E’r{:gr:umm*r to F’rngr'mnm{'r “

Professional

Eclipse

for Java Developers

Berthold Daum

Updates, source code, and Wrox technical support at www.wrox.com

Professional Eclipse 3 for Java™ Developers

Berthold Daum

WILEY

Professional Eclipse 3 for Java™ Developers

Professional Eclipse 3 for Java™ Developers

Berthold Daum

WILEY

Copyright © 2004 by dpunkt.verlag GmbH, Heidelberg, Germany.
Title of the German original: Java-Entwicklung mit Eclipse 3
ISBN: 3-89864-281-X

Translation copyright © 2005 John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q), England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by the
purchaser of the publication.Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 85Q,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering profes-
sional services. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

Other Wiley Editorial Offices
John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MO9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
ISBN: 0-470-02005-9

Typeset in Indianapolis, IN USA

Printed and bound by Malloy printing in Ann Arbor, MI USA

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Author
Berthold Daum

Executive Editor
Gaynor Redvers-Mutton

Production Editors
Felicia Robinson

Juliet Booker

Book Producer

Ryan Publishing Group, Inc.

Copy Editor
Linda Recktenwald

Compositor
Gina Rexrode

Illustrator
Nathan Clement

Credits

Vice President & Executive Group Publisher
Richard Swadley

Vice President & Publishing Director
Sarah Stevens

Vice President and Publisher
Joseph B. Wikert

Editorial Manager
Kathryn Malm

About the Author

Berthold Daum has a Ph.D. in Mathematics and is a professional Java and XML developer who has
been using Eclipse since it was first developed. Mr. Daum specializes in innovative electronic business
technology and electronic content production; his clients include SAP Integrated Services AG and
Software AG. His experience in software training and ability to anticipate the needs of professional
developers has been demonstrated in his previous books, including Eclipse 2 for Java Developers (Wiley)
and Modeling Business Objects with XML Schema (Morgan-Kaufmann).

Mr. Daum studied photography in Melbourne and has both exhibited and published his images of
Australia's natural beauty.

Introduction

The first version of Eclipse was released in November 2001. Eclipse was announced by IBM as a $40 mil-
lion donation to the Open Source community. The first reactions to this gift, however, were mixed. While
many Java programmers hailed the release of Eclipse enthusiastically (when would one not be enthusi-
astic about a $40 million present?), Sun Microsystems was initially less than amused.

In the meantime, Eclipse has taken the Java world (and not only the Java world) by storm, despite the
fact that Sun Microsystems is still not onboard. Eclipse is now completely managed by eclipse.org, an
independent, nonprofit organization in which, however, IBM plays a major role. Despite the fact that the
membership fee is quite hefty ($250.00 per year) and commitment is asked in the form of staff members
working actively toward the development of Eclipse, the membership circle is not at all small: the
Eclipse consortium has about 150 member companies, and people from Ericsson, Genuitec LLC, IBM,
Hewlett Packard, Intel, MontaVista Software, QNX Software Systems Ltd., SAP AG, SAS, Serena
Software, and the University of Washington belong to the board (Microsoft, you guessed it, is not a
member).

So, the question is, what is Eclipse? Is it a Java IDE? Is it a new GUI for Java applications? Is it an
application platform or framework?

Eclipse.org refers to Eclipse as a platform for “everything and nothing in particular.” That we
can use Eclipse to develop Java programs (in fact, it is one of the finest Java IDEs) is just a special appli-
cation of this platform. But its real application domain reaches far beyond Java development. Because

of its plug-in architecture, Eclipse is as adaptable as a chameleon and can find a habitat in quite different
environments. The Eclipse Java IDE is, in fact, only an eminent example of an Eclipse plug-in. A large
number of other plug-ins have already been developed for Eclipse by various companies and developers
or are currently in development (see Appendix A for a small selection of such developments). For
example, there is a plug-in for a C++ IDE, while plug-ins for other programming languages such as RPG
and COBOL are in preparation. In this book, however, we will concentrate on Java development with
Eclipse.

Eclipse is more than a pure development environment. With its SWT and JFace libraries it provides an
alternative to Sun’s Java libraries, AWT and Swing. SWT and JFace allow the creation of Java applica-
tions that closely match native applications (i.e., applications written in C or C++) in both “look and
feel” and in responsiveness. In contrast, applications implemented on the basis of Swing often lack
responsiveness and sometimes differ—despite the possibility to switch skins—from the “look and feel”
of a native application. Such applications are notoriously hard to sell, because end users expect applica-
tions that fulfill the standards of the host platform. SWT and JFace could therefore be a breakthrough for
Java applications on the desktop. No wonder, therefore, that there is a heated debate for and against
SWT/]JFace in the respective discussion forums (for example, www . javalobby . com) and that the
SWT was voted as the “most innovative Java component.”

Finally, Eclipse provides a large framework for implementing Java applications. Besides the GUI libraries
SWT and JFace, we find higher-level components such as editors, viewers, resource management, task
and problem management, a help system, and various assistants and wizards. Eclipse uses all these

Introduction

components to implement features such as the Java IDE or the workbench, but they can also be used
for your own applications. In particular, the Rich Client Platform that was introduced with Eclipse 3
provides a generic framework for a wide class of applications. The Eclipse license model allows users
to embed these components into their own applications, to modify them, and to deploy them as part of
their own applications—all without paying a cent in license fees. The complete Eclipse code is available
as source code, can be browsed online, and can be used within you own projects.

The Eclipse Culture

Of course, Eclipse was not just “invented”: it has a history. The author of this book, who has used Visual
Age for Java for years, can detect many of the Visual Age construction elements within Eclipse. In fact,
the same company that stood behind the development of Visual Age is also responsible for the develop-
ment of Eclipse. This company is OTI (www . ot 1. com). As long ago as 1988, OTI developed a collabora-
tive development environment for Smalltalk called ENVY, which was later licensed to IBM under the
name Visual Age. What followed was the development of Visual Age for Java, but this was still imple-
mented in Smalltalk. Now, OTI has started the next generation of development tools with Eclipse. Of
course, we find many of the design elements of Visual Age in Eclipse. The difference is, however, that
Eclipse is implemented in Java and that it features a much more open architecture than Visual Age.

Eclipse was licensed by IBM and than donated to the Open Source community. This was not done without
self-interest: Eclipse basically is nothing more than the community edition of IBM’s WebSphere Studio
Application Developer (WSAD). The core platform and the core plug-ins are all the same. The main differ-
ence is that Eclipse 3.0 consists of about 90 plug-ins, while WSAD features about 500-700 plug-ins, thus
offering greatly extended functionality, such as plug-ins for developing web and database applications.

About This Book

It is practically impossible to write a single book about Eclipse. The sheer complexity of Eclipse would
require quite a few books. I have tried to emphasize those topics where Eclipse makes significant contri-
butions to the Java world. In particular, these are the new GUI libraries (SWT and JFace) and the use of
Eclipse as a platform and framework for desktop applications. What had to be excluded from this book
are WebSphere-specific topics such as J2EE and servlet development. Developing desktop applications is
currently one of the strong points of Eclipse.

This book is not an introduction to Java programming. We assume that readers have a good knowledge
of Java and of object-oriented programming concepts. Most of the examples used in this book are not
trivial. Two examples come from the multimedia area. Here, readers have the possibility of “getting their
feet wet” with cutting-edge Java technology such as speech processing and MP3 (all in pure Java!). In the
third example, we do something useful and implement a spell checker plug-in for Eclipse. I am sick and
tired of bad orthography in Java comments! The last example is a board game implemented on the basis
of the Rich Client Platform, just to burn some of the programmer’s spare time gained by productivity
enhancements of the Eclipse IDE.

This book, therefore, addresses Java programmers—from the student to the professional—who want to
implement their own desktop applications with the help (or on the basis) of Eclipse. You will learn all
the techniques that are required to create applications of professional quality.

Introduction

How This Book Is Organized

The novice to Eclipse—or even an experienced Java programmer—is at first overwhelmed by the sheer
number of functions. But the functions visible to the user are only the tip of the iceberg. If we start to
explore the inner workings of Eclipse, its API, we can get lost easily. Currently the Eclipse download has
a size of 83 MB.

Faced with this huge amount of information, this book uses a pragmatic approach. Following the motto
that “perception works from the outside to the inside,” I first investigate how Eclipse presents itself to
the end user. The benefit is twofold: first, each programmer is an end user of the Eclipse Java IDE;
second, the various components of the Eclipse workbench, such as editors, views, menus, dialogs, and
much more, can also be used in personal applications. Experienced programmers, however, may find an
introduction into the Java IDE trivial and superfluous. Nevertheless, it is useful to get well acquainted
with the Eclipse user interface, because many of the concepts and details can be later utilized when
designing you own applications.

In Chapters 1 through 7 of this book I first introduce practical work with Eclipse, in particular with the
Java development environment. Eclipse presents itself as a very powerful Java IDE that continues the
positive traditions of Visual Age for Java but also introduces new concepts such as code completion,
strong refactoring facilities, assistants that make intelligent proposals for fixing program errors, and a
local history that allows a return to previous code versions.

In these chapters I also discuss the organization of the workbench, the resources of the Eclipse
workspace such as projects, folders, and files, how these resources are related to the native file system,
and the tools for navigation. I explain what perspectives are and how they can be used effectively. The
Eclipse Java debugger and the integration of JUnit into Eclipse are discussed, and a short introduction
about Eclipse’s support for working in a team is given.

The examples used in this part are still all based on AWT and Swing.

However, this will quickly change in the second part of the book, Chapters 8 through 10. Here, I intro-
duce the secrets of the SWT and JFace libraries. For SWT, event processing is discussed, along with the
various GUI elements such as text fields, tables, buttons, and trees; the various layout options; graphics
operations and how Java2D can coexist with the SWT; and printer output. I also explain the specialties of
thread and resource management in the context of the SWT and the integration of SWT widgets with
Swing facilities.

In the case of the JFace library, I present the higher user interface levels such as windows, dialogs,
viewers, actions, menus, text processing, wizards, and preferences. As an example, an MP3 player that
can be deployed independently of the Eclipse platform is implemented completely with SWT and JFace.
An interesting detail in this example is how the SWT library is used in a multithreaded application.

In Chapters 11 through 16 I explain how to develop your own products on the basis of the Eclipse plat-
form: either as a plug-in to Eclipse or as a stand-alone application under the Rich Client Platform. Since
Eclipse consists more or less only of plug-ins, I first introduce the plug-in architecture of Eclipse. The
requirements for a minimal platform are discussed, and I show how workspace resources are used in
Eclipse and how plug-ins are declared via a manifest. Then the various components of the Eclipse work-
bench such as editors, views, actions, dialogs, forms, wizards, preferences, perspectives, and the help

Xi

Introduction

system are introduced. All these components are available to the application programmer as building
blocks, a fact that can speed up application development considerably.

Then, I show how your own products can be packaged for deployment. Eclipse offers integrated support
for all tasks here, too: from the creation of a feature, to the creation of nation language fragment and the
definition of an update site, to the automated installation of updates. As an example, a universal and
fully functional plug-in for spell checking on Eclipse platforms is implemented.

Finally, I discuss the Rich Client Platform (RCP) that was introduced with Eclipse 3 and serves as a
generic platform for a wide range of applications. The board game Hex is implemented as an example of
such an RCP application.

In Appendix A some more interesting third-party plug-ins are listed. In Appendix B I discuss the migra-
tion to another version of the Eclipse platform. Appendix C contains download addresses for the third-
party software and the source code used in the examples.

Acknowledgements

Xii

Books are always teamwork, even if only the author’s name appears below the title. This is also the case
with this book, and here is the place to acknowledge the contribution of all the other team members.

Special thanks go to the publisher John Wiley & Sons and Wrox, in particular to Gaynor Redvers-Mutton
who acted as the publishing editor. Thanks go also to the publisher of the original German edition,
dpunkt verlag, and the responsible editor there, René Schonfeldt.

Thanks also to Tim Ryan’s group who handled the production of this book, especially Linda
Recktenwald for copyediting, Gina Rexrode for composition, and Nathan Clement for his technical
illustrations.

Many important tips that found their way into this book came from the (anonymous) reviewers but also
from developers and employees of OTT who had looked at the first manuscript version. Many thanks!
And of course, without the development of Eclipse this book would not have been written, and Eclipse
is indeed a tool that I wouldn’t want to miss. Thanks again!

Berthold Daum
June 2004
berthold.daum@bdaum.de

Contents

Introduction ix
Chapter 1: Introduction to Eclipse 1
Installing Eclipse 1
The First Application: Hello World 5
Perspectives 5
Projects 7
Create a New Class 7
Launch 9
The Most Important Preferences for Java Development 10
Workbench Preferences 11
Installed JREs 12
Compiler Preferences 14
Formatting Code 15
Templates 16
Tasks and Problems 18
Problems, Problems 19
General Tasks 21
Bookmarks 22
The Scrapbook 22
Summary 24
Chapter 2: Effective Programming with Eclipse 25
Little Helpers 25
System Information 25
Help and Hover 26
Java Information Views 27
Automatic Code Completion 28
The Correction Assistant 33
Convenience Functions of the Java Editor 35
Source Code Navigation 36
Refactoring Code 38
Modifying Types 38
Refactoring Code 39

Undo and Redo 42

Contents

Local History 43
Comparing Resources 43
Replacing with an Older Version 43
Restore Deleted Resource 43

Summary 44

Chapter 3: The Art of (Visual) Composition 45

Installation 45

Invocation 46

Preferences 46

Composition 46

Beans and Bean Properties 48
Generic Beans 48
Properties 48

Layouts 49

Event Processing 49

Summary 50

Chapter 4: Organizing Your Code 51

The Workbench 51

Resources 52
Resource Types 52
Where Resources Are Stored 52
Synchronizing Resources 53
Navigation 53

Associations 54

Packages 55
Folders and Packages 55
Navigation 56
Hierarchy 56

The Outline View 57
Representation 58
Context Functions 59

Searching 60
The Search Function 60
Find and Replace 62
Marking Name Occurrences 63

Arranging Editors and Views 63
Docked Windows 63
Stacked Windows 64
Desktop Windows 64
FastView 64

Xiv

Contents

Opening and Closing Windows 65
Maximizing Windows 65
Minimizing Views 65
Managing Perspectives 65
Defining New Perspectives 65
Configuring Perspectives 66
Importing Files 67
Project Properties 69
The Java Browsing Perspective 71
Summary 72
Chapter 5: Project One: Duke Speaks 73
Setting Up the Project 73
A Short Excursion into Speech Synthesis 74
Extending the FreeTTS System 75
Animation Events 75
The Animator 77
Embedding into FreeTTS 81
Connection with the Java Audio System 83
The User Interface 84
The Animated Face 85
The Control Panel 87
The Model 87
The Presentation 91
The Complete Application 106
Exporting the application 109
Bibliography 110
Summary 110
Chapter 6: Project Development 113
Debugging 113
The Debug Configuration 113
The Debug Perspective 114
Controlling Program Execution 115
Managing Breakpoints 117
The Java Console 118
Remote Debugging 119
JUnit 120
Setting Up JUnit 120
Creating a Test Suite 122
Running a Test Suite 124

XV

Contents

Documentation 125
Try It Out: Javadoc Options 126
Try It Out: Command-Line Options 126

Summary 128

Chapter 7: Advanced Topics of Project Development 129

Developing in a Team 129
Setting Up a Repository 130
Projects in the Repository 132
Version Management 133
Working in a Team 133
Other Functions 135

External Tools 135
Refresh 135
Environment 135
Associations 135

Summary 136

Chapter 8: The SWT Library 137

SWT Function Group Overview 138

SWT—Pros and Cons 139
Advantages of SWT 140
Disadvantages of SWT 140

The SWT Package 141

Events 141
Listeners 141
Adapters 142
Events 142
Overview of Listeners, Adapters, and Events 143

Widgets 145
The Widget Class 146
The Control Class 146
Visual Overview 146
Displays, Shells, and Monitors 146
Dialogs 152
Composites, Groups, and Canvas 155
Buttons 156
Sliders and Scales 158
ProgressBar 159
Scrollable and ScrollBar 159

XVi

Contents

Text Fields and Labels 159
Tables, Lists, and Combos 161
Trees 166
Sashes 167
Tabbed Folders 168
Toolbars 169
Moveable Tool Groups (CoolBar) 170
Menus 170
Custom Widgets 174
The Browser Widget 177
Layouts 177
Visual Overview 178
The FillLayout Class 178
The RowLayout Class 179
The GridLayout Class 180
The FormLayout Class 182
The StackLayout class 184
Graphics 185
The Graphics Context 185
Colors 186
Fonts 187
Images 189
The Cursor 190
Widgets That Swing 191
Embedded Contents 192
Events 192
Output to a Printer 196
Data Transfer 198
The Clipboard 198
Drag and Drop 199
Resource Management 200
Windows32 Support (OLE) 201
SWT on the Pocket PC 202
Accessibility 202
Summary 203
Chapter 9: JFace 205
Resource Management 205
The FontRegistry Class 205
The ImageRegistry Class 206
The JFaceColors Class 206
The JFaceResources Class 206

XVii

Contents

Dialogs and Windows 206
Some Dialog Subclasses 207
Implementing Your Own Dialog Classes 210
Making Dialogs Persistent 213

Viewers 214
The Viewer Event Model 215
The Viewer Hierarchy 215
Cell Editors 217
Data Transfer 218

Text Processing 218
Text Processing Base Classes 218
The ProjectionViewer 226
Comfortable Text Fields and Combos 226

Actions and Menus 226
The IAction Interface 226
The Managers 227

Wizards 228
The Wizard Class 228
The WizardPage Class 229
The WizardSelectionPage Class 230
The WizardDialog Class 230

Preferences 230
The PreferenceStore and PreferenceConverter Classes 231
The PreferencePage Class 232
Field Editors 232
Preference Page Trees 233

Summary 235

Chapter 10: Project Two: Jukebox 237

Design Goals and How to Achieve Them 237

Installing the Project 238

The Player Module 241
Layout 241
Threads 242
The Player.java Class 243
BasicPlayerListener 260

The Playlist Domain Model 261
The Interface 261
Implementing IPlayList 268
Accessing Features 270
Managing Entries 271

Xviii

Contents

Content Provider 273
Playlist Switch 273
Selections 274
The Description Window 275
The DescriptionWindow Class 276
The Playlist Viewer 278
The PlaylistWindow Class 278
The PlaylistViewer Class 281
Nested Grid Layout 289
Toolbar 290
File-Selection Dialogs 292
Menu 293
The PlaylistLabelProvider Class 295
Returning a Warning Icon 296
Cell Text 297
The FileCellEditor Class 299
The Description Editor 300
The DescriptionCellEditor Class 300
The DescriptionEditorDialog Class 302
Code Scanner 303
Content Assistant 304
SourceViewer Configuration 307
SourceViewer 308
Deploying the Jukebox 311
Summary 311
Chapter 11: Developing Plug-ins for the Eclipse Platform 313
The Architecture of the Eclipse Platform 314
Extension Points 314
OSGi 314

A Minimal Platform 315
Rich Client Platform vs. IDE 315
Resource Management 315
User Interface 316
Help System 316
Team Support 316
Other Plug-in Groups 317
Architecture Summary 317
The Core Classes of the Eclipse Platform 318
The Platform Class 318
The Plugin Class 318

Xix

Contents

The Preferences Class
Path Specifications
Monitoring Long-Running Processes
The Eclipse Workspace
Resources
Markers
Reacting to Resource Changes
Managing Long-Running Processes
Configuring Plug-ins
The Plug-in Development Perspective
The Plug-in Manifest
The Most Important SDK Extension Points
The Schema Editor
Components of the Eclipse User Interface
Forms
The Eclipse Workbench
The Architecture of the Eclipse Workbench
Event Processing in the Eclipse Workbench
Editors
Views
Actions
Dialogs
Workbench Wizards
Preferences and Property Pages
Defining Perspectives
The Help System
Cheat Sheets
Summary

Chapter 12: Developing Your Own Eclipse-Based Products

Embedded Ant
Configuration
Editing Ant Scripts
Plug-ins and Fragments
Features
Creating and Editing Features
Deployment
Deploying a Feature
Deploying Complete Products
Customizing Products
Populating the Workspace
Creating Update Sites

XX

319
319
320
320
320
324
325
326
327
327
329
332
341
344
344
350
351
352
355
362
367
372
374
377
377
379
383
385

387

388
388
389
390
391
391
393
393
394
394
396
398

Contents

Installing from an Update Site 399
Adding an Update Site 400
Installing Features 400
Updating Features 400
Managing the Configuration 400
Install Handlers 401

Internationalizing Products 401
Text Constants in Programs 402
Text Constants in Manifest Files 403
Help Texts and Cheat Sheets 404
Deploying National Language Resource Bundles 405

Patches 405

Summary 405

Chapter 13: Project Three: A Spell Checker as an Eclipse Plug-in 407

The Spell Checker Core Classes 408
The Engine 408
Overview 409

Setting Up the Project 410

The Plug-in Configuration 412
The Manifest plugin.xml 413
The Schema documentTokenizer.exsd 417
Imported Files 419

The Plugin Class 419
Dictionary URL 421
Initializing Preferences 422
The Manager 423

The Check Spelling Action 424
The SpellCheckingTarget Class 425
Factory Method 426
Selections 427
Document Management 428
Text Replacement 429
Disposal 430
The CheckSpellingActionDelegate Class 431

The Correction Window 439
The SpellCorrectionView Class 439
View Actions 449
Managing Images 450

Coordinating Core Classes with GUI Classes 452
The Manager 453
Selecting the Plug-in 454

XXi

Contents

Running the Engine 457
Managing Engines 458
Creating Engines 459
Processing Bad Words 462
Operations 462
Analyzing Documents 463
Configuring the Spell Checker 463
Preferences 463
Domain Model 464
The GUI 466
Reading from the PreferenceStore 471
The Help System 473
The Help Table of Contents 473
Context-Sensitive Help 473
Active Help 474
Running the Help Action 476
A Plug-in for Java Properties 477
Setting Up the Project 477
The Manifest 478
Tokenizer Extension 478
Manifest 479
The Plugin Class 480
The Preferences 481
The Preference Page 482
The Java-Properties Tokenizer 483
The Help System 483
Internationalizing the Spell Checker 484
Text Constants in Java Code 484
Text Constants in Manifest Files 487
Creating a Language Fragment 487
Deploying the Spell Checker 490
Defining the Spell Checker Feature 490
Configuring Ant Scripts 492
Defining the Language Feature 495
Defining the Update Site 497
Installation 498
Summary 499

XXii

Contents

Chapter 14: The Rich Client Platform 501
Definition and Motivation 501
Plug-ins and the RCP 502
Creating an Application 503

The IPlatformRunnable Interface 503

The WorkbenchAdvisor Class 503
Testing a Rich Client Application 507
Deploying a Rich Client Application 507
Advanced Product Customization 508
The Global Welcome Screen 508
Summary 509

Chapter 15: Project 4: The Hex Game as a Rich Client Application 511
Overview 511
Setting Up the Project 512
The Manifest plugin.xml 512

Required Eclipse Plug-ins 514
Declaring the Application 514
Defining a Perspective 515
Defining a View 515
Product Customization 515
Linking the Welcome Screen 515
Adding Help 516
The Completed Manifest 516
The RcpApplication Class 517
The RcpWorkbenchAdvisor Class 518
The RcpPerspective Class 519
The IGame and IStatusListener Interfaces 520
The IStatusListener Interface 520
The IGame Interface 520
The HexView Class 521
The Game Engine 527
The Welcome Screen 531
Test 534
Deployment 534
Summary 535

XXiii

Contents

Chapter 16: Conclusions and Outlook 537
Programming Style 537
Executable Prototypes 538
Automated Tests 538
Refinements 538
Embrace Change 540

Save Energy 541
Java 1.5 541
Summary 542
Appendix A: Useful Plug-ins for Eclipse 545
Appendix B: Migrating Projects to a New Eclipse Version 551
Projects 551
Plug-ins 552
Migration to Eclipse 3 552
Appendix C: Important Downloads 555
Project One: Duke Speaks 555
Project Two: Jukebox 555
Project Three: A Spell Checker as an Eclipse Plug-In 555
Book Web Site 556
Appendix D: Bibliography 557
Index 559

XXiv

Introduction to Eclipse

In this chapter you install and configure Eclipse. I then use the classical Hel1loWorld example to
show how to effectively create Java programs under Eclipse. I first discuss the most important
workbench preferences and then introduce various utilities for code creation.

Installing Eclipse

Installing Eclipse is very easy. In most cases, the only thing to do is to unpack the downloaded ZIP
file onto a disk drive with sufficient free space. What do you need to run Eclipse? The following
list shows what is required:

Q

(]

A suitable platform. Eclipse 3.0 runs on a wide variety of platforms: Windows, Linux,
Solaris, QNX, AIX, HP-UX, and Mac OS X. However, in this book I mostly refer to the
Windows platform and occasionally give hints for the Linux platform.

Sufficient disk space. 300 MB should be enough.
Sufficient RAM. 256 MB should be fine.

Java SDK 1.4. If this SDK is not installed on your machine, you can download it from
www . javasoft.comand install it by following the instructions given on this site. You
should specify the bin subdirectory of the SDK in your PATH environment variable so
that you can call the Java Virtual Machine (JVM) by issuing the command java from the
command prompt.

Eclipse SDK 3.0 for your platform.

The Eclipse example files (eclipse-examples-3.0) for your platform.

Chapter 1

To install Eclipse, follow these steps:

1.

Unpack the Eclipse SDK into the target directory. For example, on Windows that could be the
root directory C: \. In effect, the Eclipse libraries will be contained in directory C:\eclipse.
Under Linux you could use the /opt / directory so that the Eclipse files would be stored under
/opt/eclipse/.

Immediately afterwards, unpack the Eclipse example files into the same root directory. By doing
so, the example files are automatically placed into the just-created eclipse subdirectory.

That’s all. Under Windows you can now invoke Eclipse by clicking the icon with the darkened
sun (in the eclipse subdirectory). Under Linux you would issue the shell command
/eclipse under the directory /opt/eclipse/.

Eclipse then prompts you with the Workspace Launcher. Here you can select the location of the
Eclipse workspace. This workspace will later contain all of your Eclipse projects. Usually the
\workspace\ folder is located in the Eclipse root directory \eclipse\. However, it makes
more sense to install the workspace in a location separate from the Eclipse installation. This
makes later upgrades to new Eclipse version easier (see also Appendix A). In addition, it
becomes easier to back up the workspace.

For example, you may want to specify . ..\Own Files\eclipse-workspace under
Windows and /root/eclipse-workspace under Linux. The Eclipse Workspace Launcher is
shown in Figure 1.1. Note that later when running Eclipse you can easily switch to a different
workspace by invoking the function File > Open workspace.

Workspace Launcher

select a workspace

Edlipse Platform stores your projects in a directory called & workspace,
Select the workspace directory to use for this session,

T e =t S /C /mS e dipse fworkspace - Browse. ..

[~ Use this as the default and do not ask again.

CK | Cancel

Figure 1.1

Important: When backing up the Eclipse workspace you should always create
complete backups—never incremental backups. Eclipse treats the archive
attribute of files in a somewhat unconventional way, which can lead to a corrupt
workspace when restoring a workspace from an incremental backup. This is a
known bug in Eclipse that has not been fixed with the release of Eclipse 3.0.0.

Introduction to Eclipse

4. After a short while you should see the Welcome screen. Here you have the choice of various
information sources such as help pages, tutorials, sample programs, and others:

Q

Q

In the Overview section you will find relevant chapters from the various user guides in
the Eclipse help system.

In the Tutorials section you can learn how to create a simple Java program, a simple SWT
application, and an Eclipse plug-in, and you will learn how to create and deploy an
Eclipse feature. These tutorials come in form of Cheat Sheets that can be followed in a step-
by-step fashion.

The Samples section contains ready-to-run example programs. These include samples for
using the SWT and the Eclipse workbench. If you select such an example program, it will
automatically be downloaded from www.eclipse.org (provided that you have established
a connection to the Internet) and installed into the Eclipse workbench. Depending on your
interests and requirements, it may be worthwhile to take a close look at the code of such
an example program.

In the What's New section you will find a compilation of the new features contained in
Eclipse 3 and also a migration guide for converting the Eclipse 2 application into Eclipse 3
(see also Appendix B). Furthermore, there is a link to the Eclipse Community page and a
link to the Eclipse Update site, where you can update your Eclipse installation online.

However, for the moment you continue the startup process by pressing the Workbench button.
You should then see the Eclipse Welcome screen, as displayed in Figure 1.2. You can return at any
time to this screen by invoking the function Help > Welcome. Figure 1.3 shows Eclipse running.

£ Resource - Eclipse Platform

File Edit MNavigste Search Project Run Window Help

Welcome to Eclipse Platform 3.0

.
eclipse

Workbench

s %4

Overview Tutorials Samples What's new

Figure 1.2

Chapter 1

& Resource - Eclipse Platform

File

" B - |4 | g0 | 15| E | {5Resource

*TNavigator X =g

Edit Mavigate Search Project Run Window Help

g ¥ -

55 Outine 23 = o ETasks & @ xp =0
a= e =2 . Tasks (0 items) § .
An outine is nat available, | [pesoipton | Resource | In Folder

¢ >

Figure 1.3

It is a good idea to create a desktop shortcut for Eclipse. Under Windows simply pull the Eclipse
icon onto the desktop by pressing the right mouse button. From the context menu select Create
Shortcut Here. Now you can add additional command-line options to this shortcut, for example,
the -vm option discussed below. To do so, right-click the shortcut and select Properties from the
context menu.

To learn which command-line options are available for Eclipse, check the Eclipse help system by
choosing Help > Help Contents. Then select Workbench User Guide, expand the Tasks item, and
choose Running Eclipse.

Under Linux you can similarly create a desktop shortcut under KDE or Gnome and add the
required command-line options.

A further list of command line options is found at Help > Help Contents > Platform Plug-in
Developer Guide > Reference > Other reference information > Runtime options. This section
lists all command line parameters and the corresponding System Property keys. (For

example, the key osgi.instance.data is equivalent to the command line parameter -data.)
These keys can be used to configure Eclipse via the configuration file \eclipse\
configuration\config.ini. Modifying this file allows you starting Eclipse in different
configurations without having to use command line parameters.

Introduction to Eclipse

6. One of the most important command-line options deals with the selection of the Java Virtual
Machine (JVM) under which the Eclipse platform is executed. If you don’t want to use the stan-
dard JVM (the one executed when invoking the java command), you can specify a different
JVM by using the command-line option -vm.

When the Eclipse loader is invoked it uses a three-stage strategy to determine the JVM under
which the platform is executed. If a JVM is explicitly specified with the command-line

option -vm, then this VM is used. Otherwise, the loader will look for a specific Java Runtime
Environment (JRE) that was deployed with the Eclipse platform. Such a JRE must be located in
the directory \eclipse\jre\.If such a JRE does not exist (as in our case), then the location of
the VM is derived from the PATH environment variable.

By the way, this strategy affects only the JVM under which the platform is executed. Which JVM
and which SDK are used for Java development is specified separately in the Eclipse workbench.

The command-line option -vmargs can be used to specify parameters for the Java Virtual
Machine. For example:

eclipse.exe -vm C:\javal3\bin\javaw -vmargs -Xmx256M

Here Eclipse is started with a specific JVM and sets the JVM heap to 256 MB. With very large
projects this can help to prevent instabilities of the workbench.

Another important command-line parameter is the parameter-data for specifying the location
of the workspace. In this case, the Workspace Launcher dialog discussed previously is skipped.
This parameter allows you to create different Eclipse desktop shortcuts for different
workspaces.

The First Application: Hello World

Until now you haven’t seen much of a Java development environment. Eclipse—which is advertised as a
platform for everything and nothing in particular—shows, in fact, nothing in particular when invoked
for the first time. You are now going to change this radically.

Perspectives

To see something “particular” in Eclipse, you first must open an Eclipse perspective. Perspectives consist
of a combination of windows and tools best suited for specific tasks. Perspectives are added to the
Eclipse workbench by various Eclipse plug-ins. This is, for example, the case with the user interface of
the Java IDE, which is nothing more than a large plug-in for the Eclipse workbench. To start developing
Java programs, you therefore must first open the Java perspective. To do so, click the Open Perspective
icon, as shown in Figure 1.4.

Chapter 1

Resnurce

Figure 1.4

Use the Open Perspective icon to open new perspectives. By the way, by clicking the perspective bar
with the right mouse button and invoking the function Dock On, you can change the position of the per-
spective bar. If you were used to Eclipse 2.1, you may want to dock the perspective bar at the left border

of the Eclipse workbench.

From the list that appears, select Java. You should then see the screen shown in Figure 1.5.

& Java - Eclipse Platform
File Edit Mavigate Search Project Run Window

i 6= Rl SRl

[# Package... 2 ’_’1 =l

g | B

Jgr

-

[£! protlems 52
Problems (0 items)

| Descrption

tHelp
| @ E G -

Declaration | Javadoc

&% | &

| Resource

| 1 Falder

4n outline is not avallable.

i a’ Java
‘[Resource

= m

+l, =
X% - =0

| Location |

Figure 1.5

Introduction to Eclipse

The Java perspective shows the windows (Package Explorer, Hierarchy), menu items, and toolbar icons
that are typical for Java development. On the left you see a new icon denoting the Java perspective.
Above this icon is the icon for the Resource perspective that was active before you opened the Java per-
spective. You can quickly switch between different perspectives by clicking these icons.

Projects

Now it’s time to say Hello to the world and to create your first program. To do so, first create a new Java
project. On the toolbar click the Create a Java Project icon, as shown in Figure 1.6. By clicking the icons of
this group you can create new Java projects, packages, classes, interfaces, and JUnit Test Cases.

£ Java - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
0. #;‘; - . BE -

[2 Package... N =m

[EY 1Unit Test Case
(& Class

& Interface

-

[Tl
iy

Figure 1.6

In the dialog that appears, name the project with HelloWorld. The Package Explorer now shows an
entry for the new project.

Create a New Class

In the next step click the C icon on the toolbar (Create a Java Class). In the following dialog make sure that

The Source Folder is specified as HelloWorld.
The name of the new class is specified as HelloWor1ld.
public is selected as Modifier.

java.lang.Object is specified as Superclass.

O 00 o o

The option to public static void main () is checked.

The Create a New Class Wizard (Figure 1.7) is able to generate some class code. The wizard can generate
stubs for the inherited methods, especially if a super class and interfaces are specified.

Chapter 1

£ New Java Class

Java Class

X

i, The use of the default package is discouraged,

Source Folger: |Heio'.‘<'or1:l Browse...

Package: | (default) Browse...

I™ Enclosing type: |

Mame: | HeloWorld
Modifiers: & public € default c : e
[absgact [finad I=ist
Superclass: |]a'-.a.|ang.0b]ect Browse...
Interfaces:

b e

Which method stubs would you like to create?

™ Constructars from superclass
W Inherited abstract methods

Cancel

N
=
&
=

Figure 1.7

After you click the Finish button, the Eclipse workbench looks a bit more like a workbench in use
(Figure 1.8).

The Package Explorer shows the contents of the new project, including the libraries of the Java runtime
environment. At any time you can open the classes belonging to these libraries and look at their source
code. The center window holds the Java source editor, which currently contains the pregenerated code
for the HelloWorld class. At the right-hand side you can see the Outline window showing the current
class with its methods. You quickly navigate to any method or variable in the source editor by clicking it
in the Outline View.

Now you complete the pregenerated code. You change the main () method in the following way:

public static void main(String[] args) ({
System.out.println("Hello World") ;

}

Introduction to Eclipse

- Java - HelloWorld. java - Eclipse Platform

He Edt Source Refactor Mawigste Search Project Run Wi
H-EE R 3
. 4o : :

I,
i

H Package... 81 . ™1 =0 HelloWorid.ava X

BE Qutine 53 =0

=1 Hellawvarid
= (default package)
- 1] HelloWorkd, java
&--me, JRE System Library [j2ral

r bdaum

wpuoblio class HelloWorld {

-

<

public static void main(String[] args) {

B e W~
=@, Helloward

@ ¥ main{String(l’

[£i Problems [. Declaration | Javadoc
Problems (0 iteme)
J Description

Resource

|ﬂ" Folder | Location |

‘Writable

Smart Insert 1r1

Figure 1.8

By doing this you have finished the programming work for your first project. Save the new class
HelloWorld to disk by clicking the floppy disk icon on the toolbar. (Alternatively, you can use the
keyboard shortcut Ctrl+S.) This will also compile this class. The program is now ready for execution.

Launch

The Run icon is positioned on the right side of the bug icon. Here, you activate the drop-down menu
by clicking the arrow at the right of the Run icon. From this drop-down menu select Run As > Java
Application to start program execution. Now, a new tag with the label Console should appear in the
Tasks View area. With a click on that tag you can open the Console View (see Figure 1.9), which should

display the text “Hello World.” Done!

During this first execution, Eclipse creates a new Run Configuration named HelloWorld. A list of all
available Run Configurations is found under the arrow on the right side of the Run icon. The Run icon
itself is always associated with the Run Configuration that was executed last. To execute the program

again, simply click the Run icon.

The console window opens automatically when a program writes to System. out or System.err.

Chapter 1

- Java - HelloWorld. java - Eclipse Platform
Ele Edt Source Refsctor Mawigate Search Project Run Window Heip

- -y IR A C Al B -
. - ¥5 : .
H package... 31 .1 = 8| [Helloworid.java &1
B8 v -
=18 Helloiorld sate 2 2004

= f} (default package)
- [J] Helloworid. java
4By JRE System Library [jrel. * Window - F

15

r bdaum

g public static wveoid
§,§ Sy=tem.out.pr
g 3

|

:[j aj_‘-a'-fa
{*jResource

BE Outine 53 =0
%R e w -
= Gn, HelloWarid

@ ¥ main(String(l’

o=
[0)i

Figure 1.9

The Most Important Preferences for Java

Development

Before you continue in your programming efforts, you should first explore your working environment.

The Window > Preferences menu gives you access to all Eclipse preferences (see Figure 1.10).

On the left of the Preferences dialog you can select from several preference categories. On the right-hand
side of the dialog the details of the selected preference category are shown. All settings made here can be
stored into an external file by clicking the Export button or loaded from an external file by clicking the

Import button.

10

Introduction to Eclipse

= Preferences

* Workbench
+- Ant
Build Order I~ Always runin background
+- Help IV Build automatically
e ;nstall_:Update I” Refresh Workspace automatically
+-Java
+- Flug-in Development I~ Save automatically before build
Readme Example ™ Keep next/previous part dialog open
#-Run/Debug ¥ Prompt when enabling activities
+ Team

Template Editor

Workspace save interval (in minutes):]57

Cpen mode
{+ Double dlick
" Single dick
[se
I~ op

Note: This preference may not take effect on all views

Restore Defaults ‘ Apply ‘

Import..,. | Export... K | Cancel |

Figure 1.10

At first sight, the sheer mass of preferences shown in this dialog may be overwhelming, because each
plug-in may contribute its own set of preference categories to this dialog. In this chapter, I will discuss
only those preferences that are most relevant in the context of this book. You should take the time to step
systematically through all preference categories to get an overview of the possibilities. Some of the cate-
gories have subcategories. To expand a category, click the + sign in front of the category name.

Some of the preference settings will make sense only during the discussion of the corresponding Eclipse
function. In such cases I will postpone the discussion of the preference settings to the discussion of the
corresponding workbench function.

Workbench Preferences

If you previously have worked with Emacs, it may make sense to switch the Key Bindings in Eclipse so
you can continue to use the familiar Emacs shortcuts. To do so, expand the Workbench category, select
the subcategory Keys, and click the Keyboard Shortcuts tag. In the drop-down list named Active
Configuration you can choose between Emacs and Default. You can even define your own keyboard
shortcuts. First, go to the Command group and select a command via the Category and Name fields. The
existing keyboard shortcut assignments appear in the Assignments list. A keyboard shortcut can consist
of a single key combination or a series of key combinations. Edit the sequence of key combinations by
placing the cursor into the Name field of the Key Sequence group and pressing the key combination to

11

Chapter 1

be added to the sequence. Use the Backspace key to delete entries. To add a new key sequence, don’t
select an entry in the Assignments list; simply enter the key sequences in the described way, and then
press the Add button.

On the Advanced page of the Key Bindings preferences you can enable an assistant that will help you
with completing multistroke keyboard shortcuts.

Installed JREs

12

You probably don’t always want to create Java applications that require a Java 1.3 or Java 1.4 platform.
In some cases you may need to run on Java 1.2 platforms. Within the preference category Java, in the
subcategory Installed JREs, you can list all Java Runtime Environments that are installed on the host
computer (see Figure 1.11).

= Workbench . lled Java ime Envi t
+ Aant
Build Crdar Add, remove or edit JRE definitions.
Gt Help The checked JRE will be used by default to buid and run Java programs.
+ Instal/Update e S
=1 Java Name | Location Type Add...
- Appearance M=iize14203 C'ProgrammelJav... Standard VM
+) Build Path
+]- Code Style >
Comgpiler —I
+- Dabug
+]- Editor Search
Installed JREs

JavaFamily Example
JUnit
Task Tags
Type Filters
#- Plug-in Development
Readme Example
+ Run/Debug
- Team
Template Editor < >

Import... | Export... oK | Cancel

Figure 1.11

In this preference category you can declare all the Java Runtime Environments (SDK or JRE) that are
installed on the host computer for Eclipse. Among the JREs listed here, Checkmark One is the default
JRE. This JRE will be assigned to all new Java projects. You will learn later how this can be changed in
the project settings and how different JREs can be used in different Launch Configurations.

To add a new JRE, just click the Add button (alternatively you can click the Search button to scan a
whole directory for a JRE or SDK). Then complete the following dialog (see Figure 1.12).

Introduction to Eclipse

& Create JRE
JRE type:]Standard WM LJ
IRE name: | 1ok142|

IRE home directory: | C:\izsdk1.4.202 Browse. ..
Javadoc URL: | http:/fjava.sun.comfj2se/1.4. 2/docs/api Browse. ..

Default VM Arguments: |

JRE system libraries:
W Use default system libraries

(Fhrtdar - Crj2sdk 1 2.2 02relib) -
b sunrsasign.jar - C:Yj2sdk 1.4, 2_02%relibY, =

I:E}'_,jsse.jar - Ciij2sdk1.4.2_02%relibY, ;
[Fhjcedar - Crjzsdk 1. 4.2_02reliby B
Eﬂsmarsets.jar - CiYj2sdk1.4.2_02relib),

ﬁ}gsunjce;rm‘ider.jar - C\j2sdk1.4.2_02%reliblext!, — AddExternal JAF
ﬁ};dnsns.]ar - CiYj2sdk 1.4.2_02Yreliblext!,

b dzncar dar - Cilidedl1 4 9 ANralliblavt

Figure 1.12

A new JRE is added to the Eclipse workbench. I have provided the name and location of the JRE home
directory. The location of the corresponding Javadoc is preset by Eclipse and points to the JavaSoft Web
site. If the documentation is available locally, you should modify this entry accordingly. The entry
Default VM Arguments may specify VM command-line parameters to be used with this VM.

For further customization you could uncheck the Use Default System Libraries item. This would allow
you to add further JAR libraries. If any of the JARs does not contain source code, you can attach external
source code by pressing Attach Source.

If you want to add a version 1.1 JRE (this is necessary when you want to run your application on a
Microsoft VM), you must also change the JRE type to the value Standard 1.1.x VM.

Of course, it is possible to execute an application on a JVM that is different from the JVM under which
the application was developed. For example, if you developed an application under Java SDK 1.1.8 and
want to test how the application performs under a version 1.3.1 JVM, you must change the runtime
environment before executing the program. You can do this by choosing the appropriate JVM in the
Eclipse Launch Configurator. You can open the Launch Configurator by invoking the menu function
Run > Run.

For the remainder of this book I use the Java 1.4 SDK.

13

Chapter 1

Compiler Preferences

Now take a closer look at the compiler preferences. In the Preferences dialog select the category Java and
the subcategory Compiler. Note that all adjustments made here affect the whole workbench. On project
level (see the “Project Properties” section in Chapter 4), however, you have the possibility of overriding
the global settings made here under Preferences.

Warnings and Errors

On the right-hand side of the Java > Compiler category you see a tabbed notebook. The Style, Advanced,
Unused Code, and Javadoc pages show which compiler events create errors or warnings and which
compiler events should be ignored (see Figure 1.13).

= Preferences |:'@

+- Workbench Compiler
+- Ant
Build Order Options for the Java compiler:
41 Help Mote that a full rebuild is required for changes to take effect.
+- InstallUpdate Style]Adganced Unused Code] Javadoc | Compliance and Classfiles] Build Path
T Jave.. Select the severity level for the following problems:
+| Appearance
+-Build Path Methods overridden but not package visible: Warning v]
£ Ie Methods with a constructor name: i'\'-;'arning vi
ompiler
+- Debug Mon-static access to static member: Warning v]
-+ Editor
Installed JREs Indirect access to static member: Ignore v]
JavaFamily Example Assignment has no effect {e.g, 'x = x7: Warning v]
Junit
Task Tags Possible accidental boolean assignment (e.g. if (2 =b)): |Ignore vi
Type Filt
= Plug-ilrﬂpt‘?ex:eror;ment Ungualified access to instance figld: Ignore v]
Readme Example 'finally’ does not complete normally: l'\'-;'arning v]
+- Run/Debug
¥ Team Empty statement: JIgnore v]
Template Editor Undocumented empty block: Ignore vi
Restore Defaults ‘ Apply ‘
Import... ‘ Export... QK | Cancel ‘
Figure 1.13

Because a lot of third-party code is used in the examples, you need to reset the settings for unused
imports, never-read local variables, and never-read parameters on the Unused Code page to Ignore.
Otherwise, you could face an overwhelming flood of error messages. But if you develop your own
applications, it makes sense to set these settings to Warning because these settings help you to detect

14

Introduction to Eclipse

and remove garbage from your code. Just try the following: set Parameter Is Never Read to Warning and
press OK. The project is recompiled. At the program line

public static void main(String[] args)
you now see a warning icon, and in the Problems window you see the entry
The argument args is never read

Quite right! The HelloWorld program did not make use of the parameter that contains the command-
line arguments.

Classfiles and JDK Compliance

On the Compliance & Classfiles page you can specify which symbolic information, such as variable
names and line numbers, is to be included in the generated classfiles. This information is required for
debugging, and therefore you may want to leave the proposed settings unchanged. However, for a well-
tested program it may make sense to remove this information from the classfiles; generated files are
much smaller without the symbol tables.

On the same page you can determine whether the compiler must comply with the Java 1.4 or Java 1.3
syntax. With Java 1.4, one new instruction was added to the language: assert. Consequently, the word
“assert” can no longer be used as a field or method name. In addition, assert requires support from
the JVM. Classes that use this instruction cannot be executed by older JVMs. Since assert is not used
in the first example program, leave this setting at the proposed value of Java 1.3.

Formatting Code

Formatting code can be very helpful, because it is easier to detect violations of the control structures of a
program (such as open if or while statements) when the program is formatted. In the preference
category Java > Code Style > Code Formatter you can configure how the Eclipse code formatter works,
as shown in Figure 1.14. The best method is to try some of the settings and to select those that work best
for your application. To modify these settings you must first create a new profile (by pressing the New
button). Then you can edit this profile by pressing the Edit button. You can create multiple profiles and
switch easily among them. When you publish your code, for example, you may use different profiles for
different sorts of publications.

But how do you apply code formatting? Very simply: just click with the right mouse button on the
source code and select Source > Format from the context menu (Figure 1.14). The key shortcut
Ctrl+Shift+F works even faster. Note that it is also possible to select only a portion of the source code
to format just that portion.

15

Chapter 1

Edit Profile 'myFormatter”

Indentation IBraces] White Snace1 Blank Lines | Mew Lines | Control Statements | Line \Wrapping | Commenrs]
General settings Preview:

Tab size: I 4 Al ;

¥ Use tah character

Alignment of fields in dass dedarations

™ align fields in columns

Indent
¥ Dedarations within class body

¥ statements within method/constructor body

& [F
¥ statements within blocks deEaalt
W statements within ‘switch’ body Ocher doBaz ()
¥ Statements withn ‘case’ bady

¥ ‘break statements

oK | Cancel

Figure 1.14

Templates

When you created the new HelloWorld class, text similar to the following was generated at the top of
the new compilation unit:

/*

* Created on 27.04.2004

*

* To change this generated comment go to

Window - Preferences - Java - Code Style - Code Templates

7/
/**

* @author Berthold Daum

*

* To change this generated comment go to

* Window - Preferences - Java - Code Style - Code Templates

*/

The first comment was generated for the new Java file, and the second comment was created for the new
type (HelloWorld). You now should follow the advice given in these comments and modify the code

generation preferences according to your requirements. Just open the preferences category Java > Code
Style > Code Templates (see Figure 1.15).

16

Introduction to Eclipse

£ Preferences

[+

*

[+

|- Warkbench
Ant
Build Crder
1-Help
- InstallUpdate
]- Java
+ Appearance
+-Build Path
—|- Code Style
Code Formatter
Code Templates
Organize Imports
Compiler
+|- Debug
+- Editor
Installed JREs
JavaFamily Example
Uit
Task Tags
Type Filters
1 Plug-in Development
Readme Example

Code Templates

Configure generated code and comments:

[=- Comments
: Getters
- Setters
: Constructors
- Fields
- Methods
I Overriding methods
5 Code
Mew Java files

Pattern:

{1

|i%

- B

Edit...

Impart..
Export...

Export All...

4 >
[+ Run/Debug = | —
- Team ¥ Automatically add comments for new methods and types
Template Editor (Comments contained in the code patterns are always inserted)
Restore Defaults I Apply J
Impart... ‘ Expart... Ok | Cancel ‘
Figure 1.15

For various events, such as the creation of a new type, a new method, or a new constructor, you can

specify which code is to be generated.

Select the Types entry and press the Edit button. In the dialog that appears replace the text provided by

Eclipse with the string “created first in project.” Then press the Insert Variable button. From the list
select the variable named project name. The result should look like that shown in Figure 1.16.

After you have committed these changes, new classes and interfaces will be created with a comment

containing the user name and the project name.

Figure 1.16 shows the process of editing a code generation template. All variables are prefixed with the

$ character and are enclosed in curly brackets. Apart from the template pattern, you can also supply a

description (which will appear in the overview) and a template context (Java or Javadoc).

17

Chapter 1

= Help =] Comments L Edit...]
- InstallUpdate Getters i
= Java)
- A
-8B ... By
[=)- Cjf Description:]Comment for created types
Pattern: [/=- AL
* @3 Siuser =
C * created first in project -
+- D *
AE / date - Current date o
dallar - The dellar symbol
In enclosing_type - The type endesing this method
Rl | Insert Variable... file_name - Mame of the endosing compilation unit
R package_name - Name of the enclosing package
T project_name - Name of the endosing project
T tags - Generated Javadoc tags {@param, @return...)
I time - Current time
L todo - Todo task tag
- Run/T —
= type_name - Name of the current type
i Screenshot Utility - S v
- Team I —
Figure 1.16

Later you may also change the entry for New Java File. The predefined text is shown here:

/*
* Created on ${date}
*

* To change the template for this generated file go to

* Window - Preferences - Java - Code Style - Code Templates
=y

${package declaration}

${typecomment }

${type declaration}

The variables used here define the sequence of the different code parts. For example, you just specified
what happens under typecomment in the previous template. Here, delete only the text lines To
change...Code Templates, and leave everything else as is.

Tasks and Problems

Eclipse uses the Tasks and Problems views to notify the user about pending tasks. The Problems view lists
problems such as errors or warnings. By clicking on such an entry you can quickly navigate to an erro-
neous program line.

Other task entries are hints about pending development actions and are shown in the Tasks view. Some
of these hints are created by Eclipse. For example, when you create a new class or a new method, Eclipse
creates a hint that the new construct must still be completed. Programmers may create similar task
entries at their own discretion.

18

Introduction to Eclipse

Problems, Problems

In the Compiler Preferences section of this chapter, you saw the Problems window in action. The entries
in the Problems window correlated to pending problems in the Eclipse workbench. In Figure 1.17 I pur-
posely created a syntax error by inserting a blank into the parameter name args. This resulted in three

error messages.

£ Java - HelloWorld.java

- Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help
=4, qbv[,» .i%ﬁ' 05 @~ 0 - = x_‘.. = 3}}35'-.'5
= Problem marker Problem indicator {Resource
= for whole file —
[osckege.. 57 ™4 = O || @ Hellowarld java &2 forwholefile \f 0= Qutiine 2
=R =/ . AlE W W e
=] Worh Created on 2 2004 =B, Helovord
\d)) _ B 5 main(string[]
d.java) L0 -Ch
@/ RE System Libeary [j2rel, * Window -
Problem marker in
. -~ the Outline View
Problem marker in the
Package Explorer
« Wind 3 /Problem position
" /in the whole
/8 public class HelloWorld [file
Problem markers =
i T8 v mbli tatic voi 1 ar g :
at faulty line = DERARBIAEE ar gq) &
] Syacem, 1AM s,
\] B d ’ Filter
| ad syntax
8 g v
£ > < ?
Declaration | Javadoc Lo 2
! Description | Resource In Folder Location |
Entries in the —_"GE Syntax error, insert 7} to complete Classs, .. Helle\Warld lime f—‘ ’
Problems View s @ syntax eror on token “gs”, delete th | lne 16
@ Syntax error on token 7}, delete this token HelloWorld line 19

>

3items: 3 errors, O warnings, 0 infos

Figure 1.17

After you double-click the problem entries, the faulty expressions are underlined in red. Red error mark-
ers on the source editor’s left margin mark the faulty lines. The markers on the right margin show the
position of the errors relative to the whole file. To scroll to the error position, it is only necessary to pull
the scroll bar to the markers. Clicking the markers works just as well.

Error messages are represented by a white cross in a red circle. In contrast, warnings are represented
by a yellow triangle. The third problem type is information tasks, which are represented by a blue

i character.

Double-clicking the problem entry in the Problems view lets you quickly navigate to the problem loca-
tion. Should the problem be located in a file that currently is not open, the file will be opened in the

19

Chapter 1

20

editor, and the editor window will be positioned on the error location. Just try it, and click on one of the
entries in the Problems view.

As the workbench gets busier, the Problems view often overflows with errors and warnings. At times it
can become difficult to find the Problems entries that are related to the current project or file, because the
Problems view by default shows all problems and other tasks within the whole workspace. Of course,
you can suppress some of the warnings by setting the compiler options accordingly (see the “Compiler
Preferences” section). But there is another way to reduce the information overload: by using the
Problems Filter (Figure 1.18). You can open the Problems Filter dialog by clicking the Filter button in

the toolbar of the Problems window.

V¥ Enabled

¥ Limit visible items to: | 300

Show items of type:

| Type] Parent types
Ant Buildfile Problem Problem
Build Path Problem Problem; Text
Jawva Problem Problem; Text
Plug-in Manifest Problem Problem
Problem Marker

Select All ‘ Deselect Al

% On any resaurce

" On any resource in same project

" On selected resource only

" On selected resource and its children

" On working set: <no working set selected >
Select...

Where description]contains LJ |

¥ \Where severity is: W Eror [Warning [Info

Restore Defaults
OK | Cancel |

Figure 1.18

The setting shown here allows only entries from the current project to appear in the Problems view. The
type of the entry is irrelevant.

Introduction to Eclipse

Here, in the Problems Filter, you may restrict the entries shown in the Problems view to specific types.
For example, you may opt to show only Java problems. The entry types shown in this window depend
on the installed plug-ins.

In addition, you can restrict the entries by their origin. The On Any Resource option shows all problems
and tasks from the whole workbench. On Any Resource in Same Project shows only problems from the
current project. An interesting option is also the definition of a Working Set—a freely configurable and
named set of resources. Select On Any Resource in Same Project if you want to see only the tasks and
problems of the project on which you are currently working.

You also have the option of filtering problems according their severity. To do so, mark the Where
Problem Severity Is check box and also the Error check box. By doing so you can suppress all warnings
and information entries.

General Tasks

Task entries generated by the compiler are only a specific type of task entry. In addition, you have the
option of creating entries manually. When writing code it often happens that you want to postpone a
certain task to a later time. In this case, you can create a task entry that later reminds you of the unfin-
ished work.

Just click with the right mouse button on the left margin of the source editor at the line where you want
to create the task marker. Select Add Task from the context menu. In the New Task dialog, enter a task
description. The result could look like Figure 1.19.

[8lPackage Expl... 32 |Hierarchy = B .@ HelloWerld java &3 8 || 3= outline 52 =0
COR|EF - S | e e~
1124 HelloWarld O =RERLEd R B b esBs = @* HelloWorld
= f3 (default package) = - ot main{String[])
=[] Helloworld.java e
= @(Hella\World

o main{String[])
[+ ﬂ;,\ IRE System Library [j2re1.4.2

TODO tasktag — ||

public class HelloWorl
public static w

=~|| Delete entry

i New ent *
User defined task ry Filter
Task entries £l : I 2
in Tasks View Problems | Conscle | ¥ Tasks 53 ¢ 8 3 = =0
Tasks (3 items)
Stat d | Description | Resource | In Folder | Location]
ol ol DO To change the template for this gener... HelloWorld.java HelloWorld line 4
TODO To change the template for this gener... Helloworld.java Helloworld line 10
L= This could be improved! Helloworld.java Helloworld line 15
< |
Figure 1.19

21

Chapter 1

This task entry was created by the user. By clicking the status field you can mark the entry as completed.
You can click the Delete button to delete one or several selected tasks. You can create task entries that are
not related to specific locations with the New Entry button. For example, you could create a task called
Don’t Forget to Buy Milk!

A function that was introduced with Eclipse 2.1 is even simpler. Just type a comment starting with one of
the words TODO, FIXME, or XXX in a new line. This line will automatically appear in the Tasks window
as soon as you save the source code. By the way, in Preferences > Java > Task Tags you may define alter-
native or additional tags such as TUNE, UGLY, etc. Of course, these workbench-wide definitions can be
overridden at the project level.

If you work in a team, you should always create tasks that are important for
other team member, too, in this way (as a comment in the source code) so the
tasks can be exchanged as part of the source code.

Bookmarks

Eclipse also has a construct that is quite similar to tasks: bookmarks. In the same way that you created

a task entry, you can also create a bookmark. Such a bookmark, however, does not appear in the Tasks
view but appears in a separate Bookmark view. Since this view is not a standard part of the Java
perspective, you first must open it. Select Window > Show View > Other > Basic > Bookmarks (see also
the “Arranging Editors and Views” section in Chapter 4). Bookmarks should be used when you want to
mark a specific position in the code but it is not related to a pending task.

The Scrapbook

22

Eclipse also inherited the Scrapbook from Visual Age. A scrapbook page is nothing other than a small file
in which you can try out Java expressions or just jot down a new idea.

You can create a new scrapbook page by invoking the function File > New > Other. In the wizard select
Java > Java Run/Debug > Scrapbook Page. In the dialog that appears specify a name for the new page
and, if necessary, the target folder. The result is the creation of a new empty scrapbook page in the target
folder. Scrapbook pages have the file extension . jpage.

Now, how do you use a scrapbook page? You simply type in arbitrary Java expressions. If you use
external types in these expressions, you either have to qualify the type names fully or add import
statements. The context function Set Imports allows you to add import statements for single types or
whole packages.

Then select the expressions that you want to execute and call the Execute context function with the right
mouse button (see Figure 1.20).

Introduction to Eclipse

| IZE Package Expl... 2 |Hierarchy = O I [Hellsworld.java

¢. .:’> & :u: =D4= - String hw = "li_[elln World™ An
=t .[E.J’ Hello\World System.out.println(hw);
=] ﬂ} {default packags)
=[] Helloworld.java
=l q. HelloWorld = Cﬁ'l =]
& main{String[]) n. °) +z
=l JRE System Library [jzre1.4.2 _ Revetre
@ scribble.jpage cut Ctrl+X
Copy Ctrl+C
Paste Cirl+v
Show in Package Explorer
: Q Inspect
B Display
| ¥F. Execute
B Stop Evaluation
‘; Set Imports... -
Froblems | Bl Console 52 | Tasks : a
| L 1 Save
Console ([Scrapbook] scribble.jpage)
Hello World
(2 |)
Figure 1.20

The selected expression is executed with the help of the Execute context function. The scrapbook context
function appears on the workbench’s toolbar at the far right.

It is not necessary to save the scrapbook page before executing the selected code. The selected code is
compiled by the Execute function. In the case of a compilation or execution error, Eclipse shows the error
message in a pop-up window. You may insert it into the current scrapbook content by pressing
Ctrl+Shift+D. You can easily remove it again by applying the Undo function (Ctrl+Z).
Execute is not the only function that you can use to run a Java expression. In cases where you want to
know the result of an expression, it would be better to use the Display function. For example, executing
the expression

6%7

with the Display function returns the result

(int) 42

23

Chapter 1

S

24

Eclipse shows the result in a pop-up window. You may insert it into the current scrapbook content by
pressing Ctrl+Shift+D. You can easily remove it again by applying the Undo function (Ctrl+Z).

A further function for executing selected expressions is Inspect. This function first appears in a pop-up
window, but by pressing Ctrl+Shift+I you can move it to the separate Expressions View (see Figure 1.21)
that opens automatically when needed. This function is particularly useful when the result of the exe-

cuted expression is a complex object. In the Expressions window you can open the resultant object and
analyze it in detail.

HelloWorld. java * sribble.jp s

I mew java.util.ArrayList(3);

= Q “new java.util. ArrayList(3);"= Arraylist (id=55)
- m elementData= Object[3] (id=62)

& [0]=nul
& [1]=nul
& [2]=nul
& modCount=10
| size=0
I
Figure 1.21

The results shown here are displayed in a pop-up window after applying the Inspect function on the
expression new java.util.ArrayList(3) ;.

ummary

After this first chapter you should be able to create, compile, and run simple Java program with Eclipse.
You should now know how to install Eclipse, create projects, and launch programs. You have become
acquainted with the most important preferences and should take some time now to browse through the
remaining preferences. However, the purpose of some preferences may become clear only during the
course of this book.

Source code annotations such as tasks and problem markers are powerful concepts during the develop-
ment of a software project. In Chapter 16 you will see that these concepts can be used to adopt a more

natural programming style.

Finally, the scrapbook encourages experimenting with Java so that you can try out new program con-
structs in isolation before integrating them into an application.

In the next chapter I will introduce into the various productivity techniques found in Eclipse.

Effective Programming with
Eclipse

Eclipse provides the Java programmer with a variety of productivity tools. In this chapter I will
present some of these tools such as the various assistants for error correction and automatic code
completion, the possibilities for code navigation and code refactoring, and the Local History that
allows tracing back changes in the source code to earlier versions.

Little Helpers

Eclipse is equipped with a variety of useful helpers, which—when used correctly—can save a
substantial amount of typing and also reduce the number of bugs in your programs. In this
section I introduce most of these little helpers.

System Information

Under the Help > About Eclipse Platform menu item you will find some sections that may be
important for your daily work. In particular, the Configuration Details button opens a text file
that contains all essential information about the current configuration of the Eclipse platform:

Q The System Properties section contains information about the Java platform under which
the Eclipse workbench is executing. In addition, it displays information about the host
operating system.

Q The Features section lists the installed features. A feature usually consists of a set of
plug-ins that work together to provide specific functionality. For example, the Java IDE
is a feature.

Q The Plug-in Registry section lists all installed plug-ins separately.

Chapter 2

Q The User Preferences section lists the active user preferences under which the platform is
running.

Q The Update Manager Log section lists information about the tasks performed by the Update
Manager, such as installing new features or checking existing configurations.

Q The last section, Error Log, is especially important. Here you find a protocol of all error
events that occurred during the execution of the Eclipse platform. If you develop you own
plug-ins, this section will prove especially useful. A more comfortable way to view these
error messages, however, is with the Error Log View. You can open this view via Window >
Show View > Other > PDE Runtime > Error Log. Physically, this error information is stored in
the .metadata/ . log file in the workspace directory.

Help and Hover

Eclipse features a classical help system that is activated on demand. In addition, Eclipse is equipped
with a Hover Info that autonomously provides the user with explanations about screen items.

Help

At this stage I don’t want to dig too deep into the Eclipse help system. You simply need to know that
you can invoke Eclipse help via the Help > Help Contents menu item. Like many other programs,
Eclipse uses a client-server solution for its help system. Under the cover, Tomcat works as the help
server, and a standard or custom Web browser is used to display the help to the end user.

In a vanilla Eclipse software development kit (SDK), you will find the following help chapters:

1. Workbench User Guide
2. Java Development User Guide
3. Platform Plug-in Developer Guide
4. JDT Plug-in Developer Guide
5. PDE Guide
You can add more chapters by installing additional plug-ins. For chapters 1 -7 of this book, the first two

help chapters are the most relevant. For the remainder of this book, the help chapters 3 and 5 will also
become important.

Since Eclipse 2.0, the Eclipse help function has been equipped with a search function. With the Search
Scope function you can restrict the search to specific chapters and sections in the help system.

Intro View

The Intro View is the first view you see when you start Eclipse. Initially it covers the whole workbench

window, but as you continue it will shrink and take its position to the right of the Outline View. During
operation the Intro View will explain the currently active workbench part and offer hyperlinks into the

help system. You can manually invoke the Intro View via Help > Welcome.

26

Effective Programming with Eclipse

Context-Sensitive Help

In addition to the explicit help function, you can call help within Eclipse at any time simply by pressing
the F1 key—provided the currently active plug-in supports this function. After pressing F1 you get a
pop-up window (Infopop), where you can select a relevant help topic and jump directly to it. In this
context the Show in Table of Contents button in the help system (the second button to the left of the
printer symbol) is useful. It synchronizes the table of contents with the currently displayed help page so
that you can see in which context the current help topic is located.

