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Foreword

Some twenty years ago, an article in Nature (London) announced the synthesis of
the first fullerene. This fullerene was named C60, and is also commonly known as
Buckminsterfullerene. C60 was isolated via the self-assembled products of graphite
heated by plasma. Later, the synthesis of nanotubes by the laser vaporization of
graphite, led to a further increase in the family of nanostructures and heralded
unprecedented perspectives for a new science and technology to impact humanity.

The coalescence reactions (illustrated by electronic microscopy) have shown
that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules),
two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.
Peapods are nanotubes doped with fullerenes (zero-dimensional cages) or longer
capsules, formed inside the tube by coalescence of spherical units. Hetero-atomic
nanostructures, containing boron, nitrogen, germanium, selenium, etc. have also
been synthesized and studied.

Foam-like carbon structures, related to ‘schwarzites’, have been well
documented and represent infinite periodic minimal surfaces of negative curvature.
They contain polygons with dimensions larger than hexagons (w.r.t. to the graphite),
that induce the negative curvature. Units of such structures appear as nanotube
junctions, produced in an electron beam, with wide potential applications in
molecular electronics. Self-assembling supra-molecular structures, of various tessel-
lation, and diamond architectures, have also been recently proposed. The periodicity
of close repeat units of such structures is more evident in these structures, but is
also present in all the carbon allotropes.

Depending on the lattice tessellation, heteroatom type, and/or doping, metal
nanostructures (nanotubes in particular) can be metallic or semiconductors.
Therefore their properties can be changed by chemical functionalization. This has
led to the improved performance of Li-ion batteries, capacitors, and field electron
emitters in displays. Their use as tips in scanning tunneling microscopy (STM)

ix



x Foreword

and atomic force microscopy (AFM) has introduced a new generation of nanoscale
biological/chemical/physical devices.

This book is organized as follows.
Chapter 1 introduces the reader to the realm of periodic fullerenes, obtainable

by coalescence reactions. It presents literature data and the authors own results
on nanostructure building, and semiempirical and strain energy calculations. Novel
dimeric and oligomeric structures predicted to appear via the coalescence of C60

molecules and the cages that could result by loss of carbon atoms from the starting
molecules are the main subjects discussed herein.

Chapter 2 presents one of the most intensively studied carbon allotropes (entirely
covered by a benzenoid lattice) namely the polyhex torus. Original methods of
construction and tiling modification, nomenclature and correspondence to other
nomenclatures are presented. Criteria for metallic and aromatic character properties
are tabulated. Rules to identify identical polyhex toroidal graphs within families of
chiral embedding isomers (furnished by the authors building method) are formulated
in terms of the net dimensions. Resonance energy of polyhex tori is evaluated in
the context of a generalized Clar theory of aromaticity.

Chapter 3 introduces a new class of toroidal structures, named Distinct Walled
Tori (DWT), so called to indicate the varying number of atoms on the inner
and outer walls, respectively. The energetics and aromaticity for various types of
DWTs derived from armchair nanotubes or conical domains are presented. Diameter
doubling of single-walled carbon nanotubes and zigzag nanotubes are also discussed.

Chapter 4 begins with a background on Graph Theory followed by defining some
of the most discussed counting polynomials and the more recently proposed Omega
and Cluj polynomials. Some theorems in the two latter named polynomials are
discussed and demonstrated. Hosoya, Cluj, and Omega polynomials are detailed and
used in the topological characterization and stability prediction of nanostructures:
spherical, tubular, and toroidal. A factorization procedure, for describing the chiral
polyhex tori in terms of Omega polynomial is presented.

Chapter 5 deals with the study of planar and 3D surfaces by various polygonal
faces. Operations on maps and geometrical-topological transformation of a parent
covering, are systematically introduced, from the simplest, through to composites,
and up to generalized operations, which enable the embedding of various coverings
in any surface. General analytical relations among the parameters of transformed
and parent maps are presented. Molecular realizations of the proposed operations or
sequences of operations are illustrated. Stone-Wales edge-rotations (related to map
operations) are presented as possible routes of isomerization, enabling changes in
the nanostructure tessellation.

Chapter 6 offers a detailed discussion on the aromatic character of fullerenes,
with classical and non-classical covering. It is shown that aromatic character is
a multi-conditional molecular property which can be dependent upon energetics,
electronic structure, magnetic response, geometric characteristics, or chemical
behaviour.16−18 It is shown that having a varied aromaticity criteria results in a
random ordering of molecules. Generalized perfect Clar structures, with the 2-
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factor designed as corannulenic or corazulenic disjoint flowers have been proven.
Sequences of classical or single generalized map operations were used to obtain
these coverings (also given as 	-electron partitions within Kekulé valence struc-
tures). As a structural/geometric parameter of aromaticity, the HOMA index enabled
an evaluation of local aromatic character of the featured supra-faces and thus
generated evidence for several dominant Kekulé valence structures. The described
operations and structures are believed to be helpful in the process of molecular
structure elucidation and in guiding researchers in finding novel nanostructured
materials.

Chapter 7 discusses triply periodic nanostructures and associated units which,
by a self-assembly process, provide architectures of negative curvature, also known
as schwarzites (or spongy structures). A short introduction to the theory of triply
periodic minimal surfaces is offered. Unit blocks built up by opening map opera-
tions could model the junctions of carbon nanotubes; these can be synthesized by
“nanowelding”, that is, crossing tubes in an electron beam. Junctions are rationalized
according to the building operation. A gallery of junctions and triply periodic archi-
tectures is offered in the appendices. This book is aimed at scientists working in
the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and
others interested in amazing nanoarchitectures, which could inspire the cities of the
future.

* * *

Although each author contributed to the entire book, Chapters 1 and 3 were
written by C. L. N. and Chapters 2, 4 to 7 by M. V. D. Each author takes respon-
sibility only for the materials outlined in the chapters written by himself. The
authors acknowledge the help of Dr. Aniela Vizitiu (contributing with objects and
calculations to the sections: 3.2 and 7.4.3 to 7.4.6) and Dr. Katalin Nagy (with
contributions to the Gallery). Many thanks are addressed to Prof. Tibor Braun,
Hungarian Academy of Sciences, for his valuable advice and encouragement during
the editing of this book.

Cluj, Winter, 2006

Mircea V. Diudea Csaba L. Nagy



Chapter 1

Periodic Fullerenes by Coalescence Reactions

Short closed nanotubes are generated inside a SWNT by heating or irradiating
“C60 peapods”, where the C60 molecules are encapsulated in the SWNT. According
to transmission electron microscopy observations, the tubes capped with fullerene
hemispheres have lengths of 13.7 and 21.2 Å when they consist of three and four
C60 molecules in size. End-cap effects as well as finite-size effects should play an
important role in determining their electronic and geometrical properties. The study
of reaction pathways in fullerene fusion is of high interest as it may reveal the
isomeric population of isolated substances. Capped nanotubes represent yet isolated
nanostructures and represent the final products of fullerene coalescence.

1.1. Fullerene Fusion via Stone-Wales Transformation

1.1.1. Fullerene Dimers and Their Derivatives

The first dimeric fullerene C120 was synthesized by using light irradiation. Applying
visible or ultraviolet light to a film of solid C60 resulted in a polymer. The X-ray
study of the photo-transformed film has shown a contraction in the fullerene lattice,
found less than two van der Waals radii between the C60 cages. It was supposed that
a covalently bonded [2+2] cycloadduct (involving sp3 hybridized carbon atoms in
the junction) of two quasi-spherical molecules is formed.1 Later, by simultaneous
application of high pressure and temperature, C60 was converted into two different
structures: a face-centered-cubic structure (300–400�C and 5GPa) and a rhombo-
hedral structure (500–800�C and 5GPa). Further theoretical and experimental studies
proved that the dimeric C120 has a structure in which the two fullerene cages are
connected through a four-fold ring, closed by a cycloaddition over two h-bonds.2

We call an h-bond the one shared by two hexagons and a p-bond that shared by
pentagon-hexagon.

1



2 Chapter 1

A synthesis of C120, using KCN as a catalyst, has been described3 and the
resulting structure was assigned by X-ray analysis and 13C NMR spectroscopy. It
was suggested that C120 can be taken as a subunit of the C60 polymers.

Since KCN is a highly toxic substance, a different preparation method was
elaborated, with the catalyst being Li powder. Small amounts of LiOH or Li2CO3

increased considerably the yields. Using the same method for polymerization of
C70 failed, proving that C70 is not as easily polymerized as C60. Raman spectra of
C120 exhibit similar patterns with the dimeric oxides C120O and C120O2. 4

Among the 1812 topologically possible structures of C60, the most stable is
that in which all p edges are formally single bonds and all h edges are double.
That is why, in C120 dimer, the bridge formation is favored when it originates in a
formal double bond, leaving the rest of the Kekulé valence structure unaltered. It
was stressed that, the experimental factor deciding the preferable dimeric isomer is
the mutual orientation of the two parent molecules, rather than the dimer stability. 5

Keeping in mind the two types of bonds involved, the cycloaddition of C60 will
result in four different (sp3-joined) isomers (Figure 1-1): (i) hh; (ii) hp; (iii) pp-c
and (iv) pp-t. In the last two isomers, the two pentagons lies on the same side (cis)
or they are opposite (trans), with respect to the junction ring.

Fullerene derivatives have attracted great attention of synthesists. Oxygen
derivatives represent an important class of functionalized fullerenes, with particular
applications (e.g., precursors of odd-numbered fullerenes, production of singlet
oxygen, etc.).

The first observed fullerene oxide was C70O, an epoxide of D5hC70. The decay
of C70O into C70 suggested that the oxygen is located on the external surface of the
cage. 13C NMR data suggested a structure of C2v symmetry, with the epoxy group
across an h double bond. Synthesis of C60O was performed by the ozonolysis of
C60 solution in CS2; its structure is analogous to that of C70O (Figure 1-2a,b).

The dimeric monoxide C120O was prepared, in solid phase, by heating a
C60/C60O mixture, at 200�C. This synthesis was also performed in solution, but the

(a) C120-hh (b) C120-hp

(c) C120-pp-c (d) C120-pp-t

Figure 1-1. The four possible C120 sp3 dimers resulted by (2+2) cycloaddition.
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(a) C60O-h (b) C60O-p

(e) C60O2-5(d) C60O2-6-p(c) C60O2-6-h

Figure 1-2. C60O and C60O2 fullerene epoxides.

yields were much lower. Similarly, the ozonolysis of a C60 solution, led to a mixture
of C60O and higher oxides C60On (n > 1, Figures 1-2,c–1-2,e), next separated by the
HPLC method. The reaction products were analyzed and characterized by UV-VIS,
FT-IR and MALDI-TOF MS. In the mass spectrum of the isolated product, the peak
of C120O appeared (together with the peaks of C60 and C60O, eventually resulted
by the fragmentation of C120O).6

The structure assignment for C120O was analogous to that for the dimer
C120; actually, a furan like bridge is formed between two h bonds of each cage
(Figure 1-3a). For this, a [3+2] cycloaddition mechanism was proposed. CO and
CO2 were also detected, by heating the product over 400�C, and the peak of C119

appeared in the mass spectrum as well. It was proposed that C120O is the precursor
of the odd-numbered fullerene C119.

The thermolysis of solid C120O, in argon atmosphere at 400�C and normal
pressure, led to the dimeric dioxide C120O2, along with other oligomeric oxides
(C60�nOm (n = 3–5, m = 3–9). C120O2 was separated by HPLC and characterized by
MALDI-TOF MS, UV-VIS, and FTIR. The mass spectrum of C120O2 evidenced C60

and C60O as major fragmentation ions. The 13C NMR spectra suggested a structure
of C2v symmetry.7

(a) (b)

Figure 1-3. C120O (a) and the corresponding odd-numbered fullerene C119 (b) resulted by the loss of
CO or CO2.
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Two different structures, having the two cages bis-linked by adjacent furanoid
rings, have been proposed. In the first case, the furanoid bridges are attached at
the sites of neighboring h bonds in each parent cage (Figures 1-4a,b), while in the
second one, p junctions are involved in the linkage (in this last case the carbon
frame is that of C120-hh).

