menuBar;
}

protected String getDocumentName() {
return m_currentFile==null ? "Untitled" :

m_currentFile.getName();
}

protected void newDocument() {
m_editor.setText("");
m_currentFile = null;
setTitle(APP_NAME+" ["+getDocumentName()+"]");
m_textChanged = false;
m_editor.getDocument().addDocumentListener(new UpdateListener());

}

protected void openDocument() {
if (m_chooser.showOpenDialog(BasicTextEditor.this) !=

JFileChooser.APPROVE_OPTION)
return;

File f = m_chooser.getSelectedFile();
if (f == null || !f.isFile())

return;
m_currentFile = f;
try {

FileReader in = new FileReader(m_currentFile);
m_editor.read(in, null);
in.close();
setTitle(APP_NAME+" ["+getDocumentName()+"]");

}
catch (IOException ex) {

showError(ex, "Error reading file "+m_currentFile);
}
m_textChanged = false;
m_editor.getDocument().addDocumentListener(new UpdateListener());

}

Italic menu item
changes current font
in editor to its
italic variant

Bold menu item
changes current font
in editor to its
bold variant

BASIC TEXT EDITOR, PART I : MENUS 351

protected boolean saveFile(boolean saveAs) {
if (saveAs || m_currentFile == null) {

if (m_chooser.showSaveDialog(BasicTextEditor.this) !=
JFileChooser.APPROVE_OPTION)
return false;

File f = m_chooser.getSelectedFile();
if (f == null)

return false;
m_currentFile = f;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

}

try {
FileWriter out = new

FileWriter(m_currentFile);
m_editor.write(out);
out.close();

}
catch (IOException ex) {

showError(ex, "Error saving file "+m_currentFile);
return false;

}
m_textChanged = false;
return true;

}

protected boolean promptToSave() {
if (!m_textChanged)

return true;
int result = JOptionPane.showConfirmDialog(this,

"Save changes to "+getDocumentName()+"?",
APP_NAME, JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.INFORMATION_MESSAGE);

switch (result) {
case JOptionPane.YES_OPTION:

if (!saveFile(false))
return false;

return true;
case JOptionPane.NO_OPTION:

return true;
case JOptionPane.CANCEL_OPTION:

return false;
}
return true;

}

protected void updateEditor() {
int index = -1;
for (int k=0; k<m_fontMenus.length; k++) {

if (m_fontMenus[k].isSelected()) {
index = k;
break;

}

Method to update the
editor font based on
menu item selections

352 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

}
if (index == -1)

return;

if (index==2) { // Courier
m_bold.setSelected(false);
m_bold.setEnabled(false);
m_italic.setSelected(false);
m_italic.setEnabled(false);

}
else {

m_bold.setEnabled(true);
m_italic.setEnabled(true);

}

int style = Font.PLAIN;
if (m_bold.isSelected())

style |= Font.BOLD;
if (m_italic.isSelected())

style |= Font.ITALIC;
Font fn = m_fonts[index].deriveFont(style);
m_editor.setFont(fn);
m_editor.repaint();

}

public void showError(Exception ex, String message) {
ex.printStackTrace();
JOptionPane.showMessageDialog(this,

message, APP_NAME,
JOptionPane.WARNING_MESSAGE);

}

public static void main(String argv[]) {
BasicTextEditor frame = new BasicTextEditor();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

class UpdateListener implements DocumentListener {

public void insertUpdate(DocumentEvent e) {
m_textChanged = true;

}

public void removeUpdate(DocumentEvent e) {
m_textChanged = true;

}

public void changedUpdate(DocumentEvent e) {
m_textChanged = true;

}
}

}

BASIC TEXT EDITOR, PART I : MENUS 353

12.2.1 Understanding the code

Class BasicTextEditor
This class extends JFrame and provides the parent frame for our example. Two class variables
are declared:

• String APP_NAME: name of this example used in title bar.
• String FONTS[]: an array of font family names.

Instance variables:

• Font[] m_fonts: an array of Font instances which can be used to render our JText-
Area editor.

• JTextArea m_editor: used as our text editor.
• JMenuItem[] m_fontMenus: an array of menu items representing available fonts.
• JCheckBoxMenuItem m_bold: menu item which sets/unsets the bold property of the

current font.
• JCheckBoxMenuItem m_italic: menu item which sets/unsets the italic property of

the current font.
• JFileChooser m_chooser: used to load and save simple text files.
• File m_currentFile: the current File instance corresponding to the current docu-

ment.
• boolean m_textChanged: will be set to true if the current document has been

changed; will be set to false if the document was just opened or saved. This flag is used
in combination with a DocumentListener (see chapter 19) to determine whether or
not to save the current document before dismissing it.

The BasicTextEditor constructor populates our m_fonts array with Font instances corre-
sponding to the names provided in FONTS[]. The m_editor JTextArea is then created and
placed in a JScrollPane. This scroll pane is added to the center of our frame’s content pane
and we append some simple text to m_editor for display at startup. Our createMenuBar()
method is called to create the menu bar to manage this application, and this menu bar is then
added to our frame using the setJMenuBar() method.

The createMenuBar() method creates and returns a JMenuBar. Each menu item receives an
ActionListener to handle its selection. Two menus are added titled “File” and “Font”. The
File menu is assigned a mnemonic character, ‘f’, and by pressing ALT+F while the applica-
tion frame is active, its popup will be displayed allowing navigation with either the mouse or
keyboard. The Font menu is assigned the mnemonic character ‘o’.

The New menu item in the File menu is responsible for creating a new (empty) document. It
doesn’t really replace JTextArea’s Document. Instead it simply clears the contents of our
editor component. Before it does so, however, it calls our custom promptToSave() method
to determine whether or not we want to continue without saving the current changes (if any).
Note that an icon is used for this menu item. Also note that this menu item can be selected
with the keyboard by pressing ‘n’ when the File menu’s popup is visible, because we assigned
it ‘n’ as a mnemonic. We also assigned it the accelerator CTRL+N. Therefore, this menu’s
action will be directly invoked whenever that key combination is pressed. (All other menus
and menu items in this example also receive appropriate mnemonics and accelerators.)

354 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

The Open menu item brings up our m_chooser JFileChooser component (discussed in
chapter 14) to allow selection of a text file to open. Once a text file is selected, we open a
FileReader on it and invoke read() on our JTextArea component to read the file’s con-
tent (which creates a new PlainDocument containing the selected file’s content to replace the
current JTextArea document, see chapter 11). The Save menu item brings up m_chooser
to select a destination and file name to save the current text to (if previously not set). Once a
text file is selected, we open a FileWriter on it and invoke write() on our JTextArea
component to write its content to the destination file. The Save As... menu is similar to the
Save menu, but prompts the user to select a new file. The Exit menu item terminates program
execution. This is separated from the first three menu items with a menu separator to create a
more logical display.

The Font menu consists of several menu items used to select the font and font style used in
our editor. All of these items receive the same ActionListener which invokes our up-
dateEditor() method. To give the user an idea of how each font looks, each font is used to
render the corresponding menu item text. Since only one font can be selected at any given
time, we use JRadioButtonMenuItems for these menu items, and add them all to a But-
tonGroup instance which manages a single selection.

To create each menu item we iterate through our FONTS array and create a JRadioButton-
MenuItem corresponding to each entry. Each item is set to unselected (except for the first
one), assigned a numerical mnemonic corresponding to the current FONTS array index,
assigned the appropriate Font instance for rendering its text, assigned our multipurpose
ActionListener, and added to our ButtonGroup along with the others.

The two other menu items in the Font menu manage the bold and italic font properties. They
are implemented as JCheckBoxMenuItems since these properties can be selected or unse-
lected independently. These items also are assigned the same ActionListener as the radio
button items to process changes in their selected state.

The updateEditor() method updates the current font used to render the editing compo-
nent by checking the state of each check box item and determining which radio button item is
currently selected. The m_bold and m_italic components are disabled and unselected if the
Courier font is selected, and enabled otherwise. The appropriate m_fonts array element is
selected and a Font instance is derived from it corresponding to the current state of the check
box items using Font’s deriveFont() method (see chapter 2).

NOTE Surprisingly the ButtonGroup class does not provide a direct way to determine
which component is currently selected. So we have to examine the m_fontMenus
array elements in turn to determine the selected font index. Alternatively we could
save the font index in an enhanced version of our ActionListener.

12.2.2 Running the code

Open a text file, make some changes, and save it as a new file. Change the font options and
watch how the text area is updated. Select the Courier font and notice how it disables the bold
and italic check box items (it also unchecks them if they were previously checked). Select
another font and notice how this re-enables check box items. Figure 12.1 shows BasicText-

BASIC TEXT EDITOR, PART II : TOOLBARS AND ACTIONS 355

Editor’s File menu, and figure 12.2 shows the Font menu. Notice how the mnemonics are
underlined and the images appear to the left of the text by default, just like buttons.

File-oriented applications Example 12.1 is an example of a menu being used
in a file-oriented application. Menus were first developed to be used in this
fashion. Including a menu in such an application is essential, as users have
come to expect one. There are clearly defined platform standards for menu lay-
out and it is best that you adhere to these. For example, the File menu almost
always comes first (from the left-hand side).

Also notice the use of the elipsis “...” on the Open... and Save... options. This
is a standard technique which gives a visual confirmation that a dialog will
open when the menu item is selected.

Correct use of separator and component overloading This example shows
clearly how adding selection controls to a menu in a simple application can
speed operation and ease usability. The separator is used to group and separate
the selection of the font type from the font style.

12.3 BASIC TEXT EDITOR, PART II: TOOLBARS AND ACTIONS

Swing provides the Action interface to simplify the creation of menu items. As we know,
implementations of this interface encapsulate both the knowledge of what to do when a menu
item or toolbar button is selected (by extending the ActionListener interface) and the
knowledge of how to render the component itself (by holding a collection of bound properties
such as NAME and SMALL_ICON). We can create both a menu item and a toolbar button from
a single Action instance, conserving code and providing a reliable means of ensuring consis-
tency between menus and toolbars.

Example 12.2 uses the AbstractAction class to add a toolbar to our BasicTextEditor
application. By converting the ActionListeners used in the example above to Abstract-
Actions, we can use these actions to create both toolbar buttons and menu items with very
little additional work.

Example 12.2

see \Chapter12\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;

BasicTextEditor.java

356 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

public class BasicTextEditor extends JFrame
{
 // Unchanged code from example 12.1

protected JToolBar m_toolBar;

protected JMenuBar createMenuBar() {
 final JMenuBar menuBar = new JMenuBar();
 JMenu mFile = new JMenu("File");
 mFile.setMnemonic('f');

ImageIcon iconNew = new ImageIcon("New16.gif");

Action actionNew = new AbstractAction("New", iconNew) {

public void actionPerformed(ActionEvent e) {
if (!promptToSave())

return;
newDocument();

}
};
JMenuItem item = new JMenuItem(actionNew);

item.setMnemonic('n');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_N, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconOpen = new ImageIcon("Open16.gif");

Action actionOpen = new AbstractAction("Open...", iconOpen) {

Figure 12.3 The process of undocking, dragging, and docking a JToolBar

Figure 12.4
A floating JToolBar

Toolbar for shortcuts

Actions are
now used
to create
menu items
and toolbar
buttons

BASIC TEXT EDITOR, PART II : TOOLBARS AND ACTIONS 357

public void actionPerformed(ActionEvent e) {
if (!promptToSave())

return;
openDocument();

}
};
item = new JMenuItem(actionOpen);

item.setMnemonic('o');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_O, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconSave = new ImageIcon("Save16.gif");

Action actionSave = new AbstractAction("Save", iconSave) {

public void actionPerformed(ActionEvent e) {
if (!m_textChanged)

return;
saveFile(false);

}
};
item = new JMenuItem(actionSave);

item.setMnemonic('s');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_S, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconSaveAs = new ImageIcon("SaveAs16.gif");

Action actionSaveAs = new AbstractAction(

 "Save As...", iconSaveAs) {

public void actionPerformed(ActionEvent e) {
saveFile(true);

}
};
item = new JMenuItem(actionSaveAs);

item.setMnemonic('a');
mFile.add(item);

 mFile.addSeparator();

Action actionExit = new AbstractAction("Exit") {

 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 };

item = mFile.add(actionExit);

 item.setMnemonic('x');
 menuBar.add(mFile);

m_toolBar = new JToolBar(“Commands”);

 JButton btn1 = m_toolBar.add(actionNew);

 btn1.setToolTipText("New text");

 JButton btn2 = m_toolBar.add(actionOpen);

 btn2.setToolTipText("Open text file");

 JButton btn3 = m_toolBar.add(actionSave);

358 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

 btn3.setToolTipText("Save text file");

// Unchanged code from example 12.1

getContentPane().add(m_toolBar, BorderLayout.NORTH);

return menuBar;
 }

// Unchanged code from example 12.1

}

12.3.1 Understanding the code

Class BasicTextEditor
This class now declares one more instance variable, JToolBar m_toolBar. The constructor
remains unchanged and it is not listed here. The createMenuBar() method now creates
AbstractAction instances instead of ActionListeners. These objects encapsulate the
same action handling code we defined in example 12.1, as well as the text and icon to display
in associated menu items and toolbar buttons. This allows us to create JMenuItems using
the JMenu.add(Action a) method, and JButtons using the JToolBar.add(Action a)
method. These methods return instances that we can treat like any other button component
and we can do things such as set the background color or assign a different text alignment.

Our JToolBar component is placed in the NORTH region of our content pane, and we make
sure to leave the EAST, WEST, and SOUTH regions empty, thereby allowing it to dock on all
sides.

12.3.2 Running the code

Verify that the toolbar buttons work as expected by opening and saving a text file. Try drag-
ging the toolbar from its handle and notice how it is represented by an empty gray window as
it is dragged. The border will change to a dark color when the window is in a location where it
will dock if the mouse is released. If the border does not appear dark, releasing the mouse will
result in the toolbar being placed in its own JFrame. Figure 12.3 illustrates the simple process
of undocking, dragging, and docking our toolbar in a new location. Figure 12.4 shows our
toolbar in its own JFrame when it is undocked and released outside of a dockable region (this
is also referred to as a hotspot).

NOTE The current JToolBar implementation does not easily allow the use of multiple
floating toolbars as is common in many modern applications. We hope to see more
of this functionality built into future versions of Swing.

Vertical or horizontal? In some applications, you may prefer to leave the selec-
tion of a vertical or horizontal toolbar to the user. More often than not, you as
the designer can make that choice for them. Consider whether vertical or hori-
zontal space is more valuable for what you need to display. If, for example, you
are displaying letter text then you probably need vertical space more than hori-
zontal space. In PC applications, vertical space is usually at a premium.

BASIC TEXT EDITOR, PART III : CUSTOM TOOLBAR COMPONENTS 359

When vertical space is at a premium, place the toolbar vertically to free up valu-
able vertical space. When horizontal space is at a premium, place the toolbar
horizontally to free up valuable horizontal space.

Almost never use a floating toolbar, as it has a tendency to get lost under other
windows. Floating toolbars are for advanced users who understand the full opera-
tion of the computer system, so consider the technical level of your user group
before making the design choice for a floating toolbar.

12.4 BASIC TEXT EDITOR, PART III:
CUSTOM TOOLBAR COMPONENTS

Using Actions to create toolbar buttons is easy, but it is not always desirable if we want to
have complete control over our toolbar components. In this section’s example 12.3, we build
off of BasicTextEditor and place a JComboBox in the toolbar to allow Font selection. We
also use instances of our own custom buttons, SmallButton and SmallToggleButton, in
the toolbar. Both of these button classes use different borders to signify different states.
SmallButton uses a raised border when the mouse passes over it, no border when the mouse
is not within its bounds, and a lowered border when a mouse press occurs. SmallToggle-
Button uses a raised border when it is unselected and a lowered border when selected.

Figure 12.5 JToolBar with custom buttons and a JComboBox

360 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

Example 12.3

see \Chapter12\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;

public class BasicTextEditor extends JFrame
{
 // Unchanged code from example 12.2

 protected JComboBox m_cbFonts;

 protected SmallToggleButton m_bBold;

 protected SmallToggleButton m_bItalic;

 // Unchanged code from example 12.2

 protected JMenuBar createMenuBar()
 {
 // Unchanged code from example 12.2

 m_toolBar = new JToolBar();
 JButton bNew = new SmallButton(actionNew,

 "New text");

 m_toolBar.add(bNew);

 JButton bOpen = new SmallButton(actionOpen,

 "Open text file");

 m_toolBar.add(bOpen);

 JButton bSave = new SmallButton(actionSave,

 "Save text file");

 m_toolBar.add(bSave);

 JMenu mFont = new JMenu("Font");
 mFont.setMnemonic('o');

 // Unchanged code from example 12.2

 mFont.addSeparator();

 m_toolBar.addSeparator();

 m_cbFonts = new JComboBox(FONTS);

 m_cbFonts.setMaximumSize(m_cbFonts.getPreferredSize());

 m_cbFonts.setToolTipText("Available fonts");

 ActionListener lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 int index = m_cbFonts.getSelectedIndex();

 if (index < 0)

BasicTextEditor.java

Custom buttons
for toolbar

Creates instances of
custom buttons and
adds them to toolbar

BASIC TEXT EDITOR, PART III : CUSTOM TOOLBAR COMPONENTS 361

 return;

 m_fontMenus[index].setSelected(true);

 updateEditor();

 }

 };

 m_cbFonts.addActionListener(lst);

 m_toolBar.add(m_cbFonts);

 m_bold = new JCheckBoxMenuItem("Bold");
 m_bold.setMnemonic('b');
 Font fn = m_fonts[1].deriveFont(Font.BOLD);
 m_bold.setFont(fn);
 m_bold.setSelected(false);
 m_bold.addActionListener(fontListener);
 mFont.add(m_bold);

 m_italic = new JCheckBoxMenuItem("Italic");
 m_italic.setMnemonic('i');
 fn = m_fonts[1].deriveFont(Font.ITALIC);
 m_italic.setFont(fn);
 m_italic.setSelected(false);
 m_italic.addActionListener(fontListener);
 mFont.add(m_italic);

 menuBar.add(mFont);

 m_toolBar.addSeparator();

 ImageIcon img1 = new ImageIcon("Bold16.gif");

m_bBold = new SmallToggleButton(false, img1, img,

 "Bold font");

 lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 m_bold.setSelected(m_bBold.isSelected());

 updateEditor();

 }

 };

 m_bBold.addActionListener(lst);

 m_toolBar.add(m_bBold);

 img1 = new ImageIcon("Italic16.gif");

m_bItalic = new SmallToggleButton(false, img1, img,

 "Italic font");

 lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 m_italic.setSelected(m_bItalic.isSelected());

 updateEditor();

 }

 };

 m_bItalic.addActionListener(lst);

 m_toolBar.add(m_bItalic);

 getContentPane().add(m_toolBar, BorderLayout.NORTH);
 return menuBar;
 }

Custom check boxes for
toolbar, to control bold
and italic properties

362 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

//Unchanged code from example 12.2

 protected void updateEditor() {
 int index = -1;
 for (int k=0; k<m_fontMenus.length; k++) {
 if (m_fontMenus[k].isSelected()) {
 index = k;
 break;
 }
 }
 if (index == -1)
 return;
 boolean isBold = m_bold.isSelected();

 boolean isItalic = m_italic.isSelected();

 m_cbFonts.setSelectedIndex(index);

 if (index==2) { //Courier
 m_bold.setSelected(false);
 m_bold.setEnabled(false);
 m_italic.setSelected(false);
 m_italic.setEnabled(false);
 m_bBold.setSelected(false);

 m_bBold.setEnabled(false);

 m_bItalic.setSelected(false);

 m_bItalic.setEnabled(false);

 }
 else {
 m_bold.setEnabled(true);
 m_italic.setEnabled(true);
 m_bBold.setEnabled(true);

 m_bItalic.setEnabled(true);

 }

 if (m_bBold.isSelected() != isBold)

 m_bBold.setSelected(isBold);

 if (m_bItalic.isSelected() != isItalic)

 m_bItalic.setSelected(isItalic);

 int style = Font.PLAIN;
 if (isBold)
 style |= Font.BOLD;
 if (isItalic)
 style |= Font.ITALIC;
 Font fn = m_fonts[index].deriveFont(style);
 m_editor.setFont(fn);
 m_editor.repaint();
 }

 public static void main(String argv[]) {
//Unchanged code from example 12.2

}
}

Keeps toolbar
and menu bar
settings in sync

Keeps toolbar
and menu bar
settings in sync

BASIC TEXT EDITOR, PART III : CUSTOM TOOLBAR COMPONENTS 363

class SmallButton extends JButton implements MouseListener {
protected Border m_raised =

 new SoftBevelBorder(BevelBorder.RAISED);
protected Border m_lowered =

 new SoftBevelBorder(BevelBorder.LOWERED);
protected Border m_inactive = new EmptyBorder(3, 3, 3, 3);
protected Border m_border = m_inactive;
protected Insets m_ins = new Insets(4,4,4,4);

public SmallButton(Action act, String tip) {
super((Icon)act.getValue(Action.SMALL_ICON));
setBorder(m_inactive);
setMargin(m_ins);
setToolTipText(tip);
setRequestFocusEnabled(false);
addActionListener(act);
addMouseListener(this);

}

public float getAlignmentY() {
return 0.5f;

}

public Border getBorder() {
return m_border;

}

public Insets getInsets() {
return m_ins;

}

public void mousePressed(MouseEvent e) {
m_border = m_lowered;
setBorder(m_lowered);

}

public void mouseReleased(MouseEvent e) {
m_border = m_inactive;
setBorder(m_inactive);

}

public void mouseClicked(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {
m_border = m_raised;
setBorder(m_raised);

}

public void mouseExited(MouseEvent e) {
m_border = m_inactive;
setBorder(m_inactive);

}
}

class SmallToggleButton extends JToggleButton
implements ItemListener {

Used
for small
buttons
in toolbar

Used for small
toggle buttons
in toolbar

364 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

protected Border m_raised =
 new SoftBevelBorder(BevelBorder.RAISED);

protected Border m_lowered =
 new SoftBevelBorder(BevelBorder.LOWERED);

protected Insets m_ins = new Insets(4,4,4,4);

public SmallToggleButton(boolean selected,
ImageIcon imgUnselected, ImageIcon imgSelected, String tip) {
super(imgUnselected, selected);
setHorizontalAlignment(CENTER);
setBorder(selected ? m_lowered : m_raised);
setMargin(m_ins);
setToolTipText(tip);
setRequestFocusEnabled(false);
setSelectedIcon(imgSelected);
addItemListener(this);

}

public float getAlignmentY() {
return 0.5f;

}

public Insets getInsets() {
return m_ins;

}

public Border getBorder() {
return (isSelected() ? m_lowered : m_raised);

}

public void itemStateChanged(ItemEvent e) {
setBorder(isSelected() ? m_lowered : m_raised);

}
}

12.4.1 Understanding the code

Class BasicTextEditor
BasicTextEditor now declares three new instance variables:

• JComboBox m_cbFonts: A combo box containing available font names.
• SmallToggleButton m_bBold: A custom toggle button representing the bold font style.
• SmallToggleButton m_bItalic: A custom toggle button representing the italic

font style.

The createMenuBar() method now creates three instances of the SmallButton class (see
below) corresponding to our pre-existing New, Open, and Save toolbar buttons. These are
constructed by passing the appropriate Action (which we built in part II) as well as a tooltip
String to the SmallButton constructor. Then we create a combo box with all the available
font names and add it to the toolbar. The setMaximumSize() method is called on the
combo box to reduce its size to a necessary maximum (otherwise, it will fill all the unoccupied
space in our toolbar). An ActionListener is then added to monitor combo box selection.
This listener selects the corresponding font menu item (containing the same font name)

BASIC TEXT EDITOR, PART III : CUSTOM TOOLBAR COMPONENTS 365

because the combo box and font radio button menu items must always be in synch. It then
calls our update-Editor() method.

Two SmallToggleButtons are created and added to our toolbar to manage the bold and
italic font properties. Each button receives an ActionListener which selects/deselects the
corresponding menu item (because both the menu items and toolbar buttons must be in synch)
and calls our updateEditor() method.

Our updateEditor() method receives some additional code to provide consistency between
our menu items and toolbar controls. This method relies on the state of the menu items,
which is why the toolbar components first set the corresponding menu items when selected.
The code added here is self-explanatory; it just involves enabling/disabling and selecting/dese-
lecting components to preserve consistency.

Class SmallButton
SmallButton represents a small push button intended for use in a toolbar. It implements the
MouseListener interface to process mouse input. Three instance variables are declared:

• Border m_raised: The border to be used when the mouse cursor is located over
the button.

• Border m_lowered: The border to be used when the button is pressed.
• Border m_inactive: The border to be used when the mouse cursor is located outside

the button.

The SmallButton constructor takes an Action parameter (which is added as an Action-
Listener and performs an appropriate action when the button is pressed) and a String
representing the tooltip text. Several familiar properties are assigned and the icon encapsu-
lated within the Action is used for this button’s icon. SmallButton also adds itself as a
MouseListener and sets its tooltip text to the given String passed to the constructor. The
requestFocusEnabled property is set to false so that when this button is clicked, focus
will not be transferred out of our JTextArea editor component.

The getAlignmentY() method is overriden to return a constant value of 0.5f, indicating
that this button should always be placed in the middle of the toolbar in the vertical direction
(Note that this is only necessary in JDK 1.2.1 and earlier.). The remainder of SmallButton
represents an implementation of the MouseListener interface which sets the border based
on mouse events. The border is set to m_inactive when the mouse is located outside its
bounds, m_active when the mouse is located inside its bounds, and m_lowered when the
button is pressed.

Class SmallToggleButton
SmallToggleButton extends JToggleButton and implements the ItemListener inter-
face to process changes in the button’s selection state. Two instance variables are declared:

• Border m_raised: The border to be used when the button is unselected (unchecked).
• Border m_lowered: The border to be used when the button is selected (checked).

The SmallToggleButton constructor takes four arguments:

• boolean selected: The initial selection state.
• ImageIcon imgUnselected: The icon for use when unselected.

366 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

• ImageIcon imgSelected: The icon for use when selected.
• String tip: The tooltip message.

In the constructor, several familiar button properties are set, and a raised or lowered border is
assigned depending on the initial selection state. Each instance is added to itself as an Item-
Listener to receive notification about changes in its selection. Thus the itemState-
Changed() method is implemented; it simply sets the button's border accordingly based on
the new selected state.

12.4.2 Running the code

Verify that the toolbar components (combo box and toggle buttons) change the editor's font
as expected. Notice which menu and toolbar components work in synchronization (meaning
the menu item selections result in changes in the toolbar controls, and vice versa). Figure 12.5
shows our new basic text editor toolbar with a SmallToggleButton in the pressed state dis-
playing its tooltip text.

Tooltip help Tooltip Help on mouse-over is a must-have technical addition
for small toolbar buttons. The relatively recent innovation of tooltips has greatly
improved the usability of toolbars. Don’t get caught delivering a toolbar with-
out one—make sure that your tooltip text is meaningful to the user!

12.5 BASIC TEXT EDITOR, PART IV: CUSTOM MENU
COMPONENTS

In example 12.4 we will show how to build a custom menu component, ColorMenu, which
allows the selection of a color from a grid of small colored panes (which are instances of
the inner class ColorMenu.ColorPane). By extending JMenu, we inherit all MenuElement
functionality (see section 12.1.10), making custom menu creation quite easy.

Example 12.4

see \Chapter12\4

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class BasicTextEditor extends JFrame
{

BasicTextEditor.java

BASIC TEXT EDITOR, PART IV: CUSTOM MENU COMPONENTS 367

 // Unchanged code from example 12.3

 protected JMenuBar createMenuBar()
 {
 // Unchanged code from example 12.3

 JMenu mOpt = new JMenu("Options");

 mOpt.setMnemonic('p');

 ColorMenu cm = new ColorMenu("Foreground");

 cm.setColor(m_monitor.getForeground());

 cm.setMnemonic('f');

 lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 ColorMenu m = (ColorMenu)e.getSource();

 m_editor.setForeground(m.getColor());

 }

 };

 cm.addActionListener(lst);

 mOpt.add(cm);

 cm = new ColorMenu("Background");

 cm.setColor(m_monitor.getBackground());

 cm.setMnemonic('b');

 lst = new ActionListener() {

Figure 12.6 Custom menu component used for quick color selection

Presents color
selector for
background color

Presents color
selector for
foreground color

368 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

 public void actionPerformed(ActionEvent e) {

 ColorMenu m = (ColorMenu)e.getSource();

 m_editor.setBackground(m.getColor());

 }

 };

 cm.addActionListener(lst);

 mOpt.add(cm);

 menuBar.add(mOpt);

 getContentPane().add(m_toolBar, BorderLayout.NORTH);
 return menuBar;
 }

 // Unchanged code from example 12.3
}

class ColorMenu extends JMenu
{
 protected Border m_unselectedBorder;
 protected Border m_selectedBorder;
 protected Border m_activeBorder;

 protected Hashtable m_panes;
 protected ColorPane m_selected;

 public ColorMenu(String name) {
 super(name);
 m_unselectedBorder = new CompoundBorder(
 new MatteBorder(1, 1, 1, 1, getBackground()),
 new BevelBorder(BevelBorder.LOWERED,
 Color.white, Color.gray));
 m_selectedBorder = new CompoundBorder(
 new MatteBorder(2, 2, 2, 2, Color.red),
 new MatteBorder(1, 1, 1, 1, getBackground()));
 m_activeBorder = new CompoundBorder(
 new MatteBorder(2, 2, 2, 2, Color.blue),
 new MatteBorder(1, 1, 1, 1, getBackground()));

 JPanel p = new JPanel();
 p.setBorder(new EmptyBorder(5, 5, 5, 5));
 p.setLayout(new GridLayout(8, 8));
 m_panes = new Hashtable();

 int[] values = new int[] { 0, 128, 192, 255 };
 for (int r=0; r<values.length; r++) {
 for (int g=0; g<values.length; g++) {
 for (int b=0; b<values.length; b++) {
 Color c = new Color(values[r], values[g], values[b]);
 ColorPane pn = new ColorPane(c);
 p.add(pn);
 m_panes.put(c, pn);
 }
 }
 }
 add(p);

Presents color
selector for
background color

Creates oneColorPane for
each of the 64 (4*4*4) colors

Custom menu which presents
a grid of colors to select from

BASIC TEXT EDITOR, PART IV: CUSTOM MENU COMPONENTS 369

 }

 public void setColor(Color c) {
 Object obj = m_panes.get(c);
 if (obj == null)
 return;
 if (m_selected != null)
 m_selected.setSelected(false);
 m_selected = (ColorPane)obj;
 m_selected.setSelected(true);
 }

 public Color getColor() {
 if (m_selected == null)
 return null;
 return m_selected.getColor();
 }

 public void doSelection() {
 fireActionPerformed(new ActionEvent(this,
 ActionEvent.ACTION_PERFORMED, getActionCommand()));
 }

 class ColorPane extends JPanel implements MouseListener
 {
 protected Color m_c;
 protected boolean m_selected;

 public ColorPane(Color c) {
 m_c = c;
 setBackground(c);
 setBorder(m_unselectedBorder);
 String msg = "R "+c.getRed()+", G "+c.getGreen()+
 ", B "+c.getBlue();
 setToolTipText(msg);
 addMouseListener(this);
 }

 public Color getColor() { return m_c; }

 public Dimension getPreferredSize() {
 return new Dimension(15, 15);
 }
 public Dimension getMaximumSize() { return getPreferredSize(); }
 public Dimension getMinimumSize() { return getPreferredSize(); }

 public void setSelected(boolean selected) {
 m_selected = selected;
 if (m_selected)
 setBorder(m_selectedBorder);
 else
 setBorder(m_unselectedBorder);
 }

 public boolean isSelected() { return m_selected; }

Finds a ColorPane
of a given color
and sets that as
the selected color

Displays
a single color
for selection

Notifies
listeners that a
color selection
has occurred

370 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

 public void mousePressed(MouseEvent e) {}

 public void mouseClicked(MouseEvent e) {}

 public void mouseReleased(MouseEvent e) {
 setColor(m_c);
 MenuSelectionManager.defaultManager().clearSelectedPath();
 doSelection();
 }

 public void mouseEntered(MouseEvent e) {
 setBorder(m_activeBorder);
 }

 public void mouseExited(MouseEvent e) {
 setBorder(m_selected ? m_selectedBorder :
 m_unselectedBorder);
 }
 }
}

12.5.1 Understanding the code

Class BasicTextEditor
The createMenuBar() method now creates a new JMenu titled “Options” and populates it
with two ColorMenus. The first of these menus receives an ActionListener which requests
the selected color using ColorMenu’s getColor() method, and assigns it as the foreground
color of our editor component. Similarly, the second ColorMenu receives an ActionLis-
tener which manages our editor’s background color.

Class ColorMenu
This class extends JMenu and represents a custom menu component which serves as a quick
color chooser. Here are the instance variables:

• Border m_unselectedBorder: The border to be used for a ColorPane (see below)
when it is not selected and the mouse cursor is located outside of its bounds.

• Border m_selectedBorder: The border to be used for a ColorPane when it is
selected and the mouse cursor is located outside of its bounds.

• Border m_activeBorder: The border to be used for a ColorPane when the mouse
cursor is located inside its bounds.

• Hashtable m_panes: A collection of ColorPanes.
• ColorPane m_selected: A reference to the currently selected ColorPane.

The ColorMenu constructor takes a menu name as a parameter and creates the underlying
JMenu component using that name. This creates a root menu item which can be added to
another menu or to a menu bar. Selecting this menu item will display its JPopupMenu com-
ponent, which normally contains several simple menu items. In our case, however, we add a
JPanel to it using JMenu’s add(Component c) method. This JPanel serves as a container
for 64 ColorPanes (see below) which are used to display the available selectable colors, as well
as the current selection. A triple for cycle is used to generate the constituent ColorPanes in
3-dimensional color space. Each ColorPane takes a Color instance as a constructor parameter,

Sets new color, closes all
menus, and notifies
listeners of color change

BASIC TEXT EDITOR, PART IV: CUSTOM MENU COMPONENTS 371

and each ColorPane is placed in our Hashtable collection, m_panes, using its associated
Color as the key.

The setColor() method finds a ColorPane which holds a given Color. If such a compo-
nent is found, this method clears the previously selected ColorPane and selects the new one by
calling its setSelected() method. The getColor() method simply returns the currently
selected color.

The doSelection() method sends an ActionEvent to registered listeners notifying them
that an action has been performed on this ColorMenu, which means a new color may have
been selected.

Class ColorMenu.ColorPane
This inner class is used to display a single color available for selection in a ColorMenu. It
extends JPanel and implements MouseListener to process its own mouse events. This class
uses the three Border variables from the parent ColorMenu class to represent its state,
whether it is selected, unselected, or active. These are the instance variables:

• Color m_c: The color instance represented by this pane.
• boolean m_selected: A flag indicating whether this pane is currently selected.

The ColorPane constructor takes a Color instance as a parameter and stores it in our m_c
instance variable. The only thing we need to do to display that color is to set it as the pane’s
background. We also add a tooltip indicating the red, green, and blue components of this
color.

All MouseListener-related methods should be familiar by now. However, take note of the
mouseReleased() method which plays the key role in color selection: If the mouse is released
over a ColorPane, we first assign the associated Color to the parenting ColorMenu component
using the setColor() method (so it can be retrieved later by any attached listeners). We then
hide all opened menu components by calling the MenuSelectionManager.clearSelected-
Path() method since menu selection is complete at this point. Finally, we invoke the doSelec-
tion() method on the parenting ColorMenu component to notify all attached listeners.

12.5.2 Running the code

Experiment with changing the editor’s background and foreground colors using our custom
menu component available in the Options menu. Notice that a color selection will not affect
anything until the mouse is released, and a mouse release also triggers the collapse of all menu
popups in the current path. Figure 12.6 shows ColorMenu in action.

372 CHAPTER 12 MENUS, TOOLBARS AND ACTIONS

Usability and design alternatives A more traditional approach to this exam-
ple would be to have an elipsis option in the Options menu that opens a color
chooser dialog. Consider what an improvement the presented design makes to
usability. Within a limited range of colors, this design allows for faster selection
with the possible minor problem that there is a greater chance of a mistake being
made in the selection. However, a mistake like that can be easily corrected. As
you will see in the next chapter, knowing that you have a bounded range of
input selections can be put to good use when you’re improving a design and
its usability.

373

C H A P T E R 1 3

Progress bars, sliders,
and scroll bars
13.1 Bounded-range components

overview 373
13.2 Basic JScrollBar example 382
13.3 JSlider date chooser 387

13.4 JSliders in a JPEG image
editor 394

13.5 JProgressBar in an FTP client
application 406

13.1 BOUNDED-RANGE COMPONENTS OVERVIEW

JScrollBar, JSlider, and JProgressBar provide visualization and selection within a
bounded interval, thereby allowing the user to conveniently select a value from that interval or
to simply observe its current state. In this section we’ll give a brief overview of these compo-
nents and the significant classes and interfaces that support them.

13.1.1 The BoundedRangeModel interface

abstract interface javax.swing.BoundedRangeModel
The BoundedRangeModel interface describes a data model that is used to define an integer
value between minimum and maximum values. This value can have a subrange called an
extent, which can be used to define the size of, for instance, a scrollbar “thumb.” The extent
often changes dynamically corresponding to how much of the entire range of possible values is
visible. The value can never be set larger than the maximum or minimum values, and the
extent always starts at the current value and never extends past the maximum. Another prop-
erty called valueIsAdjusting is declared and is expected to be true when the value is in the
state of being adjusted (for example, when a slider thumb is being dragged).

374 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

Implementations are expected to fire ChangeEvents when any of the minimum, maximum,
value, extent, or valueIsAdjusting properties change state. Thus, BoundedRangeModel
includes method declarations for adding and removing ChangeListeners: addChange-
Listener() and removeChangeListener(). This model is used by JProgressBar,
JSlider, and JScrollBar.

Why choose a bounded range component? The bounded range compo-
nents are essentially analog devices in nature. They are good at providing rela-
tive, positional, approximate, or changing (in time) data. They are also excellent
at visually communicating the bounds or limits of a data selection and at com-
municating a percentage of the whole through approximate visual means.
Where you have several values which share the same bounds (such as RGB
values for a color chooser), you can easily communicate relative values of the
three choices through use of a bounded range component. The position of
each component shows the relative value of one against another.

Therefore, use bounded range components when there is an advantage to
communicating either a range of values and/or an approximate position or
changing value to the user.

13.1.2 DefaultBoundedRangeModel

class javax.swing.DefaultBoundedRangeModel
DefaultBoundedRangeModel is the default concrete implementation of the Bounded-
RangeModel interface. The default constructor initializes a model with 0 for minimum, 100
for maximum, and 0 for the value and extent properties. Another constructor allows the speci-
fication of each of these initial values as int parameters. As expected, this implementation
does fire ChangeEvents whenever one of its properties changes.

13.1.3 JScrollBar

class javax.swing.JScrollBar
Scroll bars can be used to choose a new value from a specified interval by sliding a knob (often
referred to as the thumb) between the given maximum and minimum bounds, or by using
small buttons at the ends of the component. The area not occupied by the thumb and buttons
is known as the paging area; this can also be used to change the current scroll bar value. The
thumb represents the extent of this bounded-range component, and its value is stored in
the visibleAmount property.

JScrollBar can be oriented horizontally or vertically, and its value increases to the right
or upward, respectively. To specify orientation, which is stored in the orientation property,
we call the setOrientation() method and pass it one of the JScrollBar.HORIZONTAL or
JScrollBar.VERTICAL constants.

Clicking on a button moves the thumb (and thus the value—recall that a bounded-range
component’s value lies at the beginning of the extent) by the value of JScrollBar’s
unitIncrement property. Similarly, clicking the paging area moves the thumb by the value
of JScrollBar’s blockIncrement property.

BOUNDED-RANGE COMPONENTS OVERVIEW 375

NOTE It is common to match the visibleAmount property with the blockIncrement
property. This is a simple way to visually signify to the user how much of the
available range of data is currently visible.

Using a scroll bar
Background The scroll bar is really a computer-enhanced development from
an original analog mechanical idea. Scroll bars are, in some respects, more
advanced than sliders (see section 13.1.4). The thumb of the scroll bar can
very cleverly be used to show the current data as a percentage of a whole, as
described in the note above. If the scroll bar is placed onto an image and the
thumb is approximately 50% of the total size, then the user is given a clear
indication that the viewing area is roughly half of the total size. The ability for
the thumb in a scroll bar to change size to accurately reflect this is something
which could not have been achieved with a mechanical device. Scroll bars are,
in this respect, a very good example of taking a metaphor based on a mechan-
ical device and enhancing it to improve usability.

Choosing position By far, the best use of a scroll bar is position selection. They
are, by nature, analog, so the viewer only sees an approximate position. Scroll bars
are used by a JScrollPane to select the viewing position of the component the
JScrollPane contains. Users have become accustomed to this method of using
them. For most other occasions where you want to use a sliding control for selec-
tion, a JSlider is probably best.

As expected, JScrollBar uses a DefaultBoundedRangeModel by default. In addition to
the ChangeEvents fired by this model, JScrollBar fires PropertyChangeEvents when its
orientation, unitIncrement, or blockIncrement properties change state. JScroll-
Pane also fires AdjustmentEvents whenever any of its bound properties change, or when
any of its model’s properties change (this is done solely for backward compatibility with the
AWT scroll bar class). Accordingly, JScrollBar provides methods to add and remove
AdjustmentListeners; we don’t need to provide methods for adding and removing Prop-
ertyChangeListeners because this functionality is inherited from JComponent.

NOTE AdjustmentListeners receive AdjustmentEvents. Both are defined in java.
awt.event; refer to the API documentation for more detail.

13.1.4 JSlider

class javax.swing.JSlider
Sliders can be used to choose a numerical value from a specified interval. To use a slider, slide
a knob between the given borders using the mouse, arrow keys, or PageDown and PageUp.
Sliders are very useful when we know in advance the range of input from which the user should
be able to choose.

JSlider supports horizontal and vertical orientations, and its orientation property
can be set to either JSlider.HORIZONTAL or JSlider.VERTICAL. The extent property
specifies the number of values to skip forward/up or back/down when PageUp or PageDown
is pressed, respectively. Tick marks can be used to denote value locations. Minor and major tick

376 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

marks are supported; major ticks are usually longer and more spread apart than minor ticks.
In the case where a major and minor tick fall on the same location, the major tick takes
precedence and the minor tick will not be displayed. Spacing between minor tick marks is
specified by the minorTickSpacing property, and spacing between major tick marks is
specified by the majorTickSpacing property.

NOTE The tick spacing properties specify the number of values to be skipped between succes-
sive ticks. Their names are somewhat misleading because they actually have nothing to
do with the physical space (in pixels) between ticks. They would be more appropriately
named “minorTickDisplayInterval” and “majorTickDisplayInterval.”

Setting either spacing property to 0 has a disabling effect, and the paintTicks property also
provides a way of turning ticks on and off.

BUG FIX The snapToTicks property is intended to only allow the slider knob to lie on a tick-
marked value. This feature did not work as expected in Java 1.2 FCS, but has been
fixed in more recent versions of Java. Try setting this to true on a JSlider with the
setSnapToTicks() method.

Major ticks can be annotated by components and, by default, each of JSlider’s major ticks
are adorned with JLabels that denote the integer tick value. We can turn this functionality
on and off by changing the paintLabels property, and we can customize which components
are used to annotate, and at what values they are placed, by passing a Dictionary of Inte-
ger/Component pairs to the setLabelTable() method. The createStandardLabels()
method is used by default to set up JSlider with its JLabels at each major tick value. This
method returns a Hashtable (a subclass of Dictionary) which can then be assigned to
JSlider using setLabelTable().

By default, JSlider’s values increment from left to right or bottom to top depending
on whether horizontal or vertical orientation is used. To reverse the incrementation direction,
we can set the inverted property to true.

Using a Slider Sliders are really a close graphical and behavioral representa-
tion of a real world analog slider—a hi-fi system or an older TV volume control
are good examples. As such, sliders are analog devices and they are designed to
be used to determine an approximate or positional setting for something. They
usually rely on direct user feedback to help select a position. With the TV vol-
ume control example, the volume would go up and down as the slider is moved
and the user would stop moving it when the volume was at a comfortable level.

The Swing version of a slider is actually a digital device disguised as an analog
one. Each tick of the slider is a digital increment. The slider can therefore be used
to determine an accurate value, provided the user is given some additional digital
feedback, such as a numeric display of the absolute value or a scale along the side
of the slider. Where accurate values are important, such as with a color chooser,
be sure to provide an absolute value as output alongside the slider.

BOUNDED-RANGE COMPONENTS OVERVIEW 377

Feedback Immediate feedback is important with sliders because of their ana-
log nature. Provide actual feedback, such as the brightness of a picture which
increases or decreases as the slider is moved, or provide an absolute numeric value
readout which the user can see change as the slider is moved. Judicious use of the
change event with a ChangeListener is important so that the feedback mecha-
nism can be updated—for example, to show brightness or contrast in an image.

Movement The two default orientations of a slider are conventions which
date back to the original analog electronic devices. When a slider is vertical, the
down position is lower and you move it up to increase in value. When it is hor-
izontal, the left position is lower and you move it right to increase in value. Users
should be very familiar with this convention. If you wish to switch it, you
should have a very very good reason for doing so. We wouldn’t recommend it!

Slider vs. Scroll bar On the whole, use a slider for choosing a value when the
value needed is approximate and subjective (such as color, volume, and bright-
ness) and when the user needs to make the subjective judgement. Conversely,
use a scroll bar for positional choice, where the desired position is approximate
and judged relative to the whole.

The paintTrack property specifies whether the whole slider track is filled in. The Metal look
and feel UI delegate for JSlider pays attention to the client property with the key
“JSlider.isFilled” and a Boolean value. Adding this property to a JSlider’s client
properties hashtable (using putClientProperty(); see chapter 2) with a value of Bool-
ean.TRUE will fill in only the lower half of the slider track from the position of the knob.
This client property will have no effect if the paintTrack property is set to true, and it will
work only if the slider is using the Metal look and feel UI delegate.

As expected, JSlider uses a DefaultBoundedRangeModel by default. In addition to
the ChangeEvents fired by this model, JSlider fires PropertyChangeEvents when any of
its properties described above change state. Unlike JScrollBar, JSlider provides the ability
to add and remove ChangeListeners directly.

13.1.5 JProgressBar

Class javax.swing.JProgressBar
Progress bars can be used to display how far or close a given numerical value is from the
bounds of a specified interval. They are typically used to indicate progress during a certain
lengthy job to show the user that the job being monitored is alive and active. As with
JScrollBar and JSlider, JProgressBar can be oriented horizontally or vertically. Notice
also that JProgressBar acts the same way as JSlider with respect to incrementing: left to
right in horizontal orientation, bottom to top in vertical orientation.

A JProgressBar is painted and filled from the minimum value to its current value (with
the exception of the Windows look and feel, which paints a series of small rectangles). A per-
centage representing how much of a job has been completed can optionally be displayed in the
center of JProgressBar. The string property represents the String to be painted (it’s usu-
ally of the form XX%, where X is a digit), stringPainted specifies whether string should

378 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

be painted, and percentComplete is a double between 0 and 1 to specify how much of the
job has been completed so far.

NOTE We normally do not need to take control of this rendering functionality, because
by setting the string property to null, and the stringPainted property to
true, the percentComplete property is converted to the XX% form for us, and
it is displayed in the progress bar.

JProgressBar’s foreground and background can be assigned just like any JComponent;
however, the color used to render its status text is not directly modifiable. Instead, this is han-
dled by the UI delegate. The easiest way to assign specific colors is to replace the appropriate
UI resources in the UIManager’s defaults table (see chapter 21 for more about look and feel
customization).

The borderPainted property (which defaults to true) specifies whether a border is ren-
dered around JProgressBar. As expected, JProgressBar uses a DefaultBoundedRange-
Model by default, and ChangeListeners can be added to receive ChangeEvents when any
of JProgressBar’s properties change state.

During a monitored operation, we simply call setValue() on a JProgressBar and all
updating is taken care of for us. We must be careful to make this call in the event-dispatching
thread. Consider the following basic example (13.1). Figure 13.1 illustrates the output.

JAVA 1.4 The new indeterminate property has been added to JProgressBar in Java 1.4.
Setting this to true with the setIndeterminate() method places JProgress-
Bar in a new mode in which an animated rectangle moves right and left indicating
an action of unknown length is taking place.

To demonstrate the new indeterminate property added in Java 1.4 we set it to true for 5
seconds then to false each time the start button is pressed. Also, each time the start button is
pressed we toggle the stringPainted property. When this is set to false, the progress bar is
changed from a solid rectangle to a sequence of small rectangles.

Example 13.1

see \Chapter13\1

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.event.*;

JProgressBarDemo.java

Figure 13.1 A basic JProgressBar example showing
custom colors and proper updating

BOUNDED-RANGE COMPONENTS OVERVIEW 379

import javax.swing.border.*;

public class JProgressBarDemo extends JFrame {

protected int m_min = 0;
protected int m_max = 100;
protected int m_counter = 0;
protected JProgressBar m_progress;
protected JButton m_start;
protected boolean m_stringPainted = false;

public JProgressBarDemo() {
super("JProgressBar Demo");
setSize(300,50);

UIManager.put("ProgressBar.selectionBackground", Color.black);
UIManager.put("ProgressBar.selectionForeground", Color.white);
UIManager.put("ProgressBar.foreground", new Color(8,32,128));
UIManager.put("ProgressBar.cellLength", new Integer(5));
UIManager.put("ProgressBar.cellSpacing", new Integer(1));

m_progress = new JProgressBar();
m_progress.setMinimum(m_min);
m_progress.setMaximum(m_max);
m_progress.setStringPainted(m_stringPainted);

m_start = new JButton("Start");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_stringPainted = !m_stringPainted;
m_progress.setStringPainted(m_stringPainted);

Thread runner = new Thread() {

int m_counter;
public void run() {

m_start.setEnabled(false);
// Pretend we're doing phase 1
m_progress.setIndeterminate(true);
try {

Thread.sleep(5000);
}
catch (InterruptedException ex) {}
m_progress.setIndeterminate(false);

// Pretend we're doing phase 2
for (m_counter=m_min; m_counter<=m_max; m_counter++) {

Runnable runme = new Runnable() {
public void run() {

m_progress.setValue(m_counter);
}

};
SwingUtilities.invokeLater(runme);
try {

Thread.sleep(100);
}

380 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

catch (InterruptedException ex) {}
}
m_start.setEnabled(true);

}
};
runner.start();

}
};
m_start.addActionListener(lst);

getContentPane().setLayout(new BorderLayout(10,10));
getContentPane().add(m_progress, BorderLayout.CENTER);
getContentPane().add(m_start, BorderLayout.WEST);

}

public static void main(String[] args) {
JProgressBarDemo frame = new JProgressBarDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

NOTE The JProgressBar UI delegate centers the progress text horizontally and vertically.
However, its centering scheme enforces a certain amount of white space around the
text and has undesirable effects when using thin progress bars. In order to fix this,
we can override BasicProgressBarUI’s getStringPlacement() method (refer
to the API documentation and the BasicProgressBarUI.java source code) to return
the desired Point location where the text should be rendered.

Using progress bar long operations Progress bars are commonly used as a
filter for operations which take a long time. A long time in human interaction
is often defined as one second or longer. The progress bar is usually rendered
inside a JOptionPane.

You will need to pay special attention to the business logic code so that it is
capable of notifying a progress bar of the progress of an operation.

Progress bars are inherently analog in nature. Analog data is particularly good
for displaying change and for relative comparison. It is not good for exact mea-
surement. In this situation, the analog nature of a progress bar means that it is
good for showing that something is happening and that progress is taking
place. However, it is not good for giving an exact measure of completeness. If
you need to show the user exactly what percentage of the task is complete, you
may need to supplement the progress bar with a digital progress reading. This
is common with Internet download dialogs and option panes.

A digital readout is particularly useful when the task to be completed will take
a very long time. The progress bar may give you a granularity of 3% or so for
each graphic. If it takes a significantly long time to progress by such a jump, say
greater than 5 seconds, the digital readout will give you a finer grained reading
at 1%, and, it will change approximately three times faster than your progress
bar. The combination of the two helps to pass the time for the user and it gives

BOUNDED-RANGE COMPONENTS OVERVIEW 381

them the reassurance that something is happening; it also gives them a very accu-
rate view of their progress. This is why the dual combination of digital and analog
progress is popular with Internet download dialogs, as the task can be very long
and its length cannot be determined by the application developer.

13.1.6 ProgressMonitor

class javax.swing.ProgressMonitor
The ProgressMonitor class is a convenient means of deploying a dynamic progress bar in
an application that performs time-consuming operations. This class is a direct subclass of
Object, so it does not exist in the component hierarchy.

ProgressMonitor displays a JDialog containing a JOptionPane-style component.
The note property represents a String that can change during the course of an operation and
it is displayed in a JLabel above the JProgressBar (if null is used, this label is not displayed).

Two buttons, OK and Cancel, are placed at the bottom of the dialog. They serve to dis-
miss the dialog and abort the operation, respectively. The OK button simply hides the dialog.
The Cancel button hides the dialog, and it also sets the canceled property to true, providing
us with a way to test whether the user has canceled the operation. Since most time-consuming
operations occur in loops, we can test this property during each iteration, and abort if necessary.

The millisToDecideToPopup property is an int value that specifies the number of
milliseconds to wait before ProgressMonitor should determine whether to pop up a dialog
(it defaults to 500). This is used to allow a certain amount of time to pass before questioning
whether the job is long enough to warrant a progress dialog. The millisToPopup property
is an int value that specifies the minimum time a job must take in order to warrant popping
up a dialog (it defaults to 2000). If ProgressMonitor determines that the job will take less
than millisToPopup milliseconds, the dialog will not be shown.

The progress property is an int value that specifies the current value of the JProgress-
Bar. During an operation, we are expected to update the note and progress in the event-
dispatching thread.

WARNING In light of these properties, we should only use a ProgressMonitor for simple,
predictable jobs. ProgressMonitor bases the estimated time to completion on the
value of its JProgressBar from the start time to the current evaluation time, and
it assumes that a constant rate of progression will exist throughout the whole job.
For transferring a single file this may be a fairly valid assumption. However, the rate
of progress is highly dependent on how the job is constructed.

NOTE ProgressMonitor does not currently give us access to its JProgressBar compo-
nent. We hope that in future implementations it will be accounted for, as it cur-
rently makes customization more difficult.

13.1.7 ProgressMonitorInputStream

class javax.swing.ProgressMonitorInputStream
This class extends java.io.FilterInputStream and contains a ProgressMonitor.
When it is used in place of an InputStream, this class provides a very simple means of dis-

382 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

playing job progress. This InputStream’s overloaded read() methods read data and update
the ProgressMonitor at the same time. We can access ProgressMonitorInputStream’s
ProgressMonitor with getProgressMonitor(), but we cannot assign it a new one. (See
the API documentation for more information about InputStreams.)

13.2 BASIC JSCROLLBAR EXAMPLE

The JScrollBar component is most often seen as part of a JScrollPane. We rarely use this
component alone, unless customized scrolling is desired. In example 13.2 in this section, we’ll
show how to use JScrollBar to create a simple custom scrolling pane from scratch.

Example 13.2

see \Chapter13\2

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class ScrollDemo
extends JFrame {

public ScrollDemo() {
super("JScrollBar Demo");
setSize(300,250);

ImageIcon ii = new ImageIcon("earth.jpg");
CustomScrollPane sp = new CustomScrollPane(new JLabel(ii));

ScrollDemo.java

Figure 13.2
ScrollDemo example
showing an image in
the custom scroll pane

BASIC JSCROLLBAR EXAMPLE 383

getContentPane().add(sp);
}

public static void main(String[] args) {
ScrollDemo frame = new ScrollDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class CustomScrollPane
extends JPanel {

protected JScrollBar m_vertSB;
protected JScrollBar m_horzSB;
protected CustomViewport m_viewport;
protected JComponent m_comp;

protected JButton m_btUp;
protected JButton m_btDown;
protected JButton m_btLeft;
protected JButton m_btRight;

public CustomScrollPane(JComponent comp) {
if (comp == null)

throw new IllegalArgumentException(
"Component cannot be null");

setLayout(null);
m_viewport = new CustomViewport();
m_viewport.setLayout(null);
add(m_viewport);
m_comp = comp;
m_viewport.add(m_comp);

m_vertSB = new JScrollBar(JScrollBar.VERTICAL, 0, 0, 0, 0);
m_vertSB.setUnitIncrement(5);
add(m_vertSB);

m_horzSB = new JScrollBar(JScrollBar.HORIZONTAL, 0, 0, 0, 0);
m_horzSB.setUnitIncrement(5);
add(m_horzSB);

AdjustmentListener lst = new AdjustmentListener() {
public void adjustmentValueChanged(AdjustmentEvent e) {

m_viewport.doLayout();
}

};
m_vertSB.addAdjustmentListener(lst);
m_horzSB.addAdjustmentListener(lst);

m_btUp = new JButton(new ImageIcon("Up16.gif"));
m_btUp.setMargin(new Insets(0,0,0,0));
m_btUp.setBorder(new EmptyBorder(1,1,1,1));
m_btUp.setToolTipText("Go top");
add(m_btUp);

Custom scroll pane class
similar to JScrollPane,
but with additional buttons
to scroll to extremities

384 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

ActionListener listener = new ActionListener() {
public void actionPerformed(ActionEvent e) {

m_vertSB.setValue(m_vertSB.getMinimum());
validate();

}
};
m_btUp.addActionListener(listener);

m_btDown = new JButton(new ImageIcon("Down16.gif"));
m_btDown.setMargin(new Insets(0,0,0,0));
m_btDown.setBorder(new EmptyBorder(1,1,1,1));
m_btDown.setToolTipText("Go bottom");
add(m_btDown);
l = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_vertSB.setValue(m_vertSB.getMaximum());
validate();

}
};
m_btDown.addActionListener(listener);

m_btLeft = new JButton(new ImageIcon("Back16.gif"));
m_btLeft.setMargin(new Insets(0,0,0,0));
m_btLeft.setBorder(new EmptyBorder(1,1,1,1));
m_btLeft.setToolTipText("Go left");
add(m_btLeft);
l = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_horzSB.setValue(m_horzSB.getMinimum());
validate();

}
};
m_btLeft.addActionListener(listener);

m_btRight = new JButton(new ImageIcon("Forward16.gif"));
m_btRight.setMargin(new Insets(0,0,0,0));
m_btRight.setBorder(new EmptyBorder(1,1,1,1));
m_btRight.setToolTipText("Go right");
add(m_btRight);
l = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_horzSB.setValue(m_horzSB.getMaximum());
validate();

}
};
m_btRight.addActionListener(l);

}

public void doLayout() {
Dimension d = getSize();
Dimension d0 = m_comp.getPreferredSize();
Dimension d1 = m_vertSB.getPreferredSize();
Dimension d2 = m_horzSB.getPreferredSize();

Responsible for all layout
of custom scroll pane children

BASIC JSCROLLBAR EXAMPLE 385

int w = Math.max(d.width - d1.width-1, 0);
int h = Math.max(d.height - d2.height-1, 0);
m_viewport.setBounds(0, 0, w, h);

int btW = d1.width;
int btH = d2.height;
m_btUp.setBounds(w+1, 0, btW, btH);
m_vertSB.setBounds(w+1, btH+1, btW, h-2*btH);
m_btDown.setBounds(w+1, h-btH+1, btW, btH);

m_btLeft.setBounds(0, h+1, btW, btH);
m_horzSB.setBounds(btW+1, h+1, w-2*btW, btH);
m_btRight.setBounds(w-btW+1, h+1, btW, btH);

int xs = Math.max(d0.width - w, 0);
m_horzSB.setMaximum(xs);
m_horzSB.setBlockIncrement(xs/5);
m_horzSB.setEnabled(xs > 0);

int ys = Math.max(d0.height - h, 0);
m_vertSB.setMaximum(ys);
m_vertSB.setBlockIncrement(ys/5);
m_vertSB.setEnabled(ys > 0);

m_horzSB.setVisibleAmount(m_horzSB.getBlockIncrement());
m_vertSB.setVisibleAmount(m_vertSB.getBlockIncrement());

}

public Dimension getPreferredSize() {
Dimension d0 = m_comp.getPreferredSize();
Dimension d1 = m_vertSB.getPreferredSize();
Dimension d2 = m_horzSB.getPreferredSize();
Dimension d = new Dimension(d0.width+d1.width,

d0.height+d2.height);
return d;

}

class CustomViewport
extends JPanel {

public void doLayout() {
Dimension d0 = m_comp.getPreferredSize();
int x = m_horzSB.getValue();
int y = m_vertSB.getValue();
m_comp.setBounds(-x, -y, d0.width, d0.height);

}
}

}

Calculates preferred size
based on preferred sizes
of child components

Custom viewport-like panel as a container for the
component to be scrolled, and is responsible for
assigning the correct positioning of that
component based on scroll bar values

386 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

13.2.1 Understanding the code

Class ScrollDemo
This simple frame-based class creates a CustomScrollPane instance to scroll a large image.
This class is very similar to the first example in chapter 7 and does not require additional
explanation.

Class CustomScrollPane
This class extends JPanel to represent a simple custom scroll pane. Eight instance variables
are declared:

• JScrollBar m_vertSB: vertical scroll bar.
• JScrollBar m_horzSB: horizontal scroll bar.
• CustomViewport m_viewport: custom viewport component.
• JComponent m_comp: component to be placed in our custom viewport.
• JButton m_btUp: vertical scroll bar up button.
• JButton m_btDown: vertical scroll bar down button.
• JButton m_btLeft: horizontal scroll bar left button.
• JButton m_btRight: horizontal scroll bar right button.

The CustomScrollPane constructor takes a component to be scrolled as a parameter. It
instantiates the instance variables and adds them to itself using a null layout (because this
component acts as its own layout manager). Note that the JScrollBars are created with
proper orientation and zero values across the board (because these are meaningless if not based
on the size of the component being scrolled). Two buttons for each scroll bar are added for set-
ting the scroll bar value to its maximimum and minimum value.

An AdjustmentListener is created and added to both scroll bars. The adjustmentVal-
ueChanged() method calls the doLayout() method on the m_viewport component to
perform the actual component scrolling according to the new scroll bars values.

The doLayout() method sets the bounds for the viewport (in the center), vertical scroll bar
(on the right), and horizontal scroll bar (on the bottom). New maximum values and block
increment values are set for the scroll bars based on the sizes of the scrolling pane and compo-
nent to be scrolled. Note that if the maximum value reaches zero, the corresponding scroll bar
is disabled. The visibleAmount property of each is set to the corresponding blockIncre-
ment value to provide proportional thumb sizes.

The getPreferredSize() method simply calculates the preferred size of this component
based on the preferred sizes of its children.

Class CustomViewport
This class extends JPanel and represents a simple realization of a viewport for our custom
scrolling pane. The only implemented method, doLayout(), reads the current scroll bar val-
ues and assigns bounds to the scrolling component accordingly.

JSLIDER DATE CHOOSER 387

13.2.2 Running the code

Figure 13.2 shows an image in the custom scroll pane. Use the horizontal and vertical scroll
bars to verify that scrolling works as expected. Resize the frame component to verify that the
scroll bar values and thumbs are adjusted correctly as the container’s size is changed. Use the
custom buttons to set the scroll bar to its maximum and minimum values.

13.3 JSLIDER DATE CHOOSER

In example 13.3, we’ll show how three JSliders can be combined to allow date selection. We
will also address some resizing issues and show how to dynamically change JSlider’s annota-
tion components and tick spacing based on size constraints.

NOTE While month and day are limited values, year is not. We can use a JSlider to select
year only if we define a finite, static range of years to choose from, because JSlider
must have a minimum and maximum value at all times. In this example we bound
the year slider value between 1990 and 2010.

Figure 13.3 JSliders with dynamically changable bound values,
tick spacing, and annotation components

388 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

Feedback in readable form Using sliders to pick the values for a date may be
an interesting method for data input, but it does not lend itself to easy and
clear output communication. It can be visually tedious to determine the actual
selected date; users may need to look at each slider and put the information
together themselves. This problem is fixed by the use of the clearly human
readable form (the label) at the top of the dialog. This label directly follows the
advice that sliders should be used to provide immediate visual feedback.

Visual noise Visual noise or clutter is avoided by spacing annotations and
avoiding the temptation to annotate each day and each year. The change in
rendering as the device is made smaller is also a clear example of how extra-
coding and the adoption of an advanced technique can aid visual communi-
cation and usability

.

Example 13.3

see \Chapter13\3
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

DateSlider.java

Figure 13.4
JSliders showing altered maximum
bound and annotation labels

JSLIDER DATE CHOOSER 389

public class DateSlider
extends JFrame {

public final static Dimension RIGID_DIMENSION =
new Dimension(1,3);

protected JLabel m_lbDate;
protected JSlider m_slYear;
protected JSlider m_slMonth;
protected JSlider m_slDay;
protected Hashtable m_labels;
protected GregorianCalendar m_calendar;
protected SimpleDateFormat m_dateFormat;

public DateSlider() {
super("Date Slider");
setSize(500, 340);

m_calendar = new GregorianCalendar();
Date currDate = new Date();
m_calendar.setTime(currDate);
m_dateFormat = new SimpleDateFormat("EEE, MMM d, yyyyy");

JPanel p1 = new JPanel();
p1.setLayout(new GridLayout(4, 1));

JPanel p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(),

"Selected Date"));
m_lbDate = new JLabel(

m_dateFormat.format(currDate) + " ");
m_lbDate.setFont(new Font("Arial",Font.BOLD,24));
p.add(m_lbDate);
p1.add(p);

m_slYear = new JSlider(JSlider.HORIZONTAL, 1990, 2010,
m_calendar.get(Calendar.YEAR));

m_slYear.setPaintLabels(true);
m_slYear.setMajorTickSpacing(5);
m_slYear.setMinorTickSpacing(1);
m_slYear.setPaintTicks(true);
ChangeListener lst = new ChangeListener() {

public void stateChanged(ChangeEvent e) {
showDate();

}
};
m_slYear.addChangeListener(lst);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(), "Year"));
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(Box.createRigidArea(RIGID_DIMENSION));
p.add(m_slYear);
p.add(Box.createRigidArea(RIGID_DIMENSION));
p1.add(p);

Creates
calendar
and date
information

Slider to
set year

390 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

m_slMonth = new JSlider(JSlider.HORIZONTAL, 1, 12,
m_calendar.get(Calendar.MONTH)+1);

String[] months = (new DateFormatSymbols()).getShortMonths();
m_labels = new Hashtable(12);
for (int k=0; k<12; k++)

m_labels.put(new Integer(k+1), new JLabel(
months[k], JLabel.CENTER));

m_slMonth.setLabelTable(m_labels);
m_slMonth.setPaintLabels(true);
m_slMonth.setMajorTickSpacing(1);
m_slMonth.setPaintTicks(true);
m_slMonth.addChangeListener(lst);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(), "Month"));
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(Box.createRigidArea(RIGID_DIMENSION));
p.add(m_slMonth);
p.add(Box.createRigidArea(RIGID_DIMENSION));
p1.add(p);

int maxDays = m_calendar.getActualMaximum(
Calendar.DAY_OF_MONTH);

m_slDay = new JSlider(JSlider.HORIZONTAL, 1, maxDays,
m_calendar.get(Calendar.DAY_OF_MONTH));

m_slDay.setPaintLabels(true);
m_slDay.setMajorTickSpacing(5);
m_slDay.setMinorTickSpacing(1);
m_slDay.setPaintTicks(true);
m_slDay.addChangeListener(lst);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(), "Day"));
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(Box.createRigidArea(RIGID_DIMENSION));
p.add(m_slDay);
p.add(Box.createRigidArea(RIGID_DIMENSION));
p1.add(p);

getContentPane().add(p1, BorderLayout.CENTER);

enableEvents(ComponentEvent.COMPONENT_RESIZED);
}

protected void processComponentEvent(ComponentEvent e) {
if (e.getID() == ComponentEvent.COMPONENT_RESIZED) {

int w = getSize().width;

m_slYear.setLabelTable(null);
if (w > 200)

m_slYear.setMajorTickSpacing(5);
else

m_slYear.setMajorTickSpacing(10);

Slider to
set month

Slider to
set day

Enables receipt
of resize events

Reconfigures tick
spacing based on

width of frames

JSLIDER DATE CHOOSER 391

m_slYear.setPaintLabels(w > 100);

m_slMonth.setLabelTable(w > 300 ? m_labels : null);
if (w <= 300 && w >=200)

m_slMonth.setMajorTickSpacing(1);
else

m_slMonth.setMajorTickSpacing(2);
m_slMonth.setPaintLabels(w > 100);

m_slDay.setLabelTable(null);
if (w > 200)

m_slDay.setMajorTickSpacing(5);
else

m_slDay.setMajorTickSpacing(10);
m_slDay.setPaintLabels(w > 100);

}
}

public void showDate() {
m_calendar.set(m_slYear.getValue(), m_slMonth.getValue()-1, 1);
int maxDays = m_calendar.getActualMaximum(

Calendar.DAY_OF_MONTH);

if (m_slDay.getMaximum() != maxDays) {
m_slDay.setValue(Math.min(m_slDay.getValue(), maxDays));
m_slDay.setMaximum(maxDays);
m_slDay.repaint();

}

m_calendar.set(m_slYear.getValue(), m_slMonth.getValue()-1,
m_slDay.getValue());

Date date = m_calendar.getTime();
m_lbDate.setText(m_dateFormat.format(date));

}

public static void main(String argv[]) {
DateSlider frame = new DateSlider();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

13.3.1 Understanding the code

Class DateSlider
DateSlider extends JFrame and declares seven instance variables and one class constant.
This is the class constant:

• Dimension RIGID_DIMENSION: Used to create rigid areas above and below each slider.

There are seven instance variables:

• JLabel m_lbDate: The label to display the selected date.
• JSlider m_slYear: The slider to select the year.

Retrieves values
from sliders to
format date string
in m_lbDate

392 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

• JSlider m_slMonth: The slider to select the month.
• JSlider m_slDay: The slider to select the day.
• Hashtable m_labels: A collection of labels to denote months by short names rather

than numbers.
• GregorianCalendar m_calendar: A calendar that performs date manipulations.
• SimpleDateFormat m_dateFormat: The object to format the date as a string.

The DateSlider constructor initializes the m_calendar instance defined above, and the
date format m_dateFormat. A JPanel with a GridLayout of one column and four rows is
used as a base panel, p1. JLabel m_lbDate is created and embedded in a JPanel with a simple
TitledBorder, and placed in the first row.

The m_slYear slider is created and placed in the second row. This slider is used to select the year
from the interval 1990 to 2010. It takes its initial value from the current date. A number of set-
tings are applied to m_slYear. The paintLabels and paintTicks properties are set to true
to allow for drawing ticks and labels, majorTickSpacing is set to 5 to draw major ticks for
every fifth value, and minorTickSpacing is set to 1 to draw minor ticks for every value. Finally,
a ChangeListener is added to monitor changes to this slider’s properties and update them
when necessary with our custom ShowDate() method. Notice that m_slYear is placed in a
JPanel that is surrounded by a TitledBorder. Two rigid areas are added to ensure vertical
spacing between our slider and this parent panel (see chapter 4 for more about Box and its invis-
ible Filler components).

The m_slMonth slider is created and placed in the third row. This slider is used to select the
month from the interval 1 to 12. This component is constructed similar to m_slYear, but it
receives a Hashtable of JLabels to denote months by short names rather than numbers.
These names are taken from an instance of the DateFormatSymbols class (see the API docu-
mentation) and they are used to create pairs in a local m_labels Hashtable in the form
Integer/JLabel. The Integer represents slider value (from 1 to 12) as key, and the JLa-
bel is used to display this value. Finally, the setLabelTable() method is invoked to assign
these custom labels to the slider.

The m_slDay slider is created and placed in the fourth row. It is used to select the day of the
month from an interval which dynamically changes depending on the current month and, for
February, the year. Aside from this difference, m_slDay is constructed very similar to
m_slYear.

A slider’s tick annotation components may overlap each other and become unreadable if not
enough space is provided, and it is up to us to account for this possibility. This becomes a
more significant problem when (as in this example) slider components can be resized by simply
resizing the parent frame. To work around this problem, we can simply enforce a certain size,
but this may not be desirable in all situations. If we ever find ourselves in such a situation, we
need to change our slider’s properties dynamically depending on its size. For this reason, the
processComponentEvent() method is overridden to process resizing events that occur on
the parent frame. This event processing is enabled in the DateSlider constructor with the
enableEvents() method.

The processComponentEvent() method only responds to ComponentEvents with the ID
COMPONENT_RESIZED. For each of our three sliders, this method changes the majorTick-

JSLIDER DATE CHOOSER 393

Spacing property based on the container’s width. m_slDay and m_slYear receive a spacing
of 5 if the width is greater than 200; otherwise they receive a spacing of 10. m_slMonth
receives a majorTickSpacing of 1 if the container’s width is anywhere from 200 to 300, and
it receives 2 otherwise. If this width is greater than 300, our custom set of labels is used to
annotate m_slMonth’s major ticks. The default numerical labels are used otherwise. For each
slider, if the width is less than 100 the paintLabels property is set to false, which disables
all annotations; otherwise, paintLabels is set to true.

Our custom showDate() method is used to retrieve values from our sliders and display them
in m_lbDate as the new selected date. First, we determine the maximum number of days for
the selected month by passing m_calendar a year, a month, and 1 as the day. Then, if
necessary, we reset m_slDay’s current and maximum values. Finally, we pass m_calendar a
year, month, and the selected (possibly adjusted) day, retrieve a Date instance corresponding
to these values, and invoke format() to retrieve a textual representation of the date.

NOTE Java 2 does not really provide a direct way to convert a year, month, and day triplet into
a Date instance (this functionality has been deprecated). We need to use Calendar.
set() and Calendar.getTime() for this. Be aware that the day parameter is not
checked against the maximum value for the selected month. If the day is set to 30 when
the month is set to February, it will be silently treated as March 2.

13.3.2 Running the code

Notice how the date is selected and displayed, and how the range of the Day slider is adjusted
when a new month is selected. Figure 13.3 shows the selection of February 7, 2004, demon-
strating that this is a leap year.

NOTE A leap year is a year whose last two digits are evenly divisible by 4, except for cen-
tenary years not divisible by 400.

Now try resizing the application frame to see how the slider annotations and ticks change to
their more compact variants as the available space shrinks. Figure 13.4 illustrates the changes.

Exact value selection Although sliders are best used for selections where an
exact value is not needed, this example gets around situations where an exact
value is needed by providing an adequate gap between ticks, making an exact
choice easy to achieve.

The use of a slider for the year selection is an unusual choice, as the year is not
normally a bounded input. However, in certain domains it may be a more suit-
able choice such as this example. Once the year and the month have been dis-
played using sliders, it is visually attractive and consistent to use a slider for
the day. There may be some debate about doing so, as the bound will change
depending on the month that is selected. However, it is fair to argue that the
changing bound on the day, as the month is selected, gives a clear, instant,
visual feedback of how many days are in the month, which meets with the
criteria of providing instant feedback when using a slider.

394 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

13.4 JSLIDERS IN A JPEG IMAGE EDITOR

Java 2 ships with a special package, com.sun.image.codec.jpeg, that provides a set of
classes and interfaces for working with JPEG images (this package is created at least in part by
Eastman Kodak Company). Although this package is not a part of Swing, it can be very useful
in Swing-based applications. By reducing image quality (which is actually a result of compres-
sion), required storage space can be decreased. Using reduced quality JPEGs in web pages
increases response time by decreasing download time, and the editor application we will develop
here allows us to load an existing JPEG, modify its quality, and then save the result. JSliders
are used for the main editing components.

NOTE JPEG stands for Joint Photographic Experts Group. It is a popular graphical format
that allows images to be compressed up to 10 or 20 times.

Before we decide to use functionality in this package, you should know that, even though this
package is shipped with Java 2, according to the API documentation, “... the classes in the
com.sun.image.codec.jpeg package are not part of the core Java APIs. They are a part of
Sun’s JDK and JRE distributions. Although other licensees may choose to distribute these
classes, developers cannot depend on their availability in non-Sun implementations. We expect
that equivalent functionality will eventually be available in a core API or standard extension.”

13.4.1 The JPEGDecodeParam interface

abstract interface com.sun.image.codec.jpeg.JPEGDecodeParam
This interface encapsulates the parameters used to control the decoding of a JPEG image. It
provides a rich set of getXX() and isXX() accessor methods. Instances contain information
about how to decode a JPEG input stream, and they are created automatically by JPEGImage-
Decoder (see below) if none is specified when an image is decoded. A JPEGImageDecoder’s
associated JPEGDecoderParam can be obtained with its getJPEGDecodeParam() method.

13.4.2 The JPEGEncodeParam interface

abstract interface com.sun.image.codec.jpeg.JPEGEncodeParam
This interface encapsulates parameters that are used to control the encoding of a JPEG image
stream. It provides a rich set of getXX() and setXX() accessor methods. Instances contain
information about how to encode a JPEG to an output stream, and a default instance will be
created atomatically by JPEGImageEncoder (see below) if none is specified when an image is
encoded. A JPEGImageEncoder’s associated JPEGEncodeParam can be obtained with its
getJPEGEncodeParam() method, or with one of its overriden getDefaultJPEGEncode-
Param() methods.

Particularly relevant to this example are JPEGEncodeParam’s xDensity, yDensity, and
quality properties, all of which can be assigned using typical setXX() methods. xDensity and
yDensity represent horizontal and vertical pixel density, which depends on JPEGEncoder-
Param’s current pixel density setting. The pixel density setting is controlled with JPEGEncode-
Param’s setDensityUnit() method. It can be, for instance, DENSITY_UNIT_DOTS_INCH,
which means pixel density will be interpreted as pixels per inch. The quality property is specified
as a float within the range 0.0 to 1.0, where 1.0 means perfect quality. In general, 0.75 means
high quality, 0.5 means medium quality, and 0.25 means low quality.

JSLIDERS IN A JPEG IMAGE EDITOR 395

13.4.3 The JPEGImageDecoder interface

abstract interface com.sun.image.codec.jpeg.JPEGImageDecoder
This interface describes an object used to decode a JPEG data stream into an image. We invoke
the decodeAsBufferedImage() method to perform the actual decoding into a Buffered-
Image instance, or we invoke decodeAsRaster() to perform the decoding into a Raster
instance. An instance of this interface can be obtained with one of the JPEGCodec.create-
JPEGDecoder() methods, which takes the delivering data InputStream as a parameter.
JPEGImageDecoder decodes according to its associated JPEGDecodeParam, and a default
instance will be provided if we do not specify one.

13.4.4 The JPEGImageEncoder interface

abstract interface com.sun.image.codec.jpeg.JPEGImageEncoder
This interface describes an object used to encode an image into a JPEG data stream. We invoke
the overloaded encode() method to perform the actual encoding. Instances of this interface can
be obtained with one of the JPEGCodec.createJPEGEncoder() methods, which takes the
destination OutputStream as a parameter. JPEGImageEncoder encodes according to its associ-
ated JPEGImageEncoder, and a default instance will be provided if we do not specify one.

13.4.5 JPEGCodec

class com.sun.image.codec.jpeg.JPEGCodec
This class contains a collection of static methods used to create JPEG encoders and decoders.
Particularly useful are the overloaded createJPEGDecoder() and createJPEGEncoder()
methods which take an InputStream and OutputStream, respectively, as parameters (along
with an optional JPEGDecodeParam or JPEGEncodeParam instance).

Example 13.4

see \Chapter13\4

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.util.*;
import java.io.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.filechooser.*;

import com.sun.image.codec.jpeg.*;

public class JPEGEditor extends JFrame {

public final static Dimension VERTICAL_RIGID_SIZE
= new Dimension(1,3);

JPEGEditor.java

396 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

public final static Dimension HORIZONTAL_RIGID_SIZE
= new Dimension(3,1);

protected File m_currentDir;
protected File m_currentFile;

protected JFileChooser m_chooser;
protected JPEGPanel m_panel;
protected JSlider m_slHorzDensity;
protected JSlider m_slVertDensity;
protected JSlider m_slQuality;

protected BufferedImage m_bi1, m_bi2;

public JPEGEditor() {
super("JPEG Editor");
setSize(600, 400);

m_chooser = new JFileChooser();
m_chooser.setFileFilter(new SimpleFilter("jpg",

"JPEG Image Files"));
try {

m_currentDir = (new File(".")).getCanonicalFile();
}
catch (IOException ex) {}

m_panel = new JPEGPanel();

Figure 13.5 JPEGEditor showing a high-quality image of Earth
(using JSliders with the “isFilled” client property)

Creates file
chooser for
selectting
JPEG images

JSLIDERS IN A JPEG IMAGE EDITOR 397

JScrollPane ps = new JScrollPane(m_panel,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

getContentPane().add(ps, BorderLayout.CENTER);

JPanel p;
JPanel p1 = new JPanel(new GridLayout(1, 2, 10, 10));

m_slVertDensity = new JSlider(JSlider.VERTICAL,
100, 500, 300);

m_slVertDensity.setExtent(50);
m_slVertDensity.setPaintLabels(true);
m_slVertDensity.setMajorTickSpacing(100);
m_slVertDensity.setMinorTickSpacing(50);
m_slVertDensity.setPaintTicks(true);
m_slVertDensity.putClientProperty(

"JSlider.isFilled", Boolean.TRUE);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(),

"Vert. dens."));

p.add(Box.createRigidArea(HORIZONTAL_RIGID_SIZE));
p.add(m_slVertDensity);
p.add(Box.createRigidArea(HORIZONTAL_RIGID_SIZE));
getContentPane().add(p, BorderLayout.EAST);

m_slHorzDensity = new JSlider(JSlider.HORIZONTAL,
100, 500, 300);

Figure 13.6 JPEGEditor showing a reduced-quality image of Earth

Slider for
JPEGEncodeParam
“yDensity” property

Slider for
JPEGEncodeParam
“xDensity”
property

398 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

m_slHorzDensity.setExtent(50);
m_slHorzDensity.setPaintLabels(true);
m_slHorzDensity.setMajorTickSpacing(100);
m_slHorzDensity.setMinorTickSpacing(50);
m_slHorzDensity.setPaintTicks(true);
m_slHorzDensity.putClientProperty(

"JSlider.isFilled", Boolean.TRUE);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(),

"Horizontal density"));
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(Box.createRigidArea(VERTICAL_RIGID_SIZE));
p.add(m_slHorzDensity);
p.add(Box.createRigidArea(VERTICAL_RIGID_SIZE));
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p1.add(p);

m_slQuality = new JSlider(JSlider.HORIZONTAL,
0, 100, 100);

Hashtable labels = new Hashtable(6);
for (float q = 0; q <= 1.0; q += 0.2)

labels.put(new Integer((int)(q*100)),
new JLabel("" + q, JLabel.CENTER));

m_slQuality.setLabelTable(labels);
m_slQuality.setExtent(10);
m_slQuality.setPaintLabels(true);
m_slQuality.setMinorTickSpacing(10);
m_slQuality.setPaintTicks(true);
m_slQuality.putClientProperty(

"JSlider.isFilled", Boolean.TRUE);

p = new JPanel();
p.setBorder(new TitledBorder(new EtchedBorder(),

"Quality"));
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(Box.createRigidArea(VERTICAL_RIGID_SIZE));
p.add(m_slQuality);
p.add(Box.createRigidArea(VERTICAL_RIGID_SIZE));
p1.add(p);
getContentPane().add(p1, BorderLayout.SOUTH);

JToolBar tb = createToolbar();
getContentPane().add(tb, BorderLayout.NORTH);

}

protected JToolBar createToolbar() {
 JToolBar tb = new JToolBar();
 tb.setFloatable(false);

 JButton bt = new JButton(new ImageIcon("Open24.gif"));
 bt.setToolTipText("Open JPEG file");

ActionListener lst = new ActionListener() {
public void actionPerformed(ActionEvent e) {

 m_chooser.setCurrentDirectory(m_currentDir);

Slider for
JPEGEncodeParam
“xDensity”
property

Slider for
JPEGEncodeParam
“quality” property

Method to create toolbar
containing Open, Save, Save
As, Apply and Reset buttons

JSLIDERS IN A JPEG IMAGE EDITOR 399

m_chooser.rescanCurrentDirectory();
int result = m_chooser.showOpenDialog(JPEGEditor.this);
repaint();
if (result != JFileChooser.APPROVE_OPTION)

return;
m_currentDir = m_chooser.getCurrentDirectory();
File fChoosen = m_chooser.getSelectedFile();
openFile(fChoosen);

}
};
bt.addActionListener(lst);
tb.add(bt);

bt = new JButton(new ImageIcon("Save24.gif"));
bt.setToolTipText("Save changes to current file");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
saveFile(m_currentFile);

}
};
bt.addActionListener(lst);
tb.add(bt);

bt = new JButton(new ImageIcon("SaveAs24.gif"));
bt.setToolTipText("Save changes to another file");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (m_currentFile == null ||

m_panel.getBufferedImage() == null)
return;
m_chooser.setCurrentDirectory(m_currentDir);
m_chooser.rescanCurrentDirectory();
int result = m_chooser.showSaveDialog(JPEGEditor.this);
repaint();
if (result != JFileChooser.APPROVE_OPTION)

return;
m_currentDir = m_chooser.getCurrentDirectory();
File fChoosen = m_chooser.getSelectedFile();
if (fChoosen!=null && fChoosen.exists()) {

String message = "File " + fChoosen.getName()+
" already exists. Override?";

int result2 = JOptionPane.showConfirmDialog(
JPEGEditor.this, message, getTitle(),
JOptionPane.YES_NO_OPTION);

if (result2 != JOptionPane.YES_OPTION)
return;

}
setCurrentFile(fChoosen);
saveFile(fChoosen);

}
};
bt.addActionListener(lst);
tb.add(bt);

Locates a JPEG
file to open

Saves current JPEG using
applied settings; allows

selection of file name
and location to save to

400 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

tb.addSeparator();
JButton btApply = new JButton("Apply");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
apply();

}
};
btApply.addActionListener(lst);

btApply.setMinimumSize(btApply.getPreferredSize());
btApply.setMaximumSize(btApply.getPreferredSize());
tb.add(btApply);

tb.addSeparator();
JButton btReset = new JButton("Reset");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
reset();

}
};
btReset.addActionListener(lst);

btReset.setMinimumSize(btReset.getPreferredSize());
btReset.setMaximumSize(btReset.getPreferredSize());
tb.add(btReset);

return tb;
}

protected void setCurrentFile(File file) {
if (file != null) {

m_currentFile = file;
setTitle("JPEG Editor ["+file.getName()+"]");

}
}

protected void openFile(final File file) {
if (file == null || !file.exists())

return;
setCurrentFile(file);

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
Thread runner = new Thread() {

public void run() {
try {

FileInputStream in = new FileInputStream(file);
JPEGImageDecoder decoder =

JPEGCodec.createJPEGDecoder(in);
m_bi1 = decoder.decodeAsBufferedImage();
m_bi2 = null;
in.close();
SwingUtilities.invokeLater(new Runnable() {

public void run() { reset(); }
});

}

Button to apply
current slider
settings to
JPEG image

Button to reset
slider values to
default (initial) values
and reset JPEG image
to original

Reads and decodes
a JPEG image into

a BufferedImage

Call the reset() method in the
event thread because it

modifies a Swing component

JSLIDERS IN A JPEG IMAGE EDITOR 401

catch (Exception ex) {
ex.printStackTrace();
System.err.println("openFile: "+ex.toString());

}
setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));
}

};
runner.start();

}

protected void saveFile(final File file) {
if (file == null || m_panel.getBufferedImage() == null)

return;

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
Thread runner = new Thread() {

public void run() {
try {

FileOutputStream out = new FileOutputStream(file);
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
encoder.encode(m_panel.getBufferedImage());
out.close();

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println("apply: "+ex.toString());

}
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

}
};
runner.start();

}

protected void apply() {
if (m_bi1 == null)

return;

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
Thread runner = new Thread() {

public void run() {
try {

ByteArrayOutputStream out = new ByteArrayOutputStream();
JPEGImageEncoder encoder =

JPEGCodec.createJPEGEncoder(out);
JPEGEncodeParam param =

encoder.getDefaultJPEGEncodeParam(m_bi1);

float quality = m_slQuality.getValue()/100.0f;
param.setQuality(quality, false);

param.setDensityUnit(
JPEGEncodeParam.DENSITY_UNIT_DOTS_INCH);

int xDensity = m_slHorzDensity.getValue();
param.setXDensity(xDensity);

Encodes current image
into a JPEG file

Process image
using current
slider values

402 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

int yDensity = m_slVertDensity.getValue();
param.setYDensity(yDensity);

encoder.setJPEGEncodeParam(param);
encoder.encode(m_bi1);

ByteArrayInputStream in = new ByteArrayInputStream(
out.toByteArray());

JPEGImageDecoder decoder =
JPEGCodec.createJPEGDecoder(in);

final BufferedImage bi2 = decoder.decodeAsBufferedImage();
SwingUtilities.invokeLater(new Runnable() {

public void run() {
m_panel.setBufferedImage(bi2);

}
});

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println("apply: "+ex.toString());

}
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

}
};
runner.start();

}

protected void reset() {
if (m_bi1 != null) {

m_panel.setBufferedImage(m_bi1);
m_slQuality.setValue(100);
m_slHorzDensity.setValue(300);
m_slVertDensity.setValue(300);

}
}

public static void main(String argv[]) {
JPEGEditor frame = new JPEGEditor();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class JPEGPanel extends JPanel {
protected BufferedImage m_bi = null;

public void setBufferedImage(BufferedImage bi) {
if (bi == null)

return;
m_bi = bi;
Dimension d = new Dimension(m_bi.getWidth(this),

m_bi.getHeight(this));
setPreferredSize(d);
revalidate();
repaint();

Process image
using current
slider values

Reads input
from OutputStream
into BufferedImage

Container for
a JPEG image

revalidate() called on this component
will cause its parent JScrollPane
to revalidate itself

JSLIDERS IN A JPEG IMAGE EDITOR 403

}

public void paintComponent(Graphics g) {
super.paintComponent(g);
Dimension d = getSize();
g.setColor(getBackground());
g.fillRect(0, 0, d.width, d.height);
if (m_bi != null)

g.drawImage(m_bi, 0, 0, this);
}

public BufferedImage getBufferedImage() {
return m_bi;

}
}

//class SimpleFilter taken from chapter 14

13.4.6 Understanding the code

Class JPEGEditor
Class variables:

• Dimension VERTICAL_RIGID_SIZE: The size of the rigid area used for vertical spacing.
• Dimension HORIZONTAL_RIGID_SIZE: The size of the rigid area used for horizontal

spacing.

Instance variables:

• File m_currentDir: The current directory navigated to by our JFileChooser.
• File m_currentFile: The JPEG image file currently in our editing environment.
• JFileChooser m_chooser: The file chooser used for loading and saving JPEGs.
• JPEGPanel m_panel: The custom component used to display JPEGs.
• JSlider m_slHorzDensity: The slider to choose horizontal pixel density.
• JSlider m_slVertDensity: The slider to choose vertical pixel density.
• JSlider m_slQuality: The slider to choose image quality.
• BufferedImage m_bi1: The original image.
• BufferedImage m_bi2: The modified image.

JPEGEditor’s constructor starts by instantiating our JFileChooser and applying a Simple-
Filter (see chapter 14) file filter to it, in order to restrict file selection to JPEG images (files with
a .jpg extension). The custom panel m_panel is used to display a JPEG image (see the JPEG-
Panel class below) and it is added to a JScrollPane to provide scrolling capabilities. Three slid-
ers are used to select JPEGEncodeParam properties as described above: xDensity, yDensity,
and quality. Each is surrounded by a TitledBorder with an appropriate title. Similar to the
previous example, RigidAreas are used to ensure proper spacing between the slider and the
border. Each slider makes use of the Metal look and feel client property JSlider.isFilled
with the value Boolean.TRUE to force the lower portion of each slider track to be filled.

The m_slQuality slider must represent values from 0 to 1.0. We scale this interval to
[0, 100], but we display the annotation labels 0.0, 0.2, 0.4,…,1.0, which are stored in Hash-
table labels. The selected image quality value is the slider’s value divided by 100. Note the
use of setExtent() for each slider in this example. The value of the extent property is used

404 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

when the slider has focus and the user presses the PAGEUP or PAGEDN key to increment or
decrement the slider’s value, respectively.

The createToolBar() method creates and returns a JToolBar that contains five buttons:
Open, Save, Save As, Apply, and Reset. Each receives its own ActionListener.

An Apply button is created and assigned an ActionListener to retrieve the current slider
settings and apply them to the current JPEG image by calling our custom apply() method.
Because of the large amount of work the apply method performs, it does not make sense to do
this on-the-fly by listening for slider change events. A Reset button undoes any changes and
returns the image to its original state by calling our custom reset() method. Finally, a
JToolBar is created with our createToolBar() method.

The Open button brings up our JFileChooser for selecting a JPEG image file. After a suc-
cessful selection, the current directory is stored in our m_currentDir variable for future use,
and our custom openFile() method is invoked to load the image into our environment.
The Save button invokes our custom saveFile() method to save the image currently in our
environment. The Save As button instructs JFileChooser to prompt the user for a new
name and possibly a location, to which to save the current image. This code is fairly similar to
the code for the Open button, except that showSaveDialog() is used instead of show-
OpenDialog(). If the selected file already exists, a request for confirmation is invoked using
JOptionPane.showConfirmDialog(). (Interestingly, this is not a standard feature of JFile-
Chooser—see chapter 14 for more about JFileChooser.) Finally, our saveFile() method
is invoked to save the current image as the selected file.

The setCurrentFile() method stores a reference to the newly opened file in
m_currentFile. This method also modifies the frame’s title to display the file name. It is
called whenever the Open and Save As buttons are activated.

The openFile() method opens a given File corresponding to a stored JPEG image. It first
checks to see whether the selected file exists. If it does, a new thread is created to execute all
remaining code in this method so as to avoid clogging up the event-dispatching thread. A
FileInputStream is opened and a JPEGImageDecoder is created for the given file. Then a
call to decodeAsBufferedImage() retrieves a BufferedImage from the JPEGImageDe-
coder and stores it in our m_bi1 variable. The file stream is closed and our image is passed to
JPEGPanel by calling the reset() method (see below). Because our reset method directly
modifies the state of Swing components, we place this call in a Runnable and send it to the
event-dispatching queue with SwingUtilities.invokeLater() (see chapter 2 for more
about invokeLater()).

The saveFile() method saves the current image in the given File. In a separate thread, a
FileOutputStream is opened and a JPEGImageEncoder is created that correspond to this
File. Then a call to the JPEGImageEncoder’s encode() method saves the current image
(retrieved by our JPEGPanel’s getBufferedImage() method) to the opened stream.

The apply() method applies the current slider settings to the current image. In a separate
thread, this method creates a ByteArrayOutputStream to stream the operations in memory.
Then a JPEGImageEncoder is created for this stream, and a JPEGEncodeParam is retrieved
that corresponds to the original image, m_bi1 (which is assigned in openFile()). Three

JSLIDERS IN A JPEG IMAGE EDITOR 405

property values are retrieved from our sliders and sent to a JPEGEncodeParam object via
setXX() methods: quality, xDensity, and yDensity. (Note that quality is converted to
a float through division by 100.0f). Then this JPEGEncodeParam object is assigned to our
JPEGImageEncoder, and the encode() method is used to perform the actual encoding of the
m_bi1 image. Next, a new image is retrieved from this encoder by first retrieving a Byte-
ArrayInputStream from our ByteArrayOutputStream using its toByteArray() method.
A JPEGImageDecoder is created for this stream, and the decodeAsBufferedImage()
method retrieves a BufferedImage instance. Finally, in a Runnable sent to SwingUtili-
ties.invokeLater(), this image is assigned to our image panel for display with JPEG-
Panel’s setBufferedImage() method.

The reset() method, as you might guess from its name, resets the current image to its origi-
nal state (the state it was in when it was opened) and it resets the slider values.

Class JPEGPanel
JPEGPanel extends JPanel and provides a placeholder for JPEG images. It declares a single
instance variable:

• BufferedImage m_bi: Holds the current JPEG.

The setBufferedImage() method assigns the given image to m_bi, and it changes this
panel’s preferred size to the size of that image. The panel is then revalidated and repainted to
display the new image properly.

NOTE We learned in chapter 2 that when a revalidate() request is invoked on a com-
ponent, all ancestors below the first ancestor whose validateRoot property is
true get validated. JRootPane, JScrollPane, and JTextField are the only
Swing components with a true validateRoot property by default. Thus, calling
revalidate() on our JPEGPanel will result in validation of the JScrollPane it
is contained in within our JPEGEditor application. JPEGPanel is then properly
laid out and displayed; this would not occur by simply calling repaint().

The paintComponent() method clears the background and draws the current image (if
there is one). The getBufferedImage() method simply returns the most recent image asso-
ciated with this panel.

13.4.7 Running the code

Figure 13.6 shows JPEGEditor displaying a high-quality image of Earth. By applying our
sliders to reduce the quality, and clicking the Apply button, we produce the image shown in
figure 13.7. Saving this image as a new file gives us a representation that occupies much less
disk space than the original. Making a decision on the balance between quality and size often
needs to be done when space or latency issues are important.

406 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

Component selection This example provides some tricky problems for the
designer. The nature of the calculation means that instant feedback is not pos-
sible. However, the user needs to see what the result of a choice would mean.
The Apply button solves the problem. This is justifiable in a case such as this
due to the complex and time-consuming nature of the effect of the selection.
Otherwise, we don’t recommend it.

The shaded area on the sliders gives a clear indication that an amount or quantity
rather than an exact, discrete value is being selected and that the amount is
a percentage of the bounded whole. This helps the viewer understand what
is happening.

13.5 JPROGRESSBAR IN AN FTP CLIENT APPLICATION

Example 13.5 uses a JProgressBar to display progress when downloading and uploading
files using the File Transfer Protocol (FTP). Support for this protocol is provided in the
sun.net and sun.net.ftp packages.

13.5.1 FtpClient

class sun.net.ftp.FtpClient
This class provides functionality for an FTP client. The methods particularly relevant to this
example include the following:

• FTPClient(String host): The constructor to create a new instance and connect to
the given host address.

• login(String user, String password): Login to an FTP host with the given user-
name and password.

• cd(String directory): Change the directory.
• binary(): Set the mode to binary for proper file transferring.
• closeSever(): Disconnect from the host.
• list(): Returns an InputStream that supplies the printout of the ls –l command

(the list contents of the directories, one per line).
• get(String filename): Returns an InputStream for retrieving the specified file

from the host.
• put(String filename): Returns an OutputStream for writing the specified file to

the host.

NOTE This application’s GUI is laid out using our custom DialogLayout2 layout man-
ager, which we developed in chapter 4. Refer to chapter 4 for more information
about how this manager works.

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 407

Example 13.5

see \Chapter13\5

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.net.*;
import java.lang.reflect.*;

import sun.net.ftp.*;
import sun.net.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import dl.*;

public class FTPApp extends JFrame {

public static int BUFFER_SIZE = 2048;

protected JTextField m_txtUser;
protected JPasswordField m_txtPassword;
protected JTextField m_txtURL;
protected JTextField m_txtFile;

FTPApp.java

Figure 13.7 FTP client application with a
JProgressBar to show the upload/download status

408 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

protected JTextArea m_monitor;
protected JProgressBar m_progress;
protected JButton m_btPut;
protected JButton m_btGet;
protected JButton m_btFile;
protected JButton m_btClose;
protected JFileChooser m_chooser;

protected FtpClient m_client;
protected String m_sLocalFile;
protected String m_sHostFile;

public FTPApp() {
super("FTP Client");

JPanel p = new JPanel();
p.setLayout(new DialogLayout2(10, 5));
p.setBorder(new EmptyBorder(10, 10, 10, 10));

p.add(new JLabel("User name:"));
m_txtUser = new JTextField("anonymous", 20);
p.add(m_txtUser);

p.add(new JLabel("Password:"));
m_txtPassword = new JPasswordField(20);
p.add(m_txtPassword);

p.add(new JLabel("URL:"));
m_txtURL = new JTextField(20);
p.add(m_txtURL);

p.add(new JLabel("Destination file:"));
m_txtFile = new JTextField(20);
p.add(m_txtFile);

JPanel pp = new JPanel(new DialogLayout2(10, 5));
pp.setBorder(new CompoundBorder(

new TitledBorder(new EtchedBorder(), "Connection Monitor"),
new EmptyBorder(3, 5, 3, 5)));

m_monitor = new JTextArea(5, 20);
m_monitor.setEditable(false);
m_monitor.setLineWrap(true);
m_monitor.setWrapStyleWord(true);
JScrollPane ps = new JScrollPane(m_monitor);
pp.add(ps);

m_progress = new JProgressBar();
m_progress.setStringPainted(true);
m_progress.setBorder(new BevelBorder(BevelBorder.LOWERED,

Color.white, Color.gray));
m_progress.setMinimum(0);
JPanel p1 = new JPanel(new BorderLayout());
p1.add(m_progress, BorderLayout.CENTER);
pp.add(p1);
p.add(pp);

Uses custom
DialogLayout2 layout
manager so that labels
and text fields arranged
opposite one another
one pair per row

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 409

m_btPut = new JButton("Put");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
Thread uploader = new Thread() {

public void run() {
if (connect())

putFile();
disconnect();

}
};
uploader.start();

}
;
m_btPut.addActionListener(lst);
m_btPut.setMnemonic('p');
p.add(m_btPut);

m_btGet = new JButton("Get");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
Thread downloader = new Thread() {

public void run() {
if (connect())

getFile();
disconnect();

}
};
downloader.start();

}
};
m_btGet.addActionListener(lst);
m_btGet.setMnemonic('g');
p.add(m_btGet);

m_btFile = new JButton("File");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (m_chooser.showSaveDialog(FTPApp.this) !=

JFileChooser.APPROVE_OPTION)
return;

File f = m_chooser.getSelectedFile();
m_txtFile.setText(f.getPath());

}
};
m_btFile.addActionListener(lst);
m_btFile.setMnemonic('f');
p.add(m_btFile);

m_btClose = new JButton("Close");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
if (m_client != null)

disconnect();

ActionListener
to upload
a selected file

ActionListener
to download
a selected file

ActionListener
allows user
to select a local
file or specify
a new file name
or location

ActionListener
either disconnects
from FT8 host
or exits the
application

410 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

else
System.exit(0);

}
};
m_btClose.addActionListener(lst);
m_btClose.setDefaultCapable(true);
m_btClose.setMnemonic('g');
p.add(m_btClose);

getContentPane().add(p, BorderLayout.CENTER);
pack();

m_chooser = new JFileChooser();
m_chooser.setDialogTitle(

"Select File For Upload/Download");
try {

File dir = (new File(".")).getCanonicalFile();
m_chooser.setCurrentDirectory(dir);

} catch (IOException ex) {}

protected void setButtonStates(boolean state) {
m_btPut.setEnabled(state);
m_btGet.setEnabled(state);
m_btFile.setEnabled(state);

}

protected boolean connect() {
// Input validation
String user = m_txtUser.getText();
if (user.length()==0) {

message("Please enter user name");
return false;

}
String password = new String(m_txtPassword.getPassword());
String sUrl = m_txtURL.getText();
if (sUrl.length()==0) {

message("Please enter URL");
return false;

}
m_sLocalFile = m_txtFile.getText();
if (m_sLocalFile.length()==0) {

message("Please enter local file name");
return false;

}

// Parse URL
int index = sUrl.indexOf("//");
if (index >= 0)
sUrl = sUrl.substring(index+2);

index = sUrl.indexOf("/");
String host = sUrl.substring(0, index);
sUrl = sUrl.substring(index+1);

String sDir = "";

ActionListener
either disconnects
from FT8 host
or exits the
application

Connects to
specified host
with name and
password

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 411

index = sUrl.lastIndexOf("/");
if (index >= 0) {

sDir = sUrl.substring(0, index);
sUrl = sUrl.substring(index+1);

}
m_sHostFile = sUrl;

m_monitor.setText("");
setButtonStates(false);
m_btClose.setText("Cancel");
setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {
m_progress.setIndeterminate(true);
message("Connecting to host "+host);
m_client = new FtpClient(host);
m_client.login(user, password);
message("User "+user+" login OK");
message(m_client.welcomeMsg);
m_client.cd(sDir);
message("Directory: "+sDir);
m_client.binary();
return true;

}
catch (Exception ex) {

message("Error: "+ex.toString());
ex.printStackTrace();
setButtonStates(true);

return false;
}
finally {

m_progress.setIndeterminate(false);
}

}

protected void disconnect() {
if (m_client != null) {

try { m_client.closeServer(); }
catch (IOException ex) {}
m_client = null;

}
m_progress.setValue(0);
setButtonStates(true);
m_btClose.setText("Close");
validate();
setCursor(Cursor.getPredefinedCursor(
Cursor.DEFAULT_CURSOR));

}

protected void getFile() {
byte[] buffer = new byte[BUFFER_SIZE];
try {

int size = getFileSize(m_client, m_sHostFile);
if (size > 0) {

Creates FtpClient object,
logs in with user name
and password, and sets
“binary” mode

Downloads a pre-
specified file

412 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

message("File " + m_sHostFile + ": " + size + " bytes");
setProgressMaximum(size);

}
else

message("File " + m_sHostFile + ": size unknown");

File output = new File(m_sLocalFile);
message("Output to "+output);
FileOutputStream out = new FileOutputStream(output);

InputStream in = m_client.get(m_sHostFile);
int counter = 0;
while(true) {

int bytes = in.read(buffer);
if (bytes < 0)

break;

out.write(buffer, 0, bytes);
counter += bytes;
if (size > 0) {

setProgressValue(counter);
int proc = (int) Math.round(m_progress.

getPercentComplete() * 100);
setProgressString(proc + " %");

}
else {

int kb = counter/1024;
setProgressString(kb + " KB");

}
}
out.close();
in.close();

}
catch (Exception ex) {

message("Error: "+ex.toString());
ex.printStackTrace();

}
}

protected void putFile() {
byte[] buffer = new byte[BUFFER_SIZE];
try {

File f = new File(m_sLocalFile);
int size = (int)f.length();
message("File " + m_sLocalFile + ": " + size + " bytes");
setProgressMaximum (size);

File input = new File(m_sLocalFile);
FileInputStream in = new

FileInputStream(input);
OutputStream out = m_client.put(m_sHostFile);

int counter = 0;
while(true) {

int bytes = in.read(buffer);

Reads file in
1,024 byte blocks

Uploads a
specified file

Writes file in
1,024 byte blocks

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 413

if (bytes < 0)
break;

out.write(buffer, 0, bytes);
counter += bytes;
setProgressValue(counter);
int proc = (int) Math.round(m_progress.

getPercentComplete() * 100);
setProgressString(proc + " %");

}

out.close();
in.close();

}
catch (Exception ex) {

message("Error: " + ex.toString());
ex.printStackTrace();

}
}

protected void message(final String str) {
if (str != null) {

Runnable runner = new Runnable() {
public void run() {

m_monitor.append(str + '\n');
m_monitor.repaint();

}
};
SwingUtilities.invokeLater(runner);

}
}

protected void setProgressValue(final int value) {
Runnable runner = new Runnable() {

public void run() {
m_progress.setValue(value);

}
};
SwingUtilities.invokeLater(runner);

}

protected void setProgressMaximum(final int value) {
Runnable runner = new Runnable() {

public void run() {
m_progress.setMaximum(value);

}
};
SwingUtilities.invokeLater(runner);

}

protected void setProgressString(final String string) {
Runnable runner = new Runnable() {

public void run() {
m_progress.setString(string);

}

Writes file in
1,024 byte blocks

414 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

};
SwingUtilities.invokeLater(runner);

}

public static void main(String argv[]) {
FTPApp frame = new FTPApp();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}

public static int getFileSize(FtpClient client, String fileName)
throws IOException {

TelnetInputStream lst = client.list();
String str = "";
fileName = fileName.toLowerCase();
while(true) {

int c = lst.read();
char ch = (char)c;
if (c < 0 || ch == '\n') {

str = str.toLowerCase();
if (str.indexOf(fileName) >= 0) {

StringTokenizer tk = new StringTokenizer(str);
int index = 0;
while(tk.hasMoreTokens()) {

String token = tk.nextToken();
if (index == 4)

try {
return Integer.parseInt(token);

}
catch (NumberFormatException ex) {

return -1;
}
index++;

}
}
str = "";

}
if (c <= 0)

break;
str += ch;

}
return -1;

}
}

13.5.2 Understanding the code

Class FTPApp
Class variable:

• int BUFFER_SIZE: The size of the buffer used for input/ouput operations.

Parses output of “1s -1” on remote
host to get size of remote file

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 415

Instance variables:

• JTextField m_txtUser: The login username text field.
• JPasswordField m_txtPassword: The login password field.
• JTextField m_txtURL: The field for the URL of the file to be downloaded/uploaded

on the remote site.
• JTextField m_txtFile: The field for the file name of the file to be uploaded/down-

loaded on the local machine.
• JTextArea m_monitor: Used as a log to display various status messages.
• JProgressBar m_progress: Indicates the progress of an upload/download operation.
• JButton m_btPut: Initiates uploading.
• JButton m_btGet: Initiates downloading.
• JButton m_btFile: Brings up a file chooser dialog to choose a local file or to specify

a file name and location.
• JButton m_btClose: Closes the application.
• JFileChooser m_chooser: Used to choose a local file or specify a file name and location.
• FtpClient m_client: The client connection to the host which manages I/O operations.
• String m_sLocalFile: The name of the most recent local file involved in a data transfer.
• String m_sHostFile: The name of the most recent host file involved in a data transfer.

The FTPApp constructor first creates a panel using a DialogLayout2 layout manager, then it
instantiates and adds our four text fields with corresponding labels (recall that our Dialog-
Layout2 manager requires that label/input field pairs are added in the specific label1, field1,
label2, field2, ... order). The m_monitor text area is created and placed in a JScrollPane,
and it is separated from the label/field panel. The m_progress JProgressBar is created and
placed in a JPanel with a BorderLayout to ensure that DialogLayout2 allows it to occupy
the maximum width across the frame, as well as its preferred height.

Four buttons are created with attached ActionListeners. They are then added to the
DialogLayout2 panel, resulting in a horizontal row at the bottom of the frame. The button
titled Put attempts to connect to a host using our connect() method. If it is successful, a
new thread is started which calls putFile() to upload a selected file; it then calls discon-
nect() to terminate the connection to the host. Similarly, the button entitled Get attempts to
connect to a host, and, if it is successful, it starts a thread which calls our getFile() method to
download a file, then disconnect(). The button entitled File brings up our JFileChooser
dialog to allow the user to select a local file or specify a new file name and location. The but-
ton entitled Close invokes disconnect() to terminate a connection to the host if an FTP
transfer is in progress (if the m_client is not null). If a transfer is not in progress the appli-
cation is terminated.

The setButtonStates() method takes a boolean parameter and enables/disables the Put,
Get, and File buttons accordingly.

The connect() method establishes a connection to the remote host and returns true in the
case of success, or false otherwise. This method first disables our Put, Get, and File push but-
tons, and it sets the text of the last button to “Cancel.” This method then reads the contents
of the text fields to obtain the login name, password, URL, and local file name. The URL is
parsed and split into the host name, remote directory, and host file name. A new FtpClient

416 CHAPTER 13 PROGRESS BARS, SLIDERS, AND SCROLL BARS

instance is created to connect to the remote host, and it is stored in our m_client instance
variable. Then the login() method is invoked on m_client to log in to the server using the
specified username and password. If the login is successful, we change the remote directory
and set the connection type to binary (which is almost always required for file transfers). If
no exceptions have been thrown during this process, connect() returns true. Otherwise, it
shows an exception in our m_monitor text area, re-enables our buttons, and returns false.

NOTE The connect() method code that connects to a host and changes the directory
would be better off in a separate thread. We suggest this enhancement for more
professional implementations. All other time-intensive code in this example is exe-
cuted in separate threads.

The disconnect() method invokes closeServer() on the current m_client FTPClient
instance if it is in use. It then sets the m_client reference to null, allowing garbage collec-
tion of the FTPClient object. This method also clears the progress bar component, enables
all push buttons which may have been disabled by the connect() method, and restores the
text of the Close button. All component updates are wrapped in a Runnable and sent to the
event-dispatching queue with SwingUtilities.invokeLater().

The getFile() method downloads a prespecified file from the current host. While we
attempt to connect to a server, the progress bar displays an animation letting the user know
that something is happening. This is accomplished by setting the indeterminate property
to true. If the name of the destination local file is not specified, the name of the remote file is
used. This method tries to determine the size of the remote file by calling our getFile-
Size() helper method (see below). If that succeeds, the file size is set as the maximum value
of the progress bar (the minimum value is always 0) using our custom setProgressMaxi-
mum() method. Then a FileOutputStream is opened to write to the local file, and an
InputStream is retrieved from the FTPClient to read from the remote file. A while loop is
set up to perform typical read/write operations until all content of the remote file is written to
the local file. During this process, the number of bytes read is accumulated in the counter
local variable. If the size of the file is known, this number is assigned to the progress bar using
our custom setProgressValue() method. We also calculate the percentage of download-
ing that is complete with our custom getPercentComplete() method, and we display it in
the progress bar using our custom setProgressString() method. If the size of the file is
unknown (meaning it is less than or equal to 0), we can only display the number of kilobytes
currently downloaded at any given time. To obtain this value we simply divide the current
byte count, which is stored in the local counter variable, by 1024.

The putFile() method uploads the content of a local file to a remote pre-specified URL. If
the name of the local file is not specified, a “Please enter file name” message is printed using
our custom message() method, and we simply return. Otherwise, the size of the local file is
determined and used as the maximum value of our progress bar using our custom setMaxi-
mum() method (the minimum value is always 0). A FileInputStream is opened to read from
the local file, and an OutputStream is retrieved from the FTPClient to write to the remote
file. A while loop is set up to perform typical read/write operations until all the content of the
local file is written to the remote host. During this process, the number of bytes written is accu-
mulated in the counter local variable. This number is assigned to the progress bar using our
custom setProgressValue() method. As in the getFile() method, we also calculate the

JPROGRESSBAR IN AN FTP CLIENT APPLICATION 417

percentage of downloading that is complete with our getPercentComplete() method, and
we display it in the progress bar using our setProgressString() method. Since we can
always determine the size of a local File object, there is no need to display the progress in
terms of kilobytes as we did in getFile() above.

The message() method takes a String parameter to display in our m_monitor text
area. The setProgressValue() and setProgressMaximum() methods assign selected and
maximum values to our progress bar, respectively. Since each of these methods modifes the
state of our progress bar component, and each is called from a custom thread, we wrap their
bodies in Runnables and send them to the event-dispatching queue using SwingUtili-
ties.-invokeLater().

Unfortunately, the FtpClient class does not provide a direct way to determine either the size
of a remote file or any other available file specifics. The only way we can get any information
about files on the remote host using this class is to call its list() method, which returns a
TelnetInputStream that supplies the printout of the results of an ls –l command. Our
getFileSize() method uses this method in an attempt to obtain the length of a remote file
specified by a given file name and FTPClient instance. This method captures the printout from
the remote server, splits it into lines separated by “\n” characters, and uses a StringTokenizer
to parse them into tokens. According to the syntax of the ls –l command output, the length of
the file in bytes appears as the fifth token, and the last token contains the file name. So we go
character by character through each line until a line containing a matching file name is found;
the length is then returned to the caller. If this does not succeed, we return –1 to indicate that
the server either does not allow its content to browsed, or that an error has occurred.

13.5.3 Running the code

Figure 13.7 shows FTPApp in action. Try running this application and transferring a few files.
Start by entering your username and password, a URL containing the host FTP server, and
(optionally) a local file name and path to act as the source or destination of a transfer. Click
the Get button to download a specified remote file, or click the Put button to upload a speci-
fied local file to the host. If the required connection is established successfully, you will see the
transfer progress updated incrementally in the progress bar.

