

Professional Eclipse 3 for Java™ Developers

Berthold Daum

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iii

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vi

Professional Eclipse 3 for Java™ Developers

01_020059_ffirs.qxd 10/8/04 10:55 AM Page i

01_020059_ffirs.qxd 10/8/04 10:55 AM Page ii

Professional Eclipse 3 for Java™ Developers

Berthold Daum

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iii

Copyright © 2004 by dpunkt.verlag GmbH, Heidelberg, Germany.
Title of the German original: Java-Entwicklung mit Eclipse 3
ISBN: 3-89864-281-X

Translation copyright © 2005 John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by the
purchaser of the publication.Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering profes-
sional services. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 0-470-02005-9

Typeset in Indianapolis, IN USA
Printed and bound by Malloy printing in Ann Arbor, MI USA
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page iv

Credits
Author
Berthold Daum

Executive Editor
Gaynor Redvers-Mutton

Production Editors
Felicia Robinson
Juliet Booker

Book Producer
Ryan Publishing Group, Inc.

Copy Editor
Linda Recktenwald

Compositor
Gina Rexrode

Illustrator
Nathan Clement

Vice President & Executive Group Publisher
Richard Swadley

Vice President & Publishing Director
Sarah Stevens

Vice President and Publisher
Joseph B. Wikert

Editorial Manager
Kathryn Malm

01_020059_ffirs.qxd 10/8/04 10:55 AM Page v

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vi

About the Author

Berthold Daum has a Ph.D. in Mathematics and is a professional Java and XML developer who has
been using Eclipse since it was first developed. Mr. Daum specializes in innovative electronic business
technology and electronic content production; his clients include SAP Integrated Services AG and
Software AG. His experience in software training and ability to anticipate the needs of professional
developers has been demonstrated in his previous books, including Eclipse 2 for Java Developers (Wiley)
and Modeling Business Objects with XML Schema (Morgan-Kaufmann).

Mr. Daum studied photography in Melbourne and has both exhibited and published his images of
Australia's natural beauty.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page vii

01_020059_ffirs.qxd 10/8/04 10:55 AM Page viii

Introduction

The first version of Eclipse was released in November 2001. Eclipse was announced by IBM as a $40 mil-
lion donation to the Open Source community. The first reactions to this gift, however, were mixed. While
many Java programmers hailed the release of Eclipse enthusiastically (when would one not be enthusi-
astic about a $40 million present?), Sun Microsystems was initially less than amused.

In the meantime, Eclipse has taken the Java world (and not only the Java world) by storm, despite the
fact that Sun Microsystems is still not onboard. Eclipse is now completely managed by eclipse.org, an
independent, nonprofit organization in which, however, IBM plays a major role. Despite the fact that the
membership fee is quite hefty ($250.00 per year) and commitment is asked in the form of staff members
working actively toward the development of Eclipse, the membership circle is not at all small: the
Eclipse consortium has about 150 member companies, and people from Ericsson, Genuitec LLC, IBM,
Hewlett Packard, Intel, MontaVista Software, QNX Software Systems Ltd., SAP AG, SAS, Serena
Software, and the University of Washington belong to the board (Microsoft, you guessed it, is not a
member).

So, the question is, what is Eclipse? Is it a Java IDE? Is it a new GUI for Java applications? Is it an
application platform or framework?

Eclipse.org refers to Eclipse as a platform for “everything and nothing in particular.” That we
can use Eclipse to develop Java programs (in fact, it is one of the finest Java IDEs) is just a special appli-
cation of this platform. But its real application domain reaches far beyond Java development. Because
of its plug-in architecture, Eclipse is as adaptable as a chameleon and can find a habitat in quite different
environments. The Eclipse Java IDE is, in fact, only an eminent example of an Eclipse plug-in. A large
number of other plug-ins have already been developed for Eclipse by various companies and developers
or are currently in development (see Appendix A for a small selection of such developments). For
example, there is a plug-in for a C++ IDE, while plug-ins for other programming languages such as RPG
and COBOL are in preparation. In this book, however, we will concentrate on Java development with
Eclipse.

Eclipse is more than a pure development environment. With its SWT and JFace libraries it provides an
alternative to Sun’s Java libraries, AWT and Swing. SWT and JFace allow the creation of Java applica-
tions that closely match native applications (i.e., applications written in C or C++) in both “look and
feel” and in responsiveness. In contrast, applications implemented on the basis of Swing often lack
responsiveness and sometimes differ—despite the possibility to switch skins—from the “look and feel”
of a native application. Such applications are notoriously hard to sell, because end users expect applica-
tions that fulfill the standards of the host platform. SWT and JFace could therefore be a breakthrough for
Java applications on the desktop. No wonder, therefore, that there is a heated debate for and against
SWT/JFace in the respective discussion forums (for example, www.javalobby.com) and that the
SWT was voted as the “most innovative Java component.”

Finally, Eclipse provides a large framework for implementing Java applications. Besides the GUI libraries
SWT and JFace, we find higher-level components such as editors, viewers, resource management, task
and problem management, a help system, and various assistants and wizards. Eclipse uses all these

01_020059_ffirs.qxd 10/8/04 10:55 AM Page ix

x

Introduction

components to implement features such as the Java IDE or the workbench, but they can also be used
for your own applications. In particular, the Rich Client Platform that was introduced with Eclipse 3
provides a generic framework for a wide class of applications. The Eclipse license model allows users
to embed these components into their own applications, to modify them, and to deploy them as part of
their own applications—all without paying a cent in license fees. The complete Eclipse code is available
as source code, can be browsed online, and can be used within you own projects.

The Eclipse Culture
Of course, Eclipse was not just “invented”: it has a history. The author of this book, who has used Visual
Age for Java for years, can detect many of the Visual Age construction elements within Eclipse. In fact,
the same company that stood behind the development of Visual Age is also responsible for the develop-
ment of Eclipse. This company is OTI (www.oti.com). As long ago as 1988, OTI developed a collabora-
tive development environment for Smalltalk called ENVY, which was later licensed to IBM under the
name Visual Age. What followed was the development of Visual Age for Java, but this was still imple-
mented in Smalltalk. Now, OTI has started the next generation of development tools with Eclipse. Of
course, we find many of the design elements of Visual Age in Eclipse. The difference is, however, that
Eclipse is implemented in Java and that it features a much more open architecture than Visual Age.

Eclipse was licensed by IBM and than donated to the Open Source community. This was not done without
self-interest: Eclipse basically is nothing more than the community edition of IBM’s WebSphere Studio
Application Developer (WSAD). The core platform and the core plug-ins are all the same. The main differ-
ence is that Eclipse 3.0 consists of about 90 plug-ins, while WSAD features about 500–700 plug-ins, thus
offering greatly extended functionality, such as plug-ins for developing web and database applications.

About This Book
It is practically impossible to write a single book about Eclipse. The sheer complexity of Eclipse would
require quite a few books. I have tried to emphasize those topics where Eclipse makes significant contri-
butions to the Java world. In particular, these are the new GUI libraries (SWT and JFace) and the use of
Eclipse as a platform and framework for desktop applications. What had to be excluded from this book
are WebSphere-specific topics such as J2EE and servlet development. Developing desktop applications is
currently one of the strong points of Eclipse.

This book is not an introduction to Java programming. We assume that readers have a good knowledge
of Java and of object-oriented programming concepts. Most of the examples used in this book are not
trivial. Two examples come from the multimedia area. Here, readers have the possibility of “getting their
feet wet” with cutting-edge Java technology such as speech processing and MP3 (all in pure Java!). In the
third example, we do something useful and implement a spell checker plug-in for Eclipse. I am sick and
tired of bad orthography in Java comments! The last example is a board game implemented on the basis
of the Rich Client Platform, just to burn some of the programmer’s spare time gained by productivity
enhancements of the Eclipse IDE.

This book, therefore, addresses Java programmers—from the student to the professional—who want to
implement their own desktop applications with the help (or on the basis) of Eclipse. You will learn all
the techniques that are required to create applications of professional quality.

01_020059_ffirs.qxd 10/8/04 10:55 AM Page x

xi

Introduction

How This Book Is Organized
The novice to Eclipse—or even an experienced Java programmer—is at first overwhelmed by the sheer
number of functions. But the functions visible to the user are only the tip of the iceberg. If we start to
explore the inner workings of Eclipse, its API, we can get lost easily. Currently the Eclipse download has
a size of 83 MB.

Faced with this huge amount of information, this book uses a pragmatic approach. Following the motto
that “perception works from the outside to the inside,” I first investigate how Eclipse presents itself to
the end user. The benefit is twofold: first, each programmer is an end user of the Eclipse Java IDE;
second, the various components of the Eclipse workbench, such as editors, views, menus, dialogs, and
much more, can also be used in personal applications. Experienced programmers, however, may find an
introduction into the Java IDE trivial and superfluous. Nevertheless, it is useful to get well acquainted
with the Eclipse user interface, because many of the concepts and details can be later utilized when
designing you own applications.

In Chapters 1 through 7 of this book I first introduce practical work with Eclipse, in particular with the
Java development environment. Eclipse presents itself as a very powerful Java IDE that continues the
positive traditions of Visual Age for Java but also introduces new concepts such as code completion,
strong refactoring facilities, assistants that make intelligent proposals for fixing program errors, and a
local history that allows a return to previous code versions.

In these chapters I also discuss the organization of the workbench, the resources of the Eclipse
workspace such as projects, folders, and files, how these resources are related to the native file system,
and the tools for navigation. I explain what perspectives are and how they can be used effectively. The
Eclipse Java debugger and the integration of JUnit into Eclipse are discussed, and a short introduction
about Eclipse’s support for working in a team is given.

The examples used in this part are still all based on AWT and Swing.

However, this will quickly change in the second part of the book, Chapters 8 through 10. Here, I intro-
duce the secrets of the SWT and JFace libraries. For SWT, event processing is discussed, along with the
various GUI elements such as text fields, tables, buttons, and trees; the various layout options; graphics
operations and how Java2D can coexist with the SWT; and printer output. I also explain the specialties of
thread and resource management in the context of the SWT and the integration of SWT widgets with
Swing facilities.

In the case of the JFace library, I present the higher user interface levels such as windows, dialogs,
viewers, actions, menus, text processing, wizards, and preferences. As an example, an MP3 player that
can be deployed independently of the Eclipse platform is implemented completely with SWT and JFace.
An interesting detail in this example is how the SWT library is used in a multithreaded application.

In Chapters 11 through 16 I explain how to develop your own products on the basis of the Eclipse plat-
form: either as a plug-in to Eclipse or as a stand-alone application under the Rich Client Platform. Since
Eclipse consists more or less only of plug-ins, I first introduce the plug-in architecture of Eclipse. The
requirements for a minimal platform are discussed, and I show how workspace resources are used in
Eclipse and how plug-ins are declared via a manifest. Then the various components of the Eclipse work-
bench such as editors, views, actions, dialogs, forms, wizards, preferences, perspectives, and the help

01_020059_ffirs.qxd 10/8/04 10:55 AM Page xi

xii

Introduction

system are introduced. All these components are available to the application programmer as building
blocks, a fact that can speed up application development considerably.

Then, I show how your own products can be packaged for deployment. Eclipse offers integrated support
for all tasks here, too: from the creation of a feature, to the creation of nation language fragment and the
definition of an update site, to the automated installation of updates. As an example, a universal and
fully functional plug-in for spell checking on Eclipse platforms is implemented.

Finally, I discuss the Rich Client Platform (RCP) that was introduced with Eclipse 3 and serves as a
generic platform for a wide range of applications. The board game Hex is implemented as an example of
such an RCP application.

In Appendix A some more interesting third-party plug-ins are listed. In Appendix B I discuss the migra-
tion to another version of the Eclipse platform. Appendix C contains download addresses for the third-
party software and the source code used in the examples.

Acknowledgements
Books are always teamwork, even if only the author’s name appears below the title. This is also the case
with this book, and here is the place to acknowledge the contribution of all the other team members.

Special thanks go to the publisher John Wiley & Sons and Wrox, in particular to Gaynor Redvers-Mutton
who acted as the publishing editor. Thanks go also to the publisher of the original German edition,
dpunkt verlag, and the responsible editor there, René Schönfeldt.

Thanks also to Tim Ryan’s group who handled the production of this book, especially Linda
Recktenwald for copyediting, Gina Rexrode for composition, and Nathan Clement for his technical
illustrations.

Many important tips that found their way into this book came from the (anonymous) reviewers but also
from developers and employees of OTI who had looked at the first manuscript version. Many thanks!
And of course, without the development of Eclipse this book would not have been written, and Eclipse
is indeed a tool that I wouldn’t want to miss. Thanks again!

Berthold Daum
June 2004

berthold.daum@bdaum.de

01_020059_ffirs.qxd 10/8/04 10:55 AM Page xii

Contents

Introduction ix

Chapter 1: Introduction to Eclipse 1

Installing Eclipse 1
The First Application: Hello World 5

Perspectives 5
Projects 7
Create a New Class 7
Launch 9

The Most Important Preferences for Java Development 10
Workbench Preferences 11
Installed JREs 12
Compiler Preferences 14
Formatting Code 15
Templates 16

Tasks and Problems 18
Problems, Problems 19
General Tasks 21
Bookmarks 22

The Scrapbook 22
Summary 24

Chapter 2: Effective Programming with Eclipse 25

Little Helpers 25
System Information 25
Help and Hover 26
Java Information Views 27
Automatic Code Completion 28
The Correction Assistant 33
Convenience Functions of the Java Editor 35

Source Code Navigation 36
Refactoring Code 38

Modifying Types 38
Refactoring Code 39

Undo and Redo 42

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xiii

xiv

Contents

Local History 43
Comparing Resources 43
Replacing with an Older Version 43
Restore Deleted Resource 43

Summary 44

Chapter 3: The Art of (Visual) Composition 45

Installation 45
Invocation 46
Preferences 46
Composition 46
Beans and Bean Properties 48

Generic Beans 48
Properties 48

Layouts 49
Event Processing 49
Summary 50

Chapter 4: Organizing Your Code 51

The Workbench 51
Resources 52

Resource Types 52
Where Resources Are Stored 52
Synchronizing Resources 53
Navigation 53

Associations 54
Packages 55

Folders and Packages 55
Navigation 56
Hierarchy 56

The Outline View 57
Representation 58
Context Functions 59

Searching 60
The Search Function 60
Find and Replace 62
Marking Name Occurrences 63

Arranging Editors and Views 63
Docked Windows 63
Stacked Windows 64
Desktop Windows 64
FastView 64

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xiv

xv

Contents

Opening and Closing Windows 65
Maximizing Windows 65
Minimizing Views 65

Managing Perspectives 65
Defining New Perspectives 65
Configuring Perspectives 66

Importing Files 67
Project Properties 69
The Java Browsing Perspective 71
Summary 72

Chapter 5: Project One: Duke Speaks 73

Setting Up the Project 73
A Short Excursion into Speech Synthesis 74
Extending the FreeTTS System 75

Animation Events 75
The Animator 77
Embedding into FreeTTS 81
Connection with the Java Audio System 83

The User Interface 84
The Animated Face 85
The Control Panel 87
The Model 87
The Presentation 91
The Complete Application 106
Exporting the application 109

Bibliography 110
Summary 110

Chapter 6: Project Development 113

Debugging 113
The Debug Configuration 113
The Debug Perspective 114
Controlling Program Execution 115
Managing Breakpoints 117
The Java Console 118
Remote Debugging 119

JUnit 120
Setting Up JUnit 120
Creating a Test Suite 122
Running a Test Suite 124

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xv

xvi

Contents

Documentation 125
Try It Out: Javadoc Options 126
Try It Out: Command-Line Options 126

Summary 128

Chapter 7: Advanced Topics of Project Development 129

Developing in a Team 129
Setting Up a Repository 130
Projects in the Repository 132
Version Management 133
Working in a Team 133
Other Functions 135

External Tools 135
Refresh 135
Environment 135
Associations 135

Summary 136

Chapter 8: The SWT Library 137

SWT Function Group Overview 138
SWT—Pros and Cons 139

Advantages of SWT 140
Disadvantages of SWT 140

The SWT Package 141
Events 141

Listeners 141
Adapters 142
Events 142
Overview of Listeners, Adapters, and Events 143

Widgets 145
The Widget Class 146
The Control Class 146
Visual Overview 146
Displays, Shells, and Monitors 146
Dialogs 152
Composites, Groups, and Canvas 155
Buttons 156
Sliders and Scales 158
ProgressBar 159
Scrollable and ScrollBar 159

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xvi

xvii

Contents

Text Fields and Labels 159
Tables, Lists, and Combos 161
Trees 166
Sashes 167
Tabbed Folders 168
Toolbars 169
Moveable Tool Groups (CoolBar) 170
Menus 170
Custom Widgets 174
The Browser Widget 177

Layouts 177
Visual Overview 178
The FillLayout Class 178
The RowLayout Class 179
The GridLayout Class 180
The FormLayout Class 182
The StackLayout class 184

Graphics 185
The Graphics Context 185
Colors 186
Fonts 187
Images 189
The Cursor 190

Widgets That Swing 191
Embedded Contents 192
Events 192

Output to a Printer 196
Data Transfer 198

The Clipboard 198
Drag and Drop 199

Resource Management 200
Windows32 Support (OLE) 201
SWT on the Pocket PC 202
Accessibility 202
Summary 203

Chapter 9: JFace 205

Resource Management 205
The FontRegistry Class 205
The ImageRegistry Class 206
The JFaceColors Class 206
The JFaceResources Class 206

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xvii

xviii

Contents

Dialogs and Windows 206
Some Dialog Subclasses 207
Implementing Your Own Dialog Classes 210
Making Dialogs Persistent 213

Viewers 214
The Viewer Event Model 215
The Viewer Hierarchy 215
Cell Editors 217
Data Transfer 218

Text Processing 218
Text Processing Base Classes 218
The ProjectionViewer 226
Comfortable Text Fields and Combos 226

Actions and Menus 226
The IAction Interface 226
The Managers 227

Wizards 228
The Wizard Class 228
The WizardPage Class 229
The WizardSelectionPage Class 230
The WizardDialog Class 230

Preferences 230
The PreferenceStore and PreferenceConverter Classes 231
The PreferencePage Class 232
Field Editors 232
Preference Page Trees 233

Summary 235

Chapter 10: Project Two: Jukebox 237

Design Goals and How to Achieve Them 237
Installing the Project 238
The Player Module 241

Layout 241
Threads 242
The Player.java Class 243
BasicPlayerListener 260

The Playlist Domain Model 261
The Interface 261
Implementing IPlayList 268
Accessing Features 270
Managing Entries 271

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xviii

xix

Contents

Content Provider 273
Playlist Switch 273
Selections 274

The Description Window 275
The DescriptionWindow Class 276

The Playlist Viewer 278
The PlaylistWindow Class 278
The PlaylistViewer Class 281
Nested Grid Layout 289
Toolbar 290
File-Selection Dialogs 292
Menu 293

The PlaylistLabelProvider Class 295
Returning a Warning Icon 296
Cell Text 297

The FileCellEditor Class 299
The Description Editor 300

The DescriptionCellEditor Class 300
The DescriptionEditorDialog Class 302

Code Scanner 303
Content Assistant 304
SourceViewer Configuration 307
SourceViewer 308

Deploying the Jukebox 311
Summary 311

Chapter 11: Developing Plug-ins for the Eclipse Platform 313

The Architecture of the Eclipse Platform 314
Extension Points 314
OSGi 314
A Minimal Platform 315
Rich Client Platform vs. IDE 315
Resource Management 315
User Interface 316
Help System 316
Team Support 316
Other Plug-in Groups 317
Architecture Summary 317

The Core Classes of the Eclipse Platform 318
The Platform Class 318
The Plugin Class 318

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xix

xx

Contents

The Preferences Class 319
Path Specifications 319
Monitoring Long-Running Processes 320

The Eclipse Workspace 320
Resources 320
Markers 324
Reacting to Resource Changes 325
Managing Long-Running Processes 326

Configuring Plug-ins 327
The Plug-in Development Perspective 327
The Plug-in Manifest 329
The Most Important SDK Extension Points 332
The Schema Editor 341

Components of the Eclipse User Interface 344
Forms 344
The Eclipse Workbench 350
The Architecture of the Eclipse Workbench 351
Event Processing in the Eclipse Workbench 352
Editors 355
Views 362
Actions 367
Dialogs 372
Workbench Wizards 374
Preferences and Property Pages 377
Defining Perspectives 377
The Help System 379
Cheat Sheets 383

Summary 385

Chapter 12: Developing Your Own Eclipse-Based Products 387

Embedded Ant 388
Configuration 388
Editing Ant Scripts 389

Plug-ins and Fragments 390
Features 391

Creating and Editing Features 391
Deployment 393

Deploying a Feature 393
Deploying Complete Products 394
Customizing Products 394
Populating the Workspace 396
Creating Update Sites 398

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xx

xxi

Contents

Installing from an Update Site 399
Adding an Update Site 400
Installing Features 400
Updating Features 400
Managing the Configuration 400
Install Handlers 401

Internationalizing Products 401
Text Constants in Programs 402
Text Constants in Manifest Files 403
Help Texts and Cheat Sheets 404
Deploying National Language Resource Bundles 405

Patches 405
Summary 405

Chapter 13: Project Three: A Spell Checker as an Eclipse Plug-in 407

The Spell Checker Core Classes 408
The Engine 408
Overview 409

Setting Up the Project 410
The Plug-in Configuration 412

The Manifest plugin.xml 413
The Schema documentTokenizer.exsd 417
Imported Files 419

The Plugin Class 419
Dictionary URL 421
Initializing Preferences 422
The Manager 423

The Check Spelling Action 424
The SpellCheckingTarget Class 425
Factory Method 426
Selections 427
Document Management 428
Text Replacement 429
Disposal 430
The CheckSpellingActionDelegate Class 431

The Correction Window 439
The SpellCorrectionView Class 439
View Actions 449
Managing Images 450

Coordinating Core Classes with GUI Classes 452
The Manager 453
Selecting the Plug-in 454

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxi

xxii

Contents

Running the Engine 457
Managing Engines 458
Creating Engines 459
Processing Bad Words 462
Operations 462

Analyzing Documents 463
Configuring the Spell Checker 463

Preferences 463
Domain Model 464
The GUI 466
Reading from the PreferenceStore 471

The Help System 473
The Help Table of Contents 473
Context-Sensitive Help 473
Active Help 474
Running the Help Action 476

A Plug-in for Java Properties 477
Setting Up the Project 477
The Manifest 478
Tokenizer Extension 478
Manifest 479
The Plugin Class 480
The Preferences 481
The Preference Page 482
The Java-Properties Tokenizer 483
The Help System 483

Internationalizing the Spell Checker 484
Text Constants in Java Code 484
Text Constants in Manifest Files 487
Creating a Language Fragment 487

Deploying the Spell Checker 490
Defining the Spell Checker Feature 490
Configuring Ant Scripts 492
Defining the Language Feature 495
Defining the Update Site 497
Installation 498

Summary 499

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxii

xxiii

Contents

Chapter 14: The Rich Client Platform 501

Definition and Motivation 501
Plug-ins and the RCP 502
Creating an Application 503

The IPlatformRunnable Interface 503
The WorkbenchAdvisor Class 503

Testing a Rich Client Application 507
Deploying a Rich Client Application 507
Advanced Product Customization 508
The Global Welcome Screen 508
Summary 509

Chapter 15: Project 4: The Hex Game as a Rich Client Application 511

Overview 511
Setting Up the Project 512
The Manifest plugin.xml 512

Required Eclipse Plug-ins 514
Declaring the Application 514
Defining a Perspective 515
Defining a View 515
Product Customization 515
Linking the Welcome Screen 515
Adding Help 516
The Completed Manifest 516

The RcpApplication Class 517
The RcpWorkbenchAdvisor Class 518
The RcpPerspective Class 519
The IGame and IStatusListener Interfaces 520

The IStatusListener Interface 520
The IGame Interface 520

The HexView Class 521
The Game Engine 527
The Welcome Screen 531
Test 534
Deployment 534
Summary 535

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxiii

xxiv

Contents

Chapter 16: Conclusions and Outlook 537

Programming Style 537
Executable Prototypes 538
Automated Tests 538
Refinements 538
Embrace Change 540
Save Energy 541

Java 1.5 541
Summary 542

Appendix A: Useful Plug-ins for Eclipse 545

Appendix B: Migrating Projects to a New Eclipse Version 551

Projects 551
Plug-ins 552
Migration to Eclipse 3 552

Appendix C: Important Downloads 555

Project One: Duke Speaks 555
Project Two: Jukebox 555
Project Three: A Spell Checker as an Eclipse Plug-In 555
Book Web Site 556

Appendix D: Bibliography 557

Index 559

02_020059_ftoc.qxd 10/8/04 10:55 AM Page xxiv

Introduction to Eclipse

In this chapter you install and configure Eclipse. I then use the classical HelloWorld example to
show how to effectively create Java programs under Eclipse. I first discuss the most important
workbench preferences and then introduce various utilities for code creation.

Installing Eclipse
Installing Eclipse is very easy. In most cases, the only thing to do is to unpack the downloaded ZIP
file onto a disk drive with sufficient free space. What do you need to run Eclipse? The following
list shows what is required:

❑ A suitable platform. Eclipse 3.0 runs on a wide variety of platforms: Windows, Linux,
Solaris, QNX, AIX, HP-UX, and Mac OS X. However, in this book I mostly refer to the
Windows platform and occasionally give hints for the Linux platform.

❑ Sufficient disk space. 300 MB should be enough.

❑ Sufficient RAM. 256 MB should be fine.

❑ Java SDK 1.4. If this SDK is not installed on your machine, you can download it from
www.javasoft.com and install it by following the instructions given on this site. You
should specify the bin subdirectory of the SDK in your PATH environment variable so
that you can call the Java Virtual Machine (JVM) by issuing the command java from the
command prompt.

❑ Eclipse SDK 3.0 for your platform.

❑ The Eclipse example files (eclipse-examples-3.0) for your platform.

11

03_020059_ch01.qxd 10/8/04 10:47 AM Page 1

To install Eclipse, follow these steps:

1. Unpack the Eclipse SDK into the target directory. For example, on Windows that could be the
root directory C:\. In effect, the Eclipse libraries will be contained in directory C:\eclipse.
Under Linux you could use the /opt/ directory so that the Eclipse files would be stored under
/opt/eclipse/.

2. Immediately afterwards, unpack the Eclipse example files into the same root directory. By doing
so, the example files are automatically placed into the just-created eclipse subdirectory.

3. That’s all. Under Windows you can now invoke Eclipse by clicking the icon with the darkened
sun (in the eclipse subdirectory). Under Linux you would issue the shell command
/eclipse under the directory /opt/eclipse/.

Eclipse then prompts you with the Workspace Launcher. Here you can select the location of the
Eclipse workspace. This workspace will later contain all of your Eclipse projects. Usually the
\workspace\ folder is located in the Eclipse root directory \eclipse\. However, it makes
more sense to install the workspace in a location separate from the Eclipse installation. This
makes later upgrades to new Eclipse version easier (see also Appendix A). In addition, it
becomes easier to back up the workspace.

For example, you may want to specify ...\Own Files\eclipse-workspace under
Windows and /root/eclipse-workspace under Linux. The Eclipse Workspace Launcher is
shown in Figure 1.1. Note that later when running Eclipse you can easily switch to a different
workspace by invoking the function File > Open workspace.

2

Chapter 1

Figure 1.1

Important: When backing up the Eclipse workspace you should always create
complete backups—never incremental backups. Eclipse treats the archive
attribute of files in a somewhat unconventional way, which can lead to a corrupt
workspace when restoring a workspace from an incremental backup. This is a
known bug in Eclipse that has not been fixed with the release of Eclipse 3.0.0.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 2

4. After a short while you should see the Welcome screen. Here you have the choice of various
information sources such as help pages, tutorials, sample programs, and others:

❑ In the Overview section you will find relevant chapters from the various user guides in
the Eclipse help system.

❑ In the Tutorials section you can learn how to create a simple Java program, a simple SWT
application, and an Eclipse plug-in, and you will learn how to create and deploy an
Eclipse feature. These tutorials come in form of Cheat Sheets that can be followed in a step-
by-step fashion.

❑ The Samples section contains ready-to-run example programs. These include samples for
using the SWT and the Eclipse workbench. If you select such an example program, it will
automatically be downloaded from www.eclipse.org (provided that you have established
a connection to the Internet) and installed into the Eclipse workbench. Depending on your
interests and requirements, it may be worthwhile to take a close look at the code of such
an example program.

❑ In the What’s New section you will find a compilation of the new features contained in
Eclipse 3 and also a migration guide for converting the Eclipse 2 application into Eclipse 3
(see also Appendix B). Furthermore, there is a link to the Eclipse Community page and a
link to the Eclipse Update site, where you can update your Eclipse installation online.

However, for the moment you continue the startup process by pressing the Workbench button.
You should then see the Eclipse Welcome screen, as displayed in Figure 1.2. You can return at any
time to this screen by invoking the function Help > Welcome. Figure 1.3 shows Eclipse running.

3

Introduction to Eclipse

Figure 1.2

03_020059_ch01.qxd 10/8/04 10:47 AM Page 3

Figure 1.3

5. It is a good idea to create a desktop shortcut for Eclipse. Under Windows simply pull the Eclipse
icon onto the desktop by pressing the right mouse button. From the context menu select Create
Shortcut Here. Now you can add additional command-line options to this shortcut, for example,
the -vm option discussed below. To do so, right-click the shortcut and select Properties from the
context menu.

To learn which command-line options are available for Eclipse, check the Eclipse help system by
choosing Help > Help Contents. Then select Workbench User Guide, expand the Tasks item, and
choose Running Eclipse.

Under Linux you can similarly create a desktop shortcut under KDE or Gnome and add the
required command-line options.

A further list of command line options is found at Help > Help Contents > Platform Plug-in
Developer Guide > Reference > Other reference information > Runtime options. This section
lists all command line parameters and the corresponding System Property keys. (For
example, the key osgi.instance.data is equivalent to the command line parameter -data.)
These keys can be used to configure Eclipse via the configuration file \eclipse\
configuration\config.ini. Modifying this file allows you starting Eclipse in different
configurations without having to use command line parameters.

4

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 4

6. One of the most important command-line options deals with the selection of the Java Virtual
Machine (JVM) under which the Eclipse platform is executed. If you don’t want to use the stan-
dard JVM (the one executed when invoking the java command), you can specify a different
JVM by using the command-line option -vm.

When the Eclipse loader is invoked it uses a three-stage strategy to determine the JVM under
which the platform is executed. If a JVM is explicitly specified with the command-line
option -vm, then this VM is used. Otherwise, the loader will look for a specific Java Runtime
Environment (JRE) that was deployed with the Eclipse platform. Such a JRE must be located in
the directory \eclipse\jre\. If such a JRE does not exist (as in our case), then the location of
the VM is derived from the PATH environment variable.

By the way, this strategy affects only the JVM under which the platform is executed. Which JVM
and which SDK are used for Java development is specified separately in the Eclipse workbench.

The command-line option -vmargs can be used to specify parameters for the Java Virtual
Machine. For example:

eclipse.exe -vm C:\java13\bin\javaw -vmargs -Xmx256M

Here Eclipse is started with a specific JVM and sets the JVM heap to 256 MB. With very large
projects this can help to prevent instabilities of the workbench.

Another important command-line parameter is the parameter-data for specifying the location
of the workspace. In this case, the Workspace Launcher dialog discussed previously is skipped.
This parameter allows you to create different Eclipse desktop shortcuts for different
workspaces.

The First Application: Hello World
Until now you haven’t seen much of a Java development environment. Eclipse—which is advertised as a
platform for everything and nothing in particular—shows, in fact, nothing in particular when invoked
for the first time. You are now going to change this radically.

Perspectives
To see something “particular” in Eclipse, you first must open an Eclipse perspective. Perspectives consist
of a combination of windows and tools best suited for specific tasks. Perspectives are added to the
Eclipse workbench by various Eclipse plug-ins. This is, for example, the case with the user interface of
the Java IDE, which is nothing more than a large plug-in for the Eclipse workbench. To start developing
Java programs, you therefore must first open the Java perspective. To do so, click the Open Perspective
icon, as shown in Figure 1.4.

5

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 5

Figure 1.4

Use the Open Perspective icon to open new perspectives. By the way, by clicking the perspective bar
with the right mouse button and invoking the function Dock On, you can change the position of the per-
spective bar. If you were used to Eclipse 2.1, you may want to dock the perspective bar at the left border
of the Eclipse workbench.

From the list that appears, select Java. You should then see the screen shown in Figure 1.5.

6

Chapter 1

Figure 1.5

03_020059_ch01.qxd 10/8/04 10:47 AM Page 6

The Java perspective shows the windows (Package Explorer, Hierarchy), menu items, and toolbar icons
that are typical for Java development. On the left you see a new icon denoting the Java perspective.
Above this icon is the icon for the Resource perspective that was active before you opened the Java per-
spective. You can quickly switch between different perspectives by clicking these icons.

Projects
Now it’s time to say Hello to the world and to create your first program. To do so, first create a new Java
project. On the toolbar click the Create a Java Project icon, as shown in Figure 1.6. By clicking the icons of
this group you can create new Java projects, packages, classes, interfaces, and JUnit Test Cases.

7

Introduction to Eclipse

Figure 1.6

In the dialog that appears, name the project with HelloWorld. The Package Explorer now shows an
entry for the new project.

Create a New Class
In the next step click the C icon on the toolbar (Create a Java Class). In the following dialog make sure that

❑ The Source Folder is specified as HelloWorld.

❑ The name of the new class is specified as HelloWorld.

❑ public is selected as Modifier.

❑ java.lang.Object is specified as Superclass.

❑ The option to public static void main() is checked.

The Create a New Class Wizard (Figure 1.7) is able to generate some class code. The wizard can generate
stubs for the inherited methods, especially if a super class and interfaces are specified.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 7

Figure 1.7

After you click the Finish button, the Eclipse workbench looks a bit more like a workbench in use
(Figure 1.8).

The Package Explorer shows the contents of the new project, including the libraries of the Java runtime
environment. At any time you can open the classes belonging to these libraries and look at their source
code. The center window holds the Java source editor, which currently contains the pregenerated code
for the HelloWorld class. At the right-hand side you can see the Outline window showing the current
class with its methods. You quickly navigate to any method or variable in the source editor by clicking it
in the Outline View.

Now you complete the pregenerated code. You change the main() method in the following way:

public static void main(String[] args) {
System.out.println("Hello World");
}

8

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 8

Figure 1.8

By doing this you have finished the programming work for your first project. Save the new class
HelloWorld to disk by clicking the floppy disk icon on the toolbar. (Alternatively, you can use the
keyboard shortcut Ctrl+S.) This will also compile this class. The program is now ready for execution.

Launch
The Run icon is positioned on the right side of the bug icon. Here, you activate the drop-down menu
by clicking the arrow at the right of the Run icon. From this drop-down menu select Run As > Java
Application to start program execution. Now, a new tag with the label Console should appear in the
Tasks View area. With a click on that tag you can open the Console View (see Figure 1.9), which should
display the text “Hello World.” Done!

During this first execution, Eclipse creates a new Run Configuration named HelloWorld. A list of all
available Run Configurations is found under the arrow on the right side of the Run icon. The Run icon
itself is always associated with the Run Configuration that was executed last. To execute the program
again, simply click the Run icon.

The console window opens automatically when a program writes to System.out or System.err.

9

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 9

10

Chapter 1

Figure 1.9

The Most Important Preferences for Java
Development

Before you continue in your programming efforts, you should first explore your working environment.
The Window > Preferences menu gives you access to all Eclipse preferences (see Figure 1.10).

On the left of the Preferences dialog you can select from several preference categories. On the right-hand
side of the dialog the details of the selected preference category are shown. All settings made here can be
stored into an external file by clicking the Export button or loaded from an external file by clicking the
Import button.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 10

Figure 1.10

At first sight, the sheer mass of preferences shown in this dialog may be overwhelming, because each
plug-in may contribute its own set of preference categories to this dialog. In this chapter, I will discuss
only those preferences that are most relevant in the context of this book. You should take the time to step
systematically through all preference categories to get an overview of the possibilities. Some of the cate-
gories have subcategories. To expand a category, click the + sign in front of the category name.

Some of the preference settings will make sense only during the discussion of the corresponding Eclipse
function. In such cases I will postpone the discussion of the preference settings to the discussion of the
corresponding workbench function.

Workbench Preferences
If you previously have worked with Emacs, it may make sense to switch the Key Bindings in Eclipse so
you can continue to use the familiar Emacs shortcuts. To do so, expand the Workbench category, select
the subcategory Keys, and click the Keyboard Shortcuts tag. In the drop-down list named Active
Configuration you can choose between Emacs and Default. You can even define your own keyboard
shortcuts. First, go to the Command group and select a command via the Category and Name fields. The
existing keyboard shortcut assignments appear in the Assignments list. A keyboard shortcut can consist
of a single key combination or a series of key combinations. Edit the sequence of key combinations by
placing the cursor into the Name field of the Key Sequence group and pressing the key combination to

11

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 11

be added to the sequence. Use the Backspace key to delete entries. To add a new key sequence, don’t
select an entry in the Assignments list; simply enter the key sequences in the described way, and then
press the Add button.

On the Advanced page of the Key Bindings preferences you can enable an assistant that will help you
with completing multistroke keyboard shortcuts.

Installed JREs
You probably don’t always want to create Java applications that require a Java 1.3 or Java 1.4 platform.
In some cases you may need to run on Java 1.2 platforms. Within the preference category Java, in the
subcategory Installed JREs, you can list all Java Runtime Environments that are installed on the host
computer (see Figure 1.11).

12

Chapter 1

Figure 1.11

In this preference category you can declare all the Java Runtime Environments (SDK or JRE) that are
installed on the host computer for Eclipse. Among the JREs listed here, Checkmark One is the default
JRE. This JRE will be assigned to all new Java projects. You will learn later how this can be changed in
the project settings and how different JREs can be used in different Launch Configurations.

To add a new JRE, just click the Add button (alternatively you can click the Search button to scan a
whole directory for a JRE or SDK). Then complete the following dialog (see Figure 1.12).

03_020059_ch01.qxd 10/8/04 10:47 AM Page 12

13

Introduction to Eclipse

Figure 1.12

A new JRE is added to the Eclipse workbench. I have provided the name and location of the JRE home
directory. The location of the corresponding Javadoc is preset by Eclipse and points to the JavaSoft Web
site. If the documentation is available locally, you should modify this entry accordingly. The entry
Default VM Arguments may specify VM command-line parameters to be used with this VM.

For further customization you could uncheck the Use Default System Libraries item. This would allow
you to add further JAR libraries. If any of the JARs does not contain source code, you can attach external
source code by pressing Attach Source.

If you want to add a version 1.1 JRE (this is necessary when you want to run your application on a
Microsoft VM), you must also change the JRE type to the value Standard 1.1.x VM.

Of course, it is possible to execute an application on a JVM that is different from the JVM under which
the application was developed. For example, if you developed an application under Java SDK 1.1.8 and
want to test how the application performs under a version 1.3.1 JVM, you must change the runtime
environment before executing the program. You can do this by choosing the appropriate JVM in the
Eclipse Launch Configurator. You can open the Launch Configurator by invoking the menu function
Run > Run.

For the remainder of this book I use the Java 1.4 SDK.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 13

Compiler Preferences
Now take a closer look at the compiler preferences. In the Preferences dialog select the category Java and
the subcategory Compiler. Note that all adjustments made here affect the whole workbench. On project
level (see the “Project Properties” section in Chapter 4), however, you have the possibility of overriding
the global settings made here under Preferences.

Warnings and Errors
On the right-hand side of the Java > Compiler category you see a tabbed notebook. The Style, Advanced,
Unused Code, and Javadoc pages show which compiler events create errors or warnings and which
compiler events should be ignored (see Figure 1.13).

14

Chapter 1

Figure 1.13

Because a lot of third-party code is used in the examples, you need to reset the settings for unused
imports, never-read local variables, and never-read parameters on the Unused Code page to Ignore.
Otherwise, you could face an overwhelming flood of error messages. But if you develop your own
applications, it makes sense to set these settings to Warning because these settings help you to detect

03_020059_ch01.qxd 10/8/04 10:47 AM Page 14

and remove garbage from your code. Just try the following: set Parameter Is Never Read to Warning and
press OK. The project is recompiled. At the program line

public static void main(String[] args) {

you now see a warning icon, and in the Problems window you see the entry

The argument args is never read

Quite right! The HelloWorld program did not make use of the parameter that contains the command-
line arguments.

Classfiles and JDK Compliance
On the Compliance & Classfiles page you can specify which symbolic information, such as variable
names and line numbers, is to be included in the generated classfiles. This information is required for
debugging, and therefore you may want to leave the proposed settings unchanged. However, for a well-
tested program it may make sense to remove this information from the classfiles; generated files are
much smaller without the symbol tables.

On the same page you can determine whether the compiler must comply with the Java 1.4 or Java 1.3
syntax. With Java 1.4, one new instruction was added to the language: assert. Consequently, the word
“assert” can no longer be used as a field or method name. In addition, assert requires support from
the JVM. Classes that use this instruction cannot be executed by older JVMs. Since assert is not used
in the first example program, leave this setting at the proposed value of Java 1.3.

Formatting Code
Formatting code can be very helpful, because it is easier to detect violations of the control structures of a
program (such as open if or while statements) when the program is formatted. In the preference
category Java > Code Style > Code Formatter you can configure how the Eclipse code formatter works,
as shown in Figure 1.14. The best method is to try some of the settings and to select those that work best
for your application. To modify these settings you must first create a new profile (by pressing the New
button). Then you can edit this profile by pressing the Edit button. You can create multiple profiles and
switch easily among them. When you publish your code, for example, you may use different profiles for
different sorts of publications.

But how do you apply code formatting? Very simply: just click with the right mouse button on the
source code and select Source > Format from the context menu (Figure 1.14). The key shortcut
Ctrl+Shift+F works even faster. Note that it is also possible to select only a portion of the source code
to format just that portion.

15

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 15

Figure 1.14

Templates
When you created the new HelloWorld class, text similar to the following was generated at the top of
the new compilation unit:

/*
* Created on 27.04.2004
*
* To change this generated comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
/**
* @author Berthold Daum
*
* To change this generated comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/

The first comment was generated for the new Java file, and the second comment was created for the new
type (HelloWorld). You now should follow the advice given in these comments and modify the code
generation preferences according to your requirements. Just open the preferences category Java > Code
Style > Code Templates (see Figure 1.15).

16

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 16

Figure 1.15

For various events, such as the creation of a new type, a new method, or a new constructor, you can
specify which code is to be generated.

Select the Types entry and press the Edit button. In the dialog that appears replace the text provided by
Eclipse with the string “created first in project.” Then press the Insert Variable button. From the list
select the variable named project_name. The result should look like that shown in Figure 1.16.

After you have committed these changes, new classes and interfaces will be created with a comment
containing the user name and the project name.

Figure 1.16 shows the process of editing a code generation template. All variables are prefixed with the
$ character and are enclosed in curly brackets. Apart from the template pattern, you can also supply a
description (which will appear in the overview) and a template context (Java or Javadoc).

17

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 17

Figure 1.16

Later you may also change the entry for New Java File. The predefined text is shown here:

/*
* Created on ${date}
*
* To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
${package_declaration}
${typecomment}
${type_declaration}

The variables used here define the sequence of the different code parts. For example, you just specified
what happens under typecomment in the previous template. Here, delete only the text lines To
change...Code Templates, and leave everything else as is.

Tasks and Problems
Eclipse uses the Tasks and Problems views to notify the user about pending tasks. The Problems view lists
problems such as errors or warnings. By clicking on such an entry you can quickly navigate to an erro-
neous program line.

Other task entries are hints about pending development actions and are shown in the Tasks view. Some
of these hints are created by Eclipse. For example, when you create a new class or a new method, Eclipse
creates a hint that the new construct must still be completed. Programmers may create similar task
entries at their own discretion.

18

Chapter 1

03_020059_ch01.qxd 10/8/04 10:47 AM Page 18

Problems, Problems
In the Compiler Preferences section of this chapter, you saw the Problems window in action. The entries
in the Problems window correlated to pending problems in the Eclipse workbench. In Figure 1.17 I pur-
posely created a syntax error by inserting a blank into the parameter name args. This resulted in three
error messages.

19

Introduction to Eclipse

Problem marker in the
Package Explorer

Problem marker in
the Outline View

Problem marker
for whole file

Problem indicator
for whole file

Problem markers
at faulty line

Bad syntax
Filter

Problem position
in the whole
file

Entries in the
Problems View

Figure 1.17

After you double-click the problem entries, the faulty expressions are underlined in red. Red error mark-
ers on the source editor’s left margin mark the faulty lines. The markers on the right margin show the
position of the errors relative to the whole file. To scroll to the error position, it is only necessary to pull
the scroll bar to the markers. Clicking the markers works just as well.

Error messages are represented by a white cross in a red circle. In contrast, warnings are represented
by a yellow triangle. The third problem type is information tasks, which are represented by a blue
i character.

Double-clicking the problem entry in the Problems view lets you quickly navigate to the problem loca-
tion. Should the problem be located in a file that currently is not open, the file will be opened in the

03_020059_ch01.qxd 10/8/04 10:47 AM Page 19

editor, and the editor window will be positioned on the error location. Just try it, and click on one of the
entries in the Problems view.

As the workbench gets busier, the Problems view often overflows with errors and warnings. At times it
can become difficult to find the Problems entries that are related to the current project or file, because the
Problems view by default shows all problems and other tasks within the whole workspace. Of course,
you can suppress some of the warnings by setting the compiler options accordingly (see the “Compiler
Preferences” section). But there is another way to reduce the information overload: by using the
Problems Filter (Figure 1.18). You can open the Problems Filter dialog by clicking the Filter button in
the toolbar of the Problems window.

20

Chapter 1

Figure 1.18

The setting shown here allows only entries from the current project to appear in the Problems view. The
type of the entry is irrelevant.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 20

Here, in the Problems Filter, you may restrict the entries shown in the Problems view to specific types.
For example, you may opt to show only Java problems. The entry types shown in this window depend
on the installed plug-ins.

In addition, you can restrict the entries by their origin. The On Any Resource option shows all problems
and tasks from the whole workbench. On Any Resource in Same Project shows only problems from the
current project. An interesting option is also the definition of a Working Set—a freely configurable and
named set of resources. Select On Any Resource in Same Project if you want to see only the tasks and
problems of the project on which you are currently working.

You also have the option of filtering problems according their severity. To do so, mark the Where
Problem Severity Is check box and also the Error check box. By doing so you can suppress all warnings
and information entries.

General Tasks
Task entries generated by the compiler are only a specific type of task entry. In addition, you have the
option of creating entries manually. When writing code it often happens that you want to postpone a
certain task to a later time. In this case, you can create a task entry that later reminds you of the unfin-
ished work.

Just click with the right mouse button on the left margin of the source editor at the line where you want
to create the task marker. Select Add Task from the context menu. In the New Task dialog, enter a task
description. The result could look like Figure 1.19.

21

Introduction to Eclipse

Figure 1.19

03_020059_ch01.qxd 10/8/04 10:47 AM Page 21

If you work in a team, you should always create tasks that are important for
other team member, too, in this way (as a comment in the source code) so the
tasks can be exchanged as part of the source code.

This task entry was created by the user. By clicking the status field you can mark the entry as completed.
You can click the Delete button to delete one or several selected tasks. You can create task entries that are
not related to specific locations with the New Entry button. For example, you could create a task called
Don’t Forget to Buy Milk!

A function that was introduced with Eclipse 2.1 is even simpler. Just type a comment starting with one of
the words TODO, FIXME, or XXX in a new line. This line will automatically appear in the Tasks window
as soon as you save the source code. By the way, in Preferences > Java > Task Tags you may define alter-
native or additional tags such as TUNE, UGLY, etc. Of course, these workbench-wide definitions can be
overridden at the project level.

22

Chapter 1

Bookmarks
Eclipse also has a construct that is quite similar to tasks: bookmarks. In the same way that you created
a task entry, you can also create a bookmark. Such a bookmark, however, does not appear in the Tasks
view but appears in a separate Bookmark view. Since this view is not a standard part of the Java
perspective, you first must open it. Select Window > Show View > Other > Basic > Bookmarks (see also
the “Arranging Editors and Views” section in Chapter 4). Bookmarks should be used when you want to
mark a specific position in the code but it is not related to a pending task.

The Scrapbook
Eclipse also inherited the Scrapbook from Visual Age. A scrapbook page is nothing other than a small file
in which you can try out Java expressions or just jot down a new idea.

You can create a new scrapbook page by invoking the function File > New > Other. In the wizard select
Java > Java Run/Debug > Scrapbook Page. In the dialog that appears specify a name for the new page
and, if necessary, the target folder. The result is the creation of a new empty scrapbook page in the target
folder. Scrapbook pages have the file extension .jpage.

Now, how do you use a scrapbook page? You simply type in arbitrary Java expressions. If you use
external types in these expressions, you either have to qualify the type names fully or add import
statements. The context function Set Imports allows you to add import statements for single types or
whole packages.

Then select the expressions that you want to execute and call the Execute context function with the right
mouse button (see Figure 1.20).

03_020059_ch01.qxd 10/8/04 10:47 AM Page 22

Figure 1.20

The selected expression is executed with the help of the Execute context function. The scrapbook context
function appears on the workbench’s toolbar at the far right.

It is not necessary to save the scrapbook page before executing the selected code. The selected code is
compiled by the Execute function. In the case of a compilation or execution error, Eclipse shows the error
message in a pop-up window. You may insert it into the current scrapbook content by pressing
Ctrl+Shift+D. You can easily remove it again by applying the Undo function (Ctrl+Z).

Execute is not the only function that you can use to run a Java expression. In cases where you want to
know the result of an expression, it would be better to use the Display function. For example, executing
the expression

6*7

with the Display function returns the result

(int) 42

23

Introduction to Eclipse

03_020059_ch01.qxd 10/8/04 10:47 AM Page 23

Eclipse shows the result in a pop-up window. You may insert it into the current scrapbook content by
pressing Ctrl+Shift+D. You can easily remove it again by applying the Undo function (Ctrl+Z).

A further function for executing selected expressions is Inspect. This function first appears in a pop-up
window, but by pressing Ctrl+Shift+I you can move it to the separate Expressions View (see Figure 1.21)
that opens automatically when needed. This function is particularly useful when the result of the exe-
cuted expression is a complex object. In the Expressions window you can open the resultant object and
analyze it in detail.

24

Chapter 1

Figure 1.21

The results shown here are displayed in a pop-up window after applying the Inspect function on the
expression new java.util.ArrayList(3);.

Summary
After this first chapter you should be able to create, compile, and run simple Java program with Eclipse.
You should now know how to install Eclipse, create projects, and launch programs. You have become
acquainted with the most important preferences and should take some time now to browse through the
remaining preferences. However, the purpose of some preferences may become clear only during the
course of this book.

Source code annotations such as tasks and problem markers are powerful concepts during the develop-
ment of a software project. In Chapter 16 you will see that these concepts can be used to adopt a more
natural programming style.

Finally, the scrapbook encourages experimenting with Java so that you can try out new program con-
structs in isolation before integrating them into an application.

In the next chapter I will introduce into the various productivity techniques found in Eclipse.

03_020059_ch01.qxd 10/8/04 10:47 AM Page 24

Effective Programming with
Eclipse

Eclipse provides the Java programmer with a variety of productivity tools. In this chapter I will
present some of these tools such as the various assistants for error correction and automatic code
completion, the possibilities for code navigation and code refactoring, and the Local History that
allows tracing back changes in the source code to earlier versions.

Little Helpers
Eclipse is equipped with a variety of useful helpers, which—when used correctly—can save a
substantial amount of typing and also reduce the number of bugs in your programs. In this
section I introduce most of these little helpers.

System Information
Under the Help > About Eclipse Platform menu item you will find some sections that may be
important for your daily work. In particular, the Configuration Details button opens a text file
that contains all essential information about the current configuration of the Eclipse platform:

❑ The System Properties section contains information about the Java platform under which
the Eclipse workbench is executing. In addition, it displays information about the host
operating system.

❑ The Features section lists the installed features. A feature usually consists of a set of
plug-ins that work together to provide specific functionality. For example, the Java IDE
is a feature.

❑ The Plug-in Registry section lists all installed plug-ins separately.

22

04_020059_ch02.qxd 10/8/04 10:57 AM Page 25

❑ The User Preferences section lists the active user preferences under which the platform is
running.

❑ The Update Manager Log section lists information about the tasks performed by the Update
Manager, such as installing new features or checking existing configurations.

❑ The last section, Error Log, is especially important. Here you find a protocol of all error
events that occurred during the execution of the Eclipse platform. If you develop you own
plug-ins, this section will prove especially useful. A more comfortable way to view these
error messages, however, is with the Error Log View. You can open this view via Window >
Show View > Other > PDE Runtime > Error Log. Physically, this error information is stored in
the .metadata/.log file in the workspace directory.

Help and Hover
Eclipse features a classical help system that is activated on demand. In addition, Eclipse is equipped
with a Hover Info that autonomously provides the user with explanations about screen items.

Help
At this stage I don’t want to dig too deep into the Eclipse help system. You simply need to know that
you can invoke Eclipse help via the Help > Help Contents menu item. Like many other programs,
Eclipse uses a client-server solution for its help system. Under the cover, Tomcat works as the help
server, and a standard or custom Web browser is used to display the help to the end user.

In a vanilla Eclipse software development kit (SDK), you will find the following help chapters:

1. Workbench User Guide

2. Java Development User Guide

3. Platform Plug-in Developer Guide

4. JDT Plug-in Developer Guide

5. PDE Guide

You can add more chapters by installing additional plug-ins. For chapters 1 – 7 of this book, the first two
help chapters are the most relevant. For the remainder of this book, the help chapters 3 and 5 will also
become important.

Since Eclipse 2.0, the Eclipse help function has been equipped with a search function. With the Search
Scope function you can restrict the search to specific chapters and sections in the help system.

Intro View
The Intro View is the first view you see when you start Eclipse. Initially it covers the whole workbench
window, but as you continue it will shrink and take its position to the right of the Outline View. During
operation the Intro View will explain the currently active workbench part and offer hyperlinks into the
help system. You can manually invoke the Intro View via Help > Welcome.

26

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 26

Context-Sensitive Help
In addition to the explicit help function, you can call help within Eclipse at any time simply by pressing
the F1 key—provided the currently active plug-in supports this function. After pressing F1 you get a
pop-up window (Infopop), where you can select a relevant help topic and jump directly to it. In this
context the Show in Table of Contents button in the help system (the second button to the left of the
printer symbol) is useful. It synchronizes the table of contents with the currently displayed help page so
that you can see in which context the current help topic is located.

Hover
You probably know hover infos already from other applications: when the mouse hovers over a GUI
element, a small pop-up window appears after a short delay that informs you of the purpose and
function of the GUI element. Eclipse uses this technique as follows:

❑ All buttons on the various toolbars are equipped with hover infos.

❑ For files opened in the editor, you can display the full path information by hovering over the
tag of the respective editor page.

❑ All task and problem markers are equipped with hover infos. You can display the text associ-
ated with a particular marker by hovering over the marker, so you don’t have to look up the
marker in the Tasks window.

❑ Finally, hover infos exist for source code as well. Just place the mouse over the type name
String in our HelloWorld example. After a short delay you will see a hover info containing
the Javadoc of class java.lang.String. Similarly, you will see the Javadoc for method
java.io.PrintStream.println when you hover over the word println. Using this
technique, you can quickly find out in which class a certain method is defined, instead of
browsing up and down the class hierarchies.

If you press the Ctrl key while hovering over source text, your hover info will show the item’s source
code instead of the Javadoc!

If the information to be displayed in the pop-up window is too long, you may want to press F2. This will
transfer the focus to the pop-up window and equip this window with scroll bars.

Java Information Views
Another possibility to display Javadoc information is the Javadoc View. You can open this view by
invoking the function Window>Show View>Other...>Java>Javadoc. The view shows the Javadoc infor-
mation belonging to the currently selected Java element in human-readable form in a separate scrollable
window. I recommendend this view especially for classes containing complex Javadoc comments such
as the class java.util.regex.Pattern!

You can open another useful window with Window > Show View >Other > Java > Declaration; it shows
the declaration of the currently selected Java element.

The call hierarchy of a method can be shown in a separate window also. To do so, select the method
name and then apply the context function Open Call Hierarchy.

27

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 27

Figure 2.1 shows the Call Hierarchy View after executing the context function Open Call Hierarchy when
method createToolbar() was selected. By clicking one of the hierarchy symbols in the view’s toolbar,
you can switch between the hierarchy of calling or of called methods.

28

Chapter 2

Figure 2.1

Automatic Code Completion
The functions for automatic code completion in Eclipse are very powerful and include the source menu
functions but also the Code Assistant introduced in the following section.

The Code Assistant
One of the most powerful utilities for writing code in Eclipse is the Code Assistant. Tedious typing and
searching in Javadoc or source code can be replaced by just a few keystrokes. Try the following:

In the HelloWorld example open under

System.out.println("HelloWorld");

and enter a new line. In this new line type just three characters

Sys

and press Ctrl+Spacebar. In the pop-up list that appears, select the class System from the Package
java.lang by double-clicking it. Now enter a period. A fraction of a second later, another pop-up list
appears. From this list select the field out of type PrintStream. Once again enter a period, and once
again you will get a pop-up list; select the method println. The cursor is now positioned within the
parentheses for the method parameters. You can now complete this method call by entering the string
“Hello Eclipse.” All that remains to do is to type the semicolon at the very end of the expression. The
new line should now look like this:

System.out.println("Hello Eclipse");

I expect you get the idea already: the Code Assistant allows you to enter long class and method names
with just a few keystrokes. But what is even more important is that it saves you tedious searching and
browsing in the documentation. If required, it can automatically insert the necessary import statements
as well.

04_020059_ch02.qxd 10/8/04 10:57 AM Page 28

There is an even quicker method, however. Just try the same thing again, but now enter only the letters

sy

and press Ctrl+Spacebar. From the pop-up list, select the entry sysout. (If you continue typing, the
pop-up list will get smaller and smaller, because it displays only entries that match the entered string.) If
you select the entry sysout with a single click, another pop-up window appears showing a code pro-
posal for the keyword sysout. You can accept this proposal with a double click or press the Esc key to
close both windows.

The code proposal shown is based on a code template that is associated with the keyword sysout.
These templates are defined under Preferences > Java > Editor > Templates, where you can also create
your own templates. This is done similarly to defining entries for code generation (see the “Templates”
section in Chapter 1).

It is worth browsing through all these templates, because they can save you substantial typing. While
many templates are named to resemble Java constructs (if, while, catch, etc.), other templates
bear the names of design patterns. Take, for example, the lazy template. This template generates the
following code:

if (name == null) {
name = new type(arguments);

}
return name;

That is a typical pattern for the lazy assignment of a variable. What you have to do with this pattern is
just replace the first occurrence of the string name with the name of your own variable, for example,
with “myHashMap.” This automatically replaces all occurrences of “name” with “myHashMap”
throughout the pattern!

In addition to these Java code templates, there are predefined Javadoc templates. For example, if you
enter the character @ within a Javadoc comment, a pop-up window appears showing the available
Javadoc keywords.

Of course, you can define your own templates. In Chapter 1 you have already modified the typecomment
template. Here now is an example for a completely homegrown template. The template generates an if
instruction that executes only when the equals() method in the condition is successful. In addition, it
make sures that you don’t get a null pointer exception.

Template equals:

if (${name} != null && ${name}.equals(${cursor})) {
}

This template contains the user-defined variable ${name}. When you apply this template, this variable
will be replaced with a real field name (just as in the lazy template). In addition, the template contains
the system variable ${cursor}. This variable marks the position of the cursor. When applying the tem-
plate, just replace the first occurrence of “name” with the real field name. Then press the Tab key to jump
to the predefined cursor position. There you can enter the argument for the equals() method.

29

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 29

There are two more templates that occasionally prove useful.

Template sconst:

public static final String ${name} = "${cursor}";

Template iconst:

public static final int ${name} = ${cursor};

Under Preferences > Java > Editor > Code Assist, you can make adjustments to influence the behavior of
the Code Assistant (Figure 2.2).

In particular, the Automatically Add Import Instead of Qualified Name option is very useful. When this
option is set, you can in most cases avoid adding import statements manually, simply by using the Code
Assistant.

For most of the other options, the default values provided by Eclipse make sense, so you should not
need to change these settings. What can be a bit annoying at times is the automatic activation of the
Code Assistant after entering a period or a @ character. It could make sense to increase the delay value of
this option from 500 msec to 1000 msec.

30

Chapter 2

Figure 2.2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 30

Other Functions of Code Completion
Apart from the Code Assistant, which appears either automatically after entering an activation character
or when pressing Ctrl+Spacebar, there are a few more context functions for code completion. Take a look
at how you can use these functions to create Javadoc comments.

Creating Javadoc
In our HelloWorld example program, just place the cursor into the main method and invoke the
function Source > Add Javadoc Comment. This will insert the comment lines

/**
* Method main.
* @param args
*/

in front of the method. The only thing that remains to do is to complete this description.

An even simpler method for creating a Javadoc comment is to open a new line in front of the method
and to enter the string /** and then press the Enter key.

The Source context submenu contains more useful functions for code completion:

Comment Out Code
❑ Toggle Comment. Using this function, you can convert the current line or the selected lines into

comment lines (//) or convert comment lines into active code.

❑ Add/Remove Block Comment. Using this function, you can convert selected code sections into
block comments (/* */) or remove the comment characters around the selected section.

Importing Types
❑ Organize Imports. This function analyzes the whole program and inserts the required import

statements at the beginning of the program. Should this function discover equally named types
from different packages during this task, it will prompt you with a list of those packages. You
must then select the required type from this list.

❑ Add Import. This function inserts an import statement for the selected type name at the begin-
ning of the program. Similarly to the Organize Imports function, this function will prompt you
for type selection if it discovers equally named types from different packages.

Under Window > Preferences > Java > Code Style > Organize Imports you can specify a threshold value
for single type import statements. If the program contains more import types from a given package
than what were specified under this threshold value, the import statements for this package will be
combined into a single import statement by using wildcards (as in eclipse.org.*). The default
threshold value is 99.

31

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 31

Overriding Methods
❑ Override Methods. This function first shows a selection list for all inherited methods. In this

list you can check all methods that you want to override, and Eclipse will generate method
stubs for all of them. This function is particularly useful if the class implements one or
several interfaces. In such a case, you simply invoke this function and check all the methods of
the interface (if they are not already checked). Then simply complete the generated method
stubs.

Encapsulating Fields
❑ Generate Getter and Setter. This function generates access methods for class fields. For

example, if a class contains the field definition

private String hi;

invoking this function would result in the following generated methods:

/**
* Returns the hi.
* @return String
*/
public String getHi() {

return hi;
}
/**
* Sets the hi.
* @param hi The hi to set
*/
public void setHi(String hi) {

this.hi = hi;
}

However, this function does not change existing references to the encapsulated field. If you
want to change these references, too, you are better off using the Refactor > Encapsulate Field
context function.

Alternatively, you may use the Content Assistant to generate a getter or setter. Just type get or
set and press Ctrl+Spacebar.

Creating Delegate Methods
❑ Generate Delegate Methods. This function can be applied to non-primitive fields and replicates

the method of the field’s type in the containing type.

Inheriting Constructors
❑ Add Constructors from Superclass. This function generates proxies for the inherited construc-

tors. These proxies contain only a super() call. Of course, you can then modify the generated
proxies to override the behavior of the constructor.

32

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 32

Generate Constructor
❑ Generate Constructor Using Fields. In the dialog that appears you may select from a list of

instance fields. The constructor is then generated with the corresponding parameters and
assignment statements.

i18n
❑ Externalize Strings. This function supports the internationalization of applications. We will

discuss this in detail under “Internationalizing Products” in Chapter 12.

❑ Generate Delegate Methods. This function can be applied to all non-primitive fields and repli-
cates the methods of the field’s type within the class or interface that contains the selected field.

The Correction Assistant
Even before you compile a program by invoking the Save function, the editor tells you how bad a pro-
grammer you are. Erroneous expressions are underlined in red—as probably happened to you in school.
(The same metaphor is used by some word processors.) So even before compiling a program, you can
notice faulty expressions such as a missing bracket or semicolon, so that you can react accordingly.

QuickFix
Depending on the skills of the programmer, you may also occasionally see a yellow lightbulb in the left
margin of the source editor. This function is called QuickFix, and it signals that Eclipse has at least one
correction proposal for the programmer’s mistake. In fact, there are only a few error types where Eclipse
loses its wits and is unable to offer a QuickFix proposal. To activate the QuickFix function, click the
yellow lightbulb. (The same function can be invoked by pressing Ctrl+1 when the cursor is above the
faulty line.)

You try it. Say you purposely make a mistake and write only printl() instead of println().
Immediately you will see a yellow lightbulb on the left margin (Figure 2.3).

One of the advantages of the Correction Assistant is the fast feedback it gives to the program author.
This immediate response to a mistake should trigger a learning effect in the programmer, making the
same mistake less likely the next time.

However, you may also use the Correction Assistant to save some typing. For example, when you write
some code and refer to a method that has not yet been written, a simple click on the yellow lightbulb
that appears allows you to generate a stub for the missing method instantly.

33

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 33

Figure 2.3

In Figure 2.3 you see the Correction Assistant in action. The erroneous class name “system” is underlined
in red. On the left you see the yellow lightbulb. Clicking the lightbulb opens a pop-up window with var-
ious suggestions. The pop-up window on the right shows what the code will look like if you opt to
change the name to “System.”

You can switch off the Correction Assistant under Preferences > Java > Editor on the Annotations page.

Quick Assist
Ctrl+1 works even without an error being present. In this case the function is called QuickAssist, and it
is a useful function for code transformation and completion. The function depends on the context. For
example, if you position the cursor on the parameter of a method declaration and press Ctrl+1 (or click
the green lightbulb that mysteriously appeared on the left margin of the editor), various functions will
become available for selection, including the function Assign Parameter to New Field. If you select this
function, Eclipse will generate an assignment directly after the method header, assigning the parameter
to a newly declared field.

In Figure 2.4 you can see that the QuickAssist facility makes a suggestion for assigning parameter args to
a static field. Since the field doesn’t exist yet, a field declaration is proposed as well.

34

Chapter 2

Figure 2.4

04_020059_ch02.qxd 10/8/04 10:57 AM Page 34

In the context of an if-statement you will, of course, get different proposals, such as to add an else-
block or to remove the if-statement. Similar functions are available for for- and while blocks.

Convenience Functions of the Java Editor
Eclipse's Java Editor comes with a variety of convenience functions that make code easier to type and to
read. In the following sections I will present some of them.

Typing Aids
Under Preferences > Java > Editor on the Typing page, you can activate or deactivate a variety of
typing aids. The Java editor is, for example, able to close open parentheses or brackets automatically.
It can include string literals in quotes automatically and can wrap the text within Javadoc and other
comments.

The function Wrap Java Strings is also nice. In our HelloWorld example program, just place the cursor
between Hello and World and press Enter.

The result is the syntactically correct expression

System.out.println("Hello " +
"World");

However, these functions are active only when the editor is in the Smart Insert mode. By pressing the
Insert key repeatedly, or by clicking the corresponding field in the status line, you can switch among the
Smart Insert, Overwrite, and Insert modes. By the way, you can completely switch off the Overwrite
mode for the Java editor!

Code Folding
Another nice function of the Java editor is the possibility to collapse code sections and to expand them
again. This is achieved with the help of the small arrows at the second vertical ruler at the left of the edi-
tor area (see Figure 2.5). An arrow pointing downward indicates an expanded section of code. When you
hover with the mouse above this arrow, Eclipse will show how far this section stretches. By clicking the
arrow you can collapse this code section. The arrow then changes its shape and points to the right. If you
now hover above the arrow, a pop-up window shows the content of the collapsed code section. Click the
arrow again, and the code section expands again. Under Window > Preferences > Java > Editor on the
Folding page you can enable or disable this function, and you can control which code parts should be
displayed in a collapsed state initially.

In this program both the listAllVoices and main() methods and the group of import statements
are collapsed. The mouse hovers over the arrow symbol at the import group, so that the import state-
ments are displayed in a pop-up window.

35

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 35

Figure 2.5

Syntax Coloring
Finally, you should take a look at the options for syntax coloring. Different colors and font styles can be
assigned to different elements in Java programs so that the readability of programs is improved. You can
configure this feature under Window > Preferences > Java > Editor on the Syntax page. The Enable
Advanced Highlighting option lets you switch to a very differentiated syntax coloring mode.

Source Code Navigation
In large projects it is essential to have good navigation tools at hand. Eclipse offers some of them as an
editor context function (right mouse click):

❑ Open Declaration. This function opens the definition of the selected type in the editor. The
shortcut is to press F3.

36

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 36

The alternative to this editor context function is hyperlinks: Just press the Ctrl key and move
the cursor above the String type reference. This type reference now appears in blue and is
underlined—it has become a hyperlink. By clicking it you open the definition of
java.lang.String.

❑ Open Type Hierarchy. This function opens a special browser window that will appear in front
of the Package Explorer. The new window shows the type hierarchy for the selected type. I will
discuss this browser in detail in Chapter 4.

❑ Open Call Hierarchy. This function opens a special browser window that will appear in front of
the Intro View. The new window shows the call hierarchy for the selected method.

❑ Open Super Implementation. This function opens the super implementation of the selected
method, i.e., its implementation in the parent class or the next ancestor class.

❑ Show in Package Explorer. This function synchronizes the Package Explorer with the current
editor window (see the “Packages” section in Chapter 4).

These functions are also available from the workbench’s menu bar, under the Navigate title. Here you
find additional navigation functions such as:

❑ Back. This function works like the Back button in web browsers.

❑ Forward. This function works like the Forward button in web browsers.

❑ Last Edit Location. This function navigates back to the last location where you modified code.

❑ Go to Line This function allows you to jump to a source code line with the specified number.

❑ Next Annotation. This takes you to the next source code annotation, such as a syntax error.

❑ Previous Annotation. This takes you to the previous source code annotation.

Most of these functions can be invoked via toolbar buttons, too.

Figure 2.6 shows that you can jump to the most recently edited code location with the Last Edit Location
button. Two more buttons allow you to step backward and forward in the navigation history of visited
code locations. The Show Source of Selected Element button can isolate elements (methods or field defi-
nitions) in the editor window.

37

Effective Programming with Eclipse

Show Source of
Selected Element
Only

Next Annotation

Previous Annotation

Last Edit Location

Back

Forward

Figure 2.6

04_020059_ch02.qxd 10/8/04 10:57 AM Page 37

Refactoring Code
Modifications of existing programs usually take a lot of time and may introduce new bugs. Even the
simple renaming of a type may affect dozens, hundreds, or even thousands of other compilation units.
In such cases the computer is superior to the human, and consequently Eclipse offers a rich set of
refactoring utilities. The purpose of refactoring is to improve the structure of the code without modifying
the behavior of the application. Especially in the context of Extreme Programming (XP) refactoring plays a
major role.

In Eclipse, refactoring is achieved by applying Refactor > ... context functions or by using the Refactor > ...
menu functions from the main menu. The context functions are context sensitive; that is, only those
functions are visible that are applicable in a given context. Eclipse newbies may therefore want to use
the Refactor > ... function group from the main menu in order to gain an overview about the available
functions.

Modifying Types
Modifications at the type level (classes and interfaces) are best applied in the Package Explorer. The
context menu of the Package Explorer offers some functions under the subtitle Refactor, such as
Refactor > Move and Refactor > Rename. In addition is it possible to create a copy of a type by using the
context function Copy.

❑ Moving a compilation unit. Let’s assume that you are not happy with the current location of
the HelloWorld class in the default package of the project. Instead, you would like to create a
new package named HelloPackage and move the class HelloWorld into it.

Just create a new package in the usual way (the Create a Java Package button). Then select the
HelloWorld compilation unit in the Package Explorer. From the context menu select the function
Refactor > Move…. The dialog that appears contains another small package explorer. Here, you expand
the HelloWorld project by clicking the + character, and then select the package HelloPackage as the
move target. Once you click OK, the HelloWorld compilation unit is moved into the target package.
The source code of HelloWorld now contains the line

package HelloPackage;

Should other compilation units contain references to the HelloWorld type, these references would be
updated accordingly. You can inhibit this by removing the checkmark from UpdateReferences to Moved
Element(s). Optionally, you may even update reference in non-Java files.

As a matter of fact, you can also move a compilation unit by a simple drag-and-drop operation with the
mouse. You could have just dragged the HelloWorld compilation from the default package into the
package HelloPackage and dropped it there. But in larger projects where packages may have a large
distance between them, the context function Refactor > Move… usually works better.

❑ Moving a type. Similarly, you can move types (classes and interfaces) within a compilation
unit. For example, you can drag the class symbol (the green circle with the C) onto another class
symbol. The dragged class thus becomes an inner class of the target class. However, in this case
the original version of the dragged class remains at its original position, too, so this is a copy
function rather than a move.

38

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 38

❑ Renaming compilation units and types. Similarly, you can rename compilation units and types
by invoking the context function Refactor > Rename….

Figure 2.7 shows the dialog for renaming a compilation unit. In addition to updating references in the
code, it is also possible to update references in Javadoc comments, normal comments, and string literals.

39

Effective Programming with Eclipse

Figure 2.7

Refactoring Code
In addition to classes and interfaces, there are many more possibilities for code refactoring. You can
invoke these functions from the source editor’s context menu, from the context menu of the Outline
view (see the “Outline View” section in Chapter 4), or from the main menu of the workbench.

Methods
❑ Rename. Nearly everything can be renamed with the function Refactor > Rename…: classes and

interfaces, methods, fields, parameters, and local variables. References to the renamed elements
are updated accordingly. If fields are renamed and if the fields have access methods (get…()
and set…()), the method names are updated, too.

❑ Move. Static methods (and, with some restrictions, also instance methods) can be moved into
other classes with the function Refactor > Move… References to these methods are updated
accordingly. Public static constants (public static final) and inner classes can be moved,
too.

❑ Pull Up. Non-static methods and fields can be moved into super classes by applying the
function Refactor > Pull up.

❑ Change Method Signature. The function Refactor > Change Method Signature allows you to
change a method’s access modifier, its result type, the order, names, and types of its parameters,
and the exception declarations. References to the method are updated accordingly. When new
parameters are introduced into the method, it is necessary to define a default value for each new
parameter. This default value is inserted as the value for the new parameter when the corre-
sponding method calls are updated.

❑ Introduce Parameter. This function can be used to introduce a new parameter into a method
declaration. To do so, select an expression within the method declaration and apply the function.
In the dialog that appears, enter the name of the new parameter. Eclipse will then replace the
selected expression with the parameter name, complete the method head with the new parameter,
and expand all method calls with the selected expression.

04_020059_ch02.qxd 10/8/04 10:57 AM Page 39

❑ Extract Method. The function Refactor > Extract Method… encapsulates the selected code
into a new method definition. Eclipse performs a data flow control analysis for the selected
code section. From that it determines the parameters and the result type of the new method.
The new method is inserted behind the current method, and the selected code is replaced by
a corresponding method call. In some cases, however, it is not possible to apply this function,
for example, if there are multiple result values of the selected code section. In cases where the
function cannot be applied, Eclipse tells you the reason for the rejection.

Here is an example. In the following method we select the bold line and apply the Extract Method
function:

public static void main(String[] args) {
System.out.println("Hello World");
System.out.println("Hello Eclipse");

}

In the dialog that appears, specify helloEclipse as the name for the new method, and you will
receive the following:

public static void main(String[] args) {
System.out.println("Hello World");
helloEclipse();

}
public static void helloEclipse() {

System.out.println("Hello Eclipse");
}

This function detects all occurrences in the current compilation unit where such a substitution can be
applied. You can apply the substitution to the current selection only or to all matching occurrences.

Vice-versa, you can resolve methods by applying the function Refactor > Inline.

Factory
❑ Introduce Factory. Using the function Refactor > Introduce Factory ... you can generate a static

factory method from a given constructor. At the same time, all calls to this constructor are
replaced by calls to the new factory method.

Types and Classes
❑ Extract Interface. With the function Refactor > Extract Interface… you can generate a correspond-

ing interface for an existing class. For example, if you select the class name HelloWorld and
invoke this function, you are asked for a name for the new interface. If you enter IHelloWorld
and press OK, a Java interface IHelloWorld is generated and the class definition of
HelloWorld is completed with the clause implements IHelloWorld. In addition, Eclipse
determines which references to HelloWorld can be replaced with a reference to the interface
IHelloWorld. As it happens, the interface generated in this example is empty, because the
class HelloWorld contains only static methods.

❑ Generalize Type. When you select a type name and invoke this function, a dialog with the hier-
archy of supertypes appears. You may select one from the tree to replace the originally selected
type name.

40

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 40

❑ Use Supertype. After creating the interface IHelloWorld you can call the function Refactor >
Use Supertype Where Possible for class HelloWorld. This function offers you a choice between
the types IHelloWorld and Object. Both are supertypes of HelloWorld. If you now select
IHelloWorld, Eclipse will replace all references to HelloWorld with references to
IHelloWorld, provided that this will not result in compilation errors.

❑ Convert Nested Type to Top Level. Inner classes and interfaces can be separated into their own
compilation unit (.java file) by applying the method Refactor > Convert Nested Type to Top
Level… to them. The new compilation unit is equipped with the necessary import statements.
In the type definition that previously contained the inner type, a new class field is generated
whose type declaration refers to the newly generated top-level type. In addition, the constructor
of the container type is extended with a new parameter that supplies the new field with an
instance of the new top-level type.

❑ Convert Anonymous Type to Nested Type. Anonymous classes are used quite often as event
listeners. Such anonymous classes can be converted easily into named inner classes by applying
the function Refactor > Convert Anonymous to Nested… .

Variables
❑ Extract Local Variable. The function Refactor > Extract Local Variable… replaces the selected

expression with the name of a new variable. A suitable variable assignment is inserted before
the modified expression. For example, in

System.out.println("Hello World");

select HelloWorld and apply the function. In the dialog that appears, specify hi for the variable name.
The result is:

String hi = "Hello World";
System.out.println(hi);

Optionally, all occurrences of HelloWorld are replaced with a reference to the variable hi.

❑ Inline method or local variable. The function Refactor > Inline… works in the opposite way.
For example, if you select the variable hi and apply this function, all occurrences of hi are
replaced with the value of hi (the string Hello World). Before the replacement is performed, a
dialog box shows you the effects of the replacement by comparing the old version with the new
version of the compilation unit (see the “Local History” section). Similarly, you can resolve a
method by selecting the method name and invoking this function.

❑ Encapsulate. The function Refactor > Self Encapsulate… allows you to convert a public variable
into a private variable. It generates the access method for this variable (see also Generate Getter
and Setter in the “Encapsulating Fields” section) and updates all read and write access to this
variable accordingly.

Before:

public int status;
public void process() {
switch (status) {
case 0 :

41

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 41

System.out.println("Status 0");
break;

}
}

After:

private int status;
public void process() {
switch (getStatus()) {
case 0 :
System.out.println("Status 0");
break;

}
}
public void setStatus(int status) {
this.status = status;

}
public int getStatus() {
return status;

}

❑ Convert Local Variable to Field. The function Refactor > Convert Local Variable to Field… can
convert a local variable that is defined in a method body into an instance field.

Constants
❑ Extract/Inline Constant. The extract and inline functions discussed for variables are available

for constants, too. For example, select the string Hello World and invoke the function
Refactor > Extract Constant… In the dialog that appears, assign the name HELLOWORLD to
the new constant. Eclipse now inserts the line

private static final String HELLOWORLD = "Hello World";

and replaces all occurrences of Hello World with HELLOWORLD. Vice versa, the function Refactor >
Inline… allows you to resolve the names of constants by replacing them with the constant’s value.

Undo and Redo
With Edit > Undo (Ctrl+Z) it is possible to revert previous actions. The Undo function can be applied
over many steps—no limit seems to exist. Undo can even undo actions across previous Save operations.

With Edit > Redo (Ctrl+Y) you can once again execute actions that were previously undone by applying
the Undo function.

42

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 42

Undoing the Refactor functions (see the “Refactoring Code” section) is a special case. The normal Undo
function can only revert these functions in several steps—and then only partially. To undo a Refactor
function, it is better to use the special Undo (Ctrl+Shift+Z) and Redo (Ctrl+Shift+Y) functions in the
Refactor submenu.

Local History
The Local History function group belongs to Eclipse’s most powerful functionality for maintaining
source code. For each compilation unit, Eclipse stores a configurable number of older versions that are
updated with each Save operation.

You can set the number of stored versions in Preferences > Workbench > Local History. The default value
is 50 versions, with a maximum age of seven days and a maximum file size of 1 Mb. If you use the Save
key (Ctrl+S) as frequently as I do, it would be better to increase the maximum number of versions a bit.

The Local History functions work for any type of resource, not just for Java source code.

Comparing Resources
The context function Compare > Local History allows you to compare the current version of a compila-
tion unit with previous versions. First, you get a selection list with the previous versions nicely grouped
by days. Clicking one of these versions will compare the selected version with the current version.

You can invoke this function from the Package Explorer or from the Resource Navigator. It can also be
called from the editor, where it is applied to the selected element only—for example, a method.

In Figure 2.8 I have deleted and modified some comments and extracted the println() statement as a
separate method. The comparison shows the deleted lines on the right and the inserted lines on the left-
hand side on a gray background. The right vertical ruler shows all modifications to the file: the selected
modification has a black border, and all other modifications have a gray border. The window at the top-
right corner (Java Structure Compare) allows the comparison of single methods.

Replacing with an Older Version
The function Replace > Local History works very similarly to Compare > Local History. The window is
additionally equipped with a Replace button with which you can replace the current version with the
version in the right window. In contrast, this function does not have a Java Structure Compare window.

Restore Deleted Resource
Mistakenly deleting a resource is not a tragedy either. The function Restore from Local History provides
a selection list for previously deleted resources that can be restored by simply marking their check boxes.

43

Effective Programming with Eclipse

04_020059_ch02.qxd 10/8/04 10:57 AM Page 43

Figure 2.8

Summary
After studying this chapter you should know about the main productivity techniques embodied in the
Eclipse platform and the Eclipse Java SDK. Features such as help and hover, and especially the content
assistants and templates, allow you to work without constantly searching programming guides and
manuals. Instead, the information is provided where and when it is needed. Strong navigation functions
allow you to get around in your application quickly. Especially in large applications such functions are
essential. Various assistants for source code completion, refactoring, and bug fixes help you to adopt an
agile programming style. In Chapter 16 I will discuss how these functions support the Extreme
Programming approach. In the next chapter I will introduce the Eclipse Visual Editor.

44

Chapter 2

04_020059_ch02.qxd 10/8/04 10:57 AM Page 44

The Art of (Visual)
Composition

One of the more frequently asked questions directed to the Eclipse development team was if and
when a visual GUI editor would be available for Eclipse. Eclipse 2 SDK did not provide a visual
editor, but after a while several third-party GUI editor plug-ins appeared on the market (see
Appendix A). Then, at Christmas 2003, eclipse.org released the first version (0.5) of the Eclipse
Visual Editor for Java (VE) that, initially, supports only the design of Swing GUIs under Eclipse
2.1. In May 2004, VE M1 was released for the Eclipse 3 platform. Support of SWT GUIs is planned
for version 1.0. What’s nice about this tool is that it is completely free and that it is Open Source.
But this is not its only advantage.

The VE has—like Eclipse—its roots in Visual Age, despite the fact that it was implemented from
scratch in Java. One of the main features of the VE is that it supports two-way programming:
changes in the visual layout appear immediately in the generated Java code, while changes in the
Java code are reflected back to the visual layout as soon as the source code is saved with Ctrl+S.
With this feature, the VE completely refrains from using metadata but derives all information from
the source code.

Installation
In this task the VE relies on the facilities of the Eclipse Modeling Framework (EMF). Therefore,
before installing the VE, you must install the EMF. The EMF can be downloaded from
www.eclipse.org/emf/. To install it, just unpack the downloaded archive into the /eclipse
root directory. Then start the Eclipse platform and follow the instructions of the Update Manager.
After restarting Eclipse, you can install the VE in the same manner. The VE download can be
obtained from www.eclipse.org/vep/.

33

05_020059_ch03.qxd 10/8/04 10:49 AM Page 45

Invocation
After installation, the VE is hard to notice. When you open Eclipse help, you will see a separate chapter
for the Visual Editor. After a short browse through the supplied information, you may find out that the
VE can be applied to any Java compilation unit. To do so, you must open a closed Java file with the con-
text function Open with > Visual Editor. Afterwards, this file will be always opened with the VE when
you double-click it in the Package Explorer.

During your first steps with the VE you will soon notice that a large screen is required to work with the
VE efficiently, because the editor area is subdivided into a visual design area and an area for the source
code. As a matter of fact, you can maximize the editor area by double-clicking its title bar. Unfortunately,
this is not a good solution because the Java Beans View and the Properties View are used frequently dur-
ing the design process. So, it is better to switch back to the normal workbench mode. Bad news for note-
book users, it seems.

A nice feature is that the division of the design area and the source code area is not fixed but can be var-
ied by moving the sash between the areas. By clicking one of the arrows on the sash you can maximize
one area or the other. Furthermore, there is a viewing mode switch in the Java Beans View (second but-
ton from the left), which you can use to switch this view to a navigator function: the view shows the
design area in reduced size, and by moving the gray rectangle you can easily navigate within a large lay-
out.

Preferences
Of course, you can also opt not to use this split-screen editor but use a tabbed folder instead. In this case,
both the design area and the source code area completely fill the editor area of the workbench and are
activated by selecting the appropriate tab at the bottom of the editor area. This mode is especially useful
for smaller screens (notebook users enjoy!). To activate this mode, go to Window > Preference > Java >
Visual Editor. On the Appearance page, from the Show the Visual Editor and Source Editor section,
select the On Separate Notebook Tabs option.

On the same page you can also determine the skin (Look&Feel) to be used for generated Swing GUIs.

If you own a fast computer, you may also want to shorten the delay for updating the source code after
design changes (or vice versa). This is done on the Code Generation page under Source Synchronization
Delay. The default value is 500 msec.

Composition
Composing GUIs with the VE is quite simple. On the left margin of the VE you will find a menu with
GUI elements. These are organized in groups: Swing Components, Swing Containers, Swing Menus, and
AWT Controls. Clicking such a group will expand it and collapse all others. However, clicking the pin at
the right-hand side of the group name lets you keep a group open permanently.

To move a GUI element to the design area, first select it with the mouse. Then click the target position in
the design area. You don’t drag and drop elements, but rather you move them as you would move cards
in the card game Freecell.

46

Chapter 3

05_020059_ch03.qxd 10/8/04 10:49 AM Page 46

Try it with a small example. In HelloWorld project, just create a new class named HelloVE as
described in Chapter 1 (with a main() method). Then close the Java editor. In the Package Explorer,
apply the context function Open with > Visual Editor to HelloVE. Now open the Swing Containers
group in the GUI element menu of the VE. Select the component JFrame. Then click the target position
in the design area. The smallest possible JFrame instance now appears at the target position. Click the
bottom-right corner of this component and drag it to the desired size. As you can see in the Java Beans
View, the JFrame instance already contains a content pane (JPanel instance), which fills the entire area
of the JFrame instance.

Now click the Swing Components group to open it. Select the JLabel component and release the mouse
button. Then move the mouse over the (still selected) JFrame component in the design area. As you
move the mouse, different areas labeled North, Center, South, East, and West will appear because
the content pane is already equipped with a BorderLayout (see below in section “Layouts”). Now,
click the mouse to place the JLabel component into the Center area.

In this area you will now see a JLabel instance named JLabel.It may well be that this instance appears
at a slightly different position because the BorderLayout manager performs automatic positioning.
Now click the already selected JLabel instance once again. A text input area opens, where you can
overwrite the text “JLabel” with “Hello VE,” as shown in Figure 3.1.

47

The Art of (Visual) Composition

GUI-element
menu (expanded)

Design area

Switch between
design and source code Properties-View Beans-View

Figure 3.1

05_020059_ch03.qxd 10/8/04 10:49 AM Page 47

This figure shows the components of the VE. At the top left you see the selection menu for the GUI
elements. Adjoining to the right is the working area, consisting of the design area and the source code
editor. On the far left is the Outline View, as already known from the Java editor. At the bottom I have
docked the Java Beans View to the right of the Properties View (see the “Arranging Editors and Views”
section in Chapter 4), in order to allow for comfortable editing. You may store this arrangement as your
own perspective (see the “Managing Perspectives” section in Chapter 4).

As you can see in the Outline View (and in the source code, too), these actions have generated the meth-
ods getJFrame(), getJContentPane(), and getJLabel(). All that remains to do is to invoke the
method getJFrame() from the main() method. To do so, modify the main() method in the source
code area as follows:

public static void main(String[] args) {
HelloVE hello = new HelloVE();
javax.swing.JFrame frame = hello.getJFrame();
frame.setVisible(true);

}

After saving this code with Ctrl+S, you can execute this program immediately by issuing the command
Run > Run As > Java Application.

Beans and Bean Properties
All the components available in the VE’s GUI element menu are provided in the form of Java Beans. Java
Beans are Java classes that follow certain coding standards. For example, a Java Bean must always have
a standard constructor without any parameters. The features of such a Java Bean are described in an
associated class, a BeanInfo class. The VE uses this information via introspection to display the compo-
nent in an appropriate form and to generate code.

Generic Beans
The VE is not restricted to AWT and Swing components. In principle, any Java Bean can be placed onto
the design area. You may even write your own beans, which then can be used in the VE. You can select
such beans by clicking the Choose Bean button in the selection menu. Detailed information about the
implementation of Java Beans is found in the book Java Beans 101 by Steams.

The Java Beans View shows the hierarchy of beans used in the design area, so it is easy to keep an
overview of the construction of the GUI. The Java Beans View also helps during the selection of compo-
nents, for example, if a component is hidden in the design area by another component. In this case you
can use the Java Beans View to select the component.

Properties
The properties of a bean are displayed in the Properties View and can be modified there. In the above
example, the label text is not centered correctly, despite the fact that the JLabel component was placed
into the Center area. The reason is that the component stretches across the whole content pane, and its

48

Chapter 3

05_020059_ch03.qxd 10/8/04 10:49 AM Page 48

text content starts to the left of the component. To fix this, select the component jLabel in the Java
Beans View. (You may want to rename this component using the context function Rename Field.) In the
Properties View, find the property named horizontalAlignment. This property currently has the
value LEADING. Select this entry with the mouse. An arrow button appears beside LEADING. Now click
this button and select CENTER, and the text is centered.

VE supports almost any of the properties of the Swing components with a few exceptions. For example,
you cannot specify client properties (putClientProperty()) in the Properties view, and for JLabel
components you cannot specify target components for mnemonic codes (setLabelFor()). Such
properties must be set manually in the source code.

Layouts
Now select the component jContentPane in the Java Beans View. Like all Swing containers, this con-
tainer, too, has a layout. You will find the property layout in the Properties View. As you can see, this
container is already equipped with a BorderLayout. Clicking the arrow button gives you a list of the
available layout options. At the left of the layout entry is a plus sign. Clicking this sign expands the entry
and allows you to make further specifications for this layout manager, such as horizontal gap and
vertical gap. Finally, there is an option to work without a layout manager. To do so, select the null
option in the list of layout managers. Then you can position the JLabel component freely within the
content pane.

Normally, you should change layout settings only after you have filled a container with components.
This is because with some layouts, empty containers have a size of zero, and it can become quite tricky
to place a component into a container of zero size. However, if something like this should happen, there
is always a way out: instead of placing a component into a container within the design area, apply the
same operation to the Java Beans View.

If you later want to move components to a different position or even to a different container, this is easy:
both the design area and the Java Beans View support moving components by drag and drop. However,
the VE does not support cut-and-paste operations for components.

If you need detailed information about Swing and Swing layout managers, please refer to the resources
listed in Appendix D, for example to the book Swing by Robinson and Vorobiev.

Event Processing
Finally, let’s see how event processing can be programmed with the help of the VE. Let’s first create one
more component, a JButton, in the content pane of the JFrame container. You can select the position
freely, for example, the South area (if you are still using the BorderLayout manager). If you are work-
ing without a layout manager, reduce the size of the JLabel component somewhat to make room for
the new JButton component.

Then, find the entry text in the Properties View and enter “OK” as the button text. Alternatively, you can
just click the button in the design area and enter “OK” in the text input area.

49

The Art of (Visual) Composition

05_020059_ch03.qxd 10/8/04 10:49 AM Page 49

Now you can define some event processing for the new button. Right-click the selected button. In the
context menu choose Events, and in the cascading submenu select actionPerformed. Now, sit back
and watch how the source code for this event is generated:

jButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()");
// TODO Auto-generated Event stub actionPerformed()

}
});

If you now run the program again after saving it, the text actionPerformed() appears in the Console
View when you click OK.

The Events submenu, however, lists only the most relevant events for a component. Other event types can
be reached via the Add Event function. For example, if you want to react to the resizing of components,
you need to invoke the Events > Add Event ... context function. In the dialog that appears, expand the
Component class. Then select the componentResized event type. Finally, you may specify whether a
subclass of the ComponentAdapter class is to be generated or whether a complete implementation of the
ComponentListener interface is to be generated. Afterwards, you can complete the definition of the
componentResized() method in the source code area as needed.

This concludes our short introduction into the Eclipse Visual Editor. In Chapter 5 I will demonstrate the
VE in the design of a more complex GUI in the context of a larger application.

Summary
This chapter has given you a glimpse of the Eclipse Visual Editor. Novices especially often find it easier
to design GUI surfaces visually. Currently the Eclipse Visual Editor supports only Swing GUIs. If you
need help creating SWT GUIs (see Chapter 8), you still have to rely on third-party GUI designers, some
of which are listed in Appendix A. Another possibility is to use the SWT Layout example plug-in as a
code generator.

In the next chapter we will take a more detailed look into the Eclipse workbench.

50

Chapter 3

05_020059_ch03.qxd 10/8/04 10:49 AM Page 50

Organizing Your Code

In this chapter I first discuss the handling of the different components of the Eclipse workbench:
editors, views, and perspectives. Then I look at the basic resource types in Eclipse: projects, fold-
ers, and files.

Afterwards you will use the new knowledge in a practical example. This time you don’t output
“Hello World” on the Java console—but on your computer’s sound card! In the context of this
example I discuss topics such as the import and export of files and archives, the association of
source files with binary files, and how to set the project properties correctly.

The Workbench
In the Introduction I mentioned that the Java Development Toolkit (JDT) is merely one of the
many possible plug-ins for the Eclipse workbench (which itself is a plug-in to the Eclipse plat-
form). The Eclipse workbench is completely language-neutral—all functions that are specific to
development with Java are packaged in the JDT plug-ins.

Switch back to the resource perspective for a moment (see Figure 4.1). Where you previously saw
the Package Explorer, you now find the Resource Navigator. The Java packages have vanished,
and instead you see a structure of nested folders. The Resource Navigator shows projects, folders,
and files. Figure 4.1 shows a project in the Navigator that you will develop in Chapter 5.

44

06_020059_ch04.qxd 10/8/04 10:51 AM Page 51

Resource
Perspective

Figure 4.1

Resources
The Resource Navigator shows an overview of the set of resources maintained by the Eclipse workbench
(the workspace) and supports navigation within this set of resources.

Resource Types
The workbench understands three different resource types:

❑ Projects. A project is always the root node of a resource tree. Projects can contain folders and
files. Projects cannot be nested.

❑ Folders. A folder can contain files and other (nested) folders.

❑ Files. Files are the leaf nodes in a resource tree, i.e., a file cannot contain other resources.

Where Resources Are Stored
All resources are stored directly in the file system of the host platform. This is different from Visual Age,
where resources were stored in a repository. In contrast, the structure of projects and folders in the Eclipse
workspace directly correlates to the directory structure of the host platform. This has advantages in the
case of crashes and for backups. (In Chapter 7 I will discuss how to connect a repository to Eclipse.)

52

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 52

By default, the resources of the Eclipse workbench are stored in the (host) directory \eclipse\
workspace. Each project is contained in a corresponding subdirectory. For example, the
AnimationEvent.java resource shown in the previous figure is stored in the path \eclipse\
workspace\DukeSpeaks\com\sun\speech\freetts\relp\AnimationEvent.java. Of course,
it is possible to create a workspace directory in a different location by specifying the command-line
option -data when starting Eclipse

eclipse.exe -data C:\myOldWorkSpace

or by specifying a different workspace in the Workspace Launcher (see the “Installing Eclipse” section in
Chapter 1).

Synchronizing Resources
For each resource in the workbench, Eclipse stores some metadata in the \eclipse\workspace\
.metadata directory. Sometimes it happens that the state of a resource in \eclipse\workspace does
not match the state of the corresponding metadata. In particular, this happens when a workspace file is
modified outside Eclipse, for example, by modifying it with an external tool.

This is not a tragedy. All you have to do is select the resource that is out of sync and apply the Refresh
context function. This function can be applied not only to single resources but also to folders and
projects, so that you can easily resynchronize a whole directory tree.

Navigation
The following context functions and tool buttons in the navigator’s context menu and toolbar are
available for navigation:

❑ Go Into. This function reduces the current view to the content of the selected project or folder.
This function can be particularly useful when your workspace consists of thousands of
resources.

❑ Back. This button (arrow to the left) returns to the previous view.

❑ Forward. This button (arrow to the right) reverts the previous Back operation.

❑ Up To. This button (folder symbol) goes into the next-higher folder or project.

❑ Open in New Window. This function works similarly to Go Into but opens a new window
(with a complete workbench!) in which only the contents of the selected project or folder are
shown in the navigator.

The menu of the navigator’s toolbar (under the small triangle) offers further functions:

❑ The Sort function allows files to be sorted by name or type.

❑ The Filters function allows files with specific filename extensions to be excluded from the navigator.

❑ The Link with Editor function enables automatic synchronization of the resource selection with
the editor content. When you switch editors (by clicking on tags), the selection in the navigator
changes accordingly.

❑ The Select Working Set function allows you to select a named working set in order to restrict the
resources shown in the navigator to the resources belonging to the selected working set. This
function also allows you to define new working sets.

❑ The Deselect Working Set function removes the working set restrictions from the navigator.

❑ The Edit Active Working Set function allows you to modify the current working set.

Organizing Your Code

53

06_020059_ch04.qxd 10/8/04 10:51 AM Page 53

Associations
In Eclipse the type of a file is usually determined by its filename extension. (It is also possible to assign
specific file types to fully qualified filenames.) In the previous figure you saw text-based files such as
.java and .html files but also binary files such as the .class files. The file type (and thus the file-
name extension) controls what happens when a file is opened.

For example, if you click a .java file with the right mouse button, you get a pop-up menu with context
functions. When you select the Open With submenu, you get another pop-up menu with editors. In the
first menu section you see the editor that was used last for this file (in the current case, the Java source
editor). The second section shows all editors that are registered for that filename extension—in the cur-
rent case these are the Text Editor and the System Editor. The Text Editor is the text editor that is con-
tained in the Eclipse SDK, which can be used for all text-based files. The System Editor is the editor that is
registered under the host platform for that file type. Eclipse is able to start such editors from the work-
bench; for example, if you open an HTML file, the host platform’s web browser is started.

Most of the file associations (which editor works with which file type) are determined by the Eclipse
plug-ins. However, it is also possible to add or modify such associations manually. To do so, just invoke
Window > Preferences > Workbench > File Associations (Figure 4.2).

54

Chapter 4

Figure 4.2

06_020059_ch04.qxd 10/8/04 10:51 AM Page 54

In the upper window you see a list of registered file types. By using the Add and Remove buttons, you
can add new file types or delete existing ones. In the lower window, the registered editors for the
currently selected filename extension are shown. Here, too, you can add new editors or remove existing
editors. By using the Default button, you can declare a specific editor as the default editor for that
file type.

When you press the Add button, you first get a list of internal editors, i.e., editors that are implemented
as Eclipse plug-ins. If you click the External Programs button, you get a list of the applications that are
registered in the host operating system for the selected file type. By double-clicking such an application,
you can select it as a new editor for this file type.

In Figure 4.2 the file associations are defined. First the filename pattern *.html was added, and then
Microsoft FrontPage was associated with this file type.

Packages
Switch back to the Java perspective. The picture you see now is quite different: the Package Explorer
shows the different projects with their package structure and the compilation units.

Folders and Packages
Packages are not real resources but virtual objects. The package structure of a project is derived from the
package declaration at the beginning of each Java source file.

The Java specification, however, requires that the package structure of a project be isomorphic to the
project’s directory structure. For example, all resources of the com.sun.speech.freetts.relp
package must be stored under the relative path com/sun/speech/freetts/relp, as shown in
Figure 4.3. In Eclipse, the path is always relative to the project’s source code root directory. In our case,
the relative path com/sun/speech/freetts/relp is equivalent to the host platform path:

\eclipse\workspace\DukeSpeaks\com\sun\speech\freetts\relp

Each package can be uniquely mapped onto a node in the resource tree. Compilation units, in contrast,
can consist of several resources: the source file and one or several binary files. In the case of the
AnimatedAudioPlayer class there are two binary files: one for AnimatedAudioPlayer and one for the
JavaClipLineListener inner class.

55

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 55

Figure 4.3

Navigation
The Package Explorer is equipped with similar navigation functions to the Resource Navigator. Here,
too, are the Go Into and Open in New Window context functions, and in the toolbar there are buttons
for the Back, Forward, and Up To functions. Under the toolbar’s drop-down menu you can find the
same functions for managing working sets and for synchronizing with the editor.

Furthermore, you have the possibility of opening the type hierarchy browser discussed in the next
section.

Hierarchy
The type hierarchy shows the super types and subtypes for classes and interfaces. You can restrict the
view to super types or subtypes only or show the complete hierarchy. By using the History function
you can quickly change between the different views, or you can display previously displayed type
hierarchies again (see Figure 4.4).

56

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 56

Figure 4.4

In the toolbar of the lower window you can find additional functions. The first button affects the upper
window. It restricts the view to only those types that implement the field or method selected in the lower
window. When you push the second button, the lower window will also show the methods and fields
that are inherited by the selected type. The remaining buttons are the same as in the Outline View (see
the next section).

The Type Hierarchy Browser can be useful when you want to analyze existing projects and libraries.
When creating a new project you will need this browser only when the project becomes bigger.

A faster method for displaying the type hierarchy is pressing the F4 function key, which acts as a short-
cut for the Open Type Hierarchy context function. Alternatively, you can use the key combination Ctrl+T
to display the type hierarchy in a pop-up window.

The Outline View
The Outline View (Figure 4.5) supports navigation within a source file. In general, the Outline View is
not restricted to Java sources but supports—depending on the plug-ins installed—other file types as
well.

57

Organizing Your Code

Complete Type
Hierarchy

Supertypes

Subtypes
History

06_020059_ch04.qxd 10/8/04 10:51 AM Page 57

Sort
(activated)

Hide fields
(activated)

Hide static
elements

Hide non-public
elements

Hide inner
types

Anonymous
inner class

Figure 4.5

For Java programs, the Outline View displays entries for fields and methods and also for import
statements. If inner classes are defined, these classes also appear in the Outline View; the main type
and the inner types form a tree structure. The buttons on the Outline toolbar allow you to restrict the
Outline View to specific entry types. Fields and methods can be sorted in alphabetical order by pushing
the Sort button (otherwise, their order corresponds to their definition sequence in the source file).

Single-clicking such an entry positions the source editor on the corresponding element. Apart from this
facility for quick navigation, the Outline View offers a few more functions. But I’ll start with the graphi-
cal representation of the entries within the Outline View.

Representation
The first icon in front of an Outline View entry represents the entry type (package, import statement,
interface, class, method, field) and the visibility (public, protected, private).

Icon Meaning

import statement

interface

class

58

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 58

Icon Meaning

public method

protected method

private method

default method (without modifier)

public field

protected field

private field

default field (without modifier)

In addition to this first icon, additional icons can add information about the entry:

Icon Meaning

constructor

static element

final element

overridden element

You can change the representation of the Outline View under Window > Preferences > Java > Appearance:

❑ Show Method Return Types. Displays the result type of methods in the Outline View.

❑ Show Override Indicators. Displays the indicator for methods that override inherited methods.

❑ Show Member in Package Explorer. If this option is set, methods and fields are also shown in
the Package Explorer as child elements of classes and interfaces. Most of the Outline View func-
tions are in this case available in the Package Explorer, too.

Context Functions
The Outline View offers a rich variety of context functions. The most important of these functions are
also available as toolbar buttons (see previous figure). Here is an overview of these functions:

❑ Open Type Hierarchy. Shows the type hierarchy for the selected element (see Figure 4.5). This
function can be applied not only to single types but also to whole packages or projects.

❑ Open Call Hierarchy. Shows the call hierarchy for the selected method.

59

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 59

❑ Open Super Implementation. This function is available only for elements that override an
inherited feature. When applied, the inherited feature is opened in the source editor.

❑ Cut, Copy, Paste, Delete. These are the usual copy and delete functions but they are applied to
the element selected in the Outline View.

❑ Refactor > …. Various functions for refactoring code (see the “Refactoring Code” section in
Chapter 2).

❑ Source > …. Various functions for automatic source code completion (see the “Automatic Code
Completion” section in Chapter 2).

❑ References > …. Searches for references to the selected element (see next section).

❑ Declarations > …. Searches for definitions of the selected elements (see next section).

❑ Read Access > …. Searches for read access to the selected field (see next section).

❑ Write Access > …. Searches for write access to the selected field (see next section).

❑ Occurrences in File. Lists the occurrences of the selected item in the Search View (see next
section).

❑ Toggle Watchpoint. This function appears only on field entries and belongs to the debugger’s
tool set (see Chapter 6).

❑ Toggle Method Breakpoint. This function appears only on method entries and belongs to the
debugger’s tool set (see Chapter 6).

❑ Compare With > …, Replace With > …, Restore from Local History …. With these functions
you can compare the current version of an element with a previous version from the Local
History, or you can restore a previous version (see the “Local History” section in Chapter 2).

Searching
Searching and Finding are different tasks in Eclipse: The Search function performs a search over the
whole Eclipse workspace. The Find function, in contrast, searches for a string in the currently active
document.

The Search Function
The powerful Eclipse Search function consists of two components: the Search dialog for entering the
search criteria and the view containing the search results (see the following two figures).

If the Search function is called from the toolbar of the Eclipse workbench or from the Eclipse main menu,
you first get the dialog for entering the search criteria. If you call the function as a context function, this
step is omitted, since the search criteria are already defined by the context.

The dialog for entering search criteria has several pages (depending on the installed plug-ins). In
Figure 4.6 the dialog contains a page for searching in generic files, a page for searching within the
Eclipse help system, a page for Java-specific searching (opened), and a page for searching plug-ins.

60

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 60

Figure 4.6

In the case of a Java Search you can search for the name of a type, method, package, constructor, or field.
You can qualify this name completely or only partially. In addition, you can restrict the search by con-
straints. You can search only for declarations, only for references, or for both. In case of fields, you can
restrict the search to read or write accesses. The search scope can be limited to the selected resources
only or to working sets (named resource sets).

Besides the Java Search, the Search dialog features additional pages for searching in generic files (this
mode also includes a Replace button), for searching in the help system, and for searching plug-ins. With
the Customize button you can hide and show specific Search dialog pages.

The results of a search are always shown in the Search View. In the standard Java perspective, the Search
View is stacked with the Tasks View. After selecting the Hierarchical Layout option from the view’s
menu, you can group the search results by project, package, file, or class by pressing the appropriate
Search View tool button.

By using the up- and down-arrows in the toolbar of the Search View, you can easily step through all the
occurrences of the search item. The corresponding compilation unit is automatically opened in the
source editor. The position of the search item is shown on the left margin of the source editor with a yel-
low arrow.

It is useful to know that the Search View keeps track of the search history. You can recall previous search
results by pressing the Previous Search Results button or via the Search Views drop-down menu.

The Search View shows all compilation units in which the sought item was found (Figure 4.7). If this item
occurs several times in the same compilation unit, the number of occurrences is shown in parentheses at
the end of the entry. Double-clicking an entry in the Search View opens the corresponding compilation unit
in the source editor.

61

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 61

Figure 4.7

Find and Replace
Besides the Search function discussed above, Eclipse, of course, provides a function for finding
and replacing strings in text files. With the Edit > Find/Replace function you can obtain a dialog (see
Figure 4.8) where you can enter the search string and additional search options. If you call this
function while a string is selected, the selected string will be used as the search string.

62

Chapter 4

Next entry
Previous entry

Delete selected entry

Delete all entries
Expand all

Collapse all

Group by folder

Group by package

Group by file
Group by type

Stop searching

Previous search results

Figure 4.8

The Find/Replace dialog (Figure 4.8) supports searching for character strings and replacing such strings
with others. Since Eclipse 3 this function supports regular expressions during finding as well as replacing.
When searching, you can search forward or backward and restrict the search to the selected text area. In
addition there are further options:

06_020059_ch04.qxd 10/8/04 10:51 AM Page 62

❑ Case Sensitive. If this option is checked, the search is performed in case-sensitive mode.

❑ Wrap Search. If this option is checked, searching continues at the beginning of the search area
when the end is reached (or at the end of the search area when the beginning is reached, in case
of searching backward). Otherwise, a message prompt is displayed.

❑ Whole Word. If this option is checked, only whole words are searched for.

❑ Incremental. If this option is checked, the search begins immediately when the first character of
the search string is entered. When more characters are entered, the search operation continues
as necessary.

❑ Regular Expression. If this option is checked, the search expression is interpreted as a regular
expression. Press F1 to obtain help on the syntax of regular expressions, or press Ctrl+Spacebar
to obtain a content assistant that helps you with the construction of regular expressions.
Capture groups defined in the Find expression are considered, and the results can be used in the
Replace expression.

Eclipse offers more Find functions that correspond to these options, such as Edit > Find Next, Edit > Find
Previous, and Edit > Incremental Find.

Marking Name Occurrences
If you switch on the Mark Occurrences in File option under Window > Preferences > Mark Occurrences,
the editor will from then on, when you select a syntactical element, mark all elements in the same file
that carry the same name. Since these markers also appear on the right ruler, you can easily navigate to
such an element by moving the scrollbar. In many cases this can save a tedious search. Within the
Preferences you may, in addition, specify which kind of elements are affected by this option: all types, all
methods, all constants, fields, variables, etc. If you mark the Sticky option, the marks will stay around
even if the originating element is no longer selected.

This feature can be quickly switched on or off via the Mark Occurrences button.

Arranging Editors and Views
The layout of the different windows in the Eclipse workbench is not fixed and can be configured by the
user (with some restrictions). There are essentially three ways in which you can arrange windows within
the workbench.

Docked Windows
You can place a window to the left or right of another window or below or above that window. Using
this technique, all windows stay visible, but their size shrinks with each new window. You can dock a
window to another window by dragging its title area or tag to the edge of the target window. When the
cursor changes to a fat arrow, just drop the window.

63

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 63

Stacked Windows
Another option is to stack several windows in front of each other. By clicking the tag of a window you
can bring this window to the top. You can stack a window in front of another window by dragging its
title area or tag to the target window. When the cursor changes to a stack symbol, release it.

Desktop Windows
A further option is to place a view window as a separate window on the desktop outside the workbench
window. However, this option is available only under Windows and Linux GTK. Just grap the view at its
tag and pull it over the desktop area.

FastView
FastView can minimize a window in the FastView bar of the workbench: the window is represented by
an icon. However, the FastView bar is visible only when it contains at least one view. To convert a view
into a FastView, right-click the view’s tag and invoke the FastView context function. The FastView bar
has context functions, too. With the Orientation function you can determine whether a FastView should
be expanded vertically or horizontally. Clicking the FastView function removes the checkmark from it
and restores the view to its original state. With the Dock On function you can change the position of the
FastView bar: at the bottom of the workbench (the default), at the right, or at the left.

In Figure 4.9 I dragged the Search View to the left edge of the Problems View so that both views are
visible side by side.

64

Chapter 4

Figure 4.9

06_020059_ch04.qxd 10/8/04 10:51 AM Page 64

Opening and Closing Windows
Closing a window is trivial: clicking the window’s Close button in the top-right corner or pressing
Ctrl+F4 does the job. But how do you open it again?

❑ For editor windows this is simple: double-clicking the corresponding resource in the Resource
Navigator or the Package Explorer will open the resource under the editor previously in use.

❑ For view windows, use the Window > Show View > … function and select the view that you
want to open.

By the way, if you want to close all editor windows, just invoke File > Close All or press Ctrl+Shift+F4.

Maximizing Windows
All windows in the workbench can be maximized. Double-clicking the tag of a view or of an editor page
or clicking the Maximize icon maximizes the corresponding window, that is, the window occupies all
the space in the workbench window. Double-clicking the tag again or clicking the Restore icon restores
the previous window layout.

Minimizing Views
Views also have a Minimize icon. Clicking this icon will shrink the view (and all views that are stacked
in the same area) to the mere title bar. Clicking the Restore icon will bring the view back to its old size
and position.

Managing Perspectives
A perspective defines a specific combination of editors, views, and menus within the workbench. In this
chapter you already encountered the Resource Perspective and the Java Perspective. In Chapter 6 you
will get acquainted with the Debug Perspective.

Defining New Perspectives
Let’s assume that you have now arranged all the windows in the Java Perspective to your liking. Is it
possible to store these preferences?

You can save this layout with the Window > Save Perspective As function (see Figure 4.10). In the Name
field of this function’s dialog you can define a name for the new perspective. If you later want to return
to the original Java Perspective, you can do so by invoking the Window > Reset Perspective function or
by invoking Window > Close Perspective followed by Window > Open Perspective.

65

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 65

Figure 4.10

The modified workbench configuration shown in the previous figure is stored here as a new perspective
under the name Java (Search docked to Problems).

Configuring Perspectives
With the Window > Customize Perspective function (Figure 4.11) you can change certain aspects of the
current perspective:

❑ The Shortcuts tab allows you to define which items should be listed directly in a given submenu
(otherwise, you would have to click through Others to get to the desired item). Shortcuts can be
defined for the File > New, Window > Open Perspective, and Window > Show View submenus.

❑ The Commands tab allows you to define which command groups (action sets) should be visible
in the menu bar and toolbar of the current perspective.

You can also invoke this function conveniently by clicking the toolbar with the right mouse button.

With the Window > Customize Perspective > Commands function you can remove whole command
groups (action sets) from a perspective or add new command groups. The windows in the middle and
at the right show how the selected command group would influence the menu and the toolbar.

66

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 66

Figure 4.11

In addition, under Window > Preferences > Workbench > Perspectives you can control how to open a
new perspective: either in the current workbench window or in a new workbench window. The latter
option, however, makes sense only if you are lucky enough to own a very large screen. On smaller
screens you may want to use the Eclipse workbench in its maximum size. In this case, the perspective
icons on the Perspective bar of the workbench window (top right) are the perfect way to change
perspectives.

Another option allows you to create a new perspective automatically when a new project is created, so
that each project has its own perspective. Again, you can open the new perspective in the current work-
bench window or in a new workbench window.

Importing Files
You are now going to teach your HelloWorld program to talk. Since version 1.4, Java has contained a
speech interface, the Java Speech API (JSAPI). A standard implementation of the interface, FreeTTS, is
available for free and can be downloaded from the Internet. FreeTTS has its roots in the speech synthe-
sizer Flite but was ported completely to Java. An interesting fact is that FreeTTS is considerably faster
than Flite. Even in terms of speed, Java seems more and more to outperform C++.

FreeTTS (Version 1.2.0) is found at //sourceforge.net/projects/freetts. After downloading
the binary and source files that amount together to about 24 MB (a real flyweight compared to the
Eclipse SDK distribution), unpack the downloaded binaries into an arbitrary directory. In addition, you

67

Organizing Your Code

06_020059_ch04.qxd 10/8/04 10:51 AM Page 67

must unpack the JSAPI (Java Speech API) because it is distributed under a different license model. To do
so you just need to execute the jsapi.exe program in the FreeTTS\lib folder.

You could now follow the FreeTTS installation guide and make a test run of FreeTTS. However, don’t do
that here. Instead, import the system into the Eclipse workbench.

To import third-party software, follow these steps:

1. First, create a new project under the name FreeTTS. When doing so, mark the Create Separate
Source and Output Folders option.

2. In the new project select the src folder and invoke the Import Wizard with the Import context
function.

3. In the next dialog, you will see a list with all sorts of import sources. Select Filesystem and press
the Next button.

4. In the next dialog that appears, press the Browse button and navigate to the …\FreeTTS\
demo\JSAPI\HelloWorld folder. This folder now appears in the left window of the
dialog. Select it, and at the right-hand side you will see all the files contained in that folder
(see Figure 4.12). There, place a checkmark on the HelloWorld.java file and press the Finish
button.

68

Chapter 4

Figure 4.12

If everything has worked correctly, the imported HelloWorld.java program should now be in a
default package of the FreeTTS project (Figure 4.13). But there are a lot of error markers, too!

This is to be expected—the FreeTTS runtime system is still missing. You have two options:

06_020059_ch04.qxd 10/8/04 10:51 AM Page 68

❑ Importing the JAR files of the FreeTTS runtime system into the workbench. But this would
separate you from future version changes. You would need to reimport new versions of these
JAR files into the Eclipse workbench.

❑ Adding the JAR files as external files to the Java Build Path. This saves you from importing
these files. An additional advantage is that you don’t have to keep two copies of the files. If the
original files are replaced by a new version, the changes will automatically be carried through to
your project.

69

Organizing Your Code

Figure 4.13

Project Properties
In this example I recommend that you use the second option. To add JAR files to the Java Build Path, just
invoke the Project > Properties function. In the selection tree choose Java Build Path, and then open the
Libraries page. Here you see only a single entry: the rt.jar Java 1.4 runtime system.

Press the Add External Jars button and navigate to the directory …\FreeTTS\lib. From the JAR files
now listed in this dialog (cmu_time_awb.jar, ..., jsapi.jar), select all files and then press the Open
button. These files are now added to the Libraries list (Figure 4.14). Then press the OK button and see
what happens. All the error markers should have vanished! (If not, you’ll need to rebuild the project by
calling the Build Project context function.)

06_020059_ch04.qxd 10/8/04 10:51 AM Page 69

Figure 4.14

Figure 4.14 shows the content of the Libraries page in the Project Properties after adding the FreeTTS
JARs.

What is still missing is the source code for the FreeTTS binaries. This code is contained in the down-
loaded freetts-srcs-1_2_beta.zip file. You must associate this file only with the corresponding
packages of the FreeTTS project. Here’s how it’s done.

In the Package Explorer select freetts.jar and invoke the Properties context function. In the dialog
that appears, select Java Source Attachment for the package properties. Then press the External File
button and navigate to the freetts-srcs-1_2_beta.zip file. And that’s all. If you now open a file
from freetts.jar, the corresponding source code will appear in the source editor. Of course, this code
cannot be edited, only viewed. (You have to repeat this process for the other external JAR files as well.)

Now you should be able to do a test run. Like the very first HelloWorld program, execute the new
HelloWorld program with the same Run > Run As > Java Application function.

However, instead of the expected speech output, you get only the following text on the Java console:

Can't find synthesizer.
Make sure that there is a "speech.properties" file at either of these
locations:
user.home : H:\Dokumente und Einstellungen\Berthold Daum
java.home/lib: C:\j2sdk1.4.1\jre\lib

70

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 70

Right. Something like this was mentioned in the FreeTTS installation guide. Copy the speech
.properties file from FreeTTS into one of the directories mentioned in the error message and exe-
cute the program again. You should hear

Hello, World!

provided of course, that your computer is equipped with a sound card and the speakers are
connected….

The Java Browsing Perspective
The Java Browsing Perspective delivers a slightly different view of the structure of a Java project and is
reminiscent of Visual Age. You can install this perspective by clicking the Open a Perspective button (see
the “Hello World” section in Chapter 1). From the list select Java Browsing.The Java Browsing
Perspective (Figure 4.15) provides four windows at the top where you can select projects, packages,
types, and methods or fields in a hierarchical manner. Since you can easily switch between this perspec-
tive and the normal Java Perspective, the Java Browsing Perspective is a good way to avoid losing the
overview of a project.

71

Organizing Your Code

Figure 4.15

06_020059_ch04.qxd 10/8/04 10:51 AM Page 71

Summary
From this chapter you should have acquired a more detailed knowledge of the Eclipse workbench. You
should now know what perspectives are and how they are used. You should know the difference
between searching and finding, and you should have an understanding of the workspace concept and of
Eclipse resources. In the next chapter you will apply this knowledge by implementing a larger example.

72

Chapter 4

06_020059_ch04.qxd 10/8/04 10:51 AM Page 72

Project One: Duke Speaks

In this chapter you are going to implement your first major example project. You will learn how
to base a new project on an existing project and how to modify and enhance features of the base
project. During this task you will use many of the comfortable features of the Eclipse Java IDE.

The example application is based on the FreeTTS speech synthesizer that I have already intro-
duced in Chapter 4. There I implemented the project FreeTTS with a speaking HelloWorld
program, which communicated with the synthesizer via the JSAPI interface.

In this chapter you will develop a Swing GUI for FreeTTS. This GUI includes an animated face
that moves its lips synchronously with the speech output.