Another method for preparing C120O2 is the thermal transformation of a
C60/C60O/C60O2 system, in solid state. 8 C60O2 was prepared as a mixture of regio-
isomers during ozonolysis of C60. The mixture was heated at 200�C under argon,
resulting, beside C120O and C120O2, a trimeric product, C180O2. The 13C NMR
analysis detected two isomers of C120O2, with C1 symmetry, in 4:1 ratio, different
from the one above discussed. Spectroscopic data suggested these isomers are
closely related to C120O, probably one of its epoxides. Again, the dimeric C120O2 can
result by two ways: (i) the cycloaddition of one C60O molecule across a h double
bond of another C60O one, or (ii) the cycloaddition of C60O2 to C60 via one of the
two epoxy groups. Regio-isomers of C60O2 and C120O2 have been modeled and the
lowest energy isomers were found to have the epoxy group in the proximity of the
furanoid bridge (Figures 1-4c,d). The cis-1 anti structure (nomenclature according
to ref. 9) can rearrange by opening the epoxy cycle to the proximal h bond of the
other cage, resulting the bis-linked structure (C2vC120O2). The other possible regio-
isomers of C120O2 can easily react with molecules of C60 to form C180O2, since the
epoxy group is sterically accessible.

Similar to C120O2, the first sulfur containing dimeric fullerene, C120OS, was
prepared. The synthesis was performed either by the thermal reaction of a 1:1
mixture of solid C120O and elemental sulfur at 230�C under argon, or by heating of
C60/C60O system with sulfur. 10

The mass spectra of the reaction product also revealed C60, C60O and C60S.
Molecular modeling has shown that the lowest energy structure is that having an
oxygen atom in one of the furanoid rings in C2vC120O2 replaced by sulfur. This can

(a) C120O2 top view

(c) C120O2 cis-1 anti (d) C120O2 cis-1 syn

(b) C120O2 side view

Figure 1-4. C60 cages connected by furanoid ring(s) attached to h junctions in each cage.
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result from C120O by addition of a sulfur atom to the h double bond next to the
furanoid ring, followed by thiophene bridge formation.

As mentioned above, signals for odd numbered fullerenes (C119, C129 and C139�
were observed in the mass spectra of fullerene oxides. These species correspond
to dimers of C60, C60/C70 and C70, respectively, less one carbon atom. Since the
loss of a carbon atom in the reaction of two cages would be thermodynamically
expensive, it was supposed that oxygen is involved, because loss of CO or CO2

could be the driving force of the reaction. For this, fullerene solution was exposed
to ozone; the experiments have confirmed the above hypothesis. 11

On the ground of semiempirical calculations, a peanut structure of C2 symmetry,
where two equivalent C58 cages are connected by a bridge of three four-connected
carbons, was proposed. Later, calculated Raman spectra for a series of C119

fullerenes with C2 symmetry were compared with the experimentally obtained
spectra. The conclusion was, the prepared isomer is indeed the thermodynamically
most stable one, as proposed earlier (Figure 1-4b). 12

1.1.2. Theoretical Considerations About Fullerene Fusion

At the pioneering age of fullerene science, it seemed impossible the merging of
two (spherical) units to form a larger structure, by the reason that bond breaking
requires high energy. Later, the coalescence of fullerenes has been reported as
an experimental fact and modeled in view of understanding non-obvious details.
The observed diameter doubling of carbon nanotubes was interpreted as a lateral
coalescence of such suitably aligned objects.

The first coalescence experiment was performed by laser desorption of a C60

film.13 In another experiment, C120
+ appeared by collision between C60 and C60

+.
Further studies found that the fusion barrier lies in the region between 60 and 80 eV
and increases as the number of atoms participating to the collision increases. 14,15

It is quite difficult to assign structures to such coalesced fullerenes. Theoretical
studies have proposed several classes, including peanut-shaped dimers or cylindrical
tubulenes, the most studied dimer being C120. Atomically precise routes for complete
coalescence of fullerene cages have been presented.

A class of all sp2 peanut-shaped structures can be constructed by connecting the
caps C60�6 �56�3�665�3�656�3�∗6�3−A�12�0�� and C60�6 �56�3�665�3�656�3�5∗�3−A�12�0��, derived from
C60 by deleting the three p and h edges, respectively, of a hexagonal polar
ring (Figures 1-5a,b). The asterisk in the above symbols denotes the missing
polygon(s). 16

The free valences of the caps will be connected to another unit, avoiding the
formation of four-membered rings. The three resulting peanut dimers are denoted
by the complementary edges remaining in the cut polar ring (Figures 1-5c–1-5e).

The construction of our all sp2 peanut-shaped dimers makes use of quite
different caps: C60�5 65 �56�5�65�5�1∗�5−Z�10�0�� and C60�6 �56�3 �665�3�656�3�∗1�6−Z�12�0�� with “1”
denoting the dangling bonds (Figures 1-6a,b). The short symbols are C60-pd-cap
and C60-hd-cap, respectively. It is easily seen that the number of dangling bonds
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(a) C60-h-cap (b) C60-p-cap

(c) C60-h-h-C60 (e) C60-p-p-C60(d) C60-h-p-C60

Figure 1-5. Caps derived from C60 and the all sp2 corresponding peanut dimers. The junction between
the two caps is of armchair A type.

equals the size of the polar ring, the mixing caps being thus prohibited. The
isomers are named C120�5 65�5 6�5�6 5�575 75−Z�10�1�� and C120�6 �56�3 �665�3�656�3�67�3�76�3−Z�12�0��,
according to the tubulene nomenclature, proposed by us in ref. 17. The proposed
short symbols, specifying the junction covering, are C120−77 and C120−67, respectively
(Figures 1-6c,d).

(a) C60-pd-cap

(c) C120-77 (d) C120-67

(b) C60-hd-cap

Figure 1-6. Caps resulted by elimination of all bonds in a pentagon or hexagon and the corresponding
peanut dimers. The junction between the two caps is of zig-zag Z type.
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Topological analysis suggests that the merging process of two fullerene
molecules can be achieved by a sequence of Stone-Wales SW bond rotations. The
first step in the coalescence is the formation of a [2 +2] (sp3-joined) cycloadduct.
An intermediate step is the formation of all sp2 C120−77 peanut structure, subsequent
SW bond flipping, in a circumferential order, transforms the heptagon-pentagon
junction into a hexagonal (6,3) covering (see below). In case when C60 coalesced
from a different orientation, the process was believed to stop at a peanut shaped
structure. In view of the negative curvature relief (in the junction zone) a complete
restructuring of the end caps is required. In this way, abutting pentagons could
occur, which considerably raises the energy barrier. 18

Similar coalescence paths were recently proposed for several tubulenes having
a pentagonal polar ring: (a) two nanotubes A[10,n] capped by C30�5 65�5∗�5−A�10�0��,
with an energy barrier of 3.7eV; (b) two A[20,n] nanotubes capped by
C90�5 65610615�5∗�5−A�10�0��, requiring 8eV; and (c) the fusion of C60 with the tubulene
resulted as described at point (b). 19

T-shaped junctions can result by cap-to-wall coalescence, involving SW
flipping. Recently, a process of C60 penetration through the wall of a nanotube, to
form a peapod, was described.20

The SW edge rotation is known to have a high energy barrier; however, the
overall process is exothermic. The reason is that the strain energy of a spherical
cage (i.e., fullerene) is much higher than that of a (capped) tube (i.e., tubulene),
thus the energy gain, associated with a reduced local curvature, provides the driving
force of the coalescence, up to the cylindrical tubulene.

Using a graphical search program, a 23 SW steps topological pathway,
from the hh [2 + 2] cycloadduct to the C120 tubulene, was found. The same
tubulene is obtained when the SW cascade process starts from the C120-pp-t
cycloadduct. 21

It was believed that, the initial [2+2] cycloaddition pays the most energy cost
in the process of coalescence, probably being the rate-limiting step. For this first
step, the proximity of two double bonds in each fullerene is necessary. At lower
temperature, polygons rather than double bonds should preferentially face to each
other, preventing the fusion. Only at high enough temperature, fullerene cages
start to rotate, making effective the bond to bond addition. In bulk reaction, C60

molecules may undergo multiple coalescence reaction. It is possible that further
SW transformation of one connection to interfere with another fusion process on
the same fullerene cage, which would probably stop the fusion. Such reactions will
be restrained in the case of one-dimensional space (e.g., in nanopeapods, with the
cages aligned in a chain), where polymerization is possible only on the opposite
faces of a cage.22

Note that the activation barrier of a Stone-Wales transformation is significantly
lower in non-planar structures in comparison to the graphite, due to the pyrami-
dalization of sp2 atoms. However, the presence of hydrogen atoms stabilizes the
transition state in the SW rotation, and reduces the energy barrier to 4.1 eV.23
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1.1.3. Coalescence in Peapods

The knowledge about the structural diversity of carbon allotropes has recently been
enriched by the discovery of nanopeapods, a hybrid structure consisting of fullerene
molecules encapsulated in single-walled nanotubes. The symbol for such structures
is inspired from the endohedral metal doped fullerenes: for example (C60�n@SWNT
is for the C60 nanopeapod.24

Nanopeapods represent a promise for new applications. For example, a
positively charged C60

+ molecule inside a nanocapsule could serve as a memory
element, in which the position of the ion encodes the information. An important
aspect is that fullerene molecules can rotate freely in the space of the tube at
room temperature, and this rotation will affect the peapod electronic properties
significantly. 25

A nanopeapod can be considered as a nano-furnace in which the coalescence
of fullerenes can be monitored (see below). Usually they are prepared in gas phase
at 400�C or higher, 26 when C60 molecules sublime and enter the SWNTs from the
open ends or sidewall defects. In liquid phase, the affinity of the solvent to the tube
and fullerenes dictates the direction of the process. 27

By pulsed laser vaporization of graphite, in the presence of a metal catalyst,
besides carbon nanotubes, also appear C60 molecules. Although C60 and other
residues are separated from nanotubes, it was suggested that fullerene molecules
might be encapsulated inside the nanotube. This was confirmed by high-resolution
transmission electron microscopy HRTEM. It was observed that the fullerene
molecules are arranged in a chain at a nearly uniform distance from each other.
By exposure at an electron beam, fullerenes inside the nanotube coalesce into
larger capsules, capped by C60 halves. The length of such capsules corresponds to
three-four fullerene units, and the diameter is constrained by the outer nanotube
dimensions. 28

After the insertion of fullerene molecules inside nanotubes in vapor phase, it is
difficult to reverse the process by heat treatment. The fullerene array is stable up to
800�C and further heating induces coalescence, rather than un-doping. The coales-
cence process becomes more rapid as the temperature increases, and it completes
around 1200�C. The diameter of the inner tube was found to be smaller by 0.71 nm
than the outer nanotube. Thus, the growing of the inner tube is dependent on the
size of the doping fullerene.29

To elucidate intermediates in the transformation of nanopeapods to double-walled
nanotubes DWNT (Figure 1-7), the heating was performed at low temperatures
(800–900�C) and for a much longer time (200–300 hours). The growth of the inner
tube was monitored by Raman study. After a short heating period the inner tube
diameter corresponds to that of C60. This is the result of the polymerization of adjacent
C60 molecules. Further heating induces the increase of the inner tube diameter until
the difference between the inner and outer tube fits the van der Waals distance.30

In case of C60, the polymerization takes place easily because the probability of
having two fullerenes oriented in a preferential way is high, as expected by the
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(a) (b)

(c) (d)

Figure 1-7. From the [2+2] cycloadduct of C60 (a), to peapods (b, c) and double walled nanotube
DWNT (d).

free rotation of C60. But when C70 was heated at 800�C polymerization proceeded
very slowly, and most of the C70 molecules were found untransformed. This could
be explained by that, the C70 molecules must arrange in a zigzag way as the
polymerization to take place. Indeed, the Raman spectrum indicated a larger inner
tube than in the case of C60.