Hover

You probably know hover infos already from other applications: when the mouse hovers over a GUI
element, a small pop-up window appears after a short delay that informs you of the purpose and
function of the GUI element. Eclipse uses this technique as follows:

Q All buttons on the various toolbars are equipped with hover infos.

Q For files opened in the editor, you can display the full path information by hovering over the
tag of the respective editor page.

Q All task and problem markers are equipped with hover infos. You can display the text associ-
ated with a particular marker by hovering over the marker, so you don’t have to look up the
marker in the Tasks window.

Q Finally, hover infos exist for source code as well. Just place the mouse over the type name
Stringin our HelloWorld example. After a short delay you will see a hover info containing
the Javadoc of class java. lang.String. Similarly, you will see the Javadoc for method
java.io.PrintStream.println when you hover over the word print1n. Using this
technique, you can quickly find out in which class a certain method is defined, instead of
browsing up and down the class hierarchies.

If you press the Ctrl key while hovering over source text, your hover info will show the item’s source
code instead of the Javadoc!

If the information to be displayed in the pop-up window is too long, you may want to press F2. This will
transfer the focus to the pop-up window and equip this window with scroll bars.

Java Information Views

Another possibility to display Javadoc information is the Javadoc View. You can open this view by
invoking the function Window>Show View>Other...>Java>Javadoc. The view shows the Javadoc infor-
mation belonging to the currently selected Java element in human-readable form in a separate scrollable
window. I recommendend this view especially for classes containing complex Javadoc comments such
as the class java.util.regex.Pattern!

You can open another useful window with Window > Show View >Other > Java > Declaration; it shows
the declaration of the currently selected Java element.

The call hierarchy of a method can be shown in a separate window also. To do so, select the method
name and then apply the context function Open Call Hierarchy.

27

Chapter 2

Figure 2.1 shows the Call Hierarchy View after executing the context function Open Call Hierarchy when
method createToolbar () was selected. By clicking one of the hierarchy symbols in the view’s toolbar,
you can switch between the hierarchy of calling or of called methods.

problems (B Callferarchy 30 B % [} - v =0
Calls to Method)]
—-™a createToolbar(Compasite) - com.bdaum. jukebox. Playlistviewer A

- addstatuslineAndButtons{Table) - com.bdaum.jukebox. Playlistviewsr
=N FlaylistViewer(Composite, int, IPlaylist) - com.bdaum,jukebox. PlaylistViewer

S+l createContents(Composite) - com. bdaum. jukebox. FlaylistWindow

+-% create]) - org.edipse.jface. window, Window |

| Line | cal
= 44 new Playlistviewer{ composite, SWT.SINGLE | SWT.VERTICAL | SWT.H_SCROLL | SWT.V_SC
< | 2|

Figure 2.1

Automatic Code Completion

The functions for automatic code completion in Eclipse are very powerful and include the source menu
functions but also the Code Assistant introduced in the following section.

The Code Assistant

One of the most powerful utilities for writing code in Eclipse is the Code Assistant. Tedious typing and
searching in Javadoc or source code can be replaced by just a few keystrokes. Try the following:

In the HelloWorld example open under
System.out.println ("HelloWorld") ;

and enter a new line. In this new line type just three characters
Sys

and press Ctrl+Spacebar. In the pop-up list that appears, select the class System from the Package
java.lang by double-clicking it. Now enter a period. A fraction of a second later, another pop-up list
appears. From this list select the field out of type PrintStream. Once again enter a period, and once
again you will get a pop-up list; select the method print1n. The cursor is now positioned within the
parentheses for the method parameters. You can now complete this method call by entering the string
“Hello Eclipse.” All that remains to do is to type the semicolon at the very end of the expression. The
new line should now look like this:

System.out.println("Hello Eclipse") ;
I expect you get the idea already: the Code Assistant allows you to enter long class and method names
with just a few keystrokes. But what is even more important is that it saves you tedious searching and

browsing in the documentation. If required, it can automatically insert the necessary import statements
as well.

28

Effective Programming with Eclipse

There is an even quicker method, however. Just try the same thing again, but now enter only the letters
sy

and press Ctrl+Spacebar. From the pop-up list, select the entry sysout. (If you continue typing, the
pop-up list will get smaller and smaller, because it displays only entries that match the entered string.) If
you select the entry sysout with a single click, another pop-up window appears showing a code pro-
posal for the keyword sysout. You can accept this proposal with a double click or press the Esc key to
close both windows.

The code proposal shown is based on a code template that is associated with the keyword sysout.
These templates are defined under Preferences > Java > Editor > Templates, where you can also create
your own templates. This is done similarly to defining entries for code generation (see the “Templates”
section in Chapter 1).

It is worth browsing through all these templates, because they can save you substantial typing. While
many templates are named to resemble Java constructs (if, while, catch, etc.), other templates
bear the names of design patterns. Take, for example, the 1azy template. This template generates the
following code:

if (name == null) {
name = new type (arguments) ;
}

return name;

That is a typical pattern for the lazy assignment of a variable. What you have to do with this pattern is
just replace the first occurrence of the string name with the name of your own variable, for example,
with “myHashMap.” This automatically replaces all occurrences of “name” with “myHashMap”
throughout the pattern!

In addition to these Java code templates, there are predefined Javadoc templates. For example, if you
enter the character @ within a Javadoc comment, a pop-up window appears showing the available
Javadoc keywords.

Of course, you can define your own templates. In Chapter 1 you have already modified the typecomment
template. Here now is an example for a completely homegrown template. The template generates an if
instruction that executes only when the equals () method in the condition is successful. In addition, it
make sures that you don’t get a null pointer exception.

Template equals:

if (${name} != null && ${name}.equals(${cursor})) {
This template contains the user-defined variable $ {name }. When you apply this template, this variable
will be replaced with a real field name (just as in the 1azy template). In addition, the template contains
the system variable $ { cursor}. This variable marks the position of the cursor. When applying the tem-

plate, just replace the first occurrence of “name” with the real field name. Then press the Tab key to jump
to the predefined cursor position. There you can enter the argument for the equals () method.

29

Chapter 2

30

There are two more templates that occasionally prove useful.
Template sconst:

public static final String ${name} = "${cursor}";
Template iconst:

public static final int ${name} = ${cursor};

Under Preferences > Java > Editor > Code Assist, you can make adjustments to influence the behavior of
the Code Assistant (Figure 2.2).

In particular, the Automatically Add Import Instead of Qualified Name option is very useful. When this
option is set, you can in most cases avoid adding import statements manually, simply by using the Code
Assistant.

For most of the other options, the default values provided by Eclipse make sense, so you should not
need to change these settings. What can be a bit annoying at times is the automatic activation of the
Code Assistant after entering a period or a @ character. It could make sense to increase the delay value of
this option from 500 msec to 1000 msec.

= Preferences

BIX]

#- Workbench ICOdE Assist
+- Ant
B Erder (* Completion inserts (* Completion overwrites
+-Help
+- InstallUpdate W Insert single proposals automatically
- Java I~ Insert common prefixes automatically
+- Appearance
- Build Path ¥ Show only propesals visible in the invocation context
+- Code Style I~ Present proposals in alphabetical order
CDL“D"E" ¥ Add import instead of qualified name
+- Debug))
). Editor ™ Eill aroument names on method completion
Code Assist ¥ G
Mark Qccurrences W Enable auto activation
Speling
Templates Auto activation delay: 500
Instzlled JREs Auto activation triggers for Java: 3
JavaFamily Example
JUnit Auto activation triggers for Javadoc: | @
Task Tags Code assist color options:
Type Filters . 5
- olor:
+- Plug-in Development Completion proposal foreground
Readme Example Method parameter background
+- Fun/Debug Method parameter foreground
- Team Completion overwrite background
T Completion overwrite foreground
Template Editor
Restore Defaults] Apply ‘
Import... ‘ Export... OK | Cancel ‘

Figure 2.2

Effective Programming with Eclipse

Other Functions of Code Completion

Apart from the Code Assistant, which appears either automatically after entering an activation character
or when pressing Ctrl+Spacebar, there are a few more context functions for code completion. Take a look
at how you can use these functions to create Javadoc comments.

Creating Javadoc

In our HelloWorld example program, just place the cursor into the main method and invoke the
function Source > Add Javadoc Comment. This will insert the comment lines

/**
* Method main.
* @param args

=Y
in front of the method. The only thing that remains to do is to complete this description.

An even simpler method for creating a Javadoc comment is to open a new line in front of the method
and to enter the string /** and then press the Enter key.

The Source context submenu contains more useful functions for code completion:

Comment Out Code

0O Toggle Comment. Using this function, you can convert the current line or the selected lines into
comment lines (/ /) or convert comment lines into active code.

Q Add/Remove Block Comment. Using this function, you can convert selected code sections into
block comments (/* */) or remove the comment characters around the selected section.

Importing Types
0 Organize Imports. This function analyzes the whole program and inserts the required import
statements at the beginning of the program. Should this function discover equally named types
from different packages during this task, it will prompt you with a list of those packages. You
must then select the required type from this list.

QO Add Import. This function inserts an import statement for the selected type name at the begin-
ning of the program. Similarly to the Organize Imports function, this function will prompt you
for type selection if it discovers equally named types from different packages.

Under Window > Preferences > Java > Code Style > Organize Imports you can specify a threshold value
for single type import statements. If the program contains more import types from a given package
than what were specified under this threshold value, the import statements for this package will be
combined into a single import statement by using wildcards (as in eclipse.org. *). The default
threshold value is 99.

31

Chapter 2

Overriding Methods

Q Override Methods. This function first shows a selection list for all inherited methods. In this
list you can check all methods that you want to override, and Eclipse will generate method
stubs for all of them. This function is particularly useful if the class implements one or
several interfaces. In such a case, you simply invoke this function and check all the methods of
the interface (if they are not already checked). Then simply complete the generated method
stubs.

Encapsulating Fields

0 Generate Getter and Setter. This function generates access methods for class fields. For
example, if a class contains the field definition

private String hi;
invoking this function would result in the following generated methods:

/**
* Returns the hi.
* @return String
74
public String getHi () {
return hi;
1

/**
* Sets the hi.
* @param hi The hi to set
Y
public void setHi (String hi) ({
this.hi = hi;
1

However, this function does not change existing references to the encapsulated field. If you
want to change these references, too, you are better off using the Refactor > Encapsulate Field
context function.

Alternatively, you may use the Content Assistant to generate a getter or setter. Just type get or
set and press Ctrl+Spacebar.

Creating Delegate Methods

0 Generate Delegate Methods. This function can be applied to non-primitive fields and replicates
the method of the field’s type in the containing type.

Inheriting Constructors

Q Add Constructors from Superclass. This function generates proxies for the inherited construc-
tors. These proxies contain only a super () call. Of course, you can then modify the generated
proxies to override the behavior of the constructor.

32

Effective Programming with Eclipse

Generate Constructor

0 Generate Constructor Using Fields. In the dialog that appears you may select from a list of
instance fields. The constructor is then generated with the corresponding parameters and
assignment statements.

i18n

Q Externalize Strings. This function supports the internationalization of applications. We will
discuss this in detail under “Internationalizing Products” in Chapter 12.

O Generate Delegate Methods. This function can be applied to all non-primitive fields and repli-
cates the methods of the field’s type within the class or interface that contains the selected field.

The Correction Assistant

Even before you compile a program by invoking the Save function, the editor tells you how bad a pro-
grammer you are. Erroneous expressions are underlined in red—as probably happened to you in school.
(The same metaphor is used by some word processors.) So even before compiling a program, you can
notice faulty expressions such as a missing bracket or semicolon, so that you can react accordingly.

QuickFix

Depending on the skills of the programmer, you may also occasionally see a yellow lightbulb in the left
margin of the source editor. This function is called QuickFix, and it signals that Eclipse has at least one
correction proposal for the programmer’s mistake. In fact, there are only a few error types where Eclipse
loses its wits and is unable to offer a QuickFix proposal. To activate the QuickFix function, click the
yellow lightbulb. (The same function can be invoked by pressing Ctrl+1 when the cursor is above the
faulty line.)

You try it. Say you purposely make a mistake and write only printl () instead of println ().
Immediately you will see a yellow lightbulb on the left margin (Figure 2.3).

One of the advantages of the Correction Assistant is the fast feedback it gives to the program author.
This immediate response to a mistake should trigger a learning effect in the programmer, making the
same mistake less likely the next time.

However, you may also use the Correction Assistant to save some typing. For example, when you write

some code and refer to a method that has not yet been written, a simple click on the yellow lightbulb
that appears allows you to generate a stub for the missing method instantly.

33

Chapter 2

Hal1l

public class
public =static void main

(String|]
ystem.out.println ("Hello

args)

@ Create local variable 'system’
o Create field 'system’

® Create parameter 'system’

o Create constant 'system’

i Chance o Syster Gava.lang)

@ Change to 'SystemCalor' (java.awt)

[=]: problems 53

| Problems (0 iteme
Description

@ Change to 'SystemSigner' {sun.security. provider)
® Local Rename

@ create dlass 'system’

k= —\-\.-'_dll:l ;
.c:t.p':'_f_t'_r_ ["Hella Eclipse™);

System.out.printin{"Hello Wwarld™);
System.out, printin{Hello Eclipse™);
K

3

Figure 2.3

In Figure 2.3 you see the Correction Assistant in action. The erroneous class name “system” is underlined
in red. On the left you see the yellow lightbulb. Clicking the lightbulb opens a pop-up window with var-

ious suggestions. The pop-up window on the right shows what the code will look like if you opt to

change the name to “System.”

You can switch off the Correction Assistant under Preferences > Java > Editor on the Annotations page.

Quick Assist

Ctrl+1 works even without an error being present. In this case the function is called QuickAssist, and it
is a useful function for code transformation and completion. The function depends on the context. For
example, if you position the cursor on the parameter of a method declaration and press Ctrl+1 (or click
the green lightbulb that mysteriously appeared on the left margin of the editor), various functions will
become available for selection, including the function Assign Parameter to New Field. If you select this
function, Eclipse will generate an assignment directly after the method header, assigning the parameter

to a newly declared field.

In Figure 2.4 you can see that the QuickAssist facility makes a suggestion for assigning parameter args to

a static field. Since the field doesn’t exist yet, a field declaration is proposed as well.

lazs HelloWorld

lic static void main(S5tring(]

bublic class HelloWorld {
private static String[] args;

bublic static void main{String] args) {
HelloWorld.args = args;
Eystem.out. printn{™Hello World™);
kystem, out, printin{Hello Eclipse™);

5

= ¢ g

o Assign parameter to new field
® Local Rename

Figure 2.4

34

Effective Programming with Eclipse

In the context of an if-statement you will, of course, get different proposals, such as to add an else-
block or to remove the if-statement. Similar functions are available for for- and while blocks.

Convenience Functions of the Java Editor

Eclipse's Java Editor comes with a variety of convenience functions that make code easier to type and to
read. In the following sections I will present some of them.

Typing Aids

Under Preferences > Java > Editor on the Typing page, you can activate or deactivate a variety of
typing aids. The Java editor is, for example, able to close open parentheses or brackets automatically.
It can include string literals in quotes automatically and can wrap the text within Javadoc and other
comments.

The function Wrap Java Strings is also nice. In our HelloWor1ld example program, just place the cursor
between Hello and World and press Enter.

The result is the syntactically correct expression

System.out .println ("Hello " +
"World") ;

However, these functions are active only when the editor is in the Smart Insert mode. By pressing the
Insert key repeatedly, or by clicking the corresponding field in the status line, you can switch among the
Smart Insert, Overwrite, and Insert modes. By the way, you can completely switch off the Overwrite
mode for the Java editor!

Code Folding

Another nice function of the Java editor is the possibility to collapse code sections and to expand them
again. This is achieved with the help of the small arrows at the second vertical ruler at the left of the edi-
tor area (see Figure 2.5). An arrow pointing downward indicates an expanded section of code. When you
hover with the mouse above this arrow, Eclipse will show how far this section stretches. By clicking the
arrow you can collapse this code section. The arrow then changes its shape and points to the right. If you
now hover above the arrow, a pop-up window shows the content of the collapsed code section. Click the
arrow again, and the code section expands again. Under Window > Preferences > Java > Editor on the
Folding page you can enable or disable this function, and you can control which code parts should be
displayed in a collapsed state initially.

In this program both the 1istAllVoices and main () methods and the group of import statements

are collapsed. The mouse hovers over the arrow symbol at the import group, so that the import state-
ments are displayed in a pop-up window.

35

Chapter 2

M Helloworld java X [4] Player java

£

|0

& P limport java.io.File;

import java.util.Locale;
i import java.util.Vector;

import javax.speech.Central;
import javax.
“viimport javax.
import javax. hezizer;
< [import javax. wesizerModeDesc:
import javax.

import javax.

hesizerProperties;

3 puhlic static woid listAllVoices (String
b public static void main (String[]) {D
Figure 2.5
Syntax Coloring

Finally, you should take a look at the options for syntax coloring. Different colors and font styles can be
assigned to different elements in Java programs so that the readability of programs is improved. You can
configure this feature under Window > Preferences > Java > Editor on the Syntax page. The Enable
Advanced Highlighting option lets you switch to a very differentiated syntax coloring mode.

Source Code Navigation

In large projects it is essential to have good navigation tools at hand. Eclipse offers some of them as an

editor context function (right mouse click):

Q Open Declaration. This function opens the definition of the selected type in the editor. The

shortcut is to press F3.

36

Effective Programming with Eclipse

The alternative to this editor context function is hyperlinks: Just press the Ctrl key and move
the cursor above the String type reference. This type reference now appears in blue and is
underlined—it has become a hyperlink. By clicking it you open the definition of
java.lang.String.

Open Type Hierarchy. This function opens a special browser window that will appear in front
of the Package Explorer. The new window shows the type hierarchy for the selected type. I will
discuss this browser in detail in Chapter 4.

Open Call Hierarchy. This function opens a special browser window that will appear in front of
the Intro View. The new window shows the call hierarchy for the selected method.

Open Super Implementation. This function opens the super implementation of the selected
method, i.e., its implementation in the parent class or the next ancestor class.

Show in Package Explorer. This function synchronizes the Package Explorer with the current
editor window (see the “Packages” section in Chapter 4).

These functions are also available from the workbench’s menu bar, under the Navigate title. Here you
find additional navigation functions such as:

a

O 00 oo

Back. This function works like the Back button in web browsers.

Forward. This function works like the Forward button in web browsers.

Last Edit Location. This function navigates back to the last location where you modified code.
Go to Line This function allows you to jump to a source code line with the specified number.
Next Annotation. This takes you to the next source code annotation, such as a syntax error.

Previous Annotation. This takes you to the previous source code annotation.

Most of these functions can be invoked via toolbar buttons, too.

Figure 2.6 shows that you can jump to the most recently edited code location with the Last Edit Location
button. Two more buttons allow you to step backward and forward in the navigation history of visited
code locations. The Show Source of Selected Element button can isolate elements (methods or field defi-
nitions) in the editor window.

Next Annotation

Back
Show Source of Previous Annotation

Selected Element Last Edlt Location Forward

Only /
2 | ¢ - ’E:]:{IZ'*

Figure 2.6

37

Chapter 2

R

efactoring Code

Modifications of existing programs usually take a lot of time and may introduce new bugs. Even the
simple renaming of a type may affect dozens, hundreds, or even thousands of other compilation units.
In such cases the computer is superior to the human, and consequently Eclipse offers a rich set of
refactoring utilities. The purpose of refactoring is to improve the structure of the code without modifying
the behavior of the application. Especially in the context of Extreme Programming (XP) refactoring plays a
major role.

In Eclipse, refactoring is achieved by applying Refactor > ... context functions or by using the Refactor > ...
menu functions from the main menu. The context functions are context sensitive; that is, only those
functions are visible that are applicable in a given context. Eclipse newbies may therefore want to use

the Refactor > ... function group from the main menu in order to gain an overview about the available
functions.

Modifying Types

38

Modifications at the type level (classes and interfaces) are best applied in the Package Explorer. The
context menu of the Package Explorer offers some functions under the subtitle Refactor, such as
Refactor > Move and Refactor > Rename. In addition is it possible to create a copy of a type by using the
context function Copy.

QO Moving a compilation unit. Let’s assume that you are not happy with the current location of
the HelloWorld class in the default package of the project. Instead, you would like to create a
new package named HelloPackage and move the class HelloWorld into it.

Just create a new package in the usual way (the Create a Java Package button). Then select the
HelloWorld compilation unit in the Package Explorer. From the context menu select the function
Refactor > Move.... The dialog that appears contains another small package explorer. Here, you expand
the HelloWorld project by clicking the + character, and then select the package HelloPackage as the
move target. Once you click OK, the HelloWorld compilation unit is moved into the target package.
The source code of HelloWorld now contains the line

package HelloPackage;

Should other compilation units contain references to the HelloWorld type, these references would be
updated accordingly. You can inhibit this by removing the checkmark from UpdateReferences to Moved
Element(s). Optionally, you may even update reference in non-Java files.

As a matter of fact, you can also move a compilation unit by a simple drag-and-drop operation with the
mouse. You could have just dragged the HelloWorld compilation from the default package into the
package HelloPackage and dropped it there. But in larger projects where packages may have a large
distance between them, the context function Refactor > Move... usually works better.

Q Moving a type. Similarly, you can move types (classes and interfaces) within a compilation
unit. For example, you can drag the class symbol (the green circle with the C) onto another class
symbol. The dragged class thus becomes an inner class of the target class. However, in this case
the original version of the dragged class remains at its original position, too, so this is a copy
function rather than a move.

Effective Programming with Eclipse

a

Renaming compilation units and types. Similarly, you can rename compilation units and types

by invoking the context function Refactor > Rename....

Figure 2.7 shows the dialog for renaming a compilation unit. In addition to updating references in the
code, it is also possible to update references in Javadoc comments, normal comments, and string literals.

* Rename Compilation Unit

Mew name: | el les)
Iv Update references

™ Update textual matches in comments and strings {forces preview)

] o

Figure 2.7

Refactoring Code

In addition to classes and interfaces, there are many more possibilities for code refactoring. You can
invoke these functions from the source editor’s context menu, from the context menu of the Outline
view (see the “Outline View” section in Chapter 4), or from the main menu of the workbench.

Methods

a

Rename. Nearly everything can be renamed with the function Refactor > Rename...: classes and
interfaces, methods, fields, parameters, and local variables. References to the renamed elements
are updated accordingly. If fields are renamed and if the fields have access methods (get... ()
and set...()), the method names are updated, too.

Move. Static methods (and, with some restrictions, also instance methods) can be moved into
other classes with the function Refactor > Move... References to these methods are updated
accordingly. Public static constants (public static final)and inner classes can be moved,
too.

Pull Up. Non-static methods and fields can be moved into super classes by applying the
function Refactor > Pull up.

Change Method Signature. The function Refactor > Change Method Signature allows you to
change a method’s access modifier, its result type, the order, names, and types of its parameters,
and the exception declarations. References to the method are updated accordingly. When new
parameters are introduced into the method, it is necessary to define a default value for each new
parameter. This default value is inserted as the value for the new parameter when the corre-
sponding method calls are updated.

Introduce Parameter. This function can be used to introduce a new parameter into a method
declaration. To do so, select an expression within the method declaration and apply the function.
In the dialog that appears, enter the name of the new parameter. Eclipse will then replace the
selected expression with the parameter name, complete the method head with the new parameter,
and expand all method calls with the selected expression.

39

Chapter 2

Q Extract Method. The function Refactor > Extract Method... encapsulates the selected code
into a new method definition. Eclipse performs a data flow control analysis for the selected
code section. From that it determines the parameters and the result type of the new method.
The new method is inserted behind the current method, and the selected code is replaced by
a corresponding method call. In some cases, however, it is not possible to apply this function,
for example, if there are multiple result values of the selected code section. In cases where the
function cannot be applied, Eclipse tells you the reason for the rejection.

Here is an example. In the following method we select the bold line and apply the Extract Method
function:

public static void main (String[] args) ({
System.out.println ("Hello World") ;
System.out.println("Hello Eclipse");

}

In the dialog that appears, specify helloEclipse as the name for the new method, and you will
receive the following:

public static void main(String[] args) ({
System.out.println("Hello World") ;
helloEclipse() ;

}

public static void helloEclipse() {
System.out.println("Hello Eclipse");
}

This function detects all occurrences in the current compilation unit where such a substitution can be
applied. You can apply the substitution to the current selection only or to all matching occurrences.

Vice-versa, you can resolve methods by applying the function Refactor > Inline.

Factory

Q Introduce Factory. Using the function Refactor > Introduce Factory ... you can generate a static
factory method from a given constructor. At the same time, all calls to this constructor are
replaced by calls to the new factory method.

Types and Classes

Q Extract Interface. With the function Refactor > Extract Interface... you can generate a correspond-
ing interface for an existing class. For example, if you select the class name HelloWorld and
invoke this function, you are asked for a name for the new interface. If you enter IHelloWorld
and press OK, a Java interface IHelloWorld is generated and the class definition of
HelloWorld is completed with the clause implements IHelloWorld. In addition, Eclipse
determines which references to Hel1loWor1ld can be replaced with a reference to the interface
IHelloWorld. As it happens, the interface generated in this example is empty, because the
class HelloWorld contains only static methods.

Q Generalize Type. When you select a type name and invoke this function, a dialog with the hier-
archy of supertypes appears. You may select one from the tree to replace the originally selected
type name.

40

Effective Programming with Eclipse

Q Use Supertype. After creating the interface IHelloWorld you can call the function Refactor >
Use Supertype Where Possible for class HelloWorld. This function offers you a choice between
the types IHelloWorld and Object. Both are supertypes of HelloWorld. If you now select
IHelloWorld, Eclipse will replace all references to HelloWorld with references to
IHelloWorld, provided that this will not result in compilation errors.

QO Convert Nested Type to Top Level. Inner classes and interfaces can be separated into their own
compilation unit (. java file) by applying the method Refactor > Convert Nested Type to Top
Level... to them. The new compilation unit is equipped with the necessary import statements.
In the type definition that previously contained the inner type, a new class field is generated
whose type declaration refers to the newly generated top-level type. In addition, the constructor
of the container type is extended with a new parameter that supplies the new field with an
instance of the new top-level type.

Q Convert Anonymous Type to Nested Type. Anonymous classes are used quite often as event
listeners. Such anonymous classes can be converted easily into named inner classes by applying
the function Refactor > Convert Anonymous to Nested... .

Variables

Q Extract Local Variable. The function Refactor > Extract Local Variable... replaces the selected
expression with the name of a new variable. A suitable variable assignment is inserted before
the modified expression. For example, in

System.out .println ("Hello World") ;

select HelloWorld and apply the function. In the dialog that appears, specify hi for the variable name.
The result is:

String hi = "Hello World";
System.out .println (hi) ;

Optionally, all occurrences of HelloWorld are replaced with a reference to the variable hi.

Q Inline method or local variable. The function Refactor > Inline... works in the opposite way.
For example, if you select the variable hi and apply this function, all occurrences of hi are
replaced with the value of hi (the string Hello World). Before the replacement is performed, a
dialog box shows you the effects of the replacement by comparing the old version with the new
version of the compilation unit (see the “Local History” section). Similarly, you can resolve a
method by selecting the method name and invoking this function.

Q Encapsulate. The function Refactor > Self Encapsulate... allows you to convert a public variable
into a private variable. It generates the access method for this variable (see also Generate Getter
and Setter in the “Encapsulating Fields” section) and updates all read and write access to this
variable accordingly.

Before:

public int status;
public void process () {
switch (status) {
case 0

41

Chapter 2

System.out .println ("Status 0") ;
break;

}
}

After:

private int status;
public void process () {
switch (getStatus()) {
case 0
System.out.println("Status 0") ;
break;

1
!
public void setStatus(int status) {
this.status = status;
}

public int getStatus() {
return status;

Q Convert Local Variable to Field. The function Refactor > Convert Local Variable to Field... can
convert a local variable that is defined in a method body into an instance field.

Constants

Q Extract/Inline Constant. The extract and inline functions discussed for variables are available
for constants, too. For example, select the string Hello World and invoke the function
Refactor > Extract Constant... In the dialog that appears, assign the name HELLOWORLD to
the new constant. Eclipse now inserts the line

private static final String HELLOWORLD = "Hello World";

and replaces all occurrences of Hello World with HELLOWORLD. Vice versa, the function Refactor >
Inline... allows you to resolve the names of constants by replacing them with the constant’s value.

Undo and Redo

With Edit > Undo (Ctrl+Z) it is possible to revert previous actions. The Undo function can be applied
over many steps—no limit seems to exist. Undo can even undo actions across previous Save operations.

With Edit > Redo (Ctrl+Y) you can once again execute actions that were previously undone by applying
the Undo function.

42

Effective Programming with Eclipse

Undoing the Refactor functions (see the “Refactoring Code” section) is a special case. The normal Undo
function can only revert these functions in several steps—and then only partially. To undo a Refactor
function, it is better to use the special Undo (Ctrl+Shift+Z) and Redo (Ctrl+Shift+Y) functions in the
Refactor submenu.

Local History

The Local History function group belongs to Eclipse’s most powerful functionality for maintaining
source code. For each compilation unit, Eclipse stores a configurable number of older versions that are
updated with each Save operation.

You can set the number of stored versions in Preferences > Workbench > Local History. The default value
is 50 versions, with a maximum age of seven days and a maximum file size of 1 Mb. If you use the Save
key (Ctrl+S) as frequently as I do, it would be better to increase the maximum number of versions a bit.

The Local History functions work for any type of resource, not just for Java source code.

Comparing Resources

The context function Compare > Local History allows you to compare the current version of a compila-
tion unit with previous versions. First, you get a selection list with the previous versions nicely grouped
by days. Clicking one of these versions will compare the selected version with the current version.

You can invoke this function from the Package Explorer or from the Resource Navigator. It can also be
called from the editor, where it is applied to the selected element only—for example, a method.

In Figure 2.8 I have deleted and modified some comments and extracted the print1ln () statement as a
separate method. The comparison shows the deleted lines on the right and the inserted lines on the left-
hand side on a gray background. The right vertical ruler shows all modifications to the file: the selected
modification has a black border, and all other modifications have a gray border. The window at the top-
right corner (Java Structure Compare) allows the comparison of single methods.

Replacing with an Older Version

The function Replace > Local History works very similarly to Compare > Local History. The window is
additionally equipped with a Replace button with which you can replace the current version with the
version in the right window. In contrast, this function does not have a Java Structure Compare window.

Restore Deleted Resource

Mistakenly deleting a resource is not a tragedy either. The function Restore from Local History provides
a selection list for previously deleted resources that can be restored by simply marking their check boxes.

43

Chapter 2

Compare with Local History

E| Local History of ‘HelloWorld.java' @ Java Structure Compare
= @Y Today (10,05.2004) =@ Compilation Unit
S 16 =@ Helloworid

(Q 15:58:22 28 helo
@ 15129122 @ man(String[)
@ 11:12:24
@ 11:12:10
@ 111146
© 11:06:56
& @Y Yesterday (09.05.2004)

) Java Source Compare

Workspace File @ Local History (10.05.2004 15:01:32)

o Y o

* TODO To change the template
* Window - Preferences - Java

for this (

~

Ppublic class HelloWorl
poblic static void mair

System.out.printlin("H

hello():

Figure 2.8

Summary

44

After studying this chapter you should know about the main productivity techniques embodied in the
Eclipse platform and the Eclipse Java SDK. Features such as help and hover, and especially the content

assistants and templates, allow you to work without constantly searching programming guides and

manuals. Instead, the information is provided where and when it is needed. Strong navigation functions
allow you to get around in your application quickly. Especially in large applications such functions are
essential. Various assistants for source code completion, refactoring, and bug fixes help you to adopt an

agile programming style. In Chapter 16 I will discuss how these functions support the Extreme

Programming approach. In the next chapter I will introduce the Eclipse Visual Editor.

The Art of (Visual)
Composition

One of the more frequently asked questions directed to the Eclipse development team was if and
when a visual GUI editor would be available for Eclipse. Eclipse 2 SDK did not provide a visual
editor, but after a while several third-party GUI editor plug-ins appeared on the market (see
Appendix A). Then, at Christmas 2003, eclipse.org released the first version (0.5) of the Eclipse
Visual Editor for Java (VE) that, initially, supports only the design of Swing GUIs under Eclipse
2.1. In May 2004, VE M1 was released for the Eclipse 3 platform. Support of SWT GUISs is planned
for version 1.0. What’s nice about this tool is that it is completely free and that it is Open Source.
But this is not its only advantage.

The VE has—Ilike Eclipse—its roots in Visual Age, despite the fact that it was implemented from
scratch in Java. One of the main features of the VE is that it supports two-way programming;:
changes in the visual layout appear immediately in the generated Java code, while changes in the
Java code are reflected back to the visual layout as soon as the source code is saved with Ctrl+S.
With this feature, the VE completely refrains from using metadata but derives all information from
the source code.

Installation

In this task the VE relies on the facilities of the Eclipse Modeling Framework (EMF). Therefore,
before installing the VE, you must install the EMF. The EMF can be downloaded from
www.eclipse.org/emf/. To install it, just unpack the downloaded archive into the /eclipse
root directory. Then start the Eclipse platform and follow the instructions of the Update Manager.
After restarting Eclipse, you can install the VE in the same manner. The VE download can be
obtained from www.eclipse.org/vep/.

Chapter 3

Invocation

After installation, the VE is hard to notice. When you open Eclipse help, you will see a separate chapter
for the Visual Editor. After a short browse through the supplied information, you may find out that the
VE can be applied to any Java compilation unit. To do so, you must open a closed Java file with the con-
text function Open with > Visual Editor. Afterwards, this file will be always opened with the VE when
you double-click it in the Package Explorer.

During your first steps with the VE you will soon notice that a large screen is required to work with the
VE efficiently, because the editor area is subdivided into a visual design area and an area for the source
code. As a matter of fact, you can maximize the editor area by double-clicking its title bar. Unfortunately,
this is not a good solution because the Java Beans View and the Properties View are used frequently dur-
ing the design process. So, it is better to switch back to the normal workbench mode. Bad news for note-
book users, it seems.

A nice feature is that the division of the design area and the source code area is not fixed but can be var-
ied by moving the sash between the areas. By clicking one of the arrows on the sash you can maximize
one area or the other. Furthermore, there is a viewing mode switch in the Java Beans View (second but-
ton from the left), which you can use to switch this view to a navigator function: the view shows the
design area in reduced size, and by moving the gray rectangle you can easily navigate within a large lay-
out.

Preferences

Of course, you can also opt not to use this split-screen editor but use a tabbed folder instead. In this case,
both the design area and the source code area completely fill the editor area of the workbench and are
activated by selecting the appropriate tab at the bottom of the editor area. This mode is especially useful
for smaller screens (notebook users enjoy!). To activate this mode, go to Window > Preference > Java >
Visual Editor. On the Appearance page, from the Show the Visual Editor and Source Editor section,
select the On Separate Notebook Tabs option.

On the same page you can also determine the skin (Looké&Feel) to be used for generated Swing GUIs.
If you own a fast computer, you may also want to shorten the delay for updating the source code after

design changes (or vice versa). This is done on the Code Generation page under Source Synchronization
Delay. The default value is 500 msec.

Composition

46

Composing GUIs with the VE is quite simple. On the left margin of the VE you will find a menu with
GUI elements. These are organized in groups: Swing Components, Swing Containers, Swing Menus, and
AWT Controls. Clicking such a group will expand it and collapse all others. However, clicking the pin at
the right-hand side of the group name lets you keep a group open permanently.

To move a GUI element to the design area, first select it with the mouse. Then click the target position in
the design area. You don’t drag and drop elements, but rather you move them as you would move cards
in the card game Freecell.

The Art of (Visual) Composition

Try it with a small example. In HelloWorld project, just create a new class named HelloVE as
described in Chapter 1 (with a main () method). Then close the Java editor. In the Package Explorer,
apply the context function Open with > Visual Editor to He11oVE. Now open the Swing Containers
group in the GUI element menu of the VE. Select the component JFrame. Then click the target position
in the design area. The smallest possible JFrame instance now appears at the target position. Click the
bottom-right corner of this component and drag it to the desired size. As you can see in the Java Beans
View, the JFrame instance already contains a content pane (JPanel instance), which fills the entire area
of the JFrame instance.

Now click the Swing Components group to open it. Select the JLabel component and release the mouse
button. Then move the mouse over the (still selected) JFrame component in the design area. As you
move the mouse, different areas labeled North, Center, South, East, and West will appear because
the content pane is already equipped with a BorderLayout (see below in section “Layouts”). Now,
click the mouse to place the JLabel component into the Center area.

In this area you will now see a JLabel instance named JLabel.It may well be that this instance appears
at a slightly different position because the BorderLayout manager performs automatic positioning.
Now click the already selected JLabel instance once again. A text input area opens, where you can
overwrite the text “JLabel” with “Hello VE,” as shown in Figure 3.1.

GUl-element Design area
menu (expanded)

-
>

i_4 Margquee
&% Choose Sean

(= Swing Compon,., *

Palette

=3 JButton

@ A=E

T Hello VE
1 JTextFied

= JPasswordField
o JTextArea
F3 Jslider
b

Confrols >

Deasign | Source

3

Search |\Console | Tasks | = Properties 2

Switch between
design and source code Properties-View Beans-View

Figure 3.1

47

Chapter 3

This figure shows the components of the VE. At the top left you see the selection menu for the GUI
elements. Adjoining to the right is the working area, consisting of the design area and the source code
editor. On the far left is the Outline View, as already known from the Java editor. At the bottom I have
docked the Java Beans View to the right of the Properties View (see the “Arranging Editors and Views”
section in Chapter 4), in order to allow for comfortable editing. You may store this arrangement as your
own perspective (see the “Managing Perspectives” section in Chapter 4).

As you can see in the Outline View (and in the source code, too), these actions have generated the meth-
ods getJFrame (), getJContentPane (), and getJLabel (). All that remains to do is to invoke the
method getJFrame () from the main () method. To do so, modify the main () method in the source
code area as follows:

public static void main(String[] args)
HelloVE hello = new HelloVE() ;
javax.swing.JFrame frame = hello.getJFrame () ;
frame.setVisible (true) ;

}

After saving this code with Ctrl+S, you can execute this program immediately by issuing the command
Run > Run As > Java Application.

Beans and Bean Properties

All the components available in the VE’s GUI element menu are provided in the form of Java Beans. Java
Beans are Java classes that follow certain coding standards. For example, a Java Bean must always have
a standard constructor without any parameters. The features of such a Java Bean are described in an
associated class, a BeanInfo class. The VE uses this information via introspection to display the compo-
nent in an appropriate form and to generate code.

Generic Beans

The VE is not restricted to AWT and Swing components. In principle, any Java Bean can be placed onto
the design area. You may even write your own beans, which then can be used in the VE. You can select
such beans by clicking the Choose Bean button in the selection menu. Detailed information about the
implementation of Java Beans is found in the book Java Beans 101 by Steams.

The Java Beans View shows the hierarchy of beans used in the design area, so it is easy to keep an
overview of the construction of the GUI The Java Beans View also helps during the selection of compo-
nents, for example, if a component is hidden in the design area by another component. In this case you
can use the Java Beans View to select the component.

Properties

The properties of a bean are displayed in the Properties View and can be modified there. In the above
example, the label text is not centered correctly, despite the fact that the JLabel component was placed
into the Center area. The reason is that the component stretches across the whole content pane, and its

48

The Art of (Visual) Composition

text content starts to the left of the component. To fix this, select the component jLabel in the Java
Beans View. (You may want to rename this component using the context function Rename Field.) In the
Properties View, find the property named horizontalAlignment. This property currently has the
value LEADING. Select this entry with the mouse. An arrow button appears beside LEADING. Now click
this button and select CENTER, and the text is centered.

VE supports almost any of the properties of the Swing components with a few exceptions. For example,
you cannot specify client properties (putClientProperty ()) in the Properties view, and for JLabel
components you cannot specify target components for mnemonic codes (setLabelFor ()). Such
properties must be set manually in the source code.

Layouts

Now select the component jContentPane in the Java Beans View. Like all Swing containers, this con-
tainer, too, has a layout. You will find the property layout in the Properties View. As you can see, this
container is already equipped with a BorderLayout. Clicking the arrow button gives you a list of the
available layout options. At the left of the layout entry is a plus sign. Clicking this sign expands the entry
and allows you to make further specifications for this layout manager, such as horizontal gap and
vertical gap. Finally, there is an option to work without a layout manager. To do so, select the null
option in the list of layout managers. Then you can position the JLabel component freely within the
content pane.

Normally, you should change layout settings only after you have filled a container with components.
This is because with some layouts, empty containers have a size of zero, and it can become quite tricky
to place a component into a container of zero size. However, if something like this should happen, there
is always a way out: instead of placing a component into a container within the design area, apply the
same operation to the Java Beans View.

If you later want to move components to a different position or even to a different container, this is easy:
both the design area and the Java Beans View support moving components by drag and drop. However,
the VE does not support cut-and-paste operations for components.

If you need detailed information about Swing and Swing layout managers, please refer to the resources
listed in Appendix D, for example to the book Swing by Robinson and Vorobiev.

Event Processing

Finally, let’s see how event processing can be programmed with the help of the VE. Let’s first create one
more component, a JBut ton, in the content pane of the JFrame container. You can select the position
freely, for example, the South area (if you are still using the BorderLayout manager). If you are work-
ing without a layout manager, reduce the size of the JLabel component somewhat to make room for
the new JBut ton component.

Then, find the entry text in the Properties View and enter “OK” as the button text. Alternatively, you can
just click the button in the design area and enter “OK” in the text input area.

49

Chapter 3

Now you can define some event processing for the new button. Right-click the selected button. In the
context menu choose Events, and in the cascading submenu select act ionPerformed. Now, sit back
and watch how the source code for this event is generated:

jButton.addActionListener (new java.awt.event.ActionListener () ({
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out .println ("actionPerformed()") ;
// TODO Auto-generated Event stub actionPerformed ()

}
DK

If you now run the program again after saving it, the text actionPerformed () appears in the Console
View when you click OK.

The Events submenu, however, lists only the most relevant events for a component. Other event types can
be reached via the Add Event function. For example, if you want to react to the resizing of components,
you need to invoke the Events > Add Event ... context function. In the dialog that appears, expand the
Component class. Then select the componentResized event type. Finally, you may specify whether a
subclass of the ComponentAdapter class is to be generated or whether a complete implementation of the
ComponentListener interface is to be generated. Afterwards, you can complete the definition of the
componentResized () method in the source code area as needed.

This concludes our short introduction into the Eclipse Visual Editor. In Chapter 5 I will demonstrate the
VE in the design of a more complex GUI in the context of a larger application.

Summary

This chapter has given you a glimpse of the Eclipse Visual Editor. Novices especially often find it easier
to design GUI surfaces visually. Currently the Eclipse Visual Editor supports only Swing GUISs. If you
need help creating SWT GUISs (see Chapter 8), you still have to rely on third-party GUI designers, some
of which are listed in Appendix A. Another possibility is to use the SWT Layout example plug-in as a
code generator.

In the next chapter we will take a more detailed look into the Eclipse workbench.

50

Organizing Your Code

In this chapter I first discuss the handling of the different components of the Eclipse workbench:
editors, views, and perspectives. Then I look at the basic resource types in Eclipse: projects, fold-
ers, and files.

Afterwards you will use the new knowledge in a practical example. This time you don’t output
“Hello World” on the Java console—but on your computer’s sound card! In the context of this
example I discuss topics such as the import and export of files and archives, the association of
source files with binary files, and how to set the project properties correctly.

The Workbench

In the Introduction I mentioned that the Java Development Toolkit (JDT) is merely one of the
many possible plug-ins for the Eclipse workbench (which itself is a plug-in to the Eclipse plat-
form). The Eclipse workbench is completely language-neutral—all functions that are specific to
development with Java are packaged in the JDT plug-ins.

Switch back to the resource perspective for a moment (see Figure 4.1). Where you previously saw
the Package Explorer, you now find the Resource Navigator. The Java packages have vanished,
and instead you see a structure of nested folders. The Resource Navigator shows projects, folders,
and files. Figure 4.1 shows a project in the Navigator that you will develop in Chapter 5.

Chapter 4

£~ Resource - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

FEEEECE (o AA
Resource
Perspective\ g ; | bt _,‘;.‘—- | ? - x
@
% -z bdaum
%‘-J EB sun
— [=l-{z= speech
Bl Frestts
B audio
[AnimatedaodioPlayer.class
|I] AnimatedaudioPlayver.java
@ AnimakedaudioPlayerdlayaClipline
E‘E’ en
B us
B relp

- [AnimatedAudioOutput, class
@ AnimakedaudioOutput, java
[AnimationEvent.class

[AnimationEvent. java

[AnimatiorListerer. class

@ AnirmationListener. java
[Animator.class

@ Anirnakor . java

- [E] .classpath
- [E] .project
E]---&‘J FreeTTS

4 | »

Figure 4.1

Resources

The Resource Navigator shows an overview of the set of resources maintained by the Eclipse workbench
(the workspace) and supports navigation within this set of resources.

Resource Types
The workbench understands three different resource types:
Q Projects. A project is always the root node of a resource tree. Projects can contain folders and
files. Projects cannot be nested.
Q Folders. A folder can contain files and other (nested) folders.

O Files. Files are the leaf nodes in a resource tree, i.e., a file cannot contain other resources.

Where Resources Are Stored

All resources are stored directly in the file system of the host platform. This is different from Visual Age,
where resources were stored in a repository. In contrast, the structure of projects and folders in the Eclipse
workspace directly correlates to the directory structure of the host platform. This has advantages in the
case of crashes and for backups. (In Chapter 7 I will discuss how to connect a repository to Eclipse.)

52

Organizing Your Code

By default, the resources of the Eclipse workbench are stored in the (host) directory \eclipse)\
workspace. Each project is contained in a corresponding subdirectory. For example, the
AnimationEvent.java resource shown in the previous figure is stored in the path \eclipse\
workspace\DukeSpeaks\com\sun\speech\freetts\relp\AnimationEvent.java. Of course,
it is possible to create a workspace directory in a different location by specifying the command-line
option -data when starting Eclipse

eclipse.exe -data C:\myOldWorkSpace

or by specifying a different workspace in the Workspace Launcher (see the “Installing Eclipse” section in
Chapter 1).

Synchronizing Resources

For each resource in the workbench, Eclipse stores some metadata in the \eclipse\workspace\
.metadata directory. Sometimes it happens that the state of a resource in \eclipse\workspace does
not match the state of the corresponding metadata. In particular, this happens when a workspace file is
modified outside Eclipse, for example, by modifying it with an external tool.

This is not a tragedy. All you have to do is select the resource that is out of sync and apply the Refresh
context function. This function can be applied not only to single resources but also to folders and
projects, so that you can easily resynchronize a whole directory tree.

Navigation

The following context functions and tool buttons in the navigator’s context menu and toolbar are
available for navigation:

0 Go Into. This function reduces the current view to the content of the selected project or folder.
This function can be particularly useful when your workspace consists of thousands of
resources.

Back. This button (arrow to the left) returns to the previous view.
Forward. This button (arrow to the right) reverts the previous Back operation.

Up To. This button (folder symbol) goes into the next-higher folder or project.

U 00 o

Open in New Window. This function works similarly to Go Into but opens a new window
(with a complete workbench!) in which only the contents of the selected project or folder are
shown in the navigator.

The menu of the navigator’s toolbar (under the small triangle) offers further functions:

Q The Sort function allows files to be sorted by name or type.
Q The Filters function allows files with specific filename extensions to be excluded from the navigator.

Q The Link with Editor function enables automatic synchronization of the resource selection with
the editor content. When you switch editors (by clicking on tags), the selection in the navigator
changes accordingly.

Q The Select Working Set function allows you to select a named working set in order to restrict the
resources shown in the navigator to the resources belonging to the selected working set. This
function also allows you to define new working sets.

Q The Deselect Working Set function removes the working set restrictions from the navigator.

Q The Edit Active Working Set function allows you to modify the current working set.

53

Chapter 4

Associations

In Eclipse the type of a file is usually determined by its filename extension. (It is also possible to assign
specific file types to fully qualified filenames.) In the previous figure you saw text-based files such as
.java and .htmnl files but also binary files such as the . class files. The file type (and thus the file-
name extension) controls what happens when a file is opened.

For example, if you click a . java file with the right mouse button, you get a pop-up menu with context
functions. When you select the Open With submenu, you get another pop-up menu with editors. In the
first menu section you see the editor that was used last for this file (in the current case, the Java source
editor). The second section shows all editors that are registered for that filename extension—in the cur-
rent case these are the Text Editor and the System Editor. The Text Editor is the text editor that is con-
tained in the Eclipse SDK, which can be used for all text-based files. The System Editor is the editor that is
registered under the host platform for that file type. Eclipse is able to start such editors from the work-
bench; for example, if you open an HTML file, the host platform’s web browser is started.

Most of the file associations (which editor works with which file type) are determined by the Eclipse
plug-ins. However, it is also possible to add or modify such associations manually. To do so, just invoke
Window > Preferences > Workbench > File Associations (Figure 4.2).

=l Warkbench File Associations
-~ Appearance
‘- Colors and Fonts File types:
i ComparePatch = dlass A Add...
+ Editors @ = ent
File Associations @ S . =
! Reys = e Editor Selection
- Label Decorations gj "Ijardesc : o
- Linked ResoLrces *-. Choose the editor for files of type (% html)
i~ Local History o .J.ava " Internal Editors % External Programs
- Perspectives @ = spage -
] Search @ * macrodef @Macromedia Flash Paper |
Startup -d'—]j = mxsd @Medienclip
. Work In Progress *.properties gﬁjrﬂH‘l‘ML Document
- Ant = =t |=| Microsoft Common Console-Dokument
Build Order Eﬁ{ build.properties Ef) Microsoft Datenverknipfung 3
[#- Help -gjbuild.xml crosoft FrontPage HTML-Dokument
Install/Update Z Microsoft NetMeeting-Altes-\Whiteboard-Dokume
Java) 5 |=| Microsoft Netmeeting-T 126 kompatibles-Whiteb:
#- Run/Debug Assocaiededtis: @Microsoﬂ Sicherungsdatei
Sereenshot Utiity ®Microsoft Word-Dokument b
[#-Team < ¥
Browse,.,,
OK | Cancel]
Impart... | Export... OK | Cancel ‘
Figure 4.2

54

Organizing Your Code

In the upper window you see a list of registered file types. By using the Add and Remove buttons, you
can add new file types or delete existing ones. In the lower window, the registered editors for the
currently selected filename extension are shown. Here, too, you can add new editors or remove existing
editors. By using the Default button, you can declare a specific editor as the default editor for that

file type.

When you press the Add button, you first get a list of internal editors, i.e., editors that are implemented
as Eclipse plug-ins. If you click the External Programs button, you get a list of the applications that are
registered in the host operating system for the selected file type. By double-clicking such an application,
you can select it as a new editor for this file type.

In Figure 4.2 the file associations are defined. First the filename pattern * . html was added, and then
Microsoft FrontPage was associated with this file type.

Packages

Switch back to the Java perspective. The picture you see now is quite different: the Package Explorer
shows the different projects with their package structure and the compilation units.

Folders and Packages

Packages are not real resources but virtual objects. The package structure of a project is derived from the
package declaration at the beginning of each Java source file.

The Java specification, however, requires that the package structure of a project be isomorphic to the
project’s directory structure. For example, all resources of the com. sun. speech. freetts.relp
package must be stored under the relative path com/sun/speech/freetts/relp, as shown in
Figure 4.3. In Eclipse, the path is always relative to the project’s source code root directory. In our case,
the relative path com/sun/speech/freetts/relp is equivalent to the host platform path:

\eclipse\workspace\DukeSpeaks\com\sun\speech\freetts\relp
Each package can be uniquely mapped onto a node in the resource tree. Compilation units, in contrast,
can consist of several resources: the source file and one or several binary files. In the case of the

Animated AudioPlayer class there are two binary files: one for Animated AudioPlayer and one for the
JavaClipLineListener inner class.

55

Chapter 4

b= i 1t b [1 - =

B Navigator 2| Outline | <2 T g i . g |:E Package Explorer 52 Hierarchy =g
=)

SRE Y dukespeas | o o
e CO @RS~

1
!
[
L=

EEEEOEOE

Figure 4.3

Navigation

The Package Explorer is equipped with similar navigation functions to the Resource Navigator. Here,
too, are the Go Into and Open in New Window context functions, and in the toolbar there are buttons
for the Back, Forward, and Up To functions. Under the toolbar’s drop-down menu you can find the
same functions for managing working sets and for synchronizing with the editor.

Furthermore, you have the possibility of opening the type hierarchy browser discussed in the next
section.

Hierarchy

56

The type hierarchy shows the super types and subtypes for classes and interfaces. You can restrict the
view to super types or subtypes only or show the complete hierarchy. By using the History function
you can quickly change between the different views, or you can display previously displayed type
hierarchies again (see Figure 4.4).

Organizing Your Code

Complete Type Supertypes

Hierarchy Subtypes

History

(C] HashMap

2| RS W e e

£F TAL_CAPACITY ~
AF

£

£F

P

A

a 5t

A

A

F Y

i w

Figure 4.4

In the toolbar of the lower window you can find additional functions. The first button affects the upper
window. It restricts the view to only those types that implement the field or method selected in the lower
window. When you push the second button, the lower window will also show the methods and fields
that are inherited by the selected type. The remaining buttons are the same as in the Outline View (see
the next section).

The Type Hierarchy Browser can be useful when you want to analyze existing projects and libraries.
When creating a new project you will need this browser only when the project becomes bigger.

A faster method for displaying the type hierarchy is pressing the F4 function key, which acts as a short-
cut for the Open Type Hierarchy context function. Alternatively, you can use the key combination Ctrl+T
to display the type hierarchy in a pop-up window.

The Outline View

The Outline View (Figure 4.5) supports navigation within a source file. In general, the Outline View is
not restricted to Java sources but supports—depending on the plug-ins installed—other file types as
well.

57

Chapter 4

Hide fields
(activated) Hide non-public
elements
Sort ide i
(activated) Hide static Hide inner
elements types

[7o

%N \: @ u bl
= s 38 com.bdaum. dukeSpeaks -~

+ import declarations
=] ‘-.:,T PlzyerPanel
= Player! |{PlayerModel
B oetbu
m getCenterPanel])
@ getContentPane)
Anonymous
- inner class
=~ B
+ "'E
m oetllabels]
B getllabeldl
m getleftSlidersPanel]
® getPitchLabeld 5.
= metDiteDzmal T
< ?
Figure 4.5

For Java programs, the Outline View displays entries for fields and methods and also for import
statements. If inner classes are defined, these classes also appear in the Outline View; the main type
and the inner types form a tree structure. The buttons on the Outline toolbar allow you to restrict the
Outline View to specific entry types. Fields and methods can be sorted in alphabetical order by pushing
the Sort button (otherwise, their order corresponds to their definition sequence in the source file).

Single-clicking such an entry positions the source editor on the corresponding element. Apart from this
facility for quick navigation, the Outline View offers a few more functions. But I'll start with the graphi-
cal representation of the entries within the Outline View.

Representation

The first icon in front of an Outline View entry represents the entry type (package, import statement,
interface, class, method, field) and the visibility (public, protected, private).

Icon Meaning
__
import statement
e interface
C
class

58

Organizing Your Code

Icon Meaning
@ public method
>
protected method
] .
private method
F Y
default method (without modifier)
o
public field
i protected field
= private field
i
default field (without modifier)

In addition to this first icon, additional icons can add information about the entry:

Icon Meaning
C
constructor
5 .
static element
F .
final element
. .
overridden element

You can change the representation of the Outline View under Window > Preferences > Java > Appearance:

Context Functions

Show Method Return Types. Displays the result type of methods in the Outline View.
Show Override Indicators. Displays the indicator for methods that override inherited methods.

Show Member in Package Explorer. If this option is set, methods and fields are also shown in
the Package Explorer as child elements of classes and interfaces. Most of the Outline View func-
tions are in this case available in the Package Explorer, too.

The Outline View offers a rich variety of context functions. The most important of these functions are
also available as toolbar buttons (see previous figure). Here is an overview of these functions:

QO Open Type Hierarchy. Shows the type hierarchy for the selected element (see Figure 4.5). This

function can be applied not only to single types but also to whole packages or projects.

0 Open Call Hierarchy. Shows the call hierarchy for the selected method.

59

Chapter 4

0 Open Super Implementation. This function is available only for elements that override an
inherited feature. When applied, the inherited feature is opened in the source editor.

Q Cut, Copy, Paste, Delete. These are the usual copy and delete functions but they are applied to
the element selected in the Outline View.

0 Refactor > Various functions for refactoring code (see the “Refactoring Code” section in

Chapter 2).

Q Source > Various functions for automatic source code completion (see the “Automatic Code
Completion” section in Chapter 2).

QO References > Searches for references to the selected element (see next section).

QO Declarations > Searches for definitions of the selected elements (see next section).

O Read Access > Searches for read access to the selected field (see next section).

QO Write Access > Searches for write access to the selected field (see next section).

QO Occurrences in File. Lists the occurrences of the selected item in the Search View (see next
section).

Q Toggle Watchpoint. This function appears only on field entries and belongs to the debugger’s

tool set (see Chapter 6).

Q Toggle Method Breakpoint. This function appears only on method entries and belongs to the
debugger’s tool set (see Chapter 6).

QO Compare With > ..., Replace With > ..., Restore from Local History With these functions
you can compare the current version of an element with a previous version from the Local
History, or you can restore a previous version (see the “Local History” section in Chapter 2).

Searching

Searching and Finding are different tasks in Eclipse: The Search function performs a search over the
whole Eclipse workspace. The Find function, in contrast, searches for a string in the currently active
document.

The Search Function

The powerful Eclipse Search function consists of two components: the Search dialog for entering the
search criteria and the view containing the search results (see the following two figures).

If the Search function is called from the toolbar of the Eclipse workbench or from the Eclipse main menu,
you first get the dialog for entering the search criteria. If you call the function as a context function, this
step is omitted, since the search criteria are already defined by the context.

The dialog for entering search criteria has several pages (depending on the installed plug-ins). In

Figure 4.6 the dialog contains a page for searching in generic files, a page for searching within the
Eclipse help system, a page for Java-specific searching (opened), and a page for searching plug-ins.

60

Organizing Your Code

E¥ File search] 32 Help Search %% Java search]% Plug-in Search]

Search string {* = any string, ? = any character):

|S'-f'nﬂ1esizer LJ [~ Case sensitive

Search For 1 Limit To

= Type (" Method ¢ Package " Dedarations { Implementors

" Constructor " Field (* References ¢ Al Occurrences
iy &

-Scope

* Workspace " Selected Resources © Enclosing Projects

" Working Set: | Choose...

Customize, .. Search | Cancel

Figure 4.6

In the case of a Java Search you can search for the name of a type, method, package, constructor, or field.
You can qualify this name completely or only partially. In addition, you can restrict the search by con-
straints. You can search only for declarations, only for references, or for both. In case of fields, you can
restrict the search to read or write accesses. The search scope can be limited to the selected resources
only or to working sets (named resource sets).

Besides the Java Search, the Search dialog features additional pages for searching in generic files (this
mode also includes a Replace button), for searching in the help system, and for searching plug-ins. With
the Customize button you can hide and show specific Search dialog pages.

The results of a search are always shown in the Search View. In the standard Java perspective, the Search
View is stacked with the Tasks View. After selecting the Hierarchical Layout option from the view’s
menu, you can group the search results by project, package, file, or class by pressing the appropriate
Search View tool button.

By using the up- and down-arrows in the toolbar of the Search View, you can easily step through all the
occurrences of the search item. The corresponding compilation unit is automatically opened in the
source editor. The position of the search item is shown on the left margin of the source editor with a yel-
low arrow.

It is useful to know that the Search View keeps track of the search history. You can recall previous search
results by pressing the Previous Search Results button or via the Search Views drop-down menu.

The Search View shows all compilation units in which the sought item was found (Figure 4.7). If this item
occurs several times in the same compilation unit, the number of occurrences is shown in parentheses at
the end of the entry. Double-clicking an entry in the Search View opens the corresponding compilation unit
in the source editor.

61

Chapter 4

Delete selected entry Group by folder
Next entry Delete all entries Group by package
Previous entry Expand all Group by file
Collapse all Group by type

Stop searching

Previous search results

O 0| %% BB 60 7 - i=FiatL
=[5 (default package) - src - FreeTTS . v I Herarchical Lavout
= O, HeloWorid - '
B oS 2 motches) ——
= i1 Helloworld.java Filter Javadoc
=l 4= import dedarations
4 javax.speech.synthesis,Synthesizer

Figure 4.7

Find and Replace

Besides the Search function discussed above, Eclipse, of course, provides a function for finding

and replacing strings in text files. With the Edit > Find /Replace function you can obtain a dialog (see
Figure 4.8) where you can enter the search string and additional search options. If you call this
function while a string is selected, the selected string will be used as the search string.

Find/Replace
Eind:] (tBb1) daum)] =
Replace With: I Slerthold 52 _vJ
—Direction —Scope

& Forward & al

" Backward " selected Lines
-Options

r Case Sensitive [Wrap Search
[Incremental

v Regular expressions

Find I |

' Replace All I

Close I

Figure 4.8

The Find /Replace dialog (Figure 4.8) supports searching for character strings and replacing such strings
with others. Since Eclipse 3 this function supports regular expressions during finding as well as replacing.
When searching, you can search forward or backward and restrict the search to the selected text area. In
addition there are further options:

62

Organizing Your Code

Q Case Sensitive. If this option is checked, the search is performed in case-sensitive mode.

Q Wrap Search. If this option is checked, searching continues at the beginning of the search area
when the end is reached (or at the end of the search area when the beginning is reached, in case
of searching backward). Otherwise, a message prompt is displayed.

QO Whole Word. If this option is checked, only whole words are searched for.

O Incremental. If this option is checked, the search begins immediately when the first character of
the search string is entered. When more characters are entered, the search operation continues
as necessary.

Q Regular Expression. If this option is checked, the search expression is interpreted as a regular
expression. Press F1 to obtain help on the syntax of regular expressions, or press Ctrl+Spacebar
to obtain a content assistant that helps you with the construction of regular expressions.
Capture groups defined in the Find expression are considered, and the results can be used in the
Replace expression.

Eclipse offers more Find functions that correspond to these options, such as Edit > Find Next, Edit > Find
Previous, and Edit > Incremental Find.

Marking Name Occurrences

If you switch on the Mark Occurrences in File option under Window > Preferences > Mark Occurrences,
the editor will from then on, when you select a syntactical element, mark all elements in the same file
that carry the same name. Since these markers also appear on the right ruler, you can easily navigate to
such an element by moving the scrollbar. In many cases this can save a tedious search. Within the
Preferences you may, in addition, specify which kind of elements are affected by this option: all types, all
methods, all constants, fields, variables, etc. If you mark the Sticky option, the marks will stay around
even if the originating element is no longer selected.

This feature can be quickly switched on or off via the Mark Occurrences button.

Arranging Editors and Views

The layout of the different windows in the Eclipse workbench is not fixed and can be configured by the
user (with some restrictions). There are essentially three ways in which you can arrange windows within
the workbench.

Docked Windows

You can place a window to the left or right of another window or below or above that window. Using
this technique, all windows stay visible, but their size shrinks with each new window. You can dock a
window to another window by dragging its title area or tag to the edge of the target window. When the
cursor changes to a fat arrow, just drop the window.

63

Chapter 4

Stacked Windows

Another option is to stack several windows in front of each other. By clicking the tag of a window you
can bring this window to the top. You can stack a window in front of another window by dragging its
title area or tag to the target window. When the cursor changes to a stack symbol, release it.

Desktop Windows

A further option is to place a view window as a separate window on the desktop outside the workbench
window. However, this option is available only under Windows and Linux GTK. Just grap the view at its
tag and pull it over the desktop area.

FastView

FastView can minimize a window in the FastView bar of the workbench: the window is represented by
an icon. However, the FastView bar is visible only when it contains at least one view. To convert a view
into a FastView, right-click the view’s tag and invoke the FastView context function. The FastView bar
has context functions, too. With the Orientation function you can determine whether a FastView should
be expanded vertically or horizontally. Clicking the FastView function removes the checkmark from it
and restores the view to its original state. With the Dock On function you can change the position of the
FastView bar: at the bottom of the workbench (the default), at the right, or at the left.

In Figure 4.9 I dragged the Search View to the left edge of the Problems View so that both views are
visible side by side.

= Java - HelloWorld.java - Eclipse Platform

Fle Edit Source Refactor Navigate Search Project Run Window Heb
Y- e Rl R R BHEE- | ™y |- | &5
. oy [oResource
1% Package Explorer 33 . Hierarchy = B || I Hellowerid.java 52 13] * PlayerPansl java 5| 2= outine 12 =i
- = e
b | g B E e e v
H '.7J com.bdaum, SpellChedeer -~ g ® 4= mport declarations
¥ g com.bdaum, SpeliChecker, JavaProperties o = 9, HeloWorld
+ {2 dislogs . @ 7 listallvoices(String)
-2 duksSpesks 0 @ * main{String[)
+ i (default package) B
= com.bdsum.dukeSpesis i
F- [J] Face.java]
1) oldflayermanel jave .
+- I . -
+ i if (aynthesizer == —
* - String message
- [J] PlayerPanel.java .
#- [SwingWerker java %
+-H} com.sun.speech, reetts, audio o
4 meszage +=
3 f} com.sun.speech. freetts.en.us 4 or
¥ H} com.sun.speech, freetts.relp L ot
ol tem Library [j2re1.4.2_03] 5 >
1 T_HOME fumit Jar - C:\m%\edipse's [2]l prablems 52 . Console L o« =0 =5
T & sc |Problems (Fiter matched 3 of 19 items) "Synthesizer” - 3 References in Warkspace o
= {8 (default package]]DES:nptm 05 % %
- [Helloworld.jsva 8 The import java.utl Vector is never used ¥
4B JRE System Library [12 5 The import javax.speech.Engine is never used Et ';iHl Hifl 8.'1 0.
ES 2 The import javax.speech.synthesis. Synthesizer 3 ':Iefa.JI" package) - src - FreeTTS =
£ B t age) - src - FreeTTS
—{iiy: E @, Helloworld
+-gg) cmudex jar - C\freeTTS D Sy
main(5tri 2 matches]
+-gm) ovwtimelex jar - C:\freeTTSib v =) I :su--- il la' . o
L4 > L | -l B4 »

Figure 4.9

64

Organizing Your Code

Opening and Closing Windows
Closing a window is trivial: clicking the window’s Close button in the top-right corner or pressing
Ctrl+F4 does the job. But how do you open it again?
Q For editor windows this is simple: double-clicking the corresponding resource in the Resource
Navigator or the Package Explorer will open the resource under the editor previously in use.
Q For view windows, use the Window > Show View > ... function and select the view that you

want to open.