Of course, there is also a speech synthesizer manufactured by IBM (ViaVoice) that even comes as
an Eclipse plug-in. The Voice Toolkit for WebSphere Studio runs under Eclipse, too, and cooper-
ates with the WebSphere Voice Server SDK. For our purposes, however, FreeTTS is better suited,
since it is an Open Source product and supports all platforms supported by Eclipse.

Setting Up the Project
To achieve good lip synchronization, it is necessary to have event notification for single phonemes.
The JSAPI, however, supports event notification only at the word level, and this event notification
is currently not supported by the FreeTTS JSAPI implementation. The only choice is not to use the
JSAPI but to drive FreeTTS via its native API. In addition, you have to create events for each single
phoneme. This requires that you modify the FreeTTS runtime system.

Despite these modifications, you can still use the external FreeTTS JARs as a basis. Where neces-
sary you can subclass the FreeTTS classes to apply your modification. These new classes are stored
in packages that bear the same name as the parent class but are stored in our new project,
DukeSpeaks.

55

07_020059_ch05.qxd 10/8/04 10:52 AM Page 73

First you create the new Java DukeSpeaks project in the usual way. Again, you need to modify the Java
Build Path. This time, however, you don’t add external JARs but open the Projects page and checkmark
the FreeTTS project. This makes the resources of the FreeTTS project available to the DukeSpeaks
project as well. This applies, too, to the external JARs that you added to the FreeTTS project. However,
these JARs must be marked for export in the FreeTTS project. This is currently not the case.

So you must once again edit the Java Build Path of the FreeTTS project. To do so, select the project in
the Package Explorer, right-click, and select the Properties context function. In the dialog that appears,
select the Java Build Path category. Then open the Order and Export page. There checkmark all FreeTTS
JARs, thus making them available to all projects that build on the FreeTTS project.

To avoid having the example files from Chapter 1 littering the Package Explorer, you should create a
new working set. To do so, follow these steps:

1. Click the drop-down button (down-arrow) on the toolbar of the Package Explorer and choose
the Select Working Set function. In the dialog that now appears, press the New button.

2. In the next dialog, select Java as the working set type and press the Next button.

3. Finally, enter dukeSpeaks as the name and checkmark the FreeTTS and DukeSpeaks
projects. From now on, the Package Explorer displays only these two projects. By invoking the
Deselect Working Set function you can restore the original state.

A Short Excursion into Speech Synthesis
Before you start extending the FreeTTS system, you should get acquainted with the basics of speech syn-
thesis and with the architecture of the FreeTTS system.

Speech synthesis works in several steps:

1. A Tokenizer breaks the text into syntactical units (tokens). In general, these are words and num-
bers, including the punctuation.

2. Some tokens, such as numbers, are converted into words.

3. A Phraser analyzes the word list and organizes it into phrases (sentences and para-sentences).
Phrasing establishes the basis for the later decoration of the speech output with pauses and
melody.

4. A Segmenter analyzes the words and—with the help of a lexicon—assigns a syllable structure to
each word.

5. The Pause Generator inserts a pause in front of each phrase.

6. The Intonator analyzes the syllables and assigns an emphasis and a pitch to each syllable.

7. In a further step and depending on the voice used, some phonemes are replaced by others.

8. The duration for each phoneme is determined.

9. The Contour Generator assigns an envelope curve to each syllable.

74

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 74

10. In a further step, adjoining phonemes are combined into pairs (diphones). This allows a better
resolution of the text into speech.

11. The PitchMark Generator analyzes the results of the contour generator and generates parame-
ters for the later sound synthesis.

12. The results of the PitchMark Generator and the list of diphones are now used to select and con-
catenate the corresponding speech samples.

13. Finally, the concatenated samples are replayed with the help of a suitable audio player.

FreeTTS is designed as a modular system. Each of the steps listed above is processed by a specialized
Utterance Processor. An utterance is the basic data structure in FreeTTS. It may contain the complete text
that is to be spoken but may later be broken into individual phrases, which again are represented as
Utterance instances.

Each utterance consists of a set of lists (in FreeTTS these are called relations). These include the lists of
syllables, words, segments (results of the Segmenter), and so on. The various utterance processors per-
form read and write accesses to these lists.

Detailed information about the architecture of FreeTTS is found in the FreeTTS Programmer’s Guide
(contained in the FreeTTS documentation).

Extending the FreeTTS System
You can derive the information needed for lip synchronization from the durations computed in step 8,
where the duration of each single segment (phoneme) was determined. The best point for invoking the
lip synchronization, however, is between steps 12 and 13, as close as possible to the audio output.

You can generate the events for lip synchronization by implementing your own utterance processor,
called Animator. This processor derives events (AnimationEvent) from the end times stored in each
segment and sends these events to an AnimationListener at the right time. You can control this with
your own timer.

Animation Events
First, implement the AnimationEvent class and the AnimationListener interface. Both are
stored in the com.sun.speech.freetts.relp package. Listing 5.1 shows the code for
AnimationEvent.java.

package com.sun.speech.freetts.relp;

public class AnimationEvent {

public int endTime;
public String phone;

/**
* Constructor

75

Project One: Duke Speaks

Listing 5.1 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 75

* @param endTime - the end time of the phoneme in msec
* @param phone - the phoneme string
*/
public AnimationEvent(int endTime, String phone) {

this.endTime = endTime;
this.phone = phone;

}
}

Listing 5.1 (Continued)

Creating a New Class
To create the AnimationEvent class,

1. Create the com.sun.speech.freetts.relp package in the DukeSpeaks project by pressing
the Create a Java Package button on the workbench’s toolbar.

2. Before creating new classes you should complete the code-generation template for constructors
by adding the Constructor headline. You do this under Window > Preferences > Java > Code
Style > Code Templates > Comments > Constructors.

3. After entering the package name and pressing Finish, create the new class AnimationEvent.
To do so, click the Create a Java Class button on the workbench’s toolbar. Enter the name of the
class (AnimationEvent) and press the Finish button.

4. Start entering code. You don’t have to enter much: you need only create the two fields endTime
and phone, and you must modify the constructor as shown above. When creating comments
you can make use of the Source > Add JavaDoc Comment context function. If you apply this
function on the constructor, Eclipse will create a Javadoc comment in front of the constructor.
(The same function can be invoked by entering the string /** in a new line in front of the con-
structor and then pressing the Enter key.) You only have to complete the text strings after
@param endTime and after @param phone.

Creating a New Interface
Then you can create the AnimationListener interface in the same package. This one is also quite
simple. Listing 5.2 shows the code for the AnimationListener.java interface.

package com.sun.speech.freetts.relp;

public interface AnimationListener {

/**
* Method processAnimationEvent.
* @param e AnimationEvent object
*/
public void processAnimationEvent(AnimationEvent e);

}

Listing 5.2

76

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 76

Follow these steps to create the interface:

1. Before creating the interface, you should complete the method code-generation template by
adding the Method ${enclosing_method} headline.You can do so under Window >
Preferences > Java> Code Style > Code Templates > Comments > Methods.

2. Press the Create a Java Interface button on the workbench’s toolbar. Here, too, you can use the
Source > Add JavaDoc Comment context function when entering comments. If you apply this
function on the processAnimationEvent method, you only have to complete the text string
after @param e.

The Animator
Now you can create the Animator class, which is also in the com.sun.speech.freetts
.relp package. This class implements the com.sun.speech.freetts.UtteranceProcessor
interface with the processUtterance() method. The Animator receives the Utterance instance it
needs to process via this method. However, you cannot use this method to start animation, because the
startup time needed by FreeTTS and the Java audio system would cause the animation to run ahead of
the speech output. To keep the animation fully synchronous, you have to catch the START event of the
audio system. For this purpose you also need to implement the javax.sound.sampled
.LineListener interface with the update() method. After receiving the START event you can use
your own timer to generate animation events. To react to the events of this timer, implement the addi-
tional java.awt.event.ActionListener interface with the actionPerformed() method.
Once you have generated the animation events, pass them to all AnimationListener objects that have
registered via the addAnimationListener() method.

Creating a Class with Interfaces
You can create this class, too, by clicking the Create a Java Class button, but this time you not only enter
the name of the new class into the dialog, you also press the Add button to enter the names of the inter-
faces that this class is going to implement. Usually, it is sufficient to enter just a few characters to qualify
the interface. You need to add the following interfaces: UtteranceProcessor, LineListener, and
ActionListener. Then press the Finish button. Eclipse will now generate a class skeleton that includes
all the methods declared in the specified interfaces: processUtterance(), update(), and
actionPerformed(). However, this is done only if the Inherited Abstract Methods check box was
marked. If you did not do this, you can easily fix the problem and create the new class by applying the
Source > Override/Implement Methods context function.

Actually, it didn’t matter that you did not have access to the source code of the LineListener
interface. Eclipse is able to retrieve the required information from the binary object.

Eclipse decorates all generated method stubs with a TODO comment. These comments will show up in
the Tasks window as entries and will thus remind you to complete the implementation of these methods.

Using the Code Assistant
When entering the code, you should not enter import statements and Javadoc comments at this time.
Most of the import statements are automatically inserted by subsequently using the code assistant
(Ctrl+Spacebar) anyway. After you have entered all the code, you can easily add any missing import
statements by invoking the Source > Organize Imports context function. The Javadoc comments are

77

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 77

created with the Source > Add JavaDoc Comment context function or by entering the string /** and
pressing Enter. You complete these comments only as required.

When entering method code you can use existing code templates: pri followed by Ctrl+Spacebar
generates a stub for a private method; pub followed by Ctrl+Spacebar generates a stub for a public
method.

In addition, you don’t have to spell out the names of types, methods, and fields. In most cases it is
sufficient to type only a few letters and then call the Code Assistant by pressing Ctrl+Spacebar.

The Animator.java Class
The Animator class acts as a controller. Utterances processed by the speech engine are intercepted by the
Animator who will produce animation events and post them to registered listeners. A timer object is
used to produce the animation events at the correct moment.

package com.sun.speech.freetts.relp;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import javax.sound.sampled.LineEvent;
import javax.sound.sampled.LineListener;
import javax.swing.Timer;

import com.sun.speech.freetts.*;

public class Animator
implements UtteranceProcessor, ActionListener, LineListener {

// List of AnimationListener instances
List listeners = new ArrayList(3);
// Swing Timer object
Timer timer;
// Current segment in the segment list
Item segment;
// Start time of current segment
int currentTime = 0;

addAnimationListener()
Listeners of type AnimationListener can register with the Animator via method
addAnimationListener(). The Animator will post animation events to these listeners.

/**
* Method addAnimationListener.
* @param l AnimationListener object
*/
public void addAnimationListener(AnimationListener l) {

listeners.add(l);

78

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 78

}
/**
* Method removeAnimationListener.
* @param l AnimationListener object
*/
public void removeAnimationListener(AnimationListener l) {

listeners.remove(l);
}

processUtterance()
Utterances produced by the speech engine are intercepted and processed in method processUtterance().
This method just resets the timer from a previous utterance and retrieves the first segment of the utterance.

/**
* @see com.sun.speech.freetts.UtteranceProcessor#
* processUtterance(Utterance)
*/
public void processUtterance(Utterance utterance)

throws ProcessException {
// Reset current time
currentTime = 0;
// Stop time if it is still running (previous utterance)
if (timer != null && timer.isRunning())

timer.stop();
// Fetch first segment of utterance
segment = utterance.getRelation(Relation.SEGMENT).getHead();

}

actionPerformed()
When the timer expires, and animation event is posted to all registered listeners.

/**
* @see
* java.awt.event.ActionListener#actionPerformed(ActionEvent)
*/

// Is executed when the timer expires

public void actionPerformed(ActionEvent e) {
// Fire event
fireAnimationEvent();

}

fireAnimationEvent()
In this case, the end time of the utterance is fetched from the retrieved segment. An AnimationEvent
object with this end time is created and posted to all registered listeners. Then a new timer object, which
will expire at this end time, is created.

79

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 79

/**
* Method fireAnimationEvent.
*/
private void fireAnimationEvent() {

// If segment == null we have reached the end of the list
if (segment != null) {

// Fetch end time from segment and convert to msec
int end =

(int) (1000 * segment.getFeatures().getFloat("end"));
// Get phoneme from segment
String phone = segment.getFeatures().getString("name");
// Advance in segment list
segment = segment.getNext();
// Create new AnimationEvent object
AnimationEvent e = new AnimationEvent(end, phone);
// Send it to all AnimationListener objects
Iterator iter = listeners.iterator();
while (iter.hasNext()) {

AnimationListener listener =
(AnimationListener) iter.next();

listener.processAnimationEvent(e);
}
// Create new timer that expires at the end time
// of the current phoneme.
timer = new Timer(end - currentTime, this);
timer.setRepeats(false);
timer.setCoalesce(false);
timer.start();
// Update current time
currentTime = end;

}
}

update()
The whole animation is started when a START line event arrives. The Animator receives such events
because it is registered as a LineListener with the Java Sound System.

/**
* @see javax.sound.sampled.LineListener#update(LineEvent)
*/
public void update(LineEvent event) {

if (event.getType().equals(LineEvent.Type.START)) {
// Audio output has started – start animation, too.
// Fire first event
fireAnimationEvent();

}
}

/**
* @see java.lang.Object#toString()
*/
public String toString() {

return "Animator";
}

}

80

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 80

Embedding into FreeTTS
Because you want to position the animator as close as possible to the audio output, you need to call it
from the AudioOutput utterance processor. Of course, you don’t want to modify the existing
AudioOutput class. Therefore, create a subclass of this class and override the processUtterance()
method. Please note the little up-arrow appearing to the left beneath this method. It indicates that this
method overrides an inherited definition. By hovering with the mouse above the arrow you can display
further information about what was overridden, and by clicking the arrow you can navigate to the over-
ridden version, too.

The AnimatedAudioOutput.java class
Listing 5.3 shows the code of the AnimatedAudioOutput class. Please note the call to the Animator in
method processUtterance().

package com.sun.speech.freetts.relp;

import com.sun.speech.freetts.ProcessException;
import com.sun.speech.freetts.Utterance;
import com.sun.speech.freetts.UtteranceProcessor;

public class AnimatedAudioOutput extends AudioOutput {

UtteranceProcessor animator;

/**
* Method AnimatedAudioOutput.
* @param animator Animator object for generating animation events
*/
public AnimatedAudioOutput(UtteranceProcessor animator) {

// Initialize animator field
this.animator = animator;

}

/**
* @see com.sun.speech.freetts.UtteranceProcessor#
* processUtterance(Utterance)
*/
public void processUtterance(Utterance u) throws ProcessException {

// In case we got an Animator we invoke its
// processUtterance method.
if (animator != null)

animator.processUtterance(u);
// Then proceed as usual
super.processUtterance(u);

}
}

Listing 5.3

81

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 81

Creating a Subclass
Again, you can create this class with the Create a Java Class button. This time you not only enter the
name of the new class, but you also press the Browse button at the right-hand side of the Superclass
field. There, select the AudioOutput field from the list. Click Finish, and you can start to enter code. In
the case of import statements and Javadoc comments, just proceed as discussed previously.

When you enter the processUtterance() method, the Source > OverrideMethods context function
will save you some work. In this function’s dialog box mark the processUtterance() method below
the AudioOutput class. Then you need only add the lines for calling the processUtterance()
method from the Animator instance.

Alternatively, you use the Code Assistant to create specific method stubs. For example, to create a stub
for the processUtterance() method you need only type the letters pro and press Ctrl+Spacebar.
Then select processUtterance from the list.

After you have completed this class, you must tell FreeTTS to use AnimatedAudioOutput instead of
AudioOutput. Which utterance processor is used for audio output is determined in the subclasses of
the com.sun.speech.freetts.Voice class in the getAudioOutput() method. Since you plan to
use the voice

com.sun.speech.freetts.en.us.CMUDiphoneVoice

for your application, you need to extend this class.

For this purpose, create a new com.sun.speech.freetts.en.us package in the DukeSpeaks
project. In this package create a new class named AnimatedDiphoneVoice.

The AnimatedDiphoneVoice.java class
When creating the AnimatedDiphoneVoice class, specify CMUDiphoneVoice as a super class and check
the Constructors from Superclass option. In the generated constructor add the new animator parame-
ter and store this parameter in an instance field. See Listing 5.4.

package com.sun.speech.freetts.en.us;

import java.io.IOException;
import java.net.URL;
import java.util.Locale;
import com.sun.speech.freetts.Age;
import com.sun.speech.freetts.Gender;
import com.sun.speech.freetts.UtteranceProcessor;
import com.sun.speech.freetts.relp.AnimatedAudioOutput;

public class AnimatedDiphoneVoice extends CMUDiphoneVoice {

UtteranceProcessor animator;

/**
* Constructor
* @param name - the name of the voice
* @param gender - the gender of the voice

82

Chapter 5

Listing 5.4 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 82

* @param age - the age of the voice
* @param description - a human-readable string providing a
* description that can be displayed to users.
* @param locale - the locale of the voice
* @param domain - the voice domain, e.g. general, time, wheather
* @param organization the organization which created the voice
* @param lexicon - the lexicon to load
* @param database - a url to the unit database file for this voice
* @param animator - the animator for lip synchronization
*/
public AnimatedDiphoneVoice(String name,Gender gender,Age age,
String description, Locale locale, String domain,
String organization, CMULexicon lexicon, URL database,
UtteranceProcessor animator) {
super(name, gender, age, description, locale, domain,
organization, lexicon, database);

this.animator = animator;
}

/**
* @see com.sun.speech.freetts.Voice#getAudioOutput()
*/
protected UtteranceProcessor getAudioOutput() throws IOException {

return new AnimatedAudioOutput(animator);
}

}

Listing 5.4 (Continued)

Because you want this class to create an AnimatedAudioOutput, you must override the
getAudioOutput() method. Here, too, you can make use of the Source > Override Methods context
function. In the dialog that appears, mark the getAudioOutput() method below the CMUVoice class.
Then, just complete the method as shown above.

Connection with the Java Audio System
What is still missing is the program logic for starting the animator. Here, you must first register the
Animator as LineListener with a javax.sound.sampled.Line object. Such an object is created
by the com.sun.speech.freetts.audio.JavaClipAudioPlayer player in the end() method in
the disguise of a javax.sound.sampled.Clip object.

The correct way to extend JavaClipAudioPlayer would be to subclass it. But unfortunately
JavaClipAudioPlayer proves to be a stubborn beast. Too many private fields prevent us from
applying the required extensions. Therefore, choose a different path. Simply create a copy of
JavaClipAudioPlayer, which you then can modify easily. Theoretically, you could use the Copy
function of the Package Explorer, but unfortunately this function cannot be applied to the contents of
external JARs. Therefore, you must first create the new com.sun.speech.freetts.audio package in
the DukeSpeaks project and create in this package the new AnimatedAudioPlayer class. Then open
the JavaClipAudioPlayer class in the FreeTTS package, select the whole text (Ctrl+A), and copy it
(Ctrl+C) to the clipboard. Then select the whole text in the new AnimatedAudioPlayer class and

83

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 83

replace it with with the contents of the clipboard (Ctrl+V). Now, you can start modifying this class for
your requirements. (Modifications are printed in bold type.)

First, create a new private field:

private LineListener externalLineListener;

In the constructor, insert an equally named parameter and initialize the externalLineListener field
with the parameter value:

/**
* Constructs a default AnimatedAudioPlayer
*/
public AnimatedAudioPlayer(LineListener externalLineListener) {

this.externalLineListener = externalLineListener;
debug = Boolean.getBoolean

("com.sun.speech.freetts.audio.AudioPlayer.debug");
closeDelay = Long.getLong

("com.sun.speech.freetts.audio.AudioPlayer.closeDelay",
150L).longValue();

setPaused(false);
}

Then register externalLineListener in the end() method with the Clip object:

...
DataLine.Info info = new DataLine.Info(Clip.class, currentFormat);
Clip clip = (Clip) AudioSystem.getLine(info);
clip.addLineListener(lineListener);
clip.addLineListener(externalLineListener);
clip.open(currentFormat, outputData, 0, outputData.length);
setVolume(clip, volume);
...

Finally, apply the Source > Organize Imports function to remove all unnecessary import statements.

The User Interface
The user interface is implemented with Swing. Since no Eclipse components are used at all, you can eas-
ily execute this application outside of Eclipse.

The other reason for using Swing is that I want to demonstrate the Eclipse Visual Editor (VE), which in
its current version (0.5) supports only Swing.

Because the code contains only standard Java programming, there is little to learn about Eclipse APIs in
this section. Therefore, I will not discuss the code in detail but provide only a short overview.

84

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 84

The Animated Face
The face with the lip synchronization is implemented as a subclass of the Swing JPanel class. This class
has the name Face and is created in the com.bdaum.dukeSpeaks package. The class implements the
AnimationListener interface, which was created in the “Animation Events” section. This allows you
to register the face as AnimationListener with an Animator instance. It will receive
AnimationEvents from the Animator and can then react accordingly to these events.

The Face.java class

package com.bdaum.dukeSpeaks;
import java.awt.*;

import javax.swing.JPanel;

import com.sun.speech.freetts.relp.AnimationEvent;
import com.sun.speech.freetts.relp.AnimationListener;

public class Face extends JPanel implements AnimationListener {

// Relative mouth dimensions, derived from current phoneme
float mouthWidth = 0.80f;
float mouthHeight = 0.05f;
// Relative eye pupil position, derived from current phoneme
float eyePos = 0.16f;

The processAnimationEvent() method receives animation events (AnimationEvent). From the
transmitted phoneme it computes the size and shape of the mouth and the position of the eye pupils.
The mouth is always drawn as an ellipsoid but with varying positions and diameters. After these values
are computed, the repaint() method is called. This enforces the redrawing of the Face component.

/**
* @see com.sun.speech.freetts.relp.AnimationListener
* #processAnimationEvent(AnimationEvent)
*/
public void processAnimationEvent(AnimationEvent e) {
// Set current phoneme
String phone = e.phone;
if (phone.equals("pau")) {
// In pauses pupils must look upwards
eyePos = 0.15f;
// In pauses mouth remains closed
mouthWidth = 0.80f;
mouthHeight = 0.05f;

} else {
// Otherwise pupils look downwards
eyePos = 0.4f;
// Analyze first character of phoneme
char p1 = phone.charAt(0);
switch (p1) {
// Uh's and Oh's
case 'o' :

85

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 85

case 'u' :
mouthWidth = 0.5f;
mouthHeight = 0.5f;
break;
// Ah's

case 'a' :
mouthWidth = 0.75f;
mouthHeight = 0.75f;
break;
// Eh's and Ih's

case 'e' :
case 'i' :
mouthWidth = 1f;
mouthHeight = 0.1f;
break;
// Alles andere

default :
mouthWidth = 0.6f;
mouthHeight = 0.3f;
break;

}
}
repaint();

}

The paintComponent() method is called when the Face component is redrawn. The graphical con-
text is passed as a parameter. Via a type cast (Graphics2D) you convert it into a Java2D context. Then
you enable anti-aliasing and employ the usual graphical methods such as fillOval(), drawOval(),
or drawPolyline() to draw the face. The size and position of the mouth and the eye pupils depend on
the values previously computed from the transmitted phonemes.

/**
* @see javax.swing.JComponent#paintComponent(Graphics)
*/
protected void paintComponent(Graphics cg) {
super.paintComponent(cg);
// Cast for Java2D
Graphics2D g = (Graphics2D) cg;
// Compute component size
Dimension d = getSize();
int width = (int) d.getWidth();
int height = (int) d.getHeight();
// Switch off Antialiasing
g.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

// Draw face
g.setColor(Color.white);
g.fillOval(0, 0, width, height);
// Some face dimensions
int midX = width / 2;
int midY = height * 3 / 4;
int eyeDia = height / 10;

86

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 86

int eyeInner = eyeDia / 2;
int eyeY = height / 4;
int eyeX = midX - eyeDia / 3;
int eyeOff = width / 6;
int noseY = height / 3;
int noseLength = height / 4;
int noseWidth = width / 12;
// Draw eyes
g.setColor(Color.blue);
g.drawOval(midX - eyeOff - eyeDia / 3, eyeY, eyeDia, eyeDia);
g.drawOval(midX + eyeOff - eyeDia / 3, eyeY, eyeDia, eyeDia);
// Draw eye pupils
int ey = eyeY + ((int) (eyeDia * eyePos));
g.fillOval(eyeX - eyeOff, ey, eyeInner, eyeInner);
g.fillOval(eyeX + eyeOff, ey, eyeDia / 2, eyeDia / 2);
// Draw nose
g.drawPolyline(
new int[] { midX, midX + noseWidth, midX },
new int[] { noseY, noseY + noseLength, noseY + noseLength },
3);

// Compute mouth dimensions
int mw = (int) (width * mouthWidth / 4);
int mh = (int) (height * mouthHeight / 4);
int mx = midX - mw / 2;
int my = midY - mh / 4;
// Draw mouth
g.fillOval(mx, my, mw, mh);

}
}

The Control Panel
Now you can begin to construct the control panel. This unit must contain the animated face in its center,
below the face a field for text entry, at the left and right of the face sliders for adjusting volume, speed,
pitch, and variation.

Two new classes and one interface are needed to implement this control unit:

❑ The PlayerModel interface specifies the interface of the control panel’s domain model.

❑ This interface is implemented by the PlayerModelImpl class.

❑ The PlayerPanel class implements the presentation of the data and the various control
instruments with the help of Swing.

So, the typical MVC design pattern (Model-View-Controller) is used here. PlayerPanel acts as both a
viewer and a controller.

The Model
When implementing the domain model you have the choice of writing the implementation class first or
starting with the definition of the interface. In fact, you could omit the interface altogether, but having a
separate interface adds some flexibility:

87

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 87

❑ When you opt to create the PlayerModel interface first, you can specify the interface later
when you create the PlayerModelImpl class. Eclipse will then generate all the method stubs
for you. This method is particularly interesting if you already have a clear idea of the domain
model’s API.

❑ Otherwise, when you opt to create the PlayerModelImpl implementation first, you can later
easily generate the PlayerModel interface from the implementation with the help of the
Refactor > Extract Interface context function. This technique is recommended when the API of
the model is shaped during the implementation. Actually, in the beginning you can work with-
out an interface entirely. You simply use the methods of the implementation. Later, when your
domain model has matured and is stable, you can derive the interface with the mentioned con-
text function. This function will also replace all implementation methods’ references with refer-
ences to interface methods, provided this does not lead to compilation problems.

The main task of a PlayerModel instance (Listing 5.5) is to encapsulate a FreeTTS Voice and to pro-
vide access methods to control volume, speed, pitch, and variation. In addition, there is a play()
method that runs the speak() method of the Voice instance in a separate thread. For this task you can
use a SwingWorker instance, so that the speech process does not lock up the GUI.

The SwingWorker class that is called from the play() method does not belong to the javax.swing
packages, but you can obtain it from http://java.sun.com/docs/books/tutorial/uiswing/
misc/ threads.html or as part of this example’s source code from www.wrox.com.

The PlayerModel.java interface

package com.bdaum.dukeSpeaks;
public interface PlayerModel {

/**
* Returns the volume.
*
* @return the volume, or -1 if unknown, or an error occurred
*/
public float getVolume();

/**
* Sets the volume.
*
* @param volume set the volume of the synthesizer
*/
public void setVolume(float volume);

/**
* Returns the speaking rate.
*
* @return the speaking rate, or -1 if unknown or an error occurred
*/
public float getSpeakingRate();

/**
* Sets the speaking rate in the number of words per minute.
*
* @param wordsPerMin the speaking rate
*/

88

Chapter 5

Listing 5.5 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 88

public void setSpeakingRate(float wordsPerMin);

/**
* Returns the baseline pitch for the current synthesis voice.
*
* @return the baseline pitch for the current synthesis voice
*/
public float getPitch();

/**
* Sets the baseline pitch for the current synthesis voice.
*
* @param pitch the baseline pitch
*/
public void setPitch(float pitch);

/**
* Returns the pitch range for the current synthesis voice.
*
* @return the pitch range for the current synthesis voice
*/
public float getRange();

/**
* Sets the pitch range for the current synthesis voice.
*
* @param range the pitch range
*/
public void setRange(float range);

/**
* Performs text-to-speech on the given text.
*
* @param text the text to perform TTS
*/
public void play(String text);

}

The PlayerModelImpl.java class

package com.bdaum.dukeSpeaks;

import com.sun.speech.freetts.Voice;

public class PlayerModelImpl implements PlayerModel {

// The Voice instance used in this model
private Voice voice;
// Semaphore for inhibiting double playing
private boolean playing = false;

/**
* Method PlayerModelImpl.
* @param voice a FreeTTS voice object.
*/
public PlayerModelImpl(Voice voice) {
this.voice = voice;

89

Project One: Duke Speaks

Listing 5.5 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 89

}

/**
* @see PlayerModel#play(String)
*/
public void play(final String text) {
// do nothing if player runs already.
if (playing)
return;

// Set semaphore to true
playing = true;
// The speech process runs in a separate thread
// that is managed by the SwingWorker instance worker
final SwingWorker worker = new SwingWorker() {
public Object construct() {
// This is where Duke speaks
voice.speak(text);
return null;

}
};
worker.start();
// Reset semaphore
playing = false;

}

/**
* @see PlayerModel#getVolume()
*/
public float getVolume() {
// Get volume from Voice instance
// and convert to scale range 0-10
float adjustedVolume = voice.getVolume();
return (adjustedVolume < 0.5)
? 0f
: (float) ((adjustedVolume - 0.5) * 20);

}

/**
* @see PlayerModel#setVolume(float)
*/
public void setVolume(float volume) {
// Set volume in Voice instance
// convert from scale range 0-10 to Voice range 0.5-1.0
float adjustedVolume = (float) (volume / 20 + 0.5);
voice.setVolume(adjustedVolume);

}

/**
* @see PlayerModel#getSpeakingRate()
*/
public float getSpeakingRate() {
// Get speaking rate from Voice instance
return voice.getRate();

}

/**
* @see PlayerModel#setSpeakingRate(float)
*/
public void setSpeakingRate(float wordsPerMin) {

90

Chapter 5

Listing 5.5 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 90

// Set speaking rate in Voice instance
voice.setRate(wordsPerMin);

}

/**
* @see PlayerModel#getPitch()
*/
public float getPitch() {
// Get pitch from Voice instance
return voice.getPitch();

}

/**
* @see PlayerModel#setPitch(float)
*/
public void setPitch(float pitch) {
// Set pitch in Voice instance
voice.setPitch(pitch);

}

/**
* @see PlayerModel#getRange()
*/
public float getRange() {
// Get variation from Voice instance
return voice.getPitchRange();

}

/**
* @see PlayerModel#setRange(float)
*/
public void setRange(float range) {
// Set variation in Voice instance
voice.setPitchRange(range);

}
}

Listing 5.5 (Continued)

The Presentation
After defining the domain model you can implement the visible part of the user interface. This is done in
the PlayerPanel class, which is implemented as a subclass of the Swing JPanel class in the
com.bdaum.dukeSpeaks package.

To implement this class you can use the Visual Editor for Java (VE) that was already discussed in Chapter 3.
After creating the PlayerPanel class in the usual way, define the instance fields and the constructor
(Listing 5.6).

public class PlayerPanel {

// The data model
private PlayerModel playerModel;

91

Project One: Duke Speaks

Listing 5.6 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 91

// The JPanel instance for the face
private JPanel face;

public PlayerPanel(PlayerModel playerModel, JPanel face) {
super();
// Save parameters into fields
this.playerModel = playerModel;
this.face = face;

}
}

Listing 5.6 (Continued)

Visual Editor
Now you can close the Java Editor and open the same class again with the Visual Editor. Figure 5.1
shows the hierarchy of GUI elements. First, place a JPanel component into the design area and pull it
up to 600 by 500 pixels, or enter this size in the Size entry in the Properties View. Then you can subdi-
vide this content pane into additional JPanels in order to place the face and sliders for volume, speed,
pitch, and variation on top of it. In addition, you need a field for text input, a few buttons, and, of
course, the necessary event processing for these control elements.

92

Chapter 5

Figure 5.1

07_020059_ch05.qxd 10/8/04 10:52 AM Page 92

Layouts
Most of these panels use BorderLayouts or GridLayouts, but for the buttonPanel a FlowLayout
is used. In the BorderLayouts the most important element is placed into the Center area; all other ele-
ments are placed into the North, South, East, or West areas. For example, each slider sits in the
Center area of its panel, while the corresponding label is placed into the North area. The
centerPanel component has a GridLayout of the size 1x1. The single grid field will later contain the
Face component. Using the GridLayout guarantees that the Face component is correctly resized
when the size of the window changes. Also the leftSlidersPanel and rightSlidersPanel panels
are equipped with GridLayouts. One grid cell is filled with an empty label that acts as spacer. The fol-
lowing table shows which Layout is used for which component.

Panel Layout Row Column

contentPanel BorderLayout - -

controlAreaPanel GridLayout 1 3

leftSlidersPanel GridLayout 1 3

volumePanel BorderLayout - -

speedPanel BorderLayout - -

centerPanel GridLayout 1 1

rightSlidersPanel GridLayout 1 3

pitchPanel BorderLayout - -

rangePanel BorderLayout - -

textAreaAndButtonsPanel BorderLayout - -

buttonPanel FlowLayout - -

Sliders
The sliders also need some adjustments in the Properties view. First, you must set their orientation to
VERTICAL. Then you must specify the minimum and maximum values and the scaling
(minorTickSpacing and majorTickSpacing), and you must indicate that the track, scale, and labels
must be drawn, that is, you must set the paintLabels, paintTicks, and paintTrack attributes to
true. You should also specify an appropriate tooltip under toolTipText. The following table shows
the bounding and scaling attributes of the various sliders.

Slider Minimum Maximum minorTick majorTick

volumeSlider 0 10 1 5

speedSlider 0 400 50 100

pitchSlider 50 200 25 50

rangeSlider 0 50 5 10

93

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 93

Events
In addition, you need to implement some event processing for each slider. To do so, apply the Events >
stateChanged context function to each slider and replace the pregenerated instruction
System.out.println() with

playerModel.setVolume((float) volumeSlider.getValue());

for the volumeSlider,

playerModel.setSpeakingRate((float) speedSlider.getValue());

for the speedSlider,

playerModel.setPitch((float) pitchSlider.getValue());

for the pitchSlider, and

playerModel.setRange((float) rangeSlider.getValue());

for the rangeSlider.

Labels
For the corresponding labels you should set an appropriate text (as discussed in Chapter 3) in the text
attribute. In addition, set an appropriate mnemonic code in the displayedMnemonic attribute.
However, this definition alone is not sufficient. It does not make sense that the label gets the focus when
the defined mnemonic key accelerator is pressed. Instead, the corresponding slider should get the focus.
You can achieve this via the setLabelFor() method, for example:

rangeLabel.setLabelFor(rangeSlider);

By doing so, you could later control the application completely without a mouse and thus improve the
accessibility. However, at the moment, the above instruction does not make much sense, because you
cannot be sure that the specified rangeSlider instance already exists. You should, therefore, defer the
implementation of this instruction to a later time (see below in method getContentPane()).

Text
The same is true for the textAreaLabel belonging to the text input area. For the textInputArea
component the number of lines should be set to five, the lineWrap attribute should be set to true, and
under text an appropriate example text should be specified.

Buttons
For the buttons specify the labeling (text), a tooltip (toolTipText), a mnemonic
(displayedMnemonic), and optionally a different background color (background). Here, too, you
need to generate appropriate event processing via Events > actionPerformed and to replace the gener-
ated System.out.println() instructions with

94

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 94

String inputText = textInputArea.getText();
if (inputText.length() > 0)
playerModel.play(inputText);

for the Speak button and

textInputArea.setText("");

for the Clear button.

Figure 5.2 shows how the finished PlayerPanel looks in the Visual Editor. The large empty area in the
center is reserved for the Face component; to the left and right of this area are spacers.

95

Project One: Duke Speaks

Figure 5.2

Integration
The graphical design of the user interface of your application is now nearly completed. What is still
missing is the integration of the Face component, the initialization of the sliders, and making the con-
tent pane visible to the application. You need to embed the Face component into the centerPanel as
follows:

private javax.swing.JPanel getCenterPanel() {
if(centerPanel == null) {
centerPanel = new javax.swing.JPanel();
centerPanel.setLayout(new java.awt.GridLayout(1,1));
centerPanel.add(face);

}
return centerPanel;

}

07_020059_ch05.qxd 10/8/04 10:52 AM Page 95

ContentPane
To make the content pane visible to the application, declare the getContentPane() method as public.
In addition, insert the initialization of the sliders into this method. Also, you can now insert all
setLabelFor() methods, because after the execution of the method body, you can be sure that all tar-
get objects of setLabelFor() exist.

public javax.swing.JPanel getContentPane() {
if(contentPane == null) {
contentPane = new javax.swing.JPanel();
contentPane.setLayout(new java.awt.BorderLayout());
contentPane.add(getControlAreaPane(),

java.awt.BorderLayout.CENTER);
contentPane.add(getTextAndButtonPanel(),

java.awt.BorderLayout.SOUTH);
contentPane.setSize(new java.awt.Dimension(600,500));
volumeLabel.setLabelFor(volumeSlider);
speedLabel.setLabelFor(speedSlider);
pitchLabel.setLabelFor(pitchSlider);
rangeLabel.setLabelFor(rangeSlider);
textAreaLabel.setLabelFor(textInputArea);
updateSliders();

}
return contentPane;

}

The updateSliders() method is defined as follows:

private void updateSliders() {
// Volume
int volume = (int) playerModel.getVolume();
if (volume >= 0)
volumeSlider.setValue(volume);

// Speed
int rate = (int) playerModel.getSpeakingRate();
if (rate >= 0)
speedSlider.setValue(rate);

// Pitch
int pitch = (int) playerModel.getPitch();
if (pitch >= 0)
pitchSlider.setValue(pitch);

// Variation
int range = (int) playerModel.getRange();
if (range >= 0)
rangeSlider.setValue(range);

}

Listing 5.7 contains the complete source code of the PlayerPanel class as generated by the Visual
Editor, with the necessary source code modifications applied.

96

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 96

package com.bdaum.dukeSpeaks;

import java.awt.GridLayout;
import javax.swing.JPanel;

public class PlayerPanel {

// The data model
private PlayerModel playerModel;
// The JPanel instance for the face
private JPanel face;

private javax.swing.JPanel contentPane = null;
private javax.swing.JPanel controlAreaPane = null;
private javax.swing.JPanel leftSlidersPanel = null;
private javax.swing.JPanel centerPanel = null;
private javax.swing.JPanel rightSlidersPanel = null;
private javax.swing.JPanel volumePanel = null;
private javax.swing.JLabel volumeLabel = null;
private javax.swing.JSlider volumeSlider = null;
private javax.swing.JPanel speedPanel = null;
private javax.swing.JLabel speedLabel = null;
private javax.swing.JSlider speedSlider = null;
private javax.swing.JPanel pitchPanel = null;
private javax.swing.JLabel pitchLabel = null;
private javax.swing.JSlider pitchSlider = null;
private javax.swing.JPanel rangePanel = null;
private javax.swing.JLabel rangeLabel = null;
private javax.swing.JSlider rangeSlider = null;
private javax.swing.JPanel textAndButtonPanel = null;
private javax.swing.JLabel textAreaLabel = null;
private javax.swing.JPanel buttonPanel = null;
private javax.swing.JButton speakButton = null;
private javax.swing.JButton deleteButton = null;
private javax.swing.JTextArea textInputArea = null;
private javax.swing.JLabel jLabel5 = null;
private javax.swing.JLabel jLabel6 = null;
/**
*
*/
public PlayerPanel(PlayerModel playerModel, JPanel face) {
super();
// Save parameters into fields
this.playerModel = playerModel;
this.face = face;

}

/**
* Method updateSliders.
* updates all the sliders with values from the PlayerModel.
*/
private void updateSliders() {
// Volume

97

Project One: Duke Speaks

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 97

int volume = (int) playerModel.getVolume();
if (volume >= 0)
volumeSlider.setValue(volume);

// Speed
int rate = (int) playerModel.getSpeakingRate();
if (rate >= 0)
speedSlider.setValue(rate);

// Pitch
int pitch = (int) playerModel.getPitch();
if (pitch >= 0)
pitchSlider.setValue(pitch);

// Variation
int range = (int) playerModel.getRange();
if (range >= 0)
rangeSlider.setValue(range);

}

public javax.swing.JPanel getContentPane() {
if(contentPane == null) {
contentPane = new javax.swing.JPanel();
contentPane.setLayout(new java.awt.BorderLayout());
contentPane.add(getControlAreaPane(),

java.awt.BorderLayout.CENTER);
contentPane.add(getTextAndButtonPanel(),

java.awt.BorderLayout.SOUTH);
contentPane.setSize(new java.awt.Dimension(600,500));
volumeLabel.setLabelFor(volumeSlider);
speedLabel.setLabelFor(speedSlider);
pitchLabel.setLabelFor(pitchSlider);
rangeLabel.setLabelFor(rangeSlider);
textAreaLabel.setLabelFor(textInputArea);
updateSliders();

}
return contentPane;

}
/**
* This method initializes controlAreaPane
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getControlAreaPane() {
if(controlAreaPane == null) {
controlAreaPane = new javax.swing.JPanel();
controlAreaPane.setLayout(new GridLayout(1, 3));
controlAreaPane.add(getLeftSlidersPanel());
controlAreaPane.add(getCenterPanel());
controlAreaPane.add(getRightSlidersPanel());

}
return controlAreaPane;

}
/**
* This method initializes leftSlidersPanel
*
* @return javax.swing.JPanel

98

Chapter 5

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 98

*/
private javax.swing.JPanel getLeftSlidersPanel() {
if(leftSlidersPanel == null) {
leftSlidersPanel = new javax.swing.JPanel();
leftSlidersPanel.setLayout(new java.awt.GridLayout(1,3));
leftSlidersPanel.add(getVolumePanel());
leftSlidersPanel.add(getSpeedPanel());
leftSlidersPanel.add(getJLabel5(), null);

}
return leftSlidersPanel;

}
/**
* This method initializes centerPanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getCenterPanel() {
if(centerPanel == null) {
centerPanel = new javax.swing.JPanel();
centerPanel.setLayout(new java.awt.GridLayout(1,1));
centerPanel.add(face);

}
return centerPanel;

}
/**
* This method initializes rightSlidersPanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getRightSlidersPanel() {
if(rightSlidersPanel == null) {
rightSlidersPanel = new javax.swing.JPanel();
java.awt.GridLayout layGridLayout1 =

new java.awt.GridLayout(1, 2);
layGridLayout1.setColumns(3);
rightSlidersPanel.setLayout(layGridLayout1);
rightSlidersPanel.add(getJLabel6(), null);
rightSlidersPanel.add(getPitchPanel());
rightSlidersPanel.add(getRangePanel());

}
return rightSlidersPanel;

}
/**
* This method initializes volumePanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getVolumePanel() {
if(volumePanel == null) {
volumePanel = new javax.swing.JPanel();
volumePanel.setLayout(new java.awt.BorderLayout());
volumePanel.add(getVolumeLabel(), java.awt.BorderLayout.NORTH);
volumePanel.add(getVolumeSlider(),
java.awt.BorderLayout.CENTER);

99

Project One: Duke Speaks

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 99

}
return volumePanel;

}
/**
* This method initializes volumeLabel
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getVolumeLabel() {
if(volumeLabel == null) {
volumeLabel = new javax.swing.JLabel();
volumeLabel.setText("Volume");
volumeLabel.setHorizontalTextPosition(
javax.swing.SwingConstants.CENTER);

volumeLabel.setHorizontalAlignment(
javax.swing.SwingConstants.CENTER);

volumeLabel.setDisplayedMnemonic(java.awt.event.KeyEvent.VK_V);
}
return volumeLabel;

}
/**
* This method initializes volumeSlider
*
* @return javax.swing.JSlider
*/
private javax.swing.JSlider getVolumeSlider() {
if(volumeSlider == null) {
volumeSlider = new javax.swing.JSlider();
volumeSlider.putClientProperty("JSlider.isFilled",

Boolean.TRUE);
volumeSlider.setMaximum(10);
volumeSlider.setMinorTickSpacing(1);
volumeSlider.setMajorTickSpacing(5);
volumeSlider.setOrientation(javax.swing.JSlider.VERTICAL);
volumeSlider.setToolTipText("Volume");
volumeSlider.setPaintLabels(true);
volumeSlider.setPaintTicks(true);
volumeSlider.addChangeListener(
new javax.swing.event.ChangeListener() {
public void stateChanged(javax.swing.event.ChangeEvent e) {
playerModel.setVolume((float) volumeSlider.getValue());

}
});

}
return volumeSlider;

}
/**
* This method initializes speedPanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getSpeedPanel() {
if(speedPanel == null) {
speedPanel = new javax.swing.JPanel();

100

Chapter 5

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 100

speedPanel.setLayout(new java.awt.BorderLayout());
speedPanel.add(getSpeedLabel(), java.awt.BorderLayout.NORTH);
speedPanel.add(getSpeedSlider(), java.awt.BorderLayout.CENTER);

}
return speedPanel;

}
/**
* This method initializes speedLabel
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getSpeedLabel() {
if(speedLabel == null) {
speedLabel = new javax.swing.JLabel();
speedLabel.setText("Words/min");
speedLabel.setHorizontalAlignment(

javax.swing.SwingConstants.CENTER);
speedLabel.setHorizontalTextPosition(

javax.swing.SwingConstants.CENTER);
speedLabel.setDisplayedMnemonic(java.awt.event.KeyEvent.VK_W);

}
return speedLabel;

}
/**
* This method initializes speedSlider
*
* @return javax.swing.JSlider
*/
private javax.swing.JSlider getSpeedSlider() {
if(speedSlider == null) {
speedSlider = new javax.swing.JSlider();
speedSlider.setOrientation(javax.swing.JSlider.VERTICAL);
speedSlider.putClientProperty("JSlider.isFilled", Boolean.TRUE);
speedSlider.setMaximum(400);
speedSlider.setMinorTickSpacing(50);
speedSlider.setMajorTickSpacing(100);
speedSlider.setToolTipText("Speed");
speedSlider.setPaintLabels(true);
speedSlider.setPaintTicks(true);
speedSlider.setPaintTrack(true);
speedSlider.addChangeListener(
new javax.swing.event.ChangeListener() {
public void stateChanged(javax.swing.event.ChangeEvent e) {
playerModel.setSpeakingRate((float) speedSlider.getValue());

}
});

}
return speedSlider;

}
/**
* This method initializes pitchPanel
*
* @return javax.swing.JPanel
*/

101

Project One: Duke Speaks

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 101

private javax.swing.JPanel getPitchPanel() {
if(pitchPanel == null) {
pitchPanel = new javax.swing.JPanel();
pitchPanel.setLayout(new java.awt.BorderLayout());
pitchPanel.add(getPitchLabel(), java.awt.BorderLayout.NORTH);
pitchPanel.add(getPitchSlider(), java.awt.BorderLayout.CENTER);

}
return pitchPanel;

}
/**
* This method initializes pitchLabel
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getPitchLabel() {
if(pitchLabel == null) {
pitchLabel = new javax.swing.JLabel();
pitchLabel.setText("Hz");
pitchLabel.setHorizontalAlignment(
javax.swing.SwingConstants.CENTER);

pitchLabel.setHorizontalTextPosition(
javax.swing.SwingConstants.CENTER);

pitchLabel.setDisplayedMnemonic(java.awt.event.KeyEvent.VK_H);
}
return pitchLabel;

}
/**
* This method initializes pitchSlider
*
* @return javax.swing.JSlider
*/
private javax.swing.JSlider getPitchSlider() {
if(pitchSlider == null) {
pitchSlider = new javax.swing.JSlider();
pitchSlider.putClientProperty("JSlider.isFilled", Boolean.TRUE);
pitchSlider.setOrientation(javax.swing.JSlider.VERTICAL);
pitchSlider.setMinimum(50);
pitchSlider.setMaximum(200);
pitchSlider.setMinorTickSpacing(25);
pitchSlider.setMajorTickSpacing(50);
pitchSlider.setValue(50);
pitchSlider.setToolTipText("Pitch");
pitchSlider.setPaintTicks(true);
pitchSlider.addChangeListener(
new javax.swing.event.ChangeListener() {
public void stateChanged(javax.swing.event.ChangeEvent e) {
playerModel.setPitch((float) pitchSlider.getValue());

}
});

}
return pitchSlider;

}
/**
* This method initializes rangePanel

102

Chapter 5

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 102

*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getRangePanel() {
if(rangePanel == null) {
rangePanel = new javax.swing.JPanel();
rangePanel.setLayout(new java.awt.BorderLayout());
rangePanel.add(getRangeLabel(), java.awt.BorderLayout.NORTH);
rangePanel.add(getRangeSlider(), java.awt.BorderLayout.CENTER);

}
return rangePanel;

}
/**
* This method initializes rangeLabel
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getRangeLabel() {
if(rangeLabel == null) {
rangeLabel = new javax.swing.JLabel();
rangeLabel.setText("Range");
rangeLabel.setHorizontalAlignment(
javax.swing.SwingConstants.CENTER);

rangeLabel.setHorizontalTextPosition(
javax.swing.SwingConstants.CENTER);

rangeLabel.setDisplayedMnemonic(java.awt.event.KeyEvent.VK_R);
}
return rangeLabel;

}
/**
* This method initializes rangeSlider
*
* @return javax.swing.JSlider
*/
private javax.swing.JSlider getRangeSlider() {
if(rangeSlider == null) {
rangeSlider = new javax.swing.JSlider();
rangeSlider.setOrientation(javax.swing.JSlider.VERTICAL);
rangeSlider.putClientProperty("JSlider.isFilled", Boolean.TRUE);
rangeSlider.setMaximum(50);
rangeSlider.setMajorTickSpacing(10);
rangeSlider.setMinorTickSpacing(5);
rangeSlider.setValue(0);
rangeSlider.setToolTipText("Variation");
rangeSlider.setPaintLabels(true);
rangeSlider.setPaintTicks(true);
rangeSlider.addChangeListener(
new javax.swing.event.ChangeListener() {
public void stateChanged(javax.swing.event.ChangeEvent e) {
playerModel.setRange((float) rangeSlider.getValue()); }

});
}
return rangeSlider;

}

103

Project One: Duke Speaks

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 103

/**
* This method initializes textAndButtonPanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getTextAndButtonPanel() {
if(textAndButtonPanel == null) {
textAndButtonPanel = new javax.swing.JPanel();
textAndButtonPanel.setLayout(new java.awt.BorderLayout());
textAndButtonPanel.add(getTextAreaLabel(),

java.awt.BorderLayout.NORTH);
textAndButtonPanel.add(getTextInputArea(),

java.awt.BorderLayout.CENTER);
textAndButtonPanel.add(getButtonPanel(),

java.awt.BorderLayout.SOUTH);
textAndButtonPanel.setBorder(
javax.swing.BorderFactory.createEtchedBorder(

javax.swing.border.EtchedBorder.RAISED));
}
return textAndButtonPanel;

}
/**
* This method initializes textAreaLabel
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getTextAreaLabel() {
if(textAreaLabel == null) {
textAreaLabel = new javax.swing.JLabel();
textAreaLabel.setText("Enter Text:");
textAreaLabel.setDisplayedMnemonic(
java.awt.event.KeyEvent.VK_T);

}
return textAreaLabel;

}
/**
* This method initializes buttonPanel
*
* @return javax.swing.JPanel
*/
private javax.swing.JPanel getButtonPanel() {
if(buttonPanel == null) {
buttonPanel = new javax.swing.JPanel();
buttonPanel.add(getSpeakButton(), null);
buttonPanel.add(getDeleteButton(), null);

}
return buttonPanel;

}
/**
* This method initializes speakButton
*
* @return javax.swing.JButton
*/
private javax.swing.JButton getSpeakButton() {

104

Chapter 5

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 104

if(speakButton == null) {
speakButton = new javax.swing.JButton();
speakButton.setText("Speak Text");
speakButton.setMnemonic(java.awt.event.KeyEvent.VK_S);
speakButton.setToolTipText("Speak text in text area");
speakButton.setBackground(new java.awt.Color(250,250,250));
speakButton.addActionListener(
new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
String inputText = textInputArea.getText();
if (inputText.length() > 0)
playerModel.play(inputText);

}
});

}
return speakButton;

}
/**
* This method initializes deleteButton
*
* @return javax.swing.JButton
*/
private javax.swing.JButton getDeleteButton() {
if(deleteButton == null) {
deleteButton = new javax.swing.JButton();
deleteButton.setText("Delete Text");
deleteButton.setMnemonic(java.awt.event.KeyEvent.VK_D);
deleteButton.setToolTipText("Delete all text in text area");
deleteButton.setBackground(new java.awt.Color(250,250,250));
deleteButton.addActionListener(
new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
textInputArea.setText("");

}
});

}
return deleteButton;

}
/**
* This method initializes textInputArea
*
* @return javax.swing.JTextArea
*/
private javax.swing.JTextArea getTextInputArea() {
if(textInputArea == null) {
textInputArea = new javax.swing.JTextArea();
textInputArea.setLineWrap(true);
textInputArea.setRows(5);
textInputArea.setText("Hello, this is your animated voice!");

}
return textInputArea;

}
/**
* This method initializes jLabel5

105

Project One: Duke Speaks

Listing 5.7 (Continues)

07_020059_ch05.qxd 10/8/04 10:52 AM Page 105

*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getJLabel5() {
if(jLabel5 == null) {
jLabel5 = new javax.swing.JLabel();
jLabel5.setText("");

}
return jLabel5;

}
/**
* This method initializes jLabel6
*
* @return javax.swing.JLabel
*/
private javax.swing.JLabel getJLabel6() {
if(jLabel6 == null) {
jLabel6 = new javax.swing.JLabel();
jLabel6.setText("");

}
return jLabel6;

}
} // @jve:visual-info decl-index=0 visual-constraint="12,9"

Listing 5.7 (Continued)

The Complete Application
Finally, you need a Player root class for the whole application. This class contains the main() method.
Within this method you can create a new Player instance. This causes the Players constructor to cre-
ate a Face and a Voice instance and to connect both with the help of the Animator class. Furthermore,
a PlayerModel instance and a PlayerPanel instance are created and wired together.

The Player.java class
The Player class is implemented as an extension of the Swing JFrame class. When you create this class
you must specify JFrame as a super class. In addition, you must checkmark the public static
void main(…) option. This will generate a stub for the main() method.

package com.bdaum.dukeSpeaks;

import java.awt.BorderLayout;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.net.URL;
import java.util.Locale;

import javax.swing.*;

import com.sun.speech.freetts.Age;
import com.sun.speech.freetts.Gender;

106

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 106

import com.sun.speech.freetts.audio.AnimatedAudioPlayer;
import com.sun.speech.freetts.en.us.AnimatedDiphoneVoice;
import com.sun.speech.freetts.en.us.CMULexicon;
import com.sun.speech.freetts.en.us.cmu_us_kal.KevinVoiceDirectory;
import com.sun.speech.freetts.relp.Animator;

public class Player extends JFrame {

private PlayerPanel playerPanel;

Constructor
The following code constructs the Player frame. It sets the Look and Feel for Swing, and adds a
WindowListener in order to react to window close events. It then constructs an Animator object and uses
this object to connect the newly created AnimatedDiphoneVoice with the Face GUI object. Finally it con-
structs the PlayerPanel and creates a data model instance for the player.

/**
* @see java.awt.Frame#Frame(String)
*/
public Player(String title) {

super(title);
// Set Look&Feel for Swing
setDefaultLookAndFeelDecorated(true);
// WindowListener for close button event handling
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

// Create new Animator object
Animator a = new Animator();

// Get URL of the voice database
URL url =

KevinVoiceDirectory.class.getResource("cmu_us_kal16.bin");
// Create Voice object
// see com.sun.speech.freetts.en.us.cmu_us_kal.KevinVoiceDirectory
AnimatedDiphoneVoice voice =
new AnimatedDiphoneVoice("kevin16", Gender.MALE,
Age.YOUNGER_ADULT, "default 16-bit diphone voice",
Locale.US, "general", "cmu", new CMULexicon(),
url, a);
// Use AnimatedAudioPlayer as audio player
// for this voice
// Register Animator object as LineListener
voice.setAudioPlayer(new AnimatedAudioPlayer(a));
// Create Face object
Face face = new Face();
// Set face border area
face.setBorder(BorderFactory.createEmptyBorder(30, 30, 10, 30));
// Set face size
face.setPreferredSize(new Dimension(400, 300));

107

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 107

// Register Face object as
// AnimationListener with Animator object
a.addAnimationListener(face);
// Load the voice (mainly the lexicon)
voice.allocate();
// Create a PlayerModel instance with the new voice
PlayerModelImpl impl = new PlayerModelImpl(voice);
// Create a PlayerPanel instance and pass the PlayerModel object
// and the Face-Objekt to it.
playerPanel = new PlayerPanel(impl,face);
// Use the size of the PlayerPanel for the whole Player
setSize(playerPanel.getContentPane().getSize());
// Insert the PlayerPanel into the Player
getContentPane().add(playerPanel.getContentPane(),

BorderLayout.CENTER);

}

main()
The main() method simply creates a new Player instance and makes it visible. Before doing so it sets
Swing’s Look and Feel to “Metal.”

/**
* Method main.
* The main() method of the Player.
*
* @param args (not used)
* @throws Exception
*/
public static void main(String[] args) throws Exception {

// Set Metal Look&Feel for Swing
try {

UIManager.setLookAndFeel(
"javax.swing.plaf.metal.MetalLookAndFeel");

} catch(Exception e) {
System.err.println("Error setting look&feel: " + e);

}
// Create new Player instance
Player player = new Player("Animated FreeTTS Player");
// and display it
player.setVisible(true);
}

}

You have now completed your application. In the Package Explorer you should now select the Player
class in the DukeSpeaks project and then call the Run > Run As > Java Application function. If every-
thing was done correctly, you will now see the window shown in Figure 5.3.

108

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 108

Figure 5.3

You can play around a bit with the speaking face. Change the speed, the pitch, or the variation. Copy
other texts into the text input field (using Ctrl+V). Note that the lexicon is based on U.S. English. If you
copy foreign language texts into the input field, expect Duke to speak these languages with a U.S.
accent.

Exporting the Application
To be able to run your application outside Eclipse, export it as a JAR file. To do so, select the
DukeSpeaks project and call the Export context function. In the dialog that appears, select the JAR File
category.

In the next dialog, checkmark the Export Generated Class Files and Resources field and remove the
checkmark from the Export Java Source Files and Resources field. In addition, expand the DukeSpeaks
project node and checkmark all packages.

Finally, specify a target location under JAR file. Use dukeSpeaks.jar as the filename.

109

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 109

All binary objects of your DukeSpeaks project are now combined in a single JAR file. To run the player
successfully outside Eclipse, you obviously also need the FreeTTS JARs that you previously added as
external JARs to the project’s Java Build Path in the Classpath of the JVM. Therefore, the Classpath must
contain the dukeSpeaks.jar, cmuawb.jar, cmukal16.jar, cmukal8.jar, cmulex.jar, cmu-
timelex.jar, and freetts.jar JARs.

A JRE of Version 1.4.0 or higher is required to run this program successfully.

Bibliography
The main purpose of this chapter has been to acquaint you with practical work in the Eclipse workbench.
You have learned how third-party projects can be imported into the Eclipse workspace and how they
can be navigated and modified. You also have also seen how the various assistants are used to create code
efficiently.

In the course of this example I could only scratch the surface of the technologies used. Therefore, I want
to give some pointers as to where to get more information about these technologies:

❑ There are several excellent Swing tutorials. In particular, I want to mention the chapter “User
Interfaces that Swing” in the official Java tutorial from JavaSoft (www.javasoft.com).
Matthew Robinson and Pavel Vorobiev have written a remarkable book about Swing, simply
called Swing.

❑ The FreeTTS documentation contains valuable information about speech synthesis in general
and FreeTTS speech synthesis in particular. You will also find some links to related articles
there.

❑ The application implemented here shows only lip synchronization of the simplest kind. Also,
the rendering of the face is rather minimalist. The current state of the art is 3-D animations in
which each facial muscle can be moved separately. Depending on the text content it is even
possible to express emotions. Searching the Web for “lip synchronization” will result in some
interesting links. The DECFace project is particularly interesting: details can be found at
crl.research.compaq.com/projects/facial/facial.html.

Summary
With this project you have now had your first experiences with Eclipse. Based on these experiences we
can derive some “best practices” for the creation of applications with Eclipse:

❑ If the API of a module is well understood, you should create an interface before you create the
implementation. This allows you to use the interface when generating the method stubs in the
implementing class. At the same time, these method stubs are automatically equipped with
Javadoc comments that use the Javadoc keyword @see to refer back to the method description
in the interface.

110

Chapter 5

07_020059_ch05.qxd 10/8/04 10:52 AM Page 110

If the API is not well understood or subject to change, you should create the implementation first. Later
you can derive the interface from the implementation (see the “Refactoring Code” section in Chapter 2).

❑ If it later becomes necessary to extend the interface definition, you can pull down these exten-
sions into the implementation by using the Source > Override Methods context function or by
using the Content Assistant.

❑ Javadoc comments should be always created with the Source > Add JavaDoc Comment context
function or by entering /**. This helps to achieve consistent and complete API documentation.

❑ Completing the Create a New Java Class dialog carefully is well worth the effort. By specifying
super classes and interfaces and by marking the various options, you can save considerable
typing, because Eclipse will generate the method and constructor stubs for you.

❑ After making large changes in a compilation unit you should call the Source > Organize Imports
context function. This function adds missing import statements and removes unused ones.

❑ Using the Code Assistant (Ctrl+Spacebar) for program constructs, type, and fieldnames saves
you a lot of typing and a lot of searching in the documentation and can possibly protect you
from RSI (repetitive strain injury). At the same time, the Code Assistant can generate the neces-
sary import statements (if this option was set in the preferences). Ctrl+Spacebar should
become the typical gesture of an Eclipse programmer.

In the next chapter we will look at testing and debugging Java applications with Eclipse.

111

Project One: Duke Speaks

07_020059_ch05.qxd 10/8/04 10:52 AM Page 111

07_020059_ch05.qxd 10/8/04 10:52 AM Page 112

Project Development

In the first part of this chapter I discuss the Eclipse Java Debugger in detail. I will show how the
debugger can be configured, introduce the Debug Perspective, and explain how to create and
manage breakpoints and watchpoints. In the second part I will introduce the JUnit test tool,
which is part of the Eclipse SDK distribution. Finally, in the third part I will show how Javadoc
documentation can be exported.

Debugging
Searching for bugs in a complex application is always a time-consuming task. A powerful debug-
ger can be of great help here. Fortunately, the Eclipse Java IDE is equipped with a full-featured
debugger that leaves hardly anything to be desired.

This debugger has two operation modes: local and remote. Here, I will discuss local debugging.
Later, in the “Remote Debugging” section. I will then show how the debugger is used in a remote
scenario.

The Debug Configuration
Like many other parts of the Eclipse workbench, the Debugger can be configured by the user in
various ways. For example, under Window > Preferences > Java > Debug > Detail Formatters, you
can specify how the values of Java types are to be displayed in the Details section of the Variables
View. The default formatting uses the toString() method for displaying the variable’s value. To
add a new formatter, press the Add button, enter or browse for a type, and then enter a code snip-
pet to be applied to instances of this type. For example, if you want to display the text content of
objects of type org.eclipse.jface.text.Document in the Details View, select this type and
enter get() as the code snippet for detail formatting.

66

08_020059_ch06.qxd 10/8/04 10:59 AM Page 113

Under Window > Preferences > Java > Debug > Step Filtering, you can specify which classes should
be skipped when stepping though a program. These settings are used during the Step with Filters
operation (Figure 6.1).

114

Chapter 6

Figure 6.1

Some step filters are predefined so that you can simply activate them with a checkmark (by default only
the Java class loader is skipped). You can also add other classes, packages, or generic filter expressions to
the list, however.

The Debug Perspective
You can start debugging by clicking the bug symbol in the workbench’s toolbar. This function is very
similar to the Run function (see the “Hello World” section in Chapter 1) with the difference that execu-
tion is interrupted at breakpoints. You can also make Eclipse automatically switch to the Debug
Perspective by specifying Always for the Switch to Associated Perspective When Launching option in
Window > Preferences > Run/Debug > Launching. Alternatively, you can specify Always for the Switch
to Associated Perspective When a Breakpoint Is Hit option in Window > Preferences > Run/Debug. The
Debug Perspective contains the same windows as the Java Perspective plus two more.

Figure 6.2 shows the Debug Perspective. In the top-left corner you see the Debug window listing the
active threads. Under the thread [AWT-Event-Queue-0] the execution stack with the method call hierar-
chy is displayed. In the top-right corner the variables of the current execution context are shown. Behind
this view are three more stacked views: Breakpoints, Expressions, and Display. Variable values can be
displayed, too, by hovering with the mouse over a variable name in the editor.

08_020059_ch06.qxd 10/8/04 10:59 AM Page 114

Figure 6.2

Controlling Program Execution
The toolbar of the Debug window is equipped with all the buttons needed to control the execution of the
current program. Most of these functions, however, can be called via function keys, which is much faster.
From left to right you see the following:

❑ Resume (F8). Continues the execution of an interrupted thread.

❑ Suspend. Interrupts the execution of a running thread. This function is especially useful when
the thread is looping.

❑ Terminate. The execution of a running or interrupted program is terminated.

❑ Disconnect. This function is required to finish debugging a remote program (remote
debugging).

❑ Remove All Terminated Launches. This function removes “garbage” from the Debug View.

❑ Step Into (F5). Used on a method call, this function will step into the invoked method. In
program lines containing multiple method calls, however, this function steps through all of
them. In such cases, it is better to select the method call in question and use the Step into
Selection context function.

115

Project Development

08_020059_ch06.qxd 10/8/04 10:59 AM Page 115

❑ Step Over (F6). Used on a method call, this function will step over the invoked method
(provided the method does not contain active breakpoints).

❑ Step Return (F7). The current method is executed in normal mode. When the method returns,
step mode is reactivated.

❑ Step with Filters (Shift+F5). When you use this function the step operation is influenced by the
step filters defined in the preferences (see the “Debug Configuration” section). All other func-
tions ignore the step filters.

After executing a program step by step, you can retrace the single steps backwards by pressing the Back
navigation button (see the “Navigation” section in Chapter 4)!

Setting Breakpoints
How do you start a debug session? You would usually set a breakpoint at an interesting location in
your program. This is easily done by double-clicking the left margin of the Java source editor. It doesn’t
matter if you do this in the Java Perspective or in the Debug Perspective. You can remove the breakpoint
with another double-click at the same position.

Now, set a breakpoint onto the Dimension d = getSize() instruction in the paintComponent()
method in the Face class, as shown in the previous figure. When you start the debug process by clicking
the Debug button, the program will stop at this instruction. The variable values of the current object
appear in the window at the right-hand side.

Testing Interactively
You have now the following possibilities:

❑ You can continue the execution of the program by pressing F8. The program will be interrupted
only when it passes this breakpoint again.

❑ You can stop execution by clicking the Terminate button.

❑ You can execute the getSize() method step by step by pressing the F5 key.

❑ You can step over the getSize() method by pressing the F6 key.

❑ You can set further breakpoints, or you can remove breakpoints.

Variables
You have the following options for variables:

❑ You can view the content of variables by hovering with the cursor over a variable name in the
source editor.

❑ In the Variables View you can take a closer look at the variables of the current execution envi-
ronment. Complex objects can be expanded by clicking the + character (or by double-clicking
the variable name) so that you can view their details.

❑ In the execution stack in the Debug window you can select a different execution
environment. For example, you may select: Player(java.awt.Container).paint(java
.awt.Graphics) line 1123.

116

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 116

❑ The source editor automatically shows the corresponding source code, and the Variables View
shows the variables of this execution environment.

❑ You can modify variables. By double-clicking a variable in the Variables View you can open an
editor for the variable’s value and modify the value. Alternatively, you can edit the value in the
Details section of the Variables View and then assign it by invoking the Assign Value context
function.

❑ By applying the Watch context function to individual variables you can add those variables to
the Expressions window. As you step through the program, the variables in the Expressions
window will be updated when their value changes. This provides a way to monitor specific
variables during program execution.

HotSwap
During a debug session you can apply changes to the program code and save (and compile) the changed
code. In many cases—provided you run under JDK 1.4—the debug session need not be restarted but can
continue with the modified module in place (HotSwap). In some cases, however—for example, when the
signature of a public method is changed—using HotSwap is impossible. In this case you are prompted
whether to abort or restart execution.

Testing Expressions
In the Display View (and also in the Details area of the Expression View), you can enter expressions that
can be executed within the current execution context (see also the discussion of the “Scrapbook” in
Chapter 1). To do so, select the entered expression and invoke the Inspect or Display context function.
For example, if you execute the getBackground() expression while in the execution context of
Player.paint() (see above), the Display function will deliver the background color of player.

Managing Breakpoints
The Breakpoints View shows an overview of all defined breakpoints. Here, you can delete breakpoints
that you don’t need anymore or position the source editor to a breakpoint position by double-clicking it.

With the Disable context function you can disable a breakpoint temporarily. With Enable you can acti-
vate it again. The Properties context function allows further customization of breakpoints (Figure 6.3).

The breakpoint properties dialog allows for detailed instrumentation of a breakpoint. By setting a hit
count, the breakpoint is activated only after several passes through it. You can also specify an additional
condition under which the breakpoint should become active. The breakpoint is activated either when the
Boolean value of the condition is true or when the value of the condition changes, depending on the
option chosen.

Another useful function of the Breakpoints View is the Add Java Exception Breakpoint function (the button
with the exclamation mark). When invoking this function you can select an exception type from a list.

Usually, Eclipse aborts program execution when an uncaught exception occurs and shows you the
stack trace. But with this function, you can interrupt directly at the point where the exception occurs
and look into variables and so on. Better still, you can even optionally trap exceptions that are caught
in a try/catch block. It is a good idea to set Java Exception Breakpoints for common uncaught
exception types such as NullPointerException, ClassCastException, and
IndexOutOfBoundsException.

117

Project Development

08_020059_ch06.qxd 10/8/04 10:59 AM Page 117

Figure 6.3

If you have trapped an exception with such a breakpoint, program execution is interrupted when the
exception occurs. In the Debug window you now can select a method within the stack trace shown under
the current thread. The Variables View shows you the variables of the method’s execution environment,
so that in most cases you can easily determine the reason for the exception.

Finally, the Skip All Breakpoints tool button in the Breakpoints window allows you to disable all break-
points temporarily.

The Java Console
Although the debugger provides you with a rich arsenal of tools to find bugs in programs, you should not
ignore the Java console. To find a problem, it is sometimes simpler to program a test output into a method
or constructor instead of spending ages stepping through program code. You can accomplish such outputs
with System.out.println() or System.err.println(). By using the Code Assistant (see the
“Java Information Windows” section Chapter 2), you can simply enter sysout or syserr to create
such an instruction.

In the case of a program crash, the console is a valuable source of information, too, since it displays the
execution stack. Eclipse here offers additional help: double-clicking a stack entry opens the correspond-
ing compilation unit and positions the editor window to the specified line!

118

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 118

Note, that each test run creates a new console instance. In the Console View you can select which console
to display by clicking the arrow button.

Remote Debugging
Remote debugging is used for applications that run on a remote JVM, especially for an application that
runs outside the Eclipse platform. Typical targets for remote debugging are servlets that have neither a
GUI nor a console.

To make a Java application accessible to an external debugger, you must specify additional command-
line parameters when starting the application’s JVM. In the following example—assuming that this
application has already been installed outside Eclipse—I demonstrate how DukeSpeaks can be made
accessible to a remote debugger:

java.exe -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y, address=8787
-classpath %LOCALCLASSPATH%
com.bdaum.dukeSpeaks.Player

First, the JVM is switched into debug mode. The sun.tools.debug agent is switched off, as well as the
JIT and HotSpot compilers. With –Xrunjdwp the reference implementation of the Java Debug Wire
Protocols (JDWP) is loaded. A socket connection is selected as transport mode. The server=y parame-
ter specifies that the application acts as a debug server, and the suspend=y parameter specifies that the
application must not start autonomously but must wait for a connection with the debug client. Finally,
the address=8787 parameter specifies the debug port number that can be selected from the host com-
puter’s free ports.

Now, start the application and execute the command. Nothing happens. The application waits for the
debug client. Now it’s time to create a remote debug configuration in Eclipse. To do so, invoke the Run >
Debug function. In the selection list at the left-hand side of the dialog, select Remote Java Application
and press the New button.

Then enter a name for the new configuration (for example, DukeSpeaksRemote) and select the project
(DukeSpeaks). This specification is actually not used to tell the Eclipse debugger the location of the
binary files but to inform it about the location of the source files.

The Connection Type field remains unchanged: Standard (Socket Attach). Since the remote application
runs on the same host computer, you must enter the localhost value under Host. For Port, specify exactly
the same value that was used above in the java command. So enter 8787. Finally, mark the Allow
Termination of Remote VM checkbox. This allows you to terminate the application via remote control
from the Eclipse debugger.

Now the configuration is properly set up. You can start the debugging process by clicking the Debug
button. From now on, everything works just as with local debugging. You can set breakpoints, look at
variables, and even modify the values of variables. The only thing that does not work with remote
debugging is, of course, HotSwapping.

119

Project Development

08_020059_ch06.qxd 10/8/04 10:59 AM Page 119

JUnit
JUnit is an Open Source tool that allows you to create and execute test suites quickly and systematically.
The people behind JUnit are Kent Beck and Erich Gamma. Since Erich Gamma is also significantly
involved in the development of Eclipse, it is no surprise that JUnit is contained in the Eclipse SDK
distribution. Detailed information is available at www.junit.org or in Professional Java Tools for Extreme
Programming by Richard Hightower, et al.

Test tools such as JUnit are used to test program modules repeatedly, especially after changes have been
applied to a module. Using such automated test tools allows you to test frequently and after each small
incremental development step, following the XP motto: Code a little, test a little.

Of course, the quality of the test results stands or falls with the quality of the test suite. A good test suite
should cover the whole functional range of a program module. This is, however, easier said than done!

Setting Up JUnit
To be able to work with JUnit, the JUnit JAR file is required in the build path of your project. You could
manually add junit.jar as an external JAR file to DukeSpeaks project, as described in the “Project
Properties” section in Chapter 4. You can find junit.jar under \eclipse\plugins\org
.junit_3.8.1. However, this is not really required, since Eclipse will do this for you when you create
your first test case.

In the DukeSpeaks project you can now create a test case class (a subclass of the JUnit TestCase class),
which you can call PlayerTest. You can create such a class manually, or you can use the JUnit Wizard
(Figure 6.4) in which case you proceed as follows:

1. Invoke the wizard via the File > New > Other > Java > JUnit > Test Case function.

2. In the first page of the wizard, press the Browse button at the Class to Test field and select the
class that you want to test (Player).

3. To name the test, enter PlayerTest in the Name field.

4. In the Package field select a target package (within your project) for the new TestCase class.

5. Additional options allow you to generate a main() method, a setUp() method, a
tearDown() method, and a constructor for the new test case.

On the next page of the wizard select which of the test class test methods are to be generated
(Figure 6.5).

Here I have selected only two methods. Normally you would first select all methods and then explicitly
deselect all the methods that you don’t want to test. Optionally, you can decorate all generated methods
with the modifier “final.” TODO comments can be generated into the method stubs.

120

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 120

Figure 6.4

121

Project Development

Figure 6.5

08_020059_ch06.qxd 10/8/04 10:59 AM Page 121

Creating a Test Suite
All generated test methods start with the string “test.” JUnit recognizes such method names and exe-
cutes them when running a test. Since the wizard has already generated the method stubs, you need
only add the code inside the method body. If you need to initialize variables or other resources, you do
this in the setUp() method. See Listing 6.1.

import junit.framework.TestCase;
import com.bdaum.dukeSpeaks.Player;
public class PlayerTest extends TestCase {

Player player;

/**
* Constructor for TestCase1.
* @param arg0
*/
public PlayerTest(String arg0) {

super(arg0);
}

/**
* Initialize the player
*/
protected void setUp() throws Exception {

super.setUp();
player = new Player("Animated FreeTTS Player");

}

final public void testGetWidth() {
assertTrue("width != 600: "+player.getWidth(),

player.getWidth() == 600);
}
final public void testGetHeight() {

assertTrue("height != 500: "+player.getHeight(),
player.getHeight() == 500);

}

/**
* Dispose of everything
*/
protected void tearDown() throws Exception {

super.tearDown();
player = null;

}
}

Listing 6.1

Here, two tests (testWidth() and testHeight()) are implemented. In these tests the JUnit
assertTrue() method is used to test a condition and throw an exception if the condition is not met.
Both methods use the player variable that was initialized in the setUp() method. JUnit calls this

122

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 122

method before executing the run() method. Similarly, the tearDown() method is called after all tests
are executed. This method can be used to dispose of resources.

When you have created several TestCase classes, it makes sense to combine these classes in a test suite.
The JUnit Wizard will help you with this task, too. You only have to invoke the File > New > Other >
Java > JUnit > Test Suite function. In the wizard’s selection list checkmark all TestCase classes that you
want to add to the test suite (in this example the only test case is the PlayerTest class); see Figure 6.6.
At this point it is even possible to add other test suites to the new test suite, i.e., you may nest test suites.
In the Test Suite field change the proposed name AllTests according to your requirements.

123

Project Development

Figure 6.6

After you press the Finish button, the wizard will generate the resulting TestSuite class:

import junit.framework.Test;
import junit.framework.TestSuite;
public class AllTests {

public static Test suite() {
TestSuite suite = new TestSuite("Test for tests");
//$JUnit-BEGIN$
suite.addTest(new TestSuite(PlayerTest.class));
//$JUnit-END$
return suite;

}
}

08_020059_ch06.qxd 10/8/04 10:59 AM Page 123

Here, I have created a test suite solely for demonstration purposes. If you want to run only a single
TestCase class, creating a test suite is not really required.

Running a Test Suite
Now you can execute all tests. Invoke the Run > Run as > JUnit Test function. Eclipse opens the JUnit
view (in front of the Package Explorer) and runs the test suite (Figure 6.7).

124

Chapter 6

Figure 6.7

In the upper part of the JUnit View all errors are collected (to a maximum of one error per single test
case). The other stacked window in the upper area shows the hierarchy of test suites and single test
cases. In the lower part of the view, JUnit shows the execution stack for the currently selected error.
Here, to force an error, I specified a panel width (650) in the test case that was different from the panel
width specified in the application.

08_020059_ch06.qxd 10/8/04 10:59 AM Page 124

Documentation
In the “Java Information Windows” section in Chapter 2 you saw how Javadoc comments can be conve-
niently added to source code. In this section I will discuss how these comments can be exported as an
HTML Javadoc documentation.

To generate the Javadoc documentation for the completed DukeSpeaks project, select the project and
invoke the Export context function. On the first page of the Export Wizard, select Javadoc from the list
and press the Next button. On the following page, you can specify in detail what should be exported to
Javadoc (Figure 6.8). But first make sure that the Javadoc Command entry points to a valid Javadoc pro-
cessor such as ...\j2sdk1.4.2\bin\javadoc.exe and that the Destination entry specifies a desti-
nation folder for the Javadoc pages. You can preset a default value by applying the Properties > Javadoc
Location context function to the project. You can also specify for which packages and for which methods
Javadoc is to be generated. In addition, you have the option of using a custom doclet instead of Sun
Microsystems’ reference implementation.

125

Project Development

Figure 6.8

08_020059_ch06.qxd 10/8/04 10:59 AM Page 125

Try It Out: Javadoc Options
In the next step you can determine the content and the layout of the single Javadoc pages. The following
options exist:

❑ Generate Use Page. This option allows you to generate a cross-reference for each class and each
package.

❑ Generate Hierarchy Tree. When you check this option, a page is generated that displays the
hierarchy of packages, classes, and interfaces.

❑ Generate Navigator Bar. This option generates a navigation bar at the top and at the bottom of
each page.

❑ Generate Index. This option generates one or several index pages.

❑ Separate Index per Letter. Check this option to generate a separate index page for each letter in
the alphabet.

❑ @author, @version, @deprecated. When these options are set, the corresponding key words in
the Javadoc comments are evaluated and their information is included in the generated pages.

❑ Deprecated List. This option allows a separate page to be generated, listing all elements marked
as “deprecated.”

In addition, you can create links to other Javadoc documentations.

Try It Out: Command-Line Options
On the next wizard page (Figure 6.9), you can specify additional command-line options for javadoc
.exe, if necessary. In addition, you can specify a file containing additional text for the Javadoc
Overview page.

The JRE 1.4 Source Compatibility option must be checked if your source code contains the Java assert
keyword. Without this option set, Java 1.4 programs that contain this instruction would cause errors
during the Javadoc generation. Checking this option is equivalent to specifying the command-line
option -source 1.4.

You can also optionally create an Ant script for Javadoc generation (Figure 6.10). I will discuss Ant in
more detail in Chapter 13.

After you press Finish, the Javadoc generation is started as a batch job. The output of the batch job
appears on the Eclipse Java console.

126

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 126

Figure 6.9

127

Project Development

Figure 6.10

08_020059_ch06.qxd 10/8/04 10:59 AM Page 127

Summary
In this chapter you have learned how both local and remote Java programs can be debugged with
Eclipse. You should now be able to set, remove, and configure breakpoints, to view and modify
variables, and to step through a program.

I have also introduced you to the creation of JUnit test cases and the creation of Javadoc program
documentation. Again, the support of JUnit is an important aspect of Eclipse’s support for Extreme
Programming.

In the next chapter I will explore some advanced topics such as teamwork, version management, and
the embedding of external tools.

128

Chapter 6

08_020059_ch06.qxd 10/8/04 10:59 AM Page 128

Advanced Topics of Project
Development

In this chapter I will briefly discuss how development teams can organize their work by using a
CVS repository with Eclipse. I will also show how external tools can be embedded into Eclipse.

Developing in a Team
In this book, I want to take only a short excursion into Eclipse’s support for development teams.
Detailed information can be found in the Eclipse help pages under Workbench User Guide > Tasks
> Working in the Team Environment.

Different concepts exist for working collaboratively on the same project. These concepts range
from sequential or semi-sequential workflow-oriented techniques to completely synchronous tech-
niques such as Microsoft’s NetMeeting. Eclipse uses the CVS concept (Concurrent Versions
System) by default. CVS is an Open Source project that has practically become the de facto
standard for the collaborative development of software projects. The CVS is based on a central
repository. However, the individual members of the development team work on their own local
copies of the repository content. In fact, they are able to work only on these local copies. For resolv-
ing clashes, the CVS uses an optimistic concept: it assumes that the same software artifact
is only rarely modified simultaneously by multiple team members. Therefore, the software
artifacts—even if they are currently being worked on—are not locked against the access of other
team members. All team members continue to have access to the central repository, may own a local
copy of any artifact in the central repository, and may modify this local copy without restrictions.

From time to time, the local copies are synchronized with the copies in the central repository.
Usually, only the central repository is updated with the newest versions. Some care should be
taken when doing so. Since software artifacts are usually highly dependent on each other, the
global repository should be updated only when the local resources are in a consistent state, for
example, when the project’s test suite was executed without errors.

77

09_020059_ch07.qxd 10/8/04 11:00 AM Page 129

However, such an optimistic concept allows conflicts. Such conflicts must be resolved. For example, if
the local copy of a resource and its original version in the central repository have both been modified
since the last synchronization, simply replacing the central copy with the local copy would cause a loss
of information. In such a case, the CVS offers several strategies for resolving the conflict. For example, it
is possible to merge both copies either manually or automatically.

Another option is to open a new development branch. The initial code base of the project forms the trunk,
or HEAD, of a development tree with many possible branches. Later, these different branches can be
brought together with the help of the previously mentioned conflict solution strategies (see the
“Working in a Team” section).

In addition, the CVS allows software artifacts to be given version numbers. Eclipse builds on this facility.
Eclipse supports the version management known from Visual Age only if Eclipse collaborates with a
CVS. In addition to explicit version numbers, the CVS uses internal revision numbers to uniquely iden-
tify each change in the central repository. The CVS stores the complete history of a software artifact. This
allows the comparison of a given software artifact with previous versions and revisions at any time or its
replacement with a previous version or revision. This feature can be very helpful, especially for mainte-
nance and debugging.

Detailed information about the CVS can be found in the books Open Source Projects with CVS by Fogel
and Essential CVS by Vesperman, and on the CVS Web site under www.cvshome.org.

Setting Up a Repository
It is a prerequisite for working in a team under Eclipse that the Eclipse workbenches of all team mem-
bers have access to the central repository. Since Eclipse by default supports the CVS access protocol,
direct access is possible to the following systems:

❑ Concurrent Versions System (CVS) for Linux/Unix from CVS version 1.11.1p1 onward. This
CVS server is freeware and can be downloaded from www.cvshome.org.

❑ CVS for Windows is also freeware and can be downloaded from www.cvsnt.org. However,
cvsnt is not officially supported by Eclipse, since it does not have the same maturity and
robustness as the CVS for Linux or Unix. If you want to use it anyway, version 1.11.1.1 or
later is recommended.

At the time of this writing there was no information about the compatibility of Eclipse 3 with the new
CVS version 2. You can get up-to-date information about CVS versions and compatibility issues in the
Eclipse CVS FAQ that are accessible via Help > Help Contents > Workbench User Guide > Reference >
Team support with CVS > CVS.

In addition to these popular CVSs, there are some commercial systems, too, that support central code
management, such as Borland StarTeam, Microsoft Visual Source Safe, and Rational ClearCase. The com-
munity page on www.eclipse.org lists on the Projects & Plugins page under the Team Repository
Providers section quite a few commercial repository providers. Special plug-ins connect these reposito-
ries with Eclipse.

Now, how do you connect Eclipse with a repository? Let’s assume that you have already installed a CVS.
In the following scenario I assume that the root directory of the repository was created and initialized
under C:\cvs\eclipse. I further assume that the repository is accessed via the pserver protocol.

130

Chapter 7

09_020059_ch07.qxd 10/8/04 11:00 AM Page 130

Eclipse offers its own perspective for managing connected repositories (yes, there may be more than one
repository connected to Eclipse). You can open the CVS Repository Exploring Perspective with Window
> Open Perspective > Other > CVS Repository Exploring. In the CVS Repositories View, you can now
invoke the New > Repository Location context function. In the dialog shown in Figure 7.1, you need to
specify the domain name of the host computer, the access protocol, the absolute path of the repository’s
root directory and, if necessary, a user name and a password. In this case, the repository is located on the
same host computer (localhost) as Eclipse.

After you press Finish, the new repository appears in the CVS Repositories View.

131

Advanced Topics of Project Development

Figure 7.1

Please note that the pserver protocol is inherently unsafe. Eclipse also supports the safe extssh
protocol, since Eclipse 3 also improved its implementation of the SSH2 protocol version. The necessary
controls are found under Window > Preferences >Team > CVS > Ext Connection Method and Window >
Preferences > Team > CVS > SSH2 Connection Method.

In addition to these external repositories, Eclipse comes with a simple default repository based on the
file system of the host platform. However, this default repository does not support version management.

09_020059_ch07.qxd 10/8/04 11:00 AM Page 131

Projects in the Repository
If you want to share a project with a team, you need to apply the Team > Share Project context function
to the project. In the dialog that appears, select a repository from the list. After pressing the Next button,
you can select a CVS module in the next step. If you leave the Use Project Name as Module Name option
marked, depending on the system used it may be necessary to create such a directory beforehand by
executing an appropriate command in the host operating system. For example, if you want to create a
directory for the DukeSpeaks project in cvsnt, you would use the command

cvs import DukeSpeaks bdaum start

Details about this command-line syntax are found in the manuals of the respective repository systems.

Alternatively, you can mark the Use an Existing Module option and select an existing module from the list.

In the next step, just leave the HEAD entry selected. After all, you are creating a new main project and not
a development branch of an existing project. Then press the Next button again. The project is now com-
pared with the repository content. The next wizard page shows the changes that will be applied to the
repository. Just press the Finish button to commit them. Then switch back to the CVS Repository
Perspective to view the results (see Figure 7.2). In this case, the repository is located on the same host
computer (localhost) as Eclipse.

132

Chapter 7

Figure 7.2

09_020059_ch07.qxd 10/8/04 11:00 AM Page 132

Version Management
Now you can mark the current project state as Version 1. It is this function that makes a CVS interesting
even for a sole developer. Without a CVS, Eclipse cannot manage project versions.

Select all Java files from the DukeSpeaks project. Apply the Team > Tag as Version context function to
this selection. Then enter the version number. You should apply this function only to files that you have
previously synchronized with Team > Commit. In this case, however, you might just as well apply the
function on the project itself, and thus on all source files in the project.

In principle, working on a repository-based project is no different from working on a private project. All
modifications are applied to the local resources without accessing the repository. The local resources are
synchronized with the resources in the repository only when you apply the Team > Commit context
function to selected resources. Resources that were changed since the last synchronization with the
repository are prefixed with a > character in the explorer.

Working in a Team
When several developers work on the same project, not only may the local version be newer than the
central version, but the reverse situation is also possible if resources were changed and committed by
other team members. You should always first import the changes made by other team members into
your local project before committing your changes to the repository. You can do this import with the
Team > Update function.

In cases where several team members work simultaneously with the same resource, it may happen that
the resource gets changed by more than one team member. Here, we differentiate between three conflict
types:

❑ Case 1: No conflict. Either the local or the central copy of the file was changed, but not both.

❑ Case 2: A conflict that can be resolved by automatic merging. This works only if the same lines
of code have not been modified in both the local and the central version.

❑ Case 3: A conflict that can only be resolved manually. Here the resource contains lines that
were modified in both the local and the central version.

The various functions for synchronization of resources react differently under these different conflict
cases. The Update function, for example, replaces the local copy in any case with the central copy.
However, in cases 2 and 3, the previous local version is saved under a modified name as a backup. In
case 3, the function adds comments to the file to make the conflicts visible.

The Synchronize function, in contrast, opens the Compare Editor (see Figure 7.3). There is even a specific
Team Synchronizing Perspective that can be opened in the usual way:

1. After you press the Synchronize CVS tool button in the Synchronize View, the type of conflict is
shown here for each resource. You may then apply an appropriate context function to a selected
resource. With Override and Update you can resolve conflict cases of types 1 and 2. Type 3
cases, however, need manual treatment. For this purpose you must invoke the Open in
Compare Editor function (Figure 7.3). Here, you can apply the necessary changes.

133

Advanced Topics of Project Development

09_020059_ch07.qxd 10/8/04 11:00 AM Page 133

Figure 7.3

The Compare Editor shows the difference between the local workspace and the central repository.
Here I have applied a modification to the PlayerTest.java file. In the upper window this file is
embellished with an arrow to the right, indicating an outgoing change. The lower windows show
the local version (left) and the repository version (right). You can edit the local version to resolve
conflicts.

Generally, you have the following possibilities for resolving a conflict:

❑ Discard your own modifications and copy the new central version into the workbench.
Your own code is lost!

❑ Force your own version on the repository (but you should ask team members for
permission). Other people’s code is lost!

❑ Manually merge the local version with the repository version.

❑ Merge the local version with the repository version using the automated merge.

❑ Open a new development branch (Team > Branch). The local version becomes the root of a
new branch. Later you can merge this branch with the trunk.

❑ Finally, you have the option to extract the local changes as a patch and send it to another
team member. This team member can apply the patch and include it in the central version.
Eclipse provides the necessary functions to extract patches (Team > Create Patch) and to
apply patches to resources (Team > Apply Patch). If you don’t want to fall out with other
team members, you should use this option (delegating work to others) only if you do not
have the necessary access rights to apply the changes yourself.

2. Finally, invoke the Commit function to write the local version to the repository.

134

Chapter 7

09_020059_ch07.qxd 10/8/04 11:00 AM Page 134

Other Functions
Besides the context functions of the Team group, there are some more context functions that refer to
repositories, for example, the comparison functions Compare With > Latest From, Compare With >
Another Branch or Version, Replace With > Latest From, or Replace With > Another Branch or Version.
In addition, there is a Team group in the preferences (Window > Preferences > Team). Here you can set
several options for the CVS. For example, you can set the content type (ASCII or binary) for different file
types, and you can exclude specific file types from the repository.

Using the Export > Team Project Set and Import > Team Project Set functions, you can exchange whole
sets of projects with other team members. To do so, first call the Export function. In the dialog that
appears, mark all projects that you wish to pass on to others. The result is a .psf file, which must be
stored in a location accessible to other team members. Your peers will then specify this file during
import. Eclipse will then construct the reference projects in the workspace and will populate these pro-
jects with resources from the repository. Optionally, you can create a Working Set for these imported
projects. It may be necessary to adapt the Java Build Paths of the imported projects.

External Tools
Eclipse allows you to embed external tools (i.e., tools that were not developed as plug-ins for Eclipse).
All you have to do is to create a configuration for the external tool. To do so, invoke the Run > External
Tools > External Tools menu function. In the dialog that appears (see Figure 7.4), you will find two
configuration types: ANT-Build and Program. (Ant is discussed in more detail in Chapter 12.) Select
the Program type and press the New button. Now you can enter the parameters of the new configura-
tion, such as the name of the configuration, the location of the external tool, the working directory, and
possible command-line options (arguments).

Refresh
On the Refresh page you can specify whether, and which, workspace resources should be refreshed after
the tool has executed. This is necessary if the tool modifies the Eclipse workspace, that is, if it inserts,
modifies, or deletes resources. You can specify in which scope the resources should be refreshed: the
selected resource only, all resources in the current folder or project, and so on.

Environment
On the Environment page you can specify the operating system environment variables required by the
external tool.

Associations
Another method for embedding external programs is to define file associations. In the “Associations”
section in Chapter 4 I demonstrated how an external HTML editor can be embedded into the Eclipse
workbench.

135

Advanced Topics of Project Development

09_020059_ch07.qxd 10/8/04 11:00 AM Page 135

As an example, I have declared JavaCC as an external tool. In addition, on the Common page I have
marked External Tools in the Display in Favorites Menu list. This allows you to call this tool conve-
niently with the Run > External Tools > Java CC function in the following calls to JavaCC. I have also
removed the mark from the Launch in Background option because this tool is needed in the foreground.

136

Chapter 7

Figure 7.4

Summary
In this chapter you have learned how to connect a CVS to Eclipse. You should have an understanding of
the core concepts of working with a CVS and how development in a team and version management take
place in the context of Eclipse.

A second topic was the embedding of external tools into Eclipse, so that you can continue using some of
your favorite development tools within the Eclipse workspace.

In the next chapter I will turn to a major component of the Eclipse platform, the Standard Widget Toolkit
(SWT). By using this component within your own applications, you can implement native user interfaces
with Java and forget Swing.

09_020059_ch07.qxd 10/8/04 11:00 AM Page 136

The SWT Library

Eclipse not only has an excellent Java IDE, but with SWT and JFace it also provides libraries that can
serve as a replacement for the Java AWT and Swing. The Java AWT implements its own GUI elements
and graphics operations in Java and C. Swing builds on this basis with a pure Java implementation of
more advanced GUI elements. In contrast, SWT is not much more than a platform-independent inter-
face to the host windowing system (Figure 8.1). In most cases, the SWT classes simply delegate the
various method calls to the functions of this native windowing system. To do so, SWT uses the Java
Native Interface (JNI), which allows C programs to be invoked from Java. Using this technology, it
was possible to implement most of the SWT in Java; only a small native library is required.

The advantage of this concept is that, because of the close integration with the host operating
system, the “look and feel” and the responsiveness of SWT-implemented applications are no
different than in native applications. For Java this could mean a breakthrough on the desktop.
Although the performance of Swing has improved with Java 1.4, Java applications that rely on
Swing are still unable to match native applications in presentation quality and responsiveness.

88

Operating system

sun.awt

java.awt

Swing

Operating system

Windowing system

SWT

JNI

JFace

Figure 8.1

10_020059_ch08.qxd 10/8/04 11:01 AM Page 137

In contrast to SWT, JFace does not talk directly to the native windowing system. JFace is completely
written in Java and uses the classes and methods of SWT to implement complex GUI elements. Because
of this, JFace components also exhibit the native “look and feel,” despite the fact that JFace GUI elements
do not have native siblings.

For this book, however, SWT-based applications are a problem. Because of their closeness to the host
windowing system, the SWT examples in this book appear in the “look and feel” of the author’s operat-
ing systems, Windows XP and Windows 2000. When you run these examples on a different operating
system, they will match the appearance of that operating system.

Unlike AWT, where GUI elements are implemented in the C sun.awt library and access only low-level
graphics functions of the host operating system, SWT uses the higher levels of the host windowing
system.

The Standard Widget Toolkit provides a set of basic GUI classes. In this chapter I first present an
overview of the SWT’s function groups and discuss the pros and cons of SWT compared to Java AWT.
Then I will explore the various function groups in detail.

During this exploration, however, I will refrain from presenting a full API specification. Instead, I will
concentrate on the significant features of the individual function groups and how they interact. The API
description for the various SWT packages is found in the Eclipse help system under Platform-Plugin
Developer Guide > Reference > API Reference > Workbench.

SWT Function Group Overview
The SWT classes are organized in the following packages:

Package Description

org.eclipse.swt This package contains all SWT-specific constants
and exceptions.

org.eclipse.swt.accessibility This package contains all classes for the
implementation of GUI support for disabled
people. See the “Accessibility” section.

org.eclipse.swt.awt This package contains the class SWT-AWT for
embedding AWT elements into the SWT. See the
“Widgets that Swing” section.

org.eclipse.swt.browser This package contains the classes implementing
the browser widget. See the “Browser Widget”
section.

org.eclipse.swt.custom This package contains widgets for the Eclipse
platform that do not have an equivalent in the
native windowing system. These widgets are
implemented in Java. See the “Custom Widgets”
section.

138

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 138

Package Description

org.eclipse.swt.dnd This package supports functions for data transfer,
such as drag and drop or operations using the
clipboard. See the “Data Transfer” section.

org.eclipse.swt.events This package contains all SWT-specific event
classes and listener interfaces. See the “Events”
section.

org.eclipse.swt.graphics This package contains classes for graphics
operations. See the “Graphics” section.

org.eclipse.swt.internal This package contains internal SWT classes. SWT
applications should not directly access these
classes because their API may change anytime
without warning.

org.eclipse.swt.layout This package contains various layout classes for
automatic positioning of GUI elements. See the
“Layouts” section.

org.eclipse.swt.ole.win32 This package supports OLE (Object Linking and
Embedding) for 32-bit Windows operating
systems. See the “Windows32 Support” section.

org.eclipse.swt.printing This package implements printer support. See the
“Output to Printer” section.

org.eclipse.swt.program This package contains only the program class.
Instances of this class represent file associations
and support starting external programs (see the
“External Tools” section in Chapter 7).

org.eclipse.swt.widgets This package contains all widget classes of the
SWT API. This is the package that implements the
main functionality of the SWT. See the “Widgets”
section.

SWT—Pros and Cons
The question, of course, is: when do I use SWT and when do I use Swing to implement a GUI? In the fol-
lowing section I discuss some pros and cons of the SWT compared to Swing.

139

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 139

Advantages of SWT
The main advantage of SWT is the seamless integration of an SWT-based application into the host
environment. Since SWT-based widgets don’t emulate the native user interface, as Swing does, but act
only as an adapter to the native widgets, SWT-based user interfaces are indistinguishable from user
interfaces of native applications to normal end users. Under Windows 2000 an SWT button looks exactly
like a Windows 2000 button, under Windows XP exactly like a Windows XP button, and on a Mac
exactly like a Mac button. With Swing this is not always the case. Of course, Swing comes with some
skins that mimic native user interfaces, but the right skin is not always available.

Better Interaction
In the case of responsiveness, Eclipse also has an advantage. In this aspect SWT does not show different
behavior compared to native applications, since it uses native event processing. Swing, in contrast, is a
bit slower, and this can be annoying to the end user at times. In addition, SWT is less resource-hungry
than Swing.

Since the Eclipse platform is completely implemented on the basis of SWT, SWT should be the first
choice when implementing Eclipse plug-ins and when using GUI components of the Eclipse workbench
in plug-ins.

More Robust
Finally, since most SWT-based widgets are only adapters to the native widgets of the host windowing
system, you can expect SWT to be more robust and tolerant in regard to heterogeneous hardware and
the various accelerator settings of the graphics subsystem. In fact, under Windows I have found that
SWT-based applications run without problems, while AWT- and Swing-based applications have occa-
sionally brought my machine to a full halt because of DirectX incompatibilities.

Disadvantages of SWT
There are also a few “lemons” that an SWT programmer has to deal with:

❑ SWT-based applications run only on platforms for which SWT is implemented. These are
presently the various Windows platforms (including Windows CE), Linux with the GTK or
Motif (including 64-bit GTK on AMD64), various Unix derivatives (Solaris, QNX, AIX, and
HP-UX), and Mac OS X.

❑ In general, the various implementations of SWT are functionally equivalent. But as you proba-
bly know, the devil is in the detail. For some functions, the behavior of GUI elements can differ
from platform to platform. If you plan to deploy a software product on multiple platforms, it is
essential to test the product thoroughly on each platform.

❑ In contrast to AWT, SWT requires explicit resource management. SWT uses resources of the
host windowing system for images, colors, and fonts. These resources must be released with
dispose() when they are no longer needed. I will discuss this in detail in the “Resource
Management” section.

140

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 140

The SWT Package
The org.eclipse.swt package contains only three classes: SWT, SWTException, and SWTError.
While the last two classes support error handling (recoverable and nonrecoverable errors), the SWT class
defines all SWT-specific constants, such as constants for key identifications, predefined colors, layout
variations for widgets, text styles, cursor variations, mouse actions, predefined buttons, and more.

For example, the SWT.LINE_DASHDOT constant represents, as the name indicates, a dash-dotted line
style, and SWT.MouseDoubleClick represents a mouse double-click event. You will meet some of
these constants in the following examples.

Events
Events provide the basic means for applications to communicate with the GUI. Typically, an application
registers listeners with widgets to receive events. Usually caused by user actions such as mouse clicks or
key presses, events inform the application via the listener about the kind of action that happened.

The org.eclipse.swt.events package contains three different groups: Listener interfaces, Event
classes, and Adapter classes. Events can be differentiated into two categories: typed events such as
ControlEvent or MouseEvent and untyped events (Event). Similarly, the Listener interfaces are
divided into typed and untyped ones.

Listeners
For each different event type there is also a different Listener class. For example, to a button (Button)
you can add a SelectionListener instance via the addSelectionListener() method. The
widgetSelected() method of this instance is invoked when the button is selected (clicked). The
SelectionListener instance is passed to the method as a parameter.

Following is an example:

public void createButton(Composite parent) {
Button myButton = new Button(parent, SWT.PUSH);
myButton.addSelectionListener(new SelectionListener() {

public void widgetSelected(SelectionEvent e) {
System.out.println("Button pressed!");

}
public void widgetDefaultSelected(SelectionEvent e) {
}

});
}

Here, I have added an instance of the inner anonymous SelectionListener class to the new button
as a listener.

141

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 141

As a matter of fact, there is a remove…Listener() method for each add…Listener() method. In
complex systems in particular, you should deregister (remove) listening components that are currently
inactive to avoid overhead. Later, when the component becomes active again, you can add it again as a
listener with add…Listener().

It is precisely for this reason that you should not make assumptions about the order in which registered
listeners are called. While it is true that the list of listeners is processed sequentially when an event is
fired, the sequence within this list is practically unpredictable, because components can register and
deregister at their own discretion.

Adapters
An adapter is a standard implementation of a given interface that does nothing. It contains empty meth-
ods for each method defined in the interface.

The only purpose of an adapter is programmer convenience. Instead of having to implement all the
methods of an interface, the programmer has only to declare a subclass of the corresponding adapter
and to override the methods of interest.

In the example from the previous section you can replace SelectionListener with
SelectionAdapter to avoid the definition of the empty widgetDefaultSelected() method:

public void createButton(Composite parent) {
Button myButton = new Button(parent, SWT.PUSH);
myButton.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println("Button pressed!");

}
});

}

Events
All SWT event classes, with the exception of the Event class, are subclasses of the TypedEvent class,
which in turn is a subclass of the java.util.EventObject class.

142

Chapter 8

TypedEvent is not a subclass of Event!

Each event type has a number of public fields that contain specific data about the event represented by
the event object. For example, the MouseEvent type contains the integer fields x, y, stateMask, and
button. All those fields must be accessed directly (without a get…() method). In addition, each
TypedEvent class contains the getSource() method. Not surprisingly, this method is used to retrieve
the source of the event.

In contrast, the generic Event event class contains a field named type, from which you can retrieve the
type of event. The source of the event is contained in the widget field.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 142

Overview of Listeners, Adapters, and Events
The following tables provide you with an overview of the relationship between SWT events, listeners,
and adapters. If no adapter is provided, the listener must be used instead.

This table describes typed events:

Listener Event Adapter

ArmListener ArmEvent –
This event happens when a widget such
as a menu is prepared (armed) for selection.
In particular, this is the case when the
mouse is moved over the widget.

ControlListener ControlEvent ControlAdapter

This event happens when a GUI element is
moved or modified in size.

DisposeListener DisposeEvent –

This event happens when a widget is
disposed.

FocusListener FocusEvent FocusAdapter

This event happens when a GUI
element gains or loses focus.

HelpListener HelpEvent –

This event happens when help for a
GUI element is requested (F1 key).

KeyListener KeyEvent KeyAdapter

This event happens when a key is
pressed or released.

MenuListener MenuEvent MenuAdapter

This event happens when a menu is
shown or hidden.

ModifyListener ModifyEvent –

This event happens after text is modified.

MouseListener MouseEvent MouseAdapter

This listener is notified Generic mouse event.
when a mouse button is
pressed or released.

143

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 143

Listener Event Adapter

MouseMoveListener MouseEvent –

This listener is notified Generic mouse event.
when the mouse is
moved.

MouseTrackListener MouseEvent MouseTrackAdapter

This listener is notified Generic mouse event.
when the mouse is
moved over a GUI
element or hovers
over a GUI element.

PaintListener PaintEvent –

This event happens when a
GUI element must be redrawn.

SelectionListener SelectionEvent SelectionAdapter

This event happens when a
GUI element is selected.

ShellListener ShellEvent ShellAdapter

This event happens when the
state of a shell instance changes
(default, minimized, maximized).

TraverseListener TraverseEvent –

This event happens when the
user transfers the focus to another
GUI element by pressing Tab or
when the traverse() method
is called.

TreeListener TreeEvent TreeAdapter

This event happens when a tree
node expands or collapses.

VerifyListener VerifyEvent –
This event happens before text is
modified. By assigning the value
“false” to the doit field of the event
objects, the modification can be
vetoed.

144

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 144

This table describes a generic event:

Listener Event Adapter

— Untyped event used internally —
within the SWT. This event type
is generated only by non-widget
objects.

Widgets
In this section I discuss the various GUI elements and their position in the inheritance tree (Figure 8.2
shows the inheritance tree for the most significant Widget classes). At the top is the Widget class. The
inheritance tree includes, of course, the obvious control elements such as buttons (Button), text fields
(Text), or sliders (Slider). Elements that are used to organize other elements into groups are also
included, such as the Group and Composite classes.

145

The SWT Library

Widget

DropTarget MenuDragSource

Item

MenuItem TabItem CTabItem

TableColumn TableItem TreeItem TableTreeItemToolItem

CoolItem

ScrollBarCaret Tracker

Control

Scrollable

Composite

TextList

Scale Slider ProgressBar Sash Button Label

CanvasGroup Toolbar

TabFolder CTabFolder

Browser

Table TreeCoolBarComboCCombo

Shell

Decorations

Figure 8.2

10_020059_ch08.qxd 10/8/04 11:01 AM Page 145

The Widget Class
All GUI elements are derived from the Widget abstract class. This class implements some of the
common methods for GUI elements such as dispose() or addDisposeListener(). On execution
of dispose(), a DisposeEvent object is sent to all registered DisposeListener instances.

The Control Class
The Control class is an immediate derivative of the Widget class. Instances of this class represent
window-related GUI elements and correspond directly with GUI elements of the host windowing or
operating system.

The Control class may send event objects of the following types to registered listeners:
ControlEvent, FocusEvent, HelpEvent, KeyEvent, MouseEvent, MouseTrackEvent,
MouseMoveEvent, and PaintEvent. For this purpose Control provides the necessary
add…Listener() and remove…Listener() methods for the corresponding listeners.

In addition, Control provides a rich set of methods that allow the various properties of the specific
GUI elements to be set and retrieved. In particular, the setVisible() and setEnabled() methods
allow a GUI element to be shown or hidden, enabled or disabled.

The size of a Control instance is set initially to a default value. In many cases this is the minimum size
(0x0), allowing the GUI element to remain invisible. The setBounds() method allows the size of a GUI
element to be set and also its position relative to the containing Composite (see the “Composites,
Groups and Canvas” section). Alternatively, the containing Composite can be equipped with a layout
(see the “Layouts” section) that organizes the sizing and positioning for all Control instances contained
in the Composite. The pack() method is used to recompute the size of a GUI element from the pre-
ferred size setting or from the layout.

Visual Overview
The best overview of the various native widgets in SWT is obtained with the help of one of the example
applications for Eclipse. In Chapter 1 you installed the Eclipse example applications, so now you need
only start the required application. To do this, invoke the Window > Show View > Other function. In the
dialog select SWT Examples > SWT Controls. This view then appears in the window at the bottom-right
corner. Because you need all the space you can get with this application, double-click the view’s tag to
maximize it.

Since this application is perfectly suited to visualize widgets in varying configurations, I will in most
cases refrain from depicting widgets on the following pages. Another example application, Custom
Controls, provides an overview of the non-native widgets. Both applications allow you to experiment
with events and listeners.

Displays, Shells, and Monitors
The Display and Shell classes form the basis for the construction of a user interface. The Display
class represents the GUI process (thread); the Shell class represents windows.

146

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 146

Display
The Display class connects the Java application with the operating system. Each application with an
SWT-based GUI creates at least one instance of this class. Or, to be more precise, as long as only one GUI
thread is needed, only one Display instance is needed. Should you want to execute GUI operations in
multiple threads, you would then need a separate Display instance for each thread. With the help of
the Display.getCurrent() static method, you can retrieve the active Display instance for the cur-
rent thread.

Unlike the AWT and Swing, the SWT enforces an SWT object to be used only from the thread in which it
was created. To allow for multithreaded applications, the Display class provides two methods that
allow the execution of arbitrary code in the context of the SWT thread. A Runnable object can be passed
as a parameter to the syncExec() and asyncExec() methods, which in turn execute the run()
method of Runnable. In the following chapters I will make use of this technique frequently.

Figure 8.3 shows how the SWT Controls example application organizes the various native widget types
in different pages. On the right you can configure the selected widget type by specifying parameters. The
names of the buttons reflect the names of the corresponding SWT constants. The configured widgets are
shown on the left.

147

The SWT Library

Figure 8.3

10_020059_ch08.qxd 10/8/04 11:01 AM Page 147

In addition to these services, the Display class provides methods that allow you to retrieve GUI
properties of the host windowing system, such as getSystemFont() and getDoubleClickTime().
Display also manages the resources of the host windowing system.

Finally, the Display class provides methods for the general management of widgets, such as
getActiveShell() and getFocusControl(). The map() method allows mapping the coordinates
of points or rectangles from the coordinate system of one control to the coordinate system of another
control.

A Display instance generates events of the Event class (see the “Events” section) and of the SWT.Open
or SWT.Close type, respectively. The post() method can be used to generate events of the KeyDown,
KeyUp, MouseDown, MouseUp, or MouseMove type programmatically. This feature can be used to auto-
mate user interfaces. Here is an example:

// Translate window coordinate (100,50) to display coordinate system
Point coord = display.map(shell, null, 100, 50);
event = new Event();
event.type = SWT.MouseMove;
event.x = coord.x;
event.y = coord.y;
display.post(event);

Shell
The Shell class represents a window on the desktop of the host windowing system. A Shell instance
can be in one of three different operation modes: maximized, default, and minimized. When the opera-
tion mode changes, the Shell generates an event of the ShellEvent type.

148

Chapter 8

You must not subclass Shell. (An exception is thrown at runtime in such a case.)
To implement your own window types, it is better to subclass the JFace Window
class (see the “Dialogs and Windows” section in Chapter 9).

SWT supports two different shell types:

❑ Top-level shells are used to implement the main window of an application.

❑ Dialog shells are shells that are subordinate to other shells.

Which of the two types is created when a new Shell instance is created depends on the constructor’s
parameter: If a Display instance is passed to the constructor, a top-level shell is created; if a Shell
instance is passed, a dialog shell is created.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 148

When a shell is created, you can optionally supply one or several style parameters from the
following table.

Style Parameter Description

SWT.NONE Default window. Layout depends on host system.

SWT.BORDER Bordered window (depends on host platform).

SWT.CLOSE Window has a title bar with a Close button.

SWT.MIN Window has a title bar with a Minimize button.

SWT.MAX Window has a title bar with a Maximize button.

SWT.NO_TRIM Window has neither a title bar nor a border.

SWT.RESIZE Window can be resized by using a mouse action.

SWT.TITLE Window has a title bar.

SWT.SHELL_TRIM Combination of styles suitable for a top-level window:
(SWT.CLOSE | SWT.TITLE | SWT.MIN | SWT.MAX |
SWT.RESIZE).

SWT.DIALOG_TRIM Combination of styles suitable for a dialog window:
(SWT.CLOSE | SWT.TITLE | SWT.BORDER).

There are additional constants that control the modal behavior of the window: SWT.APPLICATION_
MODAL, SWT.MODELESS, SWT.PRIMARY_MODAL, and SWT.SYSTEM_MODAL. A modal window in the
foreground does not allow other windows (of the same application or even of the whole system) to come
to the foreground. Such a window should be instrumented with a Close button, so that the end user can
close the window.

If no style parameter was specified, the default style depends on the host system and on the shell type.
For example, for Windows CE the default style is SWT.NONE. For other Windows versions, however, the
default style is SHELL_TRIM for top-level shells and DIALOG_TRIM for dialog shells.

The setImage() method can be used to specify an icon that represents the window when it is minimized.
This icon is usually displayed in the title bar, too. Images in several resolutions can be specified via the
setImages() method. The platform will choose an icon from these images that fits best for a specific
purpose.

Figure 8.4 shows a shell with two buttons under Windows 2000. The shell was created with the
SWT.BORDER, SWT.TITLE, SWT.CLOSE, SWT.MIN, and SWT.MAX options, so it is equipped with a 3D
border, a title bar, a Close button, a Minimize button, and a Maximize button.

149

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 149

Figure 8.4

Region
A shell does not necessarily have a rectangular outline. By assigning a region to a shell, you can mold a
shell into any imaginable outline. To do so, first create a Region instance to which you add one or sev-
eral outlines using the add() method. You can even use the subtract() method to punch holes in the
region. Then assign the region to the shell with the Shell setRegion() method. Note that this assign-
ment takes effect only for shells that were created with the SWT.NO_TRIM style. The consequence is that
you must organize the closing, moving, and resizing of the shell by yourself. In the “Player Module” sec-
tion in Chapter 10 I show how this is done.

Setting Up the Workbench
Before writing the first example program for a shell, you need to prepare the workbench. Create a new
project called widgets. In this project create a new class called widgetTest. The SWT library is not yet
known to this project. You must therefore add it as an external JAR file to the Java Build Path. I described
how to do this in the “Project Properties” section in Chapter 4.

When running under Windows you will find the SWT library under

\eclipse\plugins\org.eclipse.swt.win32_3.0.0\ws\win32\swt.jar

Under Linux GTK you need two JAR files:

/opt/eclipse/plugins/org.eclipse.swt.gtk_3.0.0/ws/gtk/swt.jar
/opt/eclipse/plugins/org.eclipse.swt.gtk_3.0.0/ws/gtk/swt-pi.jar

Under other operating systems you will find the SWT libraries in similar places. Under later Eclipse ver-
sions you need to modify these paths accordingly.

The First SWT Program
You can now write your first SWT-based program (see Listing 8.1). First, create a new Display instance
and then a new top-level shell by passing the Display instance to the Shell constructor. (For a dialog
shell you would instead pass another Shell instance.)

import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;

public class widgetTest {

public static void main(String[] args) {
// Create Display instance

150

Chapter 8

Listing 8.1 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 150

final Display display = new Display();
// Create top level Shell (pass display as parent)
final Shell toplevelShell = new Shell(display);
// Set title line
toplevelShell.setText("TopLevel.Titelzeile");
// Display shell
toplevelShell.open();
// Create a dialog shell (pass toplevelShell as parent)
final Shell dialogShell = new Shell(toplevelShell);
// Set title line
dialogShell.setText("Dialog.Titelzeile");
// Display shell
dialogShell.open();
// Wait until top level shell is closed
while (!toplevelShell.isDisposed()) {

// Check for waiting events
if (!display.readAndDispatch()) display.sleep();

}
}

}

Listing 8.1 (Continued)

The while loop at the end of this program is very important. Under SWT the programmer is responsible
for the event loop! Without this loop, the user interface would lock up while this program is running.
This problem is solved in the while loop with the readAndDispatch() method, which reads events
waiting at the Display instance and passes them to the listening GUI element. If no more events are
waiting, the sleep() method, which waits until a new event occurs, is invoked.

SWT Run Configuration
Now you can execute this little program. For this purpose you must create a new Run configuration of
the Java Application type. To do so, invoke the Run > Run function and press the New button. Specify
widgetTest as the name for the new configuration, and do the same under Main Class. Under Project
specify widgets.

However, these specifications are not sufficient to run this program successfully. The SWT requires
native modules, and these modules must be made known to the Java Virtual Machine. The path of the
module library is specified in the Run configuration on the Arguments page under VM Arguments.
In the case of a Windows host system, you have to specify the following parameters:

-Djava.library.path=
C:\eclipse\plugins\org.eclipse.swt.win32_3.0.0\os\win32\x86

Under Linux/GTK specify

-Djava.library.path=
/opt/eclipse/plugins/org.eclipse.swt.gtk_3.0.0/os/linux/x86

Under other host systems you will find this module library in a similar place. Under later Eclipse ver-
sions you need to modify these paths accordingly.

151

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 151

Then you can press the Run button and be rewarded with a new window on your desktop.

Monitor
Since Eclipse 3.0 the SWT also supports hardware setups with multiple monitors. What first sounds like
a special purpose application isn’t. Many professional notebook computers are able to distribute the
desktop over the internal LCD monitor and a connected external monitor.

Eclipse supports such hardware with the SWT Monitor class. With the Display getMonitors()
method you can obtain an array of connected monitors. The getPrimaryMonitor() method delivers a
Monitor instance for the primary monitor. In particular, the Monitor class provides the getBounds()
and getClientArea() methods, with which you can obtain the position and size of the monitor (or, to
be precise, of the monitor’s client area) within the display area. (The client area does not, for example,
contain the Windows taskbar.)

SWT applications that position, move, or resize dialogs, menus, and so on should use these methods to
ensure an appropriate user experience. For example, you want to make sure that dialogs and menus are
not distributed over two monitors but appear completely on the primary monitor. In the “Player
Module” section in Chapter 10 I show how the Monitor class can be used in a real-world application.

Dialogs
The Dialog class is an abstract class from which you can derive concrete native dialogs. The necessary
code is in Listing 8.2.

public class MyDialog extends Dialog {
Object result;
// Constructor with style parameter
public MyDialog (Shell parent, int style) {

super (parent, style);
}
// Constructor without style parameter
public MyDialog (Shell parent) {

this (parent, 0);
// The 0 can be replaced by own default style parameters.

}
public Object open () {

// Get containing shell (as set in the constructor)
final Shell parent = getParent();
// Create new dialog shell
final Shell shell = new Shell(parent, SWT.DIALOG_TRIM |

SWT.APPLICATION_MODAL);

// Transfer dialog title to shell title
shell.setText(getText());
// TODO Create all widgets here
// Usually the result variable is set in the
// event processing of the widgets
shell.open();
// Wait until dialog shell is closed
final Display display = parent.getDisplay();

152

Chapter 8

Listing 8.2 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 152

while (!shell.isDisposed()) {
if (!display.readAndDispatch())

display.sleep();
}
return result;

}
}

Listing 8.2 (Continued)

Predefined Dialogs
The SWT already contains some concrete subclasses of Dialog, such as these:

Subclass Description

ColorDialog Dialog for selecting a color.

DirectoryDialog Dialog for selecting a directory in the host file system.

FileDialog Dialog for selecting a file in the host file system. The SWT.OPEN
and SWT.SAVE style parameters are used to determine the purpose
for which the file is selected.

FontDialog Dialog for selecting a text font.

MessageBox Dialog for displaying a message. With various style parameters you
can determine which buttons are used to instrument the dialog.
The following combinations are possible:

SWT.OK

SWT.OK | SWT.CANCEL)

SWT.YES | SWT.NO)

SWT.YES | SWT.NO | SWT.CANCEL)

SWT.RETRY | SWT.CANCEL)

SWT.ABORT | SWT.RETRY | SWT.IGNORE)

In addition, you can determine which icon is displayed with the mes-
sage:

SWT.ICON_ERROR

SWT.ICON_INFORMATION

SWT.ICON_QUESTION

SWT.ICON_WARNING
SWT.ICON_WORKING

PrintDialog Dialog for selecting a printer and for the printer settings. See also
the “Output to Printer” section.

153

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 153

The “look and feel” of these dialogs depends, of course, on the host system. To get an idea of what these
dialogs look like on your platform, refer to the Dialog page in the Eclipse example application, SWT
Controls.

MessageBox
In Listing 8.3 I show how you can create and use a MessageBox dialog in an example program of your
own. Figure 8.5 shows the results.