As above mentioned, the dimer of C60 can be considered as a subunit in further
polymerization. Therefore, the dimer must have h bonds at the both tips, since
it cannot rotate freely, anymore. If the resulted dimer has a C60 like cap, with a
pentagon at the tip, no further polymerization is expected to occur. It was proposed
that, instead of C120, the primary unit be C114, which has C60-like caps but with
hexagons at the tip. For this, at every merging step, six carbon atoms have to be
released, eventually moved around the inner tube. It is expected that tube diameter
transformation occurs by the expense of these migrating carbon atoms.

Besides the thermal annealing, fullerenes can easily coalesce by electron irradi-
ation. Under such conditions, carbon atoms are displaced from the fullerene cage by
knock-on effects. The formation of vacancies and dangling bonds increase consid-
erably the energy of the system, but the formation of fully coalesced products up to
double walled nanotube will finally stabilize the system. Theoretical studies have
proposed that such inside tubes contain heptagons and octagons, acting as links
between fullerene cages, like in peanut dimers. These internal corrugate carbon
nanotubes resemble to the Haeckelite structure. The topology of junction depends
of the initial orientation of the molecules. 31

1.2. Results and Discussion

In the following, we present our own results, on nanostructure building and semiem-
pirical and strain energy calculations, a comparison between the previously proposed
structures for fullerene epoxy dimers and our epoxides built up on coalesced
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fullerenes; novel dimeric structures possibly appearing in the coalescence of C60

molecules, and cages that could be formed by loss of carbon atoms from the starting
molecules.

1.2.1. The sp3 Adducts: C120, C120O and C120O2

It was discussed above that functionalized dimeric derivatives are synthesized from
a mixture of C60/C60On. In the following we propose a pathway, analogous to that
for the coalescence of fullerenes, leading to epoxy tubulenes.

First we have modeled the C60 epoxides to find out which is the prefer-
ential position of the oxygen atoms. If we consider the C60 molecule as a Kekulé
structure with alternating single and double bonds, the oxygen atom will bound
to one of these double bonds (h bond). We found that the position of the
oxygen atom does not influence very much the stability of the coalesced dimer
(Table 1-1).

Among the C120 dimers presented in Figure 1-1 the most stable is the hh
isomer. The energy of dimers increases with the number of p bonds involved in
the cycloaddition. The data listed in Table 1-2 are comparable to those reported in
literature.

The isomers of C120O (Figure 1-8) are constructed by analogy to the C120 dimers;
actually, the four-membered ring is replaced by a furanoid bridge. The isomers are
named similarly to C120 dimers.

Table 1-1. PM3 data for C60 and isomers of C60On; n = 1, 2

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

C60 60 Ih 13�512 6�594
C60O-p 61 Cs 12�857 6�412
C60O-h 61 C2v 12�964 6�446
C60O2-5 62 Cs 11�989 6�293
C60O2-6-p 62 Cs 12�757 6�388
C60O2-6-h 62 Cs 12�389 6�491

Table 1-2. PM3 data for the dimeric C120 sp3 cycloadducts

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

hh 120 C2v 13�204 6�349
ph 120 CS 13�373 5�854
pp-c 120 C2v 13�544 5�749
pp-t 120 C2 13�542 5�707
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(a) C120O-hh (b) C120O-ph

(c) C120O-ppc (d) C120O-ppt

Figure 1-8. Structural isomers of C120O.

Table 1-3 lists the results of semiempirical calculations performed on the four
isomers in Figure 1-1. They are in agreement with the literature data, the most stable
being the isomer C120O-hh, with C2v symmetry. Note that their heat of formation
increases as more p bonds are involved in the furanoid ring.

The construction of all possible dimers, containing two oxygen atoms, was done
keeping in mind the following: there are four dimers of C120, linked by a four-
membered ring and the furanoid bridges are adjacent to this ring. If the two furanoid
rings are on the same side of the four-membered ring, the isomer is denoted cis,
while they are in the opposite sites, the structure is named trans. Thus, for each C120

dimer there are at least two possible structures of formula C120O2. In the case of
hp and ppc dimmers, because there are different bond types on the two sides of the
cyclobutane ring, one more dimer is possible. All together, ten structural isomers
of C120O2 formula can be constructed (Figure 1-9). All carbon atoms involved in
the junction are sp3 hybridized.

Calculations, carried out on the ten isomers in Figure 1-9, are presented in
Table 1-4. Once again, the heat of formation decreases with the number of h bonds
involved in the furanoid bridges, the most stable being C120O2-hph/hph-c. Again
the dimer C120-hh was the lowest energy isomer.

Table 1-3. PM3 data for the furanoid C120O sp3 isomers

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

C120O-hh 121 C2v 12�793 6�356
C120O-ph 121 C1 12�944 5�888
C120O-ppc 121 Cs 13�095 5�837
C120O-ppt 121 C1 13�094 5�832
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(a) C120O2-php/php-c (b) C120O2-php/php-t

(c) C120O2-hph/php-c (d) C120O2-hph/php-t

(e) C120O2-ppp/php-c (f) C120O2-ppp/php-c

(g) C120O2-pph/pph-t (h) C120O2-hph/hph-c

(i) C120O2-ppp/hph-c (j) C120O2-hpp/hpp-t

Figure 1-9. The ten possible sp3-joined isomers of C120O2 connected by a pair of furanoid bridging rings.

The initial cycloaddition between C60 and C60On molecules takes place in such a
manner, the further transformation to a C120O tubulene could be possible (see below).

1.2.2. Coalescence by Stone-Wales Bond Flipping

Interconversion of fullerene isomers is possible by rotation of atom pairs in the
molecules about their mutual bond centre. Such atomic rearrangement, called
Stone-Wales (SW) or pyracylenic transformation,32 is suitable for describing the
coalescence between fullerenes and/or nanotubes.
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Table 1-4. PM3 data for C120O2 sp3 isomers

Dimer Isomer v Sym HF/v
(kcal/mol)

GAP
(eV)

hh php-php-c 122 C2v 12�257 6�414
php-php-t 122 C2h 13�168 2�680

hp hph-php-c 122 CS 12�184 6�437
hpp-php-t 122 C1 12�771 3�231
ppp-php-c 122 CS 12�604 5�689

ppc ppp-ppp-c 122 C2v 12�828 5�645
hph-hph-c 122 C2v 12�109 6�467
pph-pph-t 122 CS 12�433 5�878

ppt hph-ppp-c 122 CS 12�533 5�695
hpp-hpp-t 122 CI 12�486 5�866
cis-1 syn 122 C1 10�148 6�332
cis-1 anti 122 C1 10�170 6�318

The initial orientation of the two cages will affect the pathway of the coales-
cence. But, regardless of the starting cycloadduct, the very first steps are similar,
leading to all sp2 peanut-shaped dimers. Further, there are several ways for
completing transformation up to the perfect tubulene (i.e., tessellated by only
hexagons and pentagons). The interconversion among various coalescenced species
is also possible. The energy diagram of the SW transformation of the four
cycloadducts of C60 to the corresponding peanut dimers is presented in Figure 1-10.
The lowest energy peanut dimer is C120−77 (Figure 1-6c). Geodesic projections of
lattice transform of C60 upto its peanut dimer are given in Figure 1-11.

A series of C120 epoxy derivatives, which energy varied with the location of the
oxygen atom, has been modeled.33 The most stable isomers C120O and C120O2 are
shown in Figure 1-12.

Figure 1-10. Energy diagram of the SW transformation from sp3 cycloadducts to sp2 peanuts, in case
of C60. HF/v.
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(a) (c)

(b) (d)

Figure 1-11. The complete lattice transformation, from [2+2] cycloadduct to peanut dimer, in case
of C60.

Figure 1-12. The most stable epoxy and di-epoxy dimeric tubulenes derived from C60.

The energy difference between the C120 dimer and C120On epoxy derivatives is
almost constant at every SW step, as shown in Figure 1-13.

A question arises about the proper route, if trimerization or oligomerization
occurs. The transformation of a junction could terminate at a peanut shape, which
results in an oligomer with multiple necks, or it could continue until a perfect tubule
is formed. Figure 1-14 illustrates such possibilities in the coalescence of four C60

molecules.
Table 1-5 lists semiempirical data for both trimers and tetramers of C60. It

can be seen that, the heat of formation HF increases as the number of necks in
oligomers increases. Thus, it seems that a new cycloaddition is favored only after
the tubular shape was reached. The energy gain can be associated with the relief of
strain originating in the negative curvature of the necks. However, in nanopeapods
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Figure 1-13. Comparative coalescence energy plot for C60, C60O, and C60O2 molecules.

(a) C240_1-2-3-4

(c) C240_1-2-34

(e) C240_1-234

(b) C240_1234

(d) C240_1-23-4

(f) C240_12-34

Figure 1-14. Multi-necked peanut and tubular tetramers of C60.

annealed at moderate temperature, corrugated tubules could be seen by TEM.31 The
strain relief is obtained at higher temperature, when DWNT is obtained.30

The C120�565�56�5−A�10�6�� dimeric armchair tubulene is the ultimate dimeric
structure, irrespective of the starting cycloadduct (Figure 1-15a).

In the study of SW transformation of peanut dimers we found pathways leading
to armchair or zigzag tubulenes, having pentagons or hexagons as the polar ring.
Such tubulenes have also been identified by molecular dynamics. 34

Figure 1-15 illustrates several C120 dimers (where the dimer is a tubulene). These
dimers have a properly closed shell, associated with a perfect Clar PC structure (see
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Table 1-5. PM3 data for all sp2 C60 trimers and tetramers; the dashed line denotes
a neck

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

C180_1-2-3 180 D5d 12�224 5�917
C180_12-3 180 C5 10�602 4�830
C180_123 180 D5d 9�052 4�057
C240_1-2-3-4 240 D5d 12�062 5�819
C240_12-3-4 240 C5 10�846 4�831
C240_1-23-4 240 D5d 10�826 4�870
C240_123-4 240 C5 9�663 4�088
C240_12-34 240 D5d 9�630 4�791
C240_1234 240 D5d 8�500 3�697

Table 1-6. PM3 data, strain energy SE and spectral data for C120 cages in Figure 1-15

v Sym HF/v
(kcal/mol)

Gap
(eV)

SE/v
(kcal/mol)

Spectral Data

xv/2 xv/2+1

(A) 120 D5d 10�156 4�793 5�162 0�310 −0�061
(B) 120 D5h 10�271 3�706 4�664 0�319 0�319
(C) 120 D5d 10�175 5�789 4�903 0�521 −0�099
(D) 120 D6d 9�8195 5�015 4�788 0�350 0�000
(E) 120 D6d 9�9375 4�587 4�504 0�402 0�336
(F) 120 D3d 10�295 4�419 4�928 0�271 0�137

below). Their HF is similar but there is a considerable difference in the HOMO-
LUMO gap, the highest values corresponding to those structures which are PC.
Tubulenes with hexagonal polar rings have a more relaxed surface, as it can be
seen by the strain energy values. Data are summarized in Table 1-6.

Further transformation of C120�565�56�5−A�10�6�� is possible, leading to different
tubulenes. Because of similar Hf , a mixture of the molecules shown in Figure 1-15
is expected. Figure 1-16 gives the energetic plot of some SW transformations,
starting from C120�565�56�5−A�10�6�� and C120�666�56�6−A�12�4��.

1.2.3. Pathway to C114 Tubulene

It was mentioned above that, the primary coalescence products can further
polymerize only if the formation of a new cycloadduct between two h bonds is
possible. In this respect, it is required that dimeric structures have hexagons at both
ends. The tubulene that preserves the position of pentagons as in C60 would be C114,
which corresponds to a polar face distance of ∼1.3 nm, as measured by TEM in
nanopeapods. The formation of such a unit involves the displacement of six carbon
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(F) C120(6(56)369(65)3 –A[12,2])

(D) C120(666(56)6 –A[12,4])

(B) C120(565 (65)5 –Z[20,2])

(E) C120(666 (65)6 –Z[24,1])

(C) C120(565610(665)5 –Z[15,–1])

(A) C120(565 (56)5 –A[10,6])

Figure 1-15. Dimeric cages possibly appearing in the coalescence of C60.

atoms per junction. Here we propose a possible way to C114 which includes several
SW steps (Figure 1-17).