In figure 13.7 we specified “anonymous” as the user name and we used an email address
as the password. In our URL text field we specified the remote tutorial.zip file (the most recent
Java Tutorial) on the ftp.javasoft.com FTP server in its docs directory. In our File text field, we
specified tutorial.zip as the destination file in the current running directory. Clicking on Get
establishes a connection, changes the remote directory to docs, determines the size of the remote
tutorial.zip file, and starts retrieving and storing it as a local file in the current running directory.
Try performing this transfer and watch how smoothly the progress bar updates itself (it can’t hurt
to keep a local copy of the Java Tutorial, but be aware that this archive is close to 10 megabytes).

NOTE In the next chapter we will customize JFileChooser to build a ZIP/JAR archive
tool. This can be used to unpackage tutorial.zip if you do not have access to an
appropriate tool.

418

C H A P T E R 1 4

Dialogs
14.1 Dialogs and choosers overview 418
14.2 Constructing a Login dialog 432
14.3 Adding an About dialog 436

14.4 JOptionPane message dialogs 439
14.5 Customizing JColorChooser 445
14.6 Customizing JFileChooser 451

14.1 DIALOGS AND CHOOSERS OVERVIEW

Swing’s JDialog class allows the implementation of both modal and non-modal dialogs. In
simple cases, when we need to post a short message or ask for a single value input, we can use
standardized pre-built dialog boxes provided by the JOptionPane convenience class. Addi-
tionally, two special dialog classes provide powerful selection and navigation capabilities for
choosing colors and files: JColorChooser and JFileChooser.

When to use a dialog Dialogs are intended for the acquisition of a set of inter-
related data; for example, selecting a group of files and the type of action to per-
form on them. This may be the set of attributes for a particular object or group
of objects. A dialog is particularly useful when validation across those attributes
must be performed before the data can be accepted. The validation code can
be executed when an Accept button is pressed, and the dialog will only dismiss
when the data is validated as good.

Dialogs are also useful for complex manipulations or selections. For example,
a dialog with two lists, “Available Players” and “Team for Saturday’s Game,”
might allow the selection, addition, and deletion of items to and/or from each
list. When the team for the Saturday game is selected, the user can accept the
selection by clicking OK.

DIALOGS AND CHOOSERS OVERVIEW 419

Data entry and complex data manipulation which requires a clear boundary or
definition of acceptance are good uses for a dialog.

When to use an option pane Option panes are best used when the system
needs to hold a conversation with the user, either for simple directed data entry
such as “Enter your name and password” or for navigation choices such as
View, Edit, or Print.

When to use a chooser Choosers facilitate consistency for common selec-
tions across a whole operating environment. If you need to select files or col-
ors, you should use the appropriate chooser. The user gets the benefit of only
learning one component which appears again and again across applications.
Using a chooser when appropriate should improve customer acceptance of
your application.

14.1.1 JDialog

class javax.swing.JDialog
This class extends java.awt.Dialog and is used to create a new dialog box in a separate
native platform window. We typically extend this class to create our own custom dialog, as it is
a container almost identical to JFrame.

NOTE JDialog is a JRootPane container just like JFrame, and familiarity with chapter 3
is assumed here. All WindowEvents, default close operations, sizing and positioning,
and so forth, can be controlled identically to JFrame and we will not repeat this
material.

We can create a JDialog by specifying a dialog owner (Frame or Dialog instances), a dialog
title, and a modal/non-modal state. We are not required to pass a valid parent, and we are free
to use null as the parent reference. As we discussed in chapter 2, the SwingUtilities class
maintains a non-visible Frame instance that is registered with the AppContext service map-
ping, which is used as the parent of all null-parent dialogs. If a valid parent is used, the dialog’s
icon will be that of the parent frame set with the setIconImage() method.

NOTE As of Java 1.4 JDialog supports decorations (i.e., title bar, icons, borders, etc.) in
the style of the current Look and Feel. To enable this for all JDialogs we use the
following new static method:

JDialog.setDefaultLookAndFeelDecorated(true);

After the above method is called all newly instantiated JDialogs will have decora-
tions in the style of the current look and feel. All those existing before this method
was called will not be affected.

To enable this on a single JDialog instance we can do the following:

 myJDialog.setUndecorated(true);
myJDialog.getRootPane().setWindowDecorationStyle(

JRootPane.FRAME)

There are eight JRootPane constants used for the windowDecorationStyle
property:

•JRootPane.FRAME
•JRootPane.PLAIN_DIALOG

420 CHAPTER 14 DIALOGS

•JRootPane.INFORMATION_DIALOG
•JRootPane.QUESTION_DIALOG
•JRootPane.ERROR_DIALOG
•JRootPane.WARNING_DIALOG
•JRootPane.COLOR_CHOOSER_DIALOG
•JRootPane.FILE_CHOOSER_DIALOG

Figure 14.1 shows eight JDialogs demonstrating each of the window decoration
styles. Other than the close button and title bar icon in the FRAME style, the only
differences between the other styles are color: FRAME, PLAIN_DIALOG, and
INFORMATION_DIALOG are blue; QUESTION_DIALOG, COLOR_CHOOSER_DIALOG,
and FILE_CHOOSER_DIALOG are green; WARNING_DIALOG is orange;
ERROR_DIALOG is red.

A modal dialog will not allow other windows to become active (respond to user input) at the
same time that it is active. Modal dialogs also block the invoking thread of execution and do
not allow it to continue until they are dismissed. Nonmodal dialogs do allow other windows
to be active and do not affect the invoking thread.

To populate a dialog we use the same layout techniques discussed for JFrame, and we are
prohibited from changing the layout or adding components directly. Instead we are expected
to deal with the dialog’s content pane.

Figure 14.1 JDialogs illustrating window decoration styles

DIALOGS AND CHOOSERS OVERVIEW 421

From the design perspective, it is very common to add push buttons to a dialog. Typical
buttons are OK or Save to continue with an action or save data, and Cancel or Close to close
the dialog and cancel an action or avoid saving data.

As with JFrame, JDialog will appear in the upper left-hand corner of the screen unless another
location is specified. It is usually more natural to use JDialog’s setLocationRelativeTo-
(Component c) method to center a dialog relative to a given component. If the component is not
visible, the dialog will be centered relative to the screen.

NOTE It is common practice to show dialogs in response to menu selections. In such cases,
a menu’s pop-up may remain visible and the parent frame needs to be manually
repainted. Therefore, we suggest calling repaint() on the parent before display-
ing dialogs invoked by menus.

To display a JDialog window we can use either the show() method inherited from
java.awt.Dialog or the setVisible() method inherited from java.awt.Component.

NOTE When building complex dialogs, it is normally preferable that one instance of that
dialog be used throughout a given Java session. We suggest instantiating such
dialogs when the application/applet is started, and storing them as variables for
repetitive use. This avoids the often significantly long delay time required to instan-
tiate a dialog each time it is needed. We also suggest wrapping dialog instantiation
in a separate thread to avoid clogging up the event-dispatching thread.

14.1.2 JOptionPane

class javax.swing.JOptionPane
This class provides an easy and convenient way to display the standard dialogs used for post-
ing a message, asking a question, or prompting for simple user input. Each JOptionPane dia-
log is modal and will block the invoking thread of execution, as described above (this does not
apply to internal dialogs; we will discuss these soon enough).

It is important to understand that JOptionPane is not itself a dialog (note that it directly
extends JComponent). Rather, it acts as a container that is normally placed in a JDialog or
a JInternalFrame, and it provides several convenient methods for doing so. There is nothing
stopping us from creating a JOptionPane and placing it in any container we choose, but this
will rarely be useful. Figure 14.2 illustrates the general JOptionPane component arrangement:

The JOptionPane class supports four pre-defined types: Message, Confirm, Input, and
Option. We will discuss how to create and work with each type, but first we need to understand
the constituents. To create a JOptionPane that is automatically placed in either a JDialog
or JInternalFrame, we need to supply some or all of the following parameters to one if its
static showXXDialog() methods (discussed below):

• A parent Component. If the parent is a Frame, the option pane will be placed in a JDia-
log and centered with respect to the parent. If this parameter is null, it will instead be
centered with respect to the screen. If the parent is a JDesktopPane, or is contained in
one, the option pane will be contained in a JInternalFrame and placed in the parent
desktop’s MODAL_LAYER (see chapter 15). For other types of parent components, a JDialog
will be used and placed below that component on the screen.

422 CHAPTER 14 DIALOGS

• A message Object is a message to be displayed in the top right of the pane (in the Mes-
sage area). Typically this is a String which may be broken into separate lines using “\n”
characters. However this parameter has a generic Object type and JOptionPane deals
with non-String objects in the following way:

• Icon: This will be displayed in a JLabel.
• Component: This will simply be placed in the message area.
• Object[]: Dealt with as described here, these will be placed vertically in a col-

umn (this is done recursively).
• Object: The toString() method will be called to convert this to a String for

display in a JLabel.

• An int message type can be one of the following static constants defined in JOptionPane:
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE, or
PLAIN_MESSAGE. This is used by the current look and feel to customize the look of an
option pane by displaying an appropriate icon (in the Icon area) corresponding to the mes-
sage type’s meaning.

• An int option type can be one of the following static constants defined in JOptionPane:
DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION, or OK_CANCEL_OPTION.
This parameter specifies a set of corresponding buttons to be displayed at the bottom of
the pane (in the Options area). One of a set of similar parameters will be returned from
JOptionPane’s showXXDialog() methods (see below) specifying which button was
pressed: CANCEL_OPTION, CLOSED_OPTION, NO_OPTION, OK_OPTION, and YES_OPTION.
Note that CLOSED_OPTION is only returned when the pane is contained in a JDialog or
JInternalFrame, and that container’s close button (located in the title bar) is pressed.

• An Icon is displayed in the left side of the pane (in the Icon area). If it’s not explicitly
specified, the icon is determined by the current look and feel based on the message type
(this does not apply to panes using the PLAIN_MESSAGE message type).

• An array of option Objects. We can directly specify an array of option Objects to be dis-
played at the bottom of the pane (in the Options area). This array can also be specified
with the setOptions() method. It typically contains an array of Strings to be dis-
played on a set of JButtons, but JOptionPane also honors Icons (which are also dis-

Figure 14.2
The components
of a JOptionPane dialog

DIALOGS AND CHOOSERS OVERVIEW 423

played in JButtons) and Components (which are placed directly in a row). Similar to
message Objects, the toString() method will be called to convert all objects that are
not Icons or Components to a String for display in a JButton. If null is used, the
option buttons are determined by the specified option type.

• An initial value Object specifies which button or component in the Options area has the
focus when the pane is initially displayed.

• An array of selection value Objects specifies an array of allowed choices the user can
make. If this array contains more than twenty items, a JList is used to display them
using the default rendering behavior (see chapter 10). If the array contains twenty or less
items, a JComboBox is used to display them (also using the default JList rendering
behavior). If null is used, an empty JTextField is displayed. In any case, the compo-
nent used for selection is placed in the Input area.

• A String title is used for display as the title bar title in the parent JDialog
or JInternalFrame.

The following static methods are provided for the convenient creation of JOptionPanes
placed in JDialogs:

• showConfirmDialog(): This method displays a dialog with several buttons and returns
an int option type corresponding to the button pressed. Four overloaded methods are
provided that allow the specification of, at most, a parent component, message, title,
option type, message type, and icon.

• showInputDialog(): This method displays a dialog which is intended to receive user
input, and it returns a String if the input component is a text field, or an Object if the
input component is a list or a combo box. Four overloaded methods are provided that
allow the specification of, at most, a parent component, message, title, option type, mes-
sage type, icon, array of possible selections, and an initially selected item. Two buttons
are always displayed in the Options area: OK and Cancel.

JAVA 1.4 As of Java 1.4 there are two new showInputDialog() methods added to
JOptionPane. One takes an Object as a parameter representing the message
or question to display. The other takes two Objects, one representing the mes-
sage or question and the other representing the initial input value the input field
should contain. Neither of these methods takes a parent component, and by
default they are centered with respect to the screen.

• showMessageDialog(): This method displays a dialog with an OK button, and it
doesn’t return anything. Three overloaded methods are provided that allow the specifica-
tion of, at most, a parent component, message, title, message type, and icon.

• showOptionDialog(): This method displays a dialog which can be customized a bit
more than the above dialogs, and it returns either the index into the array of option
Objects specified, or an option type if no option Objects are specified. Only one
method is provided that allows the specification of a parent component, message, title,
option type, message type, icon, array of option Objects, and an option Object with
the initial focus. The option Objects are laid out in a row in the Options area.

To create JOptionPanes contained in JInternalFrames rather than JDialogs, we can use
the showInternalConfirmDialog(), showInternalInputDialog(), showInternal-

424 CHAPTER 14 DIALOGS

MessageDialog(), and showInternalOptionDialog() overloaded methods. These work
the same as the methods described above, only they expect that a given parent is a JDesktop-
Pane (or has a JDesktopPane ancestor).

NOTE Internal dialogs are not modal and, as such, do not block execution of the
invoking thread.

Alternatively, we can directly create a JOptionPane as illustrated by the following pseudo-
code:

 JOptionPane pane = new JOptionPane(...); // Specify parameters

 pane.setXX(...); // Set additional properties

 JDialog dialog = pane.createDialog(parent, title);
 dialog.show();

 // Process result (may be null)
 Object result = pane.getValue();

This code creates an instance of JOptionPane and specifies several parameters (see the API
documentation). Additional settings are then provided with setXX accessor methods. The
createDialog() method creates a JDialog instance that contains our JOptionPane which
is then displayed (we could also have used the createInternalFrame() method to wrap our
pane in a JInternalFrame). Finally, the getValue() method retrieves the option selected by
the user, so the program may react accordingly. This value may be null (if the user closes the
dialog window). Because program execution blocks until the dialog is dismissed, getValue()
will not be called until a selection is made.

NOTE The advantage of JOptionPane is its simplicity and convenience. In general, you
shouldn’t need to customize it to any large extent. If you find yourself needing a
different layout, we suggest writing your own container instead.

Figure 14.3 illustrates the use of JOptionPane where a custom dialog may be more suitable.
Note the extremely long button, text field, and combo box. Such extreme sizes have detrimen-
tal effects on the overall usability and appearance of an application.

Figure 14.3 Awkward use of components in a JOptionPane
(from the SwingSet demo)

DIALOGS AND CHOOSERS OVERVIEW 425

JOptionPane JOptionPane is not designed as a general purpose input dialog.
The primary restriction is the defined layout. JOptionPane is designed for use in
conversations between the system and the user where the desired result is a navi-
gation choice or a data selection, or where the user must be notified of an event.

Therefore, JOptionPane is best used with a single entry field or combo box
selection, possibly with a set of buttons for selection or navigational choice.

For example, an Answer Phone application might require an option dialog dis-
playing “You have 1 message,” with options Play, Save, Record outgoing message,
and Delete messages. Such a requirement can be met with a JOptionPane
which provides a single label for the message and four buttons for each of the
available choices.

14.1.3 JColorChooser

class javax.swing.JColorChooser
This class represents a powerful, pre-built component that is used for color selection. JColor-
Chooser is normally used in a modal dialog. It consists of a tabbed pane containing three
panels, each offering a different method of choosing a color: Swatches, HSB, and RGB. A
color preview pane is displayed below this tabbed pane and it always displays the currently
selected color. Figure 14.4 illustrates.

The static showDialog() method instantiates and displays a JColorChooser in a
modal dialog, and returns the selected Color (or null if no selection is made):

 Color color = JColorChooser.showDialog(myComponent,
 "Color Chooser", Color.red);
 if (color != null)
 myComponent.setBackground(c);

A more complex variant is the static createDialog() method which allows two Action-
Listeners to be invoked when a selection is made or canceled. We can also do the following:

• Retrieve color selection panels with the getChooserPanels() method.
• Add custom color selection panels using the addChooserPanel() method.
• Assign a new custom color preview pane using the setPreviewPanel() method.

Several classes and interfaces (discussed below) that support JColorChooser are grouped
into the javax.swing.colorchooser package.

14.1.4 The ColorSelectionModel interface

abstract interface javax.swing.colorchooser.ColorSelectionModel
This is a simple interface describing the color selection model for JColorChooser. It declares
methods for adding and removing ChangeListeners which are intended to be notified when
the selected Color changes, and getSelectedColor()/setSelectedColor() accessors to
retrieve and assign the currently selected Color, respectively.

426 CHAPTER 14 DIALOGS

14.1.5 DefaultColorSelectionModel

class javax.swing.colorchooser.DefaultColorSelectionModel
This is the default concrete implementation of the ColorSelectionModel interface. It sim-
ply implements the necessary methods as expected, stores registered ChangeListeners in an
EventListenerList, and implements an additional method to perform the actual firing of
ChangeEvents to all registered listeners.

14.1.6 AbstractColorChooserPanel

abstract class javax.swing.colorchooser.AbstractColorChooserPanel
This abstract class describes a color chooser panel which can be added to JColorChooser as
a new tab. We can subclass AbstractColorChooserPanel to implement a custom color
chooser panel of our own. The two most important methods that must be implemented are
buildChooser() and updateChooser(). The former is normally called only once at instan-
tiation time and is intended to perform all GUI initialization tasks. The latter is intended to
update the panel to reflect a change in the associated JColorChooser’s ColorSelection-
Model. Other required methods include those allowing access to a display name and icon
which are used to identify the panel when it is displayed in JColorChooser’s tabbed pane.

Figure 14.4 JColorChooser in a JDialog

DIALOGS AND CHOOSERS OVERVIEW 427

14.1.7 ColorChooserComponentFactory

class javax.swing.colorchooser.ColorChooserComponentFactory
This is a very simple class that is responsible for creating and returning instances of the default
color chooser panels and the preview pane used by JColorChooser. The three color chooser
panels are instances of private classes: DefaultSwatchChooserPanel, DefaultRGBChooser-
Panel, and DefaultHSBChooserPanel. The preview pane is an instance of Default-
PreviewPane. Other private classes used in the colorchooser package include two custom
layout managers, CenterLayout and SmartGridLayout; a class for convenient generation of
synthetic images, SyntheticImage; and a custom text field that only allows integer input,
JIntegerTextField. These undocumented classes are very interesting and we urge curious
readers to spend some time with the source code. Because they are only used within the color-
chooser package and are defined as a package private, we will not discuss them further here.

14.1.8 JFileChooser

class javax.swing.JFileChooser
This class represents the standard Swing directory navigation and file selection component
which is normally used in a modal dialog. It consists of a JList and JTable and several
button and input components all linked together to offer functionality similar to the file dialogs
we are used to on our native platforms. The JList and JTable are used to display a list of files
and subdirectories residing in the current directory being navigated. Figures 14.5 and 14.6
illustrate.

Figure 14.5 JFileChooser in horizontal scrolling mode (using a JList)

428 CHAPTER 14 DIALOGS

Cross-application consistency The key reason for promoting the use of a
standard file chooser dialog is to promote the consistency of such an operation
across the whole operating system or machine environment. The user’s
experience is improved because file selection is always the same no matter
which application he is running. This is an important goal and is worthy of rec-
ognition. Thus, if you have a requirement to manipulate files, you ought to be
using the JFileChooser component.

The fact that such a reusable component exists and that much of the complex cod-
ing is provided as part of the implementation is merely a bonus for the developer.

We can set the current directory by passing a String to its setCurrentDirectory()
method. JFileChooser also has the ability to use special FileFilters (discussed below) to
allow navigation of only certain types of files. Several properties control whether directories and/
or files can be navigated and selected, and how the typical Open (approve) and Cancel (cancel)
buttons are represented (see the API documentation for more on these straightforward methods.)

JAVA 1.3 As of Java 1.3 JFileChooser allows us to specify whether the control buttons
(i.e. Cancel and Approve buttons) are shown or not with the setControlButton-
sAreShown() method.

To use this component, we normally create an instance of it, set the desired options, and call
showDialog() to place it in an active modal dialog. This method takes the parent component
and the text to display for its Approve button as parameters. Calling showOpenDialog() or
showSaveDialog() will show a modal dialog with Open or Save for the Approve button text.

Figure 14.6 JFileChooser in row mode (using a JTable)

DIALOGS AND CHOOSERS OVERVIEW 429

NOTE JFileChooser can take a significant amount of time to instantiate. Consider
storing an instance as a variable and performing instantiation in a separate thread
at startup time.

The following code instantiates a JFileChooser in an Open file dialog, verifies that a valid
file is selected, and retrieves that file as a File instance:

 JFileChooser chooser = new JFileChooser();
 chooser.setCurrentDirectory(".");
 if (chooser.showOpenDialog(myComponent) !=
 JFileChooser.APPROVE_OPTION)
 return;
 File file = chooser.getSelectedFile();

JAVA 1.4 As of Java 1.4 JFileChooser allows multiple file selection (a problem we worked
around in the first edition using brute force) with the new setMultiSelection-
Enabled() method. The getSelectedFiles() method returns a File array
representing the files selected.

JFileChooser generates PropertyChangeEvents when any of its properties change state.
The Approve and Cancel buttons generate ActionEvents when they are pressed. We can reg-
ister PropertyChangeListeners and ActionListeners to receive these events respec-
tively. As any well-defined JavaBean should, JFileChooser defines several static String
constants corresponding to each property name; JFileChooser.FILE_FILTER_CHANGED
_PROPERTY is one example (see the API documentation for a full listing). We can use these
constants in determining which property a JFileChooser-generated PropertyChan-
geEvent corresponds to.

JFileChooser also supports the option of inserting an accessory component. This
component can be any component we want and it will be placed to the right of the JList.
In constructing such a component, we are normally expected to implement the Property-
ChangeListener interface. This way the component can be registered with the associated
JFileChooser to receive notification of property state changes. The component should use
these events to update its state accordingly. We use the setAccessory() method to assign
an accessory component to a JFileChooser, and addPropertyChangeListener() to reg-
ister it for receiving property state change notification.

REFERENCE For a good example of an accessory component used to preview selected images, see
the FileChooserDemo example that ships with Java 2. In the final example of this
chapter, we will show how to customize JFileChooser in a more direct mannar.

Several classes and interfaces related to JFileChooser are grouped into the javax.
swing.filechooser package.

NOTE JFileChooser is still somewhat incomplete. For example, multi-selection mode is
specified, but it has not been implemented yet. Later in this chapter we will show
how to work around this, as well as how to build our own accessory-like component
in a location different from that of a normal accessory.

430 CHAPTER 14 DIALOGS

14.1.9 FileFilter

abstract class javax.swing.filechooser.FileFilter
This abstract class is used to implement a filter for displaying only certain file types in JFile-
Chooser. Two methods must be implemented in concrete subclasses:

• boolean accept(File f): Returns true if the given file should be displayed, false
otherwise.

• String getDescription(): Returns a description of the filter used in the JCom-
boBox at the bottom of JFileChooser.

To manage FileFilters, we can use several methods in JFileChooser, including these:

• addChoosableFileFilter(FileFilter f): Adds a new filter.
• removeChoosableFileFilter(FileFilter f): Removes an existing filter.
• setFileFilter(FileFilter f): Sets a filter as currently active (and adds it, if necessary).

By default in Java 1.2, JFileChooser uses a filter that accepts all files. Special effort must be
made to remove this filter if we do not want our application to accept all files:

 FileFilter ft = myChooser.getAcceptAllFileFilter();
 myChooser.removeChoosableFileFilter(ft);

JAVA 1.3 As of Java 1.3 JFileChooser allows us to specify whether or not the accept all file
filter appears with the setAcceptAllFileFilterUsed() method.

So how do we create a simple file filter instance to allow navigation and selection of only cer-
tain file types? The following class can be used as a template for defining most of our own fil-
ters, and we will see it used in this and future chapters:

 class SimpleFilter extends FileFilter
 {
 private String m_description = null;
 private String m_extension = null;

 public SimpleFilter(String extension, String description) {
 m_description = description;
 m_extension = "." + extension.toLowerCase();
 }

 public String getDescription() {
 return m_description;
 }

 public boolean accept(File f) {
 if (f == null)
 return false;
 if (f.isDirectory())
 return true;
 return f.getName().toLowerCase().endsWith(m_extension);
 }
 }

DIALOGS AND CHOOSERS OVERVIEW 431

This filter only shows files that match the given extension String that is passed into our
constructor and stored as variable m_extension. In more robust, multipurpose filters we
might store an array of legal extensions, and check for each in the accept() method.

NOTE The SimpleFilter accept() method always returns true for directories
because we normally want to be able to navigate any directory.

Notice that the description String passed into the constructor, and stored as the variable
m_description, is the String shown in the combo box at the bottom of JFileChooser
representing the corresponding file type. JFileChooser can maintain multiple filters, all
added using the addChoosableFileFilter() method, and removable with its
removeChoosableFileFilter() method.

14.1.10 FileSystemView

abstract class javax.swing.filechooser.FileSystemView
This class includes functionality which extracts information about files, directories, and
partitions, and supplies this information to the JFileChooser component. This class is used
to make JFileChooser independent from both platform-specific file system information, and
the JDK/Java 2 release version (since the JDK1.1 File API doesn’t allow access to more spe-
cific file information available in Java 2). We can provide our own FileSystemView subclass
and assign it to a JFileChooser instance using the setFileSystemView(FileSystem-
View fsv) method. Four abstract methods must be implemented:

• createNewFolder(File containingDir): Creates a new folder (directory) within the
given folder.

• getRoots(): Returns all root partitions. The notion of a root differs significantly from
platform to platform.

• isHiddenFile(File f): Returns whether the given File is hidden.
• isRoot(File f): Returns whether the given File is a partition or drive.

These methods are called by JFileChooser and FileFilter implementations. We will,
in general, have no need to extend this class unless we need to tweak the way JFileChooser
interacts with our operating system. The static getFileSystemView() method currently
returns a Unix- or Windows-specific instance for use by JFileChooser in the most
likely event that one of these platform types is detected. Otherwise, a generic instance is used.
Support for Macintosh, OS2, and several other operating systems is expected to be provided in
future releases.

14.1.11 FileView

abstract class javax.swing.filechooser.FileView
This abstract class is used to provide customized information about files and their types (typi-
cally determined by the file extension), including icons and a string description. Each look and
feel provides its own subclass of FileView, and we can construct our own FileView subclass
fairly easily. Each of the five methods in this class is abstract and must be implemented by sub-
classes. The following generalized template can be used when creating our own FileViews:

432 CHAPTER 14 DIALOGS

 class MyExtView extends FileView
 {
 // Store icons to use for list cell renderer.
 protected static ImageIcon MY_EXT_ICON =
 new ImageIcon("myexticon.gif");
 protected static ImageIcon MY_DEFAULT_ICON =
 new ImageIcon("mydefaulticon.gif");

 // Return the name of a given file. "" corresponds to
 // a partition, so in this case we must return the path.
 public String getName(File f) {
 String name = f.getName();
 return name.equals("") ? f.getPath() : name;
 }

 // Return the description of a given file.
 public String getDescription(File f) {
 return getTypeDescription(f);
 }

 // Return the String to use for representing each specific
 // file type. (Not used by JFileChooser in Java 2 FCS.)
 public String getTypeDescription(File f) {
 String name = f.getName().toLowerCase();

 if (name.endsWith(".ext"))
 return "My custom file type";
 else
 return "Unrecognized file type";
 }

 // Return the icon to use for representing each specific
 // file type in JFileChooser’s JList cell renderer.
 public Icon getIcon(File f) {
 String name = f.getName().toLowerCase();
 if (name.endsWith(".ext"))
 return MY_EXT_ICON;
 else
 return MY_DEFAULT_ICON;
 }

 // Normally we should return true for directories only.
 public Boolean isTraversable(File f) {
 return (f.isDirectory() ? Boolean.TRUE : Boolean.FALSE);
 }
 }

We will see how to build a custom FileView for JAR and ZIP archive files in the final exam-
ple of this chapter.

14.2 CONSTRUCTING A LOGIN DIALOG

Numerous readers of the first edition have asked in our forum for example code of a login
dialog. We’ve added this example as a simple beginning to those looking to build their own

CONSTRUCTING A LOGIN DIALOG 433

login dialog. A small module is used to verify name and password, and only a limited number
of unsuccessful attempts are allowed before the application exits.

Example 14.1

see \Chapter14\1

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import dl.*;

public class LoginDialog extends JDialog {

private boolean m_succeeded = false;
private JTextField m_loginNameBox;
private JPasswordField m_passwordBox;

private String m_loginName;
private String m_password;

private int m_errCounter = 0;

public LoginDialog(Frame parent) {
super(parent, "Login", true);

JPanel pp = new JPanel(new DialogLayout2());
pp.setBorder(new CompoundBorder(

new EtchedBorder(EtchedBorder.RAISED),
new EmptyBorder(5,5,5,5)));

pp.add(new JLabel("User name:"));
m_loginNameBox = new JTextField(16);
pp.add(m_loginNameBox);

pp.add(new JLabel("Password:"));
m_passwordBox = new JPasswordField(16);

LoginDialog.java

Figure 14.7
Login dialog with text
and password field

434 CHAPTER 14 DIALOGS

pp.add(m_passwordBox);

JPanel p = new JPanel(new DialogLayout2());
p.setBorder(new EmptyBorder(10, 10, 10, 10));
p.add(pp);

ActionListener lst = new ActionListener() {
public void actionPerformed(ActionEvent evt) {

m_loginName = m_loginNameBox.getText();
m_password = new String(m_passwordBox.getPassword());

if (!LoginModule.login(m_loginName, m_password)) {
JOptionPane.showMessageDialog(LoginDialog.this,

"System cannot login", "Login Error",
JOptionPane.ERROR_MESSAGE);

if (++m_errCounter >= LoginModule.MAX_LOGIN_ATTEMPTS) {
System.out.println("All login attempts failed");
System.exit(1);

}
else {

m_passwordBox.setText("");
return;// Try one more time

}

}

// If we get here, login was successful
m_succeeded = true;
dispose();

}
};

JButton saveButton = new JButton("Login");
saveButton.addActionListener(lst);
getRootPane().setDefaultButton(saveButton);
getRootPane().registerKeyboardAction(lst,

KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0),
JComponent.WHEN_IN_FOCUSED_WINDOW);

p.add(saveButton);

JButton cancelButton = new JButton("Cancel");
lst = new ActionListener() {

public void actionPerformed(ActionEvent evt) {
dispose();

}
};
cancelButton.addActionListener(lst);
getRootPane().registerKeyboardAction(lst,

KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0),
JComponent.WHEN_IN_FOCUSED_WINDOW);

p.add(cancelButton);

getContentPane().add(p, BorderLayout.CENTER);
pack();
setResizable(false);
setLocationRelativeTo(parent);

Login button set
as default button
and ENTER
keystroke
registered to
invoke login
button’s
ActionListener

Escape keystroke
registered
to invoke
cancel button’s
ActionListener

CONSTRUCTING A LOGIN DIALOG 435

}

public boolean succeeded() {
return m_succeeded;

}

public String getLoginName() {
return m_loginName;

}

public String getPassword() {
return m_password;

}

public static void main(String args[]) {
LoginDialog dlg = new LoginDialog(null);
dlg.show();
if (!dlg.succeeded()) {

System.out.println("User cancelled login");
System.exit(1);

}
System.out.println("User "+dlg.getLoginName()+" has logged in");
System.exit(0);

}

}

class LoginModule {
public static final int MAX_LOGIN_ATTEMPTS = 3;

public static boolean login(String userName, String password) {
return userName.equalsIgnoreCase("user") &&

password.equalsIgnoreCase("welcome");
}

}

14.2.1 Understanding the code

Class LoginDialog
This dialog uses a DialogLayout2 (described in chapter 4) to lay out its components: JText-
Field m_loginNameBox to enter user’s name, JPasswordField m_passwordBox to enter
user’s password, and two buttons used to proceed with a login or cancel. The Login button
retrieves the data entered and calls the static LoginModule.login() in an attempt to login. If
that operation is successful, the dialog will be disposed. Otherwise an error message is shown. If
the number of unsuccessful attempts exceeds LoginModule.MAX_LOGIN_ATTEMPTS we shut
down the application.

Note that the Login button is set as the default button. Also, a keyboard event is registered
so that the login button will be effectively be pressed whenever ENTER is pressed. Similarly, the
Cancel button will be effectively pressed whenever the ESCAPE key is pressed.

The succeeded() method returns the status of the login operation. The calling
application must examine this status before continuing.

436 CHAPTER 14 DIALOGS

Class LoginModule
This class emulates a login layer with allowed username “user” and password “welcome”. A
real system would do something like connect to the database of an LDAP system to verify the
user and password information.

14.2.2 Running the code

Run this example several times to observe its behavior when ESCAPE and ENTER are
pressed. Try entering incorrect values for username and password and note the error message
that is displayed. Keep doing this to verify that the maximum number of failed attempts fea-
ture works and the application exits. Enter username “user” and password “welcome” and the
dialog is disposed indicating that the login was successful.

14.3 ADDING AN ABOUT DIALOG

Most GUI applications have at least one About dialog, usually modal, which often displays
copyright, company, and other important information such as product name, version number,
and authors. Example 14.2 illustrates how to add such a dialog to our text editor example we
developed in chapter 12. We build a subclass of JDialog, populate it with some simple com-
ponents, and store it as a variable which can be shown and hidden indefinitely without having
to instantiate a new dialog each time it is requested. We also implement centering so that
whenever the dialog is shown, it will appear in the center of our application’s frame.

Example 14.2

see \Chapter14\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class BasicTextEditor extends JFrame

BasicTextEditor.java

Figure 14.8
A typical About dialog

ADDING AN ABOUT DIALOG 437

{
// Unchanged code from example 12.4

public BasicTextEditor() {
super("\"About\" BasicTextEditor");
setSize(450, 350);

// Unchanged code from example 12.4
}

protected JMenuBar createMenuBar() {
// Unchanged code from example 12.4

JMenu mHelp = new JMenu("Help");
mHelp.setMnemonic('h');

Action actionAbout = new AbstractAction("About",
new ImageIcon("About16.gif")) {

public void actionPerformed(ActionEvent e) {
AboutBox dlg = new AboutBox(BasicTextEditor.this);
dlg.show();

}
};
item = mHelp.add(actionAbout);
item.setMnemonic('a');
menuBar.add(mHelp);

getContentPane().add(m_toolBar, BorderLayout.NORTH);
return menuBar;

}

// Unchanged code from example 12.4
}

class AboutBox extends JDialog {

public AboutBox(Frame owner) {
super(owner, "About", true);

JLabel lbl = new JLabel(new ImageIcon("icon.gif"));
JPanel p = new JPanel();
Border b1 = new BevelBorder(BevelBorder.LOWERED);
Border b2 = new EmptyBorder(5, 5, 5, 5);
lbl.setBorder(new CompoundBorder(b1, b2));
p.add(lbl);
getContentPane().add(p, BorderLayout.WEST);

String message = "Basic Text Editor sample application\n"+
"(c) M.Robinson, P.Vorobiev 1998-2001";

JTextArea txt = new JTextArea(message);
txt.setBorder(new EmptyBorder(5, 10, 5, 10));
txt.setFont(new Font("Helvetica", Font.BOLD, 12));
txt.setEditable(false);
txt.setBackground(getBackground());
p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));
p.add(txt);

New “Help” menu
with “About” menu

item that displays
about dialog

438 CHAPTER 14 DIALOGS

message = "JVM version " +
System.getProperty("java.version") + "\n"+
" by " + System.getProperty("java.vendor");

txt = new JTextArea(message);
txt.setBorder(new EmptyBorder(5, 10, 5, 10));
txt.setFont(new Font("Arial", Font.PLAIN, 12));
txt.setEditable(false);
txt.setLineWrap(true);
txt.setWrapStyleWord(true);
txt.setBackground(getBackground());
p.add(txt);

getContentPane().add(p, BorderLayout.CENTER);

final JButton btOK = new JButton("OK");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
dispose();

}
};
btOK.addActionListener(lst);
p = new JPanel();
p.add(btOK);
getRootPane().setDefaultButton(btOK);
getRootPane().registerKeyboardAction(lst,

KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0),
JComponent.WHEN_IN_FOCUSED_WINDOW);
getContentPane().add(p, BorderLayout.SOUTH);

WindowListener wl = new WindowAdapter() {
public void windowOpened(WindowEvent e) {

btOK.requestFocus();
}

};
addWindowListener(wl);

pack();
setResizable(false);

setLocationRelativeTo(owner);
}

}

14.3.1 Understanding the code

Class BasicTextEditor
The createMenuBar() method is modified by adding a new Help menu containing an
About menu item. This menu item is created as an Action implementation, and its action-
Performed() method creates our About dialog.

Class AboutBox
This class extends JDialog to implement our custom About dialog. The constructor creates a
modal JDialog instance titled About Swing Menu, and populates it with some simple com-
ponents. A large icon is placed in the left side and two JTextAreas are placed in the center to

WindowListener
transfers focus
to “OK” button
as soon as the
About dialog
is made visible

JOPTIONPANE MESSAGE DIALOGS 439

display multiline text messages with different fonts. A push button titled OK is placed at the
bottom. Its ActionListener’s actionPerformed() method invokes setVisi-

ble(false) when pressed.

A WindowListener is added which transfers focus to the OK button as soon as the dialog is
made visible.

NOTE We could have constructed a similar About dialog using a JOptionPane message
dialog. However, the point of this example is to demonstrate the basics of custom
dialog creation, which we will be using later in chapter 20 to create several complex
custom dialogs that could not be derived from JOptionPane.

14.3.2 Running the code

Select the About menu item which brings up the dialog shown in figure 14.8. This dialog
serves only to display information, and has no functionality other than the OK button which
hides it. Note that no matter where the parent frame lies on the screen, when the dialog is
invoked it appears centered.

14.4 JOPTIONPANE MESSAGE DIALOGS

Message dialogs provided by the JOptionPane class can be used for many purposes in Swing
applications: to post a message, ask a question, or get simple user input. Example 14.3 brings up
several message boxes of different types with a common Shakespeare theme. Both internal and
regular dialogs are constructed, demonstrating how to use the convenient showXXDialog()
methods (see section 14.1.2), as well as how to manually create a JOptionPane component
and place it in a dialog or internal frame for display. Each dialog is instantiated as needed and
we perform no caching here (for purposes of demonstration). A more professional implemen-
tation might instantiate each dialog at startup and store them as variables for use throughout
the application’s lifetime.

Figure 14.9
A JOptionPane with
custom icon, message,
and option button strings
in a JDialog

440 CHAPTER 14 DIALOGS

Example 14.3

see \Chapter14\3

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class DialogBoxes extends JFrame
{

 static final String BOX_TITLE = "Shakespeare Boxes";

 public DialogBoxes() {
 super(BOX_TITLE);
 setSize(400,300);
 setLayeredPane(new JDesktopPane());

 JMenuBar menuBar = createMenuBar();
 setJMenuBar(menuBar);

}

 protected JMenuBar createMenuBar() {
 JMenuBar menuBar = new JMenuBar();

 JMenu mFile = new JMenu("File");
 mFile.setMnemonic('f');

 JMenuItem mItem = new JMenuItem("Ask Question");
 mItem.setMnemonic('q');
 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane pane = new JOptionPane(
 "To be or not to be ?\nThat is the question.");
 pane.setIcon(new ImageIcon("Hamlet.gif"));
 Object[] options =
 new String[] {"To be", "Not to be"};
 pane.setOptions(options);

DialogBoxes.java

Figure 14.10
A JOptionPane with
custom icon and message
in a JInternalFrame

Constructor creates empty frame
with menu bar

Creates menus and actions
which will create various dialogs

Question dialog
with custom
buttons

JOPTIONPANE MESSAGE DIALOGS 441

 JDialog dialog = pane.createDialog(
 DialogBoxes.this, BOX_TITLE);
 dialog.show();
 Object obj = pane.getValue();
 int result = -1;
 for (int k=0; k<options.length; k++)
 if (options[k].equals(obj))
 result = k;
 System.out.println("User's choice: "+result);
 }
 };

 mItem.addActionListener(lst);
 mFile.add(mItem);

 mItem = new JMenuItem("Info Message");
 mItem.setMnemonic('i');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String message = "William Shakespeare was born\n"+
 "on April 23, 1564 in\n"
 +"Stratford-on-Avon near London";
 JOptionPane pane = new JOptionPane(message);
 pane.setIcon(new ImageIcon("Shakespeare.gif"));
 JInternalFrame frame = pane.createInternalFrame(
 (DialogBoxes.this).getLayeredPane(), BOX_TITLE);
 getLayeredPane().add(frame);
 }

Question dialog
with custom
buttons

Figure 14.11
A JOptionPane Error_Message
message dialog with a multi-line
message

Figure 14.12 A JOptionPane INFORMATION_MESSAGE
input dialog with custom icon, message, text field

Creates internalframe
with information dialog

442 CHAPTER 14 DIALOGS

 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mItem = new JMenuItem("Error Message");
 mItem.setMnemonic('e');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String message = "\"The Comedy of Errors\"\n"+
 "is considered by many scholars to be\n"+
 "the first play Shakespeare wrote";
 JOptionPane.showMessageDialog(
 DialogBoxes.this, message,
 BOX_TITLE, JOptionPane.ERROR_MESSAGE);
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mFile.addSeparator();

 mItem = new JMenuItem("Text Input");
 mItem.setMnemonic('t');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String input = (String) JOptionPane.showInputDialog(
 DialogBoxes.this,
 "Please enter your favorite Shakespeare play",
 BOX_TITLE, JOptionPane.INFORMATION_MESSAGE,
 new ImageIcon("Plays.jpg"), null,

Figure 14.14
A JOptionPane YES_NO_OPTION
confirm dialog

Figure 14.13 A JOptionPane INFORMATION_MESSAGE input dialog
with custom icon, message, combo box input, and initial selection

Shows
error dialog

Shows input dialog
with message,

using text field

JOPTIONPANE MESSAGE DIALOGS 443

 "Romeo and Juliet");
 System.out.println("User's input: "+input);
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mItem = new JMenuItem("Combobox Input");
 mItem.setMnemonic('c');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String[] plays = new String[] {
 "Hamlet", "King Lear", "Othello", "Romeo and Juliet" };
 String input = (String) JOptionPane.showInputDialog(
 DialogBoxes.this,
 "Please select your favorite Shakespeare play",
 BOX_TITLE, JOptionPane.INFORMATION_MESSAGE,
 new ImageIcon("Books.gif"), plays,
 "Romeo and Juliet");
 System.out.println("User's input: "+input);
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);

 mFile.addSeparator();

 mItem = new JMenuItem("Exit");
 mItem.setMnemonic('x');
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (JOptionPane.showConfirmDialog(
 DialogBoxes.this,
 "Do you want to quit this application ?",
 BOX_TITLE, JOptionPane.YES_NO_OPTION)
 == JOptionPane.YES_OPTION)
 System.exit(0);
 }
 };
 mItem.addActionListener(lst);
 mFile.add(mItem);
 menuBar.add(mFile);

 return menuBar;
 }

 public static void main(String argv[]) {
DialogBoxes frame = new DialogBoxes();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

 }
}

Shows input dialog
with message,

using text field

Shows input dialog
with message,

using combo box

Shows a
confirm dialog

444 CHAPTER 14 DIALOGS

14.4.1 Understanding the code

Class DialogBoxes
This class represents a simple frame which contains a menu bar created with our create-
MenuBar() method, and a JDesktopPane (see chapter 16) which is used as the frame’s lay-
ered pane. The menu bar contains a single menu, File, which holds several menu items.

The createMenuBar() method is responsible for populating our frame’s menu bar with seven
menu items, each with an ActionListener to invoke the display of a JOptionPane in either
a JDialog or a JInternalFrame. The first menu item, Ask Question, creates an instance of
JOptionPane, and assigns it a custom icon using its setIcon() method and custom option
button Strings using setOptions(). A JDialog is created to hold this message box, and
the show() method displays this dialog on the screen and waits until it is dismissed. At that
point the getValue() method retrieves the user’s selection as an Object, which may be
null or one of the option button Strings assigned to this message box. The resulting dialog
is shown in figure 14.9.

Affirmative text The use of the affirmative and unambiguous text “To Be”
and “Not to be” greatly enhances the usability of the option dialog. For exam-
ple, if the text read “To be or not to be? That is the question,” “Yes” or “No,”
would have been somewhat ambiguous and may have confused some users.
The explicit text “To Be,” “Not to be” is much clearer.

This is another example of how to improve usability with just a little extra
coding effort.

The second menu item, Info Message, creates a JOptionPane with a multi-line message
String and a custom icon. The createInternalFrame() method is used to create a
JInternalFrame that holds the resulting JOptionPane message box. This internal frame is
then added to the layered pane, which is now a JDesktopPane instance. The resulting internal
frame is shown in figure 14.10.

The third menu item, Error Message, produces a standard error message box using JOption-
Pane’s static showMessageDialog() method and the ERROR_MESSAGE message type. The
resulting dialog is shown in figure 14.11. Recall that JOptionPane dialogs appear, by default,
centered with respect to the parent if the parent is a frame. This is why we don’t do any man-
ual positioning here.

The next two menu items, Text Input and Combobox Input, produce INFORMATION_MESSAGE
JOptionPanes which take user input in a JTextField and JComboBox, respectively. The static
showInputDialog() method is used to display these JOptionPanes in JDialogs.
Figures 14.12 and 14.13 illustrate. The Text Input pane takes the initial text to display in its text
field as a String parameter. The Combobox Input pane takes an array of Strings to display in
the combo box as possible choices, as well as the initial String to be displayed by the combo box.

CUSTOMIZING JCOLORCHOOSER 445

Added usability with constrained lists Figures 14.12 and 14.13 clearly
highlight how usability can be improved through effective component choice.
The combo box with a constrained list of choices is clearly the better tool for
the task at hand.

The options in this example consist of a fixed number of choices. Shakespeare
is clearly dead and the plays attributed to him are widely known. Thus the
combo box in figure 14.13 is a better choice. It should be populated with a list
of all the known plays.

The option pane in figure 14.12 is better used for unknown data entry such as
“Please enter your name.”

The final menu item, Exit, brings up a YES_NO_OPTION confirmation JOptionPane in a
JDialog (shown in figure 14.14) by calling showConfirmDialog(). The application is ter-
minated if the user answers “Yes.”

14.5 CUSTOMIZING JCOLORCHOOSER

In chapter 12 we developed a custom menu item that allowed quick and easy selection of a
color for the background and foreground of a JTextArea. In section 14.1 we built off this
example to add a simple About dialog. In this section we’ll build off it further, and construct a
customized JColorChooser that allows a much wider range of color selection. Our imple-
mentation in example 14.4 includes a preview component, PreviewPanel, that illustrates
how text will appear with chosen background and foreground colors. We have to return both
background and foreground selection values when the user dismisses the color chooser in
order to update the text component properly.

Previewing improves usability In this example, the user’s goal may be to select
suitable colors for a banner headline. Allowing the user to view a WYSIWYG
preview improves usability. The user doesn’t have to experiment with his selec-
tion, which involves opening and closing the dialog several times. Instead, he
can achieve his goal on a single visit to the color chooser dialog.

Example 14.4

see \Chapter14\4

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class BasicTextEditor extends JFrame
{

BasicTextEditor.java

446 CHAPTER 14 DIALOGS

 // Unchanged code from example 14.2

 protected JColorChooser m_colorChooser;

 protected PreviewPanel m_previewPanel;

 protected JDialog m_colorDialog;

 public BasicTextEditor() {
 super("BasicTextEditor with JColorChooser");

 setSize(450, 350);
 ImageIcon icon = new ImageIcon("smallIcon.gif");
 setIconImage(icon.getImage());

 m_colorChooser = new JColorChooser();

 m_previewPanel = new PreviewPanel(m_colorChooser);

 m_colorChooser.setPreviewPanel(m_previewPanel);

 // Unchanged code from example 14.2
 }

 protected JMenuBar createMenuBar() {
 // Unchanged code from example 14.2

 Action actionChooser = new AbstractAction("Color Chooser") {

 public void actionPerformed(ActionEvent e) {

 BasicTextEditor.this.repaint();

 if (m_colorDialog == null)

 m_colorDialog = JColorChooser.createDialog(

Figure 14.15 A JColorChooser with a custom PreviewPanel component
capable of returning two color selections

Constructor creates
color chooser and
PreviewPane and
connects them

Creates dialog
for color chooser

CUSTOMIZING JCOLORCHOOSER 447

 BasicTextEditor.this,

 "Select Background and Foreground Color",

 true, m_colorChooser, m_previewPanel, null);

 m_previewPanel.setTextForeground(

 m_monitor.getForeground());

 m_previewPanel.setTextBackground(

 m_monitor.getBackground());

 m_colorDialog.show();

 if (m_previewPanel.isSelected()) {

 m_monitor.setBackground(

 m_previewPanel.getTextBackground());

 m_monitor.setForeground(

 m_previewPanel.getTextForeground());

 }

 }

 };

 mOpt.addSeparator();

 item = mOpt.add(actionChooser);

 item.setMnemonic('c');

 menuBar.add(mOpt);

 // Unchanged code from example 14.2
 }
}

// Unchanged code from example 14.2

class PreviewPanel extends JPanel
 implements ChangeListener, ActionListener
{
 protected JColorChooser m_chooser;
 protected JLabel m_preview;
 protected JToggleButton m_btBack;
 protected JToggleButton m_btFore;
 protected boolean m_isSelected = false;

 public PreviewPanel(JColorChooser chooser) {
 this(chooser, Color.white, Color.black);
 }

 public PreviewPanel(JColorChooser chooser,
 Color background, Color foreground) {
 m_chooser = chooser;
 chooser.getSelectionModel().addChangeListener(this);

 setLayout(new BorderLayout());
 JPanel p = new JPanel(new GridLayout(2, 1, 0, 0));
 ButtonGroup group = new ButtonGroup();
 m_btBack = new JToggleButton("Background");
 m_btBack.setSelected(true);
 m_btBack.addActionListener(this);
 group.add(m_btBack);
 p.add(m_btBack);
 m_btFore = new JToggleButton("Foreground");

Creates dialog
for color chooser

Copies colors
from text area

After dialog is
dismissed, copies
out new colors

Panel to preview
selected colors

First constructor creates
white background and
black foreground; calls
second constructor

Background
and foreground
buttons in
vertical grid

448 CHAPTER 14 DIALOGS

 m_btFore.addActionListener(this);
 group.add(m_btFore);
 p.add(m_btFore);
 add(p, BorderLayout.WEST);

 p = new JPanel(new BorderLayout());
 Border b1 = new EmptyBorder(5, 10, 5, 10);
 Border b2 = new BevelBorder(BevelBorder.RAISED);
 Border b3 = new EmptyBorder(2, 2, 2, 2);
 Border cb1 = new CompoundBorder(b1, b2);
 Border cb2 = new CompoundBorder(cb1, b3);
 p.setBorder(cb2);

 m_preview = new JLabel("Text colors preview",
 JLabel.CENTER);
 m_preview.setBackground(background);
 m_preview.setForeground(foreground);
 m_preview.setFont(new Font("Arial",Font.BOLD, 24));
 m_preview.setOpaque(true);
 p.add(m_preview, BorderLayout.CENTER);
 add(p, BorderLayout.CENTER);

 m_chooser.setColor(background);
 }

 protected boolean isSelected() {
 return m_isSelected;
 }

 public void setTextBackground(Color c) {
 m_preview.setBackground(c);
 }

 public Color getTextBackground() {
 return m_preview.getBackground();
 }

 public void setTextForeground(Color c) {
 m_preview.setForeground(c);
 }

 public Color getTextForeground() {
 return m_preview.getForeground();
 }

 public void stateChanged(ChangeEvent evt) {
 Color c = m_chooser.getColor();
 if (c != null) {
 if (m_btBack.isSelected())
 m_preview.setBackground(c);
 else
 m_preview.setForeground(c);
 }
 }

 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == m_btBack)

Background
and foreground
buttons in
vertical grid

Raised,
button-like
border for
big label

Big label
to show
text colors

Called for change
events on color
chooser

Called when either
the background or
foreground button
is pressed

CUSTOMIZING JCOLORCHOOSER 449

 m_chooser.setColor(getTextBackground());
 else if (evt.getSource() == m_btFore)
 m_chooser.setColor(getTextForeground());
 else
 m_isSelected = true;
 }
}

14.5.1 Understanding the code

Class BasicTextEditor
This class includes three new instance variables:

• JColorChooser m_colorChooser: Used to store JColorChooser to avoid unneces-
sary instantiation.

• PreviewPanel m_previewPanel: An instance of our custom color previewing com-
ponent.

• JDialog m_colorDialog: Used to store the JDialog that acts as the parent of
m_colorChooser.

The constructor instantiates m_colorChooser and m_previewPanel, assigning m_preview-
Panel as m_colorChooser’s preview component using the setPreviewPanel() method.

The menu bar receives a new menu item, Color Chooser, which is set up in the createMenu-
Bar() method as an Action implementation. When selected, this item first repaints our
application frame to ensure that the area covered by the pop-up menu is refreshed properly.
Then it checks to see if our m_colorDialog has been instantiated yet. If it has not, we call
JColorChooser’s static createDialog() method to wrap m_colorChooser in a dialog,
and we use m_previewPanel as an ActionListener for the OK button (see section 14.1.3).
This instantiation only occurs once.

We then assign the current colors of m_monitor to m_previewPanel (recall that
m_monitor is the JTextArea central to this application). We do this because the fore-
ground and background can also be assigned by our custom menu color choosers. If this
occurs, m_previewPanel is not notified, so we update the selected colors each time the dialog
is invoked.

The dialog is then shown and the main application thread waits for it to be dismissed. When
the dialog is dismissed, m_previewPanel is checked to see whether new colors have been
selected using its isSelected() method. If new colors have been chosen, they are assigned
to m_monitor.

NOTE We have purposely avoided updating the selected colors in our custom color menu
components. The reason we did this is that in a more professional implementation
we would most likely not offer both methods for choosing text component colors.
If we did want to support both methods, we would need to determine the closest
color in our custom color menus that matches the corresponding color selected with
JColorChooser, because JColorChooser offers a much wider range of choices.

450 CHAPTER 14 DIALOGS

Class PreviewPanel
This class represents our custom color preview component which is designed to be used with
JColorChooser. It extends JPanel and implements two listener interfaces, Change-
Listener and ActionListener. It displays selected foreground and background colors in a
label, and it includes two JToggleButtons that are used to switch between background color
and foreground color selection modes. There are five instance variables:

• JColorChooser m_chooser: A reference to the hosting color chooser.
• JLabel m_preview: The label to preview background and foreground colors.
• JToggleButton m_btBack: The toggle button to switch to the background color selection.
• JToggleButton m_btFore: The toggle button to switch to the foreground color selection.
• boolean m_isSelected: The flag indicating a selection has taken place.

The first PreviewPanel constructor takes a JColorChooser as a parameter and delegates its
work to the second constructor, passing it the JColorChooser as well as white and black
Colors for the initial background and foreground colors, respectively. As we discussed in the
beginning of this chapter, JColorChooser’s ColorSelectionModel fires ChangeEvents
when the selected Color changes. So we start by registering this component as a Change-
Listener with the given color chooser’s model.

A BorderLayout is used to manage this container and two toggle buttons are placed in a 2x1
GridLayout, which is added to the WEST region. Both buttons receive a this reference as an
ActionListener. A label with a large font is then placed in the CENTER region. This label
is surrounded by a decorative, doubly-compounded border consisting of an EmptyBorder, a
BevelBorder, and another EmptyBorder. The foreground and background colors of this
label are assigned the values passed to the constructor.

Several methods are used to set and get the selected colors; they do not require any special
explanation. The stateChanged() method will be called when the color chooser model fires
ChangeEvents. Depending on which toggle button is selected, this method updates the
background or foreground color of the preview label.

The actionPerformed() method will be called when one of the toggle buttons is pressed. It
assigns the stored background or foreground, depending which button is clicked, as the color
of the hosting JColorChooser. This method is also called when the OK button is clicked, in
which case the m_isSelected flag is set to true.

14.5.2 Running the code

Select the Color Chooser menu item to bring up our customized JColorChooser (shown in
figure 14.15). Select a background and foreground color using any of the available color panes.
Verify that the preview label is updated to reflect the current color selection and the currently
selected toggle button. Click the OK button to dismiss the dialog and notice that both the
selected foreground and background colors are assigned to our application’s text area. Also
notice that clicking the Cancel button dismisses the dialog without making any color changes.

CUSTOMIZING JFILECHOOSER 451

14.6 CUSTOMIZING JFILECHOOSER

Examples that use JFileChooser to load and save files are scattered throughout this book. In
this section we’ll take a closer look at the more advanced features of this component as we build
a powerful JAR and ZIP archive creation, viewing, and extraction tool. We will see how to
implement a custom FileView and FileFilter, and how to access and manipulate the inter-
nals of JFileChooser to allow multiple file selection and add our own components. Since this
example deals with Java archive functionality, we will first briefly summarize the classes from
the java.util.zip and java.util.jar packages we will be using.

NOTE The GUI presented in this section is extremely basic, and professional implementa-
tions would surely construct a more elaborate counterpart. We have purposely
avoided this construction here due to the complex nature of the example, and to
avoid straying from the JFileChooser topics central to the GUI’s construction.

14.6.1 ZipInputStream

class java.util.zip.ZipInputStream
This class represents a filtered input stream which uncompresses ZIP archive data. The con-
structor takes an instance of InputStream as a parameter. Before we can read data from this
stream, we need to find a ZIP file entry using the getNextEntry() method. Each entry cor-
responds to an archived file. We can read() an array of bytes from an entry, and then close
it using the closeEntry() method when reading is complete.

14.6.2 ZipOutputStream

class java.util.zip.ZipOutputStream
This class represents a filtered output stream which writes binary data into an archive in the
compressed (default) or uncompressed (optional) form. The constructor of this class takes an
instance of OutputStream as a parameter. Before writing data to this stream, we need to cre-
ate a new ZipEntry using the putNextEntry() method. Each ZipEntry corresponds to an
archived file. We can write() an array of bytes to a ZipEntry, and close it using the close-
Entry() method when writing is complete. We can also specify the compression method for
storing ZipEntrys using ZipOutputStream’s setMethod() method.

14.6.3 ZipFile

class java.util.zip.ZipFile
This class encapsulates a collection of ZipEntrys and represents a read-only ZIP archive. We
can fetch an Enumeration of the contained ZipEntrys using the entries() method. The
size() method tells us how many files are contained, and getName() returns the archive’s
full path name. We can retrieve an InputStream for reading the contents of a contained
Zip-Entry using the getInputStream() method. When we are finished reading, we are
expected to call the close() method to close the archive.

452 CHAPTER 14 DIALOGS

14.6.4 ZipEntry

class java.util.zip.ZipEntry
This class represents a single archived file or directory within a ZIP archive. It allows retrieval
of its name and it can be cloned using the clone() method. Using typical set/get accessors,
we can access a ZipEntry’s compression method, CRC-32 checksum, size, modification
time, and a comment attachment. We can also query whether a ZipEntry is a directory using
its isDirectory() method.

14.6.5 The java.util.jar package

This package contains a set of classes for managing JAR files. The relevant classes that we will be
dealing with (JarEntry, JarFile, JarInputStream, and JarOutputStream) are direct sub-
classes of the zip package counterparts (ZipEntry, ZipFile, ZipInputStream, and Zip-
OutputStream), and thus they inherit the functionality described above.

14.6.6 Manifest

class java.util.jar.Manifest
This class represents a JAR Manifest file. A Manifest contains a collection of names and
their associated attributes specific both for the archive as a whole and for a particular JarEn-
try, such as a file or directory in the archive. We are not concerned with the details of JAR
manifest files in this chapter; suffice it to say that the JarOutputStream constructor takes a
Manifest instance as a parameter, along with an OutputStream.

In example 14.5, we create a simple, two-button GUI with a status bar (a label). One but-
ton corresponds to creating a ZIP or JAR archive, and the other corresponds to decompressing
an archive. In each case, two JFileChoosers are used to perform the operation. The first
chooser allows the user to either enter an archive name to use or select an archive to decom-
press. The second chooser allows the user to select files to compress or decompress. (As noted
above, more professional implementations would most likely include a more elaborate GUI.)
A custom FileView class represents ZIP and JAR archives using a custom icon, and a File-
Filter class allows ZIP (.zip) and JAR (.jar) files only to be viewed. We also work with JFile-
Chooser as a container by adding our own custom component, taking advantage of the fact
that it uses a y-oriented BoxLayout to organize its children.

Figure 14.16 ZIP/JAR Manager
JFileChooser example at startup

CUSTOMIZING JFILECHOOSER 453

Figure 14.18 Second step in creating an archive; using JFileChooser
to select archive content

Figure 14.17 The first step in creating an archive: using JFileChooser
to select an archive location and name

454 CHAPTER 14 DIALOGS

Example 14.5

see \Chapter14\5

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.util.zip.*;
import java.util.jar.*;
import java.beans.*;
import java.text.SimpleDateFormat;

import javax.swing.*;
import javax.swing.event.*;

ZipJarManager.java

Figure 14.19 The first step in uncompressing an archive;
using a custom component in JFileChooser

CUSTOMIZING JFILECHOOSER 455

import javax.swing.border.*;

public class ZipJarManager
extends JFrame {

public static int BUFFER_SIZE = 10240;

protected File m_currentDir;
protected SimpleFilter m_zipFilter;
protected SimpleFilter m_jarFilter;
protected ZipFileView m_view;

protected JButton m_btCreate;
protected JButton m_btExtract;
protected JLabel m_status;

public ZipJarManager() {
super("ZIP/JAR Manager");
setSize(300,150);

JPanel p = new JPanel(new GridLayout(3, 1, 10, 10));
p.setBorder(new EmptyBorder(10, 10, 10, 10));

m_btCreate = new JButton("Create New Archive");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_btCreate.setEnabled(false);
m_btExtract.setEnabled(false);
createArchive();
m_btCreate.setEnabled(true);
m_btExtract.setEnabled(true);

}
};
m_btCreate.addActionListener(lst);
m_btCreate.setMnemonic('c');
p.add(m_btCreate);

m_btExtract = new JButton("Extract From Archive");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_btCreate.setEnabled(false);
m_btExtract.setEnabled(false);
extractArchive();
m_btCreate.setEnabled(true);
m_btExtract.setEnabled(true);

}
};
m_btExtract.addActionListener(lst);
m_btExtract.setMnemonic('e');
p.add(m_btExtract);

m_status = new JLabel();
m_status.setBorder(new BevelBorder(BevelBorder.LOWERED,

Color.white, Color.gray));
p.add(m_status);

456 CHAPTER 14 DIALOGS

getContentPane().add(p, BorderLayout.CENTER);

m_zipFilter = new SimpleFilter("zip", "ZIP Files");
m_jarFilter = new SimpleFilter("jar", "JAR Files");
m_view = new ZipFileView();
try {

m_currentDir = (new File(".")).getCanonicalFile();
} catch (IOException ex) {}

}

public void setStatus(String str) {
m_status.setText(str);
m_status.repaint();

}

protected void createArchive() {
// Show chooser to select archive
JFileChooser archiveChooser = new JFileChooser();
archiveChooser.addChoosableFileFilter(m_zipFilter);
archiveChooser.addChoosableFileFilter(m_jarFilter);
archiveChooser.setFileView(m_view);
archiveChooser.setMultiSelectionEnabled(false);
archiveChooser.setFileFilter(m_jarFilter);

javax.swing.filechooser.FileFilter ft =
archiveChooser.getAcceptAllFileFilter();

archiveChooser.removeChoosableFileFilter(ft);

archiveChooser.setCurrentDirectory(m_currentDir);
archiveChooser.setDialogType(JFileChooser.SAVE_DIALOG);
archiveChooser.setDialogTitle("New Archive");

if (archiveChooser.showDialog(this, "Create") !=
JFileChooser.APPROVE_OPTION)

return;
m_currentDir = archiveChooser.getCurrentDirectory();

final File archiveFile = archiveChooser.getSelectedFile();
if (!isArchiveFile(archiveFile))

return;

// Show chooser to select entries
JFileChooser entriesChooser = new JFileChooser();
entriesChooser.setCurrentDirectory(m_currentDir);
entriesChooser.setDialogType(JFileChooser.OPEN_DIALOG);
entriesChooser.setDialogTitle("Select Content For "

+ archiveFile.getName());
entriesChooser.setMultiSelectionEnabled(true);
entriesChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);

if (entriesChooser.showDialog(this, "Add") !=
JFileChooser.APPROVE_OPTION)

return;

m_currentDir = entriesChooser.getCurrentDirectory();
final File[] selected = entriesChooser.getSelectedFiles();

String name = archiveFile.getName().toLowerCase();

Method to create a ZIP
or JAR archive using
two JFileChoosers

CUSTOMIZING JFILECHOOSER 457

if (name.endsWith(".zip")) {
Thread runner = new Thread() {

public void run() {
createZipArchive(archiveFile, selected);

}
};
runner.start();

}
else if (name.endsWith(".jar")) {

Thread runner = new Thread() {
public void run() {
createJarArchive(archiveFile, selected);

}
};
runner.start();

}
else {

setStatus("No JAR or ZIP file has been selected");
}

}

protected void extractArchive() {
// Show dialog to select archive and entries

 ExtractChooser extractChooser = new ExtractChooser();
extractChooser.addChoosableFileFilter(m_zipFilter);
extractChooser.addChoosableFileFilter(m_jarFilter);
extractChooser.setFileView(m_view);
extractChooser.setMultiSelectionEnabled(false);
extractChooser.setFileFilter(m_jarFilter);
javax.swing.filechooser.FileFilter ft =

extractChooser.getAcceptAllFileFilter();
extractChooser.removeChoosableFileFilter(ft);

extractChooser.setCurrentDirectory(m_currentDir);
extractChooser.setDialogType(JFileChooser.OPEN_DIALOG);
extractChooser.setDialogTitle("Open Archive");
extractChooser.setMultiSelectionEnabled(false);
extractChooser.setPreferredSize(new Dimension(470,450));

if (extractChooser.showDialog(this, "Extract") !=
JFileChooser.APPROVE_OPTION)

return;

m_currentDir = extractChooser.getCurrentDirectory();
final File archiveFile = extractChooser.getSelectedFile();
if (!archiveFile.exists() || !isArchiveFile(archiveFile))

return;

final String[] entries = extractChooser.getSelectedEntries();
if (entries.length == 0) {

setStatus("No entries have been selected for extraction");
return;

}

// Show dialog to select output directory

Extracts files from
a ZIP or JAR archive
using a JFileChooser
and our custom
ExtractChooser

458 CHAPTER 14 DIALOGS

JFileChooser dirChooser = new JFileChooser();
dirChooser.setCurrentDirectory(m_currentDir);
dirChooser.setDialogType(JFileChooser.OPEN_DIALOG);
dirChooser.setDialogTitle("Select Destination Directory For " +

archiveFile.getName());
dirChooser.setMultiSelectionEnabled(false);
dirChooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

if (dirChooser.showDialog(this, "Select") !=
JFileChooser.APPROVE_OPTION)

return;

m_currentDir = dirChooser.getCurrentDirectory();
final File outputDir = dirChooser.getSelectedFile();

Thread runner = new Thread() {
public void run() {

extractFromArchive(archiveFile, entries, outputDir);
}

};
runner.start();

}

protected void createZipArchive(File archiveFile, File[] selected) {
try {

byte buffer[] = new byte[BUFFER_SIZE];
// Open archive file
FileOutputStream stream =

new FileOutputStream(archiveFile);
ZipOutputStream out = new ZipOutputStream(stream);

for (int k=0; k<selected.length; k++) {
if (selected[k]==null || !selected[k].exists() ||

selected[k].isDirectory())
continue;// Just in case...

setStatus("Adding "+selected[k].getName());

// Add archive entry
ZipEntry zipAdd = new ZipEntry(selected[k].getName());
zipAdd.setTime(selected[k].lastModified());
out.putNextEntry(zipAdd);

// Read input & write to output
FileInputStream in = new FileInputStream(selected[k]);
while (true) {

int nRead = in.read(buffer, 0, buffer.length);
if (nRead <= 0)

break;
out.write(buffer, 0, nRead);

}
in.close();

}

out.close();
stream.close();
setStatus("ZIP archive was created successfully");

CUSTOMIZING JFILECHOOSER 459

}
catch (Exception e) {

e.printStackTrace();
setStatus("Error: "+e.getMessage());
return;

}
}

protected void createJarArchive(File archiveFile, File[] selected) {
try {

byte buffer[] = new byte[BUFFER_SIZE];
// Open archive file
FileOutputStream stream =

new FileOutputStream(archiveFile);
JarOutputStream out = new JarOutputStream(stream,

new Manifest());

for (int k=0; k<selected.length; k++) {
if (selected[k]==null || !selected[k].exists() ||

selected[k].isDirectory())
continue;// Just in case...

setStatus("Adding "+selected[k].getName());

// Add archive entry
JarEntry jarAdd = new JarEntry(selected[k].getName());
jarAdd.setTime(selected[k].lastModified());
out.putNextEntry(jarAdd);

// Write file to archive
FileInputStream in = new FileInputStream(selected[k]);
while (true) {

int nRead = in.read(buffer, 0, buffer.length);
if (nRead <= 0)

break;
out.write(buffer, 0, nRead);

}
in.close();

}

out.close();
stream.close();
setStatus("JAR archive was created successfully");

}
catch (Exception ex) {

ex.printStackTrace();
setStatus("Error: "+ex.getMessage());

}
}

protected void extractFromArchive(File archiveFile,
String[] entries, File outputDir) {

try {
byte buffer[] = new byte[BUFFER_SIZE];
// Open the archive file
FileInputStream stream =

This method
performs the
actual archive
extraction

460 CHAPTER 14 DIALOGS

new FileInputStream(archiveFile);
ZipInputStream in = new ZipInputStream(stream);

// Find archive entry
while (true) {

ZipEntry zipExtract = in.getNextEntry();
if (zipExtract == null)

break;
boolean bFound = false;
for (int k=0; k<entries.length; k++) {

if (zipExtract.getName().equals(entries[k])) {
bFound = true;
break;

}
}
if (!bFound) {

in.closeEntry();
continue;

}
setStatus("Extracting "+zipExtract.getName());

// Create output file and check required directory
File outFile = new File(outputDir,

zipExtract.getName());
File parent = outFile.getParentFile();
if (parent != null && !parent.exists())

parent.mkdirs();

// Extract unzipped file
FileOutputStream out =

new FileOutputStream(outFile);
while (true) {

int nRead = in.read(buffer,
0, buffer.length);

if (nRead <= 0)
break;

out.write(buffer, 0, nRead);
}
out.close();
in.closeEntry();

}

in.close();
stream.close();
setStatus("Files were extracted successfully");

}
catch (Exception ex) {

ex.printStackTrace();
setStatus("Error: "+ex.getMessage());

}
}

public static boolean isArchiveFile(File f) {
String name = f.getName().toLowerCase();

CUSTOMIZING JFILECHOOSER 461

return (name.endsWith(".zip") || name.endsWith(".jar"));
}

public static void main(String argv[]) {
ZipJarManager frame = new ZipJarManager();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class SimpleFilter
extends javax.swing.filechooser.FileFilter {

private String m_description = null;
private String m_extension = null;

public SimpleFilter(String extension, String description) {
m_description = description;
m_extension = "."+extension.toLowerCase();

}

public String getDescription() {
return m_description;

}

public boolean accept(File f) {
if (f == null)

return false;
if (f.isDirectory())

return true;
return f.getName().toLowerCase().endsWith(m_extension);

}
}

class ZipFileView
extends javax.swing.filechooser.FileView {

protected static ImageIcon ZIP_ICON = new ImageIcon("archive.gif");
protected static ImageIcon JAR_ICON = new ImageIcon("archive.gif");

public String getName(File f) {
String name = f.getName();
return name.equals("") ? f.getPath() : name;

}

public String getDescription(File f) {
return getTypeDescription(f);

}

public String getTypeDescription(File f) {
String name = f.getName().toLowerCase();
if (name.endsWith(".zip"))

return "ZIP Archive File";
else if (name.endsWith(".jar"))

return "Java Archive File";
else

return "File";

Custom FileView to show
ZIP and JAR files with
appropriate icons and
file type descriptions

462 CHAPTER 14 DIALOGS

}

public Icon getIcon(File f) {
String name = f.getName().toLowerCase();
if (name.endsWith(".zip"))

return ZIP_ICON;
else if (name.endsWith(".jar"))

return JAR_ICON;
else

return null;
}

public Boolean isTraversable(File f) {
return (f.isDirectory() ? Boolean.TRUE : Boolean.FALSE);

}
}

class TabListCellRenderer
extends JLabel
implements ListCellRenderer {

protected static Border m_noFocusBorder;
protected FontMetrics m_fm = null;
protected Insets m_insets = new Insets(0, 0, 0, 0);

protected int m_defaultTab = 50;
protected int[] m_tabs = null;

public TabListCellRenderer() {
super();
m_noFocusBorder = new EmptyBorder(1, 1, 1, 1);
setOpaque(true);
setBorder(m_noFocusBorder);

}

public Component getListCellRendererComponent(JList list,
Object value, int index, boolean isSelected,
boolean cellHasFocus) {

setText(value.toString());

setBackground(isSelected ? list.getSelectionBackground()
: list.getBackground());

setForeground(isSelected ? list.getSelectionForeground()
: list.getForeground());

setFont(list.getFont());
setBorder((cellHasFocus) ? UIManager.getBorder(

"List.focusCellHighlightBorder") : m_noFocusBorder);

return this;
}

public void setDefaultTab(int defaultTab) {
m_defaultTab = defaultTab;

}

public int getDefaultTab() {

CUSTOMIZING JFILECHOOSER 463

return m_defaultTab;
}

public void setTabs(int[] tabs) {
m_tabs = tabs;

}

public int[] getTabs() {
return m_tabs;

}

public int getTab(int index) {
if (m_tabs == null)

return m_defaultTab*index;

int len = m_tabs.length;
if (index>=0 && index<len)

return m_tabs[index];

return m_tabs[len-1] + m_defaultTab*(index-len+1);
}

public void paintComponent(Graphics g) {
super.paintComponent(g);
m_fm = g.getFontMetrics();

g.setColor(getBackground());
g.fillRect(0, 0, getWidth(), getHeight());
getBorder().paintBorder(this, g, 0, 0, getWidth(), getHeight());

g.setColor(getForeground());
g.setFont(getFont());
m_insets = getInsets();
int x = m_insets.left;
int y = m_insets.top + m_fm.getAscent();

StringTokenizer st = new StringTokenizer(getText(), "\t");
while (st.hasMoreTokens()) {

String sNext = st.nextToken();
g.drawString(sNext, x, y);
x += m_fm.stringWidth(sNext);

if (!st.hasMoreTokens())
break;

int index = 0;
while (x >= getTab(index))

index++;
x = getTab(index);

}
}

}

class ExtractChooser extends JFileChooser {
protected JList m_zipEntries;

protected JDialog createDialog(Component parent)
throws HeadlessException {

Custom file chooser
which displays archive
contents in a JList

464 CHAPTER 14 DIALOGS

JDialog dialog = super.createDialog(parent);

m_zipEntries = new JList();
m_zipEntries.setSelectionMode(

ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
TabListCellRenderer renderer = new TabListCellRenderer();
renderer.setTabs(new int[] {240, 300, 360});
m_zipEntries.setCellRenderer(renderer);

JPanel p = new JPanel(new BorderLayout());
p.setBorder(new EmptyBorder(0,10,10,10));
p.add(new JLabel("Files to extract:"), BorderLayout.NORTH);

JScrollPane ps = new JScrollPane(m_zipEntries);
p.add(ps, BorderLayout.CENTER);
dialog.getContentPane().add(p, BorderLayout.SOUTH);

PropertyChangeListener lst = new PropertyChangeListener() {
SimpleDateFormat m_sdf = new SimpleDateFormat(

"MM/dd/yyyy hh:mm a");
DefaultListModel m_emptyModel = new DefaultListModel();

public void propertyChange(PropertyChangeEvent e) {
if (e.getPropertyName() ==

JFileChooser.FILE_FILTER_CHANGED_PROPERTY) {
m_zipEntries.setModel(m_emptyModel);
return;

 }
else if (e.getPropertyName() ==

JFileChooser.SELECTED_FILE_CHANGED_PROPERTY) {
File f = getSelectedFile();
if (f == null) {

m_zipEntries.setModel(m_emptyModel);
return;

}
String name = f.getName().toLowerCase();
if (!name.endsWith(".zip") && !name.endsWith(".jar")) {

m_zipEntries.setModel(m_emptyModel);
return;

}
try {

ZipFile zipFile = new ZipFile(f.getPath());
DefaultListModel model = new DefaultListModel();
Enumeration en = zipFile.entries();
while (en.hasMoreElements()) {

ZipEntry zipEntr = (ZipEntry)en.
nextElement();

Date d = new Date(zipEntr.getTime());
String str = zipEntr.getName()+'\t'+

zipEntr.getSize()+'\t'+m_sdf.format(d);
model.addElement(str);

}
zipFile.close();
m_zipEntries.setModel(model);

CUSTOMIZING JFILECHOOSER 465

m_zipEntries.setSelectionInterval(0,
model.getSize()-1);

}
catch(Exception ex) {

ex.printStackTrace();
}

}
else {

m_zipEntries.setModel(m_emptyModel);
return;

}
}

};
addPropertyChangeListener(lst);
cancelSelection();

return dialog;
}

public String[] getSelectedEntries() {
Object[] selObj = m_zipEntries.getSelectedValues();
String[] entries = new String[selObj.length];
for (int k=0; k<selObj.length; k++) {

String str = selObj[k].toString();
int index = str.indexOf('\t');
entries[k] = str.substring(0, index);

}
return entries;

}
}

// Class TabListCellRenderer is taken from Chapter 10,
// section 10.3 without modification.

14.6.7 Understanding the code

Class ZipJarManager
This class extends JFrame to provide a very simple GUI for our ZIP/JAR archive manager
application.

One class variable is defined:

• int BUFFER_SIZE: used to define the size of an array of bytes for reading and
writing files.

Seven instance variables:

• File m_currentDir: the currently selected directory
• SimpleFilter m_zipFilter: filter for files with a “.zip” extension
• SimpleFilter m_jarFilter: filter for files with a “.jar” extension
• ZipFileView m_view: a custom FileView implementation for JAR and ZIP files
• JButton m_btCreate: initiates the creation of an archive
• JButton m_btExtract: initiates extraction from an archive
• JLabel m_status: label to display status messages

466 CHAPTER 14 DIALOGS

The ZipJarManager constructor first creates the buttons and labels and encapsulates them
in a JPanel using a GridLayout and adds this to the content pane. The first button titled
Create new Archive is assigned an ActionListener which invokes createArchive(). The
second button titled Extract from Archive is assigned an ActionListener which invokes
extractArchive(). Our custom SimpleFilters and FileView are then instantiated.

The setStatus() method simply assigns a given String to the m_status label.

The createArchive() method is used to create a new archive file using two JFile-
Choosers. First we add the file filters, set multiple file selection to false, and remove the
“accept all” file filter. Then we set its title to New Archive and its type to SAVE_DIALOG. We
show it in a dialog to prompt the user for a new archive name. If the dialog is dismissed by
pressing Cancel or the close button we do nothing and return. Otherwise we store the current
directory in our m_currentDir instance variable and create a File instance corresponding
to the file specified in the chooser.

Interestingly, JFileChooser does not check whether the filename entered in its text field
is valid with respect to its filters when the approve button pressed. So we are forced to check
if our File’s name has a .zip or .jar extension manually using our custom isArchiveFile()
method. If this method returns false we do nothing and return. Otherwise we set up a second
JFileChooser to allow multiple selections to make up the content of the archive, and only
allow file selections (by setting the fileSelectionMode property to FILES_ONLY) to avoid
overcomplicating our archive processing scheme. Also note that we set the dialog title to specify
the name of the archive we are creating.

We use JFileChooser’s showDialog() method to display this chooser in a JDialog
and assign Add as its approve button text. If the approve button is not pressed we do nothing
and return. Otherwise we create an array of Files to be placed in the specified archive using
JFileChooser’s getSelectedFiles() method (which works correctly as of Java 1.4).
Finally, we invoke our createZipArchive() method if the selected archive file has a .zip
extension, or createJarArchive() if it has a .jar extension. These method calls are wrapped
in separate threads to avoid clogging up the event–dispatching thread.

The createZipArchive() method takes two parameters: a ZIP archive file and an array
of the files to be added to the archive. It creates a ZipOutputStream to write the selected
archive file. Then for each file in the given array it creates a ZipEntry instance, places it in
the ZipOutputStream, and performs standard read/write operations until all data has
been written into the archive. The status label is updated, using our setStatus() method,
each time a file is written and when the operation completes, to provide feedback during
long operations.

The createJarArchive() method works almost identically to createZipAr-
chive(), using the corresponding java.util.jar classes. Note that a default Manifest
instance is supplied to the JarOutputStream constructor.

The extractArchive() method extracts data from an archive file using two J-File-
Choosers, one of which is an instance of our custom ExtractChooser class. First we create
an ExtractChooser instance, add the file filters, set multiple file selection to false and
remove the Accept All file filter. Then we set its title to Open Archive and its type to
OPEN_DIALOG. We show it in a dialog to prompt the user for a new archive name. If the dia-
log is dismissed by pressing Cancel or the close button we do nothing and return. Otherwise

CUSTOMIZING JFILECHOOSER 467

we store the current directory in our m_currentDir instance variable and create a File
instance corresponding to the file specified in the chooser. We then create a String array rep-
resenting the entries selected in the ExtractChooser with its getSelectedEntries()
method. If no entries were selected we display a message in the status bar and return. Other-
wise a regular JFileChooser is used to select a directory to extract the selected archive
entries in. We instantiate this and set its fileSelectionMode property to
DIRECTORIES_ONLY, and enforce single selection by setting its multiSelectionEnabled
property to false. We then show the chooser using Select for its approve button text. If it is
dismissed we return. Otherwise we start the extraction process in a separate thread calling our
custom extractFrom-Archive() method.

In the extractFromArchive() method we begin the extraction process by creating a Zip-
InputStream to read from the selected archive file. We then process each entry in the archive
by retrieving a corresponding ZipEntry and verifying whether each ZipEntry’s name
matches a String in the passed in array of selected files. If a match is found we create a File
instance to write that entry to. If a ZipEntry includes subdirectories, we create these sub-
directories using File’s mkdirs() method. Finally we perform standard read/write opera-
tions until all files have been extracted from the archive. Note that we update the status label
each time a file is extracted and when the opertion completes.

Class SimpleFilter
This class represents a basic FileFilter that accepts files with a given String extension,
and displays a given String description in JFileChooser’s Files of Type combo box. We
have already seen and discussed this filter in section 14.1.9. It is used here to create our JAR
and ZIP filters in the ZipJarManager constructor.

Class ZipFileView
This class extends FileView to provide a more user-friendly graphical representation of ZIP
and JAR files in JFileChooser. Two instance variables, ImageIcon ZIP_ICON and Image-
Icon JAR_ICON, represent small images corresponding to each archive type: archive.gif.
This class is a straightforward adaptation of the sample FileView class presented in
section 14.1.11.

Class ExtractChooser
Since JFileChooser is derived from JComponent, we can add our own components to it
just like any other container. A quick look at the source code shows that JFileChooser uses
a y-oriented BoxLayout. This implies that new components added to a JFileChooser will
be placed below all other existing components (see chapter 4 for more about BoxLayout).

We take advantage of this knowledge in building our ExtractChooser class and add a
JList component, m_zipEntries, to allow selection of compressed entries to be extracted
from a selected archive. This JList component receives an instance of our custom TabList-
CellRenderer as its cell renderer to process Strings with tabs (see chapter 10, section 10.3).
The location of String segments between tabs are assigned using its setTabs() method.
Finally, this list is placed in a JScrollPane to provide scrolling capabilities, and added to the
bottom of the component.

468 CHAPTER 14 DIALOGS

A PropertyChangeListener is added to process the user’s selection. This anonymous
class maintains two instance variables:

• SimpleDateFormat m_sdf: used to format file time stamps
• DefaultListModel m_emptyModel: assigned to m_zipEntries when non-archive

files are selected, or when the file filter is changed

This listener’s propertyChange() method will receive a PropertyChangeEvent when,
among other things, the chooser’s selection changes. The selected file can then be retrieved
and if this file represents a ZIP or JAR archive, our implementation creates a ZipFile
instance to read its content, and retrieves an Enumeration of ZipEntrys in this archive
(recall that JarFile and JarEntry are subclasses of ZipFile and ZipEntry, allowing us to
display the contents of a JAR or a ZIP archive identically). For each entry we form a String
containing that entry's name, size, and time stamp. This String is added to a
DefaultListModel instance. After each entry has been processed, this model is assigned to
our JList, and all items are initially selected. The user can then modify the selection to
specify entries to be extracted from the archive.

14.6.8 Running the code

Press the Create new Archive button and select a name and location for the new archive file
in the first file chooser that appears. Press its OK button and then select files to be added to
that archive in the second chooser. Figure 14.16 shows ZipJarManager in action, and fig-
ures 14.17 and 14.18 show the first and second choosers that appear during the archive cre-
ation process.

Try uncompressing an existing archive. Press the Extract from Archive button and select
an existing archive file in the first chooser that appears. Note the custom list component
displayed in the bottom of this chooser, figure 14.19 illustrates. Each time an archive is selected
its contents are displayed in this list. Select entries to extract and press the Extract button.
A second chooser will appear, shown in figure 14.20, allowing selection of a destination
directory for extraction.

P A R T III

Advanced topics
In chapters 15 through 21 we discuss the most advanced Swing components and the classes
and interfaces that support them. We start with JLayeredPane in chapter 15.

Chapter 16 is about JDesktopPane and JInternalFrame, the MDI components that ship
with Swing.

Chapters 17 and 18 discuss the powerful and intricate tree and table components. Among
other examples, we show how to build a directory browser using the tree component, and a sortable,
JDBC-aware stocks application using the table component, and an expense report application.

Chapter 19 continues the text component coverage where chapter 11 left off, and it discusses
them at a much lower level.

Chapter 20 presents a complete HTML editor application using JTextPane; several pow-
erful custom dialogs are used to manage fonts, document properties, find and replace, hyperlink,
image, and table insertion, and spell checking.

Chapter 21 discusses the pluggable look and feel architecture in detail and presents the con-
struction of our own custom LookAndFeel implementation.

471

C H A P T E R 1 5

Layered panes
15.1 JLayeredPane 427
15.2 Using JLayeredPane to enhance interfaces 429
15.3 Creating a custom MDI 431

15.1 JLAYEREDPANE

class javax.swing.JLayeredPane
JLayeredPane is a container with an almost infinite number of layers in which components
reside. Not only is there no limit to the number or type of components in each layer, but com-
ponents can overlap one another.

Components within each layer of a JLayeredPane are organized by position. When over-
lapping is necessary, those components with a higher-valued position are displayed under those
with a lower-valued position. However, components in higher layers are displayed over all com-
ponents residing in lower layers. It is important to get this overlapping hierarchy down early,
as it can often be confusing.

Component position is numbered from –1 to the number of components in the layer
minus one. If we have N components in a layer, the component at position 0 will overlap the
component at position 1, and the component at position 1 will overlap the component at posi-
tion 2, and so on. The lowest position is N–1; it represents the same position as –1. Figure 15.1
illustrates the concept of position within a layer.

The layer at which a component resides is often referred to as its depth. (Heavyweight com-
ponents cannot conform to this notion of depth; see chapter 1 for more information.) Each

472 CHAPTER 15 LAYERED PANES

layer is represented by an Integer object, and the position of a component within each layer
is represented by an int value. The JLayeredPane class defines six different Integer object
constants, representing what are intended to be commonly used layers: FRAME_CONTENT_LAYER,
DEFAULT_LAYER, PALETTE_LAYER, MODAL_LAYER, POPUP_LAYER, and DRAG_LAYER.

Figure 15.2 illustrates the six standard layers and their overlap hierarchy.

We have just discussed a component’s layer and position within a layer. Another value is also
associated with each component within a JLayeredPane. This value is called the index. The
index is the same as the position, if we were to ignore layers. That is, components are assigned
indices by starting from position 0 in the highest layer and counting upward in position and
downward in layer until all layers have been exhausted. The lowest component in the lowest
layer will have index M–1, where M is the total number of components in the JLayeredPane.
Similar to position, an index of –1 means the component is the bottom-most component.

Figure 15.1 The position of components within a layer

Figure 15.2 The JLayeredPane standard layers

USING JLAYEREDPANE TO ENHANCE INTERFACES 473

(The index is really a combination of a component’s layer and position. As such, there are no
methods to directly change a component’s index within JLayeredPane, although we can
always query a component for its current index.)

There are three ways to add a component to a JLayeredPane. (Note that there is no add
method defined within JLayeredPane itself.) Each method used to add a component to
a JLayeredPane is defined within the Container class (see the API documentation for
more information).

1 To add a component to a JLayeredPane, we use the add(Component component)
method. This places the component in the layer represented by the Integer object with
value 0, the DEFAULT_LAYER.

2 To add a component to a specific layer of a JLayeredPane we use the add(Component
component, Object obj) method. We pass this method our component and an Inte-
ger object representing the desired layer. For layer 10, we would pass it new Inte-
ger(10). If we wanted to place it on one of the standard layers, for instance the
POPUP_LAYER, we could instead pass it JLayeredPane.POPUP_LAYER.

3 To add a component to a specific position within a specific layer, we use the add(Com-
ponent component, Object obj, int index) method, in which the object is specified
as above, and the int is the value representing the component’s position within the layer.

15.2 USING JLAYEREDPANE TO ENHANCE INTERFACES

As we mentioned earlier in chapter 4, JLayeredPane can sometimes come in handy when we
want to manually position and size components. Because its layout is null, it is not prone to
the effects of resizing. Thus, when its parent is resized, a layered pane’s children will stay in the
same position and maintain the same size. However, there are other more interesting ways to
use JLayeredPane in typical interfaces. For instance, we can easily place a nice, background
image behind all of our components, giving life to an otherwise dull-looking panel.

Figure 15.3
Using JLayeredPane to add
a background image

474 CHAPTER 15 LAYERED PANES

Example 15.1

see \Chapter15\1

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TestFrame extends JFrame
{
 public TestFrame() {
 super("JLayeredPane Demo");
 setSize(256,256);

 JPanel content = new JPanel();
 content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS));
 content.setOpaque(false);

 JLabel label1 = new JLabel("Username:");
 label1.setForeground(Color.white);
 content.add(label1);

 JTextField field = new JTextField(15);
 content.add(field);

 JLabel label2 = new JLabel("Password:");
 label2.setForeground(Color.white);
 content.add(label2);

 JPasswordField fieldPass = new JPasswordField(15);
 content.add(fieldPass);

 getContentPane().setLayout(new FlowLayout());
 getContentPane().add(content);
 ((JPanel)getContentPane()).setOpaque(false);

 ImageIcon earth = new ImageIcon("earth.jpg");
 JLabel backlabel = new JLabel(earth);
 getLayeredPane().add(backlabel,
 new Integer(Integer.MIN_VALUE));
 backlabel.setBounds(0,0,earth.getIconWidth(),
 earth.getIconHeight());

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 public static void main(String[] args) {
 new TestFrame();
 }
}

Most of this code should look familiar. We extend JFrame and create a new JPanel with a
y-oriented BoxLayout. We make this panel non-opaque so our background image will show
through, then we add four simple components: two JLabels, a JTextField, and a

TestFrame.java

CREATING A CUSTOM MDI 475

JPasswordField. We then set the layout of the contentPane to FlowLayout (remember
that the contentPane has a BorderLayout by default), and add our panel to it. We also set
the contentPane’s opaque property to false, thereby ensuring that our background will
show through this panel as well. Finally, we create a JLabel containing our background
image, add it to our JFrame’s layeredPane, and set its bounds based on the background
image’s size.

15.3 CREATING A CUSTOM MDI

In the first edition we stepped through the creation of a custom internal frame component
and MDI container. We’ve removed these step-by-step examples in this edition to allow
space for updated material. However, these examples have been included in the second edition
.zip files, and their descriptions can still be found in the first edition text (freely available
at www.manning.com/sbe). Figure 15.4 shows what our custom InnerFrame component
looks like.

Figure 15.4 Custom InnerFrame component and MDI container

476

C H A P T E R 1 6

Desktops & internal frames
16.1 JDesktopPane and

JInternalFrame 476
16.2 Cascading and outline dragging

mode 482

16.3 Adding MDI to a text editor
application 487

16.4 Examples from the first
edition 495

16.1 JDESKTOPPANE AND JINTERNALFRAME

The purpose of JDesktopPane is to provide a specialized container for JInternalFrames.

16.1.1 JDesktopPane

class javax.swing.JDesktopPane
JDesktopPane is a powerful extension of JLayeredPane that is built specifically to manage
JInternalFrame children. This is Swing’s version of a multiple document interface, a fea-
ture common to most modern operating system desktops. In the last chapter we created our
own MDI from scratch. Both our MDI and the JDesktopPane/JInternalFrame prebuilt
MDI are quite powerful. This chapter focuses on the latter.

16.1.2 JInternalFrame

class javax.swing.JInternalFrame
We can access JInternalFrame’s contents in the same way we do JLayeredPane. Several
additional convenience methods are defined in JDesktopPane for accessing JInternal-
Frame children (see the API documentation) and attaching a DesktopManager implementa-
tion (see below).

JDESKTOPPANE AND JINTERNALFRAME 477

JInternalFrames can be dragged, resized, iconified, maximized, and closed. JInter-
nalFrame contains a JRootPane as its main container and it implements the RootPaneCon-
tainer interface. We can access a JInternalFrame’s rootPane and its associated glassPane,
contentPane, layeredPane, and menuBar the same way we access them in JFrame.

16.1.3 JInternalFrame.JDesktopIcon

class javax.swing.JInternalFrame.JDesktopIcon
This represents a JInternalFrame in its iconified state. In the API documentation, we are
warned against using this class as it will disappear in future versions of Swing: “This API should
NOT BE USED by Swing applications, as it will go away in future versions of Swing as its func-
tionality is moved into JInternalFrame.” Currently, when a JInternalFrame is iconified, it is
removed from its JDesktopPane and a JDesktopIcon instance is added to represent it. In future
versions of Swing, JInternalFrame will have JDesktopIcon functionality built into it. Cur-
rently, to customize the desktop icon, it is necessary to build your own DesktopIconUI subclass.

16.1.4 The DesktopManager interface

abstract interface javax.swing.DesktopManager
Each JDesktopPane has a DesktopManager object attached to it whose job it is to manage
all operations performed on JInternalFrames within the desktop. DesktopManager meth-
ods are automatically called from the associated JDesktopPane when an action is invoked on
a JInternalFrame within that desktop. These are usually invoked when the user performs
some action on a JInternalFrame with the mouse:

• activateFrame(JInternalFrame f)

• beginDraggingFrame(JComponent f)

• beginResizingFrame(JComponent f, int direction)

• closeFrame(JInternalFrame f)

• deactivateFrame(JInternalFrame f)

• deiconifyFrame(JInternalFrame f)

• dragFrame(JComponent f, int newX, int newY)

• endDraggingFrame(JComponent f)

• endResizingFrame(JComponent f)

• iconifyFrame(JInternalFrame f)

• maximizeFrame(JInternalFrame f)

• minimizeFrame(JInternalFrame f)

• openFrame(JIntenerlFrame f)

• resizeFrame(JComponent f, int newX, int newY, int newWidth, int
newHeight)

• setBoundsForFrame(JComponent f, int newX, int newY, int newWidth, int
newHeight)

If we want to manually invoke iconification, for example, on a JInternalFrame, we should
do the following:

 myJInternalFrame.getDesktopPane().getDesktopManager().
 iconifyFrame(myJInternalFrame);

478 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

We could also directly call setIcon(true) on a JInternalFrame, but we are discouraged
from doing so because it is not good practice to bypass the DesktopManager—necessary
actions may be defined within the DesktopManager’s iconifyFrame() method that would
not be invoked. So, in general, all calls to methods of JInternalFrame that have Desktop-
Manager counterparts should be delegated to the DesktopManager.

We have written an animated demo that shows when and how often each Desktop-
Manager method is called. See \Chapter16\5 in the ZIP archive for this chapter and execute the
DesktopManagerDemo class. Figure 16.1 illustrates.

Figure 16.1 The DesktopManager animated demo

JDESKTOPPANE AND JINTERNALFRAME 479

16.1.5 DefaultDesktopManager

class javax.swing.DefaultDesktopManager
This is the concrete default implementation of the DesktopManager interface. An instance
of this class is attached to each JDesktopPane if a custom DesktopManager implementa-
tion is not specified.

16.1.6 Capturing internal frame close events

Refer to chapter 3 for a description of this interface.
To capture the closing of a JInternalFrame and display a confirmation dialog, we can

construct the following JInternalFrame subclass:

 class ConfirmJInternalFrame extends JInternalFrame
 implements VetoableChangeListener {

 public ConfirmJInternalFrame(String title, boolean resizable,
 boolean closable, boolean maximizable, boolean iconifiable) {
 super(title, resizable, closable, maximizable, iconifiable);
 addVetoableChangeListener(this);
 }

 public void vetoableChange(PropertyChangeEvent pce)
 throws PropertyVetoException {
 if (pce.getPropertyName().equals(IS_CLOSED_PROPERTY)) {
 boolean changed = ((Boolean) pce.getNewValue()).booleanValue();
 if (changed) {
 int confirm = JOptionPane.showOptionDialog(this,
 "Close " + getTitle() + "?",
 "Close Confirmation",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);
 if (confirm == 0) {
 m_desktop.remove(this);
 m_desktop.repaint();
 }
 else throw new PropertyVetoException("Cancelled",null);
 }
 }
 }
 }

Using this class in place of JInternalFrame will always display a confirmation dialog when
the Close button is pressed. This code checks to see if the closed property has changed from
its previous state. This is a constrained property which we can veto if desired (see chapter 2).
Luckily, this comes in quite handy for working around the DO_NOTHING_ON_CLOSE bug.

If the confirmation dialog is displayed and then cancelled (for example, either the NO
button or the Close Dialog button is pressed), a PropertyVetoException is thrown which
vetos the property change and the internal frame will not be closed. Figure 16.2 illustrates.

480 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

16.1.7 The InternalFrameListener interface

abstract interface javax.swing.event.InternalFrameListener
Each JInternalFrame can have one or more InternalFrameListeners attached. An
InternalFrameListener will receive InternalFrameEvents that allow us to capture and
handle them however we like with the following methods:

• internalFrameActivated(InternalFrameEvent e)

• internalFrameClosed(InternalFrameEvent e)

• internalFrameClosing(InternalFrameEvent e)

• internalFrameDeactivated(InternalFrameEvent e)

• internalFrameDeiconified(InternalFrameEvent e)

• internalFrameIconified(InternalFrameEvent e)

• internalFrameOpened(InternalFrameEvent e)

InternalFrameListener and DesktopManager both exist to process changes in a
JInternalFrame’s state. However, they can both be used to achieve different ends. Desk-
topManager allows us to define internal frame handling methods for all JInternalFrames
within a given JDesktopPane, whereas InternalFrameListener allows us to define
InternalFrameEvent handling unique to each individual JInternalFrame. We can
attach a different InternalFrameListener implementation to each instance of JInter-
nalFrame, whereas only one DesktopManager implementation can be attached to any
instance of JDesktopPane (and thus, each of its children).

We have written an animated demo that shows when and how often each Internal-
FrameListener method is called. See \Chapter16\6 and execute the InternalFrame-
ListenerDemo class. Figure 16.3 illustrates.

16.1.8 InternalFrameEvent

class javax.swing.event.InternalFrameEvent
InternalFrameEvents are sent to InternalFrameListeners whenever a JInternal-
Frame is activated, closed, about to close, deactivated, deiconified, iconified, or opened. The
following static int IDs designate which type of action an InternalFrameEvent corre-
sponds to:

• INTERNAL_FRAME_ACTIVATED

• INTERNAL_FRAME_CLOSED

Figure 16.2
Handling internal frame closing
with a Close Confirmation dialog

JDESKTOPPANE AND JINTERNALFRAME 481

• INTERNAL_FRAME_CLOSING

• INTERNAL_FRAME_DEACTIVATED

• INTERNAL_FRAME_DEICONIFIED

• INTERNAL_FRAME_ICONIFIED

• INTERNAL_FRAME_OPENED

InternalFrameEvent extends AWTEvent, and thus encapsultes its source and the associated
event ID (which are retrievable with getSource() and getID() respectively).

16.1.9 InternalFrameAdapter

class javax.swing.event.InternalFrameAdapter
This is a concrete implementation of the InternalFrameListener interface. It is intended
to be extended for use by InternalFrameListener implementations that need to define
only a subset of the InternalFrameListener methods. All methods defined within this
adapter class have empty bodies.

16.1.10 Outline dragging mode

JDesktopPane supports an outline dragging mode to help with JInternalFrame dragging
performance bottlenecks. To enable this mode on any JDesktopPane, we must set the JDesk-
topPane.dragMode client property:

Figure 16.3 The InternalFrameListener animated demo

482 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

 myDesktopPane.putClientProperty(
 "JDesktopPane.dragMode","outline");

Instead of actually moving and painting the frame whenever it is dragged, an XOR’d rectangle
is drawn in its place until the drag ends. Example 16.1 shows outline dragging mode in
action.

16.2 CASCADING AND OUTLINE DRAGGING MODE

You are probably familiar with the cascading layout that occurs as new windows are opened in
most MDI environments. In fact, if you have looked at any of the custom MDI examples of
chapter 15, you will have seen that when you start each demo the InnerFrames are arranged
in a cascading fashion. Example 16.1 shows how to control cascading for an arbitrary number
of internal frames. Additionally, the ability to switch between any pluggable look and feel
available on your system is added, and outline dragging mode is enabled in our desktop.

Figure 16.4 Cascading Internal Frames

CASCADING AND OUTLINE DRAGGING MODE 483

Example 16.1

see \Chapter16\1

import java.beans.PropertyVetoException;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class CascadeDemo
extends JFrame
implements ActionListener {

public static final int INI_WIDTH = 200;
public static final int INI_HEIGHT = 200;

private ImageIcon m_earth;
private int m_count;
private int m_tencount;
private JButton m_newFrame;
private JButton m_cascadeFrames;
private JDesktopPane m_desktop;
private JComboBox m_UIBox;
private UIManager.LookAndFeelInfo[] m_infos;

public CascadeDemo() {
super("Cascade Demo");
setSize(570,400);

m_earth = new ImageIcon("earth.jpg");
m_count = m_tencount = 0;

m_desktop = new JDesktopPane();
m_desktop.putClientProperty("JDesktopPane.dragMode", "outline");

m_newFrame = new JButton("New Frame");
m_newFrame.addActionListener(this);

m_cascadeFrames = new JButton("Cascade Frames");
m_cascadeFrames.addActionListener(this);

m_infos = UIManager.getInstalledLookAndFeels();
String[] LAFNames = new String[m_infos.length];
for(int i=0; i<m_infos.length; i++) {

LAFNames[i] = m_infos[i].getName();
}

m_UIBox = new JComboBox(LAFNames);
m_UIBox.addActionListener(this);

JPanel topPanel = new JPanel(true);
topPanel.add(m_newFrame);
topPanel.add(m_cascadeFrames);
topPanel.add(new JLabel("Look & Feel:",SwingConstants.RIGHT));
topPanel.add(m_UIBox);

CascadeDemo.java

Constructor lays out all
GUI components

Button to create
new frames

Provides combo box
with available
look and feel

484 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

getContentPane().setLayout(new BorderLayout());
getContentPane().add(topPanel, BorderLayout.NORTH);
getContentPane().add(m_desktop, BorderLayout.CENTER);

Dimension dim = getToolkit().getScreenSize();
setLocation(dim.width/2-getWidth()/2,

dim.height/2-getHeight()/2);
}

public void newFrame() {
JInternalFrame jif = new JInternalFrame("Frame " + m_count,

true, true, true, true);
jif.setBounds(20*(m_count%10) + m_tencount*80,

20*(m_count%10), INI_WIDTH, INI_HEIGHT);

JLabel label = new JLabel(m_earth);
jif.getContentPane().add(new JScrollPane(label));

m_desktop.add(jif);
jif.show();

m_count++;
if (m_count%10 == 0)

{
if (m_tencount < 3)

m_tencount++;
else

m_tencount = 0;
}

}

public void cascadeFrames() {
try {

JInternalFrame[] frames = m_desktop.getAllFrames();
JInternalFrame selectedFrame = m_desktop.getSelectedFrame();
int x = 0;
int y = 0;
for (int k=frames.length-1; k>=0; k--) {

frames[k].setMaximum(false);
frames[k].setIcon(false);
frames[k].setBounds(x, y, INI_WIDTH, INI_HEIGHT);
x += 20;
y += 20;

}
if (selectedFrame != null)

m_desktop.setSelectedFrame(selectedFrame);
}
catch(Exception ex) {

ex.printStackTrace();
}

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() == m_newFrame)

newFrame();

Creates a new frame

Steps to determine
the location for
the next frame

Organizes internal frames
in a cascading fashion

Create new frames

CASCADING AND OUTLINE DRAGGING MODE 485

else if (e.getSource() == m_cascadeFrames)
cascadeFrames();

else if (e.getSource() == m_UIBox) {
int index = m_UIBox.getSelectedIndex();
if (index < 0)
return;

String lfClass = m_infos[index].getClassName();
m_UIBox.hidePopup(); // BUG WORKAROUND
try {

UIManager.setLookAndFeel(lfClass);
SwingUtilities.updateComponentTreeUI(this);

}
catch(Exception ex) {

System.out.println("Could not load " + lfClass);
ex.printStackTrace();

}
m_UIBox.setSelectedIndex(index);

}
}

public static void main(String[] args) {
CascadeDemo frame = new CascadeDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);
}

}

16.2.1 Understanding the code

Class CascadeDemo
CascadeDemo extends JFrame to provide the main container for this example. The construc-
tor is responsible for initializing and laying out all GUI components. Two class variables,
INI_WIDTH and INI_HEIGHT, and several instance variables are needed:

• int INI_WIDTH: initial width of a new internal frame.
• int INI_HEIGHT: initial height of a new internal frame.
• ImageIcon m_earth: image used in each label.
• int m_count: keeps track of the number of internal frames that exist within the

desktop.
• int m_tencount: incremented every time ten internal frames are added to the desktop.
• JButton m_newFrame: used to add new JInternalFrames to m_desktop.
• JButton m_cascadeFrames: used to cascade existing internal frames.
• JDesktopPane m_desktop: container for our JInternalFrames.
• JComboBox m_UIBox: used for look and feel selection.
• UIManager.LookAndFeelInfo[] m_infos: An array of LookAndFeelInfo objects

used in changing look and feels.

The only code that may look unfamiliar to you in the constructor is the following:

m_infos = UIManager.getInstalledLookAndFeels();
String[] LAFNames = new String[m_infos.length];
for(int i=0; i<m_infos.length; i++) {

Cascades frames

Changes
look and feel

486 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

LAFNames[i] = m_infos[i].getName();
}
m_UIBox = new JComboBox(LAFNames);

The UIManager class is in charge of keeping track of the current look and feel as well as
providing us with a way to query information about the different look and feels available
on our system. Its static getInstalledLookAndFeels() method returns an array of
UIManager.LookAndFeelInfo objects and we assign this array to m_infos.

Each UIManager.LookAndFeelInfo object represents a different look and feel that is
currently installed on our system. Its getName() method returns a short name representing
its associated look and feel (e.g., Metal, CDE/Motif, Windows, etc.). We create an array of
these Strings, LAFNames, with indices corresponding to those of m_infos.

Finally we create a JComboBox, m_UIBox, using this array of Strings. In the action-
Performed() method when an entry in m_UIBox is selected we match it with its correspond-
ing UIManager.LookAndFeelInfo object in m_infos and load the associated look and feel.

The newFrame() method is invoked whenever the m_newButton is pressed. First this
method creates a new JInternalFrame with resizable, closable, maximizable, and iconifiable
properties, and a unique title based on the current frame count:

JInternalFrame jif = new JInternalFrame("Frame " + m_count,
true, true, true, true);

The frame is then sized to 200 x 200 and its initial position within our desktop is calculated
based on the value of m_count and m_tencount. The value of m_tencount is periodically
reset so that each new internal frame lies within our desktop view (assuming we do not
resize our desktop to have a smaller width than the maximum of 20*(m_count%10) +

m_tencount*80, and a smaller height than the maximum of 20*(m_count%10). This turns
out to be 420 x 180, where the maximum of m_count%10 is 9 and the maximum of
m_tencount is 3).

 jif.setBounds(20*(m_count%10) + m_tencount*80,
 20*(m_count%10), 200, 200);

NOTE You might imagine a more flexible cascading scheme that positions internal frames
based on the current size of the desktop. In general a rigid cascading routine is
sufficient, but we are certainly not limited to this.

A JLabel with an image is added to a JScrollPane, which is then added to the content-
Pane of each internal frame. Each frame is added to the desktop in layer 0 (the default layer
when none is specified).

Finally the newFrame() method increments m_count and determines whether to increment
m_tencount or reset it to 0. m_tencount is only incremented after a group of 10 frames has
been added (m_count%10 == 0) and is only reset after it has reached a value of 3. So 40 inter-
nal frames are created for each cycle of m_tencount (10 for m_tencount = 0, 1, 2, and 3).

 m_count++;
 if (m_count%10 == 0) {
 if (m_tencount < 3)
 m_tencount++;
 else

ADDING MDI TO A TEXT EDITOR APPLICATION 487

 m_tencount = 0;
 }

The cascadeFrames() method is invoked whenever the source of the event is the
m_cascadeFrames button. This method obtains an array of all existing internal frames and
iterates through it organizing them in a cascading fashion.

The actionPerformed() method also handles m_newFrame button presses and m_UIBox
selections. The m_newFrame button invokes the newFrame() method and selecting a look
and feel from m_UIBox changes the application to use that look and feel. Look and feel
switching is done by calling the UIManager setLookAndFeel() method and passing it the
classname of the look and feel to use (which we stored in the m_infos array in the construc-
tor). Calling SwingUtilities.updateComponentTreeUI(this) changes the look and
feel of everything contained within the CascadeDemo frame (refer to chapter 2).

16.2.2 Running the code

Figure 16.4 shows CascadeDemo in action. This figure shows a JInternalFrame in the
process of being dragged in outline dragging mode. Try creating plenty of frames to make sure
that cascading is working properly. Experiment with different look and feels.

16.3 ADDING MDI TO A TEXT EDITOR APPLICATION

In this example we add an MDI to our basic text editor application developed in chapter 12.
We also add a commonly included function in MDI applications: a “Window” menu which
allows you to switch focus among open documents.

Figure 16.5 Basic text editor application with MDI

488 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

Example 16.2

see \Chapter16\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class BasicTextEditor extends JFrame {

// Unchanged code from example 12.4

protected JDesktopPane m_desktop;

protected EditorFrame m_activeFrame;

protected JMenu m_windowMenu;

protected ButtonGroup m_windowButtonGroup;

public static final int INI_WIDTH = 400;

public static final int INI_HEIGHT = 200;

protected int m_frameCounter = 0;

public BasicTextEditor() {
super(APP_NAME+" [Multiple Document Interface]"
setSize(600, 400);

// Unchanged code from example 12.4

m_desktop = new JDesktopPane();

getContentPane().add(m_desktop, BorderLayout.CENTER);

newDocument();

JMenuBar menuBar = createMenuBar();
setJMenuBar(menuBar);

// Unchanged code from exmample 12.4

WindowListener wndCloser = new WindowAdapter() {
public void windowClosing(WindowEvent e) {

if (!promptAllToSave())

return;
System.exit(0);

}
};
addWindowListener(wndCloser);

}

public JTextArea getEditor() {

if (m_activeFrame == null)

return null;

return m_activeFrame.m_editor;

BasicTextEditor.java

Desktop
for internal

frames

Gives user chance
to save any changes

before exiting
application

ADDING MDI TO A TEXT EDITOR APPLICATION 489

}

public void addEditorFrame(File f) {

EditorFrame frame = new EditorFrame(f);

frame.setBounds(m_frameCounter*30, m_frameCounter*20,

INI_WIDTH, INI_HEIGHT);

m_frameCounter = (m_frameCounter+1) % 10;

JRadioButtonMenuItem item = frame.m_frameMenuItem;

m_windowMenu.add(item);

m_windowButtonGroup.add(item);

item.setSelected(true);

frame.addInternalFrameListener(frame.new FrameListener());

m_desktop.add(frame);

frame.show();

activateInternalFrame(frame);

}

public void activateInternalFrame(EditorFrame frame) {

m_activeFrame = frame;

JRadioButtonMenuItem item = frame.m_frameMenuItem;

item.setSelected(true);

JTextArea editor = frame.m_editor;

Font font = editor.getFont();

int index = 0;

for (int k=0; k<FONTS.length; k++) {

if (font.getName().equals(FONTS[k])) {

index = k;

break;

}

}

m_fontMenus[index].setSelected(true);

m_bold.setSelected(font.isBold());

m_italic.setSelected(font.isItalic());

updateEditor();

m_cmFrg.setColor(editor.getForeground());

m_cmBkg.setColor(editor.getBackground());

}

protected JMenuBar createMenuBar() {
final JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 12.4

ImageIcon iconNew = new ImageIcon("New16.gif");
Action actionNew = new AbstractAction("New", iconNew) {

public void actionPerformed(ActionEvent e) {
newDocument();

}
};
JMenuItem item = new JMenuItem(actionNew);
item.setMnemonic('n');
item.setAccelerator(KeyStroke.getKeyStroke(

Creates a new internal
frame containing a given file
in a text component

Sets menu items
corresponding
to newly active
internal frame

490 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

KeyEvent.VK_N, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconOpen = new ImageIcon("Open16.gif");
Action actionOpen = new AbstractAction("Open...", iconOpen) {

public void actionPerformed(ActionEvent e) {
openDocument();

}
};
item = new JMenuItem(actionOpen);
item.setMnemonic('o');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_O, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconSave = new ImageIcon("Save16.gif");
Action actionSave = new AbstractAction("Save", iconSave) {

public void actionPerformed(ActionEvent e) {
if (m_activeFrame != null)

m_activeFrame.saveFile(false);

}
};
item = new JMenuItem(actionSave);
item.setMnemonic('s');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_S, InputEvent.CTRL_MASK));
mFile.add(item);

ImageIcon iconSaveAs = new ImageIcon("SaveAs16.gif");
Action actionSaveAs = new AbstractAction(

 "Save As...", iconSaveAs) {
public void actionPerformed(ActionEvent e) {

if (m_activeFrame != null)

m_activeFrame.saveFile(true);

}
};
item = new JMenuItem(actionSaveAs);
item.setMnemonic('a');
mFile.add(item);

// Unchanged code from example 12.4

Action actionChooser = new AbstractAction("Color Chooser") {
public void actionPerformed(ActionEvent e) {

BasicTextEditor.this.repaint();
JTextArea editor = getEditor();

if (editor == null)

return;

// Unchanged code from example 12.4

}
};

m_windowMenu = new JMenu("Window");

m_windowMenu.setMnemonic('w');

Window menu to control
a menu item corresponding
to each internal frame

ADDING MDI TO A TEXT EDITOR APPLICATION 491

menuBar.add(m_windowMenu);

m_windowButtonGroup = new ButtonGroup();

Action actionCascade = new AbstractAction("Cascade") {

public void actionPerformed(ActionEvent e) {

cascadeFrames();

}

};

item = new JMenuItem(actionCascade);

item.setMnemonic('c');

m_windowMenu.add(item);

m_windowMenu.addSeparator();

// Unchanged code from example 12.4

return menuBar;
}

protected boolean promptAllToSave() {

JInternalFrame[] frames = m_desktop.getAllFrames();

for (int k=0; k<frames.length; k++) {

EditorFrame frame = (EditorFrame)frames[k];

if (!frame.promptToSave())

return false;

}

return true;

}

public void cascadeFrames() {

// Identical to cascadeFrames() method in example 16.1

}

protected void updateEditor() {
JTextArea editor = getEditor();

if (editor == null)

return;

// Unchanged code from example 12.4

}

class EditorFrame extends JInternalFrame {

protected JTextArea m_editor;
protected File m_currentFile;
protected JRadioButtonMenuItem m_frameMenuItem;

protected boolean m_textChanged = false;

public EditorFrame(File f) {
super("", true, true, true, true);
m_currentFile = f;
setTitle(getDocumentName());
setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

m_editor = new JTextArea();
JScrollPane ps = new JScrollPane(m_editor);

Gives user chance
to save all files

Internal frame class
containing a text editor

492 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

getContentPane().add(ps, BorderLayout.CENTER);

m_frameMenuItem = new JRadioButtonMenuItem(getTitle());
m_frameMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {
if(isSelected())

return;
try {

if (isIcon())
setIcon(false);

setSelected(true);
} catch (java.beans.PropertyVetoException e) { }

}});

if (m_currentFile != null) {
try {

FileReader in = new FileReader(m_currentFile);
m_editor.read(in, null);
in.close();

}
catch (IOException ex) {

showError(ex, "Error reading file "+m_currentFile);
}

}
m_editor.getDocument().addDocumentListener(new UpdateListener());

}

public String getDocumentName() {
return m_currentFile==null ? "Untitled "+(m_frameCounter+1) :

m_currentFile.getName();
}

public boolean saveFile(boolean saveAs) {
if (!saveAs && !m_textChanged)

return true;
if (saveAs || m_currentFile == null) {

if (m_chooser.showSaveDialog(BasicTextEditor.this) !=
JFileChooser.APPROVE_OPTION)
return false;

File f = m_chooser.getSelectedFile();
if (f == null)

return false;
m_currentFile = f;
setTitle(getDocumentName());
m_frameMenuItem.setText(getDocumentName());

}

try {
FileWriter out = new FileWriter(m_currentFile);
m_editor.write(out);
out.close();

}
catch (IOException ex) {

showError(ex, "Error saving file "+m_currentFile);

Saves current
document to file

ADDING MDI TO A TEXT EDITOR APPLICATION 493

return false;
}
m_textChanged = false;
return true;

}

public boolean promptToSave() {
if (!m_textChanged)

return true;
int result = JOptionPane.showConfirmDialog(

BasicTextEditor.this,
"Save changes to "+getDocumentName()+"?",
APP_NAME, JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.INFORMATION_MESSAGE);

switch (result) {
 case JOptionPane.YES_OPTION:

 if (!saveFile(false))
 return false;

 return true;
 case JOptionPane.NO_OPTION:

 return true;
 case JOptionPane.CANCEL_OPTION:

 return false;

}
return true;

}

class UpdateListener implements DocumentListener {

public void insertUpdate(DocumentEvent e) {
m_textChanged = true;

}

public void removeUpdate(DocumentEvent e) {
m_textChanged = true;

}

public void changedUpdate(DocumentEvent e) {
m_textChanged = true;

}
}

class FrameListener extends InternalFrameAdapter {

public void internalFrameClosing(InternalFrameEvent e) {
if (!promptToSave())

return;
m_windowMenu.remove(m_frameMenuItem);
dispose();

}

public void internalFrameActivated(InternalFrameEvent e) {
m_frameMenuItem.setSelected(true);
activateInternalFrame(EditorFrame.this);

}
}

Prompts user to save
current document
if any changes
have been made

Deletes when
user attempts to
close an internal
frame and when
a new internal
frame is selected

494 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

}
}

// Unchanged code from example 12.4

16.3.1 Understanding the code

Class BasicTextEditor
This class has four additional instance variables:

• JDesktopPane m_desktop: desktop pane containing the internal frames.
• EditorFrame m_activeFrame: represents the currently selected internal frame.
• JMenu m_windowMenu: menu used to switch windows or cascade current windows.
• ButtonGroup m_windowButtonGroup: button group for m_windowMenu’s items.