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.MessageBox;
import org.eclipse.swt.widgets.Shell;

public class widgetTest {

public widgetTest() {
super();

}

public static void main(String[] args) {
// Create Display instance
final Display display = new Display();
// Create top level shell (pass display as parent)
final Shell toplevelShell = new Shell(display);
// Set title line
toplevelShell.setText("TopLevel.titleLine");
// Show shell
toplevelShell.open();
while (true) {

// Create message box
MessageBox box =

new MessageBox(
toplevelShell,
SWT.RETRY
| SWT.CANCEL
| SWT.APPLICATION_MODAL
| SWT.ICON_QUESTION);

// Set title
box.setText("Test");
// Set message
box.setMessage("Do you want to try again?");
// Open message box
if (box.open() == SWT.CANCEL)
break;

}
}

}

Listing 8.3

154

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 154

Figure 8.5

Figure 8.5 shows the message box created by this example under Windows XP. You can tell from the pic-
ture that this dialog is native, indeed. Here I’m running a German language version of Windows 2000.
The Retry button (Wiederholen) and the Cancel button (Abbrechen) are generated by Windows and are
consequently in the German language.

However, for your own complex dialogs you will probably not use the SWT Dialog class but rather the
similarly named JFace class (see Chapter 9), because the JFace version is much more convenient to use.
Most of the Eclipse workbench dialogs, for example, build upon the JFace Dialog class and not on low-
level SWT dialogs.

Composites, Groups, and Canvas
Usually you will not mount widgets directly into a shell but rather will put one or several hierarchies of
Composite instances in between. Composites are used to organize widgets into groups. For example,
you can combine the buttons of a dialog into one group with the help of a Composite. This is important
for radio buttons, where pressing one button releases all other buttons in the same group. Another possi-
bility is organizing several input fields and labels into a group to improve the layout or the navigation.

If you want to add widgets to a Composite, you will search in vain for an appropriate add() method.
Instead, under the SWT, GUIs are constructed in a completely different way. Each time you create a new
widget, the containing Composite is passed as a parameter to the constructor. The widgets in the
Composite are ordered in the sequence of their creation.

Since Composites are widgets, too, you must specify a containing Composite instance when you cre-
ate a new Composite (shells are also Composites). You will usually transfer the background and fore-
ground color and the type font from the containing composite. Also, you can specify the position and the
dimensions of the new Composite in relation to the containing Composite.

// Create new Composite instance
final Composite composite = new Composite(parent,0);
// Get properties from the containing composite
composite.setBackground(parent.getBackground());
composite.setForeground(parent.getForeground());
composite.setFont(parent.getFont());
// Set position and size
composite.setBounds(X,Y,WIDTH,HEIGHT);

You may optionally specify the constant SWT.NO_RADIO_GROUP as a second parameter in the construc-
tor if you don’t want the composite to interfere with the release mechanism of the radio buttons.

155

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 155

The Group class is a subclass of the Composite class. This class is also equipped with a border
line that clearly demarcates the group area. The style of this line can be influenced with the
SWT.SHADOW_ETCHED_IN, SWT.SHADOW_ETCHED_OUT, SWT.SHADOW_IN, SWT.SHADOW_OUT,
and SWT.SHADOW_NONE constants, provided that the host windowing system supports this. The
setText() method can be used to place a title into this border line. In many cases Groups are a better
choice than Composites. When dialogs become complex, Groups allow a better navigation with the
keyboard and thus are more user-friendly for disabled persons (see the “Accessibility” section).

For Composite and Group instances that contain other widgets, you usually will set a layout. I will
discuss this in more detail in the Layouts section.

The Canvas class is a subclass of Composite. Its purpose is not to contain other GUI elements
(although this is possible) but to serve as a canvas for drawing operations. In particular, if you want to
invent your own GUI elements, you can draw them on a Canvas instance.

In addition, the Canvas class supports a caret (setCaret() and getCaret()).

Buttons
Buttons come in many faces. The button type created by the Button() constructor depends on the style
constant passed to this constructor, as shown in the following table.

Style Constant Buttons Description

SWT.ARROW Button with a small arrow.
Normally used for drop-down
menus and the like.

SWT.CHECK Check box that can be marked. The
button text is printed beside the
check box.

SWT.PUSH Pushbutton with the button text on
the button face.

SWT.RADIO Radio button. Radio buttons within
the same group release one another
when pressed.

SWT.TOGGLE A toggle button is similar to a
pushbutton. The difference is that
the button remains pushed after the
first click. The second click will
release it.

In addition, the following table shows the options for controlling the look and the alignment of a button.
However, not all platforms support these attributes.

156

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 156

Style Constant Description

SWT.FLAT The button is not drawn in 3D fashion but in a flat fashion.

SWT.BORDER The button is enclosed by a frame.

Using the setText() and setImage() methods you can assign text or an image to a button. For push-
buttons and toggle buttons, the text or the image appears on the button face. For check boxes and radio
buttons, the text or image is shown beside the button. Buttons of the ARROW type show neither text nor
image.

Both methods are mutually exclusive. Use either

final Button button = new Button(composite,SWT.PUSH);
button.setText("Press me!");
// React to click events
button.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println("Key was pressed");

}
});

or

final Button button = new Button(composite,SWT.PUSH);
Display display = composite.getDisplay();
final Image image = new Image(display, "images/button1.gif");
button.setImage(image);
// React to click events
button.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println("Key was pressed");

}
});
// Dispose image when button is disposed
button.addDisposeListener(new DisposeListener() {

public void widgetDisposed(DisposeEvent e) {
image.dispose();

}
});

In the second case, additional logic was needed to dispose of the Image resource when it was no longer
required. This was necessary because images allocate resources in the host operating system.

157

The SWT Library

A good source for images for buttons, toolbars, and other purposes is the icon
directories in the various Eclipse plug-ins, for example, \eclipse\plugins\
org.eclipse.pde.ui_3.0.0\icons\obj16.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 157

Sliders and Scales
Both the Slider and Scale classes support entry of a numeric value via a sliding control. Usually the
Slider class is used for positioning window contents (scroll bar), while Scale is used for adjusting
numeric parameters such as volume, brightness, contrast, and so on. Figure 8.6 shows an instance of
each Slider and Scale, enclosed by a Group widget.

158

Chapter 8

Figure 8.6

The following style constants influence the presentation of these widgets:

SWT.HORIZONTAL Horizontal or vertical orientation.
SWT.VERTICAL

SWT.BORDER Scales are surrounded with a frame. This option has no
effect for the Slider class.

The following example in Listing 8.4 creates a simple slider:

final Slider slider = new Slider(composite,SWT.HORIZONTAL);
// Set minimum value
slider.setMinimum(0);
// Set maximum value
slider.setMaximum(1000);
// Set increment value for arrow buttons
slider.setIncrement(50);
// Set increment value for clicks on the slider face
slider.setPageIncrement(200);
// Set current position
slider.setSelection(500);
// Set size of handle
slider.setThumb(200);
// React to slider events
slider.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println("Slider was moved to: "

+slider.getSelection());
}

});

Listing 8.4

10_020059_ch08.qxd 10/8/04 11:01 AM Page 158

With the corresponding get…() methods you can retrieve these values, too. Scale provides the same
methods, except the setThumb() and getThumb() methods.

ProgressBar
The ProgressBar class supports the presentation of a progress indicator. The API is very similar to that
of the Slider class, except that ProgressBar does not generate events.

There are also two more style constants:

❑ SWT.SMOOTH enforces a continuous progress indicator. Otherwise, the progress indicator is bro-
ken into segments.

❑ SWT.INDETERMINATE is used to create a constantly moving progress indicator. When the
progress indicator reaches the maximum size, it starts over with the minimum size. With this
option set you cannot use setSelection() for indicating progress.

Using this class is not as easy as it seems, because the progress indicator is updated only when the event
loop is not locked.

Scrollable and ScrollBar
Some widgets are already equipped with scroll bars. All these widgets are subclasses of Scrollable.
You can control which sliders are active for a Scrollable instance with the style constants
SWT.H_SCROLL and SWT.V_SCROLL. The Scrollable class, by the way, does not use Slider
instances to implement the scroll bars but instead uses instances of the ScrollBar class. In contrast to
Slider and Scale, ScrollBar is not a subclass of Control, that is, it is not a native widget.

Text Fields and Labels
Instances of the Text class are used to display, enter, or modify text. The following style constants can
be used to configure Text instances:

SWT.MULTI Determines whether the text field has multiple lines or only a
SWT.SINGLE single line.

SWT.READ_ONLY When this option is set, the end user cannot modify the text in the
text field.

SWT.WRAP When this option is set, automatic word wrapping is supported.

Figure 8.7 shows an example. The upper field is a Text instance; the lower field is a StyledText
instance (see the “Custom Widgets” section). For both fields I set the Eras Book font, and for the lower
field I applied additional formatting. In addition, for each field I specified a vertical scroll bar with
SWT.VERTICAL.

159

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 159

Figure 8.7

Instances of the Text class create the following event types:

SelectionEvent When the Enter key is pressed, the
widgetDefaultSelected() method is called for all
registered SelectionListeners.

ModifyEvent This event is fired after text is modified.

VerifyEvent This event is fired before the widget’s text content is
modified. By assigning the value false to the event object’s
doit field, you can veto the modification of the text.

The example in Listing 8.5 creates a text field with a VerifyListener event to reject invalid
modifications:

final Text text = new Text(composite,SWT.SINGLE);
text.setText("Input text");
text.addSelectionListener(new SelectionAdapter() {

public void widgetDefaultSelected(SelectionEvent e) {
System.out.println("Enter was pressed: "+text.getSelection());

}
});
text.addModifyListener(new ModifyListener() {

public void modifyText(ModifyEvent e) {
System.out.println("Text after modification: "+text.getText());

}
});
text.addVerifyListener(new VerifyListener() {

public void verifyText(VerifyEvent e) {
String s = text.getText();
System.out.println("Text before modification: "+s);
// Veto: Text longer than 10 characters is prohibited
if (s.length() >= 10) e.doit = false;

}
});

Listing 8.5

The Text class has a rich variety of methods for processing text input. In particular, it has methods for
exchanging text content with the host system’s clipboard (cut(), copy(), and paste()).

160

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 160

Not surprisingly, instances of the Label class are used to label other widgets. In addition, you can use
labels to display an image or a horizontal or vertical line. You can control label presentation and purpose
with the following style constants:

SWT.SEPARATOR The label is displayed as a horizontal or vertical line.

SWT.HORIZONTAL Determines the orientation of the label.
SWT.VERTICAL

SWT.SHADOW_IN Determines the shadowing effects of the label.
SWT.SHADOW_OUT
SWT.SHADOW_NONE

SWT.CENTER Determines the alignment of text or image labels.
SWT.LEFT
SWT.RIGHT

SWT.WRAP When the option is set, automatic word wrapping is supported for
text labels.

The following code can be used to create a text label:

final Label label = new Label(composite, SWT.NULL);
label.setText("Enter");

For image labels, the image is set with the setImage() method. Just as with Buttons (see the
“Buttons” section), Image instances should be released when they are no longer needed.

Tables, Lists, and Combos
Tables and lists are used to present contents in columns. Both widget types support the selection of sin-
gle or multiple elements. Combos are a space-saving variant for selecting items from a list.

Tables
The Table class is responsible for the presentation of tables. In addition to the Composite style
constants, Table provides these other style constants:

SWT.SINGLE The end user can select only single or multiple table rows,
SWT.MULTI respectively.

SWT.FULL_SELECTION The whole table row is selectable. (Normally, only the first
element of a row can be selected.)

161

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 161

SWT.CHECK Each table row is equipped with a check box placed in
front of the row. The state of the check box can be accessed
with the setChecked() and getChecked() methods.

SWT.VIRTUAL This constant indicates a virtual table, i.e., a table with
table items that are created lazily when actually needed.
This is to support very large tables. When using a virtual
table, you should explicitly set the item count via the
setItemCount() method. When a new table item is
needed, the table will create it and fire an SWT.SetData
event. The Event object carries the item, which then can
be completed by the Listener before it is displayed.

Table instances generate SelectionEvent objects when a table element is selected. The
SelectionListener widgetDefaultSelected() method is called when Enter is pressed for a
table element or when a table element is double-clicked.

Figure 8.8 shows, from left to right, a table, a list, and a combo. At the right, the top widget shows the
combo in its normal state; the bottom widget shows the same combo expanded after a click on the arrow
button. I made the grid lines and the column headers visible for the table.

162

Chapter 8

Figure 8.8

Table Columns
To configure individual table columns you can assign TableColumn to a Table instance. This is done
in the same way as widgets are added to a Composite—the Table instance is passed to the

10_020059_ch08.qxd 10/8/04 11:01 AM Page 162

TableColumn() constructor as a parameter. In addition, you can specify a column header and a width
(in pixels) for each table column, using the setText() and setWidth() methods.

The end user is still able to modify the width of table columns. In addition, the column headers act as
buttons. In consequence, TableColumn instances can create a variety of events. A ControlEvent is
fired when a table column is moved or modified in size. A SelectionEvent is fired when a column
header is clicked.

You can specify the alignment of table columns with the help of the SWT.LEFT, SWT.CENTER, and
SWT.RIGHT style constants. You can use the showColumn() method to reveal a specific column in the
visible area.

Table Rows
In a similar way you can create table rows as TableItem objects. The setText() method is used to set
the content of a table row. The content is passed to this method as a string or, in the case of multicolumn
tables, as an array of strings. Since Eclipse V3 you can even set text color, background color, and font
for each individual TableItem via the setForeground(),setBackground(), andsetFont()
methods.

The Table setHeaderVisible() and setLinesVisible() methods are used to show or hide the
column headers and grid lines.

The code in Listing 8.6 creates a table with three columns and two lines.

final Table table = new Table(composite,
SWT.SINGLE | SWT.H_SCROLL |
SWT.V_SCROLL | SWT.BORDER |
SWT.FULL_SELECTION);

// Create three table columns
final TableColumn col1 = new TableColumn(table,SWT.LEFT);
col1.setText("Column 1");
col1.setWidth(80);
final TableColumn col2 = new TableColumn(table,SWT.LEFT);
col2.setText("Column 2");
col2.setWidth(80);
final TableColumn col3 = new TableColumn(table,SWT.LEFT);
col3.setText("Column 3");
col3.setWidth(80);
// Make column headers and grid lines visible
table.setHeaderVisible(true);
table.setLinesVisible(true);
// Create table rows
final TableItem item1 = new TableItem(table,0);
item1.setText(new String[] {"a","b","c"});
final TableItem item2 = new TableItem(table,0);
item2.setText(new String[] {"d","c","e"});
// Add selection listeners
table.addSelectionListener(new SelectionAdapter() {

public void widgetDefaultSelected(SelectionEvent e) {
processSelection("Enter was pressed: ");

}

163

The SWT Library

Listing 8.6 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 163

public void widgetSelected(SelectionEvent e) {
processSelection("Table element was selected: ");

}
private void processSelection(String message) {

// Get selected table row
TableItem[] selection = table.getSelection();
// Because of SWT.SINGLE only one row was selected
TableItem selectedRow = selection[0];
// Format the table elements for output
String s = selectedRow.getText(0)+", "+

selectedRow.getText(1)+", "+selectedRow.getText(2);
System.out.println(message + s);

}
});

Listing 8.6 (Continued)

Lists
If you want to offer only a single-column list of string elements for selection, using the List class is
much simpler than creating a table. List instances generate the same event types as Table instances, but
the widgetDefaultSelected() method is called only in the case of a double-click on a list element.
You can use the SWT.SINGLE and SWT.MULTI style constants to specify whether the end user can select
only single or multiple list entries.

In Listing 8.7 I construct a list with three entries. The selection of multiple entries is allowed and
processed.

final List list = new List(composite,SWT.MULTI);
list.add("Element1");
list.add("Element2");
list.add("Element3");
list.addSelectionListener(new SelectionAdapter() {

public void widgetDefaultSelected(SelectionEvent e) {
processSelection("Enter was pressed: ");

}
public void widgetSelected(SelectionEvent e) {

processSelection("List entry was selected: ");
}
private void processSelection(String message) {

// Get selected entries
String[] selection = list.getSelection();
// Format entries for output
StringBuffer sb = new StringBuffer();
for (int i = 0; i < selection.length; i++) {

sb.append(selection[i]+" ");
}
System.out.println(message + sb);

}
});

Listing 8.7

164

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 164

Combos
Finally, there is the Combo class, which combines a selection from a list with text input. Instances of the
Combo class generate the following event types:

SelectionEvent If the Enter key is pressed on a list entry, the
SelectionListener widgetDefaultSelected()
method is invoked.

If a list entry is selected, the widgetSelected() method is
called instead.

ModifyEvent This event is fired when the text is changed via the keyboard or
via list selection.

The following style constants influence the presentation and the function of Combo instances:

SWT.DROP_DOWN The selection list is shown only after a click on the arrow
button.

SWT.READ_ONLY When this option is specified, values can be only selected from
the list but not entered by the keyboard.

SWT.SIMPLE The selection list is always visible if this option is specified.

The code in Listing 8.8 creates a Combo instance.

final Combo combo = new Combo(composite,SWT.DROP_DOWN);
// Create three list elements
combo.add("Element1");
combo.add("Element2");
combo.add("Element3");
// Supply default value for text field
combo.setText("Select");
// Add selection listener
combo.addSelectionListener(new SelectionAdapter() {

public void widgetDefaultSelected(SelectionEvent e) {
System.out.println("Enter was pressed: " + combo.getText());
}
public void widgetSelected(SelectionEvent e) {

System.out.println("List entry was selected: " +
combo.getText());

}
});
// Add ModifyListener
combo.addModifyListener(new ModifyListener() {
public void modifyText(ModifyEvent e) {
System.out.println("Text was modified: "+combo.getText());

}
});

Listing 8.8

165

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 165

The non-native CCombo widget is very similar to the Combo widget but also supports borderless
presentation. It is usually used within table cells.

Trees
The Tree class is responsible for the presentation of trees. The presentation and functionality of the tree
can be influenced by the following style constants:

SWT.SINGLE The end user can select only single or multiple tree nodes, respectively.
SWT.MULTI

SWT.CHECK Each tree node is equipped with a check box in front of the node. The
state of the check box can be accessed via the setChecked() and
getChecked() methods.

Figure 8.9 shows two trees. The tree on the left has only text nodes, while the tree on the right has images
assigned to the tree nodes.

166

Chapter 8

Figure 8.9

Tree instances generate the following event types:

SelectionEvent In case of a double-click or when the Enter key is pressed on a tree node,
the SelectionListener widgetDefaultSelected() method is
called. The widgetSelected() method is invoked when a tree node is
selected.

TreeEvent The TreeListener treeExpanded() method is called when a tree node
is expanded. The treeCollapsed() method is called when a tree node is
collapsed. The node in question is passed in the item field in the
TreeEvent object.

The individual tree nodes are implemented as TreeItem instances. When such an instance is created, you
can pass either the Tree object or another TreeItem instance as the parent node via the constructor. The
text content of a TreeItem instance is set via the setText() method; its text font is set with the
setFont() method. In addition, you can assign an image to each tree node using the setImage()
method. As already discussed with Buttons (see the “Buttons” section), you should dispose of Image
instances when they are no longer needed.

The code in Listing 8.9 creates a simple tree with three nodes. The first node has two child nodes.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 166

final Tree tree = new Tree(composite,SWT.SINGLE);
// Create first node level
final TreeItem node1 = new TreeItem(tree,SWT.NULL);
node1.setText("Node 1");
final TreeItem node2 = new TreeItem(tree,SWT.NULL);
node2.setText("Node 2");
final TreeItem node3 = new TreeItem(tree,SWT.NULL);
node3.setText("Node 3");
// Create second node level
final TreeItem node11 = new TreeItem(node1,SWT.NULL);
node11.setText("Node 1.1");
final TreeItem node12 = new TreeItem(node1,SWT.NULL);
node12.setText("Node 1.2");
// Add selection listener
tree.addSelectionListener(new SelectionAdapter() {

public void widgetDefaultSelected(SelectionEvent e) {
System.out.println("Enter was pressed: " +

tree.getSelection()[0].getText());
}
public void widgetSelected(SelectionEvent e) {

System.out.println("Tree node was selected: " +
tree.getSelection()[0].getText());

}
});
// Add TreeListener
tree.addTreeListener(new TreeAdapter() {

public void treeCollapsed(TreeEvent e) {
System.out.println("Tree node was collapsed: " +

((TreeItem) e.item).getText());
}
public void treeExpanded(TreeEvent e) {

System.out.println("ree node was expanded: " +
((TreeItem) e.item).getText());

}
});

Listing 8.9

For larger trees you will usually refrain from constructing the tree completely before displaying it. A bet-
ter way is to construct a tree lazily, meaning to create nodes as they become visible, that is, when their
parent nodes are expanded.

Sashes
The Sash class is responsible for representing sashes. Sashes can be used to segment a Composite into
separate areas. The end user is able to reposition the sashes so that the size of the areas can change. Since
the sashes don’t control the size of the adjoining areas themselves, the programmer is responsible for
reacting to events from Sash instances and adjusting the size and position of these areas accordingly.
Sash instances create events of the SelectEvent type. The orientation of a sash can be controlled via
the SWT.HORIZONTAL and SWT.VERTICAL style constants.

167

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 167

Instead of organizing the coordination of sashes manually, you can also make use of the SashForm class
(see the “Custom Widgets” section).

Tabbed Folders
The TabFolder class implements a tabbed folder, a multipage unit in which a page can be brought to the
front by clicking on the page’s tab. Each TabFolder instance is a Composite, which may contain one or
several TabItem instances. Each TabItem object relates to a tab, and the tab’s text can be set with the
setText() method. With the setControl() method you can assign a Control instance (such as a
Composite) to each TabItem object. The Control instance is made visible when the corresponding
TabItem object is selected. The Control instance must be created as a part of the TabFolder (i.e., by
specifying the TabFolder instance in the constructor when the Control is created).

TabFolder supports only the SWT.BORDER style constant.

TabFolder instances generate SelectionEvents on the selection of a TabItem.

The code in Listing 8.10 creates a tabbed folder with two tabs.

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.*;

public class widgetTest {

public static void main(String[] args) {
// Create display instance
final Display display = new Display();
// Create top level shell (pass display as parent)
final Shell toplevelShell = new Shell(display);
// Set title
toplevelShell.setText("TopLevel.Titelzeile");
// Fill the shell completely with content
toplevelShell.setLayout(new FillLayout());
// Create tabbed folder
TabFolder folder = new TabFolder(toplevelShell, SWT.NONE);
// Protocol selection event
folder.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println(

"Tab selected: " + ((TabItem) (e.item)).getText());
}

});
// Fill tabbed folder completely with content
folder.setLayout(new FillLayout());
Composite page1 = createTabPage(folder, "tab1");
// We can now place more GUI elements onto page1
//...
Composite page2 = createTabPage(folder, "tab2");

168

Chapter 8

Listing 8.10 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 168

// We can now place more GUI elements onto page2
//...
// Display shell
toplevelShell.open();
// Event loop
while (!toplevelShell.isDisposed()) {

if (!display.readAndDispatch())
display.sleep();

}
}

private static Composite createTabPage(TabFolder folder,
String label) {
// Create and label a new tab
TabItem tab = new TabItem(folder, SWT.NONE);
tab.setText(label);
// Create a new page as a Composite instance
Composite page = new Composite(folder, SWT.NONE);
//... and assign to tab
tab.setControl(page);
return page;

}
}

Listing 8.10 (Continued)

The non-native CTabFolder widget is very similar to the TabFolder widget but supports positioning
the tabs (CTabItem) at the top (SWT.TOP) or the bottom (SWT.BOTTOM) of the folder and uses tabs with
a curved outline.

Toolbars
The ToolBar class not surprisingly implements toolbars. Each ToolBar instance is a Composite that
contains one or several ToolItem instances.

You can control the presentation of toolbars with the following style constants:

SWT.FLAT Use a two-dimensional representation instead of three-dimensional
presentation, provided this is supported by the host platform.

SWT.WRAP Use automatic word wrapping.

SWT.RIGHT Align right.

SWT.HORIZONTAL Horizontal or vertical orientation, respectively.
SWT.VERTICAL

169

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 169

ToolItem instances represent the buttons on the toolbar. You can control the button type via the follow-
ing style constants:

SWT.PUSH Normal button that releases immediately.

SWT.CHECK Locking button (similar to toggle buttons).

SWT.RADIO Radio button that releases other radio buttons in the same toolbar
when pressed.

SWT.SEPARATOR Passive element to separate button groups.

SWT.DROP_DOWN Normal button with an associated arrow button.

Tool items are labeled via the setText() method. Image buttons can be created with the setImage()
method. With the setHotImage() method you can set an additional image that appears when the
mouse hovers over the button. With the setDisabledImage() method you can set an image that is
shown when the tool item is disabled. This way, you can visualize the different operation modes of a
tool item. As already discussed for Buttons (see the “Buttons” section), Image instances must be dis-
posed of when they are no longer needed. With setToolTipText() you can add additional text to the
tool item that is shown when the mouse is moved over the tool item.

When activated, ToolItem instances generate SelectionEvent objects. In the case of DROP_DOWN
tool items, you have to find out whether the main button or the arrow button was pressed. You can do
this by checking the condition (event.detail == SWT.ARROW). The event listener can then create a
menu list for the drop-down menu, allowing the selection of a function.

Moveable Tool Groups (CoolBar)
The CoolBar class can be used to combine several ToolBar instances into so-called CoolItems, that is,
tool groups that can be repositioned by the end user. A good example of a CoolBar is the toolbar of the
Eclipse workbench. Each single Toolbar instance is embedded into a CoolItem instance. These
CoolItem instances are placed onto a CoolBar and can be moved within the area of the CoolBar. The
association between CoolItem and ToolBar is achieved with the CoolItem setControl() method.
Initially, you must assign a minimum size for each CoolItem instance. I will show how this is done in
the second example that follows.

If you assign the SWT.DROP_DOWN style constant for a CoolItem instance, an arrow symbol appears
when all tools within the tool group cannot be displayed. You need to implement the necessary event
processing in such a case: you must construct a drop-down menu, as you had to do for drop-down tool
items (see the previous section).

Menus
The Menu class is used to implement menus. The following style constants influence the presentation of
a Menu instance:

SWT.BAR The instance represents a menu bar.

SWT.DROP_DOWN The instance represents a drop-down menu.

SWT.POP_UP The instance represents a pop-up menu.

170

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 170

Menu instances generate events of the HelpEvent and MenuEvent types. When a menu appears on the
screen, the MenuListener menuShown() method is invoked. When the menu disappears, the
menuHidden() method is called.

Menu items are implemented by MenuItem instances. The type of item is controlled via a style constant:

SWT.CHECK The menu item is equipped with a check mark. This symbol is
toggled with each click on the menu entry.

SWT.CASCADE The menu item implements a cascading menu.

SWT.PUSH Normal menu item.

SWT.RADIO Menu item with a check mark. When this symbol is set, other radio
menu items in the same menu are reset.

SWT.SEPARATOR Passive item implementing a separator line.

Menu items are labeled with the help of the setText() method.

MenuItem instances create events of the SelectionEvent, ArmEvent, and HelpEvent types.
ArmEvents are fired when the menu item is armed, that is, when the mouse cursor is moved over the
item.

If you want to create a typical menu bar, you first must create a Menu instance of the SWT.BAR type.
When doing so, you must specify the Shell for which the menu is created as the Composite parent.
The creation of the menu bar is not enough, however. You must also activate the menu bar for the parent
shell. This is done in the Shell instance by calling the setMenuBar() method.

The individual menu titles are then created as cascading MenuItem instances. The submenus belonging
to these instances are created as independent SWT.DROP_DOWN menus under the Shell instance. Then
the MenuItem setMenu() method is used to assign the submenus to the cascading menu items.

The example in Listing 8.11 shows the construction of a simple menu with a single menu title:

// Create menu bar
Menu menuBar = new Menu(toplevelShell, SWT.BAR);
toplevelShell.setMenuBar(menuBar);
// Create menu title
MenuItem fileTitle = new MenuItem(menuBar, SWT.CASCADE);
fileTitle.setText("File");
// Create submenu for this menu title
Menu fileMenu = new Menu(toplevelShell, SWT.DROP_DOWN);
fileTitle.setMenu(fileMenu);
// Create menu item
MenuItem item = new MenuItem(fileMenu, SWT.NULL);
item.setText("Exit");
// Event processing for menu item
item.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
toplevelShell.close();

}
});

Listing 8.11

171

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 171

In Listing 8.12 I create a CoolBar consisting of two moveable groups with five different buttons. There
is also a drop-down button that expands a menu with two menu items when pressed.

// Create CoolBar
final CoolBar coolbar = new CoolBar(composite, SWT.NULL);
// Create ToolBar as a component of CoolBar
final ToolBar toolbar1 = new ToolBar(coolbar, SWT.NULL);
// Create pushbutton
final ToolItem toolitem1 = new ToolItem(toolbar1, SWT.PUSH);
toolitem1.setText("Push");
toolitem1.setToolTipText("Push button");
// Create event processing for pushbutton
toolitem1.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
System.out.println(

"Tool button was pressed: " + toolitem1.getText());
}

});
// Create check button
final ToolItem toolitem2 = new ToolItem(toolbar1, SWT.CHECK);
toolitem2.setText("Check");
toolitem2.setToolTipText("Check button");
// Create CoolItem instance
final CoolItem coolitem1 = new CoolItem(coolbar, SWT.NULL);
// Assign this tool bar to the CoolItem instance
coolitem1.setControl(toolbar1);
// Compute size of tool bar
Point size = toolbar1.computeSize(SWT.DEFAULT, SWT.DEFAULT);
// Compute required size of CoolItems instance
size = coolitem1.computeSize(size.x, size.y);
// Set size for this CoolItem instance
coolitem1.setSize(size);
// The minimum size of the CoolItem is the width of the first button
coolitem1.setMinimumSize(toolitem1.getWidth(), size.y);

// Create second ToolBar instance
final ToolBar toolbar2 = new ToolBar(coolbar, SWT.NULL);
// Create two radio buttons
final ToolItem toolitem3a = new ToolItem(toolbar2, SWT.RADIO);
toolitem3a.setText("Radio");
toolitem3a.setToolTipText("Radio button a");
final ToolItem toolitem3b = new ToolItem(toolbar2, SWT.RADIO);
toolitem3b.setText("Radio");
toolitem3b.setToolTipText("Radio button b");
// Create separator
new ToolItem(toolbar2, SWT.SEPARATOR);
// Create drop-down menu button
final ToolItem toolitem5 = new ToolItem(toolbar2, SWT.DROP_DOWN);
toolitem5.setText("Drop-down-Menu");
// Add event processing to drop-down menu button
toolitem5.addSelectionListener(

// In class DropDownSelectionListener we construct the menu
new DropDownSelectionListener(composite.getShell()));
// Create second CoolItem, assing Toolbar to it and set size
final CoolItem coolitem2 = new CoolItem(coolbar, SWT.NULL);

172

Chapter 8

Listing 8.12 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 172

coolitem2.setControl(toolbar2);
size = toolbar2.computeSize(SWT.DEFAULT, SWT.DEFAULT);
size = coolitem2.computeSize(size.x, size.y);
coolitem2.setSize(size);
coolitem2.setMinimumSize(toolitem3a.getWidth(), size.y);

Listing 8.12 (Continued)

The DropDownSelectionListener class is responsible for menu construction and is defined as
demonstrated in Listing 8.13.

class DropDownSelectionListener extends SelectionAdapter {
private Menu menu;
private Composite parent;

public DropDownSelectionListener(Composite parent) {
this.parent = parent;

}

public void widgetSelected(final SelectionEvent e) {
// Create menu lazily
if (menu == null) {

menu = new Menu(parent);
final MenuItem menuItem1 = new MenuItem(menu, SWT.NULL);
menuItem1.setText("Item1");
// Set SelectionListener for menuItem1
menuItem1.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent m) {
processMenuEvent(e, menuItem1);

}
});
menuItem1.addArmListener(new ArmListener() {

public void widgetArmed(ArmEvent m) {
System.out.println("Mouse is over menu item 1");

}
});

final MenuItem menuItem2 = new MenuItem(menu, SWT.NULL);
menuItem2.setText("Item2");
// Set SelectionListener foŸr menuItem1
menuItem2.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent m) {
processMenuEvent(e, menuItem2);

}
});
menuItem2.addArmListener(new ArmListener() {

public void widgetArmed(ArmEvent m) {
System.out.println("Mouse is over menu item 2");

}
});

}
// Check, if it was the arrow button that was pressed
if (e.detail == SWT.ARROW) {

173

The SWT Library

Listing 8.13 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 173

if (menu.isVisible()) {
// Set visible menu invisible
menu.setVisible(false);

} else {
// Retrieve ToolItem and ToolBar from the event object
final ToolItem toolItem = (ToolItem) e.widget;
final ToolBar toolBar = toolItem.getParent();
// Get position and size of the ToolItem
Rectangle toolItemBounds = toolItem.getBounds();
// Convert relative position to absolute position
Point point =
toolBar.toDisplay(

new Point(toolItemBounds.x, toolItemBounds.y));
// Set menu position
menu.setLocation(point.x, point.y + toolItemBounds.height);
// Make menu visible
menu.setVisible(true);

}
} else {

final ToolItem toolItem = (ToolItem) e.widget;
System.out.println(
"Tool button was pressed: " + toolItem.getText());
}

}
private void processMenuEvent(

final SelectionEvent e,
final MenuItem item) {

// Get text of menu item
final String s = item.getText();
// Get ToolItem
final ToolItem toolItem = (ToolItem) e.widget;
// Replace ToolItem label with text of the menu item
toolItem.setText(s);
// Hide menu
menu.setVisible(false);

}
}

Listing 8.13 (Continued)

Custom Widgets
The org.eclipse.swt.custom package contains additional widgets that are not mapped to native
widgets of the host platform but are pure Java implementations.

I’ve already discussed the CCombo and CTabFolder widgets. The following table lists some more of
these widget classes:

174

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 174

BusyIndicator This class is used to replace the mouse pointer with a busy symbol
(hourglass, etc.). To do this, you must call the showWhile(display,
runnable) method. The second parameter must be of the
java.lang.Runnable type. The run() method of this Runnable
contains the processing logic to be executed while the busy symbol is
shown.

ControlEditor This class is used to attach a Composite to another GUI element.
When the Composite is moved or modified in size, the position of
the attached element is also changed. Normally, ControlEditor is
used to attach an editor to a noneditable Composite. The Eclipse API
reference documentation contains an example in which a button is
attached to a Canvas instance (see the “Graphics” section). When the
button is pressed, the background color of the canvas changes. When
the canvas is moved, the button moves with the canvas.

PopupList This class works similarly to the List class (see the “Tables, Lists and
Combos” section). However, the list appears in its own shell in front
of the Shell instance that is specified in the PopupList()
constructor. Normally, this class is used to select values from a list
within a table element.

SashForm This class is implemented as a subclass of Composite and organizes
its children horizontally or vertically (as specified) separated by
sashes (see the “Sashes” section). Weights can be specified for each
child to control the width resp. height. The
setMaximizedControl() method can be used to temporarily
maximize a single child and minimize the others.

StyledText This class implements a single- or multiline text input field, similarly to
the Text class. In addition, some text attributes are supported: back-
ground and foreground color, text font, bold, italic, and normal text style.
This functionality is sufficient for programming program editors but
insufficient for implementing word processors.

The text can be formatted with the help of the
getStyleRangeAtOffset(), getStyleRanges(),
setStyleRange(), and setStyleRanges() methods that
allow StyleRange instances to be retrieved and set. In addition,
the getLineBackground() and setLineBackground()
methods allow retrieving and setting the background color of a text line.

As an alternative to these methods, you can implement your
own text style processing as LineStyleListener and
LineBackgroundListener instances.

The text content model of a StyledText widget must implement the
StyledTextContent interface. You can even provide your own
StyledTextContent implementations. The setContent() method
can be used to initialize a StyledText widget.

175

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 175

TableTree This class has similar functionality to the Tree class (see the “Trees”
section). However, the graphical representation is different. The tree
structure appears as a series of hierarchically indented tables; lines
representing the tree branches are not shown. The individual tree
nodes are implemented by TableTreeItem instances.

TableEditor These classes are similar to the ControlEditor class but are
TreeEditor specialized for the Table, Tree, and TableTree target classes. The
TableTreeEditor Eclipse API reference documentation contains examples that show

how to attach text fields to TableItem, TreeItem, and
TableTreeItem instances.

Listing 8.14 contains an example for the SashForm class. Two SashForms are created: a vertical
SashForm inside a horizontal SashForm. Figure 8.10 shows the results. Both SashForms have
List widgets as children.

// Create outer SashForm
SashForm sf1 = new SashForm(toplevelShell, SWT.HORIZONTAL);
// Create inner SashForm
SashForm sf2 = new SashForm(sf1, SWT.VERTICAL);
// Create content for vertical SashForm
List list1 = new List(sf2, SWT.NONE);
list1.setItems(new String[]{"red", "green", "blue"});
List list2 = new List(sf2, SWT.NONE);
list2.setItems(new String[]{"A", "B", "C"});
// Apply even weights
sf2.setWeights(new int[] {100,100});
// Create content for horizontal SashForm
List list3 = new List(sf1, SWT.NONE);
list3.setItems(

new String[]{"one", "two", "three", "four", "five", "six"});
// Apply uneven weights
sf1.setWeights(new int[] {100,200});

Listing 8.14

176

Chapter 8

Figure 8.10

In the resulting composite, both sashes can be moved with the mouse. When the window is resized, the
sashes move accordingly.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 176

The Browser Widget
Since Eclipse V3, developers can use a web browser widget within their SWT applications. This widget
is implemented as a Composite in the Browser class and is located in the org.eclipse.swt
.browser package. The Eclipse team, however, has not implemented their own complete web browser
version but utilizes the native browsers of the various host platforms. Under Windows, for example, the
Browser class implements an OLE client for the Internet Explorer. Under Linux, Mozilla is used, and
under Mac OS X, the Safari browser is used. The advantage of this approach is that the browser widget
exhibits the same functionality as the host platform’s web browser. Security and other preferences
applied to the native web browser affect the browser widget, too. On the other hand, the browser
widget in many aspects does not behave like a standard widget. For example, you cannot add a context
menu to the widget (because the native browser is already equipped with one); MouseListeners and
KeyListeners don’t receive mouse and key events; and you can neither draw on the surface of the
widget nor place other widgets into the Browser composite.

Instead, the browser widget features a range of methods for browser-specific tasks such as setURL() to
display a web page at a specified location, getURL() to retrieve the URL of the current web page, or
setText() to display some HTML text. Navigation is supported by the back(), isBackEnabled(),
forward(), isForwardEnabled(), refresh(), and stop() methods.

In addition, the browser widget can be instrumented with a variety of listeners such as
CloseWindowListener, LocationListener, OpenWindowListener, ProgressListener,
StatusTextListener, TitleListener, or VisibilityWindowListener in order to react to state
and content changes of the embedded web browser.

In the “Description Window” section in Chapter 10 I show the browser widget in a practical application.

Layouts
After this tour de force through the land of widgets, you now have a look at layouts. Layouts are used to
position GUI elements on a Composite in an automated way. The layout computes the size and posi-
tion of each GUI element that belongs to a Composite. Should the size of the Composite change—
either under program control or by user interaction—the layout of the GUI elements is recomputed
automatically.

By default, all GUI elements within the Composite are treated as equal by the layout. However, it is
possible to influence the layout process for each GUI element individually by assigning specific layout
data to GUI elements. This is done with the Control setLayoutData() method.

Eclipse provides five predefined layout classes. In addition, it offers the possibility of creating your own
layout classes. The names of the predefined layout classes all follow the pattern *Layout. The names of
the corresponding classes for the individual layout data follow the pattern *Data. With the exception of
the StackLayout class, which is part of the org.eclipse.swt.custom package, all predefined lay-
out classes are contained in the org.eclipse.swt.layout package.

An excellent article about layouts is “Understanding Layouts in SWT” by Carolyn MacLeod and
Shantha Ramachandran.

177

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 177

178

Chapter 8

Visual Overview
The best way to gain an overview of the different layouts and their options is to activate one of the
Eclipse example applications under Window > Show View > Other. In the displayed dialog, select the
SWT Examples > SWT Layouts application, which then shows up in the bottom-right corner of the
workbench window (see Figure 8.11). Because you will need all the space you can get, you should maxi-
mize this application window by double-clicking its tag.

Composite with a layout may be simpler and more user friendly, because this
component allows the end user to divide the available space freely between
child components.

Figure 8.11

The SWT Layouts example application can be used to try the various options for FillLayout, RowLayout,
GridLayout, and FormLayout. You can generate the corresponding source code with the Code button, so
this example application can be used as a (very) minimal GUI designer.

Since this application is perfectly suited for visualizing the various layouts and their options, I will
refrain from showing the corresponding screen shots.

The FillLayout Class
FillLayout is the simplest of the predefined layouts. The effect of a FillLayout is that the GUI ele-
ments completely fill the containing Composite. There are neither spaces nor margins between the GUI
elements. Also, automatic wrapping in the event of insufficient space is not possible. All GUI elements
are the same size. The height is determined by the GUI element with the largest preferred height, and
the width is determined by the GUI element with the largest preferred width. FillLayouts are typi-
cally used for toolbars where the individual buttons are not separated by spaces. They are also used in
cases where a single GUI element completely fills a Composite.

By default, all GUI elements are concatenated in the horizontal direction. However, you can enforce a
vertical orientation by specifying the SWT.VERTICAL style constant to the layout’s type field:

10_020059_ch08.qxd 10/8/04 11:01 AM Page 178

FillLayout fillLayout = new FillLayout();
fillLayout.type = SWT.VERTICAL;
composite.setLayout(fillLayout);
new Button(composite, SWT.RADIO).setText("One");
new Button(composite, SWT.RADIO).setText("Two");
new Button(composite, SWT.RADIO).setText("Three");

In the case of FillLayouts you have no option to set the size of the contained GUI elements
individually.

The RowLayout Class
Similarly to FillLayout, the RowLayout positions the contained GUI elements in a row. However,
RowLayout provides the following fields for additional options:

type As in FillLayout.

wrap If this option is set to true (the default), GUI elements that do not fit into a
line are wrapped onto the next line.

pack If this option is set to true (the default), GUI elements are displayed in their
preferred size and at the left-most position. Otherwise, the GUI elements fill
all the available space, similarly to FillLayout.

justify If this option is set to true, GUI elements are distributed evenly over the
available space. The default is false.

marginLeft These fields control the size of the margins in pixels.
marginTop
marginRight
marginBottom

spacing This field controls the minimum space between the GUI elements in pixels.

The following code shows how to set the various options of a RowLayout instance:

RowLayout rowLayout = new RowLayout();
rowLayout.wrap = false;
rowLayout.pack = false;
rowLayout.justify = true;
rowLayout.type = SWT.VERTICAL;
rowLayout.marginLeft = 10;
rowLayout.marginTop = 5;
rowLayout.marginRight = 10;
rowLayout.marginBottom = 8;
rowLayout.spacing = 5;
composite.setLayout(rowLayout);

For GUI elements within a RowLayout instance, you can set the size of each GUI element individually
by assigning a RowData instance to it. In the following example, two buttons are created, and height and
width are assigned to both of them:

179

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 179

Button button1 = new Button(composite, SWT.PUSH);
button1.setText("70x20");
button1.setLayoutData(new RowData(70, 20));
Button button2 = new Button(composite, SWT.PUSH);
button2.setText("50x35");
button2.setLayoutData(new RowData(50, 35));

The GridLayout Class
The GridLayout class is the most useful and powerful of the predefined layout classes. However, it is
not easy to manage, because of its many parameters and their interactions. If you have experience in the
layout of HTML pages using tables, you will know what I mean.

GridLayout has, indeed, some similarity to HTML tables. Here, there are also rows and columns, and it
is possible to fuse adjoining table elements horizontally or vertically.

The following options are available for GridLayouts:

numColumns The number of columns. The number of rows is determined
automatically from the number of GUI elements and the
number of columns.

makeColumnsEqualWidth If this field is set to true, all columns are laid out with the
same width. The default is false.

marginHeight This field controls the height of the upper and lower margins
in pixels.

marginWidth This field controls the width of the left and right margins
in pixels.

horizontalSpacing This field controls the minimum distance between columns
in pixels.

verticalSpacing This field controls the minimum distance between rows
in pixels.

The following example shows how to set the various options of a GridLayout instance:

GridLayout gridLayout = new GridLayout();
gridLayout.numColumns = 3;
gridLayout.marginWidth = 10;
gridLayout.makeColumnsEqualWidth = true;
gridLayout.marginHeight = 5;
gridLayout.horizontalSpacing = 6;
gridLayout.verticalSpacing = 4;
gridLayout.makeColumnsEqualWidth = true;
composite.setLayout(gridLayout);

GridData
The layout options that you can set for individual GUI elements with the help of GridData instances
are quite rich. GridData objects have the following public fields:

180

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 180

grabExcessHorizontalSpace If this field is set to true, the GUI element fills all the
remaining horizontal space. The default is false.

grabExcessVerticalSpace If this field is set to true, the GUI element fills all the
remaining vertical space. The default is false.

heightHint This field specifies a minimum height in pixels. If a
value is specified, the vertical scroll function of a
corresponding scrollable GUI element is disabled.

horizontalAlignment This field specifies how the GUI element is aligned hori-
zontally in its table cell. The following constants can be
specified:

GridData.BEGINNING (default)

GridData.CENTER

GridData.END
GridData.FILL

horizontalIndent This field specifies how many pixels a GUI element is
indented from the left.

horizontalSpan This field specifies how many table cells the GUI
element consumes in the horizontal direction (the cells
are fused).

verticalAlignment This field specifies how the GUI element is aligned
vertically in its table cell. The following constants can be
specified:

GridData.BEGINNING

GridData.CENTER (default)

GridData.END
GridData.FILL

verticalSpan This field specifies how many table cells the GUI
element consumes in a vertical direction (the cells are
fused).

widthHint This field specifies a minimum width in pixels. If a
value is specified, the horizontal scroll function of a
corresponding scrollable GUI element is disabled.

Some of these options may already be specified in the GridData() constructor. For this purpose, the
following style constants are available:

Constant Equivalent

GridData.GRAB_HORIZONTAL grabExcessHorizontalSpace = true

GridData.GRAB_VERTICAL grabExcessVerticalSpace = true

181

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 181

Constant Equivalent

GridData.HORIZONTAL_ALIGN_BEGINNING horizontalAlignment =
GridData.BEGINNING

GridData.HORIZONTAL_ALIGN_CENTER horizontalAlignment =
GridData.CENTER

GridData.HORIZONTAL_ALIGN_END horizontalAlignment =
GridData.END

GridData.HORIZONTAL_ALIGN_FILL horizontalAlignment =
GridData.FILL

GridData.VERTICAL_ALIGN_BEGINNING verticalAlignment =
GridData.BEGINNING

GridData.VERTICAL_ALIGN_CENTER verticalAlignment =
GridData.CENTER

GridData.VERTICAL_ALIGN_END verticalAlignment =
GridData.END

GridData.VERTICAL_ALIGN_FILL verticalAlignment =
GridData.FILL

GridData.FILL_HORIZONTAL HORIZONTAL_ALIGN_FILL |
GRAB_HORIZONTAL

GridData.FILL_VERTICAL VERTICAL_ALIGN_FILL |
GRAB_VERTICAL

GridData.FILL_BOTH FILL_VERTICAL | FILL_HORIZONTAL

I do not give a code example here but rather refer you to the “Player Module” section in Chapter 10,
which shows the use of the GridLayout class in a real application.

Should all these layout options be insufficient, you still have the option of nesting GridLayouts by
nesting Composites. This technique should be well known to all those who have laid out HTML pages
with the help of nested tables.

The FormLayout Class
FormLayout was introduced with Eclipse 2.0. It allows you to position GUI elements on a two-
dimensional surface in relation to another GUI element or in relation to the borders of the Composite.
This is done by using FormAttachment instances.

For FormLayouts you have the following options:

marginHeight This field controls the height of the upper and lower margins in pixels.

marginWidth This field controls the width of the left and right margins in pixels.

182

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 182

FormData
Most of the layout options of form layouts are contained in the FormData and FormAttachment
classes. FormData provides the following options that are applied to individual GUI elements:

height The preferred height of the GUI element in pixels.

width The preferred width of the GUI element in pixels.

top These fields accept a FormAttachment instance that specifies
bottom to which item the upper/lower/left/right edge of the GUI element relates.
left
right

For FormAttachment instances, there are two variants:

❑ Specification of a relative position with the Composite

❑ Specification relative to another GUI element

Composite
For the Composite variant, two constructors are available:

FormAttachment fa = new FormAttachment(percent,offset);

and

FormAttachment fa = new FormAttachment(numerator, denominator,
offset);

The position p is computed from the width and height of the Composites, respectively, as follows:

p = d*numerator/denominator+offset

If a percent value is specified, the following formula is used:

p = d*percent/100+offset

Let’s assume that the Composite is 400 pixels wide and 300 pixels high. When you create a
FormAttachment instance with a FormAttachment(30,10) constructor and assign it to the top
field of a FormData instance, you get

p = 30/100*300+5 = 95

The upper edge of the GUI element will therefore be positioned 95 pixels below the upper border of the
Composite’s client area. If you would assign the same FormAttachment instance to the bottom field
of the FormData instance, the lower edge of your GUI element would be 95 pixels above the lower bor-
der of the Composite’s client area.

183

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 183

If you would assign the same FormAttachment instance to the left field of the FormData instance, you
would get a distance of

p = 30/100*400+5 = 125

The left edge of the GUI element will therefore be 125 pixels to the right of the left border of the
Composite’s client area. So what happens when you assign the FormAttachment instance to the
right field? By now, you should be able to find the answer yourself.

Reference GUI Element
For the second variant (positioning relative to another GUI element), there are three constructors:

FormAttachment (control, offset, alignment)
FormAttachment (control, offset)
FormAttachment (control)

The control parameter accepts a Control instance (the GUI element to which you want to relate).

The offset parameter specifies the distance to the reference element. If this parameter is omitted, the
distance is 0.

The alignment parameter specifies to which edge of the reference element you want to relate. When
you assign this FormAttachment instance to a top or bottom field, you can use the SWT.TOP,
SWT.BOTTOM, and SWT.CENTER style constants. If you assign it to a left or right field, you can use the
SWT.LEFT, SWT.RIGHT, and SWT.CENTER constants. If the alignment parameter is omitted, you will
relate to the closest edge of the reference element.

The StackLayout class
Unlike the previous classes, this class is not contained in org.eclipse.swt.layout but in
org.eclipse.swt.custom. In contrast to the other layout classes, this layout can show only a single
GUI element at a time within a Composite. The reason is that all GUI elements contained in the
Composite are made equal in size and are positioned at the same spot on top of each other, so only the
front-most element is visible. The StackLayout class is useful when you want to switch between GUI
elements. You need only move the Control instance to be shown to the front-most position.

The StackLayout class has the following public fields:

marginHeight This field controls the height of the upper and lower margins.

marginWidth This field controls the width of the left and right margins.

topControl This field accepts the top (visible) Control instance.

In Listing 8.15 two Button instances are positioned on top of each other. When one button is pressed,
the other button becomes visible:

184

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 184

// Create new composite
final Composite stackComposite = new Composite(composite,SWT.NULL);
final StackLayout stackLayout = new StackLayout();
// Create text buttons
final Button buttonA = new Button(stackComposite, SWT.PUSH);
buttonA.setText("Button A");
final Button buttonB = new Button(stackComposite, SWT.PUSH);
buttonB.setText("Button B");
// React to clicks
buttonA.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
stackLayout.topControl = buttonB;
// Enforce new layout
stackComposite.layout();
// Set focus to visible button
buttonB.setFocus();

}
});
buttonB.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
stackLayout.topControl = buttonA;
// Enforce new layout
stackComposite.layout();
// Set focus to visible button
buttonA.setFocus();

}
});
// Initialize layout
stackLayout.topControl = buttonA;
stackLayout.marginWidth = 10;
stackLayout.marginHeight = 5;
// Set layout
stackComposite.setLayout(stackLayout);

Listing 8.15

Graphics
The interfaces and classes for graphical operations are contained in the org.eclipse.swt.graphics
package. The functionality of this package is based on the graphical functionality of the supported
platforms. While the functionality of the package exceeds those of the basic classes of the Java AWT, it
does not match the functionality of the Java2D API. I will discuss how this functionality can be extended
in the “Widgets that Swing” section.

The Graphics Context
The GC class contains all the methods needed for drawing, such as drawLine(), drawOval(),
drawPolygon(), setFont(), getFontMetrics(), and many more.

You can draw onto instances of all those classes that implement the Drawable interface. This is in par-
ticular the case for the Image and Control classes and their subclasses such as Canvas and Display.

185

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 185

Usually you will draw on an Image when implementing double buffering (for a description of this tech-
nique see the “Images” section). You will draw on a Canvas when you want to display a drawing to the
user. You will draw on a Display when you want to draw not inside a window but all over the screen.
You can select the medium for drawing operations by passing Drawable to the GC() constructor.

When you create a graphics context with the help of a GC() constructor, you must dispose of the GC
instance when it is no longer needed, because GC instances allocate resources in the host system.
However, more often than not, you will not need to create a graphics context yourself but will instead
use a context given to you by a PaintEvent.

The golden rule for graphics processing is this:

186

Chapter 8

All graphical operations must be executed within the paintControl() method
of a PaintListener object, that is, within the PaintEvent processing of a
Control instance.

Listing 8.16 shows how you can decorate a Composite with a green key line.

composite.addPaintListener(new PaintListener () {
public void paintControl(PaintEvent event){

// Get Display intsance from event object
Display display = event.display;
// Get a green system color object – we don’t
// need to dispose that
Color green = display.getSystemColor(SWT.COLOR_DARK_GREEN);
// Get the graphics context from the event object
GC gc = event.gc;
// Set line color
gc.setForeground(green);
// Get size of the Composite’s client area
Rectangle rect = ((Composite) event.widget).getClientArea();
// Now draw an rectangle
gc.drawRectangle(rect.x + 2, rect.y + 2,

rect.width - 4, rect.height - 4);
}

});

Listing 8.16

Colors
Within a graphics context you can set line and text colors—as shown previously—with the help of the
setForeground() method. Fill colors are set with setBackground().

10_020059_ch08.qxd 10/8/04 11:01 AM Page 186

To set colors, you first have to supply yourself with color objects. There are two ways to obtain colors:

❑ You can fetch a system color from a Device instance. Since Display is a subclass of Device,
you can fetch a system color from the widget’s Display instance with the help of the
getSystemColor() method. The necessary COLOR_… constants for the color names are
defined in the SWT class.

Color objects that are obtained in this or another way from other instances must not be released
with dispose(), because they may still be in use elsewhere!

❑ You can create your own color objects:

Color red = new Color(device, 255,0,0)

or

Color blue = new Color(device, new RGB(0,255,0));

The device parameter accepts objects of the Device type. RGB is a simple utility class for rep-
resenting device-independent RGB color tuples.

The representation of colors is exact on all devices with a color depth of 24 bits. On devices with a lower
color depth, Eclipse will approximate the color as exactly as possible. For detailed information, please
see the “SWT Color Model” article by Moody and MacLeod on www.eclipse.org.

If you create Color instances in this way, you must release them with dispose() when they are no
longer needed.

Fonts
Fonts work similarly to colors. The current font of a graphics context is set with the setFont() method.

❑ You can obtain the current system font from a Device instance with the help of the
getSystemFont() method. Such a font instance must not be disposed of with the dispose()
method.

❑ You can create new Font instances with one of the following constructors:

Font font = new Font(device,"Arial",12,SWT.ITALIC)

or

Font font = new Font(device,new FontData("Arial",12,SWT.ITALIC))

FontData is a device-independent representation of a font.

If you create Font instances in this way, you must release them with dispose() when they are no
longer needed.

187

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 187

In Listing 8.17 the current system font is fetched, an italic variant is created, the graphics context is
configured with this new font, and the word Hello is drawn.

// Get Display instance
Display display = composite.getDisplay();
// Fetch system font
Font systemFont = display.getSystemFont();
// FontData objects contain the font properties.
// With some operating systems a font may possess multiple
// FontData instances. We only use the first one.
FontData[] data = systemFont.getFontData();
FontData data0 = data[0];
// Set the font style to italic
data0.setStyle(SWT.ITALIC);
// Create a new font
Font italicFont = new Font(display, data0);
// Set the new font in the graphics context
gc.setFont(italicFont);
// TODO: call italicFont.dispose() in the DisposeListener
// of composite
// Draw text at position (4,4) with a transparent background (true).
gc.drawText("Hello",4,4,true);

Listing 8.17

In the GC class there are a few more text methods for text processing. For example, the
getFontMetrics() method delivers a FontMetrics object that contains the characteristic
measurements of the current font. The stringExtent() and textExtent() methods allow you to
compute the pixel dimensions of a string if it was drawn with the currently active font. Unlike
textExtent(), the stringExtent() method ignores TAB and CR characters when computing the
text extent.

Images
The Image class is responsible for the device-dependent representation of images. Image instances can
be created in many ways: by specifying a java.io.Stream object, by specifying a filename (absolute
or relative to the current project), or by specifying an ImageData object.

In contrast to Image, the ImageData class is responsible for the device-independent representation of
images. Instances of this class can be created by specifying a java.io.Stream object or by specifying a
filename. Alternatively, an ImageData instance can be obtained from an Image object via the
getImageData() method.

Both Image and ImageData support images in RGB format as well as in indexed format. Transparency
is possible (alpha channel for RGB images, transparent color for indexed images). The following file for-
mats are supported when reading an image from file: .bmp, .gif, .jpg, .png, .tif, and .ico. In the
“Buttons” section I have already shown how an image is read from a file.

In Listing 8.18 an Image instance is used to implement double buffering. This technique is frequently
used to avoid screen flicker when drawing graphics. First, an Image instance large enough to contain
the drawing is created. Then a GC instance for the Image instance is created, and all drawing operations

188

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 188

are performed within this graphics context. Finally, the complete Image instance is painted onto the
Drawable target.

// Create canvas
final Canvas canvas = new Canvas(composite,SWT.BORDER);
// Get white system color
Color white = canvas.getDisplay().getSystemColor(SWT.COLOR_WHITE);
// Set canvas background to white
canvas.setBackground(white);
// Add paint listener
canvas.addPaintListener(new PaintListener() {

public void paintControl(PaintEvent e) {
// Get Display instance from the event object
Display display = e.display;
// Get black and red system color – don’t dispose these
Color black = display.getSystemColor(SWT.COLOR_BLACK);
Color red = display.getSystemColor(SWT.COLOR_RED);
// Get the graphics context from event object
GC gc = e.gc;
// Get the widget that caused the event
Composite source = (Composite) e.widget;
// Get the size of this widgets client area
Rectangle rect = source.getClientArea();
// Create buffer for double buffering
Image buffer = new Image(display,rect.width,rect.height);
// Create graphics context for this buffer
GC bufferGC = new GC(buffer);
// perform drawing operations
bufferGC.setBackground(red);
bufferGC.fillRectangle(5,5,rect.width-10,rect.height-10);
bufferGC.setForeground(black);
bufferGC.drawRectangle(5,5,rect.width-10,rect.height-10);
bufferGC.setBackground(source.getBackground());
bufferGC.fillRectangle(10,10,rect.width-20,rect.height-20);
// Now draw the buffered image to the target drawable
gc.drawImage(buffer,0,0);
// Dispose of the buffer’s graphics context
bufferGC.dispose();
// Dispose of the buffer
buffer.dispose();

}
});

Listing 8.18

You can obtain images used by the system from the current Display instance via the
getSystemImage() method. You can use the following constants to identify the respective image:
SWT.ICON_ERROR, SWT.ICON_INFORMATION, SWT.ICON_QUESTION, and SWT.ICON_WARNING.

The Cursor
Also in the org.eclipse.swt.graphics package you will find the Cursor class that represents the
mouse pointer. To assign a new shape to the mouse pointer, you have to explicitly create a new instance

189

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 189

of this class. The current display is passed as a parameter and also as a style constant specifying the
wanted shape. How this will finally look depends, of course, on the host platform:

CURSOR_ARROW Arrow

CURSOR_WAIT Waiting

CURSOR_CROSS Crosshair

CURSOR_APPSTARTING Application starting

CURSOR_HELP Help

CURSOR_SIZEALL Overall size change

CURSOR_SIZENESW Size change on NE/SW axis

CURSOR_SIZENS Size change on N/S axis

CURSOR_SIZENWSE Size change on NW/SE axis

CURSOR_SIZEWE Size change on W/E axis

CURSOR_SIZEN Size change north direction

CURSOR_SIZES Size change south direction

CURSOR_SIZEE Size change east direction

CURSOR_SIZEW Size change west direction

CURSOR_SIZENE Size change NE direction

CURSOR_SIZESE Size change SE direction

CURSOR_SIZESW Size change SW direction

CURSOR_SIZENW Size change NW direction

CURSOR_UPARROW Upward arrow

CURSOR_IBEAM Text cursor

CURSOR_NO Invalid operation

CURSOR_HAND Hand for moving

Since Eclipse V3 you can alternatively specify the cursor shape by passing an ImageData instance (see
the “Images” section) to the Cursor constructor. In addition, you can pass a second ImageData
instance that acts as a mask.

Please keep in mind that the cursor allocates a resource of the host windowing system. Therefore, you
must dispose of the Cursor instance when it is no longer needed. The same applies for the ImageData
instance(s).

190

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 190

Widgets That Swing
Because of its native character, the SWT provides a new approach to the implementation of the lowest
layer of graphical user interfaces. However, the question remains: how do you deal with the higher
layers?

As far as graphical elements such as windows, dialogs, and menus are concerned, the answer is simple.
Functionality that was provided by Swing is more or less provided by the JFace libraries (see Chapter 9).

Things become difficult, however, when you look at graphical operations. Powerful graphical layers
such as Java2D or Java3D, SVG processing as in Batik (www.apache.org), or bitmap manipulations such
as in Java Advanced Imaging (JAI) are not provided by the SWT and JFace. All these APIs are incompati-
ble with the SWT. Advanced functionality such as antialiasing options, transparent drawing operations,
or text rotation is not available to SWT users.

However, with Eclipse 3 things have changed completely. Now it is possible to place Swing and AWT
elements into SWT Composites. This allows integrating the higher-level graphical layers within SWT
applications. And all of a sudden, Swing is fun again, thanks to the SWT. Under Windows, you need to
run under JRE 1.3 or later to enable this functionality, while on other platforms, at least JRE 1.5 is
required.

Embedded Contents
The new SWT EMBEDDED style constant makes all this possible. A Composite created with this style con-
stant can contain contents foreign to the SWT (but nothing else). In Eclipse 3 this can be java.awt
.Frame components, which can be created via the SWT_AWT.new_Frame() factory method. For
example:

Composite awtContainer = new Composite(parent, SWT.EMBEDDED);
java.awt.Frame myFrame = SWT_AWT.new_Frame(awtContainer);

Now you can add AWT and Swing components to this Frame instance to your heart’s desire.

In addition, the SWT_AWT class provides the new_Shell() method. This method creates a new SWT
shell for a given AWT canvas, so this canvas is presented in its own window but within the SWT
application.

Events
But how would you process events within such a mixed environment? Well, that isn’t very difficult:
listeners are added in the usual way to the AWT and Swing components, and these listeners can react to
AWT events. You must use caution, however, when such a listener tries to access an SWT resource
because SWT and AWT run in different threads. Therefore, these accesses must be encapsulated into a

191

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 191

Runnable and executed via an appropriate Display method such as syncExec(), asyncExec(), or
timerExec(). I discussed this technique already in the “Displays, Shells, and Monitors” section.

Vice versa, when accessing AWT and Swing components from SWT event processing, these accesses
should be encapsulated, too, into a Runnable. This Runnable is then executed via the static AWT
EventQueue.invokeLater() method. This is not enforced by the AWT (as is done by the SWT) but is
strongly recommended.

The following example shows these techniques in context. The example shows, too, how SWT compo-
nents can be placed on top of an AWT surface (in its own shell). The example implements a Java2D can-
vas within an SWT shell. An SWT button allows you to clear the canvas. Clicking the canvas opens an
SWT text input field on top of the canvas. Another click on the canvas hides this field again, and the text
entered into the text input field is drawn on the Java2D canvas.

import java.util.ArrayList;
import java.util.Iterator;

import org.eclipse.swt.SWT;
import org.eclipse.swt.awt.SWT_AWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.widgets.*;

public class SWT2D {

// Shell for pop-up editor
Shell eShell = null;
// Text widget for editor
Text eText = null;
// List of strings entered
ArrayList wordList = new ArrayList(12);

public static void main(String[] args) {
SWT2D swtawt = new SWT2D();
swtawt.run();

}

First, an SWT shell is created. A GridLayout contains the container composited (EMBEDDED) for the
AWT canvas and the Clear button.

private void run() {
// Create top level shell
final Display display = new Display();
final Shell shell = new Shell(display);
shell.setText("Java 2D Example");
// GridLayout for canvas and button
shell.setLayout(new GridLayout());
// Create container for AWT canvas
final Composite canvasComp = new Composite(shell,

SWT.EMBEDDED);
// Set preferred size

192

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 192

GridData data = new GridData();
data.widthHint = 600;
data.heightHint = 500;
canvasComp.setLayoutData(data);

Then, the SWT_AWT class is used to create an AWT Frame within the SWT Composite. An AWT Canvas
is then added to the Frame in the usual way. A graphical context is retrieved from this canvas and cast to
a Java2D graphical context. Later, this object will be used to perform the drawing operations. First, the
initial affine transformation of the graphical context is saved, so that you can always reset the graphical
context to its initial state. In addition, antialiasing is switched on—one of the beauties of Java2D.

// Create AWT Frame for Canvas
java.awt.Frame canvasFrame = SWT_AWT

.new_Frame(canvasComp);
// Create Canvas and add it to the Frame
final java.awt.Canvas canvas = new java.awt.Canvas();
canvasFrame.add(canvas);
// Get graphical context and cast to Java2D
final java.awt.Graphics2D g2d = (java.awt.Graphics2D) canvas

.getGraphics();
// Enable antialiasing
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
// Remember initial transform
final java.awt.geom.AffineTransform origTransform = g2d

.getTransform();

Now, the Clear button is created. In its event processing routine, a redraw of the Canvas is enforced by
invoking the redraw() method of the SWT container Composite.

// Create Clear button and position it
Button clearButton = new Button(shell, SWT.PUSH);
clearButton.setText("Clear");
data = new GridData();
data.horizontalAlignment = GridData.CENTER;
clearButton.setLayoutData(data);
// Event processing for Clear button
clearButton

.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
// Delete word list and redraw canvas
wordList.clear();
canvasComp.redraw();

}
});

Clicking the mouse on the canvas (note that this is AWT event processing) makes the text input field vis-
ible or invisible depending on its current state. Only during the very first invocation is a new instance of
this small editor created. Because SWT widgets cannot be added to AWT canvasses, the editor is created
in its own shell. It’s important to create this shell non-modal, so that the canvas remains accessible for
mouse clicks when the shell is opened.

193

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 193

This technique of setting the shell visible or invisible is better than closing the shell and then creating a
new one. This not only saves resources but also avoids some nasty effects. When a shell is explicitly
closed, parts of the close() processing are executed after all AWT event processing and thus after
canvasComp.redraw(). The result would be an ugly white area remaining at the former position of
the editor. This cannot happen when using setVisible(false).

// Process canvas mouse clicks
canvas.addMouseListener(new java.awt.event.MouseListener() {

public void mouseClicked(
java.awt.event.MouseEvent e) {}

public void mouseEntered(
java.awt.event.MouseEvent e) {}

public void mouseExited(
java.awt.event.MouseEvent e) {}

public void mousePressed(
java.awt.event.MouseEvent e) {

// Manage pop-up editor
display.syncExec(new Runnable() {
public void run() {
if (eShell == null) {
// Create new Shell: non-modal!
eShell = new Shell(shell, SWT.NO_TRIM

| SWT.MODELESS);
eShell.setLayout(new FillLayout());
// Text input field
eText = new Text(eShell, SWT.BORDER);
eText.setText("Text rotation in the SWT?");
eShell.pack();
// Set position (Display coordinates)
java.awt.Rectangle bounds = canvas.getBounds();
org.eclipse.swt.graphics.Point pos = canvasComp

.toDisplay(bounds.width / 2, bounds.height / 2);
Point size = eShell.getSize();
eShell.setBounds(pos.x, pos.y, size.x, size.y);
// Open Shell
eShell.open();

} else if (!eShell.isVisible()) {
// Editor versteckt, sichtbar machen
eShell.setVisible(true);

} else {
// Editor is visible - get text
String t = eText.getText();
// set editor invisible
eShell.setVisible(false);
// Add text to list and redraw canvas
wordList.add(t);
canvasComp.redraw();

}
}

});
}

194

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 194

public void mouseReleased(
java.awt.event.MouseEvent e) {}

});

Finally, here is the routine for drawing the canvas content. This happens in a PaintListener that has
been attached to the canvas’s SWT container. Java2D text rotation is employed to lay out the entered text
in the form of a star. Since all of the resources used (Color, Font) are AWT resources, it is not necessary
to release these resources with dispose(). Java garbage collection will take care of that. Figure 8.12
shows the results.

// Redraw the canvas
canvasComp.addPaintListener(new PaintListener() {
public void paintControl(PaintEvent e) {
// Pass the redraw task to AWT event queue
java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {
// Compute canvas center
java.awt.Rectangle bounds = canvas.getBounds();
int originX = bounds.width / 2;
int originY = bounds.height / 2;
// Reset canvas
g2d.setTransform(origTransform);
g2d.setColor(java.awt.Color.WHITE);
g2d.fillRect(0, 0, bounds.width, bounds.height);
// Set font
g2d.setFont(new java.awt.Font("Myriad",

java.awt.Font.PLAIN, 32));
double angle = 0d;
// Prepare star shape
double increment = Math.toRadians(30);
Iterator iter = wordList.iterator();
while (iter.hasNext()) {
// Determine text colors in RGB color cycle
float red = (float) (0.5 + 0.5 * Math

.sin(angle));
float green = (float) (0.5 + 0.5 * Math

.sin(angle + Math.toRadians(120)));
float blue = (float) (0.5 + 0.5 * Math

.sin(angle + Math.toRadians(240)));
g2d.setColor(new java.awt.Color(red, green,

blue));
// Redraw text
String text = (String) iter.next();
g2d.drawString(text, originX + 50, originY);
// Rotate for next text output
g2d.rotate(increment, originX, originY);
angle += increment;

}
}

});
}

});

195

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 195

// Finish shell and open it
shell.pack();
shell.open();
// SWT event processing
while (!shell.isDisposed()) {
if (!display.readAndDispatch()) display.sleep();

}
display.dispose();

}
}

196

Chapter 8

Figure 8.12

Output to a Printer
Output to a printer is performed with the help of the PrintDialog, PrinterData, and Printer
classes. PrintDialog is a subclass of the Dialog abstract class and represents the printer selection dia-
log of the host operating system. As a result, PrintDialog delivers either a PrinterData instance or
null. The PrinterData instance contains all the specifications made in the printer selection dialog,
such as the number of copies, printing scope, and so on. By accessing the corresponding fields
(copyCount, scope, etc.), you can use these specifications for the resulting output process.

For the actual printing process, you need to create an instance of the Printer class, which is a Device
subclass. You then use this to create a new graphics context (GC). You must perform all output opera-
tions necessary for filling the printed pages with content on this graphics context.

10_020059_ch08.qxd 10/8/04 11:01 AM Page 196

First, call the Printer startJob() method to create a new print task. Then call the startPage()
method for each page. Next, apply all drawing operations on the printer’s graphics context. After each
page is filled, call the endPage() method. When all pages are printed, close the printing task by calling
the endJob() method. Finally, you must dispose of the graphics context and the Printer object by
calling their dispose() methods. Listing 8.19 shows how it’s done.

// Create button for starting printing process
final Button printButton = new Button(composite, SWT.PUSH);
printButton.setText("Print");
// React to clicks
printButton.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
// Get Shell instance
Shell shell = composite.getShell();
// Create printer selection dialog
PrintDialog printDialog = new PrintDialog(shell);
// and open it
PrinterData printerData = printDialog.open();
// Check if OK was pressed
if (printerData != null) {

// Create new Printer instance
Printer printer = new Printer(printerData);
// Create graphics context for this printer
GC gc = new GC(printer);
// Open printing task
if (!printer.startJob("Hello"))

System.out.println("Starting printer task failed");
else {

// Print first page
if (!printer.startPage())

System.out.println("Printing of page 1 failed");
else {

// Get green system color from printer
// and set it as text color
Color green =

printer.getSystemColor(SWT.COLOR_DARK_GREEN);
gc.setForeground(green);
// Draw text
gc.drawText("Hello World", 4, 4, true);
// Close page
printer.endPage();

}
// Print second page
if (!printer.startPage())

System.out.println("Printing of page 2 failed");
else {

// Get blue system color from printer
// and set it as text color
Color blue = printer.getSystemColor(SWT.COLOR_BLUE);
gc.setForeground(blue);
// Draw text
gc.drawText("Hello Eclipse", 4, 4, true);
// Close page
printer.endPage();

197

The SWT Library

Listing 8.19 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 197

}
// Close printing task
printer.endJob();

}
// Release operating system resources
gc.dispose();
printer.dispose();

}
}

});

Listing 8.19 (Continued)

In fact, this code shows only the simplest case. Processing becomes more complicated if you have to con-
sider PrinterData specifications such as the number of copies, collating options, or printing scope. In
addition, it makes sense to fetch the printer’s resolution from the Printer instance via the getDPI()
method and to scale the graphical operations accordingly.

Data Transfer
SWT data transfer includes both the exchange of data via the clipboard and the exchange of data via a
drag-and-drop operation with the mouse. The classes implementing data transfer are located in the
org.eclipse.swt.dnd package.

The Clipboard
Eclipse utilizes the system-wide native clipboard of the host platform to perform clipboard operations.
The SWT provides access to this clipboard via the Clipboard class. This class implements the
setContents() and getContents() methods, which can be used to transfer content to and from the
clipboard. Since the clipboard allocates operating system resources, you must release the clipboard by
calling its dispose() method when it is no longer needed.

A clipboard usually contains the transferred data in various formats. Text processors, for example,
would transfer a copied text segment in both RTF format and plain-text format to the clipboard. Eclipse
identifies these formats with the help of transfer types. These are subclasses of the Transfer abstract
class. In particular, the following types are available: FileTransfer, MarkerTransfer,
RTFTransfer, TextTransfer, and additional Eclipse-specific transfer types. Should you have your
own demands for a special transfer type, you can roll your own (usually implemented as a subclass of
the ByteArrayTransfer class). The source code of ByteArrayTransfer contains a short tutorial of
how this is done.

These concrete transfer types serve as transformers of the type-specific data formats into the operating
system data format of the clipboard. When you want to transfer data to the clipboard, just pass an array
with data items (each in a specific format) and an array of corresponding transfer types to the
setContents() method. Similarly, when reading data from the clipboard, pass a transfer type to the
getContents() method and obtain the clipboard data in the desired data format. The
getAvailableTypes() method delivers an array of the transfer types of the current clipboard data.

198

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 198

This allows you to find out quickly if a desired format is present without having to read the contents of
the clipboard. An example program for clipboard operations contained in the org.eclipse.swt
.examples plug-in (Clipboard.java).

Drag and Drop
For a drag-and-drop operation you need a data source and a data target. One or the other can be pro-
vided by a different application or by the system. Data sources are implemented in Eclipse in form of the
DragSource class, while the DropTarget class implements the data target. Both classes are subclasses
of the Widget class. An application can be equipped with several instances of both classes; however,
you must uniquely assign a Control instance to each instance of a DragSource or a DropTarget.
This is done by passing the Control instance to the DragSource() or DropTarget() constructor.
This assignment also defines the position and size of the data transfer element. In addition, at this point
you must specify, too, the operations possible for this source or target (DND.NONE, DND.MOVE,
DND.COPY, DND.LINK).

During a drag-and-drop operation the instances of these classes generate corresponding events
(DragSourceEvent resp. DropTargetEvent), which can be intercepted with an appropriate listener
instance (DragSourceListener resp. DropTargetListener). The various methods of these listeners
allow seamless control over the drag-and-drop operation. The DragSourceListener dragStart()
method is called at the beginning of a drag-and-drop operation. When the cursor enters the
DropTarget area, the DropTargetListener dragEnter() method is called. Similarly,
dragLeave() is called when the mouse leaves this area, and dragOver() is called when the mouse
moves over this area. When the operation mode is changed during the operation (usually by pressing
Ctrl or Alt), the dragOperationChanged() method is called. When the mouse button is released over
the drop target, the dropAccept() method is called. This is the last opportunity to veto the operation.
Then the DragSourceListener dragSetData() method is called. In this method the
DragSourceListener must provide the transfer data. This data is delivered to the drop() method of
the DropTargetListener. Finally, the DragSourceListener dragFinished() method is called.
Here you can perform cleanup tasks.

In all methods that are performed before the actual transfer of the data, you can still influence the
operation. By assigning DND.DROP_NONE to the DropTargetEvent field detail, you can veto the
operation. By assigning a different operation code, you can modify the mode of the operation.

The actual transfer of the data is performed via the data fields of the DragSourceEvent and
DropTargetEvent objects. Similarly, as with the clipboard (see the “Clipboard” section) you
can pass the data in various forms, which are described via transfer types. The dataType resp.
currentDataType fields of the event objects contain the current transfer type.

The “Playlist Viewer” section in Chapter 10 shows the implementation of a drop target in an example
application. A detailed article by Veronika Irvine about how to use SWT-based drag and drop is found
on Eclipse Corner (www.eclipse.org).

199

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 199

If you created something, you must also dispose of it, but if you got a resource
from somewhere else (for example, with getSystemColor()), you must not
dispose of it.

Resource Management
In the course of this chapter, you have met several resource types that need to be disposed of when no
longer needed. In particular, they are instances of the Color, Font, Image, GC, Cursor, Printer,
Display, and Shell classes.

For all of these resources the golden rule is this:

200

Chapter 8

However, you don’t need to dispose of resources at the end of a program—the host operating system
will do this for you. So this rule applies only to resources that are used temporarily within an
application.

This sounds quite simple, but it can become complicated in larger applications. In many cases you want
to use the same color, font, or image in several places in an application. Who is responsible for disposing
of the resource in such a case? And is it really necessary to dispose of a resource if it can be reused later
somewhere else?

In such cases you can make use of a “store” concept. You can implement a Resource Store that manages
the lifecycle of your resources. The Resource Store disposes of the managed resources when the Resource
Store is itself disposed of. This allows you to reuse resources. This is useful in particular with Image
instances, because images can be very memory hungry.

In Listing 8.20 I show a simple Resource Store for color resources. When the ColorStore class is asked
for a Color object, it will return an existing Color object if it is already in the store; otherwise, it will
create a new Color object. When the ColorStore is disposed of by calling its dispose() method, all
Color objects in the store are disposed of, too.

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.Device;

public class ColorStore {

private static Map store = new HashMap();

/**
* Method getColor.
* @param name some Color name
* @param device Device instance
* @param r red-value
* @param g green-value
* @param b blue-value
* @return Color requested color

Listing 8.20 (Continues)

10_020059_ch08.qxd 10/8/04 11:01 AM Page 200

*/
public static Color getColor(String name,Device device,

int r, int g, int b) {
Object obj = store.get(name);
if (obj == null) {

Color newColor = new Color(device,r,g,b);
store.put(name,newColor);
return newColor;

}
return (Color) obj;

}

/**
* Method dispose.
*/
public static void dispose() {

Iterator iter = store.values().iterator();
while (iter.hasNext()) {

Color color = (Color) iter.next();
color.dispose();

}
}

}

Listing 8.20 (Continued)

Here is how you can obtain a Color object from the store:

Color green = ColorStore.getColor("green",display,0,255,0);

Since all methods in the ColorStore class are static, ColorStore can manage all the colors of an
application. Only when you need no more colors do you dispose of the whole store with

ColorStore.dispose();

In the “Resource Management” section in Chapter 9 I will discuss some predefined registries for fonts
and images.

Windows32 Support (OLE)
SWT provides a special library supporting the OLE mechanism of Microsoft’s Windows operating
systems. The Microsoft Win32 Object Linking and Embedding (OLE) mechanism is supported by the
classes in the org.eclipse.swt.ole.win32 package. OLE allows OLE documents and other ActiveX
control elements to be embedded in other (Container) applications. This allows you, for example, to use
Microsoft Internet Explorer as an SWT GUI element (the Browser widget is implemented this way) or
to embed a Microsoft Office document into an SWT user interface. Using these classes requires sufficient
knowledge of the OLE API. A small example plug-in is found in the Eclipse example collection under
org.eclipse.swt.examples.ole.win32_3.0.0.

201

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 201

SWT on the Pocket PC
The Microsoft Pocket PC Platform is a valid runtime environment for SWT-based applications. However,
there are a number of special requirements and restrictions that must be considered when developing
applications for machines running under Windows CE:

❑ PDA users usually ask for highly convenient user interfaces, more so than desktop users.

❑ Processors are slower the desktop machines.

❑ The available memory is smaller than on desktop machines.

❑ The screen size is smaller than on desktop machines.

❑ Very often there is no keyboard; the device is operated via a pen.

Often when a PDA is not equipped with a keyboard, an emulated keyboard is displayed on the screen
when text is to be entered. This reduces the space left for the application windows. Pocket PC applica-
tions should therefore create Shells with the SWT.RESIZE style parameter to enable the SWT to auto-
matically resize the shell when the emulated keyboard is opened or closed.

A special SWT library for Pocket PC platforms is available on www.eclipse.org. To reduce the size of this
library, some packages have been removed. These are:

❑ org.eclipse.swt.dnd (drag and drop, see the “Data Transfer” section)

❑ org.eclipse.swt.ole (OLE, see the “Windows32 Support” section)

❑ org.eclipse.swt.accessibility (accessibility functions, see the “Accessibility” section)

❑ org.eclipse.swt.custom (special widgets, see the “Custom Widgets” section)

❑ org.eclipse.swt.printing (printer support, see the “Output to Printer” section)

❑ org.eclipse.swt.program (file associations)

Of course, you can create your own SWT library from these packages according to your requirements. In
addition, it is possible to reduce the size of the library even further by removing unused classes. The
Pocket PC article “A small cup of SWT” by Christophe Cornu2003 at www.eclipse.org explains in detail
how this can be achieved and how the startup time for Pocket PC applications can be minimized.

Accessibility
Finally, I briefly discuss how SWT supports the creation of user interfaces that are suitable for disabled
persons. Accessibility is an important topic in the context of commercial application development. Many
public institutions are allowed to purchase only software conforming to certain standards regarding its
usability by disabled persons.

The Eclipse documentation contains a special chapter about this topic in the Platform Plug-in Developer
Guide under Reference > Other Reference Information > Tips For Making User Interfaces Accessible.

202

Chapter 8

10_020059_ch08.qxd 10/8/04 11:01 AM Page 202

Many operating systems support special hardware devices designed for disabled persons and provide
an API for these devices. Eclipse supports the Microsoft Active Accessibility (MSAA) API. This support
is provided by the classes defined in the org.eclipse.swt.accessibility package. All SWT
Control instances can provide an instance of the Accessible class via the getAccessible()
method. This instance serves as a link to the Accessibility API.

Summary
In this chapter I have given you an introduction into the core concepts of the Standard Widget Toolkit
(SWT). By now, you should have an understanding of the SWT event model and of the main widget
groups found in the SWT. You should know the different layout types and how to use them (however,
you’ll need practice to master them). You should by now understand how basic graphics can be created
with the SWT and how advanced graphics produced with Swing and Java2D can be embedded into an
SWT environment. You should be able to produce output for a printer and to use the clipboard and the
drag-and-drop facilities. You have also learned about the most common traps for SWT programmers: the
necessity to release allocated resources and how to access the SWT thread from a non-SWT thread.

In the next chapter we move to the higher-level GUI layers of the JFace component.

203

The SWT Library

10_020059_ch08.qxd 10/8/04 11:01 AM Page 203

10_020059_ch08.qxd 10/8/04 11:01 AM Page 204

JFace

The JFace API is based on the SWT API and provides the programmer with higher-level GUI com-
ponents such as viewers, actions, dialogs, wizards, and much more. In the following sections I will
discuss the most important function groups.

Some of the JFace components are specific to the Eclipse workbench and are packaged in the
archive workbench.jar as an integral part of the Eclipse workbench plug-in. Most of the compo-
nents of JFace, however, can be used independently from the Eclipse workbench and are therefore
packaged in the archive jface.jar and are deployed in a separate JFace plug-in.

Resource Management
This chapter begins with the topic with which the previous chapter ended: resource management.
JFace provides some classes that support the management of resources such as fonts, colors, and
images. The classes of this group are contained in the package org.eclipse.jface.resource.

The FontRegistry Class
The FontRegistry class is able to manage all the fonts used within an application. A
FontRegistry instance is always created for a concrete Display instance. If no Display
instance is passed to the FontRegistry() constructor, the current Display instance will be
used.

You don’t need to specify a Display instance when adding a font to the FontRegistry with the
help of the put() method, because the FontRegistry can supply the Display instance by itself
if it needs to create a new font instance. It is sufficient to specify the symbolic font name and a
FontData instance (see the “Fonts” section in Chapter 8). You can retrieve a font from the
FontRegistry with the method get() by specifying a symbolic name.

99

11_020059_ch09.qxd 10/8/04 11:10 AM Page 205

What is convenient with a FontRegistry is that you don’t have to care at all about the disposal of font
resources. When a FontRegistry is created, it links itself into the DisposeEvent() processing of its
Display instance. When this Display instance is disposed of, the FontRegistry and all fonts con-
tained in the registry are disposed of as well. It is important not to explicitly dispose of a font contained
in the FontRegistry by calling its dispose() method.

The ImageRegistry Class
The ImageRegistry class works quite similarly to FontRegistry but is responsible for the manage-
ment of images. ImageRegistry instances are also associated with a concrete Display instance.
Images are added to the registry with the put() method and are addressed with a symbolic name. They
can be retrieved again with get(). In the section “Some Dialog Subclasses” I will show a code example
of how to use the ImageRegistry. As with FontRegistry, the disposal of the ImageRegistry
instance and of the contained images is linked to the DisposeEvent() processing of the corresponding
Display instance.

In lieu of an Image instance, you can add an ImageDescriptor instance to the registry using put().
ImageDescriptor instances act as proxies for images: they contain only the image metadata and know
where and how to fetch the corresponding image. The image is loaded only when it is really needed—in
the case of the ImageRegistry, this is when it is retrieved with get().

The JFaceColors Class
This class organizes consistent color management for all GUI components of JFace. Various static meth-
ods allow the retrieval of specific colors, such as the color of error messages, hyperlinks, or other GUI
elements.

The JFaceResources Class
This class organizes consistent font and registry management for all JFace GUI components. Various
static methods allow the retrieval of specific fonts, such as fonts for dialogs, texts, banners, and so on.
You can also retrieve the current FontRegistry and ImageRegistry instances.

Dialogs and Windows
The package org.eclipse.jface.dialogs provides some classes that implement standard dialogs.
All these classes are subclasses of the abstract JFace class Dialog, which is itself a subclass of the
abstract class Window.

The class Window can be used to implement your own windows. The typical life cycle of a window is

new
create()
open()
close()

206

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 206

create() can be omitted: the open() method will then automatically execute the create() method.
Among other things, create() creates the window’s Shell instance. Consequently, retrieving the shell
via method getShell() makes sense only after create() has been executed. The shell is disposed of
automatically when close() is executed. In addition, create() invokes the methods
createContents() and initializeBounds(), which may be overridden or extended by
subclasses. For example, you would override createContents() to construct the window content.

With the help of the getReturnCode() method you can retrieve the current state of an opened
window. You obtain the value Window.OK for a window with an opened shell and the value Window
.CANCEL when the window’s shell is closed.

Because the class Dialog is a subclass of Window, its life cycle is similar. But unlike with Window, you
would not override the createContents() method to add content to a Dialog instance. Instead, you
would override one or several of the methods createDialogArea(), createButtonBar(), and
createButtonsForButtonBar(). By default, the latter method creates an OK button and a Cancel
button.

To create additional buttons, the class provides the createButton() method. This also creates the nec-
essary event processing for each button. When a button is pressed, the buttonPressed() method is
called. For the OK button and the Cancel button, this method in turn invokes the methods
okPressed() and cancelPressed(). Both of these methods close the dialog with close(). All of
these methods can be overridden or extended using subclasses.

You can get the code of the button with which the dialog was closed with the getReturnCode()
method or as the result of the open() method: this will be Window.OK for the OK button and
Window.CANCEL for the Cancel button.

Some Dialog Subclasses
JFace comes with a variety of predefined special purpose Dialog subclasses, some of which I discuss in
the following sections.

The InputDialog Class
This class creates a simple dialog with a text field (see Figure 9.1), an OK button, and a Cancel button.
Creating such a dialog requires only a few instructions:

InputDialog inputDialog = new InputDialog(shell,
"Input","Please enter text","text",null);

if (inputDialog.open() == Dialog.OK) {
String result = inputDialog.getValue();
System.out.println(result);

}

InputDialog is the simplest of the predefined JFace dialogs.

207

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 207

Figure 9.1

The MessageDialog Class
The class shown in Listing 9.1 generates a simple dialog for displaying messages. You can configure the
number of buttons and their labeling. In addition, you can show an icon in the title bar of the dialog
window. Usually, you would use a GIF image of size 16x16 pixels.

// Create image registry
ImageRegistry imageRegistry = new ImageRegistry();
// Load icon for title line
final Image image = new Image(shell.getDisplay(),

"images/envelop.gif");
// Register image
imageRegistry.put("envelope",image);
// Create message dialog
MessageDialog messageDialog = new MessageDialog(shell,

"Message", imageRegistry.get("envelope"),
"You have mail!", MessageDialog.INFORMATION,
new String[] {"View", "Dispose", "Abort"}, 0);

// Open dialog and retrieve the index of the button pressed
int buttonPressed = messageDialog.open();
System.out.println("Button pressed: "+buttonPressed);

Listing 9.1

In the third parameter you can pass an image for the title line. (You can retrieve this image from the
image registry.) If you don’t want to use an image, just specify null. In the fifth parameter specify a style
constant declaring the type of dialog and the icon shown in front of the message:

MessageDialog.NONE No specification, no icon shown

MessageDialog.ERROR Error message

MessageDialog.INFORMATION Info message

MessageDialog.QUESTION Question

MessageDialog.WARNING Warning

In the sixth parameter specify a String[] array containing all the button labels. The seventh parameter
specifies the index of the default button. Figure 9.2 shows the MessageDialog from the previous code
example.

208

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 208

Figure 9.2

The class MessageDialog, in addition, provides some static methods implementing simple standard
dialogs such as openConfirm(), openError(), openInformation(), openQuestion(), and
openWarning(). Here is an example using the openConfirm() method:

if (MessageDialog.openConfirm(shell,
"General question", "System crash!\nPlease acknowledge!")) {
System.out.println("OK was pressed");

}

The TitleAreaDialog Class
This class defines a basic pattern for more complex dialogs. You would usually not instantiate this class
directly, but rather you would define your own subclasses (see “Implementing Your Own Dialog
Classes”). The class TitleAreaDialog provides the following features:

❑ Title line.

❑ Message area. This area usually contains one or two lines of text. Iit also displays an error mes-
sage when present. Optionally, you may specify your own image for this area with
setTitleImage(). Figure 9.3 shows the Eclipse default image for the TitleAreaDialog on
the right-hand side of the message area. This image has a size of 72x72 pixels. Since this image
controls the height of the message area, you can make room for additional message lines by
specifying a taller image.

❑ An OK button and a Cancel button.

The following code shows how a TitleAreaDialog instance is created and initialized. Before you can
set features such as title, message, or image, you must invoke the create() method:

TitleAreaDialog titleAreaDialog = new TitleAreaDialog(shell);
titleAreaDialog.create();
titleAreaDialog.setTitle("Important message");
titleAreaDialog.setMessage(

"You have mail!\nIt could be vital for your career…");
if (titleAreaDialog.open() == Dialog.OK) {

System.out.println("OK was pressed");
}

209

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 209

Figure 9.3

Implementing Your Own Dialog Classes
You can derive your own subclasses from the dialog classes discussed previously (and, of course, also
from the mother of all JFace dialogs, the class Dialog). This makes sense, in particular, for the class
TitleAreaDialog. This dialog still has a big empty space in the center that needs to be filled.

The various areas in such a dialog are all created using different methods. By overriding one or several
of those methods, you can change the configuration of the dialog considerably. For example, by overrid-
ing the method createButtonsForButtonBar(), you can add additional buttons along with the OK
button and the Cancel button or even replace those buttons.

Listing 9.2 implements the MailDialog class, which is based on the TitleAreaDialog class. The cen-
ter area contains a List widget that displays mail messages that have arrived. The OK button and the
Cancel button are replaced with the buttons Open, Delete, and Abort. The Delete button does not close
the dialog but simply removes an item from the list. When no items are selected, the Open button and
the Delete button are disabled, and an error message is shown in place of the normal message.

import org.eclipse.jface.dialogs.TitleAreaDialog;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.List;
import org.eclipse.swt.widgets.Shell;

public class MailDialog extends TitleAreaDialog {
// IDs for MailDialog buttons
// We use large integers because we don’t want
// to conflict with system constants
public static final int OPEN = 9999;

210

Chapter 9

Listing 9.2 (Continues)

11_020059_ch09.qxd 10/8/04 11:10 AM Page 210

public static final int DELETE = 9998;
// List widget
List list;
// Initial content of the list
String[] items;
// Selected items
String[] itemsToOpen;
/**
* Constructor for MailDialog.
* @param shell - Containing shell
* @param items – Mail messages passed to the dialog
*/
public MailDialog(Shell shell, String[] items) {

super(shell);
this.items = items;

}
/**
* @see org.eclipse.jface.window.Window#create()
* We complete the dialog with a title and a message
*/
public void create() {

super.create();
setTitle("Mail");
setMessage(

"You have mail!\n It could be vital for this evening…");
}
/**
* @see org.eclipse.jface.dialogs.Dialog#
* createDialogArea(org.eclipse.swt.widgets.Composite)
* Here we fill the center area of the dialog
*/
protected Control createDialogArea(Composite parent) {

// Create new composite as container
final Composite area = new Composite(parent, SWT.NULL);
// We use a grid layout and set the size of the margins
final GridLayout gridLayout = new GridLayout();
gridLayout.marginWidth = 15;
gridLayout.marginHeight = 10;
area.setLayout(gridLayout);
// Now we create the list widget
list = new List(area, SWT.BORDER | SWT.MULTI);
// We define a minimum width for the list
final GridData gridData = new GridData();
gridData.widthHint = 200;
list.setLayoutData(gridData);
// We add a SelectionListener
list.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
// When the selection changes, we re-validate the list
validate();

}
});

211

JFace

Listing 9.2 (Continues)

11_020059_ch09.qxd 10/8/04 11:10 AM Page 211

// We add the initial mail messages to the list
for (int i = 0; i < items.length; i++) {

list.add(items[i]);
}
return area;

}
private void validate() {

// We select the number of selected list entries
boolean selected = (list.getSelectionCount() > 0);
// We enable/disable the Open and Delete buttons
getButton(OPEN).setEnabled(selected);
getButton(DELETE).setEnabled(selected);
if (!selected)

// If nothing was selected, we set an error message
setErrorMessage("Select at least one entry!");

else
// Otherwise we set the error message to null
// to show the intial content of the message area
setErrorMessage(null);

}
/**
* @see org.eclipse.jface.dialogs.Dialog#
* createButtonsForButtonBar(org.eclipse.swt.widgets.Composite)
* We replace the OK and Cancel buttons by our own creations
* We use the method createButton() (from Dialog),
* to create the new buttons
*/
protected void createButtonsForButtonBar(Composite parent) {

// Create Open button
Button openButton = createButton(parent, OPEN,

"Open", true);
// Initially deactivate it
openButton.setEnabled(false);
// Add a SelectionListener
openButton.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
// Retrieve selected entries from list
itemsToOpen = list.getSelection();
// Set return code
setReturnCode(OPEN);
// Close dialog
close();

}
});
// Create Delete button
Button deleteButton =

createButton(parent, DELETE, "Delete", false);
deleteButton.setEnabled(false);
// Add a SelectionListener
deleteButton.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {

212

Chapter 9

Listing 9.2 (Continues)

11_020059_ch09.qxd 10/8/04 11:10 AM Page 212

// Get the indices of the selected entries
int selectedItems[] = list.getSelectionIndices();
// Remove all these entries
list.remove(selectedItems);
// Now re-validate the list because it has changed
validate();

}
});
// Create Cancel button
Button cancelButton =

createButton(parent, CANCEL, "Cancel", false);
// Add a SelectionListener
cancelButton.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
setReturnCode(CANCEL);
close();

}
});

}
/**
* Method getItemsToOpen.
* @return String[] - the selected items
*/
public String[] getItemsToOpen() {

return itemsToOpen;
}

}

Listing 9.2 (Continued)

You can then use the MailDialog class as shown in Listing 9.3.

MailDialog mailDialog = new MailDialog(shell,
new String[] {"Carol", "Eve", "Claudia", "Alice" });
if (mailDialog.open() == MailDialog.OPEN) {

String[] itemsToOpen = mailDialog.getItemsToOpen();
for (int i = 0; i < itemsToOpen.length; i++) {

System.out.println(itemsToOpen[i]);
}

}

Listing 9.3

Making Dialogs Persistent
The interface IDialogSettings is used to save and restore the state of Dialog instances across
sessions, such as the state of checkboxes, entries in text fields, and so on.

213

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 213

For this purpose IDialogSettings defines methods that allow you to set and retrieve name/value
pairs. With get() and getArray() you can read scalar string values or string arrays, respectively, and
with put() you can write both scalars and arrays. There is also a variety of data type–specific get…()
methods, such as getInt(), getLong(), getFloat(), getDouble(), and getBoolean().

In addition, you have the option to store and retrieve whole subsections of dialog settings with the
addSection(), addNewSection(), and getSection() methods. Each subsection is represented by
another IDialogSettings instance. Consequently, subsections may be nested. You can thus construct
a deeply nested tree.

With the load() method you can read an IDialogSettings instance from a file or from an input
stream, and with save() you can write an IDialogSettings instance to a file or to an input stream.

The class DialogSettings is the standard implementation for the interface IDialogSettings. It
uses XML as the file format for persistent storage of the settings.

In Listing 9.4 the DialogSettings instance with two subsections is created.

IDialogSettings settings = new DialogSettings("dialog");
IDialogSettings section1 = new DialogSettings("dialogPage1");
settings.addSection(section1);
section1.put("volume",4.5);
section1.put("pitch",300);
IDialogSettings section2 = new DialogSettings("dialogPage2");
settings.addSection(section2);

section2.put("Languages", new String[]{"english",
"german","french"});

settings.save("settings/test/dialog.xml");

Listing 9.4

Viewers
Despite the name Viewer, the classes in the package org.eclipse.jface.viewers do not only
support viewing contents. All …Viewer classes also support the modification of contents. In fact, some
of the editors in the Eclipse workbench are constructed with the help of these viewer classes. The name
Viewer is derived from the Model-Viewer-Controller (MVC) design pattern. This pattern defines cooper-
ation between three component types: the Model component manages the domain data, the Viewer
component is responsible for the representation of the data on the screen, and the Controller component
handles user interaction. Besides a clear separation of concerns, this design pattern has the advantage
that it allows several Viewer instances for a single Model instance. This allows you to display the same
data in different ways simultaneously.

214

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 214

The Viewer Event Model
In the context of the MVC design pattern, JFace establishes its own event model. This model features all
event types that are sent from the Viewer component to the Controller. The following event types are
available:

Event Listener Description

CheckStateChangedEvent ICheckStateListener This event is generated
when the state of a check
box within the viewer
changes.

DoubleClickEvent IDoubleClickListener This event is generated
when a data element
representation in the
viewer is double-clicked.

OpenEvent IOpenListener This event is generated
when a data element
shown in the viewer is
opened with a double-
click or by pressing the
Enter key.

SelectionChangedEvent ISelectionChangedListener This event is generated
when the selection in the
viewer changes.

TreeExpansionEvent ITreeViewerListener This event is generated
when a tree node expands
or collapses.

All these event types are subclasses of class java.util.EventObject.

The Viewer Hierarchy
The abstract class Viewer is the mother of all viewer classes in JFace (Figure 9.4). Most notably, each
Viewer instance wraps an SWT widget that is responsible for the representation of data, such as wid-
gets of type Table, Tree, TableTree, and so on. The class Viewer provides the basis for the concrete
viewer implementation but also provides some methods of general interest, such as functions support-
ing the help system.

215

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 215

ViewPart

BookmarkNavigator PageBookView

AbstractDebugView ContentOutline PropertySheet

ResourceNavigator TaskList

Figure 9.4

ContentViewer
The class ContentViewer is an immediate subclass of class Viewer and implements the MVC design
pattern. ContentViewer retrieves the domain data from an IContentProvider instance that has
been registered with the ContentViewer via the setContentProvider() method. The
IContentProvider instance may deliver the data in its raw format: the later transformation of the
individual data elements into their representational format is done via an IBaseLabelProvider
instance that has been registered with the ContentViewer via the setLabelProvider() method.
For example, if you want to display a table containing the various file attributes for a set of files, the
IContentProvider would deliver just the File instances. The IBaseLabelProvider would
retrieve for each table column the corresponding attributes from a single File instance and would
deliver the representation of the attribute. IBaseLabelProviders can deliver both text and image
representations.

Both IContentProvider and IBaseLabelProvider are “abstract” interfaces, that is, they
don’t declare methods to retrieve or transform contents. They declare only general methods such as
dispose() or inputChanged().

ILabelProvider
The definition of the actual methods for data transformation are left to “concrete” interfaces such as
ILabelProvider with the methods getImage() and getText(), ITableLabelProvider with the
methods getColumnImage() and getColumnText(), and IStructuredContentProvider with
the methods getChildren(), hasChildren(), and getParent().

StructuredViewer
The class ContentViewer is the direct parent class for the (still) abstract class StructuredViewer.
This class is the basis for most of the concrete viewer implementations in JFace. It provides a wealth of
additional methods—in particular, methods that allow you to sort and filter the dataset displayed in

216

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 216

the viewer. The abstract classes ViewerSorter and ViewerFilter act as a basis for implementations
of custom sorters and filters. In the “Playlist Viewer” section in Chapter 8you will see a TableViewer
as a concrete example of the StructuredViewer in full action.

TreeViewer
The abstract class AbstractTreeViewer provides the basis for all concrete tree-oriented viewer imple-
mentations such as TreeViewer (and its derivative CheckboxTreeViewer) and TableTreeViewer.
In particular, this class provides methods for the management of trees, such as methods for expanding
and collapsing tree nodes.

Cell Editors
All table-oriented viewers such as TableViewer and TableTreeViewer can be equipped with cell
editors, allowing you not only to view table contents but also to edit them. Eclipse provides a variety of
predefined cell editors:

CheckboxCellEditor This editor allows the modification of a Boolean value.

ColorCellEditor This editor supports the selection of a color.

ComboBoxCellEditor This editor allows the selection of a value from a list but
also the free input of an arbitrary value.

DialogCellEditor This editor allows the invocation of arbitrary dialogs. The
result value of the dialog is then assigned to the cell.

TextCellEditor This editor allows unrestricted input into the cell.

All these editors are derivatives of the abstract class CellEditor. To make tables and table trees
editable, several components must cooperate:

❑ You need a suitable viewer (TableViewer or TableTreeViewer).

❑ You need a suitable cell editor (as previously mentioned), too. The editor is registered with the
viewer via the method setCellEditors(). You can register an individual editor for each
column.

❑ With each editor you can register an ICellEditorValidator instance via the
setValidator() method. These instances are responsible for validating the editor input.

❑ You must register an ICellModifier instance with the viewer via method
setCellModifier(). This instance is responsible for the data flow between the viewer and
the editor. Each ICellModifier instance must implement the following three methods:

❑ getValue() retrieves from the domain data the value that will appear in the editor.

❑ canModify() checks to see whether a given value can be modified.

❑ modify() gets the result data from the editor and modifies the domain data accordingly.

❑ Column properties identify each column uniquely. The CellModifier can recognize the col-
umn it works on with the help of these column properties. You can assign a column property to
each viewer column via the method setColumnProperties().

In the section “The Playlist Viewer” in Chapter 10 you will see cell editors in action.
217

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 217

Data Transfer
Basically, all JFace viewers are prepared to support data transfer via drag and drop. This functionality is
built on top of the SWT data transfer functionality (see the “Data Transfer” section in Chapter 8). For
example, you can easily add a DragSourceListener to a viewer via its addDragSupport() method.
In this method call you also would define the supported operations and transfer types. Similarly, you
can add a DropTargetListener via method addDropSupport(). Within these listeners, drag-and-
drop events are processed as already discussed in the “Drag-and-Drop” section in Chapter 8.

However, if you want to exchange data with existing viewers, you must know which transfer types are
supported by these viewers. For example, the Eclipse Navigator supports the types FileTransfer and
ResourceTransfer. The Tasks View, the Problems View, and the Bookmarks View support the types
MarkerTransfer and TextTransfer.

Details about the JFace data transfer are discussed in the Eclipse Corner (www.eclipse.org) article by
John Arthorne.

Text Processing
Text processing is another main functional group of JFace. In particular, the various Eclipse editors are
based on JFace’s text processing. However, it is possible to use JFace text processing isolated from the
Eclipse workbench.

The Eclipse text-processing functionality is deployed in two separate plug-ins, org.eclipse.jface
.text with archive jfacetext.jar and org.eclipse.text with archive text.jar, and consists
of the following packages:

org.eclipse.text.*
org.eclipse.jface.text.*

Text Processing Base Classes
The text processing function group is separated into a data domain layer and a presentation layer. The
representation is done by the TextViewer class, while the data model is described by the interface
IDocument. For the interface IDocument, Eclipse provides the standard implementations
AbstractDocument and Document.

The Document Model
Classes that implement the IDocument interface must provide the following services:

❑ Text manipulation. Modifying the text content of a document is done with the help of the
replace() method. This method can replace a specified text area with another string. Such
operations generate DocumentEvents that inform registered Listeners and
IPositionUpdaters (see the following explanation) about the text modification.

❑ Positioning. Position instances represent a position or an area within a document. You can
add any number of Position instances to an IDocument instance and can assign each

218

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 218

Position instance to a category. For the Java editor, for example, there are breakpoints,
problem markers, and other positional categories. Remembering a document position in a
Position instance, however, raises a problem. When the document changes, the real position
may change, too. It is therefore necessary to update all Position instances in the case of
document modification. This is done with the help of IPositionUpdate instances. (The
DefaultPositionUpdater class is the standard implementation of this interface). You can
add any number of these instances to a document. When a document is modified, all registered
IPositionUpdate instances are invoked in their registration order via their update()
method, and a DocumentEvent instance is passed to this method.

❑ Partitioning. Partitions are non-overlapping sections within a document. For example, a source
code document could be segmented into partitions of the types comment, declaration, and
instruction. Each partition is characterized by its position, its length, and its type. A document
is segmented into separate partitions with the help of an associated IDocumentPartitioner
instance. If a document does not have such an IDocumentPartitioner, it consists of only a
single partition—the entire document. When a partition is changed, the method
documentPartitioningChanged() is called for a registered
IDocumentPartitioningListener instance.

❑ Searching. The method search() supports searching for a character string. It can search
forward and backward, allows case-sensitive or case-insensitive searching, and can search for
words or generic character strings.

❑ Line tracking. The line-tracking functions are found only in the standard implementations
AbstractDocument and Document but don’t belong to the IDocument interface. With an
ILineTracker instance (standard implementations are AbstractLineTracker,
DefaultLineTracker, and ConfigurableLineTracker), you can create a relationship
between document position and line number. Initially, the whole text is parsed for line-
separation characters. Later modifications are made known to the ILineTracker instance,
so that this instance can update its internal line number associations. It is not the client’s
responsibility to register an ILineTracker instance with a document. Instead, an
ILineTracker is associated with an IDocument instance by implementation, that is, when
a subclass of AbstractDocument is implemented. For example, the class Document uses the
standard implementation DefaultLineTracker.

IDocument implementations throw a BadLocationException or a
BadPositionCategoryException when you try to access beyond the document bounds or when
you use an unknown position category.

Scripts
Since Eclipse 3 it is possible to combine several text operations into a single script. To do so, you must
represent each single text operation by a TextEdit instance. JFace provides a specific subclass of class
TextEdit for each operation type, such as DeleteEdit, InsertEdit, and ReplaceEdit. The class
MultiTextEdit can combine multiple text operations, which can be added to a MultiTextEdit
instance with the help of the method addChild() or addChildren(). MultiTextEdit objects can be
nested, and thus TextEdit objects form trees. You can apply such scripts with the help of the method
apply() to IDocument instances. This method returns as a result an UndoEdit object with which you
can undo the just-performed operations. Listing 9.5 shows this.

219

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 219

public static void main(String[] args)
throws MalformedTreeException, BadLocationException {

IDocument document= new Document("Eclipse 3");
System.out.println(document.get());
MultiTextEdit edit= new MultiTextEdit();
edit.addChild(new InsertEdit(0, "Java Entwicklung"));
edit.addChild(new InsertEdit(0, " mit "));
UndoEdit undo = edit.apply(document);
System.out.println(document.get());
undo.apply(document);
System.out.println(document.get());

}

Listing 9.5

The result is the following output on the Java console:

Eclipse 3
Java Entwicklung mit Eclipse 3
Eclipse 3

In addition to these delete, insert, and replace operations, there are also the classes MoveSourceEdit,
MoveTargetEdit, CopySourceEdit, and CopySourceEdit to support the moving and copying of
text within a document. When you use these classes, every SourceEdit must have a corresponding
TargetEdit, and vice versa. When moving or copying text contents, you can modify these contents
before inserting them into the target position. This is done by adding a suitable ISourceModifier
instance to MoveSourceEdit or CopySourceEdit instances via the method
setSourceModifier().

The TextViewer
The class TextViewer implements the presentation layer of the text-processing function group. It uses
the SWT class StyledText (see “Custom Widgets” in Chapter 8) for displaying and editing text.
Writing a bare-bones text editor with the help of this class is almost trivial. For example:

Document doc = new Document("Some text");
TextViewer textViewer = new TextViewer(composite,SWT.MULTI

| SWT.H_SCROLL | SWT.V_SCROLL);
textViewer.setDocument(doc);

Despite this minimalist example, the class TextViewer provides such rich functionality that it would
require a complete book to cover the topic. Here, I want to list only the most important functions.

The event processing for class TextViewer is handled by four Listener interfaces:

220

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 220

Listener Event Description

ITextInputListener – The inputDocumentAboutToBeChanged()
method is called before the current document is
replaced by a new document. After the
replacement the method
inputDocumentChanged() is invoked.

ITextListener TextEvent The textChanged() method is invoked when
text is changed. The TextEvent describes the
replaced text and the replacement.

IViewportListener – The viewportChanged() method is invoked
when text is changed within the visible window
of the viewer.

VerifyKeyListener VerifyEvent The VerifyEvent of the StyledText widget.

Selection
The methods getSelectedRange(), setSelectedRange(), getSelection(), and
setSelection() allow clients to retrieve and set text selections. These methods use TextSelection
instances for parameters and results. With setTextColor() or changeTextPresentation() you
can assign a different color to a selected text area. In addition, you can set and retrieve text markers with
setMark() and getMark().

Viewport
The viewport describes the editor’s visible window onto the text. This viewport can be managed with
the getTopIndex(), setTopIndex(), getBottomIndex(), getTopIndexStartOffset(), and
getBottomIndexEndOffset() methods. You can therefore get and set the line number of the top
line in the viewport, the line number of the bottom line in the viewport, the text position of the top-left
viewport corner, and the text position of the bottom-right corner of the viewport. With revealRange()
you can position the editor window in the specified area.

Visible Text Region
The visible text region consists of all text lines that can be displayed in the editor window. Apart from
these lines, a document may contain lines that always remain invisible. The following methods can be
used to manage the visible region:

❑ getVisibleRegion()

❑ setVisibleRegion()

❑ resetVisibleRegion()

❑ overlapsWithVisibleRegion()

221

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 221

Hover
You can set or retrieve an ITextHover instance for each text partition with the methods setHover()
and getHover(). These instances organize the display of explanation texts that are displayed when
the mouse hovers over a text area. They implement the method getHoverInfo(), which composes the
explanation text, and the method getHoverRegion(), which computes the text area for which the
explanation is provided from a text position.

Apart from these basic functions, the TextViewer establishes a framework for implementing a com-
plete text editor. This includes support for operations and support for installing plug-ins.

Operations
Instances of type ITextOperationTarget represent operations typically performed by the user. This
interface is implemented by the TextViewer with the methods canDoOperation() and
doOperation(). The latter method must be invoked only if canDoOperation() is successful. In
addition, the TextViewer implements the method enableOperation() from the interface
ITextOperationTargetExtension.

Operations can be identified with the following predefined constants (defined in interface
ITextOperationTarget): COPY, CUT, DELETE, PASTE, PREFIX, PRINT, REDO, SELECT_ALL,
SHIFT_LEFT, SHIFT_RIGHT, STRIP_PREFIX, and UNDO. For example, the following code deletes all
text:

textViewer.doOperation(ITextOperationTarget.SELECT_ALL);
if (textViewer.canDoOperation(ITextOperationTarget.DELETE))

textViewer.doOperation(ITextOperationTarget.DELETE);

Some of these operations are available only if you have previously created an appropriate manager for
the TextViewer. In particular, this is the case for UNDO and REDO operations. Before you can perform
these operations, you first must add an IUndoManager instance to the TextViewer via the
setUndoManager() method. In the following code the IUndoManager standard implementation, the
class DefaultUndoManager, is installed:

// maximum 99 Undos
IUndoManager undoManager = new DefaultUndoManager(99);
undoManager.connect(textViewer);
textViewer.setUndoManager(undoManager);

The operations PREFIX and STRIP_PREFIX can be configured by setting a default prefix with the
setDefaultPrefixes() method. This allows you to set a different default prefix for each text
category. Similarly, you can use the method setIndentPrefix() to specify category-specific prefixes
for text indentation used by the operations SHIFT_LEFT and SHIFT_RIGHT.

The indentation of text can, in addition, be automated by specifying an IAutoIndentStrategy
instance. For each text modification, the customizeDocumentCommand() of this instance is called.
A DocumentCommand is passed as a parameter to this method and informs you how the text was
changed. The IAutoIndentStrategy instance may then decide how to indent the text. The
IAutoIndentStrategy standard implementation, for example, always indents a line by left aligning
it with the previous line. The following code shows how this strategy is installed:

222

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 222

try {
textViewer.setAutoIndentStrategy(new DefaultAutoIndentStrategy(),

doc.getContentType(0));
} catch (BadLocationException e) {}

Text Presentation
Since the TextViewer uses internally a widget of type StyledText (see “Custom Widgets” in Chapter 8),
it is possible to apply an appropriate text presentation, for instance, displaying text sections in a different
style or color. Since Eclipse 3 there are two new interfaces to support this task:
ITextViewerExtension4 and ITextPresentationListener. You should use this API instead of
resorting to the low-level API of the StyledText widget. If a TextViewer implements the interface
ITextViewerExtension4, you can instrument it with an ITextPresentationListener instance.
The applyTextPresentation() method of this instance is called whenever a new text presentation
must be created or updated, receiving a TextPresentation object via its parameter. You can add
StyleRange instances to this object by invoking the methods addStyleRange() and
mergeStyleRanges() and thus modify the existing text presentation.

The SourceViewer Class
The SourceViewer class is a subclass of TextViewer. In addition to the TextViewer, it offers a verti-
cal ruler on which you can place annotations and mark text areas. There are some new operations, too:

❑ CONTENTASSIST_PROPOSALS

❑ CONTENTASSIST_CONTEXT_INFORMATION

❑ FORMAT

❑ INFORMATION

The SourceViewer is, in particular, suited to implementing source code editors. An example for the
application of the SourceViewer is given in Chapter 10.

Configuration
The SourceViewer combines most of its configuration settings and managers in a separate configura-
tion object, an instance of the SourceViewerConfiguration class. Here you can specify all kinds
of settings such as prefixes, UndoManager, hover behavior, or the content assistant in complete
isolation from the SourceViewer. Later you can assign the configuration object to a SourceViewer
instance via the configure() method. Usually you would want to create subclasses of
SourceViewerConfiguration to create editors of different behavior. Instead of subclassing the
class SourceViewer, you subclass SourceViewerConfiguration and use the instances of these
subclasses to configure the SourceViewer.

Annotations
Annotations for a document are managed outside the IDocument instance. The package
org.eclipse.jface.text.source provides the interface IAnnotationModel for this purpose
with the standard implementation AnnotationModel. With the connect() method you can connect

223

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 223

this model with the document instance. The SourceViewer is told about the annotation model as an
additional parameter in the setDocument() method (together with the IDocument instance).

The IAnnotationModel interface provides a number of methods to add Annotation instances to the
model or to remove or retrieve annotations. When it does so, the position of the annotation is specified
with a Position instance (see “Text Processing Base Classes”). This guarantees that the annotation
remains in the right position, even when the document content changes.

In addition, you have the option of adding an IAnnotationModelListener instance to the annota-
tion model. The modelChanged() method of this instance is invoked when the model changes.

The abstract class Annotation defines some methods for the graphical representation of annotations.
You have the option of specifying a layer for each Annotation instance, so you can position annota-
tions on top of each other.

The interface IAnnotationHover also belongs to the annotation mechanism. Instances of type
IAnnotationHover can be registered with the SourceViewer via the method
setAnnotationHover(). Implementations of IAnnotationHover must implement the method
getHoverInfo(). This method generates text that is displayed when the mouse hovers over the anno-
tation for each given line number.

Text Formatters
Text formatters modify the content of a document. They insert characters or remove characters to mold
the text into a given format. An example of a text formatter is the Java code formatter introduced in the
“Formatting Code” section in Chapter 1.

Text formatters are passed from a SourceViewerConfiguration to a SourceViewer instance via
method getContentFormatter(). All these formatters must implement the interface
IContentFormatter. The standard implementation ContentFormatter can work in two operation
modes: being aware of text categories or being insensitive to text categories. For each text category, you
can specify a special formatting strategy via the method setFormattingStrategy(). The formatting
strategies must implement the interface IFormattingStrategy. The actual formatting is done in the
format() method. The methods formatterStarts() and formatterStops() inform the
IFormattingStrategy instance about the start and the end of the formatting process.

Content Assistants
Content assistants (or code assistants) suggest content completion proposals to the end user. After the end
user selects a proposal and commits to it, the content assistant modifies the document.

Content assistants are passed from a SourceViewerConfiguration to a SourceViewer instance via
the method getContentAssistant(). All these assistants must implement the interface
IContentAssistant. The standard implementation of this interface is the class ContentAssistant.
Usually, instances of this class are configured appropriately before they are used. This can be done
with the enableAutoActivation() and setAutoActivationDelay() methods. With these
methods you can specify that the content assistant automatically appears on the screen after a
specified time, even when no activation key (such as Ctrl+Spacebar) is pressed. When you want to
activate the content assistant via a key press, you must explicitly call the SourceViewer method
doOperation(SourceViewer.CONTENTASSIST_PROPOSALS).

224

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 224

The proposals of the content assistant are compiled with the help of IContentAssistProcessor
instances. Such instances can be registered for each text category separately with the
ContentAssistant via the method setContentAssistProcessor(). These processors implement
the method computeCompletionProposals(), which computes appropriate proposals based on the
current position in the document. The method returns an array of ICompletionProposal instances.
They can be simple proposals of type CompletionProposal or
PositionBasedCompletionProposal. Each of these proposals contains the string to be inserted into
the document, the position at which to insert the string, the length of text to be replaced, and the new
position of the cursor relative to the inserted string. Another possibility is proposals of type
TemplateProposal. In the “Code Assistant” section in Chapter 2 you encountered templates from the
end user’s view.

A simple example for a content assistant is given in the “Description Editor” section in Chapter 10. A
more detailed discussion on creating content assistants is found in my article “Equipping SWT
Applications with Content Assistants” at www.ibm.com/developerworks.

Text Presentation
The classes in the package org.eclipse.jface.text.presentation are responsible for presenting
the text content on the screen. These operations do not modify the document. The interface
IPresentationReconciler covers the presentation process when text parts are modified. Instances
of this interface are passed from a SourceViewerConfiguration to a SourceViewer instance via
the getPresentationReconciler() method. The standard implementation of this interface is the
class PresentationReconciler. This class uses two cooperating processors: an instance of
IPresentationDamager and an instance of IPresentationRepairer. The
IPresentationDamager computes the document area for which the current representation has
become invalid because the document was changed. The IPresentationRepairer decorates this text
area with new text attributes. The standard implementation DefaultDamagerRepairer implements
both interfaces.

When creating a DefaultDamagerRepairer instance, an ITokenScanner instance is passed in the
constructor. Usually, a subclass of RuleBasedScanner is used here. (RuleBasedScanner implements
ITokenScanner). And so we arrive at the package org.eclipse.jface.text.rules.