Electron beam irradiation could result in defects of nano-lattice so that the
coalescence is promoted (see the next section for merging nanotubes). By controlled
irradiation, the displacement of three carbon atoms from a hexagonal face would

Figure 1-16. Energetic diagram of the SW interconversion of the objects in Figure 1-15.
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(a) C114(6(56)3(665)3 (656)3 (86)3–A[12, 0]) (b) PC structure

(c) C39(6(56)3 (665)3 –Z[18, 0]) (d) C114(6(56)3 (665)3 –Z[18, 2])

Figure 1-17. Pathway to C114 cage.

be possible. The resulted units could increase their stability by dimerization
(Figure 1-17a). This peanut-shaped intermediate is a PC (Figure 1-17b); it further
isomerizes to C114 (Figure 1-17,c,d) by SW edge rotation.

In C114 peanut structure, there are three bonds in the equatorial/junction zone.
The removal of these bonds (together with their end-atoms) would generate two
caps C54�6�56�3�6 6 5�3�656�3−Z�12�0��, perfectly oriented to form a C108 peanut cage (a
PC), with three hexagon-octagon pairs in the junction (Figure 1-18a). This could
isomerize to a cage C108-(7) with a fully heptagonal covering in the equatorial
zone (Figure 1-18b). Peanut structures observed in annealed or irradiated peapods
show a length identical to that of C108-(7) cage. Figures 1-18c,d presents other two
structures which could result from C114 by stepwise elimination of six atoms. The
formation of C108 from C114 can be viewed as a retro-Endo-Korto reaction (see
Chapter 6).

Table 1-7 lists the semiempirical data for the four objects in Figure 1-18, in
comparison to C114 peanut (Figure 1-17a). It suggests that no major differences
exist among these intermediates possibly appearing in the annealed/irradiated
peapods of C60.

Table 1-7. PM3 and strain energy for peanut structures in Figures 1-17 and 1-18

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

SE/v
(kcal/mol)

C114 (peanut) 114 D3h 12�7894 6�0814 6.711
C112 112 C2v 13�0186 5�3058 6.605
C110 110 C2v 13�2559 5�4234 6.476
C108-(68) 108 D3h 13�0038 5�2419 6.380
C108-(7) 108 D3d 12�9526 4�8702 6.491
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(a) C108-(6,8) (b) C108-(7)

(c) C112 (d) C110

Figure 1-18. Structures resulted from C114 peanut cage.

1.3. Closed Nanotubes Viewed as Coalescence Products

A single-walled carbon nanotube (SWNT) consists of a piece of graphene sheet
wrapped into a cylinder with a nanometer size diameter. The structure of SWNTs
is represented by a chiral vector C = na1 + ma2, where a1 and a2 denote the
primary lattice vectors of the graphene sheet. According to theoretical calculations
under periodic boundary conditions, SWNTs become metallic or semiconducting,
depending on their chirality (n, m) and the tube diameter. These assumptions
apply to nanotubes long enough to neglect the effect of end caps. 35 Classification
of SWNTs is facilitated by the observation that any infinite-length carbon tube
is uniquely defined by a construction that involves rolling of a single graphite
layer (a graphene sheet) in such a way that the end of the vector (conveniently
represented by an [n,m] pair of integer numbers) connecting two centers of hexagons
is superimposed on its origin. SWNTs are chiral unless m equals either n or 0. In
the former case, the armchair [n,n] SWNTs consist of layers of hexagons with the
long axis perpendicular to the tube axis, whereas in case of [n,0] zigzag SWNTs
the axes are parallel (Figure 1-19).

However, the electronic structures of finite-length nanotubes capped with
fullerene hemispheres should be different from those of infinite-length nanotubes.
Such finite-length nanotubes with fullerene hemispheres have been observed inside
a SWNT by heating “C60 peapods”, in which the C60 molecules are incorporated.36

Bandow et al. 37 revealed using resonance Raman spectroscopy that the tubular
structures generated in the C60 coalescence have a diameter of ∼7 Å, which is
identical to that of C60. Therefore the fullerene caps should be significant for the
C60 coalescence as initial stages of the formation of nanotubes inside a SWNT.38

1.3.1. Finite-Length Carbon Nanotubes Related to C60

C60 can be partitioned into one cyclic cis-polyene chain with 20 carbon atoms and
two corannulene-like caps along a C5 rotation axis, and it can also be viewed
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Figure 1-19. Wrapping a graphite sheet to an �n�m�-nanotube (8,4,4,-5).

as one cyclic trans-polyene chain with 18 carbon atoms and two sumanene-like
caps along a C3 rotation axis. 39 We therefore consider two possible finite-length
nanotubes capped with fullerene hemispheres: the (5,5) armchair nanotubes with
the C5 rotation axis and the (9,0) zigzag nanotubes with the C3 rotation axis, as
shown at the left-hand side of Figure 1-20.

A general rule based on simple Hückel theory and symmetry considerations
was described:40 for every v = 60+6k, where k is either zero or an integer greater
than one, there is at least one closed-shell cluster with 12 pentagonal and v/2-10
hexagonal faces. This is known as the leapfrog principle, named by the geometrical
construction (i�e�, map operation – see Chapter 5) used to generate the closed-shell
clusters.

There is a second potentially infinite family of clusters based on C70, every
member of which has a closed electronic shell topped by an empty, non-degenerate,
non-bonding LUMO. Clusters in the new sequence have 70 + 30m or 84 + 36m

Figure 1-20. From C60 fullerene, the two smallest IPR caps can be derived: corannulene- [5:65] (left)
and sumanene-[6:(5,6)3] cap (right).
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atoms and, together with those in the leapfrog series, account for all the non-trivial
closed shells so far catalogued for carbon cages. 40

These rules of thumb have been generalized by Diudea41 and they read as:

Leapfrog rule (for armchair cylinders). Fullerenes of k-fold cylindrical symmetry,
of general formula C12k�k 6k �5 6�k−A�2k�n�� have a closed shell at each vertex number:
v = 12k+ 2k · 3m; m = 0� 1� 2� � � �, (k = 4 to 7); the above considerations were
made for k = 5.

Cylinder rule (for armchair cylinders). Fullerenes of k-fold cylindrical symmetry,
of general formula C12k�k 6k �5 6�k−A�2k�n�� have a closed shell at each vertex number:
v = 12k+2k�1+3m�; m = 0� 1� 2� � � �, (k = 4 to 7). These cages have a (usually
non-degenerate) non-bonding LUMO separated by a gap from the HOMO; n+ =
1 + n−. There are special cases, e.g., the classical fullerene C84 which is the
first term of series k = 6, has a triply degenerate LUMO, and the first term of
series k = 7� C98 has a bonding LUMO and a non-bonding orbital NBO at nv/2+3.
Observe the difference between the two rules, which is only in the start structure:
C60 for leapfrog and C70 for the cylinder rule.

Leapfrog rule (for zig-zag cylinders). Fullerenes of k/2-fold cylindrical symmetry,
of general formula C13k�k �5 6�k/2 �6 6 5�k/2−Z�3k�n�� have a closed shell at each vertex
number: v = 13k+3km; m = 0� 1� 2� � � �, (k = 4� 6� 8� � � �); this rule can be viewed
as a true “zig-zag” cylinder rule. The series k = 6 starts at C78, a classical, isolated
fullerene. The special cases are the first terms of 0(k mod 4), whose LUMO is
a non-bonding orbital but their gap is non-zero. Note that structure C114 is the
third term in the series k = 6. All the members of this series show PC structure
by virtue of the leapfrog operation.

1.3.2. Simple Hückel Theory

Hückel theory42 is essentially a graph-theoretical model of some basic chemical
concepts. In Hückel theory, the molecular-orbital energies are determined by diago-
nalising the vertex adjacency matrix of the graph associated to the carbon cage.
(Two vertices are adjacent when they share an edge.) Positive eigenvalues corre-
spond to bonding and negative to antibonding orbitals. The spectrum of a cage is
given as non-increasing sequence of its eigenvalues: x1 ≥ x2 ≥ � � � ≥ xv. If the eigen-
values xv/2 and xv/2+1 are equal, then the configuration is open-shell. If, conversely,
xv/2 ≥ xv/2+1, then three possibilities arise. If the v× v matrix has exactly v/2
positive eigenvalues, xv/2 > 0, xv/2 ≤ 0, then the neutral carbon cage has a properly
closed-shell configuration in which all v/2 bonding orbitals are doubly occupied. If
xv/2 > xv/2+1 > 0, then the neutral carbon cage has a pseudo-closed shell in which all
electrons are in doubly occupied orbitals but some bonding orbitals are left empty.
The third possibility, 0 > xv/2 > xv/2+1, in which all electrons are also in doubly
occupied orbitals but some are forced to be in non-bonding or antibonding orbitals,
(not yet encountered in neutral fullerenes) is called meta-closed. A properly closed
shell is no guarantee of maximal overall stability, as steric and electronic require-
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ments generally pull in opposite directions, but there is considerable chemical
interest in identifying the conditions under which closed shells occur.

1.3.3. Leapfrog Transformation and Leapfrog Structures

The leapfrog43 construction is a geometrical-topological method of generating struc-
tures for large fullerenes from the smaller ones. A fullerene polyhedron with v
vertices, 12 pentagonal and (v/2–10) hexagonal faces, and (3v/2) edges, is first
capped on every face and then the dual is taken. The final polyhedron is also a
fullerene but with 3v atoms. A leapfrog fullerene always has a closed �-electronic
shell, irrespective of the electronic configuration of the starting fullerene. Since
pentagon + hexagon polyhedra exist for all even values of v ≥ 20 (except 22), at
least one closed shell structure can be found for v = 60 + 6k (k �= 1). Truncated
icosahedral C60 is the leapfrog of dodecahedra1 C20 and repetition of the process
yields C180, C540, C1620, etc.

The number of closed-shell leapfrog isomers of C3v is equal to the total isomer
count for Cv; C60, C72 and C78 have a single closed-shell isomer apiece, C84 has
two leapfrog (and one cylindrical) closed shells while C90 has three.

The maximum number of benzenoid hexagons in a localized Kekulé structure
of a fullerene with v atoms is v/3.

A Kekulé structure for a leapfrog fullerene can always be found that attains this
maximum number of hexagons and, in addition, has no double bond inside a pentagon.
More about leapfrog operation the reader can find in Chapter 5.

1.3.4. Construction and Classification of Nanotube Caps

Carbon caps resemble half-fullerenes. 44 They are composed of six pentagons and
a number hexagons. The six pentagons are necessary by Euler’s theorem of closed
polyhedra to introduce the positive Gaussian curvature. There are three methods to
represent carbon caps on a flat plane: flattening the cap onto a hexagonal lattice, 45

unwrapping a half tube with the cap attached to it, 46 and a network representation
based on graph theory.47 The flattening method, best highlights the pattern of six
hexagons and its correlation to the nanotube chiral vector.

For caps obeying the isolated pentagon rule IPR, the number of caps is smaller
for small diameters than for general caps. The (5,5) nanotube is the smallest diameter
tube fitting an IPR cap; this cap is just “half a C60 fullerene”. The other tubes with
only one IPR cap are (9,0), (9,1), (8,2), and (6,5) with diameters d = 6.8–7.5 Å.

The (10,10) tube, in spite of its predominance in the crystalline ropes of
nanotubes prepared by laser vaporization can be capped in C5 fashion by a
hemisphere of the icosahedral C240 fullerene, but it can also be capped 9297 other
ways with isolated-pentagon patches.

For a given nanotube diameter there are fewer caps for armchair and zigzag
tubes than for chiral tubes. This is due to the higher symmetry of achiral tubes,
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which reduces the choice of caps. Although a given nanotube can have thousands
of distinct caps, quite the opposite is true for the inverse problem. A given cap only
fits onto one particular nanotube. The arrangement of pentagons in the cap defines
the chirality of the fitted nanotube.