Three new class constants are also added:

• int INI_WIDTH: initial width of internal frames.
• int INI_HEIGHT: initial height of internal frames.
• int m_frameCounter: counter used to track number of internal frames created.

The desktop pane is added to the content pane and the WindowListener is modified to call
the custom promptAllToSave() method before exiting the application.

The getEditor() method returns a reference to the active EditorFrame’s JTextArea, or
null if there isn’t one.

The addEditorFrame() method takes a File as a parameter and creates a new Editor-
Frame to add to the desktop pane. The File is passed to the EditorFrame constructor and
displayed in the contained JTextArea for editing. The EditorFrame’s bounds are set based
on the state of m_frameCounter and a new JRadioButtonMenuItem is added to
m_windowMenu to represent this new EditorFrame. Whenever an EditorFrame is added to
the desktop an instance of the EditorFrame.FrameListener inner class is attached to it to
control what happens when the user attempts to close the editor frame. Finally our custom
activateInternalFrame() method is called.

The activateInternalFrame() method takes an EditorFrame as parameter and sets
the menu bar and toolbar state according to the properties of the current editor frame and its
JTextArea.

The createMenuBar() method includes several revisions to support the new MDI. The new
m_windowMenu is added to contain items corresponding to all existing internal frames. A new
action is also added to allow cascading of existing frames. The custom cascadeFrames()
method is identical to that introduced in example 16.1.

The promptAllToSave() method iterates through all existing EditorFrames and calls the
promptToSave() method on each. If the user cancels out of any dialogs that appear this
method will return false. Otherwise it will return true.

BasicTextEditor.EditorFrame
This class represents an internal frame with a contained text editor. The m_currentFile
variable is used to hold a reference to the File instance being edited in this frame’s text area.

EXAMPLES FROM THE FIRST EDITION 495

The constructor sets the title of the frame to the document’s name using the custom getDoc-
umentName() method. It also creates a new JRadioButtonMenuItem to represent this
frame in the parent MDI. To this menu item is added an ActionListener which, when
activated, will deiconify an existing frame (if needed) and set its state to selected. The con-
structor also opens the File passed into the constructor and reads its contents into the edi-
tor’s text area using a FileReader.

The saveFile() method is responsible for saving the current document to the File. If the
saveAs parameter is true a JFileChooser is shown allowing the user to choose a new
name and/or destination for the file. This method will immediately return if no changes have
been made to the document (i.e., m_textChanged is false), unless saveAs is true.

The promptToSave() method checks the m_textChanged variable to see if any document
changes have been made. If so an option pane is shown asking whether or not the user wants
to save these changes. If this process is canceled the method will return false; otherwise it
will return true.

The inner FrameListener class is used to intercept whenever the frame is requested to close
and ask the user whether or not they want to save changes through use of the prompt-
ToSave() method. It is also used to properly synchronize state of the GUI whenever a frame
is activated.

16.3.2 Running the code

Figure 16.5 shows our basic text editor MDI in action. Try opening several documents and
switch between them using the Window menu. Try modifying a document and attempt to
close an internal frame before making changes. Note the dialogs that prompt you to save
changes. Try modifying several documents in various frames and close the application. Note
the series of dialogs that are displayed prompting you to save changes before closing.

16.4 EXAMPLES FROM THE FIRST EDITION

In chapter 16 of the first edition we covered the creation of an X-windows-like resizable pager
component to show the position of internal frames within a desktop pane. We also stepped
through the creation of a multiuser (collaborative) desktop environment using sockets. Both
examples are included in the second edition ZIP files, and the full explanation of the code
remains freely available in the online first edition manuscript. Figures 16.6–16.9 illustrate
these examples (see \Chapter16\3 and \Chapter16\4).

496 CHAPTER 16 DESKTOPS & INTERNAL FRAMES

Figure 16.6
MDI with an X-windows
like pager component

Figure 16.7
X-windows like pager component

Figure 16.8
Collaborative MDI
client

EXAMPLES FROM THE FIRST EDITION 497

Figure 16.9 Collaborative MDI server

498

C H A P T E R 1 7

Trees
17.1 JTree 498
17.2 Basic JTree example 509
17.3 Directory tree, part I: dynamic node

retrieval 514

17.4 Directory tree, part II: popup menus
and TreeNode management 526

17.5 Directory tree, part III:
tooltips 533

17.1 JTREE

JTree is a perfect tool for the display, navigation, and editing of hierarchical data. Because of
its complex nature, JTree has a whole package devoted to it: javax.swing.tree. This
package consists of a set of classes and interfaces which we will briefly review before moving
on to several examples. But first, what is a tree?

17.1.1 Tree concepts and terminology

The tree is a very important and heavily used data structure throughout computer science—
for example, it’s used in compiler design, graphics, and artificial intelligence. This data struc-
ture consists of a logically arranged set of nodes, which are containers for data. Each tree con-
tains one root node, which serves as that tree’s top-most node. Any node can have an arbitrary
number of child (descendant) nodes. In this way, each descendant node is the root of a subtree.

Each node is connected by an edge. An edge signifies the relationship between two nodes.
A node’s direct predecessor is called its parent node, and all predecesors (above and including
the parent) are called its ancestor nodes. A node that has no descendants is called a leaf node.
All direct child nodes of a given node are sibling nodes.

JTREE 499

A path from one node to another is a sequence of nodes with edges from one node to the
next. The level of a node is the number of nodes visited in the path between the root and that
node. The height of a tree is its largest level—the length of its longest path.

17.1.2 Tree traversal

It is essential that we be able to systematically visit each and every node of a tree. (The term
“visit” here refers to performing some task before moving on.) There are three common tra-
versal orders used for performing such an operation: preorder, inorder, and postorder. Each is
recursive and can be summarized as follows:

• Preorder
Recursively do the following: If the tree is not empty, visit the root and then traverse all
subtrees in ascending order.

• Inorder (often referred to as breadth first):
Start the traversal by visiting the main tree root. Then, in ascending order, visit the root
of each subtree. Continue visiting the roots of all subtrees in this manner, in effect vis-
iting the nodes at each level of the tree in ascending order.

• Postorder (often referred to as depth first):
Recursively do the following: If the tree is not empty, traverse all subtrees in ascending
order, and then visit the root.

17.1.3 JTree

class javax.swing.JTree
So how does Swing’s JTree component deal with all this structure? Implementations of the
TreeModel interface encapsulate all tree nodes, which are implementations of the TreeNode
interface. The DefaultMutableTreeNode class (which is an implementation of TreeNode)
provides us with the ability to perform preorder, inorder, and postorder tree traversals.

NOTE Nothing stops us from using TreeModel as a data structure class without actually
displaying it in a GUI. However, since this book and the Swing library are devoted
to GUI, we will not discuss these possibilities further.

JTree graphically displays each node similarly to the way in which JList displays its ele-
ments: in a vertical column of cells. Also, each cell can be rendered with a custom renderer (an
implementation of TreeCellRenderer) and can be edited with a custom TreeCellEdi-
tor. Each tree cell shows a non-leaf node as being expanded or collapsed, and each can repre-
sent node relationships (meaning edges) in various ways. Expanded nodes show their subtree
nodes, and collapsed nodes hide this information.

The selection of tree cells is similar to JList’s selection mechanism, and it is controlled
by a TreeSelectionModel. Selection also involves keeping track of paths between nodes as
instances of TreePath. Two kinds of events are used specifically with trees and tree selections:
TreeModelEvent and TreeExpansionEvent. Other AWT and Swing events also apply to
JTree. For instance, we can use MouseListeners to intercept mouse presses and clicks. Keep
in mind that JTree implements the Scrollable interface (see chapter 7), and it is intended
to be placed in a JScrollPane.

500 CHAPTER 17 TREES

A JTree can be constructed using either the default constructor, by providing a Tree-
Node to use for the root node, by providing a TreeModel that contains all constituent nodes,
or by providing a one-dimensional array, Vector, or Hashtable of objects. In the latter case,
if any element in the given structure is a multi-element structure itself, it is recursively used to
build a subtree (this functionality is handled by an inner class called DynamicUtilTree-
Node).

We will see how to construct and work with all aspects of a JTree soon enough. But first we
need to develop a more solid understanding of its underlying constituents and how they interact.

When to use a tree:
As a selection device The tree component allows users to select items from
large hierarchical data sets without having to use a Search mechanism. As such,
JTree falls between listing and search data as a component which can improve
usability by easing the process of finding something, providing that the item
to be found (or selected) is hidden within a hierarchical data set.

Let’s use finding an employee by name as an example. For a small data set, a
simple list may be sufficient. As the data set grows, it may be easier for the user
if you sort the names alphabetically or by department in which they work. By
doing so, you have introduced a hierarchy and you may now use a tree com-
ponent. Use of the tree component may help and speed random selection from
the data set, providing that the hierarchical structure used exists in reality—
don’t introduce artificial hierarchies and expect users to understand them.

As a data set rises to become very large, the tree component may again be of
little value and you will need to introduce a full search facility.

As a general rule, when using a tree as a selection device, start with the tree col-
lapsed and allow the user to expand it as they search for the item they are looking
for. If there is a default selection or a current selection, then we advize expand-
ing that part of the tree to show that selection.

As a visual layering device Even with a small data set, you may find it advan-
tageous to display a hierarchical structure to aid visual comprehension and visual
searching. With the employee example you may prefer to layer by department
or by alphabetical order. When a tree is selected for display only (meaning no
selection is taking place), then you are definitely using the tree as a visual layer-
ing device.

As a general rule, when you use a tree as a visual layering device, you will, by
default, expand the tree in full, revealing the full hierarchy.

How you use a tree and which options to select from the many selection and dis-
play variants can be affected by how they are used, as we will demonstrate later.

17.1.4 The TreeModel interface

abstract interface javax.swing.tree.TreeModel
This model handles the data to be used in a JTree, assuming that each node maintains an
array of child nodes. Nodes are represented as Objects, and a separate root node accessor is

JTREE 501

defined. A set of methods is intended to: retrieve a node based on a given parent node and
index, return the number of children of a given node, return the index of a given node based
on a given parent, check if a given node is a leaf node (has no children), and notify JTree that
a node which is the destination of a given TreePath has been modified. It also provides
method declarations for adding and removing TreeModelListeners which should be noti-
fied when any nodes are added, removed, or changed. A JTree’s TreeModel can be retrieved
and assigned with its getModel() and setModel() methods, respectively.

17.1.5 DefaultTreeModel

class javax.swing.tree.DefaultTreeModel
DefaultTreeModel is the default concrete implementation of the TreeModel interface.
It defines the root and each node of the tree as TreeNode instances. It maintains an
EventListenerList of TreeModelListeners and provides several methods for firing
TreeModelEvents when anything in the tree changes. It defines the asksAllowedChil-
dren flag, which is used to confirm whether a node allows children to be added before actu-
ally attempting to add them. DefaultTreeModel also defines methods for: returning an
array of nodes from a given node to the root node, inserting and removing nodes, and reload-
ing/refreshing a tree from a specified node. We normally build off this class when implement-
ing a tree model.

JAVA 1.4 As of Java 1.4 DefaultTreeModel allows a null root node.

17.1.6 The TreeNode interface

abstract interface javax.swing.tree.TreeNode
TreeNode describes the base interface which all tree nodes must conform to in a Default-
TreeModel. So, implementations of this interface represent the basic building block of JTree’s
default model. This interface declares methods for specifying whether a node: is a leaf or a par-
ent, allows the addition of child nodes, determines the number of children, obtains a TreeNode
child at a given index or the parent node, and obtains an Enumeration of all child nodes.

17.1.7 The MutableTreeNode interface

abstract interface javax.swing.tree.MutableTreeNode
This interface extends TreeNode to describe a more sophisticated tree node which can carry a
user object. This is the object that represents the data of a given tree node. The setUser-
Object() method declares how the user object should be assigned (it is assumed that
implementations of this interface will provide the equivalent of a getUserObject()
method, even though none is included here). This interface also provides method declarations
for inserting and removing child nodes from a given node, and changing its parent node.

17.1.8 DefaultMutableTreeNode

class javax.swing.tree.DefaultMutableTreeNode
DefaultMutableTreeNode is a concrete implementation of the MutableTreeNode inter-
face. The getUserObject() method returns the data object encapsulated by this node. It

502 CHAPTER 17 TREES

stores all child nodes in a Vector called children, which is accessible with the children()
method, which returns an Enumeration of all child nodes. We can also use the getChildAt()
method to retreive the node corresponding to a given index. There are many methods for,
among other things, retrieving and assigning tree nodes, and they are all self-explanatory (or
they can be understood through simple reference of the API documentation). The only meth-
ods that deserve special mention here are the overridden toString() method, which returns
the String given by the user object’s toString() method, and the tree traversal methods
which return an Enumeration of nodes in the order in which they can be visited. As dis-
cussed above, three types of traversal are supported: preorder, inorder, and postorder. The cor-
responding methods are preorderEnumeration(), breadthFirstEnumeration(),
depthFirstEnumeration(), and postorderEnumeration() (the last two methods do
the same thing).

17.1.9 TreePath

class javax.swing.tree.TreePath
A TreePath represents the path to a node as a set of nodes starting from the root. (Recall that
nodes are Objects, not necessarily TreeNodes.) TreePaths are read-only objects and they
provide functionality for comparison between other TreePaths. The getLastPath-
Component() gives us the final node in the path, equals() compares two paths, getPath-
Count() gives the number of nodes in a path, isDescendant() checks whether a given path
is a descendant of (is completely contained in) a given path, and pathByAddingChild()
returns a new TreePath instance resulting from adding the given node to the path.

JAVA 1.4 New to JTree in Java 1.4 is the getNextMatch() method which returns a
TreePath to the next tree element (by searching up or down) that starts with
a given prefix.

17.1.10 The TreeCellRenderer interface

abstract interface javax.swing.tree.TreeCellRenderer
This interface describes the component used to render a cell of the tree. The getTreeCell-
RendererComponent() method is called to return the component to use for rendering a
given cell and that cell’s selection, focus, and tree state (i.e. whether it is a leaf or a parent, and
whether it is expanded or collapsed). This works similarly to custom cell rendering in JList
and JComboBox (see chapters 9 and 10). To assign a renderer to JTree, we use its setCell-
Renderer() method. Recall that renderer components are not at all interactive and simply
act as “rubber stamps” for display purposes only.

17.1.11 DefaultTreeCellRenderer

class javax.swing.tree.DefaultTreeCellRenderer
DefaultTreeCellRenderer is the default concrete implementation of the TreeCell-
Renderer interface. It extends JLabel and maintains several properties used to render a tree
cell based on its current state, as described above. These properties include Icons used to
represent the node in any of its possible states (leaf, parent collapsed, or parent expanded) and
background and foreground colors to use based on whether the node is selected or unselected.
Each of these properties is self-explanatory and typical get/set accessors are provided.

JTREE 503

17.1.12 CellRendererPane

class javax.swing.CellRendererPane
In chapter 2 we discussed the painting and validation process in detail, but we purposely
avoided the discussion of how renderers actually work behind the scenes because they are only
used by a few specific components. The component returned by a renderer’s getXX-
RendererComponent() method is placed in an instance of CellRendererPane. The Cell-
RendererPane is used to act as the component’s parent so that any validation and repaint
requests that occur do not propogate up the ancestry tree of the container it resides in. It does
this by overriding the paint() and invalidate() methods with empty implementations.

Several paintComponent() methods are provided to render a given component onto a
given graphical context. These are used by the JList, JTree, and JTable UI delegates to
actually paint each cell, which results in the “rubber stamp” behavior we have referred to.

17.1.13 The CellEditor interface

abstract javax.swing.CellEditor
Unlike renderers, cell editors for JTree and JTable are defined from a generic interface. This
interface is CellEditor and it declares the following methods for controlling: when editing
will start and stop, retrieving a new value resulting from an edit, and whether an edit request
changes the component’s current selection.

• Object getCellEditorValue(): Used by JTree and JTable after an accepted edit
to retrieve the new value.

• boolean isCellEditable(EventObject anEvent): Used to test whether the given
event should trigger a cell edit. For instance, to accept a single mouse click as an edit
invocation, we would override this method to test for an instance of MouseEvent and
check its click count. If the click count is 1, return true; otherwise, return false.

• boolean shouldSelectCell(EventObject anEvent): Used to specify whether the
given event causes a cell that is about to be edited to also be selected. This will cancel all
previous selection and for components that want to allow editing during an ongoing
selection, we would return false here. It is most common to return true, as we nor-
mally think of the cell being edited as the currently selected cell.

• boolean stopCellEditing(): Used to stop a current cell edit. This method can be
overriden to perform input validation. If a value is found to be unacceptable we can
return false, indicating to the component that editing should not be stopped.

• void cancelCellEditing(): Used to stop a current cell edit and ignore any new input.

This interface also declares methods for adding and removing CellEditorListeners which
should receive ChangeEvents whenever an edit is stopped or canceled. So stopCell-
Editing() and cancelCellEditing() are responsible for firing ChangeEvents to any
registered listeners.

Normally, cell editing starts with the user clicking on a cell a specified number of times
which can be defined in the isCellEditable() method. The component containing the cell
then replaces the current renderer pane with its editor component (JTree’s editor component
is returned by TreeCellEditor’s getTreeCellEditorComponent() method). If should-
SelectCell() returns true then the component’s selection state changes to only contain the

504 CHAPTER 17 TREES

cell being edited. A new value is entered using the editor and an appropriate action takes place
which invokes either stopCellEditing() or cancelCellEditing(). Finally, if the edit
was stopped and not canceled, the component retrieves the new value from the editor, using
getCellEditorValue(), and overwrites the old value. The editor is then replaced by the
renderer pane which is updated to reflect the new data value.

17.1.14 The TreeCellEditor interface

abstract interface javax.swing.tree.TreeCellEditor
This interface extends CellEditor and describes the behavior of a component to be used in
editing the cells of a tree. The getTreeCellEditorComponent() method is called prior to
the editing of a new cell to set the initial data for the component it returns as the editor, based
on a given cell and that cell’s selection, focus, and its expanded/collapsed states. We can use
any interactive component we want as an editor. To assign a TreeCellEditor to JTree, we
use its setCellEditor() method.

17.1.15 DefaultCellEditor

class javax.swing.DefaultCellEditor
This is a concrete implementation of the TreeCellEditor interface as well as the TableCell-
Editor interface (see section 18.1.11). This editor allows the use of JTextField, JComboBox,
or JCheckBox components to edit data. It defines a protected inner class called Editor-
Delegate, which is responsible for returning the current value of the editor component in use
when the getCellEditorValue() method is invoked. DefaultCellEditor is limited to
three constructors for creating a JTextField, JComboBox, or a JCheckBox editor.

NOTE The fact that the only constructors provided are component-specific makes Default-
CellEditor a bad candidate for extensibility.

DefaultCellEditor maintains an int property called clickCountToStart which speci-
fies how many mouse click events should trigger an edit. By default this is 2 for JTextFields
and 1 for JComboBox and JCheckBox editors. As expected, ChangeEvents are fired when
stopCellEditing() and cancelCellEditing() are invoked.

JAVA 1.3 As of Java 1.3 this class extends the new javax.Swing.AbstractCellEditor
interface.

17.1.16 DefaultTreeCellEditor

class javax.swing.tree.DefaultTreeCellEditor
DefaultTreeCellEditor extends DefaultCellEditor, and it is the default concrete imple-
mentation of the TreeCellEditor interface. It uses a JTextField for editing a node’s data (an
instance of DefaultTreeCellEditor.DefaultTextField). stopCellEditing() is called
when ENTER is pressed in this text field.

An instance of DefaultTreeCellRenderer is needed to construct this editor, allowing
renderer icons to remain visible while editing (this is accomplished by embedding the editor

JTREE 505

in an instance of DefaultTreeCellEditor.EditorContainer). It fires ChangeEvents
when editing begins and ends. As expected, we can add CellEditorListeners to intercept
and process these events.

By default, editing starts (if it is enabled) when a cell is triple-clicked or when a pause of
1200ms occurs between two single mouse clicks (the latter is accomplished using an internal
Timer). We can set the click count requirement using the setClickCountToStart() method,
or check for it directly by overriding isCellEditable().

JAVA 1.3 Java 1.3 includes the new setToggleClickCount() and getToggleClick-
Count() methods to allow customization of the number of mouse clicks required
to expand or collapse a node. The default value is 2.

17.1.17 The RowMapper interface

abstract interface javax.swing.text.RowMapper
RowMapper declares a single method, getRowsForPaths(), which is intended to map an
array of tree paths to an array of tree rows. A tree row corresponds to a tree cell, and as we
discussed, these are organized similar to JList cells. JTree selections are based on rows and
tree paths, and we can choose which to deal with depending on the needs of our application.
(We aren’t expected to have the need to implement this interface unless we decide to build our
own JTree UI delegate.)

17.1.18 The TreeSelectionModel interface

abstract interface javax.swing.tree.TreeSelectionModel
The TreeSelectionModel interface describes a base interface for a tree’s selection model.
Three modes of selection are supported, similar to JList (see chapter 10), and implementa-
tions allow for setting this mode through the setSelectionMode() method: SINGLE_
TREE_SELECTION, DISCONTIGUOUS_TREE_SELECTION, and CONTIGUOUS_TREE_SELEC-
TION. Implementations are expected to maintain a RowMapper instance. The getSelec-
tionPath() and getSelectionPaths() methods are intended to return a TreePath and
an array of TreePaths respectively, allowing access to the currently selected paths. The get-
SelectionRows() method should return an int array that represents the indices of all rows
currently selected. The lead selection refers to the most recently added path to the current selec-
tion. Whenever the selection changes, implementations of this interface should fire Tree-
SelectionEvents. Appropriately, add/remove TreeSelectionListener methods are also
declared. All other methods are, for the most part, self explanatory (see the API documentation).
The tree selection model can be retrieved using JTree’s getSelectionModel() method.

NOTE JTree defines the inner class EmptySelectionModel, which does not allow any
selection at all.

JAVA 1.3 As of Java 1.3 JTree has exposed three more properties:
• leadSelectionPath: the TreePath to the most recently selected node
• anchorSelectionPath: the TreePath to the first (original) node selection
• expandsSelectedPaths: used to specify whether or not all parents in a tree

path should be expanded whenever a selection is made

506 CHAPTER 17 TREES

There is also a new removeDescendantSelectedPaths() method which re-
moves all TreePaths from the current selection that are descendants of the given
path passed in a parameter.

17.1.19 DefaultTreeSelectionModel

class javax.swing.tree.DefaultTreeSelectionModel
DefaultTreeSelectionModel is the default concrete implementation of the TreeSelec-
tionModel interface. This model supports TreeSelectionListener notification when
changes are made to a tree’s path selection. Several methods are defined for, among other
things, modifying and retrieving a selection, and firing TreeSelectionEvents when a mod-
ification occurs.

17.1.20 The TreeModelListener interface

abstract interface javax.swing.event.TreeModelListener
The TreeModelListener interface describes a listener which receives notifications about
changes in a tree’s model. TreeModelEvents are normally fired from a TreeModel when
nodes are modified, added, or removed. We can register/unregister a TreeModelListener
with a JTree’s model using TreeModel’s addTreeModelListener() and removeTree-
ModelListener() methods respectively.

17.1.21 The TreeSelectionListener interface

abstract interface javax.swing.event.TreeSelectionListener
The TreeSelectionListener interface describes a listener which receives notifications
about changes in a tree’s selection. It declares only one method, valueChanged(), accepting
a TreeSelectionEvent. These events are normally fired whenever a tree’s selection changes.
We can register/unregister a TreeSelectionListener with a tree’s selection model using
JTree’s addTreeSelectionListener() and removeTreeSelectionListener() methods.

17.1.22 The TreeExpansionListener interface

abstract interface javax.swing.event.TreeExpansionListener
The TreeExpansionListener interface describes a listener which receives notifications
about tree expansions and collapses. Implementations must define treeExpanded() and
tree-Collapsed() methods, which take a TreeExpansionEvent as a parameter. We can
register/unregister a TreeExpansionListener with a tree using JTree’s addTreeExpan-
sion-Listener() and removeTreeExpansionListener() methods respectively.

17.1.23 The TreeWillExpandListener interface

abstract interface javax.swing.event.TreeWillExpandListener
The TreeWillExpandListener interface describes a listener which receives notifications
when a tree is about to expand or collapse. Unlike TreeExpansionListener, this listener
will be notified before the actual change occurs. Implementations are expected to throw an
ExpandVetoException if it is determined that a pending expansion or collapse should not

JTREE 507

be carried out. Its two methods, treeWillExpand() and treeWillCollapse(), take a Tree-
ExpansionEvent as a parameter. We can register/unregister a TreeWillExpandListener
with a tree using JTree’s addTreeWillExpandListener() and removeTreeWillExpand-
Listener() methods.

17.1.24 TreeModelEvent

class javax.swing.event.TreeModelEvent
TreeModelEvent is used to notify TreeModelListeners that all or part of a JTree’s data
has changed. This event encapsulates a reference to the source component, and a single Tree-
Path or an array of path Objects leading to the topmost affected node. We can extract the
source as usual, using getSource(), and we can extract the path(s) using either of the get-
Path() or getTreePath() methods (the former returns an array of Objects, the latter returns
a TreePath). Optionally, this event can also carry an int array of node indices and an array of
child nodes. These can be extracted using the getChildIndices() and getChildren()
methods respectively.

17.1.25 TreeSelectionEvent

class javax.swing.event.TreeSelectionEvent
TreeSelectionEvent is used to notify TreeSelectionListeners that the selection of a
JTree has changed. One variant of this event encapsulates: a reference to the source component,
the selected TreePath, a flag specifying whether the tree path is a new addition to the selec-
tion (true if so), and the new and old lead selection paths (remember that the lead selection
path is the newest path added to a selection). The second variant of this event encapsulates: a
reference to the source component, an array of selected TreePaths, an array of flags specify-
ing whether each path is a new addition, and the new and old lead selection paths. Typical
getXX() accessor methods allow extraction of this data.

NOTE An interesting and unusual method defined in this class is cloneWithSource().
When passed a component, this method returns a clone of the event, but with a
reference to the given component parameter as the event source.

JAVA 1.3 New to TreeSelectionEvent in Java 1.3 is the isAddedPath() method which
takes an int index as parameter. If the TreePath at the given index was added, this
method returns true; if not it returns false.

17.1.26 TreeExpansionEvent

class javax.swing.event.TreeExpansionEvent
TreeExpansionEvent is used to encapsulate a TreePath corresponding to a recently, or
possibly pending, expanded or collapsed tree path. This path can be extracted with the get-
Path() method.

508 CHAPTER 17 TREES

17.1.27 ExpandVetoException

class javax.swing.tree.ExpandVetoException
ExpandVetoException may be thrown by TreeWillExpandListener methods to indi-
cate that a tree path expansion or collapse is prohibited, and should be vetoed.

17.1.28 JTree client properties and UI defaults

When using the Metal look and feel, JTree uses a specific line style to represent the edges
between nodes. The default is no edges, but we can set JTree’s lineStyle client property so
that each parent node appears connected to each of its child nodes by an angled line:

 myJTree.putClientProperty("JTree.lineStyle", "Angled");

We can also set this property so that each tree cell is separated by a horizontal line:

 myJTree.putClientProperty("JTree.lineStyle", "Horizontal");

To disable the line style, do this:

 myJTree.putClientProperty("JTree.lineStyle", "None");

As with any Swing component, we can also change the UI resource defaults used for all
instances of the JTree class. For instance, to change the color of the lines used for rendering
the edges between nodes as described above, we can modify the entry in the UI defaults table
for this resource as follows:

 UIManager.put("Tree.hash",
 new ColorUIResource(Color.lightGray));

To modify the open node icons used by all trees when a node’s children are shown:

 UIManager.put("Tree.openIcon", new IconUIResource(
 new ImageIcon("myOpenIcon.gif")));

We can do a similar thing for the closed, leaf, expanded, and collapsed icons using Tree.
closedIcon, Tree.leafIcon, Tree.expandedIcon, and Tree.collapsedIcon respec-
tively. (See the BasicLookAndFeel source code for a complete list of UI resource defaults.)

NOTE We used the ColorUIResource and IconUIResource wrapper classes found in
the javax.swing.plaf package to wrap our resources before placing them in
the UI defaults table. If we do not wrap our resources in UIResource objects, they
will persist through look and feel changes (which may or may not be desirable). See
chapter 21 for more about look and feel and resource wrappers.

17.1.29 Controlling JTree appearance

Though we haven’t concentrated heavily on UI delegate customization for each component
throughout this book, Swing certainly provides us with a high degree of flexibility in this area.
It is particularly useful with JTree because no methods are provided in the component itself
to control the indentation spacing of tree cells (note that the row height can be specified with
JTree’s setRowHeight() method). The JTree UI delegate also provides methods for set-
ting expanded and collapsed icons, allowing us to assign these on a per-component basis

BASIC JTREE EXAMPLE 509

rather than a global basis (which is done using UIManager; see section 17.1.28). The follow-
ing BasicTreeUI methods provide this control, and figure 17.1 illustrates:

• void setCollapsedIcon(Icon newG): The icon used to specify that a node is in the
collapsed state.

• void setExpandedIcon(Icon newG): The icon used to specify that a node is in the
expanded state.

• void setLeftChildIndent(int newAmount): Used to assign a distance between
the left side of a parent node and the center of an expand/collapse box of a child node.

• void setRightChildIndent(int newAmount): Used to assign a distance between
the center of the expand/collapse box of a child node to the left side of that child node’s
cell renderer.

To actually use these methods, we first have to obtain the target tree’s UI delegate. For exam-
ple, to assign a left indent of 8 and a right indent of 10:

 BasicTreeUI basicTreeUI = (BasicTreeUI) myJTree.getUI();
 basicTreeUI.setRightChildIndent(10);
 basicTreeUI.setLeftChildIndent(8);

17.2 BASIC JTREE EXAMPLE

As we know very well by now, JTree is suitable for the display and editing of a hierarchical set
of objects. To demonstrate this in an introductory-level example, we will consider a set of Object
Identifiers (OIDs) used in the Simple Network Management Protocol (SNMP). In example
17.1 we will show how to build a simple JTree that displays the initial portion of the OID tree.

SNMP is used extensively to manage network components, and it is particularly impor-
tant in managing Internet routers and hosts. Every object managed by SNMP must have a
unique OID. An OID is built from a sequence of numbers separated by periods. Objects are
organized hierarchically and have an OID with a sequence of numbers equal in length to their
level (see section 17.1.1) in the OID tree. The International Organization of Standards (ISO)
establishes rules for building OIDs.

Figure 17.1
The JTree UI delegate
icon and indentation
properties

510 CHAPTER 17 TREES

Understanding SNMP is certainly not necessary to understand this example. The purpose
of this example is to show how to construct a tree using the following items:

• A DefaultTreeModel with DefaultMutableTreeNodes containing custom user objects.
• A customized DefaultTreeCellRenderer.
• A TreeSelectionListener which displays information in a status bar based on the

TreePath encapsulated in the TreeSelectionEvents it receives.

Example 17.1

see \Chapter17\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;

public class Tree1 extends JFrame
{
 protected JTree m_tree = null;
 protected DefaultTreeModel m_model = null;
 protected JTextField m_display;

 public Tree1() {
 super("Sample Tree [OID]");
 setSize(400, 300);

 Object[] nodes = new Object[5];
 DefaultMutableTreeNode top = new DefaultMutableTreeNode(

Tree1.java

Figure 17.2
JTree with custom cell
renderer icons, selection
listener, and visible root

Constructor creates several
DefaultMutableTreeNodes,
each containing an OidNode

BASIC JTREE EXAMPLE 511

 new OidNode(1, "ISO"));
 DefaultMutableTreeNode parent = top;
 nodes[0] = top;

 DefaultMutableTreeNode node = new DefaultMutableTreeNode(
 new OidNode(0, "standard"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(2,
 "member-body"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(3, "org"));
 parent.add(node);
 parent = node;
 nodes[1] = parent;

 node = new DefaultMutableTreeNode(new OidNode(6, "dod"));
 parent.add(node);
 parent = node;
 nodes[2] = parent;

 node = new DefaultMutableTreeNode(new OidNode(1, "internet"));
 parent.add(node);
 parent = node;
 nodes[3] = parent;

 node = new DefaultMutableTreeNode(new OidNode(1, "directory"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(2, "mgmt"));
 parent.add(node);
 nodes[4] = node;
 node.add(new DefaultMutableTreeNode(new OidNode(1, "mib-2")));
 node = new DefaultMutableTreeNode(new OidNode(3,
 "experimental"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(4, "private"));
 node.add(new DefaultMutableTreeNode(new OidNode(1,
 "enterprises")));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(5, "security"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(6, "snmpV2"));
 parent.add(node);
 node = new DefaultMutableTreeNode(new OidNode(7,
 "mail"));
 parent.add(node);

 m_model = new DefaultTreeModel(top);
 m_tree = new JTree(m_model);

 DefaultTreeCellRenderer renderer = new
 DefaultTreeCellRenderer();
 renderer.setOpenIcon(new ImageIcon("opened.gif"));
 renderer.setClosedIcon(new ImageIcon("closed.gif"));
 renderer.setLeafIcon(new ImageIcon("leaf.gif"));
 m_tree.setCellRenderer(renderer);

Creates a JTree
pointing to the
top node

512 CHAPTER 17 TREES

 m_tree.setShowsRootHandles(true);
 m_tree.setEditable(false);
 TreePath path = new TreePath(nodes);
 m_tree.setSelectionPath(path);

 m_tree.addTreeSelectionListener(new
 OidSelectionListener());

 JScrollPane s = new JScrollPane(m_tree);
getContentPane().add(s, BorderLayout.CENTER);

 m_display = new JTextField();
 m_display.setEditable(false);
 getContentPane().add(m_display, BorderLayout.SOUTH);

 setDefaultcloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }

 public static void main(String argv[]) {
 new Tree1();
 }

 class OidSelectionListener implements TreeSelectionListener
 {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath path = e.getPath();
 Object[] nodes = path.getPath();
 String oid = "";
 for (int k=0; k<nodes.length; k++) {
 DefaultMutableTreeNode node =
 (DefaultMutableTreeNode)nodes[k];
 OidNode nd = (OidNode)node.getUserObject();
 oid += "."+nd.getId();
 }
 m_display.setText(oid);
 }
 }
}

class OidNode
{
 protected int m_id;
 protected String m_name;

 public OidNode(int id, String name) {
 m_id = id;
 m_name = name;
 }

 public int getId() { return m_id; }

 public String getName() { return m_name; }

 public String toString() { return m_name; }
}

Adds a JScrollPane,
with the tree in
the viewport

Listens for node selections,
then follows the path from

the root to the node to
build the ID string

Simple object identifier
encapsulated at each node

BASIC JTREE EXAMPLE 513

17.2.1 Understanding the code

Class Tree1
This class extends JFrame to implement the frame container for our JTree. Three instance
variables are declared:

• JTree m_tree: Our OID tree.
• DefaultTreeModel m_model: The tree model to manage data.
• JTextField m_display: Used as a status bar to display the selected object’s OID.

The constructor first initializes the parent frame object. Then a number of DefaultMutable-
TreeNodes encapsulating OidNodes (see below) are created. These objects form a hierarchical
structure with DefaultMutableTreeNode top at the root. During the construction of these
nodes, the Object[] nodes array is populated with a path of nodes leading to the mgmt node.

DefaultTreeModel m_model is created with the top node as the root, and JTree m_tree
is created to manage this model. Then specific options are set for this tree component. First,
we replace the default icons for opened, closed, and leaf icons with our custom icons, using a
DefaultTreeCellRenderer as our tree’s cell renderer:

 DefaultTreeCellRenderer renderer = new
 DefaultTreeCellRenderer();

 renderer.setOpenIcon(new ImageIcon("opened.gif"));
 renderer.setClosedIcon(new ImageIcon("closed.gif"));
 renderer.setLeafIcon(new ImageIcon("leaf.gif"));
 m_tree.setCellRenderer(renderer);

Then we set the showsRootHandles property to true and the editable property to
false, and we select the path determined by the nodes array formed above:

 m_tree.setShowsRootHandles(true);
 m_tree.setEditable(false);
 TreePath path = new TreePath(nodes);
 m_tree.setSelectionPath(path);

Our custom OidSelectionListener (see below) TreeSelectionListener is added to
the tree to receive notification when our tree’s selection changes.

A JScrollPane is created to provide scrolling capabilities, and our tree is added to its JView-
port. This JScrollPane is then added to the center of our frame. A non-editable JText-
Field m_display is created and added to the south region of our frame’s content pane to
display the currently selected OID.

Class Tree1.OidSelectionListener
This inner class implements the TreeSelectionListener interface to receive notifications
about when our tree’s selection changes. Our valueChanged() implementation extracts the
TreePath corresponding to the current selection and visits each node, starting from the root,
accumulating the OID in .N.N.N form as it goes (where N is a digit). This method ends by
displaying the resulting OID in our text field status bar.

514 CHAPTER 17 TREES

Class OidNode
This class encapsulates a single object identifier as a number and a String name describing
the associated object. Both values are passed to the OidNode constructor. Instances of this
class are passed directly to the DefaultMutableTreeNode constructor to act as a node’s user
object. The overridden toString() method is used to return the name String so that our
tree’s cell renderer will display each node correctly. Recall that, by default, DefaultTree-
CellRenderer will call a node’s user object toString() method for rendering.

17.2.2 Running the code

Figure 17.2 shows our OID tree in action. Try selecting various tree nodes and notice how the
selected OID is displayed at the bottom of the frame.

Icons and root handles In this example, we are visually reinforcing the data
hierarchy with icons. The icons communicate whether an element is a docu-
ment or a container and whether that container is open or closed. The book
icon has two variants to communicate “open book” and “closed book.” The
icons are communicating the same information as the root handles. Therefore,
it is technically possible to remove the root handles. In some problem domains,
hidden root handles may be more appropriate, providing that the users are
comfortable with interpreting the book icons and realize that a “closed book”
icon means that the node can be expanded.

17.3 DIRECTORY TREE, PART I: DYNAMIC NODE RETRIEVAL

Example 17.2 in this section uses the JTree component to display and navigate through a
tree of directories located on drives accessible from the user’s machine. We will show how to
build a custom tree cell renderer as well as how to create and insert tree nodes dynamically.

The main problem encountered in building this application is the fact that it is not prac-
tical to read all directories for all accessible drives before displaying our tree component. This
would take an extremely long time. To deal with this issue, we initially display only the roots
(such as disk partitions or network drives), and then we dynamically expand the tree as the user
navigates through it. This requires the use of threads and SwingUtilities.invokeLater()
for thread-safe updating of our tree.

Example 17.2

see \Chapter17\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;

DirTree.java

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 515

import javax.swing.tree.*;
import javax.swing.event.*;

public class DirTree extends JFrame
{
 public static final String APP_NAME = ”DIRECTORIES TREE”;

public static final ImageIcon ICON_FOLDER =
new ImageIcon("computer.gif");

 public static final ImageIcon ICON_DISK =
 new ImageIcon("disk.gif");
 public static final ImageIcon ICON_FOLDER =
 new ImageIcon("folder.gif");
 public static final ImageIcon ICON_EXPANDEDFOLDER =
 new ImageIcon("expandedfolder.gif");

 protected JTree m_tree;
 protected DefaultTreeModel m_model;
 protected JTextField m_display;

 public DirTree() {
 super(APP_NAME);
 setSize(400, 300);

 DefaultMutableTreeNode top = new DefaultMutableTreeNode(
 new IconData(ICON_COMPUTER, null, "Computer"));

 DefaultMutableTreeNode node;
 File[] roots = File.listRoots();
 for (int k=0; k<roots.length; k++) {

Figure 17.3 A dynamic, threaded directory tree
with a custom cell renderer and angled line style

Constructor creates tree
with nodes representing
all disk partitions and
network nodes

516 CHAPTER 17 TREES

 node = new DefaultMutableTreeNode(
 new IconData(ICON_DISK,
 null, new FileNode(roots[k])));
 top.add(node);
 node.add(new DefaultMutableTreeNode(
 new Boolean(true)));
 }

 m_model = new DefaultTreeModel(top);
 m_tree = new JTree(m_model);

 m_tree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);
 m_tree.putClientProperty("JTree.lineStyle", "Angled");
 TreeCellRenderer renderer = new IconCellRenderer();
 m_tree.setCellRenderer(renderer);
 m_tree.addTreeExpansionListener(new DirExpansionListener());
 m_tree.addTreeSelectionListener(new DirSelectionListener());
 m_tree.setShowsRootHandles(true);
 m_tree.setEditable(false);

 JScrollPane s = new JScrollPane();
 s.getViewport().add(m_tree);
 getContentPane().add(s, BorderLayout.CENTER);

 m_display = new JTextField();
 m_display.setEditable(false);
 getContentPane().add(m_display, BorderLayout.NORTH);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }

 DefaultMutableTreeNode getTreeNode(TreePath path) {
 return (DefaultMutableTreeNode) (path.getLastPathComponent());
 }

 FileNode getFileNode(DefaultMutableTreeNode node) {
 if (node == null)
 return null;
 Object obj = node.getUserObject();
 if (obj instanceof IconData)
 obj = ((IconData)obj).getObject();
 if (obj instanceof FileNode)
 return (FileNode)obj;
 else
 return null;
 }

 // Make sure expansion is threaded and updating the tree model
 // only occurs within the event dispatching thread.
 class DirExpansionListener implements TreeExpansionListener
 {
 public void treeExpanded(TreeExpansionEvent event) {
 final DefaultMutableTreeNode node = getTreeNode(
 event.getPath());

Creates one
TreeNode holding
icon and file info

Creates tree
with top node
as root

Gets the
FileNode from

a TreeNode

Listens for tree
expansion events

Gets the
TreeNode at the
end of the path

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 517

 final FileNode fnode = getFileNode(node);

 Thread runner = new Thread() {
 public void run() {
 if (fnode != null && fnode.expand(node)) {
 Runnable runnable = new Runnable() {
 public void run() {
 m_model.reload(node);
 }
 };
 SwingUtilities.invokeLater(runnable);
 }
 }
 };
 runner.start();
 }

 public void treeCollapsed(TreeExpansionEvent event) {}
 }

 class DirSelectionListener implements TreeSelectionListener
 {
 public void valueChanged(TreeSelectionEvent event) {
 DefaultMutableTreeNode node = getTreeNode(event.getPath());
 FileNode fnode = getFileNode(node);
 if (fnode != null)
 m_display.setText(fnode.getFile().getAbsolutePath());
 else
 m_display.setText("");
 }
 }

 public static void main(String argv[]) { new FileTree1(); }
}

class IconCellRenderer extends JLabel implements TreeCellRenderer
{
 protected Color m_textSelectionColor;
 protected Color m_textNonSelectionColor;
 protected Color m_bkSelectionColor;
 protected Color m_bkNonSelectionColor;
 protected Color m_borderSelectionColor;

 protected boolean m_selected;

 public IconCellRenderer() {
 super();
 m_textSelectionColor = UIManager.getColor(
 "Tree.selectionForeground");
 m_textNonSelectionColor = UIManager.getColor(
 "Tree.textForeground");
 m_bkSelectionColor = UIManager.getColor(
 "Tree.selectionBackground");
 m_bkNonSelectionColor = UIManager.getColor(
 "Tree.textBackground");

Does expansion
work in the
background?

Resets the tree
on the event-
dispatch thread

Listens for tree
selection events;

updates m_display
with selected path

Renders TreeNodes
with icons and text

518 CHAPTER 17 TREES

 m_borderSelectionColor = UIManager.getColor(
 "Tree.selectionBorderColor");
 setOpaque(false);
 }

 public Component getTreeCellRendererComponent(JTree tree,
 Object value, boolean sel, boolean expanded, boolean leaf,
 int row, boolean hasFocus)
 {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)value;
 Object obj = node.getUserObject();
 setText(obj.toString());

 if (obj instanceof Boolean)
 setText("Retrieving data...");

 if (obj instanceof IconData) {
 IconData idata = (IconData)obj;
 if (expanded)
 setIcon(idata.getExpandedIcon());
 else
 setIcon(idata.getIcon());
 }
 else
 setIcon(null);

 setFont(tree.getFont());
 setForeground(sel ? m_textSelectionColor :
 m_textNonSelectionColor);
 setBackground(sel ? m_bkSelectionColor :
 m_bkNonSelectionColor);
 m_selected = sel;
 return this;
 }

 public void paintComponent(Graphics g) {
 Color bColor = getBackground();
 Icon icon = getIcon();

 g.setColor(bColor);
 int offset = 0;
 if(icon != null && getText() != null)
 offset = (icon.getIconWidth() + getIconTextGap());
 g.fillRect(offset, 0, getWidth() - 1 - offset,
 getHeight() - 1);

 if (m_selected) {
 g.setColor(m_borderSelectionColor);
 g.drawRect(offset, 0, getWidth()-1-offset, getHeight()-1);
 }
 super.paintComponent(g);
 }
}

Indicates node
in midst of being
expanded

Just paints text
background color;
text is drawn in
base class method

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 519

class IconData
{
 protected Icon m_icon;
 protected Icon m_expandedIcon;
 protected Object m_data;

 public IconData(Icon icon, Object data) {
 m_icon = icon;
 m_expandedIcon = null;
 m_data = data;
 }

 public IconData(Icon icon, Icon expandedIcon, Object data) {
 m_icon = icon;
 m_expandedIcon = expandedIcon;
 m_data = data;
 }

 public Icon getIcon() { return m_icon; }

 public Icon getExpandedIcon() {
 return m_expandedIcon!=null ? m_expandedIcon : m_icon;
 }

 public Object getObject() { return m_data; }

 public String toString() { return m_data.toString(); }
}

class FileNode
{
 protected File m_file;

 public FileNode(File file) { m_file = file; }

 public File getFile() { return m_file; }

 public String toString() {
 return m_file.getName().length() > 0 ? m_file.getName() :
 m_file.getPath();
 }

 public boolean expand(DefaultMutableTreeNode parent) {
 DefaultMutableTreeNode flag =
 (DefaultMutableTreeNode)parent.getFirstChild();
 if (flag==null) // No flag
 return false;
 Object obj = flag.getUserObject();
 if (!(obj instanceof Boolean))
 return false; // Already expanded

 parent.removeAllChildren(); // Remove flag

 File[] files = listFiles();
 if (files == null)
 return true;

 Vector v = new Vector();

Encapsulates “closed”
and “open” icons, and a
data object that is either
a FileNode or a Boolean

Expands a node by adding
new nodes corresponding
to the subdirectory of the

starting node

Determines whether
node has no children,
is already expanded,
or needs to do more
work to expand it

Gets list of files
in directory

Stores file information,
and can be expanded to
contain child FileNodes

520 CHAPTER 17 TREES

 for (int k=0; k<files.length; k++) {
 File f = files[k];
 if (!(f.isDirectory()))
 continue;

 FileNode newNode = new FileNode(f);

 boolean isAdded = false;
 for (int i=0; i<v.size(); i++) {
 FileNode nd = (FileNode)v.elementAt(i);
 if (newNode.compareTo(nd) < 0) {
 v.insertElementAt(newNode, i);
 isAdded = true;
 break;
 }
 }
 if (!isAdded)
 v.addElement(newNode);
 }

 for (int i=0; i<v.size(); i++) {
 FileNode nd = (FileNode)v.elementAt(i);
 IconData idata = new IconData(FileTree1.ICON_FOLDER,

 FileTree1.ICON_EXPANDEDFOLDER, nd);
 DefaultMutableTreeNode node =
 new DefaultMutableTreeNode(idata);
 parent.add(node);

 if (nd.hasSubDirs())
 node.add(new DefaultMutableTreeNode(
 new Boolean(true)));
 }
 return true;
 }

 public boolean hasSubDirs() {
 File[] files = listFiles();
 if (files == null)
 return false;
 for (int k=0; k<files.length; k++) {
 if (files[k].isDirectory())
 return true;
 }
 return false;
 }

 public int compareTo(FileNode toCompare) {
 return m_file.getName().compareToIgnoreCase(
 toCompare.m_file.getName());
 }

 protected File[] listFiles() {
 if (!m_file.isDirectory())
 return null;

Creates a new
FileNode for each
file in directory

Performs
insertion sort

Creates IconDatas
for each FileNode

If new node has
children, creates
the Boolean child
to mark it for further
expansion

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 521

 try {
 return m_file.listFiles();
 }
 catch (Exception ex) {
 JOptionPane.showMessageDialog(null,
 "Error reading directory "+m_file.getAbsolutePath(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 return null;
 }
 }
}

17.3.1 Understanding the code

Class DirTree
Four custom icons are loaded as static ImageIcon variables: ICON_COMPUTER, ICON_DISK,
ICON_FOLDER, and ICON_EXPANDEDFOLDER, and three instance variables are declared:

• JTree m_tree: The tree component to display the directory nodes.
• DefaultTreeModel m_model: The tree model to manage the nodes.
• JTextField m_display: The component to display the selected directory (acts as a

status bar).

The DirTree constructor creates and initializes all GUI components. A root node Computer
hosts child nodes for all disk partitions and network drives in the system. These nodes encap-
sulate Files retrieved with the static File.listRoots() method (which is a valuable addi-
tion to the File class in Java 2). Note that IconData objects (see below) encapsulate Files
in the tree. Also note that each newly created child node immediately receives a child node
containing a Boolean user object. This Boolean object allows us to display an expanding
message for nodes when they are in the process of being expanded. Exactly how we expand
them will be explained soon enough.

We then create a DefaultTreeModel and pass our Computer node as the root. This model is
used to instantiate our JTree object:

 m_model = new DefaultTreeModel(top);
 m_tree = new JTree(m_model);

We then set the lineStyle client property so that angled lines will represent the edges
between parent and child nodes:

 m_tree.putClientProperty("JTree.lineStyle", "Angled");

We also use a custom tree cell renderer, as well as a tree expansion listener and a tree selection
listener: these are instances of IconCellRenderer, DirExpansionListener, and Dir-
SelectionListener, respectively.

The actual contents of our tree nodes represent directories. Each node is a Default-
MutableTreeNode with an IconData user object. Each user object is an instance of IconData,
and each IconData contains an instance of FileNode. Each FileNode contains a
java.io.File object. Thus we have a four-layer nested structure:

522 CHAPTER 17 TREES

• DefaultMutableTreeNode is used for each node to represent a directory or disk (as
well as the Computer root node). When we retrieve a node at the end of a given Tree-
Path, using the getLastPathComponent() method, we are provided with an instance
of this class.

• IconData (see below) sits inside DefaultMutableTreeNode and provides custom
icons for our tree cell renderer, and encapsulation of a FileNode object. IconData can
be retrieved using DefaultMutableTreeNode’s getUserObject() method. We need
to cast the returned Object to an IconData instance.

• FileNode (see below) sits inside IconData and encapsulates a File object. A File-
Node can be retrieved using IconData’s getObject() method, which also requires a
subsequent cast.

• A File object sits inside a FileNode and can be retrieved using FileNode’s get-
File() method.

Figure 17.4 illustrates this structure.

To keep things simple, two helper methods are provided to work with these encapsulated
nodes: getTreeNode() retrieves a DefaultMutableTreeNode from a given TreePath,
and getFileNode() retrieves the FileNode (or null) from a DefaultMutableTreeNode.
We will see where these methods are needed shortly.

Class DirTree.DirExpansionListener
This inner class implements TreeExpansionListener to listen for tree expansion events.
When a node is expanded, the treeExpanded() method retrieves the FileNode instance for
that node and if the instance is not null, it calls the expand() method on it (see below).
This call is wrapped in a separate thread because it can often be a very time-consuming process
and we do not want the application to freeze. Inside this thread, once expand() has completed,
we need to update the tree model with any new nodes that are retrieved. As we learned in
chapter 2, updating the state of a component should only occur within the event-dispatching
thread. For this reason we wrap the call to reload() in a Runnable and send it the event-
dispatching queue using SwingUtilities.invokeLater():

 Runnable runnable = new Runnable() {
 public void run() {
 m_model.reload(node);
 }
 };
 SwingUtilities.invokeLater(runnable);

Figure 17.4
The nested structure
of our tree nodes

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 523

As we will see below in our discussion of IconCellRenderer, placing a Boolean user object
in a dummy child node of each non-expanded node, allows a certain String to be displayed
while a node is in the process of being expanded. In our case, “Retrieving data...” is shown
below a node until it is finished expanding.

Class DirTree.DirSelectionListener
This inner class implements TreeSelectionListener to listen for tree selection events.
When a node is selected, the valueChanged() method extracts the FileNode instance con-
tained in that node, and if the instance is not null, it displays the absolute path to that
directory in the m_display text field.

Class IconCellRenderer
This class implements the TreeCellRenderer interface and extends JLabel. The purpose of
this renderer is to display custom icons and access FileNodes contained in IconData instances.

First, we declare five Colors and retrieve them from the current look and feel in use through
UIManager’s getColor() method. The getTreeCellRendererComponent() method is
then implemented to set the proper text and icon (which are retrieved from the underlying
IconData object). If the user object happens to be a Boolean, this signifies that a node is in
the process of being expanded:

 if (obj instanceof Boolean)
 setText("Retrieving data...");

The reason we do this is slightly confusing. In the FileNode expand() method (see below),
when each new node is added to our tree, it receives a node containing a Boolean user
object only if the corresponding directory has subdirectories. When we click on this node, the
Boolean child will be immediately shown, and we also generate an expansion event that is
received by our DirExpansionListener. As we discussed above, this listener extracts the
encapsulated FileNode and calls the FileNode expand() method on it. The child node
containing the Boolean object is removed before all new nodes are added. Until this update
occurs, the JTree will display the Boolean child node, in effect telling us that the expansion
is not yet complete. So if our cell renderer detects a Boolean user object, we simply display
Receiving data... for its text.

The paintComponent() method is overridden to fill the text background with the appropri-
ate color set in the getTreeCellRendererComponent() method. Fortunately we don’t
need to explicitly draw the text and icon because we have extended JLabel, which can do this
for us.

Class IconData
Instances of this class are used as our DefaultMutableTreeNode user data objects, and they
encapsulate a generic Object m_data and two Icons for use by IconCellRenderer. These
icons can be retrieved with our getIcon() and getExpandedIcon() methods. The icon
retrieved with getExpandedIcon() represents an expanded folder, and the icon retrieved with
getIcon() represents a collapsed/non-expanded folder. Notice that the toString() method

524 CHAPTER 17 TREES

invokes toString() on the m_data object. In our example this object is either a FileNode, in
the case of an expanded folder, or a Boolean, in the case of a non-expanded folder.

Class FileNode
This class encapsulates a File object, which is in turn encapsulated in an IconData object in
a DefaultMutableTreeNode.

As we discussed above, the toString() method determines the text to be displayed in each
tree cell containing a FileNode. It returns File.getName() for regular directories and
File.getPath() for partitions.

The most interesting and complex method of this class is expand(), which attempts to expand
a node by dynamically inserting new DefaultMutableTreeNodes corresponding to each sub-
directory. This method returns true if nodes are added, and false otherwise. We first need to
discuss the mechanism of dynamically reading information (of any kind) into a tree:

• Before we add any new node to the tree, we must somehow determine whether it has
children (we don’t need a list of children yet, just a yes or no answer).

• If a newly created node has children, a fake child to be used as a flag will be added to it.
This will signify that the parent node has not been expanded.

• When a node is expanded, its list of children is examined. Three situations are possible:
• No children. This node is a leaf and cannot be expanded (remember, we’ve previously

checked whether any newly created node has children).
• One flag child is present. That node has children which have not been added yet, so we

create these children and add new nodes to the parent node.
• One or more non-flag children are present. This node has already been processed, so

expand it as usual.

The FileNode.expand() method implements this dynamic tree expansion strategy, and it
takes a parent node as a parameter. In the process of expansion it also alphabetically sorts each
node for a more organized display structure. Initially this method checks the first child of the
given parent node:

 DefaultMutableTreeNode flag =
 (DefaultMutableTreeNode)parent.getFirstChild();
 if (flag==null) // No flag
 return false;
 Object obj = flag.getUserObject();
 if (!(obj instanceof Boolean))
 return false; // Already expanded

 parent.removeAllChildren(); // Remove Flag

If no child is found, it can only mean that this node was already checked and was found to be a
true leaf (a directory with no subdirectories). If this isn’t the case, then we extract the associated
data object and check whether it is an instance of Boolean. If it is, the flag child is removed
and our method proceeds to add nodes corresponding to each subdirectory. Otherwise, we con-
clude that this node has already been processed and return, allowing it to be expanded as usual.

We process a newly expanded node by retrieving an array of File objects representing files
contained in the corresponding directory.

DIRECTORY TREE, PART I : DYNAMIC NODE RETRIEVAL 525

 File[] files = listFiles();
 if (files == null)
 return true;

If the contents have been successfully read, we check for subdirectories and create new File-
Nodes for each.

 Vector v = new Vector();

 for (int k=0; k<files.length; k++) {
 File f = files[k];
 if (!(f.isDirectory()))
 continue;

 FileNode newNode = new FileNode(f);

To perform an alphabetical sorting of child nodes, we store them in a temporary collection
Vector v, and iterate through our array of Files, inserting them accordingly.

 boolean isAdded = false;
 for (int i=0; i<v.size(); i++) {
 FileNode nd = (FileNode)v.elementAt(i);
 if (newNode.compareTo(nd) < 0) {
 v.insertElementAt(newNode, i);
 isAdded = true;
 break;
 }
 }
 if (!isAdded)
 v.addElement(newNode);
 }

We then wrap each newly created FileNode object in an IconData to encapsulate them with
folder icons, and we add the sorted nodes to the given parent node. At the same time, flags are
added to new nodes if they contain any subdirectories themselves (this is checked by the has-
SubDirs() method):

 for (int i=0; i<v.size(); i++) {
 FileNode nd = (FileNode)v.elementAt(i);
 IconData idata = new IconData(FileTree1.ICON_FOLDER,
 FileTree1.ICON_EXPANDEDFOLDER, nd);
 DefaultMutableTreeNode node = new
 DefaultMutableTreeNode(idata);
 parent.add(node);
 if (nd.hasSubDirs())
 node.add(new DefaultMutableTreeNode(
 new Boolean(true)));
 }
 return true;

The rest of FileNode class implements three methods which do not require much explana-
tion at this point:

• boolean hasSubDirs(): Returns true if this directory has subdirectories; returns
false otherwise.

526 CHAPTER 17 TREES

• int compareTo(FileNode toCompare): returns the result of the alphabetical com-
parison of this directory with another given as parameter.

• File[] listFiles(): Reads a list of contained files in this directory. If an exception
occurs (this is possible when reading from a floppy disk or network drive), this method
displays a warning message and returns null.

17.3.2 Running the code

Figure 17.3 shows our directory tree at work. Notice the use of custom icons for partition
roots. Try selecting various directories and notice how the selected path is reflected at the top
of the frame in our status bar. Also notice that when large directories are expanded, “Retriev-
ing data” will be displayed underneath the corresponding node. Because we have properly
implemented multithreading, we can go off and expand other directories while this one is
being processed. The tree is always updated correctly when the expanding procedure com-
pletes because we have made sure to only change its state in the event-dispatching thread
using invokeLater().

When to use connecting lines Angled connecting lines (or edges) add visual
noise and clutter to a tree display. Reduced visual clutter leads to recognition
and comprehension; this is a clear advantage to leaving them out of the design.
So when is it appropriate to include them?

Include the line edges when one or more of these scenarios is likely:

(a) Several nodes may be expanded at one time, and/or

(b) The data set is very large and a node may expand off the bottom of the
screen and possibly go several screens deep. In this case, introducing lines helps
to give the user a clear picture of how many layers deep in the hierarchy he is.
It also makes it easier for him to trace back to the original root node.

17.4 DIRECTORY TREE, PART II:
POPUP MENUS AND TREENODE MANAGEMENT

Example 17.2 in the previous section can be extended in numerous ways to serve as a frame-
work for a much more flexible application. In example 17.3 in this section, we’ll add a toolbar
to the frame and a popup menu to our tree, both containing the same actions. The popup
menu will be displayed in response to a right-click, with the content dependent on the clicked
node. (We discussed popup menus in chapter 12.)

Our popup menu contains either an Expand or Collapse item, depending on the status
of the corresponding node nearest to the mouse click. These items will programmatically
invoke an expand or collapse of the given node. Both our toolbar and popup menu also contain
Create, Delete, and Rename actions.

527

Example 17.3

see \Chapter17\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class DirTree extends JFrame {

// Unchanged code from Example 17.2

protected DefaultTreeCellEditor m_editor;

protected FileNode m_editingNode;

protected JPopupMenu m_popup;

protected Action m_expandAction;

protected TreePath m_clickedPath;

public DirTree() {

// Unchanged code from example 17.2

DirTree.java

Figure 17.5 Node-dependent popup menus that allow programmatic
expansion, collapse, creation of a child node, deletion, and renaming.

528 CHAPTER 17 TREES

m_model = new DefaultTreeModel(top);
m_tree = new JTree(m_model) {

public boolean isPathEditable(TreePath path) {

if (path == null || path.getPathCount() < 3)

return false;

FileNode node = getFileNode(getTreeNode(path));

if (node == null)

return false;

File dir = node.getFile();

if (dir != null && dir.isDirectory()) {

m_editingNode = node;

return true;

}

return false;

}

};

// Unchanged code from example 17.2

CellEditorListener cel = new CellEditorListener() {

public void editingStopped(ChangeEvent e) {

if (m_editingNode != null) {

String newName = m_editor.getCellEditorValue().toString();

File dir = m_editingNode.getFile();

File newDir = new File(dir.getParentFile(), newName);

dir.renameTo(newDir);

// Update tree

TreePath path = m_tree.getSelectionPath();

DefaultMutableTreeNode node = getTreeNode(path);

IconData idata = new IconData(DirTree.ICON_FOLDER,

DirTree.ICON_EXPANDEDFOLDER, new FileNode(newDir));

node.setUserObject(idata);

m_model.nodeStructureChanged(node);

m_display.setText(newDir.getAbsolutePath());

}

m_editingNode = null;

}

public void editingCanceled(ChangeEvent e) {

m_editingNode = null;

}

};

m_editor = new DefaultTreeCellEditor(m_tree, renderer);

m_editor.addCellEditorListener(cel);

m_tree.setCellEditor(m_editor);

m_tree.setEditable(true);

JToolBar tb = new JToolBar();

tb.setFloatable(false);

m_display = new JTextField();
m_display.setEditable(false);
m_display.setBorder(new SoftBevelBorder(BevelBorder.LOWERED));
tb.add(m_display);

tb.addSeparator();

Listener
responsible
for renaming
a directory once
it is renamed
in the tree

Overridden to
stop user from
editing root
node and its
directory
children which
represent disk/
hard drives

529

m_popup = new JPopupMenu();

m_expandAction = new AbstractAction() {

public void actionPerformed(ActionEvent e) {

if (m_clickedPath==null)

return;

if (m_tree.isExpanded(m_clickedPath))

m_tree.collapsePath(m_clickedPath);

else

m_tree.expandPath(m_clickedPath);

}

};

m_popup.add(m_expandAction);

m_popup.addSeparator();

Action a1 = new AbstractAction("Create",

new ImageIcon("New16.gif")) {

public void actionPerformed(ActionEvent e) {

m_tree.repaint();

TreePath path = m_tree.getSelectionPath();

if (path == null || path.getPathCount() < 2)

return;

DefaultMutableTreeNode treeNode = getTreeNode(path);

FileNode node = getFileNode(treeNode);

if (node == null)

return;

File dir = node.getFile();

int index = 0;

File newDir = new File(dir, "New Directory");

while (newDir.exists()) {

index++;

newDir = new File(dir, "New Directory"+index);

}

newDir.mkdirs();

IconData idata = new IconData(DirTree.ICON_FOLDER,

DirTree.ICON_EXPANDEDFOLDER, new FileNode(newDir));

DefaultMutableTreeNode newNode = new

DefaultMutableTreeNode(idata);

treeNode.add(newNode);

m_model.nodeStructureChanged(treeNode);

path = path.pathByAddingChild(newNode);

m_tree.scrollPathToVisible(path);

m_tree.startEditingAtPath(path);

}

};

m_popup.add(a1);

JButton bt = tb.add(a1);

bt.setToolTipText("Create new directory");

Action a2 = new AbstractAction("Delete",

new ImageIcon("Delete16.gif")) {

public void actionPerformed(ActionEvent e) {

Action to control
expand/collapse
from popup menu

Action to create
a new directory

Action to delete
a directory

530 CHAPTER 17 TREES

m_tree.repaint();

TreePath path = m_tree.getSelectionPath();

if (path == null || path.getPathCount() < 3)

return;

DefaultMutableTreeNode treeNode = getTreeNode(path);

FileNode node = getFileNode(treeNode);

if (node == null)

return;

File dir = node.getFile();

if (dir != null && dir.isDirectory()) {

if (JOptionPane.showConfirmDialog(DirTree.this,

"Do you want to delete \ndirectory \""

+ dir.getName() + "\" ?",

DirTree.APP_NAME, JOptionPane.YES_NO_OPTION)

!= JOptionPane.YES_OPTION)

return;

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

deleteDirectory(dir);

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

TreeNode parent = treeNode.getParent();

treeNode.removeFromParent();

m_model.nodeStructureChanged(parent);

m_display.setText("");

}

}

};

m_popup.add(a2);

bt = tb.add(a2);

bt.setToolTipText("Delete directory");

m_tree.registerKeyboardAction(a2,

KeyStroke.getKeyStroke(KeyEvent.VK_DELETE, 0),

JComponent.WHEN_FOCUSED);

Action a3 = new AbstractAction("Rename",

new ImageIcon("Edit16.gif")) {

public void actionPerformed(ActionEvent e) {

m_tree.repaint();

TreePath path = m_tree.getSelectionPath();

if (path == null)

return;

m_tree.scrollPathToVisible(path);

m_tree.startEditingAtPath(path);

}

};

m_popup.add(a3);

bt = tb.add(a3);

bt.setToolTipText("Rename directory");

getContentPane().add(tb, BorderLayout.NORTH);

m_tree.add(m_popup);

m_tree.addMouseListener(new PopupTrigger());

Action to rename
a directory

DIRECTORY TREE, PART II : POPUP MENUS AND TREENODE MANAGEMENT 531

}

DefaultMutableTreeNode getTreeNode(TreePath path) {
return (DefaultMutableTreeNode)(path.getLastPathComponent());

}

FileNode getFileNode(DefaultMutableTreeNode node) {

// Unchanged code from example 17.2

}

class PopupTrigger extends MouseAdapter {

public void mouseReleased(MouseEvent e) {

if (e.isPopupTrigger() || e.getButton() == MouseEvent.BUTTON3) {

int x = e.getX();

int y = e.getY();

TreePath path = m_tree.getPathForLocation(x, y);

if (path == null)

return;

if (m_tree.isExpanded(path))

m_expandAction.putValue(Action.NAME, "Collapse");

else

m_expandAction.putValue(Action.NAME, "Expand");

m_tree.setSelectionPath(path);

m_tree.scrollPathToVisible(path);

m_popup.show(m_tree, x, y);

m_clickedPath = path;

}

}

}

class DirExpansionListener implements TreeExpansionListener {
// Unchanged code from example 17.2

}

class DirSelectionListener implements TreeSelectionListener {
// Unchanged code from example 17.2

}

public static void deleteDirectory(File dir) {

if (dir == null || !dir.isDirectory() || dir.isHidden())

return;

File[] files = dir.listFiles();

if (files != null)

for (int k=0; k<files.length; k++) {

File f = files[k];

if (f.isDirectory())

deleteDirectory(f);

else

f.delete();

}

dir.delete();

}

Controls display
of popup menu

532 CHAPTER 17 TREES

public static void main(String argv[]) {
DirTree frame = new DirTree();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

// Unchanged code from example 17.2

17.4.1 Understanding the code

Class DirTree
This example adds five new instance variables:

• DefaultTreeCellEditor m_editor: A custom cell editor to allow renaming of fold-
ers.

• FileNode m_editingNode: Used to keep a reference to the node currently being
edited.

• JPopupMenu m_popup: The popup menu component.
• Action m_expandAction: The expand/collapse action.
• TreePath m_clickedPath: The currently selected tree path.

The new code in the constructor first overrides JTree’s isPathEditable() method to stop
the user from editing the root node and directory children which represent disk/hard drives.

Then a custom CellEditorListener implementation is created which is responsible for
renaming a directory once editing is completed on a tree cell. This listener is then added to a
new DefaultTreeCellEditor instance which we use for our JTree’s editor. Then we make
sure to make the JTree editable.

A nonfloatable toolbar is created and the status text field is added to it first.

The popup menu is then created and the expand/collapse action is created and added to it.
This action expands the selected node if it is currently collapsed and collapses it if it is cur-
rently expanded. Because this operation depends on the state of a given node, it is not added
to the toolbar.

The Create, Delete, and Rename actions are then created and added to both the popup
menu and the toolbar. Note that whenever a node is added or deleted we call the tree model’s
nodeStructureChanged() method to allow JTree to handle these changes properly. Also
note that we’ve registered a keyboard action with our JTree to detect when the DELETE key
is pressed and invoke the Delete action accordingly, which relies on our custom delete-
Directory() method.

Class DirTree.PopupTrigger
This class extends MouseAdapter to trigger the display of our popup menu. This menu should
be displayed when the right mouse button is released. So we override the mouseReleased()
method and check whether isPopupTrigger() is true (unfortunately in Windows this can
correspond to the mouse scroll button) or whether BUTTON3 was pressed (in Windows this can
correspond to the right mouse button which should be the popup trigger). In this case we deter-
mine the coordinates of the click and retrieve the TreePath corresponding to that coordinate
with the getPathForLocation() method. If a path is not found (i.e., the click does not
occur on a tree node or leaf) we do nothing. Otherwise we adjust the title of the first menu item

DIRECTORY TREE, PART III : TOOLTIPS 533

accordingly, display our popup menu with the show() method, and store our recently clicked
path in the m_clickedPath instance variable (for use by the expand/collapse action.

17.4.2 Running the code

Figure 17.5 shows our directory tree application as it displays a context-sensitive popup menu.
Notice how the first menu item is changed depending on whether the selected tree node is
collapsed or expanded. The tree can be manipulated (expanded or collapsed) programmati-
cally by choosing the Collapse or Expand popup menu item. Try creating, deleting, and
renaming directories to verify the functionality.

Visually reinforcing variations in behavior If you intend to introduce con-
text-dependent popup menus on tree cells, then this is an ideal time to consider
using a tree cell renderer which incorporates an icon. The differing icons help
to reinforce the idea that the data in the cells are different types; consequently,
when the behavior is slightly different across nodes, it is less surprising.
The icon visually reinforces the difference in behavior.

17.5 DIRECTORY TREE, PART III: TOOLTIPS

As we discussed in chapter 5, tooltips are commonly used to display helpful information.
In example 17.4, we will show how to use tooltips specific to each tree cell. The key point
(which is mentioned in the JTree documentation, but can be easily overlooked) is to register
the tree component with the ToolTipManager shared instance:

 ToolTipManager.sharedInstance().registerComponent(myTree);

Without doing this, no tooltips will appear over our tree (refer back to chapter 2, section 2.5,
for more about shared instances and service classes).

The JTree component overrides the getToolTipText(MouseEvent ev) method that
is inherited from JComponent, and it delegates this call to the tree’s cell renderer component.
By implementing the getToolTipText(MouseEvent ev) method in our renderer, we can
allow cell-specific tooltips. Specifically, we can can return the tooltip text as a String depend-
ing on the last node passed to the getTreeCellRendererComponent() method. Alterna-
tively, we can subclass our JTree component and provide our own getToolTipText()
implementation. We use the latter method here.

Example 17.4

see \Chapter17\4

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

DirTree.java

534 CHAPTER 17 TREES

import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import javax.swing.border.*;

public class DirTree extends JFrame {

// Unchanged code from example 17.3

public DirTree() {

// Unchanged code from example 17.3

m_model = new DefaultTreeModel(top);
m_tree = new JTree(m_model) {

public boolean isPathEditable(TreePath path) {
if (path == null || path.getPathCount() < 3)

return false;
FileNode node = getFileNode(getTreeNode(path));
if (node == null)

return false;
File dir = node.getFile();
if (dir != null && dir.isDirectory()) {

m_editingNode = node;
return true;

}
return false;

}

public String getToolTipText(MouseEvent ev) {

if(ev == null)

return null;

TreePath path = m_tree.getPathForLocation(ev.getX(),

ev.getY());

if (path != null) {

FileNode fnode = getFileNode(getTreeNode(path));

if (fnode==null)

return null;

Figure 17.6
JTree with node-
specific tooltips

DIRECTORY TREE, PART III : TOOLTIPS 535

File f = fnode.getFile();

return (f==null ? null : f.getPath());

}

return null;

}

};

ToolTipManager.sharedInstance().registerComponent(m_tree);

// The rest of the code is unchanged from example 17.3

17.5.1 Understanding the code

Class DirTree
This example anonymously subclasses the JTree component to override getToolTip-
Text(MouseEvent ev), which finds the path closest to the current mouse location, deter-
mines the FileNode at the end of that path, and returns the full file path to that node as a
String for use as tooltip text. Our JTree component is manually registered with the shared
instance of ToolTipManager, as discussed above.

17.5.2 Running the code

Figure 17.6 shows our directory tree application displaying a tooltip with text specifying the
full path of the directory corresponding to the node nearest to the current mouse location.

Tooltips as an aid to selection Tooltips have two really useful advantages for
tree cells. Trees have a habit of wandering off to the right-hand side of a
display, particularly when you’re in deep hierarchies. This may result in cell
labels being clipped. Using the tooltip to display the full-length cell label will
speed selection and prevent the need for scrolling.

The second use is shown clearly in this example. The tooltip is used to unravel
the hierarchy. This would be particularly useful when the original root node is
off screen. The user can quickly see the full hierarchical path to the selected cell.
This is a very powerful aid in correctly selecting items, and it’s another example
of additional coding effort providing improved usability.

536

C H A P T E R 1 8

Tables
18.1 JTable 536
18.2 Stocks table, part I: basic JTable

example 552
18.3 Stocks table, part II: custom

renderers 559
18.4 Stocks table, part III: sorting

columns 564

18.5 Stocks table, part IV: JDBC 571
18.6 Stocks table, part V: column addition

and removal 576
18.7 Expense report application 580
18.8 Expense report application with vari-

able height rows 591
18.9 A JavaBeans property editor 595

18.1 JTABLE

JTable is extremely useful for displaying, navigating, and editing tabular data. Because of its
complex nature, JTable has a whole package devoted just to it: javax.swing.table. This
package consists of a set of classes and interfaces which we will review briefly in this chapter.
In the examples that follow, we construct—in a step-wise fashion—a table-based application
that displays stock market data. (In chapter 22, we enhance this application further to allow
printing and print preview.) This chapter concludes with an expense report application that
demonstrates the use of different components as table cell editors and renderers, and the com-
pletion of the JavaBeans property editor we started to build in chapter 4.

18.1.1 JTable

class javax.swing.JTable
This class represents Swing’s table component and provides a rich API for managing its behavior
and appearance. JTable directly extends JComponent, and it implements the TableModel-

JTABLE 537

Listener, TableColumnModelListener, ListSelectionListener, CellEditor-

Listener, and Scrollable interfaces (it is meant to be placed in a JScrollPane). Each
JTable has three models: TableModel, TableColumnModel, and ListSelectionModel.
All table data is stored in a TableModel, normally in a two-dimensional structure such as a
2-D array or a Vector of Vectors. TableModel implementations specify how this data is
stored, as well as how to manage the addition, manipulation, and retrieval of this data.
Table-Model also plays a role in dictating whether specific cells can be edited, as well as the
data type of each column of data. The location of data in a JTable’s TableModel does not
directly correspond to the location of that data as it is displayed by JTable itself. This part is
controlled at the lowest level by TableColumnModel.

A TableColumnModel is designed to maintain instances of TableColumn, each of which
represents a single column of TableModel data. The TableColumn class is responsible for
managing column display in the actual JTable GUI. Each TableColumn has an associated
cell renderer, cell editor, table header, and cell renderer for the table header. When a JTable
is placed in a JScrollPane, these headers are placed in the scroll pane’s COLUMN_HEADER
viewport, and they can be dragged and resized to reorder and change the size of columns.
A TableColumn’s header renderer is responsible for returning a component that renders the
column header, and the cell renderer is responsible for returning a component that renders
each cell. As with JList and JTree renderers, these renderers also act as rubber stamps and
they are not at all interactive. The component returned by the cell editor, however, is com-
pletely interactive. Cell renderers are instances of TableCellRenderer and cell editors are
instances of TableCellEditor. If none are explicitly assigned, default versions will be used
based on the Class type of the corresponding TableModel column data.

TableColumnModel’s job is to manage all TableColumns, providing control over order,
column selections, and margin size. To support several different modes of selection, Table-
ColumnModel maintains a ListSelectionModel which, as we learned in chapter 10, allows
single, single-interval, and multiple-interval selections. JTable takes this flexibility even
further by providing functionality to customize any row, column, and/or cell-specific selection
schemes we can come up with.

We can specify one of several resizing policies which dictate how columns react when
another column is resized, as well as whether grid lines between rows and/or columns should
appear. We can also specify: margin sizes between rows and columns, the selected and unse-
lected cell foreground and background colors, the height of rows, and the width of each
column on a column-by-column basis.

With tables come two new kinds of events in Swing: TableModelEvent and Table-
ColumnModelEvent. Regular Java events apply to JTable as well. For instance, we can use
MouseListeners to process double mouse clicks. ChangeEvents and ListSelection-
Events are also used for communication in TableColumnModel.

NOTE Although JTable implements several listener interfaces, it does not provide any
methods to register listeners other than those inherited from JComponent. To
attach listeners for detecting any of the above events, we must first retrieve the
appropriate model.

A number of constructors are provided for building a JTable component. We can use the
default constructor or pass each of the table’s data and column names as a separate Vector.

538 CHAPTER 18 TABLES

We can build an empty JTable with a specified number of rows and columns. We can also
pass table data to the constructor as a two-dimensional array of data Objects along with an
Object array of column names. Other constructors allow for the creation of a JTable with
specific models. In all cases, if a specific model is not assigned in the constructor, JTable
will create default implementations with its protected createDefaultColumnModel(), cre-
ate-DefaultDataModel(), and createDefaultSelectionModel() methods. It will do
the same for each TableColumn renderer and editor, as well as for its JTableHeader, using
create-DefaultEditors(), createDefaultRenderers(), and createDefaultTable-
Headers().

JTable is one of the most complex Swing components; keeping track of its constituents
and how they interact is intially a challenge. Before we begin the step-wise construction of our
stocks table application, we must make our way through all of these details. The remainder of
this section is devoted to a discussion of the classes and interfaces that define the underlying
mechanics of JTable.

18.1.2 The TableModel interface

abstract interface javax.swing.table.TableModel
Instances of TableModel are responsible for storing a table’s data in a two-dimensional struc-
ture such as a two-dimensional array or a Vector of Vectors. A set of methods is declared to
retrieve data from a table’s cells. The getValueAt() method should retrieve data from a
given row and column index as an Object, and setValueAt() should assign the provided
data object to the specified location (if valid). getColumnClass() should return the Class
that describes the data objects stored in the specified column (used to assign a default renderer
and editor for that column), and getColumnName() should return the String name associ-
ated with the specified column (often used for that column’s header). The getColumn-
Count() and getRowCount() methods should return the number of contained columns and
rows, respectively.

NOTE getRowCount() is called frequently by JTable for display purposes; therefore, it
should be designed with efficiency in mind.

The isCellEditable() method should return true if the cell at the given row and column
index can be edited. The setValueAt() method should be designed so that if isCellEdit-
able() returns false, the object at the given location will not be updated.

This model supports the attachment of TableModelListeners which should be noti-
fied about changes to this model’s data. As expected, methods for adding and removing these
listeners are provided (addTableModelListener() and removeTableModelListener())
and implementations are responsible for dispatching TableModelEvents to those registered.

Each JTable uses one TableModel instance which can be assigned/retrieved using
JTable’s setModel() and getModel() methods respectively.

NOTE The position of a row or column in the model does not correspond to JTable’s
GUI representation of that row or column. Rather, each column is represented by
an instance of TableColumn which maps to a unique model column. When a
TableColumn is moved in the GUI, the associated data in the TableModel model
stays put, and vice versa.

JTABLE 539

18.1.3 AbstractTableModel

abstract class javax.swing.table.AbstractTableModel
AbstractTableModel is an abstract class that implements the TableModel interface. It
provides default code for firing TableModelEvents with the fireTableRowsDeleted(),
fireTableCellUpdated(), and fireTableChanged() methods. It also manages all regis-
tered TableModelListeners in an EventListenerList (see chapter 2).

The findColumn() method searches for the index of a column with the given String
name. This search is performed in a linear fashion (this is referred to as “naive” in the docu-
mentation) and it should be overridden for large table models for more efficient searching.

Three methods need to be implemented in concrete subclasses: getRowCount(), get-
ColumnCount(), and getValueAt(int row, int column), and we are expected to use
this class as a base for building our own TableModel implementations, rather than Default-
TableModel, see below.

18.1.4 DefaultTableModel

class javax.swing.tableDefaultTableModel
DefaultTableModel is the default concrete TableModel implementation used by JTable
when no model is specified in the constructor. It uses a Vector of Vectors to manage its
data, which is one major reason why extending AbstractTableModel is often more desir-
able—AbstractTableModel gives you complete control over how data storage and manipu-
lation is implemented. This Vector can be assigned with the overloaded setDataVector()
method and retrieved with the getDataVector() method. Internally, two overloaded, pro-
tected convertToVector() methods are used for converting Object arrays to Vectors
when inserting rows, columns, or assigning a new data Vector. Methods for adding, insert-
ing, removing, and moving columns and rows of data are also provided.

Along with the TableModelEvent functionality inherited from AbstractTableModel,
this class implements three new event-dispatching methods, each taking a TableModelEvent
as parameter: newDataAvailable(), newRowsAdded(), and rowsRemoved(). The newRows-
Added() method ensures that new rows (see the discussion of TableModelEvent below) have
the correct number of columns by either removing excess elements or using null for each miss-
ing cell. If null is passed to any of these methods, they will construct and fire a default
TableModelEvent which assumes that all table model data has changed.

18.1.5 TableColumn

class javax.swing.table.TableColumn
TableColumn is the basic building block of JTable’s visual representation, and it provides
the main link between the JTable GUI and its model. TableColumn does not extend
java.awt.Component, and thus it is not a component. Rather, it acts more like a model that
maintains all the properties of a column displayed in a JTable. An instance of TableColumn
represents a specific column of data stored in a TableModel. TableColumn maintains the
index of the TableModel column it represents as property modelIndex. We can get/set this
index with the getModelIndex() and setModelIndex() methods. It is important to
remember that the position of a TableColumn in JTable does not at all correspond to its
corresponding TableModel column index.

540 CHAPTER 18 TABLES

A TableColumn is represented graphically by a column header renderer, cell renderer,
and, optionally, a cell editor. The renderers must be instances of TableCellRenderer, and the
editor must be an instance of TableCellEditor. A column’s header is rendered by a renderer
stored as the headerRenderer property. By default, this is an instance of DefaultTable-
CellRenderer (which supplies a JLabel with a beveled border; see below) and it is created
with TableColumn’s protected createDefaultHeaderRenderer() method. This renderer
simply renders the String returned by the toString() method of the Object referred to by
the headerValue property. The header renderer and value can be assigned/retrieved with
the setHeaderRenderer()/getHeaderRenderer() and setHeaderValue()/getHeader-
Value() methods, respectively. headerValue often directly corresponds to the column name
retrieved using TableModel’s getColumnName() method. If headerValue is not explicitly
set, it defaults to null.

The column cell renderer and editor also default to null, and unless they are explicitly
specified using setCellRenderer() or setCellEditor(), they are automatically assigned
based on the Class type of the data stored in the associated column in the TableModel (this
is retrieved using TableModel’s getColumnClass() method). Explicity specified renderers and
editors are referred to as column-based, whereas those determined by data type are referred to
as class-based (we will discuss renderers and editors in more detail later in this section).

Each TableColumn has an identifier property which also defaults to null. This
property can be assigned and retrieved using typical set/get accessors, and the getIdenti-
fier() method will return the headerValue property if identifier is null. When search-
ing for a TableColumn by name (using TableColumnModel’s getColumnIndex() method
or JTable’s getColumn() method), the given Object will be compared, using Object’s
equals() method, to each TableColumn identifier. Since it is possible that more than
one TableColumn will use the same identifier, the first match is returned as the answer.

TableColumn maintains three properties: minWidth, maxWidth, and width. The first
two specify the minimum and maximum allowable widths for column rendering, and the
width property stores the current width. Each property can be retrieved and assigned with typ-
ical get/set methods: getMinWidth()/setMinWidth(), getMaxWith()/setMaxWidth(),
and getWidth()/setWidth(). minWidth defaults to 15, maxWidth defaults to Integer.-
MAX_VALUE, and width defaults to 75. When a JTable is resized, it will try to maintain its
width, and it will never exceeed its maximum or shrink smaller than its minimum.

NOTE All other visual aspects of each column are controlled by either JTable or Table-
ColumnModel (see below).

TableColumn also maintains an isResizable property, which specifies whether its width
can be changed by the user (this does not apply to programmatic calls to setWidth()). We
will discuss resizing in more detail below.

An interesting and rarely used property maintained by TableColumn is called resized-
PostingDisabledCount. It is used to enable and disable the posting of PropertyChange-
Events when a TableColumn’s width changes. This property is an int value that is
incremented on each call to disableResizedPosting(), and it is decremented on each call
to enableResizedPosting(). Events will only be fired if this value is less than or equal to 0.
The logic behind this is that if two separate sources both call the disableResizedPost()
method, then two calls should be required to re-enable it.

JTABLE 541

JAVA 1.3 The resizedPostingDisabledCount property is not actually used anywhere
and it does not play a role in PropertyChangeEvent firing. This property and the
associated methods have been deprecated in Java 1.3.

TableColumn fires PropertyChangeEvents when any of the width, cellRenderer,
headerRenderer, or headerValue bound properties change. Thus we can add and remove
PropertyChangeListeners to be notified of these changes. The corresponding property
names are COLUMN_WIDTH_PROPERTY, COLUMN_RENDERER_PROPERTY, HEADER_RENDERER_
PROPERTY, and HEADER_VALUE_PROPERTY.

BUG ALERT! In some situations, such as when the first column of your table consists of small
icons, you may want the header value of your first table column to be empty "".
You’ll be in for a bit of a surprise, as this choice will lead to dramatic consequences:
the whole header of your table will disappear (if you haven't seen this before, try it
now for your viewing pleasure).

The reason for this lies in an optimization made in javax.swing.plaf.basic.Basic-
TableHeaderUI, and is explained in an associated comment:

// If the header value is empty (== "") in the
// first column (and this column is set up
// to use the default renderer) we will
// return zero from this routine and the header
// will disappear altogether. Avoiding the calculation
// of the preferred size is such a performance win for
// most applications that we will continue to
// use this cheaper calculation, handling these
// issues as ‘edge cases’.

So if you’re on the edge case, just use one space (" ") instead of an empty string.

18.1.6 The TableColumnModel interface

abstract interface javax.swing.table.TableColumnModel
This model is designed to maintain a JTable’s TableColumns, and it provides control over
column selections and margin size. TableColumnModel controls how JTable displays its
TableModel data. The addColumn() method should append a given TableColumn to the end
of the structure that is used to maintain them (this is usually a Vector), removeColumn()
should remove a given TableColumn, and moveColumn() should change the location of a
given TableColumn within that structure.

The index of a TableColumn in a TableColumnModel’s storage structure directly cor-
responds to its position in the JTable GUI. The moveColumn() method is called whenever
the user drags a column to a new position.

542 CHAPTER 18 TABLES

NOTE When creating a JTable, if no TableColumnModel is specified, one will automat-
ically be constructed for us. It will contain TableColumns that display TableModel
data in the same order it appears in the model. This will only occur if JTable’s auto-
CreateColumnsFromModel property is set to true, which it is by default. Though
this is very helpful, it often has the undesirable side effect of completely rebuilding
the TableColumnModel whenever TableModel changes. Thus, it is common to set
this property to false once a JTable has been created or after a new TableModel
is assigned.

The getColumnCount() method returns the number of TableColumns currently being
maintained, getColumns() returns an Enumeration of all contained TableColumns, and
getColumn() returns the TableColumn at the given index. The getColumnIndex()
method returns the index of the TableColumn whose identifier property is equal to the
given Object (the equality is determined by using Object’s equals() method). getCol-
umnIndexAtX() returns the index of the TableColumn at the given x-coordinate in the
table’s coordinate system (if getColumnIndexAtX() is passed either a coordinate that maps
to the margin space between adjacent columns or any x-coordinate that does not correspond
to a table column, it will return –1). setColumnMargin() and getColumnMargin() allow the
assignment and retrieval of an int value to be used as the margin space on each side of each
table column. The getTotalColumnWidth() method returns the sum of the current width
of all TableColumns, including all margin space.

NOTE The margin size does not correspond to the width of the separating grid lines be-
tween columns in JTable. In fact, the width of these lines is always 1, and it cannot
be changed without customizing JTable’s UI delegate.

TableColumnModel declares methods for controlling the selection of its TableColumns, and
it allows the assignment and retrieval of a ListSelectionModel implementation to store
information about the current column selection with the methods setSelectionModel()
and getSelectionModel(). The setColumnSelectionAllowed() method turns on/
off column selection capabilities, and getColumnSelectionAllowed() returns a boolean
that specifies whether selection is currently allowed. For convenience, JTable’s setColumn-
SelectionAllowed() method delegates its traffic to the method of the same signature in
this interface.

TableColumnModel also declares support for TableColumnModelListeners (see
below). TableColumnModel implementations are expected to fire a TableColumnModelEvent
whenever a TableColumn is added, removed, or moved; a ChangeEvent whenever margin
size is changed; and a ListSelectionEvent whenever a change in column selection occurs.

18.1.7 DefaultTableColumnModel

class javax.swing.table.DefaultTableColumnModel
This class is the concrete default implementation of the TableColumnModel interface used
by JTable when none is specifically assigned or provided at construction time. All Table-
ColumnModel methods are implemented as expected, and the following protected methods
are provided to fire events: fireColumnAdded(), fireColumnRemoved(), fireColumn-
Moved(), fireColumnSelectionChanged(), and fireColumnMarginChanged(). A value-
Changed() method is provided to listen for column selection changes and fire a List-

JTABLE 543

SelectionEvent when necessary, and a propertyChanged() method is used to update the
totalColumnWidth property when the width of a contained TableColumn changes.

18.1.8 The TableCellRenderer interface

abstract interface javax.swing.table.TableCellRenderer
This interface describes the renderer used to display cell data in a TableColumn. Each
TableColumn has an associated TableCellRender which can be assigned and retrieved with
the setCellRenderer() and getCellRenderer() methods. The getTableCellRenderer-
Component() method is the only method declared by this interface, and it is expected to return
a Component that will be used to actually render a cell. It takes the following parameters:

• JTable table: The table instance that contains the cell to be rendered.
• Object value: The value used to represent the data in the given cell.
• boolean isSelected: Specifies whether the given cell is selected.
• boolean hasFocus: Specifies whether the given cell has the focus (true if it was

clicked last).
• int row: Used to a renderer component specific to a row or cell.
• int column: Specify a renderer component specific to a column or cell.

We are expected to customize or vary the returned component based on the given parameters. For
instance, given a value that is an instance of Color, we might return a special JLabel sub-
class that paints a rectangle in the given color. This method can be used to return different
renderer components on a column, row, or cell-specific basis, and it is similar to JTree’s
TreeCell-Renderer getTreeCellRendererComponent() method. As with JTree and
JList, the renderer component returned acts as a “rubber stamp” that is used strictly for dis-
play purposes.

NOTE The row and column parameters refer to the location of data in the TableModel,
not a cell location in the TableColumnModel.

When JTable’s UI delegate repaints a certain region of a table, it must query that table to
determine the renderer to use for each cell that it needs to repaint. This is accomplished
through JTable’s getCellRenderer() method, which takes row and column parameters
and returns the component returned by the getTableCellRendererComponent()
method of the TableCellRenderer assigned to the appropriate TableColumn. If no spe-
cific renderer is assigned to that TableColumn (recall that this is the case by default), the
TableModel’s getColumnClass() method is used to recursively determine an appropriate
renderer for the given data type. If no specific class-based renderer is available for a given
class, getColumnClass() searches for one that corresponds to the superclass. This process
will, in the most generic case, stop at Object, for which a DefaultTableCellRenderer is
used (see below).

A DefaultTreeCellRenderer is also used if the class is of type Icon or Number (its sub-
classes are BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, and Short). If
the type happens to be a Boolean, a JCheckBox is used. We can specify additional class-based
renderers with JTable’s setDefaultRenderer() method. Remember that class-based
renderers will only be used if no column-based renderer has been explicitly assigned to the
TableColumn containing the given cell.

544 CHAPTER 18 TABLES

18.1.9 DefaultTableCellRenderer

class javax.swing.table.DefaultTableCellRenderer
This is the concrete default implementation of the TableCellRenderer interface. Default-
TableCellRenderer extends JLabel and is used as the default class-based renderer for
Number, Icon, and Object data types. Two private Color variables are used to hold selected
foreground and background colors which render the cell if it is editable and if it has the cur-
rent focus. These colors can be assigned with DefaultTableCellRenderer’s overridden
setBackground() and setForeground() methods.

A protected Border property is used to store the border that is used when the cell does
not have the current focus. By default, this is an EmptyBorder with a top and bottom space
of 1 and a left and right space of 2. Unfortunately, DefaultTableCellRenderer does not
provide a method to change this border.

DefaultTableCellRenderer renders the value object passed as parameter to its get-
TableCellRenderer() method by setting its label text to the String returned by that
object’s toString() method. All default JLabel attributes are used in rendering. We can do
anything to this renderer component that we can do to a JLabel, such as assign a tooltip or
a disabled/enabled state.

NOTE JTable can have a tooltip assigned to it just as any other Swing component. How-
ever, tooltips assigned to renderers take precedence over those assigned to JTable,
and in the case that both are used, the renderer’s tooltip text will be displayed when
the mouse lies over a cell using it.

18.1.10 The TableCellEditor interface

abstract interface javax.swing.table.TableCellEditor
This interface extends CellEditor and describes the editor used to edit cell data in a Table-
Column. Each TableColumn has an associated TableCellEditor which can be assigned
and retrieved with the setCellEditor() and getCellEditor() methods. The getTable-
CellEditorComponent() method is the only method declared by this interface, and it is
expected to return a Component that will be used to allow editing of a cell’s data value. It takes
the following parameters:

• JTable table: The table instance containing the cell to be rendered.
• Object value: The value used to represent the data in the given cell.
• boolean isSelected: Specifies whether the given cell is selected.
• int row: Used to a renderer component specific to a row or cell.
• int column: Specify a renderer component specific to a column or cell.

We are expected to customize or vary the returned component based on the given parameters.
For instance, given a value that is an instance of Color, we might return a special JCom-
boBox which lists several color choices. This method can be used to return different editor
components on a column, row, or cell-specific basis, and it is similar to JTree’s Tree-
CellEditor getTreeCellEditorComponent() method.

NOTE The row and column parameters refer to the location of data in the TableModel,
not a cell location in the TableColumnModel.

JTABLE 545

Just like table cell renderers, each TableColumn has a column-based editor associated
with it. By default, this editor is null and it can be assigned and retrieved with TableColumn’s
setCellEditor() and getCellEditor() methods. Unlike renderers, table cell editors are
completely interactive and do not simply act as rubber stamps.

TableCellEditor implementations must also implement methods defined in the
CellEditor interface: addCellEditorListener(), removeCellEditorListener(),
cancelCellEditing(), stopCellEditing(), isCellEditable(), shouldSelectCell(),
and getCellEditorValue(). The isCellEditable() method is expected to be used in
combination with TableModel’s isCellEditable() method to determine whether a given
cell can be edited. Only in the case that both return true is editing allowed. (See the discussion
of the CellEditor interface in section 17.1.13 for more about each of these methods.)

To initiate cell editing on a given cell, JTable listens for mouse presses and invokes its
editCellAt() method in response. This method queries both the TableModel and the appro-
priate cell editor to determine if the given cell can be edited. If it can, the editor component
is retrieved with getTableCellEditorComponent() and placed in the given cell (its bounds
are adjusted so that it will fit within the current cell bounds). Then JTable adds itself as a lis-
tener to the editor component (recall that JTable implements the CellEditorListener
interface) and the same mouse event that sparked the edit gets sent to the editor component.
Finally, the cell editor’s shouldSelectCell() method is invoked to determine whether the
row containing that cell should become selected.

The default implementation of TableCellEditor is provided as DefaultCell-
Editor. Unfortunately, DefaultCellEditor is not easily extensible and we are often forced
to implement all TableCellEditor and CellEditor functionality ourselves.

18.1.11 DefaultCellEditor

class javax.swing.DefaultCellEditor
DefaultCellEditor is a concrete implementation of both the TableCellEditor interface
and the TreeCellEditor interface. This editor is designed to return either a JTextField,
JComboBox, or JCheckBox for cell editing. It is used by both JTable and JTree compo-
nents and is discussed in section 17.1.15.

18.1.12 The TableModelListener interface

abstract interface javax.swing.event.TableModelListener
This interface describes an object that listens to changes in a TableModel. The tableChanged()
method will be invoked to notify us of these changes. TableModel’s addTableModel-
Listener() and removeTableModelListener() methods are used to add and remove
TableModelListeners respectively (they are not added directly to JTable).

18.1.13 TableModelEvent

class javax.swing.TableModelEvent
This event extends EventObject and is used to notify TableModelListeners registered
with a TableModel about changes in that model. This class consists of four properties, which
are each accessible with typical get methods:

546 CHAPTER 18 TABLES

• int column: Specifies the column affected by the change. TableModelEvent.ALL_
COLUMNS is used to indicate that more than one column is affected.

• int firstRow: Specifies the first row affected. TableModelEvent.HEADER_ROW can be
used here to indicate that the name, type, or order of one or more columns has changed.

• int lastRow: Specifies the last row affected. This value should always be greater than or
equal to firstRow.

• int type: Specifies the type of change that occurred. It can be TableModelEvent.
INSERT, TableModelEvent.DELETE, or TableModelEvent.UPDATE. INSERT and
DELETE indicate the insertion and deletion of rows. UPDATE indicates that values have
changed but the number of rows and columns has not changed.

As with any EventObject, we can retrieve the source of a TableModelEvent with get-
Source().

18.1.14 The TableColumnModelListener interface

abstract interface javax.swing.event.TableColumnModelListener
This interface describes an object that listens to changes in a TableColumnModel: the add-
ing, removing, and movement of columns, as well as changes in margin size and the current
selection. TableColumnModel provides two methods for adding and removing these listeners:
addTableColumnModelListener() and removeTableColumnModelListener(). (As is
the case with TableModelListeners, TableColumnModelListeners are not directly
added to JTable.)

Five methods are declared in this interface and they must be defined by all implementations:
columnAdded(TableColumnModelEvent), columnRemoved(TableColumnModelEvent),
columnMoved(TableColumnModelEvent), columnMarginChanged(TableColumnModel-
Event), and columnSelectionChanged(ListSelectionEvent). ListSelectionEvents
are forwarded to TableColumnModel’s ListSelectionModel.

18.1.15 TableColumnModelEvent

class javax.swing.event.TableColumnModelEvent
This event extends EventObject and is used to notify a TableColumnModel about changes
to a range of columns. These events are passed to TableColumnModelListeners. The from-
Index property specifies the lowest index of the column in the TableColumnModel affected
by the change. The toIndex specifies the highest index. Both can be retrieved with typical
get accessors. A TableColumnModel fires a TableColumnModelEvent whenever a column
move, removal, or addition occurs. The event source can be retrieved with getSource().

18.1.16 JTableHeader

class javax.swing.table.JTableHeader
This GUI component (which looks like a set of buttons for each column) is used to display a
table’s column headers. By dragging these headers, the user can rearrange a table’s columns
dynamically. This component is used internally by JTable. It can be retrieved with JTable’s
getTableHeader() method and assigned with setTableHeader(). When a JTable is
placed in a JScrollPane, a default JTableHeader corresponding to each column is added

JTABLE 547

to that scroll pane’s COLUMN_HEADER viewport (see section 7.1.3). Each JTable uses one
JTableHeader instance.

JTableHeader extends JComponent and implements TableColumnModelListener.
Though JTableHeader is a Swing component, it is not used for display purposes. Instead,
each TableColumn maintains a specific TableCellRenderer implementation used to represent
its header. By default this is an instance of DefaultTableCellRenderer (see section 18.1.8).

NOTE It is more common to customize the header renderer of a TableColumn than it is
to customize a table’s JTableHeader. In most cases, the default headers provided
by JTable are satisfactory.

The resizingAllowed property specifies whether columns can be resized (if this property
is false, it overpowers the isResizable property of each TableColumn). The reorder-
ingAllowed property specifies whether columns can be reordered, and the updateTable-
InRealTime property specifies whether the whole column is displayed along with the header
as it is dragged (this is only applicable if reorderingAllowed is true). All three of these
properties are true by default.

JAVA 1.3 As of Java 1.3 the updateTableInRealTime property is obsolete. Regardless of
this setting, columns will always be repainted in response to column dragging
and resizing.

Column resizing It is best to isolate columns which need to be a fixed width—
for example, say you have a table in which monetary amounts might be ten
significant figures with two decimal places. Such a column requires a fixed
width. It doesn’t need to be bigger and it doesn’t want to be smaller. Allow the
other columns to vary in size around the fixed columns.

For example, in a two-column table displaying Product Description and Price,
fix the size of the Price column and allow Product Description to resize.

Draggable columns, added flexibility, and added complexity If you don’t need
the flexibility of draggable table columns, it is best to switch them off. If a user
accidentally picks up a JHeader component and rearranges a table, the table
could quickly become confusing. The user may not realise what he has done or
how to restore the table to its original form.

At any given time during a column drag we can retrieve the distance, in table coordinates, that
the column has been dragged with respect to its original position from the draggedDis-
tance property. JTableHeader also maintains a reference to the TableColumn it represents
as well as the JTable it is part of, using the tableColumn and table properties, respectively.

18.1.17 JTable selection

JTable supports two selection models: one for row selections and one for column selections.
JTable also supports the selection of individual table cells. Column selections are managed
by a ListSelectionModel which is maintained by a TableColumnModel implementation,
and row selections are managed by a ListSelectionModel which is maintained by JTable
itself (both are DefaultListSelectionModels by default). As we learned in chapter 10,

548 CHAPTER 18 TABLES

List-SelectionModels support three selection modes: SINGLE_SELECTION, SINGLE_
INTERVAL_SELECTION, and MULTIPLE_INTERVAL_SELECTION. JTable provides the set-
SelectionMode() methods which will set both selection models to the given mode. Note,
however, that getSelectionMode() only returns the current row selection mode.

To assign a specific selection mode to JTable’s row ListSelectionModel:

myJTable.getSelectionModel().setSelectedMode(
ListSelectionModel.XX_SELECTION);

To assign a specific selection mode to JTable’s column ListSelectionModel:

myJTable.getColumnModel().getSelectionModel().setSelectionMode(
ListSelectionModel.XX_SELECTION);

Row selection mode defaults to MULTIPLE_INTERVAL_SELECTION, and column selection
mode defaults to SINGLE_SELECTION_MODE.

JTable provides control over whether rows and columns can be selected. We can query
these modes and turn them on and off, with getRowSelectionAllowed() / getColumn-
SelectionAllowed(), and setRowSelectionAllowed() / setColumnSelection-
Allowed(), respectively. When row selection is enabled (true by default), and cell selection
is disabled (see below), clicking on a cell will select the entire row that cell belongs to. Similarly,
when column selection is enabled (false by default), the whole column that cell belongs
to will be selected. Nothing is stopping us from having both row and column selection
active simultaneously.

JTable also provides control over whether individual cells can be selected with its
cellSelectionEnabled property. We can turn this on or off with setCellSelection-
Enabled() and query its state using getCellSelectionEnabled(). If cell selection is
enabled (false by default), a cell can only be selected if both row selection and column
selection are also enabled. If cell selection is not enabled, whenever a row or column containing
that cell is selected (assuming that either row and/or column selection is enabled), that cell is
also considered selected.

JTable provides several additional methods for querying the state of a selection. If at least
one cell is selected, the following methods apply:

• getSelectedColumn() Returns the index (in the TreeModel) of the most recently
selected column (–1 if no selection exists).

• getSelectedRow() Returns the index (in the TreeModel) of the most recently
selected row (–1 if no selection exists).

• getSelectedColumns() and getSelectedRows(): Return the TreeModel indices
of all currently selected columns and rows respectively (int[0] if no selection exists).

• getSelectedColumnCount() and getSelectedRowCount(): Return the current
number of selected columns and rows respectively (0 if no selection exists).

• isColumnSelected() and isRowSelected(): Return a boolean specifying whether
the given column or row is currently selected.

• isCellSelected(): Returns a boolean specifying whether the cell at the given Tree-
Model row and column index is selected.

The following methods can be used to programatically change JTable’s selection, assuming
the corresponding selection properties are enabled:

JTABLE 549

• clearSelection(): Unselects all rows, columns, and cells.
• selectAll(): Selects all rows, columns, and cells.
• addColumnSelectionInterval() and addRowSelectionInterval(): Allow pro-

grammatic selection of a contiguous group of columns and rows respectively. These
methods can be called repeatedly to build a multiple-interval selection if the MULTIPLE_
INTERVAL_SELECTION mode is active in the corresponding selection models.

• removeColumnSelectionInterval() and removeRowSelectionInterval(): Allow
programmatic deselection of a contiguous interval of columns and rows respectively.
These methods can also be used repeatedly to affect multiple-interval selections.

• setColumnSelectionInterval() and setRowSelectionInterval(): Clear the
current column and row selection, and select the specified contiguous interval.

Interestingly, when cell selection is enabled, JTable considers the columns and rows that
contain selected cells as selected themselves (even though they aren’t highlighted). For exam-
ple, if cells (1,5) and (3,6) are selected with row and column selection enabled and cell selec-
tion enabled, getSelectedColumns() will return {5,6} and getSelectedRows() will
return {1,3}. Oddly enough, those two cells will be highlighted and considered selected by
JTable, along with cells (1,6) and (3,5)! This is due to the fact that JTable bases cell selec-
tion solely on whether or not both the row and column containing a cell are selected. When
selected rows and columns intersect, the cells at the intersection points are considered selected.

If these same cells are selected when cell selection is disabled and row and column selec-
tion are enabled, all cells in rows 1 and 3, and all cells in columns 5 and 6 will be considered
selected. If they are selected with cell selection and only row selection is enabled, all cells in
rows 1 and 3 will be considered selected. Similarly, if these two cells are selected with cell selec-
tion and only column selection is enabled, all cells in columns 5 and 6 will be considered
selected. If cell selection is not enabled, and row and/or column selection is enabled, a cell will
be considered selected if either a column or row containing it is selected.

NOTE Multiple single-cell selections can be made by holding down the CTRL key and
using the mouse for selection. A contiguous selection can be made by holding
down the SHIFT key and using the mouse to select a range of cells.

We are typically interested in determining cell, row, and/or column selection based on a
mouse click. JTable supports MouseListeners just as any other JComponent does, and we
can use the getSelectedColumn() and getSelectedRow() methods to determine which
cell was clicked in MouseListener’s mouseClicked() method:

 myJTable.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 // Get the most recently selected row index
 int row = myJTable.getSelectedRow();
 // Get the most recently selected column index
 int column = myJTable.getSelectedColumn();
 if (row == -1 || column == -1)
 return; // Can’t determine the selected cell
 else
 // Do something cell-specific
 }
 });

550 CHAPTER 18 TABLES

This listener is not very robust because it will only give us a cell if both a row and a column
have recently been selected, which in turn can only occur if both row selection and column
selection is enabled. Thankfully, JTable provides methods for retrieving a row and column
index corresponding to a given Point: rowAtPoint() and columnAtPoint() will return
–1 if no row or column is found, respectively. Since MouseEvent carries a Point specifying
the location where the event occurred, we can use these methods in place of the getSelect-
edRow() and getSelectedColumn() methods. This is particularly useful when row, col-
umn, and/or cell selection is not enabled.

As with JList, JTable does not directly support double mouse-click selections. How-
ever, as we learned in chapter 10, we can capture a double click and determine which cell was
clicked by adding a listener to JTable similar to the following:

 myJTable.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 if (e.getClickCount() == 2) {
 Point origin = e.getPoint();
 int row = myJTable.rowAtPoint(origin);
 int column = myJTable.columnAtPoint(origin);
 if (row == -1 || column == -1)
 return; // no cell found
 else
 // Do something cell-specific
 }
 }
 });

18.1.18 Column width and resizing

When a column’s width increases, JTable must decide how other columns will react. One or
more columns must shrink. Similarly, when a column’s width decreases, JTable must decide
how other columns will react to the newly available amount of space. JTable’s autoResize-
Mode property can take on any of five different values; each handles these cases differently.

• JTable.AUTO_RESIZE_ALL_COLUMNS: All columns gain or lose an equal amount of
space corresponding to the width lost or gained by the resizing column.

• JTable.AUTO_RESIZE_LAST_COLUMN: The rightmost column shrinks or grows in direct
correspondence with the amount of width lost or gained from the column being resized.
All other columns are not affected.

• JTable.AUTO_RESIZE_NEXT_COLUMN: The column to the immediate right of the
column being resized shrinks or grows in direct correspondence with the amount of
width lost or gained from the resizing column. All other columns are not affected.

• JTable.AUTO_RESIZE_OFF: Resizing only affects the column being sized. All columns
to the right of the column being resized are shifted right or left accordingly while main-
taining their current sizes. Columns to the left are not affected.

• JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS: All columns to the right of the col-
umn being resized gain or lose an equal amount of space corresponding to the width lost
or gained by the resizing column. Columns to the left are not affected.

TableColumn’s width defaults to 75. Its minimum width defaults to 15 and its maximum
width defaults to Integer.MAX_VALUE. When a JTable is first displayed, it attempts to size

JTABLE 551

each TableColumn according to its width property. If that table’s autoResizeMode prop-
erty is set to AUTO_RESIZE_OFF, this will occur successfully. Otherwise, TableColumns are
adjusted according to the current autoResizeMode property.

A TableColumn will never be sized larger than its maximum width or smaller than its
minimum. For this reason it is possible that a JTable will occupy a larger or smaller area than
that available (usually in a parent JScrollPane’s main viewport), which may result in part
of the table being clipped from view. If a table is contained in a JScrollPane and it occupies
more than the available visible width, a horizontal scroll bar will be presented by default.

TableColumnModel’s getTotalColumnWidth() method returns the sum of the
current width of all TableColumns, including all margin space.

We can specify the amount of empty space between rows with JTable’s setRowMargin()
method, and we can assign all rows a specific height with setRowHeight(). JTable’s
setIntercellSpacing() method takes a Dimension instance and uses it to assign a new
width and height to be used as margin space between cells (this method will repaint the table
it is invoked on after all sizes have been changed).

18.1.19 JTable appearance

We can change the background and foreground colors used to highlight selected cells by setting
the selectedBackground and SelectedForeground properties.

The default colors used for each TableColumn’s table header renderer are determined
from the current JTableHeader’s background and foreground colors (recall that JTable-
Header extends JComponent).

We can turn on and off horizontal and vertical grid lines (which always have a thickness
of 1 pixel) by changing the showHorizontalLines and showVerticalLines properties.
The showGrid property will overpower these properties when it is set with setShowGrid()
because this method reassigns them to the specified value. So setShowGrid() turns on and
off both vertical and horizontal lines as specified. The gridColor property specifies the Color
to use for both vertical and horizontal grid lines. setGridColor() will assign the specified
value to this property and then repaint the whole table.

Visual noise Grid lines add visual noise to the display of a table. Removing
some of them can aid the user in reading the table data. If you intend for the
user to read rows across, then switch off the vertical grid lines. If you have
columns of figures, for example, then you might prefer to switch off the
horizontal grid lines, thereby making the columns easier to read.

When switching off the horizontal grid lines on the table, you may want to use
the column cell renderer to change the background color of alternate table rows
to make it easier to read rows. This combination of visual techniques, grid lines
to distinguish columns and color to distinguish rows, helps guide the reader to
better interpret data.

JAVA 1.3 As of Java 1.3 JTable allows the specification of row height for each individual
row. This is supported by the new setRowHeight() and getRowHeight() meth-
ods. Example 18.6 in section 18.7 demonstrates this new functionality.

552 CHAPTER 18 TABLES

18.1.20 JTable scrolling

JTable implements the Scrollable interface (see section 7.1.4) and it is intended to be
placed in a JScrollPane. JTableHeaders will not be displayed if JTable isn’t placed in a
JScrollPane, and the ability to resize columns would be lost because the table headers give
us that capability. Among the required Scrollable methods, JTable implements get-
ScrollableTracksViewportWidth() to return true, which forces JTable to attempt to
size itself horizontally to fit within the current scroll pane viewport width. getScrollable-
TracksViewportHeight(), however, returns false as it is most common for tables to be
vertically scrolled but not horizontally scrolled. Horizontal scrolling is often awkward and we
suggest you avoid it whenever possible.