By the way, if you want to close all editor windows, just invoke File > Close All or press Ctrl+Shift+F4.

Maximizing Windows

All windows in the workbench can be maximized. Double-clicking the tag of a view or of an editor page
or clicking the Maximize icon maximizes the corresponding window, that is, the window occupies all
the space in the workbench window. Double-clicking the tag again or clicking the Restore icon restores
the previous window layout.

Minimizing Views
Views also have a Minimize icon. Clicking this icon will shrink the view (and all views that are stacked

in the same area) to the mere title bar. Clicking the Restore icon will bring the view back to its old size
and position.

Managing Perspectives

A perspective defines a specific combination of editors, views, and menus within the workbench. In this
chapter you already encountered the Resource Perspective and the Java Perspective. In Chapter 6 you
will get acquainted with the Debug Perspective.

Defining New Perspectives

Let’s assume that you have now arranged all the windows in the Java Perspective to your liking. Is it
possible to store these preferences?

You can save this layout with the Window > Save Perspective As function (see Figure 4.10). In the Name
field of this function’s dialog you can define a name for the new perspective. If you later want to return
to the original Java Perspective, you can do so by invoking the Window > Reset Perspective function or
by invoking Window > Close Perspective followed by Window > Open Perspective.

65

Chapter 4

[# Package Explorer 52 . Hierarchy

[+ ',7J com.bdaum, SpeliChedker
+ fg= com.bdaum. SpeliChecker, JavaProp
-1 dialogs
= 15"- dukeSpeaks
[+ -} (default package)
= com.bdaum,dukeSpesks
m-[J] Facejava
- |4] oldPlayerPanel java
1 1] Plaver.java
- [J] PlaverModel.java
[4] elayerModelimpl.java
J| PlayerPansl jave
- [1] SwingWorker.java
com.sun, speech. freetts.sudic
com.sun, speech. freetts.en.us

+
';
*

el

Save Perspective As...

Enter or select a name to save the current

s 5 | & 1ava
perspective as, =] B | &
5 Resource
Mame: IJa'\'a {Search dodked to Problems) bl java B | gf._'OuHine 57 =5
Al L8 e e ¥ v
Existing Perspectives: . e ‘ %’ X w
3 el [#-;= import dedarations
[@mCvs Repositary Exploring us, =8, Heloword
Boetng @ ¥ listallvoices(String)
&l save ® 5 main(String[])

L'\JJEVE Browsing
EJJE?E Type Hierarchy
I Plug-in Development
[Resource (default)
SjTean Synchronizing

Make

== pull}

"\nCan*

com.sun, speech. freetts.refp oK | Cancel [
f JRE System Library [j2re1.4.2 i i .
% gm) JINIT_HOME fjunit.jar - C:\m%edipse' E;h‘oblems <;' Console: e » S| = EI.
= =) FreeTTs - & (R 1§ i .
":_" B s Problems (Fiter matched 3 of 19 items) | FSynthesizer” - 3 References in Workspace i
& - 1
=1 8 (defauit package) _ _| Description I AT 3& lm e
] L_]J HelloWorld java & The import java.util.Vecter is never used Il IEsean
[+ m, JRE System Library [j2rel.4,2_03] & The import javax,speech,Engne is never used .; = El Al G.II =
" il cmu_time_awb, jar \FreeTTSYib & The import javax,speech.synthesis. Synthesizer| | __' - e 'd;f'- It package) - src - FreeTTS =
[+ ;I cmu_us_kal jar freeTTSib F -'_. “3 O':elln'-'-'nl'lz:‘-’ g =
H ‘=I rilenors; CiTeeTIoND . e @ 2 l|'|j'a|n-'Sn'mCI!]) {2 matches)
c= §| cmutimelex.jar - C\freeTTSib “ I I "|P||'|'-'"'|I'|r‘|"'a_ N ~
- | ¥ S |3 %
Figure 4.10

The modified workbench configuration shown in the previous figure is stored here as a new perspective

under the name Java (Search docked to Problems).

Configuring Perspectives

With the Window > Customize Perspective function (Figure 4.11) you can change certain aspects of the

current perspective:

Q

The Shortcuts tab allows you to define which items should be listed directly in a given submenu
(otherwise, you would have to click through Others to get to the desired item). Shortcuts can be
defined for the File > New, Window > Open Perspective, and Window > Show View submenus.

The Commands tab allows you to define which command groups (action sets) should be visible

in the menu bar and toolbar of the current perspective.

You can also invoke this function conveniently by clicking the toolbar with the right mouse button.

With the Window > Customize Perspective > Commands function you can remove whole command

groups (action sets) from a perspective or add new command groups. The windows in the middle and

at the right show how the selected command group would influence the menu and the toolbar.

66

Organizing Your Code

= Customize Perspective

Shartouts Commands

Select the command groups that you want to see added to the current perspective (Java). The details field identifies which
menu items and/or toolbar items are added to the perspective by the selected command aroup.

Available command groups: Menubar Details: Toolbar Details:
External Tools 5 E, Run > B Launch toolbar
Help

a"ﬁ_’ External Tools é":’,’ External Tools

Java Debug

Java Element Creation
Java Mavigation
Java Open Actions
Java Search

JUnit

Launch

Open External Files
Orrofie

Resource Mavigation
Screenshot

Search

Software Updates
Team

»

Use F2 to display the desaription for & selected command item,

oK | Caneel

Figure 4.11

In addition, under Window > Preferences > Workbench > Perspectives you can control how to open a
new perspective: either in the current workbench window or in a new workbench window. The latter
option, however, makes sense only if you are lucky enough to own a very large screen. On smaller

screens you may want to use the Eclipse workbench in its maximum size. In this case, the perspective

icons on the Perspective bar of the workbench window (top right) are the perfect way to change
perspectives.

Another option allows you to create a new perspective automatically when a new project is created, so

that each project has its own perspective. Again, you can open the new perspective in the current work-
bench window or in a new workbench window.

Importing Files

You are now going to teach your HelloWorld program to talk. Since version 1.4, Java has contained a
speech interface, the Java Speech API (JSAPI). A standard implementation of the interface, FreeTTS, is
available for free and can be downloaded from the Internet. FreeTTS has its roots in the speech synthe-
sizer Flite but was ported completely to Java. An interesting fact is that FreeTTS is considerably faster
than Flite. Even in terms of speed, Java seems more and more to outperform C++.

FreeTTS (Version 1.2.0) is found at //sourceforge.net/projects/freetts. After downloading

the binary and source files that amount together to about 24 MB (a real flyweight compared to the
Eclipse SDK distribution), unpack the downloaded binaries into an arbitrary directory. In addition, you

67

Chapter 4

68

must unpack the JSAPI (Java Speech API) because it is distributed under a different license model. To do
so you just need to execute the jsapi . exe program in the FreeTTS\1ib folder.

You could now follow the FreeTTS installation guide and make a test run of FreeTTS. However, don’t do
that here. Instead, import the system into the Eclipse workbench.

To import third-party software, follow these steps:

1. First, create a new project under the name FreeTTS. When doing so, mark the Create Separate
Source and Output Folders option.

2. Inthe new project select the src folder and invoke the Import Wizard with the Import context
function.

3. In the next dialog, you will see a list with all sorts of import sources. Select Filesystem and press
the Next button.

4. Inthenext dialog that appears, press the Browse button and navigate to the ...\FreeTTS\
demo\JSAPI\HelloWorld folder. This folder now appears in the left window of the
dialog. Select it, and at the right-hand side you will see all the files contained in that folder
(see Figure 4.12). There, place a checkmark on the HelloWorld. java file and press the Finish

button.
= Import F_ZE
File system
Impart resources from the bcal fle system. D
F |
From directory: | Ci\free TS \demo\JSAPLellaiiariz | Browse..,
= Heloworid

0 =i Meni

O%¥jreacre tird

FlterTypes.. | Selectal Desslzct All
Tt folder: |I'-.-r1_5_-r-.': Browse...
Optiares:

[™ Cwerwrite exsting resources without warning

" Creats complete folder structurs

& Creats selected folders only

< Back J[[_Fosh Cancel

Figure 4.12

If everything has worked correctly, the imported HelloWorld. java program should now be in a
default package of the FreeTTS project (Figure 4.13). But there are a lot of error markers, too!

This is to be expected—the FreeTTS runtime system is still missing. You have two options:

Organizing Your Code

Q Importing the JAR files of the FreeTTS runtime system into the workbench. But this would
separate you from future version changes. You would need to reimport new versions of these
JAR files into the Eclipse workbench.

0O Adding the JAR files as external files to the Java Build Path. This saves you from importing
these files. An additional advantage is that you don’t have to keep two copies of the files. If the
original files are replaced by a new version, the changes will automatically be carried through to
your project.

& Java - HelloWorld.java - Eclipse Platform
Eile Edit Source Refactor Nawgate Search Sroject Run Window Help

4~ & (- B OG- |2 50| AE |- R . 151 aj_'a\'a. [Resource
|2 Package... 52 . % =0 0|52 outine 52 =0
BES ~ =L Faxoe v~
= B FresTTS © Copyright 2003 s, Lo g import dedlarations
=4 s 5 %, Feloarid

@ JRE System Libeary [2ret. g ° Istalvoices(String)

g ° main(Stringd)

e
ing o use FreeTI5 using only
=public class HelloWorld {
-
£ >
Search | (£ Problems 1 . Cansale o> =0
Problems (Flter matched 23 of 111 items)
| Description Resolrce | In Foider A
B The import javax spesch cannot be resolved HeloWorld.java FreeTTs /s
@ The import javax.speech cannot be resolved Heloworld_java FreeTTs/src
@ The import javax.speech cannot be rescived Heloworld.jzva PresTT5 src
@ SynthesizerMocdeDesc cannot be resolved or is not a type Helo'World.java
@ Central cannot be resolved HelaWorld.java
@ Enginelist cannot be resoived o is not & type Helo'world.java a]
£ | = >
‘Writsble Smart Insert 104:20

Figure 4.13

Project Properties

In this example I recommend that you use the second option. To add JAR files to the Java Build Path, just
invoke the Project > Properties function. In the selection tree choose Java Build Path, and then open the
Libraries page. Here you see only a single entry: the rt . jar Java 1.4 runtime system.

Press the Add External Jars button and navigate to the directory ...\FreeTTS\1ib. From the JAR files
now listed in this dialog (cmu_time_awb.jar, .., jsapi.jar), select all files and then press the Open
button. These files are now added to the Libraries list (Figure 4.14). Then press the OK button and see
what happens. All the error markers should have vanished! (If not, you'll need to rebuild the project by
calling the Build Project context function.)

69

Chapter 4

70

- Properties for FreeTTS

Info Java Build Path
Builders

Java Build Path & source I = Projects M. Libracies l 11 Order and Export I
Java Compiller

JARs and class folders on the build path:
Javadoc Location 3
Java Task Tags + (W cmu_tme_awb.jar - C:\freeTTSib Add JARS. .. |
Project References - (g cmu_us_kal jar - C:\fresTTS b
(W cmulex.jar - C:\freeTTSib Add External JARs...
+ (@ cmutimelex.jar - C:\freeTTSib L
+ ﬁ' en_us.jar - C:\freeTTs\ib RS
+ (W, frastts.jar - C:\freeTTS\ib Add Library... |
¥ ﬁ Jsapi.jar - Ci\freeTTS b
+ M\ IRE System Libeary [i2re1,4.2.03] Add Class Folder. .. |

Remove |
Default output folder:
[FreeTTs,bin Browss,,, I

ok | ceeel |

Figure 4.14

Figure 4.14 shows the content of the Libraries page in the Project Properties after adding the FreeTTS
JARs.

What is still missing is the source code for the FreeTTS binaries. This code is contained in the down-
loaded freetts-srcs-1_2_beta.zip file. You must associate this file only with the corresponding
packages of the FreeTTS project. Here’s how it’s done.

In the Package Explorer select freetts.jar and invoke the Properties context function. In the dialog
that appears, select Java Source Attachment for the package properties. Then press the External File
button and navigate to the freetts-srcs-1_2 beta.zip file. And that’s all. If you now open a file
from freetts. jar, the corresponding source code will appear in the source editor. Of course, this code
cannot be edited, only viewed. (You have to repeat this process for the other external JAR files as well.)

Now you should be able to do a test run. Like the very first Hel1loWor1ld program, execute the new
HelloWorld program with the same Run > Run As > Java Application function.

However, instead of the expected speech output, you get only the following text on the Java console:

Can't find synthesizer.

Make sure that there is a "speech.properties" file at either of these
locations:

user.home : H:\Dokumente und Einstellungen\Berthold Daum
java.home/lib: C:\j2sdkl.4.1\jre\lib

Organizing Your Code

Right. Something like this was mentioned in the FreeTTS installation guide. Copy the speech
.properties file from FreeTTS into one of the directories mentioned in the error message and exe-
cute the program again. You should hear

Hello, World!

provided of course, that your computer is equipped with a sound card and the speakers are
connected....

The Java Browsing Perspective

The Java Browsing Perspective delivers a slightly different view of the structure of a Java project and is
reminiscent of Visual Age. You can install this perspective by clicking the Open a Perspective button (see
the “Hello World” section in Chapter 1). From the list select Java Browsing.The Java Browsing
Perspective (Figure 4.15) provides four windows at the top where you can select projects, packages,
types, and methods or fields in a hierarchical manner. Since you can easily switch between this perspec-

tive and the normal Java Perspective, the Java Browsing Perspective is a good way to avoid losing the
overview of a project.

Java Browsing - HashMap.class - Eclipse Platform
Eile Edit Source Refactor Nawgate Search Sroject Run Window Help

s | d~ b~ By - BEE- | ®™ |5 [14 I | § 1ava Browsing
- - a0y - &1ava [qResource
eProjects £ » = | H5packages i3 v =00 % 7ypes 12 ~ =0 =/ m|
: b}%zl::!;fau'r.iﬂelihed’.er.Ja‘-.-aPr\:-_f a.secunty.nterfaces AllD E—'une.'anc..’. o BRwe w
= = A a.security.spec [T} Evmntistansr ® - containsKey(Obect) &
ety 253 =e PO oz abos (Object)
il At © ® . values() =
? S;C Ciprogr \Javalj2 a.utl @ GregoranCaiendar A bansferfEntyl)
i e | .11t iar ¥ |G rashivan & rewEntryTterator() v
5 & > G Hashset > |£ |
fibHashMap.dass 22 1] HelloWorld.java]
~
i »
§ 1f (value == mm
% return co
L
|
]
§ return troa;
_ﬁ return false;
o

java.uti,HashMap, containsValue{Object value) : bodlean - C:\Programme JavaljZre 1.4.2_034birt.jar

Figure 4.15

71

Chapter 4

Summary

From this chapter you should have acquired a more detailed knowledge of the Eclipse workbench. You
should now know what perspectives are and how they are used. You should know the difference
between searching and finding, and you should have an understanding of the workspace concept and of
Eclipse resources. In the next chapter you will apply this knowledge by implementing a larger example.

72

Project One: Duke Speaks

In this chapter you are going to implement your first major example project. You will learn how
to base a new project on an existing project and how to modify and enhance features of the base
project. During this task you will use many of the comfortable features of the Eclipse Java IDE.

The example application is based on the FreeTTS speech synthesizer that I have already intro-
duced in Chapter 4. There I implemented the project FreeTTS with a speaking HelloWorld
program, which communicated with the synthesizer via the JSAPI interface.

In this chapter you will develop a Swing GUI for FreeTTS. This GUI includes an animated face
that moves its lips synchronously with the speech output.

Of course, there is also a speech synthesizer manufactured by IBM (ViaVoice) that even comes as
an Eclipse plug-in. The Voice Toolkit for WebSphere Studio runs under Eclipse, too, and cooper-
ates with the WebSphere Voice Server SDK. For our purposes, however, FreeTTS is better suited,
since it is an Open Source product and supports all platforms supported by Eclipse.

Setting Up the Project

To achieve good lip synchronization, it is necessary to have event notification for single phonemes.
The JSAPIL, however, supports event notification only at the word level, and this event notification

is currently not supported by the FreeTTS JSAPI implementation. The only choice is not to use the

JSAPI but to drive FreeTTS via its native API. In addition, you have to create events for each single
phoneme. This requires that you modify the FreeTTS runtime system.

Despite these modifications, you can still use the external FreeTTS JARs as a basis. Where neces-
sary you can subclass the FreeTTS classes to apply your modification. These new classes are stored
in packages that bear the same name as the parent class but are stored in our new project,
DukeSpeaks.

Chapter 5

A

74

First you create the new Java DukeSpeaks project in the usual way. Again, you need to modify the Java
Build Path. This time, however, you don’t add external JARs but open the Projects page and checkmark
the FreeTTS project. This makes the resources of the FreeTTS project available to the DukeSpeaks
project as well. This applies, too, to the external JARs that you added to the FreeTTS project. However,
these JARs must be marked for export in the FreeTTS project. This is currently not the case.

So you must once again edit the Java Build Path of the FreeTTS project. To do so, select the project in
the Package Explorer, right-click, and select the Properties context function. In the dialog that appears,
select the Java Build Path category. Then open the Order and Export page. There checkmark all FreeTTS
JARs, thus making them available to all projects that build on the FreeTTS project.

To avoid having the example files from Chapter 1 littering the Package Explorer, you should create a
new working set. To do so, follow these steps:

1. Click the drop-down button (down-arrow) on the toolbar of the Package Explorer and choose
the Select Working Set function. In the dialog that now appears, press the New button.
2. Inthe next dialog, select Java as the working set type and press the Next button.

3. Finally, enter dukeSpeaks as the name and checkmark the FreeTTS and DukeSpeaks
projects. From now on, the Package Explorer displays only these two projects. By invoking the
Deselect Working Set function you can restore the original state.

Short Excursion into Speech Synthesis

Before you start extending the FreeTTS system, you should get acquainted with the basics of speech syn-
thesis and with the architecture of the FreeTTS system.

Speech synthesis works in several steps:
1. ATokenizer breaks the text into syntactical units (tokens). In general, these are words and num-
bers, including the punctuation.
2. Some tokens, such as numbers, are converted into words.

3. APhraser analyzes the word list and organizes it into phrases (sentences and para-sentences).
Phrasing establishes the basis for the later decoration of the speech output with pauses and
melody.

P

A Segmenter analyzes the words and—with the help of a lexicon—assigns a syllable structure to
each word.

The Pause Generator inserts a pause in front of each phrase.
The Intonator analyzes the syllables and assigns an emphasis and a pitch to each syllable.
In a further step and depending on the voice used, some phonemes are replaced by others.

The duration for each phoneme is determined.

© 0N O

The Contour Generator assigns an envelope curve to each syllable.

Project One: Duke Speaks

10. Ina further step, adjoining phonemes are combined into pairs (diphones). This allows a better
resolution of the text into speech.

11. The PitchMark Generator analyzes the results of the contour generator and generates parame-
ters for the later sound synthesis.

12. The results of the PitchMark Generator and the list of diphones are now used to select and con-
catenate the corresponding speech samples.

13. Finally, the concatenated samples are replayed with the help of a suitable audio player.
FreeTTS is designed as a modular system. Each of the steps listed above is processed by a specialized
Utterance Processor. An utterance is the basic data structure in FreeTTS. It may contain the complete text

that is to be spoken but may later be broken into individual phrases, which again are represented as
Utterance instances.

Each utterance consists of a set of lists (in FreeTTS these are called relations). These include the lists of
syllables, words, segments (results of the Segmenter), and so on. The various utterance processors per-
form read and write accesses to these lists.

Detailed information about the architecture of FreeTTS is found in the FreeTTS Programmer’s Guide
(contained in the FreeTTS documentation).

Extending the FreeTTS System

You can derive the information needed for lip synchronization from the durations computed in step 8,
where the duration of each single segment (phoneme) was determined. The best point for invoking the
lip synchronization, however, is between steps 12 and 13, as close as possible to the audio output.

You can generate the events for lip synchronization by implementing your own utterance processor,
called Animator. This processor derives events (AnimationEvent) from the end times stored in each
segment and sends these events to an AnimationListener at the right time. You can control this with
your own timer.

Animation Events

First, implement the AnimationEvent class and the AnimationListener interface. Both are
stored in the com. sun. speech. freetts.relp package. Listing 5.1 shows the code for
AnimationEvent.java.

package com.sun.speech.freetts.relp;
public class AnimationEvent {

public int endTime;
public String phone;

/**

* Constructor

Listing 5.1 (Continues)

75

Chapter 5

* @param endTime - the end time of the phoneme in msec

* @param phone - the phoneme string
74
public AnimationEvent (int endTime, String phone) {
this.endTime = endTime;

this.phone = phone;

}

Listing 5.1 (Continued)

Creating a New Class

To create the AnimationEvent class,

1. Create the com.sun.speech.freetts.relp package in the DukeSpeaks project by pressing
the Create a Java Package button on the workbench’s toolbar.

2. Before creating new classes you should complete the code-generation template for constructors
by adding the Constructor headline. You do this under Window > Preferences > Java > Code
Style > Code Templates > Comments > Constructors.

3. After entering the package name and pressing Finish, create the new class AnimationEvent.
To do so, click the Create a Java Class button on the workbench’s toolbar. Enter the name of the
class (AnimationEvent) and press the Finish button.

4. Startentering code. You don’t have to enter much: you need only create the two fields endTime
and phone, and you must modify the constructor as shown above. When creating comments
you can make use of the Source > Add JavaDoc Comment context function. If you apply this
function on the constructor, Eclipse will create a Javadoc comment in front of the constructor.
(The same function can be invoked by entering the string /** in a new line in front of the con-
structor and then pressing the Enter key.) You only have to complete the text strings after
@param endTime and after @param phone.

Creating a New Interface

Then you can create the AnimationListener interface in the same package. This one is also quite
simple. Listing 5.2 shows the code for the AnimationListener. java interface.

package com.sun.speech.freetts.relp;

public interface AnimationListener {

/**

* Method processAnimationEvent.
* @param e AnimationEvent object
7

public void processAnimationEvent (AnimationEvent e) ;

Listing 5.2

76

Project One: Duke Speaks

Follow these steps to create the interface:

1. Before creating the interface, you should complete the method code-generation template by
adding the Method $ {enclosing method} headline. You can do so under Window >
Preferences > Java> Code Style > Code Templates > Comments > Methods.

2. Press the Create a Java Interface button on the workbench’s toolbar. Here, too, you can use the
Source > Add JavaDoc Comment context function when entering comments. If you apply this
function on the processAnimationEvent method, you only have to complete the text string
after @param e.

The Animator

Now you can create the Animator class, which is also in the com. sun. speech. freetts

.relp package. This class implements the com. sun. speech. freetts.UtteranceProcessor
interface with the processUtterance () method. The Animator receives the Utterance instance it
needs to process via this method. However, you cannot use this method to start animation, because the
startup time needed by FreeTTS and the Java audio system would cause the animation to run ahead of
the speech output. To keep the animation fully synchronous, you have to catch the START event of the
audio system. For this purpose you also need to implement the javax.sound. sampled
.LineListener interface with the update () method. After receiving the START event you can use
your own timer to generate animation events. To react to the events of this timer, implement the addi-
tional java.awt .event .ActionlListener interface with the actionPerformed () method.

Once you have generated the animation events, pass them to all Animat ionListener objects that have
registered via the addAnimationListener () method.

Creating a Class with Interfaces

You can create this class, too, by clicking the Create a Java Class button, but this time you not only enter
the name of the new class into the dialog, you also press the Add button to enter the names of the inter-
faces that this class is going to implement. Usually, it is sufficient to enter just a few characters to qualify
the interface. You need to add the following interfaces: UtteranceProcessor, LineListener, and
ActionListener. Then press the Finish button. Eclipse will now generate a class skeleton that includes
all the methods declared in the specified interfaces: processUtterance (), update (), and
actionPerformed (). However, this is done only if the Inherited Abstract Methods check box was
marked. If you did not do this, you can easily fix the problem and create the new class by applying the
Source > Override/Implement Methods context function.

Actually, it didn’t matter that you did not have access to the source code of the LineListener
interface. Eclipse is able to retrieve the required information from the binary object.

Eclipse decorates all generated method stubs with a TODO comment. These comments will show up in
the Tasks window as entries and will thus remind you to complete the implementation of these methods.

Using the Code Assistant

When entering the code, you should not enter import statements and Javadoc comments at this time.
Most of the import statements are automatically inserted by subsequently using the code assistant
(Ctrl+Spacebar) anyway. After you have entered all the code, you can easily add any missing import
statements by invoking the Source > Organize Imports context function. The Javadoc comments are

7

Chapter 5

created with the Source > Add JavaDoc Comment context function or by entering the string /** and
pressing Enter. You complete these comments only as required.

When entering method code you can use existing code templates: pri followed by Ctrl+Spacebar
generates a stub for a private method; pub followed by Ctrl+Spacebar generates a stub for a public
method.

In addition, you don’t have to spell out the names of types, methods, and fields. In most cases it is
sufficient to type only a few letters and then call the Code Assistant by pressing Ctrl+Spacebar.

The Animator.java Class

The Animator class acts as a controller. Utterances processed by the speech engine are intercepted by the
Animator who will produce animation events and post them to registered listeners. A timer object is
used to produce the animation events at the correct moment.

package com.sun.speech.freetts.relp;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import javax.sound.sampled.LineEvent;
import javax.sound.sampled.LineListener;
import javax.swing.Timer;

import com.sun.speech.freetts.*;

public class Animator
implements UtteranceProcessor, ActionListener, LineListener ({

// List of AnimationListener instances
List listeners = new ArrayList(3) ;

// Swing Timer object

Timer timer;

// Current segment in the segment list
Item segment;

// Start time of current segment

int currentTime = 0;

addAnimationListener()

Listeners of type AnimationListener can register with the Animator via method
addAnimationListener (). The Animator will post animation events to these listeners.

/**
* Method addAnimationListener.
* @param 1 AnimationListener object
=
public void addAnimationListener (AnimationListener 1) {
listeners.add (1) ;

78

Project One: Duke Speaks

}
/**
* Method removeAnimationListener.
* @param 1 AnimationListener object
Y
public void removeAnimationListener (AnimationListener 1) {
listeners.remove (1) ;
}

processUtterance()

Utterances produced by the speech engine are intercepted and processed in method processUtterance().
This method just resets the timer from a previous utterance and retrieves the first segment of the utterance.

/**
* @see com.sun.speech.freetts.UtteranceProcessor#
* processUtterance (Utterance)
=)
public void processUtterance (Utterance utterance)
throws ProcessException
// Reset current time

currentTime = 0;
// Stop time if it is still running (previous utterance)
if (timer != null && timer.isRunning())

timer.stop() ;
// Fetch first segment of utterance
segment = utterance.getRelation(Relation.SEGMENT) .getHead () ;

actionPerformed()

When the timer expires, and animation event is posted to all registered listeners.

/**
* @see
* java.awt.event.ActionListener#actionPerformed (ActionEvent)

&4

// Is executed when the timer expires

public void actionPerformed (ActionEvent e) {
// Fire event
fireAnimationEvent () ;

fireAnimationEvent()

In this case, the end time of the utterance is fetched from the retrieved segment. An AnimationEvent
object with this end time is created and posted to all registered listeners. Then a new timer object, which
will expire at this end time, is created.

79

Chapter 5

/**
* Method fireAnimationEvent.
*
/
private void fireAnimationEvent () {
// If segment == null we have reached the end of the list
if (segment != null) {
// Fetch end time from segment and convert to msec
int end =

(int) (1000 * segment.getFeatures () .getFloat ("end")) ;
// Get phoneme from segment
String phone = segment.getFeatures() .getString("name") ;
// Advance in segment list
segment = segment.getNext () ;
// Create new AnimationEvent object
AnimationEvent e = new AnimationEvent (end, phone) ;
// Send it to all AnimationListener objects
Iterator iter = listeners.iterator () ;
while (iter.hasNext ()) ({
AnimationListener listener =
(AnimationListener) iter.next () ;
listener.processAnimationEvent (e) ;
!
// Create new timer that expires at the end time
// of the current phoneme.
timer = new Timer (end - currentTime, this);
timer.setRepeats (false) ;
timer.setCoalesce (false) ;
timer.start () ;
// Update current time
currentTime = end;

update()

The whole animation is started when a START line event arrives. The Animator receives such events
because it is registered as a LineListener with the Java Sound System.

/**
* @see javax.sound.sampled.LineListener#update (LineEvent)
*
/
public void update (LineEvent event) {
if (event.getType () .equals (LineEvent.Type.START))
// Audio output has started - start animation, too.
// Fire first event
fireAnimationEvent () ;

/**
* @see java.lang.Object#toString()
=
public String toString() {
return "Animator";
}

80

Project One: Duke Speaks

Embedding into FreeTTS

Because you

want to position the animator as close as possible to the audio output, you need to call it

from the AudioOutput utterance processor. Of course, you don’t want to modify the existing
AudioOutput class. Therefore, create a subclass of this class and override the processUtterance ()
method. Please note the little up-arrow appearing to the left beneath this method. It indicates that this
method overrides an inherited definition. By hovering with the mouse above the arrow you can display
further information about what was overridden, and by clicking the arrow you can navigate to the over-
ridden version, too.

The AnimatedAudioOutput.java class

Listing 5.3 shows the code of the AnimatedAudioOutput class. Please note the call to the Animator in
method processUtterance ().

package com.sun.speech.freetts.relp;

import
import
import

public

com.sun.speech. freetts.ProcessException;
com.sun.speech.freetts.Utterance;
com.sun.speech. freetts.UtteranceProcessor;

class AnimatedAudioOutput extends AudioOutput {

UtteranceProcessor animator;

/**

* Method AnimatedAudioOutput.
* @param animator Animator object for generating animation events

*/

public AnimatedAudioOutput (UtteranceProcessor animator) {

}
/**

// Initialize animator field
this.animator = animator;

* @see com.sun.speech.freetts.UtteranceProcessor#
* processUtterance (Utterance)

*/

public void processUtterance (Utterance u) throws ProcessException {

Listing 5.3

// In case we got an Animator we invoke its

// processUtterance method.

if (animator != null)
animator.processUtterance (u) ;

// Then proceed as usual

super.processUtterance (u) ;

81

Chapter 5

Creating a Subclass

Again, you can create this class with the Create a Java Class button. This time you not only enter the
name of the new class, but you also press the Browse button at the right-hand side of the Superclass
field. There, select the AudioOutput field from the list. Click Finish, and you can start to enter code. In
the case of import statements and Javadoc comments, just proceed as discussed previously.

When you enter the processUtterance () method, the Source > OverrideMethods context function
will save you some work. In this function’s dialog box mark the processUtterance () method below
the AudioOutput class. Then you need only add the lines for calling the processUtterance ()
method from the Animator instance.

Alternatively, you use the Code Assistant to create specific method stubs. For example, to create a stub
for the processUtterance () method you need only type the letters pro and press Ctrl+Spacebar.
Then select processUtterance from the list.

After you have completed this class, you must tell FreeTTS to use AnimatedAudioOutput instead of
AudioOutput. Which utterance processor is used for audio output is determined in the subclasses of
the com. sun. speech. freetts.Voice class in the getAudioOutput () method. Since you plan to
use the voice

com.sun.speech. freetts.en.us.CMUDiphoneVoice
for your application, you need to extend this class.

For this purpose, create a new com. sun. speech. freetts.en.us package in the DukeSpeaks
project. In this package create a new class named AnimatedDiphoneVoice.

The AnimatedDiphoneVoice.java class

When creating the AnimatedDiphoneVoice class, specify CMUDiphoneVoice as a super class and check
the Constructors from Superclass option. In the generated constructor add the new animator parame-
ter and store this parameter in an instance field. See Listing 5.4.

package com.sun.speech.freetts.en.us;

import java.io.IOException;

import java.net.URL;

import java.util.Locale;

import com.sun.speech.freetts.Age;

import com.sun.speech.freetts.Gender;

import com.sun.speech.freetts.UtteranceProcessor;
import com.sun.speech.freetts.relp.AnimatedAudioOutput;

public class AnimatedDiphoneVoice extends CMUDiphoneVoice {
UtteranceProcessor animator;

/**

* Constructor

* @param name - the name of the voice

* @param gender - the gender of the voice

Listing 5.4 (Continues)

82

Project One: Duke Speaks

@param age - the age of the voice
@param description - a human-readable string providing a
description that can be displayed to users.
@param locale - the locale of the voice
@param domain - the voice domain, e.g. general, time, wheather
@param organization the organization which created the voice
@param lexicon - the lexicon to load
@param database - a url to the unit database file for this voice
@param animator - the animator for lip synchronization
/
public AnimatedDiphoneVoice (String name,Gender gender,Age age,
String description, Locale locale, String domain,
String organization, CMULexicon lexicon, URL database,
UtteranceProcessor animator) {
super (name, gender, age, description, locale, domain,
organization, lexicon, database) ;

* ok kK ok ok ok ok K K

this.animator = animator;
/**
* @see com.sun.speech.freetts.Voice#fgetAudioOutput ()
5y
protected UtteranceProcessor getAudioOutput () throws IOException

return new AnimatedAudioOutput (animator) ;
}

Listing 5.4 (Continued)

Because you want this class to create an AnimatedAudioOutput, you must override the
getAudioOutput () method. Here, too, you can make use of the Source > Override Methods context
function. In the dialog that appears, mark the getAudioOutput () method below the CMUVoice class.
Then, just complete the method as shown above.

Connection with the Java Audio System

What is still missing is the program logic for starting the animator. Here, you must first register the
Animator as LineListener with a javax.sound.sampled.Line object. Such an object is created
by the com. sun.speech. freetts.audio.JavaClipAudioPlayer player in the end () method in
the disguise of a javax.sound. sampled.Clip object.

The correct way to extend JavaClipAudioPlayer would be to subclass it. But unfortunately
JavaClipAudioPlayer proves to be a stubborn beast. Too many private fields prevent us from
applying the required extensions. Therefore, choose a different path. Simply create a copy of
JavaClipAudioPlayer, which you then can modify easily. Theoretically, you could use the Copy
function of the Package Explorer, but unfortunately this function cannot be applied to the contents of
external JARs. Therefore, you must first create the new com. sun. speech. freetts.audio package in
the DukeSpeaks project and create in this package the new AnimatedAudioPlayer class. Then open
the JavaClipAudioPlayer class in the FreeTTS package, select the whole text (Ctrl+A), and copy it
(Ctrl+C) to the clipboard. Then select the whole text in the new AnimatedAudioPlayer class and

83

Chapter 5

replace it with with the contents of the clipboard (Ctrl+V). Now, you can start modifying this class for
your requirements. (Modifications are printed in bold type.)

First, create a new private field:
private LineListener externallLinelListener;

In the constructor, insert an equally named parameter and initialize the externalLineListener field
with the parameter value:

/**
* Constructs a default AnimatedAudioPlayer
*
/
public AnimatedAudioPlayer (LinelListener externallineListener) {
this.externallLinelListener = externallLineListener;
debug = Boolean.getBoolean
("com.sun.speech. freetts.audio.AudioPlayer.debug") ;
closeDelay = Long.getLong
("com.sun.speech. freetts.audio.AudioPlayer.closeDelay",
150L) .longValue () ;
setPaused (false) ;

}

Then register externalLineListener in the end () method with the C1ip object:

DataLine.Info info = new DatalLine.Info(Clip.class, currentFormat) ;
Clip clip = (Clip) AudioSystem.getLine (info) ;

clip.addLinelListener (linelListener) ;

clip.addLinelListener (externalLineListener) ;

clip.open (currentFormat, outputData, 0, outputData.length) ;
setVolume (clip, volume) ;

Finally, apply the Source > Organize Imports function to remove all unnecessary import statements.

The User Interface

84

The user interface is implemented with Swing. Since no Eclipse components are used at all, you can eas-
ily execute this application outside of Eclipse.

The other reason for using Swing is that I want to demonstrate the Eclipse Visual Editor (VE), which in
its current version (0.5) supports only Swing.

Because the code contains only standard Java programming, there is little to learn about Eclipse APIs in
this section. Therefore, I will not discuss the code in detail but provide only a short overview.

Project One: Duke Speaks

The Animated Face

The face with the lip synchronization is implemented as a subclass of the Swing JPanel class. This class
has the name Face and is created in the com.bdaum. dukeSpeaks package. The class implements the
AnimationListener interface, which was created in the “Animation Events” section. This allows you
to register the face as AnimationListener with an Animator instance. It will receive
AnimationEvents from the Animator and can then react accordingly to these events.

The Face.java class

package com.bdaum.dukeSpeaks;

import
import

import
import

public

java.awt.*;
javax.swing.JPanel;

com.sun.speech.freetts.relp.AnimationEvent;
com.sun.speech.freetts.relp.AnimationListener;

class Face extends JPanel implements AnimationListener {

// Relative mouth dimensions, derived from current phoneme
float mouthWwidth = 0.80f;

floa

t mouthHeight = 0.05f;

// Relative eye pupil position, derived from current phoneme

floa

t eyePos = 0.16f;

The processAnimationEvent () method receives animation events (AnimationEvent). From the

transmitted

phoneme it computes the size and shape of the mouth and the position of the eye pupils.

The mouth is always drawn as an ellipsoid but with varying positions and diameters. After these values
are computed, the repaint () method is called. This enforces the redrawing of the Face component.

/**

* @s

*

4

publ
//
St
if

ee com.sun.speech.freetts.relp.AnimationListener
#processAnimationEvent (AnimationEvent)

ic void processAnimationEvent (AnimationEvent e) {
Set current phoneme
ring phone = e.phone;
(phone.equals ("pau")) {
// In pauses pupils must look upwards
eyePos = 0.15f;
// In pauses mouth remains closed
mouthWidth = 0.80f;
mouthHeight = 0.05f;
else {
// Otherwise pupils look downwards
eyePos = 0.4f;
// Bnalyze first character of phoneme
char pl = phone.charAt (0) ;
switch (p1) {
// Uh's and Oh's
case 'o!

85

Chapter 5

case 'u'
mouthWidth = 0.5f;
mouthHeight = 0.5f;
break;
// Ah's

case 'a'
mouthWidth = 0.75f;
mouthHeight = 0.75f;
break;
// Eh's and Ih's

case 'e'

case 'i'
mouthWidth = 1f;
mouthHeight = 0.1f;
break;
// Alles andere

default
mouthWidth = 0.6f;
mouthHeight = 0.3f;
break;

}
1
repaint () ;

}

The paintComponent () method is called when the Face component is redrawn. The graphical con-
text is passed as a parameter. Via a type cast (Graphics2D) you convert it into a Java2D context. Then
you enable anti-aliasing and employ the usual graphical methods such as £i110val (), drawOval (),
or drawPolyline () to draw the face. The size and position of the mouth and the eye pupils depend on
the values previously computed from the transmitted phonemes.

/**
* @see javax.swing.JComponent#paintComponent (Graphics)
*
/
protected void paintComponent (Graphics cg) ({
super.paintComponent (cg) ;
// Cast for Java2D
Graphics2D g = (Graphics2D) cg;
// Compute component size
Dimension d = getSize() ;
int width = (int) d.getWidth() ;
int height = (int) d.getHeight () ;
// Switch off Antialiasing
g.setRenderingHint (
RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON) ;
// Draw face
g.setColor (Color.white) ;
g.filloval (0, 0, width, height) ;
// Some face dimensions
int midX = width / 2;
int midY = height * 3 / 4;
int eyeDia = height / 10;

86

Project One: Duke Speaks

int eyelnner = eyeDia / 2;
int eyeY = height / 4;
int eyeX = midX - eyeDia / 3;
int eyeOff = width / 6;
int noseY = height / 3;
int noselLength = height / 4;
int noseWidth = width / 12;
// Draw eyes
g.setColor (Color.blue) ;
g.drawOval (midX - eyeOff - eyeDia / 3, eyeY, eyeDia, eyeDia);
g.drawOval (midX + eyeOff - eyeDia / 3, eyeY, eyeDia, eyeDia) ;
// Draw eye pupils
int ey = eyeY + ((int) (eyeDia * eyePos)) ;
g.fillOval (eyeX - eyeOff, ey, eyelnner, eyelnner) ;
g.filloval (eyeX + eyeOff, ey, eyeDia / 2, eyeDia / 2);
// Draw nose
g.drawPolyline (
new int[] { midX, midX + noseWidth, midX },
new int[] { noseY, noseY + noseLength, noseY + noseLength },
3) 5
// Compute mouth dimensions
int mw = (int) (width * mouthWidth / 4) ;
int mh = (int) (height * mouthHeight / 4);
int mx = midX - mw / 2;
int my = midY - mh / 4;
// Draw mouth
g.filloval (mx, my, mw, mh);

The Control Panel

Now you can begin to construct the control panel. This unit must contain the animated face in its center,
below the face a field for text entry, at the left and right of the face sliders for adjusting volume, speed,
pitch, and variation.

Two new classes and one interface are needed to implement this control unit:

a
a
a

The PlayerModel interface specifies the interface of the control panel’s domain model.
This interface is implemented by the PlayerModelImpl class.

The PlayerPanel class implements the presentation of the data and the various control
instruments with the help of Swing.

So, the typical MVC design pattern (Model-View-Controller) is used here. PlayerPanel acts as both a
viewer and a controller.

The Model

When implementing the domain model you have the choice of writing the implementation class first or
starting with the definition of the interface. In fact, you could omit the interface altogether, but having a
separate interface adds some flexibility:

87

Chapter 5

88

0 When you opt to create the PlayerModel interface first, you can specify the interface later
when you create the PlayerModelImpl class. Eclipse will then generate all the method stubs

for you. This method is particularly interesting if you already have a clear idea of the domain
model’s API.

0 Otherwise, when you opt to create the PlayerModelImpl implementation first, you can later
easily generate the P1layerModel interface from the implementation with the help of the
Refactor > Extract Interface context function. This technique is recommended when the API of
the model is shaped during the implementation. Actually, in the beginning you can work with-
out an interface entirely. You simply use the methods of the implementation. Later, when your
domain model has matured and is stable, you can derive the interface with the mentioned con-
text function. This function will also replace all implementation methods’ references with refer-
ences to interface methods, provided this does not lead to compilation problems.

The main task of a PlayerModel instance (Listing 5.5) is to encapsulate a FreeTTS Voice and to pro-
vide access methods to control volume, speed, pitch, and variation. In addition, there is a play ()
method that runs the speak () method of the Voice instance in a separate thread. For this task you can
use a SwingWorker instance, so that the speech process does not lock up the GUL

The SswingWorker class that is called from the play () method does not belong to the javax.swing
packages, but you can obtain it from http://java.sun.com/docs/books/tutorial/uiswing/
misc/ threads.html or as part of this example’s source code from www . wrox . com.

The PlayerModel.java interface

package com.bdaum.dukeSpeaks;
public interface PlayerModel ({

/**
* Returns the volume.
*

* @return the volume, or -1 if unknown, or an error occurred
2y
public float getVolume () ;

/**
* Sets the volume.
*

* @param volume set the volume of the synthesizer
=Y

public void setVolume (float volume) ;

/**
* Returns the speaking rate.
*

* @return the speaking rate, or -1 if unknown or an error occurred
=Y
public float getSpeakingRate() ;

/**

* Sets the speaking rate in the number of words per minute.
*

* @param wordsPerMin the speaking rate
A
Listing 5.5 (Continues)

Project One: Duke Speaks

public void setSpeakingRate (float wordsPerMin) ;

/**
* Returns the baseline pitch for the current synthesis voice.
*

* @return the baseline pitch for the current synthesis voice
74
public float getPitch() ;

/**
* Sets the baseline pitch for the current synthesis voice.
*
* @param pitch the baseline pitch
*/
public void setPitch(float pitch) ;

/**
* Returns the pitch range for the current synthesis voice.
*

* @return the pitch range for the current synthesis voice
*/
public float getRange () ;

/**
* Sets the pitch range for the current synthesis voice.
*

* @param range the pitch range
=/

public void setRange (float range) ;

/**
* Performs text-to-speech on the given text.
*

* @param text the text to perform TTS
7/
public void play(String text) ;

}

The PlayerModelImpl.java class

package com.bdaum.dukeSpeaks;

import com.sun.speech.freetts.Voice;

public class PlayerModelImpl implements PlayerModel {

// The Voice instance used in this model
private Voice voice;

// Semaphore for inhibiting double playing
private boolean playing = false;

/**
* Method PlayerModelImpl.
* @param voice a FreeTTS voice object.
=
public PlayerModelImpl (Voice voice) {
this.voice = voice;

Listing 5.5 (Continues)
89

Chapter 5

}

/**
* @see PlayerModel#fplay (String)
*
/
public void play(final String text) {
// do nothing if player runs already.
if (playing)
return;
// Set semaphore to true
playing = true;
// The speech process runs in a separate thread
// that is managed by the SwingWorker instance worker
final SwingWorker worker = new SwingWorker () ({
public Object construct() {
// This is where Duke speaks
voice.speak (text) ;
return null;
}
b e
worker.start () ;
// Reset semaphore
playing = false;

}

/**
* @see PlayerModel#fgetVolume ()
*
/
public float getVolume () (
// Get volume from Voice instance
// and convert to scale range 0-10
float adjustedVolume = voice.getVolume () ;
return (adjustedVolume < 0.5)

? 0f
(float) ((adjustedvolume - 0.5) * 20);
}
/**
* @see PlayerModel#isetVolume (float)
=

public void setVolume (float volume) {
// Set volume in Voice instance
// convert from scale range 0-10 to Voice range 0.5-1.0
float adjustedvVolume = (float) (volume / 20 + 0.5);
voice.setVolume (adjustedvVolume) ;

}

/**
* @see PlayerModel#fgetSpeakingRate ()
Sy
public float getSpeakingRate() {
// Get speaking rate from Voice instance
return voice.getRate() ;

}

/**
* @see PlayerModel#fsetSpeakingRate (float)
=Y
public void setSpeakingRate (float wordsPerMin) ({

Listing 5.5 (Continues)
20

Project One: Duke Speaks

// Set speaking rate in Voice instance
voice.setRate (wordsPerMin) ;

}

/**
* @see PlayerModel#tgetPitch ()
=)
public float getPitch() {
// Get pitch from Voice instance
return voice.getPitch() ;

/**
* @see PlayerModel#tsetPitch (float)
*/
public void setPitch(float pitch) ({
// Set pitch in Voice instance
voice.setPitch (pitch) ;

}

/**
* @see PlayerModel#getRange ()
4
public float getRange() {
// Get variation from Voice instance
return voice.getPitchRange () ;

}

/**
* @see PlayerModel#isetRange (float)
=
public void setRange (float range)
// Set variation in Voice instance
voice.setPitchRange (range) ;

}
}

Listing 5.5 (Continued)

The Presentation

After defining the domain model you can implement the visible part of the user interface. This is done in
the PlayerPanel class, which is implemented as a subclass of the Swing JPanel class in the
com.bdaum. dukeSpeaks package.

To implement this class you can use the Visual Editor for Java (VE) that was already discussed in Chapter 3.
After creating the PlayerPanel class in the usual way, define the instance fields and the constructor
(Listing 5.6).

public class PlayerPanel

// The data model
private PlayerModel playerModel;

Listing 5.6 (Continues)

921

Chapter 5

// The JPanel instance for the face
private JPanel face;

public PlayerPanel (PlayerModel playerModel, JPanel face) {
super () ;
// Save parameters into fields
this.playerModel = playerModel;
this.face = face;

Listing 5.6 (Continued)

Visual Editor

92

Now you can close the Java Editor and open the same class again with the Visual Editor. Figure 5.1
shows the hierarchy of GUI elements. First, place a JPanel component into the design area and pull it
up to 600 by 500 pixels, or enter this size in the Size entry in the Properties View. Then you can subdi-
vide this content pane into additional JPanels in order to place the face and sliders for volume, speed,
pitch, and variation on top of it. In addition, you need a field for text input, a few buttons, and, of
course, the necessary event processing for these control elements.

_|
-

=[]
=[] controlirearane
i leftSlidersPanel
ED volumePanel
¢ LBz volumelabel-"olume"
-3} volumeslider
: e Y stateChanged
=[] speedranel
H -5 speedLabel-"words min"
B0 speedslider
e Y stateChanged
.25 jLabels-"
-] centerPanel
=[] rightslidersPanel
i) jLabels-""
=[] pitchPanel
i B3 pitchLabel-"Hz"
B34 pitchslider
e Y stateChanged
=[] rangePanel
+-&=) rangelLabel-"Rangs"
E1-f3 rangeslider
i i@ skateChanged
=[] textAndButtonPanel
textAreal abel-"Enter Text:"
[textInputérea
=[] buttonParel
5[speakButton-"Speak Text"
i iL.@= actionPerformed
=1 deleteButton-"Delete Text"
L@ actionPerformed

Figure 5.1

Project One: Duke Speaks

Layouts

Most of these panels use BorderLayouts or GridLayouts, but for the buttonPanel a FlowLayout
is used. In the BorderLayouts the most important element is placed into the Center area; all other ele-
ments are placed into the North, South, East, or West areas. For example, each slider sits in the
Center area of its panel, while the corresponding label is placed into the North area. The
centerPanel component has a GridLayout of the size 1x1. The single grid field will later contain the
Face component. Using the GridLayout guarantees that the Face component is correctly resized
when the size of the window changes. Also the leftSlidersPanel and rightSlidersPanel panels
are equipped with GridLayouts. One grid cell is filled with an empty label that acts as spacer. The fol-
lowing table shows which Layout is used for which component.

Panel Layout Row Column
contentPanel BorderLayout - -
controlAreaPanel GridLayout 1 3
leftSlidersPanel GridLayout 1 3
volumePanel BorderLayout - -
speedPanel BorderLayout - -
centerPanel GridLayout 1 1
rightSlidersPanel GridLayout 1 3
pitchPanel BorderLayout - -
rangePanel BorderLayout - -
textAreaAndButtonsPanel BorderLayout - -
buttonPanel FlowLayout - -
Sliders

The sliders also need some adjustments in the Properties view. First, you must set their orientation to
VERTICAL. Then you must specify the minimum and maximum values and the scaling
(minorTickSpacing and majorTickSpacing), and you must indicate that the track, scale, and labels
must be drawn, that is, you must set the paintLabels, paintTicks, and paintTrack attributes to
true. You should also specify an appropriate tooltip under toolTipText. The following table shows
the bounding and scaling attributes of the various sliders.

Slider Minimum Maximum minorTick majorTick
volumeSlider 0 10 1 5
speedSlider 0 400 50 100
pitchSlider 50 200 25 50
rangeSlider 0 50 5 10

93

Chapter 5

Events

In addition, you need to implement some event processing for each slider. To do so, apply the Events >
stateChanged context function to each slider and replace the pregenerated instruction
System.out.println() with

playerModel.setVolume ((float) volumeSlider.getValue()) ;
for the volumeSlider,

playerModel . setSpeakingRate ((float) speedSlider.getValue()) ;
for the speedslider,

playerModel.setPitch((float) pitchSlider.getValue()) ;
for the pitchSlider, and

playerModel.setRange ((float) rangeSlider.getValue()) ;

for the rangeSlider.

Labels

For the corresponding labels you should set an appropriate text (as discussed in Chapter 3) in the text
attribute. In addition, set an appropriate mnemonic code in the displayedMnemonic attribute.
However, this definition alone is not sufficient. It does not make sense that the label gets the focus when
the defined mnemonic key accelerator is pressed. Instead, the corresponding slider should get the focus.
You can achieve this via the setLabelFor () method, for example:

rangelLabel .setLabelFor (rangeSlider) ;

By doing so, you could later control the application completely without a mouse and thus improve the
accessibility. However, at the moment, the above instruction does not make much sense, because you
cannot be sure that the specified rangeSlider instance already exists. You should, therefore, defer the
implementation of this instruction to a later time (see below in method getContentPane ()).

Text

The same is true for the textArealLabel belonging to the text input area. For the text InputArea
component the number of lines should be set to five, the 1ineWrap attribute should be set to true, and
under text an appropriate example text should be specified.

Buttons

94

For the buttons specify the labeling (text), a tooltip (toolTipText), a mnemonic
(displayedMnemonic), and optionally a different background color (background). Here, too, you
need to generate appropriate event processing via Events > actionPerformed and to replace the gener-
ated System.out .println () instructions with

Project One: Duke Speaks

String inputText = textInputArea.getText () ;
if (inputText.length() > 0)
playerModel .play (inputText) ;

for the Speak button and
textInputArea.setText ("") ;

for the Clear button.

Figure 5.2 shows how the finished PlayerPanel looks in the Visual Editor. The large empty area in the
center is reserved for the Face component; to the left and right of this area are spacers.

[43PlaverPanel.java &3
it s Lot .
| By select —

Qi re = Volume _[Wardsimin Hz Range
Lo araes I 10 | - 400 - il
83 Choose Bean |
|5 Swing Components #
(= Euttan a
|l chedgox 300

@& RadoButton

I TToggeButton
E=RELT

o JTextreld
i Passwordreld 5 200

an

100

JTable on XScralPane

e ! 0 B =0
A TsbieColumn I
Hello, this is your animaled voicel

1 Progresssar
[F5 2optankane
[E] TTextPans
[Editeerane

\—Swing Contaners
|

Speak Text || Delete Text

AWT Confrols

] Design | Source

Figure 5.2

Integration

The graphical design of the user interface of your application is now nearly completed. What is still
missing is the integration of the Face component, the initialization of the sliders, and making the con-

tent pane visible to the application. You need to embed the Face component into the centerPanel as
follows:

private javax.swing.JPanel getCenterPanel ()
if (centerPanel == null) {
centerPanel = new javax.swing.JPanel () ;

centerPanel .setLayout (new java.awt.GridLayout(1,1)) ;
centerPanel .add (face) ;

}

return centerPanel;

95

Chapter 5

ContentPane

To make the content pane visible to the application, declare the getContentPane () method as public.
In addition, insert the initialization of the sliders into this method. Also, you can now insert all
setLabelFor () methods, because after the execution of the method body, you can be sure that all tar-
get objects of setLabelFor () exist.

public javax.swing.JPanel getContentPane () {
if (contentPane == null) {

contentPane = new javax.swing.JPanel () ;
contentPane.setLayout (new java.awt.BorderLayout ()) ;
contentPane.add (getControlAreaPane () ,

java.awt .BorderLayout . CENTER) ;
contentPane.add (getTextAndButtonPanel () ,

java.awt .BorderLayout . SOUTH) ;
contentPane.setSize (new java.awt.Dimension (600,500)) ;
volumeLabel .setLabelFor (volumeSlider) ;
speedLabel . setLabelFor (speedSlider) ;
pitchLabel.setLabelFor (pitchSlider) ;
rangeLabel . setLabelFor (rangeSlider) ;
textArealabel .setLabelFor (textInputArea) ;
updateSliders() ;

}

return contentPane;

}

The updateSliders () method is defined as follows:

private void updateSliders() {
// Volume
int volume = (int) playerModel.getVolume () ;

if (volume >= 0)
volumeSlider.setValue (volume) ;

// Speed

int rate = (int) playerModel.getSpeakingRate () ;

if (rate >= 0)
speedSlider.setValue (rate) ;

// Pitch

int pitch = (int) playerModel.getPitch() ;

if (pitch >= 0)
pitchSlider.setValue (pitch) ;

// Variation

int range = (int) playerModel.getRange () ;

if (range >= 0)
rangeSlider.setValue (range) ;

}

Listing 5.7 contains the complete source code of the PlayerPanel class as generated by the Visual
Editor, with the necessary source code modifications applied.

96

Project One: Duke Speaks

package com.bdaum.dukeSpeaks;

import java.awt.GridLayout;
import javax.swing.JPanel;

public class PlayerPanel (

// The data model

private PlayerModel playerModel;

// The JPanel instance for the face
private JPanel face;

private
private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.JPanel
swing.JPanel
swing.JPanel
swing.JPanel
swing.JPanel
swing.JPanel
swing.JLabel
swing.
swing.
swing.

JPanel speedPanel

contentPane
controlAreaPane =
leftSlidersPanel =
centerPanel
rightSlidersPanel =
volumePanel = null;
volumeLabel
JSlider volumeSlider

JLabel speedLabel =

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
/**

*

=

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.JLabel jLabel6 =

JSlider speedSlider
JPanel pitchPanel =
JLabel pitchLabel =
JSlider pitchSlider
JPanel rangePanel =
JLabel rangeLabel =
JSlider rangeSlider

JPanel buttonPanel
JButton speakButton

public PlayerPanel (PlayerModel playerModel,

super () ;

// Save parameters into fields
this.playerModel = playerModel;
this.face = face;

}

/**
* Method updateSliders.

JPanel textAndButtonPanel =
JLabel textArealLabel

JButton deleteButton
JTextArea textInputArea =
JLabel jLabel5 = null;
null;

null;

null;
null;

null;

null;

null;

= null;
null;
null;

= null;
null;
null;

= null;
null;
null;

= null;
null;
= null;
null;
= null;

= null;
null;

JPanel face) {

* updates all the sliders with values from the PlayerModel.

7/
private void updateSliders() ({
// Volume

Listing 5.7 (Continues)

97

Chapter 5

int volume = (int) playerModel.getVolume () ;

if (volume >= 0)
volumeSlider.setValue (volume) ;

// Speed

int rate = (int) playerModel.getSpeakingRate () ;

if (rate >= 0)
speedSlider.setValue (rate) ;

// Pitch

int pitch = (int) playerModel.getPitch() ;

if (pitch >= 0)
pitchSlider.setValue (pitch) ;

// Variation

int range = (int) playerModel.getRange () ;

if (range >= 0)
rangeSlider.setValue (range) ;

}

public javax.swing.JPanel getContentPane () ({
if (contentPane == null) {
contentPane = new javax.swing.JPanel () ;
contentPane.setLayout (new java.awt.BorderLayout ()) ;
contentPane.add (getControlAreaPane () ,
java.awt .BorderLayout .CENTER) ;
contentPane.add (getTextAndButtonPanel () ,
java.awt .BorderLayout . SOUTH) ;
contentPane.setSize (new java.awt.Dimension (600,500)) ;
volumeLabel .setLabelFor (volumeSlider) ;
speedLabel . setLabelFor (speedSlider) ;
pitchLabel.setLabelFor (pitchSlider) ;
rangelLabel.setLabelFor (rangeSlider) ;
textArealabel.setLabelFor (textInputArea) ;
updateSliders () ;
1
return contentPane;
}**
* This method initializes controlAreaPane
*

* @return javax.swing.JPanel

=)
private javax.swing.JPanel getControlAreaPane() {
if (controlAreaPane == null) ({

controlAreaPane = new javax.swing.JPanel () ;
controlAreaPane.setLayout (new GridLayout (1, 3));
controlAreaPane.add (getLeftSlidersPanel ())
controlAreaPane.add (getCenterPanel ()) ;
controlAreaPane.add (getRightSlidersPanel ()) ;

7

}

return controlAreaPane;

}

/**
* This method initializes leftSlidersPanel
*

* @return javax.swing.JPanel

Listing 5.7 (Continues)

98

Project One: Duke Speaks

7/
private javax.swing.JPanel getLeftSlidersPanel () ({
if (leftSlidersPanel == null) {

leftSlidersPanel = new javax.swing.JPanel () ;
leftSlidersPanel.setLayout (new java.awt.GridLayout (1,3)) ;
leftSlidersPanel.add (getVolumePanel ()) ;
leftSlidersPanel.add (getSpeedPanel ()) ;
leftSlidersPanel.add (getdLabel5 (), null) ;
}
return leftSlidersPanel;
}
/**
* This method initializes centerPanel
*

* @return javax.swing.JPanel

7/
private javax.swing.JPanel getCenterPanel () {
if (centerPanel == null) {

centerPanel = new javax.swing.JPanel () ;
centerPanel.setLayout (new java.awt.GridLayout (1,1)) ;
centerPanel.add (face) ;
}
return centerPanel;
1
/**
* This method initializes rightSlidersPanel
*

* @return javax.swing.JPanel

74
private javax.swing.JPanel getRightSlidersPanel () {
if (rightSlidersPanel == null) {

rightSlidersPanel = new javax.swing.JPanel () ;
java.awt.GridLayout layGridLayoutl =
new java.awt.GridLayout (1, 2);
layGridLayoutl.setColumns (3) ;
rightSlidersPanel.setLayout (layGridLayoutl) ;
rightSlidersPanel.add (getJLabel6 (), null) ;
rightSlidersPanel.add (getPitchPanel ()) ;
rightSlidersPanel.add (getRangePanel ()) ;
}
return rightSlidersPanel;
1
/**
* This method initializes volumePanel
*

* @return javax.swing.JPanel

74
private javax.swing.JPanel getVolumePanel ()
if (volumePanel == null) {

volumePanel = new javax.swing.JPanel () ;
volumePanel . setLayout (new java.awt.BorderLayout ()) ;
volumePanel . add (getVolumeLabel () , java.awt.BorderLayout .NORTH) ;
volumePanel . add (getVolumeSlider (),

java.awt .BorderLayout . CENTER) ;

Listing 5.7 (Continues)

929

Chapter 5

}

return volumePanel;

}

/**
* This method initializes volumeLabel
*

* @return javax.swing.JLabel

=Y
private javax.swing.JLabel getVolumeLabel ()
if (volumeLabel == null) {

volumeLabel = new javax.swing.JLabel () ;
volumeLabel.setText ("Volume") ;
volumeLabel.setHorizontalTextPosition (
javax.swing.SwingConstants.CENTER) ;
volumeLabel . setHorizontalAlignment (
javax.swing.SwingConstants.CENTER) ;
volumeLabel.setDisplayedMnemonic (java.awt.event .KeyEvent.VK V) ;
1
return volumeLabel;
}**
* This method initializes volumeSlider

*

* @return javax.swing.JSlider

=)
private javax.swing.JSlider getVolumeSlider() ({
if (volumeSlider == null) {

volumeSlider = new javax.swing.JSlider () ;
volumeSlider.putClientProperty ("JSlider.isFilled",
Boolean.TRUE) ;

volumeSlider.setMaximum(10) ;
volumeSlider.setMinorTickSpacing (1) ;
volumeSlider.setMajorTickSpacing(5) ;
volumeSlider.setOrientation (javax.swing.JSlider.VERTICAL) ;
volumeSlider.setToolTipText ("Volume") ;
volumeSlider.setPaintLabels (true) ;
volumeSlider.setPaintTicks (true) ;
volumeSlider.addChangeListener (

new javax.swing.event.ChangelListener () {

public void stateChanged (javax.swing.event.ChangeEvent e) {

playerModel.setVolume ((float) volumeSlider.getValue()) ;

}
)
}

return volumeSlider;

}

/**
* This method initializes speedPanel
*

* @return javax.swing.JPanel

w4
private javax.swing.JPanel getSpeedPanel ()
if (speedPanel == null) ({

speedPanel = new javax.swing.JPanel () ;

Listing 5.7 (Continues)

100

Project One: Duke Speaks

}

speedPanel.
speedPanel.
speedPanel.

setLayout (new java.awt.BorderLayout ()) ;
add (getSpeedLabel (), java.awt.BorderLayout .NORTH) ;
add (getSpeedSlider (), java.awt.BorderLayout.CENTER) ;

return speedPanel;

}

/**

* This method initializes speedLabel

*

* @return javax.swing.JLabel

=

private javax.swing.JLabel getSpeedLabel () {
if (speedLabel

}

speedLabel
speedLabel.
speedLabel.
javax.
speedLabel.
javax.
speedLabel.

null) {

= new javax.swing.JLabel () ;

setText ("Words/min") ;

setHorizontalAlignment (
swing.SwingConstants.CENTER) ;
setHorizontalTextPosition (
swing.SwingConstants.CENTER) ;

setDisplayedMnemonic (java.awt.event .KeyEvent .VK W) ;

return speedLabel;

}

/**

* This method initializes speedSlider

*

* @return javax.swing.JSlider

=/

private javax.swing.JSlider getSpeedSlider ()
if (speedSlider == null) {

}

speedSlider

speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.
speedSlider.

new javax.
public vo

= new javax.swing.JSlider () ;

setOrientation (javax.swing.JSlider.VERTICAL) ;
putClientProperty ("JSlider.isFilled", Boolean.TRUE) ;
setMaximum(400) ;

setMinorTickSpacing (50) ;
setMajorTickSpacing (100) ;

setToolTipText ("Speed") ;

setPaintLabels (true) ;

setPaintTicks (true) ;

setPaintTrack (true) ;

addChangeListener (

swing.event.ChangelListener ()

id stateChanged(javax.swing.event.ChangeEvent e) {

playerModel . setSpeakingRate ((float) speedSlider.getValue()) ;

)

return speedSlider;

}
/**

* This method initializes pitchPanel

*

* @return javax.swing.JPanel

=/

Listing 5.7 (Continues)

101

Chapter 5

private javax.swing.JPanel getPitchPanel ()
if (pitchPanel == null) ({
pitchPanel = new javax.swing.JPanel () ;
pitchPanel.setLayout (new java.awt.BorderLayout ()) ;
pitchPanel.add (getPitchLabel (), java.awt.BorderLayout.NORTH) ;
pitchPanel.add (getPitchSlider (), java.awt.BorderLayout .CENTER) ;
}
return pitchPanel;
}
/**
* This method initializes pitchLabel
*
* @return javax.swing.JLabel
=y
private javax.swing.JLabel getPitchLabel ()
if (pitchLabel == null) {
pitchLabel = new javax.swing.JLabel () ;
pitchLabel.setText ("Hz") ;
pitchLabel.setHorizontalAlignment (
javax.swing.SwingConstants.CENTER) ;
pitchLabel.setHorizontalTextPosition (
javax.swing.SwingConstants.CENTER) ;
pitchLabel.setDisplayedMnemonic (java.awt.event.KeyEvent.VK H) ;
}
return pitchLabel;
}
/**
* This method initializes pitchSlider
*
* @return javax.swing.JSlider
=)
private javax.swing.JSlider getPitchSlider() {
if (pitchSlider == null) {
pitchSlider = new javax.swing.JSlider () ;
pitchSlider.putClientProperty ("JdSlider.isFilled", Boolean.TRUE) ;
pitchSlider.setOrientation(javax.swing.JSlider.VERTICAL) ;
pitchSlider.setMinimum(50) ;
pitchSlider.setMaximum(200) ;
pitchSlider.setMinorTickSpacing(25) ;
pitchSlider.setMajorTickSpacing (50) ;
pitchSlider.setValue (50) ;
pitchSlider.setToolTipText ("Pitch") ;
pitchSlider.setPaintTicks (true) ;
pitchSlider.addChangeListener (
new javax.swing.event.ChangelListener () ({
public void stateChanged (javax.swing.event.ChangeEvent e) {
playerModel.setPitch((float) pitchSlider.getValue()) ;

)
}

return pitchSlider;

}
/**

* This method initializes rangePanel

Listing 5.7 (Continues)

102

Project One: Duke Speaks

*

* @return javax.swing.JPanel

*
/
private javax.swing.JPanel getRangePanel () {
if (rangePanel == null) {
rangePanel = new javax.swing.JPanel () ;
rangePanel . setLayout (new java.awt.BorderLayout ()) ;
rangePanel .add (getRangeLabel () , java.awt.BorderLayout .NORTH) ;
rangePanel.add (getRangeSlider (), java.awt.BorderLayout.CENTER) ;

}

return rangePanel;

}

/**

* This method initializes rangeLabel

*

* @return javax.swing.JLabel

=

private javax.swing.JLabel getRangeLabel () {
if (rangeLabel == null) {

}

rangeLabel
rangeLabel.
rangeLabel .

javax.swi
rangeLabel.

javax.swi
rangeLabel .

new javax.swing.JLabel () ;

setText ("Range") ;

setHorizontalAlignment (

ng.SwingConstants.CENTER) ;
setHorizontalTextPosition (
ng.SwingConstants.CENTER) ;

setDisplayedMnemonic (java.awt.event .KeyEvent.VK R) ;

return rangelabel;

}

/**

* This method initializes rangeSlider

*

* @return javax.swing.JSlider

=/

private javax.swing.JSlider getRangeSlider () {
if (rangeSlider == null) {

}

rangeSlider

rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.
rangeSlider.