Figure 1-21 gives the mapping diagram used to generate armchair, zig-zag and
chiral caps where a six-membered ring is the primary base ring.48 The eventual end
caps will contain six pentagons and a varying number of hexagons; this configu-
ration will induce a cylindrical geometry during the growth of the tubular nanos-
tructure. In order to obtain a base end cap for a zig-zag tube, the six pentagons must
be sited at any of the blue locations. Likewise, an armchair end cap is produced
when the five-membered rings are located at the red colored sites. Chiral tubes
are created when the pentagons are placed in a combination of the red and blue
locations, or when placed in a white location.

1.4. Armchair and Zig-Zag Closed Nanotubes

1.4.1. Construction of Nanotube Caps

The end caps with an armchair circumference have a five-fold or six-fold symmetry
axis, which corresponds to the size of the polar ring (marked in dark blue-
Figure 1-22). These caps result according to the scheme in Figure 1-21 by replacing
the hexagons marked with a red color with pentagons. All structures have a PC
network, the light blue bonds corresponds to localized double bonds, and thus the
number of benzenoid rings is maximal. The first one is the smallest armchair IPR
cap that fits to the (5,5) nanotube; actually it is half of the C60 fullerene.

End caps with a zig-zag circumference were constructed in a similar way,
except the replacing hexagons by pentagons were now in the light blue domains
(Figure 1-23). Since the attention was here focused on perfect Clar structures, only
two caps (one with a pentagonal and the other with a hexagonal polar ring) were

Figure 1-21. Placement of pentagons in different locations determines the chirality of the capped
nanotube: in light blue locations will result in zig-zag, while in red locations will result in armchair
nanotubes; any combination of red, blue or white will result in chiral tubes.
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C30-[5.5,n]-(D5h /D5d)

C36-[6.6,n]-(D6h /D6d)

C90-[10.10,n]-(D5h,D5d /D5)

C108-[12.12,n]-(D6h,D6d /D6)

C180-[15.15,n]-(D5h,D5 /D5d, D5)

C216-[18.18,n]-(D6h,D6 /D6d, D6)

Figure 1-22. Nanotube caps with an armchair circumference with a pentagon/hexagon base ring; in the
notation of caps the first point group counts for odd and the second one for even values of n.

used for construction of tubular fullerenes, with limited number of atoms. The first
cap with a pentagon as polar ring results from the icosahedral C180 fullerene (i�e.,
the leapfrog of C60) by cutting off the equatorial zig-zag belt.

According to the second diagram in Figure 1-21, the construction of caps must
start with an even-membered face. The arrangement of the pentagons reduces the
symmetry, thus all structures have a k/2 symmetry axis. Only caps with a hexagonal
polar ring (with a C3 symmetry axis) were here constructed, three of them having
an armchair edge while the last one a zig-zag edge. Note that, this last cap is
C60-derivable and matches to the (9,0) nanotube (Figure 1-24).

C75-[15.0,n]-(D5d,D5 / D5h,D5) C90-[18.0,n]-(D6d,D6 / D6h,D6)

Figure 1-23. Nanotube caps with a zig-zag circumference, having a pentagon/hexagon polar ring.
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C48-[6.6,n]-(D3h,D3d /D3)

C90-[9.9,n]-(D3h,D3/D3d,D3)

C66-[9.9,n]-(D3h,D3 /D3d,D3)

C39-[9.0,n]-(D3d,D3 /D3h,D3)

Figure 1-24. Nanotube caps constructed on the basis of the second diagram from figure 1-21.

1.4.2. Construction of Capped Armchair Nanotubes

The construction of tubular structures is achieved by connecting the two fullerenic
hemispheres to an armchair nanotube with a length of n. The first structure in every
series consists exactly of the two caps connected by a tube of length n = 0.

In the case of (5,5) nanotube, capped by C30-[5.5,n] (Figure 1-25), addition of n
rows of atoms results in structures C60+10n, of symmetry D5d, for n-even, and D5h,
for n-odd. Whenever the tube length is 3n+ 3, n = 0� 1� 2 � � �, the whole structure
has a PC network (assuming the caps used have a PC structure).

This periodicity by three can be seen within all capped armchair nanotube series
and it is expected to be reflected in the energy calculations. In case of small diameter
caps, there is only one possible fitted cap and their mutual position dictates the
symmetry of the resulting cage.

Capping (10,10) nanotube with C90-[10.10,n] cap results in two series of objects,
since at every n-value there are two possible positions to fit the second cap. The
larger the tube diameter, the many ways in connection of the second cap. As in the
previous case, whenever n is divisible by 3, the structure is PC, and this is true for
the both series (see Figure 1-26, dark blue hexagons are the benzenoid faces in the
tubular section).

At the beginning, four series of capped armchair nanotubes were modeled, since
the caps have a similar way of construction, only the size of polar ring (k = 5 or
6) and the size of circumference is different. These caps matches to (5,5)/(6,6) and
(10,10)/(12,12) nanotubes. The resulted tubular fullerenes have the highest possible
symmetry: Dk, Dkh and Dkd. Construction of the other three armchair series, with
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3n+1

3n+2

3n+3

C30-[5.5,1]-D5h, v = 70, n = 0

C30-[5.5,2]-D5d, v = 80, n = 0

C30-[5.5,3]-D5h, v = 90, n = 0 C30-[5.5,6]-D5d, v = 120, n = 1

C30-[5.5,5]-D5h, v = 110, n = 1

C30-[5.5,4]-D5d, v = 100, n = 1

Figure 1-25. The structural periodicity in armchair tubulenes.

elements having Dk/2, Dk/2h and Dk/2d symmetry as well as the semiempirical data
support the previously observed periodicity.

1.4.3. Construction of Capped Zig-Zag Nanotubes

The smallest diameter tube possibly capped by an IPR cap is the (9,0) zig-zag
nanotube. Capping it with two C39 hemispheres produces two families of C78+18n

fullerenes. The members of the first family possess D3d symmetry for evenn and
D3h for odd n. The members of the second family are related to the D3d/D3h capped
tubes by a �/3 rotation of one of the caps and possess D3 symmetry for both
even and odd n. The first two members of this series are two isomers of the IPR
fullerene C78.

To study the effect of increasing diameter, two similar zig-zag series were
constructed: (15,0) and (18,0) tubes, closed by caps with a pentagon/hexagon as the
polar ring (see Figure 1-27). In both cases it is possible to construct two families;
in this case the symmetries are Dkd/Dkh and Dk respectively.

In case of zig-zag tubulenes, a PC structure appears at every n - value, which
always belongs to the same family, the one with the higher symmetry.
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C90-[10.10,3]-D5d,v = 240 C90-[10.10,3]-D5h,v = 240

C90-[10.10,3]-D5d,v = 240 C90-[10.10,3]-D5h,v = 240

Figure 1-26. Two possible ways of connecting armchair caps with large diameter.

C75
 – Z[15.0,1] – D5, v = 180 C75

 – Z[15.0,2] – D5, v = 210

C75
 – Z[15.0,2] – D5h, v = 210

C75
 – Z[15.0,2] – D5h, v = 210

C75
  – Z[15.0,1] – D5d, v = 180

C75
 – Z[15.0,1] – D5d, v = 180

Figure 1-27. Leapfrog fullerenes result at every value of n when constructing zigzag tubulenes.
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1.5. Energetics of Capped Nanotubes

1.5.1. Methods

The geometry optimization and single point computations (heat of formation, total
energy, molecular orbital energy levels, etc.) were performed using the PM3 semi-
empirical quantum-chemical method supplied by the HyperChem (Hypercube, Inc.,
version 7.52)49 molecular modeling package. Several series of armchair and zigzag
capped nanotubes were optimized to a gradient below 0.009 (kcal/ Å mol). Simple
Hückel band gaps (supplied by TOPOCLUJ package) and strain energy calculations
(SE/v at the POAV1 level of theory,50 supplied by JSChem package) were also
performed and compared to semi-empirical results.

The construction of capped tube series followed three steps:

– modeling nanotube caps by the help of HyperChem software;
– generating matching nanotube coordinates by the JSChem package;51

– capping nanotubes at both ends, also done in HyperChem.

The lack of powerful PC limited the number of atoms for a structure, so the
last element in a series has at most ∼350 atoms.

For ray tracing of chemical images the powerful Pymol (DeLano Scientific,
2004, version 0.97)52 was used.

1.5.2. Stability of Capped Armchair Nanotubes

Strain is attributed to the deviation from planarity (in a graphite sheet all carbon
atoms are in the same plane). Nanotubes result by rolling up a graphite sheet, and
in this way strain is introduced. For closure 12 pentagons are necessarily introduced
in the honeycomb network. This will increase more the energy than in the case of
nanotubes, assigned to the decrease in bond angles from 120� in case of graphite,
to 108� in case of pentagonal faces. In case of tubular fullerenes, the longer the
tubular section, the much strain relief, resulting a more relaxed structure.

By synthesis, nanotubes are usually capped at both ends. Closure occurs to
eliminate dangling bonds, which gets additional stability. However, this is the case
of long enough nanotubes, so that the curvature induced by pentagons does not
affect very much the overall energy. In this work the tubular segment of structures
starts from zero, and ends at a very short length. It is thus expected that stability
descriptors for a series of structures are not linear.

The heat of formation per atom HF/v is presented as a function of tube length n
(Figure 1-28). The four series differ from each other by the polar ring size, and
the tube diameter. It can be seen that the smallest diameter tube (5,5) has the
highest energy values, since deviation from planarity increases with decreasing tube
diameter. In all cases the energy decreases exponentially with the tube length, but
some of the values clearly deviate from it. This becomes more clear in case of the
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Figure 1-28. Variation of the heat of formation HF of the four armchair series.

(10,10) and (12,12) tube series, where every third value is higher than the previous
one. The HOMO-LUMO gap alternation will be discussed below.

The strain energy data (Figure 1-29) show almost the same tendency, as for
HF. It is expected that in long enough nanotubes, the strain energy SE and the
heat of formation HF curves become almost linear. It can be observed that in the
case of large diameter tubes, the value of the energy is higher than it would be
expected.
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Figure 1-29. Strain energy SE data of the four armchair series.
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Figure 1-31. Heat of formation HF variation in zig-zag tubulene series; structures at n/n+1 have the
same number of atoms.

The HOMO-LUMO gap values are presented for the first two series, both in
semiempirical and simple Hückel calculations (Figure 1-30). The all members of
both series have a PC structure, as they are leapfrog fullerenes and show the highest
gap values and properly closed shells, in simple Hückel theory.

The next tubulenes of the series have 3n+1 rows of atoms in the equatorial
zone. They also show high enough gaps in PM3 calculation; in simple Hückel
they have a closed shell but in an empty, non-degenerate, non-bonding LUMO
orbital.

The sub-series of 3n+2 rows of atoms show fullerenes of the lowest stability, as
suggested by the smallest gap values, in semiempirical terms. In simple Hückel, they
have an open shell configuration, with a very small gap. Clearly, these structures
will show a HF different from expectations. At large diameters they also appear
more strained that the other members of the series.

1.5.3. Stability of Capped Zig-Zag Nanotubes

Three series of structures have been constructed and all of them have two families.
The members of these families have the same number of atoms thus being easily
to compare. The first two series with C5 and C6 symmetry axis have different
diameters, but they are constructed in a similar way. The increase in diameter
contributes to the stability (Figure 1-31), as in the case of armchair tubes. Also,
leapfrog fullerenes present a lower energy, thus being more stable.

The difference in the stability of leapfrog (marked in blue color) and its matching
rotated structure (marked in red color, having Dk point group) is more obvious by
comparing their HOMO-LUMO gap values (Figure 1-32).
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Conclusions

The goal of this chapter was to prove the existence of a relationship between the
structure of carbon tubulenes and their stability. In this respect, several series of
armchair and zig-zag capped tubes were constructed and semiempirical, simple
Hückel and strain energy calculations were performed in order to see how these
descriptors (and lastly the stability) vary with the length of the tubular section.

Comparison of the results showed that leapfrog fullerenes are the most stable
ones; this was confirmed in all the type of calculations made. Other structural
parameters involved in the stability of fullerenes are the length and diameter of
the tubular section. Stability of structures increases as the values of both these
parameters increase.

Chiral structures were not modeled due to the large number of possible caps for
a given tube. However, a similar behavior is expected.