Since RuleBasedScanners can be programmed by supplying an ordered list of rules, they are quite
flexible. They analyze the specified text area with the help of these rules and deliver a series of tokens,
which can then be interpreted by the client (in this case, the DefaultDamagerRepairer). In this case,
these tokens contain only TextAttribute instances that specify color and style attributes for the corre-
sponding text sections.

All rules must implement the IPredicateRule interface. They search in the specified text area for a
given pattern. You can specify such a pattern by supplying the string with which the pattern begins and
the string with which it ends. When a rule finds a pattern in the text, it will return the specified token. If
it does not, the RuleBasedScanner will continue the process with the next rule.

The various concrete rule types, such as SingleLineRule, WordRule, MultiLineRule, and so on,
differ in how they treat space characters and line-separation characters. For example, the
SingleLineRule does not search for patterns across line breaks, and the WordRule does not search
across word breaks. In addition, there are special rules such as the NumberRule, which recognizes
numeric values.

225

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 225

A simple example for rule-based text presentation is given in the “Description Editor” section in
Chapter 10.

The ProjectionViewer
The class ProjectionViewer extends the class SourceViewer. Instead of a single visible text region,
it supports multiple regions that can be modified dynamically. In particular, this class is used to support
Folding, that is, collapsing and expanding text regions, as you’ve already seen in the Java editor (see
“Code Folding” in Chapter 2).

The class ProjectionViewer can add another column to the vertical ruler of the SourceViewer via
method addVerticalRulerColumn(). This column can be used to display the control elements for
the Folding operations. The additional operations are COLLAPSE, EXPAND, EXPAND_ALL, and TOGGLE.
(With operation TOGGLE you can switch the Folding mode on or off.)

Comfortable Text Fields and Combos
Since Eclipse 3 you have the option to instrument simple Text fields (“Text Fields and Labels” in
Chapter 8) and Combos (“Tables, Lists and Combos” in Chapter 8) with the comfortable input aids dis-
cussed above, especially with content assistants. Input fields that you want to utilize this functionality
must implement the interface IContentAssistSubject. As a matter of fact, this is not the case for the
classes Text and Combo. The solution is to wrap these widgets into adapter objects. Eclipse provides for
this purpose the classes TextContentAssistSubjectAdapter and
ComboContentAssistSubjectAdapter. Both are subclasses of class
AbstractControlContentAssistSubjectAdapter, which implements the interface
IContentAssistSubject. These adapters provide the methods required by content assistants, such
as getCaretOffset(), getLocationAtOffset(), getSelectedRange(), and getDocument().
Optionally, it is possible to display a visual clue at the left-hand side of an input field when the field is
equipped with a content assistant.

Actions and Menus
Action instances represent abstract user actions such as “Save to file,” “Search,” or “Go to marker.”
Actions can be represented on the user interface in many ways, for example, as a menu item, a toolbar
button, or both.

The IAction Interface
The IAction interface is contained in the package org.eclipse.jface.action. It defines a set of
methods with which the properties of an action can be set or retrieved. For example, you can assign a
unique identification (string) to an action via the method setId(). With the method setText() you
can define a display text that is shown when the action is represented as menu text or a toolbar button.
This text can contain display text for a keyboard shortcut, separated by an @ or \t character. If the key-
board shortcut consists of several keys, you must concatenate the key names using the + character. With
the method setToolTipText(), you can specify text that appears on the screen when the mouse

226

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 226

hovers over the action representation. In addition, you can use the method setDescription() to
specify longer descriptive text. This text is shown in a status line when the action is selected.

With the setImageDescriptor() method you can set an icon that represents the action on a toolbar.
With setDisabledImageDescriptor() you can specify a special variant of that icon that is shown
when the action is disabled. With setHoverImageDescriptor() you can specify an icon variant that
is shown when the mouse hovers over the action. You can disable or enable an action by invoking
setEnabled(). With setChecked() you can set an action to checked or reset the action. How the
checked state is represented on the user interface depends on the representation of the action itself: in
menus a check mark is displayed; in toolbars the button remains pushed.

With the setAccelerator() method you can specify a keyboard shortcut for the action. If this short-
cut consists of several keys, you must combine the key codes using the | operator for binary OR. To
specify alphanumeric keys you specify just the character. Codes for other keys are defined in the class
SWT. For example, you can specify SWT.CTRL | 'Z' for the keyboard shortcut Ctrl+Z.

With the method setHelpListener() you can register the action’s HelpListener. This listener will
receive an appropriate event object when the F1 key is pressed for the selected action.

Finally, each IAction instance must implement the run() method. This action is called when the end
user activates the action.

The Managers
I discussed menus and toolbars in the “Toolbar” and “Menus” sections in Chapter 8. The question here
is how to organize the cooperation between menus, toolbars, status lines, and actions. All this coopera-
tion is handled by IContributionManager instances that come in various derived types such as
IMenuManager, IToolBarManager, ICoolBarManager, and IStatusLineManager and their stan-
dard implementations MenuManager, ToolBarManager, CoolBarManager, and
StatusLineManager.

MenuManager
I will now briefly discuss the MenuManager (ToolBarManager and CoolBarManager work quite
similarly) and then the StatusLineManager.

You can create a new menu manager with the constructor MenuManager(). Optionally, you may pass a
text and an identification with this constructor. Then you tell the menu manager to create a menu. With
the method createContextMenu() you can create a context menu, and with createMenuBar() you
can create a menu bar.

The addMenuListener() method allows you to register an IMenuListener instance with the menu
manager. The menuAboutToShow() method of this instance is called before the menu is displayed. You
will usually construct the menu each time from scratch when this method is invoked—and especially
when the menu content depends on the context. This is not difficult: you just add IAction instances
(and possibly also Separator instances) to the menu manager using the add() method. One thing still
remains to be done: you must tell the menu manager to remove all entries after the menu has been
shown. This is achieved with the method setRemoveAllWhenShown(). Otherwise, you would create
double entries the next time the method menuAboutToShow() is invoked.

227

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 227

In the implementation of the SpellCorrectionView class in Chapter 13 I show how to construct a context
menu with the help of a menu manager as a practical example.

StatusLineManager
The StatusLineManager creates a StatusLine object when the method createControl() is
called. The StatusLineManager provides several methods for the output of information messages and
error messages into this status line, such as setMessage() and setErrorMessage(). With the
method getProgressMonitor() you can access the progress monitor built into the status line. For
this progress monitor you can allow cancellation of an operation by the end user by calling the
setCancelEnabled() method. You can determine whether the end user has cancelled an operation
with isCancelEnabled().

Wizards
Wizards consist of a series of dialogs that guide the user through several steps of a task. The user can
step forward and backward within the task. Typical examples for such wizards are the New File Wizard,
the Import Wizard, and the Export Wizard.

The package org.eclipse.jface.wizard provides four classes with which you can implement such
wizards:

❑ The abstract class Wizard forms the basis on which all wizards are implemented. This class is
the standard implementation of the interface IWizard.

❑ The class WizardDialog implements the dialog that presents the wizard to the end user. This
dialog may have several pages.

❑ The abstract class WizardPage forms the basis on which all wizard pages can be implemented.

❑ Finally, there is the class WizardSelectionPage. This class allows the end user to select a spe-
cific wizard from a list of possible wizards.

The Wizard Class
The implementation of a new wizard begins by extending the class Wizard. This class offers various
wizards that you can use to configure the concrete wizard subclass. This configuration is usually done in
the method addPages(), which is called when the wizard is initialized.

addPage() This method can be used to add new pages of
type WizardPage to the wizard.

setHelpAvailable() This method can be invoked to indicate that help
is available for the wizard.

setDefaultPageImageDescriptor() This method is called to decorate the default
page with an image (ImageDescriptor).

228

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 228

setDialogSettings() These methods allow you to set and retrieve
getDialogSettings() instances of type IDialogSettings (see the

section “Making Dialogs Persistent”) to make
wizard properties persistent.

setNeedsProgressMonitor() This method is called to equip the wizard with a
ProgressMonitor.

setTitleBarColor() You can use this method to set the title bar color.

setWindowTitle() You can use this method to set a title.

Concrete subclasses of Wizard will, in addition, override some wizard methods to implement applica-
tion logic. In particular, you may want to override the methods performCancel() and
performFinish(), possibly also the methods createPageControls(), addPages(), and
dispose(). In the method performFinish() you will start all operations that need to be performed
after the Finish button has been pressed. The method performCancel() is called when the Cancel
button is pressed. In this method you may want to undo operations that have been performed on the
single wizard pages. In method createPageControl() the wizard content is constructed. The con-
struction of the single pages is done in the individual WizardPage instances, but the corresponding
method calls IDialogPage.createControl() are invoked from the createPageControls()
method.

The WizardPage Class
To implement a concrete wizard you construct wizard pages by subclassing the abstract class
WizardPage. When a page instance is created, you pass a unique identification with the constructor
and optionally a page title and a title image (ImageDescriptor).

This class also offers various methods that support the configuration of the wizard page:

setDescription() This method can be used to supply a long explanatory text
that is shown below the page title.

setErrorMessage() With this method you can set an error message. This error
message replaces an information message previously set with
setMessage(). To reset the error message, supply null as a
parameter.

setImageDescriptor() With this method you can set an image (ImageDescriptor)
to be displayed on the page. Here you won’t use small 16x16
icons but rather images of size 48x48 pixels or larger.

setMessage() With this method you can display an information message to
the end user. Typically, you would use it to ask the end user to
do something.

setPageComplete() This method can be used to set an internal indicator when the
end user completes the page. This indicator can be retrieved
via the method isPageComplete().

setPreviousPage() This method sets the page to be shown when the end user
presses the Back button.

setTitle() This method can be used to set the page title.

229

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 229

Here, too, the concrete subclasses can override several methods of class WizardPage to implement spe-
cific implementation logic. In particular, you may want to override the following methods:

performHelp() This method shows the help information for the wizard
page.

canFlipToNextPage() This method enables the Next button.

isPageComplete() This method finds out whether the end user completed
the page. The standard implementation returns just the
value set by the method setPageComplete().

setDescription() See above.

setTitle() See above.

dispose() This method can be extended if you need to release page-
specific resources.

The WizardSelectionPage Class
The WizardSelectionPage class is an abstract subclass of class WizardPage. It is used as a basis for
wizard pages that allow the selection of nested wizards. This allows you to concatenate wizards with
each other. The class WizardSelectionPage introduces only two new methods: using
setSelectedNode() and getSelectedNode() you can set or retrieve the selection on the page.
When creating such a page, you would usually construct a list of available wizards. When a wizard gets
selected, you would create a corresponding IWizardNode and set it in the WizardSelectionPage
with setSelectedNode().

The WizardDialog Class
Instances of type WizardDialog act as GUI containers for a wizard and support the end user in step-
ping through the wizard’s pages. To execute a wizard, you first create a new instance of this wizard.
Then you create a new instance of the class WizardDialog and pass the Wizard instance in the con-
structor as a parameter. Then you can open the WizardDialog instance via method open():

IWizard wizard = new FancyWizard();
WizardDialog dialog = new WizardDialog(shell, wizard);
dialog.open();

You would usually use the class WizardDialog in its original form. However, in special cases it may be
necessary to create subclasses and to override individual methods. In particular, it may become neces-
sary to override the methods backPressed() and nextPressed() if you need to perform special
processing during a page change.

Preferences
To manage application-specific preferences, several components need to cooperate. The package
org.eclipse.jface.preference provides these components. First, there is the class

230

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 230

PreferenceStore, which can store preferences in the form of name/value pairs. Next, there is the
class PreferenceConverter, which can convert popular object types into string values. The user
interface can be constructed with the help of the classes PreferencePage, PreferenceDialog,
PreferenceManager, and PreferenceNode. Using FieldEditors in PreferencePages can save
some hard-coding.

The PreferenceStore and PreferenceConverter Classes
To be precise, PreferenceStore doesn’t store preferences as name/value pairs but as triples, which
consist of an identifier, a value, and a default value. The identification must be unique within the context
of a PreferenceStore instance. When you read a preference from the store, you will get the previ-
ously set value (usually a value that has been set by the end user). If such a value does not exist, the
default value defined by the application is returned.

The interface IPreferenceStore defines various data type–specific access methods for values and
default values. The methods getDefaultxxx() return the default value, and the getxxx() methods
return the previously set value or the default value if no value has been set. With setDefaultxxx()
you can set the default value, and with setxxx() you can set the current value. All these methods have
variants for the following data types: boolean, int, long, float, double, and String.

For example

store.setDefaultBoolean("use_animation",true);

or

double speed = store.getDouble("animation_speed");

Of course, these data types are not sufficient by themselves. The class PreferenceConverter there-
fore provides a set of conversion methods, with which you can convert popular object types into string
values and vice versa. In particular, the types RGB (colors), FontData (fonts), Point (coordinates), and
Rectangle (areas) are supported.

Since the modification of preference values can influence the behavior and the appearance of an
application, you must have a means to react to changes of preference values. It is therefore possible
to register an IPropertyChangeListener instance with the PreferenceStore via the method
addPropertyChangeListener(). This instance is notified immediately when a preference value
within the PreferenceStore is changed: it receives an event object of type PropertyChangeEvent
via the method propertyChanged(). This object passes information about the identification of the
modified preference value, both the new value and the old value. You can thus react to such a modifica-
tion and adapt the application’s appearance accordingly.

You can specify a filename when you create a new PreferenceStore instance. Using the methods
load() and save() you can load the preference store content from the specified file or save its content
to the file. Only the actual values are written to file, not the default values: the default values of the
preference store must always be set by the application. This is best done during the initialization of the
application so that the PreferenceStore is always correctly configured.

231

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 231

The PreferencePage Class
The abstract PreferencePage is the base class for implementing your own preference pages. By
default, this class is equipped with four buttons. The end user can commit the entered values with the
OK button. The Cancel button is used to abort the modification of preference values. The Apply button
allows the user to modify the values in the PreferenceStore without closing the preference dialog.
The Default button can be pressed to reset all values to the default values.

The last two buttons can be suppressed by calling the method noDefaultAndApplyButton(). This
method must be called before the method createControl() is invoked; it is a good idea to call it in
the constructor.

Each concrete subclass of PreferencePage must implement the method createControl(). Here
you will set up all the input fields for the preference values, usually with the help of field editors (see the
following section).

In addition, you should extend or override the method doComputeSize(). This method computes the
size of the area constructed in the createControl() method.

Field Editors
You could construct a PreferencePage manually with the help of SWT widgets and set the
PreferenceStore values using the setxxx() methods. But it is far simpler to construct a preference
page based on the abstract class FieldEditorPreferencePage and to use field editors.

To do this, just define your own preference page as a subclass of FieldEditorPreferencePage and
override the method createFieldEditors(). Within this method add field editors, one for each pref-
erence value, to the page by using addField().

All field editors are based on the abstract class FieldEditor. When creating a new field editor, you
must pass as parameters in the constructor the identification of the preference value (see the section
“The PreferenceStore and PreferenceConverter Classes”), a display text, and the containing Composite.
You must fetch this Composite with the method getParent() from the preference page for each field
editor, because the FieldEditorPreferencePage may create a new Composite each time a new
field editor is added.

JFace provides the following concrete subclasses of FieldEditor:

BooleanFieldEditor A field editor for a Boolean value. This field editor is
represented as a check box.

ColorFieldEditor A field editor for entering a color value. By pressing a
button, the end user can select the color from a host
system–specific color selection dialog.

DirectoryFieldEditor A field editor for selecting a directory. This field editor is a
subclass of the StringButtonFieldEditor.

FileFieldEditor A field editor for selecting a file. This field editor is a
subclass of the StringButtonFieldEditor.

232

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 232

FontFieldEditor A field editor for entering a type font. By pressing a button,
the end user can select the font from a host system–specific
font selection dialog.

ListEditor An abstract field editor for entering multiple values that
are organized as a list. Concrete subclasses must implement
the methods parseString(), createList(), and
createNewInputObject().

IntegerFieldEditor A field editor for entering an integer value. This field editor
is a subclass of StringFieldEditor.

PathEditor This field editor is a subclass of ListEditor. With the
help of this editor the end user can compile a list of file and
directory paths from the host operating system. Besides
New and Remove buttons, this editor features Up and
Down buttons with which the order in the path list can be
changed. An additional title line for the pop-up path
selection dialog must be specified in the constructor of this
class.

RadioGroupFieldEditor A field editor that presents an enumeration of radio buttons
for selection. This class requires some additional
parameters in the constructor: the number of columns and
a two-dimensional array containing all the number/value
pairs available for selection. You may optionally specify an
additional parameter that places the specified radio buttons
into a Group widget (see section “Composites, Groups, and
Canvas” in Chapter 8).

ScaleFieldEditor A field editor employing a Scale (see section “Sliders and
Scales” in Chapter 8) as an input device. Optional
parameters in the constructor can be used to specify
minimum and maximum, as well as simple increment and
page increment.

StringButtonFieldEditor An abstract field editor that displays a Change button next
to the input field. Pressing this button will lead to a pop-up
dialog in which the new value can be entered.

StringFieldEditor A field editor for entering a string value.

An example of the use of field editors in connection with the FieldEditorPreferencePage is shown
in the “Preferences” section in Chapter 13.

Preference Page Trees
The classes PreferenceNode, PreferenceManager, and PreferenceDialog can be used to orga-
nize multiple PreferencePages into a preference page tree. In a larger application (and, in particular,
on an open platform such as Eclipse) it is neither possible nor desirable to place all preferences on a
single page. It is better to distribute the preferences across multiple pages and to order these pages
according to topic. A tree structure is best suited to support the organization of preference pages.

233

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 233

The PreferenceNode Class
The class PreferenceNode with the corresponding interface IPreferenceNode is used to implement
such a tree structure. Each node within a preference page tree is implemented by an instance of this
class. The class features all the usual methods to construct and manage trees such as add(), remove(),
getSubNodes(), and findSubNode().

Each PreferenceNode has a unique identification that is specified in the constructor when an instance
is created. In addition, you can specify a PreferencePage instance that belongs to this node in the
constructor. Later, you can retrieve this page via the method getPage(), and you can modify the page
via the method setPage().

A further variant of the constructor allows you to create PreferencePage instances lazily, that is, at the
time they are first displayed. This can be achieved by specifying the class name of the concrete
PreferencePage in lieu of the PreferencePage instance. Using the Java Reflection facility, the
PreferenceNode will create the PreferencePage instance when it is actually needed. This makes
sense for applications with many preference pages, the Eclipse workbench being one of them.

In addition to the PreferencePages, the PreferenceNode instances take care of the display informa-
tion needed for the presentation of the preference page tree. This information consists of a label and an
icon (ImageDescriptor). These objects can also be specified in the constructor.

The PreferenceManager Class
This class provides methods that allow you to navigate within preference page trees by just specifying a
path. Each path consists of a series of PreferenceNode identifications that are separated with a separa-
tor character. This character can be specified in the constructor of the PreferenceManager.

Other methods allow the modification of preference page trees: in particular, the methods addTo(),
remove(), and find() use path expressions. You can add child nodes to a node specified by a path
with addTo(). Similarly, remove() removes the child node addressed by the specified path from its
parent node. The method find() returns the node at the specified path. There are additional utility
methods such as removeAll() or addToRoot(). All these PreferenceManager methods allow you
to completely construct and manage a preference page tree.

The PreferenceDialog Class
The class PreferenceDialog is an extension of the class Dialog (see the section “Dialogs and
Windows”). In addition to the Dialog methods, it features the methods setPreferenceStore() and
getPreferenceStore() to set and retrieve a PreferenceStore instance. You must also specify a
PreferenceManager instance as an additional parameter in the PreferenceDialog() constructor.
This instance is used by the PreferenceDialog to organize the user interaction. The
PreferenceDialog displays the tree managed by PreferenceManager on the left-hand side of the
dialog. When the user clicks on a tree node, the attached PreferencePage is opened on the right-hand
side of the dialog.

234

Chapter 9

11_020059_ch09.qxd 10/8/04 11:10 AM Page 234

Summary
In this chapter you have become acquainted with some of the higher-level components of the JFace layer.
Most of the components of this layer are used within the Eclipse workbench, but all of them—together
with SWT components—can be used within your own applications. We have looked at dialogs and
windows, various viewers such as table, tree, text, and source viewers, actions and menus, wizards,
preferences, and drag-and-drop facilities.

In the next chapter you will apply some of these components in a larger example.

235

JFace

11_020059_ch09.qxd 10/8/04 11:10 AM Page 235

11_020059_ch09.qxd 10/8/04 11:10 AM Page 236

Project Two: Jukebox

In this chapter I use a longer example to demonstrate the various techniques employed in the use
of SWT and JFace. The example is a Java version of a jukebox, a device that can play sound files or
lists of sound files, known as playlists. The idea is to implement the player’s user interface using
SWT and JFace. However, I don’t want to implement the player as an Eclipse plug-in but as a
standalone application.

To make the jukebox a bit more interesting, I allow for the association of a background image and
descriptive text with each entry in the playlist. By doing this I achieve nearly the same multimedia
experience as with an old vinyl album collection, but without the crackles and hisses.

Design Goals and How to Achieve Them
Before beginning the implementation, you should first perform a short requirements analysis:

❑ The jukebox should be able to play diverse sound file formats, including MP3.

❑ It should be possible to associate a title, a background image, and descriptive text with
each sound file.

❑ It should be possible to mark up descriptive texts in some way. End users should get some
assistance when editing descriptions, for example, when inserting keywords into the text.

❑ It should be possible to define individual playlists, to store the playlists, and to navigate
within the playlists.

During the implementation of these design goals, you must take several technological constraints
into consideration:

1010

12_020059_ch10.qxd 10/8/04 11:26 AM Page 237

❑ For replaying sound files you need external modules. For this project I have selected the
JavaZoom sound modules (www.javazoom.net). These modules support many sound
formats, including MP3, and are completely written in Java. The modules are freely available
and come with source code. They also include a nice player skin. However, the player GUI is
different from what is implemented here.

❑ For the storage of playlists there are different options. For example, you could store the different
playlist entries in a relational database and could query this database via SQL. Another possibil-
ity is to store a whole playlist in a single XML document. You can organize access to the playlist
entries via a DOM API. I suggest the latter option for this implementation.

Apart from implementing a jukebox and listening to music, there is also some real work to do—that is,
applying the topics discussed in previous chapters to a real-world example. In particular, I discuss the
following issues:

❑ Creation of GUI elements, layouts, and SWT event processing. This applies in particular when
implementing the main window of the jukebox.

❑ Using irregular (non-rectangular) shell shapes for the main window of the jukebox.

❑ The application of a TableViewer for the presentation of playlists. This includes the
implementation of custom cell editors for modifying playlists.

❑ Using drag-and-drop functionality when adding items to the playlist.

❑ Syntax highlighting in an editor based on a SourceViewer. For this editor I also demonstrate
the implementation of a Content Assistant. I also equip the viewer with an Undo and Redo
function.

❑ Displaying HTML contents with the help of the Browser widget.

❑ Communication between the SWT thread and other threads within the player.

Figure 10.1 shows the UML class diagram for the Jukebox application.

Installing the Project
First, you need the module for replaying sound files. You can download the module jlGui 2.2 from
www.javazoom.net/jlgui/sources.html. The ZIP file found there is completely adequate for
your purposes: the installer module is not required. After downloading the file, unzip it into an empty
directory.

Now, you can create a new Eclipse Java project called Jukebox. You should already know how to do
this. After entering the name on the first page of the New Java Project Wizard, just click Next. On the
second page you need to complete the Java Build Path.

238

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 238

239

Project Two: Jukebox

 getPlaylist()

 updateCursor()

 updateMediaData()

 updateMediaState()

com::bdaum::jukebox::Player

 PlaylistModel()

 addSelectionChangedListener()

 deleteCurrent()

 dispose()

 getElements()

 getFeature()

 getFeature()

 getPlaylistName()

 getSelection()

 hasNext()

 hasPrevious()

 inputChanged()

 insert()

 moveDownwards()

 moveUpwards()

 next()

 previous()

 removeSelectionChangedListener()

 setCurrent()

 setFeature()

 setSelection()

com::bdaum::jukebox::PlaylistModel

 deleteCurrent()

 getFeature()

 getFeature()

 getPlaylistName()

 hasNext()

 hasPrevious()

 insert()

 moveDownwards()

 moveUpwards()

 next()

 previous()

 setCurrent()

 setFeature()

«interface»

com::bdaum::jukebox::IPlaylist

model: IPlaylist

player: Player

viewer: PlaylistViewer

 PlaylistWindow()

 close()

 open()

 selectionChanged()

com::bdaum::jukebox::PlaylistWindow

 PlaylistViewer()

 setCellValidator()

 setErrorMessage()

 validateFeature()

com::bdaum::jukebox::PlaylistViewer

 PlaylistLabelProvider()

 addListener()

 dispose()

 getColumnImage()

 getColumnText()

 isLabelProperty()

 removeListener()

com::bdaum::jukebox::PlaylistLabelProvider

 javaToNative()

 nativeToJava()

com::bdaum::jukebox::PlaylistTransfer

description: String

image: String

soundfile: String

title: String

 PlaylistTransferItem()

 PlaylistTransferItem()

com::bdaum::jukebox::PlaylistTransferItem

 DescriptionWindow()

 open()

 update()

com::bdaum::jukebox::DescriptionWindow

 DescriptionEditorDialog()

 createDialogArea()

 getText()

 setText()

KeywordCodeScanner

KeywordContentAssistProcessor

KeywordViewerConfiguration

com::bdaum::jukebox::DescriptionEditorDialog

playlistModel: IPlaylist

 DescriptionCellEditor()

com::bdaum::jukebox::DescriptionCellEditor

- player

0..1

- model

0..1

- playlistModel

0..1

- playlistmodel0..1

- _instance0..1

- model

0..1

- playlistModel

0..1

- playlistModel0..1

Figure 10.1

12_020059_ch10.qxd 10/8/04 11:26 AM Page 239

You will need to add some Eclipse JARs to the Java Build Path. Obviously, you need the JARs for SWT
and for JFace, but you also need the JARs for text processing; these are:

❑ swt.jar (plus swt-pi.jar under Linux)

❑ jface.jar

❑ jfacetext.jar

❑ text.jar

❑ osgi.jar

❑ runtime.jar

The JARs osgi.jar and runtime.jar are needed by the JFace TableViewer used in this example.

All of these JARs are located in subfolders of the directory \eclipse\plugins. Because the names of
these subfolders differ depending on the Eclipse version and on the platform, I give only their short
names here. Your best option is to search for these JARs with the search function of your operating
system.

Second, you also need to add all the JARs from the lib directory of the unpacked jlGui ZIP file; these
are:

❑ jl020.jar

❑ jogg-0.0.5.jar

❑ jorbis-0.0.12.jar

❑ mp3sp.1.6.jar

❑ vorbissp0.7.jar

Figure 10.2 shows the Java Build Path for the Jukebox project.

After you have created this project, you can import (see section “Importing Files” in Chapter 4) three
more files from the src directory of the unpacked jlGui archive:

❑ javazoom/jlGui/BasicPlayer.java

❑ javazoom/jlGui/BasicPlayerListener.java

❑ javazoom/Util/Debug.java

By now, your project should have two Java packages: javazoom.jlGui and javazoom.Util.

Finally, you need a folder for images. Directly under the project, create a new folder named icons. In
this folder place a little warning icon that you “borrow” from Eclipse. Import the image named
alert_obj.gif from the directory \eclipse\plugins\org.eclipse.pde.ui_3.0.0\
full\obj16 into the newly created folder.

240

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 240

Figure 10.2

Actually, you do not necessarily have to invoke the Import Wizard to perform this task. Depending on
the host operating system, you can just drag and drop the object that you want to import from the native
directory into the target folder of the Eclipse navigator.

The Player Module
To get an idea of what the player should look like, I made a sketch of its layout (see Figure 10.3). The
windows for the descriptive text of the current tune and the window for the playlist should be shown
only on demand. So, you should include some buttons for opening and closing these windows.

Layout
For the main window, use a non-rectangular shape by applying Region definitions. In the main win-
dow install a Canvas object. You will use this canvas to display the background image. On top of the
Canvas object mount the player’s instrumentation and the status display. The instrumentation includes
the usual player buttons, Start, Stop, Pause, Forward, and Backward, and the buttons for opening and
closing the additional windows. Combine all the buttons in a toolbar.

241

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 241

In addition, install a Scale instance. This scale should always display the current position of the tune
being played. In addition, it should allow the user to freely navigate (scroll) in the tune. However, the
jlGui2.2 engine supports this functionality only for WAV files. In the case of other sound file formats,
therefore, you need to lock the scale against modifications by the user.

Figure 10.3 shows a rough sketch of the layout of the jukebox. It shows the main window, the windows
for the playlist, and the current tune’s descriptive text.

242

Chapter 10

Figure 10.3

The status display includes the status panel in the upper-right corner and the title display in the upper-
left corner. The status panel shows the total length of the current tune and the current operational state.
Both the status display and the toolbar appear only as long as the mouse hovers over the canvas. When
the mouse is gone, the background image is shown in its full beauty.

Threads
All of these GUI elements must be updated during the operation of the player. For example, the opera-
tional state changes when the current tune is finished. The scale’s handle must move from left to right
during the player’s operation, and the push buttons for the additional windows must be released when
these windows are closed.

While the player is operating, two threads are active:

❑ The main() thread in which our player operates. This thread also acts as the SWT thread in
which all SWT operations are performed.

❑ The thread of the jlGui engine. This must be a separate thread; otherwise, the jukebox would
be locked against user interaction as long as a tune is playing.

12_020059_ch10.qxd 10/8/04 11:26 AM Page 242

Of course, this setup causes some complications. The jlGui engine produces events that must be reflected
in the user interface, so the SWT thread must react to those events. Unfortunately, SWT accepts method
calls only from its own thread: method calls from other threads are rejected by throwing an exception.

The problem is solved by first storing the events from the jlGui engine in a field of the Player instance.
Then the method updateGUI() is called. This method creates a new Runnable instance by calling the
method display.asyncExec(). Within the run() method of this Runnable the GUI elements are
updated and—if necessary—a new replay process is started. This is possible because this run() method
is executed in the SWT thread (see also “Displays, Shells, and Monitors” in Chapter 8).

In the following sections we walk step by step through the player’s source code.

The Player.java Class
Listing 10.1 contains the Player class which starts, of course, with the necessary package and import
declarations, followed by the class declaration and the declarations of all instance variables. Here the
fields holding the various GUI elements such as buttons, scale, and windows are defined. In addition,
there are a few fields for storing the current state of the player.

package com.bdaum.jukebox;

import java.io.File;
import java.io.IOException;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.UnsupportedAudioFileException;
import javazoom.jlGui.BasicPlayer;
import javazoom.jlGui.BasicPlayerListener;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.*;

/**
* Player module. This module demonstrates the various techniques
* of the SWT, in particular the coordination between SWT thread
* and other threads.
*/
public class Player implements BasicPlayerListener {

// Operation states
private static final int PLAY = 1;

private static final int PAUSE = 2;
private static final int STOP = 3;
private static final int EOM = 4;
// Text representation of operation state
private static final String PLAYING = "Playing";

private static final String PAUSED = "Paused";
private static final String IDLE = "Idle";
// Features in the playlist data model

243

Project Two: Jukebox

Listing 10.1 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 243

public final static String TITLE = "title";
public final static String SOUNDFILE = "soundfile";
public final static String IMAGEFILE = "image";
public final static String DESCRIPTION = "description";
/* Data model of the player model */

// Current operation state
private int state = STOP;
// The player engine
private BasicPlayer soundPlayer;

// The playlist's data model
private IPlaylist playlistModel;
// Duration of current tune
private double lengthInSec = 0;
// Current position
private int currentPosition = 0;
// Maximum position
private int maxPosition = 0;
// Text representation of current operation state
private String mediaState = "Stopped";
// Current background image
private String currentImage;
// Title of current tune
private String currentTitle = "";

/*** GUI elements ***/
/* Widgets of player windows */

// Player shell
private Shell toplevelShell;

// Outline of shell
private static final int[] OUTLINE = new int[]{

5, 0,
355, 0,
360, 5,
360, 20,
330, 295,
325, 300,
15, 290,
10, 285,
0, 5};

// The hole in the shell
private static final int[] HOLLOW = new int[]{

13, 10,
247, 10,
250, 13,
255, 27,
252, 30,
13, 30,
10, 27,
10, 13};

// Current Display instance
private Display display;
// Canvas for background image

244

Chapter 10

Listing 10.1 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 244

private Canvas canvas;
// Taste zum Schließen der Shell
private Button closeButton;
// Status Panel
private Composite statusPanel;
private Label statusLabel, lengthLabel;
// Toolbar with buttons
private ToolBar toolbar;
private ToolItem backButton, playButton, pauseButton,

stopButton, forwardButton, playlistButton,
descriptionButton;

// Scale
private Scale scale;
// Additional windows
private DescriptionWindow descriptionWindow;
private PlaylistWindow playlistWindow;

/**
* main method for starting the player
*
* @param args - unused
*/
public static void main(String args[]) {
Player player = new Player();
player.run();

}

Listing 10.1 (Continued)

The method run() is similar to the SWT programs shown in Chapter 8. A Shell instance is created and
the content of this shell is constructed in the constructPlayer()method. After opening the shell, the
process stays in the event loop, thus ensuring that the GUI is supplied with all occurring events.

In the case of multiscreen displays, the shell is opened on the primary monitor. You set the outline of the
shell by applying Region objects to the shell. These Region objects are created from the array constants
OUTLINE and HOLLOW, which were declared previously. Since such a shell must always be created with
the style constant SWT.NO_TRIM, you must organize all window management yourself. For example,
you can enable the user to reposition the window on the desktop by creating a Listener object in a
listener variable. This listener is the registered with the shell for the events SWT.MouseUp,
SWT.MouseDown, and SWT.MouseMove. Later, you must care for the window’s Close button as well.

In addition, you must initially create the domain model of the playlist (see section “The Playlist Domain
Model”). Before the shell is opened, create an instance of the jlGui engine by calling new
BasicPlayer(). During its creation the player instance registers as a BasicPlayerListener with
the engine. See Listing 10.2.

/**
* Initialize Player
*/

245

Project Two: Jukebox

Listing 10.2 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 245

private void run() {
// Create Playlist domain model
playlistModel = new PlaylistModel();
// Create Display instance
display = new Display();
// Create top level shell with the usual controls
toplevelShell = new Shell(display, SWT.NO_TRIM);
// Set title (appears in tasks bar)
toplevelShell.setText("Jukebox");
// Hintergrundfarbe setzen
Color bgColor = new Color(display, 160, 160, 255);
toplevelShell.setBackground(bgColor);
// Create region for the player shell outline
Region region = new Region();
region.add(OUTLINE);
region.subtract(HOLLOW);
// Apply region to shell
toplevelShell.setRegion(region);
// Retrieve size of region
Rectangle size = region.getBounds();
// Position shell on the primary monitor
Monitor mon1 = display.getPrimaryMonitor();
Rectangle r = mon1.getClientArea();
toplevelShell.setBounds(r.x + 20, r.y + 20, size.width,

size.height);
// Since the shell does not have a trim
// we must handle the repositioning of the window ourselves
Listener listener = new Listener() {
Point origin;

public void handleEvent(Event e) {
switch (e.type) {
case SWT.MouseDown :

// Remember mouse position
origin = new Point(e.x, e.y);

break;
case SWT.MouseUp :

// Indicate operation stopped
origin = null;
break;

case SWT.MouseMove :
if (origin != null) {

// Shift shell by difference to origin
Point p = display.map(toplevelShell, null, e.x,

e.y);
toplevelShell.setLocation(p.x - origin.x, p.y

- origin.y);
}
break;

}
}

};
toplevelShell.addListener(SWT.MouseDown, listener);
toplevelShell.addListener(SWT.MouseUp, listener);

246

Chapter 10

Listing 10.2 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 246

toplevelShell.addListener(SWT.MouseMove, listener);
// Create rest of Player GUI
constructPlayer(toplevelShell);
// Create the jlGui-engine
soundPlayer = new BasicPlayer(this);
// Display shell
toplevelShell.open();
// Event loop
while (!toplevelShell.isDisposed()) {
// Check for waiting events
if (!display.readAndDispatch()) display.sleep();

}
// If necessary stop playing
stop();
// Force session exit -
// otherwise the Java audio system would remain active
System.exit(0);

}

/**
* Retrieves the playlist
*
* @return IPlaylist - the playlist model
*/
public IPlaylist getPlaylist() {
return playlistModel;

}

Listing 10.2 (Continued)

Create the GUI
Now the surface of the player is instrumented in the method constructPlayer(). First, the
Composite for the status display and the window’s Close button is created. These elements are con-
structed in the methods createStatusPanel() and createCloseButton().

Then a Canvas instance is created. This instance will contain the background image and will serve as a
surface for graphical operations. On this Canvas instance the controls are placed with the help of the
methods createToolbar() and createScale(). A PaintListener is registered with the Canvas
instance, because the correct method for drawing something onto a Canvas is to do this in the
paintCanvas() method of a PaintListener.

In addition, a MouseTrackListener is registered with the Canvas. The listener allows you to hide the
control elements when the mouse leaves the canvas area. When you move the mouse back to the canvas,
the control elements reappear. The additional tests in the method mouseExit() are required to check
that the mouse has really left the canvas area, because this method is also called when the mouse is
moved over controls that hide the canvas area. See Listing 10.3.

/** * GUI erzeugen ** */
/**

247

Project Two: Jukebox

Listing 10.3 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 247

* Constructs the Player-GUI.
*
* @param parent - containing Composite
*/
private void constructPlayer(Composite parent) {
// We use a GridLayout for the containing Composite
GridLayout gridLayout = new GridLayout();
gridLayout.marginHeight = 0;
parent.setLayout(gridLayout);
// Composite for CloseButton and StatusPanel
Composite comp = new Composite(parent, SWT.NONE);
gridLayout = new GridLayout(2, false);
gridLayout.marginWidth = 10;
comp.setLayout(gridLayout);
comp.setBackground(parent.getBackground());
// Layoutdaten for Composite
GridData data = new GridData();
data.horizontalAlignment = GridData.END;
data.verticalAlignment = GridData.BEGINNING;
data.grabExcessHorizontalSpace = true;
comp.setLayoutData(data);

// Create status panel
createStatusPanel(comp);
// Create button for closing the window
createCloseButton(comp);

// Create canvas
canvas = new Canvas(parent, SWT.NONE);
// Set preferred canvas size
data = new GridData();
data.widthHint = 355;
data.heightHint = 235;
canvas.setLayoutData(data);

// The Canvas instance acts as a Composite, too.
// So we apply a GridLayout to it, too.
gridLayout = new GridLayout();

gridLayout.marginHeight = 2;
gridLayout.verticalSpacing = 0;
canvas.setLayout(gridLayout);

// Construct Toolbar
createToolbar(canvas);
// Construct scale
createScale(canvas);

// Add PaintListener to Canvas to support drawing
canvas.addPaintListener(new PaintListener() {

public void paintControl(PaintEvent e) {
paintCanvas(e.gc);

}
});
// Add MouseTrackListener to Canvas
canvas.addMouseTrackListener(new MouseTrackAdapter() {
public void mouseEnter(MouseEvent e) {
setCanvasControlsVisible(true);

}

248

Chapter 10

Listing 10.3 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 248

public void mouseExit(MouseEvent e) {
Rectangle rect = canvas.getClientArea();
// Check if mouse has really left the canvas area
if (!rect.contains(e.x, e.y))
setCanvasControlsVisible(false);

}
});
setCanvasControlsVisible(false);

}

/**
* Create window close button
*
* @param parent - the containing Composite
*/
private void createCloseButton(Composite parent) {
closeButton = new Button(parent, SWT.PUSH | SWT.FLAT);
closeButton.setText("x");
closeButton.addListener(SWT.Selection, new Listener() {
public void handleEvent(Event e) {
toplevelShell.close();

}
});

}

/**
* Shows or hides the control elements on top of the canvas.
*
* @param v - true for showing, false for hiding
*/
private void setCanvasControlsVisible(boolean v) {
toolbar.setVisible(v);
scale.setVisible(v);

}

Listing 10.3 (Continued)

Graphics Operations
Let’s now look at paintCanvas(), which is always invoked when the canvas needs to be redrawn. If
you have an image file, just create from this image file a new Image instance. Then draw this image onto
the graphics context (GC) of the Canvas instance. Immediately afterward, dispose of the Image instance
(see also the “Graphics” section in Chapter 8).

Then draw the title line over this background. System colors are used for the background color and the
text color, so you don’t need to dispose of these colors. See Listing 10.4.

/** * Graphic Operations ** */
/**
* Draw all graphical elements on the canvas.
*

249

Project Two: Jukebox

Listing 10.4 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 249

* @param gc - The graphics context
*/
private void paintCanvas(GC gc) {
Rectangle area = canvas.getClientArea();
// Check if we have an image file
if (doesFileExist(currentImage)) {
// Scale and draw image
Image image = new Image(display, currentImage);
Rectangle bounds = image.getBounds();
gc.drawImage(image, bounds.x, bounds.y, bounds.width,

bounds.height, area.x, area.y, area.width,
area.height);

// Dispose image
image.dispose();

} else {
// Otherwise fill background with gray color
gc.setBackground(toplevelShell.getBackground());
gc.fillRectangle(area);

}
// Draw title of current sound file
if (currentTitle != null && currentTitle.length() > 0) {
gc.setBackground(display

.getSystemColor(SWT.COLOR_DARK_GRAY));
gc.setForeground(display.getSystemColor(SWT.COLOR_WHITE));
gc.drawText(" " + currentTitle + " ", 5, 12, false);

}
}

/**
* Checks if a file with the specified name exists.
*
* @param filename - File name
* @return boolean - true, if the file exists
*/
private static boolean doesFileExist(String filename) {
return (filename != null && filename.length() > 0 && openFile(

filename).exists());
}

/**
* Convert file name into File instance
*
* @param file - File name
* @return File - File instance
*/
private static File openFile(String file) {
return new File(file);

}

Listing 10.4 (Continued)

250

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 250

Instrumentation
Now, place the control element onto the Canvas instance. The scale is used to display the current posi-
tion in the sound file. In case of WAV files, it is possible to scroll within the sound file by moving the
scale’s handle. For this purpose add a SelectionListener to the Scale instance. You can perform
the positioning within a tune in the widgetSelected() method of this listener by invoking the
seek() method. See Listing 10.5.

/** * Instrument Canvas ** */
/**
* Creates a scale that shows the current position

* in the sound file.
*
* @param parent - the containing Composite
*/
private void createScale(Composite parent) {
scale = new Scale(parent, SWT.NONE);
// Set scale size
GridData data = new GridData();
data.horizontalIndent = 18;
data.widthHint = 300;
data.heightHint = 20;
scale.setLayoutData(data);
// Event processing for scale handle movements
scale.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
seek();

}
});

}

Listing 10.5

The toolbar contains the usual buttons for operating a player (Listing 10.6). In addition, two more
buttons are implemented, allowing the end user to open and close the playlist and description windows.
These buttons are created with the style constant SWT.CHECK to achieve a toggling behavior. You can
separate these two buttons from the rest of the buttons with another button that has the style constant
SWT.SEPARATOR.

The event processing for all buttons is done in the method processButton(). Depending on the
button—and in case of the last two buttons, also depending on the state of the button—this method calls
the appropriate methods for controlling the player and opening and closing the windows, respectively.

By specifying a GridData instance appropriately, you can position the toolbar at the lower border of the
player area.

/**
* Create toolbar with all buttons
*

251

Project Two: Jukebox

Listing 10.6 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 251

* @param parent - the containing Composite
*/
private void createToolbar(Composite parent) {
// Create Toolbar instance
toolbar = new ToolBar(parent, SWT.NONE);
// Create all buttons
backButton = makeToolItem(toolbar, SWT.PUSH, "<<", "Previous");
playButton = makeToolItem(toolbar, SWT.PUSH, ">", "Play");
pauseButton = makeToolItem(toolbar, SWT.PUSH, "||", "Pause");
stopButton = makeToolItem(toolbar, SWT.PUSH, "[]", "Stop");
forwardButton = makeToolItem(toolbar, SWT.PUSH, ">>", "Next");
makeToolItem(toolbar, SWT.SEPARATOR, null, null);
playlistButton = makeToolItem(toolbar, SWT.CHECK,

"PlayList", "Show Playlist");
descriptionButton = makeToolItem(toolbar, SWT.CHECK,

"ShowText", "Show Description");
// Create layout data for toolbar
GridData data = new GridData();
data.horizontalIndent = 5;
data.verticalAlignment = GridData.END;
data.grabExcessHorizontalSpace = true;
data.grabExcessVerticalSpace = true;
toolbar.setLayoutData(data);

}

/**
* Convenience method for creating a toolbar button.
*
* @param bar - the ToolBar instance
* @param style - the button type
* @param text - text for button label
* @param tip - tool tip
* @return ToolItem - the created toolbar button
*/
private ToolItem makeToolItem(ToolBar bar, int style,

String text, String tip) {
ToolItem item = new ToolItem(bar, style);
if (style != SWT.SEPARATOR) {
item.setText(text);
item.setToolTipText(tip);
// Add event processing for button clicks
item.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
processButton(e);

}
});

}
return item;

}

/**
* This method processes all ToolItem events.
*
* @param e - the event object

252

Chapter 10

Listing 10.6 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 252

*/
private void processButton(SelectionEvent e) {
Widget widget = e.widget;
if (widget == playButton) {
play();

} else if (widget == stopButton) {
stop();

} else if (widget == pauseButton) {
pause();

} else if (widget == forwardButton) {
forward();

} else if (widget == backButton) {
back();

// The following buttons are of type CHECK.
// We must retrieve their state to react correctly.

} else if (widget == descriptionButton) {
if (descriptionButton.getSelection())
showDescription();

else
hideDescription();

} else if (widget == playlistButton) {
if (playlistButton.getSelection())
showPlaylist();

else
hidePlaylist();

}
}

Listing 10.6 (Continued)

Finally in Listing 10.7, create a small status panel that displays the current operating mode of the
player and the total length of the current sound file. With the help of a vertical RowLayout the display
elements are arranged in a vertical column.

/**
* Create status panel with total duration and operating mode.
*
* @param parent - the containing Composite
*/
private void createStatusPanel(Composite parent) {
// Create panel as a new Composite
statusPanel = new Composite(parent, SWT.NONE);
statusPanel.setBackground(parent.getBackground());
// Use a vertical row layout for the panel
RowLayout rowLayout = new RowLayout();
rowLayout.type = SWT.VERTICAL;
rowLayout.wrap = false;
rowLayout.pack = false;
statusPanel.setLayout(rowLayout);
// Now create the widgets of the status panel
lengthLabel = createStatusLabel(statusPanel, timeFormat(0));

253

Project Two: Jukebox

Listing 10.7 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 253

statusLabel = createStatusLabel(statusPanel, IDLE);
}

private Label createStatusLabel(Composite panel, String text) {
Label label = new Label(panel, SWT.RIGHT);
label.setBackground(panel.getBackground());
label.setForeground(display.getSystemColor(SWT.COLOR_WHITE));
label.setText(text);
return label;

}

/**
* Converts the duration into an appropriate display format.
*
* @param sec
* Seconds
* @return String mm:ss.s
*/
private static String timeFormat(double sec) {
int sec10 = (int) (sec * 10);
return twoDigitFormat(sec10 / 600) + ":"

+ twoDigitFormat((sec10 / 10) % 60) + "."
+ (sec10 % 10);

}

/**
* Format an integer into a two-digit string with leading zeros.
*

* @param n
* the integer value
* @return String - the result string
*/
private static String twoDigitFormat(int n) {
if (n < 10) return "0" + n;
return String.valueOf(n);

}

Listing 10.7 (Continued)

The method updateGUI() shown in Listing 10.8 is intended to make state changes in the jlGui engine
visible on the player’s GUI. Since the engine runs in a different thread and this method is invoked from
the thread, you cannot directly access the GUI elements because they run in the SWT thread. Therefore,
you must encapsulate all these accesses into a Runnable, which you pass to the Display instance via
the asyncExec() method. For each event, the status panel (see the previous code) is updated. When
the engine reaches the end of a sound file, the next sound file in the playlist is played.

/** * Update SWT-Thread ** */
/**

* Updates SWT-Widgets, caused by events from other threads, are
* executed via this method. By performing the updates under the
* SWT-thread (display.asyncExec()) we avoid an SWT thread error.

254

Chapter 10

Listing 10.8 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 254

*/
private void updateGUI() {
display.asyncExec(new Runnable() {
public void run() {
if (!toplevelShell.isDisposed()) {
// Update scale
scale.setMaximum(maxPosition);
scale.setSelection(currentPosition);
// Update operation mode
updateText(statusLabel, mediaState);
// Update total length
updateText(lengthLabel, timeFormat(lengthInSec));
// Check if we have to start the next sound file
if (state == EOM) {
state = STOP;
forward();

}
}

}
});

}

/**
* Updates the text of a label
*
* @param c - the Label instance
* @param s - the new text
*/
private void updateText(Label c, String s) {
// test against current content to avoid screen flicker
if (!c.getText().equals(s)) c.setText(s);

}

Listing 10.8 (Continued)

Now it’s time to implement some player functions that are invoked by pressing a button. All you have to
do in such a case is to update the player mode, update the status panel via the method updateGUI(),
and pass the invoked function to the jlGui engine.

Only the play() method is more elaborate. Here you need to fetch the data from the playlist model
(title, image, name of the sound file, and description). The Canvas instance is updated with a new
background image, and the window with the descriptive text is updated. Then, initialize the jlGui
engine and—depending on the file type of the sound file—disable or enable the scale. See Listing 10.9.

/** ** Button actions *** */
/**

* Positions in the sound file when the scale is modified
* by the end user (only for .WAV files).
*/

private void seek() {
try {

255

Project Two: Jukebox

Listing 10.9 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 255

double position = ((double) scale.getSelection())
/ ((double) scale.getMaximum());

soundPlayer.setSeek(position);
updateGUI();

} catch (IOException e) {
System.out.println(e.toString());

}
}

/**
* Stops playing.
*/
private void stop() {
if (state != STOP) {
soundPlayer.stopPlayback();
state = STOP;
mediaState = IDLE;
lengthInSec = 0;

}
updateGUI();

}

/**
* Pauses the playing process.
*/
private void pause() {
switch (state) {
case PLAY :
soundPlayer.pausePlayback();
state = PAUSE;
mediaState = PAUSED;
break;

case PAUSE :
soundPlayer.resumePlayback();
state = PLAY;
mediaState = PLAYING;

}
updateGUI();

}

/**
* Starts playing.
*/
private void play() {
if (state == PLAY)
// Current play processes are stopped
stop();

try {
switch (state) {
case PAUSE :
// If the playing process was paused, we resume it.
soundPlayer.resumePlayback();
break;

case STOP :

256

Chapter 10

Listing 10.9 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 256

// Otherwise we start all over again.
// Fetch name of background image and title

currentImage = playlistModel.getFeature(IMAGEFILE);
currentTitle = playlistModel.getFeature(TITLE);
// Update description window
updateDescription();
// Fetch name of sound file
String filename = playlistModel.getFeature(SOUNDFILE);
// Enforce a redraw of the canvas
canvas.redraw();
// Do nothing if the sound file does not

// exist any more.
if (!doesFileExist(filename)) return;
// Otherwise configure the engine
soundPlayer.setDataSource(openFile(filename));
soundPlayer.startPlayback();
soundPlayer.setGain(0.5f);
soundPlayer.setPan(0.5f);
// Fetch the total duration of the sound file
lengthInSec = soundPlayer.getTotalLengthInSeconds();
maxPosition = (int) lengthInSec;
// If the sound format is not WAV we deactivate

// disable the scale (no scrolling possible).
boolean canSeek = ((soundPlayer.getAudioFileFormat() != null)

&& (soundPlayer
.getAudioFileFormat().getType()
.toString().startsWith("WAV")));

scale.setEnabled(canSeek);
}
// Now set the operation modus and update the GUI.
state = PLAY;
mediaState = PLAYING;
updateGUI();

} catch (UnsupportedAudioFileException e) {
System.out.println(e.toString());

} catch (LineUnavailableException e) {
System.out.println(e.toString());

} catch (IOException e) {
System.out.println(e.toString());

}
}

/**
* If the playlist has a next element, we stop playing
* the current sound file and start again with the next.

*/
private void forward() {
if (playlistModel.next()) {
stop();
play();

}
}

/**

257

Project Two: Jukebox

Listing 10.9 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 257

* If the playlist has a previous element, we stop playing
* the current sound file and start again with the previous.

*/
private void back() {
if (playlistModel.previous()) {
stop();
play();

}
}

Listing 10.9 (Continued)

Managing Windows
The three methods shown in Listing 10.10 are used to open a window for the descriptive text, update
this text, and close the window. The description window is implemented as the class
DescriptionWindow, a subclass of Window. You need to create and initialize an instance of the class,
get its Shell instance, position the window to an appropriate location, and instrument the Shell
instance with a ShellListener that informs you when the window is closed. When the window is
closed, you must also reset the corresponding button on the toolbar.

/** ** Manage windows ** */
/**

* Creates a new DescriptionViewer if it not yet exists.
* Supplies the DescriptionViewer with new text content.
*/

private void showDescription() {
if (descriptionWindow == null) {
// Create window
descriptionWindow = new DescriptionWindow(toplevelShell,

playlistModel);
// Initialize window
descriptionWindow.create();
// Fetch Shell instance
Shell shell = descriptionWindow.getShell();
Rectangle bounds = toplevelShell.getBounds();
// Position at the right hand side of the main window
shell.setBounds(bounds.x + bounds.width - 5,

bounds.y + 10, 320, 240);
// React to shell’s close button
shell.addShellListener(new ShellAdapter() {
public void shellClosed(ShellEvent e) {
// Update toolbar button
hideDescription();

}
});
// Open the window
descriptionWindow.open();

}
}

258

Chapter 10

Listing 10.10 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 258

/**
* Closes the description window
*/
private void hideDescription() {
// Reset the description toolbar button
descriptionButton.setSelection(false);
// Close window
if (descriptionWindow != null) {
descriptionWindow.close();
descriptionWindow = null;

}
}

/**
* Updates the window with new text
*/
private void updateDescription() {
if (descriptionWindow != null) descriptionWindow.update();

}

Listing 10.10 (Continued)

Managing the playlist window is very similar (see Listing 10.11).

/**
* Creates a new playlist window
*/
private void showPlaylist() {
if (playlistWindow == null) {
// Create new PlaylistWindow instance
playlistWindow = new PlaylistWindow(toplevelShell,

playlistModel);
// Initialize the window to allow us to retrieve

// the shell instance
playlistWindow.create();
Shell shell = playlistWindow.getShell();
shell.addShellListener(new ShellAdapter() {
public void shellClosed(ShellEvent e) {
hidePlaylist();

}
});
// Position the shell below the main window
Rectangle bounds = toplevelShell.getBounds();
shell.setBounds(bounds.x + bounds.width / 8, bounds.y

+ bounds.height - 5, 400, 240);
// Open the window.
playlistWindow.open();

}
}

/**
* Closes playlist window

259

Project Two: Jukebox

Listing 10.11 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 259

*/
private void hidePlaylist() {
// Reset playlist toolbar button.
playlistButton.setSelection(false);
// Close window
if (playlistWindow != null) {
playlistWindow.close();
playlistWindow = null;

}
}

Listing 10.11 (Continued)

BasicPlayerListener
Finally, in this section are the methods that implement the interface BasicPlayerListener. These
methods accept the events from the jlGui engine. The updateGUI() method (shown previously) is used
to update the user interface accordingly. See Listing 10.12.

/** * Methods of the BasicPlayerListener interface ** */
/**
* @see javazoom.jlGui.BasicPlayerListener#updateMediaData(byte)
*/
public void updateMediaData(byte[] data) {}

/**
* @see javazoom.jlGui.BasicPlayerListener#
* updateMediaState(java.lang.String)
*/
public void updateMediaState(String newState) {
// At file end set operation mode to IDLE
if (newState.equals("EOM") && state != STOP) {
this.state = EOM;
mediaState = IDLE;
// Update GUI
updateGUI();

}
}

/**
* @see javazoom.jlGui.BasicPlayerListener#updateCursor(int, int)
*/
public void updateCursor(int cursor, int total) {
// Save maximum position and current position; update GUI
maxPosition = total;
currentPosition = cursor;
updateGUI();

}
}

Listing 10.12

260

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 260

The Playlist Domain Model
The domain model of the playlist has nothing to do with the user interface. It simply contains the data
and the current state of the playlist. I have separated this model into an interface IPlaylist and an
implementation PlaylistModel. While the interface is completely independent of the underlying stor-
age method for the playlist, my implementation uses XML files as the storage method. If you would
rather use a relational database to store your playlist, all you have to do is to rewrite the class
PlaylistModel.

The Interface
The concept of the playlist domain model is quite generic. You can decorate entries within the playlist
with any kind of features that can be configured through the API. In class Player (see “The Player
Module”) the playlist model was configured with the feature identifications TITLE, SOUNDFILE,
IMAGEFILE, and DESCRIPTON. The functions of the playlist domain model include setting and retriev-
ing the values of these features, the positioning within the playlist, and adding or removing playlist
entries.

In addition to these basic functions, the playlist model includes the methods of the
ISelectionProvider interface. These methods allow adding and removing SelectionListener
instances in the playlist model. The model can inform these listeners when its content or state changes.
The methods of the IStructuredContentProvider interface such as getElements(),
inputChanged(), and dispose() are also included. The PlaylistViewer uses the
PlaylistViewer getElements() method to fetch the playlist entries to be displayed. The
PlaylistViewer signals to the model that a new playlist is opened via the method inputChanged().
Finally, dispose() is called when the PlaylistViewer is disposed of. Here the model implementa-
tion could, for example, close open files.

Listing 10.13 shows the The IPlaylist.java interface.

package com.bdaum.jukebox;

import org.eclipse.jface.viewers.ISelectionProvider;
import org.eclipse.jface.viewers.IStructuredContentProvider;

public interface IPlaylist
extends IStructuredContentProvider, ISelectionProvider {

/**
* Returns the name of the current playlist
* or null if no playlist active
* @return String – Name of current playlist
*/
public String getPlaylistName();
/**
* Returns the specified feature of the current playlist entry.
* @param feature – Feature identification
* @return String – Feature value
*/
public String getFeature(String feature);

261

Project Two: Jukebox

Listing 10.13 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 261

/**
* Returns the specified feature of the specified playlist element.
* @param record - Playlist element
* @param feature - Feature identification
* @return String – Feature value
*/
public String getFeature(Object record, String feature);
/**
* Sets the specified feature of the specified playlist element
* to the specified value.
* @param record - Playlist element
* @param feature - Feature identification
* @param value – new Feature value
*/
public void setFeature(Object record, String feature,

String value);
/**
* Positions to the next playlist entry.
* @return boolean - true if successfull
*/
public boolean next();
/**
* Tests if we have a next entry in the playlist
* @return boolean - true if successfull
*/
public boolean hasNext();
/**
* Positions to the previous playlist entry.
* @return boolean - true if successfull
*/
public boolean previous();
/**
* Tests if we have a previous entry in the playlist
* @return boolean - true if successfull
*/
public boolean hasPrevious();
/**
* Sets the current position of the playlist onto
* the specified playlist element.
* @param current – The new current playlist entry
*/
public void setCurrent(Object current);

/**
* Deletes the current playlist entry.
* The next playlist entry becomes the current entry.
* If none exists, the previous playlist entry becomes the
* current entry. If this does not exist, too, the
* current playlist entry is undefined (null).
*/
public void deleteCurrent();

/**

262

Chapter 10

Listing 10.13 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 262

* Creates a new playlist entry in front of the current playlist
* entry. The new playlist entry becomes the current
* playlist entry.
* @return Object – The new playlist element
*/
public Object insert();

/**
* Moves the current playlist entry one position
* towards the beginning
* of the playlist.
* @return boolean - true if successfull
*/
public boolean moveUpwards();

/**
* Moves the current playlist entry one position towards the end\
* of the playlist.
* @return boolean - true if successfull
*/
public boolean moveDownwards();

}

Listing 10.13 (Continued)

The Implementation
The following code shows how this interface can be implemented. I selected XML as the file format. The
schema (DTD) used for playlists is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT playlist (record*)>
<!ELEMENT record (soundfile | title | image | description)*>
<!ELEMENT description (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT soundfile (#PCDATA)>
<!ELEMENT title (#PCDATA)>

When creating an interface and its implementation, you always can choose what you would like to do
first. You can create the interface first and specify it as an implemented interface when you create the
implementation. Eclipse will then generate all method stubs for you.

Alternatively, you can create the implementation first. Later, after the code has matured, you can always
extract an interface by applying the context method Refactor > Extract Interface.... This way, you can, at
least in the beginning, avoid some double work when modifying the API. Also, navigation in the code is
easier.

Listing 10.14 shows the PlaylistModel.java implementation.

263

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 263

package com.bdaum.jukebox;

import java.io.*;
import java.util.Properties;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.OutputKeys;

import org.apache.crimson.jaxp.DocumentBuilderFactoryImpl;
import org.apache.xalan.serialize.SerializerToXML;
import org.eclipse.jface.util.ListenerList;
import org.eclipse.jface.viewers.*;
import org.w3c.dom.*;
import org.xml.sax.ErrorHandler;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

/**
* This class implements the playlist domain model. XML is used as
* file format to make the model data persistent. Access to the
* XML data is organized via the JAXP DOM.
*/
public class PlaylistModel implements IPlaylist {

// Name of INI file
private final static String INIFILE = "jukebox.ini";

// XML prolog
private final static String XMLPROLOG =

"<?xml version=\"1.0\" encoding=\"UTF-8\"?>";
// Empty playlist
private final static String XMLROOT = XMLPROLOG

+ "<playlist></playlist>";
// Tag for playlist entries
public final static String RECORD = "record";

// INI file
private File iniFile;
// current playlist file name
private String currentPlaylistFile;
// current playlist DOM
private Document playlistDoc;
// current playlist entry DOM node
private Node currentElement;
// Listeners to be informed about changes
private ListenerList selectionChangedListeners = new ListenerList();

Listing 10.14

264

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 264

INI File
To produce a user-friendly player it makes sense to maintain an INI file that stores the name of the most
recently used playlist. So, if you construct a new PlaylistModel instance, just read the INI file, get the
playlist name, and open the playlist. See Listing 10.15.

/**
* Constructor for PlaylistModel.
*/
public PlaylistModel() {
super();
try {
// Try to read the INI file
iniFile = new File(INIFILE);
InputStream stream = new FileInputStream(iniFile);
byte[] buffer = new byte[1024];
int l = stream.read(buffer);
// If it exists, read the name of the most recent
// playlist and open this playlist
openPlaylist(new String(buffer, 0, l));

} catch (FileNotFoundException e) {
} catch (IOException e) {
}

}

Listing 10.15

Parsing
The method openPlayList() is called in two situations: opening an existing playlist file or creating a
new playlist. If a file with the specified name does not exist, a new empty playlist document is created.
The resulting stream is then parsed by a DOM parser. Finally, the first <record> element is searched
for, and if one exists, the pointer for the current record is set to this element.

When a new DOM parser is created, it is configured to the requirements of the player. For example, lazy
instantiation is used to keep the overhead low, and ignorable whitespace is ignored. Also, the SAX error
handling is modified to avoid having the standard SAX error message appear on the console. See Listing
10.16.

/**
* Opens the playlist file
*
* @param name - Name of playlist file
*/
private void openPlaylist(String name) {
if (name == null) return;
currentPlaylistFile = name;
File playlistFile = new File(name);
// Input stream of playlist file

265

Project Two: Jukebox

Listing 10.16 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 265

InputStream stream;
try {
stream = new FileInputStream(playlistFile);

} catch (FileNotFoundException e) {
// File does not exist
// Create an empty playlist document
stream = makeStream(XMLROOT);

}
if (stream != null) try {
// Parse the file content, creating a DOM
playlistDoc = parseStream(stream, false);

} catch (Throwable e) {
playlistDoc = null;
System.err.println("XML parsing error: " + e);

}
if (playlistDoc != null) {
// Look for <record>-elements and set the first one
// as current song
NodeList nl = playlistDoc.getElementsByTagName(RECORD);
if (nl.getLength() > 0) currentElement = nl.item(0);

}
}

/**
* Convert string into InputStream
*
* @param input - Input string
* @return InputStream - resulting InputStream instance
*/
public static InputStream makeStream(String input) {
try {
return new ByteArrayInputStream(input.getBytes("UTF8"));

} catch (UnsupportedEncodingException x) {
// should never happen
return null;

}
}

/**
* Convert serialized XML stream into DOM tree.
*
* @param stream - input stream
* @param silent -
* don't show error messages on the console if set to true
* @return Document - the resulting DOM document
* @throws Throwable - various Throwables from Parser
*/
private static Document parseStream(
InputStream stream, boolean silent) throws Throwable {
// Create InputSource from stream
InputSource source = new InputSource(stream);
// Create a document builder factory
DocumentBuilderFactory factory = new DocumentBuilderFactoryImpl();
// Create a document builder

266

Chapter 10

Listing 10.16 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 266

DocumentBuilder builder = factory.newDocumentBuilder();
// When "silent" is set we override the SAX error handler and
// suppress the output of error message to the Java console.
if (silent) {
builder.setErrorHandler(new ErrorHandler() {
public void error(
SAXParseException exception) throws SAXException {
throw exception;

}
public void fatalError(
SAXParseException exception) throws SAXException {
throw exception;

}
public void warning(
SAXParseException exception) throws SAXException {
throw exception;

}
});

}
// Everything is configured - let's parse.
return builder.parse(source);

}

Listing 10.16 (Continued)

Serializing
Vice-versa, when a playlist is closed and it was modified, it must be rewritten to file. This is done with
the help of an XML serializer. This serializer is configured so that it does not produce extra whitespace
and produces an XML prologue only when needed (see Listing 10.17).

/**
* Save current playlist to file.
*/
private void savePlaylist() {
if (playlistDoc == null || currentPlaylistFile == null)
return;

File playlistFile = new File(currentPlaylistFile);
try {
// Create new file and set output stream to this file.
playlistFile.createNewFile();
OutputStream stream = new FileOutputStream(playlistFile);
// Serialize DOM and write to output stream
stream.write(serializeNode(playlistDoc, true)

.toByteArray());
} catch (IOException e) {
System.err.println("IO-exception during save: " + e);

}
}

/**
* Convert whole DOM document or subtree into XML stream.

267

Project Two: Jukebox

Listing 10.17 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 267

*
* @param nod - DOM document or DOM node
* @param prolog - "true" if an XML prolog is required
* @return ByteArrayOutputStream - serialized XML text
*/

public static ByteArrayOutputStream serializeNode(
Node nod, boolean prolog) {
// Set output formats
// (no identation, XML prolog depending on option)
SerializerToXML serializer = new SerializerToXML();
Properties props = new Properties();
props.setProperty(OutputKeys.METHOD, "xml");
props.setProperty(OutputKeys.INDENT, "no");
props.setProperty(OutputKeys.OMIT_XML_DECLARATION,

(prolog) ? "no" : "yes");
serializer.setOutputFormat(props);
// Create OutputStream and Serializer instances.
ByteArrayOutputStream outstream = new ByteArrayOutputStream();
serializer.setOutputStream(outstream);
try {
// Serialize.
serializer.serialize(nod);

} catch (IOException e) { // should never happen
}
return outstream;

}

Listing 10.17 (Continued)

Implementing IPlayList
After implementing the logic for opening (reading) and closing (writing) playlists, you may want to
implement the IPlayList methods. As far as the navigational methods are concerned, this is almost
trivial. You just need to translate the playlist navigation into DOM tree navigation. See Listing 10.18.

/** *** IPlayList methods **** */

/**
* @see IPlayList#getPlaylistName()
*/
public String getPlaylistName() {
return currentPlaylistFile;

}

/**
* @see IPlayList#next()
*/
public boolean next() {
// fetch next entry
Node nod = getNext();
if (nod == null) return false;

268

Chapter 10

Listing 10.18 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 268

// in case of success set current entry to this value
setCurrent(nod);
return true;

}

/**
* Searches from current entry onwards for next entry.
*
* @return Node - the next entry
*/
private Node getNext() {
Node nod = currentElement;
// search next element with tag <record>
while (nod != null) {
nod = nod.getNextSibling();
if (nod instanceof Element

&& ((Element) nod).getTagName().equals(
RECORD)) return nod;

}
return null;

}

/**
* @see IPlayList#previous()
*/
public boolean previous() {
// fetch previous entry
Node nod = getPrevious();
if (nod == null) return false;
// in case of success set current entry to this value
setCurrent(nod);
return true;

}

/**
* Searches from current entry onwards for previous entry.
*
* @return Node - the previous entry
*/
private Node getPrevious() {
Node nod = currentElement;
// search previous element with tag <record>
while (nod != null) {
nod = nod.getPreviousSibling();
if (nod instanceof Element

&& ((Element) nod).getTagName().equals(
RECORD)) return nod;

}
return null;

}

/**
* @see IPlayList#hasNext()
*/

269

Project Two: Jukebox

Listing 10.18 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 269

public boolean hasNext() {
return getNext() != null;

}

/**
* @see IPlayList#hasPrevious()
*/
public boolean hasPrevious() {
return getPrevious() != null;

}

Listing 10.18 (Continued)

Accessing Features
Getting and setting a feature of a playlist entry requires a bit more work. To retrieve a feature, the text
content of the corresponding XML element must be read. Since this content can be distributed over sev-
eral chunks of text, it is necessary to concatenate these chunks. See Listing 10.19.

/**
* @see IPlayList#getFeature(org.w3c.dom.Node,
* java.lang.String, boolean)
*/
public String getFeature(String tag) {
return getFeature(currentElement, tag);

}

/**
* @see IPlayList#getFeature(org.w3c.dom.Node,
* java.lang.String, boolean)
*/
public String getFeature(Object record, String tag) {
if (record == null) return "";
// Find all child elements with specified name
NodeList nl = ((Element) record).getElementsByTagName(tag);
if (nl.getLength() == 0) return "";
// Should be the only one
Node nod = nl.item(0);
// Now get all text child elements and concatenate them
StringBuffer sb = new StringBuffer();
nl = nod.getChildNodes();
for (int i = 0; i < nl.getLength(); i++) {
if (nl.item(i) instanceof Text)
sb.append(((Text) nl.item(i)).getData());

}
return sb.toString();

}

/**
* @see IPlayList#setFeature(org.w3c.dom.Node,
* java.lang.String, java.lang.String)

270

Chapter 10

Listing 10.19 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 270

*/
public void setFeature(Object record, String tag, String value) {
// Assuming that playlist elements are XML elements
Element el = (Element) record;
// Get corresponding DOM document
Document doc = el.getOwnerDocument();
NodeList nl = ((Element) record).getElementsByTagName(tag);
// Remove existing elements with same name
for (int i = 0; i < nl.getLength(); i++)
el.removeChild(nl.item(i));

if (value == null || value.length() == 0)
// Deletion of feature - finished.
return;

// Create child element, append to parent, and fill with content.
Node nod = doc.createElement(tag);
el.appendChild(nod);
nod.appendChild(doc.createTextNode(value.trim()));

}

Listing 10.19 (Continued)

Managing Entries
Apart from modifying entry features, you can replace, delete, or insert whole entries or change the
sequence of entries. This is done in the methods setCurrent(), deleteCurrent(), insert(),
moveDownwards(), and moveUpwards() (Listing 10.20).

/**
* @see IPlayList#setCurrent(org.w3c.dom.Node)
*/
public void setCurrent(Object current) {
// To avoid event avalanches check if
// the new entry is different from the current entry.
if (currentElement != current) {
// yes, update current entry and notify listeners.
currentElement = (Element) current;
fireSelectionChanged(getSelection());

}
}

/**
* Notify all listeners about change of current entry
*
* @param selection - the current entry wrapped into an ISelection
* instance
*/
private void fireSelectionChanged(ISelection selection) {
Object[] listeners = selectionChangedListeners

.getListeners();
SelectionChangedEvent event = new SelectionChangedEvent(

this, selection);

271

Project Two: Jukebox

Listing 10.20 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 271

for (int i = 0; i < listeners.length; i++)
((ISelectionChangedListener) listeners[i])

.selectionChanged(event);
}

/**
* @see IPlayList#deleteCurrent()
*/
public void deleteCurrent() {
if (currentElement == null) return;
// When deleting the current element position to the next
// element. If this does not exist position to the previous
// element.
Node nod = getNext();
if (nod == null) getPrevious();
// Remove from playlist.
Element playlist = playlistDoc.getDocumentElement();
playlist.removeChild(currentElement);
// Update current element.
setCurrent(nod);

}

/**
* @see IPlayList#insert(java.lang.String, java.lang.String)
*/
public Object insert() {
// Create a new <record> element
Element newRecord = playlistDoc.createElement(RECORD);
// Insert the new element in front of the current element...
Element playlist = playlistDoc.getDocumentElement();
playlist.insertBefore(newRecord, currentElement);
// ...and update the current element.
setCurrent(newRecord);
return newRecord;

}

/**
* @see IPlayList#moveDownwards()
*/
public boolean moveDownwards() {
Node next = getNext();
if (next == null) return false;
// If there is a next element, remove the current element
// and insert it again behind the next element.
Element playlist = playlistDoc.getDocumentElement();
playlist.removeChild(currentElement);
playlist.insertBefore(currentElement, next.getNextSibling());
return true;

}

/**
* @see IPlayList#moveUpwards()
*/
public boolean moveUpwards() {

272

Chapter 10

Listing 10.20 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 272

Node previous = getPrevious();
if (previous == null) return false;
// If there is a previos element, remove the current
// element and insert it again in front of the previos element.
Element playlist = playlistDoc.getDocumentElement();
playlist.removeChild(currentElement);
playlist.insertBefore(currentElement, previous);
return true;

}

Listing 10.20 (Continued)

Content Provider
The following method getElements() implements the interface IStructuredContentProvider.
This method is required by the table viewer used in the playlist window. It returns all the entries in the
playlist. See Listing 10.21.

/** *** IStructuredContentProvider methods *** */

/**
* @see org.eclipse.jface.viewers.IStructuredContentProvider#
* getElements(java.lang.Object)
*/
public Object[] getElements(Object inputElement) {
// Fetch all <record> elements from the playlist...
NodeList nl = playlistDoc.getElementsByTagName(RECORD);
// ...and write them into an array
Object[] result = new Object[nl.getLength()];
for (int i = 0; i < result.length; i++)
result[i] = nl.item(i);

return result;
}

Listing 10.21

Playlist Switch
Also, the table viewer requires the method inputChanged()because
IStructuredContentProvider is a subinterface of IContentProvider. When the table’s input
changes, the current playlist must be saved and a new playlist must be opened. At the end of the session
(when the parameter newInput is null) the INI file is updated. If none exists, it is created. See Listing
10.22.

/** *** IContentProvider methods *** */

/**
* @see org.eclipse.jface.viewers.IContentProvider#

273

Project Two: Jukebox

Listing 10.22 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 273

* inputChanged(org.eclipse.jface.viewers.Viewer,
* java.lang.Object, java.lang.Object)
*
* We trust that this method is called, too, when the
* application is closed.
*/
public void inputChanged(Viewer viewer, Object oldInput,

Object newInput) {
// First save the current playlist
savePlaylist();
if (newInput == null) {
// The application is closed and sets the input to null
if (currentPlaylistFile != null) {
// A playlist was open. Save its name into the INI-file
try {
OutputStream stream = new FileOutputStream(iniFile);
stream.write(currentPlaylistFile.getBytes());

} catch (FileNotFoundException e) {
} catch (IOException e) {
}

}
return;

}
if (currentPlaylistFile == null

|| !currentPlaylistFile.equals(newInput))
// Open a new playlist
openPlaylist((String) newInput);

}

/**
* @see org.eclipse.jface.viewers.IContentProvider#dispose()
*/
public void dispose() {}

Listing 10.22 (Continued)

Selections
Finally, Listing 10.23 contains the methods for the ISelectionProvider interface. When you imple-
ment this interface, the PlaylistModel can notify listeners that have registered via the method
addSelectionChangedListener() about selection changes. The method getSelection() is
responsible for constructing an IStructuredSelection instance as required by the playlist’s table viewer,
and the method setSelection() accepts IStructuredSelection instances to update the current
selection in the model.

/** *** ISelectionProvider methods **** */

/**
* @see IPlayList#addSelectionChangedListener(

274

Chapter 10

Listing 10.23 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 274

* org.eclipse.jface.viewers.ISelectionChangedListener)
*/
public void addSelectionChangedListener(

ISelectionChangedListener listener) {
selectionChangedListeners.add(listener);

}

/**
* @see org.eclipse.jface.viewers.ISelectionProvider#getSelection()
*/
public ISelection getSelection() {
return new StructuredSelection((currentElement == null)

? new Object[0]
: new Object[]{currentElement});

}

/**
* @see org.eclipse.jface.viewers.ISelectionProvider#
* removeSelectionChangedListener(
* org.eclipse.jface.viewers.ISelectionChangedListener)
*/
public void removeSelectionChangedListener(

ISelectionChangedListener listener) {
selectionChangedListeners.remove(listener);

}

/**
* @see org.eclipse.jface.viewers.ISelectionProvider#
* setSelection(org.eclipse.jface.viewers.ISelection)
*/
public void setSelection(ISelection selection) {
if (selection instanceof IStructuredSelection) {
Object selected = ((IStructuredSelection) selection)

.getFirstElement();
currentElement = (Element) selected;

}
}

}

Listing 10.23 (Continued)

The Description Window
The description window is based on the JFace class Window (see the section “Dialogs and Windows” in
Chapter 9). It shows the descriptive text of the current playlist entry as long as the entry is being played.
The window is positioned at the right-hand side of the player window and is updated with each new
playlist entry that is played.

275

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 275

Since the description may contain HTML markup, the Browser widget is used to display the descrip-
tion. Nevertheless, the keywords should be displayed in a different color. You can achieve this by
scanning the text for keywords, removing the $ character at the front, and adding additional markup
for coloring.

The DescriptionWindow Class
The DescriptionWindow class (Listing 10.24) starts with the necessary package and import declarations,
followed by the class declaration and the declarations of all instance variables. Here the fields holding the
Browser instance, the playlist data model, and the Display instance are defined.

package com.bdaum.jukebox;

import java.util.StringTokenizer;

import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;
import org.eclipse.swt.browser.Browser;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;

public class DescriptionWindow extends Window {

// The browser widget responsible for displaying the text
private Browser browser;
// The playlist model
private IPlaylist model;
// The current display
private Display display;

Listing 10.24

When you instantiate the DescriptionWindow instance, the playlist domain model is passed to this
instance. It is used when the window is opened or updated: the text is retrieved from the DESCRIPTION
feature of the current playlist entry and replaces the content of the Browser widget. This widget
was created in the method createContents(), which is called by the parent class Window when
create() is executed. See Listing 10.25.

/**
* Constructor.
*
* @param parent - the containing shell
* @param model - the player model
*/

public DescriptionWindow(Shell parent, IPlaylist model) {

276

Chapter 10

Listing 10.25 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 276

super(parent);
display = parent.getDisplay();
this.model = model;

}

/**
* This method is called form superclass Window.
* It constructs the window contents.
*/
protected Control createContents(Composite parent) {
parent.setLayout(new FillLayout());
Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new FillLayout());
// Create a browser widget
browser = new Browser(composite, SWT.NONE);
GridData data = new GridData(GridData.FILL_BOTH);
browser.setLayoutData(data);
return composite;

}

/**
* Prepare HTML-text and display it Browser widget
*/
public void update() {
String description = model.getFeature(Player.DESCRIPTION);
if (description == null)
browser.setText("");

else {
// Coloring for keywords
StringBuffer html = new StringBuffer(

"<html><small>");
StringTokenizer tokenizer = new StringTokenizer(

description, "<> \n\t", true);
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
if (token.length() == 1) {
html.append(token);

} else if (token.startsWith("$")) {
html.append("");
html.append(token.substring(1));
html.append("");

} else
html.append(token);

}
html.append("</small></html>");
// Display in browser
browser.setText(html.toString());

}
}

/**
* Override open() method of superclass Window to
* update the displayed text.
*/

277

Project Two: Jukebox

Listing 10.25 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 277

public int open() {
update();
return super.open();

}
}

Listing 10.25 (Continued)

The Playlist Viewer
The playlist viewer runs in its own window (PlaylistWindow) and allows the user to open, create,
and modify a playlist. The viewer is equipped with specialized cell editors for the individual playlist
entries. The playlist domain model serves as a Content Provider for the playlist viewer.

To illustrate the cooperation between player, playlist viewer, playlist window, and playlist domain
model, the event processing for the playlist is shown as an interaction diagram in Figure 10.4.

In principle, there is a possibility of event loops. However, you can avoid these loops by passing events
only when an event means a real change (for example, in the playlist model).

An interesting problem occurs when performing the insert() operation. This method causes a change
of selection. Consequently, the model sends a selectionChanged event to the playlist window, which
passes it on to the viewer via the method setSelection(). The viewer performs this selection.
However, at this time, the new element has not yet been inserted into the Table widget. Consequently,
setting the selection for this element results in a null selection. This, again, is sent as a
selectionChanged event to the playlist viewer. The viewer then sets the selection in the model to
null by calling the method setCurrent()! This is certainly not our intention. You can solve the prob-
lem by invoking the viewer’s refresh() method from the selectionChanged() method before call-
ing setSelection(). By doing this, you can force an update of the Table instance according to the
content of the playlist model.

The PlaylistWindow Class
The PlaylistWindow class (Listing 10.26) starts with the necessary package and import declarations,
followed by the class declaration and the declarations of all instance variables. Here the fields holding
the PlaylistViewer, the Player, and the playlist data model are defined.

package com.bdaum.jukebox;

import org.eclipse.jface.viewers.ISelectionChangedListener;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.SelectionChangedEvent;
import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Shell;

278

Chapter 10

Listing 10.26 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 278

public class PlaylistWindow extends Window
implements ISelectionChangedListener {

PlaylistViewer viewer;
Player player;
IPlaylist model;

/**
* Constructor.
* @param parent – The containing shell
* @param player - The player
*/
public PlaylistWindow(Shell parent, IPlaylist model) {

super(parent);
this.model = model;

}

Listing 10.26 (Continued)

279

Project Two: Jukebox

User

Player : Player Playlist-Window : PlaylistWindow Playlist-Viewer : PlaylistViewer Playlist-Modell : PlaylistModel

ToolItem activated

processButton(SelectionEvent): void

playlist switched

setInput(Object): void

other playlist

inputChanged(Viewer,Object,Object): void

update

setCurrent(Object): void

menu selection

setInput(Object): void

insert entry

insert(): Object

delete entry

deleteCurrent(): void

table selection

selectionChanged(SelectionChangedEvent): void

selection changed

selectionChanged(SelectionChangedEvent): void

select table entry

setSelection(ISelection): void

selection changed

selectionChanged(SelectionChangedEvent): void

Figure 10.4

12_020059_ch10.qxd 10/8/04 11:26 AM Page 279

In the createContents() method that is called from the parent class Window (see the section “Dialogs
and Windows” in Chapter 9), PlaylistWindow constructs the window content. In particular, an
instance of the class PlaylistViewer (a subclass of TableViewer) is created. This viewer is config-
ured with the help of style constants: horizontal and vertical scrolling is allowed, only single table rows
can be selected, and the whole table row appears selected.

Then the viewer is equipped with event processing. When a row is selected, the selectionChanged()
method is invoked. This method retrieves the selection object from the event object. The selected table
entry is the first element in the selection object. This table entry is passed, via the method
setCurrent(), to the playlist model to update the selection there.

Finally, the viewer is initialized by fetching the filename of the current playlist from the playlist model
and passing this name to the viewer via the setInput() method. See Listing 10.27.

protected Control createContents(Composite parent) {
parent.setLayout(new FillLayout());
Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new FillLayout());
viewer = new PlaylistViewer(composite,
SWT.SINGLE | SWT.VERTICAL | SWT.H_SCROLL

| SWT.V_SCROLL | SWT.BORDER | SWT.FULL_SELECTION, model);
// Add event processing for selection events
viewer.addSelectionChangedListener(new

ISelectionChangedListener() {
public void selectionChanged(SelectionChangedEvent e) {

IStructuredSelection selection =
(IStructuredSelection) e.getSelection();

// Get selected table entry
Object selected = selection.getFirstElement();
// and pass to playlist model
model.setCurrent(selected);

}
});
// Get current playlist
String playlistFile = model.getPlaylistName();
// and set as input data
viewer.setInput(playlistFile);
return composite;

}

Listing 10.27

In Listing 10.28 the two Window methods open() and close() are overridden. In the open() method
the selection of the viewer is updated and registered as a SelectionListener with the playlist model.
Changes in the playlist model are consequently passed to the method selectionChanged(). In this
method the viewer’s Table widget is updated by calling refresh(). Then the selection of the viewer
is updated. Finally, in method close() the playlist window is deregistered as a SelectionListener
from the playlist model.

280

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 280

/*
* Open window and register with the model
*/
public int open() {

// Update the viewers selection
viewer.setSelection(model.getSelection());
// Register as a SelectionChangedListener
model.addSelectionChangedListener(this);
// Open window
return super.open();

}

/*
* Close window and deregister from the model
*/
public boolean close() {

// deregister as a SelectionChangedListener
model.removeSelectionChangedListener(this);
// Close window
return super.close();

}

/*
* Model has changed – we have to update the viewer
*/
public void selectionChanged(SelectionChangedEvent event) {

// Force table update
viewer.refresh();
// Update selection
viewer.setSelection(model.getSelection());

}
}

Listing 10.28

The PlaylistViewer Class
The playlist viewer is defined as a subclass of the JFace class TableViewer. First, the
PlaylistViewer instance is instrumented with a ContentProvider, a LabelProvider, cell edi-
tors, modifiers, and column identifications. For a cell editor, the standard TextCellEditor is used, but
with the following exceptions: filenames are edited with the FileCellEditor that follows, and
descriptions are edited with the DescriptionCellEditor discussed later in “The Description Editor”
section.

Then the layout and the presentation of the table are modified somewhat, and a menu, status line, and
toolbar are added. For the layout a nested GridLayout is used. First, the status line and the toolbar are
placed into a two-column GridLayout (which results in one row). Then the Composite is placed
together with the Table instance into a one-column GridLayout.

The menu is added directly to the shell of the playlist window. The menu functions bring up file-
selection dialogs for opening existing playlists and for creating new playlists.

281

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 281

The toolbar contains functions for creating, deleting, and moving playlist elements. The ToolItem
events directly result in the invocation of the corresponding operations in the playlist model. Such
operations may, of course, change the current element in the playlist model. The model therefore creates
an appropriate SelectionChangedEvent, which is received by the playlist window. The window
instance then uses the method setSelection() to update the selection in the PlaylistViewer.
See Listing 10.29.

package com.bdaum.jukebox;

import java.io.File;
import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.dnd.*;
import org.eclipse.swt.dnd.DropTarget;
import org.eclipse.swt.dnd.DropTargetListener;
import org.eclipse.swt.dnd.FileTransfer;
import org.eclipse.swt.dnd.Transfer;
import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

/**
* This class implements a viewer for playlists.
*/
public class PlaylistViewer extends TableViewer {

// File extension for for playlists
public final static String PLS = ".jpl";
// Filter for the selection of playlist files
public final static String[] PLAYLISTEXTENSIONS = new String[]{"*"

+ PLS};
// Filter for the selection of sound files
public final static String[] SOUNDEXTENSIONS =
new String[]{"*.m3u;*.wsz;*.mpg;*.snd;*.aifc;*.aif;*.wav;"

+"*.au;*.mp1;*.mp2;*.mp3;*.ogg", "*.*"};
// Filter for the selection of image files
public final static String[] IMAGEEXTENSIONS =
new String[]{"*.gif; *.jpg; *.jpeg; *.png; *.bmp; *.tif", "*.*"};

// the playlist model instance
private IPlaylist playlistModel;
// the label provider for the table
private ITableLabelProvider labelProvider;

// Widgets
private MenuItem newPlaylistItem, openPlaylistItem;
private Label statusLine;
private ToolItem insertButton, deleteButton, upButton, downButton;

Listing 10.29

282

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 282

CellModifier
In Listing 10.30 a single instance of type ICellModifier is defined. This instance organizes the data
transfer between the model and the table cells. To set the value of a table cell, the method getValue()
is called. The parameter property contains the feature identification that corresponds to the appropri-
ate column of the table cell. This identification is used to fetch the cell value from the playlist model.

Vice versa, when the end user modifies a cell value, it is also necessary to set it in the model. Here again,
the feature identification is received in the parameter property. The feature value is passed in the value
parameter. However, the use of this method is not consistent in regard to the element parameter. In some
cases, the data element of the table row is passed in this parameter; in other cases, the TableItem instance
of the table row is passed instead. Therefore, you need to check the type of the parameter value and act
accordingly. In addition, all entered values are validated: empty titles and empty sound filenames are not
allowed.

private ICellModifier cellModifier = new ICellModifier() {
// Get value from model
public Object getValue(Object element, String property) {
return playlistModel.getFeature(element, property);

}

// All elements may be modified by the end user
public boolean canModify(Object element, String property) {
return true;

}

// Set value in the model
public void modify(Object element, String property,

Object value) {
// ATTENTION: A TableItem instance may be passed as element
// In this case we retrieve the playlist entry from the TableItem
if (element instanceof Item)
element = ((Item) element).getData();

// To be safe we validate the new value
if (validateFeature(property, (String) value) == null) {
// OK, we set the new value in the model
playlistModel.setFeature(element, property,

(String) value);
// Refresh the viewer so that the new value is
// shown in the table
PlaylistViewer.this.refresh();

}
}

};

/**
* Validates a feature
*
* @param tag - Feature name
* @param value - Value
* @return String - Error message or null
*/

283

Project Two: Jukebox

Listing 10.30 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 283

public String validateFeature(String tag, String value) {
if (tag == Player.TITLE) {
// Empty titles are not valid
if (value == null || value.length() == 0)
return "Must specify a title";

} else if (tag == Player.SOUNDFILE) {
// Empty sound file names are not valid
if (value == null || value.length() == 0)
return "Must specify a sound file";

}
return null;

}

Listing 10.30 (Continued)

The viewer instance is configured in the constructor of the PlaylistViewer. The playlist model is
registered as a ContentProvider (the instance that provides the table entries). A new
PlaylistLabelProvider (see the following code) instance is created as a LabelProvider
(the instance that is responsible for formatting the table elements).

Then the viewer’s table object is fetched. A special cell editor and a validator are attached to each
column of the table. The individual columns are identified by the feature identifications.
A TextCellEditor is created for the column containing the song titles, FileCellEditor instances
are created for the columns with the sound files and the image files, and a DescriptionCellEditor
is created for the column containing the descriptions. While the TextCellEditor already belongs to
the JFace functionality, you must implement the other two editors. The validators are created as anony-
mous inner classes of type ICellEditorValidator with the help of the setCellValidator()
method.

Finally, the CellModifier created previously is registered, column headers are created, column
headers and grid lines are made visible, and the menu, the drag-and-drop support, and the status line
are added to the viewer. See Listing 10.31.

/**
* Constructor for PlaylistViewer.
*
* @param parent - containing Composite
* @param style - Style constants
* @param model - Playlist domain model
*/
public PlaylistViewer(Composite parent, int style,

IPlaylist model) {
// Create viewer (TableViewer)
super(parent, style);
playlistModel = model;
// Create LabelProvider
labelProvider = new PlaylistLabelProvider(playlistModel);
// Set Content- and LabelProvider
setContentProvider(playlistModel);
setLabelProvider(labelProvider);

284

Chapter 10

Listing 10.31 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 284

// Create cell editors and validators
// First the editor for song titles
Table table = getTable();
TextCellEditor titleEditor = new TextCellEditor(table);
setCellValidator(titleEditor, Player.TITLE);
// Then the editor for the sound file
FileCellEditor soundFileEditor = new FileCellEditor(table,

"Select sound file", SOUNDEXTENSIONS);
setCellValidator(soundFileEditor, Player.SOUNDFILE);
// Then the editor for the image file
FileCellEditor imageFileEditor = new FileCellEditor(table,

"Select image file", IMAGEEXTENSIONS);
setCellValidator(imageFileEditor, Player.IMAGEFILE);
// Then the editor for the description
DescriptionCellEditor descriptionEditor =

new DescriptionCellEditor(table, playlistModel);
setCellValidator(descriptionEditor, Player.DESCRIPTION);
// Now we pass all editors to the viewer
// The sequence corresponds with the column sequence
setCellEditors(new CellEditor[]{titleEditor,

soundFileEditor, imageFileEditor,
descriptionEditor});

// Set cell modifier
setCellModifier(cellModifier);
// Set column identifiers
setColumnProperties(new String[]{Player.TITLE,

Player.SOUNDFILE, Player.IMAGEFILE,
Player.DESCRIPTION});

// Create column headers
createColumn(table, "Title", 80);
createColumn(table, "Sound file", 120);
createColumn(table, "Image file", 100);
createColumn(table, "Description", 240);
// Make column headers and grid lines visible
table.setHeaderVisible(true);
table.setLinesVisible(true);
// We still need a menu, a toolbar, and a status line
constructMenu(parent.getShell());
// Add status line
addStatusLineAndButtons(table);
// Add support for drag and drop
addDropSupport(table);

}

Listing 10.31 (Continued)

Validator for Cell Editors
To validate the cell content of a CellEditor, an anonymous class of type ICellEditorValidator is
created. In its isValid() method the cell content is passed via the value parameter and checked with
the help of the validateFeature() method. See Listing 10.32.

285

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 285

/**
* Set validators for cell editors
*
* @param editor - The cell editor
* @param feature - The feature identification
*/
public void setCellValidator(CellEditor editor,

final String feature) {
editor.setValidator(new ICellEditorValidator() {
// isValid is called by the cell editor when the
// cell content was modified
public String isValid(Object value) {
// We validate the cell content
String errorMessage = validateFeature(feature, (String) value);
// and show the error message in the status line
setErrorMessage(errorMessage);
// The cell editor wants the error message
// What it does with it is unknown
return errorMessage;

}
});

}

Listing 10.32

Column Headers
Column headers are created in the convenience method createColumn(). In Listing 10.33 a new
TableColumn instance is created for the given Table and then configured with the header text and the
column width.

/**
* Create column header
*
* @param table - Table
* @param header - Label
* @param width - Column width
*/
private void createColumn(Table table, String header, int width) {
TableColumn col = new TableColumn(table, SWT.LEFT);
col.setText(header);
col.setWidth(width);

}

Listing 10.33

DropTarget
In the method addDropSupport() the viewer is configured as a target for a drag-and-drop operation.
This will allow users to add new sound files to the playlist by simply dragging them to the playlist area.

286

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 286

To do so, you construct a new DropTarget instance and associate it with the playlist table. Valid
operations are MOVE and COPY, and only files (FileTransfer) are accepted as valid transfer types.

The drag-and-drop operation itself is performed by the DropTargetListener. When the mouse
pointer enters the drop area (the playlist area), the method dragEnter() checks to see if a valid
operation type and a valid transfer type are used. MOVE operations are converted into COPY operations
because the original sound file should persist. You make all of these adjustments by assigning appropri-
ate values to the event object.

The method dragOver() determines the behavior when the mouse pointer is moved over the target
area. Assigning DND.FEEDBACK_SELECT to event.feedback causes those table elements that are
under the mouse pointer to become selected. Assigning DND.FEEDBACK_SCROLL causes the table to be
scrolled up or down when the mouse pointer reaches the upper or lower border of the visible playlist
area.

The method dragOperationChanged() reacts to changes of the operation modus, for example, when
the Ctrl key is pressed during the dragging action. The method rejects invalid operations and converts
MOVE operations into COPY operations.

Finally, the method drop() reacts when a sound file is dropped onto the playlist area. The filename is
retrieved from the event object and inserted into the playlist. This is done at the position of the currently
selected playlist entry. See Listing 10.34.

/**
* Adds Drop-Support to the view.
*
* @param table - table widget
*/
private void addDropSupport(final Table table) {
// Valid operations
final int ops = DND.DROP_MOVE | DND.DROP_COPY;
// Allow both moving and copying
DropTarget target = new DropTarget(table, ops);
// Only files are accepted
final FileTransfer fileTransfer = FileTransfer

.getInstance();
Transfer[] types = new Transfer[]{fileTransfer};
target.setTransfer(types);
// Add DropListener to DropTarget
target.addDropListener(new DropTargetListener() {
// Mouse pointer has entered drop area
public void dragEnter(DropTargetEvent event) {
// Only files are accepted
for (int i = 0; i < event.dataTypes.length; i++) {
if (fileTransfer.isSupportedType(event.dataTypes[i])) {
event.currentDataType = event.dataTypes[i];
if ((event.detail & ops) == 0)
// Inhibit invalid operations
event.detail = DND.DROP_NONE;

else
// Force copy operation

287

Project Two: Jukebox

Listing 10.34 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 287

event.detail = DND.DROP_COPY;
return;

}
}
// Invalid transfer type
event.detail = DND.DROP_NONE;

}

// The mouse pointer moves within the DropTarget area
public void dragOver(DropTargetEvent event) {
event.feedback = DND.FEEDBACK_SELECT

| DND.FEEDBACK_SCROLL;
}

// Operation was changed
// (for example by pressing the Crtl key)
public void dragOperationChanged(DropTargetEvent event) {
// Only files are accepted
if (fileTransfer

.isSupportedType(event.currentDataType)) {
// Check for invalid operations
if ((event.detail & ops) == 0)
// Inhibit invalid operations
event.detail = DND.DROP_NONE;

else
// Force copy operation
event.detail = DND.DROP_COPY;

} else
// Invalid transfer type
event.detail = DND.DROP_NONE;

}

// Mouse pointer has left DropTarget area
public void dragLeave(DropTargetEvent event) {}

// The dragged object is about to be dropped
public void dropAccept(DropTargetEvent event) {}
// The dragged object has been dropped
public void drop(DropTargetEvent event) {
if (fileTransfer.isSupportedType(event.currentDataType)) {
String[] filenames = (String[]) event.data;
for (int i = 0; i < filenames.length; i++) {
// Insert file into playlist
if (insertSoundFile(filenames[i]) != null)
refresh();

}
}

}
});

}

Listing 10.34 (Continued)

288

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 288

Nested Grid Layout
Since the inherited TableViewer contains only a table, you need to improve it a bit. In addition to the
table, you need to add the status line and the toolbar. To do so, fetch the parent Composite of the table.
On this Composite apply a one-column GridLayout via the setLayout() method (see the “Layouts”
section in Chapter 8). Then add a new Composite (statusGroup) to this Composite. This new
Composite will appear below the table. Now apply a two-column GridLayout to statusGroup.
Then add a new Label to statusGroup, which will appear at the left-hand side. This new label acts
as a status line. Finally, add a ToolBar to statusGroup. This toolbar will appear at the right-hand side
of statusGroup. By using different GridData instances, you can make the table as big as possible, give
statusGroup and the status line the maximum width, and align the toolbar to the right. Finally, set the
text color of the status line to red. See Listing 10.35.

/**
* Adds a status line and a toolbar
* @param table - the viewers Table instance
*/
private void addStatusLineAndButtons(Table table) {
// Fetch parent Composite
Composite parent = table.getParent();
// Use a one-column GridLayout for this Composite.
GridLayout gridLayout = new GridLayout();
gridLayout.marginHeight = 0;
gridLayout.marginWidth = 2;
gridLayout.verticalSpacing = 3;
parent.setLayout(gridLayout);
// Create Composite for statusline and toolbar
Composite statusGroup = new Composite(parent, SWT.NONE);
// For this Composite we use a two-column GridLayout
gridLayout = new GridLayout();
gridLayout.numColumns = 2;
gridLayout.marginHeight = 0;
gridLayout.marginWidth = 0;
statusGroup.setLayout(gridLayout);
// Create status line
statusLine = new Label(statusGroup, SWT.BORDER);
// Create toolbar
ToolBar toolbar = createToolbar(statusGroup);
// Set table to maximum size
GridData data = new GridData();
data.horizontalAlignment = GridData.FILL;
data.verticalAlignment = GridData.FILL;
data.grabExcessHorizontalSpace = true;
data.grabExcessVerticalSpace = true;
table.setLayoutData(data);
// Set statusGroup to maximum width
data = new GridData();
data.horizontalAlignment = GridData.FILL;
data.grabExcessHorizontalSpace = true;
statusGroup.setLayoutData(data);
// Set status line to maximum width
data = new GridData();

289

Project Two: Jukebox

Listing 10.35 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 289

data.horizontalAlignment = GridData.FILL;
data.grabExcessHorizontalSpace = true;
statusLine.setLayoutData(data);
data = new GridData();
// Align the toolbar to the right
data.horizontalAlignment = GridData.END;
toolbar.setLayoutData(data);
// Set status line text color to red
statusLine.setForeground(parent.getDisplay()

.getSystemColor(SWT.COLOR_RED));
}

/**
* Displays an error message in the status line.
*
* @param errorMessage - error message or null
*/
public void setErrorMessage(String errorMessage) {
statusLine.setText((errorMessage == null)

? "" : errorMessage);
}

Listing 10.35 (Continued)

Toolbar
The toolbar (see the “Toolbar” section in Chapter 8) is equipped with four buttons for adding new songs
to the playlist, deleting songs, and moving entries upward or downward. The event processing for these
buttons is done in the processToolEvent() method. Depending on the button pressed, the appropri-
ate operation is performed. See Listing 10.36.

/**
* Method createToolbar. Creates toolbar with all buttons
*
* @param parent - containing Composite
* @return ToolBar - created ToolBar instance
*/
private ToolBar createToolbar(Composite parent) {
ToolBar toolbar = new ToolBar(parent, SWT.VERTICAL

| SWT.FLAT);
// Create buttons
insertButton = makeToolItem(toolbar, "+",

"Insert new entries");
deleteButton = makeToolItem(toolbar, "-",

"Delete selected entry");
upButton = makeToolItem(toolbar, "^",

"Move selected entry one step up");
downButton = makeToolItem(toolbar, "v",

"Move selected entry one step down");
return toolbar;

}

290

Chapter 10

Listing 10.36 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 290

/**
* Check if a playlist is open. If yes, enable all buttons.
* If no, issue an error message
*/
private void updateToolBar() {
boolean enabled = (getInput() != null);
statusLine.setText((enabled)

? "" : "No playlist open");
insertButton.setEnabled(enabled);
deleteButton.setEnabled(enabled);
upButton.setEnabled(enabled);
downButton.setEnabled(enabled);

}

/**
* Create button.
*
* @param parent - the toolbar
* @param text - label
* @param toolTipText - the hover text
* @return ToolItem - the created ToolItem instance
*/
private ToolItem makeToolItem(ToolBar parent, String text,

String toolTipText) {
ToolItem button = new ToolItem(parent, SWT.PUSH);
button.setText(text);
button.setToolTipText(toolTipText);
// Add event processing
button.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
processToolEvent(e);

}
});
return button;

}

/**
* Process an event from a tool button.
*
* @param e - The event object
*/
private void processToolEvent(SelectionEvent e) {
// Get ToolItem instance form event object
ToolItem item = (ToolItem) e.widget;
if (item == insertButton) {
// Create new playlist entries
getSoundFiles(item.getParent().getShell());

} else if (item == deleteButton) {
// Delete playlist entry
playlistModel.deleteCurrent();

} else if (item == upButton) {
// Move playlist entry upwards
playlistModel.moveUpwards();

291

Project Two: Jukebox

Listing 10.36 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 291

} else if (item == downButton) {
// Move playlist entry downwards
playlistModel.moveDownwards();

}
refresh();

}

Listing 10.36 (Continued)

File-Selection Dialogs
In Listing 10.37 a FileDialog (see the “Dialogs” section in Chapter 8) is used to add new sound files to
a playlist. It allows the selection of one or several sound files from the file system. The option to select
more than one file in one step is explicitly enabled. The selection list is restricted to the sound file types
declared in constant SOUNDEXTENSIONS with the method setFilterExtensions(). Finally, a new
entry in the playlist model is created for each selected file. The required song title is initially derived
from the filename.

/**
* Obtains a sound file from user input.
*
* @param shell - Parent shell of dialog
*/
private void getSoundFiles(Shell shell) {
// Create file selection dialog
FileDialog dialog = new FileDialog(shell, SWT.OPEN

| SWT.MULTI);
dialog.setFilterExtensions(SOUNDEXTENSIONS);
dialog.setText("Select sound files");
if (dialog.open() != null) {
String root = dialog.getFilterPath()

+ File.separatorChar;
String[] filenames = dialog.getFileNames();
for (int i = filenames.length - 1; i >= 0; i--) {
// Compute the absolute file name
String filename = root + filenames[i];
insertSoundFile(filename);

}
}

}

/**
* Insert new soundfile into playlist
*
* @param filename - the name of the new file
* @return - the currently selected entry in the playlist
*/
private Object insertSoundFile(String filename) {
// Check if file exists
File file = new File(filename);

292

Chapter 10

Listing 10.37 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 292

if (!file.exists()) return null;
// Derive the default title from the file name
String title = file.getName();
int p = title.lastIndexOf('.');
if (p > 0) title = title.substring(0, p);
// Insert new element into model
Object record = playlistModel.insert();
playlistModel.setFeature(record, Player.TITLE, title);
playlistModel.setFeature(record, Player.SOUNDFILE, filename);
return record;

}

Listing 10.37 (Continued)

Menu
Finally, in Listing 10.38 a menu for the playlist viewer (see the “Menu” section in Chapter 8) is created.
The menu functions enable you to create new playlists or to open existing playlists. The menu instance is
added directly to the shell. The single File menu title is created as a MenuItem instance for the menu
using the style constant SWT.CASCADE. A submenu is attached to this menu title with setMenu().
This submenu is created directly under the shell but with the style constant SWT.DROP_DOWN. Then the
two menu items are added to the submenu as MenuItem instances.

The event processing for these MenuItem instances takes place in the method
processMenuSelection().

/**
* Constructs the menu
*
* @param shell - the parent shell
*/
private void constructMenu(Shell shell) {
// This menu is used to create new playlists
// and to open existing playlists
Menu menuBar = new Menu(shell, SWT.BAR);
shell.setMenuBar(menuBar);
// Create File menu title
MenuItem fileTitle = new MenuItem(menuBar, SWT.CASCADE);
fileTitle.setText("File");
// Create Submenu and attach it to the menu title
Menu fileMenu = new Menu(shell, SWT.DROP_DOWN);
fileTitle.setMenu(fileMenu);
// Create menu items for the File menu title
newPlaylistItem = createMenuItem(fileMenu, "New Playlist...");
openPlaylistItem = createMenuItem(fileMenu,

"Open Playlist...");
}

/**
* Creates a menu item
*

293

Project Two: Jukebox

Listing 10.38 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 293

* @param menu - The menu
* @param text - Label for the menu item
* @return MenuItem - the new MenuItem instance
*/
private MenuItem createMenuItem(Menu menu, String text) {
MenuItem item = new MenuItem(menu, SWT.NULL);
item.setText(text);
// Add event processing
item.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
processMenuSelection(e);

}
});
return item;

}

Listing 10.38 (Continued)

Once again, a FileDialog instance of type SWT.OPEN is used to open an existing playlist. The selected
filename is then set as a new input source for the playlist model via the setInput() method. The
viewer will notify the playlist model about this event via inputChanged(). This is possible because
the playlist model implements the IContentProvider interface.

If you want to create a new playlist, you need to use a FileDialog of type SWT.SAVE. This dialog
allows the end user to enter the filename explicitly. However, a check for the existence of the specified
file is necessary. If the file already exists, a MessageDialog is used to ask the end user whether the file
should be overwritten. If the user answers positively, the existing file is first deleted, and then the file-
name is passed to the viewer via the method setInput(). The playlist model then automatically cre-
ates a new playlist file with the specified name and signals this via the inputChanged() method. See
Listing 10.39.

/**
* Process menu events
*
* @param e - The event object
*/
private void processMenuSelection(SelectionEvent e) {
// Retrieve MenuItem instance from event object
Widget widget = e.widget;
// Retrieve shell
Shell shell = e.display.getShells()[0];
if (widget == openPlaylistItem) {
// Open playlist: Create and open file selection dialog
FileDialog dialog = new FileDialog(shell, SWT.OPEN);
dialog.setFilterExtensions(PLAYLISTEXTENSIONS);
dialog.setText("Open Playlist ");
String filename = dialog.open();
// Set this file as new input for TableViewer
if (filename != null) setInput(filename);

} else if (widget == newPlaylistItem) {
// New playlist: Create and open file selection dialog
while (true) {

294

Chapter 10

Listing 10.39 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 294

FileDialog dialog = new FileDialog(shell, SWT.SAVE);
dialog.setFilterExtensions(PLAYLISTEXTENSIONS);
dialog.setText("Create new Playlist");
String filename = dialog.open();
if (filename == null) return;
// Add file extension if necessary
if (!filename.endsWith(PLS)) filename += PLS;
// Check if file already exists
File file = new File(filename);
if (!file.exists()) {
// Set this file as new input for TableViewer
setInput(filename);
break;

} else if (
// File already exists.
// Asks user if file is to be overwritten.
MessageDialog.openQuestion(shell, "New Playlist",

"File already exists.\nOverwrite?")) {
file.delete();
setInput(filename);
break;

}
}
updateToolBar();

}
}

}

Listing 10.39 (Continued)

The PlaylistLabelProvider Class
PlaylistLabelProvider is responsible for deriving the table cell contents from the playlist entries. It
retrieves the corresponding feature value from a specified playlist entry and a specified column number
by using the access methods of the playlist domain model.

In the case of sound and image files, the class checks to see if these files exist. If not, the cell content is
prefixed with a warning icon via the method getColumnImage(). See Listing 10.40.

package com.bdaum.jukebox;

import java.io.File;
import org.eclipse.jface.viewers.ILabelProviderListener;
import org.eclipse.jface.viewers.ITableLabelProvider;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.widgets.Display;
import org.w3c.dom.Node;

/**
* This class provides the table of the playlist viewer

295

Project Two: Jukebox

Listing 10.40 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 295

* with cell contents.
*/
public class PlaylistLabelProvider implements ITableLabelProvider {

// Playlist domain model
private IPlaylist playlistmodel;
// Here we store the warning icon
private Image alertImage;

/**
* Constructor.
*/
public PlaylistLabelProvider(IPlaylist playlistmodel) {

super();
this.playlistmodel = playlistmodel;

}

Listing 10.40 (Continued)

Returning a Warning Icon
The method getColumnImage() is called by the Table instance when rows have to be redrawn. For
the first and second columns of the table, the method getFileAlert() is used to test whether the files
specified in the table cells still exist. If not, the warning icon is returned as an Image instance. The
method caches this Image instance in the instance field alertImage, so this image needs to be loaded
only the first time it is used.

If the PlayListLabelProvider is no longer needed, the image is released by calling its dispose()
method.

When loading the image from file, a Display instance is needed to convert it into an Image instance.
Because this method does not have access to a widget from which you could obtain such a Display
instance, you need to use a different approach. You need to fetch the Display instance from the current
SWT thread via the static method Display.getCurrent(). This is possible because this method is
executed within the SWT thread (otherwise, you would obtain the value null). See Listing 10.41.

/**
* Returns warning icons for missing files
* @see org.eclipse.jface.viewers.ITableLabelProvider#
* getColumnImage(java.lang.Object, int)
*/
public Image getColumnImage(Object element, int columnIndex) {

Node nod = (Node) element;
// For the features <soundfile> and <image> we test for
// the existence of the specified files. If the file does not
// exist we return a warning icon
switch (columnIndex) {
case 1 :

return getFileAlert(playlistmodel.getFeature(nod,
Player.SOUNDFILE));

case 2 :

296

Chapter 10

Listing 10.41 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 296

return getFileAlert(playlistmodel.getFeature(nod,
Player.IMAGEFILE));

default :
return null;

}
}

/**
* Load a warning icon from file
* @param string
* File name
* @return Image – A warning icon if the specified does not exist
* null otherwise.
*/
private Image getFileAlert(String name) {

if (name == null || name.length() == 0) return null;
// Test if file exists
File file = new File(name);
if (file.exists()) return null;
// No, let’s return the warning icon
// If the icon is not yet loaded, we load it now.
if (alertImage == null)

alertImage = new Image(Display.getCurrent(),
"icons/ alert_obj.gif");

return alertImage;
}

/**
* @see org.eclipse.jface.viewers.IContentProvider#dispose()
*/
public void dispose() {

// Release the warning icon again
if (alertImage != null) {

alertImage.dispose();
alertImage = null;

}
}

Listing 10.41 (Continued)

Cell Text
The text content of the table cells is provided by the getColumnText() method. This is quite simple:
the corresponding feature values are retrieved from the playlist model. In the case of filenames, a bit of
formatting is also applied. See Listing 10.42.

/**
* Returns the column text
* @see org.eclipse.jface.viewers.ITableLabelProvider#
* getColumnText(java.lang.Object, int)
*/
public String getColumnText(Object element, int columnIndex) {

297

Project Two: Jukebox

Listing 10.42 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 297

Node nod = (Node) element;
// In case of file names we only return the short name
switch (columnIndex) {

case 0 :
return playlistmodel.getFeature(nod, Player.TITLE);

case 1 :
return getShortName(playlistmodel.getFeature(nod,

Player.SOUNDFILE));
case 2 :

return getShortName(playlistmodel.getFeature(nod,
Player.IMAGEFILE));

case 3 :
return playlistmodel.getFeature(nod, Player.DESCRIPTION);

}
return null;

}

/**
* Convert file path into short file name
* @param filename - File path
* @return String - Short file name
*/
private String getShortName(String filename) {

if (filename == null)
return "";

File file = new File(filename);
return file.getName();

}

Listing 10.42 (Continued)

The next two methods (see Listing 10.43) are required for implementing the interface
IBaseLabelProvider. Here, you have the option of informing possible
ILabelProviderListeners about changes in the state of the PlaylistLabelProvider.
(This could require a refresh of the viewer table.) However, you don’t need this functionality,
and therefore you should leave these methods empty.

The method isLabelProperty() is used for optimization. Here you have the option to return the
value false if the cell representation of a feature is independent of the value of the feature. You can
thus avoid unnecessary updates of table elements. In this case, however, all cell representations depend
solely on the corresponding feature values—therefore, you should always return the value true.

/**
* @see org.eclipse.jface.viewers.IBaseLabelProvider#
* addListener(org.eclipse.jface.viewers.ILabelProviderListener)
*/
public void addListener(ILabelProviderListener listener) {
}

/**
* @see org.eclipse.jface.viewers.IBaseLabelProvider#
* removeListener(org.eclipse.jface.viewers.ILabelProviderListener)

298

Chapter 10

Listing 10.42 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 298

*/
public void removeListener(ILabelProviderListener listener) {
}

/**
* @see org.eclipse.jface.viewers.IBaseLabelProvider#
* isLabelProperty(java.lang.Object, java.lang.String)
*/
public boolean isLabelProperty(Object element, String property) {

return true;
}

}

Listing 10.43 (Continued)

The FileCellEditor Class
Now the missing cell editors for the table of the viewer (see the section “Cell Editors” in Chapter 9) are
implemented. The class FileCellEditor is based on the JFace class DialogCellEditor. When such
an editor is clicked twice (but not a double-click), a small button appears on the right-hand side of the
cell. A further click on this button opens a dialog. In this case, it is a file-selection dialog.

Since the class FileCellEditor should be used for two different features (sound files and image files),
it should be possible to configure this class via its constructor. The constructor accepts a parameter for
the dialog’s title line and a filter list for the file selection.

Then the method openDialogBox() of the parent class DialogCellEditor is overridden. The
contents (filename) of the table cell are fetched via the method getValue() and passed to the
FileDialog instance. This is to make sure that the file-selection dialog is already positioned to
the current file named in the table cell. The specified title is set, too, and also the list of file extensions
for the file-selection filter. When the FileDialog is closed, a test is applied to see if a filename has been
returned (null is returned if the dialog was canceled). Using the method setValueValid() the state
of the cell editor is set accordingly. Then the filename received from the FileDialog is returned to the
caller: the DialogCellEditor will replace the current cell contents with this value provided that it
was marked as valid. See Listing 10.44.

package com.bdaum.jukebox;

import org.eclipse.jface.viewers.DialogCellEditor;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.FileDialog;

public class FileCellEditor extends DialogCellEditor {

// Filter for the file selection
private String[] extensions;
// Title for pop-up dialog

299

Project Two: Jukebox

Listing 10.43 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 299

private String title;
/**
* Constructor for FileCellEditor.
* @param parent - containing Composite
* @param title - Title for pop-up dialog
* @param extensions - Filter for file selection
*/
public FileCellEditor(Composite parent, String title,

String[] extensions) {
super(parent);
// Save parameters
this.extensions = extensions;
this.title = title;

}
/**
* @see org.eclipse.jface.viewers.DialogCellEditor#
* openDialogBox(org.eclipse.swt.widgets.Control)
*/
protected Object openDialogBox(Control cellEditorWindow) {

// Create file selection dialog
FileDialog dialog =

new FileDialog(cellEditorWindow.getShell(), SWT.OPEN);
// Position dialog to current file
dialog.setFileName((String) getValue());
// Set filter and title
dialog.setFilterExtensions(extensions);
dialog.setText(title);
String filename = dialog.open();
// Indicate if file name is valid
setValueValid(filename != null);
return filename;

}
}

Listing 10.44 (Continued)

The Description Editor
The description editor consists of the class DescriptionCellEditor (which acts as its root class), and the
class DescriptionEditorDialog which implements most of the functionality of the description editor.

The DescriptionCellEditor Class
The DescriptionCellEditor (Listing 10.45) is also based on the class DialogCellEditor. In this
case, clicking the cell’s Edit button will bring up a pop-up dialog for the convenient input of descriptive
text. This dialog is implemented as a DescriptionEditorDialog instance, to which the playlist
model is passed as a parameter. After the dialog is constructed, it is initialized with the current cell
contents. When the dialog is closed, a check is applied to determine whether it was closed with the

300

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 300

OK button. If so, the modified text is fetched from the dialog and returned to the caller, after it has been
declared as valid.

package com.bdaum.jukebox;

import org.eclipse.jface.dialogs.Dialog;
import org.eclipse.jface.viewers.DialogCellEditor;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;

public class DescriptionCellEditor
extends DialogCellEditor {

// The playlist domain model
IPlaylist playlistModel;

/**
* Constructor.
* @param parent
* Containing Composite
* @param playlistModel
* The playlist domain model
*/
public DescriptionCellEditor(Composite parent,

IPlaylist playlistModel) {
super(parent);
// Save parameters
this.playlistModel = playlistModel;

}
/**
* Opens the window for description editing
* @see org.eclipse.jface.viewers.DialogCellEditor#
* openDialogBox(org.eclipse.swt.widgets.Control)
*/
protected Object openDialogBox(Control cellEditorWindow) {

// Create new DescriptionEditorDialog instance
DescriptionEditorDialog dialog = new DescriptionEditorDialog(

cellEditorWindow.getShell(), playlistModel);
// Create the dialogs GUI-elements
dialog.create();
// Initialize with current cell content
dialog.setText((String) getValue());
if (dialog.open() == Dialog.OK) {

// Indicate that value is valid
setValueValid(true);
// Return new text
return dialog.getText();

}
return null;

}
}

Listing 10.45

301

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 301

The DescriptionEditorDialog Class
We go into the final round with the implementation of this class. However, it still offers you something
to learn. It implements a pop-up dialog for entering descriptive text and is based on the JFace class
TitleAreaDialog (see “Some Dialog Subclasses” in Chapter 9). A SourceViewer instance (see “The
SourceViewer Class” in Chapter 9) is used as the editor for the descriptive text.

During this editing process, syntax-driven text coloring is needed: HTML tags and keywords that begin
with the $ character will be displayed in a different color. To support the input of HTML markup and of
keywords, a Content Assistant that can be invoked by pressing Ctrl+Spacebar is offered.