= new javax.swing.JSlider () ;

setOrientation (javax.swing.JSlider.VERTICAL) ;
putClientProperty ("JSlider.isFilled", Boolean.TRUE) ;
setMaximum (50) ;

setMajorTickSpacing (10) ;
setMinorTickSpacing(5) ;

setValue (0) ;

setToolTipText ("Variation") ;
setPaintLabels (true) ;

setPaintTicks (true) ;

addChangeListener (

new javax.swing.event.ChangeListener () {

public vo
playerM
1) i

id stateChanged(javax.swing.event.ChangeEvent e) {
odel.setRange ((float) rangeSlider.getValue()) ; }

return rangeSlider;

}

Listing 5.7 (Continues)

103

Chapter 5

104

/**
* This method initializes textAndButtonPanel
*

* @return javax.swing.JPanel

=
private javax.swing.JPanel getTextAndButtonPanel () {
if (textAndButtonPanel == null) {

textAndButtonPanel = new javax.swing.JPanel () ;
textAndButtonPanel .setLayout (new java.awt.BorderLayout ()) ;
textAndButtonPanel .add (getTextAreaLabel (),
java.awt .BorderLayout .NORTH) ;
textAndButtonPanel.add (getTextInputAreal),
java.awt .BorderLayout . CENTER) ;
textAndButtonPanel .add (getButtonPanel (),
java.awt .BorderLayout . SOUTH) ;
textAndButtonPanel . setBorder (
javax.swing.BorderFactory.createEtchedBorder (
javax.swing.border.EtchedBorder .RAISED)) ;
}
return textAndButtonPanel;
}
/**
* This method initializes textArealLabel
*

* @return javax.swing.JLabel

=Y
private javax.swing.JLabel getTextAreaLabel () {
if (textArealabel == null) {

textArealabel = new javax.swing.JLabel () ;
textArealLabel.setText ("Enter Text:");
textArealabel . setDisplayedMnemonic (
java.awt.event .KeyEvent .VK T) ;
}
return textAreaLabel;
/**
* This method initializes buttonPanel
*
* @return javax.swing.JPanel
=)
private javax.swing.JPanel getButtonPanel ()
if (buttonPanel == null) {
buttonPanel = new javax.swing.JPanel () ;
buttonPanel.add (getSpeakButton (), null) ;
buttonPanel.add (getDeleteButton (), null) ;
}
return buttonPanel;
}
/**
* This method initializes speakButton
*
* @return javax.swing.JButton
=y

private javax.swing.JButton getSpeakButton () {

Listing 5.7 (Continues)

Project One: Duke Speaks

if (speakButton == null) {
speakButton = new javax.swing.JButton() ;
speakButton.setText ("Speak Text") ;
speakButton.setMnemonic (java.awt.event .KeyEvent.VK S) ;
speakButton.setToolTipText ("Speak text in text area") ;
speakButton.setBackground (new java.awt.Color (250,250,250)) ;
speakButton.addActionListener (
new java.awt.event.ActionListener () {
public void actionPerformed(java.awt.event.ActionEvent e)
String inputText = textInputArea.getText () ;
if (inputText.length() > 0)
playerModel .play (inputText) ;

1)
}

return speakButton;

/**
* This method initializes deleteButton
*

* @return javax.swing.JButton

7/
private javax.swing.JButton getDeleteButton() {
if (deleteButton == null) ({

deleteButton = new javax.swing.JButton() ;
deleteButton.setText ("Delete Text") ;
deleteButton.setMnemonic (java.awt.event.KeyEvent.VK D) ;
deleteButton.setToolTipText ("Delete all text in text area");
deleteButton.setBackground (new java.awt.Color (250,250,250)) ;
deleteButton.addActionListener (

new java.awt.event.ActionListener () {

public void actionPerformed (java.awt.event.ActionEvent e) {

textInputArea.setText ("") ;

1)
return deleteButton;
/**
* This method initializes textInputArea
*

* @return javax.swing.JTextArea

7/
private javax.swing.JTextArea getTextInputArea () {
if (textInputArea == null) {

textInputArea = new javax.swing.JTextArea() ;
textInputArea.setLineWrap (true) ;

textInputArea.setRows (5) ;

textInputArea.setText ("Hello, this is your animated voice!") ;

}

return textInputArea;

}
/**

* This method initializes jLabel5

Listing 5.7 (Continues)

105

Chapter 5

*

* @return javax.swing.JLabel

w4
private javax.swing.JLabel getJdLabel5 () ({
if (jLabel5 == null) {

jLabel5 = new javax.swing.JLabel () ;
jLabel5.setText ("") ;

}

return jLabel5;

}

/**
* This method initializes jLabelé6
*

* @return javax.swing.JLabel

w4
private javax.swing.JLabel getJdLabel6 () {
if (jLabel6 == null) {

jLabelé = new javax.swing.dJLabel () ;
jLabel6.setText ("") ;

}

return jLabelé6;

}

} // @jve:visual-info decl-index=0 visual-constraint="12,9"

Listing 5.7 (Continued)

The Complete Application

Finally, you need a P1layer root class for the whole application. This class contains the main () method.
Within this method you can create a new Player instance. This causes the Players constructor to cre-
ate a Face and a Voice instance and to connect both with the help of the Animator class. Furthermore,
a PlayerModel instance and a PlayerPanel instance are created and wired together.

The Player.java class

The Player class is implemented as an extension of the Swing JFrame class. When you create this class
you must specify JFrame as a super class. In addition, you must checkmark the public static
void main(..) option. This will generate a stub for the main () method.

package com.bdaum.dukeSpeaks;

import java.awt.BorderLayout;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.net.URL;

import java.util.Locale;

import javax.swing.*;

import com.sun.speech.freetts.Age;
import com.sun.speech.freetts.Gender;

106

Project One: Duke Speaks

import com.sun.speech.freetts.audio.AnimatedAudioPlayer;

import com.sun.speech.freetts.en.us.AnimatedDiphoneVoice;

import com.sun.speech.freetts.en.us.CMULexicon;

import com.sun.speech.freetts.en.us.cmu us_kal.KevinVoiceDirectory;
import com.sun.speech.freetts.relp.Animator;

public class Player extends JFrame {

private PlayerPanel playerPanel;

Constructor

The following code constructs the Player frame. It sets the Look and Feel for Swing, and adds a
WindowlListener in order to react to window close events. It then constructs an Animator object and uses
this object to connect the newly created AnimatedDiphoneVoice with the Face GUI object. Finally it con-
structs the PlayerPanel and creates a data model instance for the player.

/**
* @see java.awt.Frame#Frame (String)
2
public Player (String title) ({
super (title) ;
// Set Look&Feel for Swing
setDefaultLookAndFeelDecorated (true) ;
// WindowListener for close button event handling
addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0) ;
}

1) 5

// Create new Animator object
Animator a = new Animator() ;
// Get URL of the voice database
URL url =
KevinVoiceDirectory.class.getResource ("cmu us_kallé6.bin") ;
// Create Voice object
// see com.sun.speech.freetts.en.us.cmu us kal.KevinVoiceDirectory
AnimatedDiphoneVoice voice =
new AnimatedDiphoneVoice ("kevinlé", Gender.MALE,
Age.YOUNGER ADULT, "default 16-bit diphone voice",
Locale.US, "general", "cmu", new CMULexicon(),
url, a);
// Use AnimatedAudioPlayer as audio player
// for this voice
// Register Animator object as LinelListener
voice.setAudioPlayer (new AnimatedAudioPlayer (a)) ;
// Create Face object
Face face = new Face() ;
// Set face border area
face.setBorder (BorderFactory.createEmptyBorder (30, 30, 10, 30));
// Set face size
face.setPreferredSize (new Dimension (400, 300));

107

Chapter 5

// Register Face object as

// AnimationListener with Animator object

a.addAnimationListener (face) ;

// Load the voice (mainly the lexicon)

voice.allocate () ;

// Create a PlayerModel instance with the new voice

PlayerModelImpl impl = new PlayerModelImpl (voice) ;

// Create a PlayerPanel instance and pass the PlayerModel object

// and the Face-Objekt to it.

playerPanel = new PlayerPanel (impl, face) ;

// Use the size of the PlayerPanel for the whole Player

setSize (playerPanel .getContentPane () .getSize()) ;

// Insert the PlayerPanel into the Player

getContentPane () .add (playerPanel .getContentPane (),
BorderLayout . CENTER) ;

}

main()

The main() method simply creates a new Player instance and makes it visible. Before doing so it sets
Swing’s Look and Feel to “Metal.”

*

/
Method main.
The main() method of the Player.

@param args (not used)
@throws Exception
/
public static void main(String[] args) throws Exception {
// Set Metal Look&Feel for Swing
try {
UIManager.setLookAndFeel (
"javax.swing.plaf.metal.MetalLookAndFeel") ;
} catch(Exception e)
System.err.println ("Error setting look&feel: " + e);
1

// Create new Player instance

Player player = new Player ("Animated FreeTTS Player") ;
// and display it

player.setVisible (true) ;

}

* % 3k ok F F

You have now completed your application. In the Package Explorer you should now select the Player
class in the DukeSpeaks project and then call the Run > Run As > Java Application function. If every-
thing was done correctly, you will now see the window shown in Figure 5.3.

108

Project One: Duke Speaks

£ Animated FreeTTS Player EJIEEJ
Yolume Words/min Hz Range
B 10 [400 s TS
' 40
© ©
5 - 200
-20
E _
-10
0 -0 - -0
Enter Text:
Helln, this is your animated voice!
Speak Text | | Delete Text

Figure 5.3

You can play around a bit with the speaking face. Change the speed, the pitch, or the variation. Copy
other texts into the text input field (using Ctrl+V). Note that the lexicon is based on U.S. English. If you
copy foreign language texts into the input field, expect Duke to speak these languages with a U.S.
accent.

Exporting the Application

To be able to run your application outside Eclipse, export it as a JAR file. To do so, select the
DukeSpeaks project and call the Export context function. In the dialog that appears, select the JAR File
category.

In the next dialog, checkmark the Export Generated Class Files and Resources field and remove the
checkmark from the Export Java Source Files and Resources field. In addition, expand the DukeSpeaks

project node and checkmark all packages.

Finally, specify a target location under JAR file. Use dukeSpeaks . jar as the filename.

109

Chapter 5

All binary objects of your DukeSpeaks project are now combined in a single JAR file. To run the player
successfully outside Eclipse, you obviously also need the FreeTTS JARs that you previously added as
external JARs to the project’s Java Build Path in the Classpath of the JVM. Therefore, the Classpath must
contain the dukeSpeaks.jar, cmuawb.jar, cmukall6.jar, cmukal8.jar, cmulex.jar, cmu-
timelex.jar,and freetts.jar JARs.

AJRE of Version 1.4.0 or higher is required to run this program successfully.

Bibliography

The main purpose of this chapter has been to acquaint you with practical work in the Eclipse workbench.
You have learned how third-party projects can be imported into the Eclipse workspace and how they

can be navigated and modified. You also have also seen how the various assistants are used to create code
efficiently.

In the course of this example I could only scratch the surface of the technologies used. Therefore, I want
to give some pointers as to where to get more information about these technologies:

Q There are several excellent Swing tutorials. In particular, I want to mention the chapter “User
Interfaces that Swing” in the official Java tutorial from JavaSoft (www. javasoft . com).
Matthew Robinson and Pavel Vorobiev have written a remarkable book about Swing, simply
called Swing.

Q The FreeTTS documentation contains valuable information about speech synthesis in general
and FreeTTS speech synthesis in particular. You will also find some links to related articles
there.

Q The application implemented here shows only lip synchronization of the simplest kind. Also,
the rendering of the face is rather minimalist. The current state of the art is 3-D animations in
which each facial muscle can be moved separately. Depending on the text content it is even
possible to express emotions. Searching the Web for “lip synchronization” will result in some
interesting links. The DECFace project is particularly interesting: details can be found at
crl.research.compaqg.com/projects/facial/facial.html.

Summary

With this project you have now had your first experiences with Eclipse. Based on these experiences we
can derive some “best practices” for the creation of applications with Eclipse:

Q If the API of a module is well understood, you should create an interface before you create the
implementation. This allows you to use the interface when generating the method stubs in the
implementing class. At the same time, these method stubs are automatically equipped with
Javadoc comments that use the Javadoc keyword @see to refer back to the method description
in the interface.

110

Project One: Duke Speaks

If the API is not well understood or subject to change, you should create the implementation first. Later
you can derive the interface from the implementation (see the “Refactoring Code” section in Chapter 2).

Q

If it later becomes necessary to extend the interface definition, you can pull down these exten-
sions into the implementation by using the Source > Override Methods context function or by
using the Content Assistant.

Javadoc comments should be always created with the Source > Add JavaDoc Comment context
function or by entering /**. This helps to achieve consistent and complete API documentation.

Completing the Create a New Java Class dialog carefully is well worth the effort. By specifying
super classes and interfaces and by marking the various options, you can save considerable
typing, because Eclipse will generate the method and constructor stubs for you.

After making large changes in a compilation unit you should call the Source > Organize Imports
context function. This function adds missing import statements and removes unused ones.

Using the Code Assistant (Ctrl+Spacebar) for program constructs, type, and fieldnames saves
you a lot of typing and a lot of searching in the documentation and can possibly protect you
from RSI (repetitive strain injury). At the same time, the Code Assistant can generate the neces-
sary import statements (if this option was set in the preferences). Ctrl+Spacebar should
become the typical gesture of an Eclipse programmer.

In the next chapter we will look at testing and debugging Java applications with Eclipse.

111

Project Development

In the first part of this chapter I discuss the Eclipse Java Debugger in detail. I will show how the
debugger can be configured, introduce the Debug Perspective, and explain how to create and
manage breakpoints and watchpoints. In the second part I will introduce the JUnit test tool,
which is part of the Eclipse SDK distribution. Finally, in the third part I will show how Javadoc
documentation can be exported.

Debugging

Searching for bugs in a complex application is always a time-consuming task. A powerful debug-
ger can be of great help here. Fortunately, the Eclipse Java IDE is equipped with a full-featured
debugger that leaves hardly anything to be desired.

This debugger has two operation modes: local and remote. Here, I will discuss local debugging.
Later, in the “Remote Debugging” section. I will then show how the debugger is used in a remote
scenario.

The Debug Configuration

Like many other parts of the Eclipse workbench, the Debugger can be configured by the user in
various ways. For example, under Window > Preferences > Java > Debug > Detail Formatters, you
can specify how the values of Java types are to be displayed in the Details section of the Variables
View. The default formatting uses the toString () method for displaying the variable’s value. To
add a new formatter, press the Add button, enter or browse for a type, and then enter a code snip-
pet to be applied to instances of this type. For example, if you want to display the text content of
objects of type org.eclipse.jface.text.Document in the Details View, select this type and
enter get () as the code snippet for detail formatting.

Chapter 6

Under Window > Preferences > Java > Debug > Step Filtering, you can specify which classes should
be skipped when stepping though a program. These settings are used during the Step with Filters
operation (Figure 6.1).

= Preferences

- Workbench » Step Filtering
+- Ant
Build Order Step filters are applied when the "Use Step Filters” toggle is activated.
+- Help
+1- InstallUpdate Defined step filters:
= Java O &3 com.ibm.* Add Filter...
+- Appearance O &8 com.sun.® =
= Buid Path O B java. Add Class. ..
+ Code _St'f'le O 8 javax.* Add Packages...
Compiler O & org.oma. —
= Debug D{:E‘su_n £ TioYE
Detail Formatters O i -
; SLIMW,
Step Filtering 3 A
- Editor ® java.lang.ClassLoader Enable all
Installed JREs Disable Al
JavaFamily Example —
Junit
Task Tags ™ Filter synthetic methods {requires YM support)
Type Filters ™ Filter static initislizers
+]- Plug-in Development Mg e
Readme Example RIS i b
+1- Run/Debug Restore Defaults ‘ Apply ‘
+ Team V
Import... ‘ Export... OK | Cancel |

Figure 6.1

Some step filters are predefined so that you can simply activate them with a checkmark (by default only
the Java class loader is skipped). You can also add other classes, packages, or generic filter expressions to
the list, however.

The Debug Perspective

You can start debugging by clicking the bug symbol in the workbench'’s toolbar. This function is very
similar to the Run function (see the “Hello World” section in Chapter 1) with the difference that execu-
tion is interrupted at breakpoints. You can also make Eclipse automatically switch to the Debug
Perspective by specifying Always for the Switch to Associated Perspective When Launching option in
Window > Preferences > Run/Debug > Launching. Alternatively, you can specify Always for the Switch
to Associated Perspective When a Breakpoint Is Hit option in Window > Preferences > Run/Debug. The
Debug Perspective contains the same windows as the Java Perspective plus two more.

Figure 6.2 shows the Debug Perspective. In the top-left corner you see the Debug window listing the
active threads. Under the thread [AWT-Event-Queue-0] the execution stack with the method call hierar-
chy is displayed. In the top-right corner the variables of the current execution context are shown. Behind
this view are three more stacked views: Breakpoints, Expressions, and Display. Variable values can be
displayed, too, by hovering with the mouse over a variable name in the editor.

114

Project Development

- Debug - Face.java - Eclipse Platform
Fle Edt Sowrce Refactor MNavigate Search Project Bun Windaw Help

[$-b B~ @ |00 |-

£

ICompone:
IPanel(1Component
JIPanel(1Component
JPanel(1Component
JPanel(JCompaonent).p
Jrerel(ICamparen
Iranel{ICzempanent]. o
JPanel(JComponent),

aphics]
paintChildran

aop e]

B Face sova 2

protected vold

B

Slconsole 17 Tases

Figure 6.2

Consale (Player [Javs Appleation] Cr\Programme!Javalizre 1,42 03'bnavaw, exs (25,05, 2004 10:48:27))

Controlling Program Execution

The toolbar of the Debug window is equipped with all the buttons needed to control the execution of the
current program. Most of these functions, however, can be called via function keys, which is much faster.
From left to right you see the following;:

a
a

Breakpainis

~

this=Face (d=13)
co= SunGraphics2D {id=31)
g= SunGraghicsD (d=31)

=10
O} o= outine 5

ok

i)

Resume (F8). Continues the execution of an interrupted thread.

= import dedarations

BRW e w~=0O
com,bdaum,dukeSpeaks

Face

4 mouthWidth ; float

4 mouthHeght : float

4 eyeFos ! float

@ . processinimatiorEvent{AnimationSvent)
 a pantComponent(Graphizs)

mRlply AB-7

Suspend. Interrupts the execution of a running thread. This function is especially useful when
the thread is looping.

Terminate. The execution of a running or interrupted program is terminated.

Disconnect. This function is required to finish debugging a remote program (remote
debugging).

Remove All Terminated Launches. This function removes “garbage” from the Debug View.

Step Into (F5). Used on a method call, this function will step into the invoked method. In
program lines containing multiple method calls, however, this function steps through all of
them. In such cases, it is better to select the method call in question and use the Step into
Selection context function.

115

Chapter 6

Q

Q

Q

Step Over (F6). Used on a method call, this function will step over the invoked method
(provided the method does not contain active breakpoints).

Step Return (F7). The current method is executed in normal mode. When the method returns,
step mode is reactivated.

Step with Filters (Shift+F5). When you use this function the step operation is influenced by the
step filters defined in the preferences (see the “Debug Configuration” section). All other func-
tions ignore the step filters.

After executing a program step by step, you can retrace the single steps backwards by pressing the Back
navigation button (see the “Navigation” section in Chapter 4)!

Setting Breakpoints

How do you start a debug session? You would usually set a breakpoint at an interesting location in

your program. This is easily done by double-clicking the left margin of the Java source editor. It doesn’t
matter if you do this in the Java Perspective or in the Debug Perspective. You can remove the breakpoint
with another double-click at the same position.

Now, set a breakpoint onto the Dimension d = getSize () instruction in the paintComponent ()
method in the Face class, as shown in the previous figure. When you start the debug process by clicking
the Debug button, the program will stop at this instruction. The variable values of the current object
appear in the window at the right-hand side.

Testing Interactively

You have now the following possibilities:

Q

U 0 0 U

You can continue the execution of the program by pressing F8. The program will be interrupted
only when it passes this breakpoint again.

You can stop execution by clicking the Terminate button.
You can execute the getSize () method step by step by pressing the F5 key.
You can step over the getSize () method by pressing the F6 key.

You can set further breakpoints, or you can remove breakpoints.

Variables

You have the following options for variables:

Q

Q

116

You can view the content of variables by hovering with the cursor over a variable name in the
source editor.

In the Variables View you can take a closer look at the variables of the current execution envi-
ronment. Complex objects can be expanded by clicking the + character (or by double-clicking
the variable name) so that you can view their details.

In the execution stack in the Debug window you can select a different execution
environment. For example, you may select: Player (java.awt.Container) .paint (java
.awt .Graphics) line 1123.

Project Development

Q The source editor automatically shows the corresponding source code, and the Variables View
shows the variables of this execution environment.

0 You can modify variables. By double-clicking a variable in the Variables View you can open an
editor for the variable’s value and modify the value. Alternatively, you can edit the value in the
Details section of the Variables View and then assign it by invoking the Assign Value context
function.

Q By applying the Watch context function to individual variables you can add those variables to
the Expressions window. As you step through the program, the variables in the Expressions
window will be updated when their value changes. This provides a way to monitor specific
variables during program execution.

HotSwap

During a debug session you can apply changes to the program code and save (and compile) the changed
code. In many cases—provided you run under JDK 1.4—the debug session need not be restarted but can
continue with the modified module in place (HotSwap). In some cases, however—for example, when the
signature of a public method is changed—using HotSwap is impossible. In this case you are prompted
whether to abort or restart execution.

Testing Expressions

In the Display View (and also in the Details area of the Expression View), you can enter expressions that
can be executed within the current execution context (see also the discussion of the “Scrapbook” in
Chapter 1). To do so, select the entered expression and invoke the Inspect or Display context function.
For example, if you execute the getBackground () expression while in the execution context of
Player.paint () (see above), the Display function will deliver the background color of player.

Managing Breakpoints

The Breakpoints View shows an overview of all defined breakpoints. Here, you can delete breakpoints
that you don’t need anymore or position the source editor to a breakpoint position by double-clicking it.

With the Disable context function you can disable a breakpoint temporarily. With Enable you can acti-
vate it again. The Properties context function allows further customization of breakpoints (Figure 6.3).

The breakpoint properties dialog allows for detailed instrumentation of a breakpoint. By setting a hit
count, the breakpoint is activated only after several passes through it. You can also specify an additional
condition under which the breakpoint should become active. The breakpoint is activated either when the
Boolean value of the condition is true or when the value of the condition changes, depending on the
option chosen.

Another useful function of the Breakpoints View is the Add Java Exception Breakpoint function (the button
with the exclamation mark). When invoking this function you can select an exception type from a list.

Usually, Eclipse aborts program execution when an uncaught exception occurs and shows you the
stack trace. But with this function, you can interrupt directly at the point where the exception occurs
and look into variables and so on. Better still, you can even optionally trap exceptions that are caught
in a try/catch block. It is a good idea to set Java Exception Breakpoints for common uncaught
exception types such as NullPointerException, ClassCastException, and
IndexOutOfBoundsException.

117

Chapter 6

= Properties for com.bdaum.dukeSpeaks.Face [line: 79] - paint... |:|@

Common Common

Filtering
Type: com.bdaum. dukeSpeaks.Face
Line Mumber: 79
Member: paintComponent{Graphics)
v Enabled
™ HitCount: |

[¥ Enable Condition (Cirl+Space for code assist)

== 1:ull|

%]

Suspend when
(* condition is 'true’

" value of condition changes

Suspend Policy
{* Suspend Thread Suspend VM

oK | Cancel

Figure 6.3

If you have trapped an exception with such a breakpoint, program execution is interrupted when the
exception occurs. In the Debug window you now can select a method within the stack trace shown under
the current thread. The Variables View shows you the variables of the method’s execution environment,
so that in most cases you can easily determine the reason for the exception.

Finally, the Skip All Breakpoints tool button in the Breakpoints window allows you to disable all break-
points temporarily.

The Java Console

Although the debugger provides you with a rich arsenal of tools to find bugs in programs, you should not
ignore the Java console. To find a problem, it is sometimes simpler to program a test output into a method

or constructor instead of spending ages stepping through program code. You can accomplish such outputs
with System.out.println() or System.err.println().By using the Code Assistant (see the

“Java Information Windows” section Chapter 2), you can simply enter sysout or syserr to create

such an instruction.

In the case of a program crash, the console is a valuable source of information, too, since it displays the

execution stack. Eclipse here offers additional help: double-clicking a stack entry opens the correspond-
ing compilation unit and positions the editor window to the specified line!

118

Project Development

Note, that each test run creates a new console instance. In the Console View you can select which console
to display by clicking the arrow button.

Remote Debugging

Remote debugging is used for applications that run on a remote JVM, especially for an application that
runs outside the Eclipse platform. Typical targets for remote debugging are servlets that have neither a
GUI nor a console.

To make a Java application accessible to an external debugger, you must specify additional command-
line parameters when starting the application’s JVM. In the following example—assuming that this
application has already been installed outside Eclipse—I demonstrate how DukeSpeaks can be made
accessible to a remote debugger:

java.exe -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt socket, server=y, suspend=y, address=8787
-classpath %$LOCALCLASSPATH%
com.bdaum. dukeSpeaks.Player

First, the JVM is switched into debug mode. The sun. tools.debug agent is switched off, as well as the
JIT and HotSpot compilers. With -Xrunjdwp the reference implementation of the Java Debug Wire
Protocols (JDWP) is loaded. A socket connection is selected as transport mode. The server=y parame-
ter specifies that the application acts as a debug server, and the suspend=y parameter specifies that the
application must not start autonomously but must wait for a connection with the debug client. Finally,
the address=8787 parameter specifies the debug port number that can be selected from the host com-
puter’s free ports.

Now, start the application and execute the command. Nothing happens. The application waits for the
debug client. Now it’s time to create a remote debug configuration in Eclipse. To do so, invoke the Run >
Debug function. In the selection list at the left-hand side of the dialog, select Remote Java Application
and press the New button.

Then enter a name for the new configuration (for example, DukeSpeaksRemote) and select the project
(DukeSpeaks). This specification is actually not used to tell the Eclipse debugger the location of the
binary files but to inform it about the location of the source files.

The Connection Type field remains unchanged: Standard (Socket Attach). Since the remote application
runs on the same host computer, you must enter the localhost value under Host. For Port, specify exactly
the same value that was used above in the java command. So enter 8 787. Finally, mark the Allow
Termination of Remote VM checkbox. This allows you to terminate the application via remote control
from the Eclipse debugger.

Now the configuration is properly set up. You can start the debugging process by clicking the Debug
button. From now on, everything works just as with local debugging. You can set breakpoints, look at
variables, and even modify the values of variables. The only thing that does not work with remote
debugging is, of course, HotSwapping.

119

Chapter 6

JUnit

JUnit is an Open Source tool that allows you to create and execute test suites quickly and systematically.
The people behind JUnit are Kent Beck and Erich Gamma. Since Erich Gamma is also significantly
involved in the development of Eclipse, it is no surprise that JUnit is contained in the Eclipse SDK
distribution. Detailed information is available at www. junit . org or in Professional Java Tools for Extreme
Programming by Richard Hightower, et al.

Test tools such as JUnit are used to test program modules repeatedly, especially after changes have been
applied to a module. Using such automated test tools allows you to test frequently and after each small
incremental development step, following the XP motto: Code a little, test a little.

Of course, the quality of the test results stands or falls with the quality of the test suite. A good test suite
should cover the whole functional range of a program module. This is, however, easier said than done!

Setting Up JUnit

To be able to work with JUnit, the JUnit JAR file is required in the build path of your project. You could
manually add junit.jar as an external JAR file to DukeSpeaks project, as described in the “Project
Properties” section in Chapter 4. You can find junit.jar under \eclipse\plugins\org
.junit_3.8.1. However, this is not really required, since Eclipse will do this for you when you create
your first test case.

In the DukeSpeaks project you can now create a test case class (a subclass of the JUnit TestCase class),
which you can call PlayerTest. You can create such a class manually, or you can use the JUnit Wizard
(Figure 6.4) in which case you proceed as follows:

1. Invoke the wizard via the File > New > Other > Java > JUnit > Test Case function.

2. Inthe first page of the wizard, press the Browse button at the Class to Test field and select the
class that you want to test (Player).

3. Toname the test, enter PlayerTest in the Name field.
4. Inthe Package field select a target package (within your project) for the new TestCase class.

5. Additional options allow you to generate a main () method, a setUp () method, a
tearDown () method, and a constructor for the new test case.

On the next page of the wizard select which of the test class test methods are to be generated
(Figure 6.5).

Here I have selected only two methods. Normally you would first select all methods and then explicitly
deselect all the methods that you don’t want to test. Optionally, you can decorate all generated methods
with the modifier “final.” TODO comments can be generated into the method stubs.

120

Project Development

= New JUnit Test Case

JUnit Test Case
&, The use of the default package is discouraged.

Source Folder: I dukeSpeaks Browse. .,

Package: I {default) Browse...

Mame: I PlayerTest

Superclass: i junit. framework, TestCase Browse...

i

‘Which method stubs would you like to create?
™ public static void main{String[] args)
v setUp()
¥ tearDown()
¥ constructor)

Class to test: icom.bdaum.dukeSpeaks.Pla‘,fer Browse. .. |

< Back MNext > I Finish I Cancel

Figure 6.4

= New JUnit Test Case

Test Methods
Select methods for which test method stubs should be created.

Available methods:

O 6* Flayer #| Selectal
b L2 I

JFrame =
O® Fframe Deselectnlli
[+ DG Window
O® contsiner
O®* component
O @ toString
O a oetaccessiblelndexInParent()
@ getHeight(

b @ getwidth()
~Oe g
: - @ ety ¥
£ I &

2 methods selected.

[V Create final method stubs
¥ Create tasks for generated test methods

< Back

| Finish l Cancel

Figure 6.5

121

Chapter 6

Creating a Test Suite

All generated test methods start with the string “test.” JUnit recognizes such method names and exe-
cutes them when running a test. Since the wizard has already generated the method stubs, you need
only add the code inside the method body. If you need to initialize variables or other resources, you do

this in the setUp () method. See Listing 6.1.

import junit.framework.TestCase;

import com.bdaum.dukeSpeaks.Player;

public class PlayerTest extends TestCase {
Player player;

/**
* Constructor for TestCasel.
* @param arg0
4
public PlayerTest (String arg0) {
super (argo0) ;
1

/**
* Initialize the player
7/
protected void setUp() throws Exception {
super.setUp () ;
player = new Player ("Animated FreeTTS Player") ;

}
final public void testGetWidth() ({
assertTrue ("width != 600: "+player.getWidth(),
player.getWidth() == 600) ;

}

final public void testGetHeight () ({

assertTrue ("height != 500: "+player.getHeight (),
player.getHeight () == 500) ;
}
/**
* Dispose of everything
4

protected void tearDown () throws Exception ({
super.tearDown () ;
player = null;

}

Listing 6.1

Here, two tests (testWidth () and testHeight ()) are implemented. In these tests the JUnit
assertTrue () method is used to test a condition and throw an exception if the condition is not met.
Both methods use the player variable that was initialized in the setUp () method. JUnit calls this

122

Project Development

method before executing the run () method. Similarly, the tearDown () method is called after all tests
are executed. This method can be used to dispose of resources.

When you have created several TestCase classes, it makes sense to combine these classes in a test suite.
The JUnit Wizard will help you with this task, too. You only have to invoke the File > New > Other >
Java > JUnit > Test Suite function. In the wizard’s selection list checkmark all TestCase classes that you
want to add to the test suite (in this example the only test case is the PlayerTest class); see Figure 6.6.
At this point it is even possible to add other test suites to the new test suite, i.e., you may nest test suites.
In the Test Suite field change the proposed name AllTests according to your requirements.

= New JUnit Test Suite

JUnit Test Suite

&, The use of the default package is discouraged.

Source Folder:] dukeSpeaks Browse. .,

Package: | (default) Browse...

Test suite:] AllTests

Test Classes to indude in Suite:

® PlayerTest Select all

Deselect Al

i Fi=h

1 class selected
Would you like to create a method stub for main?
I public static void main{String[] args}

< Back le: ‘ Finish | Cancel

Figure 6.6

After you press the Finish button, the wizard will generate the resulting TestSuite class:

import junit.framework.Test;

import junit.framework.TestSuite;

public class AllTests ({

public static Test suite() {

TestSuite suite = new TestSuite ("Test for tests");
//$JUnit-BEGINS
suite.addTest (new TestSuite (PlayerTest.class)) ;
//$JUnit-ENDS
return suite;

123

Chapter 6

Here, I have created a test suite solely for demonstration purposes. If you want to run only a single
TestCase class, creating a test suite is not really required.

Running a Test Suite

Now you can execute all tests. Invoke the Run > Run as > JUnit Test function. Eclipse opens the JUnit
view (in front of the Package Explorer) and runs the test suite (Figure 6.7).

& Java - PlayerTest.java - Eclipse Platform

Fie Edit Source Refactor Mevigete Seprch Project Fum Window Help
i B - B H# G- | B4 |8 I ¥s0sbug | &= &
Package Exglorer | Higraeehy | = 0 || [J] AHayerTest javs 52 1av 5| 2= outiie 12 |
Fnished after 4,066 seconds - g ~ AW oo onw
L & B, LR = TR E-'= import declarations
L @ }
- . =@ PlzyerTest
Runs: 22 DEmors: 0 B Failures: 1 T z & player : Player
Gase Testl 3 rhown () \ o oD
I Z * a tearDown()
- a v protected void tearDown() throws Exception © playerTest \
goraiures | fHerarchy | e o' Player ES:\Sillng_
i Elssatsad]) arDown () 2 @ " testGetHsight()
=] player = null; o F testcetwidthg
& < e
5‘3 testGetiidth = Car r PlayverTes
- publiec PlayerTest (String)1
super |)E
b
B - public final void [Eilaoaannrn
| assertTrue| h B850:
- public final void testGe
= Falus Trace aF assertTrue("height !
I0 surit, framewark, AsserbonFaledEmer: width | = £50 ! e
= atPlayerTest. testGetHeight{PlayerTest. < > |
= 1| Elcansoie i1 Problems | Properties | Search % | B0
= £(1 < g T — —— % =
= stsunrefectDelegaangMethosicee: |Console {<terminated> AlTests [JUnit] Ct'Prog Pavaljrel. 4.2 & bt .exe (24.05. 2004
= at junit. framewaork. TestResults 1.protect TestRes
4 >

Figure 6.7

In the upper part of the JUnit View all errors are collected (to a maximum of one error per single test
case). The other stacked window in the upper area shows the hierarchy of test suites and single test
cases. In the lower part of the view, JUnit shows the execution stack for the currently selected error.
Here, to force an error, I specified a panel width (650) in the test case that was different from the panel
width specified in the application.

124

Project Development

Documentation

In the “Java Information Windows” section in Chapter 2 you saw how Javadoc comments can be conve-
niently added to source code. In this section I will discuss how these comments can be exported as an
HTML Javadoc documentation.

To generate the Javadoc documentation for the completed DukeSpeaks project, select the project and
invoke the Export context function. On the first page of the Export Wizard, select Javadoc from the list
and press the Next button. On the following page, you can specify in detail what should be exported to
Javadoc (Figure 6.8). But first make sure that the Javadoc Command entry points to a valid Javadoc pro-
cessor such as . ..\j2sdkl.4.2\bin\javadoc.exe and that the Destination entry specifies a desti-
nation folder for the Javadoc pages. You can preset a default value by applying the Properties > Javadoc
Location context function to the project. You can also specify for which packages and for which methods
Javadoc is to be generated. In addition, you have the option of using a custom doclet instead of Sun
Microsystems’ reference implementation.

= Generate Javadoc

Javadoc Generation

i
Select types for Javadoc generation, J
A

Javadoc command:

j Configure...

Select types for which Javadoc will be generated:
= dukespeaks

+-[F 8 (default packags)

com.bdsum.dukeSpesks

HF com.sun.speech.frestts.a

H# com.sun.speech.frestts.e

H3 com.sun.speech.frestts.re

FreeTTs

¥
- [
[+ |w]
¥
¥

HEEA

R

+D

A | =
Create Javadoc for members with visibility:
" Private (" Package " Protected * Public

Public: Generate Javadoc for public dasses and members,

(* Use Standard Dodlet

Destination: | Ci\mBa'edipse workspace\dukeSpeaks\doc Browse, ,,

(™ Use Custom Dodet

|
|

< Back Next > | Finish | Cancel

Figure 6.8

125

Chapter 6

Try It Out: Javadoc Options

In the next step you can determine the content and the layout of the single Javadoc pages. The following
options exist:

a

Q

Generate Use Page. This option allows you to generate a cross-reference for each class and each
package.

Generate Hierarchy Tree. When you check this option, a page is generated that displays the
hierarchy of packages, classes, and interfaces.

Generate Navigator Bar. This option generates a navigation bar at the top and at the bottom of
each page.

Generate Index. This option generates one or several index pages.

Separate Index per Letter. Check this option to generate a separate index page for each letter in
the alphabet.

@author, @version, @deprecated. When these options are set, the corresponding key words in
the Javadoc comments are evaluated and their information is included in the generated pages.

Deprecated List. This option allows a separate page to be generated, listing all elements marked
as “deprecated.”

In addition, you can create links to other Javadoc documentations.

Try It Out: Command-Line Options

On the next wizard page (Figure 6.9), you can specify additional command-line options for javadoc
.exe, if necessary. In addition, you can specify a file containing additional text for the Javadoc
Overview page.

The JRE 1.4 Source Compatibility option must be checked if your source code contains the Java assert
keyword. Without this option set, Java 1.4 programs that contain this instruction would cause errors
during the Javadoc generation. Checking this option is equivalent to specifying the command-line
option -source 1.4.

You can also optionally create an Ant script for Javadoc generation (Figure 6.10). I will discuss Ant in
more detail in Chapter 13.

After you press Finish, the Javadoc generation is started as a batch job. The output of the batch job
appears on the Eclipse Java console.

126

Project Development

Javadoc Generation

Configure Javadoc arguments for standard doclst,

'

A |

¥ Document tite: | Duke Spesks|

—Basic Cptions - —Document these tags

W Generate use page v gauthor
W Generats herarchy tres W @version
W Gensrate navigator bar V¥ @dsprecated

W Generate index ¥ deprecated list

¥ Separats index per letter

Select referenced dasses to which Javadoc should create inks:

a m Cr'Programme!Javalj2re1.4.2_03Yib\sunrsasign.jar - http
a l'_im C:\Programme’Javalj2re1,4.2_03YibYjsse. jar - b
O @ c:Programme\lavalizre1,4.2_03ibYy - hittp: ffiava.sw
O @ c:Frogrammeliavaijzre . 4.2_03Yiblextisunjce_provider.ja
a m Cr'Programme’Javalizre 1.4, 2_03Viblext\dnsns jar - hitp: /i
D m}, C:\Programme’Javalj2re1,4.2_03Yiblextldapsec.jar - htip:; ¥
< ki | >

I~ style sheet: |

a&c "ProgrammeJavaljzre 1. 4.2_03Yib\rt.jar - http: /flava.sun | Select All

| Clearal

< Back

Next > “ Frish |

Cancel

Figure 6.9

Javadoc Generation

Configure Javadoc arguments,

I~ overview: |

VM options (prefixed with -1', e.g. -3-Xmx150m for larger heap space):

Extra Javadoc options {path names with white spaces must be endosed in quotes):

W JRE 1.4 source compatibilty

™ Save the settings of this Javadoc export a5 an Ant script:
Ant Script: | C
[¥ Ooen generated index fle in browsar

< Back Next =

Figure 6.10

127

Chapter 6

Summary

In this chapter you have learned how both local and remote Java programs can be debugged with
Eclipse. You should now be able to set, remove, and configure breakpoints, to view and modify
variables, and to step through a program.

I have also introduced you to the creation of JUnit test cases and the creation of Javadoc program
documentation. Again, the support of JUnit is an important aspect of Eclipse’s support for Extreme

Programming.

In the next chapter I will explore some advanced topics such as teamwork, version management, and
the embedding of external tools.

128

Advanced Topics of Project
Development

In this chapter I will briefly discuss how development teams can organize their work by using a
CVS repository with Eclipse. I will also show how external tools can be embedded into Eclipse.

Developing in a Team

In this book, I want to take only a short excursion into Eclipse’s support for development teams.
Detailed information can be found in the Eclipse help pages under Workbench User Guide > Tasks
> Working in the Team Environment.

Different concepts exist for working collaboratively on the same project. These concepts range
from sequential or semi-sequential workflow-oriented techniques to completely synchronous tech-
niques such as Microsoft’s NetMeeting. Eclipse uses the CVS concept (Concurrent Versions
System) by default. CVS is an Open Source project that has practically become the de facto
standard for the collaborative development of software projects. The CVS is based on a central
repository. However, the individual members of the development team work on their own local
copies of the repository content. In fact, they are able to work only on these local copies. For resolv-
ing clashes, the CVS uses an optimistic concept: it assumes that the same software artifact

is only rarely modified simultaneously by multiple team members. Therefore, the software
artifacts—even if they are currently being worked on—are not locked against the access of other
team members. All team members continue to have access to the central repository, may own a local
copy of any artifact in the central repository, and may modify this local copy without restrictions.

From time to time, the local copies are synchronized with the copies in the central repository.
Usually, only the central repository is updated with the newest versions. Some care should be
taken when doing so. Since software artifacts are usually highly dependent on each other, the
global repository should be updated only when the local resources are in a consistent state, for
example, when the project’s test suite was executed without errors.

Chapter 7

However, such an optimistic concept allows conflicts. Such conflicts must be resolved. For example, if
the local copy of a resource and its original version in the central repository have both been modified
since the last synchronization, simply replacing the central copy with the local copy would cause a loss
of information. In such a case, the CVS offers several strategies for resolving the conflict. For example, it
is possible to merge both copies either manually or automatically.

Another option is to open a new development branch. The initial code base of the project forms the trunk,
or HEAD, of a development tree with many possible branches. Later, these different branches can be
brought together with the help of the previously mentioned conflict solution strategies (see the
“Working in a Team” section).

In addition, the CVS allows software artifacts to be given version numbers. Eclipse builds on this facility.
Eclipse supports the version management known from Visual Age only if Eclipse collaborates with a

CVS. In addition to explicit version numbers, the CVS uses internal revision numbers to uniquely iden-
tify each change in the central repository. The CVS stores the complete history of a software artifact. This

allows the comparison of a given software artifact with previous versions and revisions at any time or its

replacement with a previous version or revision. This feature can be very helpful, especially for mainte-
nance and debugging.

Detailed information about the CVS can be found in the books Open Source Projects with CVS by Fogel
and Essential CVS by Vesperman, and on the CVS Web site under www. cvshome . org.

Setting Up a Repository

It is a prerequisite for working in a team under Eclipse that the Eclipse workbenches of all team mem-
bers have access to the central repository. Since Eclipse by default supports the CVS access protocol,
direct access is possible to the following systems:

Q Concurrent Versions System (CVS) for Linux/Unix from CVS version 1.11.1p1 onward. This
CVS server is freeware and can be downloaded from www . cvshome . org.

Q CVS for Windows is also freeware and can be downloaded from www . cvsnt . org. However,
cvsnt is not officially supported by Eclipse, since it does not have the same maturity and
robustness as the CVS for Linux or Unix. If you want to use it anyway, version 1.11.1.1 or
later is recommended.

At the time of this writing there was no information about the compatibility of Eclipse 3 with the new
CVS version 2. You can get up-to-date information about CVS versions and compatibility issues in the
Eclipse CVS FAQ that are accessible via Help > Help Contents > Workbench User Guide > Reference >
Team support with CVS > CVS.

In addition to these popular CVSs, there are some commercial systems, too, that support central code

management, such as Borland StarTeam, Microsoft Visual Source Safe, and Rational ClearCase. The com-

munity page on www.eclipse.org lists on the Projects & Plugins page under the Team Repository
Providers section quite a few commercial repository providers. Special plug-ins connect these reposito-
ries with Eclipse.

Now, how do you connect Eclipse with a repository? Let’s assume that you have already installed a CVS.

In the following scenario I assume that the root directory of the repository was created and initialized
under C:\cvs\eclipse.I further assume that the repository is accessed via the pserver protocol.

130

Advanced Topics of Project Development

Eclipse offers its own perspective for managing connected repositories (yes, there may be more than one
repository connected to Eclipse). You can open the CVS Repository Exploring Perspective with Window
> Open Perspective > Other > CVS Repository Exploring. In the CVS Repositories View, you can now
invoke the New > Repository Location context function. In the dialog shown in Figure 7.1, you need to
specify the domain name of the host computer, the access protocol, the absolute path of the repository’s
root directory and, if necessary, a user name and a password. In this case, the repository is located on the
same host computer (localhost) as Eclipse.

After you press Finish, the new repository appears in the CVS Repositories View.

£ Add CVS Repository
Add a new CV5 Repository

Add a new CWS Repository to the CVS Repositories view

ICV5
Location
Haost: | localhost L]
Repository path:] Cifovs/eclipse —
Authentication
User: | bdaum Lj
Password: | B
Connection
Connection type: |Dser'-.-'er LJ

" Use Default Port

" Use Port:]

V¥ validate Connection on Finish
[Save Password

15, Saved passwords are stored on your computer in & file that's difficult, but not
impazzible, for an intruder to read.

Finish | Cancel

Figure 7.1

Please note that the pserver protocol is inherently unsafe. Eclipse also supports the safe extssh
protocol, since Eclipse 3 also improved its implementation of the SSH2 protocol version. The necessary
controls are found under Window > Preferences >Team > CVS > Ext Connection Method and Window >
Preferences > Team > CVS > SSH2 Connection Method.

In addition to these external repositories, Eclipse comes with a simple default repository based on the
file system of the host platform. However, this default repository does not support version management.

131

Chapter 7

Projects in the Repository

If you want to share a project with a team, you need to apply the Team > Share Project context function
to the project. In the dialog that appears, select a repository from the list. After pressing the Next button,
you can select a CVS module in the next step. If you leave the Use Project Name as Module Name option
marked, depending on the system used it may be necessary to create such a directory beforehand by
executing an appropriate command in the host operating system. For example, if you want to create a
directory for the DukeSpeaks project in cvsnt, you would use the command

cvs import DukeSpeaks bdaum start
Details about this command-line syntax are found in the manuals of the respective repository systems.
Alternatively, you can mark the Use an Existing Module option and select an existing module from the list.
In the next step, just leave the HEAD entry selected. After all, you are creating a new main project and not
a development branch of an existing project. Then press the Next button again. The project is now com-
pared with the repository content. The next wizard page shows the changes that will be applied to the
repository. Just press the Finish button to commit them. Then switch back to the CVS Repository

Perspective to view the results (see Figure 7.2). In this case, the repository is located on the same host
computer (localhost) as Eclipse.

T§1 Cvs Repositories X e R o]

o @ | BB
EMBR :pserver:bdaum@localhost:C: fovsfedlipse ~

HEAD
VSROOT
= DukeSpeaks
== com
. B bdaum
== dukeSpeaks
Il| Face.java 1.1
|1| oldPlayerPanel java 1.1
[Player java 1.1
[PlayerModel java 1.1
|1| PlayerModellmpl.java 1.1
[PlayerPanel.java 1.1
|1| SwingWorker java 1.1
=-l=r sun
== speech
- freetts
== audio
I1| AnimatedAudicPlayer jave
=-k=r en

= =
I1| AnimatedDiphoneVoice
== relp

I1| AnimatedAudioQutput. jav
|1| AnimationEvent.java 1.1
|1| AnimationListener.java 1.
|1| Animator.java 1.1

=| .dasspath 1.1

|E| .project 1.1

[AlTests.java 1.1

&) cve.html 11,11

cvs.url 1.1,1.1

cvsdlient.himl 1.1.1.1

cvs-command.html 1.1.1.1

5| cvsnt-default.pem 1.1.1.1 v

< | >

Figure 7.2

132

Advanced Topics of Project Development

Version Management

Now you can mark the current project state as Version 1. It is this function that makes a CVS interesting
even for a sole developer. Without a CVS, Eclipse cannot manage project versions.

Select all Java files from the DukeSpeaks project. Apply the Team > Tag as Version context function to
this selection. Then enter the version number. You should apply this function only to files that you have
previously synchronized with Team > Commit. In this case, however, you might just as well apply the
function on the project itself, and thus on all source files in the project.

In principle, working on a repository-based project is no different from working on a private project. All
modifications are applied to the local resources without accessing the repository. The local resources are
synchronized with the resources in the repository only when you apply the Team > Commit context
function to selected resources. Resources that were changed since the last synchronization with the
repository are prefixed with a > character in the explorer.

Working in a Team

When several developers work on the same project, not only may the local version be newer than the
central version, but the reverse situation is also possible if resources were changed and committed by
other team members. You should always first import the changes made by other team members into
your local project before committing your changes to the repository. You can do this import with the
Team > Update function.

In cases where several team members work simultaneously with the same resource, it may happen that
the resource gets changed by more than one team member. Here, we differentiate between three conflict

types:

0 Case 1: No conflict. Either the local or the central copy of the file was changed, but not both.

0 Case 2: A conflict that can be resolved by automatic merging. This works only if the same lines
of code have not been modified in both the local and the central version.

0 Case 3: A conflict that can only be resolved manually. Here the resource contains lines that
were modified in both the local and the central version.

The various functions for synchronization of resources react differently under these different conflict
cases. The Update function, for example, replaces the local copy in any case with the central copy.
However, in cases 2 and 3, the previous local version is saved under a modified name as a backup. In
case 3, the function adds comments to the file to make the conflicts visible.

The Synchronize function, in contrast, opens the Compare Editor (see Figure 7.3). There is even a specific
Team Synchronizing Perspective that can be opened in the usual way:

1. After you press the Synchronize CVS tool button in the Synchronize View, the type of conflict is
shown here for each resource. You may then apply an appropriate context function to a selected
resource. With Override and Update you can resolve conflict cases of types 1 and 2. Type 3
cases, however, need manual treatment. For this purpose you must invoke the Open in
Compare Editor function (Figure 7.3). Here, you can apply the necessary changes.

133

Chapter 7

= g P‘l_a\fEfTEst.jaua x |1| PlayerTest.java m|

_|l| Java Structure Compare ¥

SHF1-3 Compilation Unit
= (=B PlayerTest

@ testGetHeight()

[¥] 1ava Source Compars e "j = [[L | 4L 4
Local File (1.1) B |Remote File (1.1)
* Bparam argQ * Eparam argd Lo
public PlayerTest (String argld) { pobliec PlayerTest (5tring argl)
super (axrgl) ; smper (argl) ;
public final void testGetHeight() {| puoblic final wvoid testGetHeight ||
assercTrue ("width != &660: '+p1aﬂ assertTrue ("width != &50: "+|
public final void testGetWidth() { public final wvoid testGetWidchi()
asserctTrue ("height != 500: "4+plg assertIrue ("height != 500: 9
=
;
< | 3 & | >
Figure 7.3

The Compare Editor shows the difference between the local workspace and the central repository.
Here I have applied a modification to the PlayerTest . java file. In the upper window this file is
embellished with an arrow to the right, indicating an outgoing change. The lower windows show
the local version (left) and the repository version (right). You can edit the local version to resolve
conflicts.

Generally, you have the following possibilities for resolving a conflict:

Q

Qa

(]

Discard your own modifications and copy the new central version into the workbench.
Your own code is lost!

Force your own version on the repository (but you should ask team members for
permission). Other people’s code is lost!

Manually merge the local version with the repository version.
Merge the local version with the repository version using the automated merge.

Open a new development branch (Team > Branch). The local version becomes the root of a
new branch. Later you can merge this branch with the trunk.

Finally, you have the option to extract the local changes as a patch and send it to another
team member. This team member can apply the patch and include it in the central version.
Eclipse provides the necessary functions to extract patches (Team > Create Patch) and to
apply patches to resources (Team > Apply Patch). If you don’t want to fall out with other
team members, you should use this option (delegating work to others) only if you do not
have the necessary access rights to apply the changes yourself.

2. Finally, invoke the Commit function to write the local version to the repository.

134

Advanced Topics of Project Development

Other Functions

Besides the context functions of the Team group, there are some more context functions that refer to
repositories, for example, the comparison functions Compare With > Latest From, Compare With >
Another Branch or Version, Replace With > Latest From, or Replace With > Another Branch or Version.
In addition, there is a Team group in the preferences (Window > Preferences > Team). Here you can set
several options for the CVS. For example, you can set the content type (ASCII or binary) for different file
types, and you can exclude specific file types from the repository.

Using the Export > Team Project Set and Import > Team Project Set functions, you can exchange whole
sets of projects with other team members. To do so, first call the Export function. In the dialog that
appears, mark all projects that you wish to pass on to others. The result is a . psf file, which must be
stored in a location accessible to other team members. Your peers will then specify this file during
import. Eclipse will then construct the reference projects in the workspace and will populate these pro-
jects with resources from the repository. Optionally, you can create a Working Set for these imported
projects. It may be necessary to adapt the Java Build Paths of the imported projects.

External Tools

Eclipse allows you to embed external tools (i.e., tools that were not developed as plug-ins for Eclipse).
All you have to do is to create a configuration for the external tool. To do so, invoke the Run > External
Tools > External Tools menu function. In the dialog that appears (see Figure 7.4), you will find two
configuration types: ANT-Build and Program. (Ant is discussed in more detail in Chapter 12.) Select
the Program type and press the New button. Now you can enter the parameters of the new configura-
tion, such as the name of the configuration, the location of the external tool, the working directory, and
possible command-line options (arguments).

Refresh

On the Refresh page you can specify whether, and which, workspace resources should be refreshed after
the tool has executed. This is necessary if the tool modifies the Eclipse workspace, that is, if it inserts,
modifies, or deletes resources. You can specify in which scope the resources should be refreshed: the
selected resource only, all resources in the current folder or project, and so on.

Environment

On the Environment page you can specify the operating system environment variables required by the
external tool.

Associations

Another method for embedding external programs is to define file associations. In the “Associations”
section in Chapter 4 I demonstrated how an external HTML editor can be embedded into the Eclipse
workbench.

135

Chapter 7

As an example, I have declared JavaCC as an external tool. In addition, on the Common page I have
marked External Tools in the Display in Favorites Menu list. This allows you to call this tool conve-
niently with the Run > External Tools > Java CC function in the following calls to JavaCC. I have also
removed the mark from the Launch in Background option because this tool is needed in the foreground.

& External Tools @

Create, manage, and run configurations

%
Configurations: Name: 1JavaCC|
=& Ant Build
-4 com.bdaum, SpellChedker &
= % Program El Main Iw‘h Refresh] - Environment] E common]
= % Mew_configuration Location:

] C:\Programs'JavaCCljavacc, 1ibin'javacow. exe

Browse \Workspace... ‘ Browse File System. .. ‘ Variables. .. ‘

Working Directory: -
C:\Programs'JavaCCjavacc2, 1iexamples

Browse \Workspace... ‘ Browse File System... ‘ Variables. .. ‘

- Arguments:

Variables... |

Mote: Enclose an argument containing spaces using double-guates (7).

Apply I Revert ‘

[] e=|

New Delete

Figure 7.4

Summary

In this chapter you have learned how to connect a CVS to Eclipse. You should have an understanding of
the core concepts of working with a CVS and how development in a team and version management take
place in the context of Eclipse.

A second topic was the embedding of external tools into Eclipse, so that you can continue using some of
your favorite development tools within the Eclipse workspace.

In the next chapter I will turn to a major component of the Eclipse platform, the Standard Widget Toolkit
(SWT). By using this component within your own applications, you can implement native user interfaces
with Java and forget Swing.

136

The SWT Library

Eclipse not only has an excellent Java IDE, but with SWT and JFace it also provides libraries that can
serve as a replacement for the Java AWT and Swing. The Java AWT implements its own GUI elements
and graphics operations in Java and C. Swing builds on this basis with a pure Java implementation of
more advanced GUI elements. In contrast, SWT is not much more than a platform-independent inter-
face to the host windowing system (Figure 8.1). In most cases, the SWT classes simply delegate the
various method calls to the functions of this native windowing system. To do so, SWT uses the Java
Native Interface (JNI), which allows C programs to be invoked from Java. Using this technology, it
was possible to implement most of the SWT in Java; only a small native library is required.

The advantage of this concept is that, because of the close integration with the host operating
system, the “look and feel” and the responsiveness of SWT-implemented applications are no
different than in native applications. For Java this could mean a breakthrough on the desktop.
Although the performance of Swing has improved with Java 1.4, Java applications that rely on
Swing are still unable to match native applications in presentation quality and responsiveness.

Swing JFace
java.awt swt
JNI
sun.awt Windowing system
Operating system Operating system

Figure 8.1

Chapter 8

In contrast to SWT, JFace does not talk directly to the native windowing system. JFace is completely
written in Java and uses the classes and methods of SWT to implement complex GUI elements. Because
of this, JFace components also exhibit the native “look and feel,” despite the fact that JFace GUI elements
do not have native siblings.

For this book, however, SWT-based applications are a problem. Because of their closeness to the host
windowing system, the SWT examples in this book appear in the “look and feel” of the author’s operat-
ing systems, Windows XP and Windows 2000. When you run these examples on a different operating
system, they will match the appearance of that operating system.

Unlike AWT, where GUI elements are implemented in the C sun. awt library and access only low-level
graphics functions of the host operating system, SWT uses the higher levels of the host windowing
system.

The Standard Widget Toolkit provides a set of basic GUI classes. In this chapter I first present an
overview of the SWT’s function groups and discuss the pros and cons of SWT compared to Java AWT.
Then I will explore the various function groups in detail.

During this exploration, however, I will refrain from presenting a full API specification. Instead, I will
concentrate on the significant features of the individual function groups and how they interact. The API
description for the various SWT packages is found in the Eclipse help system under Platform-Plugin
Developer Guide > Reference > API Reference > Workbench.

SWT Function Group Overview

The SWT classes are organized in the following packages:

Package Description

org.eclipse.swt This package contains all SWT-specific constants
and exceptions.

org.eclipse.swt.accessibility This package contains all classes for the
implementation of GUI support for disabled
people. See the “Accessibility” section.

org.eclipse.swt.awt This package contains the class SWT-AWT for
embedding AWT elements into the SWT. See the
“Widgets that Swing” section.

org.eclipse.swt.browser This package contains the classes implementing
the browser widget. See the “Browser Widget”
section.

org.eclipse.swt.custom This package contains widgets for the Eclipse

platform that do not have an equivalent in the
native windowing system. These widgets are
implemented in Java. See the “Custom Widgets”
section.

138

The SWT Library

Package

Description

org.

org.

org.

org.

org.

org.

org.

org.

org.

eclipse.

eclipse.

eclipse.

eclipse.

eclipse.

eclipse.

eclipse.

eclipse.

eclipse.

swt .

swt.

swt

swt.

swt .

swt.

swt

swt

swt

dnd

events

.graphics

internal

layout

ole.win32

.printing

.program

.widgets

This package supports functions for data transfer,
such as drag and drop or operations using the
clipboard. See the “Data Transfer” section.

This package contains all SWT-specific event
classes and listener interfaces. See the “Events”
section.

This package contains classes for graphics
operations. See the “Graphics” section.

This package contains internal SWT classes. SWT
applications should not directly access these
classes because their API may change anytime
without warning.

This package contains various layout classes for
automatic positioning of GUI elements. See the
“Layouts” section.

This package supports OLE (Object Linking and
Embedding) for 32-bit Windows operating
systems. See the “Windows32 Support” section.

This package implements printer support. See the
“Output to Printer” section.

This package contains only the program class.
Instances of this class represent file associations
and support starting external programs (see the
“External Tools” section in Chapter 7).

This package contains all widget classes of the
SWT APL This is the package that implements the
main functionality of the SWT. See the “Widgets”
section.

SWT—Pros and Cons

The question, of course, is: when do I use SWT and when do I use Swing to implement a GUI? In the fol-
lowing section I discuss some pros and cons of the SWT compared to Swing.

139

Chapter 8

Advantages of SWT

The main advantage of SWT is the seamless integration of an SWT-based application into the host
environment. Since SWT-based widgets don’t emulate the native user interface, as Swing does, but act
only as an adapter to the native widgets, SWT-based user interfaces are indistinguishable from user
interfaces of native applications to normal end users. Under Windows 2000 an SWT button looks exactly
like a Windows 2000 button, under Windows XP exactly like a Windows XP button, and on a Mac
exactly like a Mac button. With Swing this is not always the case. Of course, Swing comes with some
skins that mimic native user interfaces, but the right skin is not always available.

Better Interaction

In the case of responsiveness, Eclipse also has an advantage. In this aspect SWT does not show different
behavior compared to native applications, since it uses native event processing. Swing, in contrast, is a
bit slower, and this can be annoying to the end user at times. In addition, SWT is less resource-hungry
than Swing.

Since the Eclipse platform is completely implemented on the basis of SWT, SWT should be the first
choice when implementing Eclipse plug-ins and when using GUI components of the Eclipse workbench
in plug-ins.

More Robust

Finally, since most SWT-based widgets are only adapters to the native widgets of the host windowing
system, you can expect SWT to be more robust and tolerant in regard to heterogeneous hardware and
the various accelerator settings of the graphics subsystem. In fact, under Windows I have found that
SWT-based applications run without problems, while AWT- and Swing-based applications have occa-
sionally brought my machine to a full halt because of DirectX incompatibilities.

Disadvantages of SWT

There are also a few “lemons” that an SWT programmer has to deal with:

Q SWT-based applications run only on platforms for which SWT is implemented. These are
presently the various Windows platforms (including Windows CE), Linux with the GTK or
Motif (including 64-bit GTK on AMD64), various Unix derivatives (Solaris, QNX, AIX, and
HP-UX), and Mac OS X.

Q In general, the various implementations of SWT are functionally equivalent. But as you proba-
bly know, the devil is in the detail. For some functions, the behavior of GUI elements can differ
from platform to platform. If you plan to deploy a software product on multiple platforms, it is
essential to test the product thoroughly on each platform.

Q In contrast to AWT, SWT requires explicit resource management. SWT uses resources of the
host windowing system for images, colors, and fonts. These resources must be released with
dispose () when they are no longer needed. I will discuss this in detail in the “Resource
Management” section.

140

The SWT Library

The SWT Package

The org.eclipse. swt package contains only three classes: SWT, SWTException, and SWTError.
While the last two classes support error handling (recoverable and nonrecoverable errors), the SWT class
defines all SWT-specific constants, such as constants for key identifications, predefined colors, layout
variations for widgets, text styles, cursor variations, mouse actions, predefined buttons, and more.