Our results are in very good agreement with similar calculations in the literature.
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Chapter 2

Polyhex Tori

2.1. Introduction

Among the carbon allotropes, intensively studied in the last decade,1– 5 the only
orientable closed surface S entirely coverable by a benzenoid lattice is the torus.
A polyhedral (combinatorial) torus obeys the Euler theorem6

v− e+f = ��S� (2.1)

where ��S� is the Euler characteristic: ��S� = 2−2g�v� e� f , and g being respectively
the number of vertices, edges, faces, and genus-unity, in case of the torus).

“Circle crops” structures were first observed by Liu et at 7. and then by other
groups.8–10 Martel et al. 10 argued that the observed rings were coils rather than
perfect tori, but these structures have continued to attract a multitude of theoretical
studies, dealing with construction, mathematical and physical properties of graphitic
tori. 11–19

The graphite zonefolding procedure12, 17–19 is most often used to cover a torus
by hexagons. The method defines an equivalent planar parallelogram on the graphite
sheet and identifies a pair of opposite sides to form a tube. Finally the two ends
of the tube are glued together in order to form a torus. The resulting polyhex torus
is completely defined by four independent integer parameters, 6–18, 20 reducible to
three parameters. 17– 21

A second procedure uses the so-called topological coordinates, extracted from
the adjacency matrix eigenvectors. 22– 25

35
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2.2. Construction of Polyhex Tori from Square Tiled Tori

A third way to polyhex tori starts from the tetragonal (4,4) covering embedded in
the torus, as (4,4)[c�n] objects. 26,27 The embedding of the (4,4) net is made by
circulating a c-fold cycle, circumscribed to the toroidal tube cross-section of radius
r, around the large hollow of the torus, of radius R > r (Figure 2-1). Its subsequent
n images, equally spaced and joined with edges, point by point, form a polyhedral
torus tiled by a tetragonal pattern. The position of each of the n images of the
“circulant” around the central hollow is characterized by angle � while angle �
locates the c points across the tube. In all, c×n points are generated. The parameters
R and r are not directly involved in the topological characterization of the lattice.

The parameters are calculated by the following formulas:

P�x� y� z� �

x = cos�	��R+ r cos 
�

y = sin�	��R+ r cos 
�

z = r sin 


�i = 2�

n
i � i = 0�    � n−1

�j = 2�

c
j � j = 0�    � c−1 (2.2)

The squares are changed to hexagons (or other tiling patterns, suitable from chemical
point of view) by appropriate edge-cutting27–32 (or by performing some map opera-
tions – see Chapter 5). To obtain the (6,3) lattice, each second edge is cut off.

Toroidal parameters A (4,4) square tiled torus 

Figure 2-1. Embedding of the (4,4) net in the torus.
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Two embedding isomers could result at each given [c�n] pair, as the cut edges lye
either horizontally or vertically (ie., perpendicularly and parallel to the Z axis of
the torus). The two isomers are called H (or “zig-zag” Z) and V (or “armchair” A),
respectively, according to the cut edge location (or to their tube cross-section shape).
The name of such a torus is a string of characters including the tiling, type of
embedding and tube dimensions [c�n].

Note that each hexagon consumes exactly two squares in the (4,4) net.
By construction, the number of hexagons in the (6,3)H/Z pattern is half
the number of squares on dimension c of the (4,4) torus. The same is
true for the (6,3)V/A, but on dimension n. Thus, T(6,3)H[2c�n] has the
same number of hexes as its embedding isomer T(6,3)V[c,2n]. However, they
represent topologically distinct objects (see below), and correspond to two
different classes of aromatic chemical compounds: phenacenes and acenes,
respectively.

After optimization, by a Molecular Mechanics procedure, the polyhex tori look
like in Figure 2-2. The objects in these examples are non-chiral and their embedding
shows c < n; hereafter, such an embedding is called a “normal” one.

The shape of polyhex tori tends to that of the ideal torus (i.e., a circular tube
cross-section) at a sufficiently large ratio n/c. Figure 2-3 gives some cross-sections
on polyhex tori along with their geometric eccentricity (in %, taken as the ratio of
the difference of the two diameters).

When c > n, the objects show a more elongated cross-section, as illustrated
in Figure 2-4. Such elongated tori 33 have been inferred in multi walled nanotube
growth.34,35

Successive torus opening and tube closing, as in the sequence: T(6,3)H[c�n];
TU(6,3)H[c�n]/TU(6,3)V[n,c]; T(6,3)V[n,c], leads to pair tori of different
embedding but having the same topology.

Twisted, chiral, tori can be generated by the following two procedures: (1)
twisting the horizontal layer connections (Figure 2-5a) and (2) twisting the vertical
layer (offset) connections (Figure 2-5b).

T(6,3)H/Z[20,100]

T(6,3)V/A[20,100]

Figure 2-2. Optimized polyhex tori on 20 × 100 atoms, in the H/Z (zig-zag) and V/A (armchair)
embedding, respectively.
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T(6,3)H/Z[20,100]
(57.10)

T(6,3)V/A[20,100]
(84.76)

T(6,3)H/Z[20,500]
(2.30)

T(6,3)V/A[20,1000]
(10.84)

Figure 2-3. Cross-sections on polyhex tori and their geometric eccentricity (in%).

T(6,3)H/Z[30,20] T(6,3)V/A[30,20]

Figure 2-4. Elongated polyhex tori, in H/Z and V/A embedding, respectively.

(a) T(4,4)H2[8,24] (b) T(4,4)V2[8,24] 

Figure 2-5. An H-twisted (a) and a V-twisted (offset – b) (4,4) net.
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2.3. Topology of Polyhex Tori

Each of the above twistings superimpose on the two basic cuttings, thus resulting
four classes of twisted tori: (i) H-twist, H-cut HHt�c� n�; (ii) H-twist, V-cut,
HVt�c� n�; (iii) V-twist, H-cut, VHt�c� n�; and (iv) V-twist, V-cut, VVt�c� n�. The
type of cutting will dictate the type of embedding and, ultimately, the shape of
objects. Conversely, the type of twisting is involved in the �-electron structure of
polyhex tori (see Section 2.5). Figure 2-6 illustrates some (non-optimized) twisted
polyhex tori.

The twist number t is just the deviation (in number of hexagons) of the
chiral (ie., rolling-up) vector to the zigzag line, in the graphite sheet represen-
tation.12,16–18, 36 Accordingly, a toroidal object is drawn as an equivalent planar
parallelogram, that needs the specification (in two integer parameter notation36) of
the two involved tubes (Figure 2-7). One tube is built on the rolling-up vector R,
which in terms of the primitive lattice vectors of graphite is written as:

R = ka1 + la2 (2.3)

The second tube is formally defined on the translating vector T :

T = pa1 +qa2 (2.4)

Going from a torus, generated as above, to its composing vectors, the first tube
can be identified by cutting the object across the tube while the second one results
by cutting it around the large hollow. Anyway, a four integer parameter description
(k,l,p,q� is obtained.

T(6,3)HH2[8,24] T(6,3)VH2[8,24] (offset)

T(6,3)HV2[8,24] T(6,3)VV2[8,24] (offset)

Figure 2-6. The four classes of twisted polyhex tori (non-optimized geometry).
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The coordinates of THH4[14,6] torus depicted in Figure 2-7 are: (5, –4, 3, 3).
Note that this representation is not unique and is reducible to three parameter
notation, theorized by Kirby et al. 17,21

In our procedure, H-twisting involves a chiral (HH or HV) R-based tube
(winding around the tube) and a non-twisted T -based tube (winding around the
torus-Table 2-1, entries 3 and 4). Conversely, in V-twisting, the R-based tube is
non-chiral (H/Z or V/A) while the T -based tube is twisted (Table 2-1, entries 5
and 6). The resulting tori are all different, at least as 3D structures, because of
distinct embedding. However, some of the embedding isomers could represent one
and the same topological object, as will be seen in Section 2.6. The correspondence
between the two notations: TXt�c� n� and (k� l�p� q) is detailed in Table 2-1.

Encoding the type of tessellation can be done, for example, by the spiral code,
which was first proposed for coding and constructing spherical fullerenes. 37– 39 We
adapted the spiral code for tubular structures. 31 In a periodic tubular net, the spiral
code brings information on size and sequence of faces and embedding the actual
object on the parent (4,4)[c�n ] lattice. The �-spiral code for the polyhex toroids is
given in Table 2-2.

The number t inside the brackets equals the helicity40 while the number out the
brackets gives the steps of a helix. Note that the helicity could be less than t, if an
integer number of steps appear.

A different topological description of polyhex tori is possible by means of the
Omega polynomial (Chapter 4).

T

(3,3)

R

a2 a1

(5,– 4)

Figure 2-7. Representation of the torus THH4[14,6] by an equivalent parallelogram needs the specifi-
cation of two tubes: one defined on the rolling-up vector R (with integer coordinates (k� l)) and the other
on the translating vector T (given by the pair (p�q)). The four parameter specification of the depicted
torus is (5, –4, 3, 3).



Polyhex Tori 41

Table 2-1. Correspondence between the TXt�c� n� and (k� l�p� q) notations

Torus [c�n] Tube R Tube T Torus �k� l� p� q�∗ v

1 H H/Z V/A �c/2�−c/2� n/2� n/2� 2�kq − lp� = cn

2 V V/A H/Z �c/2� c/2� n/2�−n/2� 2�lp−kq� = cn

3 HHt HH (tw) V/A ��c− t�/2�−t� n/2� n/2� 2�2kq − lp� = cn

4 HVt HV (tw) H/Z ��c+ t�/2� �c− t�/2� n/2�−n/2� 2�lp−kq� = cn

5 VHt (offset) H/Z HV (tw) �c/2�−c/2� �n+ t�/2� �n− t�/2� 2�kq − lp� = cn

6 VVt (offset) V/A HH (tw) �c/2� c/2� �n− t�/2�−t�� 2�2lp−kq� = cn

∗ First pair (k� l) denotes the rolling-up vector R while last pair (p�q) specifies the translating vector T .
The representation (m�−m� = �m� 0), is an H/Z-tube while (m�m) is a V/A-tube (see Figure 2-7).

Table 2-2. Ring spiral code of polyhex tori

Series Ring spiral code

1 H/Z�c� n� � 6c/2�n

2 HH�c� n� � �6c/2�t�n/t

3 HV�c� n� � �6c�t�n/2t

4 VH�c� n� � �6n�t�c/2t

5 VV�c� n� � �6n/2�t�c/t

6 V/A�c� n� � 6c �n/2

2.4. Strain Energy Calculation

Our TORUS 3.0 software package41,42 enables the generation of huge tori, up to
20,000 atoms, which could be optimized by a Molecular Mechanics procedure. As
shown in Figure 2-3, the cross-section of a sufficiently large torus (ie., a large ratio
hn/hc of the number of hexes on the two dimensions) tends to the circular shape.
Our objects approach that shape at the ratios 50 and 25, in case of H/Z[20,n] and
V/A[20,n] series, respectively.

In the POAV1 theory,43– 45 the �-orbital axis vector makes equal angles ���

to the three �-bonds of the sp2 carbon atom and the pyramidalization angle is
obtained as:

�p = ��� −90� (2.5)

This angle is used for estimating the strain energy, induced by a pyramidalized
carbon atom, by:

SE = 200 · ��p�
2 (2.6)

with �p being measured in radians. The difference 120 − �1/3� ·∑�ij gives the
deviation to the planarity. POAV analysis provides a reliable description of
electronic structure of non-planar conjugated molecules.
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Figure 2-8. Strain energy per atom of thick tori, TH/Z[40,n], n = 40�    � 500 and TV/A[20,n], n =
80�    � 1000: (a) function of the number of hexes hn on dimension n and (b) function of the large
diameter, in nm, respectively.

In a first test, we varied the n-dimension and found a dependence of the strain
energy by D−2, with D being the large diameter of the torus. A similar result
was reported by Han.46 This is true in large tori built up on both thick (hc = 20,
Figure 2-8) and thin (hc = 10, Figure 2-9) tubes. In both cases, the V/A tori were
found more strained. Observe the proportionality between D and n.