JTable’s vertical block increment is the number of visible rows less one, and its vertical
unit increment is the row height of the next cell. The horizontal block increment is the width
of the viewport, and the horizontal unit increment defaults to 100.

Small grids, no column headers If you need to show two or three pieces of
data grouped and aligned together, consider using a JTable without a JScroll-
Pane. This gives you a small grid which is already aligned, neat, and tidy for
display without column headers.

18.2 STOCKS TABLE, PART I: BASIC JTABLE EXAMPLE

This basic example shows how to construct a JTable to display information about stock
market data for a given day. Despite its simplicity, the example demonstrates some of the most
fundamental features of JTable and serves as a good basis for the more advanced examples
that follow.

Stocks and stock trading is characterized by many attributes. The following are selected
for display in our example:

STOCKS TABLE, PART I : BASIC JTABLE EXAMPLE 553

Each stock attribute represents a column in our table, and each row represents a specific com-
pany’s stock information.

 Example 18.1

see \Chapter18\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class StocksTable extends JFrame {
protected JTable m_table;

Name Type Description

Symbol String Stock’s symbol (NYSE or NASDAQ)
Name String Company name
Last double Price at the beginning of the trade day
Open double Price at the end of the trade day
Change double Absolute change in price with respect to previous closing
Change % double Percent change in price with respect to previous closing
Volume long Day’s volume of trade (in $) for this stock

StocksTable.java

Figure 18.1 Table in a JScrollPane with 7 TableColumns and 16 rows of data

554 CHAPTER 18 TABLES

protected StockTableData m_data;
protected JLabel m_title;

public StocksTable() {
super("Stocks Table");
setSize(600, 300);

UIManager.put("Table.focusCellHighlightBorder",
new LineBorder(Color.black, 0));

m_data = new StockTableData();

m_title = new JLabel(m_data.getTitle(),
new ImageIcon("money.gif"), SwingConstants.CENTER);

m_title.setFont(new Font("Helvetica",Font.PLAIN,24));
getContentPane().add(m_title, BorderLayout.NORTH);

m_table = new JTable();
m_table.setAutoCreateColumnsFromModel(false);
m_table.setModel(m_data);

for (int k = 0; k < m_data.getColumnCount(); k++) {
DefaultTableCellRenderer renderer = new

DefaultTableCellRenderer();
renderer.setHorizontalAlignment(
StockTableData.m_columns[k].m_alignment);
TableColumn column = new TableColumn(k,
StockTableData.m_columns[k].m_width, renderer, null);
m_table.addColumn(column);

}

JTableHeader header = m_table.getTableHeader();
header.setUpdateTableInRealTime(false);

JScrollPane ps = new JScrollPane();
ps.getViewport().setBackground(m_table.getBackground());
ps.getViewport().add(m_table);
getContentPane().add(ps, BorderLayout.CENTER);

}

public static void main(String argv[]) {
StocksTable frame = new StocksTable();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class StockData {
public String m_symbol;
public String m_name;
public Double m_last;
public Double m_open;
public Double m_change;
public Double m_changePr;
public Long m_volume;

public StockData(String symbol, String name, double last,

Creates StockTableData
and passes it to JTable

We’re creating
our own columns

Creates each TableColumn
with the specified alignment

and width

Only shows
column header
when dragging

Puts primitive in Object-derived
classes for easier data interchange

STOCKS TABLE, PART I : BASIC JTABLE EXAMPLE 555

double open, double change, double changePr, long volume) {
m_symbol = symbol;
m_name = name;
m_last = new Double(last);
m_open = new Double(open);
m_change = new Double(change);
m_changePr = new Double(changePr);
m_volume = new Long(volume);

}
}

class ColumnData {
public String m_title;
public int m_width;
public int m_alignment;

public ColumnData(String title, int width, int alignment) {
m_title = title;
m_width = width;
m_alignment = alignment;

}
}

class StockTableData extends AbstractTableModel {
static final public ColumnData m_columns[] = {

new ColumnData("Symbol", 100, JLabel.LEFT),
new ColumnData("Name", 160, JLabel.LEFT),
new ColumnData("Last", 100, JLabel.RIGHT),
new ColumnData("Open", 100, JLabel.RIGHT),
new ColumnData("Change", 100, JLabel.RIGHT),
new ColumnData("Change %", 100, JLabel.RIGHT),
new ColumnData("Volume", 100, JLabel.RIGHT)

};

protected SimpleDateFormat m_frm;
protected Vector m_vector;
protected Date m_date;

public StockTableData() {
m_frm = new SimpleDateFormat("MM/dd/yyyy");
m_vector = new Vector();
setDefaultData();

}

public void setDefaultData() {
try {

m_date = m_frm.parse("12/18/2004");
}
catch (java.text.ParseException ex) {

 m_date = null;
}

m_vector.removeAllElements();
m_vector.addElement(new StockData("ORCL", "Oracle Corp.",

23.6875, 25.375, -1.6875, -6.42, 24976600));

Encapsulates information
about each TableColumn

Static list of column
names, widths,
and alignments

Data model for JTable

556 CHAPTER 18 TABLES

m_vector.addElement(new StockData("EGGS", "Egghead.com",
17.25, 17.4375, -0.1875, -1.43, 2146400));

m_vector.addElement(new StockData("T", "AT&T",
65.1875, 66, -0.8125, -0.10, 554000));

m_vector.addElement(new StockData("LU", "Lucent Technology",
64.625, 59.9375, 4.6875, 9.65, 29856300));

m_vector.addElement(new StockData("FON", "Sprint",
104.5625, 106.375, -1.8125, -1.82, 1135100));

m_vector.addElement(new StockData("ENML", "Enamelon Inc.",
4.875, 5, -0.125, 0, 35900));

m_vector.addElement(new StockData("CPQ", "Compaq Computers",
30.875, 31.25, -0.375, -2.18, 11853900));

m_vector.addElement(new StockData("MSFT", "Microsoft Corp.",
94.0625, 95.1875, -1.125, -0.92, 19836900));

m_vector.addElement(new StockData("DELL", "Dell Computers",
46.1875, 44.5, 1.6875, 6.24, 47310000));

m_vector.addElement(new StockData("SUNW", "Sun Microsystems",
140.625, 130.9375, 10, 10.625, 17734600));

m_vector.addElement(new StockData("IBM", "Intl. Bus. Machines",
183, 183.125, -0.125, -0.51, 4371400));

m_vector.addElement(new StockData("HWP", "Hewlett-Packard",
70, 71.0625, -1.4375, -2.01, 2410700));

m_vector.addElement(new StockData("UIS", "Unisys Corp.",
28.25, 29, -0.75, -2.59, 2576200));

m_vector.addElement(new StockData("SNE", "Sony Corp.",
96.1875, 95.625, 1.125, 1.18, 330600));

m_vector.addElement(new StockData("NOVL", "Novell Inc.",
24.0625, 24.375, -0.3125, -3.02, 6047900));

m_vector.addElement(new StockData("HIT", "Hitachi, Ltd.",
78.5, 77.625, 0.875, 1.12, 49400));

}

public int getRowCount() {
return m_vector==null ? 0 : m_vector.size();

}

public int getColumnCount() {
return m_columns.length;

}

public String getColumnName(int column) {
return m_columns[column].m_title;

}

public boolean isCellEditable(int nRow, int nCol) {
return false;

}

public Object getValueAt(int nRow, int nCol) {
if (nRow < 0 || nRow>=getRowCount())

return "";
StockData row = (StockData)m_vector.elementAt(nRow);
switch (nCol) {

case 0: return row.m_symbol;

Can be called before
constructor, so needs to
check for initialization

STOCKS TABLE, PART I : BASIC JTABLE EXAMPLE 557

case 1: return row.m_name;
case 2: return row.m_last;
case 3: return row.m_open;
case 4: return row.m_change;
case 5: return row.m_changePr;
case 6: return row.m_volume;

}
return "";

}

public String getTitle() {
if (m_date==null)

return "Stock Quotes";
return "Stock Quotes at "+m_frm.format(m_date);

}
}

18.2.1 Understanding the code

Class StocksTable
This class extends JFrame to implement the frame container for our table. Three instance
variables are declared (to be used extensively in more complex examples that follow):

• JTable m_table: table component to display stock data.
• StockTableData m_data: TableModel implementation to manage stock data.
• JLabel m_title: used to display stocks table title (date which stock prices are

referenced).

The StocksTable constructor first initializes the parent frame object and builds an instance
of StockTableData. StockTableData’s getTitle() method is invoked to set the text
for the title label which is added to the northern region of the content pane. Then a JTable
is created by passing the StockTableData instance to the constructor. Note that the auto-
CreateColumnsFromModel method is set to false because we plan on creating our own
TableColumns.

As we will see, the static array m_columns of the StockTableData class describes all col-
umns of our table. It is used here to create each TableColumn instance and set their text align-
ment and width.

The setHorizontalAlignment() method (inherited by DefaultTableCellRenderer
from JLabel) is used to set the proper alignment for each TableColumn’s cell renderer. The
TableColumn constructor takes a column index, width, and renderer as parameters. Note
that TableCellEditor is set to null since we don’t want to allow editing of stock data.
Finally, columns are added to the table’s TableColumnModel (which JTable created by
default because we didn’t specify one) with the addColumn() method.

In the next step, an instance of JTableHeader is created for this table, and the update-
TableInRealTime property is set to false (this is done to demonstrate the effect this has
on column dragging–only a column’s table header is displayed during a drag).

Lastly a JScrollPane instance is used to provide scrolling capabilities, and our table is added
to its JViewport. This JScrollPane is then added to the center of our frame’s content pane.

558 CHAPTER 18 TABLES

Class StockData
This class encapsulates a unit of stock data as described in the previous table. The instance
variables defined in this class have the following meaning:

• String m_symbol: stock’s symbol (NYSE or NASDAQ)
• String m_name: company name
• Double m_last: the price of the last trade
• Double m_open: price at the beginning of the trade day
• Double m_change: absolute change in price with respect to previous closing
• Double m_changePr: percent change in price with respect to previous closing
• Long m_volume: day’s volume of trade (in $) for this stock

Note that all numerical data are encapsulated in Object-derived classes. This design decision
simplifies data exchange with the table (as we will see). The only constructor provided assigns
each of these variables from the data passed as parameters.

NOTE We use public instance variables in this and several other classes in this chapter
to avoid overcomplication. In most professional apps these would either be protect-
ed or private properties with associated accessor methods.

Class ColumnData
This class encapsulates data describing the visual characteristics of a single TableColumn of
our table. The instance variables defined in this class have the following meaning:

• String m_title: column title
• int m_width: column width in pixels
• int m_alignment: text alignment as defined in JLabel

The only constructor provided assigns each of these variables the data passed as parameters.

Class StockTableData
This class extends AbstractTableModel to serve as the data model for our table. Recall
that AbstractTableModel is an abstract class, and three methods must be implemented to
instantiate it:

• public int getRowCount(): returns the number of rows in the table.
• public int getColumnCount(): returns the number of columns in the table.
• public Object getValueAt(int row, int column): returns data in the specified

cell as an Object instance.

NOTE An alternative approach is to extend the DefaultTableModel class which is a con-
crete implementation of AbstractTableModel. However, this is not recom-
mended, as the few abstract methods in AbstractTableModel can be easily
implemented. Usage of DefaultTableModel often creates unnecessary overhead.

By design, this class manages all information about our table, including the title and column
data. A static array of ColumnData, m_columns, is provided to hold information about our
table’s columns (it is used in the StocksTable constructor). Three instance variables have the
following meaning:

• SimpleDateFormat m_frm: used to format dates

STOCKS TABLE, PART II : CUSTOM RENDERERS 559

• Date m_date: date of currently stored market data
• Vector m_vector: collection of StockData instances for each row in the table

The only constructor of the StockTableData class initializes two of these variables and calls
the setDefaultData() method to assign the predefined default data to m_date and
m_vector. (In a later example we’ll see how to use JDBC to retrieve data from a database
rather than using hard-coded data as we do here.)

As we discussed, the getRowCount() and getColumnCount() methods should return the
number of rows and columns, respectively. So their implementation is fairly obvious. The
only catch is that they may be called by the AbstractTableModel constructor before any
member variable is initialized. So we have to check for a null instance of m_vector. Note that
m_columns, as a static variable, will be initialized before any nonstatic code is executed (so we
don’t have to check m_columns against null).

The remainder of the StockTableData class implements the following methods:

• getColumnName(): returns the column title.
• isCellEditable(): always returns false, because we want to disable all editing.
• getValueAt(): retrieves data for a given cell as an Object. Depending on the column

index, one of the StockData fields is returned.
• getTitle(): returns our table’s title as a String to be used in a JLabel in the north-

ern region of our frame’s content pane.

18.2.2 Running the code

Figure 18.1 shows StocksTable in action displaying our hard-coded stock data. Note
that the TableColumns resize properly in response to the parent frame size. Also note that
the selected row in our table can be changed with the mouse or arrow keys, but no editing
is allowed.

18.3 STOCKS TABLE, PART II: CUSTOM RENDERERS

Now we’ll extend StocksTable to use color and small icons in rendering our table cells. To
enhance data visibility, we’ll make the following two enhancements:

• Render absolute and percent changes in green for positive values and red for negative
values.

• Add an icon next to each stock symbol: arrow up for positive changes and arrow down
for negative.

To do this we need to build our own custom TreeCellRenderer.

 Example 18.2

see \Chapter18\2

import java.awt.*;
import java.awt.event.*;

StocksTable.java

560 CHAPTER 18 TABLES

import java.util.*;
import java.io.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class StocksTable extends JFrame {
protected JTable m_table;
protected StockTableData m_data;
protected JLabel m_title;

public StocksTable() {
// Unchanged code from example 18.1

for (int k = 0; k < m_data.getColumnCount(); k++) {
DefaultTableCellRenderer renderer = new

ColoredTableCellRenderer();

renderer.setHorizontalAlignment(
StockTableData.m_columns[k].m_alignment);
TableColumn column = new TableColumn(k,
StockTableData.m_columns[k].m_width, renderer, null);
m_table.addColumn(column);

}
// Unchanged code from example 18.1

}

public static void main(String argv[]) {
StocksTable frame = new StocksTable();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

Figure 18.2 Table using a custom cell renderer

Use custom
cell renderer

STOCKS TABLE, PART II : CUSTOM RENDERERS 561

}
}

class ColoredTableCellRenderer extends DefaultTableCellRenderer {
public void setValue(Object value) {

if (value instanceof ColorData) {
ColorData cvalue = (ColorData)value;
setForeground(cvalue.m_color);
setText(cvalue.m_data.toString());

}
else if (value instanceof IconData) {

IconData ivalue = (IconData)value;
setIcon(ivalue.m_icon);
setText(ivalue.m_data.toString());

}
else

super.setValue(value);
}

}

class ColorData {
public Color m_color;
public Object m_data;
public static Color GREEN = new Color(0, 128, 0);
public static Color RED = Color.red;

public ColorData(Color color, Object data) {
m_color = color;
m_data = data;

}

public ColorData(Double data) {
m_color = data.doubleValue() >= 0 ? GREEN : RED;
m_data = data;

}

public String toString() {
return m_data.toString();

}
}

class IconData {
public ImageIcon m_icon;
public Object m_data;

public IconData(ImageIcon icon, Object data) {
m_icon = icon;
m_data = data;

}

public String toString() {
return m_data.toString();

}
}

class StockData {

Binds a color
value to data

Custom cell renderer
to render colored

text and icons

Binds an icon
image to data

Similar to previous version,
but encodes icon and color information
with some of the existing fields

562 CHAPTER 18 TABLES

// Unchanged code from example 18.1

public StockData(String symbol, String name, double last,
double open, double change, double changePr, long volume) {
m_symbol = new IconData(getIcon(change), symbol);

m_name = name;
m_last = new Double(last);
m_open = new Double(open);
m_change = new ColorData(new Double(change));

m_changePr = new ColorData(new Double(changePr));

m_volume = new Long(volume);
}

public static ImageIcon getIcon(double change) {

return (change>0 ? ICON_UP : (change<0 ? ICON_DOWN :

ICON_BLANK));

}

}

// Unchanged code from example 18.1

class StockTableData extends AbstractTableModel {
// Unchanged code from example 18.1

protected SimpleDateFormat m_frm;
protected NumberFormat m_volumeFormat;

protected Vector m_vector;
protected Date m_date;

public StockTableData() {
m_frm = new SimpleDateFormat("MM/dd/yyyy");
m_volumeFormat = NumberFormat.getInstance();

m_volumeFormat.setGroupingUsed(true);

m_volumeFormat.setMaximumFractionDigits(0);

m_vector = new Vector();
setDefaultData();

}

public void setDefaultData() {
// Unchanged code from example 18.1

}

// Unchanged code from example 18.1

public Object getValueAt(int nRow, int nCol) {
if (nRow < 0 || nRow>=getRowCount())

return "";
StockData row = (StockData)m_vector.elementAt(nRow);
switch (nCol) {

case 0: return row.m_symbol;
case 1: return row.m_name;
case 2: return row.m_last;
case 3: return row.m_open;
case 4: return row.m_change;
case 5: return row.m_changePr;

New NumberFormat
used to format
Volume data

STOCKS TABLE, PART II : CUSTOM RENDERERS 563

case 6: return m_volumeFormat.format(row.m_volume);

}
return "";

}

// Unchanged code from example 18.1
}

18.3.1 Understanding the code

Class StocksTable
The only change we need to make in the base frame class is to change the column renderer to
an instance of our custom ColoredTableCellRenderer class.

Class ColoredTableCellRenderer
This class extends DefaultTableCellRenderer and overrides only one method: set-
Value(). This method will be called prior to the rendering of a cell to retrieve its correspond-
ing data (of any nature) as an Object. Our overridden setValue() method is able to
recognize two specific kinds of cell data: ColorData, which adds color to a data object, and
IconData, which adds an icon. If a ColorData instance is detected, its encapsulated color is
set as the foreground for the renderer. If an IconData instance is detected, its encapsulated
icon is assigned to the renderer with the setIcon() method (which is inherited from JLa-
bel). If the value is neither a ColorData or an IconData instance we call the super-class
setValue() method.

Class ColorData
This class is used to bind a specific color, m_color, to a data object of any nature, m_data.
Two constructors are provided for this class. The first constructor takes Color and Object
parameters and assigns them to instance variables m_color and m_data respectively. The sec-
ond constructor takes a Double parameter which gets assigned to m_data, and m_color is
assigned the color green if the parameter is positive, and red if negative. The toString()
method simply calls the toString() method of the data object.

Class IconData
This class is used to bind ImageIcon m_icon to a data object of any nature, m_data. Its
only constructor takes ImageIcon and Object parameters. The toString() method sim-
ply calls the toString() method of the data object.

Class StockData
This class has been enhanced from its previous version to provide images and new variable data
types. We’ve prepared three static ImageIcon instances holding images: arrow up, arrow down,
and a blank (completely transparent) image. The static getIcon() method returns one of these
images depending on the sign of the given double parameter. We’ve also changed three instance
variables to bind data with the color and image attributes according to the following table:

Field New type Data object Description

m_symbol IconData String Stock’s symbol (NYSE or NASDAQ)
m_change ColorData Double Absolute change in price
m_changePr ColorData Double Percent change in price

564 CHAPTER 18 TABLES

The corresponding changes are also required in the StockData constructor.

Class StockTableData
This class has an additional instance variable m_volumeFormat of type NumberFormat. This
is used to format the volume data in a locale dependent fashion. The setGroupingUsed()
method is used to turn on grouping separators (in English these are “,”s), and the setMaxi-
mumFractionDigits() method is used to specify that no fractional decimal places should
be shown.

The switch statement in the getValueAt() method is modified to format the volume
data on the fly in the current locale.

18.3.2 Running the code

Figure 18.2 shows StocksTable with custom rendering in action. Note the correct usage of
color and icons, which considerably enhances the visualization of our data.

Improving visual communication Tables can be data intensive and conse-
quently it can be very difficult for the viewer to quickly pick out the important in-
formation. The table in figure 18.1 highlighted this. In figure 18.2, we are
improving the visual communication with the introduction of visual layers.
The icons in the first column quickly tell the viewer whether a price is rising or fall-
ing. This is visually reinforced with the red and green introduced on the
change columns.

Red particularly is a very strong color. By introducing red and green only on
the change columns and not across the entire row, we avoid the danger of
the red becoming overpowering. If we had introduced red and green across the
full width of the table, the colors may have become intrusive and impaired the
visual communication.

18.4 STOCKS TABLE, PART III: SORTING COLUMNS

In this section we add the ability to sort any column in ascending or descending order. The
most suitable graphical element for selection of sort order are the column headers. We adopt
the following model for our sorting functionality:

• A single click on the header of a certain column causes the table to resort based on this
column.

• A repeated click on the same column changes the sort direction from ascending to
descending and vice versa.

• The header of the column which provides the current sorting should be marked to indi-
cate which direction the column is sorted in.

To do this we add a mouse listener to the table header to capture mouse clicks and trigger a
table sort. Sorting can be accomplished fairly easily using the Collections API.

NOTE Class java.util.Collections contains a set of static methods used to manipu-
late Java collections, including java.util.Vector which is used in this example.

STOCKS TABLE, PART III : SORTING COLUMNS 565

We use the java.util.Collections.sort(List lst, Comparator c) method to sort
any collection implementing the java.util.List interface based on a given Comparator.
A Comparator implementation requires two methods:

• int compare(Object o1, Object o2): Compares two objects and returns the result
as an int (zero if equal, negative value if the first is less than the second, positive value if
the first is more than the second).

• boolean equals(Object obj): Returns true if the given object is equal to this
Comparator.

Example 18.3

see \Chapter18\3

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class StocksTable extends JFrame {
protected JTable m_table;
protected StockTableData m_data;
protected JLabel m_title;

StocksTable.java

Figure 18.3 Table with ascending and descending sorting of all columns.

566 CHAPTER 18 TABLES

public StocksTable() {
super("Stocks Table");
setSize(600, 300);

// Unchanged code from example 18.2

for (int k = 0; k < m_data.getColumnCount(); k++) {
DefaultTableCellRenderer renderer = new

ColoredTableCellRenderer();
renderer.setHorizontalAlignment(

StockTableData.m_columns[k].m_alignment);
TableColumn column = new TableColumn(k,

StockTableData.m_columns[k].m_width, renderer, null);
column.setHeaderRenderer(createDefaultRenderer());

m_table.addColumn(column);
}

JTableHeader header = m_table.getTableHeader();
header.setUpdateTableInRealTime(true);
header.addMouseListener(new ColumnListener());

header.setReorderingAllowed(true);

// Unchanged code from example 18.2
}

protected TableCellRenderer createDefaultRenderer() {

DefaultTableCellRenderer label =

new DefaultTableCellRenderer() {

 public Component getTableCellRendererComponent(

 JTable table, Object value, boolean isSelected,

boolean hasFocus, int row, int column) {

if (table != null) {

 JTableHeader header = table.getTableHeader();

 if (header != null) {

setForeground(header.getForeground());

setBackground(header.getBackground());

setFont(header.getFont());

}

}

setText((value == null) ? "" : value.toString());

setBorder(UIManager.getBorder("TableHeader.cellBorder"));

return this;

}

};

label.setHorizontalAlignment(JLabel.CENTER);

return label;

}

public static void main(String argv[]) {
StocksTable frame = new StocksTable();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}

Moves listener added
to table header to
allow sorting; allow
reordering of columns

Returns a custom
renderer for use
in table headers

STOCKS TABLE, PART III : SORTING COLUMNS 567

class ColumnListener extends MouseAdapter {

public void mouseClicked(MouseEvent e) {

TableColumnModel colModel = m_table.getColumnModel();

int columnModelIndex = colModel.getColumnIndexAtX(e.getX());

int modelIndex =

colModel.getColumn(columnModelIndex).getModelIndex();

if (modelIndex < 0)

return;

if (m_data.m_sortCol == modelIndex)

m_data.m_sortAsc = !m_data.m_sortAsc;

else

m_data.m_sortCol = modelIndex;

for (int i=0; i < m_data.getColumnCount(); i++) {

TableColumn column = colModel.getColumn(i);

int index = column.getModelIndex();

JLabel renderer = (JLabel)column.getHeaderRenderer();

renderer.setIcon(m_data.getColumnIcon(index));

}

m_table.getTableHeader().repaint();

m_data.sortData();

m_table.tableChanged(new TableModelEvent(m_data));

m_table.repaint();

}

}

}

// Unchanged code from example 18.2

class StockTableData extends AbstractTableModel {

// Unchanged code from example 18.2

public static ImageIcon COLUMN_UP = new ImageIcon("SortUp.gif");

public static ImageIcon COLUMN_DOWN = new ImageIcon("SortDown.gif");

protected SimpleDateFormat m_frm;
protected NumberFormat m_volumeFormat;
protected Vector m_vector;
protected Date m_date;

public int m_sortCol = 0;

public boolean m_sortAsc = true;

public void setDefaultData() {
// Unchanged code from example 18.2
sortData();

}

// Unchanged code from example 18.2

public Icon getColumnIcon(int column)

if (column==m_sortCol)

return m_sortAsc ? COLUMN_UP : COLUMN_DOWN;

Enhanced to support
sorting of data and
to track currently
sorted column as well
as direction of sort

Used to intercept
mouse events on
table header and

assign appropriate
sorting direction icon

568 CHAPTER 18 TABLES

return null;

}

public void sortData() {

Collections.sort(m_vector, new

StockComparator(m_sortCol, m_sortAsc));

}

}

class StockComparator implements Comparator {
protected intm_sortCol;
protected boolean m_sortAsc;

public StockComparator(int sortCol, boolean sortAsc) {
m_sortCol = sortCol;
m_sortAsc = sortAsc;

}

public int compare(Object o1, Object o2) {
if(!(o1 instanceof StockData) || !(o2 instanceof StockData))

return 0;
StockData s1 = (StockData)o1;
StockData s2 = (StockData)o2;
int result = 0;
double d1, d2;
switch (m_sortCol) {

case 0:// symbol
String str1 = (String)s1.m_symbol.m_data;
String str2 = (String)s2.m_symbol.m_data;
result = str1.compareTo(str2);
break;

case 1:// name
result = s1.m_name.compareTo(s2.m_name);
break;

case 2:// last
d1 = s1.m_last.doubleValue();
d2 = s2.m_last.doubleValue();
result = d1<d2 ? -1 : (d1>d2 ? 1 : 0);
break;

case 3:// open
d1 = s1.m_open.doubleValue();
d2 = s2.m_open.doubleValue();
result = d1<d2 ? -1 : (d1>d2 ? 1 : 0);
break;

case 4:// change
d1 = ((Double)s1.m_change.m_data).doubleValue();
d2 = ((Double)s2.m_change.m_data).doubleValue();
result = d1<d2 ? -1 : (d1>d2 ? 1 : 0);
break;

case 5:// change %
d1 = ((Double)s1.m_changePr.m_data).doubleValue();
d2 = ((Double)s2.m_changePr.m_data).doubleValue();
result = d1<d2 ? -1 : (d1>d2 ? 1 : 0);
break;

Implements the rules
of comparison between
StockData objects

STOCKS TABLE, PART III : SORTING COLUMNS 569

case 6:// volume
long l1 = s1.m_volume.longValue();
long l2 = s2.m_volume.longValue();
result = l1<l2 ? -1 : (l1>l2 ? 1 : 0);
break;

}

if (!m_sortAsc)
result = -result;

return result;
}

public boolean equals(Object obj) {
if (obj instanceof StockComparator) {

StockComparator compObj = (StockComparator)obj;
return (compObj.m_sortCol==m_sortCol) &&

(compObj.m_sortAsc==m_sortAsc);
}
return false;

}
}

18.4.1 Understanding the code

Class StocksTable
In the StocksTable constructor we add an instance of the ColumnListener class as a
mouse listener to the table’s header and allow reordering of columns. We also use our custom
createDefaultRenderer() to provide the header renderer for our table columns. This ren-
derer is used by ColumnListener to show the direction of a column sort.

Class StockTable.ColumnListener
This class extends MouseAdapter and is used to intercept mouse events on our table column
headers to perform a column sort.

The mouseClicked() method is invoked when the user clicks on a header. First it deter-
mines the index of the TableColumn clicked based on the coordinate of the click. If for any
reason the returned index is negative (i.e., the column cannot be determined) the method can-
not continue and we return. Otherwise, we check whether this index corresponds to the col-
umn which already has been selected for sorting. If so, we invert the m_sortCol flag to reverse
the sorting order. If the index corresponds to the newly selected column we store the new sort-
ing index in the m_sortCol variable.

Then we refresh the headers by iterating through the TableColumns and assigning the
appropriate renderer an icon (or null) using StockTableData’s getColumnIcon()
method. Finally our table data is resorted by calling StockTableData’s sortData()
method. We then refresh the table by calling tableChanged() and repaint().

Class StockTableData
Here we declare two new instance variables: int m_sortCol to hold the index of the current
column chosen for sorting, and boolean m_sortAsc, which is true when sorting in
ascending order, and false when sorting in descending order. These variables determine the

570 CHAPTER 18 TABLES

initial sorting order. To be consistent we sort our table initially by calling the new
sortData() method in our setDefaultData() method (which is called from the Stock-
TableData constructor).

We’ve also added two new ImageIcon class variables, COLUMN_UP and COLUMN_DOWN,
representing images used in the header renderer to indicate a column’s sorting direction. The
getColumnIcon() method returns the appropriate icon based on the state of m_sortAsc and
the given column index (this method will return null if the given index does not match
m_sortCol–the currently sorted column index).

The sortData() method invokes the static Collections.sort() method to sort our
table data using an instance of our custom StockComparator class.

Class StockComparator
This class implements the rule of comparison for two objects, which in our case are Stock-
Datas. Instances of the StockComparator class are passed to the Collections.sort()
method to perform data sorting.

Two instance variables are defined:

• int m_sortCol represents the index of the column which performs the comparison
• boolean m_sortAsc is true for ascending sorting and false for descending

The StockComparator constructor takes two parameters and stores them in these instance
variables.

The compare() method takes two objects to be compared and returns an integer value
according to the rules determined in the Comparator interface:

• 0 if object 1 equals 2
• A positive number if object 1 is greater than object 2
• A negative number if object 1 is less than object 2

Since we are dealing only with StockData objects, first we cast both objects and return 0 if
this cast isn't possible. The next issue is to define what it means when one StockData objects
is greater, equal, or less than another. This is done in a switch-case structure, which,
depending on the index of the comparison column, extracts two fields and forms an integer
result of the comparison. When the switch-case structure finishes, we know the result of an
ascending comparison. For descending comparison we simply need to invert the sign of the
result.

The equals() method takes another Comparator instance as parameter and returns
true if that parameter represents the same Comparator. We determine this by comparing
Comparator instance variables: m_sortCol and m_sortAsc.

18.4.2 Running the code

Figure 18.3 shows StocksTable sorted by decreasing Change %. Click different column
headers and note that resorting occurs as expected. Click the same column header twice and
note that sorting order flips from ascending to descending and vice versa. Also note that the
currently selected sorting column header is marked with an informative icon. This sorting
functionality is very useful. Particularly, for stock market data we can instantly determine
which stocks have the highest price fluctuations or the most heavy trading.

STOCKS TABLE, PART IV: JDBC 571

Sort by header selection idiom Introducing table sorting using the column
headers is introducing another design idiom to the User Interface. This design
idiom is becoming widely accepted and widely used in many applications.
It is a useful and powerful technique which you can introduce when sorting
table data is a requirement. The technique is not intuitive and there is little
visual affordance to suggest that clicking a column header will have any
effect. So consider that the introduction of this technique may require
additional UI training.

18.5 STOCKS TABLE, PART IV: JDBC
Despite all of our sorting functionality and enhanced data display, our application is relatively
useless because it displays only data for a predefined day. In the real world we would need to
connect such an application to the source of fresh information such as a database. Very often
tables are used to display data retrieved from databases, or to edit data to be stored in data-
bases. In this section we show how to feed our StocksTable data extracted from a database
using the Java Database Connectivity (JDBC) API.

First, we need to create the database. We chose to use two SQL tables (do not confuse
SQL table with JTable) whose structure precisely corresponds to the market data structure
described in section 18.2.

For this example we use the JDBC-ODBC bridge which has been a standard part of Java since
the 1.1 release. This bridge links Java programs to Microsoft Access databases. If you are using
another database engine, you can work with this example as well, but you must make sure that
the structure of your tables is the same. Before running the example in a Windows environ-
ment you need to register a database in an ODBC Data Source Administrator which is acces-
sible through the Control Panel (this is not a JDBC tutorial, so we’ll skip the details).

Table 18.1 Symbols

Field name Type

symbol Text

name Text

Table 18.2 Data

Field name Type

symbol Text

date 1 Date/Time

last Number

change Number

changeproc Number

open Number

volume Number

572 CHAPTER 18 TABLES

Example 18.4

see \Chapter18\4

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;
import java.util.Date;

import java.sql.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

import javax.swing.table.*;

public class StocksTable extends JFrame {
protected JTable m_table;
protected StockTableData m_data;
protected JLabel m_title;

public StocksTable() {
// Unchanged code from example 18.3

setJMenuBar(createMenuBar());

JScrollPane ps = new JScrollPane();
ps.getViewport().setBackground(m_table.getBackground());
ps.getViewport().add(m_table);
getContentPane().add(ps, BorderLayout.CENTER);

StocksTable.java

Figure 18.4 Retrieving stock data from a database for display in JTable

STOCKS TABLE, PART IV: JDBC 573

}

// Unchanged code from example 18.3

protected JMenuBar createMenuBar() {

JMenuBar menuBar = new JMenuBar();

JMenu mFile = new JMenu("File");

mFile.setMnemonic('f');

JMenuItem mData = new JMenuItem("Retrieve Data...");

mData.setMnemonic('r');

ActionListener lstData = new ActionListener() {

public void actionPerformed(ActionEvent e) {

retrieveData();

}

};

mData.addActionListener(lstData);

mFile.add(mData);

mFile.addSeparator();

JMenuItem mExit = new JMenuItem("Exit");

mExit.setMnemonic('x');

ActionListener lstExit = new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}

};

mExit.addActionListener(lstExit);

mFile.add(mExit);

menuBar.add(mFile);

return menuBar;

}

public void retrieveData() {

Runnable updater = new Runnable() {

public void run() {

SimpleDateFormat frm = new SimpleDateFormat("MM/dd/yyyy");

String currentDate = frm.format(m_data.m_date);

String result =

 (String)JOptionPane.showInputDialog(StocksTable.this,

"Please enter date in form mm/dd/yyyy:", "Input",

JOptionPane.INFORMATION_MESSAGE, null, null,

currentDate);

if (result==null)

return;

java.util.Date date = null;

try {

date = frm.parse(result);

}

catch (java.text.ParseException ex) {

date = null;

}

New “Retrieve
Data” menu
item

Retrieves data from database,
updates table model,
and repaints JTable

574 CHAPTER 18 TABLES

if (date == null) {

JOptionPane.showMessageDialog(StocksTable.this,

result+" is not a valid date",

"Warning", JOptionPane.WARNING_MESSAGE);

return;

}

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

m_data.retrieveData(date);

}

catch (Exception ex) {

JOptionPane.showMessageDialog(StocksTable.this,

"Error retrieving data:\n"+ex.getMessage(),

"Error", JOptionPane.ERROR_MESSAGE);

}

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

m_title.setText(m_data.getTitle());

m_table.tableChanged(new TableModelEvent(m_data));

}

};

 SwingUtilities.invokeLater(updater);

}

 // Unchanged code from example 18.3
}

// Unchanged code from example 18.3

class StockTableData extends AbstractTableModel {
 // Unchanged code from example 18.3

static final String QUERY = "SELECT data.symbol, symbols.name, "+

"data.last, data.open, data.change, data.changeproc, "+

"data.volume FROM DATA INNER JOIN SYMBOLS "+

"ON DATA.symbol = SYMBOLS.symbol WHERE "+

"month(data.date1)=? AND day(data.date1)=?"+

" AND year(data.date1)=?";

public void retrieveData(Date date)

throws SQLException, ClassNotFoundException {

GregorianCalendar calendar = new GregorianCalendar();

calendar.setTime(date);

int month = calendar.get(Calendar.MONTH)+1;

int day = calendar.get(Calendar.DAY_OF_MONTH);

int year = calendar.get(Calendar.YEAR);

m_date = date;

m_vector = new Vector();

Connection conn = null;

PreparedStatement pst = null;

try {

// Load the JDBC-ODBC bridge driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Updated to allow retrieval
of data from a database
using JDBC and SQL

STOCKS TABLE, PART IV: JDBC 575

conn = DriverManager.getConnection(

"jdbc:odbc:Market", "admin", "");

pst = conn.prepareStatement(QUERY);

pst.setInt(1, month);

pst.setInt(2, day);

pst.setInt(3, year);

ResultSet results = pst.executeQuery();

while (results.next()) {

Stringsymbol = results.getString(1);

Stringname = results.getString(2);

doublelast = results.getDouble(3);

doubleopen = results.getDouble(4);

doublechange = results.getDouble(5);

doublechangePr = results.getDouble(6);

long volume = results.getLong(7);

m_vector.addElement(new StockData(symbol, name, last,

open, change, changePr, volume));

}

sortData();

}

finally {

if (pst != null)

pst.close();

if (conn != null)

conn.close();

}

}

}

// Unchanged code from example 18.3

18.5.1 Understanding the code

Class StocksTable
A JMenuBar instance is created with our custom createMenuBar() method and added to
our frame.

The createMenuBar() method creates a menu bar containing a single menu titled File. Two
menu items are added: Retrieve Data... and Exit with a separator in between. Anonymous
ActionListeners are added to each. The first calls our custom retrieveData() method,
and the second simply kills the application using System.exit(0).

The retrieveData() method is called in response to a Retrieve Data... menu item activa-
tion. First it prompts the user to enter the date by displaying a JOptionPane dialog. Once
the date has been entered, this method parses it using a SimpleDateFormat object. If the
entered string cannot be parsed into a valid date, the method shows a warning message and
returns. Otherwise, we connect to JDBC and retrieve new data. To indicate that the program
will be busy for some time the wait mouse cursor is displayed. The main job is performed by
our new StockTableData retrieveData() method, which is invoked on the m_data

576 CHAPTER 18 TABLES

object. If an exception occurs an error message is displayed, and no changes in the table model
are made. Otherwise table model is updated and repainted.

Class StockTableData
First note that a minor change was required in the import statements. In addition to import-
ing the entire java.util package and java.sql package we’ve also explicitly imported
java.util.Date. Since both packages include a Date class, this extra import tells Java that
whenever we refer to a Date instance we are referring to an instance of java.util.Date
unless otherwise specified with a fully qualified class name (i.e., java.sql.Date).

A new instance variable is added to store the result of a data retrieval request in the
retrieveData() method. As mentioned, retrieveData() retrieves a table’s data for a
given date of trade. Our implementation uses the JDBC bridge driver and should be familiar
to JDBC-aware readers. The first thing we do is construct an SQL statement. Since we cannot
compare a java.util.Date object and an SQL date stored in the database, we have to extract
the date’s components (year, month, and day) and compare them separately. An instance of
GregorianCalendar is used to manipulate the date object.

We load the JDBC-ODBC bridge driver to Microsoft Access by using the Class.for-
Name method, and then connect to a database with the DriverManager.getConnection()
method. If no exception is thrown, we can create a Statement instance for the newly created
Connection object and retrieve a ResultSet by executing the previously constructed query.
While new data is available we retrieve this data using basic getXX() methods. We create a
new StockData instance to encapsulate this new data and add it to m_vector. Once we’ve
retrieved all the data we sort it with the sortData() method. Finally, we close our Pre-
paredStatement and Connection instances.

18.5.2 Running the code

Figure 18.4 shows StocksTable in action. Try loading data for different dates in your data-
base. A sample Microsoft Access database, market.mdb, containing some real market data, can
be found in the \swing\2nd-edition\Chapter18 directory.

18.6 STOCKS TABLE, PART V:
COLUMN ADDITION AND REMOVAL

JTable allows us to dynamically add and remove TableColumns on the fly. Recall that the
TableColumnModel interface provides the methods addColumn() and removeColumn()
to programmatically add or remove a TableColumn respectively. In this section we add
dynamic column addition and removal to our StocksTable application.

Example 18.5

see \Chapter18\5

// Unchanged code from example 18.4

public class StocksTable extends JFrame {

StocksTable.java

STOCKS TABLE, PART V: COLUMN ADDITION AND REMOVAL 577

protected JTable m_table;
protected StockTableData m_data;
protected JLabel m_title;

public StocksTable() {
super("Stocks Table");
setSize(600, 300);

// Unchanged code from example 18.4

m_table.getColumnModel().addColumnModelListener(m_data);

setJMenuBar(createMenuBar());

JScrollPane ps = new JScrollPane();
ps.getViewport().setBackground(m_table.getBackground());
ps.getViewport().add(m_table);
getContentPane().add(ps, BorderLayout.CENTER);

}

 // Unchanged code from example 18.4

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 18.4

JMenu mView = new JMenu("View");

mView.setMnemonic('v');

TableColumnModel model = m_table.getColumnModel();

for (int k = 0; k < m_data.getColumnCount(); k++) {

JCheckBoxMenuItem item = new JCheckBoxMenuItem(

StockTableData.m_columns[k].m_title);

item.setSelected(true);

TableColumn column = model.getColumn(k);

Figure 18.5 JTable with dynamic column addition and removal

StockTableData now implements
TableColumnModelListener

New “View”
menu with
a check box
menu item
corresponding
to each table
column

578 CHAPTER 18 TABLES

item.addActionListener(new ColumnKeeper(column,

StockTableData.m_columns[k]));

mView.add(item);

}

menuBar.add(mView);

return menuBar;
}

// Unchanged code from example 18.4

public static void main(String argv[]) {
StocksTable frame = new StocksTable();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}

class ColumnKeeper implements ActionListener {

protected TableColumn m_column;

protected ColumnData m_colData;

public ColumnKeeper(TableColumn column, ColumnData colData) {

m_column = column;

m_colData = colData;

}

public void actionPerformed(ActionEvent e) {

JLabel renderer = (JLabel)m_column.getHeaderRenderer();

renderer.setIcon(null);

JCheckBoxMenuItem item = (JCheckBoxMenuItem)e.getSource();

TableColumnModel model = m_table.getColumnModel();

if (item.isSelected()) {

model.addColumn(m_column);

}

else {

model.removeColumn(m_column);

}

m_table.tableChanged(new TableModelEvent(m_data));

m_table.repaint();

}

}

}

// Unchanged code from example 18.4

class StockTableData extends AbstractTableModel
implements TableColumnModelListener{

// Unchanged code from example 18.4

protected SimpleDateFormat m_frm;
protected NumberFormat m_volumeFormat;
protected Vector m_vector;
protected Date m_date;
protected int m_columnsCount = m_columns.length;

public int m_sortCol = 0;

Keeps track of which
columns are added
and removed

New “View”
menu with
a check box
menu item
corresponding
to each table
column

Now implements
TableColumnModelListener
to keep track of how many
columns are visible

STOCKS TABLE, PART V: COLUMN ADDITION AND REMOVAL 579

public boolean m_sortAsc = true;

// Unchanged code from example 18.4

public int getColumnCount() {
return m_columnsCount;

}

// Unchanged code from example 18.4

public void columnAdded(TableColumnModelEvent e) {

m_columnsCount++;

}

public void columnRemoved(TableColumnModelEvent e) {

m_columnsCount--;

if (m_sortCol >= m_columnsCount)

m_sortCol = -1;

}

public void columnMarginChanged(ChangeEvent e) {}

public void columnMoved(TableColumnModelEvent e) {}

public void columnSelectionChanged(ListSelectionEvent e) {}

}

// Unchanged code from example 18.4

18.6.1 Understanding the code

Class StocksTable
The StocksTable constructor now adds m_data, our instance of StockTableData which
now implements TableColumnModelListener, to our table’s TableColumnModel to listen
for column additions and removals.

Our createMenuBar() method now adds several check box menu items to a new View
menu–one for each column. Each of these check box menu items receives a ColumnKeeper
instance as ActionListener.

Class StocksTable.ColumnKeeper
This inner class implements the ActionListener interface and serves to keep track of when
the user removes and adds columns to the table. The constructor receives a TableColumn
instance and a ColumnData object. The actionPerformed() method adds this column to
the model with the addColumn() method if the corresponding menu item is checked, and
removes this column from the model with removeColumn() if it is unchecked. To update the
table to properly reflect these changes, we call its tableChanged() method followed by a
repaint() request.

Class StockTableData
StockTableData now implements TableColumnModelListener and contains instance
variable m_columnsCount to keep track of the current column count. This variable is decre-
mented and incremented in the columnRemoved() and columnAdded(). It is also used in
StockTable’s createMenuBar() method for creating the appropriate number of check box
menu items (one corresponding to each column).

580 CHAPTER 18 TABLES

18.6.2 Running the code

Figure 18.5 shows the new View menu with an unchecked Change % menu item, and the
corresponding column hidden. Reselecting this menu item will place the column back in the
table at the end position. Verify that each menu item functions similarly.

18.7 EXPENSE REPORT APPLICATION

In constructing our StocksTable application we talked mostly about displaying and retriev-
ing data in JTable. In this section we will construct a basic expense report application, and in
doing so we will concentrate on table cell editing. We will also see how to implement dynamic
addition and removal of table rows.

The editing of data generally follows this scheme:

• Create an instance of the TableCellEditor interface. We can use the Default-
CellEditor class or implement our own. The DefaultCellEditor class takes a GUI
component as a parameter to its constructor: JTextField, JCheckBox, or JCom-
boBox. This component will be used for editing.

• If we are developing a custom editor, we need to implement the getTableCellEdi-
torComponent() method which will be called each time a cell is about to be edited.

• In our table model we need to implement the setValueAt(Object value, int nRow,
int nCol) method which will be called to change a value in the table when an edit
ends. This is where we can perform any necessary data processing and validation.

The data model for this example is designed as follows (where each row represents a column
in our JTable):

Example 18.6

see \Chapter18\6

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

Name Type Description

Date String Date of expense

Amount Double Amount of expense

Category Integer Category from pre-defined list

Approved Boolean Sign of approval for this expense

Description String Brief description

ExpenseReport.java

EXPENSE REPORT APPLICATION 581

import javax.swing.table.*;

public class ExpenseReport extends JFrame{

protected JTable m_table;
protected ExpenseReportData m_data;
protected JLabel m_tolatLbl;
protected JLabel m_approvedLbl;
protected NumberFormat m_moneyFormat =

NumberFormat.getCurrencyInstance(Locale.US);

static {
UIManager.put("ComboBox.foreground",

UIManager.getColor("Table.foreground"));
UIManager.put("ComboBox.background",

UIManager.getColor("Table.background"));
UIManager.put("ComboBox.selectionForeground",

UIManager.getColor("Table.selectionForeground"));
UIManager.put("ComboBox.selectionBackground",

UIManager.getColor("Table.selectionBackground"));
UIManager.put("ComboBox.font",

UIManager.getFont("Table.font"));
}

public ExpenseReport() {
super("Expense Report");
setSize(600, 300);

m_data = new ExpenseReportData(this);

m_table = new JTable();
m_table.setAutoCreateColumnsFromModel(false);
m_table.setModel(m_data);
m_table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

Figure 18.6 An expense report application illustrating custom cell editing,
rendering, and row addition/removal

Creates table
model and JTable

582 CHAPTER 18 TABLES

for (int k = 0; k < m_data.getColumnCount(); k++) {
TableCellRenderer renderer = null;
TableCellEditor editor = null;
switch (k) {
case ExpenseReportData.COL_DATE:

SimpleDateFormat dateFormat =
new SimpleDateFormat("MM/dd/yy");

renderer = new FormattedCellRenderer(dateFormat);
editor = new FormattedCellEditor(

new JFormattedTextField(dateFormat));
break;

case ExpenseReportData.COL_AMOUNT:
renderer = new FormattedCellRenderer(m_moneyFormat);
editor = new FormattedCellEditor(

new JFormattedTextField(m_moneyFormat));
break;

case ExpenseReportData.COL_CATEGORY:
renderer = new DefaultTableCellRenderer();
JComboBox combo = new JComboBox(

ExpenseReportData.CATEGORIES);
combo.setRequestFocusEnabled(false);
editor = new DefaultCellEditor(combo);
break;

case ExpenseReportData.COL_APPROVED:
renderer = new CheckCellRenderer();
JCheckBox chBox = new JCheckBox();
chBox.setHorizontalAlignment(JCheckBox.CENTER);
chBox.setBackground(m_table.getBackground());
editor = new DefaultCellEditor(chBox);
break;

case ExpenseReportData.COL_DESCRIPTION:
renderer = new DefaultTableCellRenderer();
JTextField txt = new JTextField();
txt.setBorder(null);
editor = new DefaultCellEditor(txt);
break;

}
if (renderer instanceof JLabel)

((JLabel)renderer).setHorizontalAlignment(
ExpenseReportData.m_columns[k].m_alignment);

if (editor instanceof DefaultCellEditor)
((DefaultCellEditor)editor).setClickCountToStart(2);

TableColumn column = new TableColumn(k,
ExpenseReportData.m_columns[k].m_width,
renderer, editor);

m_table.addColumn(column);
}

JTableHeader header = m_table.getTableHeader();
header.setUpdateTableInRealTime(false);

Create cell
renderers and
editors for each
column based
on date type

EXPENSE REPORT APPLICATION 583

JScrollPane ps = new JScrollPane();
ps.getViewport().setBackground(m_table.getBackground());
ps.setSize(550, 150);
ps.getViewport().add(m_table);
getContentPane().add(ps, BorderLayout.CENTER);

JToolBar tb = createToolbar();
getContentPane().add(tb, BorderLayout.NORTH);

JPanel p = new JPanel(new GridLayout(1, 2, 5, 5));

m_tolatLbl = new JLabel("Total: ");
m_tolatLbl.setFont(new Font("Helvetica", Font.PLAIN, 14));
m_tolatLbl.setBorder(new SoftBevelBorder(BevelBorder.LOWERED));
p.add(m_tolatLbl);

m_approvedLbl = new JLabel("Approved: ");
m_approvedLbl.setFont(new Font("Helvetica", Font.PLAIN, 14));
m_approvedLbl.setBorder(new SoftBevelBorder(BevelBorder.LOWERED));
p.add(m_approvedLbl);

getContentPane().add(p, BorderLayout.SOUTH);

calcTotal();
}

public void calcTotal() {
double total = 0;
double approved = 0;
for (int k=0; k<m_data.getRowCount(); k++) {

Double amount = (Double)m_data.getValueAt(k,
ExpenseReportData.COL_AMOUNT);

total += amount.doubleValue();

Boolean flag = (Boolean)m_data.getValueAt(k,
ExpenseReportData.COL_APPROVED);

if (flag.booleanValue())
approved += amount.doubleValue();

}
m_tolatLbl.setText("Total: "+m_moneyFormat.format(total));
m_approvedLbl.setText("Approved: "+m_moneyFormat.format(approved));

}

protected JToolBar createToolbar() {
JToolBar tb = new JToolBar();
tb.setFloatable(false);

JButton bt = new JButton(new ImageIcon("Insert24.gif"));
bt.setToolTipText("Insert Row");
bt.setRequestFocusEnabled(false);
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
int nRow = m_table.getSelectedRow()+1;
m_data.insert(nRow);

m_table.tableChanged(new TableModelEvent(
m_data, nRow, nRow, TableModelEvent.ALL_COLUMNS,

Toolbar with buttons
to add and delete rows

Calculates total amount
of expenses and updates labels

Toolbar with buttons
to insert and delete rows

584 CHAPTER 18 TABLES

TableModelEvent.INSERT));
m_table.setRowSelectionInterval(nRow, nRow);

}
};
bt.addActionListener(lst);
tb.add(bt);

bt = new JButton(new ImageIcon("Delete24.gif"));
bt.setToolTipText("Delete Row");
bt.setRequestFocusEnabled(false);
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
int nRow = m_table.getSelectedRow();
if (m_data.delete(nRow)) {

m_table.tableChanged(new TableModelEvent(
m_data, nRow, nRow, TableModelEvent.ALL_COLUMNS,
TableModelEvent.DELETE));

m_table.clearSelection();
calcTotal();

}
}

};
bt.addActionListener(lst);

tb.add(bt);

return tb;
}

public static void main(String argv[]) {
ExpenseReport frame = new ExpenseReport();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class CheckCellRenderer extends JCheckBox
 implements TableCellRenderer {

protected static Border m_noFocusBorder =
 new EmptyBorder(1, 1, 1, 1);

protected static Border m_focusBorder = UIManager.getBorder(
 "Table.focusCellHighlightBorder");

public CheckCellRenderer() {
super();
setOpaque(true);
setBorderPainted(true);
setBorder(m_noFocusBorder);
setHorizontalAlignment(JCheckBox.CENTER);

}

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int nRow, int nCol)

{
if (value instanceof Boolean) {

Cell renderer which uses
check boxes to be consistent
with corresponding editor

EXPENSE REPORT APPLICATION 585

Boolean b = (Boolean)value;
setSelected(b.booleanValue());

}

setBackground(isSelected && !hasFocus ?
table.getSelectionBackground() : table.getBackground());

setForeground(isSelected && !hasFocus ?
table.getSelectionForeground() : table.getForeground());

setFont(table.getFont());
setBorder(hasFocus ? m_focusBorder : m_noFocusBorder);

return this;
}

}

class FormattedCellRenderer extends DefaultTableCellRenderer {
protected Format m_format;

public FormattedCellRenderer(Format format) {
m_format = format;

}

public Component getTableCellRendererComponent(JTable table,
 Object value, boolean isSelected, boolean hasFocus,

 int nRow, int nCol)
{

return super.getTableCellRendererComponent(table,
value==null ? null : m_format.format(value),
isSelected, hasFocus, nRow, nCol);

}
}

class FormattedCellEditor extends DefaultCellEditor {
public FormattedCellEditor(

 final JFormattedTextField formattedTextField)
 {

super(formattedTextField);
formattedTextField.removeActionListener(delegate);
delegate = new EditorDelegate() {

public void setValue(Object value) {
formattedTextField.setValue(value);

}
public Object getCellEditorValue() {

return formattedTextField.getValue();
}

};
formattedTextField.addActionListener(delegate);
formattedTextField.setBorder(null);

}
}

class ExpenseData {
public Datem_date;
public Doublem_amount;
public Integer m_category;

Cell renderer used
to format data using

a given Format object

Cell editor
to provide
custom editing
capability using a
JFormattedTextField

Represents a row
of table data

586 CHAPTER 18 TABLES

public Boolean m_approved;
public Stringm_description;

public ExpenseData() {
m_date = new Date();
m_amount = new Double(0);
m_category = new Integer(1);
m_approved = new Boolean(false);
m_description = "";

}

public ExpenseData(Date date, double amount, int category,
 boolean approved, String description)

{
m_date = date;
m_amount = new Double(amount);
m_category = new Integer(category);
m_approved = new Boolean(approved);
m_description = description;

}
}

class ColumnData {
public Stringm_tolatLbl;
int m_width;
int m_alignment;

public ColumnData(String title, int width, int alignment) {
m_tolatLbl = title;
m_width = width;
m_alignment = alignment;

}
}

class ExpenseReportData extends AbstractTableModel {
public static final ColumnData m_columns[] = {

new ColumnData("Date", 80, JLabel.LEFT),
new ColumnData("Amount", 80, JLabel.RIGHT),
new ColumnData("Category", 130, JLabel.LEFT),
new ColumnData("Approved", 80, JLabel.CENTER),
new ColumnData("Description", 180, JLabel.LEFT)

};

public static final int COL_DATE = 0;
public static final int COL_AMOUNT = 1;
public static final int COL_CATEGORY = 2;
public static final int COL_APPROVED = 3;
public static final int COL_DESCRIPTION = 4;

public static final String[] CATEGORIES = {
"Fares", "Logging", "Business meals", "Others"

};

protected ExpenseReport m_parent;
protected Vector m_vector;

Custom table model
with overwritten
setValueAt() method

Holds column metadata

EXPENSE REPORT APPLICATION 587

public ExpenseReportData(ExpenseReport parent) {
m_parent = parent;
m_vector = new Vector();
setDefaultData();

}

public void setDefaultData() {
m_vector = new Vector();
try {

SimpleDateFormat f = new SimpleDateFormat("MM/dd/yy");
m_vector.addElement(new ExpenseData(

f.parse("12/06/04"), 200, 0, true,
"Airline tickets"));

m_vector.addElement(new ExpenseData(
f.parse("12/05/04"), 50, 2, false,
"Lunch with client"));

m_vector.addElement(new ExpenseData(
f.parse("12/05/04"), 120, 1, true,
"Hotel"));

}
catch (java.text.ParseException ex) {}

}

public int getRowCount() {
return m_vector==null ? 0 : m_vector.size();

}

public int getColumnCount() {
return m_columns.length;

}

public String getColumnName(int nCol) {
return m_columns[nCol].m_tolatLbl;

}

public boolean isCellEditable(int nRow, int nCol) {
return true;

}

public Object getValueAt(int nRow, int nCol) {
if (nRow < 0 || nRow>=getRowCount())

return "";
ExpenseData row = (ExpenseData)m_vector.elementAt(nRow);
switch (nCol) {

case COL_DATE:
return row.m_date;

case COL_AMOUNT:
return row.m_amount;

case COL_CATEGORY:
return CATEGORIES[row.m_category.intValue()];

case COL_APPROVED:
return row.m_approved;

case COL_DESCRIPTION:
return row.m_description;

}

588 CHAPTER 18 TABLES

return "";
}

public void setValueAt(Object value, int nRow, int nCol) {
if (nRow < 0 || nRow>=getRowCount() || value == null)

return;
ExpenseData row = (ExpenseData)m_vector.elementAt(nRow);
String svalue = value.toString();

switch (nCol) {
case COL_DATE:

row.m_date = (Date)value;
break;

case COL_AMOUNT:
if (value instanceof Double)

row.m_amount = (Double)value;
else

row.m_amount = new Double(((Number)value).doubleValue());
m_parent.calcTotal();
break;

case COL_CATEGORY:
for (int k=0; k<CATEGORIES.length; k++)

if (svalue.equals(CATEGORIES[k])) {
row.m_category = new Integer(k);
break;

}
break;

case COL_APPROVED:
row.m_approved = (Boolean)value;
m_parent.calcTotal();
break;

case COL_DESCRIPTION:
row.m_description = svalue;
break;

}
}

public void insert(int nRow) {
if (nRow < 0)

nRow = 0;
if (nRow > m_vector.size())

nRow = m_vector.size();
m_vector.insertElementAt(new ExpenseData(), nRow);

}

public boolean delete(int nRow) {
if (nRow < 0 || nRow >= m_vector.size())

return false;
m_vector.remove(nRow);
return true;

}
}

EXPENSE REPORT APPLICATION 589

18.7.1 Understanding the code

Class ExpenseReport
Class ExpenseReport extends JFrame and defines three instance variables:

• JTable m_table: table to edit data
• ExpenseReportData m_data: data model for this table
• JLabel m_total: label to dynamically display total amount of expenses
• JLabel m_approvedLbl: label to dynamically display total amount of approved

expenses only
• NumberFormat m_moneyFormat: used to format data in the Amount column and the

m_total and m_approvedLbl labels

The ExpenseReport constructor first instantiates our table model, m_data, and then instan-
tiates our table, m_table. The selection mode is set to single selection and we iterate through
the number of columns creating cell renderers and editors based on each specific column.
These renderers and editors are instances of our custom FormattedCellEditor and For-
mattedCellRenderer classes or DefaultTableCellEditor and DefaultTableCell-
Renderer. The only exception is the Approved column which uses an instance of our custom
CheckCellRenderer class as renderer.

The component used for editing varies: the Category column uses a JComboBox, the
Approved column uses a JCheckBox, the Amount and Date columns use a JFormatted-
TextField and the Description column uses a JTextField.

A JToolBar is created with our custom createToolBar() method and added to the top
of the frame. This toolbar contains two buttons that are responsible for inserting and deleting
rows. The delete button (shown with a trash can icon) deletes the currently selected row.
The insert button inserts a new row below the selected row. Note that when inserting a new
row we are careful to make the new row the selected row once it is added. Both buttons invoke
respective insert() and delete() methods on the ExpenseReportData instance to per-
form the actual deletion of the data from the model. The table is updated and repainted after
this is complete.

The m_total and m_approvedLbl labels are added to the bottom of the frame.

The calcTotal() method calculates the total amount of expenses in column COL_AMOUNT
using our table’s data model, m_data.

Class CheckCellRenderer
Since we use check boxes to edit our table’s Approved column, to be consistent we also need to
use check boxes for that column’s cell renderer (recall that cell renderers just act as rubber
stamps and are not at all interactive). The only GUI component which can be used in the
existing DefaultTableCellRenderer is JLabel, so we have to provide our own imple-
mentation of the TableCellRenderer interface. This class, CheckCellRenderer, uses
JCheckBox as a superclass. Its constructor sets the border to indicate whether the component
has the focus and sets its opaque property to true to indicate that the component’s back-
ground will be filled with the background color.

590 CHAPTER 18 TABLES

The only method which must be implemented in the TableCellRenderer interface is
getTableCellRendererComponent(). This method will be called each time the cell is
about to be rendered to deliver new data to the renderer. It takes six parameters:

• JTable table: reference to table instance
• Object value: data object to be sent to the renderer
• boolean isSelected: true if the cell is currently selected
• boolean hasFocus: true if the cell currently has the focus
• int row: cell’s row
• int column: cell’s column

Our implementation sets whether the JCheckBox is checked depending on the value passed
as Boolean. Then it sets the background, foreground, font, and border to ensure that each
cell in the table has a similar appearance.

Class FormattedCellRenderer
This class extends DefaultTableCellRenderer to format table data using a given Format
object. The getTableCellRendererComponent() method is implemented to simply for-
mat the data for a given cell with the Format instance.

Class FormattedCellEditor
This class extends DefaultCellEditor to provide custom editing capability using a JFor-
mattedTextField. The EditorDelegate is replaced by one that behaves appropriately in
setting and retrieving the value from JFormattedTextField.

NOTE DefaultCellEditor contains an internal class called EditorDelegate. By re-
placing the EditorDelegate of a DefaultCellEditor we can customize editor
behavior without changing the editor itself.

Class ExpenseData
Class ExpenseData represents a single row in the table. It holds five variables corresponding
to our data structure described in the beginning of this section.

Class ColumnData
Class ColumnData holds each column’s title, width, and header alignment.

Class ExpenseReportData
ExpenseReportData extends AbstractTableModel and should look somewhat familiar
from previous examples in this chapter (e.g., StockTableData), so we will not discuss this
class in complete detail. However, we should take a closer look at the setValueAt() method,
which is new for this example (all previous examples did not accept new data). This method is
called each time an edit is made to a table cell. First we determine which ExpenseData
instance (table’s row) is affected, and if it is invalid we simply return. Otherwise, depending
on the column of the changed cell, we define several cases in a switch structure to accept and
store a new value, or to reject it:

• For the Date column the input string is parsed using our SimpleDateFormat instance.
If parsing is successful, a new date is saved as a Date object, otherwise an error message
is displayed.

EXPENSE REPORT APPLICATION WITH VARIABLE HEIGHT ROWS 591

• For the Amount column the input string is parsed as a Double and stored in the table if
parsing is successful. Also new total and approved amounts are recalculated and dis-
played in the corresponding labels.

• For the Category column the input string is placed in the CATEGORIES array at the cor-
responding index and is stored in the table model.

• For the Approved column the input object is cast to a Boolean and stored in the table
model. Also new total and approved amounts are recalculated and displayed in the corre-
sponding labels.

• For the Description column the input string is directly saved in our table model.

18.7.2 Running the code

Try editing different columns and note how the corresponding cell editors work. Experiment
with adding and removing table rows and note how the total amount is updated each time the
Amount column is updated. Also note how the approved amount is updated each time the
Approved column is updated. Figure 18.7 shows ExpenseReport with a combo box opened
to change a cell’s value.

18.8 EXPENSE REPORT APPLICATION
WITH VARIABLE HEIGHT ROWS

As of Java 1.3 JTable allows variable height rows through use of the new setRowHeight()
method which takes two int parameters specifying target row index and height for that row.
Internally JTable makes use of the new javax.swing.SizeSequence class to track and
update each row’s height. This example builds off of the expense report application in section
18.7 to allow variable height rows with wrapping cell text.

Figure 18.7 Expense report application with variable height rows

592 CHAPTER 18 TABLES

Example 18.7

see \Chapter18\7

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.table.*;

public class ExpenseReport extends JFrame {

 // Unchanged code from example 18.6

public ExpenseReport() {
 // Unchanged code from example 18.6

for (int k = 0; k < m_data.getColumnCount(); k++) {
TableCellRenderer renderer = null;
TableCellEditor editor = null;
switch (k) {

 // Unchanged code from example 18.6

case ExpenseReportData.COL_DESCRIPTION:
renderer = new TextAreaCellRenderer();

editor = new TextAreaCellEditor();

break;
}

 // Unchanged code from example 18.6
}

 // Unchanged code from example 18.6
}

 // Unchanged code from example 18.6
}

// Unchanged code from example 18.6

class TextAreaCellRenderer extends JTextArea
 implements TableCellRenderer
{

protected static Border m_noFocusBorder =
 new EmptyBorder(1, 1, 1, 1);

protected static Border m_focusBorder = UIManager.getBorder(
"Table.focusCellHighlightBorder");

public TextAreaCellRenderer() {
setEditable(false);
setLineWrap(true);

ExpenseReport.java

Description column now uses
a custom text area renderer

Custom JTextArea-based
cell renderer which allows
variable height JTable rows
based on amount of text

EXPENSE REPORT APPLICATION WITH VARIABLE HEIGHT ROWS 593

setWrapStyleWord(true);
setBorder(m_noFocusBorder);

}

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int nRow, int nCol)

{
if (value instanceof String)

setText((String)value);

setBackground(isSelected && !hasFocus ?
table.getSelectionBackground() : table.getBackground());

setForeground(isSelected && !hasFocus ?
table.getSelectionForeground() : table.getForeground());

setFont(table.getFont());
setBorder(hasFocus ? m_focusBorder : m_noFocusBorder);

// Adjust row's height
int width = table.getColumnModel().getColumn(nCol).getWidth();
setSize(width, 1000);
int rowHeight = getPreferredSize().height;
if (table.getRowHeight(nRow) != rowHeight)

table.setRowHeight(nRow, rowHeight);

return this;
}

public String getToolTipText(MouseEvent event) {
return null;

}
}

// Unchanged code from example 18.6

class TextAreaCellEditor extends AbstractCellEditor
implements TableCellEditor

{
public static int CLICK_COUNT_TO_EDIT = 2;
protected JTextArea m_textArea;
protected JScrollPane m_scroll;

public TextAreaCellEditor() {
m_textArea = new JTextArea();
m_textArea.setLineWrap(true);
m_textArea.setWrapStyleWord(true);

m_scroll = new JScrollPane(m_textArea,
JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

}

public Component getTableCellEditorComponent(JTable table,
Object value, boolean isSelected,
int nRow, int nCol)

{
m_textArea.setBackground(table.getBackground());

JTextArea-based cell
editor allowing
mutiple line input
in a single cell

594 CHAPTER 18 TABLES

m_textArea.setForeground(table.getForeground());
m_textArea.setFont(table.getFont());
m_textArea.setText(value==null ? "" : value.toString());

return m_scroll;
}

public Object getCellEditorValue() {
return m_textArea.getText();

}

public boolean isCellEditable(EventObject anEvent) {
if (anEvent instanceof MouseEvent) {

int click = ((MouseEvent)anEvent).getClickCount();
return click >= CLICK_COUNT_TO_EDIT;

}
return true;

}
}

// Unchanged code from example 18.6

18.8.1 Understanding the code

Class ExpenseReport
The Description column now uses instances of our custom TextAreaCellRenderer and
TextAreaCellEditor as its renderer and editor respectively.

Class TextAreaCellRenderer
This class extends JTextArea and implements TableCellRenderer. Because this renderer
inherits base functionality from JTextArea it is fully capably of allowing word and line wrap-
ping. This is enabled in the constructor.

The getTableCellRendererComponent() method is implemented to adjust the corre-
sponding row’s height according to the preferred height of the renderer. This is accomplished
through use of JTable’s setRowHeight() method.

Class TextAreaCellEditor
This class extends AbstractCellEditor and implements TableCellEditor. It consists of
a line and word-wrapping enabled JTextArea within a JScrollPane. The getTableCell-
EditorComponent() method is implemented to return a reference to the JScrollPane.
In this way any amount of text can be entered into a cell in the “Description" column in a
WYSIWYG (what you see is what you get) fashion.

18.8.2 Running the code

Try entering large amounts of text in the Description column. Note that a row’s height will
not change until editing is completed and the cell editor is replaced with the renderer.

A JAVABEANS PROPERTY EDITOR 595

18.9 A JAVABEANS PROPERTY EDITOR

Now that we’re familiar with the table API we can complete the JavaBeans container intro-
duced in chapter 4 and give it the capability to edit the properties of JavaBeans. This dramat-
ically increases the possible uses of our simple container and makes it quite a powerful tool for
studying JavaBeans.

Figure 18.8 The BeanContainer JavaBeans property editor
using JTables as editing forms

596 CHAPTER 18 TABLES

Example 18.8

see \Chapter18\8

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.beans.*;
import java.lang.reflect.*;
import java.util.*;

import javax.swing.*;
import javax.swing.table.*;

import javax.swing.event.*;

import dl.*;

public class BeanContainer extends JFrame implements FocusListener
{
 protected Hashtable m_editors = new Hashtable();

 // Unchanged code from example 4.8

 protected JMenuBar createMenuBar() {
 // Unchanged code from example 4.8

 JMenu mEdit = new JMenu("Edit");
 mItem = new JMenuItem("Delete");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (m_activeBean == null)
 return;
 Object obj = m_editors.get(m_activeBean);

 if (obj != null) {

 BeanEditor editor = (BeanEditor)obj;

 editor.dispose();

 m_editors.remove(m_activeBean);

 }

 getContentPane().remove(m_activeBean);
 m_activeBean = null;
 validate();
 repaint();
 }
 };
 mItem.addActionListener(lst);
 mEdit.add(mItem);

 mItem = new JMenuItem("Properties...");

 lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if (m_activeBean == null)

 return;

 Object obj = m_editors.get(m_activeBean);

BeanContainer.java

Hashtable storing
editors for Beans

Deleting
active bean
also removes
an existing
BeanEditor

Menu item
to create or
reactivate a
BeanEditor

A JAVABEANS PROPERTY EDITOR 597

 if (obj != null) {

 BeanEditor editor = (BeanEditor)obj;

 editor.setVisible(true);

 editor.toFront();

 }

 else {

 BeanEditor editor = new BeanEditor(m_activeBean);

 m_editors.put(m_activeBean, editor);

 }

 }

 };

 mItem.addActionListener(lst);

 mEdit.add(mItem);

 menuBar.add(mEdit);

 // Unchanged code from example 4.8

 return menuBar;
 }

 // Unchanged code from example 4.8
}

class BeanEditor extends JFrame implements PropertyChangeListener
{
 protected Component m_bean;
 protected JTable m_table;
 protected PropertyTableData m_data;

 public BeanEditor(Component bean) {
 m_bean = bean;
 m_bean.addPropertyChangeListener(this);

 Point pt = m_bean.getLocationOnScreen();
 setBounds(pt.x+50, pt.y+10, 400, 300);
 getContentPane().setLayout(new BorderLayout());

 m_data = new PropertyTableData(m_bean);
 m_table = new JTable(m_data);

 JScrollPane ps = new JScrollPane();
 ps.getViewport().add(m_table);
 getContentPane().add(ps, BorderLayout.CENTER);

 setDefaultCloseOperation(HIDE_ON_CLOSE);
 setVisible(true);
 }

 public void propertyChange(PropertyChangeEvent evt) {
 m_data.setProperty(evt.getPropertyName(), evt.getNewValue());
 }

 class PropertyTableData extends AbstractTableModel
 {
 protected String[][] m_properties;
 protected int m_numProps = 0;
 protected Vector m_v;

Menu item
to create or
reactivate a
BeanEditor

Listens for property
change events on the Bean

Positions frame
slightly offset
from Bean

Table model with
one row for each
property/value pair
from the Bean

598 CHAPTER 18 TABLES

 public PropertyTableData(Component bean) {
 try {
 BeanInfo info = Introspector.getBeanInfo(
 m_bean.getClass());
 BeanDescriptor descr = info.getBeanDescriptor();
 setTitle("Editing "+descr.getName());
 PropertyDescriptor[] props = info.getPropertyDescriptors();
 m_numProps = props.length;

 m_v = new Vector(m_numProps);
 for (int k=0; k<m_numProps; k++) {
 String name = props[k].getDisplayName();
 boolean added = false;
 for (int i=0; i<m_v.size(); i++) {
 String str = ((PropertyDescriptor)m_v.elementAt(i)).
 getDisplayName();
 if (name.compareToIgnoreCase(str) < 0) {
 m_v.insertElementAt(props[k], i);
 added = true;
 break;
 }
 }
 if (!added)
 m_v.addElement(props[k]);
 }

 m_properties = new String[m_numProps][2];
 for (int k=0; k<m_numProps; k++) {
 PropertyDescriptor prop =
 (PropertyDescriptor)m_v.elementAt(k);
 m_properties[k][0] = prop.getDisplayName();
 Method mRead = prop.getReadMethod();
 if (mRead != null &&
 mRead.getParameterTypes().length == 0) {
 Object value = mRead.invoke(m_bean, null);
 m_properties[k][1] = objToString(value);
 }
 else
 m_properties[k][1] = "error";
 }
 }
 catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(
 BeanEditor.this, "Error: "+ex.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 }

 public void setProperty(String name, Object value) {
 for (int k=0; k<m_numProps; k++)
 if (name.equals(m_properties[k][0])) {
 m_properties[k][1] = objToString(value);

Gets property
descriptors from

Bean, using
Introspection

Sorts by
property name

Reads property
values by indirectly
executing the
“read” method,
using Reflection
to get the actual
method

Called from
fired events
to set a new
property value

A JAVABEANS PROPERTY EDITOR 599

 m_table.tableChanged(new TableModelEvent(this, k));
 m_table.repaint();
 break;
 }
 }

 public int getRowCount() { return m_numProps; }

 public int getColumnCount() { return 2; }

 public String getColumnName(int nCol) {
 return nCol==0 ? "Property" : "Value";
 }

 public boolean isCellEditable(int nRow, int nCol) {
 return (nCol==1);
 }

 public Object getValueAt(int nRow, int nCol) {
 if (nRow < 0 || nRow>=getRowCount())
 return "";
 switch (nCol) {
 case 0: return m_properties[nRow][0];
 case 1: return m_properties[nRow][1];
 }

 return "";
 }

 public void setValueAt(Object value, int nRow, int nCol) {
 if (nRow < 0 || nRow>=getRowCount())
 return;
 String str = value.toString();
 PropertyDescriptor prop = (PropertyDescriptor)m_v.
 elementAt(nRow);
 Class cls = prop.getPropertyType();
 Object obj = stringToObj(str, cls);
 if (obj==null)
 return; // Can't process

 Method mWrite = prop.getWriteMethod();
 if (mWrite == null || mWrite.getParameterTypes().length != 1)
 return;
 try {
 mWrite.invoke(m_bean, new Object[]{ obj });
 m_bean.getParent().doLayout();
 m_bean.getParent().repaint();
 m_bean.repaint();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 JOptionPane.showMessageDialog(
 BeanEditor.this, "Error: "+ex.toString(),
 "Warning", JOptionPane.WARNING_MESSAGE);
 }
 m_properties[nRow][1] = str;
 }

Can only edit
values in the
second column

Writes new
property value
to Bean, using

Reflection to get
method to call

600 CHAPTER 18 TABLES

 public String objToString(Object value) {
 if (value==null)
 return "null";
 if (value instanceof Dimension) {
 Dimension dim = (Dimension)value;
 return ""+dim.width+","+dim.height;
 }
 else if (value instanceof Insets) {
 Insets ins = (Insets)value;
 return ""+ins.left+","+ins.top+","+ins.right+","+ins.bottom;
 }
 else if (value instanceof Rectangle) {
 Rectangle rc = (Rectangle)value;
 return ""+rc.x+","+rc.y+","+rc.width+","+rc.height;
 }
 else if (value instanceof Color) {
 Color col = (Color)value;
 return ""+col.getRed()+","+col.getGreen()+","+col.getBlue();
 }
 return value.toString();
 }

 public Object stringToObj(String str, Class cls) {
 try {
 if (str==null)
 return null;
 String name = cls.getName();
 if (name.equals("java.lang.String"))
 return str;
 else if (name.equals("int"))
 return new Integer(str);
 else if (name.equals("long"))
 return new Long(str);
 else if (name.equals("float"))
 return new Float(str);
 else if (name.equals("double"))
 return new Double(str);
 else if (name.equals("boolean"))
 return new Boolean(str);
 else if (name.equals("java.awt.Dimension")) {
 int[] i = strToInts(str);
 return new Dimension(i[0], i[1]);
 }
 else if (name.equals("java.awt.Insets")) {
 int[] i = strToInts(str);
 return new Insets(i[0], i[1], i[2], i[3]);
 }
 else if (name.equals("java.awt.Rectangle")) {
 int[] i = strToInts(str);
 return new Rectangle(i[0], i[1], i[2], i[3]);
 }
 else if (name.equals("java.awt.Color")) {

Provides specialized
“toString” behavior

Builds conversion
of object to given
class

These cases
expect string
in format
produced by
objToString()
method

A JAVABEANS PROPERTY EDITOR 601

 int[] i = strToInts(str);
 return new Color(i[0], i[1], i[2]);
 }
 return null; // Not supported
 }
 catch(Exception ex) { return null; }
 }

 public int[] strToInts(String str) throws Exception {
 int[] i = new int[4];
 StringTokenizer tokenizer = new StringTokenizer(str, ",");
 for (int k=0; k<i.length &&
 tokenizer.hasMoreTokens(); k++)
 i[k] = Integer.parseInt(tokenizer.nextToken());
 return i;
 }
 }
}

18.9.1 Understanding the code

Class BeanContainer
This class (formerly BeanContainer from section 4.7) has received a new collection, Hashtable
m_editors, which has been added as an instance variable. This Hashtable holds references
to BeanEditor frames (used to edit beans, see below) as values, and the corresponding
Components being edited as keys.

A new menu item titled Properties... is added to the Edit menu. This item is used to either
create a new editor for the selected bean or activate an existing one (if any). The attached
ActionListener looks for an existing BeanEditor that corresponds to the currently selected
m_activeBean component in the m_editors collection. If such an editor is found, it is made
visible and brought to the front. Otherwise, a new instance of BeanEditor is created to edit
the currently active m_activeBean component, and it is added to the m_editors collection.

The ActionListener attached to the Delete menu item, which removes the currently active
component, receives additional functionality. The added code looks for an existing BeanEditor
that corresponds to the currently selected m_activeBean component in the m_editors collec-
tion. If such an editor is found, it is disposed of and its reference is removed from the hashtable.

Class BeanEditor
This class extends JFrame and implements the PropertyChangeListener interface. Bean-
Editor is used to display and edit the properties exposed by a given JavaBean. Three instance
variables are declared:

• Component m_bean: The JavaBean component to be edited.
• JTable m_table: The table component to display a bean’s properties.
• PropertyTableData m_data: The table model for m_table.

These cases
expect string
in format
produced by
objToString()
method

602 CHAPTER 18 TABLES

The BeanEditor constructor takes a reference to the JavaBean component to be edited and
stores it in instance variable m_bean. The initial location of the editor frame is selected depend-
ing on the location of the component being edited.

The table component, m_table, is created and added to a JScrollPane to provide
scrolling capabilities. We do not add a WindowListener to this frame. Instead we use the
HIDE_ON_CLOSE default close operation (see chapter 3):

 setDefaultCloseOperation(HIDE_ON_CLOSE);
 setVisible(true);

Upon closing, this frame will be hidden but not disposed of. Its reference will still be present
in the m_editors collection, and this frame will be reactivated if the user chooses to see the
properties of the associated bean again.

Note that an instance of the BeanEditor class is added as a PropertyChangeListener to
the corresponding bean being edited. The propertyChange() method is invoked if the bean
has changed its state during editing and a PropertyChangeEvent has been fired. This
method simply triggers a call to the setProperty() method of the table model.

Class BeanEditor.PropertyTableData
PropertyTableData extends AbstractTableModel and provides the table model for each
bean editor. Three instance variables are declared:

• String[][] m_properties: An array of data displayed in the table.
• int m_numProps: The number of bean properties (this corresponds to the number of

rows in the table).
• Vector m_v: A collection of PropertyDescriptor objects sorted in alphabetical order.

The constructor of the PropertyTableData class takes a given bean instance and retrieves its
properties. It first uses the Introspector.getBeanInfo() method to get a BeanInfo instance:

 BeanInfo info = Introspector.getBeanInfo(
 m_bean.getClass());
 BeanDescriptor descr = info.getBeanDescriptor();
 setTitle("Editing "+descr.getName());
 PropertyDescriptor[] props = info.getPropertyDescriptors();
 m_numProps = props.length;

This provides us with all the available information about a bean (see chapter 2). We determine
the bean’s name and use it as the editor frame’s title (note that this is an inner class, so set-
Title() refers to the parent BeanEditor instance). We then extract an array of Property-
Descriptors which will provide us with the actual information about a bean’s properties.

Bean properties are sorted by name in alphabetical order. The name of each property is deter-
mined by the getDisplayName() method. The sorted PropertyDescriptors are stored in
our m_v Vector collection. Then we can create the two-dimensional array, m_properties,
which holds data to be displayed in the table. This array has m_numProps rows and two col-
umns (for property name and value). To determine a property’s value, we need to obtain a ref-
erence to its getXX() method with getReadMethod() and make a call using the reflection
API. We can call only getXX() methods without parameters (since we don’t know anything

A JAVABEANS PROPERTY EDITOR 603

about these parameters). Note that our objToString() helper method is invoked to trans-
late a property’s value into a display string (see below).

The setProperty() method searches for the given name in the 0th column of the m_proper-
ties array. If such a property is found, this method sets its new value and updates the
table component.

Several other simple methods included in this class have already been presented in previous
examples and need not be explained again here. However, note that the isCellEditable()
method returns true only for cells in the second column (property names, obviously, cannot
be changed).

The setValueAt() method deserves additional explanation because it not only saves the
modified data in the table model, but it also sends these modifications to the bean component
itself. To do this we obtain a PropertyDescriptor instance that is stored in the m_v Vec-
tor collection. The modified property value is always a String, so we first need to convert it
into its proper object type using our stringToObj() helper method (if we can do this; see
below). If the conversion succeeds (if the result is not null), we can continue.

To modify a bean value we determine the reference to its setXX()method (which cor-
responds to a certain property) and invoke it. An anonymous array containing one element is
used as a parameter; these constructions are typical when dealing with the reflection API. Then
the bean component and its container (which can also be affected by changes in such properties
as size and color) are refreshed to reflect the bean’s new property value. Finally, if the above
procedures were successful, we store the new value in the m_properties data array.

The objToString() helper method converts a given Object into a String that is suitable
for editing. In many cases the toString() method returns a long string starting with the
class name. This is not very appropriate for editable data values, so for several classes we pro-
vide our own conversion into a string of comma-delimited numbers. For instance, a Dimen-
sion object is converted into a “width, height” form, Color is converted into a “red, green,
blue” form, and so on. If no special implementation is provided, an object’s toString()
string is returned.

The stringToObj() helper method converts a given String into an Object of the given
Class. The class’s name is analyzed and a conversion method is chosen to build the correct
type of object based on this name. The simplest case is the String class: we don’t need to do
any conversion at all in this case. For the primitive data types such as int or boolean, we
return the corresponding encapsulating (wrapper class) objects. For the several classes which
receive special treatment in the objToString() method (such as a Dimension or Color
object), we parse the comma-delimited string of numbers and construct the proper object. For
all other classes (or if a parsing exception occurs) we return null to indicate that we cannot
perform the required conversion.

18.9.2 Running the code

Figure 18.8 shows the BeanContainer container and two editing frames displaying the
properties of Clock and JButton components. This application provides a simple but pow-
erful tool for investigating Swing and AWT components as well as custom JavaBeans. We can
see all the exposed properties and modify many of them. If a component’s properties change

604 CHAPTER 18 TABLES

as a result of user interaction, our component properly notifies its listeners and we see an auto-
matic editor table update. Try serializing a modified component and restoring it from its file.
Notice how the previously modified properties are saved as expected.

It is natural to imagine using this example as a base for constructing a custom Swing IDE
(Integrated Development Environment). BeanContainer, combined with the custom resize
edge components developed in chapters 15 and 16, provides a fairly powerful base to work from.

605

C H A P T E R 1 9

Inside text components
19.1 Text package overview 605

19.1 TEXT PACKAGE OVERVIEW

A truly exhaustive discussion of the text package is beyond the scope of this book. However, in
this chapter we hope to provide enough information about text components and their underly-
ing constituents to leave you with a solid understanding of their inner workings. Picking up
where chapter 11 left off, we continue our discussion of the most significant aspects of the text
package classes and interfaces. In the next chapter, we’ll continue our study of text components
with the development of a full-featured HTML editor application. The examples in chapter 20
demonstrate practical applications of many of the complex topics covered in this chapter.

NOTE If, after reading this chapter, you want a more detailed treatment of the text pack-
age, we recommend Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood,
O’Reilly & Associates, 1998. This book includes roughly 300 pages of detailed
text-related class and interface descriptions. In particular, the discussion of Views
and EditorKits provides indispensable knowledge for any developer working on
support for a custom content type.

19.1.1 More about JTextComponent

abstract class javax.swing.text.JTextComponent
Associated with each JTextComponent is a set of Actions which are normally bound to specific
KeyStrokes (see section 2.13) and are managed in a hierarchically resolving set of Keymaps

606 CHAPTER 19 INSIDE TEXT COMPONENTS

(see section 19.1.23). We can retrieve a text component’s Actions as an array with the get-
Actions() method and we can retrieve and assign a new Keymap with getKeymap() and
setKeymap(), respectively.

All text components share a set of default Actions. Each of these Actions are instances
of TextAction by default (see section 19.1.24). JTextComponent provides a private static
EditorKit (see section 19.1.25) which consists of a set of four pre-built TextActions shared
by all text components through the use of a default Keymap instance (see section 19.1.26).

JTextComponent maintains a private reference to the text component that most recently
had the keyboard focus. TextActions are designed to take advantage of this, and each Text-
Action will operate on this component when it’s invoked in the event that the source of the
invoking event is not a text component.

Document content is structured hierarchically by Element implementations (see sec-
tion 19.1.9). Each Element maintains a set of attributes encapsulated in implementations of
the AttributeSet interface (see section 19.1.12). Many Elements also contain one or more
child Elements. Attributes that apply to one element also apply to all child Elements, but not
vice versa. Each Element has an associated start and end Position (see section 19.1.6).

AttributeSets can be applied manually to a region of text. However, it is often more
convenient to use Styles (see section 19.1.14). Styles are AttributeSet implementations
that we do not instantiate directly. Rather, Styles are created and maintained by instances of
StyleContext (see section 19.1.16), and each Style has an associated name that allows easy
reference. StyleContext also provides a means for sharing AttributeSets across a docu-
ment or possibly multiple documents, and it is particularly useful in large documents.

The cursor of a text component is defined by implementations of the Caret interface (see
section 19.1.19). We can retrieve the current Caret with getCaret(), and assign a new one
with setCaret(). A text component’s Caret is instantiated (but not maintained) by its UI
delegate. So when the look and feel of a particular text component changes, the Caret in use
will also change. JTextComponent supports the addition of CaretListeners that will receive
CaretEvents whenever the position of the Caret changes.

Text components also support an arbitrary number of highlights through implementations
of the Highlighter interface (see section 19.1.17). Highlighters are most often used to indi-
cate a specific selection. They can also be used for many other things, such as marking new text
additions. Highlighter maintains each highlighted region as an implementation of High-
lighter.Highlight, and each Highlight can be rendered using a Highlighter.High-
lightPainter implementation. As with Carets, a text area’s Highlighter is instantiated by
its UI delegate. We can assign and retrieve a text component’s Highlighter with setHigh-
lighter() and getHighlighter(), respectively.

JTextComponent also maintains a bound focusAccelerator property, as we dis-
cussed in chapter 11. This property is a char that is used to transfer focus to a text component
when the corresponding key is pressed simultaneously with the ALT key. JTextComponent
defines a private Action called focusAction whose actionPerformed() method calls
requestFocus(). Initially, focusAction is not attached to the text component (that is, it
is turned off). To activate it we use the setFocusAccelerator() method. Sending ‘\0’ to
the setFocusAccelerator() method turns it off. Internally, this method searches through
all registered KeyStrokes and checks whether any are associated with focusAction, using
the getActionForKeyStroke() method. If any are found, they are unregistered using the

TEXT PACKAGE OVERVIEW 607

unregisterKeyboardAction() method of JComponent. Finally, the character passed in is
used to construct a KeyStroke to register and associate with focusAction. This action is reg-
istered such that it will be invoked whenever the top-level window containing the given text
component has the focus:

 // From JTextComponent.java
 registerKeyboardAction(
 focusAction,KeyStroke.getKeyStroke(aKey,ActionEvent.ALT_MASK),
 JComponent.WHEN_IN_FOCUSED_WINDOW);

Each text component uses a subclass of BasicTextUI as its UI delegate. As we mentioned
earlier, each text component also has an EditorKit for storing Actions. This EditorKit is
referenced by the UI delegate. JTextField and JTextArea have default editor kits assigned
by the UI delegate, whereas JEditorPane and JTextPane maintain their own editor kits
independent of their UI delegate.

Unlike most Swing components, a text component’s UI delegate does not directly
define how that text component is rendered and laid out. Rather, it implements the View-
Factory interface (see section 19.1.29) which requires the implementation of one method:
create(Element e). This method returns a View instance (see section 19.1.28) which is
responsible for rendering the given Element. Each Element has an associated View that is
used to render it. Many different views are provided in the text package, and we will rarely need
to implement our own (although this is certainly possible). JTextArea, JTextField, and
JPasswordField have specific Views returned by their UI delegate’s create() method.
JEditorPane and JTextPane Views are created by the current EditorKit.

We can retrieve a Point location in the coordinate system of a text component corre-
sponding to a character offset with JTextComponent’s viewToModel() method. Similarly, we
can retrieve a Rectangle instance that describes the size and location of the View which is
responsible for rendering an Element occupying a given character offset with modelToView().

JTextComponent’s margin property specifies the space to use between its border and its
document content. Standard clipboard operations can be programmatically performed with
the cut(), copy(), and paste() methods.

JAVA 1.4 In Java 1.4 the new NavigationFilter class has been added in the javax.-
swing.text package. By installing an instance of NavigationFilter on a text
component, using the new setNavigationFilter() method, you can control
and restrict caret movement. NavigationFilter is most commonly used in
combination with an instance of JFormattedTextField.AbstractFormatter
(see section11.3).

Java 1.4 also includes a new DocumentFilter class in the javax.swing.text
package. When an instance of DocumentFilter is installed on a Document, all
invocations of insertString(), remove(), and replace() get forwarded on to
the DocumentFilter. This allows clean encapsulation of all custom document
mutation code. In this way different filters can be applied to various documents
without the need to change a given Document instance. To support Document-
Filters, AbstractDocument includes the new setDocumentFilter() and
getDocumentFilter() methods. DocumentFilter is most commonly used in
combination with an instance of JFormattedTextField.AbstractFormatter
(see section11.3).

608 CHAPTER 19 INSIDE TEXT COMPONENTS

19.1.2 The Document interface

abstract interface javax.swing.text.Document
In MVC terms, the model of a text component contains the text itself, and the Document
interface describes this model. A hierarchical set of Elements (see section 19.1.9) define the
structure of a Document. Each Document contains one or more root Elements, potentially
allowing more than one way of structuring the same content. Most documents only have one
structure, and hence one root element. This element can be accessed with getDefault-
RootElement(). All root elements, including the default root element, are accessible with
getRoot-Elements(), which returns an Element array.

NOTE We will not discuss the details of maintaining multiple structures, as this is very
rarely desired. See the API documentation for examples of situations in which
multiple structures might be useful.

Documents maintain two Positions which keep track of the beginning and end positions of
the content. These can be accessed with getStartPosition() and getEndPosition(),
respectively. Documents also maintain a length property, which is accessible with get-
Length(), that maintains the number of contained characters.

The Document interface declares methods for adding and removing Document-
Listeners (see section 19.1.8), for notification of any content changes, and for Undoable-
EditListeners (allowing easy access to built-in undo/redo support; refer to chapter 11 for
an example of adding undo/redo support to a text area).

Methods for retrieving, inserting, and removing content are also declared: getText(),
insertString(), and remove(). Each of these throws a BadLocationException if an
illegal (nonexistent) location in the document is specified. The insertString() method
requires an AttributeSet instance that describes the attributes to apply to the given text
(null can be used for this parameter). Plain text components will not pay any attention to this
attribute set. Text components using a StyledDocument instance most likely will pay
attention to these attributes.

The createPosition() method inserts a Position instance at a given index, and the
putProperty() and getProperty() methods insert and retrieve various properties that are
stored in an internal collection.

The render() method is unique. It takes a Runnable as a parameter, and it ensures
thread safety by not allowing document content to change while that Runnable is running.
This method is used by each text component’s UI delegate during painting.

19.1.3 The StyledDocument interface

abstract interface javax.swing.StyledDocument
This interface extends the Document interface to add functionality for working with Styles
and other AttributeSets. Implementations are expected to maintain a collection of Style
implementations. This interface also declares the notion of character and paragraph
attributes, and logical styles. What these mean is specific to each StyledDocument imple-
mentation (we will discuss these more when we talk about DefaultStyledDocument in
section 19.1.11).

TEXT PACKAGE OVERVIEW 609

The setCharacterAttributes() method assigns a given set of attributes to a given
range of document content. A boolean parameter is also required; it specifies whether pre-
existing attributes of the affected content should be overwritten (true) or merged (false—
only new attributes are assigned). The setParagraphAttributes() method works the same
way as setCharacterAttributes(), but it applies to the number of paragraphs spanned by
a given range of content. The getFont(), getBackground(), and getForeground()
methods take an AttributeSet parameter, and they are used for convenient access to the
corresponding attribute in the given set (if it exists).

StyledDocuments are meant to allow Styles to be added, removed, and retrieved from an
internal collection of Styles. The addStyle() method takes a String and a parent Style
as parameters and returns a new Style with the given name and given Style as its
resolving parent. The getLogicalStyle() method returns a Style that corresponds to the
paragraph containing the given character offset. The setLogicalStyle() method assigns a
Style to the paragraph that contains the given character offset. The getStyle() and remove-
Style() methods retrieve and remove a Style with the given name, respectively, in the internal
collection.

The getCharacterElement() and getParagraphElement() methods allow the retrie-
val of Elements that correspond to a given character offset. The definition of these
methods will vary based on the definition of paragraph and character Elements in a Styled-
Document implementation. Typically, a character Element represents a range of text contain-
ing a given offset, and a paragraph Element represents a paragraph containing the given offset.

19.1.4 AbstractDocument

abstract class javax.swing.text.AbstractDocument
AbstractDocument implements the Document interface and provides a base implementa-
tion for text component models. Two provided classes that extend AbstractDocument are
used by the Swing text components as their default model: PlainDocument and Default-
StyledDocument. PlainDocument is used by all the plain text components, such as JText-
Area, JTextField, and its subclass, JPasswordField. It provides support for character
data content only and does not support markup (such as multiple fonts and colors) of this
content. DefaultStyledDocument is used by more sophisticated text components such as
JEditorPane and its subclass, JTextPane. It provides support for text markup by imple-
menting the StyledDocument interface.

AbstractDocument specifies a mechanism that separates character data storage from the
structuring of that data. Thus, we have the capability to store our text however we like without
concern for how the document is structured and marked up. Similarly, we can structure a
document with little concern for how its data is stored. The significance of this structure-storage
separation will make more sense after we have discussed Elements and attributes below. Char-
acter data is stored in an instance of the inner Content interface which we will also discuss below.

This class defines the functionality for a basic read/write locking scheme. This scheme
enforces the rule that no write can occur while a read is occurring. However, multiple reads
can occur simultaneously. To obtain a read lock, we use the render() method, which releases
the read lock when it finishes executing the Runnable passed to it. No other access methods
acquire such a lock (making them not thread-safe). The getText() method, for example, does

610 CHAPTER 19 INSIDE TEXT COMPONENTS

not acquire a read lock. In a multithreaded environment, any text retrieved with this method
may be corrupted if a write occurred at the time the text was retrieved.

The read lock is basically just an increment in an internal variable that keeps track of the
number of readers. The readLock() method does this for us, and it will force the current
thread to wait until no write locks exist. When the Runnable finishes executing, the internal
reader-count variable is decremented—this is done by the readUnlock() method. Both of
these methods will simply do nothing and return if the current thread is the writer thread.
A StateInvariantError exception will be thrown if a read unlock is requested when there
are no readers.

The write lock is a reference to the writing thread. The writeLock() and write-
Unlock() methods take care of this for us. Whenever a modification is requested, the write
lock must first be obtained. If the writer thread is not null, and it is not the same as the
invoking thread, writeLock() blocks the current thread until the current writer releases
the lock by calling writeUnlock().

If we intend to use the protected reader- and writer-locking methods ourselves in a sub-
class, we should make sure that a readUnlock() call will be made no matter what happens
in the try block, using the following semantics:

 // From AbstractDocument.java
 try {
 readLock();
 // Do something
 } finally {
 readUnlock();
 }

All methods that modify document content must obtain a write lock before any modification
can take place. These methods include insertString() and remove().

AbstractDocument’s dump() method prints the document’s Element hierarchy to the
given PrintStream for debugging purposes. For example, the following class will dump a
JTextArea’s Element hierarchy to standard output.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;

public class DumpDemo extends JFrame
{
 JTextArea m_editor;

 public DumpDemo() {
 m_editor = new JTextArea();

 JScrollPane js1 = new JScrollPane(m_editor);
 getContentPane().add(js1, BorderLayout.CENTER);

 JButton dumpButton = new JButton("Dump");
 dumpButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 ((PlainDocument) m_editor.getDocument()).dump(System.out);
 }

TEXT PACKAGE OVERVIEW 611

 });

 JPanel buttonPanel = new JPanel();
 buttonPanel.add(dumpButton);

 getContentPane().add(buttonPanel, BorderLayout.SOUTH);

 setSize(300,300);
 setVisible(true);
 }

 public static void main(String[] args) {
 new DumpDemo();
 }
}

Typing this text in the JTextArea:

Swing is
powerful!!

produces the following output when the dump() method is invoked (this will make more
sense after we discuss Elements in section 19.1.9).

<paragraph>
 <content>
 [0,9][Swing is
]
 <content>
 [9,20][powerful!!
]
 <content>
 [20,21][
]
<bidi root>
 <bidi level
 bidiLevel=0
 >
 [0,21][Swing is
powerful!!
]

AbstractDocument also includes several significant inner classes and interfaces. We will
discuss most of them in this chapter. A brief overview is appropriate here:

• abstract class AbstractDocument.AbstractElement: Implements the Element
and MutableAttributeSet interfaces, allowing instances to act both as Elements and
the mutable AttributeSets that describe them. This class also implements the Tree-
Node interface, providing an easy means of displaying document structure with a JTree.

• class AbstractDocument.BranchElement: A concrete subclass of Abstract-
Document.AbstractElement that represents an Element which can contain multiple
child Elements (see section 19.1.9).

• class AbstractDocument.LeafElement: A concrete subclass of Abstract-
Document. AbstractElement that represents an Element which cannot contain child
Elements (see section 19.1.9).

612 CHAPTER 19 INSIDE TEXT COMPONENTS

• static abstract interface AbstractDocument.Content: Defines the data stor-
age mechanism used by AbstractDocument subclasses (see section 19.1.9).

• static abstract interface AbstractDocument.AttributeContext: Used for
efficient AttributeSet management (see section 19.1.16).

• static class AbstractDocument.ElementEdit: Extends AbstractUndoable-
Edit, implements DocumentEvent.ElementChange (see section 19.1.7), and allows
document changes to be undone and redone.

• class AbstractDocument.DefaultDocumentEvent: Extends CompoundEdit and
implements DocumentEvent (see section 19.1.7). Instances of this class are used by docu-
ments to create UndoableEdits, which can be used to create UndoableEditEvents for
dispatching to UndoableEditListeners. Instances of this class are also fired to any
registered DocumentListeners (see section 19.1.8) for change notification.

19.1.5 The Content interface

abstract static interface javax.swing.text.AbstractDocument.Content
In order to implement a data storage mechanism for text, AbstractDocument provides the
static Content interface. Every Document character storage mechanism must implement
this interface. (Images and other embedded objects are not considered to be part of a docu-
ment’s content.) Each Content instance represents a sequence of character data, and each
provides the ability to insert, remove, and retrieve character data with the insertString(),
remove(), getString(), and getChars() methods.

NOTE A special convenience class called Segment allows users to access fragments of
actual document text without having to copy characters into a new array for
processing. This class is used internally by text components to speed up searching
and rendering large documents.

Implementations of Content must also provide the ability to create position markers that
keep track of a certain location between characters in storage with the createPosition()
method. These markers are implementations of the Position interface.

Content implementations provide UndoableEdit objects that represent the state of
storage before and after any change is made. The insertString() and remove() methods
are meant to return such an object each time they are invoked, allowing insertions and
removals to be undone and redone.

Two Content implementations are included in the javax.swing.text package: String-
Content and GapContent. StringContent stores character data in a normal char array.
GapContent also stores data in a char array but it purposefully leaves an empty space, a gap,
in this array. According to the API documentation, “The gap is moved to the location of
changes to take advantage of common behavior where most changes are in the same location.
Changes that occur at a gap boundary are generally cheap and moving the gap is generally
cheaper than moving the array contents directly to accommodate the change.” This gap is
strictly used for internal efficiency purposes and is not accessible outside of this class.

TEXT PACKAGE OVERVIEW 613

NOTE StringContent was used in earlier implementations of PlainDocument and
DefaultStyledDocument, but it has been replaced by GapContent, which ex-
tends a package private class called GapVector. The gap buffer algorithm used in
GapContent is very efficient for keeping track of large numbers of Positions
and, interestingly, it is used in the popular emacs editor.

19.1.6 The Position interface

abstract interface javax.swing.text.Position
This interface consists of one method, getOffset(), which returns an int value represent-
ing the location, or offset, from the beginning of the document’s content. Figure 19.1 illus-
trates what happens to a Position marker when text is inserted and removed from storage.
This figure starts by showing a document containing “Swing text” as its content. There are
initially Position markers at offsets 0, 4, and 7. When we remove the characters from offset
4 through 9, the Position at offset 7 is moved to offset 4. At this point there are two Posi-
tions at offset 4 and the document content is “Swin.” When we insert “g is” at offset 4, both
Positions at offset 4 are moved to offset 8 and the document content becomes “Swing is.”

NOTE The term range refers to a sequence of characters between two Position markers
as shown in figure 19.1.

19.1.7 The DocumentEvent interface

abstract interface javax.swing.event.DocumentEvent
Changes to a Document’s content are encapsulated in implementations of the Document-
Event interface, the default implementation of which is AbstractDocument.Default-
DocumentEvent. Three types of changes can be made to document content: CHANGE, INSERT,
and REMOVE (these fields are defined within the DocumentEvent.EventType inner class).
DocumentEvent also defines an interface within it called ElementChange. Implementa-
tions of this interface, the default of which is AbstractDocument.ElementEdit, are
responsible for storing information about changes to the structure of a document for use in

Figure 19.1
Position movement

614 CHAPTER 19 INSIDE TEXT COMPONENTS

undo and redo operations, among other things. AbstractDocument handles the firing of
Default-DocumentEvents appropriately with its fireXXUpdate() methods.

The getChange() method takes an Element instance as a parameter and returns an
instance of DocumentEvent.ElementChange describing the elements that were added and/
or removed, as well as the location of a change. The getDocument() method returns a
reference to the Document instance that generated this event. The getLength() method
returns the length of a change, and the getOffset() method returns the offset at which a
change began. The getType() method returns an instance of Document.EventType speci-
fying the type of change that occurred to the document.

19.1.8 The DocumentListener interface

abstract interface javax.swing.event.DocumentListener
Instances of this interface can be attached to Documents and each Document will notify its
attached DocumentListeners whenever a change occurs to its content. It is important to
note that this notification will always occur after any content has been updated. Knowing this,
it is even more important to realize that we should not perform any changes to the content of
a document from within a DocumentListener. This can potentially result in an infinite loop
in situations where a document event causes another to be fired.

NOTE Never modify the contents of a document from within a DocumentListener.

The insertUpdate() and removeUpdate() methods give notification of content insertions
and removals. The changedUpdate() method provides notification of attribute changes.

19.1.9 The Element interface

abstract interface javax.swing.text.Element
Elements provide a hierarchical means of structuring a Document’s content. Associated with
each Element is a set of attributes encapsulated in an AttributeSet implementation. These
attributes provide a way to specify the markup of content associated with each Element.
AttributeSets most often take the form of Style implementations and they are grouped
together inside a StyleContext object. StyleContext objects are used by Styled-
Document implementations such as DefaultStyledDocument. The objects that are respon-
sible for actually rendering text components are implementations of the abstract View class.
Each Element has a separate View object associated with it, and each View recognizes a pre-
defined set of attributes used in the actual rendering and layout of that Element.

NOTE Elements are objects that impose structure on a text component’s content. They
are actually part of the document model, but they are also used by views for text
component rendering.

The getAttributes() method retrieves an AttributeSet collection of attributes describ-
ing an Element. The getElement() method fetches a child Element at the given index,
where the index is given in terms of the number of child Elements. The getElement-
Count() method returns the index of the Element closest to the provided document content
offset. The getElementCount() method returns the number of child Elements an Ele-
ment contains (it returns 0 if the parent Element is itself a leaf). The isLeaf() method tells

TEXT PACKAGE OVERVIEW 615

us whether an Element is a leaf element, and getParentElement() returns an Element’s
parent Element.

The getDocument() method retrieves the Document instance an Element belongs to.
The getStartOffset() and getEndOffset() methods return the offset of the beginning
and end of an Element, respectively, from the beginning of the document. The getName()
method returns a short String description of an Element.

AbstractDocument defines the inner class AbstractElement, which implements the
Element interface. As we mentioned earlier, two subclasses of AbstractElement are defined
within AbstractDocument: LeafElement and BranchElement. Each LeafElement has a
specific range of content text associated with it (this range can change when content is inserted,
removed, or replaced—figures 19.2 and 19.3 illustrate). LeafElements cannot have any child
Elements. BranchElements can have any number of child Elements. The range of content
text associated with BranchElements is the union of all content text associated with their child
LeafElements. (Thus the start offset of a BranchElement is the lowest start offset of all its
child LeafElements, and its end offset is the highest end offset of all its child LeafElements.)
DefaultStyledDocument provides a third type of element called Section-Element which
extends BranchElement.

The text package also includes an ElementIterator class, which traverses an Element
hierarchy in a depth-first fashion (meaning postorder; see section 17.1.2). The first(),
current(), depth(), next(), and previous() methods can be used to obtain information
about, and programmatically traverse, an Element hierarchy. We can construct an Element-
Iterator object by providing either a Document or an Element to the ElementIterator
constructor. If a Document is provided, the default root Element of that document is used as
the root of the Element hierarchy traversed by ElementIterator.

NOTE ElementIterator does not provide any thread safety by default, so it is our
responsibility to make sure that no Element changes occur during traversal.

19.1.10 PlainDocument

class javax.swing.text.PlainDocument
This class extends AbstractDocument and it is used by the basic text components JText-
Field, JPasswordField, and JTextArea. When we are enforcing certain input, usually in
a JTextField, we normally override AbstractDocument’s insertString() method in a
PlainDocument subclass (see the discussion of JTextField in chapter 11 for an example).

PlainDocument uses a BranchElement as its root and has only LeafElements as
children. In this case, each LeafElement represents a line of text and the root BranchEle-
ment represents the whole document text. PlainDocument identifies a BranchElement as
“paragraph” and a LeafElement as “content.” The notion of a paragraph in PlainDocument
is much different than our normal notion of a paragraph. We usually think of paragraphs as
sections of text separated by line breaks. However, PlainDocument considers each section of
text ending with a line break as a line of “content” in its never-ending “paragraph.” Figures
19.2 and 19.3 show the structure of a sample PlainDocument, and they illustrate how
Elements and their associated Positions can change when document content changes.

Figure 19.2 shows a PlainDocument that contains three elements. Two LeafElements
represent two lines of text and are children of the root BranchElement. The root element

616 CHAPTER 19 INSIDE TEXT COMPONENTS

begins at offset 0, the start offset of the first LeafElement, and it ends at 19, the end offset
of the last LeafElement. This document would be displayed in a JTextArea as:

Swing is
powerful!!

NOTE The line break at the end of the second LeafElement is always present at the end
of the last Element in any PlainDocument. It does not represent a line break that
was actually inserted into the document and it is not counted when the document
length is queried using the getLength() method. Thus the length of the docu-
ment shown in figure 19.2 would be returned as 19.

Now suppose we insert two line breaks at offset 5. Figure 19.3 shows the structure that would
result from this addition.

This document would now be displayed in a JTextArea as:

Swing

 is
powerful!!

JTextArea, JTextField, and JPasswordField use PlainDocument as their model. Only
JTextArea allows its document to contain multiple LeafElements. JTextField and its
JPasswordField subclass allow only one LeafElement.

Figure 19.2
A sample PlainDocument structure

Figure 19.3
A sample PlainDocument structure
after inserting two line breaks at offset

TEXT PACKAGE OVERVIEW 617

19.1.11 DefaultStyledDocument

class javax.swing.text.DefaultStyledDocument
DefaultStyledDocument provides significantly more power than the PlainDocument struc-
ture described above. This StyledDocument implementation (see section 19.1.3) is used for
marked-up (styled) text. JTextPane uses an instance of DefaultStyledDocument by default,
although this instance may change based on JTextPane’s content type.

DefaultStyledDocument uses an instance of its inner SectionElement class as its
root Element; the root has only instances of AbstractDocument.BranchElement as chil-
dren.These BranchElements represent paragraphs, which are referred to as paragraph Ele-
ments, and they contain instances of AbstractDocument.LeafElement as children. These
LeafElements represent what are referred to as character Elements. Character Elements rep-
resent regions of text (possibly multiple lines within a paragraph) that share the same attributes.

We can retrieve the character Element that occupies a given offset with the get-
CharacterElement() method, and we can retrieve the paragraph Element that occupies a
given offset with the getParagraphElement() method.

We will discuss attributes, AttributeSets, and their usage details soon enough. How-
ever, it is important to understand here that AttributeSets assigned to DefaultStyled-
Document Elements resolve hierarchically. For instance, a character Element will inherit all
attributes assigned to itself, as well as those assigned to the parent paragraph Element.
Character Element attributes override those of the same type that are defined in the parent
paragraph Element’s AttributeSet.

NOTE The Elements used by DefaultStyledDocument are derived from Abstract-
Document.AbstractElement, which implements both the Element and
MutableAttributeSet interfaces. This allows these Elements to act as their own
AttributeSets and use each other as resolving parents.

Figure 19.4 shows a simple DefaultStyledDocument in a JTextPane with two paragraphs.

Using AbstractDocument’s dump() method to display this document’s Element structure
to standard output (see section 19.1.4), we get the following:

<section>
 <paragraph
 RightIndent=0.0
 LeftIndent=0.0
 resolver=NamedStyle:default {name=default,nrefs=2}
 FirstLineIndent=0.0
 >

Figure 19.4
A two-paragraph DefaultStyledDocument,
with several different attributes, in a JTextPane

618 CHAPTER 19 INSIDE TEXT COMPONENTS

 <content
 underline=false
 bold=true
 foreground=java.awt.Color[r=0,g=128,b=0]
 size=22
 italic=false
 family=SansSerif
 >
 [0,6][Swing
]
 <paragraph
 RightIndent=0.0
 LeftIndent=0.0
 resolver=NamedStyle:default {name=default,nrefs=2}
 FirstLineIndent=0.0
 >
 <content
 underline=false
 bold=false
 foreground=java.awt.Color[r=0,g=0,b=0]
 size=12
 italic=false
 family=SansSerif
 >
 [6,9][is]
 <content
 underline=false
 bold=false
 foreground=java.awt.Color[r=0,g=0,b=0]
 size=12
 italic=false
 family=SansSerif
 >
 [9,19][extremely]
 <content
 underline=false
 bold=false
 foreground=java.awt.Color[r=0,g=0,b=192]
 size=18
 italic=true
 family=SansSerif
 >
 [19,27][powerful]
 <content
 underline=false
 bold=true
 foreground=java.awt.Color[r=255,g=0,b=0]
 size=20
 italic=false
 family=SansSerif
 >
 [27,28][!]

TEXT PACKAGE OVERVIEW 619

 <content>
 [28,29][
]
<bidi root>
 <bidi level
 bidiLevel=0
 >
 [0,29][Swing
is extremely powerful!
]

Note the use of <section>, <paragraph>, and <content> to denote SectionElement,
BranchElement, and LeafElement, respectively. Also note that the <paragraph> and
<content> tags each contain several attributes. The <paragraph> attributes represent para-
graph Element attributes and the <content> attributes represent character Element
attributes. We will discuss specific attributes in more detail later. The <bidi root> tag speci-
fies a second root Element that allows bidirectional text (this functionality is incomplete as of
Java 2 FCS).

We can assign paragraph and character attributes to a region of text with the set-
ParagraphAttributes() and setCharacterAttributes() methods. These methods
require a start and end offset that specifies the region to apply the attributes to, as well as an
AttributeSet that contains the attributes, and a boolean flag that specifies whether to replace
pre-existing attributes with the new attributes.

Regarding the range of text, paragraph attributes will be applied to paragraph Elements
that contain at least some portion of the specified range. Character attributes will be applied
to all character Elements that intersect that range. If the specified range only partially extends
into a paragraph Element, that Element will be split into two, so that only the specified range
of text will receive the new attributes (this splitting is handled by an instance of the Element-
Buffer inner class).

If the boolean flag is true, all pre-existing paragraph Element attributes are removed
before the new set is applied. Otherwise, the new set is merged with the old set, and any new
attributes overwrite pre-existing attributes. Character attributes work in a similar way, but they
do not change paragraph attributes at all—they simply override them.

DefaultStyledDocument also defines the notion of logical paragraph Styles. A logical
paragraph Style acts as the resolving parent of a paragraph Element’s AttributeSet. So
attributes defined in a paragraph Element’s AttributeSet override those defined in that
paragraph’s logical Style. We can change a specific paragraph Element’s logical style with the
setLogicalStyle() method. The logical style of each paragraph defaults to Style-
Context.DEFAULT_STYLE (which is empty by default).

JTextPane implements the getParagraphAttributes(), setParagraphAttri-
butes(), getLogicalStyle(), and setLogicalStyle() methods which communicate
directly with its StyledDocument. JTextPane’s paragraph attributes and logical style setXX()
methods apply to the paragraph the caret currently resides in if there is no selection. If there
is a selection, these methods apply to all paragraphs included in the selected region. JText-
Pane’s paragraph attributes and logical style getXX() methods apply to the paragraph cur-
rently containing the caret.

620 CHAPTER 19 INSIDE TEXT COMPONENTS

JTextPane also implements the getCharacterAttributes() and setCharacter-
Attributes() methods. If there is a selection, the setCharacterAttributes() method
will act as described above, splitting Elements as needed. If there is no selection, this method
will modify JTextPane’s input attributes.

NOTE JTextPane’s input attributes are an AttributeSet which changes with the loca-
tion of the caret. This reference always points to the attributes of the character
Element at the current caret location. We can retrieve it at any time with JText-
Pane’s getInputAttributes() method. Whenever text is inserted in a JText-
Pane, the current input attributes will be applied to that text by default. However,
any attributes explicitly assigned to newly inserted text will override those defined
by the current input attributes.