For example, the SWT . LINE DASHDOT constant represents, as the name indicates, a dash-dotted line
style, and SWT . MouseDoubleClick represents a mouse double-click event. You will meet some of
these constants in the following examples.

Events

Events provide the basic means for applications to communicate with the GUL Typically, an application
registers listeners with widgets to receive events. Usually caused by user actions such as mouse clicks or
key presses, events inform the application via the listener about the kind of action that happened.

The org.eclipse. swt.events package contains three different groups: Listener interfaces, Event
classes, and Adapter classes. Events can be differentiated into two categories: typed events such as
ControlEvent or MouseEvent and untyped events (Event). Similarly, the Listener interfaces are
divided into typed and untyped ones.

Listeners

For each different event type there is also a different Listener class. For example, to a button (Button)
you can add a SelectionListener instance via the addSelectionListener () method. The
widgetSelected () method of this instance is invoked when the button is selected (clicked). The
SelectionListener instance is passed to the method as a parameter.

Following is an example:

public void createButton (Composite parent) {
Button myButton = new Button (parent, SWT.PUSH) ;
myButton.addSelectionListener (new SelectionListener () {
public void widgetSelected(SelectionEvent e) {
System.out.println ("Button pressed!") ;
}

public void widgetDefaultSelected(SelectionEvent e) {

}
1)
}

Here, I have added an instance of the inner anonymous SelectionListener class to the new button
as a listener.

141

Chapter 8

As a matter of fact, there is a remove..Listener () method for each add..Listener () method. In
complex systems in particular, you should deregister (remove) listening components that are currently
inactive to avoid overhead. Later, when the component becomes active again, you can add it again as a
listener with add..Listener ().

It is precisely for this reason that you should not make assumptions about the order in which registered
listeners are called. While it is true that the list of listeners is processed sequentially when an event is
fired, the sequence within this list is practically unpredictable, because components can register and
deregister at their own discretion.

Adapters

An adapter is a standard implementation of a given interface that does nothing. It contains empty meth-
ods for each method defined in the interface.

The only purpose of an adapter is programmer convenience. Instead of having to implement all the
methods of an interface, the programmer has only to declare a subclass of the corresponding adapter
and to override the methods of interest.

In the example from the previous section you can replace SelectionListener with
SelectionAdapter to avoid the definition of the empty widgetDefaultSelected () method:

public void createButton (Composite parent) ({
Button myButton = new Button (parent, SWT.PUSH) ;
myButton.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
System.out.println ("Button pressed!") ;
}

)

Events

All SWT event classes, with the exception of the Event class, are subclasses of the TypedEvent class,
which in turn is a subclass of the java.util.EventObject class.

TypedEvent is not a subclass of Event!

Each event type has a number of public fields that contain specific data about the event represented by
the event object. For example, the MouseEvent type contains the integer fields %, y, stateMask, and
button. All those fields must be accessed directly (without a get... () method). In addition, each
TypedEvent class contains the getSource () method. Not surprisingly, this method is used to retrieve
the source of the event.

In contrast, the generic Event event class contains a field named type, from which you can retrieve the
type of event. The source of the event is contained in the widget field.

142

The SWT Library

Overview of Listeners, Adapters, and Events

The following tables provide you with an overview of the relationship between SWT events, listeners,

and adapters. If no adapter is provided, the listener must be used instead.

This table describes typed events:

Listener Event Adapter
ArmListener ArmEvent -
This event happens when a widget such
as a menu is prepared (armed) for selection.
In particular, this is the case when the
mouse is moved over the widget.
ControlListener ControlEvent ControlAdapter
This event happens when a GUI element is
moved or modified in size.
Disposelistener DisposeEvent -
This event happens when a widget is
disposed.
FocusListener FocusEvent FocusAdapter
This event happens when a GUI
element gains or loses focus.
HelpListener HelpEvent -
This event happens when help for a
GUI element is requested (F1 key).
KeyListener KeyEvent KeyAdapter
This event happens when a key is
pressed or released.
MenuListener MenuEvent MenuAdapter
This event happens when a menu is
shown or hidden.
ModifyListener ModifyEvent -
This event happens after text is modified.
MouseListener MouseEvent MouseAdapter
This listener is notified =~ Generic mouse event.
when a mouse button is
pressed or released.

143

Chapter 8

Listener Event Adapter
MouseMoveListener MouseEvent -
This listener is notified Generic mouse event.
when the mouse is
moved.
MouseTrackListener MouseEvent MouseTrackAdapter
This listener is notified Generic mouse event.
when the mouse is
moved over a GUI
element or hovers
over a GUI element.
PaintListener PaintEvent -
This event happens when a
GUI element must be redrawn.
SelectionListener SelectionEvent SelectionAdapter
This event happens when a
GUI element is selected.
ShelllListener ShellEvent ShellAdapter
This event happens when the
state of a shell instance changes
(default, minimized, maximized).
TraverselListener TraverseEvent -
This event happens when the
user transfers the focus to another
GUI element by pressing Tab or
when the traverse () method
is called.
Treelistener TreeEvent TreeAdapter
This event happens when a tree
node expands or collapses.
VerifylListener VerifyEvent -

This event happens before text is
modified. By assigning the value
“false” to the doit field of the event
objects, the modification can be
vetoed.

The SWT Library

This table describes a generic event:

Listener Event Adapter

- Untyped event used internally —
within the SWT. This event type
is generated only by non-widget
objects.

Widgets

In this section I discuss the various GUI elements and their position in the inheritance tree (Figure 8.2
shows the inheritance tree for the most significant Widget classes). At the top is the Widget class. The
inheritance tree includes, of course, the obvious control elements such as buttons (But ton), text fields
(Text), or sliders (S1ider). Elements that are used to organize other elements into groups are also
included, such as the Group and Composite classes.

@ DropTarget @ ScrollBar @

EDIC G D G0

<> Com)
TabFolder CTabFolder

(JableColumn Tableltem @ @ TableTreeltem

Figure 8.2

145

Chapter 8

The Widget Class

All GUI elements are derived from the Widget abstract class. This class implements some of the
common methods for GUI elements such as dispose () or addDisposeListener (). On execution
of dispose (), a DisposeEvent object is sent to all registered DisposeListener instances.

The Control Class

The Ccontrol class is animmediate derivative of the Widget class. Instances of this class represent
window-related GUI elements and correspond directly with GUI elements of the host windowing or
operating system.

The Control class may send event objects of the following types to registered listeners:
ControlEvent, FocusEvent, HelpEvent, KeyEvent, MouseEvent, MouseTrackEvent,
MouseMoveEvent, and PaintEvent. For this purpose Control provides the necessary
add..Listener () and remove..Listener () methods for the corresponding listeners.

In addition, Control provides a rich set of methods that allow the various properties of the specific
GUI elements to be set and retrieved. In particular, the setVisible () and setEnabled () methods
allow a GUI element to be shown or hidden, enabled or disabled.

The size of a Control instance is set initially to a default value. In many cases this is the minimum size
(0x0), allowing the GUI element to remain invisible. The setBounds () method allows the size of a GUI
element to be set and also its position relative to the containing Composite (see the “Composites,
Groups and Canvas” section). Alternatively, the containing Composite can be equipped with a layout
(see the “Layouts” section) that organizes the sizing and positioning for all Control instances contained
in the Composite. The pack () method is used to recompute the size of a GUI element from the pre-
ferred size setting or from the layout.

Visual Overview

The best overview of the various native widgets in SWT is obtained with the help of one of the example
applications for Eclipse. In Chapter 1 you installed the Eclipse example applications, so now you need
only start the required application. To do this, invoke the Window > Show View > Other function. In the
dialog select SWT Examples > SWT Controls. This view then appears in the window at the bottom-right
corner. Because you need all the space you can get with this application, double-click the view’s tag to
maximize it.

Since this application is perfectly suited to visualize widgets in varying configurations, I will in most
cases refrain from depicting widgets on the following pages. Another example application, Custom
Controls, provides an overview of the non-native widgets. Both applications allow you to experiment
with events and listeners.

Displays, Shells, and Monitors

The Display and Shell classes form the basis for the construction of a user interface. The Display
class represents the GUI process (thread); the Shell class represents windows.

146

The SWT Library

Display

The Display class connects the Java application with the operating system. Each application with an
SWT-based GUI creates at least one instance of this class. Or, to be more precise, as long as only one GUI
thread is needed, only one Display instance is needed. Should you want to execute GUI operations in
multiple threads, you would then need a separate Display instance for each thread. With the help of
the Display.getCurrent () static method, you can retrieve the active Display instance for the cur-
rent thread.

Unlike the AWT and Swing, the SWT enforces an SWT object to be used only from the thread in which it
was created. To allow for multithreaded applications, the Display class provides two methods that
allow the execution of arbitrary code in the context of the SWT thread. A Runnable object can be passed
as a parameter to the syncExec () and asyncExec () methods, which in turn execute the run ()
method of Runnable. In the following chapters I will make use of this technique frequently.

Figure 8.3 shows how the SWT Controls example application organizes the various native widget types
in different pages. On the right you can configure the selected widget type by specifying parameters. The
names of the buttons reflect the names of the corresponding SWT constants. The configured widgets are
shown on the left.

Probiems | New Search (CJSWT Contrals 23 =&

Button |Ean'.'as] Cumbc-i CDuIBer] Dialog | Group | Label | List i Prog.ressﬂsr] Sash | Shel | Sider [Scale | TabFolder 1 Table] Text | To:nl33r| Tree]

Parameters
<t Buttons Styles Other
ﬂ Three | @ SWT.PUSH W Enabled
" SWT.CHECK W visbie
™ SWT.RADIO

Image Buttons

E=1N=1HC)

TOGGLE

" SWT.ARROW
I~ SWT.FLAT
™ SWT.BORDER
Size Colors and Font
* Prefered Foreground Color 1l
T 10%10
ol Background Color [
{ 50X 50 J
© 100% 100 Font... Defaults |
™ Horizontal Bl
Alignment
C Left
 center
 Right
| 65
e
Listeners
Select Listerers | W Listen Clear

=Svent{Button {One} time=20711342 data=rul])
Selecton: SelechonEvent{Button {One} time=20711952 data=null item=rull detzd =0 x=0 y=0 width=0 height=0 stateMagk=0 doit=trug}

Figure 8.3

147

Chapter 8

In addition to these services, the Display class provides methods that allow you to retrieve GUI
properties of the host windowing system, such as getSystemFont () and getDoubleClickTime ().
Display also manages the resources of the host windowing system.

Finally, the Display class provides methods for the general management of widgets, such as
getActiveShell () and getFocusControl (). The map () method allows mapping the coordinates
of points or rectangles from the coordinate system of one control to the coordinate system of another
control.

A Display instance generates events of the Event class (see the “Events” section) and of the SWT . Open
or SWT . Close type, respectively. The post () method can be used to generate events of the KeyDown,
KeyUp, MouseDown, MouseUp, or MouseMove type programmatically. This feature can be used to auto-
mate user interfaces. Here is an example:

// Translate window coordinate (100,50) to display coordinate system
Point coord = display.map(shell, null, 100, 50);

event = new Event () ;

event.type = SWT.MouseMove;

event .x = coord.x;

event.y = coord.y;

display.post (event) ;

Shell

The shell class represents a window on the desktop of the host windowing system. A Shel1l instance
can be in one of three different operation modes: maximized, default, and minimized. When the opera-
tion mode changes, the Shell generates an event of the ShellEvent type.

You must not subclass Shell. (An exception is thrown at runtime in such a case.)
To implement your own window types, it is better to subclass the JFace Window
class (see the “Dialogs and Windows” section in Chapter 9).

SWT supports two different shell types:

Q Top-level shells are used to implement the main window of an application.
Q Dialog shells are shells that are subordinate to other shells.
Which of the two types is created when a new Shel1l instance is created depends on the constructor’s

parameter: If a Display instance is passed to the constructor, a top-level shell is created; if a Shell
instance is passed, a dialog shell is created.

148

The SWT Library

When a shell is created, you can optionally supply one or several style parameters from the
following table.

Style Parameter Description

SWT . NONE Default window. Layout depends on host system.

SWT . BORDER Bordered window (depends on host platform).
SWT.CLOSE Window has a title bar with a Close button.

SWT.MIN Window has a title bar with a Minimize button.
SWT.MAX Window has a title bar with a Maximize button.
SWT.NO_TRIM Window has neither a title bar nor a border.
SWT.RESIZE Window can be resized by using a mouse action.
SWT.TITLE Window has a title bar.

SWT.SHELL TRIM Combination of styles suitable for a top-level window:

(SWT.CLOSE | SWT.TITLE | SWT.MIN | SWT.MAX |
SWT .RESIZE).

SWT.DIALOG TRIM Combination of styles suitable for a dialog window:
(SWT.CLOSE | SWT.TITLE | SWT.BORDER).

There are additional constants that control the modal behavior of the window: SWT . APPLICATION
MODAL, SWT . MODELESS, SWT . PRIMARY MODAL, and SWT.SYSTEM MODAL. A modal window in the
foreground does not allow other windows (of the same application or even of the whole system) to come
to the foreground. Such a window should be instrumented with a Close button, so that the end user can
close the window.

If no style parameter was specified, the default style depends on the host system and on the shell type.
For example, for Windows CE the default style is SWT . NONE. For other Windows versions, however, the
default style is SHELL TRIM for top-level shells and DIALOG TRIM for dialog shells.

The setImage () method can be used to specify an icon that represents the window when it is minimized.
This icon is usually displayed in the title bar, too. Images in several resolutions can be specified via the
setImages () method. The platform will choose an icon from these images that fits best for a specific
purpose.

Figure 8.4 shows a shell with two buttons under Windows 2000. The shell was created with the

SWT . BORDER, SWT . TITLE, SWT.CLOSE, SWT.MIN, and SWT . MAX options, so it is equipped with a 3D
border, a title bar, a Close button, a Minimize button, and a Maximize button.

149

Chapter 8

=

E—

Figure 8.4

Region

A shell does not necessarily have a rectangular outline. By assigning a region to a shell, you can mold a
shell into any imaginable outline. To do so, first create a Region instance to which you add one or sev-
eral outlines using the add () method. You can even use the subtract () method to punch holes in the
region. Then assign the region to the shell with the Shell setRegion () method. Note that this assign-
ment takes effect only for shells that were created with the SWT.NO_TRIM style. The consequence is that
you must organize the closing, moving, and resizing of the shell by yourself. In the “Player Module” sec-
tion in Chapter 10 I show how this is done.

Setting Up the Workbench

Before writing the first example program for a shell, you need to prepare the workbench. Create a new
project called widgets. In this project create a new class called widgetTest. The SWT library is not yet
known to this project. You must therefore add it as an external JAR file to the Java Build Path. I described
how to do this in the “Project Properties” section in Chapter 4.

When running under Windows you will find the SWT library under
\eclipse\plugins\org.eclipse.swt.win32 3.0.0\ws\win32\swt.jar
Under Linux GTK you need two JAR files:

/opt/eclipse/plugins/org.eclipse.swt.gtk 3.0.0/ws/gtk/swt.jar
/opt/eclipse/plugins/org.eclipse.swt.gtk 3.0.0/ws/gtk/swt-pi.jar

Under other operating systems you will find the SWT libraries in similar places. Under later Eclipse ver-
sions you need to modify these paths accordingly.

The First SWT Program

You can now write your first SWT-based program (see Listing 8.1). First, create a new Display instance
and then a new top-level shell by passing the Display instance to the Shell constructor. (For a dialog
shell you would instead pass another Shell instance.)

import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;

public class widgetTest {

public static void main(String[] args) ({
// Create Display instance

Listing 8.1 (Continues)

150

The SWT Library

final Display display = new Display () ;
// Create top level Shell (pass display as parent)
final Shell toplevelShell = new Shell (display) ;
// Set title line
toplevelShell.setText ("TopLevel.Titelzeile") ;
// Display shell
toplevelShell.open() ;
// Create a dialog shell (pass toplevelShell as parent)
final Shell dialogShell = new Shell (toplevelShell) ;
// Set title line
dialogShell.setText ("Dialog.Titelzeile") ;
// Display shell
dialogShell.open() ;
// Wait until top level shell is closed
while (!toplevelShell.isDisposed()) {
// Check for waiting events
if (!display.readAndDispatch()) display.sleep() ;

}

Listing 8.1 (Continued)

The while loop at the end of this program is very important. Under SWT the programmer is responsible
for the event loop! Without this loop, the user interface would lock up while this program is running.
This problem is solved in the while loop with the readAndDispatch () method, which reads events
waiting at the Display instance and passes them to the listening GUI element. If no more events are
waiting, the sleep () method, which waits until a new event occurs, is invoked.

SWT Run Configuration

Now you can execute this little program. For this purpose you must create a new Run configuration of
the Java Application type. To do so, invoke the Run > Run function and press the New button. Specify
widgetTest as the name for the new configuration, and do the same under Main Class. Under Project
specify widgets.

However, these specifications are not sufficient to run this program successfully. The SWT requires
native modules, and these modules must be made known to the Java Virtual Machine. The path of the
module library is specified in the Run configuration on the Arguments page under VM Arguments.
In the case of a Windows host system, you have to specify the following parameters:

-Djava.library.path=
C:\eclipse\plugins\org.eclipse.swt.win32 3.0.0\os\win32\x86

Under Linux/GTK specify

-Djava.library.path=
/opt/eclipse/plugins/org.eclipse.swt.gtk 3.0.0/0s/linux/x86

Under other host systems you will find this module library in a similar place. Under later Eclipse ver-
sions you need to modify these paths accordingly.

151

Chapter 8

Then you can press the Run button and be rewarded with a new window on your desktop.

Monitor

Since Eclipse 3.0 the SWT also supports hardware setups with multiple monitors. What first sounds like
a special purpose application isn’t. Many professional notebook computers are able to distribute the
desktop over the internal LCD monitor and a connected external monitor.

Eclipse supports such hardware with the SWT Monitor class. With the Display getMonitors ()
method you can obtain an array of connected monitors. The getPrimaryMonitor () method delivers a
Monitor instance for the primary monitor. In particular, the Monitor class provides the getBounds ()
and getClientArea () methods, with which you can obtain the position and size of the monitor (or, to
be precise, of the monitor’s client area) within the display area. (The client area does not, for example,
contain the Windows taskbar.)

SWT applications that position, move, or resize dialogs, menus, and so on should use these methods to
ensure an appropriate user experience. For example, you want to make sure that dialogs and menus are
not distributed over two monitors but appear completely on the primary monitor. In the “Player
Module” section in Chapter 10 I show how the Monitor class can be used in a real-world application.

Dialogs

The Dialog class is an abstract class from which you can derive concrete native dialogs. The necessary
code is in Listing 8.2.

public class MyDialog extends Dialog {
Object result;
// Constructor with style parameter
public MyDialog (Shell parent, int style) ({
super (parent, style);
}

// Constructor without style parameter
public MyDialog (Shell parent) {
this (parent, 0);
// The 0 can be replaced by own default style parameters.
1
public Object open () {
// Get containing shell (as set in the constructor)
final Shell parent = getParent () ;
// Create new dialog shell
final Shell shell = new Shell (parent, SWT.DIALOG TRIM |

SWT .APPLICATION MODAL) ;

// Transfer dialog title to shell title
shell.setText (getText ()) ;

// TODO Create all widgets here

// Usually the result variable is set in the
// event processing of the widgets
shell.open() ;

// Wait until dialog shell is closed

final Display display = parent.getDisplay() ;

Listing 8.2 (Continues)

152

The SWT Library

while (!shell.isDisposed()) ({
if (!display.readAndDispatch())
display.sleep() ;

}

return result;

}

Listing 8.2 (Continued)

Predefined Dialogs

The SWT already contains some concrete subclasses of Dialog, such as these:

Subclass Description
ColorDialog Dialog for selecting a color.
DirectoryDialog Dialog for selecting a directory in the host file system.
FileDialog Dialog for selecting a file in the host file system. The SWT . OPEN

and SWT . SAVE style parameters are used to determine the purpose
for which the file is selected.

FontDialog Dialog for selecting a text font.

MessageBox Dialog for displaying a message. With various style parameters you
can determine which buttons are used to instrument the dialog.
The following combinations are possible:

SWT .OK

SWT.OK | SWT.CANCEL)

SWT.YES | SWT.NO)

SWT.YES | SWT.NO | SWT.CANCEL)

SWT .RETRY |SWT.CANCEL)

SWT.ABORT | SWT.RETRY | SWT.IGNORE)
In addition, you can determine which icon is displayed with the mes-
sage:

SWT.ICON_ERROR
SWT.ICON_INFORMATION
SWT.ICON_QUESTION

SWT.ICON_WARNING
SWT.ICON_WORKING

PrintDialog Dialog for selecting a printer and for the printer settings. See also
the “Output to Printer” section.

153

Chapter 8

The “look and feel” of these dialogs depends, of course, on the host system. To get an idea of what these
dialogs look like on your platform, refer to the Dialog page in the Eclipse example application, SWT
Controls.

MessageBox

In Listing 8.3 I show how you can create and use a MessageBox dialog in an example program of your
own. Figure 8.5 shows the results.

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.MessageBox;
import org.eclipse.swt.widgets.Shell;

public class widgetTest {

public widgetTest () {
super () ;
}

public static void main(String[] args) ({
// Create Display instance
final Display display = new Display () ;
// Create top level shell (pass display as parent)
final Shell toplevelShell = new Shell (display) ;
// Set title line
toplevelShell.setText ("TopLevel.titleLine") ;
// Show shell
toplevelShell.open() ;
while (true) {
// Create message box
MessageBox box =
new MessageBox (
toplevelShell,
SWT .RETRY
| SWT.CANCEL
| SWT .APPLICATION MODAL
| SWT.ICON_QUESTION) ;
// Set title
box.setText ("Test") ;
// Set message
box.setMessage ("Do you want to try again?");
// Open message box
if (box.open() == SWT.CANCEL)
break;

Listing 8.3

154

The SWT Library

Figure 8.5

Figure 8.5 shows the message box created by this example under Windows XP. You can tell from the pic-
ture that this dialog is native, indeed. Here I'm running a German language version of Windows 2000.
The Retry button (Wiederholen) and the Cancel button (Abbrechen) are generated by Windows and are
consequently in the German language.

However, for your own complex dialogs you will probably not use the SWT Dialog class but rather the
similarly named JFace class (see Chapter 9), because the JFace version is much more convenient to use.
Most of the Eclipse workbench dialogs, for example, build upon the JFace Dialog class and not on low-
level SWT dialogs.

Composites, Groups, and Canvas

Usually you will not mount widgets directly into a shell but rather will put one or several hierarchies of
Composite instances in between. Composites are used to organize widgets into groups. For example,
you can combine the buttons of a dialog into one group with the help of a Composite. This is important
for radio buttons, where pressing one button releases all other buttons in the same group. Another possi-
bility is organizing several input fields and labels into a group to improve the layout or the navigation.

If you want to add widgets to a Composite, you will search in vain for an appropriate add () method.
Instead, under the SWT, GUIs are constructed in a completely different way. Each time you create a new
widget, the containing Composite is passed as a parameter to the constructor. The widgets in the
Composite are ordered in the sequence of their creation.

Since Composites are widgets, too, you must specify a containing Composite instance when you cre-
ate a new Composite (shells are also Composites). You will usually transfer the background and fore-
ground color and the type font from the containing composite. Also, you can specify the position and the
dimensions of the new Composite in relation to the containing Composite.

// Create new Composite instance

final Composite composite = new Composite (parent,0) ;
// Get properties from the containing composite
composite.setBackground (parent.getBackground ()) ;
composite.setForeground (parent .getForeground()) ;
composite.setFont (parent.getFont ()) ;

// Set position and size

composite.setBounds (X,Y,WIDTH, HEIGHT) ;

You may optionally specify the constant SWT.NO_RADIO_GROUP as a second parameter in the construc-
tor if you don’t want the composite to interfere with the release mechanism of the radio buttons.

155

Chapter 8

The Group class is a subclass of the Composite class. This class is also equipped with a border

line that clearly demarcates the group area. The style of this line can be influenced with the

SWT .SHADOW_ETCHED IN, SWT.SHADOW_ ETCHED OUT, SWT.SHADOW IN, SWT.SHADOW_OUT,

and SWT . SHADOW_ NONE constants, provided that the host windowing system supports this. The
setText () method can be used to place a title into this border line. In many cases Groups are a better
choice than Composites. When dialogs become complex, Groups allow a better navigation with the
keyboard and thus are more user-friendly for disabled persons (see the “Accessibility” section).

For Composite and Group instances that contain other widgets, you usually will set a layout. I will
discuss this in more detail in the Layouts section.

The Canvas class is a subclass of Composite. Its purpose is not to contain other GUI elements
(although this is possible) but to serve as a canvas for drawing operations. In particular, if you want to

invent your own GUI elements, you can draw them on a Canvas instance.

In addition, the Canvas class supports a caret (setCaret () and getCaret ()).

Buttons

Buttons come in many faces. The button type created by the Button () constructor depends on the style
constant passed to this constructor, as shown in the following table.

Style Constant Buttons Description

SWT . ARROW «|] 2] 4] Button with a small arrow.
Normally used for drop-down
menus and the like.

SWT . CHECK | S S Check box that can be marked. The
Ge—— button text is printed beside the
rorore check box.

SWT . PUSH ‘;_‘I""‘; = Pushbutton with the button text on
e the button face.

ol el

SWT.RADIO P Radio button. Radio buttons within
Lol T T the same group release one another
rococe when pressed.

SWT . TOGGLE o A toggle button is similar to a
e pushbutton. The difference is that
z:‘j‘ﬂ the bujcton remains pushed af'ter the

first click. The second click will
release it.

In addition, the following table shows the options for controlling the look and the alignment of a button.
However, not all platforms support these attributes.

156

The SWT Library

Style Constant

Description

SWT.FLAT

SWT .BORDER

The button is not drawn in 3D fashion but in a flat fashion.

The button is enclosed by a frame.

Using the setText () and setImage () methods you can assign text or an image to a button. For push-
buttons and toggle buttons, the text or the image appears on the button face. For check boxes and radio
buttons, the text or image is shown beside the button. Buttons of the ARROW type show neither text nor

image.

Both methods are mutually exclusive. Use either

final Button button

new Button (composite, SWT.PUSH) ;

button.setText ("Press me!") ;
// React to click events
button.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
System.out .println ("Key was pressed") ;

}
1

or

final Button button
Display display
final Image image

= new Button (composite, SWT.PUSH) ;
composite.getDisplay () ;
new Image (display, "images/buttonl.gif") ;

button.setImage (image) ;
// React to click events
button.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e) {
System.out .println ("Key was pressed") ;

1
1)

// Dispose image when button is disposed
button.addDisposelListener (new DisposeListener () {
public void widgetDisposed (DisposeEvent e) {
image.dispose () ;

!
1)

In the second case, additional logic was needed to dispose of the Image resource when it was no longer

required. This was necessary because images allocate resources in the host operating system.

A good source for images for buttons, toolbars, and other purposes is the icon
directories in the various Eclipse plug-ins, for example, \eclipse\plugins\
org.eclipse.pde.ui_3.0.0\icons\obj16.

157

Chapter 8

Sliders and Scales

Both the Slider and Scale classes support entry of a numeric value via a sliding control. Usually the
Slider class is used for positioning window contents (scroll bar), while Scale is used for adjusting
numeric parameters such as volume, brightness, contrast, and so on. Figure 8.6 shows an instance of
each Slider and Scale, enclosed by a Group widget.

i Slider

- .
i Scale

Figure 8.6

The following style constants influence the presentation of these widgets:

SWT .HORIZONTAL Horizontal or vertical orientation.
SWT.VERTICAL

SWT . BORDER Scales are surrounded with a frame. This option has no
effect for the S1ider class.

The following example in Listing 8.4 creates a simple slider:

final Slider slider = new Slider (composite, SWT.HORIZONTAL) ;
// Set minimum value
slider.setMinimum(0) ;
// Set maximum value
slider.setMaximum(1000) ;
// Set increment value for arrow buttons
slider.setIncrement (50) ;
// Set increment value for clicks on the slider face
slider.setPagelIncrement (200) ;
// Set current position
slider.setSelection (500) ;
// Set size of handle
slider.setThumb (200) ;
// React to slider events
slider.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e) {
System.out.println("Slider was moved to: "
+slider.getSelection()) ;
1

1)

Listing 8.4

158

The SWT Library

With the corresponding get... () methods you can retrieve these values, too. Scale provides the same
methods, except the set Thumb () and getThumb () methods.

ProgressBar

The ProgressBar class supports the presentation of a progress indicator. The API is very similar to that
of the S1ider class, except that ProgressBar does not generate events.

There are also two more style constants:

a SWT . SMOOTH enforces a continuous progress indicator. Otherwise, the progress indicator is bro-
ken into segments.

QO SWT.INDETERMINATE is used to create a constantly moving progress indicator. When the
progress indicator reaches the maximum size, it starts over with the minimum size. With this
option set you cannot use setSelection () for indicating progress.

Using this class is not as easy as it seems, because the progress indicator is updated only when the event
loop is not locked.

Scrollable and ScrollBar

Some widgets are already equipped with scroll bars. All these widgets are subclasses of Scrollable.
You can control which sliders are active for a Scrollable instance with the style constants

SWT.H SCROLL and SWT.V_SCROLL. The Scrollable class, by the way, does not use Slider
instances to implement the scroll bars but instead uses instances of the Scrol1lBar class. In contrast to
Slider and Scale, ScrollBar is not a subclass of Control, that is, it is not a native widget.

Text Fields and Labels

Instances of the Text class are used to display, enter, or modify text. The following style constants can
be used to configure Text instances:

SWT .MULTI Determines whether the text field has multiple lines or only a

SWT.SINGLE single line.

SWT.READ ONLY When this option is set, the end user cannot modify the text in the
text field.

SWT . WRAP When this option is set, automatic word wrapping is supported.

Figure 8.7 shows an example. The upper field is a Text instance; the lower field is a StyledText
instance (see the “Custom Widgets” section). For both fields I set the Eras Book font, and for the lower
field I applied additional formatting. In addition, for each field I specified a vertical scroll bar with
SWT .VERTICAL.

159

Chapter 8

L lv]

Text
The guick brovyn fox jumps over the lazy dog.
One Two Three

StyledText
The quick brown fox jumps over the lazy dog. =
One Two Three T

Figure 8.7

Instances of the Text class create the following event types:

SelectionEvent When the Enter key is pressed, the
widgetDefaultSelected () method is called for all
registered SelectionListeners.

ModifyEvent This event is fired after text is modified.

VerifyEvent This event is fired before the widget’s text content is
modified. By assigning the value false to the event object’s
doit field, you can veto the modification of the text.

The example in Listing 8.5 creates a text field with a VerifyListener event to reject invalid
modifications:

final Text text = new Text (composite, SWT.SINGLE) ;
text.setText ("Input text");
text.addSelectionListener (new SelectionAdapter () {
public void widgetDefaultSelected(SelectionEvent e) {
System.out .println ("Enter was pressed: "+text.getSelection()) ;
1
) g

text.addModifyListener (new ModifyListener () {
public void modifyText (ModifyEvent e) {
System.out.println ("Text after modification: "+text.getText()) ;
}

1)
text.addVerifyListener (new VerifyListener() ({
public void verifyText (VerifyEvent e) {
String s = text.getText () ;
System.out.println ("Text before modification: "+s);
// Veto: Text longer than 10 characters is prohibited
if (s.length() >= 10) e.doit = false;
1
) s

Listing 8.5

The Text class has a rich variety of methods for processing text input. In particular, it has methods for
exchanging text content with the host system’s clipboard (cut (), copy (), and paste ()).

160

The SWT Library

Not surprisingly, instances of the Label class are used to label other widgets. In addition, you can use
labels to display an image or a horizontal or vertical line. You can control label presentation and purpose
with the following style constants:

SWT . SEPARATOR The label is displayed as a horizontal or vertical line.

SWT .HORIZONTAL Determines the orientation of the label.
SWT.VERTICAL

SWT . SHADOW_IN Determines the shadowing effects of the label.
SWT .SHADOW_OUT
SWT . SHADOW_NONE

SWT . CENTER Determines the alignment of text or image labels.

SWT .LEFT

SWT.RIGHT

SWT . WRAP When the option is set, automatic word wrapping is supported for
text labels.

The following code can be used to create a text label:

final Label label = new Label (composite, SWT.NULL) ;
label.setText ("Enter") ;

For image labels, the image is set with the set Image () method. Just as with Buttons (see the
“Buttons” section), Image instances should be released when they are no longer needed.

Tables, Lists, and Combos

Tables and lists are used to present contents in columns. Both widget types support the selection of sin-
gle or multiple elements. Combos are a space-saving variant for selecting items from a list.

Tables

The Table class is responsible for the presentation of tables. In addition to the Composite style
constants, Table provides these other style constants:

SWT.SINGLE The end user can select only single or multiple table rows,
SWT.MULTI respectively.
SWT.FULL_SELECTION The whole table row is selectable. (Normally, only the first

element of a row can be selected.)

161

Chapter 8

SWT . CHECK Each table row is equipped with a check box placed in
front of the row. The state of the check box can be accessed
with the setChecked () and getChecked () methods.

SWT.VIRTUAL This constant indicates a virtual table, i.e., a table with
table items that are created lazily when actually needed.
This is to support very large tables. When using a virtual
table, you should explicitly set the item count via the
setItemCount () method. When a new table item is
needed, the table will create it and fire an SWT . SetData
event. The Event object carries the item, which then can
be completed by the Listener before it is displayed.

Table instances generate SelectionEvent objects when a table element is selected. The
SelectionListener widgetDefaultSelected () method is called when Enter is pressed for a
table element or when a table element is double-clicked.

Figure 8.8 shows, from left to right, a table, a list, and a combo. At the right, the top widget shows the
combo in its normal state; the bottom widget shows the same combo expanded after a click on the arrow
button. I made the grid lines and the column headers visible for the table.

1
Mame I Tuwpe | Size I Modified |
CilIndex:0 classes 0 todaw
Index:l databases 2586 <emphyz
@Index:Z images 91571 vesterday

Index:3 classes 0 today
Index:4 databases 2586 <emphyz Apples Line 3 j
@Index:S images 91571 vesterday Oranges

Bananas
Index:6 classes 0 today Grapefruit
Index:? databases 2556 <empty= Peaches
@Index:s images 91571 vesterday K

Apricots
CiIndex:d classes 0 today Str avbistice
Index:lD databases 2556 <empty> The Longest String
@Index: 11 | images 91571 vyesterday
Index:12 classes 0 today

Index: 13 databases 2556 @ <empty=
@Index:l*‘r images 91571 vesterday
Index:15 classes 0 today

Figure 8.8

Table Columns

To configure individual table columns you can assign TableColumn to a Table instance. This is done
in the same way as widgets are added to a Composite—the Table instance is passed to the

162

The SWT Library

TableColumn () constructor as a parameter. In addition, you can specify a column header and a width
(in pixels) for each table column, using the setText () and setWidth () methods.

The end user is still able to modify the width of table columns. In addition, the column headers act as
buttons. In consequence, TableColumn instances can create a variety of events. A ControlEvent is
fired when a table column is moved or modified in size. A SelectionEvent is fired when a column
header is clicked.

You can specify the alignment of table columns with the help of the SWT . LEFT, SWT . CENTER, and
SWT . RIGHT style constants. You can use the showColumn () method to reveal a specific column in the
visible area.

Table Rows

In a similar way you can create table rows as TableItem objects. The setText () method is used to set
the content of a table row. The content is passed to this method as a string or, in the case of multicolumn
tables, as an array of strings. Since Eclipse V3 you can even set text color, background color, and font

for each individual TableItem via the setForeground (),setBackground (), andsetFont ()
methods.

The Table setHeaderVisible () and setLinesVisible () methods are used to show or hide the
column headers and grid lines.

The code in Listing 8.6 creates a table with three columns and two lines.

final Table table = new Table (composite,
SWT.SINGLE | SWT.H SCROLL |
SWT.V_SCROLL | SWT.BORDER |
SWT.FULL_ SELECTION) ;
// Create three table columns
final TableColumn coll = new TableColumn (table, SWT.LEFT) ;
coll.setText ("Column 1") ;
coll.setWidth(80) ;
final TableColumn col2 = new TableColumn (table, SWT.LEFT) ;
col2.setText ("Column 2") ;
col2.setWidth(80) ;
final TableColumn col3 = new TableColumn (table, SWT.LEFT) ;
col3.setText ("Column 3") ;
col3.setWidth(80) ;
// Make column headers and grid lines visible
table.setHeaderVisible (true) ;
table.setLinesVisible (true) ;
// Create table rows
final TableItem iteml = new TableItem(table,0) ;
iteml.setText (new String[] {"a","b","c"});
final TableItem item2 = new TableItem(table,0) ;
item2.setText (new String[] {"d","c","e"});
// Add selection listeners
table.addSelectionListener (new SelectionAdapter() {
public void widgetDefaultSelected (SelectionEvent e) {
processSelection ("Enter was pressed: ");
}

Listing 8.6 (Continues)

163

Chapter 8

1)

public void widgetSelected (SelectionEvent e) {
processSelection ("Table element was selected: ");
1

private void processSelection(String message) {
// Get selected table row
TableItem[] selection = table.getSelection() ;
// Because of SWT.SINGLE only one row was selected
TableItem selectedRow = selection[0];
// Format the table elements for output
String s = selectedRow.getText (0)+", "+
selectedRow.getText (1) +", "+selectedRow.getText (2) ;
System.out.println (message + s);

}

Listing 8.6 (Continued)

Lists

If you want to offer only a single-column list of string elements for selection, using the List class is
much simpler than creating a table. List instances generate the same event types as Table instances, but
the widgetDefaultSelected () method is called only in the case of a double-click on a list element.
You can use the SWT . SINGLE and SWT . MULTT style constants to specify whether the end user can select
only single or multiple list entries.

In Listing 8.7 I construct a list with three entries. The selection of multiple entries is allowed and
processed.

164

final List list = new List (composite, SWT.MULTI) ;
list.add ("Elementl") ;

list.add ("Element2") ;

list.add ("Element3") ;
list.addSelectionListener (new SelectionAdapter () {

1) ;

public void widgetDefaultSelected (SelectionEvent e) {
processSelection ("Enter was pressed: ");
}

public void widgetSelected(SelectionEvent e) {
processSelection ("List entry was selected: ");
1

private void processSelection(String message) {
// Get selected entries
String[] selection = list.getSelection() ;
// Format entries for output
StringBuffer sb = new StringBuffer() ;
for (int i = 0; i < selection.length; i++) {
sb.append (selection [i]l+" ") ;

System.out.println (message + sb);

}

Listing 8.7

The SWT Library

Combos

Finally, there is the Combo class, which combines a selection from a list with text input. Instances of the

Combo class generate the following event types:

SelectionEvent If the Enter key is pressed on a list entry, the
SelectionListener widgetDefaultSelected()
method is invoked.

If a list entry is selected, the widgetSelected () method is
called instead.

ModifyEvent This event is fired when the text is changed via the keyboard or
via list selection.

The following style constants influence the presentation and the function of Combo instances:

SWT . DROP_DOWN The selection list is shown only after a click on the arrow
button.
SWT.READ_ONLY When this option is specified, values can be only selected from

the list but not entered by the keyboard.

SWT . SIMPLE The selection list is always visible if this option is specified.

The code in Listing 8.8 creates a Combo instance.

final Combo combo = new Combo (composite, SWT.DROP_DOWN) ;
// Create three list elements
combo.add ("Elementl") ;
combo.add ("Element2") ;
combo.add ("Element3") ;
// Supply default value for text field
combo.setText ("Select") ;
// Add selection listener
combo.addSelectionListener (new SelectionAdapter () ({
public void widgetDefaultSelected (SelectionEvent e) {
System.out .println ("Enter was pressed: " + combo.getText ()) ;
}
public void widgetSelected(SelectionEvent e) {
System.out.println("List entry was selected: " +
combo.getText ()) ;
}
1)

// Add Modifylistener
combo.addModifyListener (new ModifyListener () ({
public void modifyText (ModifyEvent e) {
System.out .println ("Text was modified: "+combo.getText()) ;
}
1)

Listing 8.8

165

Chapter 8

The non-native CCombo widget is very similar to the Combo widget but also supports borderless
presentation. It is usually used within table cells.

Trees

The Tree class is responsible for the presentation of trees. The presentation and functionality of the tree
can be influenced by the following style constants:

SWT.SINGLE The end user can select only single or multiple tree nodes, respectively.
SWT .MULTI
SWT.CHECK Each tree node is equipped with a check box in front of the node. The

state of the check box can be accessed via the setChecked () and
getChecked () methods.

Figure 8.9 shows two trees. The tree on the left has only text nodes, while the tree on the right has images
assigned to the tree nodes.

~Tree——— ~Tree With Images —
- Mode 1 -3 Mode 1
-- Mode 2 ;
- Mode 3
- Mode ¢
Figure 8.9

Tree instances generate the following event types:

SelectionEvent In case of a double-click or when the Enter key is pressed on a tree node,
the SelectionListener widgetDefaultSelected () method is
called. The widgetSelected () method is invoked when a tree node is
selected.

TreeEvent The TreeListener treeExpanded () method is called when a tree node
is expanded. The treeCollapsed () method is called when a tree node is
collapsed. The node in question is passed in the item field in the
TreeEvent object.

The individual tree nodes are implemented as TreeItem instances. When such an instance is created, you
can pass either the Tree object or another TreeItem instance as the parent node via the constructor. The
text content of a TreeItem instance is set via the setText () method; its text font is set with the
setFont () method. In addition, you can assign an image to each tree node using the set Image ()
method. As already discussed with Buttons (see the “Buttons” section), you should dispose of Image
instances when they are no longer needed.

The code in Listing 8.9 creates a simple tree with three nodes. The first node has two child nodes.

166

The SWT Library

final Tree tree = new Tree (composite, SWT.SINGLE) ;
// Create first node level
final TreeItem nodel = new Treeltem(tree, SWT.NULL) ;
nodel.setText ("Node 1") ;
final TreeItem node2 = new Treeltem(tree, SWT.NULL) ;
node2.setText ("Node 2") ;
final TreelItem node3 = new Treeltem(tree, SWT.NULL) ;
node3.setText ("Node 3") ;
// Create second node level
final TreeItem nodell = new Treeltem(nodel, SWT.NULL) ;
nodell.setText ("Node 1.1");
final TreeItem nodel2 = new Treeltem(nodel, SWT.NULL) ;
nodel2.setText ("Node 1.2") ;
// Add selection listener
tree.addSelectionListener (new SelectionAdapter() {
public void widgetDefaultSelected (SelectionEvent e) {
System.out .println ("Enter was pressed: " +
tree.getSelection() [0] .getText ()) ;
}
public void widgetSelected (SelectionEvent e)
System.out .println ("Tree node was selected: " +
tree.getSelection() [0] .getText ()) ;

}
i)

// Add TreeListener

tree.addTreelistener (new TreeAdapter () {
public void treeCollapsed (TreeEvent e) {
System.out .println ("Tree node was collapsed: " +

((Treeltem) e.item) .getText()) ;

}

public void treeExpanded (TreeEvent e) {
System.out .println ("ree node was expanded: " +
((TreeItem) e.item) .getText());

1
1)

Listing 8.9

For larger trees you will usually refrain from constructing the tree completely before displaying it. A bet-
ter way is to construct a tree lazily, meaning to create nodes as they become visible, that is, when their
parent nodes are expanded.

Sashes

The sSash class is responsible for representing sashes. Sashes can be used to segment a Composite into
separate areas. The end user is able to reposition the sashes so that the size of the areas can change. Since
the sashes don’t control the size of the adjoining areas themselves, the programmer is responsible for
reacting to events from Sash instances and adjusting the size and position of these areas accordingly.
Sash instances create events of the SelectEvent type. The orientation of a sash can be controlled via
the SWT.HORIZONTAL and SWT . VERTICAL style constants.

167

Chapter 8

Instead of organizing the coordination of sashes manually, you can also make use of the SashForm class
(see the “Custom Widgets” section).

Tabbed Folders

The TabFolder class implements a tabbed folder, a multipage unit in which a page can be brought to the
front by clicking on the page’s tab. Each TabFolder instance is a Composite, which may contain one or
several TabItem instances. Each TabItem object relates to a tab, and the tab’s text can be set with the
setText () method. With the setControl () method you can assign a Control instance (such as a
Composite) to each TabItem object. The Control instance is made visible when the corresponding
TabItem object is selected. The Control instance must be created as a part of the TabFolder (i.e., by
specifying the TabFolder instance in the constructor when the Control is created).

TabFolder supports only the SWT . BORDER style constant.
TabFolder instances generate SelectionEvents on the selection of a TabItem.
The code in Listing 8.10 creates a tabbed folder with two tabs.

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.*;

public class widgetTest {

public static void main(String[] args) ({
// Create display instance
final Display display = new Display() ;
// Create top level shell (pass display as parent)
final Shell toplevelShell = new Shell (display) ;
// Set title
toplevelShell.setText ("TopLevel.Titelzeile") ;
// Fill the shell completely with content
toplevelShell.setLayout (new FillLayout ()) ;
// Create tabbed folder
TabFolder folder = new TabFolder (toplevelShell, SWT.NONE) ;
// Protocol selection event
folder.addSelectionlListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
System.out .println (
"Tab selected: " + ((TabItem) (e.item)) .getText()) ;

}
s
// Fill tabbed folder completely with content
folder.setLayout (new FillLayout ()) ;
Composite pagel = createTabPage (folder, "tabl");
// We can now place more GUI elements onto pagel

I oo
Composite page2 = createTabPage (folder, "tab2");

Listing 8.10 (Continues)

168

The SWT Library

// We can now place more GUI elements onto page2

e

// Display shell
toplevelShell.open() ;
// Event loop

while

if

(ItoplevelShell.isDisposed()) ({
(!display.readAndDispatch())

display.sleep() ;

}

private static Composite createTabPage (TabFolder folder,
String label) ({
// Create and label a new tab

TabItem tab

= new TabItem(folder, SWT.NONE) ;

tab.setText (label) ;
// Create a new page as a Composite instance
Composite page = new Composite (folder, SWT.NONE) ;

/...

and assign to tab

tab.setControl (page) ;

return page;

}

Listing 8.10 (Continued)

The non-native CTabFolder widget is very similar to the TabFolder widget but supports positioning
the tabs (CTabItem) at the top (SWT. TOP) or the bottom (SWT . BOTTOM) of the folder and uses tabs with

a curved outline.

Toolbars

The ToolBar class not surprisingly implements toolbars. Each ToolBar instance is a Composite that
contains one or several ToolItem instances.

You can control the presentation of toolbars with the following style constants:

SWT.FLAT

SWT .WRAP

SWT .RIGHT

SWT .HORIZONTAL
SWT .VERTICAL

Use a two-dimensional representation instead of three-dimensional
presentation, provided this is supported by the host platform.

Use automatic word wrapping.

Align right.

Horizontal or vertical orientation, respectively.

169

Chapter 8

ToolItem instances represent the buttons on the toolbar. You can control the button type via the follow-
ing style constants:

SWT . PUSH Normal button that releases immediately.
SWT . CHECK Locking button (similar to toggle buttons).
SWT.RADIO Radio button that releases other radio buttons in the same toolbar

when pressed.
SWT .SEPARATOR Passive element to separate button groups.

SWT .DROP_DOWN Normal button with an associated arrow button.

Tool items are labeled via the setText () method. Image buttons can be created with the set Image ()
method. With the setHot Image () method you can set an additional image that appears when the
mouse hovers over the button. With the setDisabledImage () method you can set an image that is
shown when the tool item is disabled. This way, you can visualize the different operation modes of a
tool item. As already discussed for Buttons (see the “Buttons” section), Image instances must be dis-
posed of when they are no longer needed. With setToolTipText () you can add additional text to the
tool item that is shown when the mouse is moved over the tool item.

When activated, ToolItem instances generate SelectionEvent objects. In the case of DROP_DOWN
tool items, you have to find out whether the main button or the arrow button was pressed. You can do
this by checking the condition (event.detail == SWT.ARROW). The event listener can then create a
menu list for the drop-down menu, allowing the selection of a function.

Moveable Tool Groups (CoolBar)

The CoolBar class can be used to combine several ToolBar instances into so-called CoolItems, thatis,
tool groups that can be repositioned by the end user. A good example of a CoolBar is the toolbar of the
Eclipse workbench. Each single Toolbar instance is embedded into a CoolItem instance. These
CoolItem instances are placed onto a CoolBar and can be moved within the area of the CoolBar. The
association between CoolItem and ToolBar is achieved with the CoolItem setControl () method.
Initially, you must assign a minimum size for each CoolItem instance. I will show how this is done in
the second example that follows.

If you assign the SWT . DROP_DOWN style constant for a CoolItem instance, an arrow symbol appears
when all tools within the tool group cannot be displayed. You need to implement the necessary event
processing in such a case: you must construct a drop-down menu, as you had to do for drop-down tool
items (see the previous section).

Menus

The Menu class is used to implement menus. The following style constants influence the presentation of
a Menu instance:

SWT.BAR The instance represents a menu bar.
SWT .DROP_DOWN The instance represents a drop-down menu.
SWT.POP_UP The instance represents a pop-up menu.

170

The SWT Library

Menu instances generate events of the HelpEvent and MenuEvent types. When a menu appears on the
screen, the MenuListener menuShown () method is invoked. When the menu disappears, the
menuHidden () method is called.

Menu items are implemented by MenuItem instances. The type of item is controlled via a style constant:

SWT .CHECK The menu item is equipped with a check mark. This symbol is
toggled with each click on the menu entry.

SWT . CASCADE The menu item implements a cascading menu.

SWT . PUSH Normal menu item.

SWT.RADIO Menu item with a check mark. When this symbol is set, other radio

menu items in the same menu are reset.

SWT .SEPARATOR Passive item implementing a separator line.

Menu items are labeled with the help of the setText () method.

MenuItem instances create events of the SelectionEvent, ArmEvent, and HelpEvent types.
ArmEvents are fired when the menu item is armed, that is, when the mouse cursor is moved over the
item.

If you want to create a typical menu bar, you first must create a Menu instance of the SWT . BAR type.
When doing so, you must specify the Shell for which the menu is created as the Composite parent.
The creation of the menu bar is not enough, however. You must also activate the menu bar for the parent
shell. This is done in the Shell instance by calling the setMenuBar () method.

The individual menu titles are then created as cascading MenuItem instances. The submenus belonging
to these instances are created as independent SWT . DROP_DOWN menus under the Shell instance. Then
the MenuItem setMenu () method is used to assign the submenus to the cascading menu items.

The example in Listing 8.11 shows the construction of a simple menu with a single menu title:

// Create menu bar
Menu menuBar = new Menu(toplevelShell, SWT.BAR) ;
toplevelShell.setMenuBar (menuBar) ;
// Create menu title
MenulItem fileTitle = new Menultem(menuBar, SWT.CASCADE) ;
fileTitle.setText ("File") ;
// Create submenu for this menu title
Menu fileMenu = new Menu(toplevelShell, SWT.DROP_DOWN) ;
fileTitle.setMenu(fileMenu) ;
// Create menu item
MenulItem item = new Menultem(fileMenu, SWT.NULL) ;
item.setText ("Exit") ;
// Event processing for menu item
item.addSelectionlListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e) {
toplevelShell.close() ;
}

1)

Listing 8.11
171

Chapter 8

In Listing 8.12 I create a CoolBar consisting of two moveable groups with five different buttons. There
is also a drop-down button that expands a menu with two menu items when pressed.

// Create CoolBar
final CoolBar coolbar = new CoolBar (composite, SWT.NULL) ;
// Create ToolBar as a component of CoolBar
final ToolBar toolbarl = new ToolBar (coolbar, SWT.NULL) ;
// Create pushbutton
final ToolItem tooliteml = new ToolItem(toolbarl, SWT.PUSH) ;
tooliteml.setText ("Push") ;
tooliteml.setToolTipText ("Push button") ;
// Create event processing for pushbutton
tooliteml.addSelectionListener (new SelectionAdapter ()
public void widgetSelected (SelectionEvent e) {
System.out.println (
"Tool button was pressed: " + tooliteml.getText()) ;

1
});
// Create check button
final ToolItem toolitem2 = new ToolItem(toolbarl, SWT.CHECK) ;
toolitem2.setText ("Check") ;
toolitem2.setToolTipText ("Check button") ;
// Create CoolItem instance
final CoolItem cooliteml = new CoolItem(coolbar, SWT.NULL) ;
// Assign this tool bar to the CoolItem instance
cooliteml.setControl (toolbarl) ;
// Compute size of tool bar
Point size = toolbarl.computeSize (SWT.DEFAULT, SWT.DEFAULT) ;
// Compute required size of CoollItems instance
size = cooliteml.computeSize (size.x, size.y);
// Set size for this CoolItem instance
cooliteml.setSize (size) ;
// The minimum size of the CoolItem is the width of the first button
cooliteml.setMinimumSize (tooliteml.getWidth (), size.y);

// Create second ToolBar instance
final ToolBar toolbar2 = new ToolBar (coolbar, SWT.NULL) ;
// Create two radio buttons
final ToolItem toolitem3a =
toolitem3a.setText ("Radio") ;
toolitem3a.setToolTipText ("Radio button a") ;
final ToolItem toolitem3b = new ToolItem(toolbar2, SWT.RADIO) ;
toolitem3b.setText ("Radio") ;
toolitem3b.setToolTipText ("Radio button b") ;
// Create separator
new ToolItem(toolbar2, SWT.SEPARATOR) ;
// Create drop-down menu button
final ToolItem toolitem5 = new ToolItem(toolbar2, SWT.DROP_DOWN) ;
toolitem5.setText ("Drop-down-Menu") ;
// Add event processing to drop-down menu button
toolitem5.addSelectionListener (
// In class DropDownSelectionListener we construct the menu
new DropDownSelectionListener (composite.getShell ())) ;
// Create second Coolltem, assing Toolbar to it and set size
final CoolItem coolitem2 = new CoolItem(coolbar, SWT.NULL) ;

new ToolItem(toolbar2, SWT.RADIO) ;

Listing 8.12 (Continues)
172

The SWT Library

coolitem2.setControl (toolbar2) ;
size = toolbar2.computeSize (SWT.DEFAULT, SWT.DEFAULT) ;

size = coolitem2.computeSize (size.x, size.y);
coolitem2.setSize (size) ;
coolitem2.setMinimumSize (toolitem3a.getWidth(), size.y);

Listing 8.12 (Continued)

The DropDownSelectionListener class is responsible for menu construction and is defined as
demonstrated in Listing 8.13.

class DropDownSelectionListener extends SelectionAdapter ({
private Menu menu;
private Composite parent;

public DropDownSelectionListener (Composite parent) {
this.parent = parent;
}

public void widgetSelected(final SelectionEvent e) {
// Create menu lazily
if (menu == null) {
menu = new Menu (parent) ;
final MenuItem menulteml = new Menultem(menu, SWT.NULL) ;
menulteml.setText ("Iteml") ;
// Set SelectionListener for menulteml
menulteml.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent m) {
processMenuEvent (e, menulteml) ;

1)
menulteml.addArmlListener (new ArmListener () {
public void widgetArmed (ArmEvent m) {
System.out.println ("Mouse is over menu item 1");

});

final MenuItem menultem2 = new Menultem(menu, SWT.NULL) ;
menultem2.setText ("Item2") ;
// Set SelectionListener foY¥r menuIteml
menultem2.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent m) {
processMenuEvent (e, menultem2) ;
}
1)

menultem2.addArmListener (new ArmListener () {
public void widgetArmed (ArmEvent m) {
System.out.println ("Mouse is over menu item 2") ;

DK
}

// Check, if it was the arrow button that was pressed
if (e.detail == SWT.ARROW) {

Listing 8.13 (Continues)

173

Chapter 8

if (menu.isVisible()) {
// Set visible menu invisible
menu.setVisible (false) ;

} else {
// Retrieve ToolItem and ToolBar from the event object
final ToolItem toolItem = (ToolItem) e.widget;

final ToolBar toolBar = toollItem.getParent () ;
// Get position and size of the ToolItem
Rectangle toolItemBounds = toolItem.getBounds () ;
// Convert relative position to absolute position
Point point =
toolBar.toDisplay (
new Point (toolItemBounds.x, toolItemBounds.y)) ;
// Set menu position
menu.setLocation (point.x, point.y + toolItemBounds.height) ;
// Make menu visible
menu.setVisible (true) ;

} else {
final ToolItem toolItem = (ToolItem) e.widget;
System.out .println (
"Tool button was pressed: " + toolItem.getText()) ;

1
1
private void processMenuEvent (
final SelectionEvent e,
final MenuItem item) {
// Get text of menu item
final String s = item.getText () ;
// Get ToolItem
final ToolItem toolItem = (ToolItem) e.widget;
// Replace ToolItem label with text of the menu item
toolItem.setText (8) ;
// Hide menu
menu.setVisible (false) ;

Listing 8.13 (Continued)

Custom Widgets

The org.eclipse. swt.custom package contains additional widgets that are not mapped to native
widgets of the host platform but are pure Java implementations.

I've already discussed the CCombo and CTabFolder widgets. The following table lists some more of
these widget classes:

174

The SWT Library

BusyIndicator This class is used to replace the mouse pointer with a busy symbol
(hourglass, etc.). To do this, you must call the showWhile (display,
runnable) method. The second parameter must be of the
java.lang.Runnable type. The run () method of this Runnable
contains the processing logic to be executed while the busy symbol is
shown.

ControlEditor This class is used to attach a Composite to another GUI element.
When the Composite is moved or modified in size, the position of
the attached element is also changed. Normally, ControlEditor is
used to attach an editor to a noneditable Composite. The Eclipse API
reference documentation contains an example in which a button is
attached to a Canvas instance (see the “Graphics” section). When the
button is pressed, the background color of the canvas changes. When
the canvas is moved, the button moves with the canvas.

PopupList This class works similarly to the List class (see the “Tables, Lists and
Combos” section). However, the list appears in its own shell in front
of the Shell instance that is specified in the PopupList ()
constructor. Normally, this class is used to select values from a list
within a table element.

SashForm This class is implemented as a subclass of Composite and organizes
its children horizontally or vertically (as specified) separated by
sashes (see the “Sashes” section). Weights can be specified for each
child to control the width resp. height. The
setMaximizedControl () method can be used to temporarily
maximize a single child and minimize the others.

StyledText This class implements a single- or multiline text input field, similarly to
the Text class. In addition, some text attributes are supported: back-
ground and foreground color, text font, bold, italic, and normal text style.
This functionality is sufficient for programming program editors but
insufficient for implementing word processors.

The text can be formatted with the help of the
getStyleRangeAtOffset (), getStyleRanges (),
setStyleRange (), and setStyleRanges () methods that

allow StyleRange instances to be retrieved and set. In addition,

the getLineBackground () and setLineBackground ()

methods allow retrieving and setting the background color of a text line.

As an alternative to these methods, you can implement your
own text style processing as LineStyleListener and
LineBackgroundListener instances.

The text content model of a StyledText widget must implement the
StyledTextContent interface. You can even provide your own
StyledTextContent implementations. The setContent () method
can be used to initialize a StyledText widget.

175

Chapter 8

TableTree This class has similar functionality to the Tree class (see the “Trees”
section). However, the graphical representation is different. The tree
structure appears as a series of hierarchically indented tables; lines
representing the tree branches are not shown. The individual tree
nodes are implemented by TableTreeItem instances.

TableEditor These classes are similar to the ControlEditor class but are
TreeEditor specialized for the Table, Tree, and TableTree target classes. The
TableTreeEditor Eclipse API reference documentation contains examples that show

how to attach text fields to TableItem, TreeItem, and
TableTreeltem instances.

Listing 8.14 contains an example for the SashForm class. Two SashForms are created: a vertical
SashForm inside a horizontal SashForm. Figure 8.10 shows the results. Both SashForms have
List widgets as children.

// Create outer SashForm

SashForm sfl = new SashForm(toplevelShell, SWT.HORIZONTAL) ;
// Create inner SashForm

SashForm sf2 = new SashForm(sfl, SWT.VERTICAL) ;

// Create content for vertical SashForm

List listl = new List (sf2, SWT.NONE) ;

listl.setItems (new String[] {"red", "green", "blue"});
List list2 = new List(sf2, SWT.NONE) ;
list2.setItems (new String[] {"A", "B", "C"});

// Apply even weights
sf2.setWeights (new int[] {100,100});
// Create content for horizontal SashForm
List 1list3 = new List(sfl, SWT.NONE) ;
list3.setItems (
new String[]{“one“, "two", "three", "four", "five", "six"});
// Apply uneven weights
sfl.setWeights (new int[] {100,200});

Listing 8.14
-lolx

red one
green bwo
blue three
a Four
B Five
C six

Figure 8.10

In the resulting composite, both sashes can be moved with the mouse. When the window is resized, the
sashes move accordingly.

176

The SWT Library

The Browser Widget

Since Eclipse V3, developers can use a web browser widget within their SWT applications. This widget
is implemented as a Composite in the Browser class and is located in the org.eclipse. swt
.browser package. The Eclipse team, however, has not implemented their own complete web browser
version but utilizes the native browsers of the various host platforms. Under Windows, for example, the
Browser class implements an OLE client for the Internet Explorer. Under Linux, Mozilla is used, and
under Mac OS X, the Safari browser is used. The advantage of this approach is that the browser widget
exhibits the same functionality as the host platform’s web browser. Security and other preferences
applied to the native web browser affect the browser widget, too. On the other hand, the browser
widget in many aspects does not behave like a standard widget. For example, you cannot add a context
menu to the widget (because the native browser is already equipped with one); MouseListeners and
KeyListeners don't receive mouse and key events; and you can neither draw on the surface of the
widget nor place other widgets into the Browser composite.

Instead, the browser widget features a range of methods for browser-specific tasks such as setURL () to
display a web page at a specified location, getURL () to retrieve the URL of the current web page, or
setText () to display some HTML text. Navigation is supported by the back (), isBackEnabled (),
forward (), isForwardEnabled (), refresh (), and stop () methods.

In addition, the browser widget can be instrumented with a variety of listeners such as
CloseWindowListener, LocationListener, OpenWindowListener, ProgressListener,
StatusTextListener, TitleListener, or VisibilityWindowListener in order to react to state
and content changes of the embedded web browser.

In the “Description Window” section in Chapter 10 I show the browser widget in a practical application.

Layouts

After this tour de force through the land of widgets, you now have a look at layouts. Layouts are used to
position GUI elements on a Composite in an automated way. The layout computes the size and posi-
tion of each GUI element that belongs to a Composite. Should the size of the Composite change—
either under program control or by user interaction—the layout of the GUI elements is recomputed
automatically.

By default, all GUI elements within the Composite are treated as equal by the layout. However, it is
possible to influence the layout process for each GUI element individually by assigning specific layout
data to GUI elements. This is done with the Control setLayoutData () method.

Eclipse provides five predefined layout classes. In addition, it offers the possibility of creating your own
layout classes. The names of the predefined layout classes all follow the pattern *Layout. The names of
the corresponding classes for the individual layout data follow the pattern *Data. With the exception of
the StackLayout class, which is part of the org.eclipse. swt . custom package, all predefined lay-
out classes are contained in the org.eclipse.swt.layout package.

An excellent article about layouts is “Understanding Layouts in SWT” by Carolyn MacLeod and
Shantha Ramachandran.

177

Chapter 8

Composite with a layout may be simpler and more user friendly, because this
component allows the end user to divide the available space freely between
child components.

Visual Overview

The best way to gain an overview of the different layouts and their options is to activate one of the
Eclipse example applications under Window > Show View > Other. In the displayed dialog, select the
SWT Examples > SWT Layouts application, which then shows up in the bottom-right corner of the
workbench window (see Figure 8.11). Because you will need all the space you can get, you should maxi-
mize this application window by double-clicking its tag.

Problems | rew Sesrch | ST

Mregns an Enanng

Figure 8.11

The SWT Layouts example application can be used to try the various options for FillLayout, RowLayout,
GridLayout, and FormLayout. You can generate the corresponding source code with the Code button, so
this example application can be used as a (very) minimal GUI designer.

Since this application is perfectly suited for visualizing the various layouts and their options, I will
refrain from showing the corresponding screen shots.

The FillLayout Class

FillLayout is the simplest of the predefined layouts. The effect of a FillLayout is that the GUI ele-
ments completely fill the containing Composite. There are neither spaces nor margins between the GUI
elements. Also, automatic wrapping in the event of insufficient space is not possible. All GUI elements
are the same size. The height is determined by the GUI element with the largest preferred height, and
the width is determined by the GUI element with the largest preferred width. FillLayouts are typi-
cally used for toolbars where the individual buttons are not separated by spaces. They are also used in
cases where a single GUI element completely fills a Composite.

By default, all GUI elements are concatenated in the horizontal direction. However, you can enforce a
vertical orientation by specifying the SWT . VERTICAL style constant to the layout’s type field:

178

The SWT Library

FillLayout fillLayout = new FillLayout () ;
fillLayout.type = SWT.VERTICAL;
composite.setLayout (fillLayout) ;

new Button (composite, SWT.RADIO) .setText ("One") ;
new Button (composite, SWT.RADIO) .setText ("Two") ;
new Button (composite, SWT.RADIO) .setText ("Three") ;

In the case of FillLayouts you have no option to set the size of the contained GUI elements

individually.

The RowlLayout Class

Similarly to FillLayout, the RowLayout positions the contained GUI elements in a row. However,
RowLayout provides the following fields for additional options:

type Asin FillLayout.

wrap If this option is set to true (the default), GUI elements that do not fit into a
line are wrapped onto the next line.

pack If this option is set to true (the default), GUI elements are displayed in their
preferred size and at the left-most position. Otherwise, the GUI elements fill
all the available space, similarly to FillLayout.

justify If this option is set to true, GUI elements are distributed evenly over the
available space. The default is false.

marginLeft These fields control the size of the margins in pixels.

marginTop

marginRight

marginBottom

spacing This field controls the minimum space between the GUI elements in pixels.