In addition, an Undo Manager is configured for the SourceViewer. This Undo Manager can be called
via the keyboard shortcuts Ctrl+Z and Ctrl+Y for undo and redo. Copying, deleting, and pasting text via
the keyboard shortcuts Ctrl+C, Ctrl+X, and Ctrl+V are already supported by the predefined
SourceViewer. See Listing 10.46.

package com.bdaum.jukebox;

import java.util.ArrayList;
import java.util.List;
import org.eclipse.jface.dialogs.TitleAreaDialog;
import org.eclipse.jface.text.*;
import org.eclipse.jface.text.contentassist.*;
import org.eclipse.jface.text.presentation.IPresentationReconciler;
import org.eclipse.jface.text.presentation.PresentationReconciler;
import org.eclipse.jface.text.rules.*;
import org.eclipse.jface.text.source.ISourceViewer;
import org.eclipse.jface.text.source.SourceViewer;
import org.eclipse.jface.text.source.SourceViewerConfiguration;
import org.eclipse.swt.SWT;
import org.eclipse.swt.custom.VerifyKeyListener;
import org.eclipse.swt.events.KeyAdapter;
import org.eclipse.swt.events.KeyEvent;
import org.eclipse.swt.events.VerifyEvent;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;

public class DescriptionEditorDialog extends TitleAreaDialog {

/**
* This class allows editing descriptions in a separate
* window. Key words starting with '$' and HTML tags are
* coded in a different color. In addition, a content
* assistant is implemented. This assistant is activated via
* Ctrl+Spacebar, and automatically after entering a '$'. In
* case of a '$' the content assistant makes proposals for

302

Chapter 10

Listing 10.46 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 302

* keywords. If text is selected, the content assistant
* makes proposals for HTML character formatting. Also undo
* functions are implemented(Ctrl+Z for Undo, Ctrl+Y for Redo).
*/

Listing 10.46 (Continued)

Code Scanner
The inner class KeywordCodeScanner (Listing 10.47) is responsible for the syntax highlighting of the
displayed text. The class is based on a RuleBasedScanner (see the section “The SourceViewer Class”
in Chapter 9). In our example, only two SingleLineRules are necessary to recognize keywords and
HTML markup. In the first case, $ is specified as the start character and a space as the end character,
while HTML markup is enclosed by < and >. (The last parameter specifies the escape character \).
These syntactical elements (keywords and HTML markup) are then decorated with the created Token
instance. The array with these two rules is then passed to the scanner via the setRules() method.

public class KeywordCodeScanner extends RuleBasedScanner {

// This class implements a specific RuleBasedScanner.
// It assigns specific colors to keywords.
public KeywordCodeScanner() {
// We fetch the current Display instance
// for later retrieval of system colors
Display display = Display.getCurrent();
// We create a token for keywords and paint it green
IToken keyToken = new Token(new TextAttribute(display

.getSystemColor(SWT.COLOR_DARK_GREEN)));
// We create a token for HTML tags and paint it red
IToken htmlToken = new Token(new TextAttribute(display

.getSystemColor(SWT.COLOR_DARK_RED)));
// We only need a single rule to recognize a keyword
IRule[] rules = new IRule[2];
// By using a SingleLineRule we make sure that
// the keyword does not stretch across line breaks
rules[0] = new SingleLineRule("$", " ", keyToken, '\\');
rules[1] = new SingleLineRule("<", ">", htmlToken, '\\');
// We set this rule for the scanner
setRules(rules);

}
}

Listing 10.47

303

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 303

Content Assistant
The inner class KeywordContentAssistProcessor implements a Content Assistant (see the section
“The SourceViewer Class” in Chapter 9) that makes proposals for keywords and HTML character
formatting. This assistant is automatically called when a $ is entered. This is controlled via the
getCompletionProposalAutoActivationCharacters() method.

All proposals are compiled in the method computeCompletionProposals(). This method first
retrieves the current document from the viewer and checks to see if text is selected. If so, it assumes
that the user wants to apply character formatting to the selected text and calls the method
computeHtmlProposals() to compile a list of HTML character formatting proposals.

Otherwise, it will call the method computeKeywordProposals() in order to compile a list of key-
word proposals. In this case, the method getQualifier() is called, too, to determine whether a part
of the keyword has already been entered. This knowledge is used to restrict the set of possible proposals.
Finally, all CompletionProposal instances are returned in an array. Each of these instances contains
the proposed character string, the position at which to insert it (the current cursor position minus the
length of the keyword part already entered), the length of the text area that should be replaced by the
proposal (the length of the keyword part already entered), and the new cursor position. In this case,
the cursor is always positioned behind the proposal.

In the method getQualifier()the document is read from the current position backwards, character
by character, and these characters are stored into a StringBuffer. If the process arrives at a space
character or a line break, the empty string is returned—obviously, no keyword part was entered. If it
arrives at a $ character, the contents of the StringBuffer are reversed and the reversed string is
returned as the result. This result is then used in the method computeProposals() to restrict the
set of possible keywords to only those keywords that start with the string already entered.

The method computeHtmlProposals() works in a similar way. However, here an extended form of
the constructor CompletionProposal() is used. This form allows the display of specific labels for the
proposals, that is, the string inserted when the proposal is applied and the label representing the pro-
posal need not be identical. This allows displaying the proposals under labels such as “bold” or “italic”
instead of “...” and “<i>...</i>”.

The rest of this class contains standard implementations of the IContentAssistProcessor methods.
These methods are not needed for this application. See Listing 10.48.

// All keywords
private final static String[] KEYWORDS = new String[]{

"performers", "producer", "publisher",
"pubDate", "title"};

// HTML style tags proposed for character formatting
private final static String[] HTMLTAGS = new String[]{"b",

"em", "i", "strong"};
// Display text for HTML style tags
private final static String[] STYLELABELS = new String[]{

"bold", "emphasis", "italic", "strong"};

public class KeywordContentAssistProcessor
implements IContentAssistProcessor {

/**

304

Chapter 10

Listing 10.48 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 304

* Compiles an array of CompletionProposal instances.
*
* @param viewer - The viewer, from which this method is called
* @param documentOffset - The current position in the document
*/
/**
* Make automatic proposals after a $-character
*/
public char[] getCompletionProposalAutoActivationCharacters() {
return new char[]{'$'};

}

public ICompletionProposal[] computeCompletionProposals(
ITextViewer viewer, int documentOffset) {

IDocument doc = viewer.getDocument();
// Get text selection
Point selectedRange = viewer.getSelectedRange();
List propList;
try {
propList = (selectedRange.y == 0)

? computeKeywordProposals(getQualifier(doc,
documentOffset), documentOffset)

: computeHtmlProposals(selectedRange.x, doc.get(
selectedRange.x, selectedRange.y));

// Convert into Array
return (CompletionProposal[])

propList.toArray(new CompletionProposal[propList.size()]);
} catch (BadLocationException e) {
return new CompletionProposal[0];

}
}
/**
* Compiles proposals for HTML mark-up.
*
* @param documentOffset - the current position in the text
* @param selectedText - the currently selected text
* @return - list of proposals
*/
private List computeHtmlProposals(int documentOffset,

String selectedText) {
List propList = new ArrayList();
for (int i = 0; i < HTMLTAGS.length; i++) {
// Compute the string that will replace the selection
String insert = "<" + HTMLTAGS[i] + ">" + selectedText

+ "</" + HTMLTAGS[i] + ">";
int cursor = insert.length();
// Construct proposal with replacement string and
// display label
CompletionProposal proposal = new CompletionProposal(

insert, documentOffset, selectedText.length(), cursor,
null, STYLELABELS[i], null, insert);

propList.add(proposal);
}
return propList;

305

Project Two: Jukebox

Listing 10.48 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 305

}
/**
* Retrieves qualifying user input.
*
* @param viewer - The viewer under which we work
* @param documentOffset - The current position in the document
* @return String - Keyword part that already has been entered
*/
private String getQualifier(IDocument doc, int documentOffset) {
// Read the document backwards
// until whitespace or a $-character is encountered
StringBuffer buf = new StringBuffer();
while (true) {
try {
// Get character in front of cursor
char c = doc.getChar(--documentOffset);
if (Character.isWhitespace(c)) {
// Begin of line or begin of word -
// no keyword was found.
break;

}
buf.append(c);
if (c == '$')
// Keyword was found.
// Revert the string and return it.
return buf.reverse().toString();

} catch (BadLocationException e) {
// Begin of document – no keyword found
break;

}
}
return "";

}
/**
*
* Compiles a list with keyword proposals
*
* @param qualifier - Significant characters entered by the user to
* restrict the number of proposals
* @param documentOffset - the current position in the document
* @return list of proposals
*/
private List computeKeywordProposals(String qualifier,

int documentOffset) {
List propList = new ArrayList();
for (int i = 0; i < KEYWORDS.length; i++) {
String insert = "$" + KEYWORDS[i] + " ";
if (insert.startsWith(qualifier)) {
// Only allow the keywords that start with the qualifier
int cursor = insert.length();
CompletionProposal proposal =

new CompletionProposal(insert,
documentOffset - qualifier.length(),
qualifier.length(), cursor);

306

Chapter 10

Listing 10.48 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 306

propList.add(proposal);
}

}
return propList;

}

/**
* Standard implementation for display of contexts
*/
public IContextInformation[] computeContextInformation(

ITextViewer viewer, int documentOffset) {
return null;

}

/**
* Standard implementation for activation of contexts
*/
public char[] getContextInformationAutoActivationCharacters() {
return null;

}

/**
* Standard implementation for validation of contexts
*/
public IContextInformationValidator

getContextInformationValidator() {
return null;

}

/**
* Standard implementation for error messages
*/
public String getErrorMessage() {
return null;

}
}

Listing 10.48 (Continued)

SourceViewer Configuration
Now, you must tell the SourceViewer about the syntax highlighting and the Content Assistant. This
happens in the following code, where a new SourceViewer–Configuration (see the section “The
SourceViewer Class” in Chapter 9) under the name KeywordViewerConfiguration is created. Using
the KeywordCodeScanner declared previously, a new DefaultDamagerRepairer that is responsible
for the presentation of the text is created. This DefaultDamagerRepairer is then registered with a
new PresentationReconciler instance as both a Damager and a Repairer. This is done for the
content category IDocument.DEFAULT_CONTENT_TYPE, which is the only content category used here.

A new ContentAssistant instance is created in the method getContentAssistant(). For this
instance set the KeywordContentAssistProcessor declared previously as the processor. Switch to
automatic activation of the Content Assistant and specify 500 milliseconds as the delay.

307

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 307

Finally, add an Undo Manager to this configuration, too. Use the Eclipse standard implementation
DefaultUndoManager and allow nine undo steps. See Listing 10.49.

// SourceViewer Configuration
class KeywordViewerConfiguration extends SourceViewerConfiguration {

// Configure Presentation
public IPresentationReconciler getPresentationReconciler(

ISourceViewer sourceViewer) {
// Create new PresentationReconciler instance
PresentationReconciler reconciler = new PresentationReconciler();
// We use a DefaultDamagerRepairer as both Damager and Repairer
DefaultDamagerRepairer dr = new DefaultDamagerRepairer(

new KeywordCodeScanner());
reconciler.setDamager(dr,IDocument.DEFAULT_CONTENT_TYPE);
reconciler.setRepairer(dr, IDocument.DEFAULT_CONTENT_TYPE);
return reconciler;

}

// Configure Content Assist
public IContentAssistant getContentAssistant(

ISourceViewer sourceViewer) {
// Create new ContentAssistant instance
ContentAssistant assistant = new ContentAssistant();
// Set the ContentAssistProcessor for the
// default content category
assistant.setContentAssistProcessor(

new KeywordContentAssistProcessor(),
IDocument.DEFAULT_CONTENT_TYPE);

// Allow automatic activation after 500 msec
assistant.enableAutoActivation(true);
assistant.setAutoActivationDelay(500);
return assistant;

}
// We use the DefaultUndoManager as Undo Manager
public IUndoManager getUndoManager(ISourceViewer sourceViewer) {
// A maximum of 9 undo steps
return new DefaultUndoManager(9);

}
}

Listing 10.49

SourceViewer
Now you can begin to implement the DescriptionEditorDialog. The constructor accepts the parent
shell and the playlist domain model.

Add a title and a message text to the dialog. Then in the method createDialogArea()add the
SourceViewer to the dialog.

308

Chapter 10

12_020059_ch10.qxd 10/8/04 11:26 AM Page 308

The SourceViewer is then configured with the KeywordViewerConfiguration declared previously.
In addition, equip the SourceViewer with a document instance. To make the SourceViewer fill the
dialog area completely, fetch the SourceViewer’s StyledText widget and apply an appropriate
GridData instance to it.

Then look after the keyboard event. Add a VerifyKeyListener to the SourceViewer. With this
listener, trap all key presses that are modified with the Ctrl key: in this case, set the variable doit in the
event object to false. Thus, the event is vetoed and the key press is ignored.

In the KeyListener that you added to the SourceViewer’s StyledText widget, however, all key
presses modified with Ctrl get special treatment. Depending on the key combination pressed, an
appropriate ITextOperationTarget operation is selected. Then you need to ask the SourceViewer
with the method canDoOperation() if the operation can be performed: if so, execute it via the
doOperation() method. This test with canDoOperation() is absolutely necessary! See Listing 10.50.

// Widgets
private SourceViewer sourceViewer;
// The SourceViewers Document instance
private Document doc = new Document();
// The playlist domain model
private IPlaylist playlistModel;

/**
* Constructor DescriptionEditorDialog.
*
* @param parentShell - Containing Shell
* @param playlistModel - The playlist domain model
*/
public DescriptionEditorDialog(Shell parentShell,

IPlaylist playlistModel) {
// Save parameters
super(parentShell);
this.playlistModel = playlistModel;

}
/**
* @see org.eclipse.jface.dialogs.Dialog#
* createDialogArea(org.eclipse.swt.widgets.Composite)
*/
public Control createDialogArea(Composite parent) {
// Set title
setTitle("Description");
// Set message
setMessage("Enter description text.\n"
+ "Press Ctrl-Spacebar to invoke the Content Assistant.");

// Create Composite
Composite composite = (Composite) super

.createDialogArea(parent);
// Create SourceViewer
sourceViewer = new SourceViewer(composite, null, SWT.MULTI

| SWT.BORDER | SWT.WRAP | SWT.H_SCROLL
| SWT.V_SCROLL);

// Configure SourceViewer

309

Project Two: Jukebox

Listing 10.50 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 309

sourceViewer.configure(new KeywordViewerConfiguration());
// Set Document instance
sourceViewer.setDocument(doc);
// Get StyledText widget
Control styleTextWidget = sourceViewer.getControl();
// Set the widget to maximum size
styleTextWidget.setLayoutData(new GridData(

GridData.GRAB_HORIZONTAL
| GridData.GRAB_VERTICAL
| GridData.HORIZONTAL_ALIGN_FILL
| GridData.VERTICAL_ALIGN_FILL));

// Avoid hotkeys appearing in the text
sourceViewer.appendVerifyKeyListener(new VerifyKeyListener() {
public void verifyKey(VerifyEvent event) {
if ((event.stateMask & SWT.CTRL) != 0) {
// Veto, if CTRL was pressed
event.doit = false;

}
}

});
// Event processing for hotkeys
styleTextWidget.addKeyListener(new KeyAdapter() {
public void keyPressed(KeyEvent e) {
// Only if CTRL was pressed
if ((e.stateMask & SWT.CTRL) == 0) return;
int operation = 0;
if (e.character == ' ') {
// Ctrl+Spacebar: Content Assist
operation = SourceViewer.CONTENTASSIST_PROPOSALS;

} else if ((e.character | '\u0040') == 'Z') {
// Ctrl+Z: Undo
operation = ITextOperationTarget.UNDO;

} else if ((e.character | '\u0040') == 'Y') {
// Ctrl+Y: Redo
operation = ITextOperationTarget.REDO;

}
// Check if operation is possible
if (operation != 0 && sourceViewer.canDoOperation(operation))
// Perform operation
sourceViewer.doOperation(operation);

}
});
return composite;

}

/**
* Return the edited text.
*
* @return String - Edited text
*/
public String getText() {
return doc.get();

}

310

Chapter 10

Listing 10.50 (Continues)

12_020059_ch10.qxd 10/8/04 11:26 AM Page 310

/**
* Initialize document with text.
*
* @param input - Default text for text field
*/
public void setText(String input) {
doc.set((input == null) ? "" : input);

}
}

Listing 10.50 (Continued)

Deploying the Jukebox
It is not very difficult to deploy the jukebox as a standalone application. You only have to take care
that all the required JAR files and the required native SWT libraries are included in the deployment.

First, export the whole project into a directory of your choice as a JAR file. Please make sure that you
remove the check mark from file jukebox.ini when selecting the files to be exported. This file is
created automatically by the playlist model implementation when the application is executed for the
first time.

When invoking the Jukebox, you must make sure that all JAR files included in the Java Build Path are
also included into the Java Classpath. In addition, it is necessary to specify the native SWT library in the
–D option of the java command.

On the Macintosh, however, things are much simpler. Eclipse 3 offers in the Package Explorer the context
function Export > Mac OS X Application Bundle. This function allows you to deploy an SWT project as
an Application Bundle that can be executed on the Mac with just a double mouse click.

Summary
The player implemented on these pages is, of course, miles away from a really convenient and powerful
Jukebox. However, it can be used as the basis for your own extensions. My goal was to demonstrate core
concepts of the SWT and the JFace libraries in the context of a nontrivial application.

As expected, this application looks like a native application of the host’s operating system (here
Windows 2000). The windows and dialogs behave like native windows and dialogs—in fact, they are
native windows and dialogs.

What is more difficult, as with a pure Java application, is deployment. Because the SWT archives and the
native SWT library are platform-specific, you need a different deployment package for each platform.
Alternatively, you can pack all platform-specific SWT archives and libraries into a single installation, but
this then becomes large. Another option is using Sun Microsystems’s Java Web Start to deploy SWT
applications. An detailled discussion about this topic is found in the article “Deploy an SWT application
using Java Web Start” by Jeff Gunther on www.ibm.com/developerworks.

311

Project Two: Jukebox

12_020059_ch10.qxd 10/8/04 11:26 AM Page 311

What remains in the wish list is better deployment support for Windows and Linux, such as the possibil-
ity to automatically generate command files for running deployed applications on the target platform.

Figure 10.5 shows the various windows of the jukebox. At the top left you see the main window with a
background image; on the right is the window with the descriptive text. At the bottom left is the playlist
window, and to the right of this window is the editor for the descriptive text.

312

Chapter 10

Figure 10.5

In fact, the layout of the player could be improved considerably. The control elements are currently
somewhat minimalist. One idea would be to implement sliders for volume and balance and to allow for
different operational modes (single pass, loop, shuffle).

The management of the playlists could also be more user friendly. If the same song is used in multiple
playlists, repeatedly entering the song data becomes tiring. An option would be to scan all existing
playlists for a song when it is inserted into a playlist and to derive the features (title, background image,
description) from existing entries. It should also be possible to nest playlists. Another option would be to
add other features such as a transition time for cross-fading into the next song. This could be done by
using two jlGui engine instances.

However, all this must be left to the interested reader. In the next chapter we discuss plug-in
development.

12_020059_ch10.qxd 10/8/04 11:26 AM Page 312

Developing Plug-ins for the
Eclipse Platform

Plug-in development sounds at first like a topic for Eclipse specialists. However, this feature
quickly proves to be one of the main selling points of the Eclipse platform. To understand this, we
must briefly discuss the architecture of the Eclipse platform (see the following section, “The
Architecture of the Eclipse Platform”). Eclipse consists of a fairly small core application whose
functionality is mainly restricted to the execution of plug-ins. In fact, every function the Eclipse
workbench has to offer has been added to this core in the form of a plug-in.

To learn which plug-ins your current Eclipse SDK contains, just invoke the menu function Help >
About Eclipse Platform > Plug-in Details. Another way to get an overview of the installed plug-ins
is the Plug-in Browser that you can open via Window > Show View > Plug-ins. Finally, the Search
function supports the search for plug-ins, provided that it is used under the Plug-in Development
perspective (see “The Plug-in Development Perspective” section).

This plug-in-oriented architecture has two consequences:

❑ First, the Eclipse SDK can be extended almost indefinitely. Most of the third-party plug-
ins currently offered for Eclipse deal with some aspect of application development. For
example, there are plug-ins for modeling with UML or AOM, and plug-ins for special Java
tools such as JavaCC (see Appendix A). Other plug-ins provide IDEs for programming
languages such as C++ or AspectJ.

❑ Second, it is possible to remove features from the Eclipse SDK. Theoretically, you can
build on the “naked” Eclipse core to construct applications that have very little to do with
program development. In particular, this makes sense for applications that require a cer-
tain degree of variability and so need to be implemented using a plug-in concept. Such
applications are found in areas like graphics and imaging applications, video editing, pre-
press, content management, sound studios, and many others.

1111

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 313

When developing such applications and plug-ins, you can use the functionality of existing Eclipse
plug-ins. In particular, the plug-ins for the Eclipse workspace resource management (projects, views,
and files) and for the GUI components of the Eclipse workbench (editors, views, wizards, preferences,
help system, and much more) are worth mentioning. Despite the steep learning curve of the Eclipse
architecture, the time and effort saved by reusing these components by far outweighs the effort
necessary to get acquainted with the architecture.

In this chapter I discuss the principles of the Eclipse plug-in architecture and give an introduction into
plug-in development. I refrain from presenting runnable example programs at this point because the
classes and interfaces discussed here make sense only within the context of a complete plug-in. Instead,
larger example plug-ins will be shown in Chapters 13 and 15.

The Architecture of the Eclipse Platform
The only purpose of the tiny Eclipse core is to load and execute plug-ins. All the other functionality of
the Eclipse platform is provided by plug-ins. In most cases—but not always—such a plug-in consists of a
Java archive. In addition, it may contain other files such as images or help texts. An absolute require-
ment for each plug-in, however, is the plug-in manifest file plugin.xml, which describes the configura-
tion of the plug-in and its integration into the platform. I will discuss this manifest in more detail in the
section “Configuring Plug-ins.”

Extension Points
Extension Points are a core concept of the plug-in architecture. Plug-ins can define their own extension
points to which other plug-ins can connect. In the manifest file plugin.xml each plug-in describes to
which existing extension points it connects and which new extension points it adds to the platform.

OSGi
Until version 2.1 Eclipse used proprietary formats for the core and for the plug-ins. With version 3 this
has changed. Internally, plug-ins are based on the OSGi (Open Service Gateway Initiative) specification.
The Eclipse core now fulfills the role of an OSGi server. A compatibility layer ensures that older plug-ins
can be executed on this platform without problems.

The Open Service Gateway Initiative was founded in 1999. Its mission was the standardization of ser-
vices for local networks and embedded devices. Services conforming to the OSGi specifications can be
executed on OSGi complying servers such as IBM’s SMF server or Sun Microsystems’s Java Embedded
Server. In particular, the automotive and electrical appliances industries are part of this initiative. What
is relevant currently for Eclipse is that Eclipse plug-ins are now based on an open standard.

OSGi-conforming services (also called OSGi bundles) must implement the interface BundleActivator
and must provide an OSGi manifest file. A BundleActivator registers the service with the OSGi
server in its start() method and deregisters it in its stop() method. In Eclipse this is done by the
abstract class Plugin, which implements a BundleActivator. So, normally you should not have to
deal with OSGi matters at all. In the future, however, Eclipse will utilize more of the OSGi functionality
to make Eclipse plug-ins more versatile. One advantage of the OSGi architecture is that plug-ins can be
added and removed from the Eclipse platform without having to restart Eclipse after such an operation.

314

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 314

A Minimal Platform
The whole plug-in game begins with the platform core runtime org.eclipse.core.runtime. This is
formally a plug-in, too, and consists of a Java library runtime.jar and a manifest file plugin.xml.
This platform, along with the plug-in org.eclipse.core.runtime.compatibility for the Java
archive compatibility.jar and the plug-in org.eclipse.core.boot for the Java archive
boot.jar, is part of the absolute minimum number of plug-ins required for each Eclipse-based
application. The boot.jar archive is, among other things, also responsible for completing the
installation of a freshly installed Eclipse platform.

Later, in “The Core Classes of the Eclipse Platform,” I will discuss the platform core in more detail.

Rich Client Platform vs. IDE
In Eclipse 2 all applications that wanted to utilize the Eclipse workbench were restricted to the IDE
(Integrated Development Environment) concept. Such applications were required to manage the Eclipse
workspace and to work with workspace resources. This is, however, a severe restriction, inhibiting the
widespread use of the Eclipse platform as a universal application framework.

Consequently, this restriction was loosened with Eclipse 3. It is now possible to implement generic
applications on the basis of the Rich Client Platform (RCP). In particular, the RCP does not use the
Eclipse workspace and its resources. Since the Eclipse workbench also made extensive use of the
workspace concept, it was refactored into a workspace-agnostic part called the generic workbench
and a workspace-specific part called the IDE. The generic workbench is implemented in the plug-in
org.eclipse.ui.workbench, while the workspace-specific part has been moved to the new plug-in
org.eclipse.ui.ide.

Resource Management
Resources in Eclipse are projects, folders, and files of the Eclipse workspace. The plug-in
org.eclipse.core.resources provides the necessary functionality for accessing and managing
resources independently of the host file system. In addition, it implements some services that are
usually not provided by the host file system. Such services include a mechanism for managing resource
annotations (Marker) and an event management for resource changes. In “Configuring Plug-ins” I will
discuss resource management in more detail.

The resource management plug-in is based on a further plug-in: org.eclipse.ant.core. This plug-
in organizes the support for the Ant tool. Ant (www.apache.com) is a Java-based tool supporting the
Make process (that is, the assembly) of projects (see also “Embedded Ant” in Chapter 12). The reason
why this tool is used for resource management lies in Eclipse’s support for the assembly of projects at
the resource level. The Ant functionality is therefore available virtually everywhere in the platform.
The Eclipse plug-ins for resource management may be included in and deployed with your own
applications. However, since some components (for example, Ant) are covered by the Apache Software
License 1.1, products based on these plug-ins must refer explicitly to the Apache copyright and liability
regulations.

315

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 315

User Interface
Several plug-ins are available for the implementation of user interfaces. These include SWT and JFace,
which I’ve already discussed in Chapters 8 and 9, but also higher-level components such as views, text
editors, and forms. This functionality is divided into several plug-ins, such as the following:

org.eclipse.ui
org.eclipse.swt
org.eclipse.text
org.eclipse.jface
org.eclipse.jface.text
org.eclipse.ui.views
org.eclipse.ui.workbench
org.eclipse.ui.workbench.compatibility
org.eclipse.ui.workbench.texteditor
org.eclipse.ui.ide
org.eclipse.ui.editors
org.eclipse.ui.forms

The Eclipse workbench is implemented with the help of these plug-ins. By using them in your own
applications, you can achieve high-quality and consistent user interfaces with relatively little effort.
Also, there are no difficulties in terms of licenses—all the plug-ins in the Eclipse SDK are covered by
the Common Public License Version 1.0. This allows you to use these plug-ins in your own applications
and to deploy them with your own applications. The section “Components of the Eclipse User Interface”
introduces several components of these GUI plug-ins.

Help System
The following plug-ins implement a complete system for end-user help:

org.eclipse.help
org.eclipse.help.base
org.eclipse.help.ui
org.eclipse.help.ide
org.eclipse.help.appserver
org.eclipse.help.webapp

The help functions of the Eclipse workbench are also based on these plug-ins. The complete help system
is implemented as a Web server; the HTML help pages can be displayed with a standard Web browser
such as Internet Explorer or Mozilla. Eclipse is able to use Web browsers found on the host system for
this purpose. I will discuss the help system in more detail later.

Team Support
Several plug-ins support the development of software artifacts in a team:

org.eclipse.team.core
org.eclipse.team.cvs.core
org.eclipse.team.cvs.ssh
org.eclipse.team.cvs.ssh2
org.eclipse.team.cvs.ui
org.eclipse.team.ui

316

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 316

These plug-ins also implement development team support (see “Developing in a Team” in Chapter 7) for
the Eclipse workbench. The support they provide is based on a client/server architecture with a central
repository that contains the team’s artifacts, and on clients that implement the user interface. These
plug-ins feature a relatively generic architecture. For example, it is possible to implement various user-
specific workflow strategies. Several repositories can coexist in one application, and several clients are
possible for a single repository. This allows for quite flexible workflow strategies.

Other Plug-in Groups
The plug-ins I just mentioned are well suited for generic application development. Besides these
plug-ins, the Eclipse SDK contains various other plug-in groups, such as plug-ins for Java development,
for debugging, and for plug-in development itself (the creation of the manifest and other configuration
files). In this book I will not discuss the APIs of these plug-ins in detail, since they are of interest for only
very specific applications.

Architecture Summary
When you want to implement a new Eclipse-based application, besides the core components you will
usually use the plug-ins for the SWT and JFace, for the generic workbench, and for text processing and
the help system. When implementing plug-ins for the Eclipse SDK, you will also use the plug-ins for the
IDE functionality and some other optional plug-ins, such as those for team support (see Figure 11.1).

317

Developing Plug-ins for the Eclipse Platform

OSGi platform (Eclipse runtime)

SWT

JFace

UI (Generic Workbench)�
Forms, Editors, Views, Dialogs,
Wizards, etc.

Workspace/Resources

IDEUpdate Text

Text/IDE Compare SearchDebug Team

Help

RCP

Figure 11.1

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 317

The components contained in the Eclipse SDK cover most of the functions that are necessary for running
the Eclipse platform and the IDE. If you implement an application from outside this application
spectrum, you may occasionally find that some required component is missing. For example, the Eclipse
SDK contains neither a state-of-the-art graphics editor nor a spreadsheet component. Here you have to
make use of third-party plug-ins, which appear in ever-increasing numbers on the market. Of course,
you must check the individual license conditions of these plug-ins before you integrate them into your
own applications. Appendix A lists some of the most important third-party plug-ins for Eclipse-based
application development.

The Core Classes of the Eclipse Platform
As I already have mentioned, the nucleus of the Eclipse platform is very small and contains only the
functionality required to load and execute Eclipse plug-ins. In addition, it contains some interfaces and
classes that are of general interest. All these interfaces and classes are contained in the package
org.eclipse.core.runtime.

The Platform Class
The Platform class is of general significance. It cannot be instantiated, and it contains only static
methods. It manages all the installed plug-ins, takes care of the access authorization to Eclipse
workspace resources, and maintains the Eclipse protocol (URLs used in Eclipse make use of the
Eclipse-specific platform:// prefix). In particular, you can obtain the location of the workspace root
directory via the method getLocation(). Using the getCommandLineArgs() method you can get
the command-line options that were specified when the Eclipse platform was started. This allows you to
configure plug-ins by command-line options. You can search a particular plug-in in the plug-in registry
with getPlugin() by specifying its identification.

The Plugin Class
The implementation of an Eclipse plug-in begins with a subclass of the abstract class Plugin. In the con-
structor of the new subclass you must create a single instance of this class (singleton) and store this
instance into a static field. In addition, you need to implement the methods getInstance() and
getDefault(), from which you can later obtain the created instance.

In the constructor you will also initialize the plug-in preferences (see the next section) and any resource
bundles that you may need (see the “Summary” section). The API reference documentation provides a
code example for such a Plugin subclass under Help > Help Contents > Platform Plug-in Developer
Guide > Reference > API Reference > org.eclipse.core.runtime > Plugin. This example program also
shows how to use an INI file to save the state of a plug-in from one session to the next.

Most of the methods of the Plugin class deal with low-level resource management and the manage-
ment of preferences. For example, the methods setPluginPreferences() and
getPluginPreferences() store and retrieve the current preferences. With find() you can obtain
the URL of a specified workspace resource, and with openStream() you can open an input stream on a
specified workspace resource.

318

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 318

The method getDialogSettings() is equally important, and with it you can retrieve the settings of
all persistent dialogs of a plug-in (see also the section “Making Dialogs Persistent” in Chapter 9). Best
practice is to create an individual section for each dialog. The plug-in automatically loads and saves the
settings.

The Preferences Class
This class implements a persistent preference store. A single instance of this class contains all the prefer-
ences of a given plug-in. Each individual preference entry consists of a name/value pair. The name is a
non-empty character string that is unique within the context of the plug-in. The value can be of type
boolean, double, float, int, long, or String. Using the methods getBoolean(), getDouble(),
and setValue(), you can retrieve the single preference values or set new preference values, respectively.
Changes in the preference store cause events of type Preferences.PropertyChangeEvent.

If a value was not previously set, querying that value returns the default value. For preferences of type
String, this is normally the empty string; for all other preference types, the default value is zero. It is
possible to preset the default value of each preference entry via setDefault(). Note that these default
values are not persistent and must always be set when the plug-in is initialized.

To initialize preferences, you must override the method
initializeDefaultPluginPreferences() in your Plugin subclass. All default preference values
can be preset in this method. Examples are given in the section “The Plugin Class and Preferences” in
Chapter 13.

This initialization happens in several steps: the invocation of the method
initializeDefaultPluginPreferences() is only the first step. In the second step, Eclipse evalu-
ates the contents of the file preference.ini if such a file exists in the plug-in directory. The default
values defined in this file will override the default values set in step one.

Here is an example of an entry in preferences.ini:

SPELL_THRESHOLD=99

Defining such a file allows you to modify the preference default values without recompiling the plug-in.
A typical use for this is debug switches for testing output.

In the third step, the plugin_customization.ini files defined in other Eclipse features are evalu-
ated (see “The Plug-in Manifest” section). The entries defined here will override the entries set in the
first and second initialization steps.

Path Specifications
The interface IPath and its standard implementation Path represent resource path specifications for
both workspace resources and resources outside the Eclipse workspace. The representation of these path
is independent from the host system: The character / is always used as the separator between path
steps. The specification of a device such as c: or server/disk1: is also possible. IPath and Path
are equipped with a variety of methods that allow evaluation, synthesis, or modification of path
specifications.

319

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 319

Monitoring Long-Running Processes
The interface IProgressMonitor and the classes NullProgressMonitor,
ProgressMonitorWrapper, and SubProgressMonitor allow the monitoring of long-running
processes (see “Managing Long-Running Processes”). During such a process you can display a
progress bar and provide a button for aborting the process. Each IProgressMonitor object is
informed about the start and the end of the process and about the steps in between so that it can
display the progress of the process accordingly.

The NullProgressMonitor does—guess what—nothing. You would use it in those cases when you
don’t want to display the processes’ progress. Should you actually want to show a progress bar, you can
use two existing JFace classes:

org.eclipse.jface.dialogs.ProgressMonitorDialog
org.eclipse.jface.wizard.ProgressMonitorPart

While the latter implements a progress bar widget that can be embedded into other Composites, the
first implements a complete dialog from which you can obtain an IProgressMonitor object via the
method getProgressMonitor(). You can initialize such an object via the method beginTask().
With the worked() method you can update the progress bar after each step. The end of the process is
indicated via the method done(). Using the method isCanceled() you can check whether the pro-
cess has been canceled by the end user or by another program unit (via the method cancel()).

The Eclipse Workspace
I introduced the various resources of the Eclipse workspace in the section “Resources” in Chapter 4: pro-
jects, folders, and files. In this section I am going to discuss the resource management’s API.

Unlike the Eclipse predecessor Visual Age, which stored resources in a central repository, Eclipse uses
the file system of the host operating system directly. Projects, folders, and files are mapped onto the cor-
responding items in the host’s file system: projects and folders onto directories and files onto files. The
advantage is that you may still access these resources when Eclipse is no longer installed or if it is not
functional.

Eclipse does have an internal repository, of course. This sits in the workspace in the subdirectory
.metadata and stores all kind of metadata, such as preferences for the various plug-ins, the configura-
tion and current state of the Eclipse platform, markers and annotations for problems, tasks, and break-
points, the Local History of resources (see “Local History” in Chapter 2), specific resource properties,
and much more. Programmers do not have direct access to this metadata.

Resources
Resources of the Eclipse workspace are described by the IResource interface. This interface, together
with other resource management interfaces and classes, resides in the package org.eclipse.core
.resources. The complete functionality of the resource management unit is deployed as a separate
Eclipse plug-in.

320

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 320

IResource

IContainer

IProject IFolder IWorkspaceRoot

IFile

The most common resources are projects, folders, and files. Projects may contain folders and files.
Folders may contain subfolders and files. Figure 11.2 shows the resource type hierarchy.

321

Developing Plug-ins for the Eclipse Platform

Figure 11.2

Since each resource in the workspace corresponds with a resource in the host file system, each resource
has two addresses: the address within the workspace and the location in the host file system.
(Consequently, there are two different ways to open files, depending on the location of the file: inside the
workspace or outside the workspace.) You can retrieve the workspace address of a resource via its
method getFullPath(), and the location within the host file system can be retrieved via the method
getLocation(). Both of these addresses are represented as IPath instances (see the “Path
Specifications” section).

Normally, the address obtained with getLocation() consists of the concatenation of
Platform.getLocation() (see the “The Platform Class” section) and getFullPath()—
but only normally. In the case where a whole project is imported into the workspace (via the menu
function Import > Existing Project into Workspace), the imported files are not moved into the work-
space directory. Instead, Eclipse creates only a mapping of workspace addresses to the imported
project, so these files are not contained physically in the workspace folder. This is one of the reasons
why you should never try to manually construct file system locations from workspace addresses but
should always use the IResource method getLocation().

IResource defines a rich arsenal of methods. Here are the major function groups:

❑ Methods for classical resource management such as exists(), move(), copy(), and
delete().

❑ Methods for the implementation of the Visitor design pattern. You can pass an
IResourceVisitor instance to a resource via the accept() method. This resource then
invokes the visit() method of the visitor instance. If it is successful, the IResourceVisitor
instance is also passed to the child resources of the current resource via their respective
accept() methods.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 321

❑ Methods for managing markers. Eclipse provides a concept for adding markers such as prob-
lems, tasks, or breakpoints to resources. The methods createMarker(), findMarker(),
findMarkers(), getMarker(), and deleteMarkers() belong to this group. Markers and
the corresponding interface IMarker will be examined more closely in the next section.

❑ Methods for managing Resource Properties. This group allows the addition of an unlimited
number of properties to each resource. The methods

setPersistentProperty()
setSessionProperty()
getPersistentProperty()
getSessionProperty()

allow the setting and retrieval of single properties. The concept is quite similar to the WebDAV
standard (www.webdav.org). Each property consists of a unique name and a string value.
Usually, you would want to use an XML expression for the string value to allow for more com-
plex structured values. What you write into such a property depends on the application. For
example, you could remember the current state of a resource in such a property and could thus
organize a workflow. Session properties are not persistent—they vanish when the session is
closed. Persistent properties, in contrast, live across sessions because they are stored on disk
(.metadata).

Containers
The interface IContainer is derived from IResource. Interfaces of resources that can contain other
resources are based on this interface, such as IProject, IWorkspaceRoot, and IFolder. In addition
to the IResource methods, the interface provides methods for localizing and retrieving child resources,
such as findMember(), getFile(), getFolder(), and members().

The Workspace Root
The interface IWorkspaceRoot represents the root directory of the Eclipse workspace. With
getProject() and getProjects() you can obtain a specific project in the workspace and a list of all
projects, respectively. You can obtain the root directory from the current Plugin instance via
getWorkspace().getRoot().

Projects and Project Natures
Projects are units that contain all the resources of a software product. Projects may contain other folders
and files. The project acts as a root directory for these folders and files. In addition, a project may control
how the final software product is assembled from its components. Projects may not contain other
projects, although they can refer to other prerequisite projects. This information is stored in the project
folder in a file named .project.

Projects can be equipped with one or several plug-in–specific project natures. Each nature describes a
specific behavioral aspect of a project. For example, a Java project has a Java nature. Natures can be
defined and selected freely. However, it is also possible to restrict the selection of natures for a given
project. You may even specify natures that rely on other natures as prerequisites. New natures can be
implemented as subtypes of the interface IProjectNature. How project natures can be created and
assigned to projects is described in detail under Help > Help Contents > Platform Plug-in Developer
Guide > Programmer’s Guide > Resources Overview > Project Natures.

322

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 322

In order to support all this additional functionality, the interface IProject offers—besides the methods
inherited from IResource and IContainer—additional methods such as build() for the assembly
of a software product, getReferencedProjects() and getReferencingProjects() for retriev-
ing the dependencies between projects, and getNature(), hasNature() and isNatureEnabled()
for the retrieval of project natures.

With create() you can create a new project. But to do so, you must first own an IProject instance.
You can obtain such an instance from the IWorkspaceRoot instance with the help of getProject().
For example:

IWorkspace workspace = ResourcesPlugin.getWorkspace();
IWorkspaceRoot root = workspace.getRoot();
IProject project = root.getProject("newProject");
try {

// progressMonitor=null
project.create(null);

} catch (CoreException e) {
e.printStackTrace();

}

In this example you first fetch an IWorkspace instance from the resources plug-in. From this instance
you get the workspace root instance, and from there you can fetch an IProject instance with the speci-
fied name. Finally, you can create the project. For simplicity’s sake, in this example I have specified the
value null for the IProgressMonitor instance requested by the create() method.

Folders
The interface IFolder does not offer much more functionality than that inherited from the interface
IContainer. New folders are created via create() in the same way that projects are created. You can
get an IFolder instance from an IWorkspaceRoot instance via getFolder().

Files
Files are described by the interface IFile. You can get an IFile instance from the workspace root via
getFile(). New files are created with the IFile method create(). The IFile interface offers the
following methods to manipulate the contents of a file: setContents() to overwrite the contents,
appendContents() to append additional contents to a file, and getContents() to retrieve the com-
plete contents of a file. In all these methods you can specify an IProgressMonitor instance as param-
eter to visualize the progress of the operation.

All these methods are history-aware: When the contents of a file are changed or when a file is deleted,
you can optionally keep a copy of the old file version in the Local History (see the section “Local
History” in Chapter 2). getHistory() allows you to get a list of all previous versions of a file. This list
is provided in the form of an IFileState array. From such an IFileState instance you get the previ-
ous contents of the file via getContents(), and you can get the time stamp of this version using
getModificationTime(). Only file contents are subject to the Local History, not the file’s properties
(see the Resources section).

In the following example I create a new file by concatenating two existing files. I also keep a copy of the
intermediate versions in the Local History. I set the parameter force to false because I don’t want the

323

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 323

file to be modified when the workspace entry (metadata) of the file does not match the file version in the
host file system.

IFile file1 = project.getFile("hello.txt");
IFile file2 = project.getFile("world.txt");
if (file1.exists() && file2.exists()) {

try {
InputStream is1 = file1.getContents();
InputStream is2 = file2.getContents();
IFile file3 = project.getFile("helloWorld.txt");
// force=false, no ProgressMonitor
file3.create(is1, false, null);
// force=false, keepHistory=true, no ProgressMonitor
file3.appendContents(is2, false, true, null);

} catch (CoreException e) {
e.printStackTrace();

}
}

Markers
As I demonstrated in the section “Tasks and Markers” in Chapter 1, Eclipse offers the option of attaching
annotations to resources. The interface IMarker describes a general interface for creating and managing
such annotations. However, it is not expected that programmers implement this interface. Instead,
IMarker instances are obtained via the IResource method createMarker(). This method accepts a
string describing the marker type as a parameter. Eclipse already defines five standard marker types:

org.eclipse.core.resources.marker Generic marker type

org.eclipse.core.resources.taskmarker Markers for tasks

org.eclipse.core.resources.problemmarker Markers for problems

org.eclipse.core.resources.bookmark Markers for book marks

org.eclipse.core.resources.textmarker Other text markers

Each IMarker instance has an identifier that uniquely identifies the marker within a resource. You can
obtain this identification via the method getID(). In addition, you may equip any marker with an arbi-
trary number of attributes. Each attribute must be identified uniquely via a name and has a value of type
boolean, int, String, or Object. With setAttribute() and getAttribute() you can set and
retrieve such attributes individually. With setAttributes() and getAttributes() you can set and
retrieve all attributes of a marker in one operation. Eclipse predefines the following standard attributes:
CHAR_START, CHAR_END, DONE, LINE_NUMBER, LOCATION, MESSAGE, PRIORITY, SEVERITY,
TRANSIENT, and USER_EDITABLE. In the case of PRIORITY, you can choose between the attribute
values PRIORITY_HIGH and PRIORITY_LOW, and in the case of SEVERITY, you can choose between
the attribute values SEVERITY_INFO, SEVERITY_WARNING, and SEVERITY_ERROR.

Shortly I will discuss how plug-ins can be configured. During this configuration it is possible to declare
your own marker types and to construct marker hierarchies in which child marker types inherit
attributes from ancestor marker types. For this reason, the IMarker interface provides the method
isSubtypeOf(), which allows you to query the inheritance relationships between marker types.

324

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 324

You can declare individual marker types as persistent in the plug-in configuration. Such markers live
across sessions. Normally, you would use persistent markers to implement end-user–created task
markers. Problem markers, in contrast, will usually be updated when a resource is opened.
Nevertheless, it can make sense to make problem markers persistent, too. This allows the Package
Explorer to decorate the corresponding resource with a problem indicator.

Reacting to Resource Changes
In some cases, it may be necessary for an application to react to changes of workspace resources caused
by other plug-ins. This is particularly true when the currently opened resources depend in some way on
the modified resource, or when the end user reverts the currently opened resources to a previous version
via the Replace… function.

If you want to react to such changes, you must implement the interface IResourceChangeListener
and register an instance of this interface with the workspace. First you need a workspace instance, which
you get from the resources plug-in:

IWorkspace workspace = ResourcesPlugin.getWorkspace();

Then you can register an IResourceChangeListener with the IWorkspace instance:

IResourceChangeListener listener = new IResourceChangeListener() {
public void resourceChanged(IResourceChangeEvent event) {

System.out.println("A resource was changed!");
}

};
workspace.addResourceChangeListener(listener);

Since changes to resources happen frequently, and consequently create some overhead, you should
deregister the listener as soon as possible via the method removeResourceChangeListener().
ResourceChangeListener should work as effectively as possible to avoid performance problems.

The interface IResourceChangeListener features only the single method resourceChanged(),
which accepts IResourceChangeEvent objects. Using the method getType() you can get informa-
tion about the type of event. Normally, you would want to react to events of type POST_CHANGE. When
registering an IResourceChangeListener, you can optionally specify an event mask, so that the lis-
tener method is invoked only for the selected event types.

IResourceChangeEvent objects do not necessarily represent a single resource change but possibly a
whole series of resource changes. All of these changes are represented in the form of an
IResourceDelta instance, which forms the root node of an IResourceDelta tree. This tree mirrors
the resource tree in the Eclipse workspace but contains only the modified resources and their parent con-
tainers. All of these resources are represented as IResourceDelta instances. To analyze all these
changes you must therefore walk through the entire tree. For this purpose, IResourceDelta offers the
accept() method, to which you may pass an IResourceDeltaVisitor instance. The visit()
method of this instance is then called for each node of the tree. (However, if you are interested in only a
single resource, the method findMember() offers a quicker way to get there.)

325

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 325

Usually, you would first retrieve the kind of change (ADDED, REMOVED, CHANGED) for the specific
resource delta in the visitor’s accept() method. This can be done with the IResourceDelta method
getKind(). With getFlags() you can obtain details, for example, whether the contents or the type of
the resource was changed or whether, in the case of REMOVED, the resource was deleted or moved to
another location. In the latter case, you can obtain the new location via getMovedToPath(). The corre-
sponding resource instance is obtained via the method getResource().

If you want to represent such resource changes in the user interface, you have to be cautious. The
resourceChanged() method does not necessarily run in the SWT thread. The required changes in the
GUI must therefore by wrapped into a suitable Display method such as asyncExec() or
syncExec(). In the previous example application (see “The Player Module” section in Chapter 10),
I showed you how this is done.

In addition, you should be aware of the fact that all resources are locked against modification while the
resourceChanged() method is active, to avoid avalanches and loops. The event types
PRE_AUTO_BUILD and POST_AUTO_BUILD are excluded from this rule, however.

I will leave this short overview about resource changes at this stage. If you are interested in details, you
should refer to the excellent article about resource changes by John Arthorne in the Eclipse Corner
(www.eclipse.org). However, some of the details in this article do not apply to Eclipse 3, since in
Eclipse 3 Auto-Build processes can run asynchronously in the background.

Managing Long-Running Processes
Since version 3, Eclipse supports the asynchronous execution of long-running processes in the
background. Since such processes are typically related to the Eclipse workspace, it is the workspace
plug-in that provides adequate support.

In particular, the IWorkspace method run() is used to start a long-running process, which must be
implemented in the form of an IWorkspaceRunnable. The run() method of IWorkspaceRunnable
is executed when the process is started, and an IProgressMonitor instance (see the section
“Monitoring Long-Running Processes”) is passed to it.

However, managing asynchronous processes can be tricky, since several of these processes can be active
at the same time and may influence each other by modifying shared resources. To avoid conflicts, you
can specify scheduling rules (ISchedulingRule) with each IWorkspaceRunnable. When a process is
started and its scheduling rule conflicts with the scheduling rules of the other processes already running,
it fails.

When a long-running process modifies resources, it will notify IResourceChangeListener (see the
previous section) about these changes. Other than in Eclipse 2 where all changes were collected until the
process had finished and were posted in one event, long-running processes in Eclipse 3 will by default
periodically notify listeners about resource changes.

326

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 326

Configuring Plug-ins
After a look into the basics of the Eclipse resource management, it’s now time to turn your attention
to creating plug-ins. You will discover that some things here are quite different from the creation of
independent Java applications. First, you must define how the plug-in is embedded into the Eclipse
workbench. For example, you may need to add additional editors and views to the workbench as well
as new menus and tool items to the workbench’s menu and toolbar. The debugging phase of a plug-in is
also different than that of a conventional application: to test a plug-in, you must start a second Eclipse
platform under which the test plug-in is executed. In the meantime, the first workbench controls the
execution of the debug process.

The Plug-in Development Perspective
To support this development process, Eclipse provides a special perspective. Of course, it is possible to
create plug-ins under the Java perspective, but the Plug-in Development perspective makes life much
easier (Figure 11.3). In the same way, as shown in the section “The First Application: Hello World” in
Chapter 1, you can open the Plug-in Development perspective with the Open Perspective tool button.

327

Developing Plug-ins for the Eclipse Platform

Figure 11.3

In addition to the familiar components from the Java perspective, this perspective features a browser for
installed plug-ins, a window for showing the properties of selected items, and (under the Tasks window)

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 327

windows for the error log file and the Java console. The last two windows are important for debugging:
the error messages produced by the plug-in being tested are shown there.

A special function in the Plug-in Development perspective is the wizard for the creation of new plug-in
development projects. Click the New button, and then select the Plug-in Project shortcut (instead of
Java). On the following wizard pages, enter the project name and leave all other entries at their default
value. Finally, you get to the selection of the plug-in template (Figure 11.4).

328

Chapter 11

Figure 11.4

Several templates are available for creating a new plug-in. All of these templates result in plug-ins that
can be immediately executed and tested. Try some of these templates and look at the generated code to
learn about the construction of the standard plug-in types!

Select an appropriate template depending on your requirements. For example, if your planned plug-in is
based on a text editor, select the Plug-in template with an editor. By removing the check mark from the
Create a Plug-in with One of the Templates option, you can create a minimal plug-in containing just the
Plugin class and the manifest file plugin.xml, which you can build on later. Once you press Finish,
the necessary folder structures and files of the new plug-in are created.

You can invoke this plug-in immediately via Run > Run as… > Run-time Workbench.

After a while, a second workbench appears on the screen (Figure 11.5), equipped with the new plug-in to
be tested. Of course, there is currently nothing to debug—you first have to add a few custom functions
to the new plug-in. In the following sections I will call this workbench the Test Platform and the work-
bench from which we started the new workbench the Development Platform. I will also call them by the
nicknames Little Eclipse and Big Eclipse. The following figure shows the workbench with a newly cre-
ated plug-in. Besides the windows that are usually present in the Resource Perspective (Navigator,
Outline, Tasks), there is a large empty space that may eventually be filled by the new plug-in.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 328

Figure 11.5

One more word about the debug process: since the invocation of a new workbench requires time, the
debugging process can become a bit tiresome at times. Fortunately, however, Eclipse supports hot
swapping: while the test platform is running, you can modify the plug-in code in the development
platform and recompile it using the Save function. These changes are carried through to the test
platform. You can therefore avoid stopping and restarting the test platform in many cases. However,
hot swapping works only in Debug mode, not in Run mode, and requires at least JRE 1.4.0.

The Plug-in Manifest
Now, let’s close the test platform and return to the development platform. In Figure 11.6, you see the
overview of the plug-in manifest plugin.xml. This file is the central instance for plug-in development.
It controls how the plug-in is embedded into the workbench and controls the assembly of the plug-in
from its components. The file extension .xml indicates that this file is stored in XML format. For your
minimal plug-in, the source of this file should look similar to Listing 11.1.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="vEdit"
name="VEdit Plug-in"
version="1.0.0"

329

Developing Plug-ins for the Eclipse Platform

Listing 11.1 (Continues)

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 329

provider-name=""
class="vEdit.VEditPlugin">
<runtime>

<library name="vEdit.jar">
<export name="*"/>

</library>
</runtime>
<requires>

<import plugin="org.eclipse.ui"/>
<import plugin="org.eclipse.core.runtime.compatibility"/>

</requires>
</plugin>

Listing 11.1 (Continued)

330

Chapter 11

Figure 11.6

However, only in rare cases do you need to edit the raw XML source code. It is much easier to edit this
file with the manifest editor. The various sections of the manifest file are distributed over several editor
pages.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 330

The Overview Page
This page (shown in Figure 11.6) provides a summary of the most important properties of the plug-in.
In addition, this page serves as a central point for testing and deploying a plug-in. With the hyperlinks
in the Testing section, you can start a test platform in Run or Debug mode. In the Deploying section, you
can determine what goes into a deployment, and you can start deployment by invoking the Export
Wizard. I described this wizard in detail in the section “The Plug-in Development Perspective.”

All the information from the other pages is repeated here in condensed form. Clicking one of the More…
buttons leads to a more detailed page.

The Dependencies Page
This page lists all the plug-ins that are required to successfully execute the current plug-in. For your
minimal plug-in there are only two: the plug-in org.eclipse.core.runtime.compatibility and
the plug-in for the user interface, org.eclipse.ui. You can easily add other plug-ins to the list with
the Add button. For example, if you want to provide end-user help functions within your plug-in, you
would add the help-related plug-ins such as org.eclipse.help. As soon as you save the manifest file
(via Ctrl+S), the JAR files of these plug-ins appear in the Package Browser. Your own classes and inter-
faces can now use the classes and interfaces contained in these JAR files.

On the right-hand side of the Dependencies page you can make further specifications for a selected
plug-in. For example, you can specify that the dependency from the selected plug-in also becomes
visible for plug-ins using the current plug-in (Reexport the Dependency). In addition, you can specify
rules for selecting a specific version of the required plug-in, and you can declare a dependency as
optional. You can search for cyclic dependencies, for plug-ins that refer to your current plug-in, and
for unused dependencies.

The Runtime Page
All the JAR files that contain binaries of the current plug-in (.class files, .properties files, etc.) and
that belong to the plug-in’s Classpath are declared on this page in the Run-time Libraries section. The
first archive, named projectname.jar, is already pregenerated here.

In the Library Exporting section you can specify Export rules for each archive. The classes and interfaces
of an exported archive are visible to foreign plug-ins; other archives are private to the current plug-in.

Finally, in the Plug-in Activation section you can generate an OSGi manifest, MANIFEST.MF, for plug-
ins that are targeted at Eclipse 3 platforms only. Once such a manifest is generated, you can add activa-
tion rules to improve the performance.

The Extensions Page
This page provides an overview of the extension points used by the current plug-in. Since your minimal
plug-in offers no functionality at all, this page is empty. You can add new functionality such as editors,
views, menu items, or tool buttons to your plug-in with the Add button. When you do, you obtain a list
of the extension points currently installed in the platform. All of these extension points are described
with the help of Extension Point Schemas that augment the completion of the extension definition. If a
plug-in symbol is decorated with a magic wand, additional templates are defined for this extension
point. When you select such an extension point, the templates will appear in the Available Templates
section (a synopsis of these templates is found on the Extension Wizards page). When you select such a

331

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 331

template, Eclipse will pregenerate large parts of the new extension. Otherwise, without the help of the
template, you would have to write most of the classes generated by the wizard by yourself.

I will discuss these extension points shortly in more detail in “The Most Important SDK Extension
Points.”

The Extension Points Page
On this page you can define which extension points the current plug-in provides for other plug-ins. By
specifying such extension points, you can prepare your plug-in for later extensions (even from third
parties). You can specify a new extension point with the Add button.

You need to specify three values:

❑ Extension Point ID. Here you must specify an identification that is unique within the scope of
the current plug-in. Other plug-ins may refer to the extension point by specifying its fully quali-
fied extension point ID (that is, the ID defined in the manifest prefixed with the plug-in ID). For
example, if you specify the extension point vFilter within the plug-in vEdit, other plug-ins
may refer to this extension point via the ID vEdit.vFilter.

Since larger plug-ins may define hundreds or even thousands of extension points, you should avoid
very long identification strings. Short identifications are processed faster and need fewer resources.

❑ Extension Point Name. The name of an extension point used for display purposes, such as
Video Effect Filter.

❑ Extension Point Schema. Finally, you need to provide a schema for each defined extension
point. This schema will guide the user of the extension point and prompt for the required
parameters when configuring a plug-in. Here, you may specify an existing schema or enter the
name of a new schema. For the previous example, Eclipse will suggest the schema
schema/vFilter.exsd.

After you specify these three values, the Schema Editor can be started automatically. Later, I will discuss
the Schema Editor in detail.

The Build Page
This page lets you define the configuration file build.properties. The source code of this file is con-
tained on the build.properties page. I discussed this page in more detail previously in the section
“The Plug-in Development Perspective.”

The Most Important SDK Extension Points
As I have already mentioned, all components of the Eclipse SDK are implemented as plug-ins. You can
use this functionality in your own plug-in by using the extension points of the existing plug-ins, or you
can add your own plug-in to an existing plug-in.

332

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 332

Schema-Based Extension Points
When using the wizard for schema-based extension points, you should acquaint yourself about the par-
ticular extension point. All extension points defined in the Eclipse SDK are documented in detail under
Help > Help Contents > Platform Developer Guide > Reference > Extensions Points Reference. For third-
party plug-ins, however, you need the corresponding documentation from the plug-in’s manufacturer.

In the manifest editor, go to the Extensions page, press the Add button, and select an extension point,
such as org.eclipse.ui.editors. After you click the Finish button, the selected extension appears
in the All Extensions section. In the Extension Element Details area, you can optionally define your own
identification and a name for the new extension.

The schema belonging to the extension point will now guide you through the definition of the new
extension.

1. Select the extension org.eclipse.ui.editors and invoke the context function
New > Editor. In the Extension Element Details area, you will now see all the parameters
of the new editor. Identification and Name are already predefined, as shown in Figure 11.7.

2. Now you need only apply the right entries at the right places of the Extension Element Details
area. Let’s begin with the attribute class. Here you enter the name of the class that implements
the new editor. This can be the name of an existing class (use the Browse button to select one).
In most cases, however, you will enter the name of a not-yet-existent class (click the Class
hyperlink). In this case, Eclipse generates a stub for the new class. Here, this is a subclass of
the abstract class EditorPart.

333

Developing Plug-ins for the Eclipse Platform

Figure 11.7

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 333

Java Classes
Most extension points have attributes that require the specification of Java classes. These classes must be
specified with their fully qualified name. You may even prefix this name with a plug-in identification
separated by a slash so that you can call classes from other plug-ins. If the specified class implements the
interface IExecutableExtension, you can even append—separated by a colon—initialization data.
This data can be retrieved with the IExecutableExtension method setInitializationData().
In particular, views and editors implement this interface.

In the case of the editor extension, there are three attributes that demand the specification of a Java class:
class, contributorClass, and launcher. The other parameters consist of Boolean values, character
strings, or file paths. You can find a description of all these parameters in the help section Platform
Developer Guide > Reference > Extensions Points Reference > Workbench > org.eclipse.ui.editors. Later
I’ll take a closer look at the editors of the Eclipse SDK.

GUI Extension Points
In the following table I have listed the most important extension points for creating user interfaces. For a
complete listing, see the help section Platform Developer Guide > Reference > Extensions.

~.core.runtime.applications This extension can be used to define entry points
into an application. Usually this is the Eclipse
IDE, but for applications running on the Eclipse
Rich Client Platform (see Chapter 14) different
entry points must be specified. These entry
points are specified in the element
application/run in the attribute class and
must be a class of type IPlatformRunnable. In
addition, you may specify one or several
parameter child elements in element run.

~.core.runtime.products With this extension point you can define one or sev-
eral product descriptions for products that are
implemented with the current plug-in. Each product
is identified by the id attribute of the extension
element. When the software is deployed, a product
is selected by specifying a product identification in
the file config.ini (see the section “Advanced
Product Customization” in Chapter 14).

Each extension may define a product in a static or
dynamic way. When using the static method, you
specify the product name, the application (see
above), and the description as attributes of the ele-
ment product. Furthermore, additional property
child elements consisting of name/value pairs may
be specified. The definitions made here correlate
(and complete or replace) the definitions made in
file about.ini (see the section “Customizing Prod-
ucts” in Chapter 12).

334

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 334

In case of the dynamic method, you specify an
IProductProvider class in the provider
element. This class would deliver IProduct
product descriptions at runtime.

~.ui.actionSets actionSets defines actions and action groups.
~.ui.actionSetPartAssociations An action in Eclipse is an abstract user action.

This action can appear in various presentations
such as menus, menu items, or tools buttons on a
toolbar (see the “Actions” section). End users can
activate or deactivate individual action groups.
actionSetPartAssociations can assign
action groups to selected components of the
workbench. If that component is no longer active,
the corresponding actions vanish from the menu
and the toolbar.

~.ui.activities This extension point allows defining specific user
activities such as Java Development or Plug-in
Development. Each activity can correlate with a
set of workbench plug-ins. Only if the end user
activates an activity the correlated plug-ins will
become visible in the workbench. Activities may
rely on other activities, so that if one activity is
activated, the other required activities are
activated as well.

~.ui.cheatsheets. cheatSheetContent allows the declaration of
cheatSheetContent Cheat Sheets that can be invoked by the end user

~.ui.cheatsheets. under Help > Cheat Sheets.... Later in this chapter I
cheatSheetItemExtension will discuss how Cheat Sheets are authored.

cheatSheetItemExtension supports the
definition of GUI controls for Cheat Sheets.

~.ui.commands In Eclipse a command is an abstract user command
without a defined semantic. To each command you
can attach one or several keyboard shortcuts
(keyBinding). Many of these keyboard shortcuts
are already predefined in the manifest file
org.eclipse.ui_3.0.0/plugin.xml. The cor-
relation between commands and actions (see above)
happens via the ID of the command. This ID must
be identical with the definitionID of the corre-
sponding action.

It is possible to restrict the scope of such a correla-
tion. Besides predefined scopes (global, text editor,
Java editor), it is also possible to define custom
scopes.

Keyboard shortcuts can be assigned for specific con-
figurations. You can use one of the predefined con-
figurations (Standard, Emacs) or provide your own
keyConfiguration.

335

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 335

Finally, you can assign the individual commands
to existing or new categories to organize them
into groups on the preferences page (Window >
Preferences > Workbench > Keys).

~.ui.dropActions dropActions define possible drag-and-drop
actions between the components of the
workbench. By specifying a dropAction and
implementing an IDropActionDelegate,
existing components can be converted into
transfer targets. A generic transfer format is
provided by the class PluginTransferData
with the corresponding transfer type
PluginTransfer (see also the section “Drag and
Drop” in Chapter 8). More details can be found in
the article “Drag and Drop in the Eclipse UI” by
John Arthorne on www.eclipse.org.

~.ui.editors The extension point editors adds new editors to
~.ui.editorActions the workbench. Here you can build on the standard

text editor implementation contained in the Eclipse
SDK. You can also use this extension point to invoke
external editors.

With editorActions you can equip existing
editors with additional actions such as menu
items or tool buttons (discussed later in this
chapter).

~.ui.editors.templates With this extension point you can add templates
(see “Automatic Code Completion” in Chapter 2)
to editors. Templates can be associated with
specific contexts. An example for this extension
point is found in the manifest plugin.xml of
plug-in org.eclipse.jdt.ui.

~.ui.exportWizards These extension points allow you to add new
~.ui.importWizards choice points into the Import and Export

wizards.

~.ui.ide.markerHelp markerHelp allows you to attach help texts to
~.ui.ide.markerResolution markers, such as problems or tasks.

With the extension point markerResolution
you can attach a
MarkerResolutionGenerator to markers.
These generators are used to generate correction
suggestions (QuickFix).

~.ui.ide.resourceFilters This extension point allows you to equip views
displaying resources (such as the Navigator
View) with additional file filters.

336

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 336

~.ui.intro This extension point defines in its intro elements
classes that are responsible for creating and
managing the Eclipse Welcome Screen. These
classes must subclass the class IntroPart.
Several of these elements are possible to support
product customization. In
introProductBinding elements these intro
elements can be bound to specific product
identifications. An example is found in Chapter 15.

~.ui.newWizards This extension point allows you to add new choice
points to the New Wizard.

~.ui.perspectives The extension point perspectives is used to
~.ui.perspectiveExtensions define new workbench perspectives. The class speci-

fied here defines the initial layout of the perspective.

The extension point perspectiveExtensions
allows you to add additional components to
existing perspectives.

~.ui.popupMenus This extension point allows you to add new menu
items to existing context menus.

~.ui.preferencePages This extension point allows you to add new pages
to the workbench’s Preferences.

~.ui.propertyPages This extension point allows you to define new
pages in the Properties dialog box. This is the
dialog that appears when you invoke the context
function Properties for a selected resource.

~.ui.ide.resourceFilters This extension point allows you to equip views
that display resources (such as the Navigator
View) with additional file filters.

~.ui.startup This extension point allows you to specify the
plug-ins that should be started when the platform
is started.

~.ui.themes This extension point allows you to influence the
appearance of the user interface. In particular, it is
possible to modify the default colors and fonts for
particular uses (text, background, etc.)

~.ui.views The extension point views allows you to add new
~.ui.viewActions views to the workbench.

The extension point viewActions enables new
actions, such as menu items and tool buttons
(discussed later), to be added to existing views.

337

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 337

~.ui.workingSets This extension point allows you to create new
wizards for the definition of working sets. Working
sets are used in various views such as the
Navigator to restrict the displayed set of resources.
Eclipse understands several working set types. For
each type you can define your own wizard.

~.help.base.browser The extension point browser can be used to specify
~.help.base.luceneAnalyzer a browser for displaying the HTML help texts.
~.help.contentProducer
~.help.contexts Eclipse uses Apache’s Lucene engine for indexing
~.help.toc help texts. With the extension point

luceneAnalyzer you can equip Lucene with
a custom program for text analysis.

The extension point contentProducer is used to
provide dynamic help content that is generated at
runtime.

The extension point contexts allows you to define
context-sensitive help for the current plug-in.

The extension point toc specifies a help text table
of contents for the current plug-in.

~.search.searchPages The extension point searchPages allows you to
~.search.searchResultSorters add additional pages to the search dialog in order to

support specialized search operations.

With the extension point searchResultSorters
you can define specific sort strategies for the search
results.

A documentation of all schema-based extension points defined in the Eclipse SDK is found under Help >
Help Contents > Platform Plug-in Developers Guide > Reference > Extension Points Reference.

Extension Point Templates
Predefined templates are available for some extension points. These templates offer very extensive config-
uration possibilities and can generate almost complete applications or function groups, saving you a lot of
coding. Figure 11.8 shows how templates can be accessed.

First, you select an extension point equipped with templates, say org.eclipse.ui.views, then a
template from the list, say Sample View. On the following wizard pages (Figures 11.9 and 11.10) you can
configure this view according to your requirements.

In Figure 11.9 the Sample View component is configured. The package name and the class of the view
implementation are specified. Specifying a View Category Id allows you to combine several views into
groups when they are displayed under the function Window > Show View. Finally, you can determine
the contents of a view—either a table or a tree—and whether you want to add the view to the Resource
perspective. I will discuss workbench views in more detail later in this chapter.

338

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 338

Figure 11.8

339

Developing Plug-ins for the Eclipse Platform

Figure 11.9

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 339

After you enter all the options and press the Finish button, the necessary classes and packages are
generated, and the necessary entries are added to the manifest file plugin.xml. In this case, these are
entries for the new category and the new view. After saving these files (Ctrl+S), you can execute the
plug-in immediately by invoking Run > Run as… > Run-time Workbench.

340

Chapter 11

Figure 11.10

On the third wizard page you can specify additional options for the new view. I will discuss actions in
the Actions section and event processing in the section “Event Processing in the Eclipse Workbench.”

First, the new view is invisible (if you did not check the option Add the View to the Resource
Perspective). With the function Window > Show View > Other… you can select the new view in the
Videoclips category and open it.

This gives you a relatively well-instrumented tree-based view, as shown in Figure 11.11. What remains is
to equip this view with an application-specific domain model. Template-based extension points thus
offer the possibility of producing premanufactured application components with just a few mouse clicks.
Instead of having to hunt through dozens of APIs, you can obtain well-functioning code that you need
only modify according to your requirements.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 340

Figure 11.11

The Schema Editor
If you want to define your own extension points (as discussed previously), it makes sense to define
schemas with these extension points, too. These schemas can guide programmers through the specifica-
tion of extension point parameters, as you have already had seen in the section “The Most Important
SDK Extension Points.”

Eclipse uses a subset of the XML Schema language to define such schemas. In some respects, however,
such as namespace usage or the spelling of some tags, the dialect used in Eclipse differs from the stan-
dard defined by the World Wide Web Consortium (W3C). For this reason, Eclipse schemas have the file
extension .exsd instead of the usual .xsd extension.

Fortunately, Eclipse provides a Schema Editor that you can use to create schemas without detailed
knowledge of the schema language syntax. With the help of this schema editor, you can easily create
arbitrarily complex descriptions of extension points.

Schema Elements
A schema consists of one or several named elements. In addition, it is possible to decorate these elements
with attributes. Elements are first defined independently of each other in the left-hand part of the

341

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 341

Schema Editor. Here you must specify the name of each element. You can also add icons to them. Under
Label Attribute you can specify which of the element’s attributes specifies the display label of the element.

Attributes
You have the choice between attribute types (Kind):

❑ An attribute of type java will later specify the path of a Java class. In this case, you should
specify the full path of an interface or of a superclass in the attribute BasedOn. Eclipse can later
use this information to generate the method stubs of such a class.

❑ An attribute of type resource will later specify the path of a workspace resource.

❑ An attribute of type string will later contain a data value. The specification “string” is a bit
misleading at this point. In fact, this attribute type allows two different data types: Boolean
attributes (boolean) can accept the values true and false, and string attributes (string) can
accept any character string. It is possible to restrict the possible values by specifying an
enumeration under Restriction.

Under the Use entry, you can determine whether the attribute must be specified (required) or is
optional. In addition, you can specify a default value in the Value entry if you specified the value
default under the Use entry.

Schema Structure
If you defined several elements, you must organize them into a tree structure. This is done in the right-
hand part of the Schema Editor (see Figure 11.12). Each schema must consist of a single root element—
the first element in the element list in the left-hand-side window of the editor—to which the other
elements are connected directly or indirectly.

342

Chapter 11

Figure 11.12

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 342

Each element within this tree represents either a tree node with child elements or a leaf node. For each
tree node with child elements, you can specify a branching type by selecting from four connectors:

❑ Sequence. This connector organizes its child nodes into an ordered list. Schema instances must
follow the sequence of child nodes in this node.

❑ All. This connector organizes the child nodes in an unordered list. Schema instances may use a
different order of child nodes as specified for this node.

❑ Choice. This connector describes an alternative. In a concrete instance of the schema, only one
child node from the Choice list must be specified.

❑ Group. This connector is not available in the W3C standard and seems to be quite superfluous.
Sequence, All, and Choice are sufficient for the construction of schema trees.

All of these connectors can be nested to an arbitrary depth. In addition, you may specify a repetition fac-
tor for each connector and each element. You can specify a lower bound (minOccurs) and an upper
bound (maxOccurs) for repetitions. By specifying minOccurs="0" you can define optional tree nodes.
If a node can be repeated without an upper bound, you can specify maxOccurs="unbounded".

The previous figure shows the schema editor with the opened schema file vFilter.exsd. At the left
you see a list of XML elements with their attributes. The window on the right shows the child elements
for the element extension. The Description window at the bottom allows you to specify element-specific
and attribute-specific documentation. You can enter additional documentation on the Documentation
page.

New Schema File
When you create a new schema file (File > New > Other > Plug-in Development > Extension Point
Schema), the wizard first prompts you for four values:

❑ The ID of the plug-in for which the schema file is created

❑ The ID of the extension point relative to the plug-in

❑ The name of the extension point for display purposes

❑ The name of the new schema file

The new schema file already contains the root element extension with the attributes point, id, and
name. You will usually leave this element unmodified, since it only describes general properties of the
extension point. Application-specific elements are created by pressing New Element and then connecting
the new element directly or indirectly to the root element.

Documentation
The Schema Editor is able to generate an HTML reference document from the defined schema. You can
get a preview of this document with the context function Preview Reference Document.

343

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 343

Components of the Eclipse User Interface
Applications written as Eclipse plug-ins that want to use the Eclipse user interface (UI) will in one form
or the other use components of the Eclipse UI as clients. These components are deployed in the plug-ins
that begin with org.eclipse.ui. You can use all of these components in your own programs as long
as they are not contained in packages with the name part “internal.”

The Eclipse UI consists on the one hand of plug-ins that provide a certain infrastructure such as the sup-
port for forms (discussed next) and for Cheat Sheets (discussed later) and on the other hand of plug-ins
that implement the workbench itself (discussed previously). In addition, there are the plug-ins for the
help system (see the section “The Help System”). The workbench itself is divided into a generic,
resource-independent part and an IDE-specific part that relates to the components of the Eclipse
Workspace. All resource-dependent plug-ins and packages have the name part “ide.” These parts cannot
be used in the context of the Rich Client Platform (see Chapter 14).

Forms
Eclipse 2 already had components for a forms-based user interface, but these components were used
only internally for implementing the manifest and schema editors. With Eclipse 3 this functionality has
been packaged into the separate plug-in org.eclipse.ui.forms and the API was published.
Application programmers have now a powerful means of creating forms-based views and editors.
An example is found in Chapter 15.

Basics
Forms mostly use SWT GUI elements, which we have already discussed in Chapter 8. However, these
elements are configured in a different way, and additional elements have been added (such as two new
layout managers and a hyperlink element). Since the correct configuration is essential for the consistent
construction of a form, you should refrain from creating SWT GUI elements using constructors when
using them for a form. Instead, the forms plug-in provides via its FormToolkit class various factory
methods. In Listing 11.2 you will see how the working area of a view (see the “Views” section) can be
filled with a form.

public void createPartControl(Composite parent) {
// Create FormToolkit instance
toolkit = new FormToolkit(parent.getDisplay());
// Create ScrolledForm instance
form = toolkit.createScrolledForm(parent);
// Create title
form.setText("Forms in Eclipse");
// Use a Gridlayout with two columns
GridLayout layout = new GridLayout(2, false);
// Fetch the form’s container with getBody()
// (Composite)
form.getBody().setLayout(layout);
// Create Hyperlink and add Listener
Hyperlink link = toolkit.createHyperlink(form.getBody(),

"I want a click!", SWT.WRAP);
GridData gd = new GridData();
gd.horizontalSpan = 2;
link.setLayoutData(gd);

344

Chapter 11

Listing 11.2 (Continues)

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 344

link.addHyperlinkListener(new HyperlinkAdapter() {
public void linkActivated(HyperlinkEvent e) {
System.out.println("Hyperlink was activated!");

}
});
// Create Label
Label label1 = toolkit.createLabel(form.getBody(),

"Input field 1:");
// Create text element and place behind label
Text text1 = toolkit.createText(form.getBody(), "Default text");
text1.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
// Create Label
Label label2 = toolkit.createLabel(form.getBody(),

"Input field 2:");
// Create text element with right alignment
Text text2 = new Text(form.getBody(), SWT.RIGHT);
// and adapt to forms conventions
toolkit.adapt(text2, true, true);
text2.setText("475");
text2.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
// Enforce a tree border instead of a text border
text2.setData(FormToolkit.KEY_DRAW_BORDER,

FormToolkit.TREE_BORDER);
// Create button
Button button = toolkit.createButton(form.getBody(),

"check me", SWT.CHECK);
gd = new GridData();
gd.horizontalSpan = 2;
button.setLayoutData(gd);
// Make sure that borders are drawn on all platforms
toolkit.paintBordersFor(form.getBody());

}

Listing 11.2 (Continued)

Here I have demonstrated quite a few techniques. First, I created a ScrolledForm, that is, a form that
shows a scrollbar when space becomes scarce. If you don’t want scrollbars, just use the class Form. Here
I have used a GridLayout in the usual way. I have added a Hyperlink element and defined some
event processing. Hyperlinks behave just like normal buttons (pushbuttons) but look like text (as a
matter of fact, they can be equipped with images, too). The Hyperlink, the following Labels, and the
first Text object are all created with the factory methods of the FormToolkit. The Composite
contained in the ScrolledForm is specified as a parent container. This container can be retrieved
via the method getBody(). For a change, I have created the second Text object in usual way via its
constructor. In this case, it was necessary to call the FormToolkit method adapt() for this object to
configure it according to the forms standards. For this Text object I have also enforced a different border
style. Since borders are not drawn natively on some platforms, I have made sure by calling the method
paintBordersFor() that the borders are drawn by the FormToolkit itself with the help of a
PaintListener.

Figure 11.13 shows how the form looks. If you reduce the size of the window sufficiently, scrollbars will
appear automatically.

345

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 345

Figure 11.13

Layouts
The forms package provides two additional layout classes that are better suited to the specific require-
ment of a form than the standard layouts from the SWT plug-in.

TableWrapLayout
Using a GridLayout for forms has a disadvantage: long labels and hyperlinks are not wrapped if space
becomes scarce. To solve this problem, the class TableWrapLayout was introduced. This layout man-
ager works similarly to the GridLayout (see the section “The GridLayout Class” in Chapter 8), except
that it is able to wrap long elements. TableWrapLayout cooperates with the class TableWrapData
with which you can configure the single GUI elements within a layout. For the layout algorithms, the
class TableWrapLayout follows the W3C recommendations for the layout of tables in HTML pages.

ColumnLayout
Another new layout manager is the class ColumnLayout. This class works similarly to a vertical
RowLayout (see section “The RowLayout Class” in Chapter 8) but is able to distribute its elements
dynamically into several columns, keeping these columns at approximately the same height. You can
specify a minimum and maximum number of columns for a ColumnLayout. The default is one to
three columns. A good example for ColumnLayout is the Overview page in the manifest editor
(see “The Plug-in Manifest” section).

Collapsible GUI Elements
Two classes enable the end user to collapse and expand parts of a form: ExpandableComposite and
Section.

ExpandableComposite
Instances of class ExpandableComposite are created in the usual way with the factory class
FormToolkit and are used as a container for collapsible contents:

ExpandableComposite ec = toolkit.createExpandableComposite(form
.getBody(), ExpandableComposite.TREE_NODE);

346

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 346

Such an ExpandableComposite has a control element for collapsing and expanding it, and usually it
has a title line, too.

ec.setText("This is the title");

Clicking the title line has the same effect as clicking the control element. The behavior and the appear-
ance of an ExpandableComposite can be influenced with the following style constants:

TREE_NODE The control element looks like the control element of a tree node (+).

TWISTIE A small triangle is used as a control element.

EXPANDED The ExpandableComposite is initially in an expanded state.

COMPACT The size of the content is considered only for computing the width of the
ExpandableComposite when it is expanded.

NO_TITLE The title line is not displayed.

TITLE_BAR The background of the title line is filled with decoration.

FOCUS_TITLE The title line can get the focus.

CLIENT_INDENT The content of the ExpandableComposite is left-aligned with the title
line.

Its content is assigned to an ExpandableComposite with the help of the method setClient():

Label client = toolkit.createLabel(ec, someText, SWT.WRAP);
ec.setClient(client);

When the end user clicks the control element of an ExpandableComposite, an ExpansionEvent is
created. This event must be processed with an ExpansionListener or an ExpansionAdapter. When
doing so, it is necessary to force the form to reposition its contents by calling its method reflow():

ec.addExpansionListener(new ExpansionAdapter() {
public void expansionStateChanged(ExpansionEvent e) {
form.reflow(true);

}
});

Section
The class Section is a subclass of the class ExpandableComposites. This class also allows you to use
a separator and to define a description text that is displayed below the separator. The following example
demonstrates the usage of the class Section:

Section section = toolkit.createSection(form.getBody(),
Section.DESCRIPTION | Section.TWISTIE | Section.EXPANDED);

section.addExpansionListener(new ExpansionAdapter() {
public void expansionStateChanged(ExpansionEvent e) {

347

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 347

form.reflow(true);
}

});
section.setText("The Question");
toolkit.createCompositeSeparator(section);
section.setDescription("Select the one or the other");
Composite content = toolkit.createComposite(section);
content.setLayout(new GridLayout());
toolkit.createButton(content, "to be", SWT.RADIO);
toolkit.createButton(content, "not to be", SWT.RADIO);
section.setClient(content);

Figure 11.14 shows the section implemented, first in its initial state and then after the user clicked the
control element.

348

Chapter 11

Figure 11.14

Text Markup
The class FormText by far exceeds the text representation functionality achievable with Labels. There
are three operation modes that can you can control via the parameters of the method setText():

❑ Normal text (Label mode)

❑ Automatic transformation of URLs into Hyperlink objects

❑ Text with XML mark-up

The last mode is the most powerful, so I want to discuss it in more detail. The following example shows
the application of class FormText using XML markup:

FormText rtext = toolkit.createFormText(form.getBody(), true);
String data =
"<form><p>You can find some more information about Eclipse"

+ " at the eclipse.org"
+ " web site.</p></form>";

rtext.setText(data, true, false);
rtext.addHyperlinkListener(new HyperlinkAdapter() {
public void linkActivated(HyperlinkEvent e) {
System.out.println("URL was activated: "

+ e.getLabel() + ", " + e.getHref());
}

});

As you can see, the marked-up text must be included in the <form>...</form> tags. Individual para-
graphs are separated from each other via <p>...</p> or denotes list elements
and can be configured with the following attributes:

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 348

style Specify “text“ or “bullet“ or “image.“

value Specifies in the case of “bullet“ the text to be used as a bullet point. In the
case of “image“ the image key is specified.

vspace If “false“ is specified, no distance is inserted between list entries.
The default value is “true.“

indent Horizontal body indent in pixels.

bindent Horizontal indent of bullet point in pixels.

For <p> paragraphs only the attribute vspace can be specified. Within a paragraph the following
markup is possible:

... Bold text.

... Text color and text font can be specified with the attributes
color and font.

 Hyperlink. The target is specified in the attribute href.
...

 An image specified by the key defined in the href attribute.

As shown here, images are identified via key values. The same is true for colors and fonts. The particular
keys must be associated with suitable Image, Color, and Font instances via the FormText methods
setImage(), setColor(), and setFont(). Colors used by the forms subsystem can be obtained
from the FormToolkit:

toolkit.getColors().getColor(FormColors.TITLE));

As you can see, the class FormText provides some powerful text-representation functions, but by far it
cannot reach the representational power of HTML. The number of markup elements is restricted, and it
is not possible to nest markup elements. If you require advanced HTML functionality, you should use
the Browser widget discussed in the section “The Browser Widget” in Chapter 8.

Resource Management
If you use several forms within an application, you should share the resources (colors and fonts) used in
these forms for reasons of efficiency. In such a case it is recommended to use a repository for colors, an
instance of the class FormColors. When you create a FormToolkit, you pass the FormColors
instance to the FormToolkit as a parameter, so that the FormToolkit leaves the management of col-
ors to the central FormColors instance. In addition, you don’t need a separate FormToolkit for each
form—you should always share a FormToolkit instance between forms with a similar lifecycle. If a
FormToolkit instance is no longer required, you should release it with its dispose() method. You
should also dispose of the FormColors instance when the lifecycle of the plug-in ends.

As far as fonts are concerned, you should use only fonts used by the Eclipse platform itself
(JFaceResources). This prevents problems with fonts that might not be available on all platforms.

349

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 349

Separation between Data Model and Representation
In Chapter 9 you saw how the different viewers (TableViewer, TreeViewer, etc.) can separate a data
model from its representation. For form-based user interfaces this is achieved with the class
ManagedForm. When a ManagedForm instance is created, a ScrolledForm instance and a
FormToolkit are passed to it. If not, it will itself create such objects. With the method addPart() you
can the add form parts in the form of IFormPart instances to the ManagedForm. With the method
setInput() you can set the input data, which is then passed on to the registered form parts.
Depending on their state, these form parts are then redrawn, and the method reflow() is executed
automatically for the form.

For implementing IFormPart instances you can subclass the class AbstractFormPart. A specialized
class SectionFormPart is available for form parts that consist of only a Section instance.

The Master-Details-Block
A popular design pattern for forms-based user interfaces is the Master-Details-Block. This block is hori-
zontally or vertically separated into two areas: the master area and the details area. Depending on the
selection in the master area, the content of the details area changes. Eclipse provides for this purpose the
abstract class MasterDetailsBlock, which separates its client area with a Sash. To create a user inter-
face based on the above design pattern, it is necessary to implement a concrete subclass of
MasterDetailsBlock. To create the master area, you must implement the method
createMasterPart(). By implementing the method createToolBarActions() it is possible to
create extra control elements for the block. You can register several detail pages for the detail area by
implementing the method registerPages(). Detail pages must implement the interface
IDetailPage.

The Eclipse Workbench
The Eclipse workbench features various workbench views as well as text-based editors. Graphical
editors such as diagram editors or bitmap editors are not available in the Eclipse SDK. If such
components are required you can find appropriate third-party plug-ins (see Appendix A).

In particular, when using editors you would either use the class TextEditor or implement your own
editor by extending one of the abstract or concrete editors from the editor hierarchy shown in the
“Editors” section. Since Eclipse 3 there is also a forms-based editor called FormEditor (discussed in the
“Actions” section) on which the various PDE editors such as the manifest editor and the schema editor
are based. For workbench views the situation is somewhat different. Several concrete view components
such as TaskList, BookmarkNavigator, and ResourceNavigator are already active within the
workbench. You can use these view instances from your own application; you gain access to these views

350

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 350

by specifying the view identification to the workbench. If you want to implement your own view
components, you can extend the existing abstract view classes such as ViewPart or PageBookView.

All concrete workbench components implement the IAdaptable interface with the method
getAdapter(). getAdapter() is a factory method; from a class specification (a Class instance) it
can create an instance of that class.

This allows Eclipse to generate concrete instances from the class names specified in the manifest file
plugin.xml (see the section “The Plug-in Manifest”). In addition, it becomes possible to save the cur-
rent workbench state when the workbench is closed and to open the workbench again with the same
components active.

The Architecture of the Eclipse Workbench
The Eclipse workbench is represented by an IWorkbench instance. This is the root object for the whole
Eclipse user interface. You obtain this instance by invoking the static method
PlatformUI.getWorkbench().

The Eclipse workbench has a clear hierarchical structure. At the top are the workbench instances; the
lowest level is constituted from various workbench components (IWorkbenchPart) such as editors or
views. “I…Site” instances allow access to the manifest declarations and other information of the runtime
environment.

Workbench Window
The workbench may consist of one or several workbench windows. By default, when Eclipse is started,
the workbench is started with a single window. Optionally, it is possible to open each perspective in its
own workbench window (Window > Preferences > Workbench > Perspectives). Consequently, the
IWorkbench instance can own several workbench windows (IWorkbenchWindow) that you can
retrieve via getWorkbenchWindows(). When the last workbench window is closed, the workbench is
also closed.

The Workbench Page
Each workbench window can own one or several workbench pages (IWorkbenchPage). These pages
are used to display the various perspectives of a workbench window. Only one page per workbench
window is active and visible to the end user at a time. You can retrieve the list of all pages by calling the
IWorkbenchWindow method getPages(). The currently active page is obtained via the method
getActivePage().

Workbench Components
Each workbench page is constituted from one or several workbench components (IWorkbenchPart).
These are either editors or views (both discussed later in this chapter). Workbench pages offer a series of
methods for managing these editors and views. For example, you can obtain a list of references of all
editors available in the current workbench page with getEditorReferences(). With
getActiveEditor() you get the currently active editor; with getDirtyEditors() you get all those
editors where the content has been changed and must be saved when the workbench is closed. With
openEditor() you can open an editor, and with closeEditor() or closeAllEditors() you can
close the editors.

351

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:54 PM Page 351

Managing views is simpler: with getViewReferences() you obtain a list of references of all views
available in the current workbench page. You can get a view instance with findView() by specifying
its identification (as defined in the manifest file plugin.xml). You can make a view visible with
showView(), while you can make it invisible with hideView(). You can get all views stacked with a
given view by calling the method getViewStack().

Besides managing editors and views, workbench pages are also responsible for managing Action Sets.
With showActionSet() and hideActionSet() you can make Action Sets visible or invisible,
respectively.

Workbench pages are also able to manage the navigation history. You can retrieve
INavigationHistory instances with getNavigationHistory().

Perspectives
It is the responsibility of the end user to determine how the single components are placed onto a work-
bench page. However, an application may define the initial layout of a workbench page by specifying a
perspective. The Eclipse platform provides some predefined perspectives, such as the Resource perspec-
tive or the Java perspective. Of course, applications are free to define their own perspectives.

You can get a reference (IPerspectiveDescriptor) to the currently active perspective of a work-
bench page using getPerspective(). With setPerspective() you can set a new active perspec-
tive for a workbench page, while resetPerspective() allows you to cancel the layout changes made
by the end user.

Manifest Information
To the interfaces IWorkbench and IWorkbenchPart belong the corresponding interfaces
IWorkbenchSite and IWorkbenchPartSite. With these interfaces you can get access to the runtime
environment of the workbench and of each workbench component. The declarations made in the mani-
fest file plugin.xml belong to this environment, as do registered context menus (see the section
“Actions” section). You can gain access to instances of type IWorkbenchSite and
IWorkbenchPartSite via the method getSite().

Two subtypes, IEditorSite and IViewSite, are available for the type IWorkbenchPartSite.
These types provide extended environment information for editors and views.

Event Processing in the Eclipse Workbench
Each application implemented on the basis of the Eclipse platform usually consists of several workbench
components. An application may implement its own components, such as special editors or views, or it
may use existing components such as a text editor, the Navigator View, or the Tasks View.

The coordination of these various components is organized via event processing, a common technique
in object-oriented programming. Usually, each component observes state changes in other components
and reacts accordingly. To do so, the observing component registers with the observed component as a
listener. The observed component then notifies it when an event occurs via a call to a listener method.
I have already demonstrated this kind of event processing in the example given in Chapter 10.

352

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 352

In an open architecture such as the Eclipse platform, however, this concept is not flexible enough. Since
the platform can be extended at any time with new plug-ins, you cannot assume a fixed configuration;
by using “hard-wired” event processing between components, you would prevent further extensions of
a given configuration.

For this reason, the Eclipse platform provides central event management. Components that create events
register with the central event management as an event provider and inform the central management
whenever events occur. All components that have registered with the central event management as lis-
teners are then informed about the events accordingly. This strategy ensures that the platform remains
extensible: new components must register with the central event management only as event providers or
listeners.

Now let’s have a look at the various event types.

Window Events
IWorkbench events occur when a workbench window is opened (windowOpened()), activated
(windowActivated()), deactivated (windowDeactivated()), or closed (windowClosed()).

Components that wish to receive these events must register with the IWorkbench instance as an
IWindowListener via addWindowListener().

Component Events
Component events, that is, events that are caused by state changes of IWorkbenchPart instances, are
obtained from the component service of the Eclipse platform. You can obtain an IPartService
instance from a IWorkbenchWindow instance via the method getPartService(). The concrete
IPartService instance will usually be a workbench page, since IWorkbenchPage is a subtype of
IPartService.

From this IPartService instance you can fetch the currently active component or a reference to
the active component via the methods getActivePart() and getActivePartReference(),
respectively. In addition, you can register as an observer via addPartListener(). These observers
are represented by two interfaces: IPartListener and IPartListener2. The latter interface is an
extension of the first and reports about a few more event types.

partActivated() Component was activated.

partBroughtToTop() Component was brought to the top.

partClosed() Component was closed.

partDeactivated() Component was deactivated.

partHidden() Component was made invisible (IPartListener2).

partOpened() Component was opened.

partVisible() Component was made visible (IPartListener2).

353

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 353

Selection Events
Selection events occur when a GUI element in the workbench is selected, for example, when a resource is
selected in the Navigator. You can obtain selection events from the selection service
(ISelectionService). ISelectionService instances can be obtained from an
IWorkbenchWindow instance via getSelectionService(). Usually, this will be a workbench page,
since IWorkbenchPage is a subtype ISelectionService.

You can retrieve the current selection from such an ISelectionService instance via the method
getSelection(). With the help of the methods addSelectionListener() and
addPostSelectionListener() you can register observers of type ISelectionListener.
The difference between these two methods is that the latter method supports only events from
StructuredViewer instances (see “The Viewer Hierarchy” in Chapter 9) and that the event is fired
after a short delay if it was caused by a keyboard event. ISelectionListener instances are notified
about selection events via selectionChanged(). The event object contains information about the
component that caused the event (IWorkbenchPart) and about the selection (ISelection). If you
want to get access to the selection details, you must first typecast the generic ISelection object to a
more concrete type such as IMarkSelection, IStructuredSelection, or ITextSelection.

How can a component register with the selection service to notify it about selection events? To do this,
the component needs only to implement the interface ISelectionProvider with the methods
addSelectionListener(), removeSelectionListener(), getSelection(), and
setSelection(). When a component is activated, the workbench always checks automatically to see
if the component implements this interface. If this is the case, it registers the appropriate selection ser-
vice with the activated component as an observer via addSelectionListener(). The central selec-
tion service is thus notified about selection events caused by this component when the component calls
the method selectionChanged() as required. When the component is deactivated, the workbench
automatically deregisters the selection service with the component.

Processing Events Correctly
It is normally not sufficient just to register with the selection service as a listener and wait for the event
to arrive. For example, when a view is opened, it is not yet informed about the current selection state.
Consequently, it cannot display information relating to the selection. The view would be updated only
when the end user changes the selection.

This problem also occurs when the workbench is started. The programmer has no influence over the
order in which the components of a workbench page are initialized. For example, if you have a view that
displays properties that depend on the selection state of an editor and the editor is initialized before the
view is initialized, the view is not notified about the selection state of the editor. This is because it was
not registered as a selection listener when the editor was started, and therefore it was not informed
about the editor’s selection state.

Initialization
When you initialize a component, you must therefore fetch the currently active component from the
part service via getActivePart() and the current selection from the selection service via
getSelection(). This is usually done at the end of the method createPartControl(), where
the component is initialized.

354

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 354

When processing events, you cannot make assumptions about the sequence in which components are
notified about these events. Components should therefore be implemented in such a way that they can
act autonomously without relying on the state of other components. Their behavior should depend only
on received events and not make assumptions that other components already have processed such
events.

Sequence
However, it can sometimes become necessary to do exactly that, for example, to avoid costly recomputa-
tions for performance reasons. In such a case, you can force a specific sequence in event processing by
starting event processing after a short delay. This can be done via the method Display.timerExec().
With this trick, event processing is performed after all other components have processed an event—
provided that these components don’t use the same trick! You can then call methods from other compo-
nents without running the risk of obtaining outdated information.

However, you must execute some caution when using the method timerExec(). The processing sched-
uled in this method can still be executed when the component that scheduled this task is already closed
and its widgets are disposed. If you access widgets in such a delayed method, therefore, you must play
it safe:

if (widget != null && !widget.isDisposed)

Editors
All workbench editors are based on the abstract class EditorPart. This class mainly implements the
IEditorInput concept. The interface IEditorInput describes the data source of an editor in abstract
form. This may be a file, but it may be also a byte stream.

Figure 11.15 shows the hierarchy of editor input sources. IPathEditorInput describes an input source
form the local file system. IFileEditorInput describes a generic file-based input source.

355

Developing Plug-ins for the Eclipse Platform

Figure 11.15

The input source for an editor is set by the workbench via init() shortly after the EditorPart
instance has been created. It can be retrieved with getEditorInput(). Figure 11.16 shows the hierar-
chy of text-based editors. Other editor types such as graphical editors can be implemented on the basis
of EditorPart.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 355

Figure 11.16

Editor classes that subclass EditorPart usually override the method createPartControl(). Within
that method they create the concrete appearance of the editor by creating the necessary SWT widgets
and JFace components.

Toolbars and Menus
Usually, you don’t need to construct toolbars and menus manually, because Eclipse does this automati-
cally by interpreting the definitions made in the manifest file plugin.xml (refer back to the section
“The Plug-in Manifest”). However, the option exists to create menus and toolbars manually. To do so,
first use the method getEditorSite() to fetch an IEditorSite instance. From this instance you can
obtain an IEditorActionBarContributor instance with the help of
getActionBarContributor(). This instance manages the menus, toolbars, and the status line. These
tasks—managing menus, toolbars, and status line—cannot be left to the editor, because actions and
menus would appear multiple times if several editors of the same type were opened in the same work-
bench page. The IEditorActionBarContributor, in contrast, can be shared among several editor
instances. The standard implementation EditorActionBarContributor features the method
getActionBars() with which you can fetch an IActionBars instance. From this instance you can
obtain the menu manager (IMenuManager) via getMenuManager() and the toolbar manager
(IToolManager) via getToolManager(). If you want to construct a toolbar or a drop-down menu,
you can just add actions (IAction instances) to these managers via their respective add() methods.
Further details about menu managers are given in the “Actions” section. This section also describes how
to construct context menus for editors.

356

Chapter 11

EditorPart

AbstractTextEditor MultiEditor MultiPageEditorPart

StatusTextEditor

AbstractDecoratedTextEditor

FormEditor

TextEditor

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 356

Keyboard Shortcuts
Access to the key-binding service (IKeyBindingService) is obtained from the IEditorSite instance
via getKeyBindingService(). Here you can restrict the scope for keyboard shortcuts to the current
editor using setScopes(). This is necessary if you want to introduce a new editor type that uses key
scopes that differ from the scopes defined for the standard editors (text editor). Such scopes can be
declared in the extension point org.eclipse.ui.commands (discussed previously in the section
“The Most Important SDK Extension Points”).

Status Line
The IActionBars instance also provides access to the workbench’s StatusLineManager (see the
section “The Managers” in Chapter 9) via the method getStatusLineManager().

Saving Files
In addition, the EditorPart API contains a method group for saving the modified editor content:

doSave()
doSaveAs()
isDirty()
isSaveAsAllowed()
isSaveOnCloseNeeded()

All of these methods can be overridden by EditorPart subclasses to implement the required
functionality. The Eclipse SDK already contains four abstract subclasses of EditorPart:
AbstractTextEditor, AbstractDecoratedTextEditor, MultiEditor, and
MultiPageEditorPart (see Figure 11.16).

The AbstractTextEditor Class
The AbstractTextEditor class is the standard implementation of the interface ITextEditor and
represents the common basis for all text-based editors in the Eclipse workbench. The standard text editor
in Eclipse (the class TextEditor), among others, is a subclass of this class, as are the various program
editors. To implement concrete editors, you will usually use the text-processing classes defined in JFace,
which was already discussed in the “Text Processing” section in Chapter 9.

AbstractTextEditor implements some of the standard functions that are common to text-based
editors, such as:

❑ Standard functions for text processing, such as cut, copy, paste, find, and replace

❑ Management of context menus

❑ Reaction to resource changes in the workbench, for example, when a resource is refreshed, when
projects are closed, or when a resource is deleted that is currently open in an editor

A class that wants to extend AbstractTextEditor must first configure this editor. The Eclipse work-
bench must be notified about the extension points of the various context menus. This is done with the
help of the methods setEditorContextMenuId and setRulerContextMenuId. The manifest file
plugin.xml (see section “The Most Important SDK Extension Points”) can now refer to these identifi-
cations and link Action Sets to the editor’s context menus.

357

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 357

Layout
You can change the appearance of the editor if desired. By default, the AbstractTextEditor consists
of a SourceViewer and a vertical Ruler for markers at the left-hand side of the SourceViewer. You
can easily add further widgets by overriding or extending the method createPartControl().

With the method setStatusField() you can determine a status field in which the status messages of
the editor are shown. You can assign different status fields for different categories of status messages.
The editor’s status fields are displayed in the status line of the workbench when the editor becomes
active. Status fields are described by the interface IStatusField. The default implementation of this
interface is the class StatusLineContributionItem.

Document Model
ITextEditor separates the document model from the user interface. The current document is given
to the editor by an IDocumentProvider instance. This allows several editors to access the same
document. IDocumentProvider manages documents of type IDocument, as discussed in “Text
Processing Base Classes” section in Chapter 9. IDocumentProviders are responsible for saving and
restoring the managed documents. The AbstractTextEditor uses the methods of the registered
IDocumentProvider instance when performing editor operations such as doSave() or
doRevertToSaved().

These and other operations are usually invoked by user actions (choosing a menu function, clicking a
tool button, using the context menu). How does the communication between actions and editor func-
tions work?

Actions
You can install an action (discussed later in the “Actions” section) of type IAction with the editor using
the method setAction(). When doing so, you must assign an identification string to each IAction
instance. Using this string, you can query the editor for a specific action via getAction(), and you can
assign keyboard shortcuts to actions via setActionActivationCode() and remove them again with
removeActionActivationCode(). To implement a specific action, you would extend the standard
implementation Action rather than implement the interface IAction. Its subclasses override the
run() method to implement specific behavior. With the following editor methods

markAsContentDependentAction()
markAsPropertyDependentAction()
markAsSelectionDependentAction()
markAsStateDependentAction()

you can organize the various actions according to their behavior. This is important when actions must be
updated after editor events.

Selection
The AbstractTextEditor also provides methods for setting and retrieving emphasized text ranges
((setHighlightRange(), resetHighlightRange(), and getHighlightRange()) and for retriev-
ing the ISelectionProvider (getSelectionProvider()). This ISelectionProvider instance
allows you to set and retrieve selections (ISelection) and to set and remove
ISelectionChangedListeners.

358

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 358

Extending the AbstractTextEditor
Subclasses that extend the class AbstractTextEditor can override several method of this class to
adapt their behavior as required. In particular, you may want to override the following methods:

createActions() Creates the standard actions of the
AbstractTextEditor:

Undo, Redo, Cut, CutLine, CutLineToEnd, Copy,
Paste, Delete, DeleteLine, DeleteLineToBeginning,
DeleteLineToEnd, SetMark, ClearMark,
SwapMark, SelectAll, ShiftRight, ShiftLeft, Print,
FindReplace, FindNext, FindPrevious,
FindIncremental, FindIncrementalReverse, Save,
Revert, GotoLine, MoveLinesUp,
MoveLinesDown, CopyLinesUp,
CopyLinesDown, UpperCase, SmartEnter, and
SmartEnterReverse.

createPartControl() Creates the vertical Ruler, at the left-hand border
of the editor area, and the SourceViewer.

dispose() This method must be extended when the subclass
needs to release resources (colors, fonts, printer,
etc.) when the editor is disposed of.

doSave() These methods save the current editor document
doSaveAs() and restore it to its last saved state.
doRevertToSaved()

editorContextMenuAboutToShow() This method is invoked before the editor’s context
menu is to be shown. The context menu must be
constructed in this method.

init() Initializes the editor with an IEditorSite
instance and an IEditorInput instance.

isSaveAsAllowed() The standard implementation always returns the
value false for this method. Subclasses can
override it as required.

The StatusTextEditor Class
This class implements a concrete editor that can handle editor input sources with associated status
information.

The AbstractDecoratedTextEditor Class
The abstract class AbstractDecoratedTextEditor serves as a basis for implementing feature-
rich editors. In particular, concepts such as vertical rulers for displaying changes and overviews, print
margins, and highlighting of the current line are supported. Other than the AbstractTextEditor,
this editor is not independent from the Eclipse workspace and the Eclipse resource model and therefore
supports working with resource markers.

359

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 359

The TextEditor Class
The class TextEditor is the standard text editor of the Eclipse workbench and is based on
the class AbstractDecoratedTextEditor. In many cases, you may want to extend this
class instead of the AbstractTextEditor class. This editor has the identification
org.eclipse.ui.DefaultTextEditor.

An example for the extension of the class TextEditor is the ReadmeTool example program, which is
found in the plug-in directory:

\eclipse\plugins\org.eclipse.ui.examples.readmetool_3.0.0

The class ReadmeEditor adds an Outline window to the text editor, that is, a view in which a summary
of the editor’s contents is displayed. To implement this, the ReadmeEditor overrides the method
getAdapter(). In the overridden getAdapter() it generates a suitable
ReadmeContentOutlinePage from a received IFileEditorInput instance. It also overrides the
method doSave() in order to update the content of the Outline page after saving the editor content,
and it overrides the method editorContextMenuAboutToShow() to display an example context
menu.

The MultiEditor Class
A MultiEditor combines several editors in a single GUI component. To manage these editors (known
as inner editors), the following methods are necessary:

createInnerPartControl() This method creates the GUI of an inner editor.

getActiveEditor() This method returns the currently active editor.

getInnerEditors() This method returns all inner editors.

The MultiPageEditorPart Class
The abstract class MultiPageEditorPart implements an editor with several pages. Each page can
contain its own editor, consisting of arbitrary SWT control elements.

Subclasses that extend this class must implement the following methods:

createPages() This method creates all the editor pages. The
method addPage() can also be used to do this.

IEditorPart.doSave() These methods save the contents of the whole
IEditorPart.doSaveAs() editor.

IEditorPart.isSaveAsAllowed() This method returns the value true if Save As
is allowed.

The FormEditor Class
The abstract FormEditor class extends the class MultiPageEditorPart. It is used to implement
form-based editors (such as the manifest editor). Subclasses must implement the method addPages()
to furnish this editor with pages. All pages are constructed lazily, that is, shortly before they are
displayed. For creating such pages, three addPage() methods are provided: page construction with

360

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 360

plain SWT elements, page construction with an inner editor (IEditorPart), and forms-based page con-
struction with an IFormPage instance. Such instances must be derived from the class FormPage. If
such an instance is created, a ScrolledForm instance is created internally and wrapped into a
ManagedForm (see the “Forms” section). Subclasses of FormPage must implement the method
createFormContent(). This method receives the ManagedForm instance as a parameter and can thus
fill the page with content by adding form parts to this instance.

Working with Markers
IMarker instances were discussed previously in the “Markers” section in connection with resources.
Here I am going to discuss how you can declare your own marker types in the manifest file and how
markers can be used in the context of an editor.

Declaring Markers
The declaration of a new marker type is achieved by specifying a new extension element at the exten-
sion point org.eclipse.core.resources.markers. The attribute id of this extension identifies the
marker type, while the attribute name specifies a marker name for display purposes. The extension
element can be equipped with several child elements:

❑ The element attribute declares a marker attribute. The attribute name specifies the name of that
attribute.

❑ The element persistent declares whether the marker is persistent or not. The attribute value
takes the values true for persistent markers and false for transient markers.

Inheritance
The element super declares the parent marker type. In the type attribute you specify the identification
of the parent marker type. The current marker inherits all attributes from the parent marker except the
ones it overrides. It is possible to specify several super elements (multiple inheritance). The persistency
property is not inherited. For example:

<extension id="diagramProblem"
name="Diagram Problem"
point="org.eclipse.core.resources.markers">
<super type="org.eclipse.core.resources.problemmarker"/>
<super type="com.bdaum.myApplication.diagramMarker"/>
<persistent value="false"/>
<attribute name="item"/>
<attribute name="flags"/>

</extension>

Here I have defined a new marker type diagramProblem. This marker type inherits all attributes from
the predefined marker type org.eclipse.core.resources.problemmarker and from the marker
type diagramMarker, from which you can assume that it has been declared previously. The new
marker type is declared as transient and is equipped with the additional attributes item and flags.

Earlier in this chapter I discussed how IMarker instances can be created and how attributes are set and
retrieved. These are just the methods used when you want to implement the method gotoMarker() for

361

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 361

a given editor. Editors supporting positioning by marker selection must implement the interface
IGotoMarker with its gotoMarker() method.

GotoMarker
If a new marker is created, the Tasks View or Problems View automatically appears on the screen,
depending on the marker type and provided that the Tasks View filter does not inhibit this. If you dou-
ble-click an entry in these views, the resource to which the marker belongs is opened with its current
default editor and the gotoMarker() method of this editor is invoked, provided the editor implements
the interface IGotoMarker. What happens next depends on the editor type and the marker type. In the
case of a text editor, the attribute IMarker.LINE_NUMBER or the attributes IMarker.CHAR_START
and IMarker.CHAR_END are evaluated. The editor viewport is positioned to the corresponding text
area, and this text area is selected. A diagram editor would rather store the identification of a graphical
element in a suitable attribute item (as indicated above). Double-clicking the marker would select
the element.

Marker Lifecycle
When you work with markers, you should be aware that IMarker instances are not really “first-class
citizens,” that is, they don’t contain the marker data. Instead, they contain only a handle to a data record
that itself contains the marker attributes. It may therefore happen that the data record belonging to a
given IMarker instance does not exist, for example, if the resource to which the marker belongs has
been deleted in the meantime. You should therefore safeguard all marker operations by first querying
the marker’s exists() method.

Views
Besides editors, views are the other basic ingredient of the Eclipse workbench. All views are based on
the abstract class ViewPart. Unlike editors, views don’t have their own input source. Instead, they
show the state information of the active editor or of the workbench.

Figure 11.17 shows the hierarchy of view types. The grayed-out components cannot be instantiated or
subclassed.

362

Chapter 11

ViewPart

BookmarkNavigator PageBookView

AbstractDebugView ContentOutline PropertySheet

ResourceNavigator TaskList

Figure 11.17

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 362

The Eclipse SDK comes with a variety of predefined view types. Of course, is it possible to implement
your own view types as well, based on ViewPart or one of its subclasses. I give an example of such a
custom view in the section “The Correction Window” in Chapter 13. By overriding the ViewPart
method init() you can implement a specific initialization for a custom view.

Persistency
This is necessary when you want to maintain the state of a view across sessions. You can archive the
state by overriding the method saveState(). A parameter of type IMemento is passed to this method.
In the next session the same IMemento instance is received by the init() method. Mementos are hier-
archical structures—each memento can contain other mementos as child node—in which the state infor-
mation of a view can be preserved. The Eclipse SDK provides a concrete implementation of the
IMemento interface with the class XMLMemento. As its name indicates, this class stores the view’s state
information in the form of an XML file.

View Toolbars
In contrast to editors, each view instance has its own toolbar, which can also be equipped with a view-
specific drop-down menu. You can obtain this toolbar from the IViewSite instance via
getActionBars(). (The IViewSite instance can be retrieved from the ViewPart via the method
getViewSite().) The method getActionBars() delivers an IActionBars instance, from which
you can obtain the menu manager (IMenuManager) via getMenuManager() and the toolbar manager
(IToolManager) via getToolManager(). If you want to construct a toolbar or a drop-down menu,
just add IAction instances to these managers with the help of their respective add() methods.
Further information about menu managers can be found in the “Actions” section. That section also
describes how to construct context menus for views, just as it is done for editors.

The ResourceNavigator Class
The ResourceNavigator class implements the navigator for the Eclipse workspace resource (see
Figure 11.18). Clients can configure the navigator via the IResourceNavigator interface.

363

Developing Plug-ins for the Eclipse Platform

Figure 11.18

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 363

The following methods can be used to configure the resource navigator:

getFrameList() This method delivers a FrameList instance that contains the
user’s navigation history. For example, you can navigate to a
previous resource view by calling the back() method of this
instance (see also the section “Navigation” in Chapter 4).

getPatternFilter() This method delivers the active filter of the resource
navigator. The class ResourcePatternFilter manages
string arrays that contain the filter patterns. Each pattern
specifies resources that are not to be shown in the navigator.

getSorter() This method delivers the current ResourceSorter.
ResourceSorter allows the displayed IResource
instances to be sorted by name or type.

getViewer() This method delivers the TreeViewer instance used by the
ResourceNavigator to display the resources.

getWorkingSet() This method delivers the currently active IWorkingSet
instance or null if no Working Set is currently active.

setFiltersPreference() This method allows you to set new filter patterns. The end
user can activate a filter pattern by selecting it from this list.

setSorter() Using this method you can set a new ResourceSorter
and thus modify the sort strategy.

setWorkingSet() With this method you can set an IWorkingSet instance as
a new active Working Set.

Various other navigators, such as the Java Package Explorer, are based on the ResourceNavigator
and use the methods listed here to achieve their individual configurations.

The PageBookView Class
The abstract class PageBookView serves as a basis for the implementation of the classes
AbstractDebugView, ContentOutline, and PropertyView. The latter two classes are discussed
in more detail shortly. You can also use the PageBookView as a basis for the implementation of
custom views.

The class PageBookView supports views that display state information from particular workbench
components (IWorkbenchPart) such as state information from the active editor. As the name indicates,
a PageBookView instance can be equipped with several pages. The standard page usually shows state
information from the currently active component. Additional pages may display state information from
other workbench components.

364

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 364

Each subclass of PageBookView must implement the following methods:

createDefaultPage() In the implementation of this method you must construct the
default page. This page is always shown when no specific
PageBookView page can be found for the currently active
workbench component.

getBootstrapPart() This method is used for determining the currently active
workbench component. By overriding this method, clients can
determine an active component that differs from the currently
active component of the WorkbenchPage.

isImportant() This method must return the value true if a PageBookView
page is to be constructed for the received IWorkbenchPart
component.

doCreatePage() In the implementation of this method you can construct the
PageBookView pages for specific workbench components. The
method is invoked only when the previously called method
isImportant() returns the value true.

doDestroyPage() In the implementation of this method you can dispose of
PageBookView pages for specific workbench components.

Subclasses of PageBookView can override further methods, such as partActivated(),
partBroughtToTop(), partClosed(), partDeactivated(), and partOpened(). By doing so,
you can vary the page order—and, of course, the page contents—according to the state of the workbench
page.

The Outline View
The class ContentOutline implements a view that displays an outline for editor contents. The Outline
view of the Java perspective (discussed previously) is an example of such a view.

You cannot instantiate or subclass the ContentOutline class—its (only) instance is created and man-
aged by the workbench when needed. This singleton can be displayed by calling the IWorkbenchPage
method:

showView("org.eclipse.ui.views.ContentOutline");

Despite the fact that this class cannot be extended via subclasses, it supports the creation of outlines for
all possible editor types. This works as follows: when the ContentOutline discovers that a component
of type IEditorPart is activated, it asks that component if it can provide an Outline page. If the
response is yes, the Outline page is included in the view. (Remember that ContentOutline is a sub-
class of PageBookView).

Editors that wish to contribute an Outline must provide a suitable adapter (see the section “Editors”).
The ContentOutline instance will fetch the Outline page with the following method call:

editor.getAdapter(IContentOutlinePage.class);

365

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 365

An example of this technique is found in the Readme editor contained in the Eclipse SDK as an example
application.

The Property View
Property views are used to display and edit specific properties of selected objects.

The PropertyView class works very similarly to the ContentOutline class. PropertyView can also
not be instantiated or subclassed—its (only) instance is created and managed by the workbench when
needed. This instance can be displayed by calling the IWorkbenchPage method:

showView("org.eclipse.ui.views.PropertySheet");

When the PropertyView discovers that a component is activated, it asks that component if it can pro-
vide a PropertySheetPage instance. If the response is yes, the page is included in the view.

Components that wish to contribute a PropertySheetPage must provide a suitable adapter (see the
section “Editors”). The PropertyView instance will fetch the PropertySheetPage instance with the
following method call:

part.getAdapter(IPropertySheetPage.class);

The Bookmark Manager
The class BookmarkManager implements a view that displays bookmarks (see the “Bookmarks” section
in Chapter 1). If the end user double-clicks a bookmark, the corresponding editor is opened and its view-
port is positioned to the bookmark.

This class can also not be instantiated or subclassed—its (only) instance is created and managed by the
workbench when needed. This instance can be displayed by calling the IWorkbenchPage method:

showView("org.eclipse.ui.views.BookmarkNavigator");

New bookmarks are not explicitly added to the bookmark manager but are added as IMarker objects to
the corresponding resource (see the “Markers” section). They then appear automatically, depending on
the filter settings in the bookmark manager.

The Tasks View
Things are quite similar for the TaskList class, which can display the current problems and tasks (see
“The Plug-in Manifest” section). Again, this class cannot be instantiated or subclassed—its instance is
created and managed by the workbench when needed. This instance can be displayed by calling the
IWorkbenchPage method:

showView("org.eclipse.ui.views.TaskList");

New tasks and problems are not explicitly added to TaskList but are added as IMarker objects to the
corresponding resource (see the “Markers” section). They then appear automatically, depending on the
filter settings in the task list. Note that Eclipse 3 does not use this class for its own Tasks View and
Problems View but instead uses the internal classes TaskView and ProblemView.

366

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 366

Actions
From time to time, I have mentioned the concept of actions. In Eclipse, this idea represents an abstract
user action, such as writing to a file, searching for a string in text, or jumping to a marker. Actions are
represented in Eclipse by the JFace interface IAction (see the section “The IAction Interface” in
Chapter 9). This interface abstracts the action’s semantics from the representation of the action in the
workbench. When you execute the action, it makes no difference whether the action was represented as
a menu item, as a toolbar button, or as both.

Local and Global Actions
Eclipse offers two different action types: local actions and global actions. Global actions are useful if
several editors have actions with the same name, such as Undo, Save, or Find. To prevent menus and
toolbars from becoming overcrowded with the individual actions from all active editors, it is possible
to combine similarly named actions into global actions. The implementation of global actions is, in fact,
quite different from local actions. The Eclipse SDK already defines a set of constants in the interface
org.eclipse.ui.IWorkbenchActionConstants that can be used as identifiers for global actions.

In particular, the following actions can be shared among different editors and views:

367

Developing Plug-ins for the Eclipse Platform

View Editor

File Edit Navigate Project File Edit

move
rename
refresh
properties

cut
copy
paste
delete
select all
undo
redo

go into
go to
resource
sync with
editor
back
forward
up
next
previous

open
close
build

revert
print

find
cut
copy
paste
delete
select all
undo
redo

When implementing an action you have two main options:

❑ You can specify the action in an Action Set in the manifest file plugin.xml (see “The Most
Important SDK Extension Points” section). In this case, the IAction instances are instantiated
by the workbench—the programmer does not need to implement IAction. However, you must
implement an action delegate (IActionDelegate). The manifest editor will generate an
IActionDelegate stub for each new action.

❑ You can explicitly implement the IAction interface in your own application. In this case, the
application is also responsible for creating IAction instances. This is required for actions
whose enabling does not depend on workbench selection but rather on other criteria. It is also
required for context menus that cannot yet be declared in the manifest.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 367

Defining Actions in the Manifest
Let’s deal with the first case first. Here you need only describe the action sufficiently in the manifest.
This is usually the best practice because it allows you to easily extend the plug-in’s functionality later.
Figure 11.19 shows the manifest attributes defined for the action CheckSpelling from Chapter 13.

368

Chapter 11

Figure 11.19

Actions can be defined in various extension points, such as org.eclipse.ui.actionSets,
org.eclipse.ui.editorActions, and org.eclipse.ui.viewActions (see “The Most
Important SDK Extension Points”).

For each action you can specify the following attributes:

id A unique identifier of the action.

label A display text for the action, to be shown, for example, in the menu
item or the tool button. You can emphasize one letter of the text by
prefixing it in the usual way with the character &. This letter will
then act as a mnemonic code for the action. In addition, you may
append a keyboard shortcut in the form of a text string separated by
the character @. Several key names can be concatenated with the help
of the character +, as in @Ctrl+Shift+S.

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 368

accelerator The code for the keyboard shortcut as defined in the class SWT. If the
shortcut consists of several keys, their code values are summed.

definitionId The identification for an action definition. This is needed only when
the key assignment is performed dynamically via the Key Binding
Service. In this case, the definitionId must match the id used in
the action definition and the id used for the action in the
corresponding Action Set.

menubarPath A path expression describing where the action should appear in the
workbench menu. If this attribute is omitted, the action is not repre-
sented as a menu item.

Each section in the path specification (except the last section) must spec-
ify the valid identifier of an existing menu item. The last section speci-
fies either the name of a new group or an existing group to which the
action is to be added.

The necessary menu item identifiers are found in the interface
org.eclipse.ui.IWorkbenchActionConstants.

toolbarPath A path expression describing where the action should appear in the
workbench toolbar. If this attribute is omitted, the action is not repre-
sented as a tool item.

The first section of this path specification identifies the toolbar.
(Normal stands for the default workbench toolbar.) The second
section specifies either the name of a new group or an existing group
to which the action is to be added.

icon The path, relative to the location of plugin.xml, of an icon that
represents the action in toolbars.

disabledIcon Another icon that represents the action when it is disabled. If this
icon is omitted, a gray version of the icon specified under the icon
attribute is used.

hoverIcon The icon that should appear when the mouse hovers over the
enabled action. This icon is also used to represent enabled actions in
menus. If this attribute is omitted, the icon specified under the icon
attribute is used instead.

tooltip A message that is displayed on the screen when the mouse hovers
over the toolbar representation of the action.

helpContextId A unique identifier of the action for context-sensitive help. See the
section “The Help System” for details.

state If this value is specified, the action can be toggled. The specified
value (true or false) determines the initial state.

pulldown An alternative to the state attribute, this attribute can specify that
the action be equipped with a drop-down menu. In toolbars, a pull-
down arrow appears at the right-hand side of the action’s
representation.

369

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 369

class The fully qualified name of a class implementing the interface
org.eclipse.ui.IWorkbenchWindowActionDelegate (see
below).

retarget An alternative to the class attribute, it can specify the value true
for this attribute if the action is a global action (see below).

allowLabelUpdates This attribute is used only when true is specified for the attribute
retarget. If the attribute allowLabelUpdates is set to true,
clients can modify the display label and the tool tip of the global
action.

enablesFor This attribute specifies when the action is enabled:

! Nothing selected.

? Nothing or only a single element selected.

+ One or more elements selected.

2+ Two or more elements selected.

n Exactly n elements selected.

* Enabling is independent of selection.

If the attribute is omitted, the action’s enabling depends solely on pro-
gram logic.

In addition, actions can be enabled or disabled by the
application.

In addition to the quite basic enablesFor attribute, you can make further specifications for enabling,
disabling, and notification of actions. To do so, select the action in the manifest editor and invoke the
context function New. You then have the choice between selection and enablement.

Selection
Under the element selection specify the fully qualified name of a class or an interface (for example,
org.eclipse.core.resources.IResource) in the attribute class. By doing so, you enforce the
selected objects to be sent only to the IActionDelegate when all selected elements are of the specified
type. In all other cases, the IActionDelegate method selectionChanged() will obtain the empty
selection. Under the attribute name you can specify a filter pattern (such as *.txt). The names of all
selected objects must match this pattern to enable the action.