A StyleContext instance (see section 19.1.16) is associated with each DefaultStyled-
Document. As we mentioned in the beginning of this chapter, the Style interface describes a
named mutable AttributeSet, and the StyledDocument interface describes a Document
which manages a set of Styles. A DefaultStyledDocument’s StyleContext instance is
what performs the actual management, creation, and assignment of that document’s Styles.
If a StyleContext is not provided to the DefaultStyledDocument constructor, a default
version is created.

JTextPane defines several methods for adding, removing, and retrieving Styles, as well
as specific attributes within a given AttributeSet (such as the getFont() and getFore-
ground() methods). Calls to these methods are forwarded to methods of the same signature
in JTextPane’s StyledDocument, and, in the case of DefaultStyledDocument, these calls
are forwarded to the StyleContext in charge of all the Styles.

DefaultStyledDocument also includes several significant inner classes:

• static class DefaultStyledDocument.AttributeUndoableEdit: This class
extends AbstractUndoableEdit to allow AttributeSet undo/redo functionality
with Elements.

• class DefaultStyledDocument.ElementBuffer: Instances of this class are used to
manage structural changes in a DefaultStyledDocument, such as the splitting of
Elements, or the insertion and removal of text that results in the modification of, and
the insertion and/or removal of, various Elements. This class also plays a critical role in
constructing AbstractDocument.DefaultDocumentEvents (see section 19.1.4).

• static class DefaultStyledDocument.ElementSpec: This class describes an
Element that can be created and inserted into a document in the future with an
ElementBuffer.

• protected class DefaultStyledDocument.SectionElement: This class extends
AbstractDocument.BranchElement and acts as a DefaultStyledDocument’s default
root Element. It contains only BranchElement children (which represent paragraphs).

19.1.12 The AttributeSet interface

abstract interface javax.swing.text.AttributeSet
An attribute is simply a key/value pair (as in a Hashtable) that should be recognized by
some View implementation available to the text component being used. As we know from

TEXT PACKAGE OVERVIEW 621

our discussion above, each Element in a DefaultStyledDocument has an associated set
of attributes which resolves hierarchically. The attributes play a critical role in how that piece
of the document will be rendered by a View. For example, one commonly used attribute is
FontFamily. The FontFamily attribute key is an Object consisting of the String “fam-
ily.” The FontFamily attribute value is a String representing the name of a font (such as
“monospaced”). Other examples of attribute keys include “Icon” and “Component,” whose
values are instances of Icon and Component.

If an attribute is not recognized by a View, the Element associated with that view will
not be rendered correctly. Thus, a predefined set of attributes is recognized by the Swing View
classes, and these attribute keys should be considered reserved—in other words, all new
attributes should use new keys. These predefined attribute keys are all accessible as static
Objects in the StyleConstants class (see section 19.1.15).

Sets of attributes are encapsulated in implementations of either the AttributeSet inter-
face, the MutableAttributeSet interface (see section 19.1.13), or the Style interface (see
section 19.1.14). Style extends MutableAttributeSet, which, in turn, extends Attribute-
Set. The AttributeSet interface describes a read-only set of attributes because it does not
provide methods for changing, adding, or removing attributes from that set.

The containsAttribute() and containsAttributes() methods are used to check
whether an AttributeSet contains a given attribute key/value pair or any number of such
pairs. The copyAttributes() method returns a fresh, immutable copy of the Attribute-
Set it is invoked on. The getAttributeCount() method returns the number of attributes
contained in a set, and getAttributeNames() retrieves an Enumeration of the keys that
describe each attribute. The isDefined() method checks whether a given attribute key cor-
responds to an attribute directly stored in the AttributeSet the method is invoked on (the
resolving parents are not searched). The isEqual() method compares two AttributeSets
and returns whether they contain identical attribute key/value pairs. The getResolve-
Parent() method returns a reference to an AttributeSet’s resolving parent, if any, and the
getAttribute() method returns the value of an attribute corresponding to a given key.

The AttributeSet interface also provides four empty static interfaces: Character-
Attribute, ColorAttribute, FontAttribute, and ParagraphAttribute. The only
reason these interfaces exist is to provide a signature (for example, information about the class
in which it is defined), which is expected of each attribute key. This signature can be used to
verify whether an attribute belongs to a certain category (see section 19.1.15).

Only one direct implementation of the AttributeSet interface exists within the text
package: StyleContext.SmallAttributeSet. A SmallAttributeSet is an array of
attribute key/value pairs stored in the alternating pattern: key1, value1, key2, value2, and so
on (thus the number of attributes contained in a SmallAttributeSet is actually half the size
of its array). An array is used for storage because AttributeSet describes a read-only set of
attributes, and using an array is more memory-efficient than dynamically resizable storage such
as that provided by a Hashtable. However, it is less time-efficient to search through an array
than a Hashtable. For this reason, SmallAttributeSet is used only for small sets of
attributes. These sets are usually shared between several Elements. Because of the way sharing
works (see section 19.1.16), the smaller the set of attributes is, the better candidate that set is
for being shared.

622 CHAPTER 19 INSIDE TEXT COMPONENTS

19.1.13 The MutableAttributeSet interface

abstract interface javax.swing.text.MutableAttributeSet
The MutableAttributeSet interface extends the AttributeSet interface and declares
additional methods that allow attribute addition and removal, and resolving parent assign-
ment: addAttribute(), addAttributes(), setResolveParent(), removeAttribute(),
and two variations of removeAttributes().

MutableAttributeSet also has two direct implementations within the text package:
AbstractDocument.AbstractElement and SimpleAttributeSet. The fact that Abstract-
Element implements MutableAttributeSet allows such Elements to act as resolving par-
ents to one another. It also reduces object overhead by combining structural information about
a region of text with that region’s stylistic attributes.

SimpleAttributeSet uses a Hashtable to store attribute key/value pairs because it
must be dynamically resizable. By nature, a Hashtable is less efficient than an array in mem-
ory usage, but it is more efficient in look-up speed. For this reason, SimpleAttributeSets
are used for large sets of attributes that are not shared.

NOTE In the past few sections we have alluded to the importance of efficiency in attribute
storage. Efficiency here refers to both memory usage and the speed of attribute
location. Here’s a quick summary of the issues: A View uses attributes to determine
how to render its associated Element. These attribute values must be located, by
key, within that Element’s attribute set hierarchy. The faster this location occurs,
the more quickly the view is rendered and the more responsive the user interface
becomes. So look-up speed is a large factor in deciding how to store attribute key/
value pairs.

Memory usage is also a large issue. Obtaining efficient look-up speed involves sac-
rificing efficient memory usage, and vice versa. This necessary trade-off is taken
into account through the implementation of the different attribute storage mecha-
nisms described above, and the intelligent management of when each mechanism
is used. We will soon see that the StyleContext class acts as, this intelligent
manager, among other things.

19.1.14 The Style interface

abstract interface javax.swing.text.Style
The Style interface extends MutableAttributeSet and it provides the ability to attach lis-
teners for notification of changes to its set of attributes. Style also adds a String that is used
for name identification. The only direct implementation of the Style interface is provided by
StyleContext.NamedStyle. Internally, NamedStyle maintains its own private Attribute-
Set implementation that contains all its attributes. This AttributeSet can be an instance of
StyleContext.SmallAttributeSet or SimpleAttributeSet, and it may switch back
and forth between these types over the course of its lifetime (this will become clear after our
discussion of StyleContext).

TEXT PACKAGE OVERVIEW 623

19.1.15 StyleConstants

class javax.swing.text.StyleConstants
The StyleConstants class categorizes predefined attribute keys into members of four static
inner classes: CharacterConstants, ColorConstants, FontConstants, and Paragraph-
Constants. These Objects are all aliased from their outer class, StyleConstants, so they
are more easily accessible (aliasing here means providing a reference to an object of an inner
class). Also, both ColorConstants and FontConstants keys are aliased by Character-
Constants to provide a sensible hierarchy of attribute key organization.

NOTE Not all aliased keys use the same name in each class. For instance, FontFamily in
StyledConstants is an alias of Family in StyledConstants.Character-
Constants. However, Family in StyledConstants.CharacterConstants is
an alias of Family (the actual key) in StyledConstants.FontConstants. Each
is a reference to the same key object and it makes no difference which one we use.

The meanings of most keys are self-explanatory. The StyleConstants API documentation
page contains a helpful diagram that illustrates the meaning of some of the less self-explana-
tory attribute keys that apply to paragraphs of styled text. (Each of the keys illustrated in this
diagram is an alias of the actual key defined in StyleConstants.ParagraphConstants.)

StyleConstants also defines static methods for assigning and retrieving many pre-
defined attributes in an AttributeSet. For example, to assign a specific font family attribute
to an AttributeSet (assuming it is mutable), we can use StyleConstants’ setFont-
Family() method.

19.1.16 StyleContext

class javax.swing.text.StyleContext
StyleContext implements the AbstractDocument.AttributeContext interface, and it
declares a set of methods that are used to modify or fetch new instances of AttributeSet
implementations. AbstractContext was designed with the understanding that the imple-
mentor may use more than one type of AttributeSet implementation to store sets of
attributes. The decision to use one type over another may be based on any number of factors,
and StyleContext takes full advantage of this design.

StyleContext’s main role is to act as a container for Styles that may be used by one
or more DefaultStyledDocuments. It maintains a private NamedStyle instance that is used
to store its Styles and allow access by name. Each of these contained Styles is also an instance
of NamedStyle. So, to clarify, StyleContext maintains a NamedStyle instance whose key/
value pairs are of the form String/NamedStyle.

StyleContext also maintains a subset of these NamedStyle values in a Hashtable.
Only those NamedStyle’s whose AttributeSet contains nine or fewer attributes are stored
in this Hashtable and their AttributeSets are maintained as instances of SmallAttribute-
Set. Those NamedStyles with an AttributeSet containing ten or more attributes are not
stored in the Hashtable, and their AttributeSets are maintained as instances of Simple-
AttributeSet.

This partitioning is managed dynamically by StyleContext, and it is the result of
combining the AbstractContext design with the use of a compression threshold (a hard-

624 CHAPTER 19 INSIDE TEXT COMPONENTS

coded int value of 9). Whenever an attribute is added or removed, StyleContext checks the
number of attributes in the target AttributeSet. If the resulting set will contain nine or fewer
attributes, it remains or is converted to a SmallAttributeSet, and it is added to the Hash-
table if it wasn’t already there. If the resulting set will contain ten or more attributes, it
remains or is converted to a SimpleAttributeSet, and it is removed from the Hashtable
if it was already there.

The reason for this partitioning is to support efficient AttributeSet sharing. Most styled
documents contain many distinct regions of identically styled text. These regions normally have
a small number of attributes associated with them. It is clear that the best thing to do in this
situation is to assign the same AttributeSet to each of these regions, and the best Attribute-
Set implementation to use for this is SmallAttributeSet because of its superior memory
efficiency, since look-up speed is a minor issue with a very small number of attributes. Larger
sets of attributes are, in general, rare. The best AttributeSet implementation to use for this
is SimpleAttributeSet because of its superior look-up capabilities, since memory usage will
most likely be a minor issue with a relatively small number of SimpleAttributeSets.

19.1.17 The Highlighter interface

abstract interface javax.swing.text.Highlighter
This interface describes how specific regions of text can be marked up with instances of the
inner Highlighter.Highlight interface. A Highlight maintains a beginning and end
offset, and a reference to an instance of the inner Highlighter.HighlightPainter
interface. A HighlightPainter’s only responsibility is to render the background of a
specific region of text.

A text component’s UI delegate is responsible for maintaining its Highlighter. For this
reason, the Highlighter can change when a text component’s look and feel changes. JText-
Component provides methods for working with a text component’s Highlighter so we gen-
erally ignore the fact that such methods really get forwarded to the UI delegate.

A Highlighter maintains an array of Highlighter.Highlight instances, and we are
able to add to this array using the addHighlight() method. This method takes two ints that
define the range of text to highlight, as well as a Highlighter.HighlightPainter instance
that specifies how that Highlight should be rendered. Thus, by defining various Highlight-
Painters, we can add an arbitrary number of highlighted regions with distinct visual effects.

The range a Highlight encompasses is modified with the changeHighlight() method,
and Highlights can be removed from a Highlighter’s array with the removeAllHigh-
lights() or removeHighlight() methods. The paint() method manages the rendering
of all of a Highlighter’s Highlights.

We can assign a new Highlighter with JTextComponent’s setHighlighter()
method. Similarly, we can retrieve a reference to the existing one with JTextComponent’s
getHighlighter() method. Each JTextComponent also maintains a selectionColor
property which specifies the color to use in rendering default highlights.

TEXT PACKAGE OVERVIEW 625

19.1.18 DefaultHighlighter

class javax.swing.text.DefaultHighlighter
DefaultHighlighter extends the abstract LayeredHighlighter class. LayeredHigh-
lighter implements the Highlighter interface and defines a paintLayeredHighlights()
method, which is responsible for managing potentially multiple overlapping Highlights.
LayeredHighlighter also declares an inner abstract static class called LayerPainter from
which the static DefaultHighlighter.DefaultHighlightPainter extends. This imple-
mentation paints a solid background behind the specified region of text, in the current text
component selection color.

19.1.19 The Caret interface

abstract interface javax.swing.text.Caret
This interface describes a text component’s cursor. The paint() method is responsible for
rendering the caret, and the setBlinkRate() and getBlinkRate() methods assign and
retrieve a specific caret blink interval (normally in milliseconds). The setVisible() and
isVisible() methods hide/show the caret and check for caret visibility, respectively.

The setDot() and getDot() methods assign and retrieve the offset of the caret within
the current document. The getMark() method returns a location in the document where the
caret’s mark has been assigned. The moveDot() method assigns a mark position, and moves
the caret to a new location while highlighting the text between the dot and the mark. The set-
SelectionVisible() and isSelectionVisible() methods assign and query the visible
state of the highlight that specifies the currently selected text.

The setMagicCaretPosition() and getMagicCaretPosition() methods manage
a dynamic caret position that is used when moving the caret up and down between lines with
the arrow keys. When moving up and down between lines with an unequal number of char-
acters, the magic position places the caret as close to the same location within each line as
possible. If the magic position is greater than the length of the current line, the caret is placed
at the end of the line. This feature is common in almost all modern text applications, and it
is implemented for us in the DefaultCaret class.

The Caret interface also declares methods for the registration of ChangeListeners for-
notification of changes in the caret’s position: addChangeListener() and removeChange-
Listener().

19.1.20 DefaultCaret

class javax.swing.text.DefaultCaret
This class extends java.awt.Rectangle, and it represents a concrete implementation of
the Caret interface that is used by all text components by default. It is rendered as a blinking
vertical line in the color specified by its associated text component’s caretColor property.
DefaultCaret also implements the FocusListener, MouseListener, and MouseMo-
tionListener interfaces.

The only MouseListener methods without empty implementations are mouse-
Clicked() and mousePressed(). If a mouse click occurs with the left mouse button, and
the click count is two (it’s a double-click), mouseClicked() will invoke the Action returned

626 CHAPTER 19 INSIDE TEXT COMPONENTS

by DefaultEditorKit.selectWordAction() to select the word containing the caret. If
the click count is three, mouseClicked() will invoke the Action returned by Default-
EditorKit.selectLineAction() to select the line of text containing the caret. The
mousePressed() method sends its MouseEvent parameter to DefaultCaret’s position-
Caret() method, which sets the dot property to the document offset corresponding to the
mouse press and clears the magicCaretPosition property. The mousePressed() method
also checks to see if the text component is enabled and, if it is, its requestFocus() method
is invoked.

The only MouseMotionListener method without an empty implementation is mouse-
Dragged(). This method simply passes its MouseEvent parameter to DefaultCaret’s
moveCaret() method. The moveCaret() method determines the offset of the caret desti-
nation by passing the MouseEvent’s coordinates to the text component’s viewToModel()
method. The moveDot() method is then invoked to actually move the caret to the determined
position (recall that the moveDot() method sets the mark property and selects the text
between the mark position and the new dot position).

Both FocusListener methods are non-empty. The focusGained() method checks
whether the text component is editable and, if it is, the caret is made visible. The focusLost()
method simply hides the caret. These methods are invoked when the text component gains or
loses the focus.

We can customize the way a selection’s highlight appears by overriding DefaultCaret’s
getSelectionPainter() method to return our own Highlighter.HighlightPainter
implementation. We can also customize the appearance of a caret by overriding the paint()
method. If we do reimplement the paint() method, however, we must also override the
damage() method. The damage() method is passed a Rectangle that represents the region
of the text component to repaint when the caret is moved.

For instance, the following is a simple DefaultCaret subclass that renders a wide
black caret.

class WideCaret extends DefaultCaret
{
 protected int caretWidth = 6;

 protected void setWidth(int w) {
 caretWidth = w;
 }

 // Since DefaultCaret extends Rectangle, it inherits
 // the x, y, width, and height variables which are
 // used here to allow proper repainting.
 protected synchronized void damage(Rectangle r) {
 if (r != null) {
 x = r.x - width;
 y = r.y;
 width = width;
 height = r.height;
 repaint();
 }
 }

 public void paint(Graphics g) {

TEXT PACKAGE OVERVIEW 627

 if(isVisible()) {
 try {
 TextUI mapper = getComponent().getUI();
 Rectangle r = mapper.modelToView(
 getComponent(), getComponent().getCaretPosition());
 g.setColor(getComponent().getCaretColor());
 g.fillRect(r.x, r.y, caretWidth, r.height - 1);
 }
 catch (Exception e) {
 System.err.println("Problem painting cursor");
 }
 }
 }
}

NOTE We have implemented a short example in a Swing Connection “Tips and Tricks”
article that shows you how to use a similar custom caret for designating an over-
write mode. In the same article, we also show you how to customize a Plain-Doc-
ument model to allow insert and overwrite modes, and how to track caret
position with a CaretListener. See http://java.sun.com/products/jfc/tsc/

19.1.21 The CaretListener interface

abstract interface javax.swing.event.CaretListener
This interface describes a listener that is notified whenever a change occurs in a text compo-
nent’s caret position. It declares one method, caretUpdate(), which takes a CaretEvent as
a parameter. We can attach and remove CaretListeners to any JTextComponent with the
addCaretListener() and removeCaretListener() methods.

19.1.22 CaretEvent

class javax.swing.event.CaretEvent
This event simply encapsulates a reference to its source object (which is normally a text
component). CaretEvents are passed to all attached CaretListeners whenever the asso-
ciated text component’s caret position changes.

19.1.23 The Keymap interface

abstract interface javax.swing.text.Keymap
This interface describes a collection of bindings between KeyStrokes (see section 2.13.2) and
Actions (see section 12.1.23). We add new KeyStroke/Action bindings to a Keymap with
the addActionForKeyStroke() method. Like AttributeSets, Keymaps resolve hierarchi-
cally. Like Styles, Keymaps have a name they are referenced by.

We query the Action that corresponds to a specific KeyStroke with the getAction()
method. If no corresponding Action is located in the Keymap, its resolving parents should be
searched until either no more resolving parents exist, or a match is found. Similarly, we retrieve
an array of KeyStrokes that are mapped to a given Action with the getKeyStrokesFor-
Action() method. The isLocallyDefined() method checks whether a given KeyStroke

628 CHAPTER 19 INSIDE TEXT COMPONENTS

is bound to an Action in the Keymap that is under investigation. The removeBindings()
method removes all bindings in a Keymap, and the removeKeyStrokeBinding() method
removes only those bindings corresponding to a given KeyStroke.

By default, all JTextComponents share the same Keymap instance. This is what enables
the default functionality of the Backspace, Delete, and left and right arrow keys on any text
component. For this reason, it is not a good idea to retrieve a text component’s Keymap and
modify it directly. Rather, we are encouraged to create our own Keymap instance and assign
the default Keymap as its resolving parent. By assigning a resolving parent of null, we can
effectively disable all bindings on a text component, other than those in the given component’s
Keymap itself (the underlying role Keymaps play in text components will become clear after we
discuss DefaultEditorKit, below).

We can obtain a text component’s Keymap with either of JTextComponent’s getKey-
map() methods. We can assign a text component a new Keymap with the setKeymap()
method, and we can add a new Keymap anywhere within the Keymap hierarchy with the
addKeymap() method. We can also remove a Keymap from the hierarchy with the remove-
Keymap() method.

For example, to create and add a new Keymap to a JTextField and use the default text
component Keymap as a resolving parent, we might do something like the following:

 Keymap keymap = myJTextField.getKeymap();
 Keymap myKeymap = myJTextField.addKeymap("MyKeymap", keymap);

We can then add KeyStroke/Action pairs to myKeymap with the addActionForKey-
Stroke() method (we will see an example of this in the next section).

NOTE Recall from section 2.13.4 that KeyListeners will receive key events before a text
component’s Keymap. Although using Keymaps is encouraged, handling keyboard
events with KeyListeners is still allowed.

19.1.24 TextAction

abstract class javax.swing.text.TextAction
EditorKits are, among other things, responsible for making a set of Actions available for
performing common text editor functions based on a given content type. EditorKits nor-
mally use inner subclasses of TextAction for this, as it extends AbstractAction (see sec-
tion 12.1.24), and provides a relatively powerful means of determining the target component
to invoke the action on (by taking advantage of the fact that JTextComponent keeps track of
the most recent text component with the focus, retrievable with its static getFocused-
Component() method). The TextAction constructor takes the String to be used as that
action’s name, and passes it to its super-class constructor. When subclassing TextAction,
we normally define an actionPerformed() method, which performs the desired action
when it is passed an ActionEvent. Within this method, we can use TextAction’s get-
Text-Component() method to determine which text component the action should be
invoked on.

TEXT PACKAGE OVERVIEW 629

19.1.25 EditorKit

abstract class javax.swing.text.EditorKit
EditorKits are responsible for the following functionality:

• Support for an appropriate Document model. An EditorKit specifically supports one
type of content, a String description of which is retrievable with the getContent-
Type() method. A corresponding Document instance is returned by the create-
DefaultDocument() method, and the EditorKit is able to read() and write() that
Document to InputStreams/OutputStreams and Readers/Writers, respectively.

• Support for View production through a ViewFactory implementation. This behavior
is actually optional, as View production will default to a text component’s UI delegate if
its EditorKit’s getViewFactory() method returns null (see sections 19.1.28 and
19.1.29 for more about Views and the ViewFactory interface).

• Support for a set of Actions that can be invoked on a text component using the appro-
priate Document. Normally these Actions are instances of TextAction and are defined
as inner classes. An EditorKit’s Actions can be retrieved in an array with its getAc-
tions() method.

19.1.26 DefaultEditorKit

class javax.swing.text.DefaultEditorKit
DefaultEditorKit extends EditorKit, and it defines a series of TextAction subclasses and
corresponding name Strings (see the API documentation). Eight of these forty-six inner action
classes are public, and they can be instantiated with a default constructor: BeepAction, Copy-
Action, CutAction, DefaultKeyTypedAction, InsertBreakAction, InsertContent-
Action, InsertTabAction, and PasteAction. DefaultEditorKit maintains instances of
all its inner Action classes in an array that can be retrieved with its getActions() method.
We can access any of these Actions easily by defining a Hashtable with Action.NAME keys
and Action values. See Java Swing by Robert Eckstein, Marc Loy, and Dave Wood, O’Reilly
& Associates, 1998, p. 918.

 Hashtable actionTable = new Hashtable
 Action[] actions = myEditorKit.getActions();
 for (int i=0; i < actions.length; i++) {
 String actionName = (String) actions[i].getValue(Action.NAME);
 actionTable.put(actionName, actions[i]);
 }

We can then retrieve any of these Actions with DefaultEditorKit’s static String fields.
For example, the following code retrieves the action that is responsible for selecting all text in
a document:

 Action selectAll = (Action) actionTable.get(
 DefaultEditorKit.selectAllAction);

These Actions can be used in menus and toolbars, or with other controls, for convenient
control of plain text components.

630 CHAPTER 19 INSIDE TEXT COMPONENTS

DefaultEditorKit’s getViewFactory() method returns null, which means the UI
delegate is responsible for creating the hierarchy of Views necessary for rendering a text
component correctly. As we mentioned in the beginning of this chapter, JTextField,
JPasswordField, and JTextArea all use a DefaultEditorKit.

Although EditorKits are responsible for managing a set of Actions and their corre-
sponding names, they are not actually directly responsible for making these Actions accessible
to specific text components. This is where Keymaps fit in. For instance, take a look at the
following code that shows how the default JTextComponent Keymap is created (this is from
JTextComponent.java):

/**
 * This is the name of the default keymap that will be shared by all
 * JTextComponent instances unless they have had a different
 * keymap set.
 */
public static final String DEFAULT_KEYMAP = "default";

/**
 * Default bindings for the default keymap if no other bindings
 * are given.
 */
static final KeyBinding[] defaultBindings = {
 new KeyBinding(KeyStroke.getKeyStroke(KeyEvent.VK_BACK_SPACE, 0),
 DefaultEditorKit.deletePrevCharAction),
 new KeyBinding(KeyStroke.getKeyStroke(KeyEvent.VK_DELETE, 0),
 DefaultEditorKit.deleteNextCharAction),
 new KeyBinding(KeyStroke.getKeyStroke(KeyEvent.VK_RIGHT, 0),
 DefaultEditorKit.forwardAction),
 new KeyBinding(KeyStroke.getKeyStroke(KeyEvent.VK_LEFT, 0),
 DefaultEditorKit.backwardAction)
};

static {
 try {
 keymapTable = new Hashtable(17);
 Keymap binding = addKeymap(DEFAULT_KEYMAP, null);
 binding.setDefaultAction(new
 DefaultEditorKit.DefaultKeyTypedAction());
 EditorKit kit = new DefaultEditorKit();
 loadKeymap(binding, defaultBindings, kit.getActions());
 } catch (Throwable e) {
 e.printStackTrace();
 keymapTable = new Hashtable(17);
 }
}

19.1.27 StyledEditorKit

class javax.swing.text.StyledEditorKit
This class extends DefaultEditorKit and defines seven additional inner Action classes,
each of which is publicly accessible: AlignmentAction, BoldAction, FontFamilyAction,

TEXT PACKAGE OVERVIEW 631

FontSizeAction, ForegroundAction, ItalicAction, and UnderlineAction. All
seven Actions are subclasses of the inner StyledTextAction convenience class which
extends TextAction.

Each of StyledEditorKit’s Actions applies to styled text documents, and they are
used by JEditorPane and JTextPane. StyledEditorKit does not define its own capabil-
ities for reading and writing styled text. Instead, this functionality is inherited from Default-
EditorKit, which only provides support for saving and loading plain text. The two
StyledEditorKit subclasses included with Swing, javax.swing.text.html.HTML-
EditorKit and javax.swing.text.rtf.RTFEditorKit, do support styled text saving
and loading for HTML and RTF content types respectively.

StyledEditorKit’s getViewFactory() method returns an instance of a private static
inner class called StyledViewFactory which implements the ViewFactory interface as
follows (this is from StyledEditorKit.java):

static class StyledViewFactory implements ViewFactory {
 public View create(Element elem) {
 String kind = elem.getName();
 if (kind != null) {
 if (kind.equals(AbstractDocument.ContentElementName)) {
 return new LabelView(elem);
 } else if (kind.equals(AbstractDocument.ParagraphElementName)) {
 return new ParagraphView(elem);
 } else if (kind.equals(AbstractDocument.SectionElementName)) {
 return new BoxView(elem, View.Y_AXIS);
 } else if (kind.equals(StyleConstants.ComponentElementName)) {
 return new ComponentView(elem);
 } else if (kind.equals(StyleConstants.IconElementName)) {
 return new IconView(elem);
 }
 }
 // Default to text display
 return new LabelView(elem);
 }
}

The Views returned by this factory’s create() method are based on the name property of
the Element that is passed as a parameter. If an Element is not recognized, a LabelView is
returned. In summary, because StyledEditorKit’s getViewFactory() method doesn’t
return null, styled text components depend on their EditorKits rather than their UI dele-
gatesfor providing Views. The opposite is true with plain text components, which rely on
their UI delegates for View creation.

19.1.28 View

abstract class javax.swing.text.View
This class describes an object that is responsible for graphically representing a portion of a
text component’s document model. The text package includes several extensions of this class
that are meant to be used by various types of Elements. We will not discuss these classes in
detail, but a brief overview will be enough to provide a high-level understanding of how text
components are actually rendered.

632 CHAPTER 19 INSIDE TEXT COMPONENTS

NOTE We have only included the most commonly used set of text component Views in this
list. Several others are responsible for significant text-rendering functionality. See the
O’Reilly book listed in the bibliography, and the API documentation for details.

• abstract interface TabableView: Used by Views whose size depends on the size of
the tabs.

• abstract interface TabExpander: Extends TabableView and is used by Views
that support TabStops and TabSets (a set of TabStops). A TabStop describes the posi-
tioning of a tab character and the text appearing immediately after it.

• class ComponentView: Used as a gateway View to a fully interactive embedded
Component.

• class IconView: Used as a gateway View to an embedded Icon.
• class PlainView: Used for rendering one line of non-wrapped text with one font and

one color.
• class FieldView: Extends PlainView and adds specialized functionality for repre-

senting a single-line editor view (such as the ability to center text in a JTextField).
• class PasswordView: Extends FieldView and adds the ability to render its content

using the echo character of the associated component if it is a JPasswordField.
• class LabelView: Used to render a range of styled text.
• abstract class CompositeView: A View containing multiple child Views. All Views

can contain child Views, but only instances of CompositeView and BasicTextUI’s
RootView (discussed below) actually contain child Views by default.

• class BoxView: Extends CompositeView and arranges a group of child Views in a
rectangular box.

• class ParagraphView: Extends BoxView and is responsible for rendering a paragraph
of styled text. ParagraphView is made up of a number of child Elements organized as,
or within, Views representing single rows of styled text. This View supports line wrap-
ping, and if an Element within the content paragraph spans multiple lines, more than
one View will be used to represent it.

• class WrappedPlainView: Extends BoxView and is responsible for rendering multi-
line, plain text with line wrapping.

JAVA 1.3 In Java 1.3 the new AsynchBoxView has been added which performs view layout
asynchronously so that layout occurs without blocking the event dispatching
thread. This is particularly useful when loading large documents and/or documents
being loaded through a slow connection (such as an HTML document).

Also new to Java 1.3 is a ZoneView class which acts as a placeholder for actual View
objects until they are needed. With large documents there are potentially a
large number of Views that can demand an equally large amount of memory.
To address this the Swing team has created the low-footprint ZoneView class to
represent actual Views until they are needed (i.e., until that portion of the
document is made visible).

All text components in Swing use UI delegates derived from BasicTextUI by default. This
class defines an inner class called RootView which acts as a gateway between a text compo-
nent and the actual View hierarchy used to render it.

TEXT PACKAGE OVERVIEW 633

19.1.29 The ViewFactory interface

abstract interface javax.swing.text.ViewFactory
This interface declares one method: create(Element elem). This method returns a Tom
View (which possibly contains a hierarchy of Views) that is used to render a given
Element.BasicTextUI implements this interface, and unless a text component’s Editor-
Kit provides its own ViewFactory, BasicTextUI’s create() method will provide all
Views. This is the case with the plain text components: JTextField, JPasswordField,
and JTextArea. However, the styled text components, JEditorPane and JTextPane,
vary greatly depending on their current content type. For this reason their Views are pro-
vided by the currently installed EditorKit. In this way, custom Views can render different
types of styled content.

634

C H A P T E R 2 0

Constructing an HTML
Editor Application
20.1 HTML editor, part I: introducing

HTML 635
20.2 HTML editor, part II: managing

fonts 642
20.3 HTML editor, part III: document

properties 650
20.4 HTML editor, part IV: working with

HTML styles and tables 667

20.5 HTML editor, part V: clipboard and
undo/redo 677

20.6 HTML editor, part VI: advanced
font management 682

20.7 HTML editor, part VII: find and
replace 695

20.8 HTML editor, part IX: spell checker
(using JDBC and SQL) 708

This chapter is devoted to the construction of a fully functional HTML editor application. The
examples in this chapter demonstrate practical applications of many of the topics covered in
chapter 19. The main focus throughout is working with styled text documents, and the techniques
discussed here can be applied to almost any styled text editor.

NOTE Chapter 20 in the first edition of this book was titled “Constructing a word
processor” and was devoted to the construction of a fully functional RTF word
processor application. This chapter and examples from the first edition remain
freely available at www.manning.com/sbe.

HTML EDITOR, PART I : INTRODUCING HTML 635

20.1 HTML EDITOR, PART I: INTRODUCING HTML
In this section we introduce an example demonstrating the use of JTextPane and HTML-
EditorKit to display and edit HTML documents. The following features are included:

• Creating a new HTML document
• Opening an existing HTML document
• Saving changes
• Saving the document under a new name/location
• Prompting the user to save changes before loading a new document or exiting the

application

This example serves as the foundation for our HTML editor application that will be
expanded upon throughout this chapter.

NOTE The Swing HTML package supports HTML 3.2 but not 4.0. Support for 4.0 has
been deferred to a future release of J2SE.

Example 20.1

see \Chapter20\1

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

HtmlProcessor.java

Figure 20.1 JTextPane displaying an HTML document

636 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML Word Processor";

protected JTextPane m_editor;
protected StyleSheet m_context;
protected HTMLDocument m_doc;
protected HTMLEditorKit m_kit;
protected SimpleFilter m_htmlFilter;
protected JToolBar m_toolBar;

protected JFileChooser m_chooser;
protected File m_currentFile;

protected boolean m_textChanged = false;

public HtmlProcessor() {
super(APP_NAME);
setSize(650, 400);

m_editor = new JTextPane();
m_kit = new HTMLEditorKit();
m_editor.setEditorKit(m_kit);

JScrollPane ps = new JScrollPane(m_editor);
getContentPane().add(ps, BorderLayout.CENTER);

JMenuBar menuBar = createMenuBar();
setJMenuBar(menuBar);

m_chooser = new JFileChooser();
m_htmlFilter = new SimpleFilter("html", "HTML Documents");
m_chooser.setFileFilter(m_htmlFilter);
try {

File dir = (new File(".")).getCanonicalFile();
m_chooser.setCurrentDirectory(dir);

} catch (IOException ex) {}

newDocument();

WindowListener wndCloser = new WindowAdapter() {
public void windowClosing(WindowEvent e) {

if (!promptToSave())
return;

System.exit(0);
}
public void windowActivated(WindowEvent e) {

m_editor.requestFocus();
}

};
addWindowListener(wndCloser);

}

Ensure user has
opportunity to save
changes before closing

HTML EDITOR, PART I : INTRODUCING HTML 637

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

JMenu mFile = new JMenu("File");
mFile.setMnemonic('f');

ImageIcon iconNew = new ImageIcon("New16.gif");
Action actionNew = new AbstractAction("New", iconNew) {

public void actionPerformed(ActionEvent e) {
if (!promptToSave())

return;
newDocument();

}
};
JMenuItem item = new JMenuItem(actionNew);
item.setMnemonic('n');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_N, InputEvent.Ctrl_MASK));
mFile.add(item);

ImageIcon iconOpen = new ImageIcon("Open16.gif");
Action actionOpen = new AbstractAction("Open...", iconOpen) {

public void actionPerformed(ActionEvent e) {

if (!promptToSave())
return;

openDocument();
}

};
item = new JMenuItem(actionOpen);
item.setMnemonic('o');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_O, InputEvent.Ctrl_MASK));
mFile.add(item);

ImageIcon iconSave = new ImageIcon("Save16.gif");
Action actionSave = new AbstractAction("Save", iconSave) {

public void actionPerformed(ActionEvent e) {
saveFile(false);

}
};
item = new JMenuItem(actionSave);
item.setMnemonic('s');
item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_S, InputEvent.Ctrl_MASK));
mFile.add(item);

ImageIcon iconSaveAs = new ImageIcon("SaveAs16.gif");
Action actionSaveAs =

 new AbstractAction("Save As...", iconSaveAs) {
public void actionPerformed(ActionEvent e) {

saveFile(true);
}

};
item = new JMenuItem(actionSaveAs);

Creates a menu bar with New, Open,
Save, Save As, and Exit menu items

638 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

item.setMnemonic('a');
mFile.add(item);

mFile.addSeparator();

Action actionExit = new AbstractAction("Exit") {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

};

item =mFile.add(actionExit);
item.setMnemonic('x');
menuBar.add(mFile);

m_toolBar = new JToolBar();
JButton bNew = new SmallButton(actionNew,

 "New document");
m_toolBar.add(bNew);

JButton bOpen = new SmallButton(actionOpen,
 "Open HTML document");

m_toolBar.add(bOpen);

JButton bSave = new SmallButton(actionSave,
 "Save HTML document");

m_toolBar.add(bSave);

getContentPane().add(m_toolBar, BorderLayout.NORTH);

return menuBar;
}

protected String getDocumentName() {
return m_currentFile==null ? "Untitled" :

m_currentFile.getName();
}

protected void newDocument() {
m_doc = (HTMLDocument)m_kit.createDefaultDocument();
m_context = m_doc.getStyleSheet();

m_editor.setDocument(m_doc);
m_currentFile = null;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

SwingUtilities.invokeLater(new Runnable() {
public void run() {

m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_textChanged = false;

}
});

}

protected void openDocument() {
if (m_chooser.showOpenDialog(HtmlProcessor.this) !=

JFileChooser.APPROVE_OPTION)

Returns name
of current file

Creates new HTML document

Uses JFileChooser
and FileInputStream
to read in an HTML file

HTML EDITOR, PART I : INTRODUCING HTML 639

return;
File f = m_chooser.getSelectedFile();
if (f == null || !f.isFile())

return;
m_currentFile = f;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

HtmlProcessor.this.setCursor(
Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {
InputStream in = new FileInputStream(m_currentFile);
m_doc = (HTMLDocument)m_kit.createDefaultDocument();
m_kit.read(in, m_doc, 0);
m_context = m_doc.getStyleSheet();
m_editor.setDocument(m_doc);
in.close();

}
catch (Exception ex) {

showError(ex, "Error reading file "+m_currentFile);
}
HtmlProcessor.this.setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));

SwingUtilities.invokeLater(new Runnable() {
public void run() {

m_editor.setCaretPosition(1);
m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_textChanged = false;

}
});

}

protected boolean saveFile(boolean saveAs) {
if (!saveAs && !m_textChanged)

return true;
if (saveAs || m_currentFile == null) {

if (m_chooser.showSaveDialog(HtmlProcessor.this) !=
JFileChooser.APPROVE_OPTION)
return false;

File f = m_chooser.getSelectedFile();
if (f == null)

return false;
m_currentFile = f;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

}

HtmlProcessor.this.setCursor(
Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {
OutputStream out = new FileOutputStream(m_currentFile);
m_kit.write(out, m_doc, 0, m_doc.getLength());
out.close();

Uses JFileChooser and
FileOutputStream to save
current document to file

640 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_textChanged = false;
}
catch (Exception ex) {

showError(ex, "Error saving file "+m_currentFile);
}
HtmlProcessor.this.setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));
return true;

}

protected boolean promptToSave() {
if (!m_textChanged)

return true;
int result = JOptionPane.showConfirmDialog(this,

"Save changes to "+getDocumentName()+"?",
APP_NAME, JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.INFORMATION_MESSAGE);

switch (result) {
case JOptionPane.YES_OPTION:

if (!saveFile(false))
return false;

return true;
case JOptionPane.NO_OPTION:

return true;
case JOptionPane.CANCEL_OPTION:

return false;
}
return true;

}

public void showError(Exception ex, String message) {
ex.printStackTrace();
JOptionPane.showMessageDialog(this,

message, APP_NAME,
JOptionPane.WARNING_MESSAGE);

}

public static void main(String argv[]) {
JFrame.setDefaultLookAndFeelDecorated(true);
JDialog.setDefaultLookAndFeelDecorated(true);

HtmlProcessor frame = new HtmlProcessor();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

class UpdateListener implements DocumentListener {

public void insertUpdate(DocumentEvent e) {
m_textChanged = true;

}

public void removeUpdate(DocumentEvent e) {
m_textChanged = true;

}

Prompts user
to save

Displays error
messages in
dialogs

Used to change
the flag which
indicates whether
a document has
been modified

HTML EDITOR, PART I : INTRODUCING HTML 641

public void changedUpdate(DocumentEvent e) {
m_textChanged = true;

}
}

}

// Class SmallButton unchanged from section 12.4

// Class SimpleFilter unchanged from section 14.1.9

20.1.1 Understanding the code

Class HtmlProcessor
This class extends JFrame to provide the supporting frame for this example. Several instance
variables are declared:

• JTextPane m_editor: main text component.
• StyleContext m_context: a group of styles and their associated resources for the

documents in this example.
• HTMLDocument m_doc: current document model.
• HTMLEditorKit m_kit: editor kit that knows how to read/write HTML documents.
• SimpleFilter m_HTMLFilter: file filter for ".HTML" files.
• JToolBar m_toolBar: toolbar containing New, Open, Save buttons.
• JFileChooser m_chooser: file chooser used to load and save HTML files.
• File m_currentFile: currently opened HTML file (if any).
• boolean m_textChanged: keeps track of whether any changes have been made since

the document was last saved.

The HtmlProcessor constructor first instantiates our JTextPane and HTMLEditorKit,
and assigns the editor kit to the text pane (it is important that this is done before any docu-
ments are created). The editor component is then placed in a JScrollPane which is placed
in the center of the frame. The JFileChooser component is created and an instance of our
Simple-Filter class (developed in chapter 14) is used as a filter to only allow the choice of
HTML documents. A WindowListener is added to call our custom promptToSave()
method to ensure that the user has the opportunity to save any changes before closing the
application. This WindowListener also ensures that our editor component automatically
receives the focus when this application regains the focus.

The createMenuBar() method creates a menu bar with a single menu titled "File" and a
toolbar with three buttons. Actions for New, Open, Save, Save As, and Exit are created and
added to the File menu. The New, Open, and Save actions are also added to the toolbar. This
code is very similar to the code used in the examples of chapter 12. The important difference
is that we use InputStreams and OutputStreams rather than Readers and Writers. The
reason for this is that HTML uses 1-byte encoding which is incompatible with the 2-byte
encoding used by readers and writers.

The getDocumentName() method simply returns the name of the file corresponding to the
current document, or untitled if it hasn’t been saved to disk.

The newDocument() method is responsible for creating a new HTMLDocument instance using
HTMLEditorKit’s createDefaultDocument() method. Once created our StyleContext

642 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

variable, m_context, is assiged to this new document’s stylesheet with HTMLDocument’s get-
StyleSheet() method. The title of the frame is then updated and a Runnable instance is
created and sent to the SwingUtilities.invokeLater() method to scroll the document
to the beginning when it is finished loading. Finally, an instance of our custom UpdateLis-
tener class is added as a DocumentListener, and the m_textChanged variable is set to
false to indicate that no changes to the document have been made yet.

The openDocument() is similar to the newDocument() method but uses the JFi-
leChooser to allow selection of an existing HTML file to load, and uses an InputStream
object to read the contents of that file.

The saveFile() method takes a boolean parameter specifying whether the method should
act as a Save As process or just a regular Save. If true, indicating a Save As process, the JFile-
Chooser is displayed to allow the user to specify the file and location to save the document to.
An OutputStream is used to write the contents of the document to the destination File.

The promptToSave() method checks the m_textChanged flag and, if true, displays a JOp-
tionPaneasking whether or not the current document should be saved. This method is called
before a new document is created, a document is opened, or the application is closed to ensure
that the user has a chance to save any changes to the current document before losing them.

The showError() method is used to display error messages in a JOptionPane. It is often
useful to display exceptions to users so that they know an error happened and so that they
may eventually report errors back to you if they are in fact bugs.

Class UpdateListener
This DocumentListener subclass is used to modify the state of our m_textChanged vari-
able. Whenever an insertion, removal, or document change is made this variable is set to
true. This allows HtmlProcessor’s promptToSave() method to ensure the user has the
option of saving any changes before loading a new document or exiting the application.

20.1.2 Running the code

Figure 20.1 shows our HTML editor in action. Use menu or toolbar buttons to open an
HTML file. Save the HTML file and open it in another HTML-aware application (such as
Netscape) to verify compatibility. Try modifying a document and exiting the application
before saving it. Note the dialog that is displayed asking whether or not you’d like to save the
changes you’ve made before exiting.

20.2 HTML EDITOR, PART II: MANAGING FONTS

The following example adds the ability to:

• Select any font available on the system
• Change font size
• Select bold and italic characteristics

This functionality is similar to the font functionality used in the examples of chapter 12. The
important difference here is that the selected font applies not to the whole text component
(the only possible thing with plain text documents), but to the selected region of our
HTML–styled document text.

HTML EDITOR, PART II : MANAGING FONTS 643

Example 20.2

see \Chapter20\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;

public class HtmlProcessor extends JFrame {

// Unchanged code from example 20.1

protected JComboBox m_cbFonts;

protected JComboBox m_cbSizes;

protected SmallToggleButton m_bBold;

protected SmallToggleButton m_bItalic;

protected String m_fontName = "";

protected int m_fontSize = 0;

HtmlProcessor.java

Figure 20.2 JTextPane word processor allowing font attribute assignments
to selected text

644 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

protected boolean m_skipUpdate;

protected int m_xStart = -1;

protected int m_xFinish = -1;

public HtmlProcessor() {
super(APP_NAME);
setSize(650, 400);

// Unchanged code from example 20.1

CaretListener lst = new CaretListener() {

public void caretUpdate(CaretEvent e) {

showAttributes(e.getDot());

}

};

m_editor.addCaretListener(lst);

FocusListener flst = new FocusListener() {

public void focusGained(FocusEvent e) {

int len = m_editor.getDocument().getLength();

if (m_xStart>=0 && m_xFinish>=0 &&

 m_xStart<len && m_xFinish<len)

if (m_editor.getCaretPosition()==m_xStart) {

m_editor.setCaretPosition(m_xFinish);

m_editor.moveCaretPosition(m_xStart);

}

else

m_editor.select(m_xStart, m_xFinish);

}

public void focusLost(FocusEvent e) {

m_xStart = m_editor.getSelectionStart();

m_xFinish = m_editor.getSelectionEnd();

}

};

m_editor.addFocusListener(flst);

newDocument();

// Unchanged code from example 20.1
}

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 20.1

GraphicsEnvironment ge = GraphicsEnvironment.

getLocalGraphicsEnvironment();

String[] fontNames = ge.getAvailableFontFamilyNames();

m_toolBar.addSeparator();

m_cbFonts = new JComboBox(fontNames);

m_cbFonts.setMaximumSize(new Dimension(200, 23));

m_cbFonts.setEditable(true);

Caret listener used
to update toolbar state
when caret moves

Focus listener
to save and
restore the
caret position
when selection
occurs in
another text
component

Get complete
list of
available
font names

New font choice
combo box

HTML EDITOR, PART II : MANAGING FONTS 645

ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

m_fontName = m_cbFonts.getSelectedItem().toString();

MutableAttributeSet attr = new SimpleAttributeSet();

StyleConstants.setFontFamily(attr, m_fontName);

setAttributeSet(attr);

m_editor.grabFocus();

}

};

m_cbFonts.addActionListener(lst);

m_toolBar.add(m_cbFonts);

m_toolBar.addSeparator();

m_cbSizes = new JComboBox(new String[] {"8", "9", "10",

"11", "12", "14", "16", "18", "20", "22", "24", "26",

"28", "36", "48", "72"});

m_cbSizes.setMaximumSize(new Dimension(50, 23));

m_cbSizes.setEditable(true);

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

int fontSize = 0;

try {

fontSize = Integer.parseInt(m_cbSizes.

getSelectedItem().toString());

}

catch (NumberFormatException ex) { return; }

m_fontSize = fontSize;

MutableAttributeSet attr = new SimpleAttributeSet();

StyleConstants.setFontSize(attr, fontSize);

setAttributeSet(attr);

m_editor.grabFocus();

}

};

m_cbSizes.addActionListener(lst);

m_toolBar.add(m_cbSizes);

m_toolBar.addSeparator();

ImageIcon img1 = new ImageIcon("Bold16.gif");

m_bBold = new SmallToggleButton(false, img1, img1,

"Bold font");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

MutableAttributeSet attr = new SimpleAttributeSet();

StyleConstants.setBold(attr, m_bBold.isSelected());

setAttributeSet(attr);

m_editor.grabFocus();

}

};

m_bBold.addActionListener(lst);

m_toolBar.add(m_bBold);

Applies new font
to selected text

New font sizes
combo box

Applies new font size
to selected text

Toggle button to
manage bold property

646 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

img1 = new ImageIcon("Italic16.gif");

m_bItalic = new SmallToggleButton(false, img1, img1,

"Italic font");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

MutableAttributeSet attr = new SimpleAttributeSet();

StyleConstants.setItalic(attr, m_bItalic.isSelected());

setAttributeSet(attr);

m_editor.grabFocus();

}

};

m_bItalic.addActionListener(lst);

m_toolBar.add(m_bItalic);

getContentPane().add(m_toolBar, BorderLayout.NORTH);

return menuBar;
}

// Unchanged code from example 20.1

protected void newDocument() {
 // Unchanged code from example 20.1

SwingUtilities.invokeLater(new Runnable() {
public void run() {

showAttributes(0);

m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_textChanged = false;

}
});

}

protected void openDocument() {
 // Unchanged code from example 20.1

SwingUtilities.invokeLater(new Runnable() {
public void run() {

m_editor.setCaretPosition(1);
showAttributes(1);
m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_textChanged = false;

}
});

}

// Unchanged code from example 20.1

protected void showAttributes(int p) {

m_skipUpdate = true;

AttributeSet attr = m_doc.getCharacterElement(p).

getAttributes();

String name = StyleConstants.getFontFamily(attr);

if (!m_fontName.equals(name)) {

Toggle button
to manage

italic property

Sets state of toolbar buttons
based on position of caret

HTML EDITOR, PART II : MANAGING FONTS 647

m_fontName = name;

m_cbFonts.setSelectedItem(name);

}

int size = StyleConstants.getFontSize(attr);

if (m_fontSize != size) {

m_fontSize = size;

m_cbSizes.setSelectedItem(Integer.toString(m_fontSize));

}

boolean bold = StyleConstants.isBold(attr);

if (bold != m_bBold.isSelected())

m_bBold.setSelected(bold);

boolean italic = StyleConstants.isItalic(attr);

if (italic != m_bItalic.isSelected())

m_bItalic.setSelected(italic);

m_skipUpdate = false;

}

protected void setAttributeSet(AttributeSet attr) {

if (m_skipUpdate)

return;

int xStart = m_editor.getSelectionStart();

int xFinish = m_editor.getSelectionEnd();

if (!m_editor.hasFocus()) {

xStart = m_xStart;

xFinish = m_xFinish;

}

if (xStart != xFinish) {

m_doc.setCharacterAttributes(xStart, xFinish - xStart,

attr, false);

}

else {

MutableAttributeSet inputAttributes =

m_kit.getInputAttributes();

inputAttributes.addAttributes(attr);

}

}

public static void main(String argv[]) {
HtmlProcessor frame = new HtmlProcessor();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

// Unchanged code from example 20.1
}

// Unchanged code from example 20.1

// Class SmallToggleButton unchanged from section 12.4

Used to assign
a given set of
attributes
to currently
selected text

648 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

20.2.1 Understanding the code

Class HtmlProcessor
Several new instance variables have been added:

• JComboBox m_cbFonts: toolbar component to select the font name.
• JComboBox m_cbSizes: toolbar component to select the font size.
• SmallToggleButton m_bBold: toolbar component to select the bold font style.
• SmallToggleButton m_bItalic: toolbar component to select the italic font style.
• String m_fontName: current font name.
• int m_fontSize: current font size.
• boolean m_skipUpdate: flag used to skip word processor update (see below).
• int m_xStart: used to store the selection start position.
• int m_xFinish: used to store the selection end position.

The HtmlProcessor constructor adds a CaretListener to our m_editor text pane. The
caretUpdate() method of this listener is invoked whenever the caret position is changed.
caretUpdate() calls our showAttributes() method to update the toolbar component’s
states to display the currently selected font attributes.

A FocusListener is also added to our m_editor component. The two methods of this lis-
tener, focusGained() and focusLost(), will be invoked when the editor gains and loses
the focus respectively. The purpose of this implementation is to save and restore the starting
and end positions of the text selection. The reason we do this is because Swing supports only
one text selection at any given time. This means that if the user selects some text in the editor
component to modify its attributes, and then goes off and makes a text selection in some
other component, the original text selection will disappear. This can potentially be very
annoying to the user. To fix this problem we save the selection before the editor component
loses the focus. When the focus is gained we restore the previously saved selection. We distin-
guish between two possible situations: when the caret is located at the beginning of the selec-
tion and when it is located at the end of the selection. In the first case we position the caret at
the end of the stored interval with the setCaretPosition() method, and then move the
caret backward to the beginning of the stored interval with the moveCaretPosition()
method. The second situation is easily handled using the select() method.

The createMenuBar() method creates new components to manage font properties for the
selected text interval. First, the m_cbFonts combo box is used to select the font family name.
Unlike the example in chapter 12, which used several predefined font names, this example
uses all fonts available to the user’s system. A complete list of the available font names can be
obtained through the getAvailableFontFamilyNames() method of GraphicsEnviron-
ment (see section 2.8). Also note that the editable property of this combo box component is
set to true, so the font name can be both selected from the drop-down list and entered in by
hand.

Once a new font name is selected, it is applied to the selected text through the use of an
attached ActionListener. The selected font family name is assigned to a SimpleAttribu-
teSet instance with the StyleConstants.setFontFamily() method. Then our custom
setAttributeSet() method is called to modify the attributes of the selected text according
to this SimpleAttributeSet.

HTML EDITOR, PART II : MANAGING FONTS 649

The m_cbSizes combo box is used to select the font size. It is initiated with a set of pre-
defined sizes. The editable property is set to true so the font size can be both selected from
the drop-down list and entered by hand. Once a new font size is selected, it is applied to the
selected text through the use of an attached ActionListener. The setup is similar to that
used for the m_cbFonts component. The StyleConstants.setFontSize() method is
used to set the font size. Our custom setAttributeSet() method is then used to apply this
attribute set to the selected text.

The bold and italic properties are managed by two SmallToggleButtons (a custom button
class we developed in chapter 12): m_bBold and m_bItalic respectively. These buttons
receive ActionListeners which create a SimpleAttributeSet instance with the bold or
italic property with StyleConstants.setBold() or StyleConstants.setItalic().
Then our custom setAttributeSet() method is called to apply this attribute set.

The showAttributes() method is called to set the state of the toolbar components
described earlier according to the font properties of the text at the given caret position. This
method sets the m_skipUpdate flag to true at the beginning and false at the end of its
execution (the purpose of this will be explained soon). Then an AttributeSet instance cor-
responding to the character element at the current caret position in the editor’s document is
retrieved with the getAttributes() method. The StyleConstants.getFontFamily()
method is used to retrieve the current font name from this attribute set. If it is not equal to the
previously selected font name (stored in the m_fontName instance variable) it is selected in
the m_cbFonts combo box. The other toolbar controls are handled in a similar way.

The setAttributeSet() method is used to assign a given set of attributes to the currently
selected text. Note that this method does nothing (simply returns) if the m_skipUpdate flag
is set to true. This is done to prevent the backward link with the showAttributes()
method. As soon as we assign some value to a combo box in the showAttributes() method
(e.g., font size) this internally triggers a call to the setAttributeSet() method (because
Action-Listeners attached to combo boxes are invoked even when selection changes occur
programmatically). The purpose of showAttributes() is to simply make sure that the
attributes corresponding to the character element at the current text position are accurately
reflected in the toolbar components. To prevent the combo box ActionListeners from
invoking unnecessary operations we prohibit any text property updates from occuring in
setAttributeSet() while the showAttributes() method is being executed (this is the
whole purpose of the m_skipUpdate flag).

setAttributeSet() first determines the start and end positions of the selected text. If
m_editor currently does not have the focus, the stored bounds, m_xStart and m_xFinish,
are used instead. If the selection is not empty (xStart != xFinish), the setCharacter-
Attributes() method is called to assign the given set of attributes to the selection. Note that
this new attribute set does not have to contain a complete set of attributes. It simply replaces
only the existing attributes for which it has new values, leaving the remainder unchanged. If
the selection is empty, the new attributes are added to the input attributes of the editor kit
(recall that StyledEditorKit’s input attributes are those attributes that will be applied to
newly inserted text–HTMLEditorKit extends StyledEditorKit).

650 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

20.2.2 Running the code

Figure 20.2 shows our editor with a font combo box selection in process. Open an existing
HTML file and move the cursor to various positions in the text. Note that the text attributes
displayed in the toolbar components are updated correctly. Select a portion of text and use the
toolbar components to modify the selection’s font attributes. Type a new font name and font
size in the editable combo box and press Enter. This has the same effect as selecting a choice
from the drop-down list. Save the HTML file and open it in another HTML-aware applica-
tion to verify that your changes were saved correctly.

20.3 HTML EDITOR, PART III: DOCUMENT PROPERTIES

In this example we add the following features to our HTML editor application:

• Image insertion

• Hyperlink insertion

• Foreground color selection

• An HTML page properties dialog to assign text color, link colors, background color
and title

• An HTML source dialog that allows editing

Figure 20.3 HtmlProcessor showing foreground color selection component

HTML EDITOR, PART III : DOCUMENT PROPERTIES 651

Example 20.3

see \Chapter20\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

import java.util.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;

import dl.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML HTML Editor";

protected JTextPane m_editor;
protected StyleSheet m_context;
protected MutableHTMLDocument m_doc;
protected CustomHTMLEditorKit m_kit;

protected SimpleFilter m_htmlFilter;

protected JToolBar m_toolBar;

// Unchanged code from example 20.2

protected int m_xStart = -1;
protected int m_xFinish = -1;

protected ColorMenu m_foreground;

// Unchanged code from example 20.2

HtmlProcessor.java

Figure 20.4
HtmlProcessor’s docu-
ment properties dialog

Custom document and editor
kit classes are now used

Menu component used
to select foreground color

652 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

JMenu mFile = new JMenu("File");
mFile.setMnemonic('f');

 // Unchanged code from example 20.2

JMenu mInsert = new JMenu("Insert");

mInsert.setMnemonic('i');

item = new JMenuItem("Image...");

item.setMnemonic('i');

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

String url = inputURL("Please enter image URL:", null);}

if (url == null)

return;

try {

ImageIcon icon = new ImageIcon(new URL(url));

New menu item allowing
insertion of an image

Figure 20.5
HtmlProcessor’s
HTML source dialog

Figure 20.6
HtmlProcessor’s
insert image dialog

HTML EDITOR, PART III : DOCUMENT PROPERTIES 653

int w = icon.getIconWidth();

int h = icon.getIconHeight();

if (w<=0 || h<=0) {

JOptionPane.showMessageDialog(HtmlProcessor.this,

"Error reading image URL\n"+

url, APP_NAME,

JOptionPane.WARNING_MESSAGE);

return;

MutableAttributeSet attr = new SimpleAttributeSet();

attr.addAttribute(StyleConstants.NameAttribute,

 HTML.Tag.IMG);

attr.addAttribute(HTML.Attribute.SRC, url);

attr.addAttribute(HTML.Attribute.HEIGHT,

 Integer.toString(h));

attr.addAttribute(HTML.Attribute.WIDTH,

 Integer.toString(w));

int p = m_editor.getCaretPosition();

m_doc.insertString(p, " ", attr);

}

catch (Exception ex) {

showError(ex, "Error: "+ex);

}

}

};

item.addActionListener(lst);

mInsert.add(item);

item = new JMenuItem("Hyperlink...");

item.setMnemonic('h');

lst = new ActionListener(){

public void actionPerformed(ActionEvent e) {

String oldHref = null;

int p = m_editor.getCaretPosition();

AttributeSet attr = m_doc.getCharacterElement(p).

getAttributes();

AttributeSet anchor =

(AttributeSet)attr.getAttribute(HTML.Tag.A);

if (anchor != null)

oldHref = (String)anchor.getAttribute(HTML.Attribute.HREF);

String newHref = inputURL("Please enter link URL:", oldHref);

if (newHref == null)

Figure 20.7
HtmlProcessor’s insert link dialog

New menu item allowing
insertion of a hyperlink

654 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

return;

SimpleAttributeSet attr2 = new SimpleAttributeSet();

attr2.addAttribute(StyleConstants.NameAttribute, HTML.Tag.A);

attr2.addAttribute(HTML.Attribute.HREF, newHref);

setAttributeSet(attr2, true);

m_editor.grabFocus();

}

};

item.addActionListener(lst);

mInsert.add(item);

menuBar.add(mInsert);

JMenu mFormat = new JMenu("Format");

mFormat.setMnemonic('o');

m_foreground = new ColorMenu("Foreground Color");

m_foreground.setColor(m_editor.getForeground());

m_foreground.setMnemonic('f');

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

MutableAttributeSet attr = new SimpleAttributeSet();

StyleConstants.setForeground(attr,

 m_foreground.getColor());

setAttributeSet(attr);

}

};

m_foreground.addActionListener(lst);

mFormat.add(m_foreground);

MenuListener ml = new MenuListener() {

public void menuSelected(MenuEvent e) {

int p = m_editor.getCaretPosition();

AttributeSet attr = m_doc.getCharacterElement(p).

getAttributes();

Color c = StyleConstants.getForeground(attr);

m_foreground.setColor(c);

}

public void menuDeselected(MenuEvent e) {}

public void menuCanceled(MenuEvent e) {}

};

m_foreground.addMenuListener(ml);

mFormat.addSeparator();

item = new JMenuItem("Page Properties...");

item.setMnemonic('p');

lst = new ActionListener(){

public void actionPerformed(ActionEvent e) {

DocumentPropsDlg dlg = new

 DocumentPropsDlg(HtmlProcessor.this, m_doc);

dlg.show();

if (dlg.succeeded())

documentChanged();

Menu item allowing
selection of
foreground color

Menu item to display
page properties dialog

HTML EDITOR, PART III : DOCUMENT PROPERTIES 655

}

};

item.addActionListener(lst);

mFormat.add(item);

menuBar.add(mFormat);

JMenu mTools = new JMenu("Tools");

mTools.setMnemonic('t');

item = new JMenuItem("HTML Source...");

item.setMnemonic('s');

lst = new ActionListener(){

public void actionPerformed(ActionEvent e) {

try {

StringWriter sw = new StringWriter();

m_kit.write(sw, m_doc, 0, m_doc.getLength());

sw.close();

HtmlSourceDlg dlg = new HtmlSourceDlg(

HtmlProcessor.this, sw.toString());

dlg.show();

if (!dlg.succeeded())

return;

StringReader sr = new StringReader(dlg.getSource());

m_doc = (MutableHTMLDocument)m_kit.createDocument();

m_context = m_doc.getStyleSheet();

m_kit.read(sr, m_doc, 0);

sr.close();

m_editor.setDocument(m_doc);

documentChanged();

}

catch (Exception ex) {

showError(ex, "Error: "+ex);

}

}

};

item.addActionListener(lst);

mTools.add(item);

menuBar.add(mTools);

getContentPane().add(m_toolBar, BorderLayout.NORTH);

return menuBar;
}

protected String getDocumentName() {
String title = m_doc.getTitle();

if (title != null && title.length() > 0)

return title;

return m_currentFile==null ? "Untitled" :
m_currentFile.getName();

}

Menu item to display
HTML source dialog

656 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

protected void newDocument() {
m_doc = (MutableHTMLDocument)m_kit.createDocument();

m_context = m_doc.getStyleSheet();

m_editor.setDocument(m_doc);
m_currentFile = null;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

SwingUtilities.invokeLater(new Runnable() {
public void run() {

showAttributes(0);
m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_textChanged = false;

}
});

}

protected void openDocument() {
 // Unchanged code from example 20.2

HtmlProcessor.this.setCursor(
Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {
InputStream in = new FileInputStream(m_currentFile);
m_doc = (MutableHTMLDocument)m_kit.createDocument();
m_kit.read(in, m_doc, 0);
m_context = m_doc.getStyleSheet();
m_editor.setDocument(m_doc);
in.close();

}
catch (Exception ex) {

showError(ex, "Error reading file "+m_currentFile);
}
HtmlProcessor.this.setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));

// Unchanged code from example 20.2
}

// Unchanged code from example 20.2

protected void setAttributeSet(AttributeSet attr) {

setAttributeSet(attr, false);

}

protected void setAttributeSet(AttributeSet attr,

boolean setParagraphAttributes) {

if (m_skipUpdate)

return;

int xStart = m_editor.getSelectionStart();

int xFinish = m_editor.getSelectionEnd();

if (!m_editor.hasFocus()) {

xStart = m_xStart;

xFinish = m_xFinish;

}

Updated to allow
specification paragraph
or character attributes

HTML EDITOR, PART III : DOCUMENT PROPERTIES 657

if (setParagraphAttributes)

m_doc.setParagraphAttributes(xStart,

xFinish - xStart, attr, false);

else if (xStart != xFinish)

m_doc.setCharacterAttributes(xStart,

xFinish - xStart, attr, false);

else {

MutableAttributeSet inputAttributes =

m_kit.getInputAttributes();

inputAttributes.addAttributes(attr);

}

}

protected String inputURL(String prompt, String initialValue) {

JPanel p = new JPanel();

p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));

p.add(new JLabel(prompt));

p.add(Box.createHorizontalGlue());

JButton bt = new JButton("Local File");

bt.setRequestFocusEnabled(false);

p.add(bt);

final JOptionPane op = new JOptionPane(p,

JOptionPane.PLAIN_MESSAGE, JOptionPane.OK_CANCEL_OPTION);

op.setWantsInput(true);

if (initialValue != null)

op.setInitialSelectionValue(initialValue);

ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

JFileChooser chooser = new JFileChooser();

if (chooser.showOpenDialog(HtmlProcessor.this) !=

JFileChooser.APPROVE_OPTION)

return;

File f = chooser.getSelectedFile();

try {

String str = f.toURL().toString();

op.setInitialSelectionValue(str);

}

catch (Exception ex) {

ex.printStackTrace();

}

}

};

bt.addActionListener(lst);

JDialog dlg = op.createDialog(this, APP_NAME);

dlg.show();

dlg.dispose();

Object value = op.getInputValue();

 if (value == JOptionPane.UNINITIALIZED_VALUE)

 return null;

 String str = (String)value;

Method to
insert a URL

(either an image
or hyperlink in

this example)

658 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

 if (str != null && str.length() == 0)

 str = null;

 return str;

}

public void documentChanged() {

m_editor.setDocument(new HTMLDocument());

m_editor.setDocument(m_doc);

m_editor.revalidate();

m_editor.repaint();

setTitle(APP_NAME+" ["+getDocumentName()+"]");

m_textChanged = true;

}

// Unchanged code from example 20.2
}

// Unchanged code from example 20.2

// Class ColorMenu unchanged from chapter 12

class Utils
{

// Copied from javax.swing.text.html.CSS class

 // because it is not publicly accessible there.
public static String colorToHex(Color color) {

String colorstr = new String("#");

// Red
String str = Integer.toHexString(color.getRed());
if (str.length() > 2)

str = str.substring(0, 2);
else if (str.length() < 2)

colorstr += "0" + str;
else

colorstr += str;

// Green
str = Integer.toHexString(color.getGreen());
if (str.length() > 2)

str = str.substring(0, 2);
else if (str.length() < 2)

colorstr += "0" + str;
else

colorstr += str;

// Blue
str = Integer.toHexString(color.getBlue());
if (str.length() > 2)

str = str.substring(0, 2);
else if (str.length() < 2)

colorstr += "0" + str;
else

colorstr += str;
return colorstr;

}

Brute force method at
updating document display

Returns the hot value
for a given color

HTML EDITOR, PART III : DOCUMENT PROPERTIES 659

}

class CustomHTMLEditorKit extends HTMLEditorKit {
public Document createDocument() {

StyleSheet styles = getStyleSheet();
StyleSheet ss = new StyleSheet();

ss.addStyleSheet(styles);

MutableHTMLDocument doc = new MutableHTMLDocument(ss);
doc.setParser(getParser());
doc.setAsynchronousLoadPriority(4);
doc.setTokenThreshold(100);
return doc;

}
}

class MutableHTMLDocument extends HTMLDocument {
public MutableHTMLDocument(StyleSheet styles) {

super(styles);
}

public Element getElementByTag(HTML.Tag tag) {
Element root = getDefaultRootElement();
return getElementByTag(root, tag);

}

public Element getElementByTag(Element parent, HTML.Tag tag) {
if (parent == null || tag == null)

return null;
for (int k=0; k<parent.getElementCount(); k++) {

Element child = parent.getElement(k);
if (child.getAttributes().getAttribute(

StyleConstants.NameAttribute).equals(tag))
return child;

Element e = getElementByTag(child, tag);
if (e != null)

return e;
}
return null;

}

public String getTitle() {
return (String)getProperty(Document.TitleProperty);

}

// This will work only if the <title> element was
// previously created. Looks like a bug in the HTML package.
public void setTitle(String title) {

Dictionary di = getDocumentProperties();
di.put(Document.TitleProperty, title);
setDocumentProperties(di);

}

public void addAttributes(Element e, AttributeSet attributes) {
if (e == null || attributes == null)

Custom editor kit to return
MutableHTMLDocuments

Custom HTMLDocument
with enhancement to
locate text elements
corresponding to
a given HTML tag

660 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

return;
try {

writeLock();
MutableAttributeSet mattr =

(MutableAttributeSet)e.getAttributes();
mattr.addAttributes(attributes);
fireChangedUpdate(new DefaultDocumentEvent(0, getLength(),

DocumentEvent.EventType.CHANGE));
}
finally {

writeUnlock();
}

}
}

class DocumentPropsDlg extends JDialog {
protected boolean m_succeeded = false;
protected MutableHTMLDocument m_doc;

protected Color m_backgroundColor;
protected Color m_textColor;
protected Color m_linkColor;
protected Color m_viewedColor;

protected JTextField m_titleTxt;
protected JTextPane m_previewPane;

public DocumentPropsDlg(JFrame parent, MutableHTMLDocument doc) {
super(parent, "Page Properties", true);
m_doc = doc;

Element body = m_doc.getElementByTag(HTML.Tag.BODY);
if (body != null) {

AttributeSet attr = body.getAttributes();
StyleSheet syleSheet = m_doc.getStyleSheet();
Object obj = attr.getAttribute(HTML.Attribute.BGCOLOR);
if (obj != null)

m_backgroundColor = syleSheet.stringToColor((String)obj);
obj = attr.getAttribute(HTML.Attribute.TEXT);
if (obj != null)

m_textColor = syleSheet.stringToColor((String)obj);
obj = attr.getAttribute(HTML.Attribute.LINK);
if (obj != null)

m_linkColor = syleSheet.stringToColor((String)obj);
obj = attr.getAttribute(HTML.Attribute.VLINK);
if (obj != null)

m_viewedColor = syleSheet.stringToColor((String)obj);
}

ActionListener lst;
JButton bt;

JPanel pp = new JPanel(new DialogLayout2());
pp.setBorder(new EmptyBorder(10, 10, 5, 10));

pp.add(new JLabel("Page title:"));

Custom dialog class to modify
HTML document properties
such as title, background color,
text color, hyperlink color,
and viewed hyperlink color

HTML EDITOR, PART III : DOCUMENT PROPERTIES 661

m_titleTxt = new JTextField(m_doc.getTitle(), 24);
pp.add(m_titleTxt);

JPanel pa = new JPanel(new BorderLayout(5, 5));
Border ba = new TitledBorder(new EtchedBorder(

EtchedBorder.RAISED), "Appearance");
pa.setBorder(new CompoundBorder(ba, new EmptyBorder(0, 5, 5, 5)));

JPanel pb = new JPanel(new GridLayout(4, 1, 5, 5));
bt = new JButton("Background");
bt.setMnemonic('b');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_backgroundColor =

 JColorChooser.showDialog(DocumentPropsDlg.this,
"Document Background", m_backgroundColor);

showColors();
}

};
bt.addActionListener(lst);
pb.add(bt);

bt = new JButton("Text");
bt.setMnemonic('t');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_textColor = JColorChooser.showDialog(DocumentPropsDlg.this,

"Text Color", m_textColor);
showColors();

}
};
bt.addActionListener(lst);
pb.add(bt);

bt = new JButton("Link");
bt.setMnemonic('l');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_linkColor = JColorChooser.showDialog(DocumentPropsDlg.this,

"Links Color", m_linkColor);
showColors();

}
};
bt.addActionListener(lst);
pb.add(bt);

bt = new JButton("Viewed");
bt.setMnemonic('v');
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_viewedColor = JColorChooser.showDialog(DocumentPropsDlg.this,

"Viewed Links Color", m_viewedColor);
showColors();

}

662 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

};
bt.addActionListener(lst);
pb.add(bt);
pa.add(pb, BorderLayout.WEST);

m_previewPane = new JTextPane();
m_previewPane.setBackground(Color.white);
m_previewPane.setEditable(false);
m_previewPane.setBorder(new CompoundBorder(

new BevelBorder(BevelBorder.LOWERED),
new EmptyBorder(10, 10, 10, 10)));

showColors();
pa.add(m_previewPane, BorderLayout.CENTER);

pp.add(pa);

bt = new JButton("Save");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
saveData();
dispose();

}
};
bt.addActionListener(lst);
pp.add(bt);

bt = new JButton("Cancel");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
dispose();

}
};
bt.addActionListener(lst);
pp.add(bt);

getContentPane().add(pp, BorderLayout.CENTER);
pack();
setResizable(false);
setLocationRelativeTo(parent);

}

public boolean succeeded() {
return m_succeeded;

}

protected void saveData() {
m_doc.setTitle(m_titleTxt.getText());

Element body = m_doc.getElementByTag(HTML.Tag.BODY);
MutableAttributeSet attr = new SimpleAttributeSet();
if (m_backgroundColor != null)

attr.addAttribute(HTML.Attribute.BGCOLOR,
Utils.colorToHex(m_backgroundColor));

if (m_textColor != null)
attr.addAttribute(HTML.Attribute.TEXT,

Utils.colorToHex(m_textColor));

HTML EDITOR, PART III : DOCUMENT PROPERTIES 663

if (m_linkColor != null)
attr.addAttribute(HTML.Attribute.LINK,

Utils.colorToHex(m_linkColor));
if (m_viewedColor != null)

attr.addAttribute(HTML.Attribute.VLINK,
Utils.colorToHex(m_viewedColor));

m_doc.addAttributes(body, attr);

m_succeeded = true;
}

protected void showColors() {
DefaultStyledDocument doc = new DefaultStyledDocument();

SimpleAttributeSet attr = new SimpleAttributeSet();
StyleConstants.setFontFamily(attr, "Arial");
StyleConstants.setFontSize(attr, 14);
if (m_backgroundColor != null) {

StyleConstants.setBackground(attr, m_backgroundColor);
m_previewPane.setBackground(m_backgroundColor);

}

try {
StyleConstants.setForeground(attr, m_textColor!=null ?

m_textColor : Color.black);
doc.insertString(doc.getLength(),

 "Plain text preview\n\n", attr);

StyleConstants.setForeground(attr, m_linkColor!=null ?
m_linkColor : Color.blue);

StyleConstants.setUnderline(attr, true);
doc.insertString(doc.getLength(), "Link preview\n\n", attr);

StyleConstants.setForeground(attr, m_viewedColor!=null ?
m_viewedColor : Color.magenta);

StyleConstants.setUnderline(attr, true);
doc.insertString(doc.getLength(), "Viewed link preview\n", attr);

}
catch (BadLocationException be) {

be.printStackTrace();
}
m_previewPane.setDocument(doc);

}
}

class HtmlSourceDlg extends JDialog {
protected boolean m_succeeded = false;

protected JTextArea m_sourceTxt;

public HtmlSourceDlg(JFrame parent, String source) {
super(parent, "HTML Source", true);

JPanel pp = new JPanel(new BorderLayout());
pp.setBorder(new EmptyBorder(10, 10, 5, 10));

m_sourceTxt = new JTextArea(source, 20, 60);

Custom dialog
to allow viewing
and editing of
HTML source

664 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_sourceTxt.setFont(new Font("Courier", Font.PLAIN, 12));
JScrollPane sp = new JScrollPane(m_sourceTxt);
pp.add(sp, BorderLayout.CENTER);

JPanel p = new JPanel(new FlowLayout());
JPanel p1 = new JPanel(new GridLayout(1, 2, 10, 0));
JButton bt = new JButton("Save");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_succeeded = true;
dispose();

}
};
bt.addActionListener(lst);
p1.add(bt);

bt = new JButton("Cancel");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
dispose();

}
};
bt.addActionListener(lst);
p1.add(bt);
p.add(p1);
pp.add(p, BorderLayout.SOUTH);

getContentPane().add(pp, BorderLayout.CENTER);
pack();
setResizable(true);
setLocationRelativeTo(parent);

}

public boolean succeeded() {
return m_succeeded;

}

public String getSource() {
return m_sourceTxt.getText();

}
}

20.3.1 Understanding the code

Class HtmlProcessor
Two instance variables have changed class type:

• MutableHTMLDocument m_doc: the main text component’s Document is now an
instance of our custom HTMLDocument subclass.

• CustomHTMLEditorKit m_kit: the editor kit is now an instance of our custom HTML-
EditorKit subclass.

One new instance variable has been added to this example:

• ColorMenu m_foreground: used to choose the selected text foreground color.

HTML EDITOR, PART III : DOCUMENT PROPERTIES 665

The createMenuBar() method adds three new menus. An Insert menu is added with menu
items Image and Hyperlink. These menu items are responsible for inserting images and
hyperlinks respectively. Their ActionListeners both use our custom inputURL() method
to display a dialog that allows specification of the path to the image or hyperlink. Given a
URL to an image or hyperlink, note how we use the HTML.Attribute and HTML.Tag classes
to insert tags and attributes respectively.

Also note that before displaying the input dialog for inserting a hyperlink, our code checks
whether there is already a hyperlink at the current caret position. If there is, this hyperlink is
displayed in the insert hyperlink dialog so that it may be modified (a more professional imple-
mentation might allow us to right-click on the hyperlink to display a popup menu in which
one of the options would be to edit it).

A Format menu is added with menu items Foreground Color and Page Properties. The Fore-
ground Color item is an instance of our custom ColorMenu class developed in chapter 12 as a
simple color selection menu item (see section 12.5). This item sets the foreground color
attribute of the selected text to the color chosen in the ColorMenu component. A MenuLis-
tener is added to the ColorMenu component to set its selected color to the foreground color
of the text at the current carret location when this menu is displayed. The Page Properties
menu item creates an instance of our custom DocumentPropsDlg dialog which is used to
change the text and background color page properties, as well as the document title. If
changes are made with the DocumentPropsDlg we call our documentChanged() method to
update our editor properly with the modified document.

A Tools menu is added with item HTML Source. The HTML Source item displays the
HTML source code behind the current document in an instance of our custom HtmlSourc-
eDlg dialog. A StringWriter is used to convert the current document to a String which is
passed to the HtmlSourceDlg constructor. If changes have been made to the HTML by
HtmlSourceDlg we use a StringReader to bundle the new source from HtmlSourceDlg’s
getSource() method, create a new document using our custom editor kit, read the contents
of the StringReader into the document, and set this new document as our editor’s current
Document instance. Then we call our documentChanged() method to update our editor
properly with the new document.

The getDocumentName() method is modified to return the contents of the title tag, or
if undefined, the current file name.

The newDocument() method is modified to create a new instance of our custom Muta-
ble-HTMLDocument class using our custom editor kit implementation. The openDocu-
ment() method is modified similarly.

There are now two setAttributeSet() methods. The main setAttributeSet() method
takes an AttributeSet parameter and a boolean parameter. The boolean parameter spec-
ifies whether or not the given AttributeSet should be applied as paragraph or character
attributes. If true the attributes will be applied to the currently selected paragraph(s).

The inputURL() method takes two String parameters representing a message to display
and an initial value. This method creates a JOptionPane with a custom panel and given ini-
tial value. The panel consists of a label containing the given message string and a button called
Local File. This button is used to navigate the local computer for a file and, if selected, the

666 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

path to the file will appear in the JOptionPane’s input field. Once the JOptionPane is dis-
missed the inputURL() method returns the chosen string URL.

The documentChanged() method updates the text pane with the current Document
instance after it has been changed by an outside source.

BUG ALERT! Unfortunately we were forced to resort to rather barbaric techniques in order to
properly handle Document updates that occur outside of the editor. Because simply
calling JTextPane’s setDocument() method does not properly update the editor,
we assign it a completely new Document, then reassign it our modified document
and then revalidate and repaint the editor. We encourage you to search for a better
solution to this problem if one exists, and we hope that this problem is addressed
in a future version of JTextPane.

Class Utils
This class consists of the static colorToHex() method which was copied from the
javax.swing.text.html.CSS class. This method takes a Color parameter and returns
a String representing a hex value used in HTML documents to specify a color.

NOTE We copied this method directly from Swing source code and placed it in this sepa-
rate class because, unfortunately, the method is private in the CSS class. We are
unsure why it is private and hope to see this changed in a future release.

Class CustomHTMLEditorKit
This class extends HTMLEditorKit and overrides its createDocument() method to return
an instance of our custom MutableHTMLDocument class.

Class MutableHTMLDocument
This class extends HTMLDocument to add functionality for locating Elements corresponding
to a specific HTML tag, retrieving and setting the document <title> tag value, and adding
attributes to an Element corresponding to a specific HTML tag.

Class DocumentPropsDlg
This class extends JDialog and has eight instance variables:

• boolean m_succeeded: flag set to true if new attributes are successfully added.
• MutableHTMLDocument m_doc: reference to the HTML document passed into

the constructor.
• Color m_backgroundColor: used to store the HTML document’s background color.
• Color m_textColor: used to store the HTML document’s text foreground color.
• Color m_linkColor: used to store the HTML document’s hyperlink color.
• Color m_viewedColor: used to store the HTML document’s visited hyperlink color.
• JTextField m_titleTxt: input field used to change the HTML document’s

title value.
• JTextPane m_previewPane: text pane to preview HTML document color settings.

The DocumentPropsDlg constructor takes JFrame and MutableHTMLDocument parame-
ters. The document passed in represents the HTML document whose properties are to be
modified by this dialog. The <body> element is located and the color variables are initialized
based on this element’s attributes. A panel is created to contain the input field, preview pane,

HTML EDITOR, PART IV: WORKING WITH HTML STYLES AND TABLES 667

and a series of buttons used for displaying a JColorChooser to change each color variable
and update the preview panel. Whenever a color change is made the showColors() method
is called to update the preview panel. A Save button and a Cancel button are also added to this
panel to save changes or abort them respectively. This panel is added to the content pane and
the dialog is centered with respect to the JFrame parent.

The succeeded() method simply returns m_succeeded which indicates whether or not
attempts to change the document’s attributes were successful.

The saveData() method is called when the Save button is pressed. This method updates
the <body> element’s attributes in the HTML document and sets the m_succeeded variable
to true if it succeeds.

The showColors() method updates the preview text pane with a new Default-
Styled-Document. Text is added to this document with attributes corresponding to the text
and hyperlink colors to demonstrate the current selections. The text pane’s background is also
set to the currently selected background color.

Class HtmlSourceDlg
This class extends JDialog and has two instance variables:

• boolean m_succeeded: flag set to true if the Save button is pressed.
• JTextArea m_sourceTxt: text area used for displaying and editing HTML source code.

The HtmlSourceDlg constructor takes JFrame and String parameters. The String repre-
sents the HTML source code and is placed in the text area. The text area is placed in a
JScrollPane and added to a panel. A Save button and a Cancel button are also added to this
panel to save changes or abort them respectively. This panel is added to the content pane and
the dialog is centered with respect to the JFrame parent.

The succeeded() method simply returns m_succeeded which indicates whether or not
attempts to change the document’s attributes were successful.

The getSource() method returns the current contents of the JTextArea representing
the HTML source code.

20.3.2 Running the code

Figure 20.3 shows our editor with the color menu open. Figures 20.4 through 20.7 show our
page properties, HTML source, image, and URL insertion dialogs. Open an existing HTML
file, select a portion of text, and use the custom color menu component to modify its fore-
ground. From the Document menu select the page properties dialog and the HTML source
dialog to modify internal aspects of the document. Verify that these dialogs work as expected.
Try inserting hyperlinks and images. Save the HTML file and open it in another HTML-
aware application to verify that your changes have been saved correctly.

20.4 HTML EDITOR, PART IV:
WORKING WITH HTML STYLES AND TABLES

Using Styles to manage a set of attributes as a single named entity can greatly simplify editing.
The user only has to apply a known style to a paragraph of text rather than selecting all
appropriate text attributes from the provided toolbar components. By adding a combo box
allowing the choice of styles, we can not only save the user time and effort, but we can also

668 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

provide more uniform text formatting throughout the resulting document. In this section
we'll add the following features:

• Ability to apply HTML styles to paragraphs of text.
• A dialog to create HTML tables.

Example 20.4

see \Chapter20\4

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.swing.*;

import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;

HtmlProcessor.java

Figure 20.8 HtmlProcessor with style management

HTML EDITOR, PART IV: WORKING WITH HTML STYLES AND TABLES 669

import dl.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML HTML Editor";

// Unchanged code from example 20.3

protected JComboBox m_cbStyles;

public static HTML.Tag[] STYLES = {

HTML.Tag.P, HTML.Tag.BLOCKQUOTE, HTML.Tag.CENTER,

 HTML.Tag.CITE, HTML.Tag.CODE, HTML.Tag.H1, HTML.Tag.H2,

 HTML.Tag.H3, HTML.Tag.H4, HTML.Tag.H5, HTML.Tag.H6,

 HTML.Tag.PRE };

public HtmlProcessor() {
 // Unchanged code from example 20.3

}

protected JMenuBar createMenuBar() {

// Unchanged code from example 20.3

item = new JMenuItem("Table...");

item.setMnemonic('t');

lst = new ActionListener(){

Figure 20.9
HtmlProcessor’s table creation
dialog–Table pane

Figure 20.10
HtmlProcessor’s table
creation dialog–Size pane

New combo box
containing HTML styles

Menu item to invoke table dialog
for creating an HTML table

670 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

public void actionPerformed(ActionEvent e) {

TableDlg dlg = new TableDlg(HtmlProcessor.this, m_doc);

dlg.show();

if (dlg.succeeded()) {

String tableHtml = dlg.generateHTML();

Element ep = m_doc.getParagraphElement(

m_editor.getSelectionStart());

try {

m_doc.insertAfterEnd(ep, tableHtml);

}

catch (Exception ex) {

ex.printStackTrace();

}

documentChanged();

}

}

};

item.addActionListener(lst);

mInsert.add(item);

menuBar.add(mInsert);

JMenu mFormat = new JMenu("Format");
mFormat.setMnemonic('o');

 // Unchanged code from example 20.3

Figure 20.11
HtmlProcessor’s table
creation dialog–Color pane

Figure 20.12
HtmlProcessor’s table
creation dialog–Preview pane

HTML EDITOR, PART IV: WORKING WITH HTML STYLES AND TABLES 671

m_toolBar.addSeparator();

m_cbStyles = new JComboBox(STYLES);

m_cbStyles.setMaximumSize(new Dimension(100, 23));

m_cbStyles.setRequestFocusEnabled(false);

m_toolBar.add(m_cbStyles);

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

HTML.Tag style = (HTML.Tag)m_cbStyles.getSelectedItem();

if (style == null)

return;

MutableAttributeSet attr = new SimpleAttributeSet();

attr.addAttribute(StyleConstants.NameAttribute, style);

setAttributeSet(attr, true);

m_editor.grabFocus();

}

};

m_cbStyles.addActionListener(lst);

getContentPane().add(m_toolBar, BorderLayout.NORTH);

return menuBar;
}

// Unchanged code from example 20.3

protected void showAttributes(int p) {

// Unchanged code from example 20.3

Element ep = m_doc.getParagraphElement(p);

HTML.Tag attrName = (HTML.Tag)ep.getAttributes().

getAttribute(StyleConstants.NameAttribute);

int index = -1;

if (attrName != null) {

for (int k=0; k<STYLES.length; k++) {

if (STYLES[k].equals(attrName)) {

index = k;

break;

}

}

}

m_cbStyles.setSelectedIndex(index);

m_skipUpdate = false;
}

// Unchanged code from example 20.3

}

// Unchanged code from example 20.3

class TableDlg extends JDialog {
protected boolean m_succeeded = false;

protected MutableHTMLDocument m_doc;

Styles combo box
applies selected HTML.Tag

to current paragraph

Custom dialog to create an
HTML table allowing specification
of # of rows, # of columns,
cell spacing, cell padding,
border width, table width,
table height, table units,
border color, and background
color; also includes a preview
of proposed table

672 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

protected JSpinner m_rowsSpn;
protected JSpinner m_colsSpn;

protected JSpinner m_spacingSpn;

protected JSpinner m_paddingSpn;

protected JSpinner m_borderWidthSpn;
protected JSpinner m_tableWidthSpn;

protected JSpinner m_tableHeightSpn;

protected JComboBox m_tableUnitsCb;

protected JTextPane m_previewPane;

protected Color m_borderColor;
protected Color m_backgroundColor;

protected HTMLEditorKit m_kit = new HTMLEditorKit();

public TableDlg(JFrame parent, MutableHTMLDocument doc) {
super(parent, "Insert Table", true);

m_doc = doc;

ActionListener lst;
JButton bt;

JPanel pp = new JPanel(new DialogLayout2());
pp.setBorder(new EmptyBorder(10, 10, 5, 10));

JPanel p1 = new JPanel(new DialogLayout2());
p1.setBorder(new EmptyBorder(10, 10, 5, 10));

p1.add(new JLabel("Rows:"));
m_rowsSpn = new JSpinner(new SpinnerNumberModel(

new Integer(2), new Integer(0), null, new Integer(1)));

p1.add(m_rowsSpn);

p1.add(new JLabel("Columns:"));
m_colsSpn = new JSpinner(new SpinnerNumberModel(

new Integer(2), new Integer(0), null, new Integer(1)));

p1.add(m_colsSpn);

p1.add(new JLabel("Cell spacing:"));
m_spacingSpn = new JSpinner(new SpinnerNumberModel(

new Integer(2), new Integer(0), null, new Integer(1)));

p1.add(m_spacingSpn);

p1.add(new JLabel("Cell padding:"));
m_paddingSpn = new JSpinner(new SpinnerNumberModel(

new Integer(2), new Integer(0), null, new Integer(1)));

p1.add(m_paddingSpn);

JPanel p2 = new JPanel(new DialogLayout2());
p2.setBorder(new EmptyBorder(10, 10, 5, 10));

p2.add(new JLabel("Border width:"));
m_borderWidthSpn = new JSpinner(new SpinnerNumberModel(

new Integer(2), new Integer(0), null, new Integer(1)));

p2.add(m_borderWidthSpn);

p2.add(new JLabel("Table width:"));

HTML EDITOR, PART IV: WORKING WITH HTML STYLES AND TABLES 673

m_tableWidthSpn = new JSpinner(new SpinnerNumberModel(

new Integer(100), new Integer(0), null, new Integer(1)));

p2.add(m_tableWidthSpn);

p2.add(new JLabel("Table height:"));
m_tableHeightSpn = new JSpinner(new SpinnerNumberModel(

new Integer(0), new Integer(0), null, new Integer(1)));

p2.add(m_tableHeightSpn);

p2.add(new JLabel("Units:"));
m_tableUnitsCb = new JComboBox(new String[]

 {"Percent", "Pixels" });

p2.add(m_tableUnitsCb);

JPanel p3 = new JPanel(new FlowLayout());
p3.setBorder(new EmptyBorder(10, 10, 5, 10));

JPanel pb = new JPanel(new GridLayout(2, 1, 5, 5));

p3.add(pb);

bt = new JButton("Border");
bt.setMnemonic('b');

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

m_borderColor = JColorChooser.showDialog(

 TableDlg.this, "Border Color", m_borderColor);

}

};

bt.addActionListener(lst);

pb.add(bt);

bt = new JButton("Background");
bt.setMnemonic('c');

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

m_backgroundColor = JColorChooser.showDialog(

 TableDlg.this, "Background Color", m_backgroundColor);

}

};

bt.addActionListener(lst);

pb.add(bt);

JPanel p4 = new JPanel(new BorderLayout());
p4.setBorder(new EmptyBorder(10, 10, 5, 10));

m_previewPane = new JTextPane();
m_previewPane.setEditorKit(m_kit);

m_previewPane.setBackground(Color.white);

m_previewPane.setEditable(false);

JScrollPane sp = new JScrollPane(m_previewPane);

sp.setPreferredSize(new Dimension(200, 100));

p4.add(sp, BorderLayout.CENTER);

final JTabbedPane tb = new JTabbedPane();
tb.addTab("Table", p1);

tb.addTab("Size", p2);

tb.addTab("Color", p3);

674 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

tb.addTab("Preview", p4);

pp.add(tb);

ChangeListener chl = new ChangeListener() {
public void stateChanged(ChangeEvent e) {

if (tb.getSelectedIndex() != 3)

return;

setCursor(Cursor.getPredefinedCursor(

Cursor.WAIT_CURSOR));

try {

HTMLDocument doc =

 (HTMLDocument)m_kit.createDefaultDocument();

doc.setAsynchronousLoadPriority(0);

StringReader sr = new StringReader(generateHTML());

m_kit.read(sr, doc, 0);

sr.close();

m_previewPane.setDocument(doc);
validate();

repaint();

}

catch (Exception ex) {

ex.printStackTrace();

}

finally {

setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));

}

}

};

tb.addChangeListener(chl);

bt = new JButton("Insert");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

m_succeeded = true;

dispose();

}

};

bt.addActionListener(lst);

pp.add(bt);

bt = new JButton("Cancel");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

dispose();

}

};

bt.addActionListener(lst);

pp.add(bt);

getContentPane().add(pp, BorderLayout.CENTER);
pack();

setResizable(true);

HTML EDITOR, PART IV: WORKING WITH HTML STYLES AND TABLES 675

setLocationRelativeTo(parent);

}

public boolean succeeded() {
return m_succeeded;

}

protected String generateHTML() {
StringBuffer buff = new StringBuffer();

buff.append("<table");

int tableWidth =
 ((Integer) m_tableWidthSpn.getValue()).intValue();

int tableHeight =

 ((Integer)m_tableHeightSpn.getValue()).intValue();

String unit = "";

if (m_tableUnitsCb.getSelectedIndex()==0)

unit = "%";

if (tableWidth > 0)

buff.append(" width=\"").append(

 tableWidth).append(unit).append("\"");

if (tableHeight > 0)

buff.append(" height=\"").append(

 tableHeight).append(unit).append("\"");

buff.append(" cellspacing=\"").append(
 m_spacingSpn.getValue()).append("\"");

buff.append(" cellpadding=\"").append(

 m_paddingSpn.getValue()).append("\"");

buff.append(" border=\"").append(

 m_borderWidthSpn.getValue()).append("\"");

if (m_borderColor != null)

buff.append(" bordercolor=\"").append(

 Utils.colorToHex(m_borderColor)).append("\"");

if (m_backgroundColor != null)

buff.append(" bgcolor=\"").append(

 Utils.colorToHex(m_backgroundColor)).append("\"");

buff.append(">\n");

int nRows = ((Integer)m_rowsSpn.getValue()).intValue();
int nCols = ((Integer)m_colsSpn.getValue()).intValue();

for (int k=0; k<nRows; k++) {

buff.append("<tr>\n");

for (int s=0; s<nCols; s++)

buff.append("<td> </td>\n");

buff.append("</tr>\n");

}

buff.append("</table>\n");
return buff.toString();

}

}

676 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

20.4.1 Understanding the code

Class HtmlProcessor
One new instance variable has been added:

• JComboBox m_cbStyles: toolbar component to apply HTML styles.

A new static array of HTML.Tags is also added:

• HTML.Tag[] STYLES: used to hold tags for all HTML styles.

The createMenuBar() method creates a new Table menu item added to the Insert menu,
and a new combo box for HTML style selection is added to the toolbar. The Table menu item
displays an instance of our custom TableDlg class for inserting a new HTML table. This
item’s ActionListener is responsible for creating the TableDlg instance and inserting the
resulting HTML code, retrieved using TableDlg’s generateHTML() method, after the para-
graph the cursor is currently in.

The editable styles combo box, m_cbStyles, holds the STYLES list of HTML styles. It
receives an ActionListener which applies the selected HTML.Tag to the paragraph the cur-
sor currently resides in.

The showAttributes() method receives additional code to manage the new style’s
combo box when the caret moves through the document. It retrieves the style corresponding
to the paragraph based on caret position and selects the appropriate entry in the combo box.

Class TableDlg
This class extends JDialog and has several instance variables:

• boolean m_succeeded: flag set to true if the Save button is pressed.
• MutableHTMLDocument m_doc: reference to the HTML document passed into the

constructor.
• JSpinner m_rowsSpn: used to select number of table rows.
• JSpinner m_colsSpn: used to select number of table columns.
• JSpinner m_spacingSpn: used to select table cell spacing size.
• JSpinner m_paddingSpn: used to select table cell padding size.
• JSpinner m_borderWidthSpn: used to select table border width.
• JSpinner m_tableWidthSpn: used to select table width.
• JSpinner m_tableHeightSpn: used to select table height.
• JComboBox m_tableUnitsCb: used to choose units with which to measure HTML

table dimensions (either percentage of available space or pixels).
• JTextPane m_previewPane: text component to display a preview of the HTML table.
• Color m_borderColor: used to maintain the HTML table’s border color.
• Color m_backgroundColor: used to maintain the HTML table’s background color.
• HTMLEditorKit m_kit: editor kit used to create new preview pane document.

The TableDlg constructor takes JFrame and MutableHTMLDocument as parameters. The
document represents the HTML document to which a table will be added. A JTabbedPane
is created with four tabs: Table, Size, Color, and Preview. Each of these tabs receives its own
panel of components.

The Table tab consists of four JSpinners used to select number of table rows and col-
umns, and values for table cell spacing and padding.

HTML EDITOR, PART V: CLIPBOARD AND UNDO/REDO 677

The Size tab consists of three JSpinners used to select table border width, table width,
and table height. It also contains a JComboBox used to select whether the spinner values for
table width and height in this tab are using Percent or Pixels as units. Percent refers to per-
centage of available space the table should occupy, whereas Pixels refers to actual pixel values.

The Color tab contains buttons called Border, and Background which are responsible
for setting the table border color and table background colors respectively through use of a
JColorChooser.

The Preview tab consists of a text pane to show a preview of the proposed HTML table.
A ChangeListener is added to the tabbed pane to detect when the Preview tab is selected and
update the text pane in response using our custom generateHTML() method.

An Insert button and a Cancel button are also added to this dialog. The Insert button sets
the m_succeeded flag to true before the dialog is disposed; the Cancel button simply diposes
of the dialog.

The getSucceeded() method returns the m_succeeded flag.
The generateHTML() method returns a String representing the HTML code for a table

based on the current values of the input components in the Table, Size, and Color tabs.

20.4.2 Running the code

Figure 20.8 shows our editor with the styles combo box open. Figures 20.9 through 20.12
show each tab of our HTML table dialog. Open an existing HTML file and verify that the
selected style is automatically updated while the caret moves through the document. Place the
caret in a different paragraph and select a different style from the styles combo box. Note how
all text properties are updated according to the new style. Use the Insert menu and select
Table to insert an HTML table.

20.5 HTML EDITOR, PART V: CLIPBOARD AND UNDO/REDO

Clipboard and undo/redo operations have become common and necessary components of all
modern text editing environments. We have discussed these features in chapters 11 and 19,
and in this section we show how to integrate them into our HTML editor application.

Example 20.5

see \Chapter20\5

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;

HtmlProcessor.java

678 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

import javax.swing.undo.*;

import dl.*;

public class HtmlProcessor extends JFrame {

// Unchanged code from example 20.4

protected UndoManager m_undo = new UndoManager();

protected Action m_undoAction;

protected Action m_redoAction;

// Unchanged code from example 20.4

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 20.4

JMenu mEdit = new JMenu("Edit");

mEdit.setMnemonic('e');

Action action = new AbstractAction("Copy",

 new ImageIcon("Copy16.gif"))

{

public void actionPerformed(ActionEvent e) {

m_editor.copy();

}

};

item = mEdit.add(action);

Figure 20.13 HtmlProcessor with undo/redo and clipboard functionality

Action to invoke
a copy of currently

selected text

HTML EDITOR, PART V: CLIPBOARD AND UNDO/REDO 679

item.setMnemonic('c');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,

KeyEvent.Ctrl_MASK));

action = new AbstractAction("Cut",

 new ImageIcon("Cut16.gif"))

{

public void actionPerformed(ActionEvent e) {

m_editor.cut();

}

};

item = mEdit.add(action);

item.setMnemonic('t');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_X,

KeyEvent.Ctrl_MASK));

action = new AbstractAction("Paste",

 new ImageIcon("Paste16.gif"))

{

public void actionPerformed(ActionEvent e) {

m_editor.paste();}

};

item = mEdit.add(action);

item.setMnemonic('p');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_V,

KeyEvent.Ctrl_MASK));

mEdit.addSeparator();

m_undoAction = new AbstractAction("Undo",

 new ImageIcon("Undo16.gif"))

{

public void actionPerformed(ActionEvent e) {

try {

m_undo.undo();

}

catch (CannotUndoException ex) {

System.err.println("Unable to undo: " + ex);

}

updateUndo();

}

};

item = mEdit.add(m_undoAction);

item.setMnemonic('u');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_Z,

KeyEvent.Ctrl_MASK));

m_redoAction = new AbstractAction("Redo",

 new ImageIcon("Redo16.gif"))

{

public void actionPerformed(ActionEvent e) {

try {

m_undo.redo();

}

Action to invoke
a copy of currently

selected text

Action to invoke a cut of
currently selected text

Action to invoke
a paste of current

clipboard text

Action
to invoke
an Undo

Action to invoke
a Redo

680 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

catch (CannotRedoException ex) {

System.err.println("Unable to redo: " + ex);

}

updateUndo();

}

};

item =mEdit.add(m_redoAction);

item.setMnemonic('r');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_Y,

KeyEvent.Ctrl_MASK));

menuBar.add(mEdit);

// Unchanged code from example 20.4

return menuBar;
}
// Unchanged code from example 20.4

protected void newDocument() {
// Unchanged code from example 20.4

SwingUtilities.invokeLater(new Runnable() {
public void run() {

showAttributes(0);
m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_doc.addUndoableEditListener(new Undoer());

m_textChanged = false;
}

});
}

protected void openDocument() {
 // Unchanged code from example 20.4

SwingUtilities.invokeLater(new Runnable() {
public void run() {

m_editor.setCaretPosition(1);
showAttributes(1);
m_editor.scrollRectToVisible(new Rectangle(0,0,1,1));
m_doc.addDocumentListener(new UpdateListener());
m_doc.addUndoableEditListener(new Undoer());
m_textChanged = false;

}
});

}

// Unchanged code from example 20.4

protected void updateUndo() {

if(m_undo.canUndo()) {

m_undoAction.setEnabled(true);

m_undoAction.putValue(Action.NAME,

m_undo.getUndoPresentationName());

}

Action to invoke
a Redo

Updates undo and redo Actions
based on undo stack

HTML EDITOR, PART V: CLIPBOARD AND UNDO/REDO 681

else {

m_undoAction.setEnabled(false);

m_undoAction.putValue(Action.NAME, "Undo");

}

if(m_undo.canRedo()) {

m_redoAction.setEnabled(true);

m_redoAction.putValue(Action.NAME,

m_undo.getRedoPresentationName());

}

else {

m_redoAction.setEnabled(false);

m_redoAction.putValue(Action.NAME, "Redo");

}

}

public static void main(String argv[]) {
HtmlProcessor frame = new HtmlProcessor();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

// Unchanged code from example 20.4

class Undoer implements UndoableEditListener {

public Undoer() {

m_undo.die();

updateUndo();

}

public void undoableEditHappened(UndoableEditEvent e) {

UndoableEdit edit = e.getEdit();

m_undo.addEdit(e.getEdit());

updateUndo();

}

}

}

// Unchanged code from example 20.4

20.5.1 Understanding the code

Class HtmlProcessor
We now import the javax.swing.undo package and add three new instance variables:

• UndoManager m_undo: used to manage undo/redo operations.
• Action m_undoAction: used for a menu item/action to perform undo operations.
• Action m_redoAction: used for a menu item/action to perform redo operations.

The createMenuBar() method now creates a menu titled Edit (which traditionally follows
the File menu) containing menu items titled Copy, Cut, Paste, Undo, and Redo. The first
three items merely trigger calls to the copy(), cut(), and paste() methods of our
m_editor text pane. These methods perform basic clipboard operations. They are available
when the editor has the current focus and the appropriate keyboard accelerator is pressed.

Adds undoable edit events
to UndoManager and

updates state of
undo/redo components

682 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

The Undo menu item is created from an AbstractAction whose actionPerformed()
method first invokes undo() on the UndoManager, and then invokes our custom update-
Undo() method to update our Undo/Redo menu items appropriately. Similarly, the Redo
menu item is created from an AbstractAction which invokes redo() on the UndoMan-
ager, and then calls our updateUndo() method.

The newDocument() and openDocument() methods now add an instance of our cus-
tom Undoer class as an UndoableEditListener to all newly created or loaded documents.

The updateUndo() method enables or disables the Undo and Redo menu items, and
updates their names according to the operation which can be undone/redone (if any). If the
Undo-Manager’s canUndo() method returns true, the m_undoAction is enabled and its
name is set to the string returned by getUndoPresentationName(). Otherwise it is dis-
abled and its name is set to Undo. The Redo menu item is handled similarly.

Class HtmlProcessor.Undoer
This inner class implements the UndoableEditListener interface to receive notifications
about undoable operations. The undoableEditHappened() method receives Undoable-
EditEvents, retrieves their encapsulated UndoableEdit instances, and passes them to the
UndoManager. The updateUndo() method is also invoked to update the undo/redo menu
items appropriately.

20.5.2 Running the code

Figure 20.13 shows our editor with the Edit menu open. Open an existing HTML file and
verify that copy, cut, and paste clipboard operations transfer text successfully. Make some
changes to the textual content or styles and note that the title of the Undo menu item is
updated. Select this menu item, or press its keyboard accelerator (Ctrl-Z) to undo a series of
changes. This will enable the Redo menu item. Use this menu item or press its keyboard
accelerator (Ctrl-Y) to redo a series of changes.

20.6 HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT

In section 20.2 we used toolbar components to change font properties. This is useful for
making a quick modification without leaving the main application frame, and is typical for
word processor applications. However, all serious editor applications also provide a dialog for
the editing of all available font properties from one location. In this section’s example we’ll
show how to create such a dialog, which includes components to select various font properties
and preview the result.

Example 20.6

see \Chapter20\6

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

HtmlProcessor.java

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 683

Figure 20.14 Font properties and preview dialog

Figure 20.15 Font dialog displaying custom list and
list cell renderer for foreground color selection

684 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

import java.util.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;
import javax.swing.undo.*;

import dl.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML HTML Editor";

// Unchanged code from example 20.5

protected String[] m_fontNames;

protected String[] m_fontSizes;

// Unchanged code from example 20.5

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 20.5

GraphicsEnvironment ge = GraphicsEnvironment.
getLocalGraphicsEnvironment();

m_fontNames = ge.getAvailableFontFamilyNames();

m_toolBar.addSeparator();
m_cbFonts = new JComboBox(m_fontNames);
m_cbFonts.setMaximumSize(new Dimension(200, 23));
m_cbFonts.setEditable(true);

ActionListener lst = new ActionListener() {
public void actionPerformed(ActionEvent e) {

m_fontName = m_cbFonts.getSelectedItem().toString();
MutableAttributeSet attr = new SimpleAttributeSet();
StyleConstants.setFontFamily(attr, m_fontName);
setAttributeSet(attr);
m_editor.grabFocus();

}
};
m_cbFonts.addActionListener(lst);

m_toolBar.add(m_cbFonts);

m_toolBar.addSeparator();
m_fontSizes = new String[] {"8", "9", "10",

"11", "12", "14", "16", "18", "20", "22", "24", "26",

"28", "36", "48", "72"};

m_cbSizes = new JComboBox(m_fontSizes);
m_cbSizes.setMaximumSize(new Dimension(50, 23));
m_cbSizes.setEditable(true);

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 685

// Unchanged code from example 20.5

item = new JMenuItem("Font...");

item.setMnemonic('o');

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

FontDialog dlg = new FontDialog(HtmlProcessor.this,

m_fontNames, m_fontSizes);

AttributeSet a = m_doc.getCharacterElement(

m_editor.getCaretPosition()).getAttributes();

dlg.setAttributes(a);

dlg.show();

if (dlg.succeeded()) {

setAttributeSet(dlg.getAttributes());

showAttributes(m_editor.getCaretPosition());

}

}

};

item.addActionListener(lst);

mFormat.add(item);

mFormat.addSeparator();

return menuBar;
}

// Unchanged code from example 20.5

}

// Unchanged code from example 20.5

class FontDialog extends JDialog {
protected boolean m_succeeded = false;
protected OpenList m_lstFontName;
protected OpenList m_lstFontSize;
protected MutableAttributeSet m_attributes;
protected JCheckBox m_chkBold;
protected JCheckBox m_chkItalic;
protected JCheckBox m_chkUnderline;

protected JCheckBox m_chkStrikethrough;
protected JCheckBox m_chkSubscript;
protected JCheckBox m_chkSuperscript;

protected JComboBox m_cbColor;
protected JLabel m_preview;

public FontDialog(JFrame parent,
String[] names, String[] sizes)

{
super(parent, "Font", true);
JPanel pp = new JPanel();
pp.setBorder(new EmptyBorder(5,5,5,5));
pp.setLayout(new BoxLayout(pp, BoxLayout.Y_AXIS));

JPanel p = new JPanel(new GridLayout(1, 2, 10, 2));
p.setBorder(new TitledBorder(new EtchedBorder(), "Font"));

New menu item to invoke custom
FontDialog for font management

Custom font dialog allows
specification of font properties
such as size, name, bold, italic,
underline, strikethrough,
subscript, superscript, color
and also includes a preview
illustrating selections

686 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_lstFontName = new OpenList(names, "Name:");
p.add(m_lstFontName);

m_lstFontSize = new OpenList(sizes, "Size:");
p.add(m_lstFontSize);
pp.add(p);

p = new JPanel(new GridLayout(2, 3, 10, 5));
p.setBorder(new TitledBorder(new EtchedBorder(), "Effects"));
m_chkBold = new JCheckBox("Bold");
p.add(m_chkBold);
m_chkItalic = new JCheckBox("Italic");
p.add(m_chkItalic);
m_chkUnderline = new JCheckBox("Underline");
p.add(m_chkUnderline);
m_chkStrikethrough = new JCheckBox("Strikeout");
p.add(m_chkStrikethrough);
m_chkSubscript = new JCheckBox("Subscript");
p.add(m_chkSubscript);
m_chkSuperscript = new JCheckBox("Superscript");
p.add(m_chkSuperscript);
pp.add(p);
pp.add(Box.createVerticalStrut(5));

p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.add(Box.createHorizontalStrut(10));
p.add(new JLabel("Color:"));
p.add(Box.createHorizontalStrut(20));
m_cbColor = new JComboBox();

int[] values = new int[] { 0, 128, 192, 255 };
for (int r=0; r<values.length; r++) {

for (int g=0; g<values.length; g++) {
for (int b=0; b<values.length; b++) {

Color c = new Color(values[r], values[g], values[b]);

m_cbColor.addItem(c);
}

}
}

m_cbColor.setRenderer(new ColorComboRenderer());
p.add(m_cbColor);
p.add(Box.createHorizontalStrut(10));
pp.add(p);

ListSelectionListener lsel = new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {

updatePreview();
}

};
m_lstFontName.addListSelectionListener(lsel);
m_lstFontSize.addListSelectionListener(lsel);

Custom OpenList
components
used to select
font name and size

Check boxes
for various

font properties

Create combo
box used to

select font color
using custom

ColorComboRenderer

Updates preview
component wherever

font name or
size changes

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 687

ActionListener lst = new ActionListener() {
public void actionPerformed(ActionEvent e) {

updatePreview();
}

};
m_chkBold.addActionListener(lst);
m_chkItalic.addActionListener(lst);
m_cbColor.addActionListener(lst);

p = new JPanel(new BorderLayout());
p.setBorder(new TitledBorder(new EtchedBorder(), "Preview"));
m_preview = new JLabel("Preview Font", JLabel.CENTER);
m_preview.setBackground(Color.white);
m_preview.setForeground(Color.black);
m_preview.setOpaque(true);
m_preview.setBorder(new LineBorder(Color.black));
m_preview.setPreferredSize(new Dimension(120, 40));
p.add(m_preview, BorderLayout.CENTER);
pp.add(p);

p = new JPanel(new FlowLayout());
JPanel p1 = new JPanel(new GridLayout(1, 2, 10, 0));
JButton btOK = new JButton("OK");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_succeeded = true;
dispose();

}
};
btOK.addActionListener(lst);
p1.add(btOK);

JButton btCancel = new JButton("Cancel");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
dispose();

}
};
btCancel.addActionListener(lst);
p1.add(btCancel);
p.add(p1);
pp.add(p);

getContentPane().add(pp, BorderLayout.CENTER);
pack();
setResizable(false);
setLocationRelativeTo(parent);

}

public void setAttributes(AttributeSet a) {
m_attributes = new SimpleAttributeSet(a);
String name = StyleConstants.getFontFamily(a);
m_lstFontName.setSelected(name);
int size = StyleConstants.getFontSize(a);

Preview panel showing
sample of selected font

attributes changes

Placing buttons
inside GridLayout
inside FlowLayout

ensures the buttons
are equally sized

and centered

Used to assign initial
attribute to selection
components when font
dialog is invoked

688 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_lstFontSize.setSelectedInt(size);
m_chkBold.setSelected(StyleConstants.isBold(a));
m_chkItalic.setSelected(StyleConstants.isItalic(a));
m_chkUnderline.setSelected(StyleConstants.isUnderline(a));
m_chkStrikethrough.setSelected(

StyleConstants.isStrikeThrough(a));
m_chkSubscript.setSelected(StyleConstants.isSubscript(a));
m_chkSuperscript.setSelected(StyleConstants.isSuperscript(a));
m_cbColor.setSelectedItem(StyleConstants.getForeground(a));
updatePreview();

}

public AttributeSet getAttributes() {
if (m_attributes == null)

return null;
StyleConstants.setFontFamily(m_attributes,

m_lstFontName.getSelected());
StyleConstants.setFontSize(m_attributes,

m_lstFontSize.getSelectedInt());
StyleConstants.setBold(m_attributes,

m_chkBold.isSelected());
StyleConstants.setItalic(m_attributes,

m_chkItalic.isSelected());

StyleConstants.setUnderline(m_attributes,
m_chkUnderline.isSelected());

StyleConstants.setStrikeThrough(m_attributes,
m_chkStrikethrough.isSelected());

StyleConstants.setSubscript(m_attributes,
m_chkSubscript.isSelected());

StyleConstants.setSuperscript(m_attributes,
m_chkSuperscript.isSelected());

StyleConstants.setForeground(m_attributes,
(Color)m_cbColor.getSelectedItem());

return m_attributes;
}

public boolean succeeded() {
return m_succeeded;

}

protected void updatePreview() {
String name = m_lstFontName.getSelected();
int size = m_lstFontSize.getSelectedInt();
if (size <= 0)

return;
int style = Font.PLAIN;
if (m_chkBold.isSelected())

style |= Font.BOLD;
if (m_chkItalic.isSelected())

style |= Font.ITALIC;

// Bug Alert! This doesn't work if only style is changed.
Font fn = new Font(name, style, size);
m_preview.setFont(fn);

Used to retrieve current
attributes selected
in the font dialog

Updates preview panel
with current font
dialog selections

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 689

Color c = (Color)m_cbColor.getSelectedItem();
m_preview.setForeground(c);
m_preview.repaint();

}
}

class OpenList extends JPanel
implements ListSelectionListener, ActionListener

{
protected JLabel m_title;
protected JTextField m_text;
protected JList m_list;
protected JScrollPane m_scroll;

public OpenList(String[] data, String title) {
setLayout(null);
m_title = new JLabel(title, JLabel.LEFT);
add(m_title);
m_text = new JTextField();
m_text.addActionListener(this);
add(m_text);
m_list = new JList(data);
m_list.setVisibleRowCount(4);
m_list.addListSelectionListener(this);
m_list.setFont(m_text.getFont());
m_scroll = new JScrollPane(m_list);
add(m_scroll);

}

public void setSelected(String sel) {
m_list.setSelectedValue(sel, true);
m_text.setText(sel);

}

public String getSelected() { return m_text.getText(); }

public void setSelectedInt(int value) {
setSelected(Integer.toString(value));

}

public int getSelectedInt() {
try {

return Integer.parseInt(getSelected());
}
catch (NumberFormatException ex) { return -1; }

}

public void valueChanged(ListSelectionEvent e) {
Object obj = m_list.getSelectedValue();
if (obj != null)

m_text.setText(obj.toString());
}

public void actionPerformed(ActionEvent e) {
ListModel model = m_list.getModel();
String key = m_text.getText().toLowerCase();

Custom component
resembling a
permanently open
combo box

690 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

for (int k=0; k<model.getSize(); k++) {
String data = (String)model.getElementAt(k);
if (data.toLowerCase().startsWith(key)) {

m_list.setSelectedValue(data, true);
break;

}
}

}

public void addListSelectionListener(ListSelectionListener lst) {
m_list.addListSelectionListener(lst);

}

public Dimension getPreferredSize() {
Insets ins = getInsets();
Dimension d1 = m_title.getPreferredSize();
Dimension d2 = m_text.getPreferredSize();
Dimension d3 = m_scroll.getPreferredSize();
int w = Math.max(Math.max(d1.width, d2.width), d3.width);
int h = d1.height + d2.height + d3.height;
return new Dimension(w+ins.left+ins.right,

h+ins.top+ins.bottom);
}

public Dimension getMaximumSize() {
Insets ins = getInsets();
Dimension d1 = m_title.getMaximumSize();
Dimension d2 = m_text.getMaximumSize();
Dimension d3 = m_scroll.getMaximumSize();
int w = Math.max(Math.max(d1.width, d2.width), d3.width);
int h = d1.height + d2.height + d3.height;
return new Dimension(w+ins.left+ins.right,

h+ins.top+ins.bottom);
}

public Dimension getMinimumSize() {
Insets ins = getInsets();
Dimension d1 = m_title.getMinimumSize();
Dimension d2 = m_text.getMinimumSize();
Dimension d3 = m_scroll.getMinimumSize();
int w = Math.max(Math.max(d1.width, d2.width), d3.width);
int h = d1.height + d2.height + d3.height;
return new Dimension(w+ins.left+ins.right,

h+ins.top+ins.bottom);
}

public void doLayout() {
Insets ins = getInsets();
Dimension d = getSize();
int x = ins.left;
int y = ins.top;
int w = d.width-ins.left-ins.right;
int h = d.height-ins.top-ins.bottom;

Dimension d1 = m_title.getPreferredSize();

All layout at this component
is handled here

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 691

m_title.setBounds(x, y, w, d1.height);
y += d1.height;
Dimension d2 = m_text.getPreferredSize();
m_text.setBounds(x, y, w, d2.height);
y += d2.height;
m_scroll.setBounds(x, y, w, h-y);

}
}

class ColorComboRenderer extends JPanel implements ListCellRenderer
{

protected Color m_color = Color.black;
protected Color m_focusColor =

(Color) UIManager.get("List.selectionBackground");
protected Color m_nonFocusColor = Color.white;

public Component getListCellRendererComponent(JList list,
 Object obj, int row, boolean sel, boolean hasFocus)
{

if (hasFocus || sel)
setBorder(new CompoundBorder(

new MatteBorder(2, 10, 2, 10, m_focusColor),
new LineBorder(Color.black)));

else
setBorder(new CompoundBorder(

new MatteBorder(2, 10, 2, 10, m_nonFocusColor),
new LineBorder(Color.black)));

if (obj instanceof Color)
m_color = (Color) obj;

return this;
}

public void paintComponent(Graphics g) {
setBackground(m_color);
super.paintComponent(g);

}
}

20.6.1 Understanding the code

Class HtmlProcessor
Two new instance variables are added:

• String[] m_fontNames: array of available font family names.
• String[] m_fontSizes: array of font sizes.