The following code shows how to set the various options of a RowLayout instance:

RowLayout rowLayout = new RowLayout () ;
rowLayout .wrap = false;

rowLayout .pack = false;
rowLayout.justify = true;
rowLayout.type = SWT.VERTICAL;
rowLayout .marginLeft = 10;

rowLayout .marginTop = 5;

rowLayout .marginRight = 10;
rowLayout .marginBottom = 8;
rowLayout.spacing = 5;
composite.setLayout (rowLayout) ;

For GUI elements within a RowLayout instance, you can set the size of each GUI element individually

by assigning a RowData instance to it. In the following example, two buttons are created, and height and
width are assigned to both of them:

179

Chapter 8

Button buttonl = new Button (composite, SWT.PUSH) ;
buttonl.setText ("70x20") ;
buttonl.setLayoutData (new RowData (70, 20)) ;
Button button2 = new Button (composite, SWT.PUSH) ;
button2.setText ("50x35") ;
button2.setLayoutData (new RowData (50, 35));

The GridLayout Class

The GridLayout class is the most useful and powerful of the predefined layout classes. However, it is
not easy to manage, because of its many parameters and their interactions. If you have experience in the
layout of HTML pages using tables, you will know what I mean.

GridLayout has, indeed, some similarity to HTML tables. Here, there are also rows and columns, and it
is possible to fuse adjoining table elements horizontally or vertically.

The following options are available for GridLayouts:

numColumns The number of columns. The number of rows is determined
automatically from the number of GUI elements and the
number of columns.

makeColumnsEqualWidth If this field is set to true, all columns are laid out with the
same width. The defaultis false.

marginHeight This field controls the height of the upper and lower margins
in pixels.

marginwWidth This field controls the width of the left and right margins
in pixels.

horizontalSpacing This field controls the minimum distance between columns
in pixels.

verticalSpacing This field controls the minimum distance between rows
in pixels.

The following example shows how to set the various options of a GridLayout instance:

GridLayout gridLayout = new GridLayout () ;
gridLayout .numColumns = 3;
gridLayout.marginWidth = 10;

gridLayout .makeColumnsEqualWidth = true;
gridLayout .marginHeight = 5;
gridLayout.horizontalSpacing = 6;
gridLayout.verticalSpacing = 4;
gridLayout .makeColumnsEqualWidth = true;
composite.setLayout (gridLayout) ;

GridData

The layout options that you can set for individual GUI elements with the help of GridData instances
are quite rich. GridData objects have the following public fields:

180

The SWT Library

grabExcessHorizontalSpace

grabExcessVerticalSpace

heightHint

horizontalAlignment

horizontallIndent

horizontalSpan

verticalAlignment

verticalSpan

widthHint

If this field is set to true, the GUI element fills all the
remaining horizontal space. The defaultis false.

If this field is set to true, the GUI element fills all the
remaining vertical space. The default is false.

This field specifies a minimum height in pixels. If a
value is specified, the vertical scroll function of a
corresponding scrollable GUI element is disabled.

This field specifies how the GUI element is aligned hori-
zontally in its table cell. The following constants can be
specified:

GridData.BEGINNING (default)

GridData.CENTER

GridData.END
GridData.FILL

This field specifies how many pixels a GUI element is
indented from the left.

This field specifies how many table cells the GUI
element consumes in the horizontal direction (the cells
are fused).

This field specifies how the GUI element is aligned
vertically in its table cell. The following constants can be
specified:

GridData.BEGINNING

GridData.CENTER (default)

GridData.END
GridData.FILL

This field specifies how many table cells the GUI
element consumes in a vertical direction (the cells are
fused).

This field specifies a minimum width in pixels. If a
value is specified, the horizontal scroll function of a
corresponding scrollable GUI element is disabled.

Some of these options may already be specified in the GridData () constructor. For this purpose, the

following style constants are available:

Constant

Equivalent

GridData.GRAB_HORIZONTAL

GridData.GRAB_VERTICAL

grabExcessHorizontalSpace = true

grabExcessVerticalSpace = true

181

Chapter 8

Constant Equivalent

GridData.HORIZONTAL ALIGN BEGINNING horizontalAlignment =
GridData .BEGINNING

GridData.HORIZONTAL ALIGN_ CENTER horizontalAlignment =
GridData.CENTER

GridData.HORIZONTAL ALIGN END horizontalAlignment =
GridData.END

GridData.HORIZONTAL_ALIGN_FILL horizontalAlignment =
GridData.FILL

GridData.VERTICAL ALIGN BEGINNING verticalAlignment =
GridData.BEGINNING

GridData.VERTICAL ALIGN CENTER verticalAlignment =
GridData.CENTER

GridData.VERTICAL ALIGN_END verticalAlignment
GridData.END

GridData.VERTICAL ALIGN FILL verticalAlignment
GridData.FILL

GridData.FILL HORIZONTAL HORIZONTAL_ALIGN_FILL|
GRAB_HORIZONTAL

GridData.FILL VERTICAL VERTICAL_ALIGN_FILL|
GRAB_VERTICAL

GridData.FILL BOTH FILL VERTICAL | FILL HORIZONTAL

I do not give a code example here but rather refer you to the “Player Module” section in Chapter 10,
which shows the use of the GridLayout class in a real application.

Should all these layout options be insufficient, you still have the option of nesting GridLayouts by
nesting Composites. This technique should be well known to all those who have laid out HTML pages
with the help of nested tables.

The FormLayout Class

FormLayout was introduced with Eclipse 2.0. It allows you to position GUI elements on a two-
dimensional surface in relation to another GUI element or in relation to the borders of the Composite.
This is done by using FormAttachment instances.

For FormLayouts you have the following options:

marginHeight This field controls the height of the upper and lower margins in pixels.

marginWidth This field controls the width of the left and right margins in pixels.

182

The SWT Library

FormData

Most of the layout options of form layouts are contained in the FormData and FormAttachment
classes. FormData provides the following options that are applied to individual GUI elements:

height The preferred height of the GUI element in pixels.

width The preferred width of the GUI element in pixels.

top These fields accept a FormAt tachment instance that specifies

bottom to which item the upper/lower/left/right edge of the GUI element relates.
left

right

For FormAttachment instances, there are two variants:
Q Specification of a relative position with the Composite
Q Specification relative to another GUI element
Composite
For the Composite variant, two constructors are available:
FormAttachment fa = new FormAttachment (percent,offset) ;
and

FormAttachment fa = new FormAttachment (numerator, denominator,
offset) ;

The position p is computed from the width and height of the Composites, respectively, as follows:

p = d*numerator/denominator+offset
If a percent value is specified, the following formula is used:

p = d*percent/100+offset
Let’s assume that the Composite is 400 pixels wide and 300 pixels high. When you create a
FormAttachment instance with a FormAttachment (30, 10) constructor and assign it to the top
field of a FormData instance, you get

p = 30/100*300+5 = 95
The upper edge of the GUI element will therefore be positioned 95 pixels below the upper border of the
Composite’s client area. If you would assign the same FormAttachment instance to the bottom field

of the FormData instance, the lower edge of your GUI element would be 95 pixels above the lower bor-
der of the Composite’s client area.

183

Chapter 8

If you would assign the same FormAt tachment instance to the left field of the FormData instance, you
would get a distance of

p = 30/100%400+5 = 125

The left edge of the GUI element will therefore be 125 pixels to the right of the left border of the
Composite’s client area. So what happens when you assign the FormAt tachment instance to the
right field? By now, you should be able to find the answer yourself.

Reference GUI Element

For the second variant (positioning relative to another GUI element), there are three constructors:

FormAttachment (control, offset, alignment)
FormAttachment (control, offset)
FormAttachment (control)

The control parameter accepts a Control instance (the GUI element to which you want to relate).

The of £set parameter specifies the distance to the reference element. If this parameter is omitted, the
distance is 0.

The alignment parameter specifies to which edge of the reference element you want to relate. When
you assign this FormAt tachment instance to a top or bottom field, you can use the SWT . TOP,

SWT .BOTTOM, and SWT . CENTER style constants. If you assign it to a left or right field, you can use the
SWT.LEFT, SWT.RIGHT, and SWT . CENTER constants. If the alignment parameter is omitted, you will
relate to the closest edge of the reference element.

The StackLayout class

Unlike the previous classes, this class is not contained in org.eclipse.swt.layout butin
org.eclipse.swt.custom In contrast to the other layout classes, this layout can show only a single
GUI element at a time within a Composite. The reason is that all GUI elements contained in the
Composite are made equal in size and are positioned at the same spot on top of each other, so only the
front-most element is visible. The StackLayout class is useful when you want to switch between GUI
elements. You need only move the Control instance to be shown to the front-most position.

The stackLayout class has the following public fields:

marginHeight This field controls the height of the upper and lower margins.
marginWidth This field controls the width of the left and right margins.

topControl This field accepts the top (visible) Control instance.

In Listing 8.15 two Button instances are positioned on top of each other. When one button is pressed,
the other button becomes visible:

184

The SWT Library

// Create new composite
final Composite stackComposite = new Composite (composite, SWT.NULL) ;
final StackLayout stackLayout = new StackLayout () ;
// Create text buttons
final Button buttonA = new Button (stackComposite, SWT.PUSH) ;
buttonA.setText ("Button A") ;
final Button buttonB = new Button (stackComposite, SWT.PUSH) ;
buttonB.setText ("Button B") ;
// React to clicks
buttonA.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e) {
stackLayout.topControl = buttonB;
// Enforce new layout
stackComposite.layout () ;
// Set focus to visible button
buttonB.setFocus () ;

}
1)
buttonB.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e)
stackLayout.topControl = buttonA;
// Enforce new layout
stackComposite.layout () ;
// Set focus to visible button
buttonA.setFocus () ;

}
1)
// Initialize layout
stackLayout.topControl = buttonA;
stackLayout .marginWidth = 10;
stackLayout .marginHeight = 5;
// Set layout
stackComposite.setLayout (stackLayout) ;

Listing 8.15

Graphics

The interfaces and classes for graphical operations are contained in the org.eclipse.swt.graphics
package. The functionality of this package is based on the graphical functionality of the supported
platforms. While the functionality of the package exceeds those of the basic classes of the Java AWT, it
does not match the functionality of the Java2D API. I will discuss how this functionality can be extended
in the “Widgets that Swing” section.

The Graphics Context

The GC class contains all the methods needed for drawing, such as drawLine (), drawOval (),
drawPolygon (), setFont (), getFontMetrics (), and many more.

You can draw onto instances of all those classes that implement the Drawable interface. This is in par-
ticular the case for the Image and Control classes and their subclasses such as Canvas and Display.

185

Chapter 8

Usually you will draw on an Image when implementing double buffering (for a description of this tech-
nique see the “Images” section). You will draw on a Canvas when you want to display a drawing to the
user. You will draw on a Display when you want to draw not inside a window but all over the screen.
You can select the medium for drawing operations by passing Drawable to the GC () constructor.

When you create a graphics context with the help of a GC () constructor, you must dispose of the GC
instance when it is no longer needed, because GC instances allocate resources in the host system.
However, more often than not, you will not need to create a graphics context yourself but will instead
use a context given to you by a PaintEvent.

The golden rule for graphics processing is this:

All graphical operations must be executed within the paintControl () method
of a PaintListener object, that is, within the PaintEvent processing of a
Control instance.

Listing 8.16 shows how you can decorate a Composite with a green key line.

composite.addPaintListener (new PaintListener () ({
public void paintControl (PaintEvent event) {
// Get Display intsance from event object
Display display = event.display;
// Get a green system color object - we don’t
// need to dispose that
Color green = display.getSystemColor (SWT.COLOR_DARK GREEN) ;
// Get the graphics context from the event object
GC gc = event.gc;
// Set line color
gc.setForeground (green) ;
// Get size of the Composite’s client area
Rectangle rect = ((Composite) event.widget) .getClientAreal() ;
// Now draw an rectangle
gc.drawRectangle (rect.x + 2, rect.y + 2,
rect.width - 4, rect.height - 4);
}
1) i

Listing 8.16

Colors

Within a graphics context you can set line and text colors—as shown previously—with the help of the
setForeground () method. Fill colors are set with setBackground ().

186

The SWT Library

To set colors, you first have to supply yourself with color objects. There are two ways to obtain colors:

0 You can fetch a system color from a Device instance. Since Display is a subclass of Device,
you can fetch a system color from the widget’s Display instance with the help of the
getSystemColor () method. The necessary COLOR_... constants for the color names are
defined in the SWT class.

Color objects that are obtained in this or another way from other instances must not be released
with dispose (), because they may still be in use elsewhere!

0 You can create your own color objects:
Color red = new Color (device, 255,0,0)

or

Color blue = new Color (device, new RGB(0,255,0)) ;

The device parameter accepts objects of the Device type. RGB is a simple utility class for rep-
resenting device-independent RGB color tuples.

The representation of colors is exact on all devices with a color depth of 24 bits. On devices with a lower
color depth, Eclipse will approximate the color as exactly as possible. For detailed information, please
see the “SWT Color Model” article by Moody and MacLeod on www.eclipse.org.

If you create Color instances in this way, you must release them with dispose () when they are no
longer needed.

Fonts

Fonts work similarly to colors. The current font of a graphics context is set with the setFont () method.
0 You can obtain the current system font from a Device instance with the help of the

getSystemFont () method. Such a font instance must not be disposed of with the dispose ()
method.

0 You can create new Font instances with one of the following constructors:
Font font = new Font (device, "Arial",12,SWT.ITALIC)

or

Font font = new Font (device,new FontData ("Arial",12,SWT.ITALIC))
FontData is a device-independent representation of a font.

If you create Font instances in this way, you must release them with dispose () when they are no
longer needed.

187

Chapter 8

In Listing 8.17 the current system font is fetched, an italic variant is created, the graphics context is
configured with this new font, and the word Hello is drawn.

// Get Display instance

Display display = composite.getDisplay () ;

// Fetch system font

Font systemFont = display.getSystemFont () ;

// FontData objects contain the font properties.

// With some operating systems a font may possess multiple
// FontData instances. We only use the first one.
FontData[] data = systemFont.getFontData () ;

FontData data0 = datal[0];

// Set the font style to italic

data0O.setStyle (SWT.ITALIC) ;

// Create a new font

Font italicFont = new Font (display, data0) ;

// Set the new font in the graphics context

gc.setFont (italicFont) ;

// TODO: call italicFont.dispose() in the DisposeListener
// of composite

// Draw text at position (4,4) with a transparent background (true).
gc.drawText ("Hello",4,4,true) ;

Listing 8.17

In the GC class there are a few more text methods for text processing. For example, the
getFontMetrics () method delivers a FontMetrics object that contains the characteristic
measurements of the current font. The stringExtent () and textExtent () methods allow you to
compute the pixel dimensions of a string if it was drawn with the currently active font. Unlike
textExtent (), the stringExtent () method ignores TAB and CR characters when computing the
text extent.

Images

The Image class is responsible for the device-dependent representation of images. Image instances can
be created in many ways: by specifying a java.io.Stream object, by specifying a filename (absolute
or relative to the current project), or by specifying an ImageData object.

In contrast to Image, the ImageData class is responsible for the device-independent representation of
images. Instances of this class can be created by specifying a java . io.Stream object or by specifying a
filename. Alternatively, an ImageData instance can be obtained from an Image object via the
getImageData () method.

Both Image and ImageData support images in RGB format as well as in indexed format. Transparency
is possible (alpha channel for RGB images, transparent color for indexed images). The following file for-
mats are supported when reading an image from file: .bmp, .gif, . jpg, .png, .tif, and .ico.In the
“Buttons” section I have already shown how an image is read from a file.

In Listing 8.18 an Image instance is used to implement double buffering. This technique is frequently

used to avoid screen flicker when drawing graphics. First, an Image instance large enough to contain
the drawing is created. Then a GC instance for the Image instance is created, and all drawing operations

188

The SWT Library

are performed within this graphics context. Finally, the complete Image instance is painted onto the
Drawable target.

// Create canvas
final Canvas canvas = new Canvas (composite, SWT.BORDER) ;
// Get white system color
Color white = canvas.getDisplay () .getSystemColor (SWT.COLOR WHITE) ;
// Set canvas background to white
canvas.setBackground (white) ;
// Add paint listener
canvas.addPaintListener (new PaintListener () {
public void paintControl (PaintEvent e)
// Get Display instance from the event object
Display display = e.display;
// Get black and red system color - don’t dispose these
Color black = display.getSystemColor (SWT.COLOR BLACK) ;
Color red = display.getSystemColor (SWT.COLOR_RED) ;
// Get the graphics context from event object
GC gc = e.gc;
// Get the widget that caused the event

Composite source = (Composite) e.widget;
// Get the size of this widgets client area
Rectangle rect = source.getClientArea() ;

// Create buffer for double buffering
Image buffer = new Image (display,rect.width,rect.height) ;
// Create graphics context for this buffer
GC bufferGC = new GC(buffer) ;
// perform drawing operations
bufferGC. setBackground (red) ;
bufferGC.fillRectangle (5,5, rect.width-10,rect.height-10) ;
bufferGC. setForeground (black) ;
bufferGC.drawRectangle (5,5, rect.width-10,rect.height-10) ;
bufferGC. setBackground (source.getBackground ()) ;
bufferGC.fillRectangle (10,10, rect.width-20, rect.height-20) ;
// Now draw the buffered image to the target drawable
gc.drawImage (buffer,0,0) ;
// Dispose of the buffer’s graphics context
bufferGC.dispose () ;
// Dispose of the buffer
buffer.dispose() ;
}
B g

Listing 8.18
You can obtain images used by the system from the current Display instance via the

getSystemImage () method. You can use the following constants to identify the respective image:
SWT.ICON_ERROR,SWT.ICON_INFORMATION,SWT.ICON_QUESTION,muiSWT.ICON_WARNING

The Cursor

Also in the org.eclipse. swt.graphics package you will find the Cursor class that represents the
mouse pointer. To assign a new shape to the mouse pointer, you have to explicitly create a new instance

189

Chapter 8

of this class. The current display is passed as a parameter and also as a style constant specifying the
wanted shape. How this will finally look depends, of course, on the host platform:

CURSOR_ARROW
CURSOR_WAIT
CURSOR_CROSS
CURSOR_APPSTARTING
CURSOR_HELP
CURSOR_SIZEALL
CURSOR_SIZENESW
CURSOR_SIZENS
CURSOR_SIZENWSE
CURSOR_SIZEWE
CURSOR_SIZEN
CURSOR_SIZES
CURSOR_SIZEE
CURSOR_SIZEW
CURSOR_SIZENE
CURSOR_SIZESE
CURSOR_SIZESW
CURSOR_SIZENW
CURSOR_UPARROW
CURSOR_IBEAM
CURSOR_NO

CURSOR_HAND

Arrow

Waiting

Crosshair

Application starting

Help

Overall size change

Size change on NE/SW axis
Size change on N/S axis
Size change on NW/SE axis
Size change on W/E axis
Size change north direction
Size change south direction
Size change east direction
Size change west direction
Size change NE direction
Size change SE direction
Size change SW direction
Size change NW direction
Upward arrow

Text cursor

Invalid operation

Hand for moving

Since Eclipse V3 you can alternatively specify the cursor shape by passing an ImageData instance (see
the “Images” section) to the Cursor constructor. In addition, you can pass a second ImageData
instance that acts as a mask.

Please keep in mind that the cursor allocates a resource of the host windowing system. Therefore, you

must dispose of the Cursor instance when it is no longer needed. The same applies for the ImageData
instance(s).

190

The SWT Library

Widgets That Swing

Because of its native character, the SWT provides a new approach to the implementation of the lowest
layer of graphical user interfaces. However, the question remains: how do you deal with the higher
layers?

As far as graphical elements such as windows, dialogs, and menus are concerned, the answer is simple.
Functionality that was provided by Swing is more or less provided by the JFace libraries (see Chapter 9).

Things become difficult, however, when you look at graphical operations. Powerful graphical layers
such as Java2D or Java3D, SVG processing as in Batik (www.apache.org), or bitmap manipulations such
as in Java Advanced Imaging (JAI) are not provided by the SWT and JFace. All these APIs are incompati-
ble with the SWT. Advanced functionality such as antialiasing options, transparent drawing operations,
or text rotation is not available to SWT users.

However, with Eclipse 3 things have changed completely. Now it is possible to place Swing and AWT
elements into SWT Composites. This allows integrating the higher-level graphical layers within SWT
applications. And all of a sudden, Swing is fun again, thanks to the SWT. Under Windows, you need to
run under JRE 1.3 or later to enable this functionality, while on other platforms, at least JRE 1.5 is
required.

Embedded Contents

The new SWT EMBEDDED style constant makes all this possible. A Composite created with this style con-
stant can contain contents foreign to the SWT (but nothing else). In Eclipse 3 this can be java.awt

. Frame components, which can be created via the SWT_AWT.new_Frame () factory method. For
example:

Composite awtContainer = new Composite (parent, SWT.EMBEDDED) ;
java.awt.Frame myFrame = SWT AWT.new Frame (awtContainer) ;

Now you can add AWT and Swing components to this Frame instance to your heart’s desire.

In addition, the SWT AWT class provides the new_Shell () method. This method creates a new SWT
shell for a given AWT canvas, so this canvas is presented in its own window but within the SWT
application.

Events

But how would you process events within such a mixed environment? Well, that isn’t very difficult:
listeners are added in the usual way to the AWT and Swing components, and these listeners can react to
AWT events. You must use caution, however, when such a listener tries to access an SWT resource
because SWT and AWT run in different threads. Therefore, these accesses must be encapsulated into a

191

Chapter 8

Runnable and executed via an appropriate Display method such as syncExec (), asyncExec (), or
timerExec ().Idiscussed this technique already in the “Displays, Shells, and Monitors” section.

Vice versa, when accessing AWT and Swing components from SWT event processing, these accesses
should be encapsulated, too, into a Runnable. This Runnable is then executed via the static AWT
EventQueue. invokeLater () method. This is not enforced by the AWT (as is done by the SWT) but is
strongly recommended.

The following example shows these techniques in context. The example shows, too, how SWT compo-
nents can be placed on top of an AWT surface (in its own shell). The example implements a Java2D can-
vas within an SWT shell. An SWT button allows you to clear the canvas. Clicking the canvas opens an
SWT text input field on top of the canvas. Another click on the canvas hides this field again, and the text
entered into the text input field is drawn on the Java2D canvas.

import java.util.ArrayList;
import java.util.Iterator;

import org.eclipse.swt.SWT;

import org.eclipse.swt.awt.SWT AWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.widgets.*;

public class SWT2D {

// Shell for pop-up editor

Shell eShell = null;

// Text widget for editor

Text eText = null;

// List of strings entered

ArraylList wordList = new ArrayList(12);

public static void main(String[] args)
SWT2D swtawt = new SWT2D() ;
swtawt.run () ;

}

First, an SWT shell is created. A GridLayout contains the container composited (EMBEDDED) for the
AWT canvas and the Clear button.

private void run() {
// Create top level shell
final Display display = new Display () ;
final Shell shell = new Shell (display) ;
shell.setText ("Java 2D Example") ;
// GridLayout for canvas and button
shell.setLayout (new GridLayout ()) ;
// Create container for AWT canvas
final Composite canvasComp = new Composite (shell,

SWT . EMBEDDED) ;

// Set preferred size

192

The SWT Library

GridData data = new GridData() ;
data.widthHint = 600;
data.heightHint = 500;
canvasComp . setLayoutData (data) ;

Then, the SWT_AWT class is used to create an AWT Frame within the SWT Composite. An AWT Canvas
is then added to the Frame in the usual way. A graphical context is retrieved from this canvas and cast to
a Java2D graphical context. Later, this object will be used to perform the drawing operations. First, the
initial affine transformation of the graphical context is saved, so that you can always reset the graphical
context to its initial state. In addition, antialiasing is switched on—one of the beauties of Java2D.

// Create AWT Frame for Canvas

java.awt.Frame canvasFrame = SWT AWT
.new_Frame (canvasComp) ;

// Create Canvas and add it to the Frame

final java.awt.Canvas canvas = new java.awt.Canvas() ;

canvasFrame.add (canvas) ;

// Get graphical context and cast to Java2D

final java.awt.Graphics2D g2d = (java.awt.Graphics2D) canvas
.getGraphics () ;

// Enable antialiasing

g2d.setRenderingHint (RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON) ;

// Remember initial transform

final java.awt.geom.AffineTransform origTransform = g2d
.getTransform() ;

Now, the Clear button is created. In its event processing routine, a redraw of the Canvas is enforced by
invoking the redraw () method of the SWT container Composite.

// Create Clear button and position it
Button clearButton = new Button(shell, SWT.PUSH) ;
clearButton.setText ("Clear") ;
data = new GridDatal() ;
data.horizontalAlignment = GridData.CENTER;
clearButton.setLayoutData (data) ;
// Event processing for Clear button
clearButton
.addSelectionlListener (new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
// Delete word list and redraw canvas
wordList.clear () ;
canvasComp.redraw () ;

}
DK

Clicking the mouse on the canvas (note that this is AWT event processing) makes the text input field vis-
ible or invisible depending on its current state. Only during the very first invocation is a new instance of
this small editor created. Because SWT widgets cannot be added to AWT canvasses, the editor is created
in its own shell. It’s important to create this shell non-modal, so that the canvas remains accessible for
mouse clicks when the shell is opened.

193

Chapter 8

This technique of setting the shell visible or invisible is better than closing the shell and then creating a
new one. This not only saves resources but also avoids some nasty effects. When a shell is explicitly
closed, parts of the close () processing are executed after all AWT event processing and thus after
canvasComp . redraw (). The result would be an ugly white area remaining at the former position of
the editor. This cannot happen when using setVisible (false).

// Process canvas mouse clicks
canvas.addMouseListener (new java.awt.event.MouseListener () {
public void mouseClicked (
java.awt.event.MouseEvent e) {}

public void mouseEntered (
java.awt.event.MouseEvent e) {}

public void mouseExited (
java.awt.event.MouseEvent e) {}

public void mousePressed (
java.awt.event .MouseEvent e) ({
// Manage pop-up editor
display.syncExec (new Runnable () {
public void run() {

if (eShell == null) {
// Create new Shell: non-modal!
eShell = new Shell (shell, SWT.NO_ TRIM

| SWT.MODELESS) ;
eShell.setLayout (new FillLayout()) ;
// Text input field
eText = new Text (eShell, SWT.BORDER) ;
eText.setText ("Text rotation in the SWT?") ;
eShell .pack() ;
// Set position (Display coordinates)
java.awt.Rectangle bounds = canvas.getBounds () ;
org.eclipse.swt.graphics.Point pos = canvasComp
.toDisplay (bounds.width / 2, bounds.height / 2);

Point size = eShell.getSize() ;
eShell.setBounds (pos.x, pos.y, size.x, size.y);
// Open Shell
eShell .open() ;

} else if (!eShell.isVisible()) ({
// Editor versteckt, sichtbar machen
eShell.setVisible (true) ;

} else {
// Editor is visible - get text
String t = eText.getText () ;
// set editor invisible
eShell.setVisible (false) ;
// Add text to list and redraw canvas
wordList.add (t) ;
canvasComp.redraw () ;

194

The SWT Library

public void mouseReleased (

)

java.awt.event .MouseEvent e) {}

Finally, here is the routine for drawing the canvas content. This happens in a PaintListener that has
been attached to the canvas’s SWT container. Java2D text rotation is employed to lay out the entered text
in the form of a star. Since all of the resources used (Color, Font) are AWT resources, it is not necessary
to release these resources with dispose () . Java garbage collection will take care of that. Figure 8.12
shows the results.

// Redraw the canvas

canvasComp.addPaintListener (new PaintListener () ({
public void paintControl (PaintEvent e) {

// Pass the redraw task to AWT event queue

java.awt .EventQueue. invokeLater (new Runnable () {
public void run()

// Compute canvas center
java.awt.Rectangle bounds = canvas.getBounds () ;
int originX = bounds.width / 2;
int originY = bounds.height / 2;
// Reset canvas
g2d.setTransform(origTransform) ;
g2d.setColor (java.awt.Color.WHITE) ;
g2d.fillRect (0, 0, bounds.width, bounds.height) ;
// Set font
g2d.setFont (new java.awt.Font ("Myriad",
java.awt.Font.PLAIN, 32));
double angle = 0d;
// Prepare star shape
double increment = Math.toRadians (30) ;
Iterator iter = wordList.iterator() ;
while (iter.hasNext()) {
// Determine text colors in RGB color cycle

float red = (float) (0.5 + 0.5 * Math
.sin(angle)) ;

float green = (float) (0.5 + 0.5 * Math
.sin(angle + Math.toRadians (120))) ;

float blue = (float) (0.5 + 0.5 * Math

.sin(angle + Math.toRadians (240))) ;
g2d.setColor (new java.awt.Color (red, green,
blue)) ;
// Redraw text
String text = (String) iter.next() ;
g2d.drawString (text, originX + 50, originY) ;
// Rotate for next text output
g2d.rotate (increment, originX, originY) ;
angle += increment;

195

Chapter 8

// Finish shell and open it
shell.pack() ;
shell.open() ;
// SWT event processing
while (!shell.isDisposed()) ({
if (!display.readAndDispatch()) display.sleep() ;

}

display.dispose() ;

Q}Q\\k -‘J;B'Y =
W& =
A g =
g § g
T &
o § =z
§ 3
S =}
S %
™ =
~~
Figure 8.12

Output to a Printer

Output to a printer is performed with the help of the PrintDialog, PrinterData, and Printer
classes. PrintDialog is a subclass of the Dialog abstract class and represents the printer selection dia-
log of the host operating system. As a result, PrintDialog delivers either a PrinterData instance or
null. The PrinterData instance contains all the specifications made in the printer selection dialog,
such as the number of copies, printing scope, and so on. By accessing the corresponding fields
(copyCount, scope, etc.), you can use these specifications for the resulting output process.

For the actual printing process, you need to create an instance of the Printer class, which is a Device

subclass. You then use this to create a new graphics context (GC). You must perform all output opera-
tions necessary for filling the printed pages with content on this graphics context.

196

The SWT Library

First, call the Printer startJob () method to create a new print task. Then call the startPage ()
method for each page. Next, apply all drawing operations on the printer’s graphics context. After each
page is filled, call the endPage () method. When all pages are printed, close the printing task by calling
the endJob () method. Finally, you must dispose of the graphics context and the Printer object by
calling their dispose () methods. Listing 8.19 shows how it’s done.

// Create button for starting printing process
final Button printButton = new Button (composite, SWT.PUSH) ;
printButton.setText ("Print") ;
// React to clicks
printButton.addSelectionListener (new SelectionAdapter () ({
public void widgetSelected(SelectionEvent e) {
// Get Shell instance
Shell shell = composite.getShell () ;
// Create printer selection dialog
PrintDialog printDialog = new PrintDialog(shell) ;
// and open it
PrinterData printerData = printDialog.open() ;
// Check if OK was pressed
if (printerData != null) ({
// Create new Printer instance
Printer printer = new Printer (printerData) ;
// Create graphics context for this printer
GC gc = new GC(printer) ;
// Open printing task
if (!printer.startJob ("Hello"))
System.out .println ("Starting printer task failed");
else ({
// Print first page
if (!printer.startPage())
System.out.println ("Printing of page 1 failed");
else {
// Get green system color from printer
// and set it as text color
Color green =
printer.getSystemColor (SWT.COLOR DARK GREEN) ;
gc.setForeground (green) ;
// Draw text
gc.drawText ("Hello World", 4, 4, true);
// Close page
printer.endPage () ;
}
// Print second page
if (!printer.startPage())
System.out.println ("Printing of page 2 failed");
else ({
// Get blue system color from printer
// and set it as text color
Color blue = printer.getSystemColor (SWT.COLOR BLUE) ;
gc.setForeground (blue) ;
// Draw text
gc.drawText ("Hello Eclipse", 4, 4, true);
// Close page
printer.endPage () ;

Listing 8.19 (Continues)
197

Chapter 8

}

// Close printing task
printer.enddob () ;

}

// Release operating system resources
gc.dispose () ;
printer.dispose() ;

}
) 8

Listing 8.19 (Continued)

In fact, this code shows only the simplest case. Processing becomes more complicated if you have to con-
sider PrinterData specifications such as the number of copies, collating options, or printing scope. In
addition, it makes sense to fetch the printer’s resolution from the Printer instance via the getDPI ()
method and to scale the graphical operations accordingly.

Data Transfer

SWT data transfer includes both the exchange of data via the clipboard and the exchange of data via a
drag-and-drop operation with the mouse. The classes implementing data transfer are located in the
org.eclipse.swt.dnd package.

The Clipboard

Eclipse utilizes the system-wide native clipboard of the host platform to perform clipboard operations.
The SWT provides access to this clipboard via the C1ipboard class. This class implements the
setContents () and getContents () methods, which can be used to transfer content to and from the
clipboard. Since the clipboard allocates operating system resources, you must release the clipboard by
calling its dispose () method when it is no longer needed.

A clipboard usually contains the transferred data in various formats. Text processors, for example,
would transfer a copied text segment in both RTF format and plain-text format to the clipboard. Eclipse
identifies these formats with the help of transfer types. These are subclasses of the Transfer abstract
class. In particular, the following types are available: FileTransfer, MarkerTransfer,
RTFTransfer, TextTransfer, and additional Eclipse-specific transfer types. Should you have your
own demands for a special transfer type, you can roll your own (usually implemented as a subclass of
the ByteArrayTransfer class). The source code of ByteArrayTransfer contains a short tutorial of
how this is done.

These concrete transfer types serve as transformers of the type-specific data formats into the operating
system data format of the clipboard. When you want to transfer data to the clipboard, just pass an array
with data items (each in a specific format) and an array of corresponding transfer types to the
setContents () method. Similarly, when reading data from the clipboard, pass a transfer type to the
getContents () method and obtain the clipboard data in the desired data format. The
getAvailableTypes () method delivers an array of the transfer types of the current clipboard data.

198

The SWT Library

This allows you to find out quickly if a desired format is present without having to read the contents of
the clipboard. An example program for clipboard operations contained in the org.eclipse.swt
.examples plug-in (Clipboard. java).

Drag and Drop

For a drag-and-drop operation you need a data source and a data target. One or the other can be pro-
vided by a different application or by the system. Data sources are implemented in Eclipse in form of the
DragSource class, while the DropTarget class implements the data target. Both classes are subclasses
of the Widget class. An application can be equipped with several instances of both classes; however,
you must uniquely assign a Control instance to each instance of a DragSource or a DropTarget.
This is done by passing the Control instance to the DragSource () or DropTarget () constructor.
This assignment also defines the position and size of the data transfer element. In addition, at this point
you must specify, too, the operations possible for this source or target (DND . NONE, DND . MOVE,

DND. COPY, DND . LINK).

During a drag-and-drop operation the instances of these classes generate corresponding events
(DragSourceEvent resp. DropTargetEvent), which can be intercepted with an appropriate listener
instance (DragSourceListener resp. DropTargetListener). The various methods of these listeners
allow seamless control over the drag-and-drop operation. The DragSourceListener dragStart ()
method is called at the beginning of a drag-and-drop operation. When the cursor enters the
DropTarget area, the DropTargetListener dragEnter () method is called. Similarly,

dragLeave () is called when the mouse leaves this area, and dragOver () is called when the mouse
moves over this area. When the operation mode is changed during the operation (usually by pressing
Ctrl or Alt), the dragOperationChanged () method is called. When the mouse button is released over
the drop target, the dropAccept () method is called. This is the last opportunity to veto the operation.
Then the DragSourcelistener dragSetData () method is called. In this method the
DragSourceListener must provide the transfer data. This data is delivered to the drop () method of
the DropTargetListener. Finally, the DragSourceListener dragFinished () method is called.
Here you can perform cleanup tasks.

In all methods that are performed before the actual transfer of the data, you can still influence the
operation. By assigning DND . DROP_NONE to the DropTargetEvent field detail, you can veto the
operation. By assigning a different operation code, you can modify the mode of the operation.

The actual transfer of the data is performed via the data fields of the DragSourceEvent and
DropTargetEvent objects. Similarly, as with the clipboard (see the “Clipboard” section) you
can pass the data in various forms, which are described via transfer types. The dataType resp.
currentDataType fields of the event objects contain the current transfer type.

The “Playlist Viewer” section in Chapter 10 shows the implementation of a drop target in an example

application. A detailed article by Veronika Irvine about how to use SWT-based drag and drop is found
on Eclipse Corner (www.eclipse.org).

199

Chapter 8

Resource Management

In the course of this chapter, you have met several resource types that need to be disposed of when no
longer needed. In particular, they are instances of the Color, Font, Image, GC, Cursor, Printer,
Display, and Shell classes.

For all of these resources the golden rule is this:

If you created something, you must also dispose of it, but if you got a resource
from somewhere else (for example, with getSystemColor ()), you must not
dispose of it.

However, you don’t need to dispose of resources at the end of a program—the host operating system
will do this for you. So this rule applies only to resources that are used temporarily within an
application.

This sounds quite simple, but it can become complicated in larger applications. In many cases you want
to use the same color, font, or image in several places in an application. Who is responsible for disposing
of the resource in such a case? And is it really necessary to dispose of a resource if it can be reused later
somewhere else?

In such cases you can make use of a “store” concept. You can implement a Resource Store that manages
the lifecycle of your resources. The Resource Store disposes of the managed resources when the Resource
Store is itself disposed of. This allows you to reuse resources. This is useful in particular with Image
instances, because images can be very memory hungry.

In Listing 8.20 I show a simple Resource Store for color resources. When the ColorStore class is asked
for a Color object, it will return an existing Color object if it is already in the store; otherwise, it will
create a new Color object. When the ColorStore is disposed of by calling its dispose () method, all
Color objects in the store are disposed of, too.

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.Device;

public class ColorStore {
private static Map store = new HashMap () ;

/**
* Method getColor.
@param name some Color name
@param device Device instance
@param r red-value
@param g green-value
@param b blue-value
@return Color requested color

E o I I T 2

Listing 8.20 (Continues)

200

The SWT Library

*
/
public static Color getColor (String name,Device device,
int r, int g, int b) {
Object obj = store.get (name) ;
if (obj == null) {
Color newColor = new Color(device,r,g,b);
store.put (name, newColor) ;
return newColor;

}

return (Color) obj;

}

/**
* Method dispose.
“f
public static void dispose () {
Iterator iter = store.values () .iterator() ;
while (iter.hasNext()) {
Color color = (Color) iter.next () ;

color.dispose () ;

}

Listing 8.20 (Continued)

Here is how you can obtain a Color object from the store:
Color green = ColorStore.getColor ("green",display,0,255,0) ;

Since all methods in the ColorStore class are static, ColorStore can manage all the colors of an
application. Only when you need no more colors do you dispose of the whole store with

ColorStore.dispose () ;

In the “Resource Management” section in Chapter 9 I will discuss some predefined registries for fonts
and images.

Windows32 Support (OLE)

SWT provides a special library supporting the OLE mechanism of Microsoft’s Windows operating
systems. The Microsoft Win32 Object Linking and Embedding (OLE) mechanism is supported by the
classes in the org.eclipse.swt.ole.win32 package. OLE allows OLE documents and other ActiveX
control elements to be embedded in other (Container) applications. This allows you, for example, to use
Microsoft Internet Explorer as an SWT GUI element (the Browser widget is implemented this way) or
to embed a Microsoft Office document into an SWT user interface. Using these classes requires sufficient
knowledge of the OLE API. A small example plug-in is found in the Eclipse example collection under
org.eclipse.swt.examples.ole.win32 3.0.0.

201

Chapter 8
SWT on the Pocket PC

The Microsoft Pocket PC Platform is a valid runtime environment for SWT-based applications. However,
there are a number of special requirements and restrictions that must be considered when developing
applications for machines running under Windows CE:

Q PDA users usually ask for highly convenient user interfaces, more so than desktop users.
Q Processors are slower the desktop machines.

Q The available memory is smaller than on desktop machines.

Q The screen size is smaller than on desktop machines.

Q Very often there is no keyboard; the device is operated via a pen.

Often when a PDA is not equipped with a keyboard, an emulated keyboard is displayed on the screen
when text is to be entered. This reduces the space left for the application windows. Pocket PC applica-
tions should therefore create Shells with the SWT .RESIZE style parameter to enable the SWT to auto-
matically resize the shell when the emulated keyboard is opened or closed.

A special SWT library for Pocket PC platforms is available on www.eclipse.org. To reduce the size of this
library, some packages have been removed. These are:

O org.eclipse.swt.dnd (drag and drop, see the “Data Transfer” section)
org.eclipse.swt.ole (OLE, see the “Windows32 Support” section)
org.eclipse.swt.accessibility (accessibility functions, see the “Accessibility” section)

org.eclipse.swt.custom (special widgets, see the “Custom Widgets” section)

U 0 U U

org.eclipse.swt.printing (printer support, see the “Output to Printer” section)
O org.eclipse.swt.program (file associations)

Of course, you can create your own SWT library from these packages according to your requirements. In
addition, it is possible to reduce the size of the library even further by removing unused classes. The
Pocket PC article “A small cup of SWT” by Christophe Cornu2003 at www.eclipse.org explains in detail
how this can be achieved and how the startup time for Pocket PC applications can be minimized.

Accessibility

Finally, I briefly discuss how SWT supports the creation of user interfaces that are suitable for disabled
persons. Accessibility is an important topic in the context of commercial application development. Many
public institutions are allowed to purchase only software conforming to certain standards regarding its
usability by disabled persons.

The Eclipse documentation contains a special chapter about this topic in the Platform Plug-in Developer
Guide under Reference > Other Reference Information > Tips For Making User Interfaces Accessible.

202

The SWT Library

Many operating systems support special hardware devices designed for disabled persons and provide
an API for these devices. Eclipse supports the Microsoft Active Accessibility (MSAA) API. This support
is provided by the classes defined in the org.eclipse.swt.accessibility package. All SWT
Control instances can provide an instance of the Accessible class via the getAccessible ()
method. This instance serves as a link to the Accessibility APL

Summary

In this chapter I have given you an introduction into the core concepts of the Standard Widget Toolkit
(SWT). By now, you should have an understanding of the SWT event model and of the main widget
groups found in the SWT. You should know the different layout types and how to use them (however,
you’ll need practice to master them). You should by now understand how basic graphics can be created
with the SWT and how advanced graphics produced with Swing and Java2D can be embedded into an
SWT environment. You should be able to produce output for a printer and to use the clipboard and the
drag-and-drop facilities. You have also learned about the most common traps for SWT programmers: the
necessity to release allocated resources and how to access the SWT thread from a non-SWT thread.

In the next chapter we move to the higher-level GUI layers of the JFace component.

203

JFace

The JFace API is based on the SWT API and provides the programmer with higher-level GUI com-
ponents such as viewers, actions, dialogs, wizards, and much more. In the following sections I will
discuss the most important function groups.

Some of the JFace components are specific to the Eclipse workbench and are packaged in the
archive workbench. jar as an integral part of the Eclipse workbench plug-in. Most of the compo-
nents of JFace, however, can be used independently from the Eclipse workbench and are therefore
packaged in the archive jface. jar and are deployed in a separate JFace plug-in.

Resource Management

This chapter begins with the topic with which the previous chapter ended: resource management.
JFace provides some classes that support the management of resources such as fonts, colors, and
images. The classes of this group are contained in the package org.eclipse.jface.resource.

The FontRegistry Class

The FontRegistry class is able to manage all the fonts used within an application. A
FontRegistry instance is always created for a concrete Display instance. If no Display
instance is passed to the FontRegistry () constructor, the current Display instance will be
used.

You don’t need to specify a Display instance when adding a font to the FontRegistry with the
help of the put () method, because the FontRegistry can supply the Display instance by itself
if it needs to create a new font instance. It is sufficient to specify the symbolic font name and a
FontData instance (see the “Fonts” section in Chapter 8). You can retrieve a font from the
FontRegistry with the method get () by specifying a symbolic name.

Chapter 9

What is convenient with a FontRegistry is that you don’t have to care at all about the disposal of font
resources. When a FontRegistry is created, it links itself into the DisposeEvent () processing of its
Display instance. When this Display instance is disposed of, the FontRegistry and all fonts con-
tained in the registry are disposed of as well. It is important not to explicitly dispose of a font contained
in the FontRegistry by calling its dispose () method.

The ImageRegistry Class

The ImageRegistry class works quite similarly to FontRegistry but is responsible for the manage-
ment of images. ImageRegistry instances are also associated with a concrete Display instance.
Images are added to the registry with the put () method and are addressed with a symbolic name. They
can be retrieved again with get () . In the section “Some Dialog Subclasses” I will show a code example
of how to use the ImageRegistry. As with FontRegistry, the disposal of the ImageRegistry
instance and of the contained images is linked to the DisposeEvent () processing of the corresponding
Display instance.

In lieu of an Image instance, you can add an ImageDescriptor instance to the registry using put ().
ImageDescriptor instances act as proxies for images: they contain only the image metadata and know
where and how to fetch the corresponding image. The image is loaded only when it is really needed—in
the case of the ImageRegistry, this is when it is retrieved with get ().

The JFaceColors Class

This class organizes consistent color management for all GUI components of JFace. Various static meth-
ods allow the retrieval of specific colors, such as the color of error messages, hyperlinks, or other GUI
elements.

The JFaceResources Class

This class organizes consistent font and registry management for all JFace GUI components. Various
static methods allow the retrieval of specific fonts, such as fonts for dialogs, texts, banners, and so on.
You can also retrieve the current FontRegistry and ImageRegistry instances.

Dialogs and Windows

The package org.eclipse.jface.dialogs provides some classes that implement standard dialogs.
All these classes are subclasses of the abstract JFace class Dialog, which is itself a subclass of the
abstract class Window.

The class Window can be used to implement your own windows. The typical life cycle of a window is

new
create ()
open ()
close ()

206

JFace

create () can be omitted: the open () method will then automatically execute the create () method.
Among other things, create () creates the window’s Shell instance. Consequently, retrieving the shell
via method getShell () makes sense only after create () has been executed. The shell is disposed of
automatically when close () is executed. In addition, create () invokes the methods
createContents () and initializeBounds (), which may be overridden or extended by
subclasses. For example, you would override createContents () to construct the window content.

With the help of the getReturnCode () method you can retrieve the current state of an opened
window. You obtain the value Window. OK for a window with an opened shell and the value Window
. CANCEL when the window’s shell is closed.

Because the class Dialog is a subclass of Window, its life cycle is similar. But unlike with Window, you
would not override the createContents () method to add content to a Dialog instance. Instead, you
would override one or several of the methods createDialogArea (), createButtonBar (), and
createButtonsForButtonBar (). By default, the latter method creates an OK button and a Cancel
button.

To create additional buttons, the class provides the createButton () method. This also creates the nec-
essary event processing for each button. When a button is pressed, the buttonPressed () method is
called. For the OK button and the Cancel button, this method in turn invokes the methods

okPressed () and cancelPressed (). Both of these methods close the dialog with close (). All of
these methods can be overridden or extended using subclasses.

You can get the code of the button with which the dialog was closed with the getReturnCode ()
method or as the result of the open () method: this will be Window. OK for the OK button and
Window . CANCEL for the Cancel button.

Some Dialog Subclasses

JFace comes with a variety of predefined special purpose Dialog subclasses, some of which I discuss in
the following sections.

The InputDialog Class

This class creates a simple dialog with a text field (see Figure 9.1), an OK button, and a Cancel button.
Creating such a dialog requires only a few instructions:

InputDialog inputDialog = new InputDialog(shell,
"Input", "Please enter text","text",null) ;

if (inputDialog.open() == Dialog.OK) {
String result = inputDialog.getValue() ;
System.out.println (result) ;

}

InputDialog is the simplest of the predefined JFace dialogs.

207

Chapter 9

Please enter text

et

oK | Cancel

Figure 9.1

The MessageDialog Class

The class shown in Listing 9.1 generates a simple dialog for displaying messages. You can configure the
number of buttons and their labeling. In addition, you can show an icon in the title bar of the dialog
window. Usually, you would use a GIF image of size 16x16 pixels.

// Create image registry

ImageRegistry imageRegistry = new ImageRegistry() ;

// Load icon for title line

final Image image = new Image (shell.getDisplay (),
"images/envelop.gif") ;

// Register image

imageRegistry.put ("envelope", image) ;

// Create message dialog

MessageDialog messageDialog = new MessageDialog(shell,
"Message", imageRegistry.get ("envelope"),
"You have mail!", MessageDialog.INFORMATION,
new String[] {"View", "Dispose", "Abort"}, 0);

// Open dialog and retrieve the index of the button pressed

int buttonPressed = messageDialog.open() ;

System.out.println ("Button pressed: "+buttonPressed) ;

Listing 9.1
In the third parameter you can pass an image for the title line. (You can retrieve this image from the

image registry.) If you don’t want to use an image, just specify null. In the fifth parameter specify a style
constant declaring the type of dialog and the icon shown in front of the message:

MessageDialog.NONE No specification, no icon shown
MessageDialog.ERROR Error message
MessageDialog.INFORMATION Info message
MessageDialog.QUESTION Question
MessageDialog.WARNING Warning

In the sixth parameter specify a String[] array containing all the button labels. The seventh parameter
specifies the index of the default button. Figure 9.2 shows the MessageDialog from the previous code
example.

208

JFace

- 3 \ ill
Q) You have mail!

Dispose Abort

Figure 9.2

The class MessageDialog, in addition, provides some static methods implementing simple standard
dialogs such as openConfirm(), openError (), openInformation (), openQuestion (), and
openWarning (). Here is an example using the openConfirm () method:

if (MessageDialog.openConfirm(shell,
"General question", "System crash!\nPlease acknowledge!")) {
System.out.println ("OK was pressed") ;

The TitleAreaDialog Class

This class defines a basic pattern for more complex dialogs. You would usually not instantiate this class
directly, but rather you would define your own subclasses (see “Implementing Your Own Dialog
Classes”). The class TitleAreaDialog provides the following features:

Q Title line.

QO Message area. This area usually contains one or two lines of text. Iit also displays an error mes-
sage when present. Optionally, you may specify your own image for this area with
setTitleImage (). Figure 9.3 shows the Eclipse default image for the TitleAreaDialog on
the right-hand side of the message area. This image has a size of 72x72 pixels. Since this image
controls the height of the message area, you can make room for additional message lines by
specifying a taller image.

O An OK button and a Cancel button.

The following code shows how a TitleAreaDialog instance is created and initialized. Before you can
set features such as title, message, or image, you must invoke the create () method:

TitleAreaDialog titleAreaDialog = new TitleAreaDialog (shell) ;
titleAreaDialog.create () ;
titleAreaDialog.setTitle ("Important message") ;
titleAreaDialog.setMessage (

"You have mail!\nIt could be vital for your career..");
if (titleAreaDialog.open() == Dialog.OK) {

System.out .println ("OK was pressed") ;
}

209

Chapter 9

Important message

‘fou have mail!
It could be vital for your career...

Cancel

Figure 9.3

Implementing Your Own Dialog Classes

You can derive your own subclasses from the dialog classes discussed previously (and, of course, also
from the mother of all JFace dialogs, the class Dialog). This makes sense, in particular, for the class
TitleAreaDialog. This dialog still has a big empty space in the center that needs to be filled.

The various areas in such a dialog are all created using different methods. By overriding one or several
of those methods, you can change the configuration of the dialog considerably. For example, by overrid-
ing the method createButtonsForButtonBar (), you can add additional buttons along with the OK
button and the Cancel button or even replace those buttons.

Listing 9.2 implements the MailDialog class, which is based on the TitleAreaDialog class. The cen-
ter area contains a List widget that displays mail messages that have arrived. The OK button and the
Cancel button are replaced with the buttons Open, Delete, and Abort. The Delete button does not close
the dialog but simply removes an item from the list. When no items are selected, the Open button and
the Delete button are disabled, and an error message is shown in place of the normal message.

import org.eclipse.jface.dialogs.TitleAreaDialog;
import org.eclipse.swt.SWT;

import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Button;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;

import org.eclipse.swt.widgets.List;

import org.eclipse.swt.widgets.Shell;

public class MailDialog extends TitleAreaDialog ({
// IDs for MailDialog buttons
// We use large integers because we don’t want
// to conflict with system constants
public static final int OPEN = 9999;

Listing 9.2 (Continues)

210

JFace

public static final int DELETE = 9998;
// List widget
List list;
// Initial content of the list
String[] items;
// Selected items
String[] itemsToOpen;
/**
* Constructor for MailDialog.
* @param shell - Containing shell
* @param items - Mail messages passed to the dialog
*
/
public MailDialog(Shell shell, String[] items)
super (shell) ;
this.items = items;
}
/**
* @see org.eclipse.jface.window.Window#create ()
* We complete the dialog with a title and a message
=
public void create() {
super.create() ;
setTitle ("Mail") ;
setMessage (
"You have mail!\n It could be vital for this evening..") ;
}**
* @see org.eclipse.jface.dialogs.Dialog#
* createDialogArea (org.eclipse.swt.widgets.Composite)
* Here we fill the center area of the dialog
*
/
protected Control createDialogArea (Composite parent) {
// Create new composite as container
final Composite area = new Composite (parent, SWT.NULL) ;
// We use a grid layout and set the size of the margins
final GridLayout gridLayout = new GridLayout () ;
gridLayout .marginWidth = 15;
gridLayout .marginHeight = 10;
area.setLayout (gridLayout) ;
// Now we create the list widget
list = new List (area, SWT.BORDER | SWT .MULTI) ;
// We define a minimum width for the list
final GridData gridData = new GridData () ;
gridData.widthHint = 200;
list.setLayoutData (gridData) ;
// We add a SelectionListener
list.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
// When the selection changes, we re-validate the list
validate () ;

}
)

Listing 9.2 (Continues)

211

Chapter 9

// We add the initial mail messages to the list

for (int i = 0; i < items.length; i++) ({
list.add (items[i]) ;

1

return area;

}

private void validate() {
// We select the number of selected list entries
boolean selected = (list.getSelectionCount () > 0);

// We enable/disable the Open and Delete buttons
getButton (OPEN) .setEnabled (selected) ;
getButton (DELETE) .setEnabled (selected) ;
if (!selected)
// If nothing was selected, we set an error message
setErrorMessage ("Select at least one entry!");
else
// Otherwise we set the error message to null
// to show the intial content of the message area
setErrorMessage (null) ;

S~

E I B T T

@see org.eclipse.jface.dialogs.Dialog#
createButtonsForButtonBar (org.eclipse.swt.widgets.Composite)
We replace the OK and Cancel buttons by our own creations
We use the method createButton() (from Dialog),
to create the new buttons
/
protected void createButtonsForButtonBar (Composite parent) {
// Create Open button
Button openButton = createButton (parent, OPEN,
"Open", true);
// Initially deactivate it
openButton.setEnabled (false) ;
// Add a SelectionListener
openButton.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
// Retrieve selected entries from list
itemsToOpen = list.getSelection() ;
// Set return code
setReturnCode (OPEN) ;
// Close dialog
close () ;

1
1)
// Create Delete button
Button deleteButton =

createButton (parent, DELETE, "Delete", false);
deleteButton.setEnabled(false) ;
// Add a SelectionListener
deleteButton.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {

Listing 9.2 (Continues)

212

JFace

// Get the indices of the selected entries

int selectedItems[] = list.getSelectionIndices() ;
// Remove all these entries

list.remove (selectedItems) ;

// Now re-validate the list because it has changed
validate() ;

}
1)
// Create Cancel button
Button cancelButton =
createButton (parent, CANCEL, "Cancel", false);
// Add a SelectionListener
cancelButton.addSelectionListener (new SelectionAdapter () {
public void widgetSelected (SelectionEvent e) {
setReturnCode (CANCEL) ;

close () ;
}
1) i

}
/**

* Method getItemsToOpen.

* @return String[] - the selected items
=y

public String[] getItemsToOpen() {
return itemsToOpen;
}

Listing 9.2 (Continued)

You can then use the MailDialog class as shown in Listing 9.3.

MailDialog mailDialog = new MailDialog(shell,
new String[] {"Carol", "Eve", "Claudia", "Alice" });
if (mailDialog.open() == MailDialog.OPEN) {
String[] itemsToOpen = mailDialog.getItemsToOpen () ;
for (int i = 0; i < itemsToOpen.length; i++) {
System.out .println (itemsToOpen [i]) ;
}

Listing 9.3

Making Dialogs Persistent

The interface IDialogSettings is used to save and restore the state of Dialog instances across
sessions, such as the state of checkboxes, entries in text fields, and so on.

213

Chapter 9

For this purpose IDialogSettings defines methods that allow you to set and retrieve name/value
pairs. With get () and getArray () you can read scalar string values or string arrays, respectively, and
with put () you can write both scalars and arrays. There is also a variety of data type—specific get... ()
methods, such as getInt (), getLong (), getFloat (), getDouble (), and getBoolean ().

In addition, you have the option to store and retrieve whole subsections of dialog settings with the
addSection (), addNewSection (), and getSection () methods. Each subsection is represented by
another IDialogSettings instance. Consequently, subsections may be nested. You can thus construct
a deeply nested tree.

With the 1oad () method you can read an IDialogSettings instance from a file or from an input
stream, and with save () you can write an IDialogSettings instance to a file or to an input stream.

The class DialogSettings is the standard implementation for the interface IDialogSettings. It
uses XML as the file format for persistent storage of the settings.

In Listing 9.4 the DialogSettings instance with two subsections is created.

IDialogSettings settings = new DialogSettings ("dialog") ;
IDialogSettings sectionl = new DialogSettings ("dialogPagel") ;
settings.addSection (sectionl) ;
sectionl.put ("volume",4.5) ;
sectionl.put ("pitch",300) ;
IDialogSettings section2 = new DialogSettings ("dialogPage2") ;
settings.addSection (section2) ;

section2.put ("Languages", new String[] {"english",

"german", "french"}) ;

settings.save ("settings/test/dialog.xml") ;

Listing 9.4

Viewers

Despite the name Viewer, the classes in the package org.eclipse.jface.viewers do not only
support viewing contents. All ..vViewer classes also support the modification of contents. In fact, some
of the editors in the Eclipse workbench are constructed with the help of these viewer classes. The name
Viewer is derived from the Model-Viewer-Controller (MVC) design pattern. This pattern defines cooper-
ation between three component types: the Model component manages the domain data, the Viewer
component is responsible for the representation of the data on the screen, and the Controller component
handles user interaction. Besides a clear separation of concerns, this design pattern has the advantage
that it allows several Viewer instances for a single Model instance. This allows you to display the same
data in different ways simultaneously.

214

JFace

The Viewer Event Model

In the context of the MVC design pattern, JFace establishes its own event model. This model features all
event types that are sent from the Viewer component to the Controller. The following event types are
available:

Event Listener Description

CheckStateChangedEvent ICheckStateListener This event is generated
when the state of a check
box within the viewer
changes.

DoubleClickEvent IDoubleClickListener This event is generated
when a data element
representation in the
viewer is double-clicked.

OpenEvent IOpenlListener This event is generated
when a data element
shown in the viewer is
opened with a double-
click or by pressing the
Enter key.

SelectionChangedEvent ISelectionChangedListener This event is generated
when the selection in the
viewer changes.

TreeExpansionEvent ITreeViewerListener This event is generated
when a tree node expands
or collapses.

All these event types are subclasses of class java.util.EventObject.

The Viewer Hierarchy

The abstract class Viewer is the mother of all viewer classes in JFace (Figure 9.4). Most notably, each
Viewer instance wraps an SWT widget that is responsible for the representation of data, such as wid-
gets of type Table, Tree, TableTree, and so on. The class Viewer provides the basis for the concrete
viewer implementation but also provides some methods of general interest, such as functions support-
ing the help system.

215

Chapter 9

BookmarkNavigator PageBookView ResourceNavigator

AbstractDebugView ContentOutline PropertySheet

Figure 9.4

ContentViewer

The class ContentViewer is an immediate subclass of class Viewer and implements the MVC design
pattern. ContentViewer retrieves the domain data from an IContentProvider instance that has
been registered with the ContentViewer via the setContentProvider () method. The
IContentProvider instance may deliver the data in its raw format: the later transformation of the
individual data elements into their representational format is done via an IBaseLabelProvider
instance that has been registered with the ContentViewer via the setLabelProvider () method.
For example, if you want to display a table containing the various file attributes for a set of files, the
IContentProvider would deliver just the File instances. The IBaseLabelProvider would
retrieve for each table column the corresponding attributes from a single File instance and would
deliver the representation of the attribute. IBaseLabelProviders can deliver both text and image
representations.

Both IContentProvider and IBaseLabelProvider are “abstract” interfaces, that is, they
don’t declare methods to retrieve or transform contents. They declare only general methods such as
dispose () or inputChanged ().

ILabelProvider

The definition of the actual methods for data transformation are left to “concrete” interfaces such as
ILabelProvider with the methods getImage () and getText (), ITableLabelProvider with the
methods getColumnImage () and getColumnText (), and IStructuredContentProvider with
the methods getChildren (), hasChildren (), and getParent ().

StructuredViewer

The class ContentViewer is the direct parent class for the (still) abstract class Structuredviewer.
This class is the basis for most of the concrete viewer implementations in JFace. It provides a wealth of
additional methods—in particular, methods that allow you to sort and filter the dataset displayed in

216

JFace

the viewer. The abstract classes ViewerSorter and ViewerFilter act as a basis for implementations
of custom sorters and filters. In the “Playlist Viewer” section in Chapter 8you will see a TableViewer
as a concrete example of the Structuredviewer in full action.

TreeViewer

The abstract class AbstractTreeViewer provides the basis for all concrete tree-oriented viewer imple-
mentations such as TreeViewer (and its derivative CheckboxTreeViewer) and TableTreeViewer.
In particular, this class provides methods for the management of trees, such as methods for expanding
and collapsing tree nodes.

Cell Editors

All table-oriented viewers such as TableViewer and TableTreeViewer can be equipped with cell
editors, allowing you not only to view table contents but also to edit them. Eclipse provides a variety of
predefined cell editors:

CheckboxCellEditor This editor allows the modification of a Boolean value.
ColorCellEditor This editor supports the selection of a color.
ComboBoxCellEditor This editor allows the selection of a value from a list but

also the free input of an arbitrary value.

DialogCellEditor This editor allows the invocation of arbitrary dialogs. The
result value of the dialog is then assigned to the cell.

TextCellEditor This editor allows unrestricted input into the cell.

All these editors are derivatives of the abstract class Cel1Editor. To make tables and table trees
editable, several components must cooperate:
O You need a suitable viewer (TableViewer or TableTreeViewer).

O You need a suitable cell editor (as previously mentioned), too. The editor is registered with the
viewer via the method setCellEditors (). You can register an individual editor for each
column.

Q With each editor you can register an ICellEditorValidator instance via the
setValidator () method. These instances are responsible for validating the editor input.

O You must register an ICellModifier instance with the viewer via method
setCellModifier (). This instance is responsible for the data flow between the viewer and
the editor. Each ICellModifier instance must implement the following three methods:

0 getValue () retrieves from the domain data the value that will appear in the editor.

0 canModify () checks to see whether a given value can be modified.

0 modify () gets the result data from the editor and modifies the domain data accordingly.
Q Column properties identify each column uniquely. The Cel11Modifier can recognize the col-

umn it works on with the help of these column properties. You can assign a column property to
each viewer column via the method setColumnProperties ().

In the section “The Playlist Viewer” in Chapter 10 you will see cell editors in action.

217

Chapter 9

Data Transfer

Basically, all JFace viewers are prepared to support data transfer via drag and drop. This functionality is
built on top of the SWT data transfer functionality (see the “Data Transfer” section in Chapter 8). For
example, you can easily add a DragSourceListener to a viewer via its addDragSupport () method.
In this method call you also would define the supported operations and transfer types. Similarly, you
can add a DropTargetListener via method addDropSupport (). Within these listeners, drag-and-
drop events are processed as already discussed in the “Drag-and-Drop” section in Chapter 8.

However, if you want to exchange data with existing viewers, you must know which transfer types are
supported by these viewers. For example, the Eclipse Navigator supports the types FileTransfer and
ResourceTransfer. The Tasks View, the Problems View, and the Bookmarks View support the types
MarkerTransfer and TextTransfer.

Details about the JFace data transfer are discussed in the Eclipse Corner (www.eclipse.org) article by
John Arthorne.

Text Processing

Text processing is another main functional group of JFace. In particular, the various Eclipse editors are
based on JFace’s text processing. However, it is possible to use JFace text processing isolated from the
Eclipse workbench.

The Eclipse text-processing functionality is deployed in two separate plug-ins, org.eclipse.jface
. text with archive jfacetext.jar and org.eclipse.text with archive text .jar, and consists
of the following packages:

org.eclipse.text.*
org.eclipse.jface.text.*

Text Processing Base Classes

The text processing function group is separated into a data domain layer and a presentation layer. The
representation is done by the TextViewer class, while the data model is described by the interface
IDocument. For the interface IDocument, Eclipse provides the standard implementations
AbstractDocument and Document.

The Document Model
Classes that implement the IDocument interface must provide the following services:
Q Text manipulation. Modifying the text content of a document is done with the help of the
replace () method. This method can replace a specified text area with another string. Such

operations generate DocumentEvents that inform registered Listeners and
IPositionUpdaters (see the following explanation) about the text modification.

0 Positioning. Position instances represent a position or an area within a document. You can
add any number of Position instances to an IDocument instance and can assign each

218

JFace

Position instance to a category. For the Java editor, for example, there are breakpoints,
problem markers, and other positional categories. Remembering a document position in a
Position instance, however, raises a problem. When the document changes, the real position
may change, too. It is therefore necessary to update all Position instances in the case of
document modification. This is done with the help of IPositionUpdate instances. (The
DefaultPositionUpdater class is the standard implementation of this interface). You can
add any number of these instances to a document. When a document is modified, all registered
IPositionUpdate instances are invoked in their registration order via their update ()
method, and a DocumentEvent instance is passed to this method.