Enabling and Disabling Actions
Further control about the enabling of actions is possible via the enablement element. Here you can
declare the enabling of an action as a function of the type and current state of the selected object and
also of the state of the plug-in and the state of the whole system. These individual conditions can be
combined with Boolean expressions. The various criteria and Boolean operators are declared as child
elements of the enablement element (via the context function New).

370

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 370

objectClass Under the attribute name you can specify the fully qualified name of a
class or an interface. If all selected objects belong to this type, the
condition has the value true.

objectState Under the attribute name you can specify the name of an object property,
and under the attribute value the value of that property. If all selected
objects have properties with such a value, the condition has the value
true.

To support the workbench in the evaluation of this condition, the selected
objects must implement the interface IActionFilter or must be able
to provide an IActionFilter instance via getAdapter(). If this is
not the case, the condition results in false. The workbench uses the
testAttribute() method of the IActionFilter interface to test the
state of an object.

If you want to introduce new, selectable objects into the workbench, you
should always implement the IActionFilter interface. This allows for
actions that are added later by plug-ins to react to state changes of
selected objects.

The Eclipse SDK already implements action filters for the object
types IResource, IMarker, and IProject. Which properties may
be queried for these object types is described in the interfaces
IResourceActionFilter, IMarkerActionFilter, and
IProjectActionFilter.

systemProperty Under the attribute name you can specify the name of a system
property. The workbench will use this name to query the
corresponding system property via System.getProperty() and
will compare the result with the value specified under the attribute
value. If equal, the condition returns true.

pluginState Under the attribute id you can specify the identification of a plug-in.
When you specify the value installed under the attribute value,
the workbench will test whether the specified plug-in is installed. If
the value activated is specified, the workbench will test whether the
plug-in is active.

Delegates
How do you connect an action with the application? This depends on whether the action is
local or global. For local actions you must specify a class of type org.eclipse.ui
.IWorkbenchWindowActionDelegate under the attribute class. The section “The Class
SpellCheckingTarget” in Chapter 13 shows an example of such a delegate. The init() method here is
invoked when the workbench is started. When the selection within the workbench changes, the method
selectionChanged() is called. The method run() is invoked when the end user activates the action.

Global actions are defined by specifying the value true under the attribute retarget. In this case, the
class attribute is not specified. It is the application that is responsible for creating a concrete
RetargetAction instance (or a LabelRetargetAction instance when allowLabelUpdates is set

371

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 371

to true). Usually this is done in the createPartControl() method of the respective editor or view.
The new action instance is then registered via

getViewSite().getActionBars().setGlobalActionHandler(
id, retargetAction);

In this code, first the view’s runtime environment is fetched via getViewSite(). From this view site
the view’s toolbar is fetched via getActionBars() (see the “Views” section). Then the action is regis-
tered with the help of setGlobalActionHandler() by specifying the identification of the action (id)
and the RetargetAction instance (retargetAction). The code for registering editor actions is simi-
lar. However, in this case an intermediate step via an IEditorActionBarContributor instance is
required (see the “Editors” section).

The example Readme editor contained in the Eclipse SDK demonstrates how to work with global actions
quite explicitly.

Implementing Actions Manually
As an alternative to declaring actions in the manifest file plugin.xml you can, of course, implement
actions the hard way in Java code. For global actions, you have already seen that the application is
responsible for creating the respective IAction instances (such as RetargetAction or
LabelRetargetAction instances).

You will usually not implement the IAction interface from scratch, but rather you will extend one of
the classes from the package org.eclipse.ui.actions. You can find a variety of actions for stan-
dard tasks in this package.

If you don’t define an action within plugin.xml, you must ensure that the action appears in the appro-
priate toolbars and menus. This is, in particular, the case for context function actions, because context
functions cannot be declared in plugin.xml.

In Chapter 13 I will show how to hard-code actions for a view in an example plug-in. First, individual
action instances are created, and then a toolbar, a drop-down menu, and a context menu are constructed
with these actions. Separator instances are created, too, that act as anchor points, allowing other plug-
ins to add actions to the so-created menus.

I have already discussed how actions can be added to the toolbar of a view. For context menus you must
do a bit more work, making use of the respective JFace components, as discussed in the section “Actions
and Menus” in Chapter 9.

Dialogs
You can find a set of ready-made Dialog classes that can be used within plug-ins in the package
org.eclipse.ui.dialogs. Using these classes can save you a lot of work and help you to achieve a
consistent “look and feel” in an application. Further resource-specific dialogs and dialogs for IDE func-
tions are contained in the package org.eclipse.ui.ide.dialogs.

Figure 11.20 shows the hierarchy of Dialog classes in the package org.eclipse.ui.dialog.

372

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 372

Figure 11.20

All of these Dialog classes are based on the abstract class SelectionDialog, which is itself based on
the JFace class (and therefore, too, on the JFace class Window), which has already been discussed in the
section “Dialogs and Windows” in Chapter 9. Consequently, this class is equipped with the methods
inherited from Dialog, such as create(), open(), close(), and so on. It implements additional
methods, such as setInitialElementSelections() and setInitialSelections(), with which
an initial selection of dialog elements is possible. The methods setTitle() and setMessage() allow
you to set a title and longer text for the message area of the dialog. These methods must be used
between the method calls create() and open().

The result of a dialog is obtained with the help of the method getResult(). If the dialog was not
closed with the OK button, this method returns the value null.

We will now take a closer look at some of the concrete dialog classes of the package org.eclipse
.ui.dialogs.

The CheckedTreeSelectionDialog and ElementTreeSelectionDialog
Classes

These dialogs support the selection of elements from a tree. You can supply the viewer of these dialogs
with input data using the method setInput(), and you can determine which elements are initially
expanded via the method setExpandedElements(). With addFilter() you can set a
ViewerFilter instance. This instance determines which elements of the input data are shown in the
tree. With setSorter() you can set a sorter for the tree elements. A validator can be specified with
setValidator(). In the case of selection changes, this validator checks to determine whether all
selected elements are valid and enables or disables the OK button accordingly. Finally, you can set the
size of the tree area in characters via setSize().

ElementTreeSelectionDialog features, in addition, the methods setAllowMultiple() and
setDoubleClickSelects() for allowing and disallowing multiple selection of tree elements and
determining the behavior in the case of double-clicks. Since both classes are derivatives of
SelectionStatusDialog, they also have methods for managing the status line. Among these meth-
ods are the method setStatusLineAboveButtons() for determining the position of the status line
and the method updateStatus(), with which the status line can be updated. In addition, you can con-
trol the state of the OK button with the method updateButtonsEnableState().

373

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 373

The ElementListSelectionDialog Class
This dialog implements a simple list from which the end user can select elements. You can set the ele-
ments of this list via the method setElements(). This dialog, too, is a derivative of
SelectionStatusDialog and thus inherits the previous methods for status-line management.

The ListSelectionDialog Class
This dialog also implements a list from which elements can be selected by the end user. However, this
dialog works with arbitrary domain models. The contents of the selection list are retrieved from an
IContentProvider instance, and the representation is computed with the help of an
ILabelProvider instance. You can pass the input object, an IStructuredContentProvider
instance, the ILabelProvider instance, and a message in the ListSelectionDialog() constructor.

The ContainerSelectionDialog Class
This dialog allows the end user to select a workspace container (project or folder). You can specify the
root directory of the selection tree in the constructor of this class. In addition, you can specify whether
new containers may be created.

The ResourceListSelectionDialog Class
This dialog allows the end user to select workspace resources. You specify the root directory of the selec-
tion tree in the constructor of this class, and you can specify an initial selection with
setInitialSelections().

The SaveAsDialog Class
This dialog can be used to prompt the end user for the location and name for a file to be stored. You can
set a default selection with the method setOriginalFile(). This method must be executed before
create(). The specified file location is obtained as an IPath object via getResult().

The NewFolderDialog Class
You can prompt the end user for the name of a new directory with this dialog. The parent container is
specified in the constructor of this class. The dialog will immediately create the new directory when the
OK button is pressed.

The ContainerGenerator Class
This class is not a dialog but is nevertheless useful. It creates all missing resource containers along a
specified path. The path is specified in the constructor of the class. You can then create all missing con-
tainers using generateContainer().

Workbench Wizards
In the section “Wizards” in Chapter 9 I discussed how wizards can be implemented with JFace classes.
Here I discuss how the existing wizards of the Eclipse workbench can be extended. In particular, this is
required when an application needs to create new files or new projects. In this case, you should not cre-
ate your own eccentric solution but rather link into the New Wizard of the Eclipse workbench.

374

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 374

The newWizard Extension Point
Integration into the New Wizard is quite easy to achieve: you simply define the extension in the
manifest file plugin.xml. The extension point identification for the New Wizard is org.eclipse
.ui.newWizards. You can add three elements to this extension point:

❑ category. You can define a new category for the new wizard in this element. The attribute id
identifies the category uniquely. Under the attribute name a display name for the new category
is defined. You can define the identification of an existing category to which the new category is
added as a child with the optional attribute parentCategory.

❑ wizard. This element is required to declare the new wizard. The attribute id identifies the wiz-
ard uniquely. A display name for the new wizard is defined under the attribute name. With the
optional attribute category you can assign the new wizard to a category. If this attribute is not
specified, the wizard is by default assigned to the Others category. You can specify the relative
path of an icon that represents the wizard in the selection list under icon. The implementation
of the wizard is specified in the attribute class. The class specified here must implement the
interface INewWizard.

If the optional attribute project is set to true, the new wizard will not be used to create new files but
to create new projects—the wizard appears in the New Project dialog. In this case, you can specify the
attribute finalPerspective (see the section “Defining Perspectives”). This attribute specifies the
identification of the perspective that should be opened when the new project is created.

Finally, the child element description can be added to the wizard element. This element can contain
a description text for the wizard.

❑ selection. Under the attribute class you can specify the fully qualified name of a class or
interface (for example, org.eclipse.core.resources.IResource). If all selected
elements of the workbench belong to this type, the selection will be passed to the wizard when
it is initialized. Otherwise, it will obtain the empty selection. Under the attribute name you can
specify a filter pattern (for example, *.txt) that must be satisfied by the names of all selected
elements for the selection to be passed to the wizard.

Here is an example for a (fictitious) wizard for creating a new jukebox playlist (see the section “The
Description Window” in Chapter 10). First, a new category called Jukebox is created. In this category a
new wizard called Playlist is created. When the wizard is activated, an instance of the class
PlaylistCreationWizard is created and the run() method of this instance is invoked. Workbench
selections are passed to the wizard only when all elements of the selection are workspace resources.

<extension
point="org.eclipse.ui.newWizards">
<category

name="Jukebox"
id="com.bdaum.jukebox.newWizard">

</category>
<wizard

name="Playlist"
icon="icons/basic/obj16/playlist.gif"
category="com.bdaum.jukebox.newWizard"
class="com.bdaum.jukebox.wizards.PlaylistCreationWizard"

375

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 375

id="com.bdaum.jukebox.newPlaylistWizard">
<description>

Creates new Jukebox playlist file
</description>
<selection

class="org.eclipse.core.resources.IResource">
</selection>

</wizard>
</extension>

The IWorkbenchWizard Interface
Wizards that are created for the Eclipse workbench should implement the interface
IWorkbenchWizard. The interface INewWizard is an extension of this interface. IWorkbenchWizard
is based on the JFace interface IWizard but specifies an additional method, init(). This is invoked
when the wizard is started and passes the Workbench instance and the current workbench selection to
the wizard, provided that the selection satisfies the conditions specified in the selection element.

The WizardNewFileCreationPage Class
When creating a New File Wizard, you can in many cases save yourself some work if you base the wiz-
ard’s default page on the class WizardNewFileCreationPage. This class prompts the end user for the
required input and creates the new file based on that input. You can use this class in its original form or
you can create your own subclasses. In particular, you may want to override or extend the methods
getInitialContents(), getNewFileLabel(), and handleEvent(). The method
getInitialContents() returns the initial contents of the new file in form of an InputStream—
these contents will be written into the new file. The method getNewFileLabel() returns the display
label for the input field of the filename. The method handleEvent() is called for any events caused by
this wizard page. You can react adequately to user actions by extending this method.

For example, if you want to create a default page PlayListCreationWizardPage for your wizard
PlaylistCreationWizard, it could look like this:

public class PlayListCreationWizardPage extends
WizardNewFileCreationPage {
private final static String XMLPROLOG =

"<?xml version=\"1.0\" encoding=\"UTF-8\"?>";

protected InputStream getInitialContents() {
try {

String input = XMLPROLOG + "<playlist></playlist>"
return new ByteArrayInputStream(input.getBytes("UTF8"));

} catch (UnsupportedEncodingException x) {
return null;

}
}

protected String getNewFileLabel() {
return "Playlist name";

}
}

The method getInitialContents() here creates an empty playlist in XML format.

376

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 376

Preferences and Property Pages
I discussed preference pages and preference trees in the “Preferences” section in Chapter 9. You don’t
need to deal with the classes PreferenceNode, PreferenceManager, and PreferenceDialog in
the context of the Eclipse workbench. The workbench already constructs a preference tree that can be
opened by the end user via Window > Preferences. All you have to do is to add the preference pages
provided by your plug-in to this tree.

This is done by declaring an appropriate extension in the manifest file plugin.xml. The extension
point in question is org.eclipse.ui.preferencePages. This extension point is quite simple and
consists of only the single element page. You need to specify the identification of the new node in the
preference tree under the attribute id. Under name specify the display text for this node, and under the
attribute class specify the fully qualified class name of the respective PreferencePage implementa-
tion. The workbench will later create an instance of this class when required. Finally, you can specify the
path for the identification of the parent node of the new node under category. If this attribute is not
specified, the new node is appended directly to the root node of the preference tree.

I will give some examples for the declaration of preference pages in plugin.xml in “The Plug-in
Configuration” and the “A Plug-in for Java-Properties” sections in Chapter 13.

As already mentioned in Chapter 9 and in “The Core Classes of the Eclipse Platform” section in this
chapter, it is necessary to initialize the PreferenceStore with default values when an application is
started, because default values are not persistent. In the context of a plug-in, the best place for doing so
is the Plugin class or a special class that represents the preferences’ domain model. Initializing the pref-
erence default values in the PreferencePage class is not recommended, because this would increase
the startup time of the Eclipse platform. In “The Plugin Class” and the “Configuring the Spell Checker”
sections in Chapter 13 I show how plug-in preferences can be initialized and modified.

In addition to preference pages, the package org.eclipse.ui.dialogs provides a subclass of
PreferencePage: the class PropertyPage. This class serves as a superclass for dialogs that pop up
when the user applies the context function Properties to a workspace resource. In addition to the meth-
ods inherited from PreferencePage, the class PropertyPage provides the methods setElement()
and getElement(). These methods allow you to set and retrieve the resource associated with a specific
property page. Of course, all property pages must be declared in the manifest file plugin.xml.

A standard application of property pages is to override workbench-wide preferences on the project level.
Instead of implementing these pages from scratch, it is sometimes better to derive the pages from the
corresponding property pages. My article “Mutatis mutandis–Using Preference Pages as Property
Pages” on www.eclipse.org shows how this can be done.

Defining Perspectives
Perspectives define the initial layout of a workbench page: they define where editors and views are
placed and which Action Sets are visible.

377

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 377

Plug-ins may (but are not required to) add one or several perspectives to the workbench. This is recom-
mended when the existing perspectives are not suitable for the tasks that are to be performed with the
specific plug-in. Another thing to consider is that a plug-in may be installed in the minimal Eclipse
Runtime Environment, and this environment understands only the Resource perspective. The Rich
Client Platform (RCP) (see Chapter 14) does not even provide such a perspective, so at least one
plug-in must provide a perspective when an application is based on the RCP.

The definition of a new perspective begins with an entry in the manifest file plugin.xml. The corre-
sponding extension point is org.eclipse.ui.perspectives with the element perspective.
This element may possess a child element description containing a description text for the
perspective. The attribute id contains the identification of the perspective. The attribute name specifies
the display text. The attribute icon refers to an icon that is displayed on the Open Perspective button
of the perspective, on the left border of the workbench. Finally, the attribute class specifies the fully
qualified name of a class that implements the interface IPerspectiveFactory. This class is responsi-
ble for the construction of the initial layout.

This is done in the only method of this interface, createInitialLayout(). This method accepts an
instance of type IPageLayout as a parameter, representing the layout of a workbench page. In the API
documentation of this interface you can also find an example of the implementation of the method
createInitialLayout().

Perspective Layout
Initially, a perspective consists of a single area, occupied by the editor. You get the identification of this
area from the IPageLayout object with the help of getEditorArea(). Starting from this area, you
can then add additional folder areas of type IFolderLayout with the help of createFolder(). Such
a folder area can contain one or several views, stacked on top of each other. The parameters needed for
this method are the identification of the new area, the orientation (TOP, BOTTOM, LEFT, RIGHT), the size
ratio to the reference area, and the identification of the reference area. The reference area can be the edi-
tor area or another previously created folder area. It is possible to construct deeply nested layouts.

You can now attach an arbitrary number of views to each folder. This is done with addView(). This
method accepts the identification of the respective view (as defined in plugin.xml) as a parameter.
Alternatively, you can use the method addPlaceholder() to reserve space for a not-yet-visible view.
When the end user opens this view at a later time with Window > Show View, the view will appear in
the reserved area. You have the option of adding a view to the primary Show View list via
addShowViewShortcut(). Without doing so, the view would appear only under Window > Show
View > Others.

FastViews
As you saw in Chapter 4, you have the option of using views as FastViews instead of stacking them in a
folder area. When defining a perspective, you may also initialize a view as a FastView: the method
addFastView() is used for this purpose.

Action Sets
Finally, you have the option of activating Action Sets defined in the manifest file plugin.xml when ini-
tializing the perspective. This is done with addActionSet().

378

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 378

You can place the Open Perspective button with the specified icon onto the workbench’s perspective bar
with the method addPerspectiveShortcut().

The Help System
I have already mentioned the Eclipse help system in various sections of this book. While JFace still
requires you to code help functions explicitly (for example, by registering a help listener), things are
quite different in the context of plug-in programming. Here, help pages are associated with GUI ele-
ments in the higher software layers.

There are two different ways to offer help. One way is to offer it via the help function of the Eclipse
workbench (Help > Help Contents). Each plug-in can provide a help table of contents (toc) that can be
embedded into the global table of contents. It may appear there as a separate chapter or may be added
further below in the tree of help pages.

The other way is to offer context-sensitive help. When the user presses the F1 key, the GUI element
that has the focus determines the help page to be displayed. The central mechanism here is the help
identification. It links the respective GUI element or the respective program function to one or several
help pages.

Both the table of contents and the association of help pages with help identifications are encoded into
separate XML files. The advantage is that the help system can be developed quite independently from
the application. It is even possible to deploy the help system of a given plug-in as a separate plug-in.

Creating a Help Table of Contents
The table of contents of the help pages of a plug-in is defined in a file that is usually called toc.xml and
stored in the project directory of the plug-in.

As the file extension indicates, the table of contents is an XML file. No special editor for this file type
exists in the Eclipse SDK, but you can use the text editor. Another possibility is to create a simple
XML editor. This is done with just a few mouse clicks.

First, create a new plug-in project (see the section “Configuring Plug-ins”). On the Plug-in Code
Generators page of the New Project Wizard, select Plug-in with an Editor. This will generate a complete
XML editor with syntax highlighting. You can install this editor by copying the plug-in directory from
the workspace directory into the directory plugins and then restarting Eclipse.

If you want more features, there are some “grown-up” XML editors available as third-party plug-ins (see
Appendix A).

The file toc.xml must contain a root element named toc. Usually, such a toc element contains one or
several topic elements that can be nested.

Here is the help table of contents from “The Help Table of Contents” section in Chapter 13 as an example:

<?xml version="1.0" encoding="UTF-8"?>
<toc label="Spell Checker" topic="html/spelling.html">

<topic label="Correction View" href=
"html/SpellCheckerView.html"/>

379

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 379

<topic label="Default Preferences"
href="html/SpellCheckerPreferences.html">
<anchor id="postPreferences"/>

</topic>
<topic label="Other Information">
<topic label="Acknowledgements" href=

"html/Acknowledgements.html"/>
<topic label="Dictionaries" href="html/Dictionaries.html"/>

</topic>
</toc>

The label attributes define the display text shown in the help page tree. Clicking on this text will dis-
play the help page referenced by the attribute href. (If this attribute is not defined, nothing will happen,
of course.) If topic elements are nested, the inner elements appear as a subsection of the other
elements. It is possible to expand or collapse the outer elements depending on the browser used and on
the browser preferences.

As you can see in the previous code, it is also possible to assign a help page to the toc element. This is
done in abbreviated form with the attribute topic.

The path expression in the href attributes and the topic attribute do not necessarily need to remain
within the boundaries of your own plug-in. However, the reference point is always your own plug-in
directory. By using appropriate path expressions, however, you can also point to help pages in other
plug-in directories. For example:

href="../org.eclipse.jdt.doc.user_3.0.0/tips/jdt-tips.html"

A specialty is the anchor element shown in the previous example. Such an element allows other plug-
ins to link into this table of contents or to organize a table of contents in the form of several modules. I
will show how this is done in the section “A Plug-in for Java-Properties” in Chapter 13.

Of course, it is still necessary to declare the help table of contents in the manifest file plugin.xml.
This is done with the extension point org.eclipse.help.toc in the element toc. Here you need to
specify under the attribute file the name of the XML file containing the table of contents (for example,
toc.xml) The attribute primary="true" identifies this table of contents as an autonomous table of
contents (primary="false" would indicate a table of contents that is to be embedded into another
table of contents). You can specify the relative path of a directory containing all help pages that cannot
be reached via the table of contents (that is, pages that can be reached only via context-sensitive help or
via the index) in the attribute extradir. When the help subsystem computes the help index, it will
analyze all pages that are referenced in the table of contents and all pages contained in the directory
referenced by extradir.

The sections “The Plug-in Configuration” and “A Plug-in for Java-Properties” in Chapter 13 show what
such manifest declarations look like.

Creating Help Context Associations
The association of help pages with help identifications for a plug-in is done in a file usually called
contexts.xml. This file is stored in the project directory of the plug-in. The file must contain a root
element named contexts. This element usually contains one or several context child elements. Each
of these context elements corresponds to an Infopop (a little window that appears when the F1 key

380

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 380

is pressed). The section “Context-Sensitive Help” in Chapter 13 shows an example of such a context
association.

Each context has an attribute id, which declares the help identification with which the element is
associated. In addition, a context element may contain a description child element and one or sev-
eral topic child elements. Both of these have already been discussed.

It is also necessary to declare the help–context association in the manifest file plugin.xml. This hap-
pens via the extension point org.eclipse.help.contexts with the element contexts. You must
specify the name of the context association file (for example, contexts.xml) under the attribute file.

Setting Context Identifications
Help identifications can be assigned to individual GUI elements using the static method setHelp() of
the class WorkbenchHelp. The respective GUI element and the help identification string are passed as
parameters. The following GUI element types can be equipped with context-sensitive help: Control,
IAction, MenuItem, and Menu.

For example:

Button button = new Button(parent, SWT.PUSH);
WorkbenchHelp.setHelp(button,"example.plugin.button1_context");

You must specify the fully qualified context identification (including the plug-in identification) in this
method.

For some abstract constructs you have the option of declaring context identification in the manifest. In
particular, this is possible for actions in Action Sets, by specifying the helpContextId attribute (see the
“Actions” section). An example is found in section “The Plug-in Configuration” in Chapter 13.

Also, for markers of all kinds, you can declare help identification in the manifest file. This is done in the
extension point org.eclipse.ui.markerHelp with the element markerHelp. Here you can define
an association between the marker type (specified in the attribute markerType) and a help identifica-
tion (specified in the attribute helpContextId).

Instead of the attribute markerType, or in combination with this attribute, you can specify one or sev-
eral attribute child elements. Each of these elements specifies a marker attribute name (name) and an
attribute value (value). With this specification you can associate a help identification to markers that
have at least one attribute that matches the specified attribute value. If several markerHelp declarations
match a marker in such a case, the help identification of the markerHelp declaration with the most
matching attributes is used, allowing the help information to depend on the content of the marker. For
example, for a problem marker you could show a specific help text for each different problem type.

Packaging Help for Deployment
Help pages are implemented as HTML pages. They are located, together with the other resources
(images, etc.), in a separate appropriately named folder (for example, html or doc). The href references
in the topic elements in the table of contents and in the help-context association file refer to these files.

381

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 381

In the case of large help systems, however, this storage method wastes a lot of disk space. Help pages are
usually quite small but allocate a full block (for example, 64 KB) on the disk. Eclipse therefore allows
you to package all help resources in a Zip archive. This archive must have the name doc.zip. If the
Eclipse help subsystem finds such an archive, it will search there first for requested help pages. Only if
the page is not found is it searched for among the unpacked help pages.

Active Help
Eclipse even allows workbench functions or plug-in functions to be offered in help pages. Instead of ask-
ing the user to perform a specific action, you can embed a hyperlink in the help page that performs the
action for the user when it is clicked.

To offer this functionality, Eclipse uses the central JavaScript file livehelp.js. This must be declared
in all help pages that wish to use this functionality. For example:

<script language=
"JavaScript" src="../../org.eclipse.help/livehelp.js"/>

You can then use this script in all HTML elements that accept scripts, for example, in a hyperlink:

<a href='javascript:liveAction(
"com.bdaum.SpellChecker",
"com.bdaum.SpellChecker.actions.ActiveHelpAction",
"start"

)'>Check Spelling

The first parameter specifies the plug-in identification. The second parameter specifies the class that
implements the action, and the third parameter is a string value that is transmitted to the action.

The class that represents the action must implement the interface ILiveHelpAction. Two methods
must be implemented:

❑ The method setInitializationString() accepts the value of the third parameter in the
JavaScript call. This allows using this class in different places with different parameter values
and to react differently depending on those values.

❑ The method run() must perform the requested action.

An example of such a class and its invocation can be found in section “Active Help” in Chapter 13.

Dynamic Help
The extension point org.eclipse.help.contentProducer allows you to register a Java
class as a content provider for the help system. This class must implement the interface
IHelpContentProducer with its only method getInputStream(). The plug-in identification and
URL of the requested help page are passed as parameters. The class may return a help page in the form
of an InputStream or may return null. If it returns null, the help page is searched among the
non-dynamic help pages (see the previous sections).

382

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 382

Cheat Sheets
In addition to help pages, each plug-in may define an arbitrary number of Cheat Sheets. Cheat Sheets
are an ideal means for authoring tutorials. They are similar in structure to the welcome.xml files
known from Eclipse 2.1. Cheat Sheets lead the end user step-by-step through a series of work items
(item). Each item contains a title and a description, an option reference to a help page, and an optional
action with which the user may invoke system functions.

Also, for Cheat Sheets there is no dedicated editor. You can edit them with the built-in text editor or with
an XML editor (see “The Help System” section).

The root element of each Cheat Sheet is named cheatsheet and has a title attribute. It contains one
intro element and an arbitrary number of item elements.

Each item element has a title attribute. Both the intro and item elements may specify an optional
href attribute pointing to an HTML help page. The reference consists of the plug-in identification,
suffixed by the relative path of the help page, for example, /com.bdaum.SpellChecker/
html/Acknowledgements.html.

The main text of intro and item elements is contained in the child element description. Within this
description it is possible to enclose text to be printed in bold style with

In addition, each item element allows for an action child element. These elements produce a
button below the item’s description. When the end user clicks that button, the corresponding action is
performed. The action element specifies the following attributes:

❑ pluginId. The identification of the plug-in containing the action.

❑ class. The fully qualified name of the class implementing the action. The class must implement
the JFace interface IAction. For example, it may be implemented as a subclass of
class Action. When activated, its run() method is executed.

In cases where the user might abort the action, the action should report success or failure via the
method notifyResult().

❑ confirm. If the value true is specified here, another button is displayed below the description.
The end user must press this button as soon as she has finished her task. Only then does the
Cheat Sheet step to the next item.

❑ param1, param2, Additional parameters that are passed to the class specified under attribute
class can be supplied with these attributes. In this case the class must implement the interface
ICheatSheetAction.

Listing 11.3 contains a complete Cheat Sheet.

<?xml version="1.0" encoding="UTF-8"?>
<cheatsheet title="Eclipse Multimedia Studio">

<intro>
<description>This page introduces you to the Eclipse Multimedia

Studio. Please read it. After each step press the action button.
</description>

383

Developing Plug-ins for the Eclipse Platform

Listing 11.3 (Continues)

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 383

</intro>

<item title="Eclipse Multimedia Studio Perspective">
<action

pluginId="com.bdaum.vedit"
class="com.bdaum.vedit.actions.OpenPerspectiveAction"
confirm="true"/>

<description>To experience the full comfort of the studio, please open
the
Eclipse Multimedia Studio Perspective with Window > Open Perspective >
Other ... > Multimedia Studio.

</description>
</item>

<item
href="/org.com.bdaum.vedit.doc.user/guide/installing_examples.htm"
title="Install Example">
<action

pluginId="com.bdaum.vedit"
class="com.bdaum.vedit.actions.InstallFirstProjectAction"
confirm="false"/>

<description>To populate the workspace with an example project and
example
files, please click here.

</description>
</item>

</cheatsheet>

Listing 11.3 (Continued)

However, the definition of such a Cheat Sheet alone is not sufficient to list it under the menu item Help >
Cheat Sheets.... In addition, in the manifest file plugin.xml you need to extend the extension point
org.eclipse.ui.cheatsheets.cheatSheetContent:

<extension point="org.eclipse.ui.cheatsheets.cheatSheetContent">
<cheatsheet

name="Multimedia Studio Installation"
contentFile="cheatsheets/vedit.xml"
id="com.bdaum.vedit">

<description>Step-by-step tutorial for the installation of the
Multimedia
Studio</description>

</cheatsheet>
</extension>

384

Chapter 11

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 384

Summary
As a core concept of Eclipse, plug-ins are the essential concept when you develop applications on the
basis of the Eclipse framework. Since Eclipse V3, the plug-in concept is based on the OSGi standard. In
this chapter I have given an introduction into the architecture of the Eclipse platform. By now, you
should know which components (in addition to the components from SWT and JFace) are available and
can be used within your own applications. I have discussed editors, views, dialogs, forms, actions,
preferences, the help system, and Cheat Sheets in detail.

You should also know how plug-ins can be configured via a manifest file, that the concept of extension
points and extensions is essential to plug-ins, and where to find information about the extension points
defined in the platform.

In the next chapter I will discuss what else is needed to implement a plug-in–based application.

385

Developing Plug-ins for the Eclipse Platform

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 385

0470020059 Eclipse Ch 11.qxd 10/13/04 3:55 PM Page 386

Developing Your Own
Eclipse-Based Products

From the implementation and testing of a plug-in to its deployment, there are quite a few steps
to cover. Fortunately, Eclipse offers support in this area, but some steps may require manual
intervention.

Before you can deploy a product, you must decide how you will segment the product into
modules. Eclipse offers three different deployment constructs: features, plug-ins, and fragments.
Eclipse uses the Ant assembly tool for all of these constructs when creating the deployment
archives and automatically creates the scripts used to control Ant. However, manual modifications
are possible.

Features combine several plug-ins into one deployment unit (Figure 12.1). Plug-ins can be enhanced
and augmented by additional fragments deployed as a separate feature. In this chapter I will dis-
cuss each of these constructs in detail.

1212

Feature

Plugin

Fragment

Plugin

Fragment

Plugin

Fragment

Feature

Figure 12.1

14_020059_ch12.qxd 10/8/04 11:31 AM Page 387

You have several options for the installation format. For example, you can deliver a plug-in as a ZIP file.
Your customer then simply unpacks the file into the eclipse/plugins directory. Remember that the
installation of the Eclipse SDK was quite similar. A further option is to use a commercial installation
manager such as InstallAnyWhere or InstallShield. Finally, Eclipse offers its own elegant installation
function, the Eclipse Update Manager. However, this function can be used only when deploying
Eclipse add-ons, not for deploying standalone products. I will discuss these options in this chapter.

For standalone products the issue of customization is also important. For example, such a product
should start with its own splash screen. The configuration of the About pages and the Help pages will
also differ from the standard solution provided by the Eclipse SDK. Applications based on the Rich
Client Platform (see Chapter 14) also need a different installation configuration.

In this chapter I will also discuss the localization of an application. Eclipse offers several ways to adapt
applications to different national or cultural contexts.

Finally, I will discuss feature patches for deploying bug fixes.

Embedded Ant
Ant is an Apache project (ant.apache.org). Ant offers similar functionality to make and other tools
that assemble deployment archives from development artifacts. The big difference between Ant and
make and other such tools is that Ant does not use shell commands to perform tasks—all actions are
performed with the help of Java classes. The Ant script is merely an XML file. The advantage is that Ant
scripts are completely platform independent, as is the Ant system itself.

Ant is already embedded in the Eclipse SDK. To run an Ant script, you simply select the script file in the
Navigator (the file must have the extension .xml) and then invoke the context function Run Ant… or
the menu function Run > External Tools > Run As > Ant Build.

Configuration
If no Ant configuration currently exists, you must create a new configuration. This is done in a similar
fashion to creating a Run configuration (see the “External Tools” section in Chapter 7). Just invoke the
function Run > External Tools > External Tools....

The Configuration dialog (Figure 12.2) offers various options spread over several pages:

❑ On the Refresh page of the Configuration dialog, you can determine the resources for which a
Refresh function should be executed after running Ant. The reason for this setting is that Ant is
executed as an external tool. This means that it runs outside the Eclipse workspace. By default,
the resource changes caused by Ant do not appear in the resource navigator of the Eclipse work-
bench. Therefore, it is necessary to synchronize the modified resources after running Ant.

❑ On the Targets page, you can select individual Ant targets for execution.

❑ On the Classpath page, you can modify the classpath under which Ant is running. Changes are
required only if you have added your own Java classes to Ant.

388

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 388

❑ On the Properties page, you can assign values to Ant variables. Alternatively, you can specify
property files that contain name/value pairs for Ant variables.

❑ On the JRE page, you can specify an alternate JRE for executing Ant.

❑ If you’re running an alternate JRE, you can specify environment variables for the Ant build task
on the Environment page.

389

Developing Your Own Eclipse-Based Products

Figure 12.2

For typical Eclipse tasks, such as the assembly of deployment archives for features, plug-ins, and
fragments, Eclipse generates the required Ant scripts automatically and removes them after usage. You
can control the generation of these scripts via the build.properties file (see the section “Deploying
a Feature”). If you have explicit requirements for an Ant script, you can manually generate it by selecting
a manifest file (such as plugin.xml, fragment.xml, or feature.xml) and then invoking the context
function PDE Tools > Create Ant Build File. The generated script targets are then stored in a file named
build.xml.

If you want to modify generated scripts or create your own Ant scripts, you should, of course, learn the
Ant script language. Detailed information about Ant can be found on the Apache Web site at
ant.apache.org. Some comprehensive books about Ant are also available, such as those by Erik
Hatcher and Jesse Tilly.

Editing Ant Scripts
You can open Ant scripts with the Ant editor (simply double-click the Ant script to open it). The Ant edi-
tor provided by Eclipse (Figure 12.3) is quite useful. It features syntax coloring, an Outline View, and a
content assistant that you can invoke by pressing Ctrl+Spacebar.

14_020059_ch12.qxd 10/8/04 11:31 AM Page 389

Figure 12.3

Plug-ins and Fragments
At minimum, a plug-in consists of just the manifest file plugin.xml. Normally, however, a plug-in
contains additional binary Java files—in particular, the class Plugin—as well as help pages, a help
table of contents, context associations, icons, schemas, and other resources.

In some cases it makes sense to subdivide a plug-in into several fragments. This allows you to develop
the core functionality of a plug-in as early as possible. You can then separately deploy additional
components later, such as support for a national language or support for other host operating systems.
Fragments make this possible.

Fragments are created in a similar way to plug-ins via the New Wizard. However, instead of selecting
Plug-in Project as the project type, you select Fragment Project. The wizard will then create a frag-
ment.xml file instead of the plugin.xml file. The fragment manifest file fragment.xml is quite simi-
lar to plugin.xml, but it must specify the identification and version of the corresponding plug-in. In
addition, the wizard does not generate a Plugin class, because fragments are not allowed to have their
own Plugin class.

The fragment can be developed independently from the rest of the plug-in and can also be deployed
separately. During installation it is merged into the corresponding plug-in, allowing the plug-in to access
the functionality of the fragment. The end user will be unable to distinguish between the fragment and
the corresponding plug-in. Of course, plug-ins should always be implemented such that they can be
executed without the additional fragments.

390

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 390

Features
Features consist of one or several plug-ins that are deployed as a single functional unit. For example, the
Eclipse Java IDE is a single feature consisting of several plug-ins. The feature description also contains
copyright information and licensing conditions.

Creating and Editing Features
Features are created as separate projects. Again, you use the New Wizard to create a feature. The wizard
leads you through the specification of the project name, the feature name, the feature identification, the
version, and the feature provider. Finally, you need to mark all plug-ins that you want to belong to the
feature. The wizard creates the manifest file feature.xml from these specifications, which is then
opened in the Feature Editor (Figure 12.4). Here, you can include additional specifications.

391

Developing Your Own Eclipse-Based Products

Figure 12.4

The Overview page shows all the specifications that you entered when you created the feature. You must
make sure that the identification of the feature matches the identification of the main plug-in. You can
also specify two types of URL on this page: a Discovery URL can point to a Web page that offers infor-
mation about other products or technical support. An Update URL points to a Web address where the
Update Manager can find new versions of the feature.

You should mark the Primary Feature check box if the current feature is not an add-on to already
installed Eclipse platforms but represents (together with the Eclipse platform itself) a standalone prod-
uct. By marking the Exclusive Install check box, you can ensure that no other features will be installed on
the same platform. You can also specify a Banner Image, which will appear when the plug-in is activated
the very first time in a session.

14_020059_ch12.qxd 10/8/04 11:31 AM Page 391

In the Supported Environments section, you can restrict the feature to certain host operating and
windowing systems, to certain national language environments, and to certain processor architectures.
If you specify nothing here, the feature can be installed anywhere.

The Versions button offers several options for version numbering. You have the option of determining the
version number of the feature from the plug-ins or of forcing the version number of the feature onto the
plug-ins. It is important that you press this button again after changing the version number of a plug-in to
update the feature manifest! (The Export… button is discussed shortly in the section “Deploying a
Feature.”)

The next page, Information, can contain auxiliary information such as description text, a copyright
notice, and license conditions. In addition to the explicitly defined text, you can also specify URLs that
point to HTML pages that contain the required information. However, the license conditions should
always be given both explicitly and as a URL. The explicit text appears during the installation of the
feature, whereas the URL target is displayed when the end user invokes the function Help > About
Eclipse Platform > Feature Details > More Info.

On the Advanced page, you can add existing features and external archive files to the current feature.
You also may specify custom Install Handlers (see the section “Installing from an Update Site”).

The window on the left side of the Content page in the Feature Editor (Figure 12.5) shows the plug-ins
that belong to the feature. The window on the right shows the plug-ins that are necessary for executing
the feature. It is not necessary to create this list manually—clicking the Compute button is sufficient.

392

Chapter 12

Figure 12.5

14_020059_ch12.qxd 10/8/04 11:31 AM Page 392

Deployment
Usually, you will deploy your product in one of the following formats:

❑ As an extension to existing Eclipse platforms. Such an extension comes usually in the form of
a feature. I will discuss the deployment of single features next and the deployment of update
sites (collections of features) shortly.

❑ As a complete product that includes the Eclipse runtime environment. I will discuss this type of
deployment in the “Deploying Complete Products” section.

In both cases, you may deploy binaries only or you may include the source files, for example, when you
want to deliver an SDK.

Deploying a Feature
To create a deployment package for a feature, click the Export… button on the Overview page of the
Feature Editor. You have the option of creating a single ZIP file at the specified destination (such a file is
installed by simply unpacking it into the eclipse directory) or creating individual JAR files for an
update site (discussed in the next section). A third possibility is to export the deployed files into a speci-
fied directory structure. Optionally, the source code of the feature plug-ins can be exported along with
the binaries.

When the Export function is executed, Eclipse will internally create an Ant script (discussed previously),
perform the Ant build process to create the deployment archive, and delete the Ant script afterward.
If you would rather keep this script, just check the option Save This Export Operation as an Ant Build
Script and specify a suitable filename. Later, you can easily repeat the export operation even from out-
side Eclipse by running this Ant script.

The question is, how do you determine what goes into the deployment archive? The answer is quite
simple, because you can control the creation of the Ant scripts—and thus the content of the deployment
archives—by modifying the build.properties file. Such files exist for the feature project, for all
plug-in projects, and for all fragment projects.

Eclipse provides a special Build page in the manifest editor for editing this file, which you can invoke
simply by double-clicking the manifest file plugin.xml. Here you can add Java libraries (JAR files) and
other files and folders to the build. You can even differentiate between binary builds and source builds.
You will see an example of this in the “Defining the Spell Checker Feature” section of Chapter 13.

If you want to use a custom Ant script to perform a build for your project, you should mark the Custom
Build option on the Build page. This will prevent Eclipse from overwriting your build script when the
Export... function is used.

Now, what goes into such a build? You don’t have to mark binary files, because they are already
included in the JAR files that you have added to the build. Metafiles such as .project, .classpath,
.template, build.xml, and build.properties are not required either. Those that are required are
such files as icons, help pages, help control files (such as toc.xml and contexts.xml), license pages,
the product customization files (about.ini), and so on.

393

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 393

Deploying Complete Products
A product based on Eclipse needs, of course, the Eclipse runtime environment. It is not necessary to
deploy the whole Eclipse SDK. It is sufficient to deploy the minimal Eclipse runtime environment, plus
the plug-ins required by your application. Minimal Eclipse runtime environments are available as sepa-
rate downloads on the Eclipse Web site at www.eclipse.org.

Per ZIP
The Dependencies page of the manifest file plugin.xml provides a good overview of the plug-ins that
must be deployed with any given plug-in. You therefore must include the product’s feature manifest,
your own plug-ins, and the plug-ins required by your plug-ins.

In the simplest case, you can zip everything together (using the Export... function of the Feature Editor)
and leave the installation to the user. The installation is as simple as installing the Eclipse SDK. This
works well as long as you provide a different deployment archive for each supported host platform.

Installation Aids
In more complex cases—for example, if you want to combine files for different host operating systems or
national languages into one deployment archive, or if you want to include a Java runtime environment—
you should make use of an installation tool such as InstallShield or InstallAnyWhere. Such
tools, of course, need scripts, and you have to create these scripts. The best way to extract the
deployed resources from Eclipse is to use the Export... function of the Feature Editor but select a
directory structure as the output format (Deploy As). Detailed instructions about working with installers
can be found in the Eclipse help system under Platform Plug-in Developer Guide > Programmer’s Guide
> Packaging and Delivering Eclipse Based Products > Product Installation Guidelines.

Customizing Products
If you deliver your product in this form, however, it does not look like your own product but like the
Eclipse workbench with an installed plug-in. To really make it look like a product in its own right, you
must make a few more customizations. You can do this in a few extra files listed in the table below. All of
these files (except splash.bmp) are stored in the feature plug-in folder, that is, the plug-in that has the
same identification as the feature that constitutes the product, and are referenced by the about.ini file.

about.ini This file describes feature properties. The file
format is the same as in a properties file
(java.io.Properties). The following
properties may be specified:

aboutText. The text to be shown in the About
dialog.

windowImage. Refers to an icon of 16x16 pixels.
The icon will appear at the top-left corner of all
windows. This specification is necessary only
for primary features.

featureImage. Refers to an icon of 32x32
pixels. The icon will appear in the Feature
Description section of the About dialog.

394

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 394

aboutImage. Refers to an image of 500x330 or
115x164 pixels. The image will appear in the
Product Description section of the About dialog.

appName. Contains the application name. This speci-
fication is necessary only for primary features.

welcomePerspective. Contains the identification
of the perspective (see “Defining Perspectives” in
Chapter 11) to be opened after installation of the
feature.

tipsAndTricksHref. Refers to a “tips and tricks”
HTML page. This page is listed on the target plat-
form under Help > Tips and Tricks.

By the way, the same definitions can be
made by adding properties elements
to extension point
org.eclipse.core.runtime
.products (see “The Most Important SDK
Extension Points” in Chapter 11).

about.html HTML page with additional text about the plug-in
or about the feature. This page is displayed by
pressing the More Info button in the About
dialog.

about.mappings This page may contain parameter values that are
inserted into the About texts. The file format is the
same as in a Java properties file (java.io
.Properties).

For example, the property aboutText in the
about.ini file might contain the text “This
product has the registration number
{0}.” about.mappings could then contain the
text “0=2342-8A8S-234B,” resulting in the final
text “This product has the registration
number 2342-8A8S-234B.”

about.properties Contains translations for about.ini. This is
necessary only for multilingual deployment; see
“Internationalizing Products.”

plugin_customization.ini This file can contain the default preferences for other
plug-ins (see Plug-ins and Fragments). The file for-
mat is the same as in a Java properties file
(java.io.Properties). The condition is, of
course, that the preference identifications of the tar-
get plug-ins are public. For example, you could start
the Eclipse workbench under a different perspective:

395

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 395

org.eclipse.ui/
defaultPerspectiveId=
com.us.prod.ourPerspective

plugin_customization.properties Contains translations for
plugin_customization.ini. This is
necessary only for multilingual deployment; see
Internationalizing Products.

splash.bmp The splash screen is shown while the platform is
being loaded. This image should be a 24-bit
BMP file with a size of about 500x330 pixels. The
file is used in the plug-ins
org.eclipse.platform and
org.eclipse.core.boot. A copy of this file
is stored in the corresponding plug-in
directories.

I will discuss advanced possibilities of product customization in the context of the Eclipse Rich Client
Platform in Chapter 14.

Populating the Workspace
If you want to deploy example projects and files as well, you should refrain from populating the
workspace directory during installation, because these projects and files would not normally appear in
the Eclipse workspace: the necessary metadata is missing. In addition, you should never include the
.metadata directory in a deployment; the files contained in this directory depend on the configuration,
platform, version, and session history.

A better way is to install all example files in the plug-in directory. But how do you get them into the
workspace? One idea would be to make the Plugin class transfer these files to the Eclipse workspace
during its very first activation. Unfortunately, however, this class is activated only when it is actually
needed, such as when the first resource belonging to this plug-in is opened. It would not be very helpful
to users to show the example files in the Navigator at such a late stage.

Another possibility would be to leave the initiative to the end user. For example, you can give the end
user the option of whether to populate the workspace with example files on a Cheat Sheet (see “The
Help System” section in Chapter 11). Listing 12.1 shows how the implementation of a corresponding
action might look.

package com.bdaum.multimedia.studio.actions;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.net.URL;
import org.eclipse.core.resources.IFile;
import org.eclipse.core.resources.IProject;
import org.eclipse.core.resources.IWorkspace;
import org.eclipse.core.resources.IWorkspaceRoot;
import org.eclipse.core.resources.ResourcesPlugin;

396

Chapter 12

Listing 12.1 (Continues)

14_020059_ch12.qxd 10/8/04 11:31 AM Page 396

import org.eclipse.core.runtime.CoreException;
import org.eclipse.core.runtime.IPath;
import org.eclipse.core.runtime.Path;
import org.eclipse.core.runtime.Platform;
import org.eclipse.jface.action.Action;
import com.bdaum.multimedia.studio.StudioPlugin;

public class InstallFirstProjectAction extends Action {

private static String EXAMPLE_PROJECT = "firstStudio";
private static String EXAMPLE_FILE = "HipHopStudio.mms";

// Constructor
public InstallFirstProjectAction() {
}

// Override run-Methode
public void run() {

// Fetch workspace instance
IWorkspace workspace = ResourcesPlugin.getWorkspace();
// Get workspace root
IWorkspaceRoot root = workspace.getRoot();
// Create IProject instance with specified name
IProject firstModel = root.getProject(EXAMPLE_PROJECT);
if (!firstModel.exists()) {

try {
// Create project if it does not exist
firstModel.create(null);

} catch (CoreException e) {
System.err.println(e);

}
}
if (!firstModel.isOpen()) {

try {
// Open project if it is not open
firstModel.open(null);

} catch (CoreException e) {
System.err.println(e);

}
}
// Construct path of workspace file
IPath path = new Path(EXAMPLE_PROJECT + "/" + EXAMPLE_FILE);
// Create IFile instance with specified path
IFile mFile = root.getFile(path);
if (!mFile.exists()) {

// If file does not yet exist, we fetch the URL
// of the example file in the plug-in directory
URL url =
StudioPlugin.getDefault().getBundle().

getEntry(EXAMPLE_FILE);
try {

// Resolve the Eclipse pseudo URL
url = Platform.resolve(url);
// Extract file path

397

Developing Your Own Eclipse-Based Products

Listing 12.1 (Continues)

14_020059_ch12.qxd 10/8/04 11:31 AM Page 397

String urls = url.getPath();
try {

// Get file in plug-in directory
java.io.File input = new java.io.File(urls);
// Create new file in workspace and fill with content
mFile.create(new FileInputStream(input), true, null);

} catch (FileNotFoundException e) {
System.err.println(e);

} catch (CoreException e) {
System.err.println(e);

}
} catch (IOException e) {

System.err.println(e);
}

}
}

}

Listing 12.1 (Continued)

Creating Update Sites
Features whose purpose is to upgrade existing platforms in the field are best deployed in the format
supported by the Update Manager. Don’t be misled by the name of this manager—you can use it to
deploy even brand-new plug-ins and features. The term update relates to the Eclipse platform being
updated, not to the individual plug-ins and features.

You can, of course, also deploy a feature or plug-in in the form of a ZIP file, but using the Update
Manager does have some advantages. During the installation, the Update Manager checks to see if all
required plug-ins do exist and if their versions are compatible. In addition, it can check to determine
whether the host operating system, the windowing system, and the processor architecture match the
installation requirements. Before performing the installation, the Update Manager can prompt the end
user with the license conditions and will perform the installation only when the end user accepts them.
The Update Manager also supports installation over the Web via an installation URL, to avoid a separate
download.

To support installation via the Update Manager, you must create an update site. Such a site consists of
two directories—the features directory and the plugins directory—and a site manifest site.xml.
An update site can contain several features that can be installed selectively.

You can create such a site quickly with the help of the New Wizard. Open the New Wizard and then
select Plug-in Development > Update Site Project. Enter the name of the project. On the next page you
can change the names of the plug-in and feature folders. Optionally, you may generate an index.html
page to advertise the features on your update site. When you press the Finish button, the manifest file
site.xml is created and the Site Editor opens (see Figure 12.6). You can now enter additional specifica-
tions using the pages of the Site Editor.

398

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 398

Figure 12.6

❑ On the Features page, you can specify the features that are to be built by the Update Manager
(left-hand side) and the features to be published (right-hand side). To add features to the left-
hand side, press the Add button and mark the features in the list that you want to include in the
update site. On the right-hand side you can create categories by pressing the New Category
button. Categories are useful for organizing your published features into groups. To create a
subcategory, select a category and press the New Category button again. You can add features
to categories by dragging them from the left-hand side onto a category. A feature can appear in
several categories. If you drag a feature to the right-hand side but not onto a category, it will
end up in the default category, Other. To build or rebuild all features listed on the left side, press
the Build All button.

❑ On the Site Layout page, you can enter some descriptive text and a URL pointing to the pub-
lished update site on the Web. At this address you should always place an index.html file
containing installation instructions, for example, the index.html file generated during cre-
ation of the update site. You can also specify different names for the folders containing the fea-
ture and plug-in files. If you want to add extra files not contained in these folders to the update
site, you can do so by specifying the path-to-URL mapping for each archive that you want to
add.

Installing from an Update Site
The Eclipse Update Manager offers functions for installing and removing new features, updating exist-
ing features, and managing the current platform configuration. You can access it via the menu item Help
> Software Updates.

399

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 399

Adding an Update Site
After creating an update site, you can install the new feature immediately with the help of the Eclipse
Update Manager. To do so, you must first make the update site known to the Update Manager by
invoking the function Help > Software Updates > Find and Install. On the first page of the
Install/Update Wizard, select the option Search for New Features to Install and press the Next button.
On the next page, all update sites known to Eclipse are listed. You can add another site by pressing one
of three buttons. Click Add Update Site and specify the URL of an update site on the Web; click Add
Local Site and navigate to an update site stored on your computer; or click Add Archived Site and
navigate to a ZIP or JAR file that contains an update site.

Installing Features
After you have added the new site, you must mark all sites in the list that you want to scan for instal-
lable features. Then press the Next button. Eclipse will go through all of the marked sites step-by-step
and present the features offered there for installation. When you select a feature, its description will be
displayed in the text field below the listed features. For more information such as license conditions,
copyright notices, and general information, press the Properties button. To install one or more features,
mark these features and click the Next button. Eclipse will walk you through the installation process.
Once the installation is complete, you will be asked if you want to restart the workbench. The Eclipse
developers intend to make the installation of plug-ins and features dynamic so that you will not need to
restart in order to activate an installed feature, but currently restarting the workbench is recommended.

If you have installed a feature and it does not show up in the workbench after a restart, it may well be
that Eclipse has not enabled the feature because some prerequisites (either prerequisite features or
prerequisite plug-ins) are missing. Unfortunately, there is no easy way to gather this information during
installation. In such a case, you should check with the feature provider about required features and
plug-ins.

Updating Features
Once you have installed a feature, it is quite easy to check for new versions and to install them. Just
invoke the function Help > Software Updates > Find and Install again, but this time select the option
Search for Updates of the Currently Installed Features. Press the Next button, and Eclipse will scan all
known update sites and look for newer versions of the installed features. If newer versions exist, they
will appear in a list. By marking features in this list you can install them in the usual way.

You can even automate the task of keeping your platform up-to-date. Under Window > Preferences >
Install/Update > Automatic Updates you can specify that the known update sites should be scanned
with each start of the Eclipse platform or regularly controlled by a specified schedule.

Managing the Configuration
If you want to deactivate a feature or if you want to return to a previous platform configuration, you
find the required function under Help > Software Updates > Manage Configuration. On the left side of
the window you will find the current configuration tree. You can view the details by expanding the tree
nodes (by clicking the + icon). To disable a feature, select it and then click the Disable hyperlink at the
right side. Afterward, you may either enable it again or remove it completely.

400

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 400

When the root node Eclipse Platform is selected, you will see some additional functions listed on the
right side of the window. By clicking the Revert to Previous hyperlink you can return to the state of the
platform before you applied the last change to the configuration. If you have previously added features
by simply unpacking them into the \eclipse\ root folder, the Process Detected Changes hyperlink
appears. By clicking this hyperlink you can perform the missing installation steps for such a feature.

Install Handlers
The Eclipse Update Manager can be extended via so-called install handlers. These are Java classes that
implement the interface IInstallHandler from the package org.eclipse.update.core (usually
they extend the standard implementation BaseInstallHandler). The methods of such a class are
called at specific points of the installation or update process and can perform specific actions.

You can predefine an install handler as a global install handler. This is done in the manifest file
plugin.xml of a suitable plug-in at the extension point org.eclipse.update.core
.installHandlers. Alternatively, you can include an install handler in the installation archive.
However, in this case, they can be used only within the current installation (a local install handler).

If you want to use an install handler during the installation of a feature, you must declare it on the
Advanced page of the feature manifest feature.xml (see the section “Creating and Editing Features”).
There you specify, in the Library field, the name of the archive containing the install handler. In the
Handler field, you specify the name of the IInstallHandler class. If you use a global instead of a
local install handler, the Library field remains empty and the Handler field specifies the identification
under which the global install handler was installed.

A typical application of install handlers is for the installation of resources outside the Eclipse platform,
for example, if you want to deploy a specific Java Runtime Environment.

Internationalizing Products
I am wary of writing anything about this topic, because there is an excellent article about international-
ization by Dan Kehn, Scott Fairbrother, and Cam-Thu Le on www.eclipse.org. A short overview
should therefore be sufficient. A practical example is given in the section “Internationalizing the Spell
Checker” of Chapter 13.

Internationalization is often understood as merely translating texts presented to the end user into a
national language. This is certainly an important aspect of internationalization, but it is not the only one.
For example, the meaning of images may differ from culture to culture and so the images should also be
adapted to the target culture. You probably are aware of the confusion that date formats (European vs.
U.S.) can cause. But the placement of GUI elements may also differ from culture to culture. Countries
such as the Arabic nations and Israel, for example, read from right to left, and many Asiatic countries
read from top to bottom. A good example of how things can go wrong was an advertisement for a new
detergent in Arabic countries. It read: “Big effect in very little time” and displayed the dirty laundry on
the left and the clean laundry on the right!

401

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 401

Similarly, people may have different expectations of where important form elements should be
positioned. The various lengths of text constants in different languages may also influence the
layout of screen masks.

Despite these layout problems, I will concentrate here on text elements in different languages.
Internationalizing other items such as images and icons as well as currency and date formats can often
be achieved by mapping them onto text strings (image name, format string).

Text Constants in Programs
The simplest case is the internationalization of text constants in programs. In the Java source editor,
Eclipse offers excellent support for this with the context function Source > Externalize Strings. This wiz-
ard creates a list with all string constants used in a compilation unit. Afterward, you can sort these string
constants into three different categories:

❑ Translate. In this case the string constant is moved to a properties file. In the source code, the
string constant is replaced with a call to an access method. This method fetches the string con-
stant at runtime from the properties file with the help of a specified key. In addition, the source
line is suffixed with a comment that looks like this:

//$NON-NLS-1$

This comment indicates that the string constant (now the key) must not be analyzed when the
function Externalize Strings is executed again. For example, the instruction

replaceAction.setText("Replace");

is translated into

replaceAction.setText
Messages.getString("SpellCorrectionView.Replace_5")); //$NON-NLS-1$

❑ Never Translate. The string constant is equipped with a // $NON-NLS-…$ comment, so that it
is not analyzed in future invocations of the function Externalize Strings. For example

manager.add(new Separator("Additions"));

is translated into

manager.add(new Separator("Additions")); //$NON-NLS-1$

❑ Skip. Nothing is changed. The string constant is offered for externalization in future invocations
of the function Externalize Strings.

The wizard performs all the selected replacements in the source file. It also creates a properties file
within the current package that contains the externalized string constants. It also creates a Messages
class that organizes access to the file via the getString() method.

402

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 402

All that remains to do is to translate the properties file into the target language. If you use the Java nam-
ing convention basename_lang_region_variant.properties for the properties file, the Message
class will automatically use the correct properties file, depending on the national language of the target
host platform. You can then add new languages in the form of new properties files without recompiling
a single Java class.

In some cases, it may be necessary to embed program-generated values into the string constants. This
can be done with the help of parameters. These are defined in the string literals in the properties file, in
the following way:

Editor.save.SVG.error=Error saving SVG file {0} in folder {1}

If you use such parameters, it is a good idea to extend the Messages class with a parameterized variant
of the method getString():

public static String getString(String key, Object[] params) {
if (params == null)

return getString(key);
try {

return java.text.MessageFormat.format(getString(key), params);
} catch (Exception e) {

return "!"+key+"!";
}

}

Text Constants in Manifest Files
To internationalize the various manifest files such as plugin.xml, feature.xml, fragment.xml,
site.xml, about.ini, etc. requires a bit more work, because there is no tool support for this task.

Here, you need to create a corresponding properties file for each of these files: plugin.properties,
feature.properties, site.properties, about.properties, etc. The exception is
fragment.xml. Instead of fragment.properties, the file plugin.properties is used.

In the original file, replace the translatable string constants with key strings that are identified via a pre-
fixed % character. In the corresponding properties file, specify the key definition. You can translate these
files into the target language afterward, as discussed in the previous section.

Here is an example of the definition of an Action Set in the manifest file plugin.xml:

label="Check spelling"

You would change this into

label="%checkSpelling"

and include in the plugin.properties file the line

checkSpelling=Check spelling

403

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 403

Help Texts and Cheat Sheets
In the case of help pages and Cheat Sheets this approach is not suitable. Instead, you need to
translate the whole page. You must create a separate folder for each language in which to store the
translated pages.

At runtime, the correct folder is selected by evaluating substitution variables. Eclipse understands four
different substitution variables that can modify library paths:

os This variable is replaced by a token representing the current operation
system (linux, macosx, qnx, solaris, win32).

ws This variable is replaced by a token representing the current windowing
system (carbon, gtk, motif, photon, win32).

nl This variable is replaced by the current Java locale.

arch This variable is replaced by a token representing the current processor
architecture (PA_RISC, ppc, sparc, x86).

When you want to test a plug-in that uses these variables, you can set the variables under Window >
Preference > Plug-in Development > Target Environment.

For example, if you specify a Cheat Sheet (see the section “The Help System” in Chapter 11) in
plugin.xml, you can use a substitution variable for the folder name:

contentFile="$nl/vedit.xml"

During execution, the variable $nl is replaced by the current locale, for example by DE_de. The
Cheat Sheet is then fetched from DE_de/vedit.xml.

This works quite similarly for help pages, too. Here you would translate not only the HTML pages but
also the table of contents (toc.xml) and the context associations (contexts.xml), since these files
contain references as well as display texts. References to toc.xml and contexts.xml (for example,
from plugin.xml) would then be prefixed with $nl/. This is normally not required for the references
specified in toc.xml and contexts.xml, since these references are usually specified relative to the
current location.

Unfortunately, this approach has a severe disadvantage: if a specific language package is not available,
Eclipse will simply show nothing instead of the standard English version. Fortunately, there is an alter-
native, which works without substitution variables. This alternative approach relies solely on naming
conventions. If you want, for example, to create help pages and Cheat Sheets in the German language,
you would store them under the directory nl/de (for all German language areas) and nl/de/DE (for
Germany only). At runtime, Eclipse evaluates the Locale information of the JVM and tries to find an
appropriate folder under the nl/ directory. If such a folder is not found, the standard help pages and
Cheat Sheets (usually in English) are used. These pages are not stored under the nl/ directory.

404

Chapter 12

14_020059_ch12.qxd 10/8/04 11:31 AM Page 404

Deploying National Language Resource Bundles
The best method is to deploy language bundles as separate fragments (see “Plug-ins and Fragments”).
To do so, just create a package structure within the new fragment that mirrors the package structure of
the corresponding plug-in. However, the fragment packages contain only the properties files that have
been translated into the target language. The translated nl/ folders are also included in the fragment.
You must mark these folders on the Build page of the manifest editor for inclusion into the deployment
archive (see the section “Deploying a Feature”). An exception to the rule is the plugin_locale.xml files,
which must be stored in the src/ directory instead of the project folder.

Patches
When a product is deployed and then bugs are later discovered, it is often unacceptable for the customer
to reinstall the whole product, especially if the product is large. Download times are lengthy in such
cases, and sometimes an online update is impossible. Fixing bugs by sending CDs to customers is
expensive. Fortunately, Eclipse-based applications have a modular structure that enables a partial
update.

The Eclipse Feature Patch allows exactly that. Instead of redeploying the entire updated feature, you
can create a feature patch that contains only the modified plug-ins. The Eclipse Update Manager is intel-
ligent enough to merge the patch into the installed feature.

To create a Feature Patch, create a new project by choosing File > New > Other > Plug-in Development >
Feature Patch. In the wizard enter a project name, and continue to the next page. There define a patch ID,
a patch name, and the patch provider. Then select the feature to be patched. On the Included Plug-ins
and Fragments page, select the plug-ins and fragments that go into the patch. Then press Finish. The
Feature Patch project is now ready for deployment. It can be deployed like any other feature project.

Summary
In this chapter I have discussed additional concepts required for creating Eclipse-based products. You
should now know what fragments and features are and how they relate to plug-ins. You should be able
to internationalize and customize your application and to deploy such an application.

In the next chapter you will apply the knowledge gained in Chapter 11 and this chapter in a
larger example.

405

Developing Your Own Eclipse-Based Products

14_020059_ch12.qxd 10/8/04 11:31 AM Page 405

14_020059_ch12.qxd 10/8/04 11:31 AM Page 406

Project Three: A Spell
Checker as an Eclipse Plug-in

The third example application is a fully functional spell checker for the Eclipse SDK. An early ver-
sion of this example was published in my book Eclipse 2 for Java Developsers, and the (enhanced)
plug-in that was offered as a separate download became quite popular—so popular that in
Eclipse 3 the Java editor was equipped with an integrated spell checker.

The spell checker presented here, however, is more versatile. It can perform spell checking not
only in Java sources but in any editor and text widget. And it can be extended with plug-ins so
that it can intelligently spell-check text formats such as Java, C++, JavaScript, HTML, PHP, JSP,
and so on. For the purpose of this book, I present a stripped-down version (no checking while
typing, no overriding of preferences on the project level) due to space limitations. The full version,
including source code, is available at www.wrox.com (see also Appendix C).

During the implementation of this spell checker I demonstrate the following plug-in development
techniques:

❑ Definition of a plug-in manifest

❑ Integration of third-party JARs into your own plug-ins

❑ Use of the API for the ITextEditor interface and the MultiEditor class

❑ Addition of menu items to the menu structure of the Eclipse workbench

❑ Addition of menu items to the context menu of editors

❑ Addition of tool buttons to the toolbar of the Eclipse workbench

❑ Association of actions with keyboard shortcuts

❑ Implementation of a workbench view (for correction proposals)

1313

15_020059_ch13.qxd 10/8/04 12:49 PM Page 407

❑ Creation of a view toolbar and a view menu

❑ Location and opening of view instances

❑ Creation of new preference pages

❑ Creation of a help system, including table of contents, context-sensitive help (InfoPops), and
active help

❑ Internationalization of a plug-in

I also show how to write a plug-in that can be extended by others. The spell-checking functionality will
not be implemented in the form of a single plug-in but as a group of cooperating plug-ins. Different
spell-checking strategies for different document types can be implemented as required and installed
separately. To do this, the spell checker base plug-in defines its own extension points. These points allow
the addition of file type–specific plug-ins. As an example I will show the implementation of an extension
plug-in for spell checking in JavaScript source files. This gives the end user the optional ability to
perform spell checking in Javadoc comments, non-Javadoc comments, and string literals. When I
implement this plug-in, I will demonstrate the following techniques:

❑ Definition of an extension point, including a schema

❑ Definition of dependencies between plug-ins

❑ Integration of help systems from several plug-ins

The Spell Checker Core Classes
The core classes of the spell checker consist of the a spell checking engine (which we take from an exist-
ing Open Source project), and classes that construct a framework in which later add-ons may plug in.
This framework is, in particular, responsible for implementing a GUI (Spell Correction View, actions,
preference pages), for controlling the spell-checking engine, and for managing additional plug-ins.

The Engine
I don’t implement the core spell checking classes myself but instead use the engine of the jazzy spell
checker. This engine is completely implemented in Java and is available as an Open Source project at
sourceforge.net/projects/jazzy. The algorithms used in this engine belong to the most effective
current spell-checking algorithms.

I use version 0.5 of jazzy here. The archive jazzy-0.5-bin.zip also contains the source code. In
addition, the dictionary english.0.zip is required, which is also available on the SourceForge Web site.

The jazzy archive also contains the JAR file jazzy-core.jar. This is the archive that you will need for your
project. It contains the packages com.swabunga.spell.engine and com.swabunga.spell.event.

408

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 408

Overview
Figure 13.1 shows the most important classes in the spell checker and how they interact (the numbers
in parentheses indicate the sequence of method calls). In addition, there are the Plugin class, the classes
for managing the preferences, and the classes for configuring the spell-checking engine. The spell-
checking process is initiated by the CheckSpellingActionDelegate class. The
SpellCheckManager class acts as a central controller. The SpellCheckCorrectionView class dis-
plays spelling errors and interacts with the end user. The DocumentWordTokenizer class is used by
the jazzy engine to tokenize a document into single words. The SpellCheckingTarget class acts as a
common view on editors and text widgets. It provides the text content of these objects in the form of
IDocument instances to the other classes and is concerned with text selection and text replacement.

409

Project Three: A Spell Checker as an Eclipse Plug-in

CheckSpellingActionDelegate

SpellCheckManager

SpellCorrectionView

DocumentWordTokenizer

jazzy-Engine

SpellCheckingTarget

checkDocument (1)

getS
election(2)

getD
ocum

ent(3)

checkSpelling(5)

setInput(9)
(wait)

spellingError(7)

setS
election(8)

ini
t(4

)

nextWord(6)
replaceWord(11)

re
pl

ac
eW

or
d(

12
)

replaceText(13)

notify(14)

ignore/add/replace/cancel (via SpellCheckingEvent) (10)

Figure 13.1

15_020059_ch13.qxd 10/8/04 12:49 PM Page 409

Setting Up the Project
First, you want to make sure that the functions for plug-in development are enabled in your Eclipse
platform. Go to Window > Configure Activities... and mark Plug-in Development.

Next, you must set up the target platform. Testing and debugging a plug-in does not happen in the
development platform but in a separate Eclipse session. The configuration of this platform can differ
considerably from the configuration of the development platform. For example, you may want to run
the new plug-in in the minimal Eclipse runtime environment, that is, in a platform that does not have a
Java IDE or a PDE. So you must first determine with which plug-ins your target platform is equipped.
You can do this with the function Window > Preferences > Plug-in Development > Target Platform
(Figure 13.2). You can exclude certain plug-ins during the configuration of the target platform, and
you can include other plug-ins that are not in the Eclipse workspace by clicking the Not In Workspace
button.

410

Chapter 13

Figure 13.2

In this case, you may want to test the spell checker plug-in in an environment that is equipped with a
Java IDE and a PDE, since you want to use the spell-checking facility in the editors of those features.
Therefore, you need to checkmark all plug-ins of the target platform with the exception of the example
plug-ins and the source code plug-ins.

If you have already installed the spell checker plug-in into your development platform, you should also
disable all of the plug-ins that start with com.bdaum.SpellChecker in order to avoid conflicts.

Instead of modifying the global preferences for the target platform, another possibility is to later create a
special Run configuration for the new plug-in. To do so, invoke Run > Run... and press the New button
to create a new configuration for a runtime workbench. On the Plug-ins page, you may select from vari-
ous options. When you mark the Choose Plug-ins and Fragments to Launch option from the list, you

15_020059_ch13.qxd 10/8/04 12:49 PM Page 410

may select individual plug-ins for inclusion into the test platform. If you want to use the minimum num-
ber of plug-ins for running your plug-in, proceed as follows:

1. Press the Deselect All button.

2. Now mark the Workspace Plug-ins check box (or only the plug-ins that you want to test).

3. Press the Add Required Plug-ins button. This will mark all plug-ins that are required for run-
ning the plug-ins selected in the previous step.

But now let’s return from this excursion and create the project. In contrast to the first two example
applications, you don’t create a Java project for this example. Instead, you need to switch to the Plug-in
Development perspective and select File > New > Plug-in Project. This wizard leads you step-by-step
through the creation of a plug-in project:

1. On the second wizard page, enter the project’s name. This will also be the identification of the
plug-in. You should therefore choose a name that is not being used by the manufacturers of
other plug-ins. Common practice is to prefix the plug-in with the identification of the authoring
organization. I have named the plug-in com.bdaum.SpellChecker in this case.

2. On the next page, select Java Project and leave all other controls at their default values.

3. On the next page, enter a provider name. Make sure that the options Generate the Java Class
That Controls the Plug-in’s Life Cycle and This Plug-in Will Make Contributions to the UI are
checked.

4. On the next page, checkmark the option Create a Plug-in Using One of the Templates and select
Custom Plug-in Wizard. This will allow you to generate large parts of the new plug-in from
existing templates.

5. On the next page, checkmark the options Hello World Action Set, Help Table of Contents,
Preference Page, and View. Remove the check marks from all other options.

Now you need to configure the generators for these templates. On the following pages, enter the details:

❑ On the Sample Action Set page, change Action Class Name to CheckSpellingActionDelegate.

❑ On the Sample Help Table of Contents page, change Label of Table of Contents to Spell
Checker. Checkmark the Primary option because this is the main table of contents for the spell
checker feature. Remove the check marks of all categories because you want to create only a sin-
gle table of contents with no nested tocs.

❑ On the Sample Preference Page page, change Page Class Name to
DefaultSpellCheckerPreferencePage. Under Page Name enter %Spelling. The % charac-
ter indicates that this is not display text but a key that still needs to be resolved into display text
when the project is internationalized (see “Text Constants in Manifest Files” later in this chapter).

❑ On the Main View Settings page, change View Class Name to SpellCorrectionView. Under
View Name, enter %Spell. Under View Category Id, enter com.bdaum.SpellChecker
.views, and under View Category Name, enter %Spell_Checker. (The view category identi-
fies the group under which the new view appears when the function Window > Show View is
invoked.) Select Table Viewer as the viewer type (this table will later contain the correction pro-
posals). In addition, uncheck the option Add the View to the Resource Perspective. The view
therefore remains invisible initially—it will appear only when the spell checker is in use.

❑ On the View Features page, uncheck the option Add Support for Sorting.

411

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 411

When you press the Finish button, Eclipse opens the new plug-in the plugin.xml manifest in the
PDE editor. Eclipse has also generated the packages com.bdaum.SpellChecker, com.bdaum
.SpellChecker.actions, com.bdaum.SpellChecker.preferences, and
com.bdaum.SpellChecker.views with the classes SpellCheckerPlugin,
CheckSpellingActionDelegate, DefaultSpellCheckerPreferencePage, and
SpellCorrectionView. You now have the base classes for the new plug-in, and you may
now modify and complete these classes.

The Plug-in Configuration
Next you need to describe some more details of the new plug-in in the manifest file plugin.xml. If this
file is not yet open, you can double-click it to open it. Figure 13.3 shows the Overview page of the plug-
in manifest. Since you are going to define your own extension point for this plug-in, you will also need
to define a schema (see the section “The Schema documentTokenizer.exsd”).

412

Chapter 13

Figure 13.3

15_020059_ch13.qxd 10/8/04 12:49 PM Page 412

The Manifest plugin.xml
The following source code shows the manifest in its nearly final state. All changes and additions applied
manually are printed in bold. Now, what do you need to change?

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="com.bdaum.SpellChecker"
name="SpellChecker Plug-in"
version="1.0.0"
provider-name="bdaum industrial communications"
class="com.bdaum.SpellChecker.SpellCheckerPlugin">

On the Runtime page of the PDE editor, change the suggested archive name to SpellChecker.jar.
Also add the imported JAR file jazzy-core.jar to the list of required libraries. On the lower-right
section of this page, checkmark the option Export the Whole Library for Both Libraries. This allows later
extensions to use the classes defined in these libraries.

<runtime>
<library name="SpellChecker.jar">

<export name="*"/>
</library>
<library name="jazzy-core.jar">

<export name="*"/>
</library>

</runtime>

The spell checker plug-in requires a few other plug-ins for its operation. You can add these
plug-ins to the Dependencies page. First, there are the basic plug-ins for the Eclipse runtime:
org.eclipse.core.resources and org.eclipse.core.runtime. Second, you will need the
basic plug-ins for the user interface of the Eclipse IDE, org.eclipse.ui and org.eclipse.ui.ide.
Third, because the plug-in deals with text editors and text processing, you will also need the plug-ins
org.eclipse.jface.text and org.eclipse.ui.workbench.texteditor. And finally, the
plug-in for help support, org.eclipse.help, is required, too, because the spell checker plug-in will
offer help to the end user.

For the plug-ins org.eclipse.core.runtime, org.eclipse.ui, org.eclipse.jface.text,
and org.eclipse.help mark the option Re-export the Dependency. This will make these plug-ins
available to all plug-ins that specify com.bdaum.SpellChecker as a required plug-in.

<requires>
<import plugin="org.eclipse.core.resources"/>
<import plugin="org.eclipse.core.runtime"

export="true"/>
<import plugin="org.eclipse.ui" export="true"/>
<import plugin="org.eclipse.ui.ide"/>
<import plugin="org.eclipse.jface.text" export="true"/>
<import plugin="org.eclipse.ui.workbench.texteditor"/>
<import plugin="org.eclipse.help" export="true"/>

</requires>

413

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 413

On the Extension Points page, you need to define a new extension point, documentTokenizer. This
extension point will allow you and others to add extensions for specific text formats later, such as a plug-
in for Java source code spell checking (see the section “A Plug-in for Java Properties”). The name of this
extension point is chosen on the basis that later extensions will consist more or less of specific tokenizers
that break the text into single words following file type–specific rules.

<extension-point id="documentTokenizer"
name="Document Tokenizer"
schema="schema/documentTokenizer.exsd"/>

Now turn your attention to the Extensions page. You need to make the generated example action more
concrete. The current spell-checking plug-in contains only a single action, Check Spelling.

❑ In particular, you need to set a display text (label), an explanation text (tooltip), an icon for the
disabled state (disabledIcon), and an icon for the enabled state (hoverIcon). It is easier to define
these settings when the referenced icons already exist in an appropriate folder (see the section
“Managing Images”). Also, the Action Set gets a new name.

❑ Define a new toolbarPath com.bdaum.SpellChecker.spell_checker, so that the action
will appear in a separate group in the workbench’s toolbar.

❑ For menubarPath specify the value edit/spelling. Consequently, the action will appear
under the Edit menu.

❑ By not specifying a value for the enablesFor attribute, you ensure that the action’s enabling
does not depend on the number of selected resources but is controlled programmatically.

❑ Specify a definitionId to establish a reference to the following command extension.

❑ Under helpContextId define the anchor point for context-sensitive help (InfoPop).

<extension point="org.eclipse.ui.actionSets">
<actionSet id="com.bdaum.SpellChecker.actionSet"

label="%Spell_Checker" visible="true">
<action id="com.bdaum.SpellChecker.action1" class=

"com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate"
label="%Check_Spelling"
tooltip="%Checks_any_text"
disabledIcon="icons/full/dlcl16/check.gif"
hoverIcon="icons/full/clcl16/check.gif"

icon="icons/full/clcl16/check.gif"
toolbarPath="com.bdaum.SpellChecker.spell_checker/Check"

menubarPath="edit/spelling"
definitionId="com.bdaum.SpellChecker.check_spelling"

helpContextId="com.bdaum.SpellChecker.action_context">
</action>

</actionSet>
</extension>

The specification of command extensions (org.eclipse.ui.commands) allows end users to configure
the perspectives of the workbench with actions contributed by plug-ins. In addition, command exten-
sions allow you to define key bindings that may later be modified by the end user.

414

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 414

First, define a command and associate it with the org.eclipse.ui.category.textEditor
category. Thus, the command will later be listed under the Text Editing category when the function
Window > Preferences > Workbench > Keys is invoked. Note that the ID of the command must match
the definitionId of the action defined previously.

Second, define two key bindings: one for the global context and one for the text editor context. This will
assign the F9 function key to the spell-checking action both in generic windows and during text editing.
If you want, you may define additional key bindings for other configurations such as the emacs configu-
ration (org.eclipse.ui.emacsAcceleratorConfiguration).

<extension id="com.bdaum.SpellChecker.commands"
name="%Spell_Checker_Command"
point="org.eclipse.ui.commands">

<command name="%Check_Spelling"
category="org.eclipse.ui.category.textEditor"
description="%Starts_spell_checking"
id="com.bdaum.SpellChecker.check_spelling">

</command>
<keyBinding keySequence="F9"

contextId="org.eclipse.ui.globalScope"
commandId="com.bdaum.SpellChecker.check_spelling"
keyConfigurationId=

"org.eclipse.ui.defaultAcceleratorConfiguration">
</keyBinding>
<keyBinding keySequence="F9"

contextId="org.eclipse.ui.textEditorScope"
commandId="com.bdaum.SpellChecker.check_spelling"
keyConfigurationId=
"org.eclipse.ui.defaultAcceleratorConfiguration">

</keyBinding>
</extension>

The spell-checking function should also be accessible via the context menu of the editors. You can do this
by defining an extension for the extension point org.eclipse.ui.popupMenus and adding
viewerContributions to this extension. Unfortunately, there is no way to add a function to any edi-
tor type that may later be installed into the platform by other plug-ins. The only thing you can do is to
define viewer contributions to the most common editor types. You associate viewer contributions to edi-
tors by specifying a targetId. When an editor is initialized, it sets this menu ID with the method
setEditorContextMenuId(). The mother of all text editors, the AbstractTextEditor class, sets
the menu ID #EditorContext. The subclass TextEditor overrides this with
#TextEditorContext, and the subclass CompilationUnitEditor, which acts as an ancestor of
source code editors such as the Java editor, overrides this menu ID with
#CompilationUnitEditorContext. By specifying these three IDs, you should cover a wide range of
editors, indeed.

<extension point="org.eclipse.ui.popupMenus">
<viewerContribution id="com.bdaum.SpellChecker.editorContextMenu"

targetID="#CompilationUnitEditorContext">
<action id="com.bdaum.SpellChecker.check_spelling_in_context1"

label="%Check_Spelling"
icon="icons/full/clcl16/check.gif"

415

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 415

helpContextId="com.bdaum.SpellChecker.action_context"
class="com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate"

menubarPath="additions">
</action>

</viewerContribution>
<viewerContribution id="com.bdaum.SpellChecker.editorContextMenu"

targetID="#TextEditorContext">
<action id="com.bdaum.SpellChecker.check_spelling_in_context2"

label="%Check_Spelling"
icon="icons/full/clcl16/check.gif"
helpContextId="com.bdaum.SpellChecker.action_context"

class="com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate"
menubarPath="additions">

</action>
</viewerContribution>
<viewerContribution targetID="#EditorContext"

id="com.bdaum.SpellChecker.editorContextMenu">
<action id="com.bdaum.SpellChecker.check_spelling_in_context3"

label="%Check_Spelling"
icon="icons/full/clcl16/check.gif"
helpContextId="com.bdaum.SpellChecker.action_context"

class="com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate"
menubarPath="additions">

</action>
</viewerContribution>

</extension>

Of course, the spell-checking action should appear in the Resource perspective as soon as the
spell-checking feature is installed into an Eclipse platform. You can achieve this by defining a
perspective extension (org.eclipse.ui.perspectiveExtensions) for the Resource perspective,
as shown in the following code.

In addition, the code defines the position and the size of the Spell Correction View relative to the
Tasks View.

<extension point="org.eclipse.ui.perspectiveExtensions">
<perspectiveExtension targetID="org.eclipse.ui.resourcePerspective">

<actionSet id="com.bdaum.SpellChecker.actionSet">
</actionSet>

</perspectiveExtension>
<perspectiveExtension targetID="org.eclipse.ui.resourcePerspective">

<view id="com.bdaum.SpellChecker.views.SpellCorrectionView"
ratio="0.5"
relative="org.eclipse.ui.views.TaskList"
relationship="right">

</view>
</perspectiveExtension>

</extension>

416

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 416

For the Spell Correction View itself, you need only add an icon definition.

<extension point="org.eclipse.ui.views">
<category id="com.bdaum.SpellChecker.views"

name="%Spell_Checker">
</category>
<view name="%Spell"

icon="icons/basic/correction_view.gif"
category="com.bdaum.SpellChecker.views"
class="com.bdaum.SpellChecker.views.SpellCorrectionView"
id="com.bdaum.SpellChecker.views.SpellCorrectionView">

</view>
</extension>

No changes are required for the preferences extension and the help table of contents extension.

<extension point="org.eclipse.ui.preferencePages">
<page id="com.bdaum.SpellChecker.preferences.defaultPreferences"

name="%Spelling"
class=

"com.bdaum.SpellChecker.preferences.DefaultSpellCheckerPreferencePage">
</page>

</extension>

<extension point="org.eclipse.help.toc">
<toc file="toc.xml" primary="true">
</toc>

</extension>

Finally, add an extension for the support of context-sensitive help. The help associations are defined in
the contexts.xml file, as explained in Context-Sensitive Help.

<extension point="org.eclipse.help.contexts">
<contexts file="contexts.xml">
</contexts>

</extension>

</plugin>

The Schema documentTokenizer.exsd
The schema documentTokenizer.exsd describes the extension point documentTokenizer, which
was created in the previous section. It was generated by the manifest editor; now you need only

417

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 417

complete it. The completed schema is shown in Listing 13.1 (I shortened it a bit by removing the docu-
mentation sections).

First, the schema consists of the usual extension root element. Besides the attributes point, id, and
name, such an extension may—in this case—contain an unlimited number of tokenizer elements.

These tokenizer elements are equipped with the following attributes:

Element Attribute

name Name of the tokenizer.

id Identification of the tokenizer.

class A class that must extend the class
AbstractDocumentWordTokenizer.

preferences The class implementing the tokenizer’s preferences. This class must
extend the class SpellCheckerPreferences. If this attribute is
omitted, the default spell-checking preferences will be used for this
tokenizer.

extensions A list of file extensions for which this tokenizer should be activated.

<?xml version='1.0' encoding='UTF-8'?>
<!-- Schema file written by PDE -->
<schema targetNamespace="SpellChecker">

<annotation>
<appInfo>

<meta.schema plugin="SpellChecker"
id="documentTokenizer"
name="Document Tokenizer"/>

</appInfo>
</annotation>
<element name="extension">

<complexType>
<sequence>

<element ref="tokenizer" minOccurs="1"
maxOccurs="unbounded"/>

</sequence>
<attribute name="point" type="string" use="required">
</attribute>
<attribute name="id" type="string">
</attribute>
<attribute name="name" type="string">
</attribute>

</complexType>
</element>
<element name="tokenizer">

<complexType>
<attribute name="name" type="string" use="required">
</attribute>

418

Chapter 13

Listing 13.1 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 418

<attribute name="id" type="string" use="required">
</attribute>
<attribute name="class" type="string" use="required">

<annotation>
<appInfo>

<meta.attribute kind="java" basedOn=

"com.bdaum.SpellChecker.AbstractDocumentWordTokenizer"/>
</appInfo>

</annotation>
</attribute>
<attribute name="preferences" type="string">

<annotation>
<appInfo>

<meta.attribute kind="java"/>
</appInfo>

</annotation>
</attribute>
<attribute name="extensions" type="string" use="required">
</attribute>

</complexType>
</element>

</schema>

Listing 13.1 (Continued)

Imported Files
Before continuing with the plug-in’s Java classes, you should make the spell checker engine, jazzy-
core.jar, available to your project. This time, you don’t add the JAR as an external JAR to the project
but import the complete JAR into the project (Import from File System). Then invoke the project’s
Properties context function and add this JAR to the Java Build Path by pressing the Add Jars… button.
This approach makes it easier to later integrate this JAR file into the deployment archive. On the Order
and Export page, checkmark the jazzy-core.jar file to make it available to later plug-ins.

In addition, you need a dictionary. Directly under the project, create a new folder called dict. Then
unpack the english.0.zip file that you downloaded from the SourceForge site and import the
english.0 file into the new folder. You can do this with a drag-and-drop mouse action.

The Plugin Class
The generated SpellCheckerPlugin class serves as the Java representation of the plug-in. On initial-
ization of the plug-in, a single instance of this class is created. This instance can be obtained via the static
method getDefault(). This class is therefore well suited to be a central registry that can be accessed
from anywhere in the plug-in. It also provides methods for obtaining information about the plug-in.

419

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 419

package com.bdaum.SpellChecker;

import java.io.IOException;
import java.net.URL;

import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Platform;
import org.eclipse.core.runtime.Status;
import org.eclipse.jface.preference.IPreferenceStore;
import org.eclipse.ui.plugin.AbstractUIPlugin;

import com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate;
import com.bdaum.SpellChecker.preferences.SpellCheckerPreferences;

/**
* This class cares for the initialization of preferences and
* acts as a central registry for core components such as
* SpellCheckManager and CheckSpellingActionDelegate.
*/
public class SpellCheckerPlugin extends AbstractUIPlugin {

The DEFAULTDICT and USERDICT constants describe the storage location of the English default dictio-
nary and the user dictionary relative to the storage location of the plug-in. Then you need a few fields to
hold instances of SpellCheckerPreferences, SpellCheckerManager, and
CheckSpellingActionDelegate. Also, the field spThread is used to hold an instance of the spell-
checking thread. By registering the spell-checking thread in a central location, you can later easily con-
trol the proper serialization of competing spell-checking actions.

// Default dictionaries
private static final String DEFAULTDICT = "dict/english.0";
private static final String USERDICT = "dict/user.dict";

// The singleton
private static SpellCheckerPlugin plugin;
// Default preferences
private SpellCheckerPreferences preferences;
// Active SpellCheckManager
private SpellCheckManager manager;
// Active ActionDelegate
private CheckSpellingActionDelegate spellCheckingActionDelegate;
// Spell checking thread
private Thread spThread;

The constructor of this class, SpellCheckerPlugin(), must set the system property jazzy.config
to the value com.bdaum.SpellChecker.SpellCheckConfiguration. This tells the configuration
model of the jazzy engine to fetch the configuration data not from the jazzy.properties files but
instead from the class SpellCheckConfiguration, which you will implement later.

/**
* The Constructor.
*/
public SpellCheckerPlugin() {
super();
plugin = this;

420

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 420

// Set configuration for jazzy engine. We make jazzy fetch
// the configuration from our own configuration
// implementation.
System.setProperty("jazzy.config",

"com.bdaum.SpellChecker.SpellCheckConfiguration");
}

/**
* Returns the plug-in singleton
*/
public static SpellCheckerPlugin getDefault() {
return plugin;

}

The utility method getId() fetches the plug-in identification string from the plug-in descriptor as it
was defined in the manifest file plugin.xml.

/**
* Fetches the plug-in identification.
*
* @return String – the identification.
*/
public static String getId() {
return getDefault().getBundle().getSymbolicName();

}

The following methods are used to resolve the relative dictionary paths just defined into absolute path
names. Please note that the dictionary is not in the Eclipse workspace but belongs to the installation files
located in the plug-in directory.

To retrieve the location of these files, you must first fetch the OSGi bundle. This bundle contains general
information about the plug-in, as well as the URLs of its various components. However, this URL is
given in a format that only Eclipse can interpret correctly: it starts with the protocol specification
platform:. To resolve this URL into a conventional file URL (a URL beginning with file:), you must
first apply the resolve() method.

Dictionary URL
The getPreferences() method returns the one and only instance of the
SpellCheckerPreferences class. If it does not exist yet, a new instance is created.

/**
* Returns the absolute
* path of the default dictionary file.
*
* @return String - Default dictionary file path
*/
public static String getDefaultDictionaryFileName() {
return getDefaultDictionaryFileName(DEFAULTDICT);

}

421

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 421

/**
* Returns the absolute
* path of the default user dictionary file.
*
* @return String - Default dictionary file path
*/
public static String getDefaultUserDictFileName() {
return getDefaultDictionaryFileName(USERDICT);

}

private static String getDefaultDictionaryFileName(
String filename) {
// First, fetch the URL of the plug-in.
URL pluginURL = getDefault().getBundle().getEntry(filename);
// This URL starts with the pseudo protocol "plugin:"
// Therefore resolve this URL into a real URL
try {
URL resolvedURL = Platform.resolve(pluginURL);
// Extract the path information
return resolvedURL.getPath();

} catch (IOException e) {
logError(4, Messages.getString(

"SpellCheckerPlugin.Error_resolving_dictionary_URL"),
e);

}
return null;

}

You must also provide some code to initialize the default values of the preferences. Remember that when
the Eclipse platform is started, only the manifest files of the various plug-ins are interpreted, but no
plug-in–specific code is executed. The preference store is therefore not initialized at that time.

However, the Plugin class invokes initializeDefaultPreferences() during the very first call
of the getPluginPreferences() method. You can override this method to apply the necessary
initializations. It delegates the initialization of the preference values to the
SpellCheckerPreferences class.

Initializing Preferences
The getManager() method returns the one and only instance of the spell-checking manager. If it does
not exist yet, a new instance is created.

/**
* Returns the preferences of this plug-in
*/
public SpellCheckerPreferences getPreferences() {
if (preferences == null)
preferences = new SpellCheckerPreferences();

return plugin.preferences;
}

/**

422

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 422

* Initialization of the PreferenceStore
*
* @param store - the plug-in's preference store
*/
protected void initializeDefaultPreferences(

IPreferenceStore store) {
getPreferences().initializeDefaults(store);

}

The Manager
The manager mediates the communication between the user interface and the spell-checking engine.
To be able to access this manager from all classes, an instance of the manager is stored here in the plug-in
instance. During its very first call, getManager() creates an instance of the SpellCheckManager
class. This lazy creation ensures that this component is created only when it is actually needed.

/**
* Returns the manager.
*
* @return SpellCheckManager
*/
public static SpellCheckManager getManager() {
// Create SpellCheckManager instance if necessary
if (plugin.manager == null)
plugin.manager = new SpellCheckManager();

return plugin.manager;
}

The spellCheckingActionDelegate field with its get…() and set…() access methods acts as a
registry for the ActionDelegate instance created by the workbench. You will need these methods later
in the context of active help (see the section “Active Help”).

/**
* Registers the active SpellCheckingActionDelegate.
*
* @param delegate - active SpellCheckingActionDelegate
*/
public static void setSpellCheckingActionDelegate(

CheckSpellingActionDelegate delegate) {
plugin.spellCheckingActionDelegate = delegate;

}

/**
* Returns the currently active SpellCheckingActionDelegate.
*
* @return CheckSpellingActionDelegate - active action
* delegate
*/
public static CheckSpellingActionDelegate

getSpellCheckingActionDelegate() {
return plugin.spellCheckingActionDelegate;

}

423

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 423

The static methods isPending() and startThread() are used to determine whether the spell-
checking thread is currently active and to start a new thread.

/**
* Checks if there is a pending spell checking thread
*
* @return - true if a thread is pending
*/
public static boolean isPending() {
return (plugin.spThread != null && plugin.spThread.isAlive());

}

/**
* Starts a new synchronous spell checking thread
*
* @param thread - the new thread
*/
public static void startThread(Thread thread) {
plugin.spThread = thread;
thread.start();

}

Finally, the static method logError() is used to write error messages into the log file of the Eclipse
platform. Within a plug-in scenario, this should always be the preferred way to report internal errors
instead of writing to the Java console System.err. You can obtain the log file instance from the plug-in
singleton via the getLog() method.

/**
* Writes internal errors to log file.
*
* @param code - Plug-in specific error code
* @param message - message text
* @param ex - Throwable that caused the error or null.
*/
public static void logError(
int code, String message, Throwable ex) {
getDefault().getLog().log(

new Status(IStatus.ERROR, getId(), code, message, ex));
}

}

The Check Spelling Action
The Check Spelling action can be applied to editor text areas as well as to other editable text widgets of
the type Text or StyledText. This chapter discusses the CheckSpellingActionDelegate class
that acts as a proxy for the Check Spelling action and the SpellCheckingTarget class that acts as an
umbrella class for the various concrete targets of the action.

424

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 424

The SpellCheckingTarget Class
The Eclipse platform hosts a wide variety of editors such as simple text editors and the Java editor but
also more complex editors such as the PDE manifest editor and the PDE schema editor. In Chapter 11,
the section “The Architecture of the Eclipse Workbench” shows the hierarchy of editor types used in
Eclipse. The common root type, IEditorPart, has only a tiny API that does not offer enough function-
ality for spell-checking purposes, while the various concrete editor implementations have differing APIs
for accessing the editor contents. For this reason, I opted to introduce the umbrella class
SpellCheckingTarget, which implements a consistent API for the editor functions required for spell-
checking purposes. An additional benefit is that this class can even represent editor-less spell-checking
targets such as text fields in dialog boxes.

package com.bdaum.SpellChecker;

import java.lang.reflect.Method;

import org.eclipse.jface.text.*;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.jface.viewers.ISelectionProvider;
import org.eclipse.swt.custom.StyledText;
import org.eclipse.swt.events.ModifyEvent;
import org.eclipse.swt.events.ModifyListener;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.IEditorInput;
import org.eclipse.ui.IEditorPart;
import org.eclipse.ui.IWorkbenchPart;
import org.eclipse.ui.texteditor.IDocumentProvider;
import org.eclipse.ui.texteditor.ITextEditor;

public class SpellCheckingTarget implements ModifyListener {

private static final Class[] NOPARMS = new Class[0];
private static final Object[] NOARGS = new Object[0];
private static final Point NOSELECTION = new Point(0, 0);

A SpellCheckerTarget instance maintains references to the target editor (which may be null), to the
target widget, and to the tokenizer used to analyze the text. For editor spell-checking targets, it deter-
mines the selection provider and the document provider from the target editor. For spell-checking tar-
gets without a document provider, an auxiliary document instance is created.

// The target editor or null
public IEditorPart editor;
// The target widget or null
public Control textArea;
// Indicated if target is editable
public boolean isEditable = true;
// The document tokenizer associated with this target
public AbstractDocumentWordTokenizer tokenizer;

425

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 425

// The targets selection provider
private ISelectionProvider selectionProvider;
// The target document provider
private IDocumentProvider documentProvider;
// If we have no document provider we create an auxiliary document
private IDocument auxDocument;

Factory Method
SpellCheckingTarget instances are not created via a public constructor but by the factory method
getInstance(). This method differentiates between three cases. In the case of a target editor of type
ITextEditor, the methods defined in this interface are used to derive the necessary information, such
as the selection provider and the document provider. In case of the more general type IEditorPart,
Java reflection is used to determine the selection provider. A document provider is not set in this case.
Finally, if there is no target editor, information is retrieved directly from the widget.

/**
* Constructor should not be used outside this class
*/
private SpellCheckingTarget() {}

/**
* Factory method.
*
* @param part - currently active workbench part or null
* @param control - Text or StyledText control that currently has the
* focus or null
*/
public static SpellCheckingTarget getInstance(IWorkbenchPart part,

Control control) {
SpellCheckingTarget instance = null;
if (part instanceof ITextEditor) {
// Special treatment for text editor
instance = new SpellCheckingTarget();
ITextEditor textEditor = (ITextEditor) part;
instance.editor = textEditor;
instance.isEditable = textEditor.isEditable();
instance.documentProvider = textEditor.getDocumentProvider();
instance.selectionProvider = textEditor.getSelectionProvider();
instance.textArea = control;

} else if (control != null) {
// No text editor - just use the text control
instance = new SpellCheckingTarget();
instance.textArea = control;
instance.isEditable = control.isEnabled();
if (part instanceof IEditorPart) {
// Find selection provider for generic editors
instance.editor = (IEditorPart) part;
if (part instanceof ISelectionProvider)
// The editor is an selection provider itself
instance.selectionProvider = (ISelectionProvider) part;

else {
// Find the editors selection provider by using reflection

426

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 426

try {
Method getSelectionProvider = part.getClass()

.getMethod("getSelectionProvider", NOPARMS);
instance.selectionProvider = (ISelectionProvider)

getSelectionProvider.invoke(part, NOARGS);
} catch (Exception e1) {
}

}
}

}
return instance;

}

Selections
To perform spell-checking only within a selected text block, the SpellCheckingTarget class imple-
ments the getSelection() method. If a selection provider was set, the selection is retrieved from this
selection provider. Otherwise, the selection is retrieved directly from the widget. The selection provider
method is preferred because it is more reliable. For some editors, the length of the text in the widget
differs from the length of the text in the document. This is the case, for example, for HTML and XML
editors. Character entities such as " are represented as a single character in the widget but appear
in the document in their serialized form.

/**
* Get the targets text selection
*
* @return - point with start and end of selection
*/
public Point getSelection() {
if (selectionProvider != null) {
// use the selection provider
ISelection sel = selectionProvider.getSelection();
if (sel instanceof ITextSelection) {
int pos = ((ITextSelection) sel).getOffset();
return new Point(pos, pos

+ ((ITextSelection) sel).getLength());
}

}
// otherwise retrieve selection from text control
if (textArea instanceof Text)
return ((Text) textArea).getSelection();

if (textArea instanceof StyledText)
return ((StyledText) textArea).getSelection();

return NOSELECTION;
}

It is necessary to set a new selection for highlighting a misspelled word and for restoring the original
selection when spell-checking is finished. The logic is quite similar to the previous method. In the case of
a target editor of type ITextEditor, the selectAndReveal()method is used to select a text block
and to position the editor window at that location. Otherwise, the widget’s methods are used to select a
text block. Only if there is no valid widget is the selection set via the selection provider. The reason why

427

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 427

the widget method is preferred over the selection provider method is that some selection providers don’t
support the setting of a selection.

/**
* Set the targets text selection
*
* @param start - start of selection
* @param end - end of selection
*/
public void setSelection(int start, int end) {
// Special treatment for ITextEditor
if (editor instanceof ITextEditor)
((ITextEditor) editor).selectAndReveal(start, end - start);

// if we have a text control set selection directly in control
else if (textArea instanceof Text)
((Text) textArea).setSelection(start, end);

else if (textArea instanceof StyledText)
((StyledText) textArea).setSelection(start, end);

// for other editors use standard way
else if (selectionProvider != null)
selectionProvider.setSelection(new TextSelection(start,

end - start));
}

Document Management
Retrieving the underlying document is quite simple when the spell-checking target has a document
provider. The editor input object is passed to the document provider, and the corresponding document
is returned. If there is no document provider, an auxiliary document is created and the
SpellCheckingTarget instance is registered as a ModifyListener with the text widget. When this
widget is modified, the auxiliary document is updated accordingly in the modifyText() method.
Because the getDocument() method can be called from the spell-checking thread, all SWT accesses
must be encapsulated into a syncExec() block.

/**
* Get the underlying document instance
*
* @return - the text document
*/
public IDocument getDocument() {
if (hasLiveDocument())
return documentProvider.getDocument(getEditorInput());

// Create auxiliary document and store it for further use
if (textArea != null && auxDocument == null) {
textArea.getDisplay().syncExec(new Runnable() {
public void run() {
if (textArea instanceof Text)
((Text) textArea)

.addModifyListener(SpellCheckingTarget.this);
else
((StyledText) textArea)

.addModifyListener(SpellCheckingTarget.this);

428

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 428

auxDocument = new Document(getWidgetText());
}

});
}
return auxDocument;

}

/**
* Tests if the underlying document is not auxiliary
*
* @return - true if the underlying document is not auxiliary
*/
public boolean hasLiveDocument() {
return (documentProvider != null);

}

/**
* Get the targets editor input
*
* @return - the editor input or null
*/
public IEditorInput getEditorInput() {
return (editor != null) ? editor.getEditorInput() : null;

}

/**
* Reacts to text widget modifications
*
* @param e - event object (ignored)
*/
public void modifyText(
ModifyEvent e) {
auxDocument.set(getWidgetText());

}

/**
* Retrieves the text from the text widget
*
* @return - the text content of the focus widget
*/
private String getWidgetText() {
return (textArea instanceof Text) ?

((Text) textArea).getText() :
((StyledText) textArea).getText();

}

Text Replacement
When a spelling error is corrected, the misspelled word must be replaced in the spell-checking target
with the corrected word. Before this is done, the corrected word is serialized with the help of the
tokenizer. For a plain text editor this is a null operation; however, for other text types the text representa-
tion in the document may differ from the text representation in the user interface (and the dictionary).

429

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 429

If the document is auxiliary, the change in the document is not reflected automatically by the
corresponding text widget. In such a case, the widget must be updated explicitly.

/**
* Replace text in the target
*
* @param pos - the replacement position
* @param len - the length of the text part to be replaced
* @param replacement - the replacement string
* @return - length change of document
*/
public int replaceText(int pos, int len, String replacement) {
try {
IDocument document = getDocument();
String oldWord = document.get(pos, len);
if (!oldWord.equals(replacement)) {
// True change - replace word in document
String rawString = (tokenizer != null) ?

tokenizer.serializeWord(replacement) :
replacement;

document.replace(pos, len, rawString);
// In case of auxiliary document apply change to
// Text or StyleText widget, too.
if (!hasLiveDocument()) {
if (textArea instanceof Text) {
((Text) textArea).setSelection(pos, pos + len);
((Text) textArea).insert(replacement);

} else if (textArea instanceof StyledText)
((StyledText) textArea).replaceTextRange(pos, len,

replacement);
}
return replacement.length() - len;

}
} catch (BadLocationException ex) {
}
return 0;

}

Disposal
Finally, if this SpellCheckingTarget instance is no longer needed, it must be disposed of. If the
instance was previously registered with the target widget as a ModifyListener, it is now deregistered.
If a tokenizer was set, the tokenizer is disposed of, too.

/**
* Dispose this target
*/
public void dispose() {
if (textArea != null) {
// Can be called from outside the SWT-thread
textArea.getDisplay().syncExec(new Runnable() {
public void run() {
if (textArea instanceof Text)

430

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 430

((Text) textArea)
.removeModifyListener(SpellCheckingTarget.this);

else
((StyledText) textArea)

.removeModifyListener(SpellCheckingTarget.this);
}

});
}
if (tokenizer != null) tokenizer.dispose();

}
}

The CheckSpellingActionDelegate Class
The CheckSpellingActionDelegate class was also generated by the Plug-in Creation Wizard.
The run() method of this class is called when the end user invokes the spell-checking function. Because
this class keeps track of the focus, it knows which widget will be checked for the correct spelling.

package com.bdaum.SpellChecker.actions;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.swt.custom.StyledText;
import org.eclipse.swt.events.FocusEvent;
import org.eclipse.swt.events.FocusListener;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.IEditorActionDelegate;
import org.eclipse.ui.IEditorPart;
import org.eclipse.ui.IPartListener;
import org.eclipse.ui.IPartService;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchPart;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.part.MultiEditor;

import com.bdaum.SpellChecker.Messages;
import com.bdaum.SpellChecker.SpellCheckManager;
import com.bdaum.SpellChecker.SpellCheckerPlugin;
import com.bdaum.SpellChecker.SpellCheckingTarget;
import com.bdaum.SpellChecker.views.SpellCorrectionView;

/**
* This class implements the workbench action "Check Spelling".
* It also starts a tracking mechanism that keeps it informed
* about the focus control and the currently activated
* workbench part.
*

431

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 431

* @see IWorkbenchWindowActionDelegate
*/
public class CheckSpellingActionDelegate

implements IWorkbenchWindowActionDelegate,
IEditorActionDelegate, FocusListener, IPartListener {

private IWorkbenchWindow window;
/** The current IAction instance **/
private IAction action;
/** The current focus control element **/
private Control currentFocusControl;
/** The most recent spell checking target under the focus **/
private Control recentFocusControl;
/** Cache for part service **/
private IPartService partService;
/** The most recent active workbench part **/
private IWorkbenchPart activePart;

The workbench calls the init() method before the first activation of this action. The workbench win-
dow that is passed via a parameter is stored in an instance variable so that it can be used in other
method calls. The method registers this CheckSpellingActionDelegate instance as a
PartListener with the Eclipse part service to keep track of the currently active part. When another
workbench part is activated, it is remembered in an instance field (the Spell Correction View is ignored),
and the action is enabled or disabled depending on the current state.

The method also starts a tracking mechanism that monitors which SWT control currently has the focus.

Furthermore, the current CheckSpellingActionDelegate instance is registered with the
SpellCheckerPlugin instance.

/**
* Initialize this action delegate
* @see IWorkbenchWindowActionDelegate#init
*/
public void init(IWorkbenchWindow window) {
this.window = window;
// Register with the PartService as a listener
partService = window.getPartService();
activePart = partService.getActivePart();
partService.addPartListener(this);
// Start focus tracking
setCurrentFocusControl();
// Register with the Plugin class.
SpellCheckerPlugin.setSpellCheckingActionDelegate(this);

}

/** * IPartListener methods ** */

public void partActivated(IWorkbenchPart part) {
if (!(part instanceof SpellCorrectionView))
activePart = part;

updateActionEnablement(action);

432

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 432

}

public void partBroughtToTop(
IWorkbenchPart part) {}

public void partClosed(
IWorkbenchPart part) {}

public void partDeactivated(
IWorkbenchPart part) {}

public void partOpened(
IWorkbenchPart part) {}

Focus tracking is done in the setCurrentFocusControl() method. This method first asks the cur-
rent Display instance which control currently has the focus. A FocusListener is registered with this
focus owner that tells you when the owner loses the focus. In such a case, the next focus owner is
retrieved. If this is not possible, a retry is started 100 milliseconds later. In particular, this can happen
during the first call of this method from init(). At this time, a focus may not yet be assigned to a
Control element.

// Tracking the focus
private void setCurrentFocusControl() {
Shell shell = window.getShell();
if (shell == null || shell.isDisposed()) return;
Display display = shell.getDisplay();
Control newFocusControl = display.getFocusControl();
// Remove and set listeners if focus control has changed
if (newFocusControl != currentFocusControl) {
if (currentFocusControl != null)
currentFocusControl.removeFocusListener(this);

if (newFocusControl != null)
newFocusControl.addFocusListener(this);

currentFocusControl = newFocusControl;
}
if (currentFocusControl != null) {
// Filter events by removing events from SpellCorrectionView.
// This avoids that the SpellChecker action disables
// when the focus moves to the SpellCorrectionView
if (!(partService.getActivePart() instanceof

SpellCorrectionView))
recentFocusControl = currentFocusControl;

return;
}
// Lost track - retry later
recentFocusControl = null;
display.timerExec(100, new Runnable() {
public void run() {
setCurrentFocusControl();

}
});

}

433

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 433

/* FocusListener methods */
public void focusGained(FocusEvent e) {
updateActionEnablement(action);

}

public void focusLost(FocusEvent e) {
setCurrentFocusControl();

}

After each focus change (and also after each change of the active workbench part or of workbench
selections), the action’s enabled status must be recomputed. If there is no valid spell-checking target, the
action is disabled. This is done not only for the action itself (that is, for the workbench’s toolbar button
and menu item) but also for the buttons and menu items of the Spell Correction View.

The indicateBusy() method is used to disable the action while the spell-checking process is active.

/**
* Enable or disable action
*
* @param action - the action to be enabled or disabled
*/
private void updateActionEnablement(IAction action) {
// The action is only enabled if there is a valid spell
// checking target
updateActionEnablement(action, getSpellCheckingTarget() != null);

}

/**
* Enable or disable action
*
* @param action - the action to be enabled or disabled
* @param enabled - new enablement state
*/
private void updateActionEnablement(IAction action,

boolean enabled) {
if (action != null) {
action.setEnabled(enabled);
IWorkbenchPage activePage = window.getActivePage();
// Update correction view actions
if (activePage != null) {
SpellCorrectionView view = (SpellCorrectionView) activePage

.findView(
"com.bdaum.SpellChecker.views.SpellCorrectionView");

if (view != null) view.updateActionEnablement();
}

}
}

/**
* Disables the action when process is busy
*
* @param busy - true if process is busy

434

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 434

*/
public void indicateBusy(
final boolean busy) {
window.getShell().getDisplay().syncExec(new Runnable() {
public void run() {
if (busy)
updateActionEnablement(action, false);

else
updateActionEnablement(action);

}
});

}

/**
* Retrieves the enablement state of the action
*
* @return - true if enabled
*/
public boolean isEnabled() {
return (action != null && action.isEnabled());

}

All IActionDelegates react to workbench events: the selectionChanged() method is invoked
when another item is selected in the workbench. The method receives the IAction instance (the
CheckSpellingActionDelegate class is only a delegate of that action) and, of course, the selection,
as parameters.

In the selectionChanged() method, the IAction instance is simply remembered in an instance field
so that it is possible to refer to it later. Also, the action enablement is updated.

/**
* The current workbench selection has changed.
*
* @see IWorkbenchWindowActionDelegate#selectionChanged
*/
public void selectionChanged(IAction action, ISelection selection) {
// Remember action
this.action = action;
// Update action and view
updateActionEnablement(action);

}

When the user activates the action, the run() method is invoked. Here, the spell-checking task starts.
First, the currently active spell-checking target that currently has the focus is fetched via the
getSpellCheckingTarget() method. If such a target is present, the SpellCorrectionView is
opened via the showCorrectionView() method. In this method the currently active page of the work-
bench window is fetched. Then the view is opened via the showView() method by passing the view
identification defined in the manifest file plugin.xml. Then the spell-checking process is started in a
new thread via the SpellCheckManager. While this process is running, the action is disabled via the
indicateBusy() method.

435

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 435

Why start a new thread? The spell-checking process may generate a whole series of spelling error events.
SpellCorrectionView must process these events event by event. In this implementation, this is orga-
nized in such a way that the spell-checking process waits until an event is processed by the
SpellCorrectionView, at which time the next event can be fired. If this would be done (waiting) in
the SWT thread, the whole user interface would lock up.

Before a new thread is started, existing spell-checking threads are first canceled via the
SpellCheckManager method abortSpellChecking(). Otherwise, an unlimited number of pending
threads would come into existence if the spell-checking action were executed repeatedly without com-
pleting the previous spell-checking processes. Of course, this should not happen because the spell-
checking action is disabled while it is running, but you want to be on the safe side.

/**
* Execute the spell checking action.
*
* @see IWorkbenchWindowActionDelegate#run
*/
public void run(IAction action) {
// skip if not enabled
if (this.action == null || !this.action.isEnabled())
return;

// Get spell checking target
final SpellCheckingTarget target = getSpellCheckingTarget();
if (target != null) {
// Get current Display instance
final Display display = window.getShell().getDisplay();
if (display == null) return;
try {
// Now find the SpellCorrectionView and open it
final SpellCorrectionView view = showCorrectionView();
if (view == null) return;
// Disable action when busy
indicateBusy(true);
// Get the SpellCheckManager
final SpellCheckManager manager = SpellCheckerPlugin

.getManager();
// First cancel any pending spell checking processes.
if (SpellCheckerPlugin.isPending())
manager.abortSpellChecking();

// Start spell checking process in new thread
SpellCheckerPlugin.startThread(new Thread("SpellCheckThread") {
public void run() {
manager.checkDocument(target, display, view);
// Enable action when done
indicateBusy(false);

}
});

} catch (PartInitException e) {
SpellCheckerPlugin.logError(6,
Messages.getString(

"CheckSpellingActionDelegate.Cannot_initialize_SpellCorrectionView"),
e);

}

436

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 436

}
}

/**
* Finds and shows the spell checker correction view
*
* @return - the view part
* @throws PartInitException
*/
public SpellCorrectionView showCorrectionView()

throws PartInitException {
// get active page
IWorkbenchPage activePage = window.getActivePage();
// show view
return (activePage == null) ? null

: (SpellCorrectionView) activePage.showView(
"com.bdaum.SpellChecker.views.SpellCorrectionView");

}

The spell-checking process can, of course, be executed only if there is a valid spell-checking target.
The getSpellCheckingTarget() method tries to find such a target. First, it tests to see if the current
focus control is a valid target for spell-checking. This is the case only if the control is a Text or
StyledText widget and if this text widget is editable. Then it tests to see if the current focus control is
in the currently active workbench window. If so, it tries to get the currently active workbench part
(which could be an editor). In case of a MultiEditor, it drills down to the currently active inner editor.
Then a new SpellCheckingTarget instance is constructed from both the widget and the workbench
part. If the widget is not located in the current workbench window, it must be in a dialog box or similar
window. In this case, it constructs a new SpellCheckingTarget instance from the widget only.

/**
* Returns SpellCheckingTarget with active editor and
* a Text or StyledText instance that has the focus
*
* @return - a new SpellCheckingTarget.
*/
private SpellCheckingTarget getSpellCheckingTarget() {
// First determine if the control that has the focus is a
// valid text control
Control validControl =
(((recentFocusControl instanceof Text &&

((Text) recentFocusControl).getEditable())
|| (recentFocusControl instanceof StyledText &&

((StyledText) recentFocusControl).getEditable()))
&& !recentFocusControl.isDisposed())
? recentFocusControl : null;

// Check if focus is in workbench window
if (validControl == null || validControl.isDisposed()

|| validControl.getShell() == window.getShell()) {
// Get workbench component
IWorkbenchPart part = window.getPartService().getActivePart();
// Update active part just to make sure we have the
// current one
if (!(part instanceof SpellCorrectionView))

437

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 437

activePart = part;
// Is it a MultiEditor?
// If yes, get the active inner editor.
while (activePart instanceof MultiEditor)
activePart = ((MultiEditor) activePart).getActiveEditor();

// Now create a SpellCheckingTarget
return SpellCheckingTarget.getInstance(activePart,

validControl);
}
// Must be in a dialog box, use text field only.
return SpellCheckingTarget.getInstance(null, validControl);

}

When the IActionDelegate is disposed of, it must be deregistered as a FocusListener and from
the Plugin instance and the platform’s part service.

/**
* Dispose action
*/
public void dispose() {
// Deregister as focus listener
if (currentFocusControl != null

&& !currentFocusControl.isDisposed())
currentFocusControl.removeFocusListener(this);

currentFocusControl = null;
// Deregister from the part service
partService.removePartListener(this);
// also deregister from the Plugin class
SpellCheckerPlugin.setSpellCheckingActionDelegate(null);

}

The setActiveEditor() method is called before the spell-checking action is called from an editor’s
context menu. The action instance and the editor are passed as parameters. The method remembers the
action and calls the init() method to perform the initialization of this action delegate.

/**
* Action called from editor context menu
*
* @param action - the action
* @param targetEditor - the target editor
*/
public void setActiveEditor(
IAction action, IEditorPart targetEditor) {
this.action = action;
if (targetEditor != null)
init(targetEditor.getSite().getWorkbenchWindow());

else
init(PlatformUI.getWorkbench().getActiveWorkbenchWindow());

}
}

438

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 438

The Correction Window
This section shows the implementation of the Spell Correction View and, in this context also, the man-
agement of image files (for the toolbar buttons).

The SpellCorrectionView Class
The SpellCorrectionView class is quite large. In addition to the pregenerated table, the text field
above the table is created, too. This field will contain the erroneous word or a replacement for the word.

A toolbar is also required, as are a drop-down menu, a context menu (all with six actions), and a special
action for handling double-clicks. I opted to hard-code these actions instead of defining them in the
plug-in manifest. The reason for this is that the enabling of these actions does not depend on workbench
selections but on other criteria that are difficult to specify via the manifest.

package com.bdaum.SpellChecker.views;

import java.util.List;

import org.eclipse.jface.action.*;
import org.eclipse.jface.viewers.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.KeyAdapter;
import org.eclipse.swt.events.KeyEvent;
import org.eclipse.swt.events.ModifyEvent;
import org.eclipse.swt.events.ModifyListener;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Menu;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.IActionBars;
import org.eclipse.ui.help.WorkbenchHelp;
import org.eclipse.ui.part.ViewPart;

import com.bdaum.SpellChecker.SpellCheckManager;
import com.bdaum.SpellChecker.SpellCheckerImages;
import com.bdaum.SpellChecker.SpellCheckerPlugin;
import com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate;
import com.bdaum.SpellChecker.actions.CorrectionViewAction;
import com.swabunga.spell.engine.Word;
import com.swabunga.spell.event.SpellCheckEvent;
import com.bdaum.SpellChecker.Messages;

public class SpellCorrectionView extends ViewPart {

The SpellCorrectionView class defines instance fields for holding the widgets of the view, the vari-
ous actions, and the references to the spell-checking manager and the current spell checker event
(spelling error).

439

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 439

// Text constant for cases where we have no correction proposals
private static final String[] NOPROPOSALS = new String[]

{Messages.getString("SpellCorrectionView.No_suggestions")};

/* Widgets */
// The current Display instance
private Display display;
// The Text widget for displaying the bad word
private Text badWord;
// The TableViewer of this view
private TableViewer viewer;

/* View actions */
// Toolbar and menu actions
private IAction ignoreAction;
private IAction ignoreAllAction;
private IAction cancelAction;
private IAction replaceAction;
private IAction replaceAllAction;
private IAction addToDictionaryAction;
// The double click action
private Action doubleClickAction;

/* The manager */
private SpellCheckManager spellCheckManager;
/* The current spelling error event */
private SpellCheckEvent currentEvent;
/* Indicator if replacements are allowed */
private boolean documentIsEditable;

These definitions are followed by the definitions of two inner classes: ViewContentProvider and
ViewLabelProvider. These classes support the display table elements. The ViewContentProvider
class supplies the table with the table entries. This is done in the getElements() method. In this case,
these entries are correction proposals. A list of such correction proposals—wrapped in a
SpellCheckEvent object—is passed to the view via setInput(). This event is then signaled from the
table to the ViewContentProvider by calling the inputChanged() method. This list is then trans-
formed into a suitable format using the getElements() method. If the list of correction proposals is
empty, only the default message defined previously is returned as the sole table element.

/**
* The ViewContentProvider creates the table content from the
* spelling error event.
*/
class ViewContentProvider implements IStructuredContentProvider {

// Current spelling error event
private Object spEvent;

/**
* This method is called by the TableViewer after
* setInput() was called.

440

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 440

*/
public void inputChanged(Viewer v, Object oldInput,

Object newInput) {
spEvent = newInput;

}

/**
* This method is called when the table is refreshed
*/
public Object[] getElements(Object parent) {
// Fetch correction proposals from the spelling error event
if (spEvent instanceof SpellCheckEvent) {
List suggestions = ((SpellCheckEvent) spEvent)

.getSuggestions();
int s = suggestions.size();
// Check if we have proposals
if (s > 0) {
// Return correction proposals as an array to the TableViewer
Word[] sugArray = new Word[s];
suggestions.toArray(sugArray);
return sugArray;

}
}
return NOPROPOSALS;

}

public void dispose() {}
}

The ViewLabelProvider is responsible for delivering text and images for each table element. Here, no
images are used within the table, so the corresponding methods deliver a null value. The column text is
obtained by calling the getText() method.

/**
* The ViewLabelProvider creates the individual table entries
*/
class ViewLabelProvider extends LabelProvider implements

ITableLabelProvider {

/*
* Process text for table entry
*/
public String getColumnText(Object obj, int index) {
return getText(obj);

}

public Image getColumnImage(Object obj, int index) {
return null;

}

public Image getImage(Object obj) {
return null;

}
}

441

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 441

For the Spell Correction View, Eclipse has already pregenerated the createPartControl() method.
You just need to extend this method by adding the Text widget badWord above the table. This text field
will be used to display the erroneous word. To combine the text field with the table, you should use
Composite parent as the parent control and apply a GridLayout to it.