These arrays were used earlier as local variables to create the toolbar combo box components.
Since we need to use them in our font dialog as well, we decided to make them instance
variables (this requires minimal changes to the createMenuBar() method).

NOTE Reading the list of available fonts takes a significant amount of time. For perfor-
mance reasons it is best to do this only once in an application’s lifetime.

Custom list cell renderer
used to display Colors

in a presentable fashion

692 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

A new menu item titled Font… is now added to the Format menu. When the corresponding
ActionListener is invoked an instance of our custom FontDialog is created and the
attributes of the character element corresponding to the current caret position are retrieved as
an AttributeSet instance and passed to the dialog for selection (using its setAt-
tributes() method), and the dialog is centered relative to the parent frame and displayed. If
the dialog is closed with the OK button (determined by checking whether its succeeded()
method returns true), we retrieve the new font attributes with FontDialog’s getAt-
tributes() method, and assign these attributes to the selected text with our setAttribu-
teSet() method. Finally, our toolbar components are updated with our
showAttributes() method.

Class FontDialog
This class extends JDialog and acts as a font properties editor and previewer for our HTML
editor application. Several instance variables are declared:

• boolean m_succeeded: a flag that will be set to true if font changes are accepted.
• OpenList m_lstFontName: custom JList subclass for selecting the font family name.
• OpenList m_lstFontSize: custom JList subclass for selecting the font size.
• MutableAttributeSet m_attributes: a collection of font attributes used to pre-

serve the user’s selection.
• JCheckBox m_chkBold: check box to select the bold attribute.
• JCheckBox m_chkItalic: check box to select the italic attribute.
• JCheckBox m_chkUnderline: check box to select the font underline attribute.
• JCheckBox m_chkStrikethrough: check box to select the font strikethrough attribute.
• JCheckBox m_chkSubscript: check box to select the font subscript attribute.
• JCheckBox m_chkSuperscript: check box to select the font superscript attribute.
• JComboBox m_cbColor: combo box to select the font foreground color.
• JLabel m_preview: label to preview the selections.

The FontDialog constructor first creates a superclass modal dialog titled Font. The con-
structor creates and initializes all GUI components used in this dialog. A y-oriented BoxLay-
out is used to place component groups from top to bottom.

Two OpenList components are placed at the top to select an available font family name and
font size. These components encapsulate a label, text box, and list components which work
together. They are similar to editable combo boxes that always keep their drop-down list
open. Below the OpenLists, a group of six check boxes are placed for selecting bold, italic,
underline, strikethrough, subscript, and superscript font attributes. JComboBox m_cbColor
is placed below this group, and is used to select the font foreground color. Sixty-four Colors
are added, and an instance of our custom ColorComboRenderer class is used as its list cell
renderer. JLabel m_preview is used to preview the selected font before applying it to the
editing text, and is placed below the foreground color combo box.

The m_lstFontName and m_lstFontSize OpenList components each receive the same
ListSelectionListener instance which calls our custom updatePreview() method
whenever the list selection is changed. Similarly, the check boxes and the foreground color
combo box receive an ActionListener which does the same thing. This provides dynamic
preview of the selected font attributes as soon as any is changed.

HTML EDITOR, PART VI: ADVANCED FONT MANAGEMENT 693

BUG ALERT! Underline, strikethrough, subscript, and superscript font properties are not sup-
ported by the AWT Font class, so they cannot be shown in the JLabel compo-
nent. This is why the corresponding check box components do not receive an
ActionListener. As we will see, the strikethrough, subscript, and superscript
properties also do not work properly in HTML documents. They are included in
this dialog for completeness, in the hopes that they will work properly in a future
Swing release.

Two buttons labeled OK and Cancel are placed at the bottom of the dialog. They are placed in
a panel managed by a 1x2 GridLayout, which is in turn placed in a panel managed by a Flow-
Layout. This is to ensure the equal sizing and central placement of the buttons. Both receive
ActionListeners which dispose of the dialog. The OK button also sets the m_succeeded
flag to true to indicate that the changes made in the font dialog should be applied.

The dialog window is packed to give it a natural size, and is then centered with respect
to the parent frame.

The setAttributes() method takes an AttributeSet instance as a parameter. It copies
this attribute set into a SimpleAttributeSet stored as our m_attributes instance
variable. Appropriate font attributes are extracted using StyleConstants methods, and used
to assign values to the dialog’s controls. Finally the preview label is updated according to these
new settings by calling our updatePreview() method. Note that the setAttributes()
method is public and is used for data exchange between this dialog and its owner (in our case
HtmlProcessor).

The getAttributes() method plays an opposite role with respect to setAttributes(). It
retrieves data from the dialog’s controls, packs them into an AttributeSet instance using
StyleConstants methods, and returns this set to the caller.

The succeeded() method simply returns the m_succeeded flag.

The updatePreview() method is called to update the font preview label when a font
attribute is changed. It retrieves the selected font attributes (family name, size, bold, and italic
properties) and creates a new Font instance to render the label. The selected color is retrieved
from the m_cbColor combo box and set as the label’s foreground.

Class OpenList
This component consists of a title label, a text field, and a list in a scroll pane. The user can
either select a value from the list, or enter it in the text box manually. OpenList extends
JPanel and maintains the following four instance variables:

• JLabel m_title: title label used to identify the purpose of this component.
• JTextField m_text: editable text field.
• JList m_list: list component.
• JScrollPane m_scroll: scroll pane containing the list component.

The OpenList constructor assigns a null layout manager because this container manages
its child components on its own. The four components are instantiated and simply added to
this container.

694 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

The setSelected() method sets the text field text to that of the given String, and
selects the corresponding item in the list (which is scrolled to display the newly selected value).
The getSelected() method retrieves and returns the selected item as a String.

Methods setSelectedInt()/getSelectedInt() do the same but with int values.
These methods are implemented to simplify working with a list of ints.

The valueChanged() and actionPerformed() methods provide coordination
between the list component and the text field. The valueChanged() method is called when-
ever the list selection changes, and will assign the result of a toString() call on the selected
item as the text field’s text. The actionPerformed() method will be called when the user
presses Enter while the text field has the current focus. This implementation performs a case-
insensitive search through the list items in an effort to find an item which begins with the
entered text. If such an item is found, it is selected.

The public addListSelectionListener() method adds a ListSelectionLis-
tener to our list component (which is protected). In this way, external objects can dynamically
receive notifications about changes in that list’s selection.

The getPreferredSize(), getMaximumSize(), and getMinimumSize() methods calcu-
late and return a preferred, maximum, and minimum dimension of this container respec-
tively. They assume that the three child components (label, text field, and scroll pane
containing the list) will be laid out one under another from top to bottom, receiving an equal
width and their preferable heights. The doLayout() method actually lays out the compo-
nents according to this scheme. Note that the insets (resulting from an assigned border, for
instance) must always be taken into account (see chapter 4 for more about custom layout
management).

Class ColorComboRenderer
This class implements the ListCellRenderer interface (discussed in chapters 9 and 10) and
is used to represent various Colors. Three instance variables are defined:

• Color m_color: used for the main background color to represent a Color.
• Color m_focusColor: used for the thick border color of a selected item.
• Color m_nonFocusColor: used for the thick border color of an unselected item.

The getListCellRendererComponent() method is called prior to the rendering of each
list item (in our HtmlProcessor example this list is contained within our foreground
colors combo box). The Color instance is retrieved and stored in the m_color instance vari-
able. This color is used as the renderer’s background, while a white matte border is used to
surround unselected cells, and a light blue matte border is used to surround a selected cell.
The paintComponent() method simply sets the background to m_color and calls the
superclass paintComponent() method.

20.6.2 Running the code

Figure 20.14 shows our custom FontDialog in action and figure 20.15 shows the foreground
color combo box open, displaying our custom list cell renderer. Open an existing HTML file,
select a portion of text, and bring up the font dialog. Verify that the initial values correspond to
the font attributes of the paragraph of text at the current caret position. Try selecting different
font attributes and note that the preview component is updated dynamically. Press the OK

HTML EDITOR, PART VII : FIND AND REPLACE 695

button to apply the selected attributes to the current paragraph. Also verify that clicking Cancel
does not apply any changes.

20.7 HTML EDITOR, PART VII: FIND AND REPLACE

Along with font and paragraph dialogs, find and replace functionality has also become a fairly
common tool in GUI-based text editing environments. It is safe to assume that most users
would be sadly disappointed if this functionality was not included in a new word processor
application. In this section we will show how to add this functionality. Traditionally such tools
are represented in an Edit menu and can be activated by keyboard accelerators. We will use a
dialog containing a single tabbed pane with tabs for finding and replacing a specific region of
text. We will also provide several options for searching: match case, search whole words only,
and search up or down.

Figure 20.16 HtmlProcessor with complete find and replace functionality;
Find... and Replace... menu items shown here

Figure 20.17
Find tab of our custom
find and replace dialog

696 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

Example 20.7

see \Chapter20\7

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;
import javax.swing.undo.*;

import dl.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML HTML Editor";

// Unchanged code from example 20.6

protected FindDialog m_findDialog;

// Unchanged code from example 20.6

protected JMenuBar createMenuBar() {

JMenuBar menuBar = new JMenuBar();

// Unchanged code from example 20.6

Action findAction = new AbstractAction("Find...",

 new ImageIcon("Find16.gif"))

{

public void actionPerformed(ActionEvent e) {

if (m_findDialog==null)

m_findDialog = new FindDialog(HtmlProcessor.this, 0);

else

m_findDialog.setSelectedIndex(0);

m_findDialog.show();

}

};

item = mEdit.add(findAction);

item.setMnemonic('f');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_F,

KeyEvent.Ctrl_MASK));

HtmlProcessor.java

Action to invoke
find dialog

HTML EDITOR, PART VII : FIND AND REPLACE 697

Action replaceAction = new AbstractAction("Replace...",

 new ImageIcon("Replace16.gif")) {

public void actionPerformed(ActionEvent e) {

if (m_findDialog==null)

m_findDialog = new FindDialog(HtmlProcessor.this, 1);

else

m_findDialog.setSelectedIndex(1);

m_findDialog.show();

}

};

item = mEdit.add(replaceAction);

item.setMnemonic('l');

item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_H,

KeyEvent.Ctrl_MASK));

menuBar.add(mEdit);

// Unchanged code from example 20.6

return menuBar;
}

public Document getDocument() {

return m_doc;

}

public JTextPane getTextPane() {

return m_editor;

}

public void setSelection(int xStart, int xFinish, boolean moveUp) {

if (moveUp) {

m_editor.setCaretPosition(xFinish);

m_editor.moveCaretPosition(xStart);

}

else

m_editor.select(xStart, xFinish);

m_xStart = m_editor.getSelectionStart();

m_xFinish = m_editor.getSelectionEnd();

}

// Unchanged code from example 20.6
}

// Unchanged code from example 20.6

class Utils
{
 // Unchanged code from example 20.6

public static final char[] WORD_SEPARATORS = {' ', '\t', '\n',

'\r', '\f', '.', ',', ':', '-', '(', ')', '[', ']', '{',

'}', '<', '>', '/', '|', '\\', '\'', '\"'};

Action to invoke find dialog
with Replace tab selected

Methods to allow
easier access by

external services

Word separator
characters

698 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

public static boolean isSeparator(char ch) {

for (int k=0; k<WORD_SEPARATORS.length; k++)

if (ch == WORD_SEPARATORS[k])

return true;

return false;

}

}

// Unchanged code from example 20.6

class FindDialog extends JDialog {
protected HtmlProcessor m_owner;
protected JTabbedPane m_tb;
protected JTextField m_txtFind1;
protected JTextField m_txtFind2;
protected Document m_docFind;
protected Document m_docReplace;
protected ButtonModel m_modelWord;
protected ButtonModel m_modelCase;
protected ButtonModel m_modelUp;
protected ButtonModel m_modelDown;

protected int m_searchIndex = -1;
protected boolean m_searchUp = false;
protected Stringm_searchData;

public FindDialog(HtmlProcessor owner, int index) {
super(owner, "Find and Replace", false);
m_owner = owner;

m_tb = new JTabbedPane();

// "Find" panel
JPanel p1 = new JPanel(new BorderLayout());

JPanel pc1 = new JPanel(new BorderLayout());

JPanel pf = new JPanel();
pf.setLayout(new DialogLayout2(20, 5));
pf.setBorder(new EmptyBorder(8, 5, 8, 0));
pf.add(new JLabel("Find what:"));

m_txtFind1 = new JTextField();
m_docFind = m_txtFind1.getDocument();
pf.add(m_txtFind1);
pc1.add(pf, BorderLayout.CENTER);

JPanel po = new JPanel(new GridLayout(2, 2, 8, 2));
po.setBorder(new TitledBorder(new EtchedBorder(),

"Options"));

JCheckBox chkWord = new JCheckBox("Whole words only");
chkWord.setMnemonic('w');
m_modelWord = chkWord.getModel();
po.add(chkWord);

ButtonGroup bg = new ButtonGroup();

Method returns true
if a given character is
a separator character

Dialog with tabbed pane
for performing “Find” and
“Replace” functionality

Dialog is not modal

HTML EDITOR, PART VII : FIND AND REPLACE 699

JRadioButton rdUp = new JRadioButton("Search up");
rdUp.setMnemonic('u');
m_modelUp = rdUp.getModel();
bg.add(rdUp);
po.add(rdUp);

JCheckBox chkCase = new JCheckBox("Match case");
chkCase.setMnemonic('c');
m_modelCase = chkCase.getModel();
po.add(chkCase);

JRadioButton rdDown = new JRadioButton("Search down", true);
rdDown.setMnemonic('d');
m_modelDown = rdDown.getModel();
bg.add(rdDown);
po.add(rdDown);
pc1.add(po, BorderLayout.SOUTH);

p1.add(pc1, BorderLayout.CENTER);

JPanel p01 = new JPanel(new FlowLayout());
JPanel p = new JPanel(new GridLayout(2, 1, 2, 8));

ActionListener findAction = new ActionListener() {
public void actionPerformed(ActionEvent e) {

findNext(false, true);
}

};
JButton btFind = new JButton("Find Next");
btFind.addActionListener(findAction);
btFind.setMnemonic('f');
p.add(btFind);

ActionListener closeAction = new ActionListener() {
public void actionPerformed(ActionEvent e) {

setVisible(false);
}

};
JButton btClose = new JButton("Close");
btClose.addActionListener(closeAction);
btClose.setDefaultCapable(true);
p.add(btClose);
p01.add(p);
p1.add(p01, BorderLayout.EAST);

m_tb.addTab("Find", p1);

// "Replace" panel
JPanel p2 = new JPanel(new BorderLayout());

JPanel pc2 = new JPanel(new BorderLayout());

JPanel pc = new JPanel();
pc.setLayout(new DialogLayout2(20, 5));
pc.setBorder(new EmptyBorder(8, 5, 8, 0));

pc.add(new JLabel("Find what:"));

700 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_txtFind2 = new JTextField();
m_txtFind2.setDocument(m_docFind);
pc.add(m_txtFind2);

pc.add(new JLabel("Replace:"));
JTextField txtReplace = new JTextField();
m_docReplace = txtReplace.getDocument();
pc.add(txtReplace);
pc2.add(pc, BorderLayout.CENTER);

po = new JPanel(new GridLayout(2, 2, 8, 2));
po.setBorder(new TitledBorder(new EtchedBorder(),

"Options"));

chkWord = new JCheckBox("Whole words only");
chkWord.setMnemonic('w');
chkWord.setModel(m_modelWord);
po.add(chkWord);

bg = new ButtonGroup();
rdUp = new JRadioButton("Search up");
rdUp.setMnemonic('u');
rdUp.setModel(m_modelUp);
bg.add(rdUp);

po.add(rdUp);

chkCase = new JCheckBox("Match case");
chkCase.setMnemonic('c');
chkCase.setModel(m_modelCase);
po.add(chkCase);

rdDown = new JRadioButton("Search down", true);
rdDown.setMnemonic('d');
rdDown.setModel(m_modelDown);
bg.add(rdDown);
po.add(rdDown);
pc2.add(po, BorderLayout.SOUTH);

p2.add(pc2, BorderLayout.CENTER);

JPanel p02 = new JPanel(new FlowLayout());
p = new JPanel(new GridLayout(3, 1, 2, 8));

ActionListener replaceAction = new ActionListener() {
public void actionPerformed(ActionEvent e) {

findNext(true, true);
}

};
JButton btReplace = new JButton("Replace");
btReplace.addActionListener(replaceAction);
btReplace.setMnemonic('r');
p.add(btReplace);

ActionListener replaceAllAction = new ActionListener() {
public void actionPerformed(ActionEvent e) {

int counter = 0;
while (true) {

HTML EDITOR, PART VII : FIND AND REPLACE 701

int result = findNext(true, false);
if (result < 0)

return;
else if (result == 0)

 break;
counter++;

}
JOptionPane.showMessageDialog(m_owner,

counter+" replacement(s) have been done",
HtmlProcessor.APP_NAME,
JOptionPane.INFORMATION_MESSAGE);

}
};
JButton btReplaceAll = new JButton("Replace All");
btReplaceAll.addActionListener(replaceAllAction);
btReplaceAll.setMnemonic('a');
p.add(btReplaceAll);

btClose = new JButton("Close");
btClose.addActionListener(closeAction);
btClose.setDefaultCapable(true);
p.add(btClose);
p02.add(p);

p2.add(p02, BorderLayout.EAST);

// Make button columns the same size
p01.setPreferredSize(p02.getPreferredSize());

m_tb.addTab("Replace", p2);

m_tb.setSelectedIndex(index);

JPanel pp = new JPanel(new BorderLayout());
pp.setBorder(new EmptyBorder(5,5,5,5));
pp.add(m_tb, BorderLayout.CENTER);
getContentPane().add(pp, BorderLayout.CENTER);

pack();
setResizable(false);
setLocationRelativeTo(owner);

WindowListener flst = new WindowAdapter() {
public void windowActivated(WindowEvent e) {

m_searchIndex = -1;
}

public void windowDeactivated(WindowEvent e) {
m_searchData = null;

}
};
addWindowListener(flst);

}

public void setSelectedIndex(int index) {
m_tb.setSelectedIndex(index);
setVisible(true);

Make tab panels
same size so that
shared components
stay in same position

702 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

m_searchIndex = -1;
}

public int findNext(boolean doReplace, boolean showWarnings) {
JTextPane monitor = m_owner.getTextPane();
int pos = monitor.getCaretPosition();
if (m_modelUp.isSelected() != m_searchUp) {

m_searchUp = m_modelUp.isSelected();
m_searchIndex = -1;

}

if (m_searchIndex == -1) {
try {

Document doc = m_owner.getDocument();
if (m_searchUp)

m_searchData = doc.getText(0, pos);
else

m_searchData = doc.getText(pos, doc.getLength()-pos);
m_searchIndex = pos;

}
catch (BadLocationException ex) {

warning(ex.toString());
return -1;

}
}

String key = "";
try {

key = m_docFind.getText(0, m_docFind.getLength());
}
catch (BadLocationException ex) {}
if (key.length()==0) {

warning("Please enter the target to search");
return -1;

}
if (!m_modelCase.isSelected()) {

m_searchData = m_searchData.toLowerCase();
key = key.toLowerCase();

}
if (m_modelWord.isSelected()) {

for (int k=0; k<Utils.WORD_SEPARATORS.length; k++) {
if (key.indexOf(Utils.WORD_SEPARATORS[k]) >= 0) {

warning("The text target contains an illegal "+
"character \'"+Utils.WORD_SEPARATORS[k]+"\'");

return -1;
}

}
}

String replacement = "";
if (doReplace) {

try {
replacement = m_docReplace.getText(0,

m_docReplace.getLength());

Performs actual
find/replace

operation

Get string
to search for
and optionally
convert both
search text
and target
to lowercase

Retrieves replacement text

HTML EDITOR, PART VII : FIND AND REPLACE 703

} catch (BadLocationException ex) {}
}

int xStart = -1;
int xFinish = -1;
while (true)
{

if (m_searchUp)
xStart = m_searchData.lastIndexOf(key, pos-1);

else
xStart = m_searchData.indexOf(key, pos-m_searchIndex);

if (xStart < 0) {
if (showWarnings)

warning("Text not found");
return 0;

}

xFinish = xStart+key.length();

if (m_modelWord.isSelected()) {
boolean s1 = xStart>0;
boolean b1 = s1 && !Utils.isSeparator(m_searchData.charAt(

xStart-1));
boolean s2 = xFinish<m_searchData.length();
boolean b2 = s2 && !Utils.isSeparator(m_searchData.charAt(

xFinish));

if (b1 || b2)// Not a whole word
{

if (m_searchUp && s1)// Can continue up
{

pos = xStart;
continue;

}
if (!m_searchUp && s2)// Can continue down
{

pos = xFinish+1;
continue;

}
// Found, but not a whole word, and we cannot continue
if (showWarnings)

warning("Text not found");
return 0;

}
}
break;

}

if (!m_searchUp) {
xStart += m_searchIndex;
xFinish += m_searchIndex;

}
if (doReplace) {

m_owner.setSelection(xStart, xFinish, m_searchUp);

Searches backward or forward
(up or down) for search string

Retrieves replacement text

B1 and b2 determine
whether the found string

is in a word boundary

Does actual replacement

704 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

monitor.replaceSelection(replacement);
m_owner.setSelection(xStart, xStart+replacement.length(),

m_searchUp);
m_searchIndex = -1;

}
else

m_owner.setSelection(xStart, xFinish, m_searchUp);
return 1;

}

protected void warning(String message) {
JOptionPane.showMessageDialog(m_owner,

message, HtmlProcessor.APP_NAME,
JOptionPane.INFORMATION_MESSAGE);

}
}

20.7.1 Understanding the code

Class HtmlProcessor
HtmlProcessor declares one new instance variable:

• FindDialog m_findDialog: custom dialog for finding and replacing a section of text.

Two new menu items titled Find... and Replace..., are added to the Edit menu. These items
are activated with keyboard accelerators Ctrl-F and Ctrl-H respectively. When pressed, both
items create an instance of FindDialog (if m_findDialog is null) or activate the existing
instance, and the dialog is then displayed. The only difference between the two is that the
Find... menu item activates the 0-indexed tabbed pane tab, and the Replace... menu item
activates the tab at index 1.

Three new public methods have been added to this class to make access to our text pane
component, and related objects, easier from external sources. The getDocument() method
retrieves the text pane’s current Document instance, and the getTextPane() method
retrieves the text pane itself. The setSelection() method selects a portion of text between
given start and end positions, and positions the caret at the beginning or end of the selection,
depending on the value of the moveUp boolean parameter. The coordinates of such a selection
are then stored in the m_xStart and m_xFinish instance variables (recall that these variables
always hold the coordinates of the current text selection and are used to restore this selection
when our text pane regains the focus).

Class Utils
A simple static utility method and an array of chars representing word separator characters is
added to this class. The isSeparator() method simply checks whether a given character
belongs to the static WORD_SEPARATORS char array.

Class FindDialog
This class is a modal JDialog subclass encapsulating our find and replace functionality. It
contains a tabbed pane with two tabs, Find and Replace. Both tabs contain several common
controls that should always be in synch: a check box for whole words only, a check box for

Does actual replacement

HTML EDITOR, PART VII : FIND AND REPLACE 705

match case, a radio button for search up, a radio button for search down, and a text field for
the text we are searching for.

Since the components can exist in only one container, we need to place identical com-
ponents in each tab. To simplify the task of maintaining consistency in component states, each
pair of common components is assigned the same model.

FindDialog maintains the following instance variables:

• HtmlProcessor m_owner: an explicit reference to our HtmlProcessor parent appli-
cation frame.

• JTabbedPane m_tb: the tabbed pane containing the find and replace pages.
• JTextField m_txtFind1: used to enter the string to find.
• JTextField m_txtFind2: used to enter the string to replace.
• Document m_docFind: a shared data model for the Find text fields.
• Document m_docReplace: a data model for the Replace text field.
• ButtonModel m_modelWord: a shared data model for the Whole words only check

boxes.
• ButtonModel m_modelCase: a shared data model for the Match case check boxes.
• ButtonModel m_modelUp: a shared data model for the Search up radio buttons.
• ButtonModel m_modelDown: a shared data model for the Search down radio buttons.
• int m_searchIndex: position in the document to start searching from.
• boolean m_searchUp: a search direction flag.
• String m_searchData: string to search for.

The FindDialog constructor creates a superclass nonmodal dialog instance titled Find and
Replace. The main tabbed pane, m_tb, is created, and JPanel p1 (the main container of the
Find tab) receives the m_txtFind1 text field along with a Find what: label. This text field is
used to enter the target string to be searched for. Note that the Document instance associated
with this textbox is stored in the m_docFind instance variable (which will be used to facilitate
sharing between another text field).

NOTE In a more sophisticated implementation you might use editable combo boxes
with memory in place of text fields, similar to those discussed in the final examples
of chapter 9.

Two check boxes titled Whole words only and Match case, and two radio buttons, Search up
and Search down, (initially selected) are placed at the bottom of the p1 panel. These compo-
nents are surrounded by a titled Options border. Two JButtons titled Find Next and Close
are placed at the right side of the panel. The first button calls our findNext() method when
pressed. The second button hides the dialog. Finally the p1 panel is added to m_tb with a tab
title of Find.

JPanel p2 (the main container of the Replace tab) receives the m_txtFind2 text field along
with a “Find what:” label. It also receives another pair labeled Replace. An instance of our
custom layout manager, DialogLayout (discussed in chapter 4), is used to lay out these text
fields and corresponding labels without involving any intermediate containers. The same lay-
out is used in the Find panel. We also synchronize the preferred size of the two panels to avoid
movement of the synchronized components when a new page is activated.

706 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

Note that the m_docFind data object is set as the document for the m_txtFind2
text field. This ensures consistency between the two different Find text fields in the two
tabbed panels.

Two check boxes and two radio buttons are placed at the bottom of the panel to control
the replacement options. They have identical meaning and representation as the corresponding
four controls in the Find panel, and to ensure consistency between them, the data models are
shared between each identical component.

Three JButtons titled Replace, Replace All, and Close are placed at the right side of the
panel. The Replace button makes a single call to our findNext() method when pressed. The
Replace All button is associated with an actionPerformed() method which repeatedly
invokes findNext() to perform replacement until it returns -1 to signal an error, or 0 to sig-
nal that no more replacements can be made. If an error occurs this method returns, the
action-Performed() method simple returns (since an error will be properly reported to the
user by the findNext() method). Otherwise the number of replacements made is reported
to the user in a JOptionPane message dialog. The Close button hides the dialog. Finally the
p2 panel is added to the m_tb tabbed pane with a tab title of Replace.

Since this is a nonmodal dialog, the user can freely switch to the main application frame
and return back to the dialog while each remains visible (a typical find-and-replace feature).
Once the user leaves the dialog he/she can modify the document’s content, or move the caret
position. To account for this, we add a WindowListener to the dialog whose windowActi-
vated() method sets m_searchIndex to -1. This way, the next time findNext() is called
the search data will be reinitialized, allowing the search to continue as expected, corresponding
to the new caret position and document content.

The setSelectedIndex() method activates a page with the given index and makes this
dialog visible. This method is intended mostly for use externally by our app when it wants to
display this dialog with a specific tab selected.

The findNext() method is responsible for performing the actual find and replace opera-
tions. It takes two arguments:

• boolean doReplace: if true, find and replace, otherwise just find.
• boolean showWarnings: if true, display a message dialog if target text cannot be

found, otherwise do not display a message.

findNext() returns an int result with the following meaning:

• -1: an error has occurred.
• 0: the target text cannot be found.
• 1: a find or find and replace was completed successfully.

The m_searchIndex == -1 condition specifies that the portion of text to be searched
through must be refreshed. In this case we store the portion of text from the beginning
of the document to the current caret position if we are searching up, or between the current
caret position and the end of the document if we are searching down. This text is stored in
the m_searchData instance variable. The current caret position is stored in the m_search-
Index variable.

NOTE This solution may not be adequate for large documents. However, a more sophis-
ticated solution would take us too far from the primary goal of this example.

HTML EDITOR, PART VII : FIND AND REPLACE 707

The text to search for is retrieved from the m_docFind shared Document. If the case-insensi-
tive option is selected, both the m_searchData text and the text to search for are converted
into lower case. If the Whole words only option is selected, we check whether the text to
search for contains any separator characters defined in our Util utilities class.

NOTE If a given String is already in all lower or upper case, the toLowerCase()
(or toUpperCase()) method returns the original String without creating a
new object.

After this, if the doReplace parameter is true, we retrieve the replacement text from our
m_docReplace Document. At this point we’re ready to actually perform a search. We take
advantage of existing String functionality to accomplish this:

if (m_searchUp)
xStart = m_searchData.lastIndexOf(key, pos-1);

else
xStart = m_searchData.indexOf(key, pos-m_searchIndex);

If we are seaching up, we search for the last occurrence of the target string from the current
caret position. Otherwise we search for the first occurrence of the target string from the cur-
rent caret position. If the target string is not found, we cannot continue the search, and a
warning is displayed if the showWarnings parameter is true.

This simple scheme is complicated considerably if the Whole words only option is selected. In
this case we need to verify whether symbols on the left and on the right of a matching region
of text are either word separators defined in our Utils class, or the string lies at the end of the
data being searched. If these conditions are not satisfied, we attempt to continue searching,
unless the end of the search data is reached.

In any case, if we locate an acceptable match, we select the located text. If the replace option
is selected, we replace this selected region with the specified replacement text and then select
the new replacement text. In this latter case we also set m_searchIndex to -1 to force
the m_searchData variable to be updated. This is necessary for continued searching because
the data being searched most likely changes after each replace. The location of the caret also
usually changes.

Figure 20.18
Usage of instance variables
for searching up and down
through document text

708 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

20.7.2 Running the code

Figure 20.16 shows our editor’s Find and Replace menu items. Figures 20.17 and 20.18 show
our custom FindDialog’s Find and Replace tabs respectively. Open an existing HTML file
and use the Edit menu, or the appropriate keyboard accelerator, to bring up the Find and
Replace dialog with the Find tab selected. Enter some text to search for, select some search
options, and press the Find Next button. If your target text is found, the matching region will
be highlighted in the base document. Click this button again to find subsequent entries (if
any). Verify that the Whole words only and Match case options function as discussed earlier.
Change focus to the main application window and modify the document and/or change the
caret position. Return to the Find and Replace dialog and note that the search continues as
expected.

Select the Replace tab and verify that the state of all search options, including the
search target string, are preserved from the Find tab (and vice versa when switching between
tabs). Enter a replacement string and verify that the Replace and Replace All buttons work
as expected.

20.8 HTML EDITOR, PART IX:
SPELL CHECKER (USING JDBC AND SQL)
Most modern word processor applications offer tools and utilities which help the user in find-
ing grammatical and spelling mistakes in a document. In this section we will add spell-check-
ing to our HTML editor application. To do this we will need to perform some of our own
multithreading, and use JDBC to connnect to a database containing a dictionary of words.
We will use a simple database with one table, Data, which has the following structure:

An example of this database, populated with words from several Shakespeare comedies and
tragedies, is provided in this example’s directory: Shakespeare.mdb. (This database must be a
registered database in your database manager prior to using it. This is not a JDBC tutorial, so
we’ll skip the details.)

NOTE The custom SOUNDEX algorithm used in this example hashes words for efficien-
cy by using a simple model which approximates the sound of the word when spo-
ken. Each word is reduced to a four character string, the first character being an
upper case letter and the remaining three being digits. (This algorithm was created
and patented by Robert C. Russell in 1918.)

Name Type Description

word String A single English word
sound String A 4-letter SOUNDEX code

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 709

Example 20.8

see \Chapter20\8

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;

import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.text.html.*;
import javax.swing.undo.*;

import dl.*;

public class HtmlProcessor extends JFrame {

public static final String APP_NAME = "HTML HTML Editor";

// Unchanged code from example 20.7

protected JMenuBar createMenuBar() {
JMenuBar menuBar = new JMenuBar();

HtmlProcessor.java

Figure 20.19 HtmlProcessor’s SpellChecker.SpellingDialog dialog

710 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

// Unchanged code from example 20.7

Action spellAction = new AbstractAction("Spelling...",

 new ImageIcon("SpellCheck16.gif"))

{

public void actionPerformed(ActionEvent e) {

SpellChecker checker = new SpellChecker(HtmlProcessor.this);

HtmlProcessor.this.setCursor(Cursor.getPredefinedCursor(

Cursor.WAIT_CURSOR));

checker.start();

}

};

item =mTools.add(spellAction);

item.setMnemonic('s');

item.setAccelerator(KeyStroke.getKeyStroke(

KeyEvent.VK_F7, 0));

menuBar.add(mTools);

// Unchanged code from example 20.7

return menuBar;
}

// Unchanged code from example 20.7
}

// Unchanged code from example 20.7
class Utils
{
 // Unchanged code from example 20.7

public static String soundex(String word) {
char[] result = new char[4];
result[0] = word.charAt(0);
result[1] = result[2] = result[3] = '0';
int index = 1;

char codeLast = '*';
for (int k=1; k<word.length(); k++) {

char ch = word.charAt(k);
char code = ' ';
switch (ch) {

case 'b': case 'f': case 'p': case 'v':
code = '1';
break;

case 'c': case 'g': case 'j': case 'k':
case 'q': case 's': case 'x': case 'z':

code = '2';
break;

case 'd': case 't':
code = '3';
break;

case 'l':
code = '4';
break;

New menu item
initiates spell checking

Calculate the SOUNDEX
code of a given word

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 711

case 'm': case 'n':
code = '5';
break;

case 'r':
code = '6';
break;

default:
code = '*';
break;

}
if (code == codeLast)

code = '*';
codeLast = code;
if (code != '*') {

result[index] = code;
index++;
if (index > 3)

break;
}

}
return new String(result);

}

public static boolean hasDigits(String word) {
for (int k=1; k<word.length(); k++) {

char ch = word.charAt(k);
if (Character.isDigit(ch))

return true;
}
return false;

}

public static String titleCase(String source) {
return Character.toUpperCase(source.charAt(0)) +

source.substring(1);
}

}

// Unchanged code from example 20.7

class OpenList extends JPanel
implements ListSelectionListener, ActionListener

{
protected JLabel m_title;
protected JTextField m_text;
protected JList m_list;
protected JScrollPane m_scroll;

public OpenList(String[] data, String title) {
setLayout(null);
m_title = new JLabel(title, JLabel.LEFT);
add(m_title);
m_text = new JTextField();
m_text.addActionListener(this);

Returns true if given
word contains digits

Converts first
character of given
String to upper case

OpenList component
modified to populate
list with ResultSet data

712 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

add(m_text);
m_list = new JList(data);
m_list.setVisibleRowCount(4);
m_list.addListSelectionListener(this);
m_list.setFont(m_text.getFont());
m_scroll = new JScrollPane(m_list);
add(m_scroll);

}

public OpenList(String title, int numCols) {

setLayout(null);

m_title = new JLabel(title, JLabel.LEFT);

add(m_title);

m_text = new JTextField(numCols);

m_text.addActionListener(this);

add(m_text);

m_list = new JList();

m_list.setVisibleRowCount(4);

m_list.addListSelectionListener(this);

m_scroll = new JScrollPane(m_list);

add(m_scroll);

}

public void appendResultSet(ResultSet results, int index,

 boolean toTitleCase)

{

m_text.setText("");

DefaultListModel model = new DefaultListModel();

try {

while (results.next()) {

String str = results.getString(index);

if (toTitleCase)

str = Utils.titleCase(str);

model.addElement(str);

}

}

catch (SQLException ex) {

System.err.println("appendResultSet: "+ex.toString());

}

m_list.setModel(model);

if (model.getSize() > 0)

m_list.setSelectedIndex(0);

}

// Unchanged code from example 20.7

}

// Unchanged code from example 20.7

class SpellChecker extends Thread {
protected static String SELECT_QUERY =

"SELECT Data.word FROM Data WHERE Data.word = ";
protected static String SOUNDEX_QUERY =

"SELECT Data.word FROM Data WHERE Data.soundex = ";

Custom thread that performs
actual spell checking from
current caret position down

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 713

protected HtmlProcessor m_owner;
protected Connection m_conn;
protected DocumentTokenizer m_tokenizer;
protected Hashtablem_ignoreAll;
protected SpellingDialog m_dlg;

public SpellChecker(HtmlProcessor owner) {
m_owner = owner;

}

public void run() {
JTextPane monitor = m_owner.getTextPane();
m_owner.setEnabled(false);
monitor.setEnabled(false);

m_dlg = new SpellingDialog(m_owner);
m_ignoreAll = new Hashtable();

try {
// Load the JDBC-ODBC bridge driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
m_conn = DriverManager.getConnection(

"jdbc:odbc:Shakespeare", "admin", "");
Statement selStmt = m_conn.createStatement();

Document doc = m_owner.getDocument();
int pos = monitor.getCaretPosition();
m_tokenizer = new DocumentTokenizer(doc, pos);

String word, wordLowCase;

while (m_tokenizer.hasMoreTokens()) {
word = m_tokenizer.nextToken();
if (word.equals(word.toUpperCase()))

continue;
if (word.length()<=1)

continue;
if (Utils.hasDigits(word))

continue;
wordLowCase = word.toLowerCase();
if (m_ignoreAll.get(wordLowCase) != null)

continue;

ResultSet results = selStmt.executeQuery(
SELECT_QUERY+"'"+wordLowCase+"'");

if (results.next())
continue;

results = selStmt.executeQuery(SOUNDEX_QUERY+
"'"+Utils.soundex(wordLowCase)+"'");

m_owner.setSelection(m_tokenizer.getStartPos(),
m_tokenizer.getEndPos(), false);

if (!m_dlg.suggest(word, results))
break;

}

m_conn.close();

Before doing work,
disables components

Looks at each word
in the document

If word is found
in the database
then it is spelled
correctly

If it is an unknown word
try to find words that sound like it

to suggest as replacements

714 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

System.gc();
monitor.setCaretPosition(pos);

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println("SpellChecker error: "+ex.toString());

}

monitor.setEnabled(true);
m_owner.setEnabled(true);
m_owner.setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));
}

protected void replaceSelection(String replacement) {
int xStart = m_tokenizer.getStartPos();
int xFinish = m_tokenizer.getEndPos();
m_owner.setSelection(xStart, xFinish, false);
m_owner.getTextPane().replaceSelection(replacement);
xFinish = xStart+replacement.length();
m_owner.setSelection(xStart, xFinish, false);
m_tokenizer.setPosition(xFinish);

}

protected void addToDB(String word) {
String sdx = Utils.soundex(word);
try {

Statement stmt = m_conn.createStatement();
stmt.executeUpdate(

"INSERT INTO DATA (Word, Soundex) VALUES ('"+
word+"', '"+sdx+"')");

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println("SpellChecker error: "+ex.toString());

}
}

class SpellingDialog extends JDialog {
protected JTextField m_txtNotFound;
protected OpenList m_suggestions;

protected String m_word;
protected booleanm_continue;

public SpellingDialog(HtmlProcessor owner) {
super(owner, "Spelling", true);

JPanel p = new JPanel();
p.setBorder(new EmptyBorder(5, 5, 5, 5));
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.add(new JLabel("Not in dictionary:"));
p.add(Box.createHorizontalStrut(10));
m_txtNotFound = new JTextField();
m_txtNotFound.setEditable(false);

If the word
was misspelled
and the user
accepted a
replacement,
this does the
replacement

Adds a word to the
“known” database

Dialog that prompts
the user for an action
on a misspelled word

Text field containing
misspelled word

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 715

p.add(m_txtNotFound);
getContentPane().add(p, BorderLayout.NORTH);

m_suggestions = new OpenList("Change to:", 12);
m_suggestions.setBorder(new EmptyBorder(0, 5, 5, 5));
getContentPane().add(m_suggestions, BorderLayout.CENTER);

JPanel p1 = new JPanel();
p1.setBorder(new EmptyBorder(20, 0, 5, 5));
p1.setLayout(new FlowLayout());
p = new JPanel(new GridLayout(3, 2, 8, 2));

JButton bt = new JButton("Change");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
replaceSelection(m_suggestions.getSelected());
m_continue = true;
setVisible(false);

}
};
bt.addActionListener(lst);
bt.setMnemonic('c');
p.add(bt);

bt = new JButton("Add");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
addToDB(m_word.toLowerCase());
m_continue = true;
setVisible(false);

}
};
bt.addActionListener(lst);
bt.setMnemonic('a');
p.add(bt);

bt = new JButton("Ignore");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_continue = true;
setVisible(false);

}
};
bt.addActionListener(lst);
bt.setMnemonic('i');
p.add(bt);

bt = new JButton("Suggest");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
try {

m_word = m_suggestions.getSelected();
Statement selStmt = m_conn.createStatement();
ResultSet results = selStmt.executeQuery(

SELECT_QUERY+"'"+m_word.toLowerCase()+"'");

List containing
replacement
suggestions

Replaces
misspelled
word with
selected
suggestion

Adds misspelled
word to database

Adds words to
suggestions list

that “sound like”
selected suggestion

716 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

boolean toTitleCase = Character.isUpperCase(
m_word.charAt(0));

m_suggestions.appendResultSet(results, 1,
toTitleCase);

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println("SpellChecker error: "+

ex.toString());
}

}
};
bt.addActionListener(lst);
bt.setMnemonic('s');
p.add(bt);

bt = new JButton("Ignore All");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_ignoreAll.put(m_word.toLowerCase(), m_word);
m_continue = true;
setVisible(false);

}

};
bt.addActionListener(lst);
bt.setMnemonic('g');
p.add(bt);

bt = new JButton("Close");
lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
m_continue = false;
setVisible(false);

}
};
bt.addActionListener(lst);
bt.setDefaultCapable(true);
p.add(bt);
p1.add(p);
getContentPane().add(p1, BorderLayout.EAST);

pack();
setResizable(false);
setLocationRelativeTo(owner);

}

public boolean suggest(String word, ResultSet results) {
m_continue = false;
m_word = word;
m_txtNotFound.setText(word);
boolean toTitleCase = Character.isUpperCase(

word.charAt(0));
m_suggestions.appendResultSet(results, 1, toTitleCase);
show();

Adds words to
suggestions list

that “sound like”
selected suggestion

Skips word,
and will skip
all ocurrences
of word in this
document

Called during spell checking
to populate the dialog

with a misspelled word
and its replacement suggestion

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 717

return m_continue;
}

}
}

class DocumentTokenizer {
protected Document m_doc;
protected Segmentm_seg;
protected int m_startPos;
protected int m_endPos;
protected int m_currentPos;

public DocumentTokenizer(Document doc, int offset) {
m_doc = doc;
m_seg = new Segment();
setPosition(offset);

}

public boolean hasMoreTokens() {
return (m_currentPos < m_doc.getLength());

}

public String nextToken() {
StringBuffer s = new StringBuffer();

try {
// Trim leading separators
while (hasMoreTokens()) {

m_doc.getText(m_currentPos, 1, m_seg);
char ch = m_seg.array[m_seg.offset];
if (!Utils.isSeparator(ch)) {

m_startPos = m_currentPos;
break;

}
m_currentPos++;

}

// Append characters
while (hasMoreTokens()) {

m_doc.getText(m_currentPos, 1, m_seg);
char ch = m_seg.array[m_seg.offset];
if (Utils.isSeparator(ch)) {

m_endPos = m_currentPos;
break;

}
s.append(ch);
m_currentPos++;

}
}
catch (BadLocationException ex) {

System.err.println("nextToken: "+ex.toString());
m_currentPos = m_doc.getLength();

}
return s.toString();

}

Used like StreamTokenizer,
but keeps track of the character
position from each token

Returns the next token,
starting at the position
in the document

718 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

public int getStartPos() { return m_startPos; }

public int getEndPos() { return m_endPos; }

public void setPosition(int pos) {
m_startPos = pos;
m_endPos = pos;
m_currentPos = pos;

}
}

20.8.1 Understanding the code

Class HtmlProcessor
This class now imports the java.sql package to make use of JDBC functionality. The
createMenuBar() method now creates a new menu item in the Tools menu titled Spelling...
. This menu item can also be invoked with keyboard accelerator F7. When selected it creates
and starts a SpellChecker thread, passing a reference to the main application frame as
a parameter.

Class Utils
Three new static methods are added to this class. The soundex() method calculates and
returns the SOUNDEX code of the given word. To calculate that code we use the first charac-
ter of the given word and add a three-digit code that represents the first three remaining con-
sonants. The conversion is made according to the following table:

The hasDigits() method returns true if a given string contains digits, and the title-
Case() method converts the first character of a given string to upper case.

Class OpenList
This custom component receives new functionality for use in our new spell checker dialog.
First, we add a new constructor which assigns a given number of columns to the text field,
and does not initialize the list component.

Second, we add the appendResultSet() method which populates the list component
with the data supplied in the given ResultSet instance at the given position. If the third
parameter is set to true, this tells the method to convert all string data to the ‘title case’ (which
means that the first letter is in upper case, and the rest of the string is unchanged). This is
accomplished through use of the Utils.titleCase() method.

Code Letters

1 B,P,F,V
2 C,S,G,J,K,Q,X,Z
3 D,T
4 L
5 M,N
6 R
* (all others)

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 719

Class SpellChecker
This class extends Thread to perform spell checking of the current document from the
current caret position moving downward. Two class variables are declared:

• String SELECT_QUERY: SQL query text used to select a word equal to a given string.
• String SOUNDEX_QUERY: SQL query text used to select a word matching a given

SOUNDEX value.

Five instance variables are declared:

• HtmlProcessor m_owner: a reference to the main application frame.
• Connection m_conn: JDBC connection to a database.
• DocumentTokenizer m_tokenizer: a custom object used to retrieve each word in

a document.
• Hashtable m_ignoreAll: a collection of words to ignore in a search, added to with

the Ignore All button.
• SpellingDialog m_dlg: our custom dialog used for processing spelling mistakes.

The SpellChecker constructor takes a reference to the application’s frame as a parameter
and stores it in the m_owner instance variable.

The run() method is responsible for the most significant activity of this thread. To prevent
the user from modifying the document during spell checking we first disable the main appli-
cation frame and our text pane contained within it.

NOTE Unlike AWT, Swing containers do not disable their child components when they
themselves are disabled. It is not clear whether this is a bug, an intended feature, or
an oversight.

Then we create a new SpellingDialog instance to provide the user interface, and instanti-
ate the m_ignoreAll collection. In a try/catch block we process all JDBC interactions to
allow proper handling of any potential errors. This code creates a JDBC connection to our
Shakespeare database, retrieves the current caret position, and creates an instance of Docu-
mentTokenizer to parse the document from the current caret position. In a while loop we
perform spell checking on each word fetched until there are no more tokens. Words in all
upper case, containing only one letter, or containing digits, are skipped (this behavior can eas-
ily be customized). Then we convert the word under examination to lower case and search for
it in the m_ignoreAll collection. If it is not found, we try to find it in the database. If the
SQL query does not return any results, we try to locate a similar word in the database with the
same SOUNDEX value to suggest to the user in the dialog. The word in question is then
selected in our text pane to show the user which word is currently under examination. Finally
we call our SpellingDialog’s suggest() method to request that the user make a decision
about what to do with this word. If the suggest() method returns false, the user has cho-
sen to terminate the spell checking process, so we exit the loop. Once outside the loop we
close the JDBC connection, restore the original caret position, explicitly call the garbage col-
lector, and reenable the main application frame and our text pane editor contained within it.

The following two methods are invoked by the SpellingDialog instance associated with
this SpellChecker:

720 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

• replaceSelection() is used to replace the most recently parsed word with the given
replacement string.

• addToDB() adds a given word and it’s SOUNDEX value to the database by executing an
insert query.

Class SpellChecker.SpellingDialog
This inner class represents a dialog which prompts the user to verify or correct a certain word
if it is not found in the database. The user can select one of several actions in response: ignore
the given word, ignore all occurrences of that word in the document, replace that word with
another word, add this word to the database and consider it correct in any future matches, or
cancel the spell check. Four instance variables are declared:

• JTextField m_txtNotFound: used to display the word under investigation.
• OpenList m_suggestions: editable list component to select or enter a replacement

word.
• String m_word: the word under investigation.
• boolean m_continue: a flag indicating that spell checking should continue.

The SpellingDialog constructor places the m_txtNotFound component and correspond-
ing label at the top of the dialog window. The m_suggestions OpenList is placed in the
center, and six buttons are grouped to the right.

The Change button replaces the word under investigation with the word currently selected in
the list or entered by the user. Then it stores true in the m_continue flag and hides the dia-
log window. This terminates the modal state of the dialog and makes the show() method
return, which in turn allows the program’s execution to continue (recall that modal dialogs
block the calling thread until they are dismissed).

The Add button adds the word in question to the spelling database. This word will then be
considered correct in future queries. In this way we allow the spell checker to “learn” new
words (i.e., add them to the dictionary).

The Suggest button populates the m_suggestions list with all SOUNDEX matches to the
word under investigation. This button is intended for use in situations where the user is not
satisfied with the initial suggestions.

The Ignore button simply skips the current word and continues spell checking the remaining
text.

The Ignore All button does the same as the Ignore, but also stores the word in question in the
collection of words to ignore, so the next time the spell checker finds this word it will be
deemed correct. The difference between Ignore All and Add is that ignored words will only be
ignored during a single spell check, whereas words added to the database will persist as long as
the database data does.

The Close button stores false in the m_continue flag and hides the dialog window.
This results in the termination of the spell checking process (see the suggest() method).

The suggest() method is used to display this SpellingDialog each time a questionable
word is located during the spell check. It takes a String and a ResultSet containing sug-
gested substitutions as parameters. It sets the text of the m_txtNotFound component to the

HTML EDITOR, PART IX: SPELL CHECKER (USING JDBC AND SQL) 721

String passed in, and calls appendResultSet() on the OpenList to display an array of
suggested corrections. Note that the first character of these suggestions will be converted to
upper case if the word in question starts with a capital letter. Finally, the show() method dis-
plays this dialog in the modal state. As soon as this state is terminated by one of the push but-
tons, or by directly closing the dialog, the suggest() method returns the m_continue flag.
If this flag is set to false, this indicates that the calling program should terminate the spell
checking cycle.

Class DocumentTokenizer
This helper class was built to parse the current text pane document. Unfortunately we cannot
use the standard StreamTokenizer class for this purpose, because it provides no way of que-
rying the position of a token within the document (we need this information to allow word
replacement). Several instance variables are declared:

• Document m_doc: a reference to the document to be parsed.
• Segment m_seg: used for quick delivery of characters from the document being parsed.
• int m_startPos: the start position of the current word from the beginning of the docu-

ment.
• int m_endPos: the end position of the current word from the beginning of the document.
• int m_currentPos: the current position of the parser from the beginning of the docu-

ment.

The DocumentTokenizer constructor takes a reference to the document to be parsed and
the offset to start at as parameters. It initializes the instance variables described previously.

The hasMoreTokens() method returns true if the current parsing position lies within
the document.

The nextToken() method extracts the next token (a group of characters separated by one or
more characters defined in the WORD_SEPARATORS array from our Utils class) and returns it
as a String. The positions of the beginning and the end of the token are stored in the
m_startPos and m_endPos instance variables respectively. To access a portion of document
text with the least possible overhead we use the Document.getText() method which takes
three parameters: offset from the beginning of the document, length of the text fragment, and
a reference to an instance of the Segment class. (Recall from chapter 19 that the Segment
class provides an efficient means of directly accessing an array of document characters.)

We look at each character in turn, passing over separator characters until the first non-
separator character is reached. This position is marked as the beginning of a new word. Then
a StringBuffer is used to accumulate characters until a separator character, or the end of
document, is reached. The resulting characters are returned as a String.

NOTE This variant of the getText() method gives us direct access to the characters
contained in the document through a Segment instance. These characters should
not be modified.

20.8.2 Running the code

Figure 20.19 shows our editor application with the spell checker dialog open. Open an exist-
ing HTML file and try running a complete spell check. Try adding some words to the dictio-
nary and use the Ignore All button to avoid questioning a word again during that spell check.

722 CHAPTER 20 CONSTRUCTING AN HTML EDITOR APPLICATION

Try using the Suggest button to query the database for more suggestions based on our SOUN-
DEX algorithm. Click Change to accept a suggestion or a change typed into the text field.
Click Ignore to ignore the current word being questioned.

NOTE The Shakespeare vocabulary database supplied for this example is neither complete
nor contemporary. It does not include such words as “software” or “Internet.”
However, you can easily add them, when encountered during a spell check, by
clicking the Add button.

723

C H A P T E R 2 1

Pluggable look and feel
21.1 Pluggable look and feel

overview 723
21.2 Custom look and feel, part I: using

custom resources 733

21.3 Custom look and feel, part II: creat-
ing custom UI delegates 741

21.4 Examples from the first
edition 751

21.1 PLUGGABLE LOOK AND FEEL OVERVIEW

The pluggable look and feel architecture is one of Swing’s greatest achievements. It allows
seamless changes in the appearance of an application and the way an application interacts
with the user. This can occur without modifying or recompiling the application, and it can
be invoked programmatically during any single JVM session. In this chapter we’ll discuss
how look and feel works and how custom look and feel can be implemented for standard
Swing components.

NOTE In chapter 1, we introduced the basic concepts behind look and feel and UI dele-
gates. You might find it helpful to review this material before moving on.

In examining Swing component source code, you will quickly notice that these classes do not
contain any code for sophisticated rendering. All this drawing code is stored somewhere else. As
we learned in chapter 1, this code is defined within various UI delegates, which act as both a
component’s view and controller. Before we jump into the examples, we need to discuss how the
most significant look and feel-related classes and interfaces function and interact in more detail.

724 CHAPTER 21 PLUGGABLE LOOK AND FEEL

21.1.1 LookAndFeel

abstract class javax.swing.LookAndFeel
This abstract class serves as the superclass of the central class of any pluggable look and feel
implementation. The getDefaults() method returns an instance of UIDefaults (see sec-
tion 21.1.2). The getDescription() method returns a one-to-two sentence description of
the look and feel. The getID() method returns a simple, unique string that identifies a look
and feel. The getName() method returns a short string that represents the name of that look
and feel, such as “Malachite,” or “Windows.”

NOTE The getID() method is actually not used by Swing, but as a rule it is a good idea
to provide LookAndFeel implementations with a unique identifier.

The isNativeLookAndFeel() method queries the System class to determine whether the
given LookAndFeel corresponds to that which emulates the operating system platform the
running VM is designed for. The isSupportedLookAndFeel() method determines
whether the given LookAndFeel is supported by the operating system the running VM is
designed for. Due to legal issues, some LookAndFeels will not be supported by certain oper-
ating systems, even though they have the ability to function perfectly well.

NOTE We will not go into the details of how to work around this limitation Sun has im-
posed (although it is relatively easy), specifically because of the legal issues involved.

The initialize() and uninitialize() methods are called when a LookAndFeel is
installed and uninstalled, respectively. The toString() method returns the description
returned by getDescription(), as well as the fully qualified class name.

Several convenient static methods are also provided for assigning and unassigning bor-
ders, colors, and fonts to components: installBorder(), installColors(), install-
ColorsAndFont(), and uninstallBorder(). LookAndFeel implements these so that
the specified properties only change if the current property value of the given component is
a UIResource (see section 21.1.4) or null. The static methods makeKeyBindings() and
makeIcon() are convenience methods for building a list of text component key bindings
and creating a UIDefaults.LazyValue (see section 21.1.2) which can create an Image-
Icon UIResource.

21.1.2 UIDefaults

class javax.swing.UIDefaults
This class extends Hashtable and manages a collection of custom resources (such as objects
and primitives) used in this look and feel. The put(Object key, Object value) and put-
Defaults(Object[] keyValueList) methods store data (in the latter case they must be
placed in a one-dimensional array in this order: key1, value1, key2, value2, etc.). The
get(Object key) method retrieves a stored resource.

UIDefaults also defines two inner classes: LazyValue and ActiveValue. A Lazy-
Value is an entry in the UIDefaults hashtable that is not instantiated until it is looked up
with its associated key name. Large objects that take a long time to instantiate and which are
rarely used can benefit from being implemented as LazyValues. An ActiveValue is

PLUGGABLE LOOK AND FEEL OVERVIEW 725

instantiated each time it is looked up with its associated key name. Those resources that must
be unique in each place they are used are often implemented as ActiveValues.

Both interfaces require the definition of the createValue() method. The following
code shows a simple LazyValue that constructs a new border.

 Object myBorderLazyValue = new UIDefaults.LazyValue() {
 public Object createValue(UIDefaults table) {
 return new BorderFactory.createLoweredBevelBorder();
 }
 };
 myUIDefaults.put("MyBorder", borderLazyValue);

Note that the createValue() method will only be called once for LazyValues, whereas
with ActiveValues it will be called each time that resource is requested.

JAVA 1.3 Performance analysis during the development of Java 1.3 indicated that one of the
main reasons for the slow startup of Swing applications is due to class loading, not
instance creation (which was previously thought to be the problem). Since Lazy-
Value implementations in Swing were in the form of anonymous inner classes,
each time a look and feel was loaded there would be a class load for each Lazy-
Value implementation. In Java 1.3 there is a new concrete implementation of
LazyValue in UIDefaults (UIDefaults.UIDefaultProxy) which uses reflec-
tion to load the appropriate class when requested. In this way there is only one
LazyValue class load versus the many that occurred in previous versions.

21.1.3 UIManager

public class javax.swing.UIManager
This class provides a set of static methods that are used to manage the current look and feel.
The current look and feel is actually made up of a three-level UIDefaults hierarchy: user
defaults, current look and feel defaults, and system defaults. Particularly important methods are
getUI(JComponent target), which retrieves an instance of ComponentUI for the specified
component, and getDefaults(), which retrieves a shared instance of the UIDefaults class.

21.1.4 The UIResource interface

abstract interface javax.swing.plaf.UIResource
This interface declares no methods and is used solely to mark resource objects created for a
component’s UI delegate. Several classes used to wrap component UI resources implement
this interface—for example: InsetsUIResource, FontUIResource, IconUIResource,
BorderUIResource, and ColorUIResource. These wrapper classes are used for assigning
resources that will be relinquished when a component’s UI delegate is changed. In other
words, if we were to assign an instance of JLabel a background of Color.Yellow, this back-
ground setting would persist even through a UI delegate change. However, if we were to
assign that JLabel a background of new ColorUIResource(Color.Yellow), the back-
ground would only persist until another UI delegate is installed. When the next UI delegate is
installed, the label will receive a new label background based on the look and feel the new UI
delegate belongs to.

726 CHAPTER 21 PLUGGABLE LOOK AND FEEL

21.1.5 ComponentUI

abstract class javax.swing.plaf.ComponentUI
This abstract class represents a common superclass of all component UI delegate classes
each implemented by different look and feel packages. The createUI(JComponent c) static
method creates an instance of ComponentUI for a given component. See section 1.4.1, for a
description of each ComponentUI method.

Abstract classes in the javax.swing.plaf package extend ComponentUI to represent
the base class from which each Swing component’s UI should extend: ButtonUI, TreeUI, and
so on. Each of these classes has a concrete default implementation in the javax.swing.-
plaf.basic package: BasicButtonUI, BasicTreeUI, and so on. In turn, these basic UI
classes can be, and are intended to be, extended by other look and feel implementations. For
example, the classes mentioned above are extended by MetalButtonUI and MetalTreeUI,
which are defined in the javax.swing.plaf.metal package.

21.1.6 BasicLookAndFeel

class javax.swing.plaf.basic.BasicLookAndFeel
This class provides the basic implementation of javax.swing.LookAndFeel. It creates all
resources used by UI classes defined in the basic package. Custom look and feel classes are
expected to extend this class, rather than LookAndFeel directly, to replace only those resources
that need to be customized.

NOTE Though we will not go into the details of each basic UI delegate implementation in
this book (indeed this is a large topic and deserves a whole volume unto itself), note
that the basic package contains a class called BasicGraphicsUtils, which
consists of several static methods used for drawing various types of rectangles most
commonly used for borders. The basic package also contains several other quite
useful utility-like classes, and a quick browse through the basic package API docu-
mentation will reveal some of these interesting members.

21.1.7 How look and feel works

Now we’ll discuss how the pluggable look and feel mechanism works and what actually
happens when a Swing component is created and painted and when the user changes the
application’s look and feel during a Java session.

All Swing component constructors call the updateUI() method which is inherited from
JComponent. This method may also be called with the SwingUtilities.updateCompo-
nentTreeUI() helper method. The latter method recursively updates the UI delegate of each
child of the specified component (we’ve already seen how this is used in chapters 1 and 16).

The updateUI() method overridden by most Swing components typically has an imple-
mentation similar to the following:

 setUI((MenuUI)UIManager.getUI(this));

This invokes the static UIManager.getUI() method and passes a this component refer-
ence as a parameter. This method, in turn, triggers a call to getUI() on the shared UIDe-
faults instance retrieved with the getDefaults() method.

PLUGGABLE LOOK AND FEEL OVERVIEW 727

The UIDefaults.getUI() method actually creates the ComponentUI object for a given
JComponent. It first calls getUIClassID() on that component to discover the unique string
ID associated with that class. For example, the JTree.getUIClassID() call returns the
string “TreeUI.”

Prior to the process described above, the UIDefaults instance (which extends Hash-
table) is initialized by the subclass of LookAndFeel which is currently in charge. For
instance, the Java look and feel (also referred to as Metal) is defined by javax.swing.
plaf.metal.MetalLookAndFeel. This class fills that look and feel’s shared UIDefaults
instance with key-value pairs. For each component which has a corresponding UI delegate
implementation in the current look and feel, a component ID String and a fully qualified
UI delegate class name is added as a key/value pair to UIDefaults. For instance, the TreeUI
ID key corresponds to the value in MetalLookAndFeel’s look and feel UIDefaults. If a
particular LookAndFeel implementation does not specify a UI delegate for some component,
a value from the parent javax.swing.plaf.BasicLookAndFeel class is used.

Using these key/value pairs, the UIDefaults.getUI() method determines the fully
qualified class name and calls the createUI() method on that class using the Java reflection
API. This static method returns an instance of the proper UI delegate, such as MetalTreeUI.

Now let’s go back to the updateUI() method. The retrieved ComponentUI object is
passed to the setUI() method and stored into protected variable, ComponentUI ui, which
is inherited from the JComponent base class. This completes the creation of a UI delegate.

Recall that UI delegates are normally in charge of performing the associated component’s
rendering, as well as processing user input directed to that component. The update() method
of a UI delegate is normally responsible for painting a component’s background, if it is opaque,
and then calling paint(). A UI delegate’s paint() method is what actually paints a compo-
nent’s content, and it is the method we most often override when building our own delegates.

Now let’s review this process from a higher-level perspective:

1 The currently installed look and feel provides an application with information about UI
delegates to be used for all Swing components instantiated in that application.

2 Using this information, an instance of a UI delegate class can be instantiated on demand
for a given component.

3 This UI delegate is passed to the component and it generally takes responsibility for pro-
viding the complete user interface (view and controller).

4 The UI delegate can be easily replaced with another one at run-time without affecting
the underlying component or its data (such as its model).

21.1.8 Selecting a look and feel

The Swing API shipped with Java 2 includes three standard look and feels: Metal, Motif,
and Windows (the latter is available only for Microsoft Windows users). The first one is not
associated with any existing platform and is also known as the “Java look and feel.” Metal
is the default, and it will be used automatically unless we explicitly change look and feels in
our application.

REFERENCE Apple provides the MacOS look and feel which is available for download at http:/
/www.apple.com/macos/java/text/download.html.

728 CHAPTER 21 PLUGGABLE LOOK AND FEEL

NOTE Swing also provides a Multiplexing look and feel which allows more than one UI
delegate to be associated with a component at the same time. This look and feel is
intended for, but not limited to, use with accessible technologies.

To select a particular look and feel, we call the UIManager.setLookAndFeel() method and
specify the fully qualified class name of a subclass of javax.swing.LookAndFeel which
defines the desired look and feel. The following code shows how to force an application to use
the Motif look and feel:

 try {
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 }
 catch (Exception e) {
 System.out.println ("Couldn't load Motif look and feel " + e);
 }

Note that this should be called before we instantiate any components. Alternatively we can call
this method and then use the SwingUtilities updateComponentTreeUI() method to
change the current look and feel of a container and all its children, as discussed previously.

Design balance is affected by look and feel selection Beware! Although it is
technically possible to update look and feel on-the-fly, this may often be visually
undesirable. Different look and feels use different graphical weights for each
component, such as bezel thickness on buttons. Therefore, a display which is
designed to look good in a particular look and feel may be visually unbalanced
and inelegant when switched to another look and feel. This could be due to the
change in white space which balances against the graphical weight of elements
such as bezels, or it may be a change in alignment. For example, the Malachite
look and feel is visually heavy; as a rough guide, more white space will be required
for a well-balanced effect when it’s compared to the Metal look and feel.

21.1.9 Creating a custom LookAndFeel implementation

Swing provides the complete flexibility of implementing our own custom look and feel, and
distributing it with our application. This task usually involves overriding the rendering func-
tionality of all Swing components supported by our look and feel (default implementations are
then used for each remaining component we are not interested in customizing). In general, this
is not a simple project, and it will almost always require referencing Swing plaf source code.

The first step is to establish a basic idea of how we will provide consistent UI delegate
appearances. This includes some thought as to what colors and icons will be used for each com-
ponent, and whether these choices fit well together.

Then we move on to the most significant step in creating a custom look and feel, which
is the implementation of a javax.swing.LookAndFeel subclass. The following six abstract
methods are the minimum that should be overridden:

• String getID(): Returns the string ID of this look and feel (such as “Motif”).

PLUGGABLE LOOK AND FEEL OVERVIEW 729

• String getName(): Returns a short string describing this look and feel (such as “CDE/
Motif ”).

• String getDescription(): Returns a one-line string description of this look and feel.
• boolean isNativeLookAndFeel(): Returns true if the look and feel corresponds to

the current underlying native platform.
• boolean isSupportedLookAndFeel(): Returns true if the the current underlying

native platform supports and/or permits this look and feel.
• UIDefaults getDefaults(): Returns the look and feel-specific Hashtable of

resources (discussed above). This is the most important method of any LookAndFeel
implementation.

However, to make implementation simpler, it is normally expected that we extend
javax.swing.plaf.basic.BasicLookAndFeel instead of javax.swing.LookAnd-

Feel directly. In this case, we override some of the following BasicLookAndFeel methods
(along with a few LookAndFeel methods in the list above):

• void initClassDefaults(UIDefaults table): Fills a given UIDefaults instance
with key/value pairs that specify IDs and fully qualified class names of UI delegates for
each component supported by this look and feel.

• void initComponentDefaults(UIDefaults table): Fills a given UIDefaults
instance with key/value pairs using information (typically drawing resources such as
colors, images, and borders) that is specific to this look and feel.

• void initSystemColorDefaults(UIDefaults table): Fills a given UIDefaults
instance with color information specific to this look and feel.

• void loadSystemColors(UIDefaults table, String[] systemColors, boolean
useNative): Fills a given UIDefaults instance with color information specific to the
underlying platform.

The first two methods are the most significant, and we will discuss them in a bit more detail here.

21.1.10 Defining default component resources

The following code shows how to override the initComponentDefaults() method to store
custom resources in a given UIDefaults instance. These resources will be used to construct
a JButton UI delegate that corresponds to this look and feel (this is an imaginary implemen-
tation for now):

 protected void initComponentDefaults(UIDefaults table) {
 super.initComponentDefaults(table);
 Object[] defaults = {
 "Button.font", new FontUIResource("Arial", Font.BOLD, 12),
 "Button.background", new ColorUIResource(4, 108, 2),
 "Button.foreground", new ColorUIResource(236, 236, 0),
 "Button.margin", new InsetsUIResource(8, 8, 8, 8)
 };
 table.putDefaults(defaults);
 }

Note that the super class initComponentDefaults() method is called before putting our
custom information in the table, since we only want to override button UI resources. Also
note that the resource objects are encapsulated in special wrapper classes which are defined in

730 CHAPTER 21 PLUGGABLE LOOK AND FEEL

the javax.swing.plaf package (Font instances are placed in FontUIResources, Colors
in ColorUIResources, and so on.). This is necessary to correctly load and unload resources
when the current look and feel is changed.

NOTE Resource keys start with the component name, minus the “J” prefix. So “But-
ton.font” defines the font resource for JButtons, while “RadioButton.font” defines
the font resource for JRadioButtons. Unfortunately these standard resource keys
are not documented, but they can all be found directly in the Swing look and feel
source code. For example, see MetalLookAndFeel.java in package javax.swing.
plaf.metal.

21.1.11 Defining class defaults

Providing custom resources, such as colors and fonts, is the simplest way to create a custom
look and feel. However, to provide more powerful customizations, we need to develop custom
extensions of ComponentUI classes for specific components: custom UI delegates. We also
need to provide a means of locating our custom UI delegate classes so that UIManager can
successfully switch a component’s look and feel on demand.

The following code overrides the initClassDefaults() method to store information
about our imaginary myLF.MyLFButtonUI class (a member of the imaginary myLF look and
feel package), which extends javax.swing.plaf.ButtonUI. It will be used to provide a
custom look and feel for JButton:

 protected void initClassDefaults(UIDefaults table) {
 super.initClassDefaults(table);
 try {
 String className = "myLF.MyLFButtonUI";
 Class buttonClass = Class.forName(className);
 table.put("ButtonUI", className);
 table.put(className, buttonClass);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

The initClassDefaults() implementation of the super class is called before (not after) we
populate the table with our custom information, since we don’t intend to override all UI class
mappings for all components. Instead, we use the default settings for all but “ButtonUI.” (We
did a similar thing above in initComponentDefaults().) Also note that we place both the
fully qualified class name of the delegate, as well as the Class instance itself, in the table.

NOTE Placing only the class name in the defaults table does not provide correct function-
ality. As of Java 2 FCS, without a corresponding Class instance in the table as well,
getUI() will not be able to retrieve instances of custom look and feel delegates. We
will see that this is the case in the examples below.

21.1.12 Creating custom UI delegates

Now it’s time to show a simple pseudocode implementation of the imaginary myLF.MyLF-
ButtonUI class to which we’ve been relating our discussion:

PLUGGABLE LOOK AND FEEL OVERVIEW 731

package myLF;

public class MyLFButtonUI extends BasicButtonUI {
 private final static MyLFButtonUI m_buttonUI =
 new MyLFButtonUI();

 protected Color m_backgroundNormal = null;
 // Declare variables for other resources.

 public static ComponentUI createUI(JComponent c) {
 return m_buttonUI;

 }
 public void installUI(JComponent c) {

 super.installUI(c);
 m_backgroundNormal = UIManager.getColor(
 "Button.background");
 // Retrieve other resources and store them
 // as instance variables.
 // Add listeners. These might be registered to receive
 // events from a component’s model or the component itself.
 }

 public void uninstallUI(JComponent c) {
 super.uninstallUI(c);
 // Provide cleanup.
 // Remove listeners.
 }

 public void update(Graphics g, JComponent c) {
 // Provide custom background painting if the component is
 // opaque, then call paint().
 }

 public void paint(Graphics g, JComponent c) {
 // Provide custom rendering for the given component.
 }

 // Provide implementation for listeners.
}

This class extends javax.swing.plaf.basic.BasicButtonUI to override some of its
functionality and it relies on basic look and feel defaults for the rest. The shared instance,
MyLFButtonUI m_buttonUI, is created once and retrieved using the createUI() method.
Thus, only one instance of this delegate will exist, and it will act as the view and controller for
all JButton instances with the myLF look and feel.

The installUI() method retrieves myLF-specific resources that correspond to JButton
(refer to our discussion of initComponentDefaults() above). We might also use this
method to add mouse and key listeners to provide look and feel-specific functionality. For
instance, we might design our button UI so that an associated JButton’s text changes color
each time the mouse cursor rolls over it. An advantage of this approach is that we don’t need
to modify our application—we can still use normal JButtons. Once myLF is installed, this
functionality will automatically appear.

732 CHAPTER 21 PLUGGABLE LOOK AND FEEL

The uninstallUI() method performs all the necessary cleanup, including removing
any listeners that this delegate might have attached to the component or its model.

The update() method will paint the given component’s background if it is opaque,
and then immediately call paint() (do not confuse this method with JComponent’s
paint() method).

NOTE We recommend that you always implement painting functionality in this way, but
in reality the background of Swing components are more often painted directly
within the paint() method (a quick skim through Swing UI delegate source code
illustrates this; for an example, see BasicRadioButtonUI.java). If this is not the case,
the resulting background will be painted by JComponent’s painting routine. For
this reason we often find no background rendering code at all in UI delegates.

This is a relatively minor issue. Just make sure that if you do want to take control
of a component’s background rendering, it is best to do so in UI delegate up-
date() methods. This rendering should occur only if the associated component’s
opaque property is set to true, and it should be called before the main detail of its
view is painted (update() should end with a call to paint()).

The paint() method renders a given component using a given graphical context. To use a
look and feel successfully, the component class should not implement any rendering function-
ality for itself. Instead, it should allow its painting to be controlled by UI delegate classes so
that all rendering is look and feel-specific (refer to chapter 2 for further discussion of painting
issues).

NOTE Implementing a custom look and feel will make much more sense once we step
through the first two examples. We suggest that you reference the above discussion
often as you make your way through this chapter. Reviewing the discussion of
MVC in chapter 1 may also be helpful at this point.

21.1.13 Metal themes

class javax.swing.plaf.metal.MetalTheme
Themes are sets of color and font definitions that can be dynamically plugged into Metal-
LookAndFeel, and immediately used by a Swing application on-the-fly if Metal is the current
look and feel. To create a theme, we simply subclass MetalTheme (or DefaultMetalTheme)
and override a selection of its numerous getXX() methods to return a specific font or color.
A quick browse through these methods shows implementations for all the colors and fonts
used throughout the Metal look and feel, allowing us to customize the Metal appearance how-
ever we like. MetalLookAndFeel contains createDefaultTheme(), a protected method
used to create the default metal theme, and it provides us with the setCurrentTheme()
method which allows us to plug in a new theme. The effects of plugging in a new theme are
seen immediately. Themes offer a simple alternative to building a custom LookAndFeel
when all that is desired are some simple appearance changes.

CUSTOM LOOK AND FEEL, PART I : USING CUSTOM RESOURCES 733

21.2 CUSTOM LOOK AND FEEL, PART I:
USING CUSTOM RESOURCES

When to consider a custom look and feel Developing a custom look and
feel is not a trivial undertaking. Almost certainly, more effort is needed for
the design rather than the coding. Consider a custom look and feel in these
situations:
• You are designing a single-use system, such as a self-service kiosk.
• You are intending to roll out a suite of enterprise applications which will

work together and you want the look and feel to reflect the corporate image
or identity.

• You are developing a family of software products and want to develop a
unique environment or corporate identity. This was exactly Sun’s intention
with the Metal look and feel which closely reflects the colors and styles used
in the Sun corporate identity. Other examples of custom designed environ-
ments are Lotus Notes, Lotus eSuite, and Sun HotJava Views.

The easiest way to create a custom look and feel is simply to customize default component
resources (colors, borders, fonts, etc.) without actually implementing any custom UI dele-
gates. In this case, the only thing we need to do is extend BasicLookAndFeel (see the above
discussion), or another existing LookAndFeel implementation, and provide a set of
resources. Example 21.1 demonstrates how this can be done by beginning the implementa-
tion of our custom Malachite look and feel.

Figure 21.1
The Malachite look
and feel in action

734 CHAPTER 21 PLUGGABLE LOOK AND FEEL

Example 21.1

see \Chapter21\1

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;

import Malachite.*;

public class Button1 extends JFrame
{
 protected Hashtable m_lfs;

 public Button1() {
 super("Look and Feel [Resources]");
 setSize(400, 300);
 getContentPane().setLayout(new FlowLayout());

 JMenuBar menuBar = createMenuBar();
 setJMenuBar(menuBar);

 JPanel p = new JPanel();
 JButton bt1 = new JButton("Click Me");
 p.add(bt1);

 JButton bt2 = new JButton("Don't Touch Me");
 p.add(bt2);
 getContentPane().add(p);

 p = new JPanel();
 JCheckBox chk1 = new JCheckBox("I'm checked");
 chk1.setSelected(true);
 p.add(chk1);

 JCheckBox chk2 = new JCheckBox("I'm unchecked");
 chk2.setSelected(false);
 p.add(chk2);
 getContentPane().add(p);

 p = new JPanel();
 ButtonGroup grp = new ButtonGroup();
 JRadioButton rd1 = new JRadioButton("Option 1");
 rd1.setSelected(true);
 p.add(rd1);
 grp.add(rd1);

 JRadioButton rd2 = new JRadioButton("Option 2");
 p.add(rd2);
 grp.add(rd2);

 JRadioButton rd3 = new JRadioButton("Option 3");
 p.add(rd3);

Button1.java

Creates an ordinary
frame with several
ordinary components

CUSTOM LOOK AND FEEL, PART I : USING CUSTOM RESOURCES 735

 grp.add(rd3);
 getContentPane().add(sp);

 JTextArea txt = new JTextArea(5, 30);
 JScrollPane sp = new JScrollPane (text);
 getContentPane().add(text);

 SetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
 }

 protected JMenuBar createMenuBar() {
 JMenuBar menuBar = new JMenuBar();
 JMenu mFile = new JMenu("File");
 mFile.setMnemonic('f');

 JMenuItem mItem = new JMenuItem("Exit");
 mItem.setMnemonic('x');
 ActionListener lstExit = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 };
 mItem.addActionListener(lstExit);
 mFile.add(mItem);
 menuBar.add(mFile);

 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String str = e.getActionCommand();
 Object obj = m_lfs.get(str);
 if (obj != null)
 try {
 String className = (String)obj;
 Class lnfClass = Class.forName(className);
 UIManager.setLookAndFeel(
 (LookAndFeel)(lnfClass.newInstance()));
 SwingUtilities.updateComponentTreeUI(
 Button1.this);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 System.err.println(ex.toString());
 }
 }
 };

 m_lfs = new Hashtable();
 UIManager.LookAndFeelInfo lfs[] =
 UIManager.getInstalledLookAndFeels();
 JMenu mLF = new JMenu("Look&Feel");
 mLF.setMnemonic('l');
 for (int k = 0; k < lfs.length; k++) {
 String name = lfs[k].getName();
 JMenuItem lf = new JMenuItem(name);

Selects and updates
new LookAndFeel
from menu selection

Creates array of
LookAndFeel objects
obtained from
UIManager

736 CHAPTER 21 PLUGGABLE LOOK AND FEEL

 m_lfs.put(name, lfs[k].getClassName());
 lf.addActionListener(lst);
 mLF.add(lf);
 }
 menuBar.add(mLF);

 return menuBar;
 }

 public static void main(String argv[]) {
 try {
 LookAndFeel malachite = new Malachite.MalachiteLF();
 UIManager.LookAndFeelInfo info =
 new UIManager.LookAndFeelInfo(malachite.getName(),
 malachite.getClass().getName());
 UIManager.installLookAndFeel(info);
 UIManager.setLookAndFeel(malachite);
 }
 catch (Exception ex) {
 ex.printStackTrace();
 System.err.println(ex.toString());
 }
 new Button1();

 }
}

see \Chapter21\1\Malachite

package Malachite;

import java.awt.*;

import javax.swing.*;
import javax.swing.plaf.*;
import javax.swing.plaf.basic.*;

public class MalachiteLF extends BasicLookAndFeel
 implements java.io.Serializable
{
 public String getID() { return "Malachite"; }
 public String getName() { return "Malachite Look and Feel"; }
 public String getDescription() { return "Sample look and feel from Swing";
}
 public boolean isNativeLookAndFeel() { return false; }
 public boolean isSupportedLookAndFeel() { return true; }

 protected void initComponentDefaults(UIDefaults table) {
 super.initComponentDefaults(table);

 ColorUIResource commonBackground =
 new ColorUIResource(152, 208, 128);
 ColorUIResource commonForeground =
 new ColorUIResource(0, 0, 0);
 ColorUIResource buttonBackground =

MalachiteLF.java

Creates array of
LookAndFeel objects
obtained from
UIManager

Creates Malachite
LookAndFeel and sets

it as the current
LookAndFeel

Initializes default
resource settings for

this LookAndFeel

CUSTOM LOOK AND FEEL, PART I : USING CUSTOM RESOURCES 737

 new ColorUIResource(4, 108, 2);
 ColorUIResource buttonForeground =
 new ColorUIResource(236, 236, 0);
 ColorUIResource menuBackground =
 new ColorUIResource(128, 192, 128);

 BorderUIResource borderRaised = new
 BorderUIResource(new MalachiteBorder(
 MalachiteBorder.RAISED));
 BorderUIResource borderLowered = new
 BorderUIResource(new MalachiteBorder(
 MalachiteBorder.LOWERED));

 FontUIResource commonFont = new
 FontUIResource("Arial", Font.BOLD, 12);

 Icon ubox = new ImageIcon("Malachite/ubox.gif");
 Icon ubull = new ImageIcon("Malachite/ubull.gif");

 Object[] defaults = {
 "Button.font", commonFont,
 "Button.background", buttonBackground,
 "Button.foreground", buttonForeground,
 "Button.border", borderRaised,
 "Button.margin", new InsetsUIResource(8, 8, 8, 8),
 "Button.textIconGap", new Integer(4),
 "Button.textShiftOffset", new Integer(2),

 "CheckBox.font", commonFont,
 "CheckBox.background", commonBackground,
 "CheckBox.foreground", commonForeground,
 "CheckBox.icon", new IconUIResource(ubox),

 "MenuBar.font", commonFont,
 "MenuBar.background", menuBackground,
 "MenuBar.foreground", commonForeground,

 "Menu.font", commonFont,
 "Menu.background", menuBackground,
 "Menu.foreground", commonForeground,
 "Menu.selectionBackground", buttonBackground,
 "Menu.selectionForeground", buttonForeground,

 "MenuItem.font", commonFont,
 "MenuItem.background", menuBackground,
 "MenuItem.foreground", commonForeground,
 "MenuItem.selectionBackground", buttonBackground,
 "MenuItem.selectionForeground", buttonForeground,
 "MenuItem.margin", new InsetsUIResource(2, 2, 2, 2),

 "Panel.background", commonBackground,
 "Panel.foreground", commonForeground,

 "RadioButton.font", commonFont,
 "RadioButton.background", commonBackground,
 "RadioButton.foreground", commonForeground,
 "RadioButton.icon", new IconUIResource(ubull),

738 CHAPTER 21 PLUGGABLE LOOK AND FEEL

 "ScrollPane.margin", new InsetsUIResource(8, 8, 8, 8),
 "ScrollPane.border", borderLowered
 "ScrollPane.background", commonBackground,

 "ScrollPane.track", menuBackground,
 "ScrollBar.thumb", buttonBackground,
 };

 table.putDefaults(defaults);
 }
}

see \Chapter21\1\Malachite

package Malachite;

import java.awt.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class MalachiteBorder implements Border
{
 public static final int RAISED = 0;
 public static final int LOWERED = 1;

 static final String IMAGE_DIR = "Malachite/";
 static final ImageIcon IMAGE_NW = new ImageIcon(
 IMAGE_DIR+"nw.gif");
 static final ImageIcon IMAGE_N = new ImageIcon(
 IMAGE_DIR+"n.gif");
 static final ImageIcon IMAGE_NE = new ImageIcon(
 IMAGE_DIR+"ne.gif");
 static final ImageIcon IMAGE_E = new ImageIcon(
 IMAGE_DIR+"e.gif");
 static final ImageIcon IMAGE_SE = new ImageIcon(
 IMAGE_DIR+"se.gif");
 static final ImageIcon IMAGE_S = new ImageIcon(
 IMAGE_DIR+"s.gif");
 static final ImageIcon IMAGE_SW = new ImageIcon(
 IMAGE_DIR+"sw.gif");
 static final ImageIcon IMAGE_W = new ImageIcon(
 IMAGE_DIR+"w.gif");

 static final ImageIcon IMAGE_L_NW = new ImageIcon(
 IMAGE_DIR+"l_nw.gif");
 static final ImageIcon IMAGE_L_N = new ImageIcon(
 IMAGE_DIR+"l_n.gif");
 static final ImageIcon IMAGE_L_NE = new ImageIcon(
 IMAGE_DIR+"l_ne.gif");
 static final ImageIcon IMAGE_L_E = new ImageIcon(
 IMAGE_DIR+"l_e.gif");
 static final ImageIcon IMAGE_L_SE = new ImageIcon(

MalachiteBorder.java

CUSTOM LOOK AND FEEL, PART I : USING CUSTOM RESOURCES 739

 IMAGE_DIR+"l_se.gif");
 static final ImageIcon IMAGE_L_S = new ImageIcon(
 IMAGE_DIR+"l_s.gif");
 static final ImageIcon IMAGE_L_SW = new ImageIcon(
 IMAGE_DIR+"l_sw.gif");
 static final ImageIcon IMAGE_L_W = new ImageIcon(
 IMAGE_DIR+"l_w.gif");

 protected int m_w = 7;
 protected int m_h = 7;

 protected boolean m_isRaised = true;

 public MalachiteBorder() {}

 public MalachiteBorder(int type) {
 if (type != RAISED && type != LOWERED)
 throw new IllegalArgumentException(
 "Type must be RAISED or LOWERED");
 m_isRaised = (type == RAISED);
 }

 public Insets getBorderInsets(Component c) {
 return new Insets(m_h, m_w, m_h, m_w);
 }

 public boolean isBorderOpaque() { return true; }

 public void paintBorder(Component c, Graphics g,
 int x, int y, int w, int h)
 {
 int x1 = x+m_w;
 int x2 = x+w-m_w;
 int y1 = y+m_h;
 int y2 = y+h-m_h;
 int xx, yy;

 if (m_isRaised) {
 for (xx=x1; xx<=x2; xx += IMAGE_N.getIconWidth())
 g.drawImage(IMAGE_N.getImage(), xx, y, c);
 for (yy=y1; yy<=y2; yy += IMAGE_E.getIconHeight())
 g.drawImage(IMAGE_E.getImage(), x2, yy, c);
 for (xx=x1; xx<=x2; xx += IMAGE_S.getIconWidth())
 g.drawImage(IMAGE_S.getImage(), xx, y2, c);
 for (yy=y1; yy<=y2; yy += IMAGE_W.getIconHeight())
 g.drawImage(IMAGE_W.getImage(), x, yy, c);
 g.drawImage(IMAGE_NW.getImage(), x, y, c);
 g.drawImage(IMAGE_NE.getImage(), x2, y, c);
 g.drawImage(IMAGE_SE.getImage(), x2, y2, c);
 g.drawImage(IMAGE_SW.getImage(), x, y2, c);
 }
 else {
 for (xx=x1; xx<=x2; xx += IMAGE_L_N.getIconWidth())
 g.drawImage(IMAGE_L_N.getImage(), xx, y, c);
 for (yy=y1; yy<=y2; yy += IMAGE_L_E.getIconHeight())
 g.drawImage(IMAGE_L_E.getImage(), x2, yy, c);

Paints prepared
images to present
Malachite border

740 CHAPTER 21 PLUGGABLE LOOK AND FEEL

 for (xx=x1; xx<=x2; xx += IMAGE_L_S.getIconWidth())
 g.drawImage(IMAGE_L_S.getImage(), xx, y2, c);
 for (yy=y1; yy<=y2; yy += IMAGE_L_W.getIconHeight())
 g.drawImage(IMAGE_L_W.getImage(), x, yy, c);
 g.drawImage(IMAGE_L_NW.getImage(), x, y, c);
 g.drawImage(IMAGE_L_NE.getImage(), x2, y, c);
 g.drawImage(IMAGE_L_SE.getImage(), x2, y2, c);
 g.drawImage(IMAGE_L_SW.getImage(), x, y2, c);
 }
 }
}

21.2.1 Understanding the code

Class Button1
This class represents a simple frame container that is populated by several components:
JButtons, JCheckBoxes, JRadioButtons, and JTextArea. Code in the constructor
should be familiar, so it requires no special explanation here.

The createMenuBar() method is responsible for creating this frame’s menu bar. A menu
entitled look and feel is populated with menu items corresponding to LookAndFeel imple-
mentations available on the current JVM. An array of UIManager.LookAndFeelInfo
instances is retrieved using the UIManager.getInstalledLookAndFeels() method. Look
and feel class names stored in each info object are placed into the m_lfs Hashtable for
future use. A brief text description of a particular look and feel retrieved using the getName()
method is used to create each corresponding menu item.

When a menu item is selected, the corresponding ActionListener updates the look
and feel for our application. This listener locates the class name corresponding to the selected
menu item, and a new instance of that class is created, through reflection, and it is set as the
current look and feel using the UIManager.setLookAndFeel() method.

The main() method creates an instance of our custom look and feel, MalachiteLF (defined
in the Malachite package) makes it available to Java session using UIManager.install-
LookAndFeel(), and sets it as the current look and feel using UIManager.setLookAnd-
Feel(). Our example frame is then created; it initially uses Malachite resources.

Class Malachite.MalachiteLF
This class defines our Malachite look and feel. It extends BasicLookAndFeel to override its
functionality and resources only where necessary. This look and feel is centered around a
green malachite palette.

NOTE Malachite is a green mineral containing copper. This mineral can be found in the
Ural Mountains of Russia, in Australia, and in Arizona in the United States of
America. Since ancient times it has been used as a gemstone.

The getID(), getName(), and getDescription() methods return a short ID, the name,
and a text description of this look and feel, respectively. As we’ve discussed earlier, the init-
ComponentDefaults() method fills a given UIDefaults instance with key/value pairs rep-
resenting information specific to this look and feel. In our implementation, we customize

CUSTOM LOOK AND FEEL, PART II : CREATING CUSTOM UI DELEGATES 741

resources for the following components (recall that the “J” prefix is not used): Button, Check-
Box, RadioButton, ScrollPane, ScrollBar, MenuBar, Menu, MenuItem, and Panel.

We did not define the initClassDefaults() method because we have not imple-
mented any custom UI delegates (we will do this in the next section).

Class Malachite.MalachiteBorder
This class defines our custom Malachite implementation of the Border interface. This border
is intended to provide the illusion of a 3-D frame cut out of a green gemstone. It can be drawn
in two forms: lowered or raised. A 3-D effect is produced through the proper combination of
previously prepared images. The actual rendering is done in the paintBorder() method,
which simply draws a set of these images to render the border.

21.2.2 Running the code

Figure 21.1 shows our Button1 example frame populated with controls using the Malachite
look and feel. Note that these controls are lifeless. We cannot click buttons, check or uncheck
boxes, or select radio buttons. Try using the menu to select another look and feel available on
your system and note the differences.

The components are actually fully functional when using the Malachite look and feel, but
they do not have the ability to change their appearance in response to user interaction. More
functionality needs to be added to provide mouse and key listener capabilities, as well as addi-
tional resources for use in representing the selected state of the button components. We will
do this in the next section.

NOTE The UI delegate used for each of these components is the corresponding basic
look and feel version, because we did not override any class defaults in Mala-
chiteLF. A quick look in the source code for these delegates shows that the
rendering functionality for selected and focused states is not implemented. All
subclasses corresponding to specific look and feels are responsible for implement-
ing this functionality themselves.

21.3 CUSTOM LOOK AND FEEL, PART II:
CREATING CUSTOM UI DELEGATES

The next step in the creation of a custom look and feel is to implement custom UI delegates
that correspond to each supported component. In example 21.2, we’ll show how to imple-
ment custom Malachite UI delegates for three relatively simple Swing components: JButton,
JCheckBox, and JRadioButton.

Example 21.2

see \Chapter21\2\Malachite

package Malachite;

import java.awt.*;

MalachiteLF.java

742 CHAPTER 21 PLUGGABLE LOOK AND FEEL

import javax.swing.*;
import javax.swing.plaf.*;
import javax.swing.plaf.basic.*;

public class MalachiteLF extends BasicLookAndFeel
 implements java.io.Serializable
{
 // Unchanged code from example 21.1

 protected void initClassDefaults(UIDefaults table) {
 super.initClassDefaults(table);

 putDefault(table, "ButtonUI");

 putDefault(table, "CheckBoxUI");

 putDefault(table, "RadioButtonUI");
 }

 protected void putDefault(UIDefaults table, String uiKey) {
 try {

 String className = "Malachite.Malachite"+uiKey;

 Class buttonClass = Class.forName(className);
 table.put(uiKey, className);

 table.put(className, buttonClass);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 protected void initComponentDefaults(UIDefaults table) {
 super.initComponentDefaults(table);

 // Unchanged code from example 21.1

 Icon ubox = new ImageIcon("Malachite/ubox.gif");
 Icon ubull = new ImageIcon("Malachite/ubull.gif");

 Icon cbox = new ImageIcon("Malachite/cbox.gif");
 Icon pcbox = new ImageIcon("Malachite/p_cbox.gif");

 Icon pubox = new ImageIcon("Malachite/p_ubox.gif");

Figure 21.2
Malachite look and feel
with custom Malachite
UI delegates

Initializes component type
classes from base class method,

but replaces component type
classes for button, check box,

and radio button

Stores a UIDefaults entry to look up
the component class name from the

short component type name, and
one entry to look up the class

object from the class name

This version of this
method places more

defaults into the
UIDefaults table

CUSTOM LOOK AND FEEL, PART II : CREATING CUSTOM UI DELEGATES 743

 Icon cbull = new ImageIcon("Malachite/cbull.gif");
 Icon pcbull = new ImageIcon("Malachite/p_cbull.gif");

 Icon pubull = new ImageIcon("Malachite/p_ubull.gif");

 Object[] defaults = {
 "Button.font", commonFont,
 "Button.background", buttonBackground,
 "Button.foreground", buttonForeground,
 "Button.border", borderRaised,
 "Button.margin", new InsetsUIResource(8, 8, 8, 8),
 "Button.textIconGap", new Integer(4),
 "Button.textShiftOffset", new Integer(2),

 "Button.focusBorder", focusBorder,
 "Button.borderPressed", borderLowered,

 "Button.activeForeground", new

 ColorUIResource(255, 255, 255),

 "Button.pressedBackground", new

 ColorUIResource(0, 96, 0),

 "CheckBox.font", commonFont,
 "CheckBox.background", commonBackground,
 "CheckBox.foreground", commonForeground,
 "CheckBox.icon", new IconUIResource(ubox),

 "CheckBox.focusBorder", focusBorder,
 "CheckBox.activeForeground", activeForeground,

 "CheckBox.iconPressed", new IconUIResource(pubox),

 "CheckBox.iconChecked", new IconUIResource(cbox),

 "CheckBox.iconPressedChecked", new IconUIResource(pcbox),

 "CheckBox.textIconGap", new Integer(4),

 // Unchanged code from example 21.1

 "RadioButton.font", commonFont,
 "RadioButton.background", commonBackground,
 "RadioButton.foreground", commonForeground,
 "RadioButton.icon", new IconUIResource(ubull),

 "RadioButton.focusBorder", focusBorder,
 "RadioButton.activeForeground", activeForeground,

 "RadioButton.iconPressed", new IconUIResource(pubull),

 "RadioButton.iconChecked", new IconUIResource(cbull),

 "RadioButton.iconPressedChecked", new IconUIResource(pcbull),

 "RadioButton.textIconGap", new Integer(4),

 "ScrollPane.margin", new InsetsUIResource(8, 8, 8, 8),
 "ScrollPane.border", borderLowered,
 "ScrollPane.background", commonBackground,

 "ScrollPane.track", menuBackground,
 "ScrollPane.thumb", buttonBackground,
 };

 table.putDefaults(defaults);
 }
}

744 CHAPTER 21 PLUGGABLE LOOK AND FEEL

see \Chapter21\2\Malachite

package Malachite;

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.plaf.*;
import javax.swing.plaf.basic.*;

public class MalachiteButtonUI extends BasicButtonUI
 implements java.io.Serializable, MouseListener, KeyListener
{
 private final static MalachiteButtonUI m_buttonUI =
 new MalachiteButtonUI();

 protected Border m_borderRaised = null;
 protected Border m_borderLowered = null;
 protected Color m_backgroundNormal = null;
 protected Color m_backgroundPressed = null;
 protected Color m_foregroundNormal = null;
 protected Color m_foregroundActive = null;
 protected Color m_focusBorder = null;

 public MalachiteButtonUI() {}

 public static ComponentUI createUI(JComponent c) {
 return m_buttonUI;
 }

 public void installUI(JComponent c) {
 super.installUI(c);

 m_borderRaised = UIManager.getBorder(
 "Button.border");
 m_borderLowered = UIManager.getBorder(
 "Button.borderPressed");
 m_backgroundNormal = UIManager.getColor(
 "Button.background");
 m_backgroundPressed = UIManager.getColor(
 "Button.pressedBackground");
 m_foregroundNormal = UIManager.getColor(
 "Button.foreground");
 m_foregroundActive = UIManager.getColor(
 "Button.activeForeground");
 m_focusBorder = UIManager.getColor(
 "Button.focusBorder");

 c.addMouseListener(this);
 c.addKeyListener(this);
 }

 public void uninstallUI(JComponent c) {

MalachiteButtonUI.java

Malachite UI
delegate for
JButton

Retrieves rendering
resources from
defaults table

CUSTOM LOOK AND FEEL, PART II : CREATING CUSTOM UI DELEGATES 745

 super.uninstallUI(c);
 c.removeMouseListener(this);
 c.removeKeyListener(this);
 }

 public void paint(Graphics g, JComponent c) {
 AbstractButton b = (AbstractButton) c;
 Dimension d = b.getSize();

 g.setFont(c.getFont());
 FontMetrics fm = g.getFontMetrics();

 g.setColor(b.getForeground());
 String caption = b.getText();
 int x = (d.width - fm.stringWidth(caption))/2;
 int y = (d.height + fm.getAscent())/2;
 g.drawString(caption, x, y);

 if (b.isFocusPainted() && b.hasFocus()) {
 g.setColor(m_focusBorder);
 Insets bi = b.getBorder().getBorderInsets(b);
 g.drawRect(bi.left, bi.top, d.width-bi.left-bi.right-1,
 d.height-bi.top-bi.bottom-1);
 }
 }

 public Dimension getPreferredSize(JComponent c) {
 Dimension d = super.getPreferredSize(c);
 if (m_borderRaised != null) {
 Insets ins = m_borderRaised.getBorderInsets(c);
 d.setSize(d.width+ins.left+ins.right,
 d.height+ins.top+ins.bottom);
 }
 return d;
 }

 public void mouseClicked(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();
 c.setBorder(m_borderLowered);
 c.setBackground(m_backgroundPressed);
 }

 public void mouseReleased(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();
 c.setBorder(m_borderRaised);
 c.setBackground(m_backgroundNormal);
 }

 public void mouseEntered(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();
 c.setForeground(m_foregroundActive);
 c.repaint();
 }

 public void mouseExited(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();

Renders button text
and focus rectangle
with given graphics
context

Overridden to add
in border size

Changes button
background and
border when
pressed or released

Changes foreground
color when mouse
enters or exits bounds
of component

746 CHAPTER 21 PLUGGABLE LOOK AND FEEL

 c.setForeground(m_foregroundNormal);
 c.repaint();
 }

 public void keyTyped(KeyEvent e) {}

 public void keyPressed(KeyEvent e) {
 int code = e.getKeyCode();
 if (code == KeyEvent.VK_ENTER || code == KeyEvent.VK_SPACE) {
 JComponent c = (JComponent)e.getComponent();
 c.setBorder(m_borderLowered);
 c.setBackground(m_backgroundPressed);
 }
 }

 public void keyReleased(KeyEvent e) {
 int code = e.getKeyCode();
 if (code == KeyEvent.VK_ENTER || code == KeyEvent.VK_SPACE) {
 JComponent c = (JComponent)e.getComponent();
 c.setBor-
der(m_borderRaised);
 c.setBackground(m_backgroundNormal);
 }

 }
}

see \Chapter21\2\Malachite

package Malachite;

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.plaf.*;
import javax.swing.plaf.basic.*;

public class MalachiteCheckBoxUI extends BasicCheckBoxUI
 implements java.io.Serializable, MouseListener
{
 private final static MalachiteCheckBoxUI m_buttonUI =
 new MalachiteCheckBoxUI();

 protected Color m_backgroundNormal = null;
 protected Color m_foregroundNormal = null;
 protected Color m_foregroundActive = null;
 protected Icon m_checkedIcon = null;
 protected Icon m_uncheckedIcon = null;
 protected Icon m_pressedCheckedIcon = null;
 protected Icon m_pressedUncheckedIcon = null;
 protected Color m_focusBorder = null;
 protected int m_textIconGap = -1;

MalachiteCheckBoxUI.java

Changes foreground color
when mouse enters or exits
bounds of component

Pressing the Spacebar or Enter while mouse cursor
is within component is the same as a button click

UI delegate for
JCheckBox to provide

Malachite look and feel

CUSTOM LOOK AND FEEL, PART II : CREATING CUSTOM UI DELEGATES 747

 public MalachiteCheckBoxUI() {}

 public static ComponentUI createUI(JComponent c) {
 return m_buttonUI;
 }

 public void installUI(JComponent c) {
 super.installUI(c);
 m_backgroundNormal = UIManager.getColor(
 "CheckBox.background");
 m_foregroundNormal = UIManager.getColor(
 "CheckBox.foreground");
 m_foregroundActive = UIManager.getColor(
 "CheckBox.activeForeground");
 m_checkedIcon = UIManager.getIcon(
 "CheckBox.iconChecked");
 m_uncheckedIcon = UIManager.getIcon(
 "CheckBox.icon");
 m_pressedCheckedIcon = UIManager.getIcon(
 "CheckBox.iconPressedChecked");
 m_pressedUncheckedIcon = UIManager.getIcon(
 "CheckBox.iconPressed");
 m_focusBorder = UIManager.getColor(
 "CheckBox.focusBorder");
 m_textIconGap = UIManager.getInt(
 "CheckBox.textIconGap");

 c.setBackground(m_backgroundNormal);
 c.addMouseListener(this);
 }

 public void uninstallUI(JComponent c) {
 super.uninstallUI(c);
 c.removeMouseListener(this);
 }

 public void paint(Graphics g, JComponent c) {
 AbstractButton b = (AbstractButton)c;
 ButtonModel model = b.getModel();
 Dimension d = b.getSize();

 g.setFont(c.getFont());
 FontMetrics fm = g.getFontMetrics();

 Icon icon = m_uncheckedIcon;
 if (model.isPressed() && model.isSelected())
 icon = m_pressedCheckedIcon;
 else if (model.isPressed() && !model.isSelected())
 icon = m_pressedUncheckedIcon;
 else if (!model.isPressed() && model.isSelected())
 icon = m_checkedIcon;

 g.setColor(b.getForeground());
 int x = 0;
 int y = (d.height - icon.getIconHeight())/2;
 icon.paintIcon(c, g, x, y);

Like MalachiteButtonUI,
retrieves rendering resources
from defaults table

748 CHAPTER 21 PLUGGABLE LOOK AND FEEL

 String caption = b.getText();
 x = icon.getIconWidth() + m_textIconGap;
 y = (d.height + fm.getAscent())/2;
 g.drawString(caption, x, y);

 if (b.isFocusPainted() && b.hasFocus()) {
 g.setColor(m_focusBorder);
 Insets bi = b.getBorder().getBorderInsets(b);
 g.drawRect(x-2, y-fm.getAscent()-2, d.width-x,
 fm.getAscent()+fm.getDescent()+4);
 }
 }

 public void mouseClicked(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();
 c.setForeground(m_foregroundActive);
 c.repaint();
 }

 public void mouseExited(MouseEvent e) {
 JComponent c = (JComponent)e.getComponent();
 c.setForeground(m_foregroundNormal);
 c.repaint();
 }
}

see \Chapter21\2\Malachite

package Malachite;

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.plaf.*;
import javax.swing.plaf.basic.*;

public class MalachiteRadioButtonUI extends MalachiteCheckBoxUI
 implements java.io.Serializable, MouseListener
{
 private final static MalachiteRadioButtonUI m_buttonUI =
 new MalachiteRadioButtonUI();

 public MalachiteRadioButtonUI() {}

 public static ComponentUI createUI(JComponent c) {
 return m_buttonUI;
 }

 public void installUI(JComponent c) {
 super.installUI(c);

MalachiteRadioButtonUI.java

Provides rollover
effect

Very similar to
MalachiteCheckBoxUI

CUSTOM LOOK AND FEEL, PART II : CREATING CUSTOM UI DELEGATES 749

 m_backgroundNormal = UIManager.getColor(
 "RadioButton.background");
 m_foregroundNormal = UIManager.getColor(
 "RadioButton.foreground");
 m_foregroundActive = UIManager.getColor(
 "RadioButton.activeForeground");
 m_checkedIcon = UIManager.getIcon(
 "RadioButton.iconChecked");
 m_uncheckedIcon = UIManager.getIcon(
 "RadioButon.icon");
 m_pressedCheckedIcon = UIManager.getIcon(
 "RadioButton.iconPressedChecked");
 m_pressedUncheckedIcon = UIManager.getIcon(
 "RadioButton.iconPressed");
 m_focusBorder = UIManager.getColor(
 "RadioButton.focusBorder");
 m_textIconGap = UIManager.getInt(
 "RadioButton.textIconGap");

 c.setBackground(m_backgroundNormal);
 c.addMouseListener(this);
 }
}

21.3.1 Understanding the code

Class Malachite.MalachiteLF
The initClassDefaults() method inherited from BasicLookAndFeel is now overridden.
As we’ve discussed earlier, this method will be called to fill a given UIDefaults instance with
information about the specific classes responsible for providing a component’s UI delegate for
this look and feel. Our implementation calls the super class’s initClassDefaults() method
to provide all default options. It then replaces the delegate classes for our three supported but-
ton components by calling our putDefault() custom method. This helper method puts two
entries into the given UIDefaults instance: the UI delegate fully qualified class name, and a
corresponding instance of java.lang.Class (see selection 21.1.11).

The initComponentDefaults() method now places more custom resources into the given
UIDefaults instance, including six custom icons. These resources are needed by our custom
Malachite UI delegates, as we will see below.

Class Malachite.MalachiteButtonUI
This class provides a custom UI delegate for JButton. It extends BasicButtonUI to reuse
much of its functionality, and it implements MouseListener and KeyListener to capture
and process user input.

There is one class variable:

• MalachiteButtonUI m_buttonUI: A shared instance of this class which is returned by
the createUI() method.

Different icons
used to paint UI

750 CHAPTER 21 PLUGGABLE LOOK AND FEEL

There are seven instance variables:

• Border m_borderRaised: The border when the button is not pressed.
• Border m_borderLowered: The border when the button is pressed.
• Color m_backgroundNormal: The background color when the button is not pressed.
• Color m_backgroundPressed: The background color when the button is pressed.
• Color m_foregroundNormal: The foreground color.
• Color m_foregroundActive: The foreground color when the mouse cursor rolls over.
• Color m_focusBorder: The focus rectangle color.

The installUI() method retrieves rendering resources from the defaults table by calling
static methods which are defined in the UIManager class (these resources were stored by Mal-
achiteLF as described above). It also attaches this as a MouseListener and KeyListener
to the specified component. The uninstallUI() method simply removes these listeners.

The paint() method renders a given component using the given graphical context. Render-
ing of the background and border is done automatically by JComponent (see section 21.1.12),
so the responsibility of this method is to simply render a button’s text and focus rectangle.

The getPreferredSize() method is overridden since the default implementation in the
BasicButtonUI class does not take into account the button’s border (interestingly enough).
Since we use a relatively thick border in Malachite, we need to override this method and add
the border's insets to the width and height returned by the superclass implementation.

The next five methods represent an implementation of the MouseListener interface. To
indicate that a button component is currently pressed, the mousePressed() method changes
a button’s background and border, which in turn causes that component to be repainted. The
mouseReleased() method restores these attributes. To provide an additional rollover effect,
the mouseEntered() method changes the associated button’s foreground color, which is
then restored in the mouseExited() method.

The remaining three methods represent an implementation of the KeyListener interface.
Pressing the Space bar or Enter key while the button is in focus produces the same effect as
performing a button click.

Class Malachite.MalachiteCheckBoxUI
This class extends BasicCheckBoxUI to provide a custom UI delegate for our JCheckBox
component.

There is one class variable:

• MalachiteCheckBoxUI m_buttonUI: A shared instance of this class which is returned
by the createUI() method.

There are the instance variables:

• Color m_backgroundNormal: The component’s background.
• Color m_foregroundNormal: The foreground color.
• Color m_foregroundActive: The rollover foreground color.
• Icon m_checkedIcon: The icon displayed when the check box is checked and not pressed.
• Icon m_uncheckedIcon: The icon displayed when the check box is not checked and

not pressed.

EXAMPLES FROM THE FIRST EDITION 751

• Icon m_pressedCheckedIcon: The icon displayed when the check box is checked
and pressed.

• Icon m_pressedUncheckedIcon: The icon displayed when the check box is not
checked and pressed.

• Color m_focusBorder: The focus rectangle color.
• int m_textIconGap: The gap between the icon and the text.

Similar to MalachiteButtonUI, the installUI() method retrieves rendering resources
from the defaults table and stores them in instance variables. It also attaches this as a Mouse-
Listener to the given component.

The paint() method renders the given component using a given graphical context. It draws
an icon, text, and focus rectangle when appropriate (this code is fairly straightforward and
does not require detailed explanation here).

The next five methods represent an implementation of the MouseListener interface which
provides a similar rollover effect to that of MalachiteButtonUI.

Class Malachite.MalachiteRadioButtonUI
This class extends MalachiteCheckBoxUI. The only major difference between this class and
its parent is that this class uses a different set of icons to render the radio button. The
paint() method is not overridden. The installUI() method is modified to retrieve the
necessary resources.

21.3.2 Running the code

Figure 21.2 shows our example frame from the previous section with our new Malachite UI
delegates in action. You can see that the push buttons here are bigger because their size now
properly includes the border thickness. The most significant difference appears when the but-
tons are clicked, and when boxes are checked/unchecked using using the mouse and keyboard.

At this point we leave the implementation of Malachite UI delegates for other existing
Swing components up to you. You should now have a good idea of how to approach the task
for any component.

21.4 EXAMPLES FROM THE FIRST EDITION

In chapter 15 of the first edition we developed a custom MDI internal frame component
called InnerFrame. Chapter 21 then went on to show how to build UI delegates for this cus-
tom component for both our custom Malachite look and feel as well as the existing look and
feels. We’ve removed these examples in the 2nd edition to allow space for updated material.
However, they remain in the first edition .zip files and manuscript (freely available at
www.manning.com/sbe). Figures 21.3 through 21.6 illustrate the custom InnerFrame UI
delegates in action.

752 CHAPTER 21 PLUGGABLE LOOK AND FEEL

Figure 21.3 InnerFrame and JInternalFrame in the Metal look and feel

Figure 21.4 InnerFrame and JInternalFrame in the Motif look and feel

EXAMPLES FROM THE FIRST EDITION 753

Figure 21.5 InnerFrame and JInternalFrame in the Windows look and feel

Figure 21.6 InnerFrame in the Malachite look and feel

P A R T IV

Special topics
In the following three chapters we cover several topics which relate directly to the use of Swing.
Chapter 22 discusses the powerful Java printing API. We construct examples showing how to:
print an image on multiple pages, construct a print preview component, print text, and print
JTable data (in both portrait and landscape modes).

Chapter 23 focuses on using Swing to work with XML, the lingua franca of the Internet. Ex-
amples cover the step-wise implementation of a Swing-based XML editor tool.

Chapter 24 covers Drag and Drop in Swing. As of Java 1.4 Drag and Drop support is built
into most Swing components.

757

C H A P T E R 2 2

Printing
22.1 Java printing overview 757
22.2 Printing images 762
22.3 Print preview 767

22.4 Printing text 776
22.5 Printing tables 781

22.1 JAVA PRINTING OVERVIEW

Java includes a considerably advanced printing API. Java veterans may recall that JDK 1.0
didn’t provide printing capabilities at all. JDK 1.1 provided access to native print jobs, but
multi-page printing was a real problem for that API.

Now Java developers are able to perform multi-page printing using page count selection
and other typical specifications in the native Print dialog, as well as page format selection in
the native platform-specific Page Setup dialog. The printing-related API is concentrated in
the java.awt.print package, and we’ll start this chapter with an overview of these classes
and interfaces.

JAVA 1.4 As of Java 1.4 there is a new javax.print package allowing more detailed control
of print jobs and communication with printers. Coverage of this new package is be-
yond the scope of this book, as it is deserving of a much more extensive treatment
than we can provide here. This chapter should be considered a primer on printing
with Swing, and for those issues that cannot be solved using the material here we
would suggest digging into the new javax.print package and it is not part of the
Swing library.