Q Partitioning. Partitions are non-overlapping sections within a document. For example, a source
code document could be segmented into partitions of the types comment, declaration, and
instruction. Each partition is characterized by its position, its length, and its type. A document
is segmented into separate partitions with the help of an associated IDocumentPartitioner
instance. If a document does not have such an IDocumentPartitioner, it consists of only a
single partition—the entire document. When a partition is changed, the method
documentPartitioningChanged () is called for a registered
IDocumentPartitioningListener instance.

Q Searching. The method search () supports searching for a character string. It can search
forward and backward, allows case-sensitive or case-insensitive searching, and can search for
words or generic character strings.

Q Line tracking. The line-tracking functions are found only in the standard implementations
AbstractDocument and Document but don’t belong to the IDocument interface. With an
ILineTracker instance (standard implementations are AbstractLineTracker,
DefaultLineTracker, and ConfigurableLineTracker), you can create a relationship
between document position and line number. Initially, the whole text is parsed for line-
separation characters. Later modifications are made known to the ILineTracker instance,
so that this instance can update its internal line number associations. It is not the client’s
responsibility to register an ILineTracker instance with a document. Instead, an
ILineTracker is associated with an IDocument instance by implementation, that is, when
a subclass of AbstractDocument is implemented. For example, the class Document uses the
standard implementation DefaultLineTracker.

IDocument implementations throw a BadLocationException or a
BadPositionCategoryException when you try to access beyond the document bounds or when
you use an unknown position category.

Scripts

Since Eclipse 3 it is possible to combine several text operations into a single script. To do so, you must
represent each single text operation by a TextEdit instance. JFace provides a specific subclass of class
TextEdit for each operation type, such as DeleteEdit, InsertEdit, and ReplaceEdit. The class
MultiTextEdit can combine multiple text operations, which can be added to a MultiTextEdit
instance with the help of the method addChild () or addChildren().MultiTextEdit objects can be
nested, and thus TextEdit objects form trees. You can apply such scripts with the help of the method
apply () to IDocument instances. This method returns as a result an UndoEdit object with which you
can undo the just-performed operations. Listing 9.5 shows this.

219

Chapter 9

public static void main(String[] args)
throws MalformedTreeException, BadLocationException

IDocument document= new Document ("Eclipse 3") ;
System.out .println (document.get()) ;
MultiTextEdit edit= new MultiTextEdit () ;
edit.addChild (new InsertEdit (0, "Java Entwicklung")) ;
edit.addChild (new InsertEdit (0, " mit ")) ;
UndoEdit undo = edit.apply (document) ;
System.out .println (document.get()) ;
undo.apply (document) ;
System.out.println (document.get()) ;

}

Listing 9.5

The result is the following output on the Java console:

Eclipse 3
Java Entwicklung mit Eclipse 3
Eclipse 3

In addition to these delete, insert, and replace operations, there are also the classes MoveSourceEdit,
MoveTargetEdit, CopySourceEdit, and CopySourceEdit to support the moving and copying of
text within a document. When you use these classes, every SourceEdit must have a corresponding
TargetEdit, and vice versa. When moving or copying text contents, you can modify these contents
before inserting them into the target position. This is done by adding a suitable ISourceModifier
instance to MoveSourceEdit or CopySourceEdit instances via the method
setSourceModifier().

The TextViewer

The class TextViewer implements the presentation layer of the text-processing function group. It uses
the SWT class StyledText (see “Custom Widgets” in Chapter 8) for displaying and editing text.
Writing a bare-bones text editor with the help of this class is almost trivial. For example:

Document doc = new Document ("Some text") ;

TextViewer textViewer = new TextViewer (composite, SWT.MULTI
| SWT.H SCROLL | SWT.V_ SCROLL) ;

textViewer.setDocument (doc) ;

Despite this minimalist example, the class TextViewer provides such rich functionality that it would
require a complete book to cover the topic. Here, I want to list only the most important functions.

The event processing for class TextViewer is handled by four Listener interfaces:

220

JFace

Listener Event Description

ITextInputListener - The inputDocumentAbout ToBeChanged ()
method is called before the current document is
replaced by a new document. After the
replacement the method
inputDocumentChanged () is invoked.

ITextListener TextEvent The textChanged () method is invoked when
text is changed. The TextEvent describes the
replaced text and the replacement.

IViewportListener - The viewportChanged () method is invoked
when text is changed within the visible window
of the viewer.

VerifyKeyListener VerifyEvent The VerifyEvent of the StyledText widget.

Selection

The methods getSelectedRange (), setSelectedRange (), getSelection (), and
setSelection () allow clients to retrieve and set text selections. These methods use TextSelection
instances for parameters and results. With set TextColor () or changeTextPresentation () you
can assign a different color to a selected text area. In addition, you can set and retrieve text markers with
setMark () and getMark ().

Viewport

The viewport describes the editor’s visible window onto the text. This viewport can be managed with
the getTopIndex (), setTopIndex (), getBottomIndex (), getTopIndexStartOffset (), and
getBottomIndexEndOffset () methods. You can therefore get and set the line number of the top
line in the viewport, the line number of the bottom line in the viewport, the text position of the top-left
viewport corner, and the text position of the bottom-right corner of the viewport. With revealRange ()
you can position the editor window in the specified area.

Visible Text Region

The visible text region consists of all text lines that can be displayed in the editor window. Apart from
these lines, a document may contain lines that always remain invisible. The following methods can be
used to manage the visible region:

U getVisibleRegion()
U setVisibleRegion()
4 resetVisibleRegion ()
a

overlapsWithVisibleRegion ()

221

Chapter 9

Hover

You can set or retrieve an ITextHover instance for each text partition with the methods setHover ()
and getHover () . These instances organize the display of explanation texts that are displayed when
the mouse hovers over a text area. They implement the method getHoverInfo (), which composes the
explanation text, and the method getHoverRegion (), which computes the text area for which the
explanation is provided from a text position.

Apart from these basic functions, the TextViewer establishes a framework for implementing a com-
plete text editor. This includes support for operations and support for installing plug-ins.

Operations

Instances of type ITextOperationTarget represent operations typically performed by the user. This
interface is implemented by the TextViewer with the methods canDoOperation () and
doOperation (). The latter method must be invoked only if canDoOperation () is successful. In
addition, the TextViewer implements the method enableOperation() from the interface
ITextOperationTargetExtension.

Operations can be identified with the following predefined constants (defined in interface
ITextOperationTarget): COPY, CUT, DELETE, PASTE, PREFIX, PRINT, REDO, SELECT ALL,
SHIFT_LEFT, SHIFT RIGHT, STRIP_PREFIX, and UNDO. For example, the following code deletes all
text:

textViewer.doOperation (ITextOperationTarget .SELECT ALL) ;
if (textViewer.canDoOperation (ITextOperationTarget .DELETE))
textViewer.doOperation (ITextOperationTarget .DELETE) ;

Some of these operations are available only if you have previously created an appropriate manager for
the TextViewer. In particular, this is the case for UNDO and REDO operations. Before you can perform
these operations, you first must add an ITUndoManager instance to the TextViewer via the
setUndoManager () method. In the following code the ITUndoManager standard implementation, the
class DefaultUndoManager, is installed:

// maximum 99 Undos

IUndoManager undoManager = new DefaultUndoManager (99) ;
undoManager .connect (textViewer) ;
textViewer.setUndoManager (undoManager) ;

The operations PREFIX and STRIP_PREFIX can be configured by setting a default prefix with the
setDefaultPrefixes () method. This allows you to set a different default prefix for each text
category. Similarly, you can use the method setIndentPrefix () to specify category-specific prefixes
for text indentation used by the operations SHIFT LEFT and SHIFT RIGHT.

The indentation of text can, in addition, be automated by specifying an TAutoIndentStrategy
instance. For each text modification, the customi zeDocument Command () of this instance is called.

A DocumentCommand is passed as a parameter to this method and informs you how the text was
changed. The IAutoIndentStrategy instance may then decide how to indent the text. The
IAutoIndentStrategy standard implementation, for example, always indents a line by left aligning
it with the previous line. The following code shows how this strategy is installed:

222

JFace

try {
textViewer.setAutoIndentStrategy (new DefaultAutoIndentStrategy (),
doc.getContentType (0)) ;
} catch (BadLocationException e) {}

Text Presentation

Since the TextViewer uses internally a widget of type StyledText (see “Custom Widgets” in Chapter 8),
it is possible to apply an appropriate text presentation, for instance, displaying text sections in a different
style or color. Since Eclipse 3 there are two new interfaces to support this task:
ITextViewerExtension4 and ITextPresentationListener. You should use this API instead of
resorting to the low-level API of the StyledText widget. If a TextViewer implements the interface
ITextViewerExtension4, you can instrument it with an ITextPresentationListener instance.
The applyTextPresentation () method of this instance is called whenever a new text presentation
must be created or updated, receiving a Text Presentation object via its parameter. You can add
StyleRange instances to this object by invoking the methods addStyleRange () and
mergeStyleRanges () and thus modify the existing text presentation.

The SourceViewer Class

The SourceViewer class is a subclass of TextViewer. In addition to the TextViewer, it offers a verti-
cal ruler on which you can place annotations and mark text areas. There are some new operations, too:

a CONTENTASSIST PROPOSALS
a CONTENTASSIST CONTEXT INFORMATION
a FORMAT
a

INFORMATION

The SourceViewer is, in particular, suited to implementing source code editors. An example for the
application of the SourceViewer is given in Chapter 10.

Configuration

The SourceViewer combines most of its configuration settings and managers in a separate configura-
tion object, an instance of the SourceViewerConfiguration class. Here you can specify all kinds

of settings such as prefixes, UndoManager, hover behavior, or the content assistant in complete
isolation from the SourceViewer. Later you can assign the configuration object to a SourceViewer
instance via the configure () method. Usually you would want to create subclasses of
SourceViewerConfiguration to create editors of different behavior. Instead of subclassing the
class SourceViewer, you subclass SourceViewerConfiguration and use the instances of these
subclasses to configure the Sourceviewer.

Annotations

Annotations for a document are managed outside the IDocument instance. The package
org.eclipse.jface.text.source provides the interface IAnnotationModel for this purpose
with the standard implementation AnnotationModel. With the connect () method you can connect

223

Chapter 9

this model with the document instance. The SourceViewer is told about the annotation model as an
additional parameter in the setDocument () method (together with the IDocument instance).

The IAnnotationModel interface provides a number of methods to add Annotation instances to the
model or to remove or retrieve annotations. When it does so, the position of the annotation is specified
with a Position instance (see “Text Processing Base Classes”). This guarantees that the annotation
remains in the right position, even when the document content changes.

In addition, you have the option of adding an IAnnotationModelListener instance to the annota-
tion model. The modelChanged () method of this instance is invoked when the model changes.

The abstract class Annotat ion defines some methods for the graphical representation of annotations.
You have the option of specifying a layer for each Annotation instance, so you can position annota-
tions on top of each other.

The interface IAnnotationHover also belongs to the annotation mechanism. Instances of type
IAnnotationHover can be registered with the SourceViewer via the method
setAnnotationHover (). Implementations of IAnnotationHover must implement the method
getHoverInfo (). This method generates text that is displayed when the mouse hovers over the anno-
tation for each given line number.

Text Formatters

Text formatters modify the content of a document. They insert characters or remove characters to mold
the text into a given format. An example of a text formatter is the Java code formatter introduced in the
“Formatting Code” section in Chapter 1.

Text formatters are passed from a SourceViewerConfiguration to a SourceViewer instance via
method getContentFormatter (). All these formatters must implement the interface
IContentFormatter. The standard implementation ContentFormatter can work in two operation
modes: being aware of text categories or being insensitive to text categories. For each text category, you
can specify a special formatting strategy via the method setFormattingStrategy (). The formatting
strategies must implement the interface IFormattingStrategy. The actual formatting is done in the
format () method. The methods formatterStarts () and formatterStops () inform the
IFormattingStrategy instance about the start and the end of the formatting process.

Content Assistants

Content assistants (or code assistants) suggest content completion proposals to the end user. After the end
user selects a proposal and commits to it, the content assistant modifies the document.

Content assistants are passed from a SourceViewerConfiguration to a SourceViewer instance via
the method getContentAssistant (). All these assistants must implement the interface
IContentAssistant. The standard implementation of this interface is the class ContentAssistant.
Usually, instances of this class are configured appropriately before they are used. This can be done

with the enableAutoActivation () and setAutoActivationDelay () methods. With these
methods you can specify that the content assistant automatically appears on the screen after a

specified time, even when no activation key (such as Ctrl+Spacebar) is pressed. When you want to
activate the content assistant via a key press, you must explicitly call the SourcevViewer method
doOperation (SourceViewer .CONTENTASSIST PROPOSALS).

224

JFace

The proposals of the content assistant are compiled with the help of IContentAssistProcessor
instances. Such instances can be registered for each text category separately with the
ContentAssistant via the method setContentAssistProcessor (). These processors implement
the method computeCompletionProposals (), which computes appropriate proposals based on the
current position in the document. The method returns an array of ICompletionProposal instances.
They can be simple proposals of type CompletionProposal or
PositionBasedCompletionProposal. Each of these proposals contains the string to be inserted into
the document, the position at which to insert the string, the length of text to be replaced, and the new
position of the cursor relative to the inserted string. Another possibility is proposals of type
TemplateProposal. In the “Code Assistant” section in Chapter 2 you encountered templates from the
end user’s view.

A simple example for a content assistant is given in the “Description Editor” section in Chapter 10. A
more detailed discussion on creating content assistants is found in my article “Equipping SWT
Applications with Content Assistants” at www.ibm.com/developerworks.

Text Presentation

The classes in the package org.eclipse.jface.text.presentation are responsible for presenting
the text content on the screen. These operations do not modify the document. The interface
IPresentationReconciler covers the presentation process when text parts are modified. Instances
of this interface are passed from a SourceViewerConfiguration to a SourceViewer instance via
the getPresentationReconciler () method. The standard implementation of this interface is the
class PresentationReconciler. This class uses two cooperating processors: an instance of
IPresentationDamager and an instance of IPresentationRepairer. The
IPresentationDamager computes the document area for which the current representation has
become invalid because the document was changed. The IPresentationRepairer decorates this text
area with new text attributes. The standard implementation Defaul tDamagerRepairer implements
both interfaces.

When creating a DefaultDamagerRepairer instance, an ITokenScanner instance is passed in the
constructor. Usually, a subclass of RuleBasedScanner is used here. (RuleBasedScanner implements
ITokenScanner). And so we arrive at the package org.eclipse.jface.text.rules.

Since RuleBasedScanners can be programmed by supplying an ordered list of rules, they are quite
flexible. They analyze the specified text area with the help of these rules and deliver a series of tokens,
which can then be interpreted by the client (in this case, the DefaultDamagerRepairer). In this case,
these tokens contain only TextAttribute instances that specify color and style attributes for the corre-
sponding text sections.

All rules must implement the IPredicateRule interface. They search in the specified text area for a
given pattern. You can specify such a pattern by supplying the string with which the pattern begins and
the string with which it ends. When a rule finds a pattern in the text, it will return the specified token. If
it does not, the RuleBasedScanner will continue the process with the next rule.

The various concrete rule types, such as SingleLineRule, WordRule, MultiLineRule, and so on,
differ in how they treat space characters and line-separation characters. For example, the
SingleLineRule does not search for patterns across line breaks, and the WordRule does not search
across word breaks. In addition, there are special rules such as the NumberRule, which recognizes
numeric values.

225

Chapter 9

A simple example for rule-based text presentation is given in the “Description Editor” section in
Chapter 10.

The ProjectionViewer

The class ProjectionViewer extends the class SourceViewer. Instead of a single visible text region,
it supports multiple regions that can be modified dynamically. In particular, this class is used to support
Folding, that is, collapsing and expanding text regions, as you've already seen in the Java editor (see
“Code Folding” in Chapter 2).

The class ProjectionViewer can add another column to the vertical ruler of the SourceViewer via
method addverticalRulerColumn (). This column can be used to display the control elements for
the Folding operations. The additional operations are COLLAPSE, EXPAND, EXPAND ALL, and TOGGLE.
(With operation TOGGLE you can switch the Folding mode on or off.)

Comfortable Text Fields and Combos

Since Eclipse 3 you have the option to instrument simple Text fields (“Text Fields and Labels” in
Chapter 8) and Combos (“Tables, Lists and Combos” in Chapter 8) with the comfortable input aids dis-
cussed above, especially with content assistants. Input fields that you want to utilize this functionality
must implement the interface IContentAssistSubject. As a matter of fact, this is not the case for the
classes Text and Combo. The solution is to wrap these widgets into adapter objects. Eclipse provides for
this purpose the classes TextContentAssistSubjectAdapter and
ComboContentAssistSubjectAdapter. Both are subclasses of class
AbstractControlContentAssistSubjectAdapter, which implements the interface
IContentAssistSubject. These adapters provide the methods required by content assistants, such
asgetCaretOffset (), getLocationAtOffset (), getSelectedRange (), and getDocument ().
Optionally, it is possible to display a visual clue at the left-hand side of an input field when the field is
equipped with a content assistant.

Actions and Menus

Action instances represent abstract user actions such as “Save to file,” “Search,” or “Go to marker.”
Actions can be represented on the user interface in many ways, for example, as a menu item, a toolbar
button, or both.

The IAction Interface

The IAction interface is contained in the package org.eclipse.jface.action. It defines a set of
methods with which the properties of an action can be set or retrieved. For example, you can assign a
unique identification (string) to an action via the method setId (). With the method setText () you
can define a display text that is shown when the action is represented as menu text or a toolbar button.
This text can contain display text for a keyboard shortcut, separated by an @ or \ t character. If the key-
board shortcut consists of several keys, you must concatenate the key names using the + character. With
the method setToolTipText (), you can specify text that appears on the screen when the mouse

226

JFace

hovers over the action representation. In addition, you can use the method setDescription() to
specify longer descriptive text. This text is shown in a status line when the action is selected.

With the set ImageDescriptor () method you can set an icon that represents the action on a toolbar.
With setDisabledImageDescriptor () you can specify a special variant of that icon that is shown
when the action is disabled. With setHoverImageDescriptor () you can specify an icon variant that
is shown when the mouse hovers over the action. You can disable or enable an action by invoking
setEnabled (). With setChecked () you can set an action to checked or reset the action. How the
checked state is represented on the user interface depends on the representation of the action itself: in
menus a check mark is displayed; in toolbars the button remains pushed.

With the setAccelerator () method you can specify a keyboard shortcut for the action. If this short-
cut consists of several keys, you must combine the key codes using the | operator for binary OR. To
specify alphanumeric keys you specify just the character. Codes for other keys are defined in the class
SWT. For example, you can specify SWT.CTRL | 'Z' for the keyboard shortcut Ctrl+Z.

With the method setHelpListener () you can register the action’s HelpListener. This listener will
receive an appropriate event object when the F1 key is pressed for the selected action.

Finally, each IAction instance must implement the run () method. This action is called when the end
user activates the action.

The Managers

I discussed menus and toolbars in the “Toolbar” and “Menus” sections in Chapter 8. The question here
is how to organize the cooperation between menus, toolbars, status lines, and actions. All this coopera-
tion is handled by IContributionManager instances that come in various derived types such as
IMenuManager, IToolBarManager, ICoolBarManager, and IStatusLineManager and their stan-
dard implementations MenuManager, ToolBarManager, CoolBarManager, and
StatusLineManager.

MenuManager

I will now briefly discuss the MenuManager (ToolBarManager and CoolBarManager work quite
similarly) and then the StatusLineManager.

You can create a new menu manager with the constructor MenuManager () . Optionally, you may pass a
text and an identification with this constructor. Then you tell the menu manager to create a menu. With
the method createContextMenu () you can create a context menu, and with createMenuBar () you
can create a menu bar.

The addMenulistener () method allows you to register an IMenuListener instance with the menu
manager. The menuAbout ToShow () method of this instance is called before the menu is displayed. You
will usually construct the menu each time from scratch when this method is invoked—and especially
when the menu content depends on the context. This is not difficult: you just add IAction instances
(and possibly also Separator instances) to the menu manager using the add () method. One thing still
remains to be done: you must tell the menu manager to remove all entries after the menu has been
shown. This is achieved with the method setRemoveAllWhenShown (). Otherwise, you would create
double entries the next time the method menuAboutToShow () is invoked.

227

Chapter 9

In the implementation of the SpellCorrectionView class in Chapter 13 I show how to construct a context
menu with the help of a menu manager as a practical example.

StatusLineManager

The StatusLineManager creates a StatusLine object when the method createControl () is
called. The StatusLineManager provides several methods for the output of information messages and
error messages into this status line, such as setMessage () and setErrorMessage (). With the
method getProgressMonitor () you can access the progress monitor built into the status line. For
this progress monitor you can allow cancellation of an operation by the end user by calling the
setCancelEnabled () method. You can determine whether the end user has cancelled an operation
with isCancelEnabled ().

Wizards

Wizards consist of a series of dialogs that guide the user through several steps of a task. The user can
step forward and backward within the task. Typical examples for such wizards are the New File Wizard,
the Import Wizard, and the Export Wizard.

The package org.eclipse.jface.wizard provides four classes with which you can implement such
wizards:

Q The abstract class Wizard forms the basis on which all wizards are implemented. This class is
the standard implementation of the interface IWizard.

Q The class WizardDbialog implements the dialog that presents the wizard to the end user. This
dialog may have several pages.

Q The abstract class WizardPage forms the basis on which all wizard pages can be implemented.

Q Finally, there is the class WizardSelectionPage. This class allows the end user to select a spe-
cific wizard from a list of possible wizards.

The Wizard Class

The implementation of a new wizard begins by extending the class Wizard. This class offers various
wizards that you can use to configure the concrete wizard subclass. This configuration is usually done in
the method addPages () , which is called when the wizard is initialized.

addPage () This method can be used to add new pages of
type WizardPage to the wizard.

setHelpAvailable () This method can be invoked to indicate that help
is available for the wizard.

setDefaul tPageImageDescriptor () This method is called to decorate the default
page with an image (ImageDescriptor).

228

JFace

setDialogSettings ()
getDialogSettings ()

setNeedsProgressMonitor ()

setTitleBarColor ()

setWindowTitle ()

These methods allow you to set and retrieve
instances of type IDialogSettings (see the
section “Making Dialogs Persistent”) to make
wizard properties persistent.

This method is called to equip the wizard with a
ProgressMonitor.

You can use this method to set the title bar color.

You can use this method to set a title.

Concrete subclasses of Wizard will, in addition, override some wizard methods to implement applica-
tion logic. In particular, you may want to override the methods performCancel () and
performFinish (), possibly also the methods createPageControls (), addPages (), and
dispose (). In the method performFinish () you will start all operations that need to be performed
after the Finish button has been pressed. The method performCancel () is called when the Cancel
button is pressed. In this method you may want to undo operations that have been performed on the
single wizard pages. In method createPageControl () the wizard content is constructed. The con-
struction of the single pages is done in the individual WizardPage instances, but the corresponding

method calls IDialogPage.createControl () are invoked from the createPageControls ()

method.

The WizardPage Class

To implement a concrete wizard you construct wizard pages by subclassing the abstract class
WizardPage. When a page instance is created, you pass a unique identification with the constructor
and optionally a page title and a title image (ImageDescriptor).

This class also offers various methods that support the configuration of the wizard page:

setDescription ()

setErrorMessage ()

setImageDescriptor ()

setMessage ()

setPageComplete ()

setPreviousPage ()

setTitle ()

This method can be used to supply a long explanatory text
that is shown below the page title.

With this method you can set an error message. This error
message replaces an information message previously set with
setMessage (). To reset the error message, supply null as a
parameter.

With this method you can set an image (ImageDescriptor)
to be displayed on the page. Here you won't use small 16x16
icons but rather images of size 48x48 pixels or larger.

With this method you can display an information message to
the end user. Typically, you would use it to ask the end user to
do something.

This method can be used to set an internal indicator when the
end user completes the page. This indicator can be retrieved
via the method isPageComplete ().

This method sets the page to be shown when the end user
presses the Back button.

This method can be used to set the page title.

229

Chapter 9

Here, too, the concrete subclasses can override several methods of class WizardPage to implement spe-
cific implementation logic. In particular, you may want to override the following methods:

performHelp () This method shows the help information for the wizard
page.

canFlipToNextPage () This method enables the Next button.

isPageComplete () This method finds out whether the end user completed

the page. The standard implementation returns just the
value set by the method setPageComplete ().

setDescription () See above.
setTitle () See above.
dispose () This method can be extended if you need to release page-

specific resources.

The WizardSelectionPage Class

The WizardSelectionPage class is an abstract subclass of class WizardPage. It is used as a basis for
wizard pages that allow the selection of nested wizards. This allows you to concatenate wizards with
each other. The class WizardSelectionPage introduces only two new methods: using
setSelectedNode () and getSelectedNode () you can set or retrieve the selection on the page.
When creating such a page, you would usually construct a list of available wizards. When a wizard gets
selected, you would create a corresponding IWizardNode and set it in the WizardSelectionPage
with setSelectedNode ().

The WizardDialog Class

Instances of type WizardDialog act as GUI containers for a wizard and support the end user in step-
ping through the wizard’s pages. To execute a wizard, you first create a new instance of this wizard.
Then you create a new instance of the class WizardDialog and pass the Wizard instance in the con-
structor as a parameter. Then you can open the WizardDialog instance via method open () :

IWizard wizard = new FancyWizard() ;
WizardDialog dialog = new WizardDialog(shell, wizard) ;
dialog.open() ;

You would usually use the class WizardDialog in its original form. However, in special cases it may be
necessary to create subclasses and to override individual methods. In particular, it may become neces-
sary to override the methods backPressed () and nextPressed () if you need to perform special
processing during a page change.

Preferences

To manage application-specific preferences, several components need to cooperate. The package
org.eclipse.jface.preference provides these components. First, there is the class

230

JFace

PreferenceStore, which can store preferences in the form of name/value pairs. Next, there is the
class PreferenceConverter, which can convert popular object types into string values. The user
interface can be constructed with the help of the classes PreferencePage, PreferenceDialog,
PreferenceManager, and PreferenceNode. Using FieldEditors in PreferencePages can save
some hard-coding.

The PreferenceStore and PreferenceConverter Classes

To be precise, PreferenceStore doesn’t store preferences as name/value pairs but as triples, which
consist of an identifier, a value, and a default value. The identification must be unique within the context
of a PreferenceStore instance. When you read a preference from the store, you will get the previ-
ously set value (usually a value that has been set by the end user). If such a value does not exist, the
default value defined by the application is returned.

The interface IPreferenceStore defines various data type—specific access methods for values and
default values. The methods getDefaultxxx () return the default value, and the getxxx () methods
return the previously set value or the default value if no value has been set. With setDefaultxxx ()
you can set the default value, and with setxxx () you can set the current value. All these methods have
variants for the following data types: boolean, int, long, float, double, and String.

For example
store.setDefaultBoolean ("use animation", true) ;
or
double speed = store.getDouble ("animation speed") ;

Of course, these data types are not sufficient by themselves. The class PreferenceConverter there-
fore provides a set of conversion methods, with which you can convert popular object types into string
values and vice versa. In particular, the types RGB (colors), FontData (fonts), Point (coordinates), and
Rectangle (areas) are supported.

Since the modification of preference values can influence the behavior and the appearance of an
application, you must have a means to react to changes of preference values. It is therefore possible

to register an IPropertyChangeListener instance with the Preferencestore via the method
addPropertyChangeListener (). This instance is notified immediately when a preference value
within the PreferenceStore is changed: it receives an event object of type PropertyChangeEvent
via the method propertyChanged (). This object passes information about the identification of the
modified preference value, both the new value and the old value. You can thus react to such a modifica-
tion and adapt the application’s appearance accordingly.

You can specify a filename when you create a new PreferenceStore instance. Using the methods
load () and save () you can load the preference store content from the specified file or save its content
to the file. Only the actual values are written to file, not the default values: the default values of the
preference store must always be set by the application. This is best done during the initialization of the
application so that the PreferenceStore is always correctly configured.

231

Chapter 9

The PreferencePage Class

The abstract PreferencePage is the base class for implementing your own preference pages. By
default, this class is equipped with four buttons. The end user can commit the entered values with the
OK button. The Cancel button is used to abort the modification of preference values. The Apply button
allows the user to modify the values in the PreferenceStore without closing the preference dialog.
The Default button can be pressed to reset all values to the default values.

The last two buttons can be suppressed by calling the method noDefaultAndApplyButton (). This
method must be called before the method createControl () is invoked; it is a good idea to call it in
the constructor.

Each concrete subclass of PreferencePage must implement the method createControl (). Here
you will set up all the input fields for the preference values, usually with the help of field editors (see the
following section).

In addition, you should extend or override the method doComputeSize (). This method computes the
size of the area constructed in the createControl () method.

Field Editors

You could construct a PreferencePage manually with the help of SWT widgets and set the
PreferenceStore values using the setxxx () methods. But it is far simpler to construct a preference
page based on the abstract class FieldEditorPreferencePage and to use field editors.

To do this, just define your own preference page as a subclass of FieldEditorPreferencePage and
override the method createFieldEditors (). Within this method add field editors, one for each pref-
erence value, to the page by using addField ().

All field editors are based on the abstract class FieldEditor. When creating a new field editor, you
must pass as parameters in the constructor the identification of the preference value (see the section
“The PreferenceStore and PreferenceConverter Classes”), a display text, and the containing Composite.
You must fetch this Composite with the method getParent () from the preference page for each field

editor, because the FieldEditorPreferencePage may create a new Composite each time a new
field editor is added.

JFace provides the following concrete subclasses of FieldEditor:

BooleanFieldEditor A field editor for a Boolean value. This field editor is
represented as a check box.

ColorFieldEditor A field editor for entering a color value. By pressing a
button, the end user can select the color from a host
system—specific color selection dialog.

DirectoryFieldEditor A field editor for selecting a directory. This field editor is a
subclass of the StringButtonFieldEditor.

FileFieldEditor A field editor for selecting a file. This field editor is a
subclass of the StringButtonFieldEditor.

232

JFace

FontFieldEditor

ListEditor

IntegerFieldEditor

PathEditor

RadioGroupFieldEditor

ScaleFieldEditor

StringButtonFieldEditor

StringFieldEditor

A field editor for entering a type font. By pressing a button,
the end user can select the font from a host system-specific
font selection dialog.

An abstract field editor for entering multiple values that
are organized as a list. Concrete subclasses must implement
the methods parseString (), createList (), and
createNewInputObject ().

A field editor for entering an integer value. This field editor
is a subclass of StringFieldEditor.

This field editor is a subclass of ListEditor. With the
help of this editor the end user can compile a list of file and
directory paths from the host operating system. Besides
New and Remove buttons, this editor features Up and
Down buttons with which the order in the path list can be
changed. An additional title line for the pop-up path
selection dialog must be specified in the constructor of this
class.

A field editor that presents an enumeration of radio buttons
for selection. This class requires some additional
parameters in the constructor: the number of columns and
a two-dimensional array containing all the number/value
pairs available for selection. You may optionally specify an
additional parameter that places the specified radio buttons
into a Group widget (see section “Composites, Groups, and
Canvas” in Chapter 8).

A field editor employing a Scale (see section “Sliders and
Scales” in Chapter 8) as an input device. Optional
parameters in the constructor can be used to specify
minimum and maximum, as well as simple increment and
page increment.

An abstract field editor that displays a Change button next
to the input field. Pressing this button will lead to a pop-up
dialog in which the new value can be entered.

A field editor for entering a string value.

An example of the use of field editors in connection with the FieldEditorPreferencePage is shown
in the “Preferences” section in Chapter 13.

Preference Page Trees

The classes PreferenceNode, PreferenceManager, and PreferenceDialog can be used to orga-
nize multiple PreferencePages into a preference page tree. In a larger application (and, in particular,
on an open platform such as Eclipse) it is neither possible nor desirable to place all preferences on a
single page. It is better to distribute the preferences across multiple pages and to order these pages
according to topic. A tree structure is best suited to support the organization of preference pages.

233

Chapter 9

The PreferenceNode Class

The class PreferenceNode with the corresponding interface IPreferenceNode is used to implement
such a tree structure. Each node within a preference page tree is implemented by an instance of this
class. The class features all the usual methods to construct and manage trees such as add (), remove (),
getSubNodes (), and findSubNode ().

Each PreferenceNode has a unique identification that is specified in the constructor when an instance
is created. In addition, you can specify a PreferencePage instance that belongs to this node in the
constructor. Later, you can retrieve this page via the method getPage (), and you can modify the page
via the method setPage ().

A further variant of the constructor allows you to create PreferencePage instances lazily, that is, at the
time they are first displayed. This can be achieved by specifying the class name of the concrete
PreferencePage in lieu of the PreferencePage instance. Using the Java Reflection facility, the
PreferenceNode will create the PreferencePage instance when it is actually needed. This makes
sense for applications with many preference pages, the Eclipse workbench being one of them.

In addition to the PreferencePages, the PreferenceNode instances take care of the display informa-
tion needed for the presentation of the preference page tree. This information consists of a label and an
icon (ImageDescriptor). These objects can also be specified in the constructor.

The PreferenceManager Class

This class provides methods that allow you to navigate within preference page trees by just specifying a
path. Each path consists of a series of PreferenceNode identifications that are separated with a separa-
tor character. This character can be specified in the constructor of the PreferenceManager.

Other methods allow the modification of preference page trees: in particular, the methods addTo (),
remove (), and £ind () use path expressions. You can add child nodes to a node specified by a path
with addTo () . Similarly, remove () removes the child node addressed by the specified path from its
parent node. The method £ind () returns the node at the specified path. There are additional utility
methods such as removeAll () or addToRoot (). All these PreferenceManager methods allow you
to completely construct and manage a preference page tree.

The PreferenceDialog Class

The class PreferenceDialog is an extension of the class Dialog (see the section “Dialogs and
Windows”). In addition to the Dialog methods, it features the methods setPreferenceStore () and
getPreferenceStore () to set and retrieve a PreferenceStore instance. You must also specify a
PreferenceManager instance as an additional parameter in the PreferenceDialog () constructor.
This instance is used by the PreferenceDialog to organize the user interaction. The
PreferenceDialog displays the tree managed by PreferenceManager on the left-hand side of the
dialog. When the user clicks on a tree node, the attached PreferencePage is opened on the right-hand
side of the dialog.

234

JFace

Summary

In this chapter you have become acquainted with some of the higher-level components of the JFace layer.
Most of the components of this layer are used within the Eclipse workbench, but all of them—together
with SWT components—can be used within your own applications. We have looked at dialogs and
windows, various viewers such as table, tree, text, and source viewers, actions and menus, wizards,
preferences, and drag-and-drop facilities.

In the next chapter you will apply some of these components in a larger example.

235

10

Project Two: JukeboXx

In this chapter I use a longer example to demonstrate the various techniques employed in the use
of SWT and JFace. The example is a Java version of a jukebox, a device that can play sound files or
lists of sound files, known as playlists. The idea is to implement the player’s user interface using
SWT and JFace. However, I don’t want to implement the player as an Eclipse plug-in but as a
standalone application.

To make the jukebox a bit more interesting, I allow for the association of a background image and
descriptive text with each entry in the playlist. By doing this I achieve nearly the same multimedia
experience as with an old vinyl album collection, but without the crackles and hisses.

Design Goals and How to Achieve Them

Before beginning the implementation, you should first perform a short requirements analysis:

Q The jukebox should be able to play diverse sound file formats, including MP3.

Q It should be possible to associate a title, a background image, and descriptive text with
each sound file.

Q It should be possible to mark up descriptive texts in some way. End users should get some
assistance when editing descriptions, for example, when inserting keywords into the text.

Q Itshould be possible to define individual playlists, to store the playlists, and to navigate
within the playlists.

During the implementation of these design goals, you must take several technological constraints
into consideration:

Chapter 10

Q

For replaying sound files you need external modules. For this project I have selected the
JavaZoom sound modules (www . javazoom.net). These modules support many sound
formats, including MP3, and are completely written in Java. The modules are freely available
and come with source code. They also include a nice player skin. However, the player GUI is
different from what is implemented here.

For the storage of playlists there are different options. For example, you could store the different
playlist entries in a relational database and could query this database via SQL. Another possibil-
ity is to store a whole playlist in a single XML document. You can organize access to the playlist
entries via a DOM APL I suggest the latter option for this implementation.

Apart from implementing a jukebox and listening to music, there is also some real work to do—that is,
applying the topics discussed in previous chapters to a real-world example. In particular, I discuss the
following issues:

Q

Creation of GUI elements, layouts, and SWT event processing. This applies in particular when
implementing the main window of the jukebox.

Using irregular (non-rectangular) shell shapes for the main window of the jukebox.

The application of a TableViewer for the presentation of playlists. This includes the
implementation of custom cell editors for modifying playlists.

Using drag-and-drop functionality when adding items to the playlist.

Syntax highlighting in an editor based on a SourceViewer. For this editor I also demonstrate
the implementation of a Content Assistant. I also equip the viewer with an Undo and Redo
function.

Displaying HTML contents with the help of the Browser widget.

Communication between the SWT thread and other threads within the player.

Figure 10.1 shows the UML class diagram for the Jukebox application.

Installing the Project

First, you need the module for replaying sound files. You can download the module jlGui 2.2 from
www.Jjavazoom.net/jlgui/sources.html. The ZIP file found there is completely adequate for
your purposes: the installer module is not required. After downloading the file, unzip it into an empty
directory.

Now, you can create a new Eclipse Java project called Jukebox. You should already know how to do
this. After entering the name on the first page of the New Java Project Wizard, just click Next. On the
second page you need to complete the Java Build Path.

238

Project Two: Jukebox

® .. P I

Dialog

o DescriptionEditorDialog()
o createDialogArea()

@ com::bdaum::jukebox::DescriptionCellEdito

& playlistModel: IPlaylist

o nativeToJava()

S

® com::

laylistTransferltem

& description: String
@ image: String

o soundfile: String
o title: String

o PlaylistTransferitem()
o PlaylistTransferltem()

Figure 10.1

- _ogetText). —] ¢ I~ @ DescriptionCellEditor()
3 setText()
1 T
l c] KeywordqodeScanner I }
l (3 KeywordContentAssistProcessor I |
@ K N vj; N N ‘ 0.1 | - playlistModel
l (1 KeywordViewerConfiguration I
h | «interface»
Il | © com::bdaum
_________ ! } 3 deleteCurrent()
| 0.1 | @ getFeature()
@ com::bdaum::jukebox::Descripti d 5 o 0
T - playlistModel | 5 getPlaylistName()
& DescriptionWindow() ‘ 0.1 2 hasNext()
3 open() —Hﬁ? 3 hasPrevious()
@ update() | - model o insert()
T — 5 moveDownwards()
| | 0.1 | & moveUpwards()
7777777] 3 next()
fF T - playlistModel | @ previous()
| } ———— = * setCurrent()
‘ L o setFeature()
@ com raylist | | ‘)
i | | 0.1 | - playlistmodel u
& model: IPlaylist — |
= player: Player | | \
& viewer: PlaylistViewer | ‘ \
- | ‘ ‘ @ com::bdal ::PlaylistModel
3 PlaylistWindow() ® Player
9 close() 01 5 PlaylistModel()
° °pe"(? _player | @ getPlaylist() 5 addSelectionChangedListener()
9 selectionChanged() 2 updateCursor() o deleteCurrent()
5 updateMediaData() o dispose()
3 updateMediaState() 5 getElements()
3 getFeature()
3 getFeature()
3 getPlaylistName()
2 getSelection()
2 hasNext()
2 hasPrevious()
4 PlaylistViewer() @ c layli rovider o inputChanged()
o setCellValidator() o insert()
5 sefErrorMessage() — | ¢ PlaylistLabelProvider() 5 moveDownwards()
o validateFeature() 2 addListener() 3 moveUpwards()
3 dispose() 3 next()
3 getColumnimage() 2 previous()
0.1 | - _instance 2 getColumnText() 2 removeSelectionChangedListener()
— - - 3 isLabelProperty() o setCurrent()
~ co = ::PlaylistTransfe! o removeListener() o setFeature()
5 javaToNative() -)

239

Chapter 10

You will need to add some Eclipse JARs to the Java Build Path. Obviously, you need the JARs for SWT
and for JFace, but you also need the JARs for text processing; these are:

a swt.jar (plus swt-pi.jar under Linux)
jface jar

jfacetext.jar

text.jar

osgi.jar

U 00 0O

runtime.jar
The JARs osgi.jar and runtime. jar are needed by the JFace TableViewer used in this example.

All of these JARs are located in subfolders of the directory \eclipse\plugins. Because the names of
these subfolders differ depending on the Eclipse version and on the platform, I give only their short
names here. Your best option is to search for these JARs with the search function of your operating
system.

Second, you also need to add all the JARs from the 1ib directory of the unpacked jlGui ZIP file; these
are:

j1020.jar
jogg-0.0.5 jar
jorbis-0.0.12.jar
mp3sp.1.6.jar

0O 00 0o

vorbissp0.7 jar
Figure 10.2 shows the Java Build Path for the Jukebox project.

After you have created this project, you can import (see section “Importing Files” in Chapter 4) three
more files from the src directory of the unpacked jlGui archive:

Q javazoom/jlGui/BasicPlayer.java

Q javazoom/jlGui/BasicPlayerListener.java

0 javazoom/Util/Debug.java
By now, your project should have two Java packages: javazoom.j1lGui and javazoom.Util.
Finally, you need a folder for images. Directly under the project, create a new folder named icons. In
this folder place a little warning icon that you “borrow” from Eclipse. Import the image named

alert_obj.gif from the directory \eclipse\plugins\org.eclipse.pde.ui_3.0.0\
full\objlé—into the newly created folder.

240

Project Two: Jukebox

L@ source l 1= Projects Bk Lbraries | Y4 order and Export]
JARs= and dass folders on the build path:

& jface.jar - C'\m3Yedipse\plugins\org. edipse jfao Add JARs,,,
& jfacetext.jar - Cr\m3tedipsepluginstorg. edipse,
& 31020 jar - Ci\icuijib | Add External JARs..
& jogg-0.0.5.jar - C: \jiGuilib
& jorbis-0.0.12.3ar - C:\jiGuilib
& mp3sp, 1.6.3ar - C;YiGuilib Add Library...
& 0sgi.jar - C:\m%\edipseplugins\prg. edipse.osgi_
&) runtime.jar - Ci\m3\eclipse'\plugins'org edipse.cc Add Class Eolder..,
& swtiar - Ci\m3edipse\pluginsiorg.edipse. swt.»
& textjar - Ci\m3%edipss'pluginsiorg. edipse. text_ I
& vorbisspi, 7.jar - C:\jiGuilib

B, JRE System Library [j2re1.4.2_03] Remaove I

|
Add Variable. ., |
|
|

s O e O O o O B e B

Figure 10.2

Actually, you do not necessarily have to invoke the Import Wizard to perform this task. Depending on
the host operating system, you can just drag and drop the object that you want to import from the native
directory into the target folder of the Eclipse navigator.

The Player Module

To get an idea of what the player should look like, I made a sketch of its layout (see Figure 10.3). The
windows for the descriptive text of the current tune and the window for the playlist should be shown
only on demand. So, you should include some buttons for opening and closing these windows.

Layout

For the main window, use a non-rectangular shape by applying Region definitions. In the main win-
dow install a Canvas object. You will use this canvas to display the background image. On top of the
Canvas object mount the player’s instrumentation and the status display. The instrumentation includes
the usual player buttons, Start, Stop, Pause, Forward, and Backward, and the buttons for opening and
closing the additional windows. Combine all the buttons in a toolbar.

241

Chapter 10

In addition, install a Scale instance. This scale should always display the current position of the tune
being played. In addition, it should allow the user to freely navigate (scroll) in the tune. However, the
jlGui2.2 engine supports this functionality only for WAV files. In the case of other sound file formats,
therefore, you need to lock the scale against modifications by the user.

Figure 10.3 shows a rough sketch of the layout of the jukebox. It shows the main window, the windows
for the playlist, and the current tune’s descriptive text.

T

Ty\%"-’&

.gr 'Le{,

Figure 10.3

The status display includes the status panel in the upper-right corner and the title display in the upper-
left corner. The status panel shows the total length of the current tune and the current operational state.
Both the status display and the toolbar appear only as long as the mouse hovers over the canvas. When
the mouse is gone, the background image is shown in its full beauty.

Threads

All of these GUI elements must be updated during the operation of the player. For example, the opera-
tional state changes when the current tune is finished. The scale’s handle must move from left to right
during the player’s operation, and the push buttons for the additional windows must be released when
these windows are closed.

While the player is operating, two threads are active:

Q The main() thread in which our player operates. This thread also acts as the SWT thread in
which all SWT operations are performed.

Q The thread of the jlIGui engine. This must be a separate thread; otherwise, the jukebox would
be locked against user interaction as long as a tune is playing.

242

Project Two: Jukebox

Of course, this setup causes some complications. The jlGui engine produces events that must be reflected
in the user interface, so the SWT thread must react to those events. Unfortunately, SWT accepts method
calls only from its own thread: method calls from other threads are rejected by throwing an exception.

The problem is solved by first storing the events from the jlGui engine in a field of the Player instance.
Then the method updateGUI () is called. This method creates a new Runnable instance by calling the
method display.asyncExec (). Within the run () method of this Runnable the GUI elements are
updated and—if necessary—a new replay process is started. This is possible because this run () method
is executed in the SWT thread (see also “Displays, Shells, and Monitors” in Chapter 8).

In the following sections we walk step by step through the player’s source code.

The Player.java Class

Listing 10.1 contains the Player class which starts, of course, with the necessary package and import
declarations, followed by the class declaration and the declarations of all instance variables. Here the
fields holding the various GUI elements such as buttons, scale, and windows are defined. In addition,
there are a few fields for storing the current state of the player.

package com.bdaum.jukebox;

import java.io.File;

import java.io.IOException;

import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.UnsupportedAudioFileException;
import javazoom.jlGui.BasicPlayer;

import javazoom.jlGui.BasicPlayerListener;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.*;

import org.eclipse.swt.graphics.*;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.layout.RowLayout;

import org.eclipse.swt.widgets.*;

/**

* Player module. This module demonstrates the various techniques
* of the SWT, in particular the coordination between SWT thread
* and other threads.

=)

public class Player implements BasicPlayerListener ({

// Operation states

private static final int PLAY = 1;
private static final int PAUSE = 2;
private static final int STOP = 3;
private static final int EOM = 4;

// Text representation of operation state

private static final String PLAYING = "Playing";
private static final String PAUSED = "Paused";
private static final String IDLE = "Idle";

// Features in the playlist data model

Listing 10.1 (Continues)

243

Chapter 10

public final static String TITLE = "title";
public final static String SOUNDFILE = "soundfile";
public final static String IMAGEFILE = "image";
public final static String DESCRIPTION = "description";

/* Data model of the player model */

// Current operation state

private int state = STOP;

// The player engine

private BasicPlayer soundPlayer;
// The playlist's data model
private IPlaylist playlistModel;
// Duration of current tune
private double lengthInSec = 0;
// Current position

private int currentPosition = 0;

// Maximum position

private int maxPosition = 0;

// Text representation of current operation state
private String mediaState = "Stopped";

// Current background image
private String currentImage;

// Title of current tune

private String currentTitle = "";

/*** GQUI elements ***/
/* Widgets of player windows */

// Player shell
private Shell toplevelShell;
// Outline of shell
private static final int[] OUTLINE = new int [] {

5, 0,
355, 0,
360, 5,
360, 20,
330, 295,
325, 300,
15, 290,
10, 285,
0, 5};

// The hole in the shell
private static final int[] HOLLOW = new int[]{
13, 10,
247, 10,
250, 13,
255, 27,
252, 30,
13, 30,
10, 27,
10, 13};
// Current Display instance
private Display display;
// Canvas for background image

Listing 10.1 (Continues)

244

Project Two: Jukebox

private Canvas canvas;

// Taste zum SchlieRen der Shell

private Button closeButton;

// Status Panel

private Composite statusPanel;

private Label statusLabel, lengthLabel;

// Toolbar with buttons

private ToolBar toolbar;

private ToolItem backButton, playButton, pauseButton,
stopButton, forwardButton, playlistButton,
descriptionButton;

// Scale

private Scale scale;

// Additional windows

private DescriptionWindow descriptionWindow;

private PlaylistWindow playlistWindow;

/**
* main method for starting the player
*

* @param args - unused
=

public static void main(String argsl[]) ({
Player player = new Player() ;
player.run() ;

}

Listing 10.1 (Continued)

The method run () is similar to the SWT programs shown in Chapter 8. A Shell instance is created and
the content of this shell is constructed in the constructPlayer () method. After opening the shell, the
process stays in the event loop, thus ensuring that the GUI is supplied with all occurring events.

In the case of multiscreen displays, the shell is opened on the primary monitor. You set the outline of the
shell by applying Region objects to the shell. These Region objects are created from the array constants
OUTLINE and HOLLOW, which were declared previously. Since such a shell must always be created with
the style constant SWT.NO_TRIM, you must organize all window management yourself. For example,
you can enable the user to reposition the window on the desktop by creating a Listener objectin a
listener variable. This listener is the registered with the shell for the events SWT . MouseUp,

SWT .MouseDown, and SWT . MouseMove. Later, you must care for the window’s Close button as well.

In addition, you must initially create the domain model of the playlist (see section “The Playlist Domain
Model”). Before the shell is opened, create an instance of the jlGui engine by calling new

BasicPlayer (). During its creation the player instance registers as a BasicPlayerListener with
the engine. See Listing 10.2.

/**
* Initialize Player
A
Listing 10.2 (Continues)

245

Chapter 10

private void run() {
// Create Playlist domain model
playlistModel = new PlaylistModel () ;
// Create Display instance
display = new Display() ;
// Create top level shell with the usual controls
toplevelShell = new Shell (display, SWT.NO_TRIM) ;
// Set title (appears in tasks bar)
toplevelShell.setText ("Jukebox") ;
// Hintergrundfarbe setzen
Color bgColor = new Color (display, 160, 160, 255);
toplevelShell.setBackground (bgColor) ;
// Create region for the player shell outline
Region region = new Region() ;
region.add (OUTLINE) ;
region.subtract (HOLLOW) ;
// Apply region to shell
toplevelShell.setRegion (region) ;
// Retrieve size of region
Rectangle size = region.getBounds () ;
// Position shell on the primary monitor
Monitor monl = display.getPrimaryMonitor () ;
Rectangle r = monl.getClientAreal() ;
toplevelShell.setBounds(r.x + 20, r.y + 20, size.width,
size.height) ;
// Since the shell does not have a trim
// we must handle the repositioning of the window ourselves
Listener listener = new Listener() {
Point origin;

public void handleEvent (Event e) {
switch (e.type) {

case SWT.MouseDown

// Remember mouse position
origin = new Point(e.x, e.y);

break;

case SWT.MouseUp
// Indicate operation stopped

origin = null;

break;
case SWT.MouseMove
if (origin != null) {

// Shift shell by difference to origin
Point p = display.map(toplevelShell, null, e.x,
e.y);
toplevelShell.setLocation(p.x - origin.x, p.y
- origin.y);
}
break;
}
}
b e
toplevelShell.addListener (SWT.MouseDown, listener) ;
toplevelShell.addListener (SWT.MouseUp, listener);

Listing 10.2 (Continues)

246

Project Two: Jukebox

toplevelShell.addListener (SWT.MouseMove, listener) ;
// Create rest of Player GUI
constructPlayer (toplevelShell) ;
// Create the jlGui-engine
soundPlayer = new BasicPlayer (this) ;
// Display shell
toplevelShell.open() ;
// Event loop
while (!toplevelShell.isDisposed()) {
// Check for waiting events
if (!display.readAndDispatch()) display.sleep() ;
}
// If necessary stop playing
stop () ;
// Force session exit -
// otherwise the Java audio system would remain active
System.exit (0) ;

}

/**
* Retrieves the playlist
*

* @return IPlaylist - the playlist model
*/
public IPlaylist getPlaylist() {
return playlistModel;
}

Listing 10.2 (Continued)

Create the GUI

Now the surface of the player is instrumented in the method constructPlayer (). First, the
Composite for the status display and the window’s Close button is created. These elements are con-
structed in the methods createstatusPanel () and createCloseButton ().

Then a Canvas instance is created. This instance will contain the background image and will serve as a
surface for graphical operations. On this Canvas instance the controls are placed with the help of the
methods createToolbar () and createScale (). A PaintListener is registered with the Canvas
instance, because the correct method for drawing something onto a Canvas is to do this in the
paintCanvas () method of a PaintListener.

In addition, a MouseTrackListener is registered with the Canvas. The listener allows you to hide the
control elements when the mouse leaves the canvas area. When you move the mouse back to the canvas,
the control elements reappear. The additional tests in the method mouseExit () are required to check
that the mouse has really left the canvas area, because this method is also called when the mouse is
moved over controls that hide the canvas area. See Listing 10.3.

/** * GUI erzeugen ** */

/**

Listing 10.3 (Continues)

247

Chapter 10

* Constructs the Player-GUI.
*
* @param parent - containing Composite
*
/
private void constructPlayer (Composite parent) {
// We use a GridLayout for the containing Composite
GridLayout gridLayout = new GridLayout () ;
gridLayout .marginHeight = 0;
parent .setLayout (gridLayout) ;
// Composite for CloseButton and StatusPanel
Composite comp = new Composite (parent, SWT.NONE) ;
gridLayout = new GridLayout (2, false) ;
gridLayout .marginWidth = 10;
comp . setLayout (gridLayout) ;
comp . setBackground (parent .getBackground ()) ;
// Layoutdaten for Composite
GridData data = new GridDatal() ;
data.horizontalAlignment = GridData.END;
data.verticalAlignment = GridData.BEGINNING;
data.grabExcessHorizontalSpace = true;
comp . setLayoutData (data) ;
// Create status panel
createStatusPanel (comp) ;
// Create button for closing the window
createCloseButton (comp) ;
// Create canvas
canvas = new Canvas (parent, SWT.NONE) ;
// Set preferred canvas size
data = new GridDatal() ;
data.widthHint = 355;
data.heightHint = 235;
canvas.setLayoutData (data) ;
// The Canvas instance acts as a Composite, too.
// So we apply a GridLayout to it, too.
gridLayout = new GridLayout () ;
gridLayout .marginHeight = 2;
gridLayout.verticalSpacing =
canvas.setLayout (gridLayout) ;
// Construct Toolbar
createToolbar (canvas) ;
// Construct scale
createScale (canvas) ;
// Add PaintListener to Canvas to support drawing
canvas.addPaintListener (new PaintListener () {
public void paintControl (PaintEvent e) {
paintCanvas (e.gc) ;
}
) g
// Add MouseTrackListener to Canvas
canvas.addMouseTrackListener (new MouseTrackAdapter () {
public void mouseEnter (MouseEvent e) {
setCanvasControlsVisible (true) ;

}

0;

Listing 10.3 (Continues)

248

Project Two: Jukebox

public void mouseExit (MouseEvent e) {
Rectangle rect = canvas.getClientArea() ;
// Check if mouse has really left the canvas area
if (!rect.contains(e.x, e.y))
setCanvasControlsVisible (false) ;
1

)

setCanvasControlsVisible (false) ;

}

/**

* Create window close button

*

* @param parent - the containing Composite
*/

private void createCloseButton (Composite parent) {
closeButton = new Button(parent, SWT.PUSH | SWT.FLAT) ;
closeButton.setText ("x") ;
closeButton.addListener (SWT.Selection, new Listener () {
public void handleEvent (Event e) {
toplevelShell.close() ;

1)
}

/**
* Shows or hides the control elements on top of the canvas.
*

* @param v - true for showing, false for hiding
=/

private void setCanvasControlsVisible (boolean v) {
toolbar.setVisible (v) ;
scale.setVisible (v) ;

}

Listing 10.3 (Continued)

Graphics Operations

Let’s now look at paintCanvas (), which is always invoked when the canvas needs to be redrawn. If
you have an image file, just create from this image file a new Image instance. Then draw this image onto
the graphics context (GC) of the Canvas instance. Immediately afterward, dispose of the Image instance
(see also the “Graphics” section in Chapter 8).

Then draw the title line over this background. System colors are used for the background color and the
text color, so you don’t need to dispose of these colors. See Listing 10.4.

/** * Graphic Operations *x* */

/**

* Draw all graphical elements on the canvas.
*

Listing 10.4 (Continues)

249

Chapter 10

* @param gc - The graphics context
=Y

private void paintCanvas (GC gc)

Rectangle area = canvas.getClientArea() ;

// Check if we have an image file
if (doesFileExist (currentImage)) {
// Scale and draw image

Image image = new Image (display, currentImage) ;

Rectangle bounds = image.getBounds () ;

gc.drawImage (image, bounds.x, bounds.y, bounds.width,

bounds.height, area.x,

area.height) ;
// Dispose image
image.dispose () ;
} else {

area.y, area.width,

// Otherwise fill background with gray color
gc.setBackground (toplevelShell .getBackground ()) ;

gc.fillRectangle (area) ;

}

// Draw title of current sound file

if (currentTitle != null && currentTitle.length() > 0) {

gc.setBackground (display

.getSystemColor (SWT.COLOR DARK GRAY)) ;
gc.setForeground (display.getSystemColor (SWT.COLOR WHITE)) ;

gc.drawText (" " + currentTitle + " ",

}
}

/**

5, 12, false);

* Checks if a file with the specified name exists.

*

* @param filename - File name

* @return boolean - true, if the file exists

s/

private static boolean doesFileExist (String filename) {
return (filename != null && filename.length() > 0 && openFile (

filename) .exists()) ;

}

/**

* Convert file name into File instance
*

* @param file - File name

* @return File - File instance

wf

private static File openFile (String file)
return new File(file) ;

}

Listing 10.4 (Continued)

250

{

Project Two: Jukebox

Instrumentation

Now, place the control element onto the Canvas instance. The scale is used to display the current posi-
tion in the sound file. In case of WAV files, it is possible to scroll within the sound file by moving the
scale’s handle. For this purpose add a SelectionListener to the Scale instance. You can perform
the positioning within a tune in the widgetSelected () method of this listener by invoking the
seek () method. See Listing 10.5.

/** * Instrument Canvas ** */
/**
* Creates a scale that shows the current position
* in the sound file.
*
* @param parent - the containing Composite
*
/
private void createScale (Composite parent) {
scale = new Scale (parent, SWT.NONE) ;
// Set scale size
GridData data = new GridDataf() ;
data.horizontalIndent = 18;
data.widthHint = 300;
data.heightHint = 20;
scale.setLayoutData (data) ;
// Event processing for scale handle movements
scale.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
seek () ;

B g
}

Listing 10.5

The toolbar contains the usual buttons for operating a player (Listing 10.6). In addition, two more
buttons are implemented, allowing the end user to open and close the playlist and description windows.
These buttons are created with the style constant SWT . CHECK to achieve a toggling behavior. You can
separate these two buttons from the rest of the buttons with another button that has the style constant
SWT . SEPARATOR.

The event processing for all buttons is done in the method processButton (). Depending on the
button—and in case of the last two buttons, also depending on the state of the button—this method calls
the appropriate methods for controlling the player and opening and closing the windows, respectively.

By specifying a GridData instance appropriately, you can position the toolbar at the lower border of the

player area.

/**
* Create toolbar with all buttons
*

Listing 10.6 (Continues)

251

Chapter 10

* @param parent - the containing Composite

=y

private void createToolbar (Composite parent) {

// Create Toolbar instance
toolbar = new ToolBar (parent, SWT.NONE) ;
// Create all buttons

backButton = makeToolItem(toolbar, SWT.PUSH, "<<", "Previous") ;
playButton = makeToolItem(toolbar, SWT.PUSH, ">", "Play");
pauseButton = makeToolItem(toolbar, SWT.PUSH, "||", "Pause");
stopButton = makeToolItem(toolbar, SWT.PUSH, "[]", "Stop");
forwardButton = makeToolItem(toolbar, SWT.PUSH, ">>", "Next");

makeToolItem(toolbar, SWT.SEPARATOR, null, null);
playlistButton = makeToolItem(toolbar, SWT.CHECK,

"PlayList", "Show Playlist");
descriptionButton = makeToolItem(toolbar, SWT.CHECK,
"ShowText", "Show Description") ;

// Create layout data for toolbar
GridData data = new GridDatal() ;
data.horizontalIndent = 5;
data.verticalAlignment = GridData.END;
data.grabExcessHorizontalSpace = true;
data.grabExcessVerticalSpace = true;
toolbar.setLayoutData (data) ;

* %

* Convenience method for creating a toolbar button.
*

* @param bar - the ToolBar instance

* @param style - the button type

* @param text - text for button label

* @param tip - tool tip

* @return ToolItem - the created toolbar button

*

~

private ToolItem makeToolItem(ToolBar bar, int style,

}

String text, String tip) {
ToolItem item = new ToolItem(bar, style);
if (style != SWT.SEPARATOR) {
item.setText (text) ;
item.setToolTipText (tip) ;
// Add event processing for button clicks
item.addSelectionListener (new SelectionAdapter () ({
public void widgetSelected (SelectionEvent e) {
processButton (e) ;

)
}

return item;

/**

* This method processes all ToolItem events.
*

* @param e - the event object

Listing 10.6 (Continues)

252

Project Two: Jukebox

*/
private void processButton(SelectionEvent e) {
Widget widget = e.widget;

if (widget == playButton) ({
play();

} else if (widget == stopButton) {
stop () ;

} else if (widget == pauseButton) ({
pause () ;

} else if (widget == forwardButton)
forward () ;

} else if (widget == backButton) {
back () ;

// The following buttons are of type CHECK.
// We must retrieve their state to react correctly.
} else if (widget == descriptionButton) {
if (descriptionButton.getSelection())
showDescription () ;

else
hideDescription() ;
} else if (widget == playlistButton) {
if (playlistButton.getSelection())
showPlaylist () ;
else

hidePlaylist () ;

Listing 10.6 (Continued)

Finally in Listing 10.7, create a small status panel that displays the current operating mode of the
player and the total length of the current sound file. With the help of a vertical RowLayout the display
elements are arranged in a vertical column.

/**

* Create status panel with total duration and operating mode.
*

* @param parent - the containing Composite

=

private void createStatusPanel (Composite parent) {
// Create panel as a new Composite
statusPanel = new Composite (parent, SWT.NONE) ;
statusPanel . setBackground (parent .getBackground ()) ;
// Use a vertical row layout for the panel
RowLayout rowLayout = new RowLayout () ;
rowLayout.type = SWT.VERTICAL;
rowLayout.wrap = false;
rowLayout .pack = false;
statusPanel.setLayout (rowLayout) ;
// Now create the widgets of the status panel
lengthLabel = createStatusLabel (statusPanel, timeFormat (0)) ;

Listing 10.7 (Continues)

253

Chapter 10

statusLabel = createStatusLabel (statusPanel, IDLE) ;

}

private Label createStatusLabel (Composite panel, String text) {
Label label = new Label (panel, SWT.RIGHT) ;
label.setBackground (panel .getBackground ()) ;
label.setForeground (display.getSystemColor (SWT.COLOR_WHITE)) ;
label.setText (text) ;
return label;

/**
* Converts the duration into an appropriate display format.
*
* @param sec
* Seconds
* @return String mm:ss.s
*/
private static String timeFormat (double sec) ({
int secl0 = (int) (sec * 10);

return twoDigitFormat (secl0 / 600) + ":"
+ twoDigitFormat ((secl0 / 10) % 60) + "."
+ (secl0 % 10);

}
/**

* Format an integer into a two-digit string with leading zeros.
*

* @param n

* the integer value
* @return String - the result string
=y

private static String twoDigitFormat (int n)
if (n < 10) return "0" + n;
return String.valueOf (n) ;

}

Listing 10.7 (Continued)

The method updateGUI () shown in Listing 10.8 is intended to make state changes in the jlGui engine
visible on the player’s GUI Since the engine runs in a different thread and this method is invoked from
the thread, you cannot directly access the GUI elements because they run in the SWT thread. Therefore,
you must encapsulate all these accesses into a Runnable, which you pass to the Display instance via
the asyncExec () method. For each event, the status panel (see the previous code) is updated. When
the engine reaches the end of a sound file, the next sound file in the playlist is played.

/** * Update SWT-Thread ** */

/**
* Updates SWT-Widgets, caused by events from other threads, are
* executed via this method. By performing the updates under the
* SWT-thread (display.asyncExec()) we avoid an SWT thread error.

Listing 10.8 (Continues)

254

Project Two: Jukebox

*
/
private void updateGUI ()
display.asyncExec (new Runnable () {
public void run()
if (!toplevelShell.isDisposed()) {
// Update scale
scale.setMaximum (maxPosition) ;
scale.setSelection (currentPosition) ;
// Update operation mode
updateText (statusLabel, mediaState) ;
// Update total length
updateText (lengthLabel, timeFormat (lengthInSec)) ;
// Check if we have to start the next sound file
if (state == EOM) ({
state = STOP;
forward () ;

1)
}

/**
* Updates the text of a label
*

* @param ¢ - the Label instance
* @param s - the new text
7/
private void updateText (Label c, String s) {
// test against current content to avoid screen flicker
if (!c.getText () .equals(s)) c.setText (s);

}

Listing 10.8 (Continued)

Now it’s time to implement some player functions that are invoked by pressing a button. All you have to
do in such a case is to update the player mode, update the status panel via the method updateGUI (),
and pass the invoked function to the jlGui engine.

Only the play () method is more elaborate. Here you need to fetch the data from the playlist model
(title, image, name of the sound file, and description). The Canvas instance is updated with a new
background image, and the window with the descriptive text is updated. Then, initialize the jIGui
engine and—depending on the file type of the sound file—disable or enable the scale. See Listing 10.9.