The text field gets a ModifyListener, too. When the content of this field changes, the actions must be
updated. For example, when the field still contains the original bad word, the replacement actions
should be disabled.

In addition, you need to implement the event handling for the table viewer. If a proposal is selected from
the table, it must be copied to the text field badWord. The exception is the string NOPROPOSALS, which
you don’t want to copy into the text field. This string is not a Word instance, so you may use its type as a
knockout criterion.

The KeyListener allows the invocation of some of the menu and toolbar actions via keyboard short-
cuts.

The following pregenerated calls create the actions and construct the menus and the toolbar. You need
only complete this code with method calls for updating the actions and for registering the view with the
help system.

The implementation of the setFocus() method is a requirement from the parent class ViewPart.
In the following code I set the focus to the table.

public void createPartControl(Composite parent) {
// Fetch Display instance for later usage
display = parent.getDisplay();
// Set GridLayout
parent.setLayout(new GridLayout());
// Create Text widget for display of bad word
badWord = new Text(parent, SWT.BORDER);
badWord.setLayoutData(new GridData(

GridData.FILL_HORIZONTAL));
// Disable/Enable actions when content of text field changes
badWord.addModifyListener(new ModifyListener() {
public void modifyText(ModifyEvent e) {
updateActionEnablement();

}
});
// Create table viewer
viewer = new TableViewer(parent, SWT.H_SCROLL

| SWT.V_SCROLL | SWT.BORDER);
viewer.getControl().setLayoutData(

new GridData(GridData.FILL_BOTH));
// Set ContentProvider and LabelProvider
viewer.setContentProvider(new ViewContentProvider());
viewer.setLabelProvider(new ViewLabelProvider());
// Listener for selection of table elements
// Selected elements are copied to text field badWord.
viewer.addSelectionChangedListener(new ISelectionChangedListener()

{

442

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 442

public void selectionChanged(
SelectionChangedEvent event) {
ISelection sel = event.getSelection();
if (sel instanceof IStructuredSelection) {
Object obj = ((IStructuredSelection) sel)

.getFirstElement();
// Check for Word type to exclude NOPROPOSALS
// from selection
if (obj instanceof Word)
badWord.setText(obj.toString());

}
}

});
// Add KeyListener to support keyboard shortcuts
viewer.getControl().addKeyListener(new KeyAdapter() {
public void keyPressed(KeyEvent e) {
if (e.character == '+')
addToDictionaryAction.run();

else
switch (e.keyCode) {
case 13 :
if ((e.stateMask & SWT.CTRL) != 0) {
if ((e.stateMask & SWT.SHIFT) != 0)
replaceAllAction.run();

else
replaceAction.run();

} else {
if ((e.stateMask & SWT.SHIFT) != 0)
ignoreAllAction.run();

else
ignoreAction.run();

}
break;

case SWT.ESC :
cancelAction.run();
break;

}
}

});

// Create actions
makeActions();
// Add the context menu
hookContextMenu();
// Add the double click action
hookDoubleClickAction();
// Create the toolbar
contributeToActionBars();
// Initialize the actions
updateActionEnablement();
// Create help context
WorkbenchHelp.setHelp(parent,

"com.bdaum.SpellChecker.correctionView_context");
}

/**
* Set focus to TableViewer

443

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 443

*/
public void setFocus() {
viewer.getControl().setFocus();

}

The construction of the menus, the toolbar, and the double-click action are almost completely pregenerated.
An anonymous DoubleClickListener is registered for the double-click action. This listener invokes the
action’s run() method in the case of an event. The menu manager is equipped with a MenuListener.
Every time the menu is to be displayed, this listener constructs a new menu in the fillContribution()
method.

To construct the toolbar, the contributeToActionBars() method fetches the managers for the drop-
down menu and for the toolbar from the ViewSite. Then the fillContribution() method is
invoked to add the required actions to these managers. Eclipse originally generated separate methods
for menus and toolbars, but here I have combined both methods into a single fillContribution()
method.

// Add double click action
private void hookDoubleClickAction() {
viewer.addDoubleClickListener(new IDoubleClickListener() {
public void doubleClick(
DoubleClickEvent event) {
doubleClickAction.run();

}
});

}

// Add context menu
private void hookContextMenu() {
// Create new menu manager
MenuManager menuMgr = new MenuManager("#PopupMenu"); //$NON-NLS-1$
// Remove all menu items before building the menu
menuMgr.setRemoveAllWhenShown(true);
// Event processing for context menu
menuMgr.addMenuListener(new IMenuListener() {
public void menuAboutToShow(
IMenuManager manager) {
SpellCorrectionView.this.fillContribution(manager);

}
});
// Create menu
Menu menu = menuMgr.createContextMenu(viewer.getControl());
viewer.getControl().setMenu(menu);
// Register context menu with workbench site
getSite().registerContextMenu(menuMgr, viewer);

}

private void contributeToActionBars() {
// Fetch action bar from workbench site
IActionBars bars = getViewSite().getActionBars();
// Create the drop-down menu
fillContribution(bars.getMenuManager());

444

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 444

// Create the toolbar
fillContribution(bars.getToolBarManager());

}

// Fill menus or toolbar with actions
private void fillContribution(
IContributionManager manager) {
manager.add(replaceAction);
manager.add(replaceAllAction);
manager.add(new Separator());
manager.add(addToDictionaryAction);
manager.add(new Separator());
manager.add(ignoreAction);
manager.add(ignoreAllAction);
manager.add(cancelAction);
// Other plug-ins can insert new actions here
manager.add(new Separator("Additions"));

}

All actions are created in the makeActions() method. The icons are fetched from the
SpellCheckerImages class, which is listed in the “Managing Images” section. The convenience
method createAction() is used to create an action. This method creates instances of type
CorrectionViewAction, which are quite simple (see the following section of code). The run()
method of these actions just calls the view’s performOperation() method. There the main processing
is performed, depending on the operation code. Finally, the signalEventProcessed() method is
called to indicate to the SpellCheckManager that the processing of the current event has finished and
that a new event can be sent.

The CANCEL action can trigger two different operations, depending on the state of the spell checker. If
the spell checker is idle (no spell-checking event is waiting), the action is used to restart the spell checker.
If the spell checker is still busy, the action cancels the spell-checking process.

// Create actions
private void makeActions() {
replaceAction = createAction(CorrectionViewAction.REPLACE,

Messages.getString("SpellCorrectionView.Replace"),
Messages.getString("SpellCorrectionView.Replace_occurrence"),
SpellCheckerImages.IMG_REPLACE);

replaceAllAction = createAction(CorrectionViewAction.REPLACEALL,
Messages.getString("SpellCorrectionView.Replace_all"),
Messages.getString(

"SpellCorrectionView.Replace_all_occurrences"),
SpellCheckerImages.IMG_REPLACEALL);

addToDictionaryAction = createAction(CorrectionViewAction.ADD,
Messages.getString("SpellCorrectionView.Add_to_dictionary"),
Messages.getString(

"SpellCorrectionView.Add_word_to_dictionary"),
SpellCheckerImages.IMG_ADDTODICTIONARY);

ignoreAction = createAction(CorrectionViewAction.IGNORE,
Messages.getString("SpellCorrectionView.Ignore"),
Messages.getString(

"SpellCorrectionView.Ignore_spelling_problem"),

445

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 445

SpellCheckerImages.IMG_IGNORE);
ignoreAllAction = createAction(CorrectionViewAction.IGNOREALL,

Messages.getString("SpellCorrectionView.Ignore_all"),
Messages.getString(

"SpellCorrectionView.Ignore_for_all_occurrences"),
SpellCheckerImages.IMG_IGNOREALL);

cancelAction = createAction(CorrectionViewAction.CANCEL,
Messages.getString("SpellCorrectionView.StartCancel"),
Messages.getString(

"SpellCorrectionView.StartCancel_spell_checking"),
SpellCheckerImages.IMG_CANCEL);

doubleClickAction = new CorrectionViewAction(this,
CorrectionViewAction.DOUBLECLICK);

}

// Create a single action
private IAction createAction(
int operation, String label, String toolTip, String imageID) {
IAction action = new CorrectionViewAction(this, operation);
action.setText(label);
action.setToolTipText(toolTip);
SpellCheckerImages.setImageDescriptors(action, "lcl16", imageID);
return action;

}

/**
* Perform operation for an action
*
* @param operation - the operation code
*/
public void performOperation(int operation) {
if (currentEvent == null) {
if (operation == CorrectionViewAction.CANCEL)
// Start spell checking via action delegate
SpellCheckerPlugin.getSpellCheckingActionDelegate().run(null);

return;
}
switch (operation) {
case CorrectionViewAction.DOUBLECLICK :
if (!documentIsEditable) return;
ISelection selection = viewer.getSelection();
Object obj = ((IStructuredSelection) selection)

.getFirstElement();
if (!(obj instanceof Word)) return;
currentEvent.replaceWord(obj.toString(), false);
break;

case CorrectionViewAction.REPLACE :
currentEvent.replaceWord(badWord.getText(), false);
break;

case CorrectionViewAction.REPLACEALL :
if (!documentIsEditable) return;
currentEvent.replaceWord(badWord.getText(), true);
break;

case CorrectionViewAction.ADD :

446

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 446

String newWord = badWord.getText();
String originalBadWord = currentEvent.getInvalidWord();
if (!documentIsEditable

&& !originalBadWord.equals(newWord)) return;
currentEvent.addToDictionary(newWord);
break;

case CorrectionViewAction.IGNORE :
currentEvent.ignoreWord(false);
break;

case CorrectionViewAction.IGNOREALL :
currentEvent.ignoreWord(true);
break;

case CorrectionViewAction.CANCEL :
currentEvent.cancel();
break;

}
signalEventProcessed();

}

// Signal end of event processing
private void signalEventProcessed() {
// Release waiting manager
spellCheckManager.continueSpellChecking();
// Reset current event
currentEvent = null;
// Update viewer
updateView();

}

The updateActionEnablement() method is used to enable or disable actions. If no more events are
waiting, you disable all actions. If at least one event is waiting, the actions are enabled. However, the
actions replaceAction and replaceActionAll are enabled only when the current document is
editable and if the content of the badWord text field was modified. Because the CANCEL action is a tog-
gle action, its icon, its checked state, and its tooltip are exchanged, depending on the state of the spell-
checking process.

/**
* Update actions. Most of the
* actions are disabled when no more events are pending. The
* cancel action, however, now acts as a start action.
*/
public void updateActionEnablement() {
boolean pendingEvent = (currentEvent != null);
// Enable or disable actions
if (pendingEvent & documentIsEditable) {
boolean modified = !currentEvent.getInvalidWord()

.equals(badWord.getText());
replaceAction.setEnabled(modified);
replaceAllAction.setEnabled(modified);

} else {
replaceAction.setEnabled(false);
replaceAllAction.setEnabled(false);

447

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 447

}
ignoreAction.setEnabled(pendingEvent);
ignoreAllAction.setEnabled(pendingEvent);
addToDictionaryAction.setEnabled(pendingEvent);
// Update cancel action
if (pendingEvent) {
SpellCheckerImages.setImageDescriptors(cancelAction, "lcl16",

SpellCheckerImages.IMG_CANCEL);
cancelAction.setChecked(true);
cancelAction.setToolTipText(Messages.getString(

"SpellCorrectionView.Cancel_spell_checking"));
cancelAction.setEnabled(true);

} else {
SpellCheckerImages.setImageDescriptors(cancelAction, "lcl16",

SpellCheckerImages.IMG_CHECK);
cancelAction.setChecked(false);
cancelAction.setToolTipText(Messages.getString(

"SpellCorrectionView.Start_spell_checking"));
CheckSpellingActionDelegate delegate =

SpellCheckerPlugin.getSpellCheckingActionDelegate();
cancelAction.setEnabled(delegate != null

&& delegate.isEnabled());
}

}

Other modifications to the user interface are applied via the updateView() method. Here all of these
updates are executed in the familiar way within a syncExec() method (see the section “Displays,
Shells, and Monitors” in Chapter 8). This is necessary because some of these changes come from a differ-
ent thread—the spell-checking thread. In particular, the TableViewer is updated via its setInput()
method, whose event in turn is signaled to the ContentProvider of the TableViewer via the
inputChanged() method. In addition, the text field and the view title are updated.

The indicateLoading() method is used to display a message when a dictionary is loaded because
this may take a little while. Again, this is performed in a syncExec() block.

// Update view
private void updateView() {
// Execute via syncExec as we are called from other thread
display.syncExec(new Runnable() {
public void run() {
// Update TableViewer
viewer.setInput(currentEvent);
// Update Text field and title
if (currentEvent == null) {
badWord.setText("");
setContentDescription(spellCheckManager.getCurrentName()

+ Messages.getString("SpellCorrectionView.done"));
} else {
badWord.setText(currentEvent.getInvalidWord());
setContentDescription(spellCheckManager.getCurrentName()

+ Messages.getString("SpellCorrectionView.in_progress"));
}

448

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 448

// Update actions
updateActionEnablement();

}
});

}

/**
* Indicate that we are loading a dictionary
*/
public void indicateLoading(final String name) {
display.syncExec(new Runnable() {
public void run() {
setContentDescription(name
+ Messages.getString("SpellCorrectionView.loading"));

}
});

}

The setInput() method supplies the whole view with input data. In this case, this is a
SpellCheckEvent containing the correction proposals from the jazzy engine. The method accepts this
data and updates the view accordingly.

/**
* Supplies the Spell Correction View with a
* new spelling error event
*
* @param event - the spelling error event
* @param manager - the manager to be notified when finished
* @param documentIsEditable - true, if document may be modified
*/
public void setInput(SpellCheckEvent event,

SpellCheckManager manager,
boolean documentIsEditable) {

// Accept event, manager, and flag
this.currentEvent = event;
this.spellCheckManager = manager;
this.documentIsEditable = documentIsEditable;
// Update the view
updateView();

}
}

View Actions
The CorrectionViewAction class (Listing 13.2) implements all of the SpellCorrectionView
actions and is almost trivial. In its constructor it accepts the view and the operation code of the concrete
action. This data is then used in the run() method to invoke the view’s performOperation() with
the corresponding operation code.

449

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 449

package com.bdaum.SpellChecker.actions;

import org.eclipse.jface.action.Action;
import com.bdaum.SpellChecker.views.SpellCorrectionView;

public class CorrectionViewAction extends Action {

public static final int DOUBLECLICK = 0;
public static final int REPLACE = 1;
public static final int REPLACEALL = 2;
public static final int IGNORE = 3;
public static final int IGNOREALL = 4;
public static final int ADD = 5;
public static final int CANCEL = 6;

private SpellCorrectionView view;
private int operation;

public CorrectionViewAction(SpellCorrectionView view,
int operation) {
this.view = view;
this.operation = operation;

}

/*
* Perform action
*/
public void run() {

view.performOperation(operation);
}

}

Listing 13.2

Managing Images
Icons for all of the actions of the SpellCorrectionView are fetched from the SpellCheckerImages
class (Listing 13.3). The advantage of this technique is that you can easily keep an overview of the
images used, because they are managed by a central instance. You could also extend this class into a cen-
tral image repository for storing images for reuse. However, this is not necessary in this case, because all
icons are used only once when the actions are created via makeActions(). Caching images to reduce
repeated image loading is therefore not required.

For the various images, the following organizing principles are used.

All images are stored in subfolders of the folder icons. Each action can accept three states: disabled,
enabled, and hot (when the mouse hovers over the icon). The enabled and hot states use the same icon.

You therefore need two different icons for each action:

❑ Colored icons for hot and enabled actions are set with the method
setHoverImageDescriptor(). These icons are stored in the icons/full/clcl16 folder.

450

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 450

❑ Gray icons for disabled actions are set with the method setDisabledImageDescriptor().
These icons are stored in the icons/full/dlcl16 folder.

The number 16 refers to the size of the icons: they are all 16x16 pixels in size.

The icon correction_view.gif is a special case. It is used only in the manifest file plugin.xml;
a specification in the SpellCheckerImages class is therefore not necessary. This icon is also indepen-
dent of state changes, so only a single version is needed. Such icons are stored in the basic folder rather
than the full folder.

In principle, this is possible for all icons. If you don’t want to create different icons for each action, it is
sufficient to create a single colored icon and to specify it in the setImageDescriptor() method.
Eclipse then automatically computes the gray variants. You will usually arrive at graphically more satis-
fying solutions by creating each of the state icons manually, however.

package com.bdaum.SpellChecker;

import java.net.MalformedURLException;
import java.net.URL;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.resource.ImageDescriptor;

/**
* Compilation of the images used in com.bdaum.SpellChecker
* plug-in.
*/
public class SpellCheckerImages {

// Get URL for icon folder
private static URL fgIconBaseURL = SpellCheckerPlugin

.getDefault().getBundle().getEntry("icons/");

/**
* Filenames for the images in this registry
*/

public static final String IMG_IGNORE = "ignore.gif";
public static final String IMG_IGNOREALL = "ignoreAll.gif";
public static final String IMG_CANCEL = "cancel.gif";
public static final String IMG_REPLACE = "replace.gif";
public static final String IMG_REPLACEALL = "replaceAll.gif";
public static final String IMG_ADDTODICTIONARY =

"addToDictionary.gif";
public static final String IMG_CHECK = "check.gif";

/**
* Supply action with icons
*
* @param action - Action to be decorated
* @param type - icon type
* @param relPath - relative path of icon
*/

451

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.13 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 451

public static void setImageDescriptors(IAction action, String type,
String relPath) {

try {
ImageDescriptor id = ImageDescriptor.createFromURL(

makeIconFileURL("full/d" + type, relPath));
if (id != null) action.setDisabledImageDescriptor(id);

} catch (MalformedURLException e) {
SpellCheckerPlugin.logError(8,Messages.getString(
"SpellCheckerImages.Bad_URL_when_loading_disabled_image"), e);

}
try {
ImageDescriptor id = ImageDescriptor.createFromURL(

makeIconFileURL("full/c" + type, relPath));
if (id != null) action.setHoverImageDescriptor(id);

} catch (MalformedURLException e) {
SpellCheckerPlugin.logError(9, Messages.getString(
"SpellCheckerImages.Bad_URL_when_loading_hover_image"), e);

action.setImageDescriptor(ImageDescriptor
.getMissingImageDescriptor());

}
}

// Construct URL for icon file
private static URL makeIconFileURL(
String prefix, String name) throws MalformedURLException {
if (fgIconBaseURL == null)
throw new MalformedURLException();

return new URL(fgIconBaseURL, prefix + "/" + name);
}

}

Listing 13.3 (Continued)

As you have probably already discovered, you don’t work here directly with Image instances but with
ImageDescriptor instances. These image descriptors work as proxies for images and don’t allocate
resources in the host operating system. The workbench evaluates these descriptors and loads the images
only when needed. Since the workbench also takes care of the required disposal of these Image
instances, you don’t have to.

Coordinating Core Classes with GUI Classes
Now it is time to take care of the interaction between the spell-checking engine and the user interface
(actions and views). This interaction is organized by the SpellCheckManager class.

452

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 452

The Manager
When a SpellCheckManager instance is initialized, it creates a new configuration instance
(SpellCheckConfiguration). This instance is responsible for managing the preferences from the var-
ious PreferencePages and for passing these preferences to the spell-checking engine. (Remember that
there may be several plug-ins implementing different spell-checking strategies, and each may have its
own preference page.)

package com.bdaum.SpellChecker;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;

import org.eclipse.core.runtime.*;
import org.eclipse.jface.text.IDocument;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.widgets.Display;
import org.eclipse.ui.IEditorInput;
import org.eclipse.ui.IFileEditorInput;

import com.bdaum.SpellChecker.actions.CheckSpellingActionDelegate;
import com.bdaum.SpellChecker.preferences.SpellCheckerPreferences;
import com.bdaum.SpellChecker.views.SpellCorrectionView;
import com.swabunga.spell.engine.GenericSpellDictionary;
import com.swabunga.spell.engine.SpellDictionary;
import com.swabunga.spell.engine.SpellDictionaryDichoDisk;
import com.swabunga.spell.event.SpellCheckEvent;
import com.swabunga.spell.event.SpellCheckListener;
import com.swabunga.spell.event.SpellChecker;

/**
* This class organizes the interaction between the SpellChecker, the
* user interface, and the spell checker configuration.
*/
public class SpellCheckManager implements SpellCheckListener {

// File extension for phonetic dictionaries
private static final String PHONETICEXTENSION = ".phon";
// File extension for user dictionary
private static final String USEREXTENSION = ".user";
// Tuple representing an empty text selection
private static final Point NOSELECTION = new Point(0, 0);

/* The engines for the spell checker */
private Map engineMap = new HashMap(10);
private SpellChecker currentEngine;

/* The spell checking view */

453

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 453

private SpellCorrectionView correctionViewer;

/* Currently active preferences */
private SpellCheckerPreferences currentPreferences;

/* The configuration */
private SpellCheckConfiguration config =

new SpellCheckConfiguration();

/* The curent spell checking target */
private SpellCheckingTarget currentTarget;

/* The current selection */
private Point currentSelection = NOSELECTION;

/* current Display */
private Display display;

/* Indicator for aborting the current spell checking process */
private boolean abort = false;

/* Current tokenizer name */
private String currentName;

Selecting the Plug-in
The checkDocument() method prepares the spell-checking process. First, it determines whether some
text is selected. In this case, the selection is remembered in order to restrict spell-checking to the selected
text. Then, the tokenizer and the set of preferences to be applied to the spell-checking process are
determined. It is the tokenizer’s responsibility to break a document into words. Consequently, it has
a big influence on the spell-checking function.

Basically, there are two situations:

❑ You deal with a spell-checking target that is associated with some editor input. In this case, the
input type can be determined and an appropriate tokenizer and a specific set of preferences can
be selected. This is done in the getWordTokenizer() method.

❑ In all other cases, the default tokenizer and the default set of preferences are used.

/**
* Checks the document content. This method is thread safe.
*
* @param target - the spell checking target
* @param display - the current Display instance
* @param correctionViewer - the spell checking view
*/
public synchronized void checkDocument(SpellCheckingTarget target,

Display display, SpellCorrectionView correctionViewer) {
this.display = display;
// First reset the current preferences to the default preferences
currentPreferences = SpellCheckerPlugin.getDefault()

454

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 454

.getPreferences();
// Save parameters
this.correctionViewer = correctionViewer;
this.currentTarget = target;
// Reset tokenizer name and selection
currentName = Messages

.getString("SpellCheckManager.Default_Spell_Checker");
currentSelection = NOSELECTION;

// This following must be done in the SWT thread to avoid
// thread conflicts
display.syncExec(new Runnable() {
public void run() {
// Retrieve current text selection
currentSelection = currentTarget.getSelection();

}
});
// Get preferences and find tokenizer
IEditorInput input = target.getEditorInput();
if (input != null) {
// We deal with a editor input object and retrieve an input
// specific tokenizer
currentTarget.tokenizer = getDocumentWordTokenizer(input);
if (currentTarget.tokenizer != null)
performCheck();

} else {
// We cannot determine the text type
// and use the default preferences
currentPreferences = SpellCheckerPlugin.getDefault()

.getPreferences();
currentTarget.tokenizer = new DocumentWordTokenizer();
performCheck();

}
}

/**
* Returns the current spell check target
*
* @return - Target object
*/
public SpellCheckingTarget getCurrentTarget() {
return currentTarget;

}

/**
* Returns the current tokenizer name
*
* @return - tokenizer name
*/
public String getCurrentName() {
return currentName;

}

To determine the tokenizer and the preference set, the getDocumentWordTokenizer() method first
fetches the file extension from the editor input and searches for a suitable plug-in. To do so, it fetches the

455

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 455

extension point documentTokenizer from the plug-in registry and searches through the tree structure
of this extension point. It then compares the file extensions that are defined in the extensions to this
extension point with the file extension of the editor input (are you still with me?).

If a matching plug-in is found, it first tries to create a plug-in–specific instance, which gives you access
to the plug-in–specific preference settings. If such a Preferences class is not defined in the plug-in
manifest, the default preferences are used instead. The Preferences instance that was determined in
that way can be retrieved via the getPreferences() method.

Similarly, a specific tokenizer is created as defined in the respective plug-in.

/**
* Retrieves a suitable tokenizer for a given input
*
* @param input - the current editor input
* @return - the tokenizer configured for this input type
*/
private AbstractDocumentWordTokenizer getDocumentWordTokenizer(
IEditorInput input) {
// Get file extension form editor input
String doctype = (input instanceof IFileEditorInput)

? ((IFileEditorInput) input).getFile()
.getFullPath().getFileExtension()

: "*";
// Search for extensions to extension point "documentTokenizer"
// First get the plug-in registry
IExtensionRegistry reg = Platform.getExtensionRegistry();
// Now get the extension point
IExtensionPoint exPoint = reg.getExtensionPoint(

SpellCheckerPlugin.getId(), "documentTokenizer");
// Fetch all installed extensions for this extension point.
// This can be more than one if several plug-ins were installed.
IExtension[] tokenizers = exPoint.getExtensions();
for (int i = 0; i < tokenizers.length; i++) {
IExtension extension = tokenizers[i];
// Now fetch all tokenizer specifications
// Each extension can define several of these specifications
IConfigurationElement[] configurations = extension

.getConfigurationElements();
for (int j = 0; j < configurations.length; j++) {
IConfigurationElement element = configurations[j];
// For each tokenizer we step through the list
// of declared file extensions
StringTokenizer st = new StringTokenizer(element

.getAttribute("extensions"));
while (st.hasMoreElements()) {
String ext = st.nextToken();
if (ext.equalsIgnoreCase(doctype)) {
// Positive
try {
// Now fetch the plug-in specific preferences
currentPreferences = (SpellCheckerPreferences) element

.createExecutableExtension("preferences");

456

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 456

} catch (CoreException e) {
// No luck, we use the default preferences

}
currentName = element.getAttribute("name");
try {
// Try to create a tokenizer instance
return (AbstractDocumentWordTokenizer) element

.createExecutableExtension("class");
} catch (CoreException e) {
SpellCheckerPlugin.logError(1, Messages.getString(
"SpellCheckManager.Could_not_create_tokenizer"), e);

}
}

}
}

}
// No matching extension found. Use the default tokenizer.
return new DocumentWordTokenizer();

}

/**
* Returns the current SpellCheckerPreference.
*
* @return - current SpellCheckerPreferences
*/
public SpellCheckerPreferences getPreferences() {
return currentPreferences;

}

Running the Engine
The performCheck() method first fetches the document to be checked from the text from the spell-
checking target. It initializes the tokenizer with the document and the current selection. (A length of zero
indicates that the whole document is to be checked.)

It then fetches a suitable engine via getEngine() and executes the spell check via checkSpelling().
The engine will then use the tokenizer to analyze the document and fire a series of SpellCheckEvents
if spelling errors are found. Because the manager was registered with the engine as a
SpellCheckListener when the engine was created, the events now arrive in the spellingError()
method (see the following section of code).

When the spell-checking process has ended, the current spell-checking target is disposed of, the
SpellCorrectionView is reset, and the original selection in the document is restored, because this
selection may have been destroyed previously by highlighting a bad word.

/**
* Runs the jazzy engine
*/
private void performCheck() {
// Initialize the tokenizer
IDocument document = currentTarget.getDocument();
currentTarget.tokenizer.init(document, currentSelection.x,

457

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 457

currentSelection.y - currentSelection.x, config);
// Reset the abort flag
abort = false;
// Fetch the engine
SpellChecker engine = getEngine();
if (engine != null) {
// Run the engine
engine.checkSpelling(currentTarget.tokenizer);
// Reset the spell checking view
correctionViewer.setInput(null, this,

currentTarget.isEditable);
// Restore original selection
setSelection(currentSelection.x, currentSelection.y);
// Done – dispose the target
currentTarget.dispose();

}
}

Managing Engines
The getEngine() method is able to manage several engines. This is to support dictionaries in different
languages. When another dictionary is used, a new engine is required. To avoid excessive dictionary
loading time in multilingual environments, the engines are cached and reused. As a matter of fact, when
engines are switched, the manager must also register as a SpellCheckListener with the new engine
and deregister with the old engine.

This method will automatically attach a user dictionary to each dictionary if a user dictionary suffix is
defined in the preferences. This user dictionary will accept new words learned during the spell-checking
process.

/**
* Finds a suitable spell check engine
*
* @return - the spell check engine
*/
private SpellChecker getEngine() {
// Get default dictionary file name
String dict = config

.getString(SpellCheckerPreferences.SPELL_DICTIONARY);
// Create key for engine map
String key = dict;
String user = config

.getString(SpellCheckerPreferences.USER_DICTIONARY);
if (user != null && user.length() > 0) key += "." + user;
// Try to get engine for this dictionary from map
SpellChecker newEngine = (SpellChecker) engineMap.get(key);
if (newEngine == null) {
// Not yet created
// Create a new engine
newEngine = createNewEngine(dict);
if (newEngine == null) return currentEngine;
// Store the engine in the map for next time

458

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 458

engineMap.put(key, newEngine);
}
if (newEngine != currentEngine) {
// If the engine has changed we must modify the listener
// registration
if (currentEngine != null)
// Deregister with the previous engine
currentEngine.removeSpellCheckListener(this);

// and register with the new engine
newEngine.addSpellCheckListener(this);
currentEngine = newEngine;

}
return currentEngine;

}

Creating Engines
The createEngine() method is a factory method for creating engine instances. Here the dictionary is
loaded, and then a new engine for this dictionary is created. The loading process is indicated to the Spell
Correction View in order to inform the end user about the short delay.

In addition, this method contains logic to determine the type of dictionary and whether there is a pho-
netic dictionary available. By convention, a phonetic dictionary has the same filename as the main dic-
tionary but with the extension .phon. A simple test determines whether a file with such a qualified
name exists.

Dictionaries can be either compressed or uncompressed. Uncompressed dictionaries are simple word
lists with one word per line. The engine will load these dictionaries completely into memory.
Compressed dictionaries are recognized by an asterisk in the very first line and are treated differently.
The engine will open these dictionaries in random access mode and read only relevant parts of the dic-
tionary as required.

If a user dictionary was specified in the preferences, it is attached to the new engine. If this dictionary
does not exist yet, a new file with that name is created. User dictionaries are always created as uncom-
pressed dictionaries (word lists).

/**
* Creates a new jazzy engine
*
* @param dict - Dictionary file name
* @return - the new engine
*/
private SpellChecker createNewEngine(String dict) {
try {
if (dict != null) {
// Indicate load operation
if (correctionViewer != null)
correctionViewer.indicateLoading(getCurrentName());

// Load dictionary file
String phonetic = dict;
// First look if we have a phonetic file

459

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 459

int p = phonetic.lastIndexOf('.');
if (p >= 0) phonetic = phonetic.substring(0, p);
phonetic += PHONETICEXTENSION;
File phFile = new File(phonetic);
if (!phFile.exists()) phFile = null;
// Now read first line in dictionary file and check for '*'
RandomAccessFile dictFile = new RandomAccessFile(dict, "r");
String firstLine = dictFile.readLine();
dictFile.close();
File dFile = new File(dict);
SpellDictionary dictionary;
SpellChecker spellchecker;
// A '*' in the first line signals a compressed file
if (firstLine.indexOf('*') > 0) {
// Create engine with compressed dictionary
dictionary = new SpellDictionaryDichoDisk(dFile, phFile);
spellchecker = new SpellChecker(dictionary);

} else {
// Create engine with uncompressed dictionary
dictionary = new GenericSpellDictionary(dFile, phFile);
spellchecker = new SpellChecker(dictionary);

}
// Get suffix for user dictionary
String user = config

.getString(SpellCheckerPreferences.USER_DICTIONARY);
String userdict = USEREXTENSION;
if (user != null && user.length() > 0)
userdict = "." + user + userdict;

File uFile = new File(dict + userdict);
// Create user dictionary file if it does not exist
uFile.createNewFile();
spellchecker.setUserDictionary(

new GenericSpellDictionary(uFile));
return spellchecker;

}
SpellCheckerPlugin.logError(5,Messages.getString(

"SpellCheckManager.No_dictionary_file_declared"), null);
} catch (FileNotFoundException e) {
SpellCheckerPlugin.logError(2,

Messages.getString(
"SpellCheckManager.Dictionary_file_not_found",
new Object[] {dict}),

e);
} catch (IOException e) {
SpellCheckerPlugin.logError(3,

Messages.getString(
"SpellCheckManager.Error_reading_dictionary_file",
new Object[] {dict}),

e);
}
return null;

}

460

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 460

Processing Bad Words
The spelling error events fired by the engine arrive in the spellingError() method. First, the posi-
tion and the length of the bad word are retrieved from the SpellCheckEvent object. With these values
a new text selection is set to highlight the bad word via the setSelection() method.

Then the event object is passed as input to the SpellCorrectionView, which then constructs a table
with correction proposals. The spell-checking thread then goes into the waiting state. It returns from this
state upon notification from the SpellCorrectionView. Because of this, the spellingError()
method must be executed as a synchronized method.

The SpellCorrectionView performs this notification by invoking the continueSpellChecking()
method. There the waiting thread is released again via notifyAll()—spell-checking can now resume
and can possibly result in another event. If no more events are present, the Spell Correction View is reset,
the original selection is restored, and the performCheck() method returns.

/**
* Event processing for the jazzy engine
*
* @see com.swabunga.spell.event.SpellCheckListener
* #spellingError(com.swabunga.spell.event.SpellCheckEvent)
*/
public synchronized void spellingError(SpellCheckEvent event) {
// Select bad word
int pos = event.getWordContextPosition();
setSelection(pos, pos

+ ((currentTarget.hasLiveDocument())
? currentTarget.tokenizer.getCurrentWordLength()
: event.getInvalidWord().length()));

// Inform the spell checking view about the event
correctionViewer.setInput(event, this, currentTarget.isEditable);
// Enable action while thread is waiting
CheckSpellingActionDelegate action = SpellCheckerPlugin

.getSpellCheckingActionDelegate();
action.indicateBusy(false);
try {
// Wait until the event was processed by the view.
wait();

} catch (InterruptedException e) {
}
// If view asks to abort, tell jazzy (via the event object)
if (abort) event.cancel();

}

/**
* Set selection in spell checking target - must happen in SWT thread
*
* @param start - start of selection
* @param end - end of selection
*/
private void setSelection(
final int start, final int end) {
display.syncExec(new Runnable() {

461

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 461

public void run() {
currentTarget.setSelection(start, end);

}
});

}

/**
* Notification that event processing was finished.
*/
public synchronized void continueSpellChecking() {
// Disable action while busy
CheckSpellingActionDelegate action = SpellCheckerPlugin

.getSpellCheckingActionDelegate();
action.indicateBusy(true);
// Release waiting thread
notifyAll();

}

Operations
The current spell-checking process can be canceled via the abortSpellChecking() method To do so,
the method just sets a flag. Then the spellingError() method is awakened once again and simply
terminates itself after canceling the spell-checking process by calling the event object’s cancel()
method.

/**
* Cancels the current spell checking process.
*/
public void abortSpellChecking() {
abort = true;
continueSpellChecking();

}

The replaceWord() method is used to apply the end user’s corrections to the current document. This
is done via the spell-checking target’s replaceText() method. This method returns the change in text
length caused by the replacement. This value is added to the length of the current selection, so that the
selection shrinks and grows with text replacements. All of this logic is encapsulated into a syncExec()
call to avoid SWT thread errors (see the section “Displays, Shells, and Monitors” in Chapter 8).

/**
* Replace word in the current document
*
* @param pos - Absolute position in the document
* @param count - Number of characters to be replaced
* @param newWord - The replacement string
*/
public void replaceWord(final int pos, final int count,

final String newWord) {
// Execute this via syncExec,
// since it originates from the spell checking thread.
display.syncExec(new Runnable() {
public void run() {

462

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 462

currentSelection.y += currentTarget.replaceText(pos,
count, newWord);

}
});

}
}

Analyzing Documents
The jazzy spell-checking engine uses the tokenizer to break documents into single words. The tokenizer
used in this plug-in is loosely based on the original jazzy word tokenizer but was extended with addi-
tional functionality and refactored into two classes:

❑ The abstract class AbstractDocumentWordTokenizer serves as a base class for all tokenizer
implementations within the spell checker.

❑ The default tokenizer DocumentWordTokenizer is based on this class. This tokenizer is used
for plain text files and for all text whose type is unknown.

Later, in a further plug-in, I will present another tokenizer class based on
AbstractDocumentWordTokenizer.

Since these classes are fairly irrelevant in the context of Eclipse plug-in implementation, I refrain from
discussing them here. Interested readers can find their source code on this book's Web site
(www.wrox.com). See also Appendix C.

Configuring the Spell Checker
In this section I discuss how preference pages are implemented and how the settings in these preference
pages are evaluated. Eclipse already generated the DefaultSpellCheckPreferencePage class dur-
ing project setup. Of course, a few changes are necessary to represent the spell-checking options as
Eclipse preferences.

In addition, the generated class DefaultSpellCheckerPreferencePage has been split into the sep-
arate domain model SpellCheckerPreferences and two GUI classes
SpellCheckPreferencePage and DefaultSpellCheckerPreferencePage. This offers the
advantage that the relatively large GUI classes need not be loaded when the preferences are initialized,
thus shortening startup time.

Preferences
Which options need to be implemented? All the options of the jazzy engine are listed in the
configuration.properties file. There are two option groups: the options with the prefix EDIT_ are
used for fine-tuning the spell-checking algorithm, while the options with the prefix SPELL_ represent
user options. To achieve consistent management for these configuration parameters, I have adopted both

463

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 463

groups into the PreferenceStore (and initialized their default values), but I provide field editors only
for the values starting with the prefix SPELL_.

I have also introduced a few options by myself: the dictionary path (SPELL_DICTIONARY), the
suffix for the user dictionary (USER_DICTIONARY), and the options IGNOREONELETTERWORDS and
COMPOUNDCHARACTERS. The default value for the dictionary path is the default dictionary defined in
the SpellCheckerPlugin class.

Domain Model
All options are combined in class SpellCheckerPreferences (Listing 13.4) which implements the
preference’s domain model. The GUI part (the Preference Pages) will be implemented in a separate class.
This concept will lead to shorter start-up times, since only the domain model needs to be initialized
when the plug-in becomes active.

The getPluginPreferences() method is used to load the whole set of plug-in–specific preferences.
Note that each plug-in has its own set of preferences. This allows the end user to configure the spell
checker individually for each file type. For example, Java source files may have a different spell-checking
configuration than plain text files.

package com.bdaum.SpellChecker.preferences;

import org.eclipse.core.runtime.Preferences;
import org.eclipse.jface.preference.IPreferenceStore;

import com.bdaum.SpellChecker.SpellCheckerPlugin;
import com.swabunga.spell.engine.Configuration;

public class SpellCheckerPreferences {

// Key for dictionary path
public static final String SPELL_DICTIONARY = "SPELL_DICTIONARY";
// Key for user dictionary suffix
public static final String USER_DICTIONARY = "USER_DICTIONARY";
// Key for option to ignore one letter words
public static final String IGNOREONELETTERWORDS =

"ignoreOneLetterWords";
// Key for characters in compound words
public static final String COMPOUNDCHARACTERS =

"compoundCharacters";

/**
* Sets the defaults for all preferences
*
* @param store - the PreferenceStore instance
*/
public void initializeDefaults(IPreferenceStore store) {
// Only initialize if not already initialized
// Otherwise preference.ini and plugin_customization.ini
// would not work.
if (store.getDefaultString(SPELL_DICTIONARY).length() == 0) {
initializePublicPreferences(store);

464

Chapter 13

Listing 13.4 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 464

initializeHiddenPreferences(store);
}

}

/**
* Public configuration data for spell check algorithm
*
* @param store - the PreferenceStore instance
*/
protected void initializePublicPreferences(IPreferenceStore store) {
store.setDefault(SPELL_DICTIONARY,

SpellCheckerPlugin.getDefaultDictionaryFileName());
store.setDefault(Configuration.SPELL_THRESHOLD, 140);
store.setDefault(Configuration.SPELL_IGNOREDIGITWORDS, true);
store.setDefault(Configuration.SPELL_IGNOREINTERNETADDRESSES,

false);
store.setDefault(Configuration.SPELL_IGNOREMIXEDCASE,

false);
store.setDefault(Configuration.SPELL_IGNOREMULTIPLEWORDS,

false);
store.setDefault(Configuration.SPELL_IGNORESENTENCECAPITALIZATION,

false);
store.setDefault(Configuration.SPELL_IGNOREUPPERCASE,

false);
store.setDefault(IGNOREONELETTERWORDS, false);
store.setDefault(COMPOUNDCHARACTERS, ".:/@\\");

}

/**
* Non-public configuration data for spell check algorithm
*
* @param store - the PreferenceStore instance
*/
protected void initializeHiddenPreferences(IPreferenceStore store) {
store.setDefault(Configuration.COST_REMOVE_CHAR, 95);
store.setDefault(Configuration.COST_INSERT_CHAR, 95);
store.setDefault(Configuration.COST_SWAP_CHARS, 90);
store.setDefault(Configuration.COST_SUBST_CHARS, 100);
store.setDefault(Configuration.COST_CHANGE_CASE, 10);

}

/**
* Retrieve plug-in specific preferences
*
* @return Preferences
*/
public Preferences getPluginPreferences() {
return SpellCheckerPlugin.getDefault().getPluginPreferences();

}
}

Listing 13.4 (Continued)

465

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 465

The GUI
The GUI part of the spell checker preferences consists of an abstract class
SpellCheckerPreferencePage which can be utilized by all later add-ons to the spell checker.
The class DefaultSpellCheckerPreferencePage extends this class and implements the basic
options for operating the spell checker. With class ShortIntegerFieldEditor I show how field
editors for preference pages can be extended and modified.

The SpellCheckerPreferencePage Class
The implementation of the SpellCheckerPreferencePage class closely follows the pregenerated
pattern. The generated class DefaultSpellCheckerPreferencePage is renamed to
SpellCheckerPreferencePage and completed, while a new version of
DefaultSpellCheckerPreferencePage will be created from scratch as a subclass of
SpellCheckerPreferencePage.

package com.bdaum.SpellChecker.preferences;

import org.eclipse.jface.preference.*;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPreferencePage;
import org.eclipse.ui.help.WorkbenchHelp;

import com.bdaum.SpellChecker.Messages;
import com.swabunga.spell.engine.Configuration;

/**
* This class implements the common parts of spell checker preference
* pages.
*/

public abstract class SpellCheckerPreferencePage extends
FieldEditorPreferencePage
implements IWorkbenchPreferencePage {

Because only letters or digits are allowed in the user dictionary suffix, a special field editor is needed to
allow strings containing letters and digits. This is achieved by subclassing the StringFieldEditor
class and overriding the doCheckState() method. In addition, the text length is restricted to 15
characters.

/**
* Subclass of StringFieldEditor in order to check the user
* dictionary suffix for invalid characters
*/
public class UserSuffixFieldEditor extends StringFieldEditor {

public UserSuffixFieldEditor(String name,
String labelText, Composite parent) {

super(name, labelText, 15, parent);
}

466

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 466

/**
* Checks if entered values are valid
*
* @return - true if valid
*/
protected boolean doCheckState() {
String txt = getTextControl().getText();
for (int i = 0; i < txt.length(); i++) {
if (!Character.isLetterOrDigit(txt.charAt(i))) {
setErrorMessage(Messages.getString(
"SpellCheckerPreferencePage.Invalid_character_in_suffix"));
return false;

}
}
return super.doCheckState();

}
}

The constructor specifies a grid layout. The init() method just adds a descriptive text to the
preference page. I have also extended the createControl() method to set help identification for
context-sensitive help (InfoPops).

public static final String SPELLCHECKERPREFERENCESCONTEXT =
"com.bdaum.SpellChecker.preferences_context";

/* Constructor */

public SpellCheckerPreferencePage() {
super(GRID);

}

/**
* Initialization
*/
public void init(IWorkbench workbench) {
setDescription(Messages.getString(

"SpellCheckerPreferencePage.All_changes_will_take_effect"));
}

/**
* Get Plug-in specific workspace PreferenceStore instance
*
* @return - preference store instance
*/
public abstract IPreferenceStore doGetPreferenceStore();

/**
* Construct page content
*/
public void createControl(Composite parent) {
super.createControl(parent);
WorkbenchHelp.setHelp(parent.getParent(),

getPreferenceHelpContextID());

467

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 467

}

/**
* Get Help context id for this preference page
*
* @return String - the ID for context sensitive help.
*/
protected String getPreferenceHelpContextID() {
return SPELLCHECKERPREFERENCESCONTEXT;

}

A field editor for each (public) spell-checking option is constructed in the createFieldEditors()
method. Because I did not like the long and unlimited fields produced by the IntegerFieldEditor
class, I implemented the ShortIntegerFieldEditor class with a configurable number of digits (see
the following code).

/**
* Create field editors
*/

public void createFieldEditors() {
Composite composite = getFieldEditorParent();
addField(new FileFieldEditor(

SpellCheckerPreferences.SPELL_DICTIONARY,
Messages.getString(

"SpellCheckerPreferencePage.Spell_Dictionary_File"),
composite));

addField(new UserSuffixFieldEditor(
SpellCheckerPreferences.USER_DICTIONARY,
Messages.getString(
"SpellCheckerPreferencePage.User_Dictionary_File_Suffix"),

composite));
ShortIntegerFieldEditor thresholdEditor =

new ShortIntegerFieldEditor(Configuration.SPELL_THRESHOLD,
Messages.getString(
"SpellCheckerPreferencePage.Spell_Threshold"),
composite, 4);

thresholdEditor.setValidRange(0, 9999);
addField(thresholdEditor);
addField(new BooleanFieldEditor(

Configuration.SPELL_IGNOREDIGITWORDS,
Messages.getString(

"SpellCheckerPreferencePage.Ignore_Numbers"),
composite));

addField(new BooleanFieldEditor(
SpellCheckerPreferences.IGNOREONELETTERWORDS,
Messages.getString(

"SpellCheckerPreferencePage.Ignore_one_letter_words"),
composite));

addField(new BooleanFieldEditor(
Configuration.SPELL_IGNOREMIXEDCASE,
Messages.getString(

468

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 468

"SpellCheckerPreferencePage.Ignore_Mixed_Case"),
composite));

addField(new BooleanFieldEditor(
Configuration.SPELL_IGNORESENTENCECAPITALIZATION,
Messages.getString(

"SpellCheckerPreferencePage.Ignore_Sentence_Capitalization"),
composite));

addField(new BooleanFieldEditor(
Configuration.SPELL_IGNOREUPPERCASE,
Messages.getString(

"SpellCheckerPreferencePage.Ignore_Upper_Case"),
composite));

addField(new StringFieldEditor(
SpellCheckerPreferences.COMPOUNDCHARACTERS,
Messages.getString(

"SpellCheckerPreferencePage.CompoundCharacters"),
15, composite));

}
}

The DefaultSpellCheckerPreferencePage Class
The class DefaultSpellCheckerPreferencePage is very simple (see Listing 13.5). As a subclass of
SpellCheckerPreferencePage it implements only the abstract method
doGetPreferenceStore(). This method simply fetches the plug-in’s preferences store and returns it.

package com.bdaum.SpellChecker.preferences;

import org.eclipse.jface.preference.IPreferenceStore;

import com.bdaum.SpellChecker.SpellCheckerPlugin;

/**
* This class implements the preference page for the basic spell
* checker options.
*/

public class DefaultSpellCheckerPreferencePage extends
SpellCheckerPreferencePage {

/**
* Returns the preference store of the default preferences
*
* @return - the default preference store
*/
public IPreferenceStore doGetPreferenceStore() {
return SpellCheckerPlugin.getDefault().getPreferenceStore();

}
}

Listing 13.5

469

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 469

The ShortIntegerFieldEditor Class
The ShortIntegerFieldEditor class (Listing 13.6) is based on the standard field editor
StringFieldEditor. In addition, it sets the number of allowed characters to the specified width and
checks the input for nonnumeric characters and for violation of the specified limits.

package com.bdaum.SpellChecker.preferences;

import org.eclipse.jface.preference.StringFieldEditor;
import org.eclipse.jface.resource.JFaceResources;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Text;

public class ShortIntegerFieldEditor extends StringFieldEditor {
private int minValidValue = 0;
private int maxValidValue = Integer.MAX_VALUE;

/**
* Default constructor.
*/
public ShortIntegerFieldEditor() {
super();

}

/**
* Qualified constructor.
*
* @param name - preference key
* @param labelText - label text string
* @param parent - parent composite
* @param textLimit - maximum text width
*/
public ShortIntegerFieldEditor(String name,

String labelText, Composite parent, int width) {
super(name, labelText, width, parent);
setTextLimit(width);
setEmptyStringAllowed(false);
setErrorMessage(JFaceResources

.getString("IntegerFieldEditor.errorMessage"));

}

/**
* Sets the range of valid values for this field.
*
* @param min - he minimum allowed value (inclusive)
* @param max - the maximum allowed value (inclusive)
*/
public void setValidRange(int min, int max) {
minValidValue = min;
maxValidValue = max;

}

/**

470

Chapter 13

Listing 13.6 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 470

* Checks for valid field content
*
* @return - true if valid
*/
protected boolean checkState() {
Text text = getTextControl();
if (text == null) return false;
String numberString = text.getText();
try {
int number = Integer.valueOf(numberString).intValue();
if (number >= minValidValue && number <= maxValidValue) {
clearErrorMessage();
return true;

}
} catch (NumberFormatException e1) {
}
showErrorMessage();
return false;

}
}

Listing 13.6 (Continued)

Reading from the PreferenceStore
What is needed now is a method to pass the options set in the preferences pages to the spell-checking
engine. In the SpellCheckerPlugin class (see the section “The Plugin Class”) the jazzy engine was
already told to fetch its configuration parameters from the SpellCheckConfiguration class (by set-
ting the system property jazzy).

Passing the preference values is quite simple. The SpellCheckConfiguration class (Listing 13.7)
extends the jazzy class Configuration and overrides the methods getBoolean(), setBoolean(),
getInteger(), and setInteger(). In addition, the getString() method was added to be able to
fetch the dictionary path and the user dictionary suffix. When a get…() method is invoked, the value
belonging to the specified key is fetched from the plug-in preferences. Which plug-in preferences are
selected is determined by the SpellCheckManager depending on the type of file to be checked.

The set…() methods do nothing, because all preferences are modified via the PreferencePages and
not via the Configuration class.

package com.bdaum.SpellChecker;

import org.eclipse.core.runtime.Preferences;

import com.bdaum.SpellChecker.preferences.SpellCheckerPreferences;
import com.swabunga.spell.engine.Configuration;

public class SpellCheckConfiguration extends Configuration {

private static final String TRUE = "true";

471

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.7 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 471

/**
* Fetch integer value from Preferences
*
* @param key - identification of value
* @return - value belonging to the key
*/
public int getInteger(String key) {
try {
return Integer.parseInt(getString(key));

} catch (NumberFormatException e) {
return 0;

}
}

/**
* Fetch Boolean value from Preferences
*
* @param key - identification of value
* @return - value belonging to the key
*/
public boolean getBoolean(String key) {
return TRUE.equals(getString(key));

}

/**
* Fetch string value from Properties or Preferences
*
* @param key - identification of value
* @return - value belonging to the key
*/
public String getString(String key) {
SpellCheckerPreferences preferences =

SpellCheckerPlugin.getManager().getPreferences();
Preferences prefs = preferences.getPluginPreferences();
return prefs.getString(key);

}

/**
* All preferences are set via the PreferencePages.
* Therefore, the setXXX() implementation do nothing here.
*/
public void setInteger(
String key, int value) {}

public void setBoolean(
String key, boolean value) {}

}

Listing 13.7 (Continued)

472

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 472

The Help System
The Eclipse help system is designed in such a way that allows the implementation of help pages inde-
pendently from the application, using a standard HTML editor. The association of the individual help
pages to help topics (or in a context-sensitive way to GUI components) is defined via XML files.

For space reasons I will not show the HTML pages here.

The Help Table of Contents
The path of the help table of contents has already been declared in the manifest file plugin.xml (see
the section “The Plug-in Configuration”). The file toc.xml is shown in Listing 13.8.

<?xml version="1.0" encoding="UTF-8"?>
<toc label="Spell Checker" topic="html/spelling.html">
<topic label="Correction View" href="html/SpellCheckerView.html"/>
<topic label="Dictionaries" href="html/Dictionaries.html"/>
<topic label="Preferences">
<topic label="Default Preferences"

href="html/SpellCheckerPreferences.html"/>
<anchor id="postPreferences"/>

</topic>
<topic label="Other Information">
<topic label="Acknowledgements"

href="html/Acknowledgements.html"/>
<topic label="Source code" href="html/SourceCode.html"/>

</topic>
</toc>

Listing 13.8

An HTML page is assigned to each topic element and also to the root element of the table of contents
(toc). Topics may branch into subtopics, that is, topics may be nested. You can define a display text for
each topic with the attribute label. The topics are displayed as a tree structure on the left-hand side of
the help browser. The end user can open the associated HTML page by clicking on a topic.

The definition of the anchor element under the Default Preferences topic is a special case. Here an
extension point is created to which the help systems of other plug-ins can refer. Thus, the help systems
of several plug-ins can merge.

Context-Sensitive Help
The path of the file containing the associations of help pages with GUI elements has also already been
declared in the manifest file plugin.xml (see the section “The Plug-in Configuration”).

The contexts.xml file is shown in Listing 13.9.

473

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 473

<?xml version="1.0" encoding="UTF-8"?>
<contexts>
<context id="action_context">
<description>Help for Spell Checker Action Set</description>
<topic href="html/spelling.html" label="Spell Checker"/>

</context>
<context id="preferences_context">
<description>Help for Spell Checker Preferences</description>
<topic href="html/SpellCheckerPreferences.html"

label="Spell Checker Preferences"/>
</context>
<context id="correctionView_context">
<description>Help for Spell Checker Correction View</description>
<topic href="html/SpellCheckerView.html"

label="Spell Checker Correction View"/>
</context>

</contexts>

Listing 13.9

All of the individual context associations are listed in the element contexts. Each context definition
refers to a context ID that identifies the corresponding GUI element. This ID is always specified here
relative to the plug-in. Each context definition contains a description element, which later appears in the
InfoPop, and a topic element that refers to the associated HTML page.

Where do the context IDs come from? This is not handled very consistently in Eclipse. In some cases,
context IDs are defined in the manifest for plugin.xml (for example, for actions), while in other cases,
the context IDs must be set in the Java code. You have already seen this in the classes
SpellCheckPreferencePage and SpellCorrectionView. In these cases, the context IDs are set in
the Eclipse help system with the help of the static WorkbenchHelp method setHelp().

Active Help
At the end of this section on help I want to demonstrate how active help works. The main help page
spelling.html contains two hyperlinks labeled Edit > Check Spelling and Window > Customize
Perspective.... By activating these hyperlinks, the end user can start spell-checking directly from the
help page or can configure the current perspective, for example, add the spell-checking function to the
toolbar and the menu.

Here is an HTML fragment of this page. The link to the script livehelp.js and the invocation of the
script in the hyperlinks are printed in bold type:

<head>
<script language="JavaScript"

src="../../org.eclipse.help/livehelp.js"></script>
</head>

<h1>Spell Checker Help</h1>
<hr color="#66FFFF">
<h4>Spell checking on demand</h4>
<p>The spell checker is started by placing the cursor inside of a text or

474

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 474

editor area, then invoking the function
<i><a href='javascript:liveAction("com.bdaum.SpellChecker",
"com.bdaum.SpellChecker.actions.ActiveHelpAction", "start")'>Edit>Check
Spelling</i> or pressing the spell checker tool button (<img
border="0" src="../icons/basic/correction_view.gif" width="16" height="16">).
Alternatively, you may select a text area and then press the spell checker
button.</p>
<p>To add this function to the workbench toolbar and to the menu go to <i><a
href='javascript:liveAction("com.bdaum.SpellChecker",
"com.bdaum.SpellChecker.actions.ActiveHelpAction",
"install")'>Window>Customize
Perspective...</i>, open the <i>Commands</i> page, and
checkmark <i>SpellChecker</i>.</p>

The ActiveHelpAction class is specified as the second parameter of the script invocation.

The ActiveHelpAction Class
The setInitializationString() method accepts the third parameter of the JavaScript invocation
(in this case, the value start or install). This allows you to implement different help actions depend-
ing on the parameter value.

package com.bdaum.SpellChecker.actions;

import org.eclipse.help.ILiveHelpAction;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.internal.WorkbenchPage;

import com.bdaum.SpellChecker.SpellCheckerPlugin;

/**
* Invoking spell checking via active help
*/
public class ActiveHelpAction implements ILiveHelpAction {
// JavaScript invocation parameter
String data;

/**
* Accepts the third parameter of the script invocation
*/
public void setInitializationString(
String data) {
// Remember the parameter
this.data = data;

}

475

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 475

Running the Help Action
The run() method first tries to find a suitable workbench window. If there is an active window, this
window is used. Otherwise, the first available window is used. If none exists, the help function will not
work.

Then the current Display instance is fetched from this window instance. The rest of the action is per-
formed in the SWT thread in order to avoid thread conflicts. The window is brought to the foreground,
and, depending on the parameter of the script invocation, either the function Window > Customize
Perspective... is executed via page.editActionSets() or the spell-checking action is started by
fetching the spell-checking action delegate from the plug-in class and calling the run() method of the
SpellCheckingActionDelegate instance.

/**
* Runs help action
*/
public void run() {
IWorkbench wb = PlatformUI.getWorkbench();
final IWorkbenchWindow window =

(wb.getActiveWorkbenchWindow() == null) ?
wb.getWorkbenchWindows()[0] :
wb.getActiveWorkbenchWindow();

if (window == null) return;
Display display = window.getShell().getDisplay();
if (display == null) return;
// Active help does not run in the SWT thread.
// Therefore we must encapsulate all GUI accesses into
// a syncExec() method.
display.syncExec(new Runnable() {
public void run() {
// Bring the workbench window into the foreground
Shell shell = window.getShell();
shell.setMinimized(false);
shell.forceActive();
if (data.equals("install")) {
// Fetch workbench page
WorkbenchPage page = (WorkbenchPage) window.getActivePage();
if (page == null) return;
// Call Perspective Configuration function
page.editActionSets();

} else if (data.equals("start")) {
// Get the SpellCheckingActionDelegate
IWorkbenchWindowActionDelegate delegate =

SpellCheckerPlugin.getSpellCheckingActionDelegate();
if (delegate == null) return;
// Execute the spell checking action
delegate.run(null);

}
}

});
}

}

476

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 476

Figure 13.4

Since this specialized spell checker is implemented on the basis of the previous plug-in, only four Java
classes are required: a small Plugin class, a tokenizer specialized for the Java properties syntax, a class
for the specialized Preferences, and the corresponding PreferencePage. Additional pages are
added to the help system, too.

Setting Up the Project
The Java properties spell checker is implemented as a separate project. Again, invoke the New Wizard
with the function File > New > Plug-in Project. On the following wizard page, enter the name of the
project: com.bdaum.SpellChecker.JavaProperties.

477

Project Three: A Spell Checker as an Eclipse Plug-in

A Plug-in for Java Properties
After having finished the implementation of the main spell-checker plug-in, you are now going to imple-
ment a specialized spell checker plug-in for Java properties files in this section. This plug-in connects to
the previous plug-in via the extension point documentTokenizer. Since this plug-in is aware of the
syntax of properties files, it can check exactly those portions of the file content that are of interest in
terms of orthography (Figure 13.4).

15_020059_ch13.qxd 10/8/04 12:49 PM Page 477

On the next wizard page, select Java Project and change the name of the Runtime Library to
JavaPropertiesTokenizer.jar. On the following page, make sure that the option Generate the
Java Class That Controls the Plug-in’s Life Cycle is checked, make sure that the name of this class is set
to JavaPropertiesPlugin, and enter a suitable Provider Name. On the following page, leave the
option Create a Plug-in Using One of the Templates unchecked, and press Finish. The wizard now gener-
ates the manifest file plugin.xml and the class JavaPropertiesPlugin in the new project.

The Manifest
In this plug-in you have to create most of the manifest file by yourself:

❑ On the Overview page, change the Plug-in Name to Spellchecker for Java Properties.

❑ On the Dependencies page, it is sufficient to mark the plug-in com.bdaum.SpellChecker that
you created in the previous sections as a prerequisite. This allows you to use the classes of this
plug-in during the implementation of the new plug-in. All other dependencies are automatically
computed from this plug-in. You should save the manifest file before you continue, because
otherwise these inclusions would not be considered in the following steps.

❑ On the Extensions page, add extensions to the extension points com.bdaum.SpellChecker
.documentTokenizer, org.eclipse.ui.PreferencePages, org.eclipse.help.toc,
and org.eclipse.help.contexts. For all these points use schema-based extensions.
The corresponding schemas, among which is the previously created schema
documentTokenizer.exsd for the extension point com.bdaum.SpellChecker
.documentTokenizer, help you in completing the extension point specification. You must
uncheck the option Show Only Extension Points from the Required Plug-ins when you want
to add the extension points org.eclipse.help.toc and org.eclipse.help.contexts.
You must also first create the toc.xml and contexts.xml files to be able to add these
extension points (see “The Help System”). See the following listing for details.

Tokenizer Extension
Let’s step, as an example, through the specification of the extension point com.bdaum.SpellChecker
.documentTokenizer. The ID for this extension point is com.bdaum.SpellChecker
.JavaProperties and its name is Java-Properties Spell Checker. Now right-click on this
extension point and select the menu item New > Tokenizer. A new element called com.bdaum
.SpellChecker.JavaProperties.tokenizer1 is now created as a child element of
com.bdaum.SpellChecker.documentTokenizer. When you select this element, you will see
the individual attributes of this element in the details area as they were defined in the
documentTokenizer.exsd schema.

In the Class entry, click the small button at the right-hand side of the entry and select Create a New Java
Class. In the dialog that appears, enter com.bdaum.SpellChecker.JavaProperties under Package
Name and JavaPropertiesTokenizer under Class Name. This will automatically generate a stub for
the new class.

478

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 478

Under the Entry Extensions, enter the file extension properties, and under the Entry ID, enter
com.bdaum.SpellChecker.Java.JavaPropertiesWordTokenizer. Under Name, enter
Java-Properties Spell Checker. Also, under Preferences, press the little button at the
right-hand side and create a new Java class called JavaPropertiesPreferences in the
com.bdaum.SpellChecker.JavaProperties package. In this case, too, a stub is generated
immediately.

Manifest
Listing 13.10 shows the complete plug-in manifest for the Java-Properties spell checker add-on.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="com.bdaum.SpellChecker.JavaProperties"
name="Spellchecker for Java-Properties"
version="1.0.0"
provider-name="bdaum industrial communications"
class="com.bdaum.SpellChecker.JavaProperties.JavaPropertiesPlugin">

<runtime>
<library name="JavaPropertiesTokenizer.jar">
</library>

</runtime>
<requires>

<import plugin="com.bdaum.SpellChecker"/>
</requires>

<extension id="com.bdaum.SpellChecker.documentTokenizer"
name="Java-Properties Spell Checker"
point="com.bdaum.SpellChecker.documentTokenizer">

<tokenizer id=
"com.bdaum.SpellChecker.Java.JavaPropertiesWordTokenizer"

preferences=
"com.bdaum.SpellChecker.JavaProperties.JavaPropertiesPreferences"

name="Java-Properties Spell Checker"
extensions="properties"
class=

"com.bdaum.SpellChecker.JavaProperties.JavaPropertiesTokenizer">
</tokenizer>

</extension>
<extension point="org.eclipse.ui.preferencePages">

<page id="com.bdaum.SpellChecker.JavaProperties.preferencePage"
name="%Java_Properties"
category=

"com.bdaum.SpellChecker.preferences.defaultPreferences"
class=

"com.bdaum.SpellChecker.JavaProperties.JavaPropertiesPreferencePage">
</page>

</extension>
<extension point="org.eclipse.help.toc">

<toc file="toc.xml">
</toc>

479

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.10 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 479

</extension>
<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml">
</contexts>

</extension>
</plugin>

Listing 13.10 (Continued)

The Plugin Class
The JavaPropertiesPlugin class is minimal (see Listing 13.11). The only extension is the initializa-
tion of the preferences. This is delegated to the JavaPropertiesPreferences class (see the next
section).

package com.bdaum.SpellChecker.JavaProperties;

import org.eclipse.jface.preference.IPreferenceStore;
import org.eclipse.ui.plugin.AbstractUIPlugin;

import com.bdaum.SpellChecker.preferences.SpellCheckerPreferences;

/**
* The main plug-in class
*/
public class JavaPropertiesPlugin extends AbstractUIPlugin {
// The shared instance
private static JavaPropertiesPlugin plugin;

/**
* The constructor
*/
public JavaPropertiesPlugin() {
super();
plugin = this;

}

/**
* Returns the shared instance
*/
public static JavaPropertiesPlugin getDefault() {
return plugin;

}

/**
* Initialize PreferenceStore
*/
protected void initializeDefaultPluginPreferences() {
IPreferenceStore store = getPreferenceStore();
SpellCheckerPreferences preferences =

new JavaPropertiesPreferences();
preferences.initializeDefaults(store);

}
}

Listing 13.11

480

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 480

The Preferences
The preferences of this plug-in are built on top of the preferences of the previous plug-in.
The JavaPropertiesPlugin class inherits all the preferences from SpellCheckerPreferences
but uses a plug-in–specific PreferenceStore.

The preferences for Java-Properties files and text files can therefore be identically named but may have
different values. Some options specific to properties files are added, and different default settings are
used for the inherited options; therefore, the initializePublicPreferences() method is overrid-
den. See Listing 13.12.

package com.bdaum.SpellChecker.JavaProperties;

import org.eclipse.core.runtime.Preferences;
import org.eclipse.jface.preference.IPreferenceStore;

import com.bdaum.SpellChecker.SpellCheckerPlugin;
import com.bdaum.SpellChecker.preferences.SpellCheckerPreferences;
import com.swabunga.spell.engine.Configuration;

public class JavaPropertiesPreferences extends
SpellCheckerPreferences {

// Additional options
public static final String CHECKCOMMENTS = "checkComments";
public static final String CHECKKEYS = "checkKeys";

/**
* Set default preference values
*
* @param store - the preference store
*/
protected void initializePublicPreferences(IPreferenceStore store) {
store.setDefault(SPELL_DICTIONARY, SpellCheckerPlugin

.getDefaultDictionaryFileName());
store.setDefault(Configuration.SPELL_THRESHOLD, 140);
store.setDefault(Configuration.SPELL_IGNOREDIGITWORDS, true);
store.setDefault(

Configuration.SPELL_IGNOREINTERNETADDRESSES, true);
store.setDefault(Configuration.SPELL_IGNOREMIXEDCASE, false);
store.setDefault(Configuration.SPELL_IGNOREMULTIPLEWORDS, false);
store.setDefault(

Configuration.SPELL_IGNORESENTENCECAPITALIZATION, false);
store.setDefault(Configuration.SPELL_IGNOREUPPERCASE, true);
store.setDefault(IGNOREONELETTERWORDS, false);
store.setDefault(COMPOUNDCHARACTERS, ".:/@\\");
store.setDefault(CHECKCOMMENTS, false);
store.setDefault(CHECKKEYS, false);

}

/**
* Get plug-in specific preferences
*

481

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.12 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 481

* @return Preferences
*/
public Preferences getPluginPreferences() {
return JavaPropertiesPlugin.getDefault().getPluginPreferences();

}
}

Listing 13.12 (Continued)

The Preference Page
The JavaPropertiesPreferencePage class (Listing 13.13) is similar to the default preference page,
so it is defined as a subclass of the SpellCheckerPreferencePage class. Of course, you must add the
additional options to the GUI. A different context ID for the help pages is used, too. A different
PreferenceStore instance is retrieved from the current plug-in with the
doGetPreferenceStore() method and to guarantee that the plug-in works with its own set of pref-
erence values.

package com.bdaum.SpellChecker.JavaProperties;

import org.eclipse.jface.preference.BooleanFieldEditor;
import org.eclipse.jface.preference.IPreferenceStore;
import org.eclipse.swt.widgets.Composite;
import com.bdaum.SpellChecker.preferences.SpellCheckerPreferencePage;

public class JavaPropertiesPreferencePage extends
SpellCheckerPreferencePage {

/**
* Get Plug-in specific PreferenceStore instance
*/
public IPreferenceStore doGetPreferenceStore() {
return JavaPropertiesPlugin.getDefault().getPreferenceStore();

}

/**
* Get Help context id for this preference page
*
* @return String - the ID for context sensitive help.
*/
protected String getPreferenceHelpContextID() {
return "com.bdaum.SpellChecker.JavaProperties.preferences_context";
}

/**
* Add field editors specific for Java Properties
*/

482

Chapter 13

Listing 13.13 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 482

public void createFieldEditors() {
// Create standard field editors
super.createFieldEditors();
// Create additional field editors
Composite composite = getFieldEditorParent();
addField(new BooleanFieldEditor(

JavaPropertiesPreferences.CHECKCOMMENTS,
Messages.getString(

"JavaPropertiesSpellCheckerPreferencePage.Check_Comments"),
composite));

addField(new BooleanFieldEditor(
JavaPropertiesPreferences.CHECKKEYS,
Messages.getString(

"JavaPropertiesSpellCheckerPreferencePage.Check_Keys"),
composite));

}
}

Listing 13.13 (Continued)

The Java-Properties Tokenizer
The Java-Properties tokenizer is also implemented as a subclass of
AbstractDocumentWordTokenizer. This class consists mainly of a small parser that scans the Java-
Properties file and identifies comments, keys, and values. Depending on the preferences—which are
fetched via the SpellCheckConfiguration class—the corresponding text section is admitted to the
spell-checking process or not.

Since this tokenizer does not contain Eclipse-specific code, I don’t list it here. Interested readers can find
the complete code at www.wrox.com).

The Help System
This plug-in also needs the help control files toc.xml and contexts.xml, along with the correspond-
ing HTML pages. Here is the code for toc.xml. Note the attribute link_to in the toc element.
This attribute creates a link to the anchor point defined previously in the section “The Help Table of
Contents.”

<?xml version="1.0" encoding="UTF-8"?>
<toc link_to="../com.bdaum.SpellChecker/toc.xml#postPreferences"

label="Java Properties">
<topic label="Java Properties"

href="html/JavaPropertiesPreferences.html"/>
</toc>

The contexts.xml file defines only a single new context (for the Java-Properties preference page):

483

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 483

<?xml version="1.0" encoding="UTF-8"?>
<contexts>
<context id="preferences_context">
<description>Help for Spell Checker JavaProperties Preferences
</description>
<topic href="html/JavaPropertiesPreferences.html"

label="Spell Checker Preferences for Java Property files"/>
</context>

</contexts>

Internationalizing the Spell Checker
Internationalizing the spell checker involves several tasks. First, you need to deal with text constants
within Java programs. Then there are the manifest files that contain text constant in national languages.
And finally, there are help pages and help control files that need to be translated.

Text Constants in Java Code
The Java code given throughout this chapter occasionally contained a call to Messages.getString().
Every time text was to be displayed to the end user, the text was not given in its literal form, but rather
the text was fetched from the Messages class by specifying a key. In some cases, additional parameters
were specified that were to be inserted into the text delivered by the method getString().

Here now is the definition of the Messages class for the main spell-checking plug-in (Listing 13.14). Note
that each plug-in needs its own Messages class with the constant BUNDLE_NAME appropriately set.

package com.bdaum.SpellChecker;

import java.text.MessageFormat;
import java.util.MissingResourceException;
import java.util.ResourceBundle;

public class Messages {

private static final String BUNDLE_NAME =
"com.bdaum.SpellChecker.Messages";

private static final ResourceBundle RESOURCE_BUNDLE =
ResourceBundle.getBundle(BUNDLE_NAME);

/**
* Fetches a message for the specified key
*
* @param key - key to be translated
* @return - the message
*/
public static String getString(String key) {
try {
return RESOURCE_BUNDLE.getString(key);

484

Chapter 13

Listing 13.14 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 484

} catch (MissingResourceException e) {
return '!' + key + '!';

}
}

/**
* Fetches a message for the specified key and inserts parameters
*
* @param key - key to be translated
* @param params - parameters to be inserted into the message
* @return - the message
*/
public static String getString(String key, Object[] params) {
if (params == null) return getString(key);
try {
return MessageFormat.format(getString(key), params);

} catch (Exception e) {
return "!" + key + "!";

}
}

}

Listing 13.14 (Continued)

A similar class is needed for the Java-Properties plug-in but with the constant BUNDLE_NAME set to
com.bdaum.SpellChecker.JavaProperties.Messages.

Of course, the file with the display texts is also needed. This file is named Messages.properties and
is shown in Listing 13.15.

SpellCheckManager.Default_Spell_Checker=Default Spell Checker
SpellCheckManager.Could_not_create_tokenizer=\
Could not create tokenizer
SpellCheckManager.No_dictionary_file_declared=\
No dictionary file declared
SpellCheckManager.Dictionary_file_not_found=\
Dictionary file {0} not found
SpellCheckManager.Error_reading_dictionary_file=\
Error reading dictionary file {0}
SpellCheckerImages.Bad_URL_when_loading_disabled_image=\
Bad URL when loading disabled image
SpellCheckerImages.Bad_URL_when_loading_hover_image=\
Bad URL when loading hover image
SpellCheckerPlugin.Error_resolving_dictionary_URL=\
Error resolving dictionary URL
CheckSpellingActionDelegate.Cannot_initialize_SpellCorrectionView=\
Cannot initialize SpellCorrectionView
SpellCheckerPreferencePage.Invalid_character_in_suffix=\
Invalid character in suffix
SpellCheckerPreferencePage.All_changes_will_take_effect=\
All changes will take effect for the next spell checking pass.\n\n
SpellCheckerPreferencePage.Spell_Dictionary_File=\

485

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.15 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 485

Spell Dictionary &File
SpellCheckerPreferencePage.User_Dictionary_File_Suffix=\
User Dictionary File Suffi&x
SpellCheckerPreferencePage.Spell_Threshold=Spell &Threshold
SpellCheckerPreferencePage.Ignore_Numbers=&Ignore Numbers
SpellCheckerPreferencePage.CompoundCharacters=\
Ignore Com£s containing these Characters
SpellCheckerPreferencePage.Ignore_one_letter_words=\
I&gnore one letter words
SpellCheckerPreferencePage.Ignore_Mixed_Case=Ignore &Mixed Case
SpellCheckerPreferencePage.Ignore_Sentence_Capitalization=\
Ignore &Sentence Capitalization
SpellCheckerPreferencePage.Ignore_Upper_Case=Ignore &Upper Case
SpellCorrectionView.No_suggestions=(No suggestions)
SpellCorrectionView.Replace=Replace
SpellCorrectionView.Replace_occurrence=Replace single occurrence
SpellCorrectionView.Replace_all=Replace all
SpellCorrectionView.Replace_all_occurrences=Replace all occurrences
SpellCorrectionView.Add_to_dictionary=Add to dictionary
SpellCorrectionView.Add_word_to_dictionary=Add word to dictionary
SpellCorrectionView.Ignore=Ignore
SpellCorrectionView.Ignore_spelling_problem=Ignore spelling problem
SpellCorrectionView.Ignore_all=Ignore all
SpellCorrectionView.Ignore_for_all_occurrences=\
Ignore for all occurrences
SpellCorrectionView.StartCancel=Start/Stop
SpellCorrectionView.Start_spell_checking=Start spell checking
SpellCorrectionView.Cancel_spell_checking=Stop spell checking
SpellCorrectionView.Check=Check
SpellCorrectionView.done=\ (done)
SpellCorrectionView.in_progress=\ (in progress)
SpellCorrectionView.loading=\ (loading...)
SpellCorrectionView.aborted=\ (Aborted)

Listing 13.15 (Continued)

For the Java properties file, of course, different texts are required in the Messages.properties file:

JavaPropertiesSpellCheckerPreferencePage.Check_Comments=\
Ch&eck Comments
JavaPropertiesSpellCheckerPreferencePage.Check_Keys=\
Check &Keys

As a matter of fact, these files (and also the Messages.java classes) were not created manually.
Instead, all display constants were first hard-coded into the different classes of the spell checker.
Then, the function Source > Externalize Strings... was used to extract these text constants into the
Messages.properties files, as discussed in the section “Text Constants in Programs” in Chapter 12.

486

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 486

Text Constants in Manifest Files
A similar logic applies to translatable text constants in the manifest file plugin.xml. In the Imported
Files section you probably wondered why some of the text constants in the manifest file started with the
% character. The % character indicates a key value that is to be translated via the plugin.properties
file. This file is placed directly into the project folder com.bdaum.SpellChecker. Listing 13.16 shows
the content of this file.

Spell_Checker=Spell Checker
Check_Spelling=Check Spelling
Checks_any_text=Checks the spelling of any text
Spell=Spell
Spelling=Spelling
Spell_Default=Spell Default
SpellChecker_Preferences=SpellChecker Preferences
Starts_spell_checking=Starts spell checking
Spell_Checker_Command=Spell Checker Command

Listing 13.16

A similar file is needed for the Java-Properties plug-in. The content of the plugin.properties file in
this plug-in is

Java_Properties=Java-Properties

Creating a Language Fragment
The best way to add foreign language support for a given plug-in is to create a fragment. For the spell
checker, you will need to create foreign language fragments for both plug-ins: the basic spell checker and
the Java-Properties plug-in.

Fragment Project
To create foreign language fragments, invoke the function File > New > Fragment Project. On the first
page of the Fragment Wizard, enter com.bdaum.SpellChecker.de as the project name. On the next
wizard page, make sure that the option Create a Java Project is marked, and change the Runtime Library
to SpellChecker.de.jar. On the following page, enter a suitable provider name and specify
SpellChecker German Fragment as the fragment name. Then press the Browse button to the right
of the Plug-in ID field and select the plug-in com.bdaum.SpellChecker. This will associate the frag-
ment with the plug-in. As the Match Rule select Greater or Equal. This will ensure that the fragment will
work for the specified version and all later versions. Then press the Finish button to generate the frag-
ment manifest file fragment.xml. The resulting source code of this file should look like Listing 13.17.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<fragment id="com.bdaum.SpellChecker.de"

name="SpellChecker German Fragment"
version="1.0.0"
provider-name="bdaum industrial communications"

487

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.17 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 487

plugin-id="com.bdaum.SpellChecker"
plugin-version="1.0.0"
match="greaterOrEqual">
<runtime>

<library name="SpellChecker.de.jar">
<export name="*"/>

</library>
</runtime>

</fragment>

Listing 13.17 (Continued)

Program Texts
After you have created the fragment in this way, you can start to add foreign language resources. For
example, a German version of the Messages.properties file is needed. To create such a file, first cre-
ate the com.bdaum.SpellChecker package in the folder src. Then go back to the plug-in project
com.bdaum.SpellChecker and select the Messages.properties file. Then press Ctrl+C to copy it
to the clipboard. Return to the fragment project and select the new package. Press Ctrl+V to paste the file
into the package. Then rename the file as Messages_de.properties by applying the context function
Refactor > Rename. Now you can edit this file and translate English text into German.

SpellCheckManager.Default_Spell_Checker=StandardrechtschreibeprŸfung
SpellCheckManager.Could_not_create_tokenizer=\
Tokenizer konnte nicht erzeugt werden
SpellCheckManager.No_dictionary_file_declared=\
Kein W?rterbuch deklariert
SpellCheckManager.Dictionary_file_not_found=\
W?rterbuchdatei {0} nicht gefunden
SpellCheckManager.Error_reading_dictionary_file=\
Fehler beim Lesen des W?rterbuchs {0}
SpellCheckerImages.Bad_URL_when_loading_image=\
UngŸltiger URL beim Laden eines Bildes
...

Manifest Texts
The next step is to do the same for the plugin.properties file. Just copy the file from the
plug-in project into the fragment project directly beneath the project folder and rename it as
plugin_de.properties. Then edit it and perform the translation.

Spell_Checker=RechtschreibeprŸfung
Check_Spelling=Check Spelling
Checks_any_text=PrŸft die Rechtschreibung in allen Textfeldern
Spell=Rechtschreibung
Spelling=Rechtschreibung
Spell_Default=StandardrechtschreibeprŸfung
SpellChecker_Preferences=Einstellungen der RechtschreibeprŸfung
Starts_spell_checking=Beginnt RechtschreibeprŸfung
Spell_Checker_Command=RechtschreibeprŸfungskommando

488

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 488

Help Files
The help files must be translated, too. Create a new folder named nl directly under the project folder.
In this new folder create a subfolder called de. Then copy the files toc.xml and contexts.xml from
the plug-in project into this folder. Finally copy the folder html from the plug-in project into the folder
nl/de.

Now you can translate the descriptions and labels in the toc.xml and contexts.xml files and also, of
course, the help pages. Here is the German version of the toc.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<toc label="RechtschreibeprŸfung" topic="html/spelling.html">
<topic label="Korrekturfenster" href="html/SpellCheckerView.html"/>
<topic label="W?rterbŸcher" href="html/Dictionaries.html"/>
<topic label="Einstellungen">
<topic label="Standardeinstellungen"

href="html/SpellCheckerPreferences.html"/>
<anchor id="postPreferences"/>

</topic>
<topic label="Weitere Informationen">
<topic label="Danksagungen" href="html/Acknowledgements.html"/>
<topic label="Quellcode" href="html/SourceCode.html"/>

</topic>
</toc>

And here is the German version of the contexts.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<contexts>
<context id="action_context">
<description>
Hilfe fŸr die Aktionsgruppe der RechtschreibeprŸfung

</description>
<topic href="html/spelling.html" label="RechtschreibeprŸfung"/>

</context>
<context id="preferences_context">
<description>
Hilfe fŸr die Einstellungen der RechtschreibeprŸfung

</description>
<topic href="html/SpellCheckerPreferences.html"

label="RechtschreibeprŸfung-Einstellungen"/>
</context>
<context id="correctionView_context">
<description>
Hilfe fŸr das Korrekturfenster der RechtschreibeprŸfung

</description>
<topic href="html/SpellCheckerView.html"

label="RechtschreibeprŸfung-Korrekturfenster"/>
</context>

</contexts>

The translation of the help pages is left to your imagination.

489

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 489

Java-Properties
To create a foreign language fragment for the Java-Properties plug-in, just repeat the above steps.
Create a new fragment project with the project name com.bdaum.SpellChecker.JavaProperties
for the plug-in com.bdaum.SpellChecker.JavaProperties, and then create the package
com.bdaum.SpellChecker.JavaProperties.de and German-language versions of the
Messages.properties, plugin.properties, toc.xml, and contexts.xml files and the help
pages as shown previously.

Deploying the Spell Checker
Deploying a software project such as the spell checker as a product involves several tasks. For easy
installation, I recommend that you wrap the plug-ins that make up the product into a feature or a set of
features. In this example, two features are created: one for the English version of the spell checker, and
another for the German language fragments. Additional customization is performed in an about.ini
file to deliver a finished and polished product. Auxiliary documentation (such as license files) is added.

Defining the Spell Checker Feature
The best deployment form for the spell checker is as an installable feature for the Eclipse platform. This
feature should contain the default spell checker plug-in plus the spell checker plug-in for Java-Properties
files.

Feature Project
To deploy the spell checker in this manner, create a new feature project. Invoke the function File > New
> Feature Project. Under Project Name enter a suitable name, such as Spell Checker for Eclipse. On the
next wizard page, replace the proposed Feature ID with com.bdaum.SpellChecker. This feature
identification matches the identification of your spell checker plug-in. The Feature Provider should also
be completed, for example, bdaum.

On the next page, you can specify a custom install handler. This is not required for the spell checker
feature, so leave the option The Feature Will Contain a Custom Install Handler unchecked.

On the following page, you can determine which plug-ins should be added to the feature. Checkmark
both plug-ins com.bdaum.SpellChecker and com.bdaum.SpellChecker.JavaProperties.
When you press the Finish button, the Feature Editor opens. The information on the Overview page is
already complete. The Primary Feature field is not marked—this is required only for standalone
products. In terms of Eclipse, however, the spell checker is not a standalone product but an add-on to
the Eclipse platform.

On the Information page, you can complete the Feature Description, Copyright Notice, and License
Agreement sections directly using text, or you may refer to a relevant document via a URL. For example,
you may create an HTML file called license.html describing the license conditions in this feature
project. In the License Agreement section, you then specify the value license.html in the Optional
URL field. However, it is sensible to specify important license conditions as text, too, because the end
user is prompted with this text information only during the installation of the feature.

490

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 490

On the Content page, just press the Compute button. This will determine all the plug-ins that are
required on the target platform for running the feature successfully.

Feature Manifest
This completes the definition of the feature manifest. Listing 13.18 shows the complete code of the
feature.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<feature id="com.bdaum.SpellChecker"

label="Spell Checker for Eclipse"
version="1.0.0"
provider-name="bdaum industrial communications">

<install-handler/>
<description>

This feature provides a general purpose spell checker for Eclipse.
In addition a special purpose spell checker for Java-Properties
files is provided.

</description>
<copyright>

(c) 2003-2004 Berthold Daum
</copyright>
<license url="license.html">

License
This Plug-in is provided to you under the terms and conditions
of the Common Public License Version 1.0. A copy of the CPL is
available at http://www.eclipse.org/legal/cpl-v10.html.
Third Party Content
The Content includes items that have been sourced from third
parties as follows:
Jazzy 0.5
Jazzy is licensed under the LGPL.

</license>
<requires>

<import plugin="org.eclipse.core.runtime"/>
<import plugin="org.eclipse.core.resources"/>
<import plugin="org.eclipse.ui"/>
<import plugin="org.eclipse.ui.ide"/>
<import plugin="org.eclipse.jface.text"/>
<import plugin="org.eclipse.ui.workbench.texteditor"/>
<import plugin="org.eclipse.help"/>

</requires>
<plugin id="com.bdaum.SpellChecker"

download-size="0"
install-size="0"
version="1.0.0"/>

<plugin id="com.bdaum.SpellChecker.JavaProperties"
download-size="0"
install-size="0"
version="1.0.0"/>

</feature>

Listing 13.18

491

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 491

about.ini
To add product-relevant information, you may want to specify an about.ini file (see the
“Deployment” section in Chapter 12). In case of the spell checker, the main purpose of the about.ini
file is to make the spell checker visible when you invoke the function Help > About Eclipse Platform.
The spell checker icon shown there must be defined in the about.ini file. This file must not be located
in the feature project but in the main plug-in project, that is, in the com.bdaum.SpellChecker project.

aboutText=eSpell - Spell Checker\n\
\n\
Version: 1.0.0\n\
\n\
(c) Copyright bdaum industrial communications and others 2000-2004.\n\
All rights reserved.\n\
\n\
Visit http://www.bdaum.de
featureImage=eSpell.gif
appName=eSpell

about.html
Additional information for the functions Help > About Eclipse Platform > Feature Details and Help >
About Eclipse Platform > Plug-in Details can be provided by adding about.html files to the feature
project Spell Checker for Eclipse and the plug-in projects com.bdaum.SpellChecker and
com.bdaum.SpellChecker.JavaProperties. Such a file can contain references to license
information, as shown here:

<h1>License</h1>
<hr color="#66FFFF">
<p>This Plug-in is provided to you under the terms and conditions of the
Common Public License Version 1.0.
</p>
<p>A copy of the CPL is available at <a
href="http://www.eclipse.org/legal/cpl
v10.html">http://www.eclipse.org/legal/cpl-v10.html.
</p>
<h2>Third Party Content</h2>
<p>The Content includes items that have been sourced from third parties as
follows:
</p>
<p>Jazzy 0.5

Jazzy is licensed under the LGPL.

</p>
<hr color="#66FFFF">
<address>
© 2003 berthold.daum@bdaum.de

</address>

Configuring Ant Scripts
You can now start to prepare the feature for deployment (see “Deploying a Feature” in Chapter 12). To
do so, modify the build.properties files in their respective plug-in projects.

492

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 492

build.properties
Open the manifest editor by double-clicking the plugin.xml file and go to the Build page (Figure 13.5).
For the main plug-in project com.bdaum.SpellChecker, proceed as follows:

❑ For the Binary Build, mark the following files and folders: about.html, about.ini, bin,
contexts.xml, dict, html, icons, jazzy-core.jar, plugin.properties,
plugin.xml, schema, toc.xml.

❑ For the Source Build, mark the following files and folders: about.html, about.ini,
contexts.xml, dict, html, icons, plugin.properties, plugin.xml, schema, src,
toc.xml.

The source code should then look like Listing 13.19.

bin.includes = plugin.xml,\
SpellChecker.jar,\
bin/,\
contexts.xml,\
dict/,\
html/,\
icons/,\
jazzy-core.jar/,\
schema/,\
toc.xml,\
about.ini,\
about.html,\
plugin.properties

jars.compile.order = SpellChecker.jar
output.SpellChecker.jar = bin/
source.SpellChecker.jar = src/
src.includes = about.html,\

about.ini,\
contexts.xml,\
dict/,\
html/,\
icons/,\
plugin.properties,\
plugin.xml,\
schema/,\
src/,\
toc.xml

Listing 13.19

493

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 493

Figure 13.5

For the plug-in project com.bdaum.SpellChecker.JavaProperties, proceed as follows:

❑ For the Binary Build, mark the following files and folders: about.html, bin, contexts.xml,
html, plugin.properties, plugin.xml, toc.xml.

❑ For the Source Build, mark the following files and folders: about.html, contexts.xml,
html, plugin.properties, plugin.xml, src, toc.xml.

The source code should then look like Listing 13.20.

bin.includes = plugin.xml,\
JavaPropertiesTokenizer.jar,\
about.html,\
bin/,\
contexts.xml,\
toc.xml

source.JavaPropertiesTokenizer.jar = src/
output.JavaPropertiesTokenizer.jar = bin/
src.includes = about.html,\

contexts.xml,\
plugin.xml,\
src/,\
toc.xml

Listing 13.20

494

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 494

For the feature project Spell Checker for Eclipse, proceed as follows:

❑ For both the Binary Build and the Source Build, mark the following files: about.html,
feature.xml, license.html.

The source code should then look like Listing 13.21.

bin.includes = feature.xml,\
about.html,\
license.html

src.includes = about.html,\
feature.xml,\
license.html

Listing 13.21

Defining the Language Feature
The additional foreign-language fragments that you implemented in the section “Internationalizing the
Spell Checker” should be deployed as a separate feature. To do so, create a new feature project by
invoking the function File > New > Feature Project. Under Project Name, enter a suitable name such as
Spell Checker - German Language Pack. On the next wizard page, replace the proposed Feature ID with
com.bdaum.SpellChecker.de. This feature identification matches the identification of the foreign
language fragment belonging to the spell checker’s main plug-in. You should also complete the Feature
Provider.

On the next page, leave the option The Feature Will Contain a Custom Install Handler unchecked.

On the following page, checkmark both fragments com.bdaum.SpellChecker.de and
com.bdaum.SpellChecker.JavaProperties.de. When you press the Finish button, the Feature
Editor opens. The information on the Overview page is already complete.

On the Information page, you can complete the Feature Description, Copyright Notice, and License
Agreement sections. You may need to add an appropriate license.html file to the project. The
resulting feature manifest should look like Listing 13.22.

<?xml version="1.0" encoding="UTF-8"?>
<feature

id="com.bdaum.SpellChecker.de"
label="Spell Checker - German language pack"
version="1.0.0"
provider-name="bdaum industrial communications">

<install-handler/>
<description>

German language pack for Spell Checker.
</description>

<copyright>
(c) 2003-2004 Berthold Daum

</copyright>
<license url="license.html">

License

495

Project Three: A Spell Checker as an Eclipse Plug-in

Listing 13.22 (Continues)

15_020059_ch13.qxd 10/8/04 12:49 PM Page 495

This Feature is provided to you under the terms and conditions
of the Common Public License Version 1.0. A copy of the CPL is
available at http://www.eclipse.org/legal/cpl-v10.html.

</license>
<plugin

id="com.bdaum.SpellChecker.de"
download-size="0"
install-size="0"
version="1.0.0"
fragment="true"/>

<plugin
id="com.bdaum.SpellChecker.JavaProperties.de"
download-size="0"
install-size="0"
version="1.0.0"
fragment="true"/>

</feature>

Listing 13.22 (Continued)

Now you can start to prepare the foreign-language feature for deployment. To do so, modify the
build.properties files in their respective foreign language projects.

build.properties
For both fragment projects com.bdaum.SpellChecker.de and com.bdaum.SpellChecker
.JavaProperties.de, proceed as follows:

❑ For the Binary Build, mark the following files and folders: bin, fragment.xml, nl,
plugin_de.properties.

❑ For the Source Build, mark the following files and folders: fragment.xml, nl, plugin_de
.properties, src.

The source code of both build.properties files should look like Listing 13.23.

bin.includes = fragment.xml,\
de.jar,\
nl/,\
plugin_de.properties,\
bin/

source.de.jar = src/
output.de.jar = bin/
src.includes = fragment.xml,\

nl/,\
plugin_de.properties,\
src/

Listing 13.23

496

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 496

For the feature project Spell Checker - German Language Pack, proceed as follows:

❑ For both the Binary Build and the Source Build, mark the following files: feature.xml,
license.html.

The source code of the build.properties file should look like Listing 13.24.

bin.includes = feature.xml,\
license.html

src.includes = feature.xml,\
license.html

Listing 13.24

Defining the Update Site
Now you can offer the spell checker feature on an update site. To create such a site, Eclipse provides a
simple wizard that generates the update site in a format understood by the Eclipse Update Manager.
Invoke the function File > New > Project > Plug-in Development > Update Site Project. (Make sure to
have the option Show All Wizards set when you invoke the New Wizard.) On the next wizard page,
enter as a name Spell Checker Installation, and press Next. On the next page, mark the option Generate a
Sample Web Page. This will create an HTML page index.html and an XSL stylesheet site.xsl. This
stylesheet will dynamically create a web page from index.html and the manifest file site.xml (see
the next section) that displays the features of this update site (see Figure 13.6). Then press the Finish
button. The wizard then creates the site.xml file and opens it in the PDE editor.

497

Project Three: A Spell Checker as an Eclipse Plug-in

Figure 13.6

In this editor enter a short description of the site on the Archives page. If you want to place this site on
the Web, enter the Web location in the URL field.

On the Features page, press the Add button and select the features com.bdaum.SpellChecker and
com.bdaum.SpellChecker.de. These features then appear in the Features to Build section. Then click
the New Category... button and enter com.bdaum.Utilities as name of the new category and
General Purpose Utilities as the label. The new category appears in the right-hand section of the Features
page. Now drag both features onto the new category.

15_020059_ch13.qxd 10/8/04 12:49 PM Page 497

Site Manifest
Listing 13.25 shows the code for the manifest file site.xml.

<?xml version="1.0" encoding="UTF-8"?>
<site>

<description url="http://www.bdaum.de/eclipse/eSpell">
This site contains the installation files for the Eclipse Spell Checker.

</description>
<feature url="features/com.bdaum.SpellChecker_1.0.0.jar"

id="com.bdaum2.SpellChecker" version="1.0.0">
<category name="com.bdaum.Utilities"/>

</feature>
<feature url="features/com.bdaum.SpellChecker.de_1.0.0.jar"

id="com.bdaum2.SpellChecker.de" version="1.0.0">
<category name="com.bdaum.Utilities"/>

</feature>
<category-def name="com.bdaum.Utilities"

label="General Purpose Utilities"/>
</site>

Listing 13.25

Generating a Site
By pressing the Build All button on the Features page, you can start generating the update site. During
this process two new folders, plugins and features, are created. These folders contain the installa-
tion archives that were created with the build.xml Ant scripts that you configured in the section
“Defining the Spell Checker Feature” by editing the build.properties files.

Installation
Now you can invoke the Update Manager via the function Help > Software Updates > Find and Install....
On the first page of the Install Wizard, select the Search for New Features to Install option. On the next
page, press the Add Local Site... button. Navigate to the location of your update site project
(\eclipse\workspace\Spell Checker Installation) and press OK. Back in the wizard,
uncheck all other sites but check the new update site you just added.

Now press the Next button and check both features of this site. Press Next to start the installation. Once
you accept the license conditions, the installation is executed. Afterward, you should restart Eclipse.

Once Eclipse has restarted you may not see any trace of the spell checker, depending on the active
perspective. In this case, you must first activate the spell checker’s Action Set for the current perspective.
To do so, invoke the function Window > Customize Perspective > Other and check the Spell Checker
field. If everything is working correctly, you should see the spell checker icon in the toolbar. You can
now start spell-checking!

498

Chapter 13

15_020059_ch13.qxd 10/8/04 12:49 PM Page 498

Summary
In this chapter you have implemented a fully working spell checker that integrates into the Eclipse
workbench. What experiences—negative and positive—did you have with Eclipse during the
development of this tool?

If you have anything to criticize, it should be only minor issues. What I personally do not like is the
inconsistent treatment of help context IDs, for example.

My very positive experiences include the extremely short time needed to implement this feature. From
the first idea, though discovering, downloading, and exploring the jazzy package, to running the first
working prototype, did not take me more than one working day. The fine-tuning of this plug-in was
done when I wrote this chapter (which did take more than one working day!). The option to pregenerate
plug-in parts was very useful. This not only saves a lot of typing, but, even more important, it saves a lot
of exploring and browsing the documentation and a lot of trying and testing until the first plug-in is exe-
cutable. Using this function, I could start with a plug-in template that could be executed right “out of the
box” and could add the spell-checking functionality bit by bit.

In the next chapter you will have a close look at the Rich Client Platform introduced with Eclipse 3.

499

Project Three: A Spell Checker as an Eclipse Plug-in

15_020059_ch13.qxd 10/8/04 12:49 PM Page 499

15_020059_ch13.qxd 10/8/04 12:49 PM Page 500

The Rich Client Platform

The Rich Client Platform (RCP) is probably the most important new feature in Eclipse 3. At least,
many Eclipse users see it this way, according to opinion polls. Also the various client implementa-
tions of IBM’s new Lotus versions is based on the Eclipse RCP. Generally speaking, the RCP allows
you to create a wide class of applications based on the Eclipse framework.

In this chapter I will introduce the architecture of the RCP and discuss the various possibilities for
application development.

In Chapter 15 I will present a board game (Hex) as a large example of an RCP application.

Definition and Motivation
A rich client is a piece of software that implements application-specific functionality directly at the
client site (for example, the desktop or mobile platform). Its counterpart is not the poor client but
the thin client, which contains no application-specific functionality but where all application-
specific functions are controlled by the server. A typical example of a thin client is a web browser.
The application-specific functions are in this case implemented in the form of Web pages that are
loaded from the server.

As a matter of fact, there are no application-neutral standard solutions (such as a web browser) for
rich clients because the rich client contains application-specific code. However, it is possible to
identify function groups that are common to all rich client solutions. These function groups can be
combined in a framework—this is a Rich Client Platform.

Although Eclipse 2 allowed you to develop applications on the basis of the Eclipse platform,
the scope of possible applications was restricted to IDE-like applications, that is, applications that
had to deal with the Eclipse workspace. Since many of the workbench functions related to the
Eclipse workspace, the workspace concept was mandatory for applications utilizing the Eclipse
workbench. With Eclipse 3, however, the workbench was refactored into a workspace-independent

1414

16_020059_ch14.qxd 10/8/04 12:49 PM Page 501

part (generic workbench) and a workspace-specific part (IDE). The generic parts remained in the plug-in
org.eclipse.ui_3.0.0, while the workspace-dependent parts went into the new plug-in
org.eclipse.ui.ide_3.0.0.

So, with the new Rich Client Platform, Eclipse now offers four options for application development
with Java:

❑ Classical application development with AWT and Swing. No Eclipse components are used
with this option (see Part 1).

❑ Application development with SWT and JFace only (see Part 2). You should choose this option
if the memory footprint is a problem and when no other components such as the help system
are needed. This option also requires you to implement your own installers.

❑ Application development under the Eclipse IDE (see Part 3). This option should be used if the
application uses the metaphor of a studio and is based on a closed workspace concept.

❑ Application development under the Eclipse RCP.

Plug-ins and the RCP
Even under the RCP, application functionality is implemented in the form of plug-ins. The RCP itself is
nothing more than the usual Eclipse platform with some plug-ins stripped off. In particular, all plug-ins
are removed whose name carries the term ide, such as org.eclipse.ui.ide_3.0.0 or
org.eclipse.help.ide_3.0.0.

However, since the plug-in org.eclipse.ui.ide_3.0.0 is concerned with such things as starting an
application (in fact, this plug-in implements the IDE application), there are some particularities that I
will discuss in the following sections.

Like all other plug-ins, the plug-in that implements a specific rich client application must have a mani-
fest file plugin.xml, as we have already discussed in “The Plug-in Manifest” section of Chapter 11. A
Plugin class (see the section “The Plug-in” in Chapter 11) is not an absolute requirement, but in most
cases the implementation of such a class makes sense. In particular, it allows access to the plug-in’s
environment (installation URL, plug-in identification, provider, resource bundle, etc.) via the
IPluginDescriptor interface. In addition, it allows access to the Eclipse log file and to the plug-in’s
preference management.

The manifest file, however, must specify extensions for the extension points org.eclipse.core
.runtime.applications and org.eclipse.ui.perspectives. At least one perspective must be
specified because an RCP application cannot rely on the Resource perspective normally provided by the
Eclipse IDE. The extensions for the extension point org.eclipse.core.runtime.applications
must specify in their run element a class that represents the application and implements the interface
IPlatformRunnable (see the section “The IPlatformRunnable Interface” later in this chapter). Here is
an example for both extension points:

<extension id="RcpApplication"
point="org.eclipse.core.runtime.applications">

<application>

502

Chapter 14

16_020059_ch14.qxd 10/8/04 12:49 PM Page 502

<run class="com.bdaum.RcpApplication">
</run>

</application>
</extension>
<extension point="org.eclipse.ui.perspectives">

<perspective id="com.bdaum.RcpPerspective"
name="Perspective1"
class="com.bdaum.RcpPerspective">

</perspective>
</extension>

Creating an Application
Each Rich Client Application consists of a minimal set of classes: a main class of type
IPlatformRunnable, a WorkbenchAdvisor class that defines hooks for the events within the Rich
Client GUI, and a class of type IPerspectiveFactory for defining the intial GUI-layout.

The IPlatformRunnable Interface
Each application must be equipped at least with one class that implements the IPlatformRunnable
interface. This interface is used to identify its implementers as application entry points to Eclipse.

However, this interface has only temporary relevance. It will be replaced by a new interface as soon
as Eclipse is completely adapted to an OSGi-based runtime environment (see the “OSGi” section in
Chapter 11).

Classes that implement this interface must provide a run() method. A typical implementation of such
a method looks like this:

public Object run(Object args) {
WorkbenchAdvisor workbenchAdvisor = new RcpWorkbenchAdvisor();
Display display = PlatformUI.createDisplay();
int returnCode = PlatformUI.createAndRunWorkbench(display,
workbenchAdvisor);

return (returnCode == PlatformUI.RETURN_RESTART) ?
IPlatformRunnable.EXIT_RESTART :
IPlatformRunnable.EXIT_OK;

}

First, a new WorkbenchAdvisor instance (see the next section) is created. Then a new
Display instance is created by the PlatformUI class. Finally, the workbench is started via the
PlatformUI method createAndRunWorkbench(). After the workbench has terminated, its
response code is translated into the IPlatformRunnable protocol.

The WorkbenchAdvisor Class
The abstract class WorkbenchAdvisor provides the means to configure the generic workbench at sev-
eral points in the lifecycle of an application. To do so, you just subclass the WorkbenchAdvisor class

503

The Rich Client Platform

16_020059_ch14.qxd 10/8/04 12:49 PM Page 503

and override some or all methods provided by WorkbenchAdvisor. You then specify this subclass as a
parameter when starting the workbench.

Application Hooks
Now, let’s examine which methods are called within the lifecycle of an RCP application:

initialize Within this method you can analyze the command line that was spec-
ified when the platform was started. In addition, you can set up the
application, for example, register adapters or load images.

When this method is invoked, an IWorkbenchConfigurer
instance is passed as a parameter. This instance should be stored
for later use. By calling IWorkbenchConfigurer-methods, you
can configure the workbench.

preStartup This method is invoked after initialization but before opening the
first window. Here you can determine which editors and views
should be opened initially.

postRestore This method is invoked after a window has been restored. It is
called only for windows whose state is stored permanently.

postStartup This method is invoked after all windows have been opened but
before the main event loop is started. Here you can start processes
that should run automatically or you can show tips or open other
windows.

preShutdown This method is invoked after leaving the main event loop but
before closing the windows.

postShutdown This method is called after all windows have been closed. Here
you can store the internal state of the windows persistently or
release allocated resources.

The IWorkbenchConfigurer instance passed as a parameter during the invocation of the
initialize() method provides the necessary method for configuring the workbench. For example,
the setSaveAndRestore() method can be used to determine whether the state of the workbench
should be stored persistently when the workbench is closed (in order to restore the workbench to its
former state when restarting it). The methods setData() and getData() can be used to associate
generic objects with a key and to store and retrieve these objects under the associated key. The
declareImage() method is used to declare the symbolic names of images that are used during the
workbench’s lifecycle. Finally, the IWorkbenchConfigurer provides the emergencyClose()
method with which an application can be forced to shut down in case of emergencies (for example,
Out of Memory). The emergencyClosing() method can be used to determine whether the current
shutdown process is such a forced process. All IWorkbenchConfigurer methods should use this
method to test for an emergency shutdown before they perform a user interaction and should avoid this
interaction in such a case.

504

Chapter 14

16_020059_ch14.qxd 10/8/04 12:49 PM Page 504

Window Hooks
There is also a set of methods that are called during the lifecycle of single workbench windows:

preWindowOpen This method is invoked when a window instance is created. At
this point you can configure the window. For example, you can
specify whether the window has a menu. Remember, that the
window contents are not available at this time.

fillActionBars This method is invoked directly after preWindowOpen(). Here
you can create menus and toolbars. (Usually you don’t do that
but rather have these elements generated from the definitions
made in the manifest file plugin.xml.)

postWindowRestore This method is invoked after a window is restored whose state
was stored permanently.

postWindowOpen This method is invoked after a window is opened. Here you can
modify the window contents. Typically, you can set the window
title and the window size at this point.

preWindowShellClose This method is invoked when a window is closed but before the
window’s shell is closed. This method allows you to veto the
closing of the window.

postWindowClose This method is invoked after a window is closed. Typically, you
would release resources at this time.

All of these methods except the fillActionBars() method receive an instance of type
IWorkbenchWindowConfigurer on invocation. By using the appropriate
IWorkbenchWindowConfigurer methods, you can configure the individual windows (the window is
obtained via the getWindow() method). For example, you can use the setTitle() method to set the
window title. The setShowTitleBar() method allows you to switch the title bar on or off. Similarly,
the methods setShowMenuBar(), setShowCoolBar(), setShowFastViewsBars(),
setShowPerspectiveBar(), and setShowProgressIndicator() do the same for the menu bar,
the toolbar, the bars containing the Fast Views, the perspective bar, and the integrated progress bar.
Of course, for all of these methods a corresponding get...() method exists.

The appearance of the window shell can be influenced with the setShellStyle() method (see the
section “Displays, Shells, and Monitors” in Chapter 8). Of course, this method must be called out of the
preWindowOpen() method. The setData() and getData() methods can be used to set and retrieve
generic objects under a specified key for each individual window. Finally, the editor area of a workbench
window can be equipped as a drag-and-drop area with the help of the addEditorAreaTransfer()
and configureEditorAreaDropListener() methods (see the section “Drag and Drop” in
Chapter 8). For example, if you register the transfer type EditorInputTransfer via the
addEditorAreaTransfer() method, objects of type IEditorInput can be moved via drag-and-
drop to and from the editor area.

The fillActionBars() method receives an instance of type IActionBarConfigurer on
invocation. With the help of the getMenuManager(), getStatusLineManager(), and
getCoolBarManager() methods, you can obtain the managers for the menu bar, the status line,

505

The Rich Client Platform

16_020059_ch14.qxd 10/8/04 12:49 PM Page 505

and the toolbar from this instance. The registerGlobalAction() method can be used to register
certain actions as global actions, that is, actions that can be shared by several editors (see the “Editors”
section in Chapter 11).

Welcome Screen
Another hook is provided for opening the welcome screen:

openIntro This method opens the welcome screen but only if this was
specified in the preferences and if the welcome screen was not
closed at the last shutdown. The method can be overridden as
required.

Event Loop Hooks
The event loop also calls two methods that can be overridden to implement specific behavior:

eventLoopException This method is invoked in the case of an uncaught exception. The
default implementation writes the exception into the Eclipse
log file.

eventLoopIdle This method is invoked when there are no more events left in the
event loop. Here you can perform tasks that can run in the
background.

Information Providers
Finally, there is a set of methods that the platform invokes in order to gather information about the
application. By overriding these methods, you can provide the platform with the necessary information.
The most important of these methods is the getInitialWindowPerspectiveId() method, which
always must be overridden.

getDefaultPageInput This method provides input values for workbench
pages that were just opened. The standard
implementation delivers the null value.

getInitialWindowPerspectiveId This method provides the identification of the
perspective that should be opened initially.

getMainPreferencePageId This method provides the identification of the
preference page that should be shown first. The
standard implementation delivers the null value,
meaning that the pages are to be sorted alphabetically.

506

Chapter 14

16_020059_ch14.qxd 10/8/04 12:49 PM Page 506

isApplicationMenu This method supports OLE (Object Linking and
Embedding) in Windows 32 platforms. The method
returns the value true if the menu functions of the
application should be maintained when embedded into
a foreign application. It delivers the value false if the
menu should be ignored during embedding. The
default value is false.

Testing a Rich Client Application
If you take a closer look at the workbench’s launch configuration under Run > Run... > Run-time
Workbench > Run-time Workbench, you will see the entry org.eclipse.ui.ide.workbench in the
Run an Application field in the Program to Run group on the Arguments page. If the Run command is
executed with such a configuration, the “normal” IDE workbench is started. But if you want to start an
RCP application, you will need to create a new launch configuration.

To do so, in the Configurations window select the Run-time Workbench category and press the New
button. In the new configuration, enter a suitable configuration name. Then change the entry in the
Application Name field. Press the arrow button at the right of the field and select an entry point for your
application from the list, that is, a class that implements the interface IPlatformRunnable (see the
section “The IPlatformRunnable Interface”). Then press the Run button, and the run() method of this
class will be called.

507

The Rich Client Platform

It’s a good idea to add the parameter consoleLog to the Program Arguments entry
in the launch configuration. This will save you from hunting around for log files in
case of an error.

Deploying a Rich Client Application
An RCP application is deployed just like any other Eclipse-based application. If you want to deploy the
application-specific part in the form of a ZIP file, just select the corresponding plug-in or feature project
in the explorer and call the Export context function. In the Export Wizard, select Deployable Plug-ins
and Fragments. On the following wizard page, select A Single Deployable ZIP File and specify the path
of the ZIP file in the Destination field.

A ZIP file created in such a way can be easily installed on the target platform. Simply unpack it into the
Eclipse root directory \eclipse\. Thereafter, the application can be started immediately by starting the
Eclipse executable eclipse.exe. However, a special command-line parameter is required. The com-
plete syntax of calling an RCP application is

16_020059_ch14.qxd 10/8/04 12:49 PM Page 507

eclipse -application ApplicationID

The ApplicationID is a composite consisting of the plug-in ID and the value of the attribute id in the
extension point org.eclipse.core.runtime.applications (manifest file). For example, if your
plug-in’s ID is com.myCorp.myPlugin and the ID of the extension point applications is
myApplication, the complete command line would look like this:

eclipse -application com.myCorp.myPlugin.myApplication

Of course, this is not very user friendly, because end users are required to invoke the application from a
command shell or to manually create a desktop link to eclipse.exe, where the command-line param-
eters are specified. For this reason, Eclipse lets you modify its startup behavior by modifying the
config.ini file. This file is located in the directory \eclipse\configuration\ and can be
deployed with your application. Most of the key/value pairs in the file deal with the OSGi behavior of
the platform, but the last two entries deal with the specification of the product and the application. You
need only specify one of these entries, or you can specify the parameter eclipse.product. In this
case, the referenced product description org.eclipse.core.runtime.products (see the section
“The Most Important SDK Extension Points” in Chapter 11) in the manifest file plugin.xml defines the
application’s entry point. Or you can define the parameter eclipse.application, where you specify
the application ID of your application’s entry point.

osgi.splashPath = platform:/base/plugins/org.eclipse.platform
#eclipse.product=com.myCorp.myProduct
eclipse.application=com.myCorp.myPlugin.myApplication
eof=eof

Advanced Product Customization
The most elegant option for customizing a product based on Eclipse, however, is the combination
of the config.ini file with defining an extension for extension point org.eclipse.core
.runtime.products (see the section “The Most Important SDK Extension Points” in Chapter 11).
Each of these extensions can specify a whole product description and refers to a corresponding
org.eclipse.core.runtime.applications entry. The advantage of this technique is that you can
specify descriptions for several product variants, each identified by the id attribute of the corresponding
extension element. You can test such product variants by checking the Run a Product option in the
Program to Run group on the Arguments page of the launch configuration and then replacing the value
org.eclipse.platform.ide with the appropriate product ID.

When you deploy the software, you can select a product variant simply by setting the appropriate
product identification with the eclipse.product entry in the config.ini file. In Chapter 15 I will
show this technique in a practical example.

The Global Welcome Screen
Another advantage of using product identifications is the possibility of changing the global welcome
screen, which is an important element for the user’s out-of-the-box experience with a product. In Eclipse
this screen also functions as a central point of information for the end user. It can be invoked at any time
via Help > Welcome. However, for a customized product, you should replace this page with one of your

508

Chapter 14

16_020059_ch14.qxd 10/8/04 12:49 PM Page 508

own creation. You can do this via the extension point org.eclipse.ui.intro. Here you can link in
your own Java classes (which must be based on the IntroPart class) and associate them with product
identifications. So, by swapping product descriptions, you can swap welcome screens, too. In
Chapter 15 I will show how to implement an alternate welcome screen.

Summary
This chapter gave an overview of the Rich Client Platform (RCP) that was introduced with Eclipse 3. You
have learned how the main aspects of such a platform can be configured and how applications based on
the RCP can be implemented, debugged, and deployed.

In the next chapter you will learn how to implement such an application.

509

The Rich Client Platform

16_020059_ch14.qxd 10/8/04 12:49 PM Page 509

16_020059_ch14.qxd 10/8/04 12:49 PM Page 510

Project 4: The Hex Game as
a Rich Client Application

The fourth and final large example in this book is the game Hex that we are going to implement as
a rich client application. Hex was invented in 1942 by the Danish mathematician and poet Piet
Hein, and it quickly became popular under the name Polygon. In 1948 it was reinvented under the
name Nash by the American mathematician and economist John Nash, who did not know of
Hein’s invention. Today there is no commercial version of this game, but it enjoys a growing
popularity. It is one of those games that you can learn in two minutes but you need a whole
lifetime to master. In the context of Eclipse, it has an additional benefit: it gives you a chance to
apply all the time that you saved through Eclipse’s productivity gains to something useful.

The implementation presented here is a man-against-machine version that is based on an imple-
mentation by MazeWorks (www.mazeworks.com). MazeWorks offers a whole series of free games
as Java applets that can be played directly out of the web browser. Here I use the Hex game engine
from MazeWorks but present a different GUI that is implemented with SWT. And of course, the
game is implemented here not as an applet but on the basis of the Eclipse Rich Client Platform
(RCP).

Overview
As discussed in the previous chapter, an RCP application requires the implementation of some
special classes such as RcpApplication, RcpPerspective, and RcpWorkbenchAdvisor.
The classes configure the platform and are not directly connected with the other classes of the
plug-in (Figure 15.1). The composition of the whole application is achieved by the plug-in manifest
plugin.xml.

1515

17_020059_ch15.qxd 10/8/04 12:58 PM Page 511

The main “business” logic is contained in the classes HexView, Game, AI, Board, StaticEval, and
BestMove. The HexView class implements the one and only view within the application and creates
instances of the other classes. Basically, it serves as the root class for the business logic. The game-specific
logic, in contrast, is contained in the Game class. The simulation of the game board is done by the Board
class. The AI class computes the moves of the computer. The StaticEval and BestMove classes are
utility classes that are used by AI.

In addition, I have provided a welcome screen, which is implemented in the HexIntro class (not shown
in Figure 15.1).

Setting Up the Project
As already exercised in Setting Up the Project in Chapter 13, you set up a new plug-in project by switch-
ing to the Plug-in Development perspective and invoking the function File > New > Plug-in Project.
Then go step-by-step through the pages of the New Wizard:

1. First, enter the project name (which also serves as the plug-in identification), for example,
com.bdaum.Hex.

2. On the following page, select Java Project and leave the other settings untouched.

3. On the Plug-in Content page, enter a suitable provider name. Also uncheck the option Generate
the Java Class That Controls the Plug-in’s Life Cycle. This inhibits the generation of a Plugin-
class. Such a class is not required in this very simple RCP application.

4. Finally, press the Finish button. Eclipse now generates the manifest file plugin.xml and opens
the manifest editor on the new file.

The Manifest plugin.xml
The generated manifest file is minimal, indeed, and should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin id="com.bdaum.Hex"

name="Hex Plug-in"
version="1.0.0"
provider-name="bdaum industrial communications">

<runtime>
<library name="Hex.jar">

<export name="*"/>
</library>

</runtime>
</plugin>

In the following sections, you will complete this manifest file.

512

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 512

513

Project 4: The Hex Game as a Rich Client Application

 r
un

()

co
m
::
b
d
au
m
::
H
ex
::
R
cp
A
p
p
lic
at
io
n

 c
re

at
eI

ni
tia

lL
ay

ou
t(

)

co
m
::
b
d
au
m
::
H
ex
::
R
cp
P
er
sp
ec
tiv
e

 g
et

In
iti

al
W

in
do

w
P

er
sp

ec
tiv

eI
d(

)
 p

os
tW

in
do

w
O

pe
n(

)
 p

re
W

in
do

w
O

pe
n(

)

co
m
::
b
d
au
m
::
H
ex
::
R
cp
W
o
rk
b
en
ch
A
d
vi
so
r

«i
nt

er
fa

ce
»

co
m
::
b
d
au
m
::
H
ex
::
H
ex
H
el
p
C
o
n
st
an
ts

 B
es

tM
ov

e(
)

 B
es

tM
ov

e(
)

 B
es

tM
ov

e(
)

 g
et

M
ov

e(
)

 g
et

V
al

ue
()

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:B
es
tM
o
ve

 S
ta

tic
E

va
l()

 e
va

l()

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:S
ta
tic
E
va
l

 A
I(

)
 m

ak
eM

ov
e(

)

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:A
I

 B
oa

rd
()

 c
le

ar
V

is
ite

d(
)

 c
om

pu
te

rM
ov

e(
)

 d
ra

w
()

 g
et

H
ex

()
 is

B
la

ck
()

 is
B

rid
ge

N
()

 is
B

rid
ge

N
E

()
 is

B
rid

ge
N

W
()

 is
B

rid
ge

S
()

 is
B

rid
ge

S
E

()
 is

B
rid

ge
S

W
()

 is
C

ol
or

()
 is

E
m

pt
y(

)
 is

E
m

pt
y(

)
 is

Li
nk

E
()

 is
Li

nk
N

E
()

 is
Li

nk
N

W
()

 is
Li

nk
S

E
()

 is
Li

nk
S

W
()

 is
Li

nk
W

()
 is

V
is

ite
d(

)
 is

W
hi

te
()

 is
W

in
()

 m
ou

se
D

ou
bl

eC
lic

k(
)

 m
ou

se
D

ow
n(

)
 m

ou
se

U
p(

)
 p

ai
nt

C
on

tr
ol

()
 s

ca
nB

rid
ge

s(
)

 s
ca

nL
in

ks
()

 s
et

E
m

pt
y(

)
 s

et
E

m
pt

y(
)

 s
et

H
ex

()
 s

et
H

ex
()

 s
et

V
is

ite
d(

)

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:B
o
ar
d

 c
re

at
eP

ar
tC

on
tr

ol
()

 s
et

F
oc

us
()

 s
ho

w
M

es
sa

ge
()

co
m
::
b
d
au
m
::
H
ex
::
vi
ew
s:
:H
ex
V
ie
w

 s
ho

w
M

es
sa

ge
()«i

nt
er

fa
ce

»
co
m
::
b
d
au
m
::
H
ex
::
vi
ew
s:
:IS
ta
tu
sL
is
te
n
er

 n
ew

G
am

e(
)

 r
un

()
 s

et
D

ra
w

in
gS

ur
fa

ce
()

 s
et

Le
ve

l()
 s

et
P

la
ye

rC
ol

or
()

 s
et

S
ta

tu
sL

is
te

ne
r(

)

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:G
am
e

 n
ew

G
am

e(
)

 s
et

D
ra

w
in

gS
ur

fa
ce

()
 s

et
Le

ve
l()

 s
et

P
la

ye
rC

ol
or

()
 s

et
S

ta
tu

sL
is

te
ne

r(
)

«i
nt

er
fa

ce
»

co
m
::
b
d
au
m
::
H
ex
::
g
am
e:
:IG
am
e

-
ga

m
e

0.
.1

-
bd 0.
.1

-
bd 0.
.1

-
ga

m
e

0.
.1

-
be

st
0.