758 CHAPTER 22 PRINTING

22.1.1 PrinterJob

class java.awt.print.PrinterJob
This is the main class which controls printing in Java. It is used to store print job properties,
to initiate printing when necessary, and to control the display of Print dialogs. A typical print-
ing process is shown in the following code:

 PrinterJob prnJob = PrinterJob.getPrinterJob();
 prnJob.setPrintable(myPrintable);
 if (!prnJob.printDialog())
 return;
 prnJob.print();

This code retrieves an instance of PrinterJob with the static getPrinterJob() method,
passes a Printable instance to it (which is used to render a specific page on demand—see
below), invokes a platform-dependent Print dialog by calling PrinterJob’s printDialog()
method, and, if this method returns true (indicating the “OK” to print), starts the actual
printing process by calling the print() method on that PrinterJob.

The Print dialog will look familiar, as it is the typical dialog used by most other applica-
tions on the user’s system. For example, figure 22.1 shows a Windows 2000 Print dialog:

Though the PrinterJob is the most important constituent of the printing process, it can do
nothing without a Printable instance that specifies how to actually perform the necessary
rendering for each page.

22.1.2 The Printable interface

abstract interface java.awt.print.Printable
This interface defines only one method: print(), which takes three parameters:

• Graphics graphics: The graphical context into which the page will be drawn.

Figure 22.1
A Windows 2000 Print
dialog, about to print
a pageable job

JAVA PRINTING OVERVIEW 759

• PageFormat pageFormat: An object containing information about the size and orien-
tation of the page being drawn (see below).

• int pageIndex: The zero-based index of the page to be drawn.

The print() method will be called to print a portion of the PrinterJob corresponding
to a given pageIndex. An implementation of this method should perform rendering of a
specified page, using a given graphical context and a given PageFormat. The return value
from this method should be PAGE_EXISTS if the page is rendered successfully, or
NO_SUCH_ PAGE if the given page index is too large and does not exist. (These are static
ints defined in Printable.)

NOTE We never call a Printable’s print() method ourselves. This is handled deep
inside the actual platform-specific PrinterJob implementation which we aren’t
concerned with here.

A class that implements Printable is said to be a page painter. When a PrinterJob uses
only one page painter to print each page, it is referred to as a printable job. The notion of a
document being separated into a certain number of pages is not predefined in a printable job.
In order to print a specific page, a printable job will actually render all pages leading up to that
page first, and then it will print the specified page. This happens because it does not maintain
information about how much space each page will occupy when rendered with the given page
painter. For example, if we specify in our Print dialog that we want to print pages 3 and 5
only, then pages 0 through 4 (because pages are 0-indexed) will be rendered with the print()
method, but only 2 and 4 will actually be printed.

WARNING Since the system only knows how many pages a printable job will span after the
rendering of the complete document takes place (meaning after paint() has been
called), Print dialogs will not display the correct number of pages to be printed.
This is because there is no pre-print communication between a PrinterJob and
the system that determines how much space the printable job requires. For this rea-
son you will often see a range such as 1 to 9999 in Print dialogs when printing
printable jobs. (This is not the case for pageable jobs.)

In reality, it is often the case that print() will be called for each page more than once.

NOTE In the first edition we emphasized several major performance and memory
problems associated with printing images. Most of these have been addressed in
Java 1.3 and 1.4, and we are happy to report that we no longer have any trouble
printing from the examples in this chapter.

22.1.3 The Pageable interface

abstract interface java.awt.print.Pageable
It is possible to support multiple page painters in a single PrinterJob. As we know, each
page printer can correspond to a different scheme of printing because each Printable imple-
ments its own print() method. Implemenatations of the Pageable interface are designed
to manage groups of page painters, and a print job that uses multiple page painters is referred
to as a pageable job. Each page in a pageable job can use a different page printer and Page-
Format to perform its rendering.

760 CHAPTER 22 PRINTING

Unlike printable jobs, pageable jobs do maintain the predefined notion of a document
as a set of separate pages. For this reason, pages of a pageable job can be printed in any order
without having to render all pages leading up to a specific page (as is the case with printable
jobs). Also, a Pageable instance carries with it an explicit page count which can be commu-
nicated to the native printing system when a PrinterJob is established. So when it’s printing
a pageable job, the native Print dialog will know the correct range of pages to display, unlike
a printable job. (Note that this does not mean pageable jobs are not subject to the inherent
limitations described above; we will see the same repetitive calling of print() that we do in
printable jobs.)

When we are constructing a pageable PrinterJob, instead of calling PrinterJob’s
setPrintable() method (see section 22.1.1), we call its setPageable() method. Figure 22.1
shows a Windows 2000 Print dialog about to print a pageable job. Notice that the range of
pages is not 1 to 9999.

We won’t be working with pageable jobs in this chapter because all the documents we
will be printing require only one Printable implementation, even if documents can span
multiple pages. In most real-world applications, each page of a document is printed with iden-
tical orientation, margins, and other sizing characteristics. However, if greater flexibility is
desired, Pageable implementations such as Book (see below) can be useful.

22.1.4 The PrinterGraphics interface

abstract interface java.awt.print.PrinterGraphics
This interface defines only one method: getPrinterJob(), which retrieves the PrinterJob
instance controlling the current printing process. It is implemented by Graphics objects that
are passed to Printable objects to render a page. (We will not need to use this interface at
all, as it is used deep inside PrinterJob instances to define the Graphics objects that are
passed to each Printable’s paint() method during printing.)

22.1.5 PageFormat

class java.awt.print.PageFormat
This class encapsulates a Paper object and adds to it an orientation property (landscape or
portrait). We can force a Printable to use a specific PageFormat by passing one to Print-
erJob’s overloaded setPrintable() method. For instance, the following would force a
printable job to use a specific PageFormat with a landscape orientation:

 PrinterJob prnJob = PrinterJob.getPrinterJob();
 PageFormat pf = job.defaultPage();
 pf.setOrientation(PageFormat.LANDSCAPE);
 prnJob.setPrintable(myPrintable, pf);
 if (!prnJob.printDialog())
 return;
 prnJob.print();

PageFormat defines three orientations:

• LANDSCAPE: The origin is at the bottom left-hand corner of the paper with the x-axis
pointing up and the y-axis pointing to the right.

JAVA PRINTING OVERVIEW 761

• PORTRAIT (most common): The origin is at the top left-hand corner of the paper with
the x-axis pointing to the right and the y-axis pointing down.

• REVERSE_LANDSCAPE: The origin is at the top right-hand corner of the paper with
the x-axis pointing down and the y-axis pointing to the left.

We can optionally display a Page Setup dialog in which the user can specify page characteristics
such as orientation, paper size, and margin size. This dialog will return a new PageFormat to use
in printing. The Page Setup dialog is meant to be presented before the Print dialog and it can
be displayed using PrinterJob’s pageDialog() method. The following code brings up a
Page Setup dialog, and it uses the resulting PageFormat for printing a printable job:

 PrinterJob prnJob = PrinterJob.getPrinterJob();
 PageFormat pf = job.pageDialog(job.defaultPage());
 prnJob.setPrintable(myPrintable, pf);
 if (!prnJob.printDialog())
 return;
 prnJob.print();

We need to pass the pageDialog() method a PageFormat instance, as it uses it to clone and
modify as the user specifies. If the changes are accepted, the cloned and modified version is
returned. If they are not, the original version passed in is returned. Figure 22.2 shows a
Windows 2000 Page Setup dialog.

22.1.6 Paper

class java.awt.print.Paper
This class holds the size and margins of the paper used for printing. The getImageableX() and
getImageableY() methods retrieve the coordinates of the top-left corner of the printable
area in 1/72nds of an inch (which is approximately equal to one screen pixel—referred to as a
“point” in typography). The getImageableWidth() and getImageableHeight() methods
retrieve the width and height of the printable area (also in 1/72nds of an inch). We can also
change the size of the useable region of the paper using its setImageableArea() method.

We can access the Paper object associated with a PageFormat using PageFormat’s
getPaper() and setPaper() methods.

22.1.7 Book

class java.awt.print.Book
This class represents a collection of Printable instances with corresponding PageFormats
to represent a complex document whose pages may have different formats. The Book class
implements the Pageable interface, and Printables are added to a Book using one of its
append() methods. This class also defines several methods that allow specific pages to be
manipulated and replaced. (A page in terms of a Book is a Printable/PageFormat pair.
Each page does correspond to an actual printed page.) See the API documentation and the
Java tutorial for more information about this class.

762 CHAPTER 22 PRINTING

22.1.8 PrinterException

class java.awt.print.PrinterException
This exception may be thrown to indicate an error during a printing procedure. It has two
concrete subclasses: PrinterAbortException and PrinterIOException. The former
indicates that a print job was terminated by the application or the user while printing, and the
latter indicates that there was a problem outputting to the printer.

22.2 PRINTING IMAGES

In this section, we add printing capabilities to the JPEGEditor application introduced in
chapter 13. The material presented in example 22.1 will form a solid basis for the subsequent
printing examples. Here we show how to implement the Printable interface to construct a
custom panel with a print() method that can manage the printing of large images by split-
ting them up into a matrix of pages.

Example 22.1

see \Chapter22\1

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.util.*;
import java.io.*;

Figure 22.2
A Windows 2000
Page Setup dialog

JPEGEditor.java

PRINTING IMAGES 763

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.filechooser.*;

import com.sun.image.codec.jpeg.*;

import java.awt.print.*;

// Unchanged code from example 13.4

public class JPEGEditor extends JFrame
{
 // Unchanged code from example 13.4

protected JToolBar createToolBar {
 // Unchanged code from example 13.4

tb.addSeparator();

 bt = new JButton(new ImageIcon("Print24.gif"));

 bt.setToolTipText("Print image");

 lst = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Thread runner = new Thread() {

 public void run() {

 if (m_panel.getBufferedImage() != null)

 printData();

 }

};

Figure 22.3 JPEGEditor displaying a native Print dialog

If image is loaded,
this button will
process the image
for printing

764 CHAPTER 22 PRINTING

 runner.start();

 }

 };

 bt.addActionListener(lst);

 tb.add(bt);

// Unchanged code from example 13.4

 }

// Unchanged code from example 13.4

 public void printData() {

try {

 PrinterJob prnJob = PrinterJob.getPrinterJob();

 prnJob.setPrintable(m_panel);

 if (!prnJob.printDialog())

 return;

 setCursor(Cursor.getPredefinedCursor(

 Cursor.WAIT_CURSOR));

 prnJob.print();

 setCursor(Cursor.getPredefinedCursor(

 Cursor.DEFAULT_CURSOR));

 JOptionPane.showMessageDialog(this,

 "Printing completed successfully", "JPEGEditor2",

 JOptionPane.INFORMATION_MESSAGE);

 }

 catch (PrinterException e) {

 e.printStackTrace();

 System.err.println("Printing error: "+e.toString());

 }

 }

 public static void main(String argv[])
{

JPEGEditor frame = new JPEGEditor();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

 }
}

class JPEGPanel extends JPanel implements Printable

{
 protected BufferedImage m_bi = null;

 public int m_maxNumPage = 1;

 // Unchanged code from example 13.4

 public int print(Graphics pg, PageFormat pageFormat,

 int pageIndex) throws PrinterException {

 if (pageIndex >= m_maxNumPage || m_bi == null)

 return NO_SUCH_PAGE;

 pg.translate((int)pageFormat.getImageableX(),

 (int)pageFormat.getImageableY());

If image is loaded,
this button will
process the image
for printing

Sets Printable
object into
PrinterJob and
attempts to print it

Printable panel
which contains
a JPEG image

Shifts graphics
context origin
and calculates
width and height
of drawing area

PRINTING IMAGES 765

 int wPage = (int)pageFormat.getImageableWidth();

 int hPage = (int)pageFormat.getImageableHeight();

 int w = m_bi.getWidth(this);

 int h = m_bi.getHeight(this);

 if (w == 0 || h == 0)

 return NO_SUCH_PAGE;

 int nCol = Math.max((int)Math.ceil((double)w/wPage), 1);

 int nRow = Math.max((int)Math.ceil((double)h/hPage), 1);

 m_maxNumPage = nCol*nRow;

 int iCol = pageIndex % nCol;

 int iRow = pageIndex / nCol;

 int x = iCol*wPage;

 int y = iRow*hPage;

 int wImage = Math.min(wPage, w-x);

 int hImage = Math.min(hPage, h-y);

 pg.drawImage(m_bi, 0, 0, wImage, hImage,

 x, y, x+wImage, y+hImage, this);

 System.gc();

 return PAGE_EXISTS;

 }

}

22.2.1 Understanding the code

Class JPEGEditor
The java.awt.print package is imported to provide printing capabilities. A new toolbar
button entitled Print... has been added to this application. If this item is selected and an image
has been loaded, our new custom printData()method is called.

The printData() method retrieves a PrinterJob instance and passes it our m_panel com-
ponent (this is an instance of JPEGPanel, which now implements the Printable interface
as shown below). It then invokes a native Print dialog and initializes printing by calling
print(). If no exception was thrown, a “Printing completed successfully” message is dis-
played when printing completes. Otherwise, the exception trace is printed.

Class JPEGPanel
This class, which was originally designed to just display an image, now implements the
Printable interface and is able to print a portion of its displayed image upon request. A new
instance variable, m_maxNumPage, holds a maximum page number available for this printing.
This number is set initially to one and its actual value is calculated in the print() method
(see below).

The print() method prints a portion of the current image corresponding to the given
page index. If the current image is larger than a single page, it will be split into several pages
which are arranged as several rows and columns (a matrix). When printed, they can be placed
in this arrangement to form one big printout.

Shifts graphics
context origin
and calculates
width and height
of drawing area

From desired page number,
calculates column, row, and
dimensions of image portion

Draws the image portion
to the graphics context,
and tries to release memory
immediately after

Calculates number
of pages needed to

print image

766 CHAPTER 22 PRINTING

This method first shifts the origin of the graphics context to take into account the page’s mar-
gins, and it calculates the width and height of the area available for drawing: the results are
wPage and hPage.

 pg.translate((int)pageFormat.getImageableX(),

 (int)pageFormat.getImageableY());

 int wPage = (int)pageFormat.getImageableWidth();

 int hPage = (int)pageFormat.getImageableHeight();

The local variables w and h represent the width and height of the whole BufferedImage to
be printed. (If any of these happens to be 0, we return NO_SUCH_PAGE.) Comparing these
dimensions with the width and height of a single page, we can calculate the number of col-
umns (not fewer than 1) and rows (not fewer than 1) in which the original image should be
split to fit to the page’s size:

 int nCol = Math.max((int)Math.ceil((double)w/wPage), 1);

 int nRow = Math.max((int)Math.ceil((double)h/hPage), 1);

 m_maxNumPage = nCol*nRow;

The product of rows and columns gives us the number of pages in the print job,
m_maxNumPage.

Now, because we know the index of the current page to be printed (it was passed as
the parameter pageIndex) we can determine the current column and row indices (note that
enumeration is made from left to right and then from top to bottom); these indices are iCol
and iRow.

 int iCol = pageIndex % nCol;

 int iRow = pageIndex / nCol;

 int x = iCol*wPage;

 int y = iRow*hPage;

 int wImage = Math.min(wPage, w-x);

 int hImage = Math.min(hPage, h-y);

We also can calculate the coordinates of the top-left corner of the portion of the image to be
printed on this page (x and y), and the width and height of this region (wImage and hImage).
Note that in the last column or row of our image matrix, the width and/or height of a portion
can be less than the maximum values (which we calculated above: wPage and hPage).

Now we have everything ready to actually print a region of the image to the specified
graphics context. We now need to extract this region and draw it at (0, 0), as this will be the
origin (upper-left hand corner) of our printed page. The Graphics drawImage() method
does the job. It takes ten parameters: an Image instance, four coordinates of the destination
area (top-left and bottom-right—not width and height), four coordinates of the source area,
and an ImageObserver instance.

 pg.drawImage(m_bi, 0, 0, wImage, hImage,

 x, y, x+wImage, y+hImage, this);

 System.gc();

NOTE Because the print() method may be called many times for the same page (see
below), it makes good sense to explicitly invoke the garbage collector in this
method. Otherwise, we may run out of memory.

PRINT PREVIEW 767

22.2.2 Running the code

Figure 22.3 shows a Print dialog brought up by our program when it was run on a
Windows 2000 platform. Try loading and printing images of various sizes.

22.3 PRINT PREVIEW

Print preview functionality has became a standard feature provided by most modern print-
enabled applications. It only makes sense to include this service in Java applications.
Example 22.2 in this section shows how to construct a print preview component.

NOTE An additional reason for Java developers to add print preview to their applications
is that this feature can be very useful for debugging print code.

The print preview component displays small images of the printed pages as they would appear
after printing. A GUI attached to the preview component typically allows you to change the
scale of the preview images and to invoke a print. Example 22.2 demonstrates such a compo-
nent which can be easily added to any print-aware Swing application. Figure 22.4 shows how
the image will appear.

Figure 22.4 Print preview showing a 1200 x1500 image split into nine parts

768 CHAPTER 22 PRINTING

Example 22.2

see \Chapter22\2

public class JPEGEditor extends JFrame
{
 // Unchanged code from example 22.1

 protected JMenuBar createMenuBar() {
 // Unchanged code from example 22.1

bt = new JButton(new ImageIcon("PrintPreview24.gif"));

bt.setToolTipText("Print preview");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

if (m_panel.getBufferedImage() != null) {

Thread runner = new Thread() {

public void run() {

setCursor(Cursor.getPredefinedCursor(

Cursor.WAIT_CURSOR));

PrintPreview preview = new PrintPreview(m_panel,

"Print Preview ["+m_currentFile.getName()+"]");

preview.setVisible(true);

setCursor(Cursor.getPredefinedCursor(

Cursor.DEFAULT_CURSOR));

}

};

runner.start();

}

}

};

bt.addActionListener(lst);

tb.add(bt);

// The rest of the code is unchanged from example 22.1

see \Chapter22\2

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.util.*;
import java.awt.print.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class PrintPreview extends JFrame
{

JPEGEditor.java

PrintPreview.java

Toolbar button
to create print
preview display

Frame to display preview
of print job before printing

PRINT PREVIEW 769

 protected int m_wPage;
 protected int m_hPage;
 protected Printable m_target;
 protected JComboBox m_cbScale;
 protected PreviewContainer m_preview;

 public PrintPreview(Printable target) {
 this(target, "Print Preview");
 }

 public PrintPreview(Printable target, String title) {
 super(title);
 setSize(600, 400);
 m_target = target;

 JToolBar tb = new JToolBar();
 JButton bt = new JButton("Print", new ImageIcon("print.gif"));
 ActionListener lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 // Use default printer, no dialog
 PrinterJob prnJob = PrinterJob.getPrinterJob();
 prnJob.setPrintable(m_target);
 setCursor(Cursor.getPredefinedCursor(
 Cursor.WAIT_CURSOR));
 prnJob.print();
 setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));
 dispose();
 }
 catch (PrinterException ex) {
 ex.printStackTrace();
 System.err.println("Printing error: "+ex.toString());
 }
 }
 };
 bt.addActionListener(lst);
 bt.setAlignmentY(0.5f);
 bt.setMargin(new Insets(4,6,4,6));
 tb.add(bt);

 bt = new JButton("Close");
 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 dispose();
 }
 };
 bt.addActionListener(lst);
 bt.setAlignmentY(0.5f);
 bt.setMargin(new Insets(2,6,2,6));
 tb.add(bt);

 String[] scales = { "10 %", "25 %", "50 %", "100 %" };
 m_cbScale = new JComboBox(scales);

Toolbar button
to directly print

preview image

770 CHAPTER 22 PRINTING

 lst = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Thread runner = new Thread() {
 public void run() {
 String str = m_cbScale.getSelectedItem().
 toString();
 if (str.endsWith("%"))
 str = str.substring(0, str.length()-1);
 str = str.trim();
 int scale = 0;
 try { scale = Integer.parseInt(str); }
 catch (NumberFormatException ex) { return; }
 int w = (int)(m_wPage*scale/100);
 int h = (int)(m_hPage*scale/100);

 Component[] comps = m_preview.getComponents();
 for (int k=0; k<comps.length; k++) {
 if (!(comps[k] instanceof PagePreview))
 continue;
 PagePreview pp = (PagePreview)comps[k];
 pp.setScaledSize(w, h);
 }
 m_preview.doLayout();
 m_preview.getParent().getParent().validate();
 }
 };
 runner.start();
 }
 };
 m_cbScale.addActionListener(lst);
 m_cbScale.setMaximumSize(m_cbScale.getPreferredSize());
 m_cbScale.setEditable(true);
 tb.addSeparator();
 tb.add(m_cbScale);
 getContentPane().add(tb, BorderLayout.NORTH);

 m_preview = new PreviewContainer();

 PrinterJob prnJob = PrinterJob.getPrinterJob();
 PageFormat pageFormat = prnJob.defaultPage();
 if (pageFormat.getHeight()==0 || pageFormat.getWidth()==0) {
 System.err.println("Unable to determine default page size");
 return;
 }
 m_wPage = (int)(pageFormat.getWidth());
 m_hPage = (int)(pageFormat.getHeight());
 int scale = 10;
 int w = (int)(m_wPage*scale/100);
 int h = (int)(m_hPage*scale/100);

 int pageIndex = 0;
 try {
 while (true) {
 BufferedImage img = new BufferedImage(m_wPage,

Action on Scale
combo box to scale
the previewed image
size up or down

Scales each
PagePreview object
individually

Renders each
portion of the
original image into
individual
PagePreview objects

PRINT PREVIEW 771

 m_hPage, BufferedImage.TYPE_INT_RGB);
 Graphics g = img.getGraphics();
 g.setColor(Color.white);
 g.fillRect(0, 0, m_wPage, m_hPage);
 if (target.print(g, pageFormat, pageIndex) !=
 Printable.PAGE_EXISTS)
 break;
 PagePreview pp = new PagePreview(w, h, img);
 m_preview.add(pp);
 pageIndex++;
 }
 }
 catch (PrinterException e) {
 e.printStackTrace();
 System.err.println("Printing error: "+e.toString());
 }

 JScrollPane ps = new JScrollPane(m_preview);
 getContentPane().add(ps, BorderLayout.CENTER);

 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 setVisible(true);
 }

 class PreviewContainer extends JPanel
 {
 protected int H_GAP = 16;
 protected int V_GAP = 10;

 public Dimension getPreferredSize() {
 int n = getComponentCount();
 if (n == 0)
 return new Dimension(H_GAP, V_GAP);
 Component comp = getComponent(0);
 Dimension dc = comp.getPreferredSize();
 int w = dc.width;
 int h = dc.height;

 Dimension dp = getParent().getSize();
 int nCol = Math.max((dp.width-H_GAP)/(w+H_GAP), 1);
 int nRow = n/nCol;
 if (nRow*nCol < n)
 nRow++;

 int ww = nCol*(w+H_GAP) + H_GAP;
 int hh = nRow*(h+V_GAP) + V_GAP;
 Insets ins = getInsets();
 return new Dimension(ww+ins.left+ins.right,
 hh+ins.top+ins.bottom);
 }

 public Dimension getMaximumSize() {
 return getPreferredSize();
 }

 public Dimension getMinimumSize() {

Renders each
portion of the
original image into
individual
PagePreview objects

Panel to layout
PagePreview
objects, with
special layout
requirements

772 CHAPTER 22 PRINTING

 return getPreferredSize();
 }

 public void doLayout() {
 Insets ins = getInsets();
 int x = ins.left + H_GAP;
 int y = ins.top + V_GAP;

 int n = getComponentCount();
 if (n == 0)
 return;
 Component comp = getComponent(0);
 Dimension dc = comp.getPreferredSize();
 int w = dc.width;
 int h = dc.height;

 Dimension dp = getParent().getSize();
 int nCol = Math.max((dp.width-H_GAP)/(w+H_GAP), 1);
 int nRow = n/nCol;
 if (nRow*nCol < n)
 nRow++;

 int index = 0;
 for (int k = 0; k<nRow; k++) {
 for (int m = 0; m<nCol; m++) {
 if (index >= n)
 return;
 comp = getComponent(index++);
 comp.setBounds(x, y, w, h);
 x += w+H_GAP;
 }
 y += h+V_GAP;
 x = ins.left + H_GAP;
 }
 }
 }

 class PagePreview extends JPanel
 {
 protected int m_w;
 protected int m_h;
 protected Image m_source;
 protected Image m_img;

 public PagePreview(int w, int h, Image source) {
 m_w = w;
 m_h = h;
 m_source= source;
 m_img = m_source.getScaledInstance(m_w, m_h,
 Image.SCALE_SMOOTH);
 m_img.flush();
 setBackground(Color.white);
 setBorder(new MatteBorder(1, 1, 2, 2, Color.black));
 }

Panel to contain a
single PagePreview
object

PRINT PREVIEW 773

 public void setScaledSize(int w, int h) {
 m_w = w;
 m_h = h;
 m_img = m_source.getScaledInstance(m_w, m_h,
 Image.SCALE_SMOOTH);
 repaint();
 }

 public Dimension getPreferredSize() {
 Insets ins = getInsets();
 return new Dimension(m_w+ins.left+ins.right,
 m_h+ins.top+ins.bottom);
 }

 public Dimension getMaximumSize() {
 return getPreferredSize();
 }

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 public void paint(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 g.drawImage(m_img, 0, 0, this);
 paintBorder(g);
 }
 }
}

22.3.1 Understanding the code

Class JPEGEditor
Compared with its counterpart in the previous example, this class has only one difference: it
creates a Print Preview toolbar button. When it’s selected, this item creates an instance of the
PrintPreview class (see below). This class’s constructor takes two parameters: a reference to
a Printable instance and a text string for the frame’s title. As we saw in example 22.1, our
m_panel component implements the Printable interface and provides the actual printing
functionality, so we use it to create the PrintPreview instance. This call is wrapped in a
thread because when it’s used with large images, creating a PrintPreview instance can take a
significant amount of time.

NOTE As you can see, we only need to have a reference to an instance of the Printable
interface to create a PrintPreview component. Thus, this component can be
added to any print-aware application with only a couple of lines of code. We will
use it in the remaining examples as well, because it is such a simple feature to add.

Class PrintPreview
This class represents a JFrame-based component which is capable of displaying the results of
printing before actual printing occurs. Several instance variables are used:

• Printable m_target: An object whose printout will be previewed.

774 CHAPTER 22 PRINTING

• int m_wPage: The width of the default printing page.
• int m_hPage: The height of the default printing page.
• JComboBox m_cbScale: A combo box which selects a scale for preview.
• PreviewContainer m_preview: The container which holds the previewing pages.

Two public constructors are provided. The first one takes an instance of the Printable
interface and passes control to the second constructor, using the Printable along with the
“Print Preview” String as parameters. The second constructor takes two parameters: an
instance of the Printable interface and the title string for the frame. This second construc-
tor is the one that actually sets up the PrintPreview component.

First, a toolbar is created and a button entitled Print is added to perform the printing of the
m_target instance as described in the previous example. The only difference is that no Print
dialog is invoked, and the default system printer is used (this approach is typical for print
preview components). When the printing is complete, this print preview component is
disposed of. The second button added to the toolbar is labeled Close, and it merely disposes
of this frame component.

The third (and last) component added to the toolbar is the editable combo box m_cbScale,
which selects a percent scale to zoom the previewed pages. Along with several pre-defined
choices (10 %, 25 %, 50 %, and 100 %), any percent value can be entered. As soon as that
value is selected and the corresponding ActionListener is involved, the zoom scale value is
extracted and stored in the local variable scale. This determines the width and height of each
PreviewPage component we will be creating:

 int w = (int)(m_wPage*scale/100);
 int h = (int)(m_hPage*scale/100);

Then all child components of the m_preview container in turn are cast to PagePreview
components (each child is expected to be a PagePreview instance, but instanceof is used
for precaution), and the setScaledSize() method is invoked to assign a new size to the
preview pages. Finally, doLayout() is invoked on m_preview to lay out the resized child
components, and validate() is invoked on the scroll pane. This scroll pane is the parent of
the m_preview component in the second generation (the first parent is a JViewport compo-
nent, see chapter 7). This last call is necessary to display/hide scroll bars as needed for the new
size of the m_preview container. This whole process is wrapped in a thread to avoid clogging
up the event-dispatching thread.

When the toolbar construction is complete, the m_preview component is created and filled
with the previewed pages. To do this, we first retrieve a PrinterJob instance for a default
system printer without displaying a Page Setup dialog, and we retrieve a default PageFormat
instance. We use this to determine the initial size of the previewed pages by multiplying its
dimensions by the computed scaling percentile (which is 10% at initialization time, because
scale is set to 10).

To create these scalable preview pages we set up a while loop to continuously call the
print() method of the given Printable instance, using a page index that gets incremented
with each iteration, until it returns something other than Printable.PAGE_EXISTS.

PRINT PREVIEW 775

Each page is rendered into a separate image in memory. To do this, an instance of Buffered-
Image is created with width m_wPage and height m_hPage. A Graphics instance is retrieved
from that image using getGraphics():

 BufferedImage img = new BufferedImage(m_wPage,
 m_hPage, BufferedImage.TYPE_INT_RGB);
 Graphics g = img.getGraphics();
 g.setColor(Color.white);
 g.fillRect(0, 0, m_wPage, m_hPage);
 if (target.print(g, pageFormat, pageIndex) !=
 Printable.PAGE_EXISTS)
 break;

After filling the image’s area with a white background (most paper is white), this Graphics
instance, along with the PageFormat and current page index, pageIndex, are passed to the
print() method of the Printable object.

NOTE The BufferedImage class in the java.awt.image package allows direct image
manipulation in memory.

If the call to the print() method returns PAGE_EXISTS, indicating success in rendering the
new page, a new PagePreview component is created:

 PagePreview pp = new PagePreview(w, h, img);
 m_preview.add(pp);
 pageIndex++;

Our newly created BufferedImage is passed to the PagePreview constructor as one of the
parameters. This is done so that we can use it now and in the future for scaling each Page-
Preview component separately. The other parameters are the width and height to use, which,
at creation time, are 10% of the page size (as discussed above).

Each new component is added to our m_preview container. Finally, when the Printable’s
print() method finishes, our m_preview container is placed in a JScrollPane to provide
scrolling capabilities. This scroll pane is then added to the center of the PrintPreview frame,
and our frame is then made visible.

Class PrintPreview.PreviewContainer
This inner class extends JPanel to serve as a container for PagePreview components. The
only reason this custom container is developed is because we have specific layout require-
ments. What we want here is a layout which places its child components from left to right,
without any resizing (using their preferred size), leaving equal gaps between them. When the
available container’s width is filled, a new row should be started from the left edge, without
regard to the available height (we assume scrolling functionality will be made available).

You may want to refer back to our discussion of layouts in chapter 4. The code consti-
tuting this class does not require much explanation and it provides a good exercise for custom
layout development (even though this class is not explicitly a layout manager).

Class PrintPreview.PagePreview
This inner class extends JPanel to serve as a placeholder for the image of each printed page
preview. Four instance variables are used:

776 CHAPTER 22 PRINTING

• int m_w: The current component’s width (without insets).
• int m_h: The current component’s height (without insets).
• Image m_source: The source image depicting the previewed page in full scale.
• Image m_img: The scaled image currently used for rendering.

The constructor of the PagePreview class takes its initial width and height and the source
image. It creates a scaled image by calling the getScaledInstance() method and sets its
border to MatteBorder(1, 1, 2, 2, Color.black) to imitate a page lying on a flat surface.

The setScaledSize() method may be called to resize this component. It takes a new
width and height as parameters and creates a new scaled image that corresponds to the new size.
Using the SCALE_SMOOTH option for scaling is essential to get a preview image which looks
like a zoomed printed page (although it is not the fastest option).

The paint() method draws a scaled image and draws a border around the component.

22.3.2 Running the code

Figure 22.4 shows a preview of the large image which will be printed on the nine pages. Select
various zoom factors in the combo box and see how the size of the previewed pages is changed.
Then click the Print button to print to the default printer directly from the preview frame.

22.4 PRINTING TEXT

In this section we’ll add print and print preview functionality to our MDI basic text editor
application developed in chapter 12 and extended in chapters 14 and 16. Printing text would
be easy if JTextArea implemented the Printable interface and provided capability to print
its contents. Unfortunately this is not the case, so we need to get fairly creative and implement
our own solution.

NOTE In the first edition we implemented a solution to allow printing styled text in an
RTF Word Processor application. This was accomplished by implementing a
custom BoxView subclass (see chapter 19) to specifically handle printing. This
example and its explanation remain freely available in chapter 22 of the first edition
at www.manning.com/sbe.

Example 22.3

see \Chapter22\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.awt.print.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

BasicTextEditor.java

PRINTING TEXT 777

public class BasicTextEditor extends JFrame {
// Unchanged code from example 16.2

protected JMenuBar createMenuBar() {
// Unchanged code from example 16.2

Action actionPrint = new AbstractAction("Print...",

new ImageIcon("Print16.gif")) {

public void actionPerformed(ActionEvent e) {

Thread runner = new Thread() {

public void run() {

printData();

}

};

runner.start();

}

};

item = mFile.add(actionPrint);

item.setMnemonic('p');

Action actionPrintPreview = new AbstractAction("Print Preview",

 new ImageIcon("PrintPreview16.gif")) {

 public void actionPerformed(ActionEvent e) {

 Thread runner = new Thread() {

 public void run() {

 if (m_activeFrame == null)

 return;

Figure 22.5 Print Preview showing six pages of a text document

Action to invoke
a print

Action to invoke
a print preview

778 CHAPTER 22 PRINTING

 setCursor(Cursor.getPredefinedCursor(

 Cursor.WAIT_CURSOR));

 PrintPreview preview = new PrintPreview(

 m_activeFrame,

 "Print Preview ["+m_activeFrame.getDocumentName()+"]");

 preview.setVisible(true);

 setCursor(Cursor.getPredefinedCursor(

 Cursor.DEFAULT_CURSOR));

 }

 };

 runner.start();

 }

 };

 item = mFile.add(actionPrintPreview);

 item.setMnemonic('v');

 mFile.addSeparator();

// Unchanged code from example 16.2

JButton bPrint = new SmallButton(actionPrint,

 "Print text file");

 m_toolBar.add(bPrint);

getContentPane().add(m_toolBar, BorderLayout.NORTH);

// Unchanged code from example 16.2
 }

// Unchanged code from example 16.2

public void printData() {

 if (m_activeFrame == null)

 return;

 try {

 PrinterJob prnJob = PrinterJob.getPrinterJob();

 prnJob.setPrintable(m_activeFrame);

 if (!prnJob.printDialog())

 return;

 setCursor(Cursor.getPredefinedCursor(

 Cursor.WAIT_CURSOR));

 prnJob.print();

 setCursor(Cursor.getPredefinedCursor(

 Cursor.DEFAULT_CURSOR));

 JOptionPane.showMessageDialog(this,

 "Printing completed successfully", APP_NAME,

 JOptionPane.INFORMATION_MESSAGE);

 }

 catch (PrinterException ex) {

 showError(ex, "Printing error: "+ex.toString());

 }

 }

// Unchanged code from example 16.2

class EditorFrame extends JInternalFrame

Creates a printer job, invokes print, and
shows any exceptions in a JOptionPane dialog

EditorFrame now implements
the Printable interface

PRINTING TEXT 779

 implements Printable

 {
 // Unchanged code from example 16.2

private Vector m_lines;

public int print(Graphics pg, PageFormat pageFormat,

 int pageIndex) throws PrinterException {

 pg.translate((int)pageFormat.getImageableX(),

 (int)pageFormat.getImageableY());

 int wPage = (int)pageFormat.getImageableWidth();

 int hPage = (int)pageFormat.getImageableHeight();

 pg.setClip(0, 0, wPage, hPage);

pg.setColor(m_editor.getBackground());

 pg.fillRect(0, 0, wPage, hPage);

 pg.setColor(m_editor.getForeground());

Font font = m_editor.getFont();

 pg.setFont(font);

 FontMetrics fm = pg.getFontMetrics();

 int hLine = fm.getHeight();

if (m_lines == null)

 m_lines = getLines(fm, wPage);

int numLines = m_lines.size();

 int linesPerPage = Math.max(hPage/hLine, 1);

 int numPages =

 (int)Math.ceil((double)numLines/(double)linesPerPage);

 if (pageIndex >= numPages) {

 m_lines = null;

 return NO_SUCH_PAGE;

 }

int x = 0;

 int y = fm.getAscent();

 int lineIndex = linesPerPage*pageIndex;

 while (lineIndex < m_lines.size() && y < hPage) {

 String str = (String)m_lines.get(lineIndex);

 pg.drawString(str, x, y);

 y += hLine;

 lineIndex++;

 }

return PAGE_EXISTS;

 }

public static final int TAB_SIZE = 4;

protected Vector getLines(FontMetrics fm, int wPage) {

 Vector v = new Vector();

String text = m_editor.getText();

 String prevToken = "";

 StringTokenizer st = new StringTokenizer(text, "\n\r", true);

Prints a given
page of text
to the given
Graphics Object

Specifies number of spaces
a tab character is equal to

Returns a Vector of lines
representing the current

plain text document

780 CHAPTER 22 PRINTING

 while (st.hasMoreTokens()) {

 String line = st.nextToken();

 if (line.equals("\r"))

 continue;

// StringTokenizer will ignore empty lines,

 // so it's a bit tricky to get them...

 if (line.equals("\n") && prevToken.equals("\n"))

 v.add("");

 prevToken = line;

 if (line.equals("\n"))

 continue;

StringTokenizer st2 = new StringTokenizer(line, " \t", true);

 String line2 = "";

 while (st2.hasMoreTokens()) {

 String token = st2.nextToken();

if (token.equals("\t")) {

 int numSpaces = TAB_SIZE - line2.length()%TAB_SIZE;

 token = "";

 for (int k=0; k<numSpaces; k++)

 token += " ";

 }

int lineLength = fm.stringWidth(line2 + token);

 if (lineLength > wPage && line2.length() > 0) {

 v.add(line2);

 line2 = token.trim();

 continue;

 }

 line2 += token;

 }

 v.add(line2);

 }

return v;

 }

// Unchanged code from example 16.2
 }
}

// Unchanged code from example 16.2

22.4.1 Understanding the code

Class BasicTextEditor
The createMenuBar() method includes the creation of two new Actions, one for invoking
a print by calling our custom printData() method in a separate thread; the other for invok-
ing a print preview. Both are used to create menu items in the File menu, and the Print action
is also used to create a toolbar button.

PRINTING TABLES 781

The printData() method creates a printer job with the current EditorFrame as the
Printable instance and invokes print() on it, showing any errors in a JOptionPane if
exceptions occur.

Class BasicTextEditor.EditorFrame
This class now implements the Printable interface to provide printing functionality.

An m_lines Vector is used to hold all lines of text during the printing process.

The print() method is called to print a given page of text. First this method determines the
size and origin of the printable area using a PageFormat instance as we’ve seen before. We
then set a clip area of the graphics context to the size of this printable area. Then we fill the
background with the background color of the text area and set the current color to its fore-
ground color. The height of each line of text is determined by retrieving the height of the cur-
rent font.

If m_lines is null we reinitialize it with our getLines() method. Then, based on the
number of lines of text in m_lines and the line height and page height, we determine the
number of lines that should appear on each printed page, and from that we determine how
many pages the print job consists of. If the page index passed into the print() method is
greater than the estimated number of pages, the method returns. Similarly, if m_lines is null
at this point, meaning there is no text to print, the method returns.

Then the print() method determines the line index at which to start rendering the cur-
rent page by multiplying the lines per page by the page index. It then draws each line of the
page using the calculated lines per page and line height, and returns PAGE_EXISTS to indicate
a successful render.

NOTE You might imagine a more complicated version of this process for printing styled
text documents. However, this would not be practical. We would recommend tak-
ing advantage of the text component View architecture to render styled document
contents for printing. Chapter 22 in the first edition covers this and remains freely
available at www.manning.com/sbe.

The TAB_SIZE variable is used to specify the number of spaces a tab character ("\t") should
be replaced with by the getLines() method.

The getLines() method is responsible for returning a Vector of lines representing the cur-
rent plain text document in EditorFrame’s JTextArea. Several StringTokenizers are
used to accomplish this by replacing tab characters with spaces and detecting empty lines.

22.4.2 Running the code

Figure 22.5 shows a preview of a plain text document which will occupy eight pages when
printed. Try previewing and printing PrintPreview.java as a test.

22.5 PRINTING TABLES

In this section we’ll add printing capabilities to the JTable application we developed earlier
in chapter 18. Unlike other examples in this chapter, a printed table should not resemble the
JTable component as it is displayed on the screen. This requires us to add detailed code for

782 CHAPTER 22 PRINTING

the rendering of the table’s contents as they should be displayed in a printout. The resulting
code, however, does not depend on the table’s structure and it can be easily used for printing
any table component. Thus, the code presented here in example 22.4 can be plugged into any
JTable application that needs printing functionality. Combined with our print preview com-
ponent (see the previous examples), the amount of work we need to do to support table print-
ing in professional applications is minimal.

Example 22.4

see \Chapter22\4

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.text.*;
import java.util.Date;
import java.sql.*;
import java.awt.print.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;
import javax.swing.table.*;

StocksTable.java

Figure 22.6 The print preview of JTable data

PRINTING TABLES 783

public class StocksTable extends JFrame implements Printable

{
 protected JTable m_table;
 protected StockTableData m_data;
 protected JLabel m_title;

 protected int m_maxNumPage = 1;

 // Unchanged code from example 18.5

 protected JMenuBar createMenuBar() {
 // Unchanged code from example 18.5

 JMenuItem mPrint = new JMenuItem("Print...");

 mPrint.setMnemonic('p');

 ActionListener lstPrint = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Thread runner = new Thread() {

 public void run() {

 printData();

 }

 };

 runner.start();

 }

 };

 mPrint.addActionListener(lstPrint);

 mFile.add(mPrint);

 JMenuItem mPreview = new JMenuItem("Print Preview");

 mPreview.setMnemonic('v');

 ActionListener lstPreview = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Thread runner = new Thread() {

 public void run() {

 setCursor(Cursor.getPredefinedCursor(

 Cursor.WAIT_CURSOR));

 new PrintPreview(StocksTable.this,

 m_title.getText()+" preview");

 setCursor(Cursor.getPredefinedCursor(

 Cursor.DEFAULT_CURSOR));

 }

 };

 runner.start();

 }

 };

 mPreview.addActionListener(lstPreview);

 mFile.add(mPreview);

 mFile.addSeparator();

 // Unchanged code from example 18.5
 }

 public void printData() {

 try {

 PrinterJob prnJob = PrinterJob.getPrinterJob();

 prnJob.setPrintable(this);

Print menu item to call
printData() method

784 CHAPTER 22 PRINTING

 if (!prnJob.printDialog())

 return;

 m_maxNumPage = 1;

 prnJob.print();

 }

 catch (PrinterException e) {

 e.printStackTrace();

 System.err.println("Printing error: "+e.toString());

 }

 }

 public int print(Graphics pg, PageFormat pageFormat,

 int pageIndex) throws PrinterException {

 if (pageIndex >= m_maxNumPage)

 return NO_SUCH_PAGE;

 pg.translate((int)pageFormat.getImageableX(),

 (int)pageFormat.getImageableY());

 int wPage = 0;

 int hPage = 0;

 if (pageFormat.getOrientation() == pageFormat.PORTRAIT) {

 wPage = (int)pageFormat.getImageableWidth();

 hPage = (int)pageFormat.getImageableHeight();

 }

 else {

 wPage = (int)pageFormat.getImageableWidth();

 wPage += wPage/2;

 hPage = (int)pageFormat.getImageableHeight();

 pg.setClip(0,0,wPage,hPage);

 }

 int y = 0;

 pg.setFont(m_title.getFont());

 pg.setColor(Color.black);

 Font fn = pg.getFont();

 FontMetrics fm = pg.getFontMetrics();

 y += fm.getAscent();

 pg.drawString(m_title.getText(), 0, y);

 y += 20; // Space between title and table headers

 Font headerFont = m_table.getFont().deriveFont(Font.BOLD);

 pg.setFont(headerFont);

 fm = pg.getFontMetrics();

 TableColumnModel colModel = m_table.getColumnModel();

 int nColumns = colModel.getColumnCount();

 int x[] = new int[nColumns];

 x[0] = 0;

 int h = fm.getAscent();

 y += h; // Add ascent of header font because of baseline

 // positioning (see figure 2.10)

 int nRow, nCol;

 for (nCol=0; nCol<nColumns; nCol++) {

Checks for valid
page index

Shifts graphics context
and calculates size

of drawing area

Increases width
by half for landscape

Keeps track of current vertical
position and starts rendering

X-coordinates of each column's
upper-left corner

PRINTING TABLES 785

 TableColumn tk = colModel.getColumn(nCol);

 int width = tk.getWidth();

 if (x[nCol] + width > wPage) {

 nColumns = nCol;

 break;

 }

 if (nCol+1<nColumns)

 x[nCol+1] = x[nCol] + width;

 String title = (String)tk.getIdentifier();

 pg.drawString(title, x[nCol], y);

 }

 pg.setFont(m_table.getFont());

 fm = pg.getFontMetrics();

 int header = y;

 h = fm.getHeight();

 int rowH = Math.max((int)(h*1.5), 10);

 int rowPerPage = (hPage-header)/rowH;

 m_maxNumPage = Math.max((int)Math.ceil(m_table.getRowCount()/

 (double)rowPerPage), 1);

 TableModel tblModel = m_table.getModel();

 int iniRow = pageIndex*rowPerPage;

 int endRow = Math.min(m_table.getRowCount(),

 iniRow+rowPerPage);

 for (nRow=iniRow; nRow<endRow; nRow++) {

 y += h;

 for (nCol=0; nCol<nColumns; nCol++) {

 int col = m_table.getColumnModel().getColumn(nCol).getModelIndex();

 Object obj = m_data.getValueAt(nRow, col);

 String str = obj.toString();

 if (obj instanceof ColorData)

 pg.setColor(((ColorData)obj).m_color);

 else

 pg.setColor(Color.black);

 pg.drawString(str, x[nCol], y);

 }

 }

 System.gc();

 return PAGE_EXISTS;

 }

// Remaining code unchanged from example 18.5

22.5.1 Understanding the code

Class StocksTable
In comparison with the table examples of chapter 18, we now implement the Printable
interface. In our createMenuBar() method, we add a Print… menu item which calls our

Draws all the column headers
that will fit in the page width

After headers, figures out
how many body rows will

fit on page

Prints the rows allotted
to this page

786 CHAPTER 22 PRINTING

new printData() method, which acts just like the printData() methods we implemented
in the earlier examples.

In our implementation of the print() method, we first determine whether a valid page
index has been specified by comparing it to the maximum number of pages, m_maxNumPage:

 if (pageIndex > m_maxNumPage)
 return NO_SUCH_PAGE;

The catch is that we don’t know this maximum number in advance. So we assign an initial
value of 1 to m_maxNumPage (the code above works for the 0-th page), and we adjust m_max-
NumPage to the real value later in the code, just as we’ve done in earlier examples in this chap-
ter.

We then translate the origin of the graphics context to the origin of the given PageFormat
instance and determine the width and height of the area available for printing. These dimen-
sions are used to determine how much data can fit on the given page. This same technique was
also used in the previous examples. However, in this example we’ve added the ability to print
with a landscape orientation because tables can be quite wide, and we normally don’t want
table data to span multiple pages (at least horizontally). In order to do this, we have to first check
the orientation of the given PageFormat instance. If it is PORTRAIT, we determine its width
and height as we have always done. If it is not PORTRAIT, then it must be either LANDSCAPE
or REVERSE_LANDSCAPE (see section 22.1.5). In this case we need to increase the width of the
page because the default is not adequate. After increasing the width, we must also explicitly set
the size of the graphics clip. This is all we have to do to allow printing in either orientation.

The local variable y is created to keep track of the current vertical position on the page, and
we are now ready to actually start the rendering. We begin with the the table’s title. Note that
we use the same font as is used in the table application for consistency. We add some white
space below the title (by increasing y) and then we make preparations for printing our table’s
headers and body. A bold font is used for our table’s header. An array, x[], is created which
will be used to store the x-coordinate of each column’s upper left-hand corner (taking into
account that they may be resized and moved). The variable nColumns contains the total
number of columns in our table.

Now we actually iterate through the columns and print each column header while filling our
x[] array. We check each iteration to see if the x-coordinate of the previous column, com-
bined with the width of the column under consideration, will be more than the width of the
page. If it will, we set the total number of columns, nColumns, to the number that will actu-
ally fit on the page, and then we break out of the loop. If it will not, we set the x-coordinate
corresponding to the current column, print its title, and continue on to the next iteration.

Since we’ve finished printing our table’s title and headers, we know how much space is left to
print our table’s body. We also know the font’s height, so we can calculate how many rows can
be printed on one page, which is rowPerPage (this is calculated as the height of the page
minus the current y-offset, all divided by the height of the current font, or 10, whichever is
larger). Finally, we calculate the real number of pages, m_maxNumPage, by dividing the total
row count of our table by the number of rows per page we just calculated as rowPerPage.
The minimum page count will be 1.

PRINTING TABLES 787

Now we need to actually print the table data. First, we calculate the initial iniRow and
final endRow rows to be printed on this page:

 TableModel tblModel = m_table.getModel();

 int iniRow = pageIndex*rowPerPage;

 int endRow = Math.min(m_table.getRowCount(),

 iniRow+rowPerPage);

Then, in a double for loop, iterating through each column of each row in turn, we print the
table’s contents. This is done by extracting each cell’s data as an Object (using getValue-
At()). We store its toString() String representation in a local variable and check if the
object is an instance of our custom inner class, ColorData (which was defined in examples in
chapter 18). This class is designed to associate a color with a given data object. So if the object
is a ColorData instance, we grab its color and assign it as the current color of the graphics
context. If it isn’t, we use black. Finally, we print that object’s toString() representation and
continue on to the remaining cells.

NOTE We are assuming that each object’s toString() representation is what we want to
print. For more complex TableCellRenderer implementations, this printing
code will need to be customized.

We end by explicitly invoking the garbage collector and returning PAGE_EXISTS to indicate a
successful print.

22.5.2 Running the code

Figure 22.6 shows a print preview of our table application. Try manipulating the table’s con-
tents (choose different dates if you have JDBC and ODBC—see chapter 18) and column
orders to see how it affects the table’s printout and print preview.

You will notice that in order to fit the whole table on the paper, it must be condensed con-
siderably. It is natural at this point to want to print it with a landscape orientation. Choosing
Landscape from the Page Setup dialog modifies the PageFormat object that will be sent to our
print() method when printing begins. However, this will not actually tell the printer to print
in landscape mode. In order to do that, we have to explicitly choose landscape mode from the
Print dialog as well. Unfortunately, the Page Setup information does not inform the printer,
but it is necessary to inform our application.

Figure 22.7
The print preview
component modified
for landscape orientation

788 CHAPTER 22 PRINTING

Though our application can print successfully with a landscape orientation, our print preview
component is not designed to display anything but portrait-oriented previews. Because of the
way our PrintPreview component has been constructed, it is quite easy to add the ability to
preview landscape-oriented pages. The only necessary modification is the addition of a param-
eter to its constructor which specifies the orientation to use. This parameter can then be
assigned to the PageFormat object used in constructing each PagePreview object. We will
not show the code here, but we have included a modified version of PrintPreview and the
StocksTable application to demonstrate how you can implement this functionality. See
\Chapter22\5. Figure 22.7 illustrates this.

789

C H A P T E R 2 3

Constructing an
XML editor
23.1 XML editor, part I: viewing

nodes 790
23.2 XML editor, part II: viewing

attributes 796
23.3 XML editor, part III: editing nodes

and attributes 801

23.4 XML editor, part IV: add, edit,
remove nodes and attributes 808

23.5 XML editor, part V: custom drag and
drop 818

There has been tremendous hype over XML, much of which is not unfounded. XML, for
those who haven’t had exposure to it, is poised to become the next generation of HTML and
then some. Where HTML consists of a set of predefined tags, XML allows definition of your
own tags. By creating a set of tags to describe data and agree on meaning, two or more entities
can communicate in a standardized way. The applications of this language take us far beyond
web pages to more complicated uses such as data exchange between businesses, standardized
representations of various forms of data, and so forth.

There is a plethora of material about XML freely available on the web and we will not
waste space here introducing the basic concepts of elements, attributes, schemas, DTDs, and
so on. A good place to start for this is www.xml.org. As of Java 1.4, XML support is now part
of the core Java platform. Assuming a basic understanding of XML, we’ve added this chapter
to show how Swing can be used to build a fully functional XML editor application.

790 CHAPTER 23 CONSTRUCTING AN XML EDITOR

23.1 XML EDITOR, PART I: VIEWING NODES

This example shows how to display an XML document using a JTree and Java’s built-in
XML support. Because XML documents are hierarchical, JTree is a natural fit for the task.

Example 23.1

see \Chapter23\1

import java.awt.*;
import java.awt.event.*;
import java.io.*;

import javax.swing.*;
import javax.swing.tree.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XmlViewer extends JFrame {

public static final String APP_NAME = "XML Viewer";

protected Document m_doc;

protected JTree m_tree;
protected DefaultTreeModel m_model;

XMLViewer.java

Figure 23.1
JTree displaying
an XML document

XML EDITOR, PART I : VIEWING NODES 791

protected JFileChooser m_chooser;
protected File m_currentFile;

public XmlViewer() {
super(APP_NAME);
setSize(400, 400);
getContentPane().setLayout(new BorderLayout());

JToolBar tb = createToolbar();
getContentPane().add(tb, BorderLayout.NORTH);

DefaultMutableTreeNode top =
 new DefaultMutableTreeNode("No XML loaded");

m_model = new DefaultTreeModel(top);
m_tree = new JTree(m_model);

m_tree.getSelectionModel().setSelectionMode(
TreeSelectionModel.SINGLE_TREE_SELECTION);

m_tree.setShowsRootHandles(true);
m_tree.setEditable(false);

DefaultTreeCellRenderer renderer =
 new DefaultTreeCellRenderer()
 {

public Component getTreeCellRendererComponent(JTree tree,
Object value, boolean sel, boolean expanded,
boolean leaf, int row, boolean hasFocus) {
Component res = super.getTreeCellRendererComponent(tree,

value, sel, expanded, leaf, row, hasFocus);
if (value instanceof XmlViewerNode) {

Node node = ((XmlViewerNode)value).getXmlNode();
if (node instanceof Element)

setIcon(expanded ? openIcon : closedIcon);
 else

setIcon(leafIcon);
}

return res;
}

};
m_tree.setCellRenderer(renderer);

JScrollPane s = new JScrollPane(m_tree);
getContentPane().add(s, BorderLayout.CENTER);

m_chooser = new JFileChooser();
m_chooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
m_chooser.setFileFilter(new SimpleFilter("xml",

"XML Files"));
try {

File dir = (new File(".")).getCanonicalFile();
m_chooser.setCurrentDirectory(dir);

} catch (IOException ex) {}
}

protected JToolBar createToolbar() {

Custom tree cell renderer
to indicate whether or not a node
is an XML document element

792 CHAPTER 23 CONSTRUCTING AN XML EDITOR

JToolBar tb = new JToolBar();
tb.setFloatable(false);

JButton bt = new JButton(new ImageIcon("Open24.gif"));
bt.setToolTipText("Open XML file");
ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {
openDocument();

 }
};
bt.addActionListener(lst);
tb.add(bt);

return tb;
}

public String getDocumentName() {
return m_currentFile==null ? "Untitled" :

m_currentFile.getName();
}

protected void openDocument() {
Thread runner = new Thread() {

public void run() {

if (m_chooser.showOpenDialog(XmlViewer.this) !=
JFileChooser.APPROVE_OPTION)
return;

File f = m_chooser.getSelectedFile();
if (f == null || !f.isFile())

return;

setCursor(Cursor.getPredefinedCursor(
 Cursor.WAIT_CURSOR));

try {
DocumentBuilderFactory docBuilderFactory =

DocumentBuilderFactory.newInstance();
DocumentBuilder docBuilder = docBuilderFactory.

newDocumentBuilder();

m_doc = docBuilder.parse(f);

Element root = m_doc.getDocumentElement();
root.normalize();

DefaultMutableTreeNode top = createTreeNode(root);

m_model.setRoot(top);
m_tree.treeDidChange();
expandTree(m_tree);
m_currentFile = f;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

}
catch (Exception ex) {

showError(ex, "Error reading or parsing XML file");
}
finally {

Uses JFileChooser in separate thread
to open an XML file from disk

XML EDITOR, PART I : VIEWING NODES 793

setCursor(Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR));

}
}

};
runner.start();

}

protected DefaultMutableTreeNode createTreeNode(Node root) {
if (!canDisplayNode(root))

return null;
XmlViewerNode treeNode = new XmlViewerNode(root);
NodeList list = root.getChildNodes();
for (int k=0; k<list.getLength(); k++) {

Node nd = list.item(k);
DefaultMutableTreeNode child = createTreeNode(nd);
if (child != null)

treeNode.add(child);
}
return treeNode;

}

protected boolean canDisplayNode(Node node) {
switch (node.getNodeType()) {
case Node.ELEMENT_NODE:

return true;
case Node.TEXT_NODE:

String text = node.getNodeValue().trim();
return !(text.equals("") ||

 text.equals("\n") || text.equals("\r\n"));
}
return false;

}

public void showError(Exception ex, String message) {
ex.printStackTrace();
JOptionPane.showMessageDialog(this,

message, APP_NAME,
JOptionPane.WARNING_MESSAGE);

}

public static void expandTree(JTree tree) {
 TreeNode root = (TreeNode)tree.getModel().getRoot();
 TreePath path = new TreePath(root);
 for (int k = 0; k<root.getChildCount(); k++) {

TreeNode child = (TreeNode)root.getChildAt(k);
expandTree(tree, path, child);

}
}

public static void expandTree(
 JTree tree, TreePath path, TreeNode node)
 {

 if (path==null || node==null)

Recursive method
to build tree nodes

from XML document

Returns true if given
node is an element node
or nonempty text node,
and false otherwise

Recursive method
to expand entire tree

Recursive method to expand given
path and path to given node

794 CHAPTER 23 CONSTRUCTING AN XML EDITOR

 return;
tree.expandPath(path);
TreePath newPath = path.pathByAddingChild(node);

 for (int k = 0; k<node.getChildCount(); k++) {
 TreeNode child = (TreeNode)node.getChildAt(k);
 if (child != null) {

 expandTree(tree, newPath, child);
}

}
}

public static void main(String argv[]) {
XmlViewer frame = new XmlViewer();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

class XmlViewerNode extends DefaultMutableTreeNode {
public XmlViewerNode(Node node) {

super(node);
}

public Node getXmlNode() {
Object obj = getUserObject();
if (obj instanceof Node)

return (Node)obj;
return null;

}

public String toString () {
Node node = getXmlNode();
if (node == null)

return getUserObject().toString();
StringBuffer sb = new StringBuffer();
switch (node.getNodeType()) {
case Node.ELEMENT_NODE:

sb.append('<');
sb.append(node.getNodeName());
sb.append('>');
break;

case Node.TEXT_NODE:
sb.append(node.getNodeValue());
break;

}
return sb.toString();

}
}

// Class SimpleFilter unchanged from chapter 14

Custom tree node
representing
an XML element
or text node

XML EDITOR, PART I : VIEWING NODES 795

23.1.1 Understanding the code

Class XmlViewer
Two packages we have not yet discussed are imported:

• javax.xml.parsers: This package consists of classes used to process XML documents.

• org.w3c.dom: This package consists of a set of interfaces that define the DOM (Docu-
ment Object Model) which is an API that allows dynamic access to the structure and
data of XML documents. Examples are Document, Element, Node, Attr, and so forth.

XmlViewer extends JFrame and represents the main application frame for this example. Five
instance variables are defined:

• Document m_doc: the current XML document (note that this is an instance of
org.w3c.dcom.Document; not a text document [javax.swing.text.Document]).

• JTree m_tree: the tree component used to display the current XML file.

• DefaultTreeModel m_model: tree model constructed to mimic the XML file.

• JFileChooser m_chooser: File chooser used for opening and saving XML files.

• File m_currentFile: reference to the current XML file.

The XmlViewer constructor creates and installs a toolbar with our createToolbar()
method, instantiates tree model m_model with a top node containing “No XML loaded” as
user data, and instantiates tree m_tree with m_model. Selection is set to SINGLE_TREE_
SELECTION and the tree is set to noneditable. A custom tree cell renderer is created to display
an appropriate icon based on whether or not a node represents an XML document element.
This renderer is assigned to our tree and the tree is then placed in a scroll pane which is added
to the center of the frame. File chooser m_chooser is instantiated and an “xml” file filter is
applied to it so only XML files will be displayed.

The createToolbar() method creates a JToolBar with an Open button that invokes
our openDocument() method.

The getDocumentName() method retrieves the name of the current file referenced with
our m_currentFile variable.

The openDocument() method shows our JFileChooser in a separate thread to allow selec-
tion of an XML file to open for viewing. javax.xml.parsers.DocumentBuilder-
Factory’s static newInstance() is used to create a new instance of DocumentBuilder-
Factory which is used to create an instance of DocumentBuilder. DocumentBuilder is
used to parse the selected XML file with its parse() method, storing the resulting Document
instance in our m_doc variable. The root element of this document is retrieved with Document’s
getDocumentElement() method. This element is used as the root node for our tree model,
and our custom createTreeNode() creates the tree node hierarchy corresponding to the node
passed to it. The resulting tree node is then set as the root node of our tree and our custom
expandTree() method is used to expand all nodes to display the entire XML document.

The createTreeNode() method takes a root node (instance of org.w3c.dom.Node) as
parameter (note that org.w3c.dom.Element is a subinterface of Node). Our canDisplay-
Node() method is used to find out whether the root node is either an element or a text node.
If so, an instance of our custom XmlViewerNode is created to represent that node. Then a

796 CHAPTER 23 CONSTRUCTING AN XML EDITOR

NodeList is created representing all child nodes of the root node. For each child node a tree
node is created by passing it recursively to createTreeNode().

The canDisplayNode() method checks whether a given Node is of type
ELEMENT_NODE or TEXT_NODE. If it isn’t one of these types it should not be displayed in
our tree.

The showError() method is used to display exceptions in a JOptionPane dialog.

The static expandTree() methods are responsible for expanding each parent node so that
the entire tree is expanded and visible in the viewer.

Class XmlViewerNode
This class extends DefaultMutableTreeNode to represent the XML nodes in our viewer.
The main customization is in the overriden toString() implementation which returns a
textual representation of the node depending on whether it is of type ELEMENT_NODE or
TEXT_NODE.

23.1.2 Running the Code

Figure 23.1 shows our XML viewer in action with a sample file open. To open this file use the
toolbar buttons to bring up the file chooser and navigate to the \Chapter23\XML-Samples
directory where you will find book-order.xml.

23.2 XML EDITOR, PART II: VIEWING ATTRIBUTES

In this example we add the ability to view XML attributes in a windows explorer-style combi-
nation of JTree and JTable.

Figure 23.2 JTree and JTable in an explorer-style combination

XML EDITOR, PART II : VIEWING ATTRIBUTES 797

Example 23.2

see \Chapter23\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;

import javax.swing.*;
import javax.swing.event.*;

import javax.swing.tree.*;
import javax.swing.table.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XmlViewer extends JFrame {
public static final String APP_NAME = "XML Viewer";

protected Document m_doc;

protected JTree m_tree;
protected DefaultTreeModel m_model;

protected JTable m_table;

protected AttrTableModel m_tableModel;

protected JFileChooser m_chooser;
protected File m_currentFile;

public XmlViewer() {
super(APP_NAME);
setSize(800, 400);

getContentPane().setLayout(new BorderLayout());

JToolBar tb = createToolbar();
getContentPane().add(tb, BorderLayout.NORTH);

 // Unchanged code from example 23.1

m_tableModel = new AttrTableModel();

m_table = new JTable(m_tableModel);

JScrollPane s1 = new JScrollPane(m_tree);

JScrollPane s2 = new JScrollPane(m_table);

s2.getViewport().setBackground(m_table.getBackground());

JSplitPane sp = new JSplitPane(

 JSplitPane.HORIZONTAL_SPLIT, s1, s2);

sp.setDividerLocation(400);

sp.setDividerSize(5);

getContentPane().add(sp, BorderLayout.CENTER);

TreeSelectionListener lSel = new TreeSelectionListener() {

public void valueChanged(TreeSelectionEvent e) {

Node node = getSelectedNode();

setNodeToTable(node);

XMLViewer.java

Listens for tree selection events
and displays node properties

in JTable

798 CHAPTER 23 CONSTRUCTING AN XML EDITOR

}

};

m_tree.addTreeSelectionListener(lSel);

m_chooser = new JFileChooser();
m_chooser.setFileSelectionMode(JFileChooser.FILES_ONLY);
m_chooser.setFileFilter(new SimpleFilter("xml",

"XML Files"));
try {

File dir = (new File(".")).getCanonicalFile();
m_chooser.setCurrentDirectory(dir);

} catch (IOException ex) {}
}

// Unchanged code from example 23.1

protected void openDocument() {
Thread runner = new Thread() {

public void run() {
 // Unchanged code from example 23.1

try {
 // Unchanged code from example 23.1

m_model.setRoot(top);
m_tree.treeDidChange();
expandTree(m_tree);
setNodeToTable(null);

m_currentFile = f;
setTitle(APP_NAME+" ["+getDocumentName()+"]");

}
catch (Exception ex) {

showError(ex, "Error reading or parsing XML file");
}
finally {

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
}

}
};
runner.start();

}

// Unchanged code from example 23.1

public XmlViewerNode getSelectedTreeNode() {

TreePath path = m_tree.getSelectionPath();

if (path == null)

return null;

Object obj = path.getLastPathComponent();

if (!(obj instanceof XmlViewerNode))

return null;

return (XmlViewerNode)obj;

}

public Node getSelectedNode() {

XmlViewerNode treeNode = getSelectedTreeNode();

Listens for tree selection events
and displays node properties
in JTable

XML EDITOR, PART II : VIEWING ATTRIBUTES 799

if (treeNode == null)

return null;

return treeNode.getXmlNode();

}

public void setNodeToTable(Node node) {

m_tableModel.setNode(node);

m_table.tableChanged(new TableModelEvent(m_tableModel));

}

// Unchanged code from example 23.1

public static void main(String argv[]) {
XmlViewer frame = new XmlViewer();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}

class AttrTableModel extends AbstractTableModel {

public static final int NAME_COLUMN = 0;

public static final int VALUE_COLUMN = 1;

protected Node m_node;

protected NamedNodeMap m_attrs;

public void setNode(Node node) {

m_node = node;

m_attrs = node==null ? null : node.getAttributes();

}

public Node getNode() {

return m_node;

}

public int getRowCount() {

if (m_attrs == null)

return 0;

return m_attrs.getLength();

}

public int getColumnCount() {

return 2;

}

public String getColumnName(int nCol) {

return nCol==NAME_COLUMN ? "Attribute" : "Value";

}

public Object getValueAt(int nRow, int nCol) {

if (m_attrs == null || nRow < 0 || nRow>=getRowCount())

return "";

Attr attr = (Attr)m_attrs.item(nRow);

if (attr == null)

return "";

switch (nCol) {

 case NAME_COLUMN:

 return attr.getName();

Refreshes table with attributes
of given node object

Custom table model
used to display
attributes of a
selected XML tree node

800 CHAPTER 23 CONSTRUCTING AN XML EDITOR

 case VALUE_COLUMN:

 return attr.getValue();

}

return "";

}

public boolean isCellEditable(int nRow, int nCol) {

return false;

}

}

}

// Unchanged code from example 23.1

23.2.1 Understanding the code

Class XmlViewer
Two new instance variables have been added:

• JTable m_table: table component used to display node attributes.
• AttrTableModel m_tableModel: instance of our custom table model used for

attributes.

The XmlViewer constructor instantiates our instance variables and adds the table to a scroll
pane. The table and tree components are now placed in a JSplitPane, and a TreeSelec-
tionListener is added to the tree to respond to tree node selection changes by retrieving the
selected node using our custom getSelectedNode() method and passing it to our custom
setNodeToTable() method to display that node’s attributes in the table component.

The new getSelectedTreeNode() method retrieves the currently selected node and
returns it as an instance of XmlViewerNode.

The getSelectedNode() method retrieves the currently selected node by calling get-
SelectedTreeNode() and, if not null, returns the Node instance by calling XmlViewer-
Node’s getXmlNode() method.

The setNodeToTable() method refreshes the table component with the currently selected
node’s attributes by calling AttrTableModel’s setNode() method.

Class XmlViewer.AttrTableModel
This inner class extends AbstractTableModel and is used to display the attributes of a
given node. Two class variables are defined:

• int NAME_COLUMN: index of the column representing attribute name.
• int VALUE_COLUMN: index of the column representing attribute value.

Two instance variables are defined:

• Node m_node: the node instance whose attributes are represented by this model.
• NamedNodeMap m_attrs: collection of nodes that can be accessed by name; this

instance represents all attribute nodes (of type ATTRIBUTE_NODE) of the m_node parent.

The setNode() method assigns a given node to the m_node variable and reinitializes the
m_attrs collection using Node’s getAttributes() method.

XML EDITOR, PART II I : EDITING NODES AND ATTRIBUTES 801

The getRowCount() method returns the number of attributes in the m_attrs collection
which is equivalent to the number of rows that should be displayed in the table.

The getValueAt() method returns the value of the attribute name or value at a given
table cell corresponding to the m_attrs attribute collection.

23.2.2 Running the code

Figure 23.2 shows our XML viewer in action displaying attributes of a selected node in a table
component on the right. Try opening the sample document and navigating through the nodes
to see how the tree and table component work easily together.

23.3 XML EDITOR, PART III: EDITING NODES AND ATTRIBUTES

In this example we add the ability to edit the text of an XML node and its attributes as well as
save any changes to the orginal file.

Example 23.3

see \Chapter23\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;
import javax.swing.table.*;

XmlViewer.java

Figure 23.3 Editing an attribute value in our XML editor

802 CHAPTER 23 CONSTRUCTING AN XML EDITOR

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XmlViewer extends JFrame {

public static final String APP_NAME = "XML Viewer";

protected Document m_doc;

protected JTree m_tree;
protected DefaultTreeModel m_model;
protected DefaultTreeCellEditor m_treeEditor;

protected Node m_editingNode = null;

protected JTable m_table;
protected AttrTableModel m_tableModel;

protected JFileChooser m_chooser;
protected File m_currentFile;
protected boolean m_xmlChanged = false;

public XmlViewer() {
super(APP_NAME);
setSize(800, 400);
getContentPane().setLayout(new BorderLayout());

// Unchanged code from example 23.2

m_treeEditor = new DefaultTreeCellEditor(m_tree, renderer) {

public boolean isCellEditable(EventObject event) {

Node node = getSelectedNode();

if (node != null && node.getNodeType() == Node.TEXT_NODE)

return super.isCellEditable(event);

else

return false;

}

public Component getTreeCellEditorComponent(

 JTree tree, Object value,

boolean isSelected, boolean expanded, boolean leaf, int row)

 {

if (value instanceof XmlViewerNode)

m_editingNode = ((XmlViewerNode)value).getXmlNode();

return super.getTreeCellEditorComponent(tree,

value, isSelected, expanded, leaf, row);

}

};

m_treeEditor.addCellEditorListener(new XmlEditorListener());

m_tree.setCellEditor(m_treeEditor);

m_tree.setEditable(true);

m_tree.setInvokesStopCellEditing(true);

m_tableModel = new AttrTableModel();
m_table = new JTable(m_tableModel);

// Unchanged code from example 23.2

WindowListener wndCloser = new WindowAdapter() {

Custom tree cell
editor to only allow

editing of text nodes

XML EDITOR, PART II I : EDITING NODES AND ATTRIBUTES 803

public void windowClosing(WindowEvent e) {

if (!promptToSave())

return;

System.exit(0);

}

};

addWindowListener(wndCloser);

// Unchanged code from example 23.2
}

protected JToolBar createToolbar() {
 // Unchanged code from example 23.2

ActionListener lst = new ActionListener() {
public void actionPerformed(ActionEvent e) {

if (!promptToSave())

return;

openDocument();
 }

};
bt.addActionListener(lst);
tb.add(bt);

bt = new JButton(new ImageIcon("Save24.gif"));

bt.setToolTipText("Save changes to current file");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

saveFile(false);

 }

};

bt.addActionListener(lst);

tb.add(bt);

bt = new JButton(new ImageIcon("SaveAs24.gif"));

bt.setToolTipText("Save changes to another file");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

saveFile(true);

 }

};

bt.addActionListener(lst);

tb.add(bt);

return tb;
}

// Unchanged code from example 23.2

protected boolean saveFile(boolean saveAs) {

if (m_doc == null)

return false;

if (saveAs || m_currentFile == null) {

if (m_chooser.showSaveDialog(XmlViewer.this) !=

JFileChooser.APPROVE_OPTION)

Ensures user has a chance
to save changes before
closing application

Prompt to save changes
before opening a document

Button to save
current XML file

Button to save current
XML file under new name

and/or in new location

Uses JFileChooser
and FileWriter
to save current
XML file to disk

804 CHAPTER 23 CONSTRUCTING AN XML EDITOR

return false;

File f = m_chooser.getSelectedFile();

if (f == null)

return false;

m_currentFile = f;

setTitle(APP_NAME+" ["+getDocumentName()+"]");

}

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

FileWriter out = new FileWriter(m_currentFile);

XMLRoutines.write(m_doc, out);

out.close();

}

catch (Exception ex) {

showError(ex, "Error saving XML file");

 }

 finally {

 setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

}

m_xmlChanged = false;

return true;

}

protected boolean promptToSave() {

if (!m_xmlChanged)

return true;

int result = JOptionPane.showConfirmDialog(this,

"Save changes to "+getDocumentName()+"?",

APP_NAME, JOptionPane.YES_NO_CANCEL_OPTION,

JOptionPane.INFORMATION_MESSAGE);

switch (result) {

case JOptionPane.YES_OPTION:

if (!saveFile(false))

return false;

return true;

case JOptionPane.NO_OPTION:

return true;

case JOptionPane.CANCEL_OPTION:

return false;

}

return true;

}

// Unchanged code from example 23.2

public static void main(String argv[]) {
XmlViewer frame = new XmlViewer();

frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.setVisible(true);

}

class XmlEditorListener implements CellEditorListener {

public void editingStopped(ChangeEvent e) {

Prompts user
to save changes

Custom cell editor listener
responsible for updating

value of node in model when
changed by a cell editor

XML EDITOR, PART II I : EDITING NODES AND ATTRIBUTES 805

String value = m_treeEditor.getCellEditorValue().toString();

if (m_editingNode != null)

m_editingNode.setNodeValue(value);

TreePath path = m_tree.getSelectionPath();

if (path != null) {

DefaultMutableTreeNode treeNode =

(DefaultMutableTreeNode)path.getLastPathComponent();

treeNode.setUserObject(m_editingNode);

m_model.nodeStructureChanged(treeNode);

}

m_xmlChanged = true;

m_editingNode = null;

}

public void editingCanceled(ChangeEvent e) {

m_editingNode = null;

}

}

// Unchanged code from example 23.2

class AttrTableModel extends AbstractTableModel {
public static final int NAME_COLUMN = 0;
public static final int VALUE_COLUMN = 1;

// Unchanged code from example 23.2

public boolean isCellEditable(int nRow, int nCol) {

return (nCol==VALUE_COLUMN);

}

public void setValueAt(Object value, int nRow, int nCol) {

if (nRow < 0 || nRow>=getRowCount())

return;

if (!(m_node instanceof Element))

return;

String name = getValueAt(nRow, NAME_COLUMN).toString();

((Element)m_node).setAttribute(name, value.toString());

m_xmlChanged = true;

}

}

}

// Unchanged code from example 23.2

class XMLRoutines {
public static void write(Document doc, Writer out) throws Exception {

write(doc.getDocumentElement(), out);
}

public static void write(Node node, Writer out) throws Exception {
if (node==null || out==null)

return;

int type = node.getNodeType();
switch (type) {

Updated to allow
editing of attributes

Utility class with methods to write
current XML document represented
by our viewer to a file

806 CHAPTER 23 CONSTRUCTING AN XML EDITOR

case Node.DOCUMENT_NODE:
write(((Document)node).getDocumentElement(), out);
out.flush();
break;

case Node.ELEMENT_NODE:
out.write('<');
out.write(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int k = 0; k< attrs.getLength(); k++) {

Node attr = attrs.item(k);
out.write(' ');
out.write(attr.getNodeName());
out.write("=\"");
out.write(attr.getNodeValue());
out.write('"');

}

out.write('>');
break;

case Node.ENTITY_REFERENCE_NODE:
out.write('&');
out.write(node.getNodeName());
out.write(';');
break;

// print cdata sections
case Node.CDATA_SECTION_NODE:

out.write("<![CDATA[");
out.write(node.getNodeValue());
out.write("]]>");
break;

// print text
case Node.TEXT_NODE:

out.write(node.getNodeValue());
break;

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:

out.write("<?");
out.write(node.getNodeName());
String data = node.getNodeValue();
if (data != null && data.length() > 0) {

out.write(' ');
out.write(data);

}
out.write("?>");
break;

default:
out.write("<TYPE="+type);
out.write(node.getNodeName());
out.write("?>");

XML EDITOR, PART II I : EDITING NODES AND ATTRIBUTES 807

break;
}

NodeList children = node.getChildNodes();
if (children != null) {

 for (int k = 0; k<children.getLength(); k++) {
write(children.item(k), out);

}
}

if (node.getNodeType() == Node.ELEMENT_NODE) {
out.write("</");
out.write(node.getNodeName());
out.write('>');

}
out.flush();

}
}

23.3.1 Understanding the code

Class XmlViewer
Three new instance variables have been added:

• DefaultTreeCellEditor m_treeEditor: custom tree cell editor to only allow edit-
ing of text nodes.

• Node m_editingNode: reference to the current node being edited.
• boolean m_xmlChanged: flag specifying whether the XML document has changed

since loading.

The XmlViewer constructor now creates a custom tree cell editor to allow editing of only
Nodes of type TEXT_NODE. Also, an instance of our custom XmlEditorListener is set to as
a cell editor listener to this customized tree cell editor. A new WindowListener is added to
the XmlViewer frame to invoke our custom promptToSave() method before exiting to give
the user a chance to save changes made, if any.

The Open toolbar button’s actionPerformed() code now invokes promptToSave()
before loading a new file to allow the user to save changes before proceeding. The toolbar also
gets two new buttons: Save and Save As. Both invoke our custom saveFile() method to
save changes made to the XML document.

The saveFile() method is used to write to disk the XML file represented by our tree. First
this method shows a file chooser if the parameter is true (meaning the Save As button was
pressed) or if the m_currentFile variable is null (meaning the XML document is new).
The file chooser is used to specify a name and location for the target file. The document is
then written to disk using a FileWriter and the static write() method of our custom
XMLRoutines class.

The promptToSave() method shows a JOptionPane asking the user whether or not to save
any changes made to the document before proceeding with a pending action.

808 CHAPTER 23 CONSTRUCTING AN XML EDITOR

Class XmlViewer.XmlEditorListener
This class implements CellEditorListener and is used to set the value of a Node after its
corresponding tree node is edited.

Class XmlViewer.AttrTableModel
The isCellEditable() method is overridden to return true for the VALUE_COLUMN so
that the user can edit attribute values.

The setValueAt() method is overridden to perform the actual attribute value modifi-
cation after the edit occurs in the table.

Class XMLRoutines
This class consists of two static methods used to write the XML file represented by our viewer
to a file using a Writer instance.

23.3.2 Running the code

Figure 23.3 shows our XML viewer after having edited an attribute value and attempted to
close the application. A dialog is displayed asking whether or not we want to save the changes.
Try opening the sample XML document and modifying both text nodes and attribute values.

23.4 XML EDITOR, PART IV: ADD, EDIT, REMOVE
NODES AND ATTRIBUTES

In this example we add the ability to add, delete, and edit XML nodes and attributes.

Figure 23.4 XML Editor application with add/edit/delete nodes
and attributes functionality

XML EDITOR, PART IV: ADD, EDIT, REMOVE NODES AND ATTRIBUTES 809

Example 23.4

see \Chapter23\4

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;
import javax.swing.table.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XmlViewer
extends JFrame {

public static final String APP_NAME = "XML Viewer";

// Unchanged code from example 23.3

protected JButton m_addNodeBtn;

protected JButton m_editNodeBtn;

protected JButton m_delNodeBtn;

protected JButton m_addAttrBtn;

protected JButton m_editAttrBtn;

protected JButton m_delAttrBtn;

public XmlViewer() {
super(APP_NAME);
setSize(800, 400);
getContentPane().setLayout(new BorderLayout());

// Unchanged code from example 23.3

TreeSelectionListener lSel = new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e) {

Node node = getSelectedNode();
setNodeToTable(node);
enableNodeButtons();

enableAttrButtons();

}
};
m_tree.addTreeSelectionListener(lSel);

ListSelectionListener lTbl = new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {

enableAttrButtons();

}

};

m_table.getSelectionModel().addListSelectionListener(lTbl);

XmlViewer.java

New add, edit, and
delete toolbar buttons
for nodes and attributes

Updates attribute
buttons whenever a

table selection occurs

810 CHAPTER 23 CONSTRUCTING AN XML EDITOR

enableNodeButtons();

enableAttrButtons();

 // Unchanged code from example 23.3
}

protected JToolBar createToolbar() {
JToolBar tb = new JToolBar();
tb.setFloatable(false);

JButton bt = new JButton(new ImageIcon("New24.gif"));

bt.setToolTipText("New XML document");

ActionListener lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

if (!promptToSave())

return;

newDocument();

 }

};

bt.addActionListener(lst);

tb.add(bt);

 // Unchanged code from example 23.3

tb.addSeparator();

tb.add(new JLabel("Node:"));

m_addNodeBtn = new JButton(new ImageIcon("Add24.gif"));

m_addNodeBtn.setToolTipText("Add new XML element");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

addNewNode();

 }

};

m_addNodeBtn.addActionListener(lst);

tb.add(m_addNodeBtn);

m_editNodeBtn = new JButton(new ImageIcon("Edit24.gif"));

m_editNodeBtn.setToolTipText("Edit XML node");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

editNode();

 }

};

m_editNodeBtn.addActionListener(lst);

tb.add(m_editNodeBtn);

m_delNodeBtn = new JButton(new ImageIcon("Delete24.gif"));

m_delNodeBtn.setToolTipText("Delete XML node");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

deleteNode();

 }

};

m_delNodeBtn.addActionListener(lst);

tb.add(m_delNodeBtn);

Button to
create a new
XML document

Button for
adding
a new node

Button for
editing a node

Button for
deleting a node

XML EDITOR, PART IV: ADD, EDIT, REMOVE NODES AND ATTRIBUTES 811

tb.addSeparator();

tb.add(new JLabel("Attr:"));

m_addAttrBtn = new JButton(new ImageIcon("Add24.gif"));

m_addAttrBtn.setToolTipText("Add new attribute");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

addNewAttribute();

 }

};

m_addAttrBtn.addActionListener(lst);

tb.add(m_addAttrBtn);

m_editAttrBtn = new JButton(new ImageIcon("Edit24.gif"));

m_editAttrBtn.setToolTipText("Edit attribute");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

editAttribute();

 }

};

m_editAttrBtn.addActionListener(lst);

tb.add(m_editAttrBtn);

m_delAttrBtn = new JButton(new ImageIcon("Delete24.gif"));

m_delAttrBtn.setToolTipText("Delete attribute");

lst = new ActionListener() {

public void actionPerformed(ActionEvent e) {

deleteAttribute();

 }

};

m_delAttrBtn.addActionListener(lst);

tb.add(m_delAttrBtn);

return tb;
}

public String getDocumentName() {
return m_currentFile==null ? "Untitled" :

m_currentFile.getName();
}

public void newDocument() {

String input = (String) JOptionPane.showInputDialog(this,

"Please enter root node name of the new XML document",

APP_NAME, JOptionPane.PLAIN_MESSAGE,

null, null, "");

if (!isLegalXmlName(input))

return;

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

try {

DocumentBuilderFactory docBuilderFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder docBuilder = docBuilderFactory.

newDocumentBuilder();

Button for
adding an
attribute

Button for editing
an attribute

Button for deleting
an attribute

Creates a new XML document
and corresponding tree model

812 CHAPTER 23 CONSTRUCTING AN XML EDITOR

m_doc = docBuilder.newDocument();

Element root = m_doc.createElement(input);

root.normalize();

m_doc.appendChild(root);

DefaultMutableTreeNode top = createTreeNode(root);

m_model.setRoot(top);

m_tree.treeDidChange();

expandTree(m_tree);

setNodeToTable(null);

m_currentFile = null;

setTitle(APP_NAME+" ["+getDocumentName()+"]");

m_xmlChanged = true;// Will prompt to save

}

catch (Exception ex) {

showError(ex, "Error creating new XML document");

}

finally {

setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

}

}

// Unchanged code from example 23.3

protected void enableNodeButtons() {

boolean b1 = (getSelectedNode() instanceof Element);

boolean b2 = (getSelectedNode() != null);

m_addNodeBtn.setEnabled(b1);

m_editNodeBtn.setEnabled(b2);

m_delNodeBtn.setEnabled(b2);

}

protected void enableAttrButtons() {

boolean b1 = (m_tableModel.getNode() instanceof Element);

boolean b2 = (m_table.getSelectedRowCount() > 0);

m_addAttrBtn.setEnabled(b1);

m_editAttrBtn.setEnabled(b2);

m_delAttrBtn.setEnabled(b2);

}

protected void addNewNode() {

if (m_doc == null)

return;

XmlViewerNode treeNode = getSelectedTreeNode();

if (treeNode == null)

return;

Node parent = treeNode.getXmlNode();

if (parent == null)

return;

String input = (String)JOptionPane.showInputDialog(this,

"Please enter name of the new XML node",

APP_NAME, JOptionPane.PLAIN_MESSAGE,

Controls state of node buttons

Controls state of attribute buttons

Adds a new XML node

XML EDITOR, PART IV: ADD, EDIT, REMOVE NODES AND ATTRIBUTES 813

null, null, "");

if (!isLegalXmlName(input))

return;

try {

Element newElement = m_doc.createElement(input);

XmlViewerNode nodeElement = new XmlViewerNode(newElement);

treeNode.addXmlNode(nodeElement);

m_model.nodeStructureChanged(treeNode);

TreePath path = m_tree.getSelectionPath();

if (path != null) {

path = path.pathByAddingChild(nodeElement);

m_tree.setSelectionPath(path);

m_tree.scrollPathToVisible(path);

}

m_xmlChanged = true;

}

catch (Exception ex) {

showError(ex, "Error adding new node");

}

}

protected void addNewAttribute() {

Node node = m_tableModel.getNode();

if (!(node instanceof Element))

return;

String input = (String)JOptionPane.showInputDialog(

 this, "Please enter new attribute name",

APP_NAME, JOptionPane.PLAIN_MESSAGE,

null, null, "");

if (!isLegalXmlName(input))

return;

try {

((Element)node).setAttribute(input, "");

setNodeToTable(node);

for (int k=0; k<m_tableModel.getRowCount(); k++)

if (m_tableModel.getValueAt(

 k, AttrTableModel.NAME_COLUMN).equals(input))

 {

m_table.editCellAt(k, AttrTableModel.VALUE_COLUMN);

break;

}

m_xmlChanged = true;

}

catch (Exception ex) {

showError(ex, "Error adding attribute");

}

}

protected void editNode() {

TreePath path = m_tree.getSelectionPath();

Adds a new attribute to
the currently selected node

Edits currently selected node

814 CHAPTER 23 CONSTRUCTING AN XML EDITOR

XmlViewerNode treeNode = getSelectedTreeNode();

if (treeNode == null)

return;

Node node = treeNode.getXmlNode();

if (node == null)

return;

try {

switch (node.getNodeType()) {

case Node.ELEMENT_NODE:

// Find child text node

for (int k=0; k<treeNode.getChildCount(); k++) {

XmlViewerNode childNode = (XmlViewerNode)

treeNode.getChildAt(k);

Node nd = childNode.getXmlNode();

if (nd instanceof Text) {

path = path.pathByAddingChild(childNode);

m_tree.setSelectionPath(path);

m_tree.scrollPathToVisible(path);

m_tree.startEditingAtPath(path);

return;

}

}

// Not found, so add a new text node

Text text = m_doc.createTextNode("");

XmlViewerNode nodeText = new XmlViewerNode(text);

treeNode.addXmlNode(nodeText);

m_model.nodeStructureChanged(treeNode);

path = path.pathByAddingChild(nodeText);

m_tree.setSelectionPath(path);

m_tree.scrollPathToVisible(path);

m_tree.startEditingAtPath(path);

return;

case Node.TEXT_NODE:

m_tree.startEditingAtPath(path);

return;

}

}

catch (Exception ex) {

showError(ex, "Error editing node");

}

}

protected void editAttribute() {

int row = m_table.getSelectedRow();

if (row >= 0)

m_table.editCellAt(row, AttrTableModel.VALUE_COLUMN);

}

protected void deleteNode() {

TreePath path = m_tree.getSelectionPath();

XmlViewerNode treeNode = getSelectedTreeNode();

if (treeNode == null)

return;

Edits currently selected attribute

Deletes currently
selected node

XML EDITOR, PART IV: ADD, EDIT, REMOVE NODES AND ATTRIBUTES 815

Node node = treeNode.getXmlNode();

if (node == null)

return;

int result = JOptionPane.showConfirmDialog(

XmlViewer.this, "Delete node "+node.getNodeName()+" ?",

APP_NAME, JOptionPane.YES_NO_OPTION);

if (result != JOptionPane.YES_OPTION)

return;

try {

TreeNode treeParent = treeNode.getParent();

treeNode.remove();

m_model.nodeStructureChanged(treeParent);

m_xmlChanged = true;

}

catch (Exception ex) {

showError(ex, "Error deleting node");

}

}

protected void deleteAttribute() {

int row = m_table.getSelectedRow();

if (row < 0)

return;

Node node = getSelectedNode();

if (!(node instanceof Element))

return;

String name = (String)m_tableModel.getValueAt(row,

AttrTableModel.NAME_COLUMN);

int result = JOptionPane.showConfirmDialog(

XmlViewer.this, "Delete attribute "+name+" ?",

APP_NAME, JOptionPane.YES_NO_OPTION);

if (result != JOptionPane.YES_OPTION)

return;

try {

((Element)node).removeAttribute(name);

setNodeToTable(node);

m_xmlChanged = true;

}

catch (Exception ex) {

showError(ex, "Error deletinging attribute");

}

}

// Unchanged code from example 23.3

public boolean isLegalXmlName(String input) {

if (input==null || input.length()==0)

return false;

if (!(XMLRoutines.isLegalXmlName(input))) {

JOptionPane.showMessageDialog(this,

"Invalid XML name", APP_NAME,

Deletes currently
selected attribute

Determines whether
or not the given string
is a legal XML name

816 CHAPTER 23 CONSTRUCTING AN XML EDITOR

JOptionPane.WARNING_MESSAGE);

return false;

}

return true;

}

public void showError(Exception ex, String message) {
ex.printStackTrace();
JOptionPane.showMessageDialog(this,

message, APP_NAME,
JOptionPane.WARNING_MESSAGE);

}

// Unchanged code from example 23.3
}

class XmlViewerNode extends DefaultMutableTreeNode {
public XmlViewerNode(Node node) {

super(node);
}
public Node getXmlNode() {

Object obj = getUserObject();
if (obj instanceof Node)

return (Node)obj;
return null;

}

public void addXmlNode(XmlViewerNode child)

throws Exception {

Node node = getXmlNode();

if (node == null)

throw new Exception(

"Corrupted XML node");

node.appendChild(child.getXmlNode());

add(child);

}

public void remove() throws Exception {

Node node = getXmlNode();

if (node == null)

throw new Exception(

"Corrupted XML node");

Node parent = node.getParentNode();

if (parent == null)

throw new Exception(

"Cannot remove root node");

TreeNode treeParent = getParent();

if (!(treeParent instanceof DefaultMutableTreeNode))

throw new Exception(

"Cannot remove tree node");

parent.removeChild(node);

((DefaultMutableTreeNode)treeParent).remove(this);

}

Updated to allow
addition and removal
of child nodes

XML EDITOR, PART IV: ADD, EDIT, REMOVE NODES AND ATTRIBUTES 817

// Unchanged code from example 23.3
}

// Unchanged code from example 23.3

class XMLRoutines {
// Unchanged code from example 23.3

public static boolean isLegalXmlName(String input) {

if (input == null || input.length() == 0)

return false;

for (int k=0; k<input.length(); k++) {

char ch = input.charAt(k);

if (Character.isLetter(ch) ||

 (ch == '_') || (ch == ':') ||

 (k>0 &&

 (Character.isDigit(ch) ||(ch == '.') || (ch == '-'))))

 {

continue;

 }

return false;

}

return true;

}

}

23.4.1 Understanding the code

Class XmlViewer
This class now has six additional instance variables:

• JButton m_addNodeBtn: toolbar button to add a node.
• JButton m_editNodeBtn: toolbar button to edit a node.
• JButton m_delNodeBtn: toolbar button to delete a node.
• JButton m_addAttrBtn: toolbar button to add an attribute.
• JButton m_editAttrBtn: toolbar button to edit an attribute.
• JButton m_delAttrBtn: toolbar button to delete an attribute.

The custom TreeSelectionListener now invokes our enableNodeButtons() and
enableAttrButtons() methods whenever the tree selection changes.

A custom ListSelectionListener is created to invoke enableAttrButtons() whenever
the table selection changes. This listener is added to our table model.

The createToolbar() method adds a new button for creating a new XML document
which does so by invoking our custom newDocument() method. A new button for adding
a new node is added which invokes our custom addNewNode() method. Buttons for editing
and deleting the selected node are added and invoke our custom editNode() and delete-
Node() methods respectively. Similarly, buttons for adding, editing, and deleting attributes
are added and invoke our custom addNewAttribute(), editAttribute(), and delete-
Attribute() methods respectively.

Added method for verifying whether
or not a given string is legal XML

818 CHAPTER 23 CONSTRUCTING AN XML EDITOR

The newDocument() method by uses JOptionPane to prompt the user for a root node
name, creating a Document instance with a root element of that name, creating a TreeNode
structure using that element, and finally assigning that tree node structure as the tree model.

The enableNodeButtons() method enables the add node button only if the selected node
is an instance of Element. It enables the edit node and delete node buttons only if the
selected node is not null.

The enableAttrButtons() method enables the add attribute button only if the selected
node is an instance of Element. It enables the edit attribute and delete attribute buttons only
if there is a table row selected.

The addNewNode(), editNode(), deleteNode(), addNewAttribute(), editAt-

tribute(), and deleteAttribute() methods perform basic XML and Swing tree and table
operations, as well as the use of JOptionPane, to update the XML document appropriately.

The isLegalXmlName() method takes a String parameter and returns a boolean flag spec-
ifying whether or not the String is legal according to XMLRoutine’s static isLegalXml-
Name() method. If it is not legal a warning message is displayed.

Class XmlViewerNode
The new addXmlNode() method is added to enable adding a child node to an existing node.

The remove() method is added to allow removal of nodes. Nodes without a parent (such
as root nodes) cannot be deleted.

Class XMLRoutines
The new isLegalXmlName() method takes a String parameter and checks whether the
String represents a valid XML element name. The first character can only be a letter character,
an “_” (underscore) or a “:” (colon). Remaining characters can be letters, digits, “_”s (under-
scores), “:”s (colons), “.”s (periods) or “-”s (dashes). If the given String does not adhere to
these rules this method returns false.

23.4.2 Running the Code

Figure 23.4 shows our updated XML editor application in action. The figure shows where
we’ve added an Address node with text node Word address. We’ve also added attributes to the
Address node called City, State, ZIP and Street. Try opening the sample XML file and adding,
editing, and deleting nodes and attributes.

23.5 XML EDITOR, PART V: CUSTOM DRAG AND DROP

This example shows how to implement custom drag and drop behavior to move nodes from
one parent node to another. There are several UI features that occur during a custom drag and
drop operation in this example:

• The cursor changes based on location indicating whether a drop is or is not available

• The target component changes if a drop is available

• When the drag cursor is hovering over the edge of the scroll pane, scrolling occurs.

XML EDITOR, PART V: CUSTOM DRAG AND DROP 819

NOTE One good exercise would be to compare this drag and drop behavior to the stan-
dard Swing drag and drop behavior covered in chapter 24.

Example 23.5

see \Chapter23\5

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;
import javax.swing.table.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XmlViewer
extends JFrame {

public static final String APP_NAME = "XML Viewer";

protected Document m_doc;

protected JTree m_tree;
protected JScrollPane m_treeScrollPane;

XmlViewer.java

Figure 23.5 XML Editor showing a custom drag and drop in action

820 CHAPTER 23 CONSTRUCTING AN XML EDITOR

protected DefaultTreeModel m_model;
protected DefaultTreeCellEditor m_treeEditor;
protected Node m_editingNode = null;

// Unchanged code from example 23.4

protected Cursor m_dragCursor;

protected Cursor m_nodropCursor;

protected XmlViewerNode m_draggingTreeNode;

protected XmlViewerNode m_draggingOverNode;

public XmlViewer() {
 // Unchanged code from example 23.4

DefaultTreeCellRenderer renderer = new DefaultTreeCellRenderer() {
Color m_draggingBackground = new Color(0, 0, 128);

Color m_draggingForeground = Color.white;

Color m_standardBackground = getBackgroundNonSelectionColor();

Color m_standardForeground = getTextNonSelectionColor();

public Component getTreeCellRendererComponent(JTree tree,
Object value, boolean sel, boolean expanded,
boolean leaf, int row, boolean hasFocus) {

if (value.equals(m_draggingOverNode)) {

setBackgroundNonSelectionColor(m_draggingBackground);

setTextNonSelectionColor(m_draggingForeground);

sel = false;

}

else {

setBackgroundNonSelectionColor(m_standardBackground);

setTextNonSelectionColor(m_standardForeground);

}

// Unchanged code from example 23.4
}

};
m_tree.setCellRenderer(renderer);

// Unchanged code from example 23.4

m_tableModel = new AttrTableModel();
m_table = new JTable(m_tableModel);

m_treeScrollPane = new JScrollPane(m_tree);

JScrollPane s2 = new JScrollPane(m_table);
s2.getViewport().setBackground(m_table.getBackground());
JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

m_treeScrollPane, s2);

sp.setDividerLocation(400);
sp.setDividerSize(5);
getContentPane().add(sp, BorderLayout.CENTER);

// Unchanged code from example 23.4

enableNodeButtons();
enableAttrButtons();

Custom foreground
and background colors

to indicate whether
a drop is possible

XML EDITOR, PART V: CUSTOM DRAG AND DROP 821

// Load drag-and-drop cursors.

try {

ImageIcon icon = new ImageIcon("DragCursor.gif");

m_dragCursor = Toolkit.getDefaultToolkit().

createCustomCursor(icon.getImage(),

new Point(5, 5), "D&D Cursor");

icon = new ImageIcon("NodropCursor.gif");

m_nodropCursor = Toolkit.getDefaultToolkit().

createCustomCursor(icon.getImage(),

new Point(15, 15), "NoDrop Cursor");

} catch (Exception ex) {

System.out.println("Loading cursor: "+ex);

m_dragCursor = Cursor.getPredefinedCursor(Cursor.HAND_CURSOR);

m_nodropCursor = m_dragCursor;

}

TreeMouseListener dnd = new TreeMouseListener();

m_tree.addMouseListener(dnd);

m_tree.addMouseMotionListener(dnd);

// Unchanged code from example 23.4
}

// Unchanged code from example 23.4

protected boolean dragNodeOverTree(int screenX, int screenY) {

Point pt = m_treeScrollPane.getLocationOnScreen();

int x = screenX - pt.x;

int y = screenY - pt.y;

if (!m_treeScrollPane.contains(x, y))

 {

JViewport viewPort = m_treeScrollPane.getViewport();

int maxHeight =

 viewPort.getView().getHeight()-viewPort.getHeight();

if (x > 0 && x < m_treeScrollPane.getWidth()

 && y < 0) {

pt = viewPort.getViewPosition();

pt.y -= 3;

pt.y = Math.max(0, pt.y);

pt.y = Math.min(maxHeight, pt.y);

viewPort.setViewPosition(pt);

}

if (x > 0 && x < m_treeScrollPane.getWidth()

 && y > m_treeScrollPane.getHeight()) {

pt = viewPort.getViewPosition();

pt.y += 3;

pt.y = Math.max(0, pt.y);

pt.y = Math.min(maxHeight, pt.y);

viewPort.setViewPosition(pt);

}

m_draggingOverNode = null;

m_tree.repaint();

return false;

Custom foreground and
background colors to indicate

whether a drop is possible

Determines and
repaints target
node of drop based
coordinates

822 CHAPTER 23 CONSTRUCTING AN XML EDITOR

}

pt = m_tree.getLocationOnScreen();

x = screenX - pt.x;

y = screenY - pt.y;

TreePath path = m_tree.getPathForLocation(x, y);

if (path == null) {

m_draggingOverNode = null;

m_tree.repaint();

return false;

}

Object obj = path.getLastPathComponent();

if (obj instanceof XmlViewerNode &&

((XmlViewerNode)obj).getXmlNode() instanceof Element) {

m_draggingOverNode = (XmlViewerNode)obj;

m_tree.scrollPathToVisible(path);

m_tree.repaint();

return true;

}

else {

m_draggingOverNode = null;

m_tree.repaint();

return false;

}

}

protected void moveNode(

 XmlViewerNode source, XmlViewerNode target)

 {

if (source == null || target == null)

return;

if (isChildNode(source, target)) {

JOptionPane.showMessageDialog(this,

"Cannot move node to it's child node", APP_NAME,

JOptionPane.WARNING_MESSAGE);

return;

}

try {

// Remove node from old parent

TreeNode srcParent = source.getParent();

source.remove();

m_model.nodeStructureChanged(srcParent);

// Add node to new parent

target.addXmlNode(source);

m_model.nodeStructureChanged(target);

TreePath path = getTreePathForNode(source);

m_tree.setSelectionPath(path);

m_tree.scrollPathToVisible(path);

m_xmlChanged = true;

}

catch (Exception ex) {

Moves a given node (source) to
become the child of target node

XML EDITOR, PART V: CUSTOM DRAG AND DROP 823

showError(ex, "Error moving node");

}

}

// Unchanged code from example 23.4

public static TreePath getTreePathForNode(TreeNode node) {

Vector v = new Vector();

while (node != null) {

v.insertElementAt(node, 0);

node = node.getParent();

}

return new TreePath(v.toArray());

 }

public static boolean isChildNode(TreeNode parent, TreeNode node) {

if (parent == null || node == null)

return false;

if (parent.equals(node))

return true;

for (int k=0; k<parent.getChildCount(); k++) {

TreeNode child = parent.getChildAt(k);

if (isChildNode(child, node))

return true;

}

return false;

}

public static void main(String argv[]) {
XmlViewer frame = new XmlViewer();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

// Unchanged code from previous section

class TreeMouseListener extends MouseInputAdapter {

private boolean m_isDragging = false;

public void mousePressed(MouseEvent evt){

XmlViewerNode treeNode = getSelectedTreeNode();

if (treeNode != null && treeNode.getXmlNode() instanceof Element)

m_draggingTreeNode = treeNode;

m_draggingOverNode = null;

}

public void mouseDragged(MouseEvent evt) {

if (m_draggingTreeNode == null)

return;

if (!m_isDragging) {

 // Update cursor only on move, not on click

m_isDragging = true;

m_tree.setCursor(m_dragCursor);

}

Component src = (Component)evt.getSource();

Custom mouse
input adapter
providing drag and
drop functionality

824 CHAPTER 23 CONSTRUCTING AN XML EDITOR

Point p1 = src.getLocationOnScreen();

int x = p1.x + evt.getX();

int y = p1.y + evt.getY();

if (dragNodeOverTree(x, y))

m_tree.setCursor(m_dragCursor);

else

m_tree.setCursor(m_nodropCursor);

}

public void mouseReleased(MouseEvent evt){

if (m_draggingTreeNode == null)

return;

m_tree.setCursor(Cursor.getDefaultCursor());

moveNode(m_draggingTreeNode, m_draggingOverNode);

m_isDragging = false;

m_draggingTreeNode = null;

m_draggingOverNode = null;

m_tree.repaint();

}

}

}

// Unchanged code from example 23.4

23.5.1 Understanding the code

Class XmlViewer
This class has five new instance variables:

• JScrollPane m_treeScrollPane: scroll pane used to hold the tree (this isn’t new but
we need to reference it from other methods).

• Cursor m_dragCursor: cursor used to indicate a drag and drop will be successful.
• Cursor m_dropCursor: cursor used to indicate a drop would not be successful.
• XmlViewerNode m_draggingTreeNode: reference to the tree node being dragged.
• XmlViewerNode m_draggingOverNode: reference to the tree node the mouse is cur-

rently dragging over.

The custom tree cell renderer now uses custom foreground and background colors to indicate
when it is the target of a possible drop. In this case it uses a dark blue background color and a
white foreground color.

An instance of our custom TreeMouseListener class is added to our tree as a Mouse-
Listener and a MouseMotionListener. This is where all the custom drag and drop
behavior starts.

The dragNodeOverTree() method takes two int parameters representing coordinates.
Given these coordinates the method attempts to locate a node at the given coordinates, set it
as the m_draggingOverNode, and repaint the tree so that the target node can be rendered
properly by our custom renderer. This method also checks whether the coordinates are
beyond the width or height of the visible portion of the tree and scrolls the tree accordingly.
This method returns true if the location represents a possible target node.

XML EDITOR, PART V: CUSTOM DRAG AND DROP 825

The moveNode() method performs the actual relocation of a node. It takes source and target
nodes as parameters, removes the source from its parent, and adds to the target as a child.

The static getTreePathForNode() method returns a TreePath from the root node to
the given node passed in as a parameter.

The isChildNode() method takes two nodes as parameters and returns a boolean flag
specifying whether or not the second is a child of the first.

Class XmlViewer.TreeMouseListener
This class extends MouseInputAdapter to provide our custom drag and drop behavior. The
m_isDragging flag is used to specify whether or not a node drag is currently in progress.

The mousePressed() method retrieves the selected node and sets it as m_dragging-
TreeNode.

The mouseDragged() method updates the m_isDragging flag if m_dragging-
TreeNode is not null, and changes the cursor to m_dragCursor. It then uses our
custom dragNodeOverTree() to determine how to set the cursor as well as update
m_draggingOverNode.

The mouseReleased() method sets the cursor back to its default and invokes our cus-
tom moveNode() method to perform an actual node relocation.

Running the code
Figure 23.5 shows our XML editor with a drag and drop in process. The Address node is
about to be moved to become a child of the Name node. Note the dark blue background of
the name node, and the cursor over it indicating that the drop would be successful if the
mouse button is released. Try opening the sample XML file and moving nodes. Note how
the cursor changes based on whether or not the target node is a valid new parent for the node
being dragged.

826

C H A P T E R 2 4

Drag and drop
24.1 Drag and drop overview 826
24.2 Adding drag and drop support

within Basic Text Editor 830

24.3 Drag and drop files to Basic Text
Editor 832

24.4 Drag and drop with Java
objects 834

24.1 DRAG AND DROP OVERVIEW

Drag and drop has been supported, in some capacity, since the early days of AWT and Swing.
As of Java 1.4, however, these features have been significantly improved and are much easier to
work with. Most Swing components now have built-in support for drag and drop operations,
and the effort required to implement this behavior has been significantly reduced.

• JColorChooser: supports both drag and drop by default
• JEditorPane: supports both drag and drop by default
• JFileChooser: supports drag by default
• JFormattedTextField: supports both drag and drop by default
• JLabel: neither supported
• JList: supports drag by default
• JPasswordField: supports drop by default
• JTable: supports drag by default
• JTextArea: supports both drag and drop by default
• JTextField: supports both drag and drop by default
• JTextPane: supports both drag and drop by default
• JTree: supports drag by default

DRAG AND DROP OVERVIEW 827

Support for dragging is usually disabled by default, but in many cases it can be manually
enabled with a setDragEnabled() method. Support for drop is either enabled by default or
not supported.

24.1.1 The Transferable interface

interface java.awt.datatransfer.Transferable
The Transferable interface is implemented by classes which can be used in drag and drop
operations. An array of java.awt.datatransfer.DataFlavor instances are used to
describe the type of format a Transferable’s data can appear in. Some flavors include:

• DataFlavor.stringFlavor: supports transfer of a java.lang.String instance.
• DataFlavor.imageFlavor: supports transfer of a java.awt.Image instance.
• DataFlavor.javaFileListFlavor: supports transfer of an instance of

java.util.-List where each element is of type java.io.File.
• DataFlavor.javaJVMLocalObjectMimeType: supports transfer of an arbitrary Java

object which can be transferred within a JVM session.
• DataFlavor.javaSerializedObjectMimeType: supports transfer of a graph of

objects (serialized) that can be transferred between applications and separate JVMs.

To check whether a Transferable object supports a given data flavor we use a Transfer-
able’s isDataFlavorSupported() method. The getTransferDataFlavors() method
returns an array of DataFlavor objects which shows the various flavors (i.e., formats) the
Transferable object’s data can be provided in. The getTransferData() method returns
the appropriate Object of class type determined by the DataFlavor instance passed as
parameter (if it is supported).

24.1.2 Clipboard

class java.awt.datatransfer.Clipboard
This class defines a place to store Transferable objects during a data transfer. The construc-
tor takes a String to use as the clipboard’s name which is retrievable using the getName()
method. The getContents() method returns the currently stored Transferable object.
The setContents() method sets the Transferable object as well as the Clipboard-
Owner to those specified as parameters. If there is already an existing ClipboardOwner, its
lost-Ownership() method is invoked before the new ClipboardOwner is assigned.

In every Java session there is a special shared Clipboard instance called the system
clipboard. This clipboard interfaces with the clipboard facilities of the native operating
system Java is running on. In this way data can be transferred between native programs and
Java applications.

24.1.3 The ClipboardOwner interface

interface java.awt.datatransfer.ClipboardOwner
This interface is implemented by classes that need the capability of providing data to a clip-
board. It consists of one method: lostOwnership(). This method takes a Clipboard and a
Transferable object as parameters. It is intended to notify the object that it is no longer the

828 CHAPTER 24 DRAG AND DROP

owner of the contents (the Transferable object) of the specified Clipboard. Each Clip-
board instance can have no more than one specified ClipboardOwner at any given time.

24.1.4 TransferHandler

class javax.swing.TransferHandler
This class is used as a conduit to transfer Transferables to and from Swing components.
It handles all interaction with the clipboard to temporarily store the data being transferred.
The default implementation’s behavior assigns data to a component property by specifying
the name of the component property in the constructor. There are three constants used for
specifying the kind of transfer operation that can occur through a TransferHandler: COPY,
MOVE, and COPY_OR_MOVE.

TransferHandler consists of several methods we are particularly concerned with here:

• boolean importData(): causes a transfer of data from a Transferable object to a
specified JComponent. Returns true if successful.

• boolean canImport(): checks whether a specified JComponent can accept a given set
of DataFlavors.

• void createTransferable(): creates a Transferable object to use as a conduit for
transfering data from the specified JComponent.

• void exportAsDrag(): initiates a drag operation by transferring the appropriate data
from the specified JComponent to a Transferable object. The exportDone()
method is called after the transfer completes.

• void exportDone(): this method is called after data has been exported. If the opera-
tion was of type MOVE, this method is intended to be responsible for removing the trans-
ferred data from the source component after the transfer has been completed.

The following example shows how to enable drag and drop to transfer text from one text field
to another.

Example 24.1

see \Chapter24\1

import java.awt.*;
import java.awt.datatransfer.*;
import javax.swing.*;

public class DragDropTest extends JFrame {
 public DragDropTest() {
 super("Drag & Drop Test");

DragDropTest.java

Figure 24.1
Drag and drop test application
dragging text from first field to
second

DRAG AND DROP OVERVIEW 829

TransferHandler th = new TransferHandler("text");

JPanel contentPane = (JPanel) getContentPane();

JTextField tf1 = new JTextField("DRAG_ME", 10);
 tf1.setTransferHandler(th);
 JTextField tf2 = new JTextField(10);
 tf2.setTransferHandler(th);

tf1.setDragEnabled(true);

contentPane.setLayout(new GridLayout(2,2));
 contentPane.add(new JLabel("Text Field (Drag enabled): "));
 contentPane.add(tf1);
 contentPane.add(new JLabel("Text Field (Drag not enabled): "));
 contentPane.add(tf2);

pack();
 }

public static void main(String args[]) {
 DragDropTest ddt = new DragDropTest();
 ddt.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ddt.show();
 }

}

The first text field acts as a drag source and has its dragEnabled property set to true using
the setDragEnabled() method. Using a TransferHandler based on the text property,
here’s what TransferHandler does behind the scenes:

• When a drag is intiated on the first text field the getText() method is used to obtain
the text and place it in a Clipboard as a Transferable object.

• When a drop is initiated on the second text field the setText() method is used to set
the text to the content of the Transferable object in the clipboard.

Figure 24.1 shows this example in action dragging the text from the first text field and about
to drop it in the second.

Customized TransferHandler functionality to support unique drag and drop behavior
is easily achievable by overriding a few of the methods described earlier. We’ll show how to do
this in the fianal example of this chapter.

24.1.5 DropTarget

class java.awt.dnd.DropTarget
A DropTarget is used to enable drops on a component. By passing a Component and a
DropTargetListener instance to the constructor, drop events are enabled on the specified
component, and the specified DropTargetListener’s drop() event is responsible for
handling this functionality.

830 CHAPTER 24 DRAG AND DROP

24.1.6 The DropTargetListener interface

interface java.awt.dnd.DropTargetListener
This interface consists of several methods responsible for defining the behavior of various
stages of a drop operation. In example 24.3 we’ll show how to implement a custom DropTar-
getListener implementation to drop files from the native operating system into a JDesk-
topPane.

NOTE There are several classes and interfaces in the java.awt.datatransfer and java.-
awt.dnd packages we did not discuss here. Because data transfer in Java 1.4 has
been simplified considerably, most drag and drop behavior can be implemented
without needing to know any more than what we’ve described. For more complicat-
ed, customized implementations you may need to delve deeper into these packages.

24.2 ADDING DRAG AND DROP SUPPORT
WITHIN BASIC TEXT EDITOR

This example adds the ability to drag and drop a selected region of text from one internal
frame to another in our Basic Text Editor application constructed in chapter 12 (and added to
in chapters 14, 16, and 22). Only a few lines of code are necessary.

Figure 24.2 JBasicTextEditor with drag and drop between internal frames

ADDING DRAG AND DROP SUPPORT WITHIN BASIC TEXT EDITOR 831

Example 24.2

see \Chapter24\2

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.awt.print.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class BasicTextEditor extends JFrame {

public static final String APP_NAME = "Basic Text Editor";

// Unchanged code from example 22.3

// Internal frame with editor
class EditorFrameextends JInternalFrame implements Printable {
 // Unchanged code from example 22.3

public EditorFrame(File f) {
super("", true, true, true, true);
m_currentFile = f;
setTitle(getDocumentName());
setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

m_editor = new CustomTextArea();

JScrollPane ps = new JScrollPane(m_editor);
getContentPane().add(ps, BorderLayout.CENTER);

 // Unchanged code from example 22.3

m_editor.setDragEnabled(true);

TransferHandler tr = new TransferHandler("selectedText");

m_editor.setTransferHandler(tr);

}

// Unchanged code from example 22.3
}

// Important: this class must be public or invocation will fail
public class CustomTextArea extends JTextArea {

public void setSelectedText(String value) {

replaceSelection(value);

}

}

}

// Unchanged code from Chapter 22.3

BasicTextEditor.java

832 CHAPTER 24 DRAG AND DROP

24.2.1 Understanding the code

Class BasicTextEditor.EditorFrame
EditorFrame’s text area is now an instance of our custom CustomTextArea class. The
drag-Enabled property is set to true on the text area and a TransferHandler based on
the selectedText property is created and assigned to the text area. Note that JTextCompo-
nent has a getSelectedText() method, but there is no setSelectedText() method. In
order for drag and drop to work with the default TransferHandler implementation we are
using here, we must implement a setSelectedText() method in our CustomTextArea
class.