/** ** Button actions *** x/
/**
* Positions in the sound file when the scale is modified
* by the end user (only for .WAV files).
Sy
private void seek() {
try {

Listing 10.9 (Continues)

255

Chapter 10

double position = ((double) scale.getSelection())
/ ((double) scale.getMaximum()) ;

soundPlayer.setSeek (position) ;

updateGUI () ;

} catch (IOException e) {
System.out .println(e.toString()) ;

}
}

/**
* Stops playing.
=f
private void stop() {
if (state != STOP) ({
soundPlayer.stopPlayback () ;
state = STOP;
mediaState = IDLE;
lengthInSec = 0;

}

updateGUI () ;

}
/**

* Pauses the playing process.
7/
private void pause() {
switch (state) ({
case PLAY
soundPlayer.pausePlayback () ;
state = PAUSE;
mediaState = PAUSED;
break;
case PAUSE
soundPlayer.resumePlayback () ;
state = PLAY;
mediaState = PLAYING;

}

updateGUI () ;

}

/**
* Starts playing.
s/
private void play () {
if (state == PLAY)
// Current play processes are stopped
stop () ;
try {
switch (state) ({
case PAUSE
// If the playing process was paused, we resume it.
soundPlayer.resumePlayback () ;
break;
case STOP

Listing 10.9 (Continues)

256

Project Two: Jukebox

// Otherwise we start all over again.
// Fetch name of background image and title
currentImage = playlistModel.getFeature (IMAGEFILE) ;
currentTitle = playlistModel.getFeature (TITLE) ;
// Update description window
updateDescription () ;
// Fetch name of sound file
String filename = playlistModel.getFeature (SOUNDFILE) ;
// Enforce a redraw of the canvas
canvas.redraw () ;
// Do nothing if the sound file does not
// exist any more.
if (!doesFileExist (filename)) return;
// Otherwise configure the engine
soundPlayer.setDataSource (openFile (filename)) ;
soundPlayer.startPlayback () ;
soundPlayer.setGain(0.5f) ;
soundPlayer.setPan (0.5f) ;
// Fetch the total duration of the sound file
lengthInSec = soundPlayer.getTotalLengthInSeconds () ;
maxPosition = (int) lengthInSec;
// If the sound format is not WAV we deactivate
// disable the scale (no scrolling possible) .
boolean canSeek = ((soundPlayer.getAudioFileFormat () != null)
&& (soundPlayer
.getAudioFileFormat () .getType ()
.toString () .startsWith ("WAV"))) ;
scale.setEnabled (canSeek) ;
}
// Now set the operation modus and update the GUI.
state = PLAY;
mediaState = PLAYING;
updateGUI () ;
} catch (UnsupportedAudioFileException e) {
System.out.println(e.toString()) ;
} catch (LineUnavailableException e) {
System.out.println(e.toString()) ;
} catch (IOException e) ({
System.out.println(e.toString()) ;

}

/**
* If the playlist has a next element, we stop playing
* the current sound file and start again with the next.

Y
private void forward() {
if (playlistModel.next ()) {
stop () ;
play();
}
}
/**

Listing 10.9 (Continues)

257

Chapter 10

* If the playlist has a previous element, we stop playing
* the current sound file and start again with the previous.

*
/
private void back() {
if (playlistModel.previous()) ({
stop () ;
play();

Listing 10.9 (Continued)

Managing Windows

The three methods shown in Listing 10.10 are used to open a window for the descriptive text, update
this text, and close the window. The description window is implemented as the class
DescriptionWindow, a subclass of Window. You need to create and initialize an instance of the class,
get its Shell instance, position the window to an appropriate location, and instrument the Shell
instance with a ShellListener that informs you when the window is closed. When the window is
closed, you must also reset the corresponding button on the toolbar.

/** ** Manage windows ** */

/**
* Creates a new DescriptionViewer if it not yet exists.
* Supplies the DescriptionViewer with new text content.

i/
private void showDescription() {
if (descriptionWindow == null) {

// Create window
descriptionWindow = new DescriptionWindow (toplevelShell,
playlistModel) ;
// Initialize window
descriptionWindow.create () ;
// Fetch Shell instance
Shell shell = descriptionWindow.getShell () ;
Rectangle bounds = toplevelShell.getBounds() ;
// Position at the right hand side of the main window
shell.setBounds (bounds.x + bounds.width - 5,
bounds.y + 10, 320, 240);
// React to shell’s close button
shell.addShelllistener (new ShellAdapter () {
public void shellClosed (ShellEvent e) {
// Update toolbar button
hideDescription() ;
}
1) s
// Open the window
descriptionWindow.open () ;

Listing 10.10 (Continues)

258

Project Two: Jukebox

/**
* Closes the description window
=/

private void hideDescription()

// Reset the description toolbar button

descriptionButton.setSelection (false) ;

// Close window

if (descriptionWindow != null) {
descriptionWindow.close () ;
descriptionWindow = null;

}
}

/**
* Updates the window with new text
Y
private void updateDescription() {
if (descriptionWindow != null) descriptionWindow.update () ;

}

Listing 10.10 (Continued)

Managing the playlist window is very similar (see Listing 10.11).

/**
* Creates a new playlist window
=/

private void showPlaylist () {

if (playlistWindow == null) ({
// Create new PlaylistWindow instance
playlistWindow = new PlaylistWindow (toplevelShell,
playlistModel) ;
// Initialize the window to allow us to retrieve
// the shell instance
playlistWindow.create () ;
Shell shell = playlistWindow.getShell () ;
shell.addShelllistener (new ShellAdapter () {
public void shellClosed(ShellEvent e) {
hidePlaylist () ;
}
1)
// Position the shell below the main window
Rectangle bounds = toplevelShell.getBounds () ;
shell.setBounds (bounds.x + bounds.width / 8, bounds.y
+ bounds.height - 5, 400, 240);
// Open the window.
playlistWindow.open () ;

}
}

/**

* Closes playlist window

Listing 10.11 (Continues)

259

Chapter 10

*
/
private void hidePlaylist () ({
// Reset playlist toolbar button.
playlistButton.setSelection(false) ;
// Close window
if (playlistWindow != null) ({
playlistWindow.close() ;
playlistWindow = null;
}
}

Listing 10.11 (Continued)

BasicPlayerListener

Finally, in this section are the methods that implement the interface BasicPlayerListener. These
methods accept the events from the jlGui engine. The updateGUI () method (shown previously) is used

to update the user interface accordingly. See Listing 10.12.

/** * Methods of the BasicPlayerlListener interface ** */

/**
* @see javazoom.]jlGui.BasicPlayerListener#updateMediaData (byte)
=y
public void updateMediaData (byte[] data) {}
/**
* @see javazoom.jlGui.BasicPlayerListener#
& updateMediaState (java.lang.String)
=y

public void updateMediaState (String newState) {
// At file end set operation mode to IDLE
if (newState.equals("EOM") && state != STOP) {
this.state = EOM;
mediaState = IDLE;
// Update GUI
updateGUI () ;

}
}

/**

* @see javazoom.jlGui.BasicPlayerListener#updateCursor (int, int)
7/

public void updateCursor (int cursor, int total) ({
// Save maximum position and current position; update GUI
maxPosition = total;
currentPosition = cursor;
updateGUI () ;

}

}

Listing 10.12

260

Project Two: Jukebox

The Playlist Domain Model

The domain model of the playlist has nothing to do with the user interface. It simply contains the data
and the current state of the playlist. I have separated this model into an interface IPlaylist and an
implementation PlaylistModel. While the interface is completely independent of the underlying stor-
age method for the playlist, my implementation uses XML files as the storage method. If you would
rather use a relational database to store your playlist, all you have to do is to rewrite the class
PlaylistModel.

The Interface

The concept of the playlist domain model is quite generic. You can decorate entries within the playlist
with any kind of features that can be configured through the API. In class Player (see “The Player
Module”) the playlist model was configured with the feature identifications TITLE, SOUNDFILE,
IMAGEFILE, and DESCRIPTON. The functions of the playlist domain model include setting and retriev-
ing the values of these features, the positioning within the playlist, and adding or removing playlist
entries.

In addition to these basic functions, the playlist model includes the methods of the
ISelectionProvider interface. These methods allow adding and removing SelectionListener
instances in the playlist model. The model can inform these listeners when its content or state changes.
The methods of the IStructuredContentProvider interface such as getElements (),
inputChanged (), and dispose () are also included. The PlaylistViewer uses the
PlaylistViewer getElements () method to fetch the playlist entries to be displayed. The
PlaylistViewer signals to the model that a new playlist is opened via the method inputChanged ().
Finally, dispose () is called when the PlaylistViewer is disposed of. Here the model implementa-
tion could, for example, close open files.

Listing 10.13 shows the The IPlaylist.java interface.

package com.bdaum.jukebox;

import org.eclipse.jface.viewers.ISelectionProvider;
import org.eclipse.jface.viewers.IStructuredContentProvider;

public interface IPlaylist
extends IStructuredContentProvider, ISelectionProvider {

/**

* Returns the name of the current playlist
* or null if no playlist active

* @return String - Name of current playlist

=y

public String getPlaylistName () ;

/**

* Returns the specified feature of the current playlist entry.
* @param feature - Feature identification

* @return String - Feature value

=y

public String getFeature (String feature) ;

Listing 10.13 (Continues)

261

Chapter 10

/**
* Returns the specified feature of the specified playlist element.
* @param record - Playlist element
* @param feature - Feature identification
* @return String - Feature value
7
public String getFeature (Object record, String feature) ;
/**
Sets the specified feature of the specified playlist element
* to the specified value.
* @param record - Playlist element
* @param feature - Feature identification
* @param value - new Feature value
=
public void setFeature (Object record, String feature,
String value) ;
/**
* Positions to the next playlist entry.
* @return boolean - true if successfull
=
public boolean next () ;
/**
* Tests if we have a next entry in the playlist
* @return boolean - true if successfull
7/
public boolean hasNext () ;
/**
* Positions to the previous playlist entry.
* @return boolean - true if successfull
7
public boolean previous() ;
/**
* Tests if we have a previous entry in the playlist
* @return boolean - true if successfull
=
public boolean hasPrevious() ;
/**
* Sets the current position of the playlist onto
* the specified playlist element.
* @param current - The new current playlist entry
=

public void setCurrent (Object current) ;

/**
* Deletes the current playlist entry.
* The next playlist entry becomes the current entry.
* If none exists, the previous playlist entry becomes the
* current entry. If this does not exist, too, the
* current playlist entry is undefined (null).
=

public void deleteCurrent () ;

/**
Listing 10.13 (Continues)

262

Project Two: Jukebox

Creates a new playlist entry in front of the current playlist
entry. The new playlist entry becomes the current

playlist entry.

@return Object - The new playlist element

* % X X

=y
public Object insert() ;

/**
* Moves the current playlist entry one position
* towards the beginning
* of the playlist.
* @return boolean - true if successfull
*
/

public boolean moveUpwards () ;

/**
* Moves the current playlist entry one position towards the end\
* of the playlist.
* @return boolean - true if successfull
=y
public boolean moveDownwards () ;

}

Listing 10.13 (Continued)

The Implementation

The following code shows how this interface can be implemented. I selected XML as the file format. The
schema (DTD) used for playlists is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT playlist (record*) >

<!ELEMENT record (soundfile | title | image | description)*>
< !ELEMENT description (#PCDATA) >

<!ELEMENT image (#PCDATA) >

<!ELEMENT soundfile (#PCDATA) >

<!ELEMENT title (#PCDATA) >

When creating an interface and its implementation, you always can choose what you would like to do
first. You can create the interface first and specify it as an implemented interface when you create the
implementation. Eclipse will then generate all method stubs for you.

Alternatively, you can create the implementation first. Later, after the code has matured, you can always
extract an interface by applying the context method Refactor > Extract Interface.... This way, you can, at
least in the beginning, avoid some double work when modifying the API. Also, navigation in the code is
easier.

Listing 10.14 shows the PlaylistModel.java implementation.

263

Chapter 10

package com.bdaum.jukebox;

import java.io.*;
import java.util.Properties;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.OutputKeys;

import org.apache.crimson.jaxp.DocumentBuilderFactoryImpl;
import org.apache.xalan.serialize.SerializerToXML;

import org.eclipse.jface.util.ListenerList;

import org.eclipse.jface.viewers.*;

import org.w3c.dom.*;

import org.xml.sax.ErrorHandler;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

/**
* This class implements the playlist domain model. XML is used as
* file format to make the model data persistent. Access to the
* XML data is organized via the JAXP DOM.
=/
public class PlaylistModel implements IPlaylist {

// Name of INI file
private final static String INIFILE = "jukebox.ini";

// XML prolog
private final static String XMLPROLOG =
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>";
// Empty playlist
private final static String XMLROOT = XMLPROLOG
+ "<playlist></playlist>";
// Tag for playlist entries
public final static String RECORD = "record";

// INI file

private File iniFile;

// current playlist file name

private String currentPlaylistFile;

// current playlist DOM

private Document playlistDoc;

// current playlist entry DOM node

private Node currentElement;

// Listeners to be informed about changes

private ListenerList selectionChangedlListeners = new ListenerList () ;

Listing 10.14

264

Project Two: Jukebox

INI File

To produce a user-friendly player it makes sense to maintain an INI file that stores the name of the most
recently used playlist. So, if you construct a new PlaylistModel instance, just read the INI file, get the
playlist name, and open the playlist. See Listing 10.15.

/**
* Constructor for PlaylistModel.
=
public PlaylistModel () {
super () ;
try {

// Try to read the INI file

iniFile = new File (INIFILE) ;

InputStream stream = new FileInputStream(iniFile) ;
byte[] buffer = new byte[1024];

int 1 = stream.read (buffer) ;

// If it exists, read the name of the most recent
// playlist and open this playlist
openPlaylist (new String(buffer, 0, 1)) ;

} catch (FileNotFoundException e) {
} catch (IOException e) {

}
}

Listing 10.15

Parsing

The method openPlayList () is called in two situations: opening an existing playlist file or creating a
new playlist. If a file with the specified name does not exist, a new empty playlist document is created.
The resulting stream is then parsed by a DOM parser. Finally, the first <record> element is searched
for, and if one exists, the pointer for the current record is set to this element.

When a new DOM parser is created, it is configured to the requirements of the player. For example, lazy

instantiation is used to keep the overhead low, and ignorable whitespace is ignored. Also, the SAX error

handling is modified to avoid having the standard SAX error message appear on the console. See Listing
10.16.

/**
* Opens the playlist file

*

* @param name - Name of playlist file

=
private void openPlaylist (String name) {
if (name == null) return;

currentPlaylistFile = name;
File playlistFile = new File (name) ;
// Input stream of playlist file

Listing 10.16 (Continues)

265

Chapter 10

InputStream stream;
try {
stream = new FileInputStream(playlistFile) ;
} catch (FileNotFoundException e) {
// File does not exist
// Create an empty playlist document
stream = makeStream (XMLROOT) ;
}
if (stream != null) try {
// Parse the file content, creating a DOM
playlistDoc = parseStream(stream, false);
} catch (Throwable e)
playlistDoc = null;
System.err.println ("XML parsing error: " + e);
}

if (playlistDoc != null) {
// Look for <records>-elements and set the first one
// as current song
NodeList nl = playlistDoc.getElementsByTagName (RECORD) ;
if (nl.getLength() > 0) currentElement = nl.item(0) ;

/**
* Convert string into InputStream
*
* @param input - Input string
* @return InputStream - resulting InputStream instance
=y
public static InputStream makeStream(String input) {
try {
return new ByteArrayInputStream (input.getBytes ("UTF8")) ;
} catch (UnsupportedEncodingException x) {
// should never happen
return null;

}
}

/**

Convert serialized XML stream into DOM tree.

@param stream - input stream
@param silent -
don't show error messages on the console if set to true

@return Document - the resulting DOM document

* @throws Throwable - various Throwables from Parser

=
private static Document parseStream(

InputStream stream, boolean silent) throws Throwable {
// Create InputSource from stream

InputSource source = new InputSource (stream) ;
// Create a document builder factory
DocumentBuilderFactory factory = new DocumentBuilderFactoryImpl () ;
// Create a document builder

* Ok X X X X

Listing 10.16 (Continues)

266

Project Two: Jukebox

DocumentBuilder builder = factory.newDocumentBuilder () ;
// When "silent" is set we override the SAX error handler and
// suppress the output of error message to the Java console.
if (silent) ({
builder.setErrorHandler (new ErrorHandler () {
public void error (
SAXParseException exception) throws SAXException {
throw exception;
}
public void fatalError (
SAXParseException exception) throws SAXException {
throw exception;
}
public void warning (
SAXParseException exception) throws SAXException {
throw exception;

) g
1

// Everything is configured - let's parse.
return builder.parse (source) ;

}

Listing 10.16 (Continued)

Serializing
Vice-versa, when a playlist is closed and it was modified, it must be rewritten to file. This is done with
the help of an XML serializer. This serializer is configured so that it does not produce extra whitespace
and produces an XML prologue only when needed (see Listing 10.17).

/**

* Save current playlist to file.

=
private void savePlaylist () {

if (playlistDoc == null || currentPlaylistFile == null)
return;
File playlistFile = new File (currentPlaylistFile) ;
try {

// Create new file and set output stream to this file.
playlistFile.createNewFile () ;

OutputStream stream = new FileOutputStream(playlistFile) ;
// Serialize DOM and write to output stream

stream.write (serializeNode (playlistDoc, true)

.toByteArray()) ;
} catch (IOException e) ({
System.err.println ("IO-exception during save: " + e);

}
}

/**

* Convert whole DOM document or subtree into XML stream.

Listing 10.17 (Continues)

267

Chapter 10

@param nod - DOM document or DOM node
@param prolog - "true" if an XML prolog is required
* @return ByteArrayOutputStream - serialized XML text
=
public static ByteArrayOutputStream serializeNode (
Node nod, boolean prolog) ({
// Set output formats
// (no identation, XML prolog depending on option)
SerializerToXML serializer = new SerializerToXML() ;
Properties props = new Properties() ;
props.setProperty (OutputKeys.METHOD, "xml") ;
props.setProperty (OutputKeys.INDENT, "no");
props.setProperty (OutputKeys.OMIT XML DECLARATION,
(prolog) ? "no" : "yes");
serializer.setOutputFormat (props) ;
// Create OutputStream and Serializer instances.
ByteArrayOutputStream outstream = new ByteArrayOutputStream() ;
serializer.setOutputStream(outstream) ;
try {
// Serialize.
serializer.serialize (nod) ;
} catch (IOException e) { // should never happen

}

return outstream;

* %k Xk

Listing 10.17 (Continued)

Implementing IPlayList

After implementing the logic for opening (reading) and closing (writing) playlists, you may want to
implement the IPlayList methods. As far as the navigational methods are concerned, this is almost
trivial. You just need to translate the playlist navigation into DOM tree navigation. See Listing 10.18.

/** *x% TPlaylist methods ***x *x/

/**

* @see IPlayList#getPlaylistName ()
=Y

public String getPlaylistName () {
return currentPlaylistFile;

}

/**
* @see IPlayList#next ()
=y

public boolean next () {

// fetch next entry
Node nod = getNext () ;
if (nod == null) return false;

Listing 10.18 (Continues)
268

Project Two: Jukebox

// in case of success set current entry to this value
setCurrent (nod) ;
return true;

}
/**

* Searches from current entry onwards for next entry.
*
* @return Node - the next entry
&y
private Node getNext () {
Node nod = currentElement;
// search next element with tag <records
while (nod != null) {
nod = nod.getNextSibling() ;
if (nod instanceof Element
&& ((Element) nod) .getTagName () .equals (
RECORD)) return nod;
}

return null;

}

/**
* @see IPlayList#previous ()
*/

public boolean previous() {

// fetch previous entry

Node nod = getPrevious() ;

if (nod == null) return false;

// in case of success set current entry to this value
setCurrent (nod) ;

return true;

}
/**

* Searches from current entry onwards for previous entry.
*

* @return Node - the previous entry
*/
private Node getPrevious () ({
Node nod = currentElement;
// search previous element with tag <records>
while (nod != null) {
nod = nod.getPreviousSibling() ;
if (nod instanceof Element
&& ((Element) nod) .getTagName () .equals (
RECORD)) return nod;
}

return null;

}
/* *
* @see IPlayList#hasNext ()
74
Listing 10.18 (Continues)

269

Chapter 10

public boolean hasNext () {
return getNext () != null;
}

/**

* @see IPlayList#hasPrevious ()
=)

public boolean hasPrevious() ({
return getPrevious() != null;

}

Listing 10.18 (Continued)

Accessing Features

Getting and setting a feature of a playlist entry requires a bit more work. To retrieve a feature, the text
content of the corresponding XML element must be read. Since this content can be distributed over sev-
eral chunks of text, it is necessary to concatenate these chunks. See Listing 10.19.

/**

* @see IPlayList#getFeature (org.w3c.dom.Node,
* java.lang.String, boolean)

=y

public String getFeature (String tag) ({
return getFeature (currentElement, tag);
}

/**
* @see IPlaylList#getFeature (org.w3c.dom.Node,
* java.lang.String, boolean)
=Y
public String getFeature (Object record, String tag) {
if (record == null) return "";
// Find all child elements with specified name
NodeList nl = ((Element) record) .getElementsByTagName (tag) ;
if (nl.getLength() == 0) return "";

// Should be the only one
Node nod = nl.item(0) ;
// Now get all text child elements and concatenate them
StringBuffer sb = new StringBuffer() ;
nl = nod.getChildNodes () ;
for (int 1 = 0; i < nl.getLength(); i++) {

if (nl.item(i) instanceof Text)

sb.append (((Text) nl.item(i)) .getData()) ;

1

return sb.toString() ;

}

/**
* @see IPlaylList#setFeature (org.w3c.dom.Node,
* java.lang.String, java.lang.String)

Listing 10.19 (Continues)

270

Project Two: Jukebox

*
/
public void setFeature (Object record, String tag, String value) ({
// Assuming that playlist elements are XML elements
Element el = (Element) record;
// Get corresponding DOM document
Document doc = el.getOwnerDocument () ;

NodeList nl = ((Element) record) .getElementsByTagName (tag) ;
// Remove existing elements with same name
for (int i = 0; i < nl.getLength(); i++)
el.removeChild(nl.item(1i)) ;
if (value == null || value.length() == 0)
// Deletion of feature - finished.
return;

// Create child element, append to parent, and fill with content.
Node nod = doc.createElement (tag) ;

el .appendChild (nod) ;

nod.appendChild (doc.createTextNode (value.trim())) ;

Listing 10.19 (Continued)

Managing Entries

Apart from modifying entry features, you can replace, delete, or insert whole entries or change the
sequence of entries. This is done in the methods setCurrent (), deleteCurrent (), insert (),
moveDownwards (), and moveUpwards () (Listing 10.20).

/**
* @see IPlayList#setCurrent (org.w3c.dom.Node)
5y
public void setCurrent (Object current) {
// To avoid event avalanches check if
// the new entry is different from the current entry.

if (currentElement != current)
// yes, update current entry and notify listeners.
currentElement = (Element) current;

fireSelectionChanged (getSelection()) ;

}
}

/**
* Notify all listeners about change of current entry
*

* @param selection - the current entry wrapped into an ISelection

%* instance
=
private void fireSelectionChanged (ISelection selection) {
Object [] listeners = selectionChangedListeners
.getListeners () ;
SelectionChangedEvent event = new SelectionChangedEvent (

this, selection) ;

Listing 10.20 (Continues)

271

Chapter 10

272

for (int i = 0; i < listeners.length; i++)
((ISelectionChangedListener) listeners[i])
.selectionChanged (event) ;

}

/**
* @see IPlayList#deleteCurrent ()
=
public void deleteCurrent ()
if (currentElement == null) return;
// When deleting the current element position to the next
// element. If this does not exist position to the previous
// element.
Node nod = getNext () ;
if (nod == null) getPrevious() ;
// Remove from playlist.
Element playlist = playlistDoc.getDocumentElement () ;
playlist.removeChild (currentElement) ;
// Update current element.
setCurrent (nod) ;

}
/**

* @see IPlaylList#insert (java.lang.String, java.lang.String)
*

/

public Object insert() ({

// Create a new <records> element

Element newRecord = playlistDoc.createElement (RECORD) ;

// Insert the new element in front of the current element...
Element playlist = playlistDoc.getDocumentElement () ;
playlist.insertBefore (newRecord, currentElement) ;

// ...and update the current element.

setCurrent (newRecord) ;

return newRecord;

}
/**

* @see IPlayList#moveDownwards ()
wf

public boolean moveDownwards () {
Node next = getNext () ;
if (next == null) return false;
// If there is a next element, remove the current element
// and insert it again behind the next element.
Element playlist = playlistDoc.getDocumentElement () ;
playlist.removeChild (currentElement) ;
playlist.insertBefore (currentElement, next.getNextSibling()) ;
return true;

}

/**
* @see IPlayList#moveUpwards ()
=y

public boolean moveUpwards () {

Listing 10.20 (Continues)

Project Two: Jukebox

Node previous = getPrevious() ;

if (previous == null) return false;

// If there is a previos element, remove the current

// element and insert it again in front of the previos element.
Element playlist = playlistDoc.getDocumentElement () ;
playlist.removeChild (currentElement) ;

playlist.insertBefore (currentElement, previous) ;

return true;

}

Listing 10.20 (Continued)

Content Provider

The following method getElements () implements the interface IStructuredContentProvider.
This method is required by the table viewer used in the playlist window. It returns all the entries in the
playlist. See Listing 10.21.

/** *x* IStructuredContentProvider methods *** *x/

/**

* @see org.eclipse.jface.viewers.IStructuredContentProvider#
* getElements (java.lang.Object)

7/

public Object[] getElements (Object inputElement) {
// Fetch all <record> elements from the playlist...
NodeList nl = playlistDoc.getElementsByTagName (RECORD) ;
// ...and write them into an array
Object [] result = new Object [nl.getLength()];
for (int i = 0; i < result.length; i++)
result[i] = nl.item(1i) ;
return result;

}

Listing 10.21

Playlist Switch

Also, the table viewer requires the method inputChanged () because
IStructuredContentProvider is a subinterface of IContentProvider. When the table’s input
changes, the current playlist must be saved and a new playlist must be opened. At the end of the session

(when the parameter newInput is null) the INI file is updated. If none exists, it is created. See Listing
10.22.

/** *x* TIContentProvider methods *** */

/**

* @see org.eclipse.jface.viewers.IContentProvider#

Listing 10.22 (Continues)

273

Chapter 10

inputChanged (org.eclipse.jface.viewers.Viewer,
java.lang.Object, java.lang.Object)

* % X X

We trust that this method is called, too, when the
* application is closed.
=f
public void inputChanged (Viewer viewer, Object oldInput,
Object newInput) ({
// First save the current playlist

savePlaylist () ;
if (newInput == null) {
// The application is closed and sets the input to null
if (currentPlaylistFile != null) {
// A playlist was open. Save its name into the INI-file
try {

OutputStream stream = new FileOutputStream(iniFile) ;
stream.write (currentPlaylistFile.getBytes()) ;
} catch (FileNotFoundException e) {
} catch (IOException e) {
}

}

return;

}

if (currentPlaylistFile == null
|| !'currentPlaylistFile.equals (newInput))
// Open a new playlist
openPlaylist ((String) newlInput) ;

}
/**

* @see org.eclipse.jface.viewers.IContentProvider#dispose ()
=y
public void dispose() {}

Listing 10.22 (Continued)

Selections

Finally, Listing 10.23 contains the methods for the ISelectionProvider interface. When you imple-
ment this interface, the PlaylistModel can notify listeners that have registered via the method
addSelectionChangedListener () about selection changes. The method getSelection () is
responsible for constructing an IStructuredSelection instance as required by the playlist’s table viewer,
and the method setSelection () accepts IStructuredSelection instances to update the current
selection in the model.

/** *x* ISelectionProvider methods **** *x/

/**
* @see IPlayList#addSelectionChangedListener (

Listing 10.23 (Continues)

274

Project Two: Jukebox

* org.eclipse.jface.viewers.ISelectionChangedListener)
=
public void addSelectionChangedListener (
ISelectionChangedListener listener) ({
selectionChangedListeners.add (listener) ;

}

/**
* @see org.eclipse.jface.viewers.ISelectionProvider#igetSelection ()
*
/
public ISelection getSelection() ({
return new StructuredSelection((currentElement == null)
? new Object [0]
new Object [] {currentElement}) ;
1
/**
* @see org.eclipse.jface.viewers.ISelectionProvider#
* removeSelectionChangedListener (
* org.eclipse.jface.viewers.ISelectionChangedListener)
*
/

public void removeSelectionChangedListener (
ISelectionChangedListener listener) ({
selectionChangedListeners.remove (listener) ;

}

/**
* @see org.eclipse.jface.viewers.ISelectionProvider#
* setSelection (org.eclipse.jface.viewers.ISelection)
*/

public void setSelection(ISelection selection)
if (selection instanceof IStructuredSelection) {

Object selected = ((IStructuredSelection) selection)
.getFirstElement () ;
currentElement = (Element) selected;

Listing 10.23 (Continued)

The Description Window

The description window is based on the JFace class Window (see the section “Dialogs and Windows” in
Chapter 9). It shows the descriptive text of the current playlist entry as long as the entry is being played.
The window is positioned at the right-hand side of the player window and is updated with each new
playlist entry that is played.

275

Chapter 10

Since the description may contain HTML markup, the Browser widget is used to display the descrip-
tion. Nevertheless, the keywords should be displayed in a different color. You can achieve this by
scanning the text for keywords, removing the $ character at the front, and adding additional markup
for coloring.

The DescriptionWindow Class

The DescriptionWindow class (Listing 10.24) starts with the necessary package and import declarations,
followed by the class declaration and the declarations of all instance variables. Here the fields holding the
Browser instance, the playlist data model, and the Display instance are defined.

package com.bdaum.jukebox;
import java.util.StringTokenizer;

import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;

import org.eclipse.swt.browser.Browser;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Shell;

public class DescriptionWindow extends Window {

// The browser widget responsible for displaying the text
private Browser browser;

// The playlist model

private IPlaylist model;

// The current display

private Display display;

Listing 10.24

When you instantiate the DescriptionWindow instance, the playlist domain model is passed to this
instance. It is used when the window is opened or updated: the text is retrieved from the DESCRIPTION
feature of the current playlist entry and replaces the content of the Browser widget. This widget

was created in the method createContents (), which is called by the parent class Window when
create () is executed. See Listing 10.25.

/**

* Constructor.

*

* @param parent - the containing shell
* @param model - the player model

=Y

public DescriptionWindow (Shell parent, IPlaylist model) ({

Listing 10.25 (Continues)

276

Project Two: Jukebox

super (parent) ;
display = parent.getDisplay() ;
this.model = model;

}
/**

* This method is called form superclass Window.

* It constructs the window contents.

74

protected Control createContents (Composite parent)

parent.setLayout (new FillLayout ()) ;

Composite composite = new Composite (parent, SWT.NONE) ;
composite.setLayout (new FillLayout ()) ;

// Create a browser widget

browser = new Browser (composite, SWT.NONE) ;
GridData data = new GridData (GridData.FILL BOTH) ;
browser.setLayoutData (data) ;

return composite;

}

/**
* Prepare HTML-text and display it Browser widget
=
public void update ()
String description = model.getFeature (Player.DESCRIPTION) ;

if (description == null)
browser.setText ("") ;
else {

// Coloring for keywords

StringBuffer html = new StringBuffer (
"<html><small>") ;

StringTokenizer tokenizer = new StringTokenizer (
description, "<> \n\t", true);

while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken () ;
if (token.length() == 1) {
html.append (token) ;

} else if (token.startsWith("s")) {
html.append ("")
html.append (token.substring (1)) ;
html .append ("") ;

} else
html.append (token) ;

7

}

html .append ("</small></html>") ;
// Display in browser
browser.setText (html.toString()) ;

}
}

/**
* Override open() method of superclass Window to
* update the displayed text.
*/

Listing 10.25 (Continues)

277

Chapter 10

public int open() {
update () ;
return super.open() ;

}
}

Listing 10.25 (Continued)

The Playlist Viewer

The playlist viewer runs in its own window (PlaylistWindow) and allows the user to open, create,
and modify a playlist. The viewer is equipped with specialized cell editors for the individual playlist
entries. The playlist domain model serves as a Content Provider for the playlist viewer.

To illustrate the cooperation between player, playlist viewer, playlist window, and playlist domain
model, the event processing for the playlist is shown as an interaction diagram in Figure 10.4.

In principle, there is a possibility of event loops. However, you can avoid these loops by passing events
only when an event means a real change (for example, in the playlist model).

An interesting problem occurs when performing the insert () operation. This method causes a change
of selection. Consequently, the model sends a selectionChanged event to the playlist window, which
passes it on to the viewer via the method setSelection (). The viewer performs this selection.
However, at this time, the new element has not yet been inserted into the Table widget. Consequently,
setting the selection for this element results in a null selection. This, again, is sent as a
selectionChanged event to the playlist viewer. The viewer then sets the selection in the model to
null by calling the method setCurrent () ! This is certainly not our intention. You can solve the prob-
lem by invoking the viewer’s refresh () method from the selectionChanged () method before call-
ing setSelection (). By doing this, you can force an update of the Table instance according to the
content of the playlist model.

The PlaylistWindow Class

The PlaylistWindow class (Listing 10.26) starts with the necessary package and import declarations,
followed by the class declaration and the declarations of all instance variables. Here the fields holding
the PlaylistViewer, the Player, and the playlist data model are defined.

package com.bdaum.jukebox;

import org.eclipse.jface.viewers.ISelectionChangedListener;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.SelectionChangedEvent;
import org.eclipse.jface.window.Window;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Control;

import org.eclipse.swt.widgets.Shell;

Listing 10.26 (Continues)
278

Project Two: Jukebox

public class PlaylistWindow extends Window
implements ISelectionChangedListener {

PlaylistViewer viewer;
Player player;
IPlaylist model;

/**

* Constructor.

* @param parent - The containing shell

* @param player - The player
=)

public PlaylistWindow (Shell parent,

super (parent) ;
this.model = model;

Listing 10.26 (Continued)

Playlist-Window : PlaylistWindow

% Player : Player

User

\
! processButton(SelectionEvent): void ! }

setinput(Object): void

IPlaylist model) {

Playlist-Viewer : PlaylistViewer

Playlist-Modell : PlaylistModel

!

inputChanged(Viewer,Object,Object): void

playlist switched

V_I
setCurrent(Object): void

other playlist

-| Toolltem activated I
setInput(Object): void

update ‘
\
\ \
I

\
\
\
|
} { menu selection
\
\
\
\

\ seleclionChanged(Se\eclionChangedEvent): void

.
f
\
\
\
}
T
\
\
\
\
\

-l

- insert(): Object
-
insert entry
deleteCurrent(): void

delete entry

selectionChanged(Se\ec(ion@hangedEvent): void

A

] table selection ‘
\

\

\

\

\

\

\

\

\

\

\

\

\

Figure 10.4

setSelection(ISelection): void ‘

select table entry

selectionChanged(SelectionChangedEvent): void

selection changed

selection chaned

279

Chapter 10

In the createContents () method that is called from the parent class Window (see the section “Dialogs
and Windows” in Chapter 9), PlaylistWindow constructs the window content. In particular, an
instance of the class PlaylistViewer (a subclass of TableViewer) is created. This viewer is config-
ured with the help of style constants: horizontal and vertical scrolling is allowed, only single table rows
can be selected, and the whole table row appears selected.

Then the viewer is equipped with event processing. When a row is selected, the selectionChanged ()
method is invoked. This method retrieves the selection object from the event object. The selected table
entry is the first element in the selection object. This table entry is passed, via the method

setCurrent (), to the playlist model to update the selection there.

Finally, the viewer is initialized by fetching the filename of the current playlist from the playlist model
and passing this name to the viewer via the set Input () method. See Listing 10.27.

protected Control createContents (Composite parent) {
parent .setLayout (new FillLayout ()) ;
Composite composite = new Composite (parent, SWT.NONE) ;
composite.setLayout (new FillLayout ()) ;
viewer = new PlaylistViewer (composite,
SWT.SINGLE | SWT.VERTICAL | SWT.H SCROLL
| SWT.V_SCROLL | SWT.BORDER | SWT.FULL SELECTION, model) ;
// Add event processing for selection events
viewer.addSelectionChangedListener (new
ISelectionChangedListener ()
public void selectionChanged (SelectionChangedEvent e) {
IStructuredSelection selection =
(IStructuredSelection) e.getSelection() ;
// Get selected table entry
Object selected = selection.getFirstElement () ;
// and pass to playlist model
model .setCurrent (selected) ;

}
1)
// Get current playlist
String playlistFile = model.getPlaylistName () ;
// and set as input data
viewer.setInput (playlistFile) ;
return composite;

}

Listing 10.27

In Listing 10.28 the two Window methods open () and close () are overridden. In the open () method
the selection of the viewer is updated and registered as a SelectionListener with the playlist model.
Changes in the playlist model are consequently passed to the method selectionChanged (). In this
method the viewer’s Table widget is updated by calling refresh (). Then the selection of the viewer
is updated. Finally, in method close () the playlist window is deregistered as a SelectionListener
from the playlist model.

280

Project Two: Jukebox

/*

* Open window and register with the model

=y

public int open() {
// Update the viewers selection
viewer.setSelection (model.getSelection()) ;
// Register as a SelectionChangedListener
model .addSelectionChangedListener (this) ;
// Open window
return super.open() ;

}

/*

* Close window and deregister from the model

=y

public boolean close() {
// deregister as a SelectionChangedListener
model . removeSelectionChangedListener (this) ;
// Close window
return super.close() ;

}

/*

* Model has changed - we have to update the viewer

*

/

public void selectionChanged (SelectionChangedEvent event) {
// Force table update
viewer.refresh () ;
// Update selection
viewer.setSelection (model.getSelection()) ;

}

Listing 10.28

The PlaylistViewer Class

The playlist viewer is defined as a subclass of the JFace class TableViewer. First, the
PlaylistViewer instance is instrumented with a ContentProvider, a LabelProvider, cell edi-
tors, modifiers, and column identifications. For a cell editor, the standard TextCellEditor is used, but
with the following exceptions: filenames are edited with the FileCellEditor that follows, and
descriptions are edited with the DescriptionCellEditor discussed later in “The Description Editor”
section.

Then the layout and the presentation of the table are modified somewhat, and a menu, status line, and
toolbar are added. For the layout a nested GridLayout is used. First, the status line and the toolbar are
placed into a two-column GridLayout (which results in one row). Then the Composite is placed
together with the Table instance into a one-column GridLayout.

The menu is added directly to the shell of the playlist window. The menu functions bring up file-
selection dialogs for opening existing playlists and for creating new playlists.

281

Chapter 10

The toolbar contains functions for creating, deleting, and moving playlist elements. The ToolItem
events directly result in the invocation of the corresponding operations in the playlist model. Such
operations may, of course, change the current element in the playlist model. The model therefore creates
an appropriate SelectionChangedEvent, which is received by the playlist window. The window
instance then uses the method setSelection () to update the selection in the PlaylistViewer.

See Listing 10.29.

package com.bdaum.jukebox;

import java.io.File;

import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.dnd.*;

import org.eclipse.swt.dnd.DropTarget;

import org.eclipse.swt.dnd.DropTargetListener;
import org.eclipse.swt.dnd.FileTransfer;

import org.eclipse.swt.dnd.Transfer;

import org.eclipse.swt.events.SelectionAdapter;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

/**
* This class implements a viewer for playlists.
4

public class PlaylistViewer extends TableViewer {

// File extension for for playlists
public final static String PLS = ".jpl";
// Filter for the selection of playlist files
public final static String[] PLAYLISTEXTENSIONS = new String[]{"*"
+ PLS};

// Filter for the selection of sound files
public final static String[] SOUNDEXTENSIONS =

new String[]{"*.m3u;*.wsz;*.mpg;*.snd;*.aifc;*.aif;*.wav;"

+"% au;*.mpl;*.mp2;*.mp3;*.ogg", "*.*"};

// Filter for the selection of image files
public final static String[] IMAGEEXTENSIONS =

new String[]l{"*.gif; *.jpg; *.jpeg; *.png; *.bmp; *.tif", "x.xn};

// the playlist model instance

private IPlaylist playlistModel;

// the label provider for the table
private ITableLabelProvider labelProvider;

// Widgets
private Menultem newPlaylistItem, openPlaylistItem;

private Label statusLine;
private ToolItem insertButton, deleteButton, upButton, downButton;

Listing 10.29

282

Project Two: Jukebox

CellModifier

In Listing 10.30 a single instance of type ICel1lModifier is defined. This instance organizes the data
transfer between the model and the table cells. To set the value of a table cell, the method getValue ()
is called. The parameter property contains the feature identification that corresponds to the appropri-
ate column of the table cell. This identification is used to fetch the cell value from the playlist model.

Vice versa, when the end user modifies a cell value, it is also necessary to set it in the model. Here again,
the feature identification is received in the parameter property. The feature value is passed in the value
parameter. However, the use of this method is not consistent in regard to the element parameter. In some
cases, the data element of the table row is passed in this parameter; in other cases, the TableItem instance
of the table row is passed instead. Therefore, you need to check the type of the parameter value and act
accordingly. In addition, all entered values are validated: empty titles and empty sound filenames are not
allowed.

private ICellModifier cellModifier = new ICellModifier() ({
// Get value from model
public Object getValue (Object element, String property) {
return playlistModel.getFeature (element, property) ;

}

// All elements may be modified by the end user
public boolean canModify (Object element, String property) {
return true;

}

// Set value in the model
public void modify (Object element, String property,
Object value) {
// ATTENTION: A Tableltem instance may be passed as element
// In this case we retrieve the playlist entry from the TableItem
if (element instanceof Item)

element = ((Item) element) .getData() ;
// To be safe we validate the new value
if (validateFeature (property, (String) value) == null) ({

// OK, we set the new value in the model
playlistModel .setFeature (element, property,
(String) wvalue) ;
// Refresh the viewer so that the new value is
// shown in the table
PlaylistViewer.this.refresh() ;
1
}
b e

/**
* Validates a feature
*

* @param tag - Feature name
* @param value - Value
* @return String - Error message or null

&/
Listing 10.30 (Continues)

283

Chapter 10

public String validateFeature (String tag, String value) ({
if (tag == Player.TITLE) ({
// Empty titles are not valid
if (value == null || value.length() == 0)
return "Must specify a title";
} else if (tag == Player.SOUNDFILE) {
// Empty sound file names are not valid
if (value == null || value.length() == 0)
return "Must specify a sound file";

}

return null;

}

Listing 10.30 (Continued)

The viewer instance is configured in the constructor of the PlaylistViewer. The playlist model is
registered as a ContentProvider (the instance that provides the table entries). A new
PlaylistLabelProvider (see the following code) instance is created as a LabelProvider

(the instance that is responsible for formatting the table elements).

Then the viewer’s table object is fetched. A special cell editor and a validator are attached to each
column of the table. The individual columns are identified by the feature identifications.

A TextCellEditor is created for the column containing the song titles, FileCellEditor instances
are created for the columns with the sound files and the image files, and a DescriptionCellEditor
is created for the column containing the descriptions. While the TextCellEditor already belongs to
the JFace functionality, you must implement the other two editors. The validators are created as anony-
mous inner classes of type ICellEditorValidator with the help of the setCellvalidator ()
method.

Finally, the Cel1Modifier created previously is registered, column headers are created, column
headers and grid lines are made visible, and the menu, the drag-and-drop support, and the status line
are added to the viewer. See Listing 10.31.

/**

* Constructor for PlaylistViewer.

*

* @param parent - containing Composite
* @param style - Style constants

* @param model - Playlist domain model
=y

public PlaylistViewer (Composite parent, int style,

IPlaylist model)

// Create viewer (TableViewer)

super (parent, style);

playlistModel = model;

// Create LabelProvider

labelProvider = new PlaylistLabelProvider (playlistModel) ;

// Set Content- and LabelProvider

setContentProvider (playlistModel) ;

setLabelProvider (labelProvider) ;

Listing 10.31 (Continues)

284

Project Two: Jukebox

// Create cell editors and validators

// First the editor for song titles

Table table = getTable() ;

TextCellEditor titleEditor = new TextCellEditor (table) ;

setCellvValidator (titleEditor, Player.TITLE) ;

// Then the editor for the sound file

FileCellEditor soundFileEditor = new FileCellEditor (table,
"Select sound file", SOUNDEXTENSIONS) ;

setCellValidator (soundFileEditor, Player.SOUNDFILE) ;

// Then the editor for the image file

FileCellEditor imageFileEditor = new FileCellEditor (table,
"Select image file", IMAGEEXTENSIONS) ;

setCellValidator (imageFileEditor, Player.IMAGEFILE) ;

// Then the editor for the description

DescriptionCellEditor descriptionEditor =

new DescriptionCellEditor (table, playlistModel) ;

setCellValidator (descriptionEditor, Player.DESCRIPTION) ;

// Now we pass all editors to the viewer

// The sequence corresponds with the column sequence

setCellEditors (new CellEditor[]{titleEditor,
soundFileEditor, imageFileEditor,
descriptionEditor}) ;

// Set cell modifier

setCellModifier (cellModifier) ;

// Set column identifiers

setColumnProperties (new Stringl[] {Player.TITLE,
Player.SOUNDFILE, Player.IMAGEFILE,
Player.DESCRIPTION}) ;

// Create column headers

createColumn (table, "Title", 80);

createColumn (table, "Sound file", 120) ;

createColumn (table, "Image file", 100) ;

createColumn (table, "Description", 240) ;

// Make column headers and grid lines visible

table.setHeaderVisible (true) ;

table.setLinesVisible (true) ;

// We still need a menu, a toolbar, and a status line

constructMenu (parent .getShell ()) ;

// Add status line

addStatusLineAndButtons (table) ;

// Add support for drag and drop

addDropSupport (table) ;

Listing 10.31 (Continued)

Validator for Cell Editors

To validate the cell content of a Cel1Editor, an anonymous class of type ICellEditorValidator is
created. In its isValid () method the cell content is passed via the value parameter and checked with
the help of the validateFeature () method. See Listing 10.32.

285

Chapter 10

/**
* Set validators for cell editors
*
* @param editor - The cell editor
* @param feature - The feature identification
*
/
public void setCellValidator (CellEditor editor,
final String feature) ({
editor.setValidator (new ICellEditorValidator () ({
// isValid is called by the cell editor when the
// cell content was modified
public String isValid (Object value) {
// We validate the cell content
String errorMessage = validateFeature (feature, (String) wvalue) ;
// and show the error message in the status line
setErrorMessage (errorMessage) ;
// The cell editor wants the error message
// What it does with it is unknown
return errorMessage;

Listing 10.32

Column Headers

Column headers are created in the convenience method createColumn (). In Listing 10.33 a new
TableColumn instance is created for the given Table and then configured with the header text and the
column width.

/**

* Create column header

*

* @param table - Table

* @param header - Label

* @param width - Column width
*

/

private void createColumn(Table table, String header, int width)
TableColumn col = new TableColumn (table, SWT.LEFT) ;

col.setText (header) ;

col.setWidth (width) ;

}

Listing 10.33

DropTarget

In the method addDropSupport () the viewer is configured as a target for a drag-and-drop operation.
This will allow users to add new sound files to the playlist by simply dragging them to the playlist area.

286

Project Two: Jukebox

To do so, you construct a new DropTarget instance and associate it with the playlist table. Valid
operations are MOVE and COPY, and only files (FileTransfer) are accepted as valid transfer types.

The drag-and-drop operation itself is performed by the DropTargetListener. When the mouse
pointer enters the drop area (the playlist area), the method dragEnter () checks to see if a valid
operation type and a valid transfer type are used. MOVE operations are converted into COPY operations
because the original sound file should persist. You make all of these adjustments by assigning appropri-
ate values to the event object.

The method dragOver () determines the behavior when the mouse pointer is moved over the target
area. Assigning DND . FEEDBACK_SELECT to event . feedback causes those table elements that are
under the mouse pointer to become selected. Assigning DND . FEEDBACK_SCROLL causes the table to be
scrolled up or down when the mouse pointer reaches the upper or lower border of the visible playlist
area.

The method dragOperationChanged () reacts to changes of the operation modus, for example, when
the Ctrl key is pressed during the dragging action. The method rejects invalid operations and converts
MOVE operations into COPY operations.

Finally, the method drop () reacts when a sound file is dropped onto the playlist area. The filename is
retrieved from the event object and inserted into the playlist. This is done at the position of the currently
selected playlist entry. See Listing 10.34.

/**
* Adds Drop-Support to the view.
*
* @param table - table widget
4
private void addDropSupport (final Table table) ({
// Valid operations
final int ops = DND.DROP MOVE | DND.DROP COPY;
// Allow both moving and copying
DropTarget target = new DropTarget (table, ops) ;
// Only files are accepted
final FileTransfer fileTransfer = FileTransfer
.getInstance() ;
Transfer[] types = new Transfer[] {fileTransfer};
target.setTransfer (types) ;
// Add DropListener to DropTarget
target.addDropListener (new DropTargetListener () {
// Mouse pointer has entered drop area
public void dragEnter (DropTargetEvent event) {
// Only files are accepted
for (int i = 0; i < event.dataTypes.length; i++) {
if (fileTransfer.isSupportedType (event.dataTypes[i])) ({
event .currentDataType = event.dataTypes[i];
if ((event.detail & ops) == 0)
// Inhibit invalid operations
event .detail = DND.DROP_NONE;
else
// Force copy operation

Listing 10.34 (Continues)

287

Chapter 10

event.detail = DND.DROP_COPY;
return;

}
}

// Invalid transfer type
event ..detail = DND.DROP_NONE;

}

// The mouse pointer moves within the DropTarget area
public void dragOver (DropTargetEvent event) {
event .feedback = DND.FEEDBACK SELECT
| DND.FEEDBACK SCROLL;

}

// Operation was changed
// (for example by pressing the Crtl key)
public void dragOperationChanged (DropTargetEvent event) {
// Only files are accepted
if (fileTransfer
.isSupportedType (event .currentDataType)) {
// Check for invalid operations
if ((event.detail & ops) == 0)
// Inhibit invalid operations
event ..detail = DND.DROP_NONE;
else
// Force copy operation
event ..detail = DND.DROP_COPY;
} else
// Invalid transfer type
event.detail = DND.DROP_NONE;

}

// Mouse pointer has left DropTarget area
public void draglLeave (DropTargetEvent event) {}

// The dragged object is about to be dropped
public void dropAccept (DropTargetEvent event) {}
// The dragged object has been dropped
public void drop (DropTargetEvent event) {
if (fileTransfer.isSupportedType (event.currentDataType)) {
String[] filenames = (String[]) event.data;
for (int i = 0; i < filenames.length; i++) {
// Insert file into playlist
if (insertSoundFile (filenames[i]) != null)
refresh () ;

1)

Listing 10.34 (Continued)

288

Project Two: Jukebox

Nested Grid Layout

Since the inherited TableViewer contains only a table, you need to improve it a bit. In addition to the
table, you need to add the status line and the toolbar. To do so, fetch the parent Composite of the table.
On this Composite apply a one-column GridLayout via the setLayout () method (see the “Layouts”
section in Chapter 8). Then add a new Composite (statusGroup) to this Composite. This new
Composite will appear below the table. Now apply a two-column GridLayout to statusGroup.
Then add a new Label to statusGroup, which will appear at the left-hand side. This new label acts

as a status line. Finally, add a ToolBar to statusGroup. This toolbar will appear at the right-hand side
of statusGroup. By using different GridData instances, you can make the table as big as possible, give
statusGroup and the status line the maximum width, and align the toolbar to the right. Finally, set the
text color of the status line to red. See Listing 10.35.

/**

* Adds a status line and a toolbar

* @param table - the viewers Table instance
=

private void addStatusLineAndButtons (Table table) {
// Fetch parent Composite
Composite parent = table.getParent () ;
// Use a one-column GridLayout for this Composite.
GridLayout gridLayout = new GridLayout () ;
gridLayout .marginHeight = 0;
gridLayout .marginWidth = 2;
gridLayout.verticalSpacing = 3;
parent .setLayout (gridLayout) ;
// Create Composite for statusline and toolbar
Composite statusGroup = new Composite (parent, SWT.NONE) ;
// For this Composite we use a two-column GridLayout
gridLayout = new GridLayout () ;
gridLayout .numColumns = 2;
gridLayout .marginHeight = 0;
gridLayout .marginWidth = 0;
statusGroup.setLayout (gridLayout) ;
// Create status line
statusLine = new Label (statusGroup, SWT.BORDER) ;
// Create toolbar
ToolBar toolbar = createToolbar (statusGroup) ;
// Set table to maximum size
GridData data = new GridData() ;
data.horizontalAlignment = GridData.FILL;
data.verticalAlignment = GridData.FILL;
data.grabExcessHorizontalSpace = true;
data.grabExcessVerticalSpace = true;
table.setLayoutData (data) ;
// Set statusGroup to maximum width
data = new GridDatal() ;
data.horizontalAlignment = GridData.FILL;
data.grabExcessHorizontalSpace = true;
statusGroup.setLayoutData (data) ;
// Set status line to maximum width
data = new GridData() ;

Listing 10.35 (Continues)

289

Chapter 10

}

data.horizontalAlignment = GridData.FILL;

data.grabExcessHorizontalSpace = true;

statusLine.setLayoutData (data) ;

data = new GridData() ;

// Align the toolbar to the right

data.horizontalAlignment = GridData.END;

toolbar.setLayoutData (data) ;

// Set status line text color to red

statusLine.setForeground (parent .getDisplay ()
.getSystemColor (SWT.COLOR_RED)) ;

/**

* Displays an error message in the status line.
*

* @param errorMessage - error message or null

=y

public void setErrorMessage (String errorMessage) {

statusLine.setText ((errorMessage == null)
? "" . errorMessage) ;

Listing 10.35 (Continued)

Toolbar

The toolbar (see the “Toolbar” section in Chapter 8) is equipped with four buttons for adding new songs
to the playlist, deleting songs, and moving entries upward or downward. The event processing for these
buttons is done in the processToolEvent () method. Depending on the button pressed, the appropri-
ate operation is performed. See Listing 10.36.

290

/**

* Method createToolbar. Creates toolbar with all buttons
*

* @param parent - containing Composite

* @return ToolBar - created ToolBar instance

=y

private ToolBar createToolbar (Composite parent) {

}

ToolBar toolbar = new ToolBar (parent, SWT.VERTICAL
| SWT.FLAT) ;
// Create buttons
insertButton = makeToolItem(toolbar, "+",
"Insert new entries") ;
deleteButton = makeToolItem(toolbar, "-",
"Delete selected entry");
upButton = makeToolItem(toolbar, "*",
"Move selected entry one step up");
downButton = makeToolItem(toolbar, "v",
"Move selected entry one step down") ;
return toolbar;

Listing 10.36 (Continues)

Project Two: Jukebox

/**
* Check if a playlist is open. If yes, enable all buttons.
* If no, issue an error message
4
private void updateToolBar () {
boolean enabled = (getInput () != null);
statusLine.setText ((enabled)

? "' . "No playlist open") ;
insertButton.setEnabled (enabled) ;
deleteButton.setEnabled (enabled) ;
upButton.setEnabled (enabled) ;
downButton.setEnabled (enabled) ;

*

Create button.

@param parent - the toolbar

@param text - label

@param toolTipText - the hover text

@return ToolItem - the created ToolItem instance

* 0% X X X X X X

~

private ToolItem makeToolItem(ToolBar parent, String text,
String toolTipText) ({
ToolItem button = new ToolItem(parent, SWT.PUSH) ;
button.setText (text) ;
button.setToolTipText (toolTipText) ;
// Add event processing
button.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {
processToolEvent (e) ;
1
)
return button;

}

/**
* Process an event from a tool button.
*
* @param e - The event object
74

private void processToolEvent (SelectionEvent e) {
// Get ToollItem instance form event object
ToolItem item = (ToolItem) e.widget;
if (item == insertButton) ({
// Create new playlist entries
getSoundFiles (item.getParent () .getShell()) ;
} else if (item == deleteButton) {
// Delete playlist entry
playlistModel.deleteCurrent () ;
} else if (item == upButton) ({
// Move playlist entry upwards
playlistModel .moveUpwards () ;

Listing 10.36 (Continues)

291

Chapter 10

} else if (item == downButton) ({
// Move playlist entry downwards
playlistModel .moveDownwards () ;

}

refresh() ;

}

Listing 10.36 (Continued)

File-Selection Dialogs

In Listing 10.37 a FileDialog (see the “Dialogs” section in Chapter 8) is used to add new sound files to
a playlist. It allows the selection of one or several sound files from the file system. The option to select
more than one file in one step is explicitly enabled. The selection list is restricted to the sound file types
declared in constant SOUNDEXTENSIONS with the method setFilterExtensions (). Finally, a new
entry in the playlist model is created for each selected file. The required song title is initially derived
from the filename.

/**
* Obtains a sound file from user input.
*
* @param shell - Parent shell of dialog
=
private void getSoundFiles (Shell shell) ({
// Create file selection dialog
FileDialog dialog = new FileDialog(shell, SWT.OPEN
| SWT.MULTI) ;
dialog.setFilterExtensions (SOUNDEXTENSIONS) ;
dialog.setText ("Select sound files") ;
if (dialog.open() != null) ({
String root = dialog.getFilterPath/()
+ File.separatorChar;
String[] filenames = dialog.getFileNames () ;
for (int i = filenames.length - 1; i >= 0; i--) {
// Compute the absolute file name
String filename = root + filenames[i];
insertSoundFile (filename) ;

}
}
}

/**
* Insert new soundfile into playlist
*

* @param filename - the name of the new file
* @return - the currently selected entry in the playlist
=y
private Object insertSoundFile (String filename) {
// Check if file exists
File file = new File(filename) ;

Listing 10.37 (Continues)

292

Project Two: Jukebox

if (!file.exists()) return null;

// Derive the default title from the file name

String title = file.getName() ;

int p = title.lastIndexOf('.");

if (p > 0) title = title.substring(0, p);

// Insert new element into model

Object record = playlistModel.insert () ;
playlistModel.setFeature (record, Player.TITLE, title);
playlistModel.setFeature (record, Player.SOUNDFILE, filename) ;
return record;

Listing 10.37 (Continued)

Menu

Finally, in Listing 10.38 a menu for the playlist viewer (see the “Menu” section in Chapter 8) is created.
The menu functions enable you to create new playlists or to open existing playlists. The menu instance is
added directly to the shell. The single File menu title is created as a MenuItem instance for the menu
using the style constant SWT . CASCADE. A submenu is attached to this menu title with setMenu ().

This submenu is created directly under the shell but with the style constant SWT . DROP_DOWN. Then the
two menu items are added to the submenu as MenuItem instances.

The event processing for these MenuItem instances takes place in the method
processMenuSelection().

/**
* Constructs the menu
*
* @param shell - the parent shell
5y
private void constructMenu (Shell shell) ({
// This menu is used to create new playlists
// and to open existing playlists
Menu menuBar = new Menu(shell, SWT.BAR) ;
shell.setMenuBar (menuBar) ;
// Create File menu title
Menultem fileTitle = new Menultem(menuBar, SWT.CASCADE) ;
fileTitle.setText ("File") ;
// Create Submenu and attach it to the menu title
Menu fileMenu = new Menu(shell, SWT.DROP_DOWN) ;
fileTitle.setMenu (fileMenu) ;
// Create menu items for the File menu title
newPlaylistItem = createMenultem(fileMenu, "New Playlist...");
openPlaylistItem = createMenultem(fileMenu,
"Open Playlist...");

}
/**

* Creates a menu item
*

Listing 10.38 (Continues)

293

Chapter 10

* @param menu - The menu
* @param text - Label for the menu item
* @return Menultem - the new Menultem instance
7/

private Menultem createMenultem(Menu menu, String text) {
Menultem item = new Menultem(menu, SWT.NULL) ;
item.setText (text) ;

// Add event processing
item.addSelectionListener (new SelectionAdapter () {
public void widgetSelected(SelectionEvent e) {

processMenuSelection (e) ;

}
1)

return item;

}

Listing 10.38 (Continued)

Once again, a FileDialog instance of type SWT . OPEN is used to open an existing playlist. The selected
filename is then set as a new input source for the playlist model via the set Input () method. The
viewer will notify the playlist model about this event via inputChanged () . This is possible because
the playlist model implements the IContentProvider interface.

If you want to create a new playlist, you need to use a FileDialog of type SWT . SAVE. This dialog
allows the end user to enter the filename explicitly. However, a check for the existence of the specified
file is necessary. If the file already exists, a MessageDialog is used to ask the end user whether the file
should be overwritten. If the user answers positively, the existing file is first deleted, and then the file-
name is passed to the viewer via the method setInput (). The playlist model then automatically cre-
ates a new playlist file with the specified name and signals this via the inputChanged () method. See
Listing 10.39.

/**
* Process menu events
*

* @param e - The event object
=Y
private void processMenuSelection (SelectionEvent e) {

// Retrieve Menultem instance from event object

Widget widget = e.widget;

// Retrieve shell

Shell shell = e.display.getShells() [0];

if (widget == openPlaylistItem) {
// Open playlist: Create and open file selection dialog
FileDialog dialog = new FileDialog(shell, SWT.OPEN) ;
dialog.setFilterExtensions (PLAYLISTEXTENSIONS) ;
dialog.setText ("Open Playlist ") ;
String filename = dialog.open() ;
// Set this file as new input for TableViewer
if (filename != null) setInput (filename) ;

} else if (widget == newPlaylistItem) {
// New playlist: Create and open file selection dialog
while (true) {

Listing 10.39 (Continues)

294

Project Two: Jukebox

}
}
}

FileDialog dialog = new FileDialog(shell, SWT.SAVE) ;
dialog.setFilterExtensions (PLAYLISTEXTENSIONS) ;
dialog.setText ("Create new Playlist");

String filename = dialog.open() ;

(filename == null) return;

// Add file extension if necessary
(!filename.endsWith (PLS)) filename += PLS;

// Check if file already exists

if

if

Fi
if

le file

= new File(filename) ;

(1file.exists()) {
// Set this file as new input for TableViewer

setInput
break;

(filename) ;

} else if (

// File already exists.

// Asks user if file is to be overwritten.
MessageDialog.openQuestion (shell, "New Playlist",

}
}

"File already exists.\nOverwrite?")) {

file.delete() ;

setInput
break;

(filename) ;

updateToolBar () ;

Listing 10.39 (Continued)

The PlaylistLabelProvider Class

PlaylistLabelProvider is responsible for deriving the table cell contents from the playlist entries. It
retrieves the corresponding feature value from a specified playlist entry and a specified column number
by using the access methods of the playlist domain model.

In the case of sound and image files, the class checks to see if these files exist. If not, the cell content is
prefixed with a warning icon via the method getColumnImage (). See Listing 10.40.

package com.bdaum.jukebox;

import
import
import
import
import
import

/**

java.io.File;

org.

org

org.

org

org.

eclipse
.eclipse
eclipse
.eclipse
w3c.dom

.jface.viewers.ILabelProviderListener;
.jface.viewers.ITableLabelProvider;
.swt .graphics.Image;
.swt.widgets.Display;

.Node;

* This class provides the table of the playlist viewer

Listing 10.40 (Continues)

295

Chapter 10

* with cell contents.
4
public class PlaylistLabelProvider implements ITableLabelProvider {

// Playlist domain model

private IPlaylist playlistmodel;
// Here we store the warning icon
private Image alertImage;

/**
* Constructor.
=/
public PlaylistLabelProvider (IPlaylist playlistmodel) {
super () ;
this.playlistmodel = playlistmodel;

}

Listing 10.40 (Continued)

Returning a Warning Icon

The method getColumnImage () is called by the Table instance when rows have to be redrawn. For
the first and second columns of the table, the method getFileAlert () is used to test whether the files
specified in the table cells still exist. If not, the warning icon is returned as an Image instance. The
method caches this Image instance in the instance field alert Image, so this image needs to be loaded
only the first time it is used.

If the PlayListLabelProvider is no longer needed, the image is released by calling its dispose ()
method.

When loading the image from file, a Display instance is needed to convert it into an Image instance.
Because this method does not have access to a widget from which you could obtain such a Display
instance, you need to use a different approach. You need to fetch the Display instance from the current
SWT thread via the static method Display.getCurrent (). This is possible because this method is
executed within the SWT thread (otherwise, you would obtain the value null). See Listing 10.41.

/**
* Returns warning icons for missing files
* @see org.eclipse.jface.viewers.ITableLabelProvider#

* getColumnImage (java.lang.Object, int)
7
public Image getColumnImage (Object element, int columnIndex) {
Node nod = (Node) element;

// For the features <soundfile> and <image> we test for
// the existence of the specified files. If the file does not
// exist we return a warning icon
switch (columnIndex) {
case 1
return getFileAlert (playlistmodel.getFeature (nod,
Player.SOUNDFILE)) ;
case 2

Listing 10.41 (Continues)

296

Project Two: Jukebox

return getFileAlert (playlistmodel.getFeature (nod,
Player.IMAGEFILE)) ;
default
return null;
}

}
/

*

Load a warning icon from file
@param string
File name
@return Image - A warning icon if the specified does not exist
* null otherwise.
=y
private Image getFileAlert (String name) {
if (name == null || name.length() == 0) return null;
// Test if file exists
File file = new File (name) ;
if (file.exists()) return null;
// No, let’s return the warning icon
// If the icon is not yet loaded, we load it now.

* Ok X X X

if (alertImage == null)
alertImage = new Image (Display.getCurrent (),
"icons/ alert obj.gif");

return alertImage;

}
/**

* @see org.eclipse.jface.viewers.IContentProvider#dispose ()
=f
public void dispose() {
// Release the warning icon again
if (alertImage != null) {
alertImage.dispose() ;
alertImage = null;

Listing 10.41 (Continued)

Cell Text

The text content of the table cells is provided by the get ColumnText () method. This is quite simple:
the corresponding f