In a second test, the n-dimension was kept constant (at n = 100) and the
c-dimension was varied. The strain energy showed a dependency by h−2

c in thin tori
(the most strained subset) and by h−1

c in thick tori of the H/Z series (Figure 2-10).
The series V/A appeared split in two subseries, 0mod(c,4) (having at apex a strain
up to 11 times the average value) and 2mod(c,4) (with up to 17 times the average
strain at apex), respectively. Strain of the both series depends on h−1

c (Figure 2-11).
The two series are, however, not directly comparable.

Compare the strain energy per atom of tori with that of C60 (8.26 kcal/mol) and
find the polyhex tori as more relaxed structures.
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Figure 2-9. Strain energy per atom of thin tori, TH/Z[20,n], n = 100�    � 300 and TV/A[10,n], n =
200�    � 600: (a) function of the number of hexes hn on dimension n and (b) function of the large
diameter, in nm, respectively.
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and 2mod(c,4) (b), function of the number of hexes hc on dimension c.

2.5. �-Electronic Structure of Polyhex Tori

In the Spectral Theory, at the simple �-only Hückel47 level of theory, the energy
of the ith molecular orbital Ei = �+xi� is evaluated by calculating the solutions xi

of the characteristic polynomial Ch(G� or the eigenvalues of the adjacency matrix
associated to the molecular hydrogen depleted graph (see Chapter 4).

The �-electronic shells of neutral graphitic objects are classified,48,49 function
of their eigenvalue spectra, as closed, when xv/2 > 0 ≥ xv/2+1 or open, when the
HOMO and LUMO molecular orbitals are degenerate, xv/2 = xv/2+1.

The metallic character involves the existence of a zero HOMO-LUMO gap
(a particular case of the open shell) and the degeneracy of some non-bonding
orbitals50 (NBOs) favoring the spin multiplicity, cf. the Hund rule. In polyhex tori,
the metallic behavior is ensured by four NBOs, also present in the graphite sheet.
The gap (in � units) is taken as the absolute value of the difference EHOMO – ELUMO.

A perfect Clar structure51,52 PC (Figure 2-12a) is a vertex disjoint set of
faces whose boundaries form a 2-factor. A k-factor is a regular k-valent spanning
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(b) S1(T(6,3)V[4,24]); v = 672
28 × [6:66]DFw; chiral 

(a) T(6,3)HH8[12,56]; v = 672
112 × Clar hexagons

Figure 2-12. Perfect Clar and disjoint coronenic [6:66]DFw structures of H/Z polyhex torus (2,8,12,–24).

subgraph. A PC includes each vertex of G once and only once. It is associated with
a Fries structure, 53 which is a Kekulé structure drawn over the maximum possible
number of benzenoid (alternating single-double edge) hexagonal faces. A Kekulé
structure is a set of pairwise disjoint edges of G (covering all its vertices) that
coincides with a perfect matching and a 1-factor in Graph Theory.54 A trivalent
polyhedral graph has a PC if and only if it has a Fries structure. 55 Such structures
represent total resonant sextet TRS benzenoid molecules and is expected to be
maximally stable, in the valence bond theory.55,56 There exist some coverings by
large numbers of conjugated 10-circuits (ie., naphthalenoids and azulenoids), only
slightly less favorable, in the valence-bond based conjugated-circuit theory.57,58

By extension, a similar corannulenic system can be imagined. The operation
sequence Le&Q, or the generalized (2,2) operation,59– 62 applied on trivalent maps,
provides a Clar-like disjoint corannulenic DCor structure, eg., the coronenic flowers
[6:66]DFw, with the associated Fries-like structure defined on all the vertices of
graph, excepting the corannulenic core. Figure 2-12b presents the equivalent torus of
T(6,3)HH8[12,56], obtained by applying the S1/Capra operation on T(6,3)V[4,24],
with the disjoint coronenic flowers in blue.

Table 2-3 gives the criteria for metallic shell in (6,3) tori of various types.
These criteria superimpose over those for PC structure: divisibility by 6 of the
net dimensions (see also50, 55, 56). In the opposite, Clar fullerenes (available by Le
operation)62 show closed-shell structure. 50,55

The last column in Table 2-3 gives criteria for the disjoint coronenic DCor
structure. Any DCor is a PC but the reciprocal is not necessarily obeyed. Divisibility
by twelve and four, of the net dimensions, give the new criterion.

At this stage, it is not clear if the supra organized corannulenic system would
bring a supplementary stability in such possible molecules, in comparison to the
total resonant benzenoid (Clar) structures. Out of the energetic aspects, it is possible
that such molecules behave in the magnetic field similarly to planar corannulenes,
for which evaluation of the ring currents was made by the CTOCD–DZ (continuous
transformation of origin of current density – diamagnetic zero) method.63– 67
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Table 2-3. Covering criteria for metallic M, perfect Clar PC and Disjoint Coronenic DCor structures in
polyhex tori

Torus M & PC DCor

Non-Twisted
1 H/Z�c�n� 0 mod (c,6) 0 mod (c,12); 0 mod (n,4)
2 V/A�c�n� 0 mod (n,6) 0 mod (c,4); 0 mod (n,12)

H-Twisted
3 HHt�c�n� 0 mod (c,6) 0 mod (c,12); 0 mod (n,4); 0 mod (t,4)
4 HVt�c�n� 0 mod (n,6) 0 mod(t,6) 0 mod (c,4); 0 mod (n,12) 0 mod (t,12)

V-Twisted
5 VHt�c�n� 0 mod (c,6) 0 mod (t,6) 0 mod (c,12); 0 mod (n,4); 0 mod (t,12)
6 VVt�c�n� 0 mod (n,6) 0 mod (c,4); 0 mod (n,12); 0 mod (t,4)

2.6. Identical Polyhex Toroidal Graphs

Toroidal objects generated by the TORUS software, even correctly named to reflect
different embeddings, could represent one and the same graph.

Let consider normal tori (ie., those with c < n). Their net dimensions can
be written as: n = c + r; r = 0� 2� c − 2� c�  and t = 0� 2� � c� . Investigating
the spectra of the characteristic polynomial of families of polyhex tori led to the
following:

Rules of Valencia 68

(i) The maximum value of t to provide distinct topological objects, in a family of
H-twisted polyhex tori, equals n/2.

(ii) The maximum value of t to provide distinct topological objects, in a family
of V-twisted polyhex tori, equals c/2.

As, by construction of the H-twisted polyhex tori, the maximum possible t-value
is tmax = c, the immediate consequence of Rule (i) is that n must be at least twice
higher than c for having all distinct topological objects. Higher values for n will
only repeat the already generated structures so that the rule was formulated for the
case: n higher than c at most twice. When n/2 < c, some duplicate objects appear,
as indicated in Table 2-4.

In case of V-twisted polyhex tori, t does not depend of the ratio c/n; sincet can
take values up to n (by construction), with periodicity at k�c/2�, k = 1� 2� , the
Rule (ii) was formulated for t = c at most. Details are given in Table 2-4.

In non-twisted tori, the HOMO-LUMO gap remains constant, at a given c-(in
H/Z�c� n� series) and n-(in V/A�c� n�) values, respectively. The same is true for
the twisted tori, according to the second capital letter in their name.

Note the identity of graphs H�c�n� = V�n�c� but having different embedding.
At c = n� H�c�c� = V�c�c� and HVt�c�c� = VHt�c�c�
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Table 2-4. Identical graphs in families of twisted polyhex tori according to the Rules of Valencia

Case Characters

1 General n = c+ r� r = 0� �2� c−2�� c� � t = 0� 2� � c� 

2 H-twist t = 0� 2� � n/2; distinct objects
2a H-twist

Case: r = c

n = 2c → tmax = c� all distinct objects

2b H-twist
Case: r = 0

n = c → V – twist

2c H-twist
Case: 0 < r < c

t = 0� 2� �r − 2�; distinct objects
t = r +0� 2� 4� � �c− r�/2 ≡ c−0� 2� 4� �c− r�/2; distinct pairs

3 V-twist t = 0� 2� � c/2; distinct objects
3a V-twist

Any case:
t = 0+0� 2� 4� � c/2 ≡ c−0� 2� 4� c/2; distinct pairs

note When c/2 or n/2 are odd, then tmax = t −1

2.7. Resonance Energy in Polyhex Tori

Resuming to the aromaticity of polyhex tori, recall that “resonance energy” RE is
defined as the difference E� − E��ref between the total �-energy of a conjugated
(aromatic) system and the energy of some reference structure. Several approaches
have been developed so far. 69

A system having RE > 0 is classified as “aromatic”, that having RE < 0 as
“antiaromatic” while that for which RE ≈ 0 as “non-aromatic”.

There exists a theorem70 enabling the calculation of resonance energy from the
number of Kekulé structures K, by means of eigenvalues of the molecular graph:

K =
v/2∏

i=1

�i (2.7)

RE = A · ln K (2.8)

with A being 1.185 (eV). We used this approach to evaluate the aromaticity/stability
of series of toroidal objects TXt�c� n�, the results being listed in Table 2-5.

The �-electronic shell of the toroids, in the above series, is either closed or
metallic M. The value of RE per atom, averaged for the whole family of embedding
isomers, is larger for those families entirely consisting of metallic (specified as:
Metallic, Clar and Cor, in Table 2-5) objects than for those having mixes metallic&
closed or only closed shell members. This result could support the expectation
for a higher stability of metallic/aromatic polyhex tori (even the values of RE, at
the Hückel level of theory, are supra-estimated, in comparison to those related in
ref. 69). The values in Table 2-5 have been averaged only for the distinct graphs of
the embedding isomers, according to Valencia’s rules (Section 2.6).
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Table 2-5. Twisted Tori families, topology, �-electronic shell and resonance energy RE

Torus t Shell and Covering RE (eV) Observation

T(6,3)Xt[12,56]; v = 672

1 HH 0 Metallic; Clar; Cor 0.1911 H/Z; non-twisted
2 2 Metallic; Clar 0.1917 twisted
3 4 Metallic; Clar; Cor 0.1935 twisted
4 6 Metallic; Clar 0.1961 twisted
5 8 Metallic; Clar; Cor 0.1978 twisted
6 10 Metallic; Clar 0.1988 twisted
7 12 Metallic; Clar; Cor 0.1995 twisted
8 0.1955 average
9 HV Closed 0.1912 average
10 VH Metallic & Closed 0.1850 average
11 VV Closed 0.1883 average

T(6,3)Xt[16,24]; v = 384

HH Closed 0.19355 average
HV Metallic & Closed 0.19699 average
VH Closed 0.19362 average
VV 0 Metallic; Clar; Cor 0.20480 V/A; non-twisted

2 Metallic; Clar 0.20481 twisted
4 Metallic; Clar; Cor 0.20482 twisted
6 Metallic; Clar 0.20483 twisted
8 Metallic; Clar; Cor 0.20484 twisted
10 Metallic; Clar 0.20483 twisted
12 Metallic; Clar; Cor 0.20482 twisted
14 Metallic; Clar 0.20481 twisted
16 Metallic; Clar; Cor 0.20480 V/A; non-twisted

0.20482 average
T(6,3)Xt[12,18]; v = 216

HH Metallic; Clar 0.21025 average
HV Metallic & Closed 0.19939 average
VH Metallic & Closed 0.19397 average
VV Metallic; Clar 0.21206 average

Conclusions

Construction of polyhex (6,3) tori starting from the square tiled (4,4) tori proved to
be a robust and versatile procedure. The topology of polyhex tori can be described
by the �-spiral code, adapted for tubular objects. Strain energy calculation, in terms
of the POAV1 theory, revealed toroidal polyhex objects even more relaxed than
the well-known C60. The �-electronic structure was evaluated at the Hückel level
of theory, criteria for the metallic character in (6,3) tori being given in terms of
the [c�n] net dimensions. These criteria superimpose over those of perfect Clar PC
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and disjoint Corannulenic DCor structures, envisaging the metallic polyhex tori as
total resonant benzenoid/corannulenoid molecules. Resonance energy calculations
provided support for the aromaticity of the hypothetical metallic tori. The study
of the graph spectra in families of embedding isomers, generated by the TORUS
software, enabled the formulation of two simple rules for distinct isomers provided
by the mentioned generator.
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Chapter 3

New Classes of Toroidal Structures

3.1. Distinct Walled Tori

3.1.1. DWNT as DWT Precursors

The final product in the thermal annealing of nanopeapods is a double-walled
carbon nanotube DWNT. It was discussed above (Chapter 1) that coalescence
can be induced by electron beam irradiation, when vacancies and dangling bonds
appear in the carbon lattice and energy reduction is achieved by elimination of
such defects. Field emission electron guns, already available, permit the controlled
irradiation of a small region at the nanometer scale. The dangling bonds, generated
by irradiation, could stabilize themselves by forming new bonds between the two
interlaced tubular units. This would result in formation of an elongated torus, named
hereafter “distinct-walled torus” DWT, to indicate different number of atoms on the
inner and outer walls, respectively. Various types of DWTs, derived from armchair
nanotubes, are further presented.