.1

-
ga

m
e

0.
.1

-
st

at
us

Li
st

en
er

0.
.1

st
at

0.
.1 st

at
0.

.1

pi
et

0.
.1

bd 0.
.1

ga
m

e
0.

.1

Fi
gu

re
 1

5
.1

17_020059_ch15.qxd 10/8/04 12:58 PM Page 513

Required Eclipse Plug-ins
Next, you should determine the Eclipse plug-ins that are required for your new project. First, you need
the plug-in for running the core platform:

org.eclipse.core.runtime

Then you need the plug-in for the generic workbench:

org.eclipse.ui

For the welcome screen, which will be implemented based on forms, the forms plug-in is required:

org.eclipse.ui.forms

In addition, you may want to equip your game with a help function. Therefore, you need the plug-ins
for the Eclipse help system:

org.eclipse.help
org.eclipse.help.base

The plug-in org.eclipse.help.ide is not required; it belongs to the Eclipse IDE workbench.

To add all these plug-ins to your platform, open the Dependencies page in the manifest editor and press
the Add button. In the dialog that appears, select all the plug-ins listed previously and press the OK
button.

514

Chapter 15

When you have finished these steps, you should press Ctrl+S to save the mani-
fest file. This will make the added plug-ins known to your project, and the fol-
lowing steps that rely on this information will work properly.

Declaring the Application
In an RCP application you must declare in the manifest file whose class is used as the entry point into
the application. This is done via the extension point org.eclipse.core.runtime.applications.
To create such an extension, open the Extensions page in the manifest editor and press the Add button.
In the dialog that opens, select Generic Wizards and Schema-based Extensions. In the list of extension
points that appears, select org.eclipse.core.runtime.applications.

The new extension now appears in the All Extensions window. Select this extension and enter the value
RcpApplication in the Id entry in the Details section. Then apply the context function New >
Application. The child element application is created. Select this element and apply the context
function New > Run. Then select the child element run. You can now declare a new
IPlatformRunnable class in the Class entry in the Details section. To do so, click the Class hyperlink
to create a new class. In the following dialog, enter the value RcpApplication under Class Name. Eclipse
now generates this class, but you must complete it later (see the section “Defining a View”).

17_020059_ch15.qxd 10/8/04 12:58 PM Page 514

Defining a Perspective
In contrast to the Eclipse IDE that is equipped with at least the Resource perspective, rich client applica-
tions cannot rely on a default perspective. Therefore, it is always necessary to define your own perspec-
tive for such an application.

The Hex game needs only a single perspective—and this perspective contains only a single view. You
will now create such a perspective. This is done in a similar fashion as in the previous section, except
that the extension point org.eclipse.ui.perspectives does not require an identification. Then
apply the context function New > Perspective to the new entry. In the details section, enter the value Hex
in the Name field, and enter the value com.bdaum.Hex.RcpPerspective in the Id field. Again, cre-
ate a new Java class in the Class field and call this class RcpPerspective.

Defining a View
The next step is to define the one and only view in this perspective. As before, create an extension for
the extension point org.eclipse.ui.views. Apply the context function New > View to the new
entry. In the Properties View, enter the value Hex 7 in the Name field, and enter the value
com.bdaum.Hex.views.HexView in the Id field. In the Class field create another new Java class
called HexView, but this time modify the entry in the Package Name field to com.bdaum.Hex.views.

Product Customization
If you want to deploy the game as a stand-alone product, some additional customization seems to be
advisable. You can add the necessary definition via extension point org.eclipse.core.runtime
.products. Just create an extension for this point and specify the value product for its Id attribute.
Then create a product child element for the new extension. For this child element enter the value Hex
Game Machine for the name attribute, and the value The game of Hex for the description attribute.
By supplying the value com.bdaum.Hex.RcpApplication for attribute application you refer to the
application already defined in the manifest (see the section “Declaring the Application”).

Now you can modify the appearance of your product by adding some property child elements to the
product element. In particular, you should add the following name/value pairs: appName=Hex and
windowImage=hexWindow.gif. In addition, create a corresponding icon hexWindow.gif of size
16x16 pixels in the project folder,

Linking the Welcome Screen
The welcome screen also requires an entry in the manifest, so you need to create an extension for the
extension point org.eclipse.ui.intro. For this extension, first create an intro element via
New > Intro. For this element enter the Id value com.bdaum.Hex.intro. In the Class field create a new
Java class called HexIntro. This class will implement the welcome screen.

Next, you have to connect this class to the product identification with New > introProductBinding.
Under introId, enter the value defined previously, com.bdaum.Hex.intro. For the productId, use
the product identification defined above in the org.eclipse.core.runtime.products extension
prefixed with the plug-in identification: com.bdaum.Hex.product.

515

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 515

Adding Help
What remains to be done is to add the entries for the help table of contents and for the help context
associations. However, it is better to postpone this until you have created the necessary XML files
toc.xml and contexts.xml. I already showed you how to do this in the section “The Help System”
in Chapter 13, so I will skip this step in this chapter.

The Completed Manifest
The completed manifest file is shown in Listing 15.1.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="com.bdaum.Hex"
name="Hex Plug-in"
version="1.0.0"
provider-name="bdaum industrial communications">

<runtime>
<library name="Hex.jar">

<export name="*"/>
</library>

</runtime>
<requires>

<import plugin="org.eclipse.core.runtime"/>
<import plugin="org.eclipse.help"/>
<import plugin="org.eclipse.help.base"/>
<import plugin="org.eclipse.ui"/>
<import plugin="org.eclipse.ui.forms"/>

</requires>

<extension
id="RcpApplication"
point="org.eclipse.core.runtime.applications">

<application>
<run

class="com.bdaum.Hex.RcpApplication">
</run>

</application>
</extension>
<extension

point="org.eclipse.ui.perspectives">
<perspective

name="Hex"
class="com.bdaum.Hex.RcpPerspective"
id="com.bdaum.Hex.RcpPerspective">

</perspective>
</extension>
<extension

point="org.eclipse.ui.views">
<view

name="Hex 7"

516

Chapter 15

Listing 15.1 (Continues)

17_020059_ch15.qxd 10/8/04 12:58 PM Page 516

class="com.bdaum.Hex.views.HexView"
id="com.bdaum.Hex.views.HexView">

</view>
</extension>
<extension

point="org.eclipse.help.toc">
<toc

file="toc.xml"
primary="true">

</toc>
</extension>
<extension

point="org.eclipse.help.contexts">
<contexts

file="contexts.xml">
</contexts>

</extension>
<extension

id="product"
point="org.eclipse.core.runtime.products">

<product
name="Hex Game Machine"
application="com.bdaum.Hex.RcpApplication"
description="The game of Hex">

<property name="appName" value="Hex"/>
<property name="windowImage" value="hexWindow.gif"/>

</product>
</extension>
<extension

point="org.eclipse.ui.intro">
<intro

class="com.bdaum.Hex.HexIntro"
id="com.bdaum.Hex.intro">

</intro>
<introProductBinding

introId="com.bdaum.Hex.intro"
productId="com.bdaum.Hex.product">

</introProductBinding>
</extension>

</plugin>

Listing 15.1 (Continued)

The RcpApplication Class
The RcpApplication class was pregenerated in the section “Declaring the Application” in this chap-
ter; you need only complete it. In the section “The IPlatformRunnable Interface” in Chapter 14, I showed
you how a basic IPlatformRunnable-class is constructed:

517

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 517

package com.bdaum.Hex;

import org.eclipse.core.runtime.IPlatformRunnable;
import org.eclipse.swt.widgets.Display;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.application.WorkbenchAdvisor;

public class RcpApplication implements IPlatformRunnable {
public Object run(Object args) {
WorkbenchAdvisor workbenchAdvisor = new RcpWorkbenchAdvisor();
Display display = PlatformUI.createDisplay();
int returnCode = PlatformUI.createAndRunWorkbench(display,

workbenchAdvisor);
return (returnCode == PlatformUI.RETURN_RESTART)

? IPlatformRunnable.EXIT_RESTART
: IPlatformRunnable.EXIT_OK;

}
}

The RcpWorkbenchAdvisor Class
The RcpWorkbenchAdvisor class that is used in the RcpApplication class must still be
implemented. This class is based on the abstract class WorkbenchAdvisor (see the section “The
WorkbenchAdvisor Class” in Chapter 14). For the purpose of this application, however, you need only
to override the methods getInitialWindowPerspectiveId(), preWindowOpen(), and
postWindowOpen(). See Listing 15.2.

The getInitialWindowPerspectiveId() method returns just the identification of the perspective
created in Defining a Perspective.

The preWindowOpen() method hides the workbench’s toolbar, the bar for fast views, and the
perspective bar. These bars are not required in the current application.

The postWindowOpen() method supplies the workbench window with a title.

The openIntro() method, however, requires some clarification. In this application the end user
doesn’t have a chance to open a welcome screen that has been closed. But if the application is shut down
with a closed welcome screen, it will, by default, be started the next time with a closed welcome screen.
That is not what you want, and so you must override the openIntro() method to force the welcome
screen open.

package com.bdaum.Hex;

import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.application.IWorkbenchWindowConfigurer;
import org.eclipse.ui.application.WorkbenchAdvisor;
import org.eclipse.ui.intro.IIntroManager;

public class RcpWorkbenchAdvisor extends WorkbenchAdvisor {

518

Chapter 15

Listing 15.2 (Continues)

17_020059_ch15.qxd 10/8/04 12:58 PM Page 518

public String getInitialWindowPerspectiveId() {
return "com.bdaum.Hex.RcpPerspective";

}

public void preWindowOpen(
IWorkbenchWindowConfigurer configurer) {
super.preWindowOpen(configurer);
// Hide the various action bars
configurer.setShowCoolBar(false);
configurer.setShowFastViewBars(false);
configurer.setShowPerspectiveBar(false);
configurer.setShowMenuBar(false);

}

public void postWindowOpen(
IWorkbenchWindowConfigurer configurer) {
super.postWindowOpen(configurer);
// Set window title
configurer.setTitle("The Hex Game");

}

public void openIntro(IWorkbenchWindowConfigurer configurer) {
super.openIntro(configurer);
// Fetch intro manager and force intro open
IWorkbenchWindow window = configurer.getWindow();
IWorkbench workbench = window.getWorkbench();
IIntroManager manager = workbench.getIntroManager();
manager.showIntro(window, false);

}
}

Listing 15.2 (Continued)

The RcpPerspective Class
The RcpPerspective class was pregenerated in the section “Linking in the Welcome Screen.” In
Listing 15.3 you need only add the one and only view, hide the editor area, and set the layout to Fixed to
stop the view from being closed.

package com.bdaum.Hex;

import org.eclipse.ui.IPageLayout;
import org.eclipse.ui.IPerspectiveFactory;

public class RcpPerspective implements IPerspectiveFactory {

public void createInitialLayout(IPageLayout layout) {
// Set layout fixed (parts cannot be closed or moved)
// Must be set before adding views.

519

Project 4: The Hex Game as a Rich Client Application

Listing 15.3 (Continues)

17_020059_ch15.qxd 10/8/04 12:58 PM Page 519

layout.setFixed(true);
layout.addView("com.bdaum.Hex.views.HexView",

IPageLayout.LEFT, 1.0f,
IPageLayout.ID_EDITOR_AREA);

layout.setEditorAreaVisible(false);
}

}

Listing 15.3 (Continued)

The IGame and IStatusListener Interfaces
Now all RCP-specific components are implemented. You can turn your attention to the implementation
of the game itself. This consists of a GUI (represented by the view) and the game engine.

When you implement the game, it is good practice to separate the game engine as much as possible from
the implementation of the user interface. This makes it easy to swap game engines when necessary, for
example, to implement a different game. Therefore, I have defined two interfaces that describe the com-
munication between the HexView class and the game engine.

The IStatusListener Interface
The IStatusListener interface enables the game engine to display a message in the status line. It fea-
tures only the single method showMessage(). See Listing 15.4.

package com.bdaum.Hex.views;

public interface IStatusListener {
/**
* Show message in status line
*
* @param message - the message to be displayed
*/
public void showMessage(String message);

}

Listing 15.4

The IGame Interface
The IGame interface describes the game engine (Listing 15.5). It defines the various methods for
configuring the game engine and for informing the game engine about the drawing surface and the
IStatusListener instance. Other methods are used to inform the game engine about the color chosen
by the player and the playing level and to start the game. In addition, this interface defines the constants
for the colors of the playing buttons and for the playing levels.

520

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 520

package com.bdaum.Hex.game;

import org.eclipse.swt.widgets.Canvas;

import com.bdaum.Hex.views.IStatusListener;

public interface IGame {
public static final int EMPTY = 0, WHITE = 1, BLACK = 2;
public static final int LEVEL1 = 1, LEVEL2 = 2;

/**
* Set drawing surface
*
* @param canvas - Drawing surface
*/
public void setDrawingSurface(Canvas canvas);

/**
* Set StatusListener
*
* @param listener - StatusListener
*/
public void setStatusListener(IStatusListener listener);

/**
* Start game
*/
public void newGame();

/**
* Set the player’s color
*
* @param color - new player color
*/
public void setPlayerColor(int color);

/**
* Set game level
*
* @param level - Game level
*/
public void setLevel(int level);

}

Listing 15.5

The HexView Class
After this preparation you can implement the graphical user interface of the game, which is represented
by the view. The HexView class was pregenerated in the section “Defining a View.” You simply need to
complete it as follows.

521

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 521

package com.bdaum.Hex.views;

import org.eclipse.jface.action.Action;
import org.eclipse.jface.action.IStatusLineManager;
import org.eclipse.jface.action.IToolBarManager;
import org.eclipse.jface.action.Separator;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Canvas;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.IActionBars;
import org.eclipse.ui.help.WorkbenchHelp;
import org.eclipse.ui.part.ViewPart;

import com.bdaum.Hex.HexHelpConstants;
import com.bdaum.Hex.game.Game;
import com.bdaum.Hex.game.IGame;

public class HexView extends ViewPart implements IStatusListener {

For enabling user interaction, you need to implement a few tool buttons on the view’s title line.
These buttons allow the player to choose a color (black or white), to select the playing level (basic or
advanced), to start a new game, and to invoke the help function.

These tool buttons are implemented in form of Actions. Some of these Actions must lock in, so they
need to be configured appropriately with the style constant AS_CHECK_BOX. Unfortunately, the
Action() constructor that allows this is defined as protected, so it cannot be accessed by this class.
The solution is to define a subclass of Action, the class ToggleAction. Then you need to define the
instance fields for these actions and constants to identify the individual actions. In addition, you need to
define the canvas field for the drawing surface and the game field, which holds the game engine.

private class ToggleAction extends Action {
public ToggleAction(String title, boolean init) {
super(title, AS_CHECK_BOX);
setChecked(init);

}
}

/* Action IDs */
private static final int WHITE_ACTION = 0;
private static final int BLACK_ACTION = 1;
private static final int BASIC_ACTION = 2;
private static final int ADVANCED_ACTION = 3;
private static final int NEWGAME_ACTION = 4;
private static final int HELP_ACTION = 5;

/* Widgets and Actions */
private Action blackAction, whiteAction, basicAction,

advancedAction, newGameAction, helpAction;
private Canvas canvas;

/* The game engine */
private IGame game;

522

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 522

The workbench invokes the createPartControl() method when the view is initialized. Here, you
must first create a Canvas, set its background color, and assign a key for context-sensitive help to it.
The HexHelpConstants interface is listed here. Then you need to create instances of the actions
defined previously and to add these actions as tool buttons to the title bar of the view. Finally, you must
create an instance of the game engine and configure it, and then you start the first game.

/**
* Constructs the view content
*/
public void createPartControl(Composite parent) {
canvas = new Canvas(parent, SWT.NO_BACKGROUND);
canvas.setBackground(parent.getDisplay().getSystemColor(

SWT.COLOR_GRAY));
WorkbenchHelp.setHelp(canvas, HexHelpConstants.HELP_BOARD);
makeActions();
contributeToActionBars();
game = new Game();
game.setStatusListener(this);
game.setDrawingSurface(canvas);
game.newGame();

}

When you create a single action, its identification, the display label, a tool tip, and a key for the context-
sensitive help are specified to construct the instance. The actions for color and level selection are
constructed as toggle actions, the others as normal actions.

/**
* Create actions
*/
private void makeActions() {
newGameAction = createAction(NEWGAME_ACTION, "New Game",

"Starts new game",
HexHelpConstants.HELP_NEWGAME_ACTION);

whiteAction = createToggleAction(WHITE_ACTION, "White",
"Player plays white",
HexHelpConstants.HELP_COLOR_ACTION, true);

blackAction = createToggleAction(BLACK_ACTION, "Black",
"Player plays black",
HexHelpConstants.HELP_COLOR_ACTION, false);

basicAction = createToggleAction(BASIC_ACTION, "Basic",
"Basic Level", HexHelpConstants.HELP_LEVEL_ACTION,
true);

advancedAction = createToggleAction(ADVANCED_ACTION,
"Advanced", "Advanced Level",
HexHelpConstants.HELP_LEVEL_ACTION, false);

helpAction = createAction(HELP_ACTION, "Help",
"Help for Hex", null);

}

/**
* Create single action
*
* @param id - Identification

523

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 523

* @param label - Display label
* @param tip - Tooltip
* @param helpId - ID for context sensitive help
* @return - the created action instance
*/
private Action createAction(final int id, String label,

String tip, String helpId) {
Action action = new Action() {
public void run() {
runAction(id);

}
};
action.setText(label);
action.setToolTipText(tip);
if (helpId != null) WorkbenchHelp.setHelp(action, helpId);
return action;

}

/**
* Create single toggle action
*
* @param id - Identification
* @param label - Display label
* @param tip - Tooltip
* @param helpId - ID for context sensitive help
* @param init - initial state
* @return - the created action instance
*/
private Action createToggleAction(final int id, String label,

String tip, String helpId, boolean init) {
Action action = new ToggleAction(label, init) {
public void run() {
runAction(id);

}
};
action.setToolTipText(tip);
if (helpId != null) WorkbenchHelp.setHelp(action, helpId);
return action;

}

When an action is invoked, its corresponding operation (identified by the action’s ID) is executed. In
case of toggle actions, the invoked action is locked via the setChecked() method and its counterpart is
released.

The game engine then performs the operation. An exception is the help action, which simply calls the
displayHelp() method of the Eclipse help system.

/**
* Run action
*
* @param id - Action identification
*/
protected void runAction(int id) {

524

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 524

switch (id) {
case NEWGAME_ACTION :
game.newGame();
break;

case WHITE_ACTION :
game.setPlayerColor(IGame.WHITE);
whiteAction.setChecked(true);
blackAction.setChecked(false);
break;

case BLACK_ACTION :
game.setPlayerColor(IGame.BLACK);
whiteAction.setChecked(false);
blackAction.setChecked(true);
break;

case BASIC_ACTION :
game.setLevel(IGame.LEVEL1);
basicAction.setChecked(true);
advancedAction.setChecked(false);
break;

case ADVANCED_ACTION :
game.setLevel(IGame.LEVEL2);
basicAction.setChecked(false);
advancedAction.setChecked(true);
break;

case HELP_ACTION :
WorkbenchHelp.displayHelp();
break;

}
}

Then, the actions are added to the view’s title bar. To do this, you must first fetch the ViewSite. From
this site you can obtain the action bars, and from the action bars you obtain the toolbar manager. Then
you can add the individual actions to the toolbar manager. In addition, you can separate the different
action groups with the help of separators.

/**
* Construct menu and tool bar
*/
private void contributeToActionBars() {
IActionBars bars = getViewSite().getActionBars();
fillLocalToolBar(bars.getToolBarManager());

}

/**
* Construct tool bar
*
* @param manager - the tool bar manager
*/
private void fillLocalToolBar(IToolBarManager manager) {
manager.add(newGameAction);
manager.add(new Separator());
manager.add(whiteAction);
manager.add(blackAction);

525

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 525

manager.add(new Separator());
manager.add(basicAction);
manager.add(advancedAction);
manager.add(new Separator());
manager.add(helpAction);

}

Finally, you need to implement the methods required by the superclass and the implemented interfaces.
First, the setFocus() method: If the view gets the focus, it has to pass it to its drawing surface, the
Canvas instance.

Then you need to implement the showMessage() method from the IStatusListener interface.
From the action bars of the ViewSite, fetch the StatusLineManager and pass the message to this
manager via its setMessage() method. This needs to be performed in an asyncExec() block since
this method can be called from the thread of the game engine. You probably remember this technique
from the previous example applications.

/**
* Pass focus to Canvas-Widget
*/
public void setFocus() {
canvas.setFocus();

}

/**
* Display message in status line
*
* @param message - the message to be displayed
*/
public void showMessage(final String message) {
canvas.getDisplay().asyncExec(new Runnable() {
public void run() {
IStatusLineManager sManager = getViewSite()

.getActionBars().getStatusLineManager();
sManager.setMessage(message);

}
});

}
}

And here are the required keys for the context-sensitive help. They are defined in the separate interface
HexHelpConstants:

package com.bdaum.Hex;

public interface HexHelpConstants {

static final String PREFIX = "com.bdaum.Hex.";

public static final String HELP_COLOR_ACTION = PREFIX
+ "colorAction";

public static final String HELP_LEVEL_ACTION = PREFIX
+ "levelAction";

526

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 526

public static final String HELP_NEWGAME_ACTION = PREFIX
+ "newGameAction";

public static final String HELP_BOARD = PREFIX + "board";
}

The Game Engine
The game engine consists of the classes AI, BestMove, Board, Game, and StaticEval. I refrain from
presenting these classes here to their full extent since this code has nothing at all to do with Eclipse.
Readers interested in the implementation of the game can find the source code at www.wrox.com.

Of interest in the context of Eclipse is only the Board class, which I will discuss here in sections. This
class is responsible for drawing the game board and for processing the mouse actions. The data model of
the game board is represented by the two-dimensional array cells, whose elements can take the values
IGame.EMPTY, IGame.WHITE, and IGame.BLACK. It is the responsibility of the drawing routine to con-
vert this abstract model into a graphical representation.

First, some fields are defined. These fields are initialized in the constructor. The current Board instance
is assigned to the Canvas as both a MouseListener and a PaintListener.

private int cells[][] = new int[Game.SIZE][Game.SIZE];
private Canvas canvas;
private Game game;
private Display display;
private Color white, black, gray, green, cyan;

// Constructor
public Board(Canvas canvas, Game game) {
this.game = game;
this.canvas = canvas;
display = canvas.getDisplay();
white = display.getSystemColor(SWT.COLOR_WHITE);
black = display.getSystemColor(SWT.COLOR_BLACK);
gray = display.getSystemColor(SWT.COLOR_GRAY);
green = display.getSystemColor(SWT.COLOR_DARK_GREEN);
cyan = display.getSystemColor(SWT.COLOR_DARK_CYAN);
canvas.addPaintListener(this);
canvas.addMouseListener(this);

}

The redrawing of the canvas can occur in two different situations. First, if a view must be redrawn, then
the canvas must also be redrawn, for example, when the application moves from the desktop back-
ground to the foreground. Second, the canvas must be redrawn when a player or the computer has made
a move. This case is handled by the draw() method. Since this method is called from the thread of the
game engine, its accesses to the SWT are encapsulated again into an syncExec() block.

/**
* Redraw game board
*/
public void draw() {

527

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 527

canvas.getDisplay().syncExec(new Runnable() {
public void run() {
// Signal partial redraw
canvas.redraw(1, 1, 10000, 10000, false);

}
});

}

In this case, it is necessary to redraw not the whole canvas but only the game board, so you have to indi-
cate to the paintControl() given in the following code that only a partial redraw is required. You can
do this by specifying a redraw from position (1,1). This trick is not very nice, but it works. You probably
will have noticed in the section “The HexView Class” that the Canvas instance was created with the
style constant SWT.NO_BACKGROUND. This style constant enforces that the canvas background is not
automatically redrawn. I specified this constant in order to avoid flicker. The consequence was that I had
to organize the drawing of the canvas background myself, and I redraw the canvas background only
when the whole view is redrawn but not after a game move. This is controlled by specifying the redraw
position of (1,1).

In the following code section, I specify the geometry of the game board by defining appropriate
constants:

// Edge length of a hexagon (= outer radius)
private static final int OUTER_RAD = 30;
// Inner radius of a hexagon
private static final int INNER_RAD =

(int) (Math.sqrt(0.75d) * OUTER_RAD);
// Outline of a hexagon
private static final int[] CELL = new int[]{

-OUTER_RAD, 0,
-OUTER_RAD/2, -INNER_RAD,
OUTER_RAD/2, -INNER_RAD,
OUTER_RAD, 0,
OUTER_RAD/2, INNER_RAD,
-OUTER_RAD/2, INNER_RAD};

// Horizontal distance between cells
private static final int XDIST = OUTER_RAD * 3 / 2;
// Horizontal offset of the game board
private static final int XOFF = Game.SIZE * OUTER_RAD

+ 150;
// Vertical offset of the game board
private static final int YOFF = 100;
// Horizontal border width of game board
private static final int XMARGIN = 20;
// Vertical border width of game board
private static final int YMARGIN = 15;
// Radius of a game button
private static final int BUTTON_RAD = OUTER_RAD / 2;
// Corner positions of the game board
private static final Point TOP = hexToPixel(0, 0);
private static final Point BOTTOM = hexToPixel(Game.SIZE,Game.SIZE);
private static final Point RIGHT = hexToPixel(Game.SIZE, 0);
private static final Point LEFT = hexToPixel(0, Game.SIZE);
// Outlines of the game board edges

528

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 528

private static final int[] WHITEBORDER = new int[]{
LEFT.x - XMARGIN, LEFT.y - INNER_RAD,
RIGHT.x + XMARGIN, RIGHT.y - INNER_RAD,
TOP.x, TOP.y - YMARGIN - INNER_RAD,
BOTTOM.x, BOTTOM.y + YMARGIN - INNER_RAD};

private static final int[] BLACKBORDER = new int[]{
LEFT.x - XMARGIN, LEFT.y - INNER_RAD,
TOP.x, TOP.y - YMARGIN - INNER_RAD,
BOTTOM.x, BOTTOM.y + YMARGIN - INNER_RAD,
RIGHT.x + XMARGIN, RIGHT.y - INNER_RAD};

The following method converts the rows and columns into pixel coordinates:

/**
* Convert rows and columns into pixel values
* @param i - row
* @param j - column
* @return - (x,y)-coordinate
*/
private static Point hexToPixel(int i, int j) {
return new Point(

((i - j) * XDIST) + XOFF,
((i + j) * INNER_RAD) + YOFF);

}

Now you can draw the game board. If the indicator totalRedraw is set, you first fill the complete back-
ground with the background color (gray). Then the black-and-white game board edges are drawn,
which are later overdrawn by the game board cells.

Next you can draw the game board cell by cell. First, the cell background is drawn. You use a different
background color for the cell in the center because this cell has a special meaning. Then you can draw
the game button belonging to the cell—provided the cell is not empty.

/**
* Draw Canvas
*
* @param e - Event object
*/
public void paintControl(PaintEvent e) {
GC gc = e.gc;
if (e.x != 1 || e.y != 1) {
// Draw background
gc.setBackground(gray);
gc.fillRectangle(canvas.getClientArea());
// Draw game board edges
gc.setBackground(white);
gc.fillPolygon(WHITEBORDER);
gc.setBackground(black);
gc.fillPolygon(BLACKBORDER);

}
// Draw all hexagon cells
for (int i = 0; i < Game.SIZE; i++)
for (int j = 0; j < Game.SIZE; j++)

529

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 529

drawCellWithButton(gc, i, j, cells[i][j]);
}

/**
* Draw single cell
* @param gc - Graphic Context
* @param i - Row
* @param j - Column
* @param buttonColor - Color of game button
*/
private void drawCellWithButton(GC gc, int i, int j, int buttonColor) {
Point p = hexToPixel(i, j);
if (i == Game.SIZE / 2 && j == Game.SIZE / 2)
drawCell(gc, p.x, p.y, cyan, black);

else
drawCell(gc, p.x, p.y, green, black);

switch (buttonColor) {
case Game.BLACK :
drawButton(gc, p.x, p.y, black, white);
break;

case Game.WHITE :
drawButton(gc, p.x, p.y, white, black);
break;

}
}

/**
* Draw cell background
* @param gc - Graphic Context
* @param x - X-offset
* @param y - Y-offset
* @param cellColor - fill color
* @param outlineColor - outline color
*/
private void drawCell(GC gc, int x, int y,

Color cellColor, Color outlineColor) {
int[] points = new int[CELL.length];
for (int k = 0; k < CELL.length; k += 2) {
points[k] = x + CELL[k];
points[k + 1] = y + CELL[k + 1];

}
gc.setBackground(cellColor);
gc.setForeground(outlineColor);
gc.fillPolygon(points);
gc.drawPolygon(points);

}

/**
* Draw game button
* @param gc - Graphic Context
* @param x - X-offset
* @param y - Y-offset
* @param bgColor - fill color

530

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 530

* @param fgColor - outline color
*/
private void drawButton(GC gc, int x, int y,

Color bgColor, Color fgColor) {
gc.setBackground(bgColor);
gc.fillOval(x - BUTTON_RAD, y - BUTTON_RAD,

2 * BUTTON_RAD, 2 * BUTTON_RAD);
gc.setForeground(fgColor);
gc.drawOval(x - BUTTON_RAD, y - BUTTON_RAD,

2 * BUTTON_RAD, 2 * BUTTON_RAD);
}

This concludes the drawing operations. What is still missing is the processing of the mouse events. Only
the single mouse down event is processed; the release of the mouse button and the double-click are
ignored. On a mouse click, the mouse coordinates are converted into board coordinates. The game
engine is informed about this event via the selectHex() method.

/*
* Mouse button pressed
*
* @param e - Event object
*/
public void mouseDown(MouseEvent e) {
Point p = pixelToHex(e.x, e.y);
game.selectHex(p.x, p.y);

}

/**
* Convert pixels into row and column
* @param x - X-offset
* @param y - Y-offset
* @return - (row, column)-tuple
*/
private static Point pixelToHex(int x, int y) {
int dist2 = INNER_RAD * INNER_RAD;
for (int i = 0; i < Game.SIZE; i++) {
for (int j = 0; j < Game.SIZE; j++) {
Point p = hexToPixel(i, j);
int dx = p.x - x;
int dy = p.y - y;
if (dx * dx + dy * dy < dist2) return new Point(i, j);

}
}
return new Point(-1, -1);

}

The Welcome Screen
The HexIntro class is also generated during the definition of the plug-in manifest (Listing 15.6).
However, it is better and easier to write this class from scratch and to subclass the IntroPart class

531

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 531

instead of implementing the IIntroPart interface. The only thing that remains to do is to complete the
setFocus() method and to construct the welcome screen in the createPartControl() method.

Here, I have decided to use forms technology. Forms are well suited for presenting some instructions for
the game. In addition, I have provided a hyperlink for starting the game. The example demonstrates
how different colors and fonts can be used in forms texts. The colors and fonts are referenced via sym-
bolic names within the marked-up text, and then further down these names are defined via
setColor() and setFont(). Also, for the hyperlink I have chosen a special representation: it is
underlined only when the mouse hovers over it. Events produced by this hyperlink are captured by the
hyperlink listener. If the user clicks on the hyperlink, the welcome screen closes and the game can begin.

package com.bdaum.Hex;

import org.eclipse.jface.resource.JFaceResources;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.Font;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.forms.HyperlinkSettings;
import org.eclipse.ui.forms.events.HyperlinkAdapter;
import org.eclipse.ui.forms.events.HyperlinkEvent;
import org.eclipse.ui.forms.widgets.Form;
import org.eclipse.ui.forms.widgets.FormText;
import org.eclipse.ui.forms.widgets.FormToolkit;
import org.eclipse.ui.forms.widgets.TableWrapLayout;
import org.eclipse.ui.intro.IIntroManager;
import org.eclipse.ui.part.IntroPart;

public class HexIntro extends IntroPart {

// The Form-Widget
Form introForm;

/* (non-Javadoc)
* @see org.eclipse.ui.part.IntroPart#setFocus()
*/
public void setFocus() {
introForm.setFocus();

}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IntroPart
* #createPartControl(org.eclipse.swt.widgets.Composite)
*/
public void createPartControl(Composite parent) {
// Fetch Toolkit
FormToolkit tk = new FormToolkit(parent.getDisplay());
// Create Form and set Layout
introForm = tk.createForm(parent);
TableWrapLayout layout = new TableWrapLayout();
introForm.getBody().setLayout(layout);

532

Chapter 15

Listing 15.6 (Continues)

17_020059_ch15.qxd 10/8/04 12:58 PM Page 532

// Create forms text, more space between paragraphs
FormText tx = tk.createFormText(introForm.getBody(), true);
tx.setParagraphsSeparated(true);
// Set hyperlink appearance
// (must be done before setting the text)
HyperlinkSettings settings = new

HyperlinkSettings(parent.getDisplay());
settings.setHyperlinkUnderlineMode(

HyperlinkSettings.UNDERLINE_HOVER);
tx.setHyperlinkSettings(settings);
// Marked-up text
String text = "<form><p>Hex 7</p>" +

"<p>" +
"The game of Hex</p>" +
"<p>Start game</p></form>";

tx.setText(text,true,false);
// Set Fonts
Font titleFont = JFaceResources.getFont(JFaceResources.HEADER_FONT);
tx.setFont("title", titleFont);
Font subtitleFont =

JFaceResources.getFont(JFaceResources.BANNER_FONT);
tx.setFont("subtitle", subtitleFont);
// Set color for subtitle
Color col =

parent.getDisplay().getSystemColor(SWT.COLOR_DARK_GREEN);
tx.setColor("subtitle", col);
// Process hyperlink events
tx.addHyperlinkListener(new HyperlinkAdapter() {
public void linkActivated(HyperlinkEvent e) {
// Fetch IntroManager, close welcome screen
IWorkbenchWindow window =

getIntroSite().getWorkbenchWindow();
IWorkbench workbench = window.getWorkbench();
IIntroManager manager = workbench.getIntroManager();
manager.closeIntro(HexIntro.this);

}
});

}

/* (non-Javadoc)
* @see org.eclipse.ui.intro.IIntroPart#standbyStateChanged(boolean)
*/
public void standbyStateChanged(boolean standby) {
}

}

Listing 15.6 (Continued)

533

Project 4: The Hex Game as a Rich Client Application

17_020059_ch15.qxd 10/8/04 12:58 PM Page 533

Test
In order to run the game Hex from the workbench (i.e., to test it within the Eclipse platform before
deploying it as a stand-alone product), just proceed as follows:

1. Invoke function Run > Run.

2. Create a new configuration of type Run-time Workbench. In the Name field enter the value Hex.

3. On the Arguments page check the Run a Product option in group Program to Run, and
select there the product identification com.bdaum.Hex.product from the drop down list.

4. On the Plug-ins page first press the Deselect All button. Then check the plug-in
com.bdaum.Hex in the Workspace Plug-ins group and press the Add Required Plug-ins
button. Using this procedure, you just make sure that the game Hex will run on a platform that
contains only the required plug-ins. Proper operation will not be disturbed by unnecessary
plug-ins.

5. Now you can start the game by pressing the Run button.

Deployment
If you want to deploy this application in form of a ZIP file, just select the project com.bdaum.Hex in the
explorer and invoke the context function Export. In the Export Wizard select the Deployable Plug-ins
and Fragments option. On the following wizard page, select the option A Single Deployable ZIP File and
enter the target path of the ZIP file in the Destination field. After you have created the ZIP file in this
way, you still have to add the configuration\config.ini file. This is necessary because you want
this file to be installed into the directory \eclipse\configuration\ when the ZIP file is unpacked
into the directory \eclipse\. The content of config.ini looks like this:

osgi.splashPath = platform:/base/plugins/org.eclipse.platform
eclipse.product=com.bdaum.Hex.product
eclipse.buildId=I200425061208
eof=eof

This file sets the product identification for the deployed software. Should you later want to apply
changes to the config.ini or plugin.xml files of an already installed product, you must delete all
files except config.ini in the \eclipse\configuration\ folder before restarting Eclipse.

The value eclipse.buildId identifies the installed version of the Eclipse platform and must be
adapted accordingly when using a version of Eclipse later than 3.0.0. It can be retrieved from the
config.ini file that comes with the Eclipse product.

The installation of the Hex game consists of simply unpacking the ZIP file into an existing Eclipse
installation in the Eclipse root directory \eclipse\. But be warned: afterward, this Eclipse installation
won’t be good for anything other than playing Hex! The required Eclipse installation doesn’t need to be
the full Eclipse SDK. The Eclipse RCP Runtime Binary, which is less than a 5MB download, is sufficient.
You want to make sure that all plug-ins listed under Dependencies (see the section “Required Eclipse
Plug-ins”) are present. For example, you would need to add the plug-in org.eclipse.ui.forms,
which can be taken from the full Eclipse SDK.

534

Chapter 15

17_020059_ch15.qxd 10/8/04 12:58 PM Page 534

Summary
As shown in Figure 15.2, the application that you have created in this chapter looks like any other native
application. Even experts will hardly notice that this application is running on an Eclipse platform. Only
the help function exhibits some Eclipse inheritance.

535

Project 4: The Hex Game as a Rich Client Application

Figure 15.2

Actually, everything works quite nicely. Only the edges of the game buttons are a little bit rough
because they were drawn using SWT functions that don’t support anti-aliasing. Alternatively, you could
implement the drawing using Java2D functions. In the section “Widgets that Swing” in Chapter 8, I
showed how this can be done within an SWT application.

What is a bit disturbing, though, is the tab on top of the Hex View. However, you can turn this into an
advantage if you offer more games, each on a separate page of a tabbed notebook. But in this case, you
would be better off separating the individual games from the game platform and implementing them as
separate plug-ins. Wouldn’t that be a nice exercise?

This chapter concludes the introduction into the functionality of Eclipse. In the next chapter I will dis-
cuss how the various facilities found in Eclipse may influence your programming style.

17_020059_ch15.qxd 10/8/04 12:58 PM Page 535

17_020059_ch15.qxd 10/8/04 12:58 PM Page 536

Conclusions and Outlook

In this chapter I want to draw a few conclusions about the impact of Eclipse on programming
style. As you will see, Eclipse supports programming techniques that are advertised under the
name Extreme Programming or Agile Programming. This is not surprising because some people (such
as Kent Beck) who play a prominent role in this area also have a leading role in the development
of Eclipse.

The other issue is the support for Java 1.5. For the Java community Java 1.5 means the biggest
breakthrough since the introduction of Java 1.2, and it will seriously influence the way in which
you write programs. Eclipse 3.0, however, will not support Java 1.5 in its official release version,
but experimental Java 1.5 support is available as a plug-in.

Programming Style
Considering the advances made with programming under Eclipse so far, you will probably
remember programming techniques that made headlines a few years ago under the name of
Extreme Programming or Agile Programming. However, only the branding of those techniques
was new at the time; techniques such as Pair Programming, the early construction of test beds for
the components of a software system, or the specification of user stories and the continuous feed-
back with customers had been previously employed by experienced programmers. The branding
of those techniques under the aforementioned name, however, had some positive effects: it made
those techniques more popular, encouraged managers to utilize them, and encouraged tool
manufacturers to provide support for the techniques within their tools. This evolution also
applies to eclipse.org. In this chapter I will show how Eclipse supports these new (old)
programming techniques. In addition, I will discuss a few other effects that Eclipse has had
on programming style. You can get further information about the aforementioned techniques at
www.extremeprogramming.org and www.agilealliance.org.

1616

18_020059_ch16.qxd 10/8/04 12:59 PM Page 537

Executable Prototypes
One of the most essential principles of Extreme Programming is the close feedback with the customer.
Just shortly after a user story (an informal description of the application functions) is written, the pro-
grammer should be able to show a prototype to the customer. Of course, it is not necessary to implement
all of the application’s functions at that time. Usually it will be sufficient to be able to demonstrate a GUI
or parts of the GUI. After the discussion with the customer comes the next step in the iteration: refining
or extending the functions.

Eclipse is well suited for this approach, provided you are programming on the basis of the Eclipse
platform, meaning that you are developing your application either as a plug-in for the Eclipse IDE or on
the basis of the Rich Client Platform (see Chapters 14 and 15). When you work in this manner, you can
almost always launch your application immediately after creating the first plug-in project and the mani-
fest file. You have the entire Eclipse GUI at your disposal and don’t need to implement all the GUI com-
ponents usually needed in an application manually. Experience shows that for a small application, you
can create the first executable prototype within hours. Eclipse can generate large parts of a plug-in, for
example, views with tables or trees, editors, and much more.

An extra benefit with this approach is that you can test new functions immediately within your applica-
tion prototype. This provides immediate feedback and allows you to detect bugs and deficiencies early.
And if a member of the customer’s staff is part of the development team, so much the better: you can
immediately demonstrate new functions within the live application and discuss them with the cus-
tomer’s representative.

The development of Eclipse itself is a good example of this approach. During the development of
Eclipse 3 (and also during the development of Eclipse 2), a new prototype (a milestone) was produced
each month. Of course, some functions were still missing in these milestones or they were only partly
implemented or still buggy. But the users’ experiences with these milestones provided valuable input for
the development of the subsequent milestones and release candidates. Thus, the Eclipse team made sure
that each milestone met the requirements and needs of its users more closely and more completely.

Automated Tests
In the “JUnit” section in Chapter 6, I showed how JUnit is integrated into the Eclipse IDE. Test tools such
as JUnit belong in any Extreme Programmer’s toolbox. Even before a component or a class is written, a
TestCase should be implemented. This sounds like considerable overhead, but it isn’t. The TestCases
must be written anyway—if not early, then later—before the integration tests are performed and the soft-
ware is packaged and deployed. Creating these TestCases early will help considerably during the
implementation of the corresponding components. Bugs that are detected early are found much quicker,
and creating TestCases will help the programmer to understand the functionality of the component.
An alternative is for the customer to create the TestCases. This is not a bad idea, since it ensures that
the customer has a clear understanding of the required functionality .

Of course, after deploying milestones or official releases, you will almost certainly encounter bug
reports. For each of these bug reports you should create a new test case that makes sure that this bug
will be detected in a future version.

Refinements
There is another issue related to programming style under Eclipse that doesn’t really belong under the
umbrella of Extreme Programming. While large software systems are constructed from components, that

538

Chapter 16

18_020059_ch16.qxd 10/8/04 12:59 PM Page 538

is, constructed in a bottom-up fashion, the implementation of single functions happens in most cases in
the opposite direction (top-down). First, you determine which rough steps must be implemented in order
to realize the required function. Then you can begin to refine these steps into smoother steps. This is per-
formed in an iterative manner until you reach the instruction level. Each step is implemented in the form
of methods.

Eclipse supports this approach via its Quick Fix function (see “The Correction Assistant” section in
Chapter 2). When you implement a method, you first specify the individual steps in the form of method
calls to nonexisting methods. Eclipse will automatically decorate these calls with the Quick Fix symbol
because they are considered to be source code errors. When you click on such a symbol, Eclipse gener-
ates the missing method, and the only thing that remains for you to do is to refine it.

Let’s step through the following example (Figure 16.1). This example tries to compute the reproduction
rate of rabbits within the course of a year. (The mathematicians among you will probably guess that the
growth rate of rabbit populations is about equal to the growth rate of Fibonacci numbers.)

539

Conclusions and Outlook

Figure 16.1

First you need to implement the main() method. Then click the Quick Fix symbol at the left of
rabbits_are_born() and select Create Method.... Eclipse generates the method stub
rabbits_are_born() (Figure 16.2).

Figure 16.2

18_020059_ch16.qxd 10/8/04 12:59 PM Page 539

Figure 16.3

Continue the implementation in this way until all the method calls are resolved and refined. You can use
similar techniques to create variables, fields, or new class definitions. You don’t need to know in
advance which of these elements you will need, because you can easily create and refine these elements
as they are needed.

Embrace Change
The maxim “Embrace Change” was coined by Kent Beck, one of the subscribers of the Manifesto for
Agile Software Development and one of the principal architects of the Eclipse platform. For further
reading I recommend Extreme Programming Explained: Embrace Change by Beck and Contributing to
Eclipse: Principles, Patterns, and Plugins by Gamma, et al. What is meant by this phrase is that modifying
code should be nothing extraordinary but should be everyday business. As you have already seen in the
section “Refactoring Code” in Chapter 2, Eclipse provides powerful functions for code refactoring.
Therefore, you needn’t be too afraid of introducing new bugs into an application by restructuring its
code, because the refactoring transformations provided by Eclipse work quite reliably.

The good news is that you are not required to write code from the first version onward that is designed
to last for all eternity. No matter what your personal style is, if you program by refinement, as shown in
the previous section, or if you write spaghetti code with methods that stretch across many pages, there
is practically nothing that you cannot fix with Refactoring functions. Methods that are too small can be
inlined via the function Refactor > Inline..., and large methods can be decomposed into smaller methods
via the function Refactor > Extract Method....

Keeping in mind that there is always a remedy for poor coding style, so you can go about coding in a
much more relaxed way and concentrate on solving the business problem. Then, when the implemented
function runs properly, you can start to think about restructuring the code to make it more maintainable,
organized, aesthetically pleasing, conforming to object-oriented principles, and so on.

Just one word of advice at this point: If you tend to write spaghetti code, you should not prematurely
exit your methods with return. A method should terminate only at its very end. The reason for this is

Then you can fill the method body with content (Figure 16.3).

540

Chapter 16

18_020059_ch16.qxd 10/8/04 12:59 PM Page 540

that methods with interspersed return statements are hard to decompose via the function Refactor >
Extract Method....

Save Energy
Finally, I have one more suggestion for the design of user interfaces that are implemented on basis of the
SWT, JFace, and GUI components of the workbench. When you implement such an interface, you will
save yourself a lot of development effort if you first analyze what Eclipse has to offer and then design
your user interface with maximum reuse of the Eclipse components. Working in this way, you will
quickly arrive at interfaces that are both robust and easy for the end user to operate. On the other hand,
if you stubbornly hold onto your preconceived ideas, you will achieve less with a much greater effort.

Java 1.5
Java 1.5 means a major break for Java programmers, because it introduces a wide array of new program-
ming concepts. Sun Microsystems has therefore adopted a new numbering system for Java: Java 1.5 is
now called J2SE 5.0! I see Java 1.5 as the result of Sun Microsystems’s effort to conceptually keep up with
Microsoft’s C# language. In particular, Java 1.5 introduces the following new concepts:

❑ Generic types. Generics are probably the most notable change within Java 1.5. Basically they
mean that the type definition of a variable, parameter, or method return type need not be a fixed
type. Instead, a type variable can be used in its place. When you use a method or class with a
type variable, you must specify a concrete type to parameterize the construct. The application
and benefit of this concept are most obvious in the collection classes, although it can be applied
to other scenarios as well. For example, consider the generic form of the classes List and
ArrayList. You can use them as lists that contain only integer values:

List<Integer> intList = new ArrayList<Integer>();

You can now retrieve integer values from such a list without a type cast:

Integer i = intList.get(0);

Clearly, this adds considerably to type safety.

❑ Enhanced for loops. This concept provides a more compact syntax for looping across an array.
For example, the following code computes the sum of all array elements:

double[] a = ...
double t = 0;
for (double n : a)
t += n;

❑ Autoboxing. This saves you from converting primitive data types into first-class objects and
vice versa in situations where only objects are allowed. For example:

List<Integer> intList = new ArrayList<Integer>();
intList.add(55);
int i = intList.get(0);

541

Conclusions and Outlook

18_020059_ch16.qxd 10/8/04 12:59 PM Page 541

❑ Enumerations. Enumerations replace the lengthy definition of integer constants that are typi-
cally used to introduce symbolic names for integer values. For example, instead of

static final int WHITE_ACTION = 0;

static final int BLACK_ACTION = 1;

you can now write

enum ACTION { WHITE, BLACK };

and use the values as ACTION.WHITE and ACTION.BLACK.

❑ Static imports. These allow you to use static methods from external packages without the class
name. For example, by importing the static methods from java.lang.Math you can simplify
an arithmetic expression.

import static java.lang.Math.max;
...
double r2 = sqrt(2.0d);

❑ Metadata facility. This allows you to mark up (annotate) Java programs with tags. These tags
can be evaluated by other tools and thus serve the purpose of tool integration. Depending on
the configuration, they can even be stored in the binary class file. Tags consist of Java names
prefixed with @. Parameters in parentheses can be appended.

I’ll leave it at this short overview. You can find detailed information on Java 1.5 on http://java
.sun.com/developer/technicalArticles/releases/j2se15/ or in the numerous Java
books that are now being updated for Java 1.5.

The new features have a tremendous impact on an IDE such as Eclipse. Not only is a new compiler ver-
sion required, but such areas as code assistants, refactoring, outlining, syntax coloring, and so on are also
affected.

In its 3.0 release, Eclipse does not support Java 1.5, and JRE 1.5 is not an official platform for running
Eclipse. However, under the codename Cheetah, there is an experimental version for Java 1.5 support,
which you can download from the Eclipse development CVS. At the time of writing, this is at
http://dev.eclipse.org/viewcvs/index.cgi/jdt-core-home/update-site/.
The Cheetah homepage is located at http://dev.eclipse.org/ viewcvs/index.cgi/
%7Echeckout%7E/jdt-core-home/r3.0/main.html#updates.

Summary
In this final chapter, I reexamined some outstanding features of the Eclipse platform. The use of Eclipse
as both an IDE and a framework may have a huge impact on your programming style. In general, it will
support a more agile programming style that leans toward Extreme Programming. As an open platform,
Eclipse encourages such an agile work style not only for Java programming but also for other tasks. So it
might be exciting to take a look at some of the third-party plug-ins, too. Appendix A lists a small but
essential collection of such plug-ins.

542

Chapter 16

18_020059_ch16.qxd 10/8/04 12:59 PM Page 542

The next big change for Java programming will come with support for J2SE 5.0 (perhaps in Eclipse 3.1?)
that will lead to both a more compact and safer programming style. Eclipse has taken a steep path from
version 1.0 to version 3.0 and will certainly not stop there. It will be exciting to see what the future
brings.

543

Conclusions and Outlook

18_020059_ch16.qxd 10/8/04 12:59 PM Page 543

18_020059_ch16.qxd 10/8/04 12:59 PM Page 544

Useful Plug-ins for Eclipse

Many useful plug-ins have been created for Eclipse, and many of them are freely available on the
Web. I have listed some of these plug-ins here. I refrained from presenting plug-ins that are only in
the planning stage or are at a pre-alpha stage. It may be worth visiting the listed Web sites from
time to time to look for new developments.

Good starting points for searching plug-ins are, of course, the official Eclipse Web site at
www.eclipse.org and SourceForge at sourceforge.net. In addition, there are some Web
sites dedicated to Eclipse plug-ins, such as www.eclipse-plugins.info and www.eclipse-
plugincentral.com.

Name Description Home Page

Databases

Attrezzo per Xindice A graphical user interface attrezzo.sourceforge.net
for the Xindice XML
database. Free.

easysql SQL editor and sourceforge.net/projects/
executor. Free. easysql

JFaceDbc A JDBC client. Free. sourceforge.net/
projects/jfacedbc

Graphics

GEF Graphical Editor Framework. www.eclipse.org/gef
A framework for
implementing diagram
editors. Free.

AA

19_020059_appa.qxd 10/8/04 1:01 PM Page 545

Name Description Home Page

GUI design

JellySWT An XML-based script jakarta.apache.org/
language for SWT-based commons/jelly/jellyswt.html
user interfaces. Free

W4Eclipse Visual web-GUI designer w4toolkit.com
for the SWT, manufactured
by INNOOPRACT
(www.innoopract.de).
Commercial product, but
free for the first 5000
objects.

SWT-Designer Visual GUI designer for www.swt-designer.com
SWT and JFace.
Commercial product.

Jigloo Visual GUI designer for cloudgarden.com
SWT/JFace and Swing.
Can convert between
SWT and Swing, and
can import GUIs created
with NetBeans.
Commercial product, but
free community version.

VE Official Eclipse GUI designer www.eclipse.org
project. Currently supports
Swing only. SWT is in
preparation. Free.

Modeling

EMF Eclipse Modeling www.eclipse.org/emf
Framework.

KLEEN Graphical editor for Asset www.aomodeling.org
Oriented Modeling (AOM).
Free.

MagicDraw A UML design tool. www.magicdraw.com
Commercial product.

Omondo A UML design tool. www.eclipseuml.com
Integrates with the
Eclipse Java IDE.
Free for noncommercial
use.

546

Appendix A

19_020059_appa.qxd 10/8/04 1:01 PM Page 546

Name Description Home Page

Modeling

Slime UML A UML design tool. www.mvmsoft.de/content/
Commercial product. plugins/slime/slime.htm

Azzurri Clay Graphical editor for www.azzurri.jp/en/software/clay
modeling relational
databases. Commercial
product but free core
version.

Software Management

Various team The community page on
repositories www.eclipse.org lists under

the Team Repository Providers
section various manufacturers
that provide plug-ins for
connecting their repositories
to Eclipse.

Transcoder A useful plug-in for trans- www.qanyon.com/TechZone/
forming source code from TechZoneTranscoder
one encoding into another.

Programming Languages and Compiler-Compilers

AspectJ AspectJ IDE. AspectJ is an sourceforge.net/projects/
aspect-oriented programming ajc-for-eclipse
language based on Java.
Free.

CDT C/C++ IDE. For C and www.eclipse.org/cdt
C++ development (currently
only under Linux). Free.

Eiffel for Eclipse Eiffel editor and compiler. www.eclipse.audaly.com
Compile into Java byte code,
C, and machine code. Free.

Improve C# Plugin C# editor and www.improve-technologies.com/
builder. Free. alpha/esharp

xored WebStudio PHP IDE. Free. www.xored.com

JavaCC A popular compiler-compiler sourceforge.net/projects/
implemented as an Eclipse eclipse-javacc
plug-in. Free.

ANTLR A powerful compiler-compiler sourceforge.net/projects/
implemented as an Eclipse antlreclipse
plug-in. Free.

547

Useful Plug-ins for Eclipse

19_020059_appa.qxd 10/8/04 1:01 PM Page 547

Name Description Home Page

Lifecycle

Profiler Tuning instrument for eclipsecolorer.sourceforge.net/
performing measurements index_profiler.html
in Java programs.

Rational ClearCase A UML-based www.rational.com
CASE tool. Commercial
product.

Together Edition for A UML-based CASE tool. www.borland.com/together
Eclipse Commercial product.

XML

X-Men An XML editor for Eclipse. sourceforge.net/projects/xmen
Supports XML Schema and
DTDs. Offers source view,
table view. Good navigation
via outline view. Free.

XML Buddy An XML editor with content www.xmlbuddy.com
assist, outline, DTD
generator, and much more.
Free.

Web Projects

Sysdeo Eclipse Starting, stopping, and www.sysdeo.com/eclipse/
Tomcat Launcher configuring Tomcat from tomcatplugin.html

within the Eclipse workbench.
Supports comfortable
debugging of JSP and
servlet-based projects. Free.

Systinet WASP Creates Web services from www.systinet.com
Server for Java Java classes. Supports the

execution and debugging
of Web services from
within Eclipse. Free for
end users.

MyEclipse Various tools for J2EE www.myeclipseide.org
development, in particular,
a JSP editor and debugger.
MyEclipse is the product of
a joint venture between
Genuitec (www.genuitec.com)
and the Saxonian startup
BebboSoft (www.bebbosoft.de).
Commercial license.

548

Appendix A

19_020059_appa.qxd 10/8/04 1:01 PM Page 548

Name Description Home Page

Embedded Systems

TimeStorm 2.0 Cross-platform IDE for www.timesys.com
embedded-Linux target
platforms. Commercial
product.

SpellChecker for Eclipse The spell checker developed www.bdaum.de/eclipse
in this book, and enhanced
versions. Free.

549

Useful Plug-ins for Eclipse

19_020059_appa.qxd 10/8/04 1:01 PM Page 549

19_020059_appa.qxd 10/8/04 1:01 PM Page 550

Migrating Projects to a New
Eclipse Version

The migration of projects to a new version of the Eclipse platform is a special situation.

Projects
The best way is to install the new Eclipse version into a different directory and then import the
projects and your own or third-party plug-ins into this new version.

When doing so, you have the following options:

❑ Import the complete workspace into the new version. Here you need only modify the
command-line parameter -data accordingly when invoking Eclipse. For example:

eclipse.exe -data C:\eclipseSDK2.1.2\eclipse\workspace

Alternatively, you may enter the path of the old workspace into the Workspace Launcher
as shown in the “Installing Eclipse” section in Chapter 1.

The existing workspace remains at its old location and becomes the workspace of the new
Eclipse platform.

❑ Import single projects from the old workspace with the help of the Import function.
To do so, select the Import category Existing Project into Workspace.

Here, too, the physical location of the imported project is not changed—the project
remains in the old workspace directory!

BB

20_020059_appb.qxd 10/8/04 1:02 PM Page 551

In both cases it may be necessary to adapt the Java Build Path of the imported projects. In particular, if
JAR files of the Eclipse distribution were specified as external JARs, you must make some adjustments:

❑ If the JAR file was specified relative to the environment variable ECLIPSE_HOME, this variable
now points to the storage location of the new Eclipse version. However, the JAR files in the new
Eclipse version usually have different version numbers, so you will have dangling references.

❑ If the JAR file was specified via an absolute path expression, this path expression is still pointing
to the JAR file in the old Eclipse version. If you want to update this to the new version, you
must modify the corresponding path expression.

In both cases, you must first remove the existing references to external JARs and then add them back
with the Add External JARs function.

Plug-ins
In the case of plug-in projects, however, you don’t have to update the JAR references manually. Instead,
you use the context function PDE Tools > Update Classpath….

If your plug-in is already in an installable state, the migration to a new platform version is even simpler.
In this case, you would first install the plug-in (including the source files) on the old platform. By doing
so you ensure that the plug-in resources appear in the directory’s plugins and features sections.

Now you can migrate the plug-in to the new platform with the help of the Import > External Plug-ins
and Features function. On the second page of the wizard, select all plug-ins required by the imported
plug-in from the list. Based on this selection, the Java Build Path is adapted automatically. The
workspace of the new platform now contains the complete development project for the imported
plug-in.

Migration to Eclipse 3
Plug-in projects that were developed under Eclipse versions prior to Eclipse 3 and are now deployed on
Eclipse 3 platforms, or where development is to be continued under the Eclipse 3 SDK, require special
treatment. In many cases, but not in every case, Eclipse 3 can successfully run older plug-ins, so individ-
ual tests are required.

The reason for this lies in the introduction of the Rich Client Platform (see Chapter 14) and the generic
workbench. The introduction of these features required a complete reorganization of the workbench’s
code basis. In particular, the workbench was separated into a generic, resource-agnostic part and a
resource-specific IDE part. Since plug-in projects often relate to function groups of the workbench and
some of these function groups have been relocated into new plug-ins or have been renamed, changing
the plug-in manifest in the “Dependencies” section may be necessary. You can perform these changes
automatically by applying the context function PDE Tools > Migrate to 3.0... to a plug-in project.

However, this may not be sufficient, and changes to the Java code of some classes may be required. In
particular, those classes that relate to workbench components such as editors and views and that utilize
IDE-specific functions (such as markers and annotations) are affected. Since these functions have been

552

Appendix B

20_020059_appb.qxd 10/8/04 1:02 PM Page 552

separated from the generic workbench components, changes are necessary. For example, the IDE-specific
functions of the AbstractTextEditor class have been relocated to the IDE-specific
ExtendedTextEditor class, while the AbstractTextEditor class has become completely
workspace and resource agnostic.

Also, the event processing for resource changes (see the section “Reacting to Resource Changes” in
Chapter 11) has changed, since Eclipse 3 works in a more concurrent fashion than Eclipse 2. For exam-
ple, Build processes can now run in the background. Of course, this has consequences for the resource
change event model. Classes that react to such events may need adaptations

SWT-based projects may also need smaller code changes, since some APIs have been changed to
improve the compatibility with Linux and to provide better support for the Key Binding Service.

The Eclipse 3.0 Porting Guide explains the required changes in detail. This guide is found under Help >
Help Contents > Platform Plug-in Developer Guide > 3.0 Plug-in Migration Guide.

553

Migrating Projects to a New Eclipse Version

20_020059_appb.qxd 10/8/04 1:02 PM Page 553

20_020059_appb.qxd 10/8/04 1:02 PM Page 554

Important Downloads

This appendix lists the web addresses for all the third-party software used in the context of
this book.

Project One: Duke Speaks
FreeTTS (version 1.2.0) can be found at sourceforge.net/projects/freetts. Make sure
you use version 1.2.0, because the API may have been changed in later versions!

Project Two: Jukebox
The source files for playing sound files (jlGui 2.2) can be found at www.javazoom.net/jlgui/
sources.html. Make sure you use version 2.2, because the API was changed in later versions!

Project Three: A Spell Checker as an
Eclipse Plug-In

The spell checker engine (version 0.5) can be found at sourceforge.net/projects/jazzy.
Make sure you use version 0.5, because the API may have been changed in later versions!

CC

21_020059_appc.qxd 10/8/04 1:03 PM Page 555

Book Web Site
All the required resources are replicated on a special Web site dedicated to this book. This Web site is
located at www.wrox.com.

There you can find the source code for the four projects and other examples.

556

Appendix C

21_020059_appc.qxd 10/8/04 1:03 PM Page 556

Bibliography

Arthorne, John. “How You’ve Changed! Responding to resource changes in the Eclipse workspace.”
Eclipse Corner, www.eclipse.org, 2002.

Arthorne, John. “Drag and Drop in the Eclipse UI.” Eclipse Corner, www.eclipse.org, 2003.

Beck, Kent. Extreme Programming Explained: Embrace Change. Harlow: Addison-Wesley, 1999.

Cornu, Christophe. “A Small Cup of SWT.” IBM OTI Labs, Eclipse Corner, www.eclipse.org,
2003.

Daum, Berthold. Modeling Business Objects with XML Schema. San Francisco: Morgan Kaufman
Publishing, 2003.

Daum, Berthold. “Mutatis mutandis – Using Preference Pages as Property Pages.” Eclipse Corner,
www.eclipse.org, 2003.

Daum, Berthold. “Equipping SWT Applications with Content Assistants." IBM developerWorks,
www106.ibm.com/developerworks/opensource/library/os-ecca/, Nov 25, 2003.

Daum, Berthold. Eclipse 2 for Java Developers. Chichester: John Wiley & Sons, 2003.

Daum, Berthold, Stefan Franke, and Marcel Tilly. Webentwicklung mit Eclipse. Heidelberg: dpunkt
verlag, 2004.

Fogel, Karl and Bar Moshe. Open Source Projects with CVS. Phoenix: Paraglyph Publishing, 2003.

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Harlow: Addison-Wesley, 1999.

DD

22_020059_appd.qxd 10/8/04 1:04 PM Page 557

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns, Harlow: Addison-
Wesley, 1995.

Gamma, Erich and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plugins. Harlow: Addison-
Wesley; 2003.

Gunther, Jeff. “Deploy an SWT Application Using Java Web Start.” IBM developerworks,
www106.ibm.com/developerworks/opensource/library/os-jws/, June 19, 2003.

Hatcher, Erik and Steve Loughran. Java Development with Ant. Manning Publications Company, 2002.

Hightower, Richard and Nicholas Lesiecki. Java Tools for Extreme Programming: Mastering Open Source
Tools Including Ant, JUnit, and Cactus. Chichester: John Wiley & Sons, 2001.

Irvine, Veronika. “Drag and Drop – Adding Drag and Drop to an SWT Application.” Eclipse Corner,
www.eclipse.org, 2003.

Kehn, Dan, Scott Fairbrother, and Cam-Thu Le. “How to Internationalize Your Eclipse Plug-In,” Eclipse
Corner, www.eclipse.org, 2002.

MacLeod, Carolyn and Shantha Ramachandran. “Understanding Layouts in SWT,” Eclipse Corner,
www.eclipse.org, 2002.

Moody, James and Carolyn MacLeod. “SWT Color Model.” Eclipse Corner, www.eclipse.org, 2001.

Robinson, Matthew and Pavel Vorobiev. Swing. Greenwich: Manning Publications, 2000.

Steams, Beth. “Java Beans 101.” Sun Microsystems,
http://java.sun.com/developer/onlineTraining/Beans/bean01/index.html, 2000.

Tilly, Jesse and Eric M. Burke. Ant: The Definitive Guide. Sebastopol : O’Reilly & Associates, 2002.

Vesperman, Jennifer. Essential CVS. Sebastopol : O’Reilly & Associates, 2003.

558

Appendix D

22_020059_appd.qxd 10/8/04 1:04 PM Page 558

Index

A
AbstractDecoratedTextEditor class, 359
AbstractTextEditor class, 357–359
accessibility options (SWT), 202–203
actions (JFace), 226–227, 367

defining
attributes, 368–370
delegates, 371–372
enabling and disabling, 370–371
in the manifest, 368
selection events, 370

global, 367
implementing manually, 372
local, 367

active help systems, 382, 474–475
adapters, SWT events, 142
Add Java Exception Breakpoint function, 117
agile programming. See extreme programming
annotations (JFace), 223–224
Ant, 388

configuring, 388–389
editing scripts, 389–390

ANTLR, 547
applications, exporting (Duke Speaks project),

109–110
architecture, Eclipse platform

core runtime, 315
extension points, 314
help system, 316
OSGi, 314
overview, 314, 316–317
RCP vs. IDE, 315
resource management, 315
team support, 316–317
user interfaces, 316

AspectJ, 547
associations, 54–55
Attrezzo per Xindice, 545
attributes, 342
audio players (FreeTTS), 75
automated testing, 538
automatic code completion

Code Assistant, 28–30, 77–78
comment out code, 31
delegate methods, 32
encapsulating fields, 32
generating constructors, 33

importing types, 31
inheriting constructors, 32
Javadoc comments, 31
overriding methods, 32

AWT components with SWT, 191
embedded contents, 192
events, 192–196

Azzurri Clay, 547

B
Back function, 37, 53
backing up workspaces, 2
beans, 48

generic, 48
properties, 48–49

Beck, Kent, 540
bookmarks

bookmark manager, 366
creating, 22

breakpoints
managing, 117–118
setting, 116

Breakpoints View, 117–118
browser widget (SWT), 177
build.properties files (spell checker project), 493–495
BundleActivators (OSGi), 314
BusyIndicator class (SWT), 175
buttons

Duke Speaks project GUI, 94–95
SWT, 156

C
Call Hierarchy View, 27–28
CDT, 547
cell editors

Jukebox project, 285–286, 299–300
overview, 217–218

central code management
comparison functions, 135
conflict resolution, 133–134
CVS (Concurrent Versions System), 129–130
Export function, 135
repositories, 130–131
sharing projects, 132
Team group preferences, 135
version management, 133

23_020059_bindex.qxd 10/8/04 1:23 PM Page 559

Change Method Signature function, 39
Cheat Sheets

internationalization, 404
plug-ins, 383–384

CheckedTreeSelectionDialog class, 373
classes, creating, 7–9, 76
classfiles, compiler preferences, 15
clipboard (SWT), 198–199
closing windows, 65
code, formatting, 15–16
Code Assistant

Duke Speaks project, 77–78
overview, 28–30

code folding (Java Editor), 35–36
code generation templates. See templates
code organization

associations, 54–55
Find/Replace function, 62–63
importing files, 67–69
Java Browsing Perspective, 71
navigation tools, 53
Outline View, 57–58

context functions, 59–60
representation, 58–59

packages, 55–57
perspectives

configuring, 66–67
defining, 65–66

project properties, 69–71
resources, 52

storing, 52–53
synchronizing, 53
types, 52

Search function, 60–62
windows

closing, 65
docking, 63
FastView, 64
maximizing, 65
minimizing, 65
opening, 65
stacking, 64

workbench, 51–52
collaborative projects, 129–130

comparison functions, 135
conflict resolution, 133–134
CVS (Concurrent Versions System), 129–130
Export function, 135
plug-ins, 316–317
repositories, 130–131
sharing projects, 132
Team group preferences, 135
version management, 133

collapsible GUI elements, 346–348

colors
JFace, 206
SWT, 186–187

column headers (Jukebox project), 285–286
ColumnLayout layout manager, 346
ComboContentAssistSubjectAdapter class (JFace), 226
combos (SWT), 165–166
command line options, 4–5
comment out code, 31
Compare Editor, 133–134
Compare With function, 60
comparing resources, 43
compilation units

moving, 39
renaming, 39

compilers, preferences, 14–15
classfiles, 15
JDK compliance, 15
warnings and errors, 14–15

component events, processing, 353
components

VE (Visual Editor for Java), 47
workbench, 351–352

composites (SWT), 155
Concurrent Versions System (CVS), 129–130
configuring

Ant, 388–389
debugger, 113–114
perspectives, 66–67
plug-ins

manifest, 329–332
Plug-in Development perspective, 327–329
Schema Editor, 341–343
SDK extension points, 332–341

text processing (JFace), 223
conflicts, resolving, 133–134
constants, refactoring code, 42
constructors

generating, 33
inheriting, 32

ContainerGenerator class, 374
containers, 322
ContainerSelectionDialog class, 374
content assistants

Jukebox project, 304–307
overview, 224–225

content pane (Duke Speaks project), 96
ContentViewer class (JFace), 216
context associations (help systems), 380–381
context identifications (help systems), 381
context-sensitive help, 26, 473–474
Control class (SWT), 146
ControlEditor class (SWT), 175
Convert Anonymous Type to Nested Type function, 41

560

Change Method Signature function

23_020059_bindex.qxd 10/8/04 1:23 PM Page 560

Convert Local Variable to Field function, 42
Convert Nested Type to Top Level function, 41
CoolBar class (SWT), 170
Copy function, 60
Correction Assistant

Quick Assist, 34–35
QuickFix, 33–34

Countour Generator (FreeTTS), 74
Create a New Class Wizard, 7–8
cursors (SWT), 189–190
custom widgets (SWT), 174–176
Cut function, 60
CVS (Concurrent Versions System), 129–130

D
data model separation (forms), 350
data transfer

JFace, drag and drop, 218
SWT

clipboard, 198–199
drag and drop, 199

debugger. See also troubleshooting
breakpoints

managing, 117–118
setting, 116

configuring, 113–114
controlling program execution, 115–116
Debug Perspective, 114–115
HotSwap, 117
testing expressions, 117
variables, 116–117

debugging, 118-119. See also debugger
Debug Perspective, 114–115
Declarations function, 60
declaring applications, 514
defining perspectives, 65–66
delegate methods, 32
Delete function, 60
deployment

customizing products, 394–396
Eclipse runtime environment, 394
example files, 396–398
features, 391

creating, 391–392
deploying, 393

fragments, 390
Hex Game project, 534
installation formats, 388, 394
internationalization, 401–402

Cheat Sheets, 404
help systems, 404
national language resource bundles, 405
text constants in manifest files, 403
text constants in programs, 402–403

patches, 405

RCP (Rich Client Platform) applications, 507–508
spell checker project, 490

configuring Ant scripts, 492–495
feature, defining, 490–492
installation, 498
language feature, defining, 495–497
update site, defining, 497–498

update sites, 398–399
adding, 400
install handlers, 401
installing features, 400
managing configuration, 400–401
updating features, 400

zip files, 394
description editor (Jukebox project), 300–301
description editor dialog (Jukebox project), 302–303

code scanner, 303
content assistant, 304–307
SourceViewer, 307–311

description window (Jukebox projet), 275–278
Deselect Working Set function, 53
development teams, 129–130

comparison functions, 135
conflict resolution, 133–134
CVS (Concurrent Versions System), 129–130
Export function, 135
plug-ins, 316–317
repositories, 130–131
sharing projects, 132
Team group preferences, 135
version management, 133

dialogs
JFace, 206–207

implementing, 210–213
InputDialog class, 207–208
making persistent, 213–214
MessageDialog class, 208–209
TitleAreaDialog class, 209–210

Jukebox project
description editor, 302–311
file-selection, 292–293

plug-ins, 372–373
CheckedTreeSelectionDialog class, 373
ContainerGenerator class, 374
ContainerSelectionDialog class, 374
ElementListSelectionDialog class, 374
ElementTreeSelectionDialog class, 373
ListSelectionDialog class, 374
NewFolderDialog class, 374
ResourceListSelectionDialog class, 374
SaveAsDialog class, 374

SWT, 152–153
message boxes, 154–155
predefined, 153–154

Disable function, 117
Disconnect function, 115

561

Disconnect function

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 561

Display class (SWT), 147–148
docking windows, 63
documentation, 125–127, 343
drag and drop

JFace, 218
Jukebox project, 286–288
SWT, 199

Duke Speaks project
animation events, 75–77
animator, 77–80

Animator.java class, 78–80
Code Assistant, 77–78
creating classes, 77
embedding into FreeTTS, 81–83

connecting to the Java audio system, 83–84
exporting, 109–110
FreeTTS speech synthesizer, 74–75
Player class source code, 106–109
setup, 73–74
third-party software, 555
user interface, 84

animated face, 84–86
buttons, 94–95
content pane, 96
control panel, 87
domain model, 87–91
events, 94
integrating, 95
labels, 94
layouts, 93
PlayerPanel class source code, 97–106
presentation, 91–92
sliders, 93
text, 94
VE (Visual Editor for Java), 92

dynamic help systems, 382

E
easysql, 545
Eclipse

core classes, 318–320
installing, 1–5
migrating to new versions, 551–553
platform architecture

core runtime, 315
extension points, 314
help system, 316
OSGi, 314
overview, 314, 316–317
RCP vs. IDE, 315
resource management, 315
team support, 316–317
user interfaces, 316

requirements, 1
Welcome screen, 3

Eclipse 3, migrating to, 552–553
Eclipse Modeling Framework. See EMF
Eclipse UI, 344

actions, 367
defining in the manifest, 368–372
global, 367
implementing manually, 372
local, 367

dialogs, 372–373
CheckedTreeSelectionDialog class, 373
ContainerGenerator class, 374
ContainerSelectionDialog class, 374
ElementListSelectionDialog class, 374
ElementTreeSelectionDialog class, 373
ListSelectionDialog class, 374
NewFolderDialog class, 374
ResourceListSelectionDialog class, 374
SaveAsDialog class, 374

forms, 344–346
collapsible elements, 346–348
data model separation, 350
layouts, 346
Master-Details-Block, 350
resource management, 349
text markup, 348–349

help system, 379
active help, 382
Cheat Sheets, 383–384
context associations, 380–381
context identifications, 381
deploying, 381–382
dynamic help, 382
table of contents, 379–380

perspectives, defining, 377–379
preferences, 377
property pages, 377
wizards, 374

IWorkbenchWizard interface, 376
newWizard extension point, 375–376
WizardNewFileCreationPage class, 376–377

workbench, 350–351
components, 351–352
editors, 355–362
event processing, 352–355
views, 362–366
workbench page, 351
workbench window, 351

Eclipse Visual Editor for Java. See VE
Edit Active Working Set function, 53
EditorPart class, 355
editors, workbench, 355–356

AbstractTextEditor class, 357–359
FormEditor class, 360–361
keyboard shortcuts, 357
markers, 361–362

562

Display class (SWT)

23_020059_bindex.qxd 10/8/04 1:23 PM Page 562

menus, 356
MultiEditor class, 360
saving files, 357
status line, 357
StatusTextEditor class, 359
TextEditor class, 360
toolbars, 356

Eiffel for Eclipse, 547
ElementListSelectionDialog class, 374
ElementTreeSelectionDialog class, 373
embedded Ant. See Ant
embedding external tools, 135–136
EMF (Eclipse Modeling Framework), 45, 546
Enable function, 117
Encapsulate function, 41–42
encapsulating fields, 32
Error Log, 26
errors, 14–15. See also Problems view
event processing, 49–50
events

Duke Speaks project GUI, 94
SWT events package, 141

adapters, 142
events, 142
listeners, 141–142
overview, 143–145

SWT with Swing/AWT components, 192–196
workbench, 352–353

component events, 353
initialization, 354–355
selection events, 354
sequence, 355
window events, 353

executable prototypes, 538
ExpandableComposite class, 346–347
exporting

applications (Duke Speaks project), 109–110
preferences, 10

expressions, testing, 117
Expressions view (scrapbooks), 24
extension points, 314, 514
external tools, embedding, 135–136
Extract/Inline Constant function, 42
Extract Interface function, 40
Extract Local Variable function, 41
Extract Method function, 39
extreme programming, 537

automated testing, 538
executable prototypes, 538
restructuring code, 540–541

F
factories, refactoring code, 40
FastView, 64, 378
Feature Patch, 405

features, 25, 391
creating, 391–392
deploying, 393
disabling, 400
installing, 400
spell checker project

about.html file, 492
about.ini file, 492
manifest, 491
project, creating, 490–491

updating, 400
field editors (JFace), 232–233
fields, encapsulating, 32
file associations, 54–55
files, 323–324

importing, 67–69
saving (workbench editor), 357

file-selection dialogs (Jukebox project), 292–293
FillLayout class (SWT), 178–179
Filters function, 53
Find/Replace function, 62–63
folders, 323
FontRegistry class (JFace), 205–206
fonts (SWT), 187–188
formatting code, 15–16
FormEditor class, 360–361
FormLayout class (SWT), 182–184
forms, 344–346

collapsible elements, 346–348
data model separation, 350
layouts, 346
Master-Details-Block, 350
resource management, 349
text markup, 348–349

FormText class, 348–349
Forward function, 37, 53
fragments, 390

spell checker project
help files, 489
Java-Properties plug-in, 490
manifest texts, 488
program texts, 488
project, creating, 487–488

FreeTTS speech synthesizer, 67. See also Duke Speaks
project

downloading, 67–68
importing, 68–69
overview, 74–75
Programmer’s Guide, 75

G
GEF, 545
Generalize Type function, 40
generating constructors, 33
generic beans, 48

563

generic beans

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 563

global actions, 367
global welcome screen (RCP), 508–509
Go Into function, 53
Go to Line... function, 37
GotoMarker, 362
Graphics Context class (SWT), 185–186
graphics package (SWT), 185

colors, 186–187
cursors, 189–190
fonts, 187–188
Graphics Context class, 185–186
images, 188–189

GridLayout class (SWT), 180–182
groups (SWT), 156
GUI extension points, 334–338
GUIs. See also JFace; SWT

composing (with VE), 46–48
Duke Speaks project

animated face, 84–86
buttons, 94–95
content pane, 96
control panel, 87
domain model, 87–91
events, 94
integrating, 95
labels, 94
layouts, 93
PlayerPanel class source code, 97–106
presentation, 91–92
sliders, 93
text, 94
VE (Visual Editor for Java), 92

Eclipse platform architecture, 316
Eclipse UI, 344

actions, 367–372
Cheat Sheets, 383–384
dialogs, 372–374
forms, 344–350
help system, 379–382
perspectives, defining, 377–379
preferences, 377
property pages, 377
wizards, 374–377
workbench, 350–366

Jukebox project
description window, 275–278
Player module, 247–249
playlist viewer, 278–295

H
Hello World application

creating new classes, 7–9
launching, 9–10
perspectives, opening, 5–7

project, creating, 7
talking Hello World example, 67–71

help systems, 26–27, 316
Hex Game project, 516
internationalization, 404
plug-ins, 379

active help, 382
context associations, 380–381
context identifications, 381
deploying, 381–382
dynamic help, 382
table of contents, 379–380

spell checker project, 473
active help, 474–475
context-sensitive help, 473–474
Java properties plug-in, 483–484
running the help action, 476–477
table of contents, 473

Hex Game project
customizing, 515
declaring the application, 514
deployment, 534
game engine, 527–531
help system, 516
HexView class, 521–527
IGame interface, 520–521
IStatusListener interface, 520
manifest, 512–513, 516–517
overview, 511–512
perspective, defining, 515
plug-ins required, 514
RcpApplication class, 517–518
RcpPerspective class, 519–520
RcpWorkbenchAdvisor class, 518–519
setting up, 512
texting, 534
view, defining, 515
welcome screen, 515, 531–533

hierarchy
packages, 56–57
viewers (JFace), 215–216

HotSwap, 117
hover infos, 27, 222

I
IAction interface (JFace), 226–227
IContainer interface, 322
IDE (Integrated Development Environment), RCP com-

parison, 315
IEditorInput interface, 355
IFile interface, 323–324
IFolder interface, 323
ILabelProvider class (JFace), 216
ImageRegistry class (JFace), 206
images (SWT), 188–189

564

global actions

23_020059_bindex.qxd 10/8/04 1:23 PM Page 564

IMarker interface, 324–325
importing

files, 67–69
preferences, 10
types, 31

Improve, 547
incremental backups, 2
inheriting constructors, 32
INI files (Jukebox project), 261–268
Inline method or local variable function, 41
input dialogs (JFace), 207–208
installation formats, 388, 394
installed JREs preferences, 12–13
install handlers, 401
installing

Eclipse, 1–5
VE (Visual Editor for Java), 45

interfaces, creating, 76–77
internationalization, 401–402

Cheat Sheets, 404
help systems, 404
national language resource bundles, 405
spell checker project, 484

language fragment, creating, 487–490
text constants in Java code, 484–486
text constants in manifest files, 487

text constants in manifest files, 403
text constants in programs, 402–403

Introduce Parameter function, 39
Intro View, 26
IPath interface, 319
IPlatformRunnable interface (RCP), 503
IProgressMonitor interface, 320
IResourceChangeListener interface, 325–326
IResource interface, 320–322
IWorkbench object, 351
IWorkbenchWizard interface, 376
IWorkspaceRoot interface, 322

J
J2SE 5.0, 541–542
JAR files (Duke Speaks project), 109–110
Java 1.5, 541–542
Java Beans. See beans
Java Beans view, 48
Java Browsing Perspective, 71
Java Build Path, editing, 74
JavaCC, 547
Java classes, SDK extension points, 334
Java console, debugging, 118–119
Java Debug Wire Protocols (JDWP), 119
Javadoc

comments, creating, 31
documentation, 125–127

Javadoc View, 27–28

Java Editor
code folding, 35–36
syntax coloring, 36
typing aids, 35

Java properties plug-in
internationalization, 490
spell checker project, 477

help system, 483–484
JavaPropertiesPlugin class, 480–481
JavaPropertiesPreferencePage class, 482–483
Java-Properties tokenizer, 483–484
manifest, 478, 479–480
preferences, 481–482
setup, 477
tokenizer extension, 478–479

Java Speech API (JSAPI), 67. See also Duke Speaks
project

JavaZoom sound modules, 238
JDK compliance, 15
JDWP (Java Debug Wire Protocols), 119
JellySWT, 546
JFace. See also Jukebox project

dialogs, 206–207
implementing, 210–213
InputDialog class, 207–208
making persistent, 213–214
MessageDialog class, 208–209
TitleAreaDialog class, 209–210

IAction interface, 226–227
managers, 227

MenuManager, 227–228
StatusLineManager, 228

preferences, 230–231
field editors, 232–233
PreferenceConverter class, 231
PreferencePage class, 232
preference page trees, 233–234
PreferenceStore class, 231

resource management
FontRegistry class, 205–206
ImageRegistry class, 206
JFaceColors class, 206
JFaceResources class, 206

text processing, 218
annotations, 223–224
ComboContentAssistSubjectAdapter class, 226
configuring, 223
content assistants, 224–225
document model, 218–219
ProjectionViewer class, 226
scripts, 219–220
TextContentAssistSubjectAdapter class, 226
text formatters, 224
text presentation, 225–226
TextViewer class, 220–223

565

JFace

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 565

viewers, 214
cell editors, 217–218
ContentViewer class, 216
data transfer, 218
event model, 215
hierarchy, 215–216
ILabelProvider class, 216
StructuredViewer class, 216–217
TreeViewer class, 217

windows, 206–207
wizards, 228

Wizard class, 228–229
WizardDialog class, 230
WizardPage class, 229–230
WizardSelectionPage class, 230

JFaceColors class, 206
JFaceDbc, 545
JFaceResources class, 206
Jigloo, 546
JREs

adding, 12–13
version 1.1, 13

JSAPI (Java Speech API), 67. See also Duke Speaks
project

Jukebox project
deploying, 311
description editor, 300–301
DescriptionEditorDialog class, 302–303

code scanner, 303
content assistant, 304–307
SourceViewer, 307–311

description window, 275–278
design goals, 237–238
FileCellEditor class, 299–300
JARs needed, 240
Java Build Path, 240
JavaZoom sound modules, 238
jlGui 2.2, 238
Player class, 247–249
Player module, 241

BasicPlayerListener interface, 260
graphics operations, 249–250
instrumentation, 251–258
layout, 241–242
Player class source code, 243–247
threads, 242–243
window management, 258–260

playlist domain model, 261
accessing features, 270–271
interface, 261–268
IPlayList implementation, 268–270
ISelectionProvider interface, 274–275
IStructuredContentProvider interface, 273
managing entries, 271–273
switching playlists, 273–274

PlaylistLabelProvider class, 295–296
cell text, 297–299
returning warning icons, 296–297

playlists, storing, 238
playlist viewer, 275–278

file-selection dialogs, 292–293
menus, 293–295
nested grid layout, 289–290
PlaylistViewer class, 281–288
PlaylistWindow class, 278–281
toolbars, 290–292

project installation, 238, 240–241
third-party software, 555
UML class diagram, 239

JUnit, 120
setup, 120–121
test suites, 122–124

K
keyboard shortcuts, defining, 11–12, 357
KLEEN, 546

L
Label class (SWT), 161
labels (Duke Speaks project), 94
labels (SWT), 161
Last Edit Location function, 37
launching applications, 9–10
layout package (SWT), 177–178

FillLayout class, 178–179
FormLayout class, 182–184
GridLayout class, 180–182
RowLayout class, 179–180
StackLayout class, 184–185

layouts, 49
Duke Speaks project, 93
Eclipse UI, 346
perspectives, 378

Link with Editor function, 53
listeners, SWT events, 141–142
lists (SWT), 164
ListSelectionDialog class, 374
local actions, 367
local debugging. See debugger
Local History functions, 43–44
long-running processes, managing, 326

M
MagicDraw, 546
managers (JFace), 227

MenuManager, 227–228
spell checker project, 423–424
StatusLineManager, 228

managing long-running processes, 326

566

JFace (continued)

23_020059_bindex.qxd 10/8/04 1:23 PM Page 566

markers, 324–325
declaring, 361
GotoMarker, 362
inheritance, 361–362
lifecycle, 362

marking name occurrences, 63
Master-Details-Block design pattern, 350
maximizing views, 65
maximizing windows, 65
MenuManager (JFace), 227–228
menus

creating manually, 356
Jukebox project, 293–295
overview, 170–174

message boxes
overview, 208–209
SWT, 154–155

methods
call hierarchies, viewing, 27–28
delegate, 32
overriding, 32
refactoring code, 40–41

migrating to new Eclipse versions, 551–553
minimizing views, 65
minimizing windows, 65
modifying types, 38–39
Monitor class (SWT), 152
monitoring long-running processes, 320
movable tool groups (SWT), 170
Move function, 39
MultiEditor class, 360
MyEclipse, 548

N
name occurrences, marking, 63
national language resource bundles, deploying, 405
navigation tools, 36–37, 53

Outline View, 57–58
context functions, 59–60
representation, 58–59

Package Explorer, 56
nested grid layout (Jukebox project), 289–290
NewFolderDialog class, 374
newWizard extension point, 375–376
Next Annotation function, 37
NullProgressMonitor class, 320

O
Occurrences in File function, 60
OLE, SWT support, 201
Omondo, 546
Open Call HIerarchy function, 37
Open Call Hierarchy function, 59
Open Declaration function, 36–37
opening windows, 65

Open in New Window function, 53
Open Service Gateway Initiative (OSGi), 314
Open Super Implementation function, 37, 59
Open Type Hierarchy function, 37, 59
org.eclipse.core.runtime package, 318–320
org.eclipse.swt.accessibility package, 138
org.eclipse.swt.awt package, 138
org.eclipse.swt.browser package, 138
org.eclipse.swt.custom package, 138
org.eclipse.swt.dnd package, 139
org.eclipse.swt.events package, 139, 141

adapters, 142
events, 142
listeners, 141–142
overview, 143–145

org.eclipse.swt.graphics package, 139, 185
colors, 186–187
cursors, 189–190
fonts, 187–188
Graphics Context class, 185–186
images, 188–189

org.eclipse.swt.internal package, 139
org.eclipse.swt.layout package, 139, 177–178

FillLayout class, 178–179
FormLayout class, 182–184
GridLayout class, 180–182
RowLayout class, 179–180
StackLayout class, 184–185

org.eclipse.swt.ole.win32 package, 139
org.eclipse.swt.printing package, 139
org.eclipse.swt.program package, 139
org.eclipse.swt.widgets package, 139, 145

browser widget, 177
buttons, 156–157
combos, 165–166
composites, 155
Control class, 146
custom widgets, 174–176
dialogs, 152–153

message boxes, 154–155
predefined, 153–154

Display class, 147–148
groups, 156
labels, 161
lists, 164
menus, 170–174
Monitor class, 152
movable tool groups, 170
overview, 146
ProgressBar class, 159
sashes, 167–168
scales, 158–159
Scrollable class, 159
Shell class, 148–150
sliders, 158–159
tabbed folders, 168–169

567

org.eclipse.swt.widgets package

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 567

tables, 161–164
text fields, 159–160
toolbars, 169–170
trees, 166–167
Widget class, 146

org.eclipse.swt package, 138
organizing code

associations, 54–55
Find/Replace function, 62–63
importing files, 67–69
Java Browsing Perspective, 71
navigation tools, 53
Outline View, 57–58

context functions, 59–60
representation, 58–59

packages, 55–57
perspectives

configuring, 66–67
defining, 65–66

project properties, 69–71
resources, 52

storing, 52–53
synchronizing, 53
types, 52

Search function, 60–62
windows

closing, 65
docking, 63
FastView, 64
maximizing, 65
minimizing, 65
opening, 65
stacking, 64

workbench, 51–52
OSGi (Open Service Gateway Initiative), 314
Outline View, 57–58, 365–366

context functions, 59–60
representation, 58–59

outputting to printers (SWT), 196–198
overriding methods, 32

P
Package Explorer, 55–57
packages

hierarchy, 56–57
organizing, 55–57

PageBookView class, 364–365
parsing (Jukebox project), 261–268
Paste function, 60
patches, 405
Path class, 319
Pause Generator (FreeTTS), 74
PDA platforms (SWT), 202
persistency, workbench views, 363
persistent dialogs (JFace), 213–214

perspectives
configuring, 66–67
defining, 65–66, 377–378

Action Sets, 378–379
FastViews, 378
layout, 378

Hex Game project, 515
opening, 5–7
workbench components, 352

Phraser (FreeTTS), 74
PitchMark Generator (FreeTTS), 75
Platform class, 318
Player module (Jukebox project), 241

BasicPlayerListener interface, 260
graphics operations, 249–250
GUI, creating, 247–249
instrumentation, 251–258
layout, 241–242
Player class source code, 243–247
threads, 242–243
window management, 258–260

playlist domain model (Jukebox project), 261
accessing features, 270–271
interface, 261–268
IPlayList implementation, 268–270
ISelectionProvider interface, 274–275
IStructuredContentProvider interface, 273
managing entries, 271–273
switching playlists, 273–274

playlist viewer (Jukebox project), 278
file-selection dialogs, 292–293
menus, 293–295
nested grid layout, 289–290
PlaylistViewer class, 281–288
PlaylistWindow class, 278–281
toolbars, 290–292

Plugin class, 318–319
Plug-in Development perspective, 327–329
Plug-in Registry, 25
plug-ins. See also Hex Game project; spell checker

project
actions, 367

defining in the manifest, 368–372
global, 367
implementing manually, 372
local, 367

ANTLR, 547
AspectJ, 547
Attrezzo per Xindice, 545
Azzurri Clay, 547
CDT, 547
Cheat Sheets, 383–384
dialogs, 372–373

CheckedTreeSelectionDialog class, 373
ContainerGenerator class, 374

568

org.eclipse.swt.widgets package (continued)

23_020059_bindex.qxd 10/8/04 1:23 PM Page 568

ContainerSelectionDialog class, 374
ElementListSelectionDialog class, 374
ElementTreeSelectionDialog class, 373
ListSelectionDialog class, 374
NewFolderDialog class, 374
ResourceListSelectionDialog class, 374
SaveAsDialog class, 374

easysql, 545
Eclipse platform architecture

core runtime, 315
extension points, 314
help system, 316
OSGi, 314
overview, 314, 316–317
RCP vs. IDE, 315
resource management, 315
team support, 316–317
user interfaces, 316

Eclipse UI, 344
Eiffel for Eclipse, 547
EMF (Eclipse Modeling Framework), 546
features, 391

creating, 391–392
deploying, 393
disabling, 400
installing, 400
updating, 400

forms, 344–346
collapsible elements, 346–348
data model separation, 350
layouts, 346
Master-Details-Block, 350
resource management, 349
text markup, 348–349

fragments, 390
GEF, 545
help system, 379

active help, 382
context associations, 380–381
context identifications, 381
deploying, 381–382
dynamic help, 382
table of contents, 379–380

Improve, 547
installation formats, 388
JavaCC, 547
JellySWT, 546
JFaceDbc, 545
Jigloo, 546
KLEEN, 546
MagicDraw, 546
manifest, 329–330

Build page, 332
Dependencies page, 331
Extension Points page, 332

Extensions page, 331–332
Overview page, 331
Runtime page, 331
workbench components, 352

migrating to new Eclipse versions, 552
MyEclipse, 548
Omondo, 546
perspectives, defining, 377–379
Plug-in Development perspective, 327–329
preferences, 377
Profiler, 548
property pages, 377
Rational, 548
RCP (Rich Client Platform), 502–503
Schema Editor, 341–343
SDK extension points, 332

GUI extension points, 334–338
Java classes, 334
schema-based, 333
templates, 338–341

Slime UML, 547
SpellChecker for Eclipse, 549
SWT-Designer, 546
Sysdeo Eclipse Tomcat Launcher, 548
Systinet WASP Server for Java, 548
Team Repository Providers, 547
TimeStorm 2.0, 549
Together Edition for Eclipse, 548
Transcoder, 547
W4Eclipse, 546
wizards, 374

IWorkbenchWizard interface, 376
newWizard extension point, 375–376
WizardNewFileCreationPage class, 376–377

workbench, 350–351
components, 351–352
editors, 355–362
event processing, 352–355
views, 362–366
workbench page, 351
workbench window, 351

X-Men, 548
XML Buddy, 548
xored WebStudio, 547

Pocket PC platforms (SWT), 202
PopupList class (SWT), 175
PreferenceConverter class (JFace), 231
PreferenceDialog class (JFace), 234
PreferenceManager class (JFace), 234
PreferenceNode class, 234
PreferencePage class (JFace), 232
preference page trees (JFace), 233–234

PreferenceDialog class, 234
PreferenceManager class, 234
PreferenceNode class, 234

569

preference page trees (JFace)

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 569

preferences
compiler, 14–15
formatting code, 15–16
importing and exporting, 10
installed JREs, 12–13
JFace, 230–231

field editors, 232–233
PreferenceConverter class, 231
PreferencePage class, 232
preference page trees, 233–234
PreferenceStore class, 231

plug-ins, 377
templates, 16–18
VE (Visual Editor for Java), 46
workbench, 11–12

Preferences class, 319
Preferences dialog, 10–11
PreferenceStore class (JFace), 231
Previous Annotation function, 37
printer output (SWT), 196–198
Problems Filter, 20–21
Problems view, 19–21
processes, long-running

managing, 326
monitoring, 320

processing events, 352–353
component events, 353
initialization, 354–355
selection events, 354
sequence, 355
window events, 353

productivity tools
automatic code completion

Code Assistant, 28–30, 77–78
comment out code, 31
delegate methods, 32
encapsulating fields, 32
generating constructors, 33
importing types, 31
inheriting constructors, 32
Javadoc comments, 31
overriding methods, 32

Correction Assistant
Quick Assist, 34–35
QuickFix, 33–34

help system, 26–27
Javadoc View, 27–28
Java Editor

code folding, 35–36
syntax coloring, 36
typing aids, 35

Local History functions, 43–44
Redo function, 42–43

refactoring code, 38
constants, 42
factories, 40
methods, 39–40
modifying types, 38–39
types and classes, 40–41
variables, 41

source code navigation, 36–37
system information file, 25–26
Undo function, 42–43

products
customizing, 394–396, 508
deployment

Eclipse runtime environment, 394
example files, 396–398
features, 391, 391–392, 393
fragments, 390
installation formats, 388, 394
update sites, 398–401
zip files, 394

internationalization, 401–402
Cheat Sheets, 404
help systems, 404
national language resource bundles, 405
text constants in manifest files, 403
text constants in programs, 402–403

patches, 405
Profiler, 548
programming style

agile programming, 537
automated testing, 538
executable prototypes, 538
extreme programming, 537
Java 1.5, 541–542
making refinements, 539–540
restructuring code, 540–541
reusing components, 541

ProgressBar class (SWT), 159
ProgressMonitorWrapper class, 320
ProjectionViewer class (JFace), 226
projects, 322–323

creating, 7
natures, 322
properties, 69–71

properties
beans, 48–49
projects, 69–71
Swing components, 49

property pages, 377
Property View, 366
Pull up function, 39

570

preferences

23_020059_bindex.qxd 10/8/04 1:23 PM Page 570

Q
Quick Assist, 34–35
QuickFix, 33–34

R
Rational, 548
RCP (Rich Client Platform), 501–502. See also Hex

Game project
deploying applications, 507–508
global welcome screen, 508–509
IDE comparison, 315
IPlatformRunnable interface, 503
plug-ins, 502–503
product customization, 508
testing applications, 507
WorkbenchAdvisor class, 503–504

application hooks, 504–505
event loop hooks, 506
information providers, 506–507
welcome screen hook, 506
window hooks, 505–506

Read Access function, 60
Redo function, 42–43
Refactor function, 60
refactoring code, 38, 540–541

constants, 42
factories, 40
methods, 39–40
modifying types, 38–39
types and classes, 40–41
variables, 41

References function, 60
remote debugging, 119
Remove All Terminated Launches function, 115
Rename function, 39
Replace With function, 60
repositories, 130–131
ResourceListSelectionDialog class, 374
resource management

Eclipse platform architecture, 315
Eclipse UI forms, 349
JFace

FontRegistry class, 205–206
ImageRegistry class, 206
JFaceColors class, 206
JFaceResources class, 206

SWT, 200–201
Resource Navigator, 51–52
ResourceNavigator class, 363–364
resources, 52, 320–322

comparing, 43
containers, 322
files, 323–324
folders, 323

projects, 322–323
reacting to changes in, 325–326
replacing with older versions, 43
restoring, 43
storing, 52–53
synchronizing, 53
types, 52
workspace root, 322

Restore from Local History function, 60
restoring resources, 43
Resume function, 115
Rich Client Platform. See RCP
rich clients, 501
RowLayout class (SWT), 179–180
Run Configurations, 9
Run icon, 9

S
sashes (SWT), 167–168
SashForm class (SWT), 175
SaveAsDialog class, 374
saving files (workbench editor), 357
scales (SWT), 156
schema-based extension points, 333
Schema Editor, 341–343
scrapbooks, 22–24
Scrollable class (SWT), 159
SDK extension points, 332

GUI extension points, 334–338
Java classes, 334
schema-based, 333
templates, 338–341

Search function, 60–62
Search View, 61–62
Section class, 347–348
Segmenter (FreeTTS), 74
selection events, processing, 354
Select Working Set function, 53
serializing (Jukebox project), 261–268
Shell class (SWT), 148–150
shortcuts, defining, 11–12
Show in Package Explorer function, 37
sliders

Duke Speaks project, 93
SWT, 156

Slime UML, 547
Sort function, 53
source code navigation, 36–37
SourceViewer class (JFace), 223
speech synthesizers. See also Duke Speaks project

FreeTTS, 67
downloading, 67–68
importing, 68–69
Programmer’s Guide, 75

FreeTTS speech synthesizer, 74–75
Java Speech API (JSAPI), 67

571

speech synthesizers

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 571

JSAPI (Java Speech API), 67
Via Voice, 73

SpellChecker for Eclipse, 549
spell checker project

analyzing documents, 463
Check Spelling action, 424

CheckSpellingActionDelegate class, 431–438
disposal, 430–431
document management, 428–429
getInstance() method, 426–427
selection provider, 427–428
SpellCheckingTarget class, 425–426
text replacement, 429–430

configuring, 463
DefaultSpellCheckerPreferencePage class, 469
domain model, 464–465
GUI, 466
preferences, 463–464
reading from PreferenceStore, 471–472
ShortIntegerFieldEditor class, 470–471
SpellCheckerPreferencePage class, 466–469

core classes, 409
correction window

actions (JFace), 449–450
managing images, 450–452
SepellCorrectionView class, 439–449

deploying, 490
configuring Ant scripts, 492–495
feature, defining, 490–492
installation, 498
language feature, defining, 495–497
update site, defining, 497–498

engine, 408
engine/interface interaction, 452

creating engines, 459–460
managers (JFace), 453–454
managing engines, 458–459
operations, 462–463
plug-in selection, 454–457
processing spelling errors, 461–462
running the engine, 457–458

help system, 473
active help, 474–475
context-sensitive help, 473–474
running the help action, 476–477
table of contents, 473

internationalization, 484
language fragment, creating, 487–490
text constants in Java code, 484–486
text constants in manifest files, 487

Java properties plug-in, 477
help system, 483–484
JavaPropertiesPlugin class, 480–481
JavaPropertiesPreferencePage class, 482–483
Java-Properties tokenizer, 483–484

manifest, 478, 479–480
preferences, 481–482
setup, 477–478
tokenizer extension, 478–479

plug-in configuration, 412
imported files, 413–419
manifest, 413–419

setup, 410–411
SpellCheckerPlugin class, 419–421

dictionary URL, 421–422
initializing preferences, 422–423
manager, 423–424

third-party software, 555
stacking windows, 64
StackLayout class (SWT), 184–185
Standard Widget Toolkit. See SWT
status line, accessing, 357
StatusLineManager (JFace), 228
StatusTextEditor class, 359
Step Into function, 115
Step Over function, 116
Step Return function, 116
Step with Filters function, 116
StructuredViewer class (JFace), 216–217
StyledText class (SWT), 175
SubProgressMonitor class, 320
Suspend function, 115
Swing components

properties, 49
with SWT, 191

embedded contents, 192
events, 192–196

SWT. See also Jukebox project
accessibility options, 202–203
advantages, 140
data transfer, 198

clipboard, 198–199
drag and drop, 199

disadvantages, 140
events package, 141

adapters, 142
events, 142
listeners, 141–142
overview, 143–145

example program, 150–151
graphics package, 185

colors, 186–187
cursors, 189–190
fonts, 187–188
Graphics Context class, 185–186
images, 188–189

layouts package, 177–178
FillLayout class, 178–179
FormLayout class, 182–184
GridLayout class, 180–182

572

speech synthesizers (continued)

23_020059_bindex.qxd 10/8/04 1:23 PM Page 572

RowLayout class, 179–180
StackLayout class, 184–185

package overview, 138–139
Pocket PC platforms, 202
printer output, 196–198
resource management, 200–201
run configuration, 151–152
with Swing/AWT components, 191

embedded contents, 192
events, 192–196

SWT package, 141
widgets package, 145

browser widget, 177
buttons, 156–157
combos, 165–166
composites, 155
Control class, 146
custom widgets, 174–176
dialogs, 152–155
Display class, 147–148
groups, 156
labels, 161
lists, 164
menus, 170–174
Monitor class, 152
movable tool groups, 170
overview, 146
ProgressBar class, 159
sashes, 167–168
scales, 158–159
Scrollable class, 159
Shell class, 148–150
sliders, 158–159
tabbed folders, 168–169
tables, 161–164
text fields, 159–160
toolbars, 169–170
trees, 166–167
Widget class, 146

Windows32 support (OLE), 201
SWT-Designer, 546
Synchronize function, 133
synchronizing resources, 53
syntax coloring (Java Editor), 36
Sysdeo Eclipse Tomcat Launcher, 548
system information file, 25–26
Systinet WASP Server for Java, 548

T
tabbed folders (SWT), 168–169
TableEditor class (SWT), 176
tables (SWT), 161–164
TableTree class (SWT), 176
TableTreeEditor class (SWT), 176
TableWrapLayout layout manager, 346

talking Hello World example, 67–71
tasks, creating, 21–22
Tasks View, 366
team development, 129–130

comparison functions, 135
conflict resolution, 133–134
CVS (Concurrent Versions System), 129–130
Export function, 135
plug-ins, 316–317
repositories, 130–131
sharing projects, 132
Team group preferences, 135
version management, 133

Team Repository Providers, 547
Team Synchronizing Perspective, 133
templates

automatic code completion, 29–30
preferences, 16–18
SDK extension points, 338–341

Terminate function, 115
testing expressions, 117
test suites (JUnit)

creating, 122–124
running, 124

text, Duke Speaks project GUI, 94
Text class (SWT), 159–160
text constants, internationalizing, 402–403
TextContentAssistSubjectAdapter class (JFace), 226
TextEditor class, 360
text fields (SWT), 159–160
text formatters (JFace), 224
text markup, 348–349
text presentation (JFace), 225–226
text processing (JFace), 218

annotations, 223–224
ComboContentAssistSubjectAdapter class, 226
configuring, 223
content assistants, 224–225
document model, 218–219
ProjectionViewer class, 226
scrips, 219–220
TextContentAssistSubjectAdapter class, 226
text formatters, 224
text presentation, 225–226
TextViewer class, 220–223

hover infos, 222
operations, 222–223
selection, 221
SourceViewer class, 223
text presentation, 223
viewport, 221
visible text region, 221

TextViewer class (JFace), 220–223
hover infos, 222
operations, 222–223
selection, 221

573

TextViewer class (JFace)

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 573

SourceViewer class, 223
text presentation, 223
viewport, 221
visible text region, 221

thin clients, 501
TimeStorm 2.0, 549
Together Edition for Eclipse, 548
Toggle Method Breakpoint function, 60
Toggle Watchpoint function, 60
Tokenizer (FreeTTS), 74
toolbars

creating manually, 356
Jukebox project, 290–292
overview, 169–170
workbench views, 363

Transcoder, 547
TreeEditor class (SWT), 176
trees (SWT), 166–167
tree structures, organizing elements into, 342–343
TreeViewer class (JFace), 217
troubleshooting. See also debugging

Correction Assistant
Quick Assist, 34–35
QuickFix, 33–34

help system, 26–27
Type Hierarchy Browser, 56–57
types

modifying types, 38–39
moving, 38
refactoring code, 40–41
renaming, 39

typing aids (Java Editor), 35

U
Undo function, 42–43
Update Manager, 398–399
Update Manager Log, 26
update sites

adding, 400
install handlers, 401
installing features, 400
managing configuration, 400–401
spell checker project, 497–498
Update Manager, 398–399
updating features, 400

Up To function, 53
Use Supertype function, 41
Utterance Processor (FreeTTS), 75

V
variables

debugger, 116–117
refactoring code, 41

Variables View, 116
VE (Visual Editor for Java), 45

beans, 48
generic, 48
properties, 48–49

composing GUIs with, 46–48
Duke Speaks project, 92
event processing, 49–50
installing, 45
invoking, 46
layouts, 49
maximizing views, 46
preferences, 46

version 1.1 JREs, 13
version management, 133
Via Voice, 73
viewers (JFace), 214

cell editors, 217–218
ContentViewer class, 216
data transfer, 218
event model, 215
hierarchy, 215–216
ILabelProvider class, 216
StructuredViewer class, 216–217
TreeViewer class, 217

views
Hex Game project, 515
maximizing, 65
minimizing, 65
workbench, 362–363

bookmark manager, 366
Outline View, 365–366
PageBookView class, 364–365
persistency, 363
Property View, 366
ResourceNavigator class, 363–364
Tasks View, 366
toolbars, 363

Visual Editor for Java. See VE

W
W4Eclipse, 546
warnings, 14–15. See also Problems view
Widget class (SWT), 146
widgets package (SWT), 145

browser widget, 177
buttons, 156–157
combos, 165–166
composites, 155
Control class, 146
custom widgets, 174–176
dialogs, 152–153

message boxes, 154–155
predefined, 153–154

Display class, 147–148
groups, 156
labels, 161
lists, 164

574

TextViewer class (JFace) (continued)

23_020059_bindex.qxd 10/8/04 1:23 PM Page 574

menus, 170–174
Monitor class, 152
movable tool groups, 170
overview, 146
ProgressBar class, 159
sashes, 167–168
scales, 158–159
Scrollable class, 159
Shell class, 148–150
sliders, 158–159
tabbed folders, 168–169
tables, 161–164
text fields, 159–160
toolbars, 169–170
trees, 166–167
Widget class, 146

window events, processing, 353
windows

closing, 65
docking, 63
FastView, 64
JFace, 206–207
managing (Jukebox project), 258–260
maximizing, 65
minimizing, 65
opening, 65
stacking, 64
workbench, 351

Windows32, SWT support, 201
Wizard class (JFace), 228–229
WizardDialog class (JFace), 230
WizardNewFileCreationPage class, 376–377
WizardPage class (JFace), 229–230
wizards

JFace, 228
Wizard class, 228–229
WizardDialog class, 230
WizardPage class, 229–230
WizardSelectionPage class, 230

plug-ins, 374
IWorkbenchWizard interface, 376
newWizard extension point, 375–376
WizardNewFileCreationPage class, 376–377

WizardSelectionPage class (JFace), 230
workbench, 51–52, 350–351

components, 351–352
editors, 355–356

AbstractTextEditor class, 357–359
FormEditor class, 360–361
keyboard shortcuts, 357
markers, 361–362
menus, 356
MultiEditor class, 360
saving files, 357
status line, 357

StatusTextEditor class, 359
TextEditor class, 360
toolbars, 356

event processing, 352–353
component events, 353
initialization, 354–355
selection events, 354
sequence, 355
window events, 353

views, 362–363
bookmark manager, 366
Outline View, 365–366
PageBookView class, 364–365
persistency, 363
Property View, 366
ResourceNavigator class, 363–364
Tasks View, 366
toolbars, 363

wizards, 374
IWorkbenchWizard interface, 376
newWizard extension point, 375–376
WizardNewFileCreationPage class, 376–377

workbench page, 351
workbench window, 351

WorkbenchAdvisor class, 503–504
application hooks, 503–504
event loop hooks, 506
information providers, 506–507
welcome screen hook, 506
window hooks, 503–504

workbench preferences, 11–12
workspace, 320

backing up, 2
long-running processes, managing, 326
markers, 324–325
resources, 320–322

containers, 322
files, 323–324
folders, 323
projects, 322–323
reacting to changes in, 325–326
workspace root, 322

selecting location, 2
Write Access function, 60

X
X-Men, 548
XML Buddy, 548
xored WebStudio, 547

575

xored WebStudio

In
de

x

23_020059_bindex.qxd 10/8/04 1:23 PM Page 575

	Professional Eclipse 3 for Java™ Developers
	Cover

	Contents
	Chapter 1: Introduction to Eclipse
	Installing Eclipse
	The First Application: Hello World
	Perspectives
	Projects
	Create a New Class
	Launch

	The Most Important Preferences for Java Development
	Workbench Preferences
	Installed JREs
	Compiler Preferences
	Formatting Code
	Templates

	Tasks and Problems
	Problems, Problems
	General Tasks
	Bookmarks

	The Scrapbook
	Summary

	Chapter 2: Effective Programming with Eclipse
	Little Helpers
	System Information
	Help and Hover
	Java Information Views
	Automatic Code Completion
	The Correction Assistant
	Convenience Functions of the Java Editor

	Source Code Navigation
	Refactoring Code
	Modifying Types
	Refactoring Code

	Undo and Redo
	Local History
	Comparing Resources
	Replacing with an Older Version
	Restore Deleted Resource

	Summary

	Chapter 3: The Art of (Visual) Composition
	Installation
	Invocation
	Preferences
	Composition
	Beans and Bean Properties
	Generic Beans
	Properties

	Layouts
	Event Processing
	Summary

	Chapter 4: Organizing Your Code
	The Workbench
	Resources
	Resource Types
	Where Resources Are Stored
	Synchronizing Resources
	Navigation

	Associations
	Packages
	Folders and Packages
	Navigation
	Hierarchy

	The Outline View
	Representation
	Context Functions

	Searching
	The Search Function
	Find and Replace
	Marking Name Occurrences

	Arranging Editors and Views
	Docked Windows
	Stacked Windows
	Desktop Windows
	FastView
	Opening and Closing Windows
	Maximizing Windows
	Minimizing Views

	Managing Perspectives
	Defining New Perspectives
	Configuring Perspectives

	Importing Files
	Project Properties
	The Java Browsing Perspective
	Summary

	Chapter 5: Project One: Duke Speaks
	Setting Up the Project
	A Short Excursion into Speech Synthesis
	Extending the FreeTTS System
	Animation Events
	The Animator
	Embedding into FreeTTS
	Connection with the Java Audio System

	The User Interface
	The Animated Face
	The Control Panel
	The Model
	The Presentation
	The Complete Application
	Exporting the application

	Bibliography
	Summary

	Chapter 6: Project Development
	Debugging
	The Debug Configuration
	The Debug Perspective
	Controlling Program Execution
	Managing Breakpoints
	The Java Console
	Remote Debugging

	JUnit
	Setting Up JUnit
	Creating a Test Suite
	Running a Test Suite

	Documentation
	Try It Out: Javadoc Options
	Try It Out: Command- Line Options

	Summary

	Chapter 7: Advanced Topics of Project Development
	Developing in a Team
	Setting Up a Repository
	Projects in the Repository
	Version Management
	Working in a Team
	Other Functions

	External Tools
	Refresh
	Environment
	Associations

	Summary

	Chapter 8: The SWT Library
	SWT Function Group Overview
	SWT— Pros and Cons
	Advantages of SWT
	Disadvantages of SWT

	The SWT Package
	Events
	Listeners
	Adapters
	Events
	Overview of Listeners, Adapters, and Events

	Widgets
	The Widget Class
	The Control Class
	Visual Overview
	Displays, Shells, and Monitors
	Dialogs
	Composites, Groups, and Canvas
	Buttons
	Sliders and Scales
	ProgressBar
	Scrollable and ScrollBar
	Text Fields and Labels
	Tables, Lists, and Combos
	Trees
	Sashes
	Tabbed Folders
	Toolbars
	Moveable Tool Groups (CoolBar)
	Menus
	Custom Widgets
	The Browser Widget

	Layouts
	Visual Overview
	The FillLayout Class
	The RowLayout Class
	The GridLayout Class
	The FormLayout Class
	The StackLayout class

	Graphics
	The Graphics Context
	Colors
	Fonts
	Images
	The Cursor

	Widgets That Swing
	Embedded Contents
	Events

	Output to a Printer
	Data Transfer
	The Clipboard
	Drag and Drop

	Resource Management
	Windows32 Support (OLE)
	SWT on the Pocket PC
	Accessibility
	Summary

	Chapter 9: JFace
	Resource Management
	The FontRegistry Class
	The ImageRegistry Class
	The JFaceColors Class
	The JFaceResources Class

	Dialogs and Windows
	Some Dialog Subclasses
	Implementing Your Own Dialog Classes
	Making Dialogs Persistent

	Viewers
	The Viewer Event Model
	The Viewer Hierarchy
	Cell Editors
	Data Transfer

	Text Processing
	Text Processing Base Classes
	The ProjectionViewer
	Comfortable Text Fields and Combos

	Actions and Menus
	The IAction Interface
	The Managers

	Wizards
	The Wizard Class
	The WizardPage Class
	The WizardSelectionPage Class
	The WizardDialog Class

	Preferences
	The PreferenceStore and PreferenceConverter Classes
	The PreferencePage Class
	Field Editors
	Preference Page Trees

	Summary

	Chapter 10: Project Two: Jukebox
	Design Goals and How to Achieve Them
	Installing the Project
	The Player Module
	Layout
	Threads
	The Player. java Class
	BasicPlayerListener

	The Playlist Domain Model
	The Interface
	Implementing IPlayList
	Accessing Features
	Managing Entries
	Content Provider
	Playlist Switch
	Selections

	The Description Window
	The DescriptionWindow Class

	The Playlist Viewer
	The PlaylistWindow Class
	The PlaylistViewer Class
	Nested Grid Layout
	Toolbar
	File- Selection Dialogs
	Menu

	The PlaylistLabelProvider Class
	Returning a Warning Icon
	Cell Text

	The FileCellEditor Class
	The Description Editor
	The DescriptionCellEditor Class

	The DescriptionEditorDialog Class
	Code Scanner
	Content Assistant
	SourceViewer Configuration
	SourceViewer

	Deploying the Jukebox
	Summary

	Chapter 11: Developing Plug- ins for the Eclipse Platform
	The Architecture of the Eclipse Platform
	Extension Points
	OSGi
	A Minimal Platform
	Rich Client Platform vs. IDE
	Resource Management
	User Interface
	Help System
	Team Support
	Other Plug- in Groups
	Architecture Summary

	The Core Classes of the Eclipse Platform
	The Platform Class
	The Plugin Class
	The Preferences Class
	Path Specifications
	Monitoring Long- Running Processes

	The Eclipse Workspace
	Resources
	Markers
	Reacting to Resource Changes
	Managing Long- Running Processes

	Configuring Plug- ins
	The Plug- in Development Perspective
	The Plug- in Manifest
	The Most Important SDK Extension Points
	The Schema Editor

	Components of the Eclipse User Interface
	Forms
	The Eclipse Workbench
	The Architecture of the Eclipse Workbench
	Event Processing in the Eclipse Workbench
	Editors
	Views
	Actions
	Dialogs
	Workbench Wizards
	Preferences and Property Pages
	Defining Perspectives
	The Help System
	Cheat Sheets

	Summary

	Chapter 12: Developing Your Own Eclipse- Based Products
	Embedded Ant
	Configuration
	Editing Ant Scripts

	Plug- ins and Fragments
	Features
	Creating and Editing Features

	Deployment
	Deploying a Feature
	Deploying Complete Products
	Customizing Products
	Populating the Workspace
	Creating Update Sites

	Installing from an Update Site
	Adding an Update Site
	Installing Features
	Updating Features
	Managing the Configuration
	Install Handlers

	Internationalizing Products
	Text Constants in Programs
	Text Constants in Manifest Files
	Help Texts and Cheat Sheets
	Deploying National Language Resource Bundles

	Patches
	Summary

	Chapter 13: Project Three: A Spell Checker as an Eclipse Plug- in
	The Spell Checker Core Classes
	The Engine
	Overview

	Setting Up the Project
	The Plug- in Configuration
	The Manifest plugin. xml
	The Schema documentTokenizer. exsd
	Imported Files

	The Plugin Class
	Dictionary URL
	Initializing Preferences
	The Manager

	The Check Spelling Action
	The SpellCheckingTarget Class
	Factory Method
	Selections
	Document Management
	Text Replacement
	Disposal
	The CheckSpellingActionDelegate Class

	The Correction Window
	The SpellCorrectionView Class
	View Actions
	Managing Images

	Coordinating Core Classes with GUI Classes
	The Manager
	Selecting the Plug- in

	Running the Engine
	Managing Engines
	Creating Engines
	Processing Bad Words
	Operations

	Analyzing Documents
	Configuring the Spell Checker
	Preferences
	Domain Model
	The GUI
	Reading from the PreferenceStore

	The Help System
	The Help Table of Contents
	Context- Sensitive Help
	Active Help
	Running the Help Action

	A Plug- in for Java Properties
	Setting Up the Project
	The Manifest
	Tokenizer Extension
	Manifest
	The Plugin Class
	The Preferences
	The Preference Page
	The Java- Properties Tokenizer
	The Help System

	Internationalizing the Spell Checker
	Text Constants in Java Code
	Text Constants in Manifest Files
	Creating a Language Fragment

	Deploying the Spell Checker
	Defining the Spell Checker Feature
	Configuring Ant Scripts
	Defining the Language Feature
	Defining the Update Site
	Installation

	Summary
	Chapter 14: The Rich Client Platform
	Definition and Motivation
	Plug- ins and the RCP
	Creating an Application
	The IPlatformRunnable Interface
	The WorkbenchAdvisor Class

	Testing a Rich Client Application
	Deploying a Rich Client Application
	Advanced Product Customization
	The Global Welcome Screen
	Summary

	Chapter 15: Project 4: The Hex Game as a Rich Client Application
	Overview
	Setting Up the Project
	The Manifest plugin. xml
	Required Eclipse Plug- ins
	Declaring the Application
	Defining a Perspective
	Defining a View
	Product Customization
	Linking the Welcome Screen
	Adding Help
	The Completed Manifest

	The RcpApplication Class
	The RcpWorkbenchAdvisor Class
	The RcpPerspective Class
	The IGame and IStatusListener Interfaces
	The IStatusListener Interface
	The IGame Interface

	The HexView Class
	The Game Engine
	The Welcome Screen
	Test
	Deployment
	Summary

	Chapter 16: Conclusions and Outlook
	Programming Style
	Executable Prototypes
	Automated Tests
	Refinements
	Embrace Change
	Save Energy

	Java 1.5
	Summary

	Appendix A: Useful Plug- ins for Eclipse
	Appendix B: Migrating Projects to a New Eclipse Version
	Projects
	Plug- ins
	Migration to Eclipse 3

	Appendix C: Important Downloads
	Project One: Duke Speaks
	Project Two: Jukebox
	Project Three: A Spell Checker as an Eclipse Plug- In
	Book Web Site

	Appendix D: Bibliography
	Index
	Team-kB