Class CustomTextArea
This class is a subclass of JTextArea that includes a setSelectedText() method which is
required for a TransferHandler based on the selectedText property.

24.2.2 Running the code

Figure 24.2 shows our basic text editor application after having dragged and dropped text
from one internal frame into another. Try doing this several times. Note that you first need to
select text to drag before a drag will work.

24.3 DRAG AND DROP FILES TO BASIC TEXT EDITOR

This enhancement allows drag and drop of files from other native applications into our Basic
Text Editor application. For example, dragging a text file from a Windows desktop into our
editor desktop pane, an internal frame is opened containing the contents of that file.

Figure 24.3 Basic Text Editor with native drag and drop file support

DRAG AND DROP FILES TO BASIC TEXT EDITOR 833

Example 24.3

see \Chapter24\3

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.awt.print.*;
import java.awt.dnd.*;

import java.awt.datatransfer.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class BasicTextEditor extends JFrame {

public static final String APP_NAME = "Basic Text Editor";

// Unchanged code from example 24.2

public BasicTextEditor() {
super(APP_NAME);
setSize(600, 400);

m_fonts = new Font[FONTS.length];
for (int k=0; k<FONTS.length; k++)

m_fonts[k] = new Font(FONTS[k], Font.PLAIN, 12);

m_desktop = new JDesktopPane();
getContentPane().add(m_desktop, BorderLayout.CENTER);

new DropTarget(m_desktop, new FileDropper());

JMenuBar menuBar = createMenuBar();
setJMenuBar(menuBar);

// Unchanged code from example 24.2
}

// Unchanged code from example 24.2

public static void main(String argv[]) {
BasicTextEditor frame = new BasicTextEditor();
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setVisible(true);

}

class FileDropper extends DropTargetAdapter {

public void drop(DropTargetDropEvent e) {

try {

DropTargetContext context = e.getDropTargetContext();

e.acceptDrop(DnDConstants.ACTION_COPY_OR_MOVE);

Transferable t = e.getTransferable();

Object data = t.getTransferData(DataFlavor.javaFileListFlavor);

BasicTextEditor.java

834 CHAPTER 24 DRAG AND DROP

if (data instanceof java.util.List) {

java.util.List list = (java.util.List)data;

for (int k=0; k<list.size(); k++) {

Object dataLine = list.get(k);

if (dataLine instanceof File)

addEditorFrame((File)dataLine);

}

}

context.dropComplete(true);

}

catch (Exception ex) {

ex.printStackTrace();

}

}

}

}

// Unchanged code from example 24.2

24.3.1 Understanding the code

Class BasicTextEditor
The only addition to this constructor is the creation of a DropTarget instance with the desk-
top pane as the target component and an instance of our custom FileDropper class.

Class BasicTextEditor.FileDropper
This class extends DropTargetAdapter (a concrete DropTargetListener implementation
in the java.awt.dnd package) and overrides the drop() method. Our new drop() method
accepts the drop using DropTargetDropEvent’s acceptDrop() method, and obtains the
transferred data which is expected to be an instance of java.util.List (which is expected
to contain all the selected Files). We iterate through the list and for each item that is a File
instance we send it to our addEditorFrame() method which opens that file in an internal
frame editor.

24.3.2 Running the code

Figure 24.3 shows our Basic Text Editor application after having dragged two text files from a
Windows 2000 desktop into the desktop pane. Try dropping other types of documents such
as .java and .html files.

24.4 DRAG AND DROP WITH JAVA OBJECTS

This example shows how to drag and drop Java objects between two lists. The component
developed here contains two mutable JLists: one containing an initial set of items and the
other initially empty. Items can be moved back and forth between both lists using either but-
tons or drag and drop operations.

DRAG AND DROP WITH JAVA OBJECTS 835

Example 24.4

see \Chapter24\4

import java.awt.*;
import java.awt.event.*;
import java.awt.datatransfer.*;
import java.io.*;
import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.event.*;

public class DnDList extends JFrame {
public DnDList() {

super("Locales List");

Locale[] allLocales = Locale.getAvailableLocales();
Locale[] selLocales = new Locale[0];

TwoListsPanel pp = new TwoListsPanel(
allLocales, "Available Locales",
selLocales, "Selected Locales");

getContentPane().add(pp, BorderLayout.CENTER);

setResizable(false);
pack();

}

public static void main(String argv[]) {
DnDList frame = new DnDList();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

DnDList.java

Figure 24.4
Mutable list components
which support drag and drop

Array of all
available locales

Locale arrays
used to create
an instance
of our custom
TwoListsPanel
component

836 CHAPTER 24 DRAG AND DROP

class TwoListsPanel extends JPanel {
public static final int LIST_WIDTH = 150;
public static final int LIST_HEIGHT = 200;

private boolean m_selectionChanged = false;

private MutableList m_leftList;
private MutableList m_rightList;

public TwoListsPanel(Object[] leftData, String leftTitle,
Object[] rightData, String rightTitle) {

super(new BorderLayout(10, 10));
setBorder(new EmptyBorder(10, 10, 10, 10));

m_leftList = new MutableList(leftData);
m_leftList.setCellRenderer(new LocaleListRenderer());
JScrollPane spl = new JScrollPane(m_leftList);
JPanel p2l = new JPanel(new BorderLayout());
p2l.setPreferredSize(

 new Dimension(LIST_WIDTH, LIST_HEIGHT));
p2l.add(spl, BorderLayout.CENTER);
p2l.add(new JLabel(leftTitle), BorderLayout.NORTH);
add(p2l, BorderLayout.WEST);

m_rightList = new MutableList(rightData);
m_rightList.setCellRenderer(new LocaleListRenderer());
JScrollPane spr = new JScrollPane(m_rightList);
JPanel p2r = new JPanel(new BorderLayout());
p2r.setPreferredSize(

 new Dimension(LIST_WIDTH, LIST_HEIGHT));
p2r.add(spr, BorderLayout.CENTER);
p2r.add(new JLabel(rightTitle), BorderLayout.NORTH);
add(p2r, BorderLayout.EAST);

JPanel p2c = new JPanel();
p2c.setLayout(new BoxLayout(p2c, BoxLayout.Y_AXIS));
p2c.add(Box.createVerticalGlue());

JButton btnToRight = new JButton(">>");
btnToRight.setRequestFocusEnabled(false);
btnToRight.addActionListener(new LeftToRightMover());
p2c.add(btnToRight);
p2c.add(Box.createVerticalStrut(10));

JButton btnToLeft = new JButton("<<");
btnToLeft.setRequestFocusEnabled(false);
btnToLeft.addActionListener(new RightToLeftMover());
p2c.add(btnToLeft);

p2c.add(Box.createVerticalGlue());
add(p2c, BorderLayout.CENTER);

}

public boolean selectionChanged() {
return m_selectionChanged;

}

Custom component containing
two mutable lists with ability
to move items between lists
with buttons or drag and drop

Custom
mutable list
component
and custom
renderer
assigned to it

Custom
mutable list
component
and custom
renderer
assigned to it

Custom
ActionListeners
to perform
movement
of item from
one list
to another

Custom
ActionListeners
to perform
movement
of item from
one list
to another

DRAG AND DROP WITH JAVA OBJECTS 837

public void moveFromLeftToRight(Object obj) {
if (obj == null)

return;
m_leftList.removeElement(obj);
m_rightList.addElement(obj);

}

public void moveFromRightToLeft(Object obj) {
if (obj == null)

return;
m_rightList.removeElement(obj);
m_leftList.addElement(obj);

}

class LeftToRightMover implements ActionListener {
public void actionPerformed(ActionEvent evt) {

Object[] values = m_leftList.getSelectedValues();
for (int k=0; k<values.length; k++) {

m_leftList.removeElement(values[k]);
m_rightList.addElement(values[k]);
m_selectionChanged = true;

}

m_leftList.repaint();
m_rightList.repaint();

}
}

class RightToLeftMover implements ActionListener {
public void actionPerformed(ActionEvent evt) {

Object[] values = m_rightList.getSelectedValues();
for (int k=0; k<values.length; k++) {

m_rightList.removeElement(values[k]);
m_leftList.addElement(values[k]);
m_selectionChanged = true;

}
m_leftList.repaint();
m_rightList.repaint();

}
}

class LocaleListRenderer extends DefaultListCellRenderer {
public Component getListCellRendererComponent(JList list,

Object value, int index, boolean isSelected,
boolean cellHasFocus) {

if (value instanceof Locale)
value = ((Locale)value).getDisplayName();

return super.getListCellRendererComponent(list,
value, index, isSelected, cellHasFocus);

}
}

}

Moves an item
from left list
to right list

Moves an item
from right list
to left list

ActionListener
to move items
from left list
to right list

ActionListener
to move items
from right list
to left list

Custom renderer
for displaying locale

objects using their
display name

838 CHAPTER 24 DRAG AND DROP

class MutableList extends JList {
private DefaultListModel m_model;

public MutableList() {
m_model = new DefaultListModel();
setModel(m_model);
installDnD();

}

public MutableList(Object[] arr) {
m_model = new DefaultListModel();
for (int k=0; k<arr.length; k++)

m_model.addElement(arr[k]);
setModel(m_model);
installDnD();

}

public MutableList(Vector v) {
m_model = new DefaultListModel();
for (int k=0; k<v.size(); k++)

m_model.addElement(v.elementAt(k));
setModel(m_model);
installDnD();

}

public void addElement(Object obj) {
m_model.addElement(obj);
repaint();

}

public void removeElement(Object obj) {
m_model.removeElement(obj);
repaint();

}

public Object[] getData() {
return m_model.toArray();

}

protected void installDnD() {
setDragEnabled(true);
setTransferHandler(new ListTransferHandler());
DnDStarter starter = new DnDStarter();
addMouseListener(starter);
addMouseMotionListener(starter);

}

class DnDStarter extends MouseInputAdapter {
public void mousePressed(MouseEvent e) {

TransferHandler th =
 MutableList.this.getTransferHandler();

th.exportAsDrag(
 MutableList.this, e, TransferHandler.MOVE);

}
}

}

Custom list component
with add mutable (add/
remove) capabilities

Enables drag operations
(drop operations
enabled by default)
and assigns appropriate
TransferHandler

Custom mouse input
adapter to invoke
a data export when
a mouse press occurs

DRAG AND DROP WITH JAVA OBJECTS 839

class ArrayTransfer implements Transferable {
public static DataFlavor FLAVOUR;

static {
try {

FLAVOUR = new DataFlavor(
 DataFlavor.javaJVMLocalObjectMimeType);

}
catch (Exception ex) {

ex.printStackTrace();
}

}

protected JComponent m_source;
protected Object[] m_arr;

public ArrayTransfer(JComponent source, Object[] arr) {
m_source = source;
m_arr = arr;

}

public Object getTransferData(DataFlavor flavor)
throws UnsupportedFlavorException, IOException {

if (!isDataFlavorSupported(flavor))
throw new UnsupportedFlavorException(flavor);

return this;
}

public boolean isDataFlavorSupported(DataFlavor flavor) {
return FLAVOUR.equals(flavor);

}

public DataFlavor[] getTransferDataFlavors() {
return new DataFlavor[] { FLAVOUR };

}

public JComponent getSource() {
return m_source;

}

public Object[] getData() {
return m_arr;

}
}

class ListTransferHandler extends TransferHandler {
public boolean importData(JComponent c, Transferable t) {

if (!(c instanceof MutableList))
return false;

MutableList list = (MutableList)c;
try {

Object obj = t.getTransferData(ArrayTransfer.FLAVOUR);
if (!(obj instanceof ArrayTransfer))

return false;
ArrayTransfer at = (ArrayTransfer)obj;

// block transfer to self!

Transferable
representing
an array of objects

Custom TransferHandler
to serve as a conduit for
dragging and dropping
MutableList data

840 CHAPTER 24 DRAG AND DROP

if (c.equals(at.getSource()))
 return false;

Object[] arr = at.getData();
for (int k=0; k<arr.length; k++)

list.addElement(arr[k]);
}
catch (Exception ex) {

ex.printStackTrace();
return false;

}
return true;

}

public boolean canImport(JComponent c,
DataFlavor[] transferFlavors) {

if (!(c instanceof MutableList))
return false;

for (int k=0; k<transferFlavors.length; k++)
if (transferFlavors[k].equals(ArrayTransfer.FLAVOUR))

return true;
return false;

}

public int getSourceActions(JComponent c) {
if (!(c instanceof MutableList))

return NONE;
return COPY_OR_MOVE;

}

protected Transferable createTransferable(JComponent c) {
if (!(c instanceof MutableList))

return null;
Object[] arr = ((JList)c).getSelectedValues();
return new ArrayTransfer(c, arr);

}

protected void exportDone(
 JComponent source, Transferable t, int action)
 {

if (!(source instanceof MutableList))
return;

MutableList list = (MutableList)source;
if (!(action == COPY_OR_MOVE || action == MOVE))

return;
try {

Object obj = t.getTransferData(ArrayTransfer.FLAVOUR);
if (!(obj instanceof ArrayTransfer))

return;
ArrayTransfer at = (ArrayTransfer)obj;
if (!source.equals(at.getSource()))

return;
Object[] arr = at.getData();
for (int k=0; k<arr.length; k++)

DRAG AND DROP WITH JAVA OBJECTS 841

list.removeElement(arr[k]);
}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

24.4.1 Understanding the code

Class DnDList
This class extends JFrame to form the main container for the example. The constructor starts
by creating an array of all available Locales, as well as an empty array of Locales. These
arrays are used to create an instance of our custom TwoListsPanel component.

Class TwoListsPanel
This class represents a component containing two instances of our MutableList component
as well as two buttons used to move selected items back and forth between the two Mutable-
Lists. An instance of our custom LocaleListRenderer (discussed below) is used as the
ListCellRenderer for the MutableLists. The arrays passed to the TwoListsPanel
constructor are sent to the MutableList constructors respectively. The two buttons receive
instances of our custom LeftToRightMover and RightToLeftMover ActionListeners
which invoke our moveFromLeftToRight() and moveFromRightToLeft() methods
respectively.

The moveFromLeftToRight() method takes an Object as parameter, removes it from the
left MutableList and adds it to the right MutableList. The moveFromRightToLeft()
method does the opposite. These methods are used during drag and drop operations (not by
the buttons).

Class TwoListsPanel.LeftToRightMover
This ActionListener implementation removes all selected items from the left MutableL-
ist and adds them to the right MutableList.

Class TwoListsPanel.RightToLeftMover
This ActionListener implementation removes all selected items from the right Mutable-
List and adds them to the left MutableList.

Class TwoListsPanel.LocaleListRenderer
This custom ListCellRenderer uses Locale’s displayName property for display rather
than the default value provided by toString().

Class MutableList
This class extends JList to add mutable behavior. Two constructors allow creation by taking
either an array of Objects or a Vector as a parameter. In either case the collection is iterated
through and each item is added to the model. Then the installDnd() method is called to
enable drag and drop operations on the component.

842 CHAPTER 24 DRAG AND DROP

Two methods, addElement() and removeElement(), are used to provide the mutable
behavior to this JList subclass by invoking similar methods on the list model.

The installDnD() method sets MutableList’s dragEnabled property to true and
assigns it an instance of our custom ListTransferHandler. An instance of our custom
DnDStarter class is also added as a MouseListener and MouseMotionListener to invoke
a data export on a mouse press.

Class MutableList.DnDStarter
This MouseInputAdapter subclass invokes a data export on MutableList’s Transfer-
Handler when a mouse press occurs.

Class ArrayTransfer
This implementation of Transferable represents an array of Objects that can be used
in data transfer operations. The constructor takes a source JComponent and an Object array
as parameters.

The getTransferData() method returns a reference to this object itself because it rep-
resents the data being transferred.

The supported DataFlavor is DataFlavor.javaJVMLocalObjectMimeType and the
isDataFlavorSupported() method only returns true if the DataFlavor parameter
matches this type.

The getSource() method returns the source JComponent and the getData() method
returns the array of Objects.

Class ListTransferHandler
This class extends TransferHandler and overrides the importData(), canImport(),
getSourceActions(), createTransferable(), and exportDone() methods to build a
custom conduit for dragging and dropping MutableList data from one MutableList
to another.

The importData() method is called when a drop is initiated. This implementation
returns false if the target component passed as parameter is not a MutableList. If it is, this
method checks first whether the Transferable is an instance of ArrayTransfer and returns
false if not. Then the method checks that the target component is not the same as the source
component to prevent dropping data to the same list it came from. If all checks out, each
Object in the ArrayTransfer’s Object array is added to the target MutableList with its
add-Element() method. If the import occurs successfully this method returns true.

The canImport() method is called to check whether a given component can import
(i.e., accept a drop) of a given array of DataFlavors. This implementation checks whether the
target component is an instance of MutableList and whether the DataFlavors are of type
DataFlavor.javaJVMLocalObjectMimeType. If all checks out the method returns true.

The getSourceActions() method returns the TransferHandler action type based
on the type of the source component passed in as a parameter. This implementation checks
whether the source component is an instance of MutableList and if not returns NONE. Oth-
erwise it returns COPY_OR_MOVE.

The createTransferable() method is responsible for creating a Transferable
instance containing the data from the source component to transfer. This implementation
checks whether the source component is an instance of MutableList and if not returns null.

DRAG AND DROP WITH JAVA OBJECTS 843

Otherwise it retrieves the source MutableList’s selected items as an array of Objects and cre-
ates and returns an ArrayTransfer instance containing this array.

The exportDone() method is called when a drag has been initiated. This implementa-
tion checks whether the source component is an instance of MutableList and whether the
action type is either MOVE or COPY_OR_MOVE. If so, the Transferable’s data is retrieved as
an Object. If this Object is not an instance of ArrayTransfer the method returns. Oth-
erwise it checks to ensure that the source component of the export is in fact the same source
component the data in the MutableList came from. If so, this data is then removed from the
source MutableList.

24.4.2 Running the code

Figure 24.4 shows our example application after having dragged and dropped the first six
locales from the left list into the right list. Try selecting multiple items from either list and drag-
ging and dropping them to the other list. Try moving one item at a time with the buttons.
Note that in both cases moved items appear on the bottom of the list they are moved to (rather
than occupying their old location). Also note that you cannot drop items in the same list.

845

A P P E N D I X A

Java Web Start
Java Web Start technology provides the ability to download and launch Java applications with
a single click of an HTML link in the browser. The only prerequisite is that Java Web Start be
installed on the client machine (similar to Adobe Acrobat or the Real Audio player). Java Web
Start also manages versions of the program automatically and caches the current version, so
that only one download of the application is required until a new version is posted.

With Java Web Start the user can run applications locally even while not connected to
the Internet (because they are cached). Java Web Start applications are run in their own ìsand-
boxî, meaning that they have limited access to local files and resources if they are not from a
trusted source.

Underlying Java Web Start is the Java Network Launching Protocol and API (JNLP)
which, as of this writing, is currently under development. A new .jnlp file type has been defined
to describe how to launch a Java Web Start application.

How to deploy an application with Java Web Start

The Java Web Start Developer’s Guide is referenced here several times. To view this online see:
http://java.sun.com/products/javawebstart/docs/developersguide.html

1 In order for clients of a Java Web Start application to run the application they must first
download Java Web Start. It can be downloaded here: http://java.sun.com/products/jav-
awebstart. A link to this page should be included on the page where the link to your Java
Web Start application resides.

2 Package your application into a jar file. For example, if all your application’s class files are
located in one directory, a command such as the following will create a jar file containing
your entire application:

846 APPENDIX A JAVA WEB START

jar -cvf HTMLEditor.jar *.class

For more information on creating jar files see:
http://java.sun.com/docs/books/tutorial/jar/index.html

3 Your web server needs to know to launch Java Web Start whenever a JNLP file is
encountered. This is done by configuring your web server so that files with the .jnl
extension are set to the application/x-java-jnlp-file MIME type (you may need
to check your web server’s documentation to find out how to accomplish this).

4 To create a JNLP file describing how Java Web Start should launch your application, use
the following as a template and modify it for your needs:

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for HTMLEditor Example -->
<jnlp spec="1.0+" codebase="http://www.manning.com/sbe/files/HTMLEdi-
tor/" href="HTMLEditor.jnlp">
 <information>
 <title>HTML Editor Application</title>
 <vendor>Sun Microsystems, Inc.</vendor>
 <homepage href="HTMLEditor.html"/>
 <description>HTMLEditor Example</description>
 <description kind="short">An HTML editor application
 constructed in Chapter 20.</description>
 <icon href="logo.gif"/>
 <offline-allowed/>
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <j2se version="1.3"/>
 <jar href="HTMLEditor.jar"/>
 </resources>
 <application-desc main-class="HTMLEditor"/>
</jnlp>

NOTE The Java Web Start Developer’s Guide details the meaning of the JNLP XML tags
and how to use them.

5 The application jar file and the JNLP file must be placed on the web server along with an
HTML file containing a link to the JNLP file such as:

<html>
 <head>
 <title>HTMLEditor Java Web Start Example</title>
 </head>
 <body>
 Launch HTMLEditor
 </body>
</html>

NOTE The Java Web Start Developer’s Guide shows how to use JavaScript to detect
whether or not the client has Java Web Start installed, and display an appropriate
message if not.

847

That’s it! Assuming you’ve performed each step without error and your JNLP file is valid,
your application should start right up using Java Web Start when you click the link in the
HTML file.

For more detailed information regarding security and the use of digital signatures, syntax
of the JNLP file format, and using the JNLP API (to control caching, file access, printing, clip-
board operations, etc.) see the Developer’s Guide.

849

A P P E N D I X B

Resources
SWING REFERENCES

1 Andrews, Mark. “Accessibility and the Swing Set.” The Swing Connection, Sun Microsys-
tems, 1999. http://java.sun.com/products/jfc/tsc/articles/accessibility/index.html

2 Andrews, Mark. “Getting Started with Swing.” The Swing Connection, Sun Microsys-
tems, 1998. http://java.sun.com/products/jfc/tsc/articles/getting_started/index.html

3 Andrews, Mark. “Introducing Swing Architecture.” The Swing Connection, Sun Micro-
systems, 1998. http://java.sun.com/products/jfc/tsc/articles/architecture/index.html

4 Drye, Stephen and William Wake. Java Foundation Classes: Swing Reference. Manning
Publications, 1999.

5 Eckstein, Robert, Marc Loy and Dave Wood. Java Swing. O’Reilly & Associates, 1998.

6 Fowler, Amy. “Mixing Heavy and Light Components.” The Swing Connection, Sun
Microsystems, 1998. http://java.sun.com/products/jfc/tsc/articles/mixing/index.html

7 Fowler, Amy. “Painting in AWT and Swing.” The Swing Connection, Sun Microsystems,
1998. http://java.sun.com/products/jfc/tsc/articles/painting/index.html

8 Geary, David. Graphic Java 2, Mastering the JFC: AWT (Sun Microsystems Press Java
Series). Prentice Hall, 1999.

9 Geary, David. Graphic Java 2, Mastering the JFC: Swing (Sun Microsystems Press Java
Series). Prentice Hall, 1999.

10 Gutz, Steven. Up to Speed With Swing: User Interfaces With Java Foundation Classes.
Manning Publications, 1998.

11 Joshi, Daniel and Pavel Vorobiev. JFC: Java Foundation Classes. IDG Books Worldwide,
1998.

850 RESOURCES

12 Kar, Ralph. “Component Orientation in Swing,” The Swing Connection, Sun Microsys-
tems, 1999. http://java.sun.com/products/jfc/tsc/articles/bidi/index.html

13 Muller, Hans and Kathy Walrath. “Threads and Swing,” The Swing Connection. Sun
Microsystems, 1998. http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

14 Muller, Hans and Kathy Walrath. “Using a Swing Worker Thread,” The Swing Connec-
tion. Sun Microsystems, 1998. http://java.sun.com/products/jfc/tsc/articles/threads/
threads2.html

15 Prinzing, Tim. “How to Customize a Text Editor,” The Swing Connection. Sun Micro-
systems, 1998. http://java.sun.com/products/jfc/tsc/articles/text/editor_kit/index.html

16 Prinzing, Tim. "Using the Swing Text Package," The Swing Connection. Sun Microsys-
tems, 1998. http://java.sun.com/products/jfc/tsc/articles/text/overview/

17 Ryan, Chris. "The Java Look and Feel High-Level Specification," The Swing Connection.
Sun Microsystems, 1998. http://java.sun.com/products/jfc/tsc/articles/jlf/index.html

18 Sun Microsystems. "Coming Swing API Changes for Java 2 SDK, Standard Edition, v.
1.4," The Swing Connection. Sun Microsystems, 2001. http://java.sun.com/products/jfc/
tsc/articles/merlin/index.html

19 Topley, Kim. Core Java Foundation Classes (Core Series). Prentice Hall, 1998.

20 Violet, Scott. “The Element Interface,” The Swing Connection. Sun Microsystems, 1999.
http://java.sun.com/products/jfc/tsc/articles/text/element_interface/

21 Violet, Scott. “How the Swing Text Package Handles Attributes,” The Swing Connection.
Sun Microsystems, 1999. http://java.sun.com/products/jfc/tsc/articles/text/attributes/

22 Violet, Scott. “Tabbing in Text Documents,” The Swing Connection. Sun Microsystems,
1999. http://java.sun.com/products/jfc/tsc/articles/text/tabs/

23 Violet, Scott. “Understanding the ElementBuffer,” The Swing Connection. Sun Microsys-
tems, 1999. http://java.sun.com/products/jfc/tsc/articles/text/element_buffer/

24 Wilson, Steve. “The Look and Feel Class Reference,” The Swing Connection. Sun Micro-
systems, 1998. http://java.sun.com/products/jfc/tsc/articles/lookandfeel_reference/
index.html

Other sources

1 JavaSoft resources
The JFC product site
http://java.sun.com/products/jfc/

2 The Swing Connection:
http://java.sun.com/products/jfc/tsc/

3 “Creating a GUI with JFC/Sfwing” java Tutorial trail:
http://java.sun.com/docs/books/tutorial/uiswing/index.html

4 The Java Look and Feel Design Guidelines, 2nd edition:
http://java.sun.com/products/jlf/ed2/guidelines.html

USER INTERFACE DESIGN REFERENCES 851

Examples

1 CodeGuru
http://www.codeguru.com/java/Swing/

2 Global OnLine Japan:
http://www2.gol.com/users/tame/swing/examples/SwingExamples.html

Magazines

1 JavaWorld magazine: http://www.javaworld.com

2 Java Developers Journal: http://www.javadevelopersjournal.com/

3 JavaPro magazine: http://www.devx.com/javapro/

Mailing lists

1 To subscribe to either list, send a message to the corresponding email address with body
of the form “subscribe username@domain.com”.
to unsubscribe send a message to the appropriate email address with empty body:
swing-unsubscribe@eos.dk
advanced-swing-unsubscribe@eos.dk

2 A request to subscribe or unsubscribe will be followed by an auto generated confirmation
email.

3 Simply reply to this email to complete the intended action. Note that most subscribers
are subscribed to both lists, so we recommend that any given message be posted to exclu-
sively one or the other.

USER INTERFACE DESIGN REFERENCES

...recommeded and referenced by David Anderson, UI Guidelines author

User Task Analysis and User Centered Design

1 Beyer, Hugh and Karen Holtzblatt. Contextual Design. Morgan Kaufmann, 1997.

2 Hackos, JoAnn, and Janice Redish. User and Task Analysis for Interface Design. John
Wiley, 1998.

3 Robert, Dave, Dick Berry, Scott Isensee, John Mullaly, and Dave Roberts. Designing for
the User with OVID. MacMillan, 1998.

User Interaction Analysis

1 Anderson, David J. User Interface Analysis. White Paper, 1999. http://www.uidesign.net

User Interface Design

1 Arlov, Laura. GUI Design for Dummies. IDG, 1997.

2 Cooper, Alan. About Face: The Essentials of User Interface Design. IDG, 1995.

852 RESOURCES

3 Norman, Donald. The Design of Everyday Things. Doubleday, reissued 1990.

4 Norman, Donald. The Things that Make Us Smart. Perseus Press, 1994.

5 Schneiderman, Ben. Designing the User Interface, 3rd ed. Addison Wesley, 1997.

Graphic Design

1 Horton, William. The Icon Book. Wiley, 1997.

2 Mullet, Keven and Darrell Sano. Designing Visual Interfaces - Communication Oriented
Techniques. Sunsoft, Prentice Hall, 1995.

3 Tufte, Edward. The Visual Display of Quantitative Information. Graphic Press, 1992.

4 Tufte, Edward. Envisioning Information. Graphic Press, 1990.

5 Tufte, Edward. Visual Explanations. Graphic Press, 1997.

Object-Oriented Analysis and Design

1 Coad, Peter, et al. Java Modeling in Color with UML: Enterprise Components and Process.
Prentice Hall, 1999.

2 Coad, Peter, et al. Java Design: Building Better Apps and Applets, 2nd ed. Prentice Hall,
1998.

853

index

A

About dialog 436
Abstract Document.AbstractEle-

ment 611
Abstract Window Toolkit see

AWT 3
AbstractAction 345, 355, 358,

628
AbstractBorder 85
AbstractButton 9, 136, 158, 159,

160, 333, 334
AbstractColorChooserPanel 426
AbstractContext 623
AbstractDocument 609, 610,

611, 612, 614, 615, 617
AbstractDocument.AbstractEle-

ment 611, 617, 622
AbstractDocument.Attribute-

Context 612, 623
AbstractDocument.BranchEle-

ment 611, 620
AbstractDocument.Content 612
AbstractDocument.DefaultDoc-

umentEvent 612, 613, 620
AbstractDocument.ElementEdit

612, 613
AbstractDocument.LeafElement

611, 617
AbstractElement 615, 622
AbstractFormatter 293, 297,

306, 307

AbstractFormatterFactory 306,
309

AbstractListModel 259, 273
AbstractSpinnerModel 283
AbstractTableModel 539, 597,

602
AbstractUndoableEdit 321, 322,

324, 325, 328, 612, 620
accept() 431
accessibility 3
accessory component 429
Action 345, 606
action 67, 68, 304, 332, 334,

335, 336, 341, 342, 345, 355,
359, 364, 365, 449, 605, 606,
607, 625, 626, 627, 628, 629

Action.NAME 629
ActionEvent 27, 160, 169, 181,

228, 238, 296, 334, 345, 371,
628

actionKey 67
ActionListener 27, 152, 160,

169, 184, 195, 217, 229, 232,
237, 251, 296, 334, 337, 345,
355, 358, 364, 365, 370, 404,
415, 450, 601, 740

ActionMap 68
actionPerformed() 160, 169,

185, 196, 251, 345, 450
activateFrame 477
ActiveValue 724, 725

add() 98, 100, 187, 335, 345
addActionForKeyStroke() 627,

628
addActionListener() 160
addAnchoredComponent 109
addAttributes() 622
addCaretListener() 627
addCellEditorListener() 545
addChangeListener() 205, 374,

625
addChoosableFileFilter() 430–431
addChooserPanel() 425
addColumn() 541
addColumnSelectionInterval()

549
addComponent 109
addDirtyRegion() 58
addEdit() 321, 325, 326
addElement() 230
addFilledComponent 109
addHighlight() 624
addInvalidateComponent() 58
addInvalidComponent() 57
addKeyListener() 66
addLayoutComponent 90, 124,

125
addListDataListener() 230
addMouseWheelListener() 204
addPoint() 176
addPropertyChangeListener()

15, 429

854 INDEX

addRowSelectionInterval() 549
addSeparator() 335– 337, 342
addStyle() 609
addTab() 187
addTableModelListener() 538,

545
addTreeExpansionListener() 506
addTreeModelListener() 506
addTreeSelectionListener() 506
addTreeWillExpandListener()

507
addTrim() 237
addUndoableEditListener() 329
addVetoableChangeListener() 16
AdjustmentEvent 375
AdjustmentListener 375, 386
Adobe Acrobat 211
AffineTransform 39
aliasing 623
alignment 341
AlignmentAction 630
alive 321
alpha value 40, 51
ancestor 498
anchor 102, 105, 260

constraints 102
anchorSelectionPath 505
AnimatedLabel 250, 252
API

look and feel 6
AppContext 28, 29, 30, 55, 57,

70, 170, 339, 419
appContextGet 29
appContextPut 30
appContextRemove 30
append() 298, 761
Apple Computer. See Macintosh

169, 170
applet 57, 58, 80, 165, 169
AppletContext 170
appletviewer 171
apply() 404
archive 451
armed 159
ArrayModel 273

ascent 44
asksAllowedChildren 501
AsynchBoxView 632
attribute 39, 789

key organization 623
set 649
storage 622

AttributeSet 296, 301, 303, 606,
608, 609, 614, 617, 619, 620,
621, 622, 623, 624, 627

AUTO_RESIZE_OFF 551
autoCreateColumnsFromModel

542
autoResizeMode 550, 551
AWT 3, 55, 59, 153, 499, 603
AWTEvent 481

B

background 40
image 473, 475

BadLocationException 297, 608
BakedBean 33, 34, 828, 831,

833, 835
balance 121
Ball, Tom 29
baseline 44
basic 726, 741
Basic look and feel 6, 13
Basic text editor 346, 355, 359,

366
BasicButtonUI 749, 750
BasicCheckBoxUI 750
BasicComboBoxEditor 231
BasicComboPopup 227
BasicGraphicsUtils 726
BasicLookAndFeel 13, 508, 726,

727, 729, 733, 736, 740, 749
BasicMenuItemUI 339
BasicProgressBarUI 380
BasicTableHeaderUI 541
BasicTextEditor 347, 354, 355,

360, 364, 366, 370, 445, 449
BasicTextUI 607, 632, 633
BasicTreeUI 509
BasicUI 339

BeanContainer 143, 151–152,
153, 154, 596, 601, 603

BeanDescriptor 31, 602
BeanDialog 154
BeanEditor 597, 601, 602
BeanEditor.PropertyTableData

602
BeanInfo 31, 602
BeepAction 629
beginDraggingFrame 477
beginResizingFrame 477
beginUpdate() 329
BevelBorder 81, 84, 85, 450
bidi 619
bidirectional text 619
binary() 406
block increments 209
blockIncrement 374–375
bold 38
BoldAction 630
book 760, 761
Border 169
border 81, 85, 169, 245, 271,

365, 370, 371, 544, 741, 750
visual grouping 84
visual layering 84

BorderFactory 82
BorderInsets 84
BorderLayout 80, 85, 91– 94, 97,

119– 121, 217, 342, 415,
450, 475

BorderLayout.CENTER 93
BorderLayout.NORTH 93
borderPainted 378
BorderUIResource 725
bound 32

property 15
Bounded-range components 373
BoundedRangeModel 9, 296,

373, 374
Box 91
box 91, 392
Box.Filler 91
BoxLayout 19, 91, 97, 120, 142,

237, 243, 333, 342, 452, 474

INDEX 855

BoxLayout.X_AXIS 91
BoxLayout.Y_AXIS 91
BoxView 632, 776
BranchElement 615, 617, 619,

620
breadth first 499
breadthFirstEnumeration() 502
brighter() 40
broadcasts 7
Browser 247, 250, 252, 254, 255
Browser.BrowserListener 251
Browser.BrowserLoader 251
BrowserListener 251
BrowserLoader 251, 252
BufferedImage 395, 403, 404,

405, 766, 775
buildChooser() 426
ButtonApplet 165, 171, 176
ButtonApplet2 173, 176, 180,

183
ButtonApplet3 181, 183, 186
ButtonGroup 114, 120, 152,

159, 161, 338, 346
ButtonModel 9, 159
buttons 155
ButtonScroll 214, 217
ButtonUI 14
ByteArrayInputStream 405
ByteArrayOutputStream 404–405

C

calendar 153, 285
Calendar.getTime() 393
Calendar.set() 393
calling revalidate() 405
CANCEL_OPTION 422
cancelCellEditing() 503, 504,

545
canceled 381
canImport() 828
CannotRedoException 329
CannotUndoException 329
canRedo() 321
canUndo() 321

canUndoOrRedo() 326
canvas 4, 40
Car 237, 243, 244
CarComboBoxModel 243, 244
CardLayout 93
Caret 606, 625
caret 293

blink interval 625
visibility 625

caretColor 625
CaretEvent 606, 627
CaretListener 606, 627, 648
caretUpdate() 627
CarPanel 237, 238, 243
CascadeDemo 483, 488
cascading 482
cd(String directory) 406
CDE/Motif 729
cell

editor 537
renderer 56, 537
renderers and editors 8

CellEditor 503, 504, 537, 544,
545

CellEditorListener 503, 505,
537, 545

cellRenderer 541
CellRendererPane 56, 503
CellRenderPane 503
CenterLayout 427
CHANGE 613
change property 16
changedUpdate() 614
ChangeEvent 16, 160, 205, 213,

217, 332, 333, 334, 340, 374,
377, 378, 426, 450, 503, 504,
505, 537, 542

ChangeEvents 188
changeHighlight() 624
ChangeListener 16, 37, 160,

188, 189, 196, 205, 213, 217,
332, 333, 334, 337, 340, 374,
377, 378, 392, 425, 426, 450,
625

ChangeListeners 188

character
Element 617, 620

character attributes 608, 619
CharacterAttribute 621
CharacterConstants 623
check boxes 84

list of 276
Checkbox 162
CheckBoxList 279, 280
CheckCellRenderer 589
CheckListCellRenderer 280
CheckListener 280
children() 502
class 22, 31, 576, 749

defaults 730, 741
ClassLoader 28
clearSelectedPath() 339, 371
clearSelection() 549
clickCountToStart 504
client properties 17
clientProperty 17
clipboard 677, 827, 829

operations 607
ClipboardOwner 827
clipping area 44, 47, 59, 60, 61,

85
Clock 153, 154
clock 151, 153, 154, 603
clone() 452
cloneWithSource() 507
close() 451
CLOSED_OPTION 422
closeEntry() 451
closeFrame 477
closeServer() 416
codebase 28
collapsed 499, 504
collectDirtyComponents() 59
collections 564
color 40, 41, 157, 425

foreground color selection
650

ColorAttribute 621
ColorChooserComponent-

Factory 427

856 INDEX

ColorComboRenderer 692, 694
ColorConstants 623
ColorData 563, 787
ColoredTableCellRenderer 563
ColorMenu 366, 370, 371, 664
ColorMenu.ColorPane 366, 371
ColorPane 370, 371
ColorSelectionModel 10, 425,

426, 450
colorToHex() 666
ColorUIResource 508, 725, 730
column 543, 544, 545, 546

addition 576
addition and removal 536
selection 548
width 550

COLUMN_HEADER 537, 547
COLUMN_RENDERER_PROP-

ERTY 541
COLUMN_WIDTH_PROPERTY

541
columnAdded 546
columnAtPoint() 550
ColumnListener 569
columnMarginChanged 546
columnRemoved 546
columnSelectionChanged 546
columnWidth 299
com.sun.image.codec.jpeg 394
combo boxes 227
ComboBox1 233, 237, 238
ComboBox2 239, 243
ComboBoxEditor 228, 229, 231,

232
ComboBoxModel 10, 227, 228,

230, 244, 251
common interfaces 128
CommonLayouts 95, 97
communication 32, 37
COMP_BIG 136, 138
COMP_BUTTON 136, 138
COMP_TWO_COL 136–138
comparable 290, 309
comparator 565
compareTo 525, 526

complaints dialog 104
ComplaintsDialog 106
ComplaintsDialog2 112
Component 3, 57, 89, 98, 151,

152, 228, 256, 335, 338, 421,
539, 544, 601, 621, 632

component resources 729
COMPONENT_RESIZED 392
ComponentEvent 392
ComponentOrientation 65
ComponentUI 11, 12, 13, 14,

51, 725, 726, 727
ComponentView 632
ComponentWorkRequest 57
CompositeView 632
CompoundBorder 81, 85, 88,

153
CompoundEdit 321, 324, 325,

329, 612
compression threshold 623
computeIntersection() 59
computeUnion() 58
confirm 421
ConfirmJInternalFrame 479
connect() 415, 416
constrained property 32
constraints-based 89, 91, 92
consume() 66
container 4, 18, 58, 91, 93, 212,

473
ContainerOrderFocusTravers-

alPolicy 65
containsAttribute() 621
Content 612
content 609, 612, 619
contentPane 80, 119, 475, 477
CONTENTS_CHANGED 261
contentsChanged() 261
contentType 299
CONTIGUOUS_TREE_

SELECTION 505
continuous layout 223
controller 8, 727, 731
convertToVector() 539
copy() 607

COPY, 828
COPY_OR_MOVE 828
CopyAction 629
copyAttributes() 621
CRC-32 checksum 452
create() 607, 631, 633
create(Element e) 607
create(Element elem) 633
createActionChangeListener()

335, 336, 342
createButton() 217
createDefaultColumnModel()

538
createDefaultDataModel() 538
createDefaultDocument() 629
createDefaultEditors() 538
createDefaultHeaderRenderer()

540
createDefaultRenderers() 538
createDefaultSelectionModel()

538
createDefaultTableHeader() 538
createDefaultTheme() 732
createDialog() 424, 425, 449
createDisabledImage() 158
createFloatingFrame 344
createFloatingFrame() 344
createHorizontalGlue() 91
createHorizontalStrut 91
createInternalFrame() 424, 444
createJPEGDecoder() 395
createJPEGEncoder() 395
createMenuBar() 151, 358, 364,

370, 404, 444, 449, 740, 785
createNewFolder(File contain-

ingDir) 431
createPosition() 608, 612
createRigidArea 91
createTab() 195
createTransferable() 828
createUI 726, 731
createUI() 51, 727, 731, 749,

750
createUI(JComponent c) 12
createValue() 725

INDEX 857

createVerticalGlue() 91
createVerticalStrut 91
createWinListener() 335
CSS 666
current() 615
currentManager() 57
Cursor.WAIT_CURSOR 251
custom

border 86
combo box renderer 244
JToolBar separators 343
layout manager 89, 121
LookAndFeel 728
MDI 475
menu components 366
models 9
renderer 499, 536, 559
rendering 264
resources 733, 749
toolbar components 359
tooltip manager 181
UI delegate 730, 741, 749

CustomHTMLEditorKit 664,
666

customization 32, 37
customized JTabbedPane 197
customizer 153
CustomScrollPane 386
CustomViewport 386
cut() 298, 607
CutAction 629

D

daemon thread 30
damage() 626
damaged region 44
darker() 40
data formatting 536
DataFlavor 827
DataFlavor.imageFlavor 827
DataFlavor.javaFileListFlavor

827
DataFlavor.javaJVMLocalOb-

jectMimeType 827

DataFlavor.javaSerializedObject-
MimeType 827

DataFlavor.stringFlavor 827
date 153, 393, 576
date and time editor 605
DateFormat 306
DateFormatSymbols 392
DateFormatter 306, 309
DateSlider 391, 392
DateTimeEditor 282
deactivateFrame 477
DebugGraphics 49, 51, 60
DebugGraphics.BUFFERED_

OPTION 50, 51
DebugGraphics.FLASH_

OPTION 50
DebugGraphics.LOG_OPTION

50
DebugGraphics.NONE_

OPTION 50, 51
debugOptions 51
decodeAsBufferedImage() 395,

404, 405
decodeAsRaster() 395
decorations 419
DEFAULT 345
default button 160
DEFAULT_KEYMAP 630
DEFAULT_LAYER 472, 473
DEFAULT_OPTION 422
DefaultBoundedRangeModel

375, 377, 378
DefaultButtonModel 159, 334
DefaultCaret 625, 626
DefaultCellEditor 504, 545
DefaultColorSelectionModel

426
DefaultComboBoxModel 230,

244
DefaultDesktopManager 479
DefaultDocumentEvent 614
DefaultEditorKit 299, 628, 629,

630, 631
DefaultEditorKit.selectLineAc-

tion() 626

DefaultEditorKit.selectWordAc-
tion() 626

DefaultFocusTraversalPolicy 65
DefaultFormatter 306, 308
DefaultFormatterFactory 310
DefaultHighlighter 625
DefaultHighlighter.Default-

HighlightPainter 625
DefaultHSBChooserPanel 427
DefaultKeyboardFocusManager

64
DefaultKeyTypedAction 629
DefaultListCellRenderer 231,

256, 257, 260
DefaultListModel 259, 280
DefaultListSelectionModel 260,

548
defaultManager() 339
DefaultMetalTheme 732
DefaultMutableTreeNode 499,

501, 510–514, 521, 522– 524
DefaultPreviewPane 427
DefaultRGBChooserPanel 427
DefaultSingleSelectionModel

188, 333, 335
DefaultStyledDocument 301,

304, 608, 609, 613, 614, 615,
617, 619, 620, 621, 623, 667

DefaultStyledDocument.At-
tributeUndoableEdit 620

DefaultStyledDocument.Ele-
mentBuffer 620

DefaultStyledDocument.Ele-
mentSpec 620

DefaultStyledDocument.Sec-
tionElement 620

DefaultStyledEditorKit 304
DefaultSwatchChooserPanel 427
DefaultTableCellRenderer 540,

543, 544, 547
DefaultTableColumnModel 542
DefaultTableModel 539
DefaultTreeCellEditor 504
DefaultTreeCellEditor.Default-

TextField 504

858 INDEX

DefaultTreeCellEditor.Editor-
Container 505

DefaultTreeCellRenderer 502,
504, 510, 513, 514, 543

DefaultTreeModel 501, 510,
513, 521

DefaultTreeSelectionModel 506
deiconifyFrame 477
delay 27
deploy an application with Java

Web Start 845
depth 471
depth first 499
depth() 615
depthFirstEnumeration() 502
descendant node 498
descent 44
deserialization 33
DesktopManager 476, 477, 478,

479, 480
Desktops 476
dialog 418, 419, 421
DialogBoxes 440, 444
DialogLayout 122, 123, 125,

128, 129, 136, 138, 154, 306
DialogLayout2 129, 131, 136,

139, 406, 415, 435
DialogSeparator 129, 135, 136,

139
die() 321
dimension 18, 19
directory browser 469
directory tree 514, 515, 526
DirExpansionListener 516, 521,

523
DirSelectionListener 517, 521
dirtied region 44, 58
DirTree 527, 532
disableResizedPosting() 540
discardAllEdits() 326
disconnect() 415, 416
DISCONTIGUOUS_TREE_

SELECTION 505
dismiss delay time 163
displayedMnemonic 158

dl 129
DnDList 841
DO_NOTHING_ON_CLOSE

479
dock 342, 356
dockable region 358
Document 293, 608, 614, 615,

629
document 10, 293, 296, 299,

329, 606, 607, 608, 609, 612,
614, 615, 620, 629

document properties 650
Document.EventType 614
DocumentBuilder 795
DocumentBuilderFactory 795
DocumentEvent 612, 613
DocumentEvent.Ele-

mentChange 612, 614
DocumentEvent.EventType 613
DocumentFilter 297, 307, 607
DocumentListener 293, 608,

612, 614
DocumentPropsDlg 666
DocumentTokenizer 721
doLayout() 386, 774
DOM 795
done 321
doSelection() 371
dot 626
doubleBuffered 50
double-buffering 40, 44, 49, 51,

55, 57, 59, 60
drag and drop 818, 826
DRAG_LAYER 472
dragFrame 477
draggedDistance 547
dragging 356
drawImage() 766
drawString() 44
drawTabbedText() 272
DriverManager 576
DropTarget 829
DropTargetListener 830
DTD 789
dump() 610, 611, 617

DumpDemo 610
dynamic node retrieval 514
DynamicUtilTreeNode 500

E

Eastman Kodak Company 394
Eckstein, Robert 605
edge 498
edit() 325
editable 513
editCellAt() 545
EditorDelegate 504
EditorFrame 494, 781
EditorKit 299, 300, 605, 607,

628, 629, 630, 631, 633
edits 326
editToBeRedone() 326
editToBeUndone() 326
Element 606, 607, 608, 609,

610, 611, 614– 622, 631, 632
element 606– 611, 614– 622,

631–633, 789
ELEMENT_NODE 796
ElementBuffer 619, 620
ElementChange 613
ElementIterator 615
EmptyBorder 81, 84, 85, 88,

120, 231, 245, 450
EmptySelectionModel 505
EmptyUI 52
enableButtons() 217, 218
enabled 159, 345
enableEvents() 69, 169, 392
enableResizedPosting() 540
encode() 395, 404
end() 325, 328
endDraggingFrame 477
endEdit() 329
endResizingFrame 477
endUpdate() 329
ensureIndexIsVisible() 257, 275
entries() 451
equals() 502, 540, 542
ERROR_MESSAGE 422, 444
EtchedBorder 81– 85, 153

INDEX 859

event handling 19
event-dispatching

queue 417, 522
thread 16, 20, 22, 29, 57, 58,
251, 774

EventListener 20
EventListenerList 20, 22, 30,

426, 501, 539
EventObject 503, 546
EventQueue 29, 30
events 7
EventSetDescriptor 31
EXIT_ON_CLOSE 76
expand() 522, 523, 524
expanded 499, 504
expandsSelectedPaths 505
ExpandVetoException 506, 508
expense report 536

application 580
ExpenseData 590
ExpenseReportData 590
exportAsDrag() 828
exportDone() 828
extended frame states 79
extent 374, 375

size 204
Externalizable 33, 34, 37, 153
ExtractChooser 467
extraction 451

F

feel 8
field 31
FieldPosition 318
FieldView 632
file 151, 403, 404, 429, 521,

522, 524
File.getName() 524
File.getPath() 524
FileChooserDemo 429
FileFilter 428, 430, 431, 451,

452
FileInputStream 404, 416
FileNode 519, 521–525, 535

FileNode.expand() 524
FileOutputStream 404, 416
FILES_ONLY 466
fileSelectionMode 466
FileSystemView 431
FileTree1 521
FileTree1.DirExpansionListener

522
FileTree1.DirSelectionListener

523
FileTree3 535
FileView 431, 451, 452, 465
fill 105
fill constraints 103, 105
filler 91, 392
FilterInputStream 381
find and replace 695
findColumn() 539
FindDialog 704
fireColumnAdded() 542
fireColumnMarginChanged()

542
fireColumnMoved() 542
fireColumnRemoved() 542
fireColumnSelectionChanged()

542
fireStateChanged() 333
fireTableCellUpdated() 539
fireTableChanged() 539
fireTableRowsDeleted() 539
first() 93, 615
firstRow 546
fixedCellHeight 257
fixedCellWidth 257
flashCount 51
flashTime 51
FlightReservation 115, 117, 119,

123, 125, 129, 130
flip 39
float size 39
floatable 342
FlowLayout 80, 92, 94, 97, 98,

121, 141, 238, 243, 475
focus

cycle 61

focus (continued)
cycle root 61
owner 61
traversal 61
window events 64

focus management 61, 64
FOCUS_GAINED 65
FOCUS_LOST 65
focusability and traversal policies

65
focusAccelerator 293, 606
focusAction 606, 607
FocusEvent 64
focusGained() 152, 626
FocusListener 65, 151, 152, 596,

625, 626, 648
focusLost() 626
FocusManager 298
FocusTraversalPolicy 65
font 38, 39, 41, 157, 359, 642

fixed width 295
names 38
size 38
style 38

FontAttribute 621
FontConstants 623
FontDialog 692
FontFamily 621
FontFamilyAction 630
FontMetrics 40, 44, 46, 271, 272
FontSizeAction 631
FontUIResource 725, 730
ForegroundAction 631
format 306, 318
format() 393
Formatted Spinner example 319
FormattedCellEditor 590
FormattedCellRenderer 590
Frame 419
frame 30, 419
Frame.ICONIFIED 79
Frame.MAXIMIZED_HORIZ 79
Frame.MAXIMIZED_VERT 79
Frame.MAZIMIZED_BOTH 79
Frame.NORMAL 79

860 INDEX

FRAME_CONTENT_LAYER 472
FrameListener 495
fromIndex 546
FTFVerifier 319
FTP 406, 415, 417
FTPApp 407, 414, 415, 417
FTPClient 416, 417
FtpClient 406, 415, 417
FTPClient(String host) 406
functional selection 342

G

GapContent 612, 613
GapVector 613
get(String filename) 406
getAction() 627
getActionForKeyStroke() 606
getActions() 606, 629
getAlignmentY() 365
getAllFonts() 39
getAppContext() 29
getAppletInfo() 169
getAscent() 45, 272
getAttribute() 621
getAttributeCount() 621
getAttributeNames() 621
getAttributes() 614
getAudioClip 196
getAvailableFontFamilyNames()

38, 39
getAvailableFontFami-

lyNames(Locale l) 39
getBackground() 609
getBeanDescriptor() 602
getBeanInfo 31
getBlinkRate() 625
getBorderInsets 86
getBorderInsets() 85, 88
getBounds() 19, 177
getBufferedImage() 404, 405
getCaret() 606
getCaretColor() 293
getCaretPosition() 293
getCellEditor() 544, 545

getCellEditorValue() 503, 504,
545

getCellRenderer() 543
getCellSelectionEnabled() 548
getChange() 614
getCharacterAttributes() 620
getCharacterElement() 609, 617
getChars() 612
getChildAt() 502
getChildIndices() 507
getChildren() 507
getChooserPanels() 425
getClass() 602
getClientProperty 17
getClipBounds() 44
getColor() 370, 371
getColumn() 540, 542
getColumnClass() 538, 540, 543
getColumnCount() 538, 539,

542
getColumnIndex() 540, 542
getColumnIndexAtX() 542
getColumnMargin() 542
getColumnName() 538, 540
getColumns() 294, 299, 542
getColumnSelectionAllowed()

542, 548
getColumnWidth() 299
getComponent 122
getComponent() 338
getComponentCount() 126, 127
getContentType() 300, 629
getDataVector() 539
getDefaultJPEGEncodeParam()

394
getDefaultRootElement() 608
getDefaults() 344, 724, 725, 726,

729
getDescription() 430, 724, 729,

740
getDisplayName() 602
getDivider() 126, 127
getDocument() 293, 614, 615
getDot() 625
getEditorComponent() 231

getEditorKitForContentType()
300

getElement() 614
getElementAt() 259
getElementCount() 614
getEndOffset() 615
getEndPosition() 608
getExpandedIcon() 523
getFile() 415, 416, 522
getFileNode() 522
getFileSize() 416, 417
getFileSystemView() 431
getFirstChild() 524
getFocusAccelerator() 294
getFocusedComponent() 628
getFont() 609
getFontMetrics() 44
getForeground() 609, 620
getGraphics() 775
getGroup() 159
getHeaderRenderer() 540
getHeaderValue() 540
getHeight() 18
getHighlighter() 606, 624
getHorizontalAlignment 294
getIcon() 523
getIconGap() 159
getID() 481, 724, 728, 740
getIdentifier() 540
getImageableHeight() 761
getImageableWidth() 761
getImageableX() 761
getImageableY() 761
getInputAttributes() 620
getInputStream() 451
getInsets() 85, 126
getInstalledLookAndFeels() 740
getInteriorRectangle() 85
getItem() 231
getItemCount() 238
getJPEGDecodeParam() 394
getJPEGEncodeParam() 394
getKeyChar() 66
getKeyCode() 66
getKeymap() 606

INDEX 861

getKeyStroke 67, 334
getKeyStrokesForAction() 627
getLastPathComponent() 502,

522
getLayoutType() 136
getLength() 608, 614, 616
getLimit() 326
getLineEndOffset() 299
getLineOfOffset() 299
getLineStartOffset() 299
getList Cell Renderer Compo-

nent() 245
getListCellRenderer() 231
getListCellRendererComponent

231
getListCellRendererCompo-

nent() 245, 272, 280
getlisteners() 20
getListeSelectionListeners() 260
getLocalGraphicsEnvironment()

38
getLogicalStyle() 609, 619
getMagicCaretPosition() 625
getMark() 625
getMaxDimension() 138
getMaximumSize() 18, 44, 139
getMaximumSize(JComponent c)

12
getMaxWith() 540
getMaxXExtent() 218, 219
getMaxYExtent() 219
getMinimumSize() 18, 44, 139
getMinimumSize(JComponent c)

12
getMinWidth() 540
getModel() 159, 501, 538
getModelIndex() 539
getModifiers() 67
getName() 39, 451, 615, 724,

729, 740
getNextEntry() 451
getNextMatch() 257, 502
getObject() 243, 522
getOffset() 613, 614
getPaper() 761

getParagraphAttributes() 619
getParagraphElement() 609, 617
getParameterInfo() 169
getParentElement() 615
getPassword() 298
getPath() 507
getPathCount() 502
getPercentComplete() 416, 417
getPopupMenu() 335
getPreferredSize() 44, 92, 139,

209, 750
getPreferredSize(JComponent c)

12
getPrinterJob() 758, 760
getProperty() 608
getPropertyDescriptors() 602
getReadMethod() 602
getRenderer() 229
getResolveParent() 621
getRootElements() 608
getRoots() 431
getRowCount() 538, 539
getRowHeight() 299
getRows() 299
getRowSelectionAllowed() 548
getRowsForPaths() 505
getScaledInstance() 776
getScrollableBlockIncrement()

209
getScrollableTracksHeight() 209
getScrollableTracksViewport-

Height() 552
getScrollableTracksViewport-

Width() 209, 552
getScrollableUnitIncrement()

209
getSelectedColor() 425
getSelectedColumn() 548, 549,

550
getSelectedColumns() 549
getSelectedComponent() 188
getSelectedFiles() 429
getSelectedIndex() 188
getSelectedItem() 230
getSelectedRow() 548, 549, 550

getSelectedRows() 549
getSelectedText() 293
getSelectionBackground() 293
getSelectionForeground() 293
getSelectionMode() 548
getSelectionModel() 505, 542
getSelectionPainter() 626
getSelectionPath() 505
getSelectionPaths() 505
getSelectionRows() 505
getSize() 19, 39, 259
getSize2D() 39
getSource() 481, 507, 546
getStartOffset() 615
getStartPosition() 608
getState() 337
getString() 612
getStringPlacement() 380
getStyle() 39, 609
getStyleSheet() 642
getSubElements() 338
getTab() 272
getTableCellEditorCompo-

nent() 544, 545
getTableCellRendererCompo-

nent() 543
getTableHeader() 547
getTabSize() 298
getText() 169, 608, 609
getTextComponent() 628
getToggleClickCount() 505
getToolTipText 533
getToolTipText() 533
getTotalColumnWidth() 542,

551
getTreeCellEditorComponent()

503, 504, 544
getTreeCellRendererCompo-

nent() 502, 523, 533, 543
getTreeNode() 522
getTreePath() 507
getType() 261, 614
getUI 725
getUI() 726, 727
getUIClassID() 727

862 INDEX

getUndoOrRedoPresentation-
Name() 326

getUserObject() 501, 522, 524
getValue() 345, 424, 444
getValueAt() 538
getValueAt(int row, int column)

539
getView() 204, 205
getViewFactory() 629, 630, 631
getViewport() 205
getViewportView() 205
getViewPosition() 205, 213
getViewRect() 205
getViewSize() 205
getWidth() 18, 540
getX() 19
getY() 19
glassPane 477
glue 91, 97
grab-and-drag scrolling 202, 211
GrabAndDragDemo 211
GrabAndScrollLabel 211, 212
graphics 40, 41, 44, 49, 55, 59,

60, 61, 85, 272, 758, 760,
766, 775
context 41
debugging 49, 51, 60

Graphics.drawPolygon(Polygon
polygon) 172

GraphicsConfiguration 38
GraphicsDevice 38, 39
GraphicsEnvironment 38, 39,

648
graphicsID 51
GraphicsWrapper 60
GrayFilter 158
GregorianCalendar 392, 576
grid lines 551
GridBagConstraint 92
GridBagConstraint.BOTH 105
GridBagConstraint.NORTH

105
GridBagConstraints 89, 91, 92,

98, 100
GridBagConstraints.BOTH 103

GridBagConstraints.CENTER
99, 102

GridBagConstraints.EAST 102
GridBagConstraints.HORIZON-

TAL 103, 105
GridBagConstraints.NONE 103
GridBagConstraints.NORTH

102
GridBagConstraints.NORTH-

EAST 102
GridBagConstraints.NORTH-

WEST 102
GridBagConstraints.RELATIVE

99
GridBagConstraints.SOUTH

102
GridBagConstraints.SOUTH-

EAST 102
GridBagConstraints.SOUTH-

WEST 102
GridBagConstraints.VERTICAL

103
GridBagConstraints.WEST 102
GridBagLayout 89, 91, 92, 98,

101, 109, 335
gridColor 551
GriddedPanel 110, 112
gridheight 101, 103, 105
GridLayout 92, 97, 120–122,

155, 195, 237, 238, 392, 450
GridLayout() 92
gridwidth 101, 103, 105
gridx 99, 109
gridy 99, 109

H

hasFocus 543
hasSubDirs() 525
HEADER_RENDERER_

PROPERTY 541
HEADER_VALUE_PROPERTY

541
HeaderDemo 207
headerRenderer 540, 541
headerValue 540, 541

headless frames 79
heavyweight 5, 336, 471
height 44, 499
helper class 109
HIDE_ON_CLOSE 602
hidePopup() 228
Highlight 624
highlight 606, 624, 625
Highlighter 624
Highlighter.Highlight 606, 624
Highlighter.HighlightPainter

606, 624, 626
HighlightPainter 624
HORIZONTAL 105
horizontal alignment 157
HORIZONTAL_SCROLLBAR_

ALWAYS 204
HORIZONTAL_SCROLLBAR_

AS_NEEDED 204
HORIZONTAL_SCROLLBAR_

NEVER 204
HORIZONTAL_WRAP 258
horizontalAlignment 294
HotJava 733
hotspot 358
HSB 425
HTML 6, 163, 165, 170, 171,

178, 186, 196, 246, 250, 251,
253, 299, 301, 631, 634, 789

HTML converter 171, 178
HTML Document 301
HTML editor 634, 635
HTML page properties 650
HTML source dialog 650
HTML style 667, 676
HTML table 668, 676
HTML text 163
HTML.Attribute 665
HTML.Tag 665, 676
HtmlButtons 164
HTMLDocument 641, 664
HTMLEditorKit 299, 635, 641,

649, 664
HtmlProcessor 635
HtmlSourceDlg 667

INDEX 863

hyperlink 165, 665
insertion 650

HyperlinkEvent 299
HyperlinkListener 251, 299
hyperlinkUpdate 300
hyperlinkUpdate() 251

I

IBM 11
icon 158, 231, 244, 252, 621,

632
alignment 158

IconCellRenderer 517, 521, 523
IconComboRenderer 243, 244,

245
IconData 519, 521, 522, 523,

525, 563
iconifyFrame 477
iconifyFrame() 478
IconUIResource 508, 725
IconView 632
identifier 540, 542
image 55, 59, 766, 776

insertion 650
Image Icon UIResource 724
ImageIcon 158
ImageIcons 41, 158, 195, 212,

218, 244, 252
ImageObserver 766
importData() 828
indeterminate 378
index 472
INFORMATION_MESSAGE

422, 444
init() 26, 168, 184, 195, 196
initClassDefaults 729
initClassDefaults() 730, 741, 749
initComponentDefaults 729
initComponentDefaults() 729,

730, 731, 740, 749
initial delay time 163
initialize() 724
initSystemColorDefaults 729
InnerFrame 475, 482, 751, 752
inorder 499

inProgress 325
input 421

attributes 620
InputEvent. SHIFT_MASK 67
InputEvent.ALT_MASK 67
InputEvent.CTRL_MASK 67
InputEvent.META_MASK 67
InputMap 68
InputStream 381, 382, 395, 406,

416, 451, 629
InputVerifier 312
INSERT 613
insert() 298, 335
InsertBreakAction 629
insertComponent() 303
InsertContentAction 629
insertElementAt() 230
insertIcon() 303
insertString() 296, 303, 608,

610, 612, 615
insertTab() 187
InsertTabAction 629
insertUpdate() 614
Insets 85
insets 85, 86, 88, 99, 126, 127,

137, 271
InsetsUIResource 725
insignificant edits 321
installBorder() 724
installColors() 724
installColorsAndFont() 724
InstallData 276, 280, 281
installLookAndFeel() 740
installUI 731
installUI() 731, 750, 751
installUI(JComponent c) 12
int style 39
Interface Development Environ-

ment (IDE) 154, 604
intermediate containers 128
internal frame 475, 476
INTERNAL_FRAME_

ACTIVATED 480
INTERNAL_FRAME_CLOSED

480

INTERNAL_FRAME_CLOSING
481

INTERNAL_FRAME_
DEACTIVATED 481

INTERNAL_FRAME_
DEICONIFIED 481

INTERNAL_FRAME_
ICONIFIED 481

INTERNAL_FRAME_OPENED
481

internalFrameActivated 480
InternalFrameAdapter 481
internalFrameClosed 480
internalFrameClosing 480
internalFrameDeactivated 480
internalFrameDeiconified 480
InternalFrameEvent 480
InternalFrameFocusTravers-

alPolicy 65
internalFrameIconified 480
InternalFrameListener 480, 481
InternalFrameListenerDemo 480
internalFrameOpened 480
International Organization of

Standards (ISO) 509
InternationalFormatter 306, 309
Internet Explorer 171
InterruptedException 26
INTERVAL_ADDED 261
INTERVAL_REMOVED 261
intervalAdded() 261
intervalRemoved() 261
interview 11
introspection 31, 37
Introspector 31, 602
Introspector.getBeanInfo() 602
invalidate() 26, 503
invertSelected() 281
invokeAndWait() 23, 24
invokeLater() 23, 24, 54, 57, 526
invoker 336
invoker component 336, 341
ipadx 99
ipady 99
isActionKey() 67

864 INDEX

isAltDown() 67
isBorderOpaque() 86, 88
isCellEditable 503
isCellEditable() 503, 505, 538,

545, 603
isCellSelected() 549
isColumnSelected() 549
isControlDown() 67
isDefaultButton() 160
isDefined() 621
isDescendant() 502
isDirectory() 452, 525
isDrawingBuffer() 51
isEqual() 621
isEventDispatchThread() 20, 23
isHiddenFile(File f) 431
isLeaf() 614
isLocallyDefined() 627
isManagingFocus() 298, 333
isMetaDown() 67
isNativeLookAndFeel() 724, 729
isOpaque() 55, 59, 61
isOptimizedDrawing() 59
isOptimizedDrawingEnabled()

55, 61
isPopupTrigger() 336
isResizable 540, 547
isRoot(File f) 431
isRowSelected() 549
isSelectable() 244
isSelected 543, 544
isSelected() 161, 337, 449
isSelectionVisible() 625
isShiftDown() 67
isSignificant() 321
isSupportedLookAndFeel() 724,

729
isValidateRoot() 56
isVisible() 625
italic 38
ItalicAction 631
ItemEvent 160
ItemListener 160, 228, 365, 366
itemStateChanged() 366

J

JApplet 5, 10, 26, 73, 80, 168,
184, 195, 333

JAR 451, 452, 465
JarEntry 452
JarFile 452
JarInputStream 452
JarOutputStream 452
Java 2D 3, 39
Java Community Process xxv
Java Developer certification exam

115
Java Foundation Classes 3
Java plug-in 171, 178, 186
Java Specification Request xxv
Java Swing 605
Java Tutorial 417
Java tutorial 80, 417, 761
Java Web Start Developer 845
java.awt.beans 16
java.awt.datatransfer 830
java.awt.dnd 830
java.awt.event 6, 19
java.awt.print 757, 765
java.Beans 6
java.util.jar 451, 452
java.util.zip 451
Java2D 789, 826
JavaBeans 15, 31, 32, 33, 37, 89,

140, 153, 154, 595, 602, 603
property editor 595

JavaSoft 253
javax. swing.event 16
javax.swing 5, 82, 292
javax.swing. plaf.metal 727
javax.swing.border 5, 82
javax.swing.colorchooser 6, 425
javax.swing.event 6, 19, 299
javax.swing.filechooser 6, 429
javax.swing.plaf 6, 508, 726, 730
javax.swing.plaf.basic 6, 726
javax.swing.plaf.basic.Combo-

Popup 227
javax.swing.plaf.metal 6, 726,

730

javax.swing.plaf.multi 6
javax.swing.table 6, 536
javax.swing.text 6, 612
javax.swing.text.html 6
javax.swing.text.html and

javax.swing.text.rtf 299
javax.swing.text.html.HTMLEd-

itorKit 631
javax.swing.text.html.parser 6
javax.swing.text.rtf 6
javax.swing.text.rtf.RTFEditor-

Kit 631
javax.swing.tree 7, 498
javax.swing.undo 7, 321
javax.xml.parsers 795
JButton 10, 16, 153, 154, 159,

161, 163, 169, 195, 217, 334,
345, 358, 740, 741, 749

JCanvas 42, 46, 47, 49, 51
JCheckBox 159, 161, 162, 228,

256, 276, 280, 337, 504, 543,
545, 740, 741, 750

JCheckBox.setSelected() 280
JCheckBoxMenuItem 159, 337,

346
JColorChooser 6, 10, 418, 425,

426, 427, 445, 449, 450, 667,
677

JComboBox 10, 113, 154, 203,
227– 231, 237, 251, 255,
257, 336, 359, 364, 423, 444,
502, 504, 544, 545, 774

JComponent 4, 15, 18, 19, 22,
32, 49, 54, 55, 59, 60, 82, 85,
157–163, 176, 293, 333, 375,
378, 421, 533–537, 547, 549,
551, 607, 726, 727, 732, 750

JComponent.WHEN_IN_
FOCUSED_WINDOW 607

JDBC 469, 536, 571, 634, 708,
787

JDesktopIcon 477
JDesktopPane 5, 10, 18, 55, 95,

97, 421, 424, 444, 476– 481,
494

INDEX 865

JDesktopPane.dragMode 481
JDialog 5, 26, 30, 333, 381, 418,

419, 421, 422–436, 444, 445,
449

JEditorPane 246, 250, 251, 253,
292, 293, 299, 300, 301, 304,
607, 609, 631, 633

JFC 1
JFileChooser 6, 151–152, 403–

404, 415–418, 427– 431,
451, 452, 466

JFileChooser.FILE_FILTER_
CHANGED_PROPERTY 429

JFormattedTextField 293, 297,
306, 308

JFormattedTextfield 282
JFormattedTextField.Abstract-

Formatter 306, 307, 607
JFormattedTextField.Abstract-

FormatterFactory 306, 309
JFormattedTextField.COMMIT

307
JFormattedTextField.COMMIT_

OR_REVERT 307
JFormattedTextField.PERSIST

307
JFormattedTextField.REVERT

307
JFrame 5, 10, 26, 73, 80, 151,

160, 237, 250, 263, 333, 344,
358, 391, 421, 477

JIntegerTextField 427
JInternalFrame 5, 10, 16, 18, 55,

70, 95, 97, 333, 421– 424,
444, 469, 476–480, 487, 752

JInternalFrame.isPalette 18
JInternalFrame.JDesktopIcon

477
JInternalFrames 94, 476
JLabel 85, 113, 139, 154–163,

195, 196, 209, 212, 217, 228,
231, 237, 243, 244, 252, 256,
271, 272, 279, 280, 376

JLayeredPane 5, 10, 18, 55, 469,
471–473, 476

JList 9, 10, 56, 120, 203, 227,
228, 231, 256–263, 272–275,
279, 280, 423, 427, 429, 499,
502–505, 537, 543, 550

JMenu 5, 159, 333– 338, 345,
346, 358, 366, 370

JMenu.WinListener 335
JMenuBar 10, 333– 338, 404
JMenuItem 10, 159, 333, 334,

335, 337, 338, 339, 345, 346
JNLP 845
Joint Photographic Experts

Group 394
JOptionPane 251, 381, 418,

421–424, 439, 444, 445, 479
JOptionPane.showConfirmDia-

log() 404
JOptionPane.showInputDia-

log() 152
JPanel 80, 94, 120, 121, 122,

136, 195, 237, 280, 370, 371
JPasswordField 292, 293, 298,

415, 475, 607, 609, 615, 616,
630, 632, 633

JPEG 394, 395, 403, 404, 405
JPEG ImageEncoder 405
JPEGCodec 395
JPEGCodec.createJPEGDecod-

er() 395
JPEGCodec.createJPEGEncod-

er() 395
JPEGDecodeParam 394, 395
JPEGDecoderParam 394
JPEGEditor 395, 396, 397, 403,

405, 762, 763, 768, 773
JPEGEncodeParam 394, 395,

403, 404, 405
JPEGImageDecoder 394, 395,

404, 405
JPEGImageEncoder 394, 395,

404
JPEGPanel 403, 405, 765
JPopupMenu 5, 10, 152, 227,

334, 335, 336, 337, 338, 341,
345, 370

JPopupMenu.Separator 336
JProgressBar 9, 374, 378, 415
JRadioButton 114, 120, 159,

161, 162, 337, 740, 741
JRadioButtonMenuItem 152,

159, 337, 346
JRootPane 55, 56, 80, 92, 94,

160, 333, 405, 419
JRootPane.COLOR_CHOOSER_

DIALOG 420
JRootPane.ERROR_DIALOG

420
JRootPane.FILE_CHOOSER_

DIALOG 420
JRootPane.FRAME 419
JRootPane.INFORMATION_

DIALOG 420
JRootPane.PLAIN_DIALOG 420
JRootPane.QUESTION_

DIALOG 420
JRootPane.RootPaneLayout 90
JRootPane.WARNING_

DIALOG 420
JScrollBar 9, 203, 206, 374, 375,

377, 382, 386
JScrollBar.HORIZONTAL 374
JScrollBar.isFreeStanding 17
JScrollBar.VERTICAL 374
JScrollPane 5, 56, 120, 136,

202–209, 213, 227, 251, 257,
263, 280, 299, 382, 403, 405,
415, 499, 513, 537, 547, 551,
602, 775

JSeparator 336, 337, 342
JSlider 9, 374, 375, 376, 377,

387, 391, 394, 403
JSlider.HORIZONTAL 375
JSlider.isFilled 17, 377, 403
JSlider.VERTICAL 375
JSpinner 10, 281, 282, 676
JSpinner.DateEditor 282
JSpinner.DefaultEditor 282
JSpinner.ListEditor 282
JSpinner.NumberEditor 282
JSplitPane 154, 220, 221, 224

866 INDEX

JTabbedPane 10, 187–189,
195–197

JTabbedPane.SCROLL_TAB_
LAYOUT 188

JTabbed-
Pane.WRAP_TAB_LAYOUT
188

JTable 6, 10, 56, 140, 154, 503,
536– 552, 601, 781
appearance 551
scrolling 552
selection 548

JTable.AUTO_RESIZE_ALL_
COLUMNS 550

JTable.AUTO_RESIZE_LAST_
COLUMN 550

JTable.AUTO_RESIZE_NEXT_
COLUMN 551

JTable.AUTO_RESIZE_OFF 551
JTable.AUTO_RESIZE_SUBSE-

QUENT_COLUMNS 551
JTableHeader 538, 547, 551,

552
JTextArea 292, 293, 298, 299,

365, 415, 445, 449, 607, 609,
610, 611, 615, 616, 630, 633,
740

JTextComponent 68, 209, 293,
605, 606, 607, 624, 627, 628,
630

JTextComponent copy() 298
JTextField 10, 56, 114, 154, 228,

229, 231, 255, 292–296, 298,
405, 415, 423, 444, 474, 504,
513, 521, 545, 607, 609, 615,
616, 628, 630, 632, 633

JTextField constructors 294
JTextField.CENTER 294
JTextField.LEFT 294
JTextField.RIGHT 294
JTextFieldDemo 298
JTextFieldTest 294
JTextPane 292, 293, 301, 303,

304, 469, 607, 609, 617, 619,
620, 631, 633, 635

JTextPane (continued)
input attributes 620

JTextPaneDemo 302
JToggleButton 159, 161, 162,

163, 365
JToggleButton.ToggleButton-

Model 159
JToolBar 80, 337, 341, 342, 344,

345, 358
floating frame behavior 344

JToolBar.isRollover 17
JToolBar.Separator 342
JToolTip 163, 184
JTree 7, 10, 56, 498, 499, 500,

501, 503, 504, 505, 506, 508,
509, 513, 521, 523, 533, 535,
537, 543, 544, 545, 611
appearance 508
client properties 508

JTree.lineStyle 17, 508
JViewport 55, 204, 205, 206,

207, 209, 211, 213, 217, 218,
513, 774

JViewport.BACKINGSTORE_
SCROLL_MODE 205

JViewport.BLIR_SCROLL_
MODE 205

JViewport.SIMPLE_SCROLL_
MODE 205

JWindow 5, 30, 80

K

Karr, David 282
Key events and focus manage-

ment 64
KEY_PRESSED 66
KEY_RELEASED 66
KEY_TYPED 66
KeyAdapter 255, 275
keyboard

accelerators 334
focus 160
input 69

KeyboardFocusManager 64, 69

KeyBoardManager 333
KeyboardManager 70
keyChar 66, 68
keyCode 66, 68
KeyEvent 66, 67, 334, 338, 339,

341
KeyEventDispatcher 64
KeyListener 66, 67, 69, 255, 273,

275, 280, 628, 749, 750
Keymap 627, 628
keymap 68, 296, 605, 606, 627,

628, 630
keyPressed() 280
keyReleased() 255
KeySelectionManager 228
KeyStroke 67, 68, 296, 334, 605,

606, 607, 627, 628
keyTyped() 275
killTab() 196
knob 374

L

labelFor 158
Labels 155
LabelView 631, 632
LANDSCAPE 760, 786
landscape 760, 786, 787, 788
last() 93
lastDividerLocation 224
lastRow 546
layered panes 471
LayeredHighlighter 625
layeredPane 475, 477
LayerPainter 625
layers 471
layout managers 89
layoutComponents 138
layoutContainer 90, 124, 138
layoutContainer() 127
LayoutFocusTraversalPolicy 65
LayoutManager 89, 90, 125, 136
LayoutManager2 89, 90
LayoutOrientation 271
LazyValue 724, 725

INDEX 867

LDAP 436
lead 260

selection 505
selection path 507

leadSelectionPath 505
leaf node 498
LeafElement 615, 616, 617, 619
level 499, 509
lightweight 5, 336
lightweight canvas 41
lightWeightPopupEnabled 336
limit 326
line style 508
LineBorder 81, 84, 85
lineCount 299
lineStyle 508, 521
lineWrap 298
list() 406
ListCellRenderer 228, 231, 244,

256, 260, 271, 272, 280, 694
ListData 243, 244, 245
ListDataEvent 228, 230, 259,

261
ListDataListener 230, 259, 261
listenerList 22
listFiles() 526
ListModel 9, 230, 256, 257, 259,

261, 273, 275
listRoots() 521
ListSearcher 275
ListSelectionEvent 260, 261,

537, 542, 543, 546
ListSelectionListener 260, 261,

817
ListSelectionModel 10, 227,

256– 261, 537, 542, 546, 548
ListTransferHandler 842
load() 251
loadSystemColors 729
locale 39, 841
LocaleListRenderer 841
locationToIndex() 258
logical paragraph style 619
logical style 608, 619
login dialog 432

login() 416
login(String user, String pass-

word) 406
LoginDialog 435
LoginModule 436
logStream() 50
LONG_DESCRIPTION 345
look and feel 12, 508, 523, 723,

724, 725, 726, 727, 728, 729,
730, 731, 732, 733, 740, 749
custom 728

 740, 741
look and feel implementations 8
LookAndFeel 13, 469, 724, 726,

727, 728, 729, 732, 733, 740
LookAndFeelInfo 740
Lotus eSuite 733
Lotus Notes 733
Loy, Marc 605

M

MacApp 11
Macintosh 13, 169, 170, 431
MacLookAndFeel 13
MacOS 727
magicCaretPosition 626
major tick marks 375
majorTickSpacing 376, 392, 393
makeIcon() 724
makeKeyBindings() 724
Malachite 8, 724, 733, 740, 741,

749, 751
Malachite look and feel 741
Malachite.MalachiteBorder 741
Malachite.MalachiteButtonUI

749
Malachite.MalachiteLF 740, 749
Malachite.MalachiteRadioBut-

tonUI 751
MalachiteBorder 738
MalachiteButtonUI 744, 749,

751
MalachiteCheckBoxUI 746,

750, 751
MalachiteLF 736, 740, 741, 750

MalachiteRadioButtonUI 748
Manifest 452
manifest 452
map 39
margin 607
mark 625, 626
MaskFormatter 306, 308
MatteBorder 81, 85, 153, 776
maximizeFrame 477
maximum 260, 374
maxWidth 540
MDI 475, 476, 482
MemComboAgent 255
MemComboBox 250
menuBar 477
menuCanceled() 341
menuDeselected() 341
MenuDragMouseEvent 340
MenuDragMouseListener 334,

340
MenuElement 333, 338, 340,

341, 366
MenuElements 338
MenuEvent 335, 341
MenuKeyEvent 334, 340
MenuKeyEventListener 334
MenuKeyListener 340
MenuListener 335, 341
menus 332
menuSelected() 341
menuSelectionChanged() 338
MenuSelectionManager 334,

338, 339, 340, 341, 371
Merlin xxv
message 421
message dialogs 439
message() 416, 417
MessageFormat 306
Metal 727, 732, 733
Metal look and feel 17, 508
Metal themes 732
MetalLookAndFeel 13, 727, 732
MetalTabbedPaneUI 197
MetalTheme 732
MetalToolBarUI 344

868 INDEX

Method 31
MethodDescriptor 31
Microsoft Windows see Win-

dows 727
millisToDecideToPopup 381
MIME type 846
minimizeFrame 477
minimum 260, 374
minimumLayoutSize 124
minimumLayoutSize() 127
minor 375
minorTickSpacing 376, 392
minWidth 540
mnemonic character 158
modal 418

dialogs 420
MODAL_LAYER 421, 472
mode selection 342
model 7, 727
model-delegate 11
modelIndex 539
modelToView() 607
modifiers 67, 68
Motif 727, 728
MotifLookAndFeel 13
mouse Dragged() 626
MOUSE_ENTERED 169
MOUSE_EXITED 169, 177
MouseAdapter 258
mouseClicked() 178, 280, 549,

625, 626
mouseDragged() 212, 213
mouseEntered() 178, 750
MouseEvent 169, 177, 178, 336,

338, 339, 340, 341, 503, 550,
626

mouseExited() 178, 750
MouseInputAdapter 212
MouseListener 163, 169, 172,

177, 178, 280, 365, 371, 499,
537, 549, 625, 749, 750, 751

MouseMotionAdapter 184
MouseMotionListener 172, 177,

178, 184, 625, 626
mouseMoved() 177, 178, 184

mousePressed() 213, 625, 626,
750

mouseReleased() 371, 750
MouseWheelEvent 204
MouseWheelListener 204
MOVE 828
moveCaret() 626
moveCaretPosition() 255
moveColumn() 541
moveDot() 625, 626
movePanel() 217, 218
MultiLookAndFeel 13
multipage printing 757
multiple contiguous interval se-

lection 259
multiple document interface 476
MULTIPLE_INTERVAL_

SELECTION 260, 548, 549
Multiplexing 728
Multiplexing look and feel 6
Multithreading 23
multithreading 1, 16, 20, 23
MutableAttributeSet 611, 617,

621, 622
MutableComboBoxModel 10,

230
MutableHTMLDocument 664,

666
MutableList 841
MutableTreeNode 501
MVC 9, 11, 608, 732

architecture 7
MyChangeListener 195, 196
MyScrollableLabel 210
MyToolBarSeparator 343
MyToolBarUI 344
MyToolTipManager 183, 184

N

NAME 345
NamedStyle 622, 623
NameFormat 318
NASA 171
NASDAQ 553
NavigateButton 169, 176

Navigational selection 343
NavigationFilter 293, 307, 607
negative space 84
Netscape Navigator 171, 186
newDataAvailable() 539
newRows Added() 539
newRowsAdded() 539
next() 93, 615
NO_OPTION 422
NO_SUCH_PAGE 759, 766, 786
node 498
NodeList 796
note 381
number 543
NumberFormat 306
NumberFormatter 306, 309
NYSE 553

O

Object 544
Object Identifiers (OIDs) 509
ObjectInput 153
ObjectInputStream 251
ObjectOutput 153
objToString() 603
ODBC 787
offset 613
OID 513
OID tree 509
OidNode 512, 513, 514
OidSelectionListener 512, 513
OK_CANCEL_OPTION 422
OK_OPTION 422
oneTouchExpandable 220, 224
onKeyRelease 68
opaque 40, 157, 169, 271, 475
openFile() 404
openFrame 477
OpenList 692, 693, 718
optimized drawing 55
option 421
org.w3c.dom 795
orientation 337, 342, 374, 375
OS2 431
outline dragging 481, 482

INDEX 869

OutputStream 395, 406, 451,
452, 629

OvalBorder 86, 88
overlapping 55
OverlayLayout 19

P

pack() 26, 336
page painter 759
page setup 762

dialog 757, 761, 767, 774,
787

PAGE_EXISTS 759, 775, 781,
787

pageable 759, 760, 761
pageDialog() 761
PageFormat 759, 760, 761, 774,

775, 786, 787, 788
PagePreview 772, 774–776, 788
paging area 209, 374
paint 731
paint() 40, 59, 152, 153, 245,

272, 503, 624–727, 732, 750,
751, 760, 776

paint(Graphics g, JComponent c)
12

paintBorder 86
paintBorder() 60, 61, 88, 170,

741
PaintCanvas 323, 328
paintChildren() 60, 61
paintComponent() 41, 60, 61,

139, 153, 170, 178, 209, 224,
405, 503, 523

paintDirtyRegions() 57, 58, 59
paintImmediately() 59
painting 1, 54, 59
paintLabels 376, 392, 393
paintLayeredHighlights() 625
paintTicks 376, 392
paintTrack 377
paintWithBuffer() 60
PALETTE_LAYER 472
paper 760, 761

paragraph 619
attributes 608, 619
element 617, 619

ParagraphAttribute 621
ParagraphConstants 623
ParagraphView 632
parent 498
ParseException 308
PasswordView 632
paste() 607
PasteAction 629
path 499
pathByAddingChild() 502
percentComplete 378
Permanent Focus Owner 61
persistency 32, 37
PhoneFormat 318
PLAF 12, 728
PLAIN_MESSAGE 422
PlainDocument 293, 294, 296,

298, 329, 609, 613, 615, 616,
627

PlainView 632
platform-dependent mouse ges-

ture 336
pluggable look and feel 469, 723
Polygon 177
polygon 172, 176, 177, 178
Polygon.contains(int x, int y)

172
polygonal buttons 155, 171, 181
PolygonButton 176, 177, 184
POPUP_LAYER 472, 473
PopupFactory 20, 29
popupMenuCanceled() 341
PopupMenuEvent 228, 336, 341
PopupMenuListener 228, 336,

341
popupMenuVisible 335
popupMenuWillBecomeInvisi-

ble() 341
popupMenuWillBecomeVisi-

ble() 341
PORTRAIT 761, 786
portrait 760, 788

Position 608, 613
position 18, 471, 606, 608, 612,

613, 615
Position.Bias.Backward 257
Position.Bias.Forward 257
positionCaret() 626
postEdit() 329
postorder 499
postorderEnumeration() 502
postState 328
preferredLayoutSize 90, 124, 137
preferredLayoutSize() 126, 127,

136, 137, 138
preorder 499
preorderEnumeration() 502
PreparedStatement 576
presentationName 321
pressed 159
preState 328
preview image 776
PreviewContainer 774
PreviewPage 774
PreviewPanel 445, 447, 449, 450
previous() 93, 615
Print dialog 757, 758, 759, 760,

761, 763, 765, 787
print preview 757, 767, 777, 782
print() 758–762, 765, 766, 775,

786, 787
Printable 758, 759, 760, 761,

762, 765, 773–776, 785
printable job 759, 760, 761
Printable.PAGE_EXISTS 774
printData() 765, 786
printDialog() 758
PrinterAbortException 762
PrinterException 762
PrinterGraphics 760
PrinterIOException 762
PrinterJob 758–761, 765, 774
printing

images 757, 762
styled text 757, 776
tables 757, 781
text 776

870 INDEX

PrintPreview 768, 773–775, 788
PrintPreview.PagePreview 775
PrintPreview.PreviewContainer

775
PrintStream 50, 610
processComponentEvent() 392
processComponentKeyEvent()

69
processKeyEvent() 69, 338
processMouseEvent 339
processMouseEvent() 169, 333,

338, 339
programmatic scrolling 214
progress 381
progress bars 373
ProgressMonitor 381, 382
ProgressMonitor() 382
ProgressMonitorInputStream

381, 382
properties 15, 32, 37
property sheets 32
propertyChange() 602
propertyChanged() 543
PropertyChangeEvent 15, 32,

345, 377, 429, 540, 541, 602
PropertyChangeEvents 15, 16,

189
PropertyChangeListener 37, 335,

336, 342, 345, 375, 429, 468,
541, 597, 601, 602

PropertyChangeListeners 153
PropertyChangeSupport 16, 153
PropertyDescriptor 31, 602, 603
PropertyTableData 597, 601,

602
PropertyVetoException 16, 479
put(String filename) 406
putClientProperty 17
putClientProperty() 377
putDefault() 749
putDefaults 724
putFile() 415, 416
putNextEntry() 451
putProperty() 608
putValue() 345

Q

quality 403, 405
QUESTION_MESSAGE 422
queueComponentWorkRe-

quest() 57, 58

R

radio buttons 84
range 613
Raster 395
read() 294, 382, 451, 629
read/write locking 609
readable 32
Reader 294, 629
readExternal 33
readExternal() 37, 153
readLock() 610
readObject 32
readObject() 153
readUnlock() 610
realized 26
Rectangle 177
rectangle 18, 19, 58, 85, 177,

205
rectangular button 178
redo 321, 326
redo() 322, 325, 326, 329
redoPresentationName 321
redoTo() 326
reflection 602
registerComponent() 163
registerKeyboardAction 607
reload() 522
REMOVE 613
remove() 187, 205, 335, 608,

610, 612
removeAllChildren() 524
removeAllHighlights() 624
removeAllItems() 238
removeAttribute() 622
removeAttributes() 622
removeBindings() 628
removeCaretListener() 627
removeCellEditorListener() 545

removeChangeListener() 374, 625
removeChoosableFileFilter() 431
removeChoosableFileFilter(File-

Filter f) 430
removeColumn() 541
removeColumnSelection-

Interval() 549
removeDescendantSelected-

Paths() 506
removeElement() 230
removeElementAt() 230
removeHighlight() 624
removeKeyStrokeBinding 296
removeKeyStrokeBinding() 628
removeLayoutComponent 124
removeLayoutComponent() 125
removeListDataListener() 230
removeRowSelectionInterval()

549
removeStyle() 609
removeTableColumnModelLis-

tener() 546
removeTableModelListener()

538, 545
removeTreeExpansionListener()

506
removeTreeModelListener() 506
removeTreeSelectionListener()

506
removeTreeWillExpandListen-

er() 507
removeUndoableEditListener()

329
removeUpdate() 614
render() 608, 609
rendering

charts 789
images 789
strings 789

reorderingAllowed 547
repaint 57, 152, 503
repaint() 26, 54, 57, 58, 152,

405, 421
RepaintManager 30, 50–54,

55–60

INDEX 871

RepaintManager.currentMan-
ager 50

replaceEdit() 321
replaceRange() 298
requestFocus() 158, 293, 606,

626
requestFocusEnabled 365
reset() 404, 405
resetToPreferredSize() 221
reshow delay time 163
resizedPostingDisabledCount

540, 541
resizeFrame 477
resizingAllowed 547
resolving parent 619
responsiveness 24
restart() 28
restoreState() 328
ResultSet 576, 720
revalidate() 26, 54, 56, 57, 405
revalidation 57, 58
REVERSE_LANDSCAPE 761,

786
RGB 425
rigid areas 91
RigidAreas 403
rollover 159
root 499

node 498
validation 56

rootPane 477
RootPaneContainer 80, 333, 477
RootView 632
rotation 39
row 299, 543, 544, 545

selection 548
rowAtPoint() 550
rowHeight 299
RowMapper 505
rowPerPage 786
rowsRemoved() 539
RTF 6, 299, 631, 634

word processor 776
RTFEditorKit 299
rubber stamp 228, 231, 256

Runnable 23, 153, 252
Russell, Robert C. 708

S

save() 251
saveFile() 404
scale 39, 121
SCALE_SMOOTH 776
schemas 789
scroll bar thumb 209
scroll bars 373
Scrollable 209, 257, 537, 552
Scrollable interface 499
ScrollableDemo 210
ScrollDemo 386
Scrolling Panes 202
Scrolling programmatically 202,

213
ScrollPaneConstant 204
ScrollPaneConstants 204
ScrollPaneDemo 203
ScrollPaneLayout 90, 206, 209
scrollRectToVisible() 205
section 619
SectionElement 615, 617, 619
SecurityContext 28
SecurityManager 28
segment 612
selectAll() 549
selectCar() 238, 243, 244
selected 159, 161
selectedBackground 551
SelectedForeground 551
selectedIndex 333
selection device 500
selectionColor 624
selectionForKey 228
serialization 32, 33, 140, 153,

246, 604
service 28

class 54, 55, 57
setAccelerator 334
setAccelerator() 335
setAcceptAllFileFilterUsed() 430
setAccessory() 429

setAlignmentX() 341
setAlignmentX(float f) 19
setAlignmentY() 341
setAlignmentY(float f) 19
setBackground() 257
setBlinkRate() 625
setBorder() 82
setBounds() 18
setBoundsForFrame 477
setBufferedImage() 405
setButtonStates() 415
setCaret() 606
setCaretColor() 293
setCaretPosition() 255, 293
setCellEditor() 504, 540–545
setCellRenderer() 502, 540, 543
setCellSelectionEnabled() 548
setCharacterAttributes() 609,

619, 620
setClickCountToStart() 505
setCoalesce() 28
setCollapsedIcon 509
setColor() 371
setColumnHeader() 207
setColumnHeaderView() 207
setColumnMargin() 542
setColumns() 294, 299
setColumnSelectionAllowed()

542, 548
setColumnSelectionInterval()

549
setContentType() 300
setContinuousLayout() 221
setControlButtonsAreShown()

428
setCorner() 206
setCurrentDirectory() 428
setCurrentFile() 404
setCurrentTheme() 732
setDataVector() 539
setDebugGraphicsOptions() 49
setDefaultButton() 160
setDefaultCloseOperation 602
setDefaultLightWeightPopup-

Enabled 152

872 INDEX

setDefaultLightWeightPopup-
Enabled() 336

setDefaultRenderer() 543
setDelay() 28, 335
setDisabled Icon() 158
setDisabledSelectedIcon() 160
setDismissDelay() 163
setDisplayedMnemonicIndex()

159
setDivider() 126, 127, 128
setDividerLocation() 220
setDividerSize() 220
setDocument() 293, 294, 296
setDot() 625
setDoubleBuffered() 55
setDoubleBufferingEnabled 50
setDoubleBufferMaximum-

Size() 57
setEchoChar() 298
setEditable() 229
setEditor() 229
setEditorKitForContentType()

300
setEnabled() 158, 161
setEndSelection() 303
setExpandedicon 509
setExtent() 403
setExtentSize() 204
setFileFilter(FileFilter f) 430
setFileSystemView(FileSystem-

View fsv) 431
setFixedCellHeight() 257
setFixedCellWidth() 257
setFlashColor 50
setFlashCount 50
setFlashTime 50
setFocusAccelerator() 294, 606
setFont() 44, 157
setFontFamily() 623
setForeground() 157, 257, 544
setGridColor() 551
setHeaderRenderer() 540
setHeaderValue() 540
setHelpMenu 333
setHighlighter() 606, 624

setHorizontalAlignment() 157,
294

setHorizontalScrollBarPolicy 204
setHorizontalScrollBarPolicy()

204
setHorizontalTextAlignment()

157
setIcon 478
setIcon() 158, 444
setIconGap() 159
setIconImage() 419
setImageableArea() 761
setIndeterminate() 378
setInitialDelay() 27, 163
setIntercellSpacing() 551
setInvalidCharacters() 309
setItem() 231
setJMenuBar() 333
setKeymap() 606, 628
setLabelTable() 376, 392
setLayout() 94
setLayoutOrientation() 258
setLeftChildIndent 509
setLightWeightPopupEnabled()

5, 228
setLimit() 326
setLineWrap() 298
setListData() 257
setLocation() 336
setLocation(int x, int y) 19
setLogicalStyle() 609, 619
setLogStream() 50
setLookAndFeel() 13, 728, 740
setMagicCaretPosition() 625
setMaximumSize() 18, 364
setMaxWidth() 540
setMenuLocation() 335
setMethod() 451
setMinimumSize() 18
setMinWidth() 540
setMnemonic() 161
setModel() 159, 257, 501, 538
setModelIndex() 539
setMultiSelectionEnabled() 429
setOpaque 156, 159

setOpaque() 40, 55
setOptions() 422, 444
setOrientation() 220, 374
setPage() 251, 252
setPageable() 760
setPaper() 761
setParagraphAttributes() 609,

619
setPlaceHolderCharacter() 309
setPopupSize() 336
setPreferredSize() 153
setPressedIcon() 160
setPreviewPanel() 425, 449
setPrintable() 760
setProgressMaximum() 416, 417
setProgressString() 416, 417
setProgressValue() 416, 417
setProperty() 602, 603
setPrototypeCellValue() 257
setPrototypeDisplayValue() 228
setRenderer() 229
setRepeats() 28
setReshowDelay() 163
setResizeWeight() 221
setResolveParent() 622
setRightChildIndent 509
setRolloverIcon() 160
setRolloverSelectedIcon() 161
setRowHeader() 207
setRowHeaderView() 207
setRowHeight() 508, 551
setRowMargin() 551
setRows() 299
setRowSelectionAllowed() 548
setRowSelectionInterval() 549
setScaledSize() 774, 776
setScrollMode() 205
setSelected() 161, 337, 371
setSelectedColor() 425
setSelectedComponent() 188
setSelectedForeground() 257
setSelectedIcon() 161
setSelectedIndex() 188
setSelectedItem() 230, 238, 243,

244

INDEX 873

setSelectedPath() 340
setSelectionBackground() 293
setSelectionForeground() 293
setSelectionMode() 260, 505,

548
setSelectionModel() 542
setSelectionVisible() 625
setShowGrid() 551
setState() 177, 178, 184, 337
setStatus() 196
setTabLayoutPolicy() 188
setTableHeader() 547
setTabPlacement() 187, 196
setTabSize() 298
setText() 169, 298, 299
setTipText() 184
setTitle() 602
setToggleClickCount() 505
setToolTipText 164
setToolTipText() 163
setUI 344, 726
setUI() 12, 727
setUserObject() 501
setValidCharacters() 309
setValue() 378
setValueAt() 538, 603
setVerticalAlignment() 157
setVerticalScrollBarPolicy 204
setVerticalScrollBarPolicy() 204
setVerticalTextAlignment() 157
setView() 204
setViewport() 205
setViewportView() 205
setViewPosition() 204, 218
setVisible() 336, 421, 625
setVisible(true) 26
setVisibleRowCount() 257
setWheelScrollingEnabled() 204
setWidth() 540
setWrapStyleWord() 298
Shakespeare.mdb 708
shared instance 28
sharedInstance() 30, 163
shear 39
SHORT_DESCRIPTION 345

shouldSelectCell 503
shouldSelectCell() 503, 545
shouldYieldFocus() 312
show() 26, 93, 336, 421, 444
showCar() 237, 238
showConfirmDialog() 423, 445
showDate() 393
showDialog() 425, 428
showDocument() 169
showGrid 551
showHorizontalLines 551
showInputDialog() 423, 444
showInternalConfirmDialog()

423
showInternalInputDialog() 423
showInternalMessageDialog()

423
showInternalOptionDialog()

424
showMessageDialog() 423, 444
showOpenDialog() 404, 428
showOptionDialog 479
showOptionDialog() 423
showPopup() 228
showSaveDialog() 404, 428
showsRootHandles 513
showTrim() 237, 238, 243
showVerticalLines 551
sibling 498
significant edits 321
Simple Network Management

Protocol (SNMP) 509
simple properties 32
SimpleAttributeSet 302, 303,

622, 623, 624, 649
SimpleDateFormat 392, 468
SimpleFilter 403, 430, 467
SimplePanel 224
single contiguous interval selec-

tion 259
single selection 259
SINGLE_INTERVAL_

SELECTION 260
SINGLE_INTERVAL_

SELECTION 548

SINGLE_SELECTION 227, 260,
280, 548

SINGLE_SELECTION_MODE
548

SINGLE_TREE_SELECTION
505

SingleSelectionModel 188, 332,
333

SixDigitDocument 296
size 18
size() 451
SizeSequence 591
sliders 373
SMALL_ICON 345
SmallAttributeSet 621, 623, 624
SmallButton 359, 365
SmallTalk 11
SmallToggleButton 359, 364,

365
SmallToggleButtons 365
SmartGridLayout 427
snapToTicks 376
SNMP 509
SoftBevelBorder 81, 85
sorting columns 536, 564
SortingFocusTraversalPolicy 65
SOUNDEX 708
spell checker 708
SpellChecker 719
SpellingDialog 720
SpinnerDateModel 282, 283
SpinnerListModel 282, 283
SpinnerModel 10, 281, 282
SpinnerNumberModel 282, 283
split panes 220
SplitSample 223
Spring 93
SpringLayout 93
SpringLayout.Costraints 93
SQL 571, 634, 708
start() 26, 27
stateChanged() 188, 196, 217,

450
StateEdit 328
StateEditable 328

874 INDEX

StateInvariantError 610
statement 576
StatesList 262, 263, 266, 271,

274, 275
status bar 189
StockComparator 570
StockData 563
Stocks table 536, 552
StocksTable 782, 785, 788
StockTableData 564, 576
stop() 28
stopCellEditing() 503, 504, 545
storeState() 328
strikethrough 693
string 263, 377
StringContent 612, 613
stringPainted 377, 378
StringTokenizer 272, 417
stringToObj() 603
stringWidth 45
strut 91, 97
style 304, 606, 608, 609, 614,

620, 621, 622, 623, 627
StyleConstants 301, 302, 303,

621, 623, 648
StyleConstants.ParagraphCon-

stants 623
StyleContext 606, 614, 620, 622,

623, 641
StyleCon-

text.DEFAULT_STYLE 619
StyleContext.NamedStyle 622
StyleContext.SmallAttributeSet

621, 622
styled text 634
StyledDocument 293, 329, 608,

609, 617, 619, 620
StyledEditorKit 630, 631, 649
StyleDocument 609
StyledTextAction 631
StyledViewFactory 631
subscript 693
subtree 498
Sun Microsystems 29, 733
superscript 693

Swatches 425
Swing Connection 54, 627
Swing package overview 5
SwingConstants 157, 187
SwingConstants.BOTTOM 157
SwingConstants.CENTER 157
SwingConstants.LEFT 157
SwingConstants.RIGHT 157
SwingConstants.TOP 157
SwingGraphics 60
SwingPropertyChangeSupport

16, 345
SwingUtilities 23, 30, 419, 726,

728
SwingUtilities.invokeLater 27
SwingUtilities.invokeLater() 31,

404, 405, 416, 417, 522
SwingUtilities.isEventDispatch-

Thread() 26
SwingUtilities.updateCompo-

nentTreeUI() 13
SwingUtilities.updateCompo-

nentTreeUI(this) 487
SwingWorker 26
symmetrical layout 238
synchronized split pane dividers

224
SyntheticImage 427
system 724

event queue 20, 22, 54, 57
System.arrayCopy() 22
SystemEventQueueUtilities 57
SystemEventQueueUtilities’ 58

T

tab alignment 195
TabableView 632
Tabbed Panes 187
TabbedPaneDemo 189, 196,

198, 200
TabbedPaneDemo.MyChange-

Listener 196
TabExpander 272, 632
table 536, 543, 544, 547

header 537

Table ModelListener 545
TableCell Editor 504
TableCellEditor 540, 545
TableCellRender 543
TableCellRenderer 537, 540,

543, 547, 787
tableChanged() 545
TableColumn 10, 537, 538, 539,

540, 541, 542, 543, 544, 547,
551

tableColumn 547
TableColumnModel 10, 537,

540–548, 551
TableColumnModelEvent 537,

542, 546
TableColumnModelListener

542, 546, 547
TableDlg 676
TableModel 10, 537–546
TableModelEvent 537, 538,

539, 546
TableModelEvent.ALL_

COLUMNS 546
TableModelEvent.DELETE 546
TableModelEvent.HEADER_

ROW 546
TableModelEvent.INSERT 546
TableModelEvent.UPDATE. 546
TableModelListener 536, 538,

539, 545, 546
TabListCellRenderer 271, 280,

467
TabSet 632
tabSize 298
TabStop 632
Tan, James 92, 98
TelnetInputStream 417
text 40, 292

alignment 157
components 292
package 605, 615

Text package 605
TEXT_NODE 796
TextAction 606, 628, 629, 631
TextAreaCellEditor 594

INDEX 875

TextAreaCellRenderer 594
TextAttribute 39
TextVerifier 318
themes 732
thread 153
Thread.MIN_PRIORITY 24
thread-safe 16, 26, 31
thumb 374
time-intensive procedure 24
Timer 20–30, 163, 181, 184,

185, 252
TimerQueue 28, 30
TimerTask 20, 28
Tips and Tricks 627
TitleBorder 85
TitledBorder 81, 120, 280, 392,

403
toByteArray() 405
Toggle Buttons 161
ToggleButtonDemo 161
toIndex 546
Tool selection 342
toolbars 332, 355
Toolkit.getDefaultToolkit().get-

FontList() 39
Tooltip Help 366
Tooltip management 155, 180
Tooltip text 178
ToolTipManager 163, 178, 180,

181, 185, 533, 535
Tooltips 533
Top-level containers 26
topLevelMenu 334
toString() 502, 514, 523, 524,

540, 603, 724, 787
totalColumnWidth 543
toViewCoordinates() 205
Transferable 827, 829
TransferHandler 828
transient 32
translate() 177
translation 39, 59
transparent 40, 49–52, 55, 59,

157
buttons 155, 165, 172

tree 498
concepts and terminology 498
traversal 499, 502

Tree Node 500
Tree.closedIcon 508
Tree.collapsedIcon 508
Tree.expandedIcon 508
Tree.hash 508
Tree.leafIcon 508
Tree.openIcon 508
TreeCellEditor 499, 503, 504,

544, 545
TreeCellRenderer 499, 502, 523,

543
treeCollapsed() 506
treeExpanded() 506, 522
TreeExpansionEvent 499, 506,

507
TreeExpansionListener 506, 522
TreeModel 10, 499–501, 506,

548, 549
TreeModelEvent 499, 506, 507
TreeModelListener 501, 506
TreeMouseListener 824
TreeNode 499, 501, 502, 611
TreePath 501, 502, 507, 510,

513, 522
TreeSelectionEvent 505–507,

510
TreeSelectionListener 505, 506,

507, 510, 513, 523, 817
TreeSelectionModel 10, 499,

505, 506
treeWillCollapse() 507
treeWillExpand() 507
TreeWillExpandListener 506,

508
Trim 237, 243, 244
trimForLimit() 326
TwoListsPanel 841
type 546

U

UI defaults 508
UI delegate 6, 11, 13, 41, 51, 60,

UI delegate (continued)
61, 80, 162, 163, 170, 176,
228, 229, 257, 333, 336, 337,
344, 505, 508, 542, 543,
606–608, 624, 629–632, 723,
725–729, 732, 741, 749, 751

UI resources 725, 729
UIDefaults 13, 724– 729, 740,

749
UIDefaults.LazyValue 724
UIDefaults.UIDefaultProxy 725
UIManager 13, 344, 378, 486,

509, 523, 725–730, 740, 750
UIManager.LAFState 30
UIManager.LookAndFeelInfo

486
UIResource 725
unbalanced layout 264
underline 693
UnderlineAction 631
undo 292, 321, 326
undo() 321, 322, 325, 326, 329
undo/redo 608, 677
UndoableEdit 321, 324–329,

612, 682
UndoableEditEvent 325, 326,

612, 682
undoableEditHappened() 325,

326, 329, 682
UndoableEditListener 325, 326,

329, 608, 612, 682
UndoableEditSupport 329
UndoablePaintSquare 324, 328
undocking 356
Undoer 682
UndoManager 321, 324–326,

682
undoOrRedo 325
undoPresentationName 321
UndoRedoPaintApp 304, 310,

313, 319, 322, 326
UndoRedoTextApp 330
undoTo() 326
Unicode 66, 67
uninitialize() 724

876 INDEX

uninstallBorder() 724
uninstallUI 731
uninstallUI() 732, 750
uninstallUI(JComponent c) 12
unit increments 209
unitIncrement 374, 375
Unix 431
unregisterComponent() 163
unregisterKeyboardAction() 607
update 731
update() 40, 59, 727, 732
update(Graphics g, JComponent

c) 12
updateChooser() 426
updateComponentTree() 728
updateComponentTreeUI() 726
updateLevel 329
updateMonitor() 365
updateUI() 726, 727
updateUndo() 682
URL 168, 169, 177, 246, 250,

251, 255, 299, 300, 665
user object 514
utilities 272

V

validate() 58, 152, 774
validateInvalidComponents() 57
validateRoot 57
validation 54, 503
value 374, 543, 544
valueChanged() 261, 506, 513,

523, 542
valueIsAdjusting 373, 374
variable height rows 591
verify() 312
VERTICAL 258
VERTICAL_SCROLLBAR_

ALWAYS 204
VERTICAL_SCROLLBAR_AS_

NEEDED 204
VERTICAL_SCROLLBAR_

NEVER 204
VERTICAL_WRAP 258
VetoableChangeListener 37, 479

VetoableChangeListeners 16
VetoableChangeSupport 16
View 607, 621, 629, 630–633
view 8, 204, 304, 605, 607, 614,

620–622, 629, 631, 632, 727,
731, 781

view component 205
ViewFactory 607, 629, 631, 633
ViewportLayout 90
viewToModel() 607, 626
virtual key code 66
visibleAmount 374, 375
visibleRowCount 257
visual layer 84, 500
VisualWorks 7
VolatileImage 55
Vorobiev, Maria vii

W

WARNING_MESSAGE 422
WAV 196
weightx 100, 105
weighty 100
WHEN_ANCESTOR_OF_FO-

CUSED_COMPONENT 68
WHEN_FOCUSED 68
WHEN_IN_FOCUSED_

WINDOW 68
whitespace 81
WideCaret 626
width 540, 541, 543, 551
Window 57, 58, 336
window decorations 79
WINDOW_ACTIVATED 65
WINDOW_DEACTIVATED 65
WINDOW_GAINED_FOCUS 65
WINDOW_LOST_FOCUS 65
windowDecorationStyle 419
WindowEvent 64, 419
WindowListener 65, 251, 602
Windows 13, 431, 724, 727

2000 758, 762, 834
look and feel 84
NT 758, 760–762, 767

WindowsLookAndFeel 13

Wood, Dave 605
WordProcessor 635, 643, 651,

668, 677, 682, 696, 709, 776
WrappedPlainView 632
wrapStyleWord 298
write() 294, 451, 629
writeable 32
writeExternal 33
writeExternal() 37, 153
writeLock() 610
writeObject 32
writeObject() 153
Writer 294, 629
writeUnlock() 610
WYSIWYG 445

X

X/Motif 11
xDensity 403, 405
XML 33, 789
XML editor 789
XMLDecoder 33
XMLEncoder 33
XmlViewer 795, 800, 807

Y

yDensity 403, 405
YES_NO_CANCEL_OPTION 422
YES_NO_OPTION 422, 445
YES_OPTION 422

Z

ZIP 451, 452, 465
ZIP/JAR Manager 452
ZipEntry 451, 452, 467
ZipFile 451, 452
ZipFileView 467
ZipInputStream 451, 452, 467
ZipJarManager 454, 465
ZipOutputStream 451, 452
ZoneView 632
Z-order 5

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about the cover illustration
	PART
	Foundations
	chapter�1
	Swing overview
	1.1 AWT
	1.2 Swing
	1.2.1 Z-order
	1.2.2 Platform independence
	1.2.3 Swing package overview

	1.3 MVC architecture
	1.3.1 Model
	1.3.2 View
	1.3.3 Controller
	1.3.4 Custom view and controller
	1.3.5 Custom models

	1.4 UI delegates and PLAF
	1.4.1 The ComponentUI class
	1.4.2 Pluggable look and feel
	1.4.3 Where are the UI delegates?

	chapter�2
	Swing mechanics
	2.1 JComponent properties, sizing, and positioning
	2.1.1 Properties
	2.1.2 Size and positioning

	2.2 Event handling and dispatching
	2.2.1 EventListenerList
	2.2.2 Event-dispatching thread

	2.3 Multithreading
	2.3.1 Special cases
	2.3.2 How do we build our own thread-safe methods?

	2.4 Timers
	2.5 AppContext services
	2.6 Inside Timers and the TimerQueue
	2.7 JavaBeans architecture
	2.7.1 The JavaBeans component model
	2.7.2 Introspection
	2.7.3 Properties
	2.7.4 Customization
	2.7.5 Communication
	2.7.6 Persistency
	2.7.7 A simple Swing-based JavaBean

	2.8 Fonts, colors, graphics, and text
	2.8.1 Fonts
	2.8.2 Colors
	2.8.3 Graphics and text

	2.9 Using the graphics clipping area
	2.10 Graphics debugging
	2.10.1 Graphics debugging options
	2.10.2 Graphics debugging caveats
	2.10.3 Using graphics debugging

	2.11 Painting and validation
	2.11.1 Double-buffering
	2.11.2 Optimized drawing
	2.11.3 Root validation
	2.11.4 RepaintManager
	2.11.5 Revalidation
	2.11.6 Repainting
	2.11.7 Painting
	2.11.8 Custom painting

	2.12 Focus management
	2.12.1 KeyboardFocusManager
	2.12.2 Key events and focus management
	2.12.3 Focus and Window events
	2.12.4 Focusability and traversal policies

	2.13 Keyboard input
	2.13.1 Listening for keyboard input
	2.13.2 KeyStrokes
	2.13.3 Scopes
	2.13.4 Actions
	2.13.5 InputMaps and ActionMaps
	2.13.6 The flow of keyboard input

	PART
	The basics
	3. Frames, panels, and borders
	3.1 Frames and panels overview
	3.1.1 JFrame
	3.1.2 JRootPane
	3.1.3 RootLayout
	3.1.4 The RootPaneContainer interface
	3.1.5 The WindowConstants interface
	3.1.6 The WindowListener interface
	3.1.7 WindowEvent
	3.1.8 WindowAdapter
	3.1.9 Custom frame icons
	3.1.10 Centering a frame on the screen
	3.1.11 Headless frames and extended frame states
	3.1.12 Look and feel window decorations
	3.1.13 JApplet
	3.1.14 JWindow
	3.1.15 JPanel

	3.2 Borders
	3.2.1 Inside borders

	3.3 Creating a custom border
	3.3.1 Understanding the code
	3.3.2 Running the code

	4. Layout managers
	4.1 Layouts overview
	4.1.1 LayoutManager
	4.1.2 LayoutManager2
	4.1.3 BoxLayout
	4.1.4 Box
	4.1.5 Filler
	4.1.6 FlowLayout
	4.1.7 GridLayout
	4.1.8 GridBagLayout
	4.1.9 BorderLayout
	4.1.10 CardLayout
	4.1.11 SpringLayout
	4.1.12 JPanel

	4.2 Comparing common layout managers
	4.2.1 Understanding the code
	4.2.2 Running the code

	4.3 Using GridBagLayout
	4.3.1 Default behavior of GridBagLayout
	4.3.2 Introducing GridBagConstraints
	4.3.3 Using the gridx, gridy, insets, ipadx, and ipady constraints
	4.3.4 Using the weightx and weighty constraints
	4.3.5 Using the gridwidth and gridheight constraints
	4.3.6 Using anchor constraints
	4.3.7 Using fill constraints
	4.3.8 Putting it all together: constructing a complaints dialog
	4.3.9 A simple helper class example

	4.4 Choosing the right layout
	4.4.1 Understanding the code
	4.4.2 Running the code

	4.5 Custom layout manager, part I: label/field pairs
	4.5.1 Understanding the code
	4.5.2 Running the code

	4.6 Custom layout manager, part II: common interfaces
	4.6.1 Understanding the code
	4.6.2 Running the code

	4.7 Dynamic layout in a JavaBeans container
	4.7.1 Understanding the code
	4.7.2 Running the code