The inner tube is shown in Figure 3-1 as the top hexagons. Breaking of the
boldface bonds results in two dangling bonds. To remake the valence of three, each
dangling bond has to connect with two carbon atoms from the outer tube (see dotted
bonds in Figure 3-1). That is why twice as much carbon atoms in a row in the outer
tube are needed. Of course, the growth of the inner tube depends on the outer tube
diameter.

The junction between the two tubes consists of alternating pentagon/octagon/
pentagon POP triplets, which ensure the complementary curvature and stability
of the structure. The elimination of octagons is possible by Stone-Wales rotation
of the bonds connecting two vicinal pentagons. However, the pentagon-heptagon
PH containing junction appears more strained, after optimization, as suggested by
increased HF values (see below). The covering of both these junctions exhibits

51
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Figure 3-1. Joining scheme of the two distinct tubes in DWT formation.

a PC structure (see Figure 3-2 and below): [n]radialenic substructures appear for
n = odd and the odd-membered rings consist of only single bonds, while the double
bonds lye in the even-membered faces.

Considering armchair nanotubes with even or odd number of atom rows,
the combination of different nanotubes leads to four distinct classes of DWTs,
which resembles in their point group symmetry. The torus will have a horizontal
plane of symmetry only in case when both tubes have an even number of rows.
Figure 3-3 presents the repeat units of these tori. By copying the lines in boldface
for le/li =̇0� 1� 2 � � � the tube length increases. In case le/li = 0, the smallest possible
torus, having abutting pentagons (i�e�, pentalenes), is obtained.

The torus width w can be increased by adding more repeat units (in brackets).
Although it is possible to construct a torus from one unit, the strain at the apex
is appreciably reduced at values w ≥ 4. The name of these DWTs includes the
type of tubes and their dimensions, in Diudea’s nomenclature (see Chapter 2), the
fist being the outer tube and the last the inner tube: V/A�2c� 2n+ 1� corresponds
to a “V”-outer tube of 2c atoms in a row and odd number of rows (2n + 1) in
length, while the inner tube V/A�c� 2m+1� has half as many atoms in a row and
again an odd number of rows (2m + 1) in length. The length of two tubes can

Figure 3-2. Stone-Wales isomerization of the junction between the inner and outer tube of a DWT; the
edges involved are boldface.
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A[2c,2n + 1]/A[c,2m + 1]

w

li

le

A[2c,2n]/A[c,2m + 1]

le

li

w

A[2c,2n + 1]/A[c,2m]

le

li

w

le

li

w

A[2c,2n]/A[c,2m]

Figure 3-3. Units of the four types of POP-DWT, in geodesic projection.

be either equal, when n = m, or different (Figure 3-3). Note the symbols V or A
and H or Z are equivalent.

For every class of POP-DWTs an example is presented in Figures 3-4 and 3-5
both as top and side view; the non-hexagonal faces are shown in dark color. In all
these examples, the inner tube is the armchair A�10� n�, which is the tube that can

A[20,7]/A[10,9]  (top view) 

A[20,7]/A[10,9] (side view)

A[20,7]/A[10,8] (top view) 

A[20,7]/A[10,8] (side view) 

Figure 3-4. POP-DWTs with an odd number of rows in the outer tube.
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A[20,6] /A[10,8] (top view) 

A[20,6] /A[10,8] (side view) A[20,6] /A[10,7] (side view)

A[20,6] /A[10,7] (top view) 

Figure 3-5. POP-DWTs with an even number of rows in the outer tube.

result in the coalescence of two C60 molecules. Figure 3-4 presents POP-DWTs
with odd number of rows in the external tube. The structures in the left column
have the highest point group symmetry, D5h.

Figure 3-5 presents tori with even number of rows in the outer tube.
It is well known that, in case of polyhex tori, the minimal energy is reached

only at a perfect circular tube section. This happens at very large central hollow of
the torus. 1

With DWTs the situation is different. If the length of both tubes is small enough,
the cross section of the torus wall is near circular. As the tube length increases,
the cross section becomes an elongated, elliptic-shaped one. The heat of formation
decreases as the tube length increases, in all the four classes of DWTs (Table 3-1).

Note that similar tori have been previously proposed by several authors, 2,3,4,5

but no relation with peapods, coalescence and DWNT was suggested. Also note that
hemitori, resembling with our DWTs, have been observed by TEM6,7 and inferred
in multi walled nanotube growth.

The topology of the junction zone of a DWT influences both the strain and
heat of formation. Keeping constant one tube and varying the length of the other
enabled construction of a series of tori. Semiempirical calculations are presented
in Table 3-1 and Figures 3-6–3-7. The minimal energy corresponds to the most
relaxed structure. When there is a notable difference between the tubes length, the
energy increases due to hexagons forced to lie at the apex. At extreme low/high
values of m, the structure could not be optimized anymore. Figure 3-6 shows the
energy curve for a series of POP-DWTs, where the inner tube length varied in the
range m = 4� 5 · · · The structure with lowest energy was found A[20,5]/A[10,8].

The plot in Figure 3-7 shows a series of POP-DWTs with the inner tube length
maintained constant.
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Table 3-1. PM3 data for three classes of POP-DWTs

Name v Sym HF/v
(kcal/mol)

Gap
(eV)

A[20,5]/A[10,7] 170 D5h 15.159 5.031
A[20,7]/A[10,9] 230 D5h 12.122 5.685
A[20,9]/A[10,11] 290 D5h 10.827 4.218
A[20,11]/A[10,13] 350 D5h 9.890 3.767

A[20,3]/A[10,4] 100 D5d 32.213 6.274
A[20,5]/A[10,6] 160 D5d 15.978 5.134
A[20,7]/A[10,8] 220 D5d 12.678 5.589
A[20,9]/A[10,10] 280 D5d 11.376 4.092

A[20,4]/A[10,6] 140 D5 20.306 5.967
A[20,6]/A[10,8] 200 D5 14.408 4.988
A[20,8]/A[10,10] 260 D5 12.319 4.051
A[20,10]/A[10,12] 320 D5 10.756 4.760

Figure 3-6. Heat of formation values for the series A�20� 5�/A�10�m�m = 4� 5 � � � 11. of POP-DWTs.

Figure 3-7. Heat of formation values for the series A�20� n�/A�10� 7�n = 3� 5 � � � 9 of POP-DWTs.



56 Chapter 3

1
0 2 4 6 8 10

2

3

4

5

6

7

m

Junction
Torus

SE
 (

kc
al

/m
ol

)

Figure 3-8. Strain energy for the series A�20� n�/A�10�m��n = 7� 13� � � � 49�m = 11� 17� � � � 53 of
POP-DWTs.

If the length of both tubes was increased by the same number of rows, the
junction zone shoved an almost constant strain. The global strain energy decreases
as the tube length increases (Figure 3-8).

We limited here to only A�20� n�/A�10� m� tori, because these DWTs could
result in the coalescence of fullerene molecules. DWTs with larger central hollow
have also been modeled, in studying the influence of the primary tube diameter on
the structure stability. In this respect, a series of tori was constructed: the length was
kept unchanged but the number of repeat units was varied. The tori consisting of
one to three repeat units were very strained, they could not be optimized. Figure 3-9
presents tori with four and six repeat units, respectively.

A[16,5]/A[8,7] top view 

A[16,5]/A[8,7] side view

A[24,7]/A[12,9] top view 

A[24,7]/A[12,9] side view 

Figure 3-9. POP-DWTs with four/six repeat units.
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Table 3-2. PM3 data for a series of POP-DWTs having different number of repeat units

Name v Sym
HF/v
(kcal/mol)

Gap
(eV)

[12,5]/[6,7] 102 D3h 28.146 4.059
[16,5]/[8,7] 136 D4h 18.542 4.687
[20,5]/[10,7] 170 D5h 15.159 5.031
[24,5]/[12,7] 204 D6h 14.635 5.053
[28,5]/[14,7] 238 D7h 15.647 5.278

The data in Table 3-2 show that both thermodynamic and kinetic stability
increases as the tube diameter increases. The strain of these structures decreases as
the primary tube width increases.

Since semiempirical calculations are size limited, we performed only strain
energy calculations (Figure 3-10).

The Stone-Wales rotation can change the triple POP to the PH pair, in the
junction zones (Figure 3-11).

Table 3-3 lists data for sets of PH-DWT, SW-related to tori in Table 3-1. The
conclusion is that PH-junctions rise the strain of the tori, as shown by HF-values.

3.1.2. Perfect Clar DWTs

A molecule is more aromatic (eventually more stable) if it has a perfect Clar
PC structure8,9 (see also Chapter 6). It is a disjoint set of faces, built up on all
vertices in molecule, whose boundaries form a 2-factor (i�e., a set of disjoint cycles).
A PC structure is associated with a Fries structure, which is a Kekulé valence
structure having the maximum possible number of benzenoid faces. A Kekulé
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Figure 3-10. Strain energy SE for the series A�2c� 7�/A�c� 5�� c = 4� 6� � � � 30 of POP-DWTs.
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(a) SW(A[20,7]/A[10,9]) (top) (b) SW(A[24,7]/A[12,9]) (top) 

(c) SW(A[20,7]/A[10,9]) (side) (d) SW(A[24,7]/A[12,9]) (side) 

Figure 3-11. PH-DWTs resulted by the SW rotation of bonds joining two pentagons.

structure is a set of pairwise disjoint edges/bonds of the molecule (over all its
atoms). Molecules having PC/Fries structures represent totally resonant sextet TRS
benzenoid molecules and it is expected to be extremely stable, in the valence bond
theory.10 Leapfrog Le (see Chapter 5) is the only operation on maps that provides
PC transforms. s In DWT, the apex junction of the two tubes looks as shown in
Figure 3-2 (with no double bonds in the odd-membered rings) and is suitable for
a PC structure. The criterion for PC realization (given below) refers only to the
polyhex tubular zone; for armchair A[c,n] nanotubes, it reads:

POP-DWTs: A[2c,3(n+1)+1]/A[c,3(m+1) –1]
PH-DWTs: A�2c� 3�n+2��/A�c� 3�m+2��

Recall the Leapfrog Le operation on maps: Le�M� = Du�P3�M��. Keeping in
mind that dual of dual returns the original map, the Retro-Leapfrog RLe, leading to
the parent torus. can be written as: RLe�M� = RP3�Du�Le�M���, with RP3 being
the retro-operation of stellation P3.

Table 3-3. PM3 data for three series of PH-DWTs

Name v Sym HF/v
(kcal/mol)

Gap
(eV)

SW(A[20,5]/A[10,7]) 170 D5h 18.202 4.815
SW(A[20,7]/A[10,9]) 230 D5h 14.311 4.547
SW(A[20,9]/A[10,11]) 290 D5h 12.249 5.078
SW(A[20,5]/A[10,6]) 160 D5d 17.032 4.719
SW(A[20,7]/A[10,8]) 220 D5d 13.731 4.584
SW(A[20,9]/A[10,10]) 280 D5d 11.870 4.825
SW(A[20,4]/A[10,6]) 140 D5 20.306 5.967
SW(A[20,6]/A[10,8]) 200 D5 14.408 4.988
SW(A[20,8]/A[10,10]) 260 D5 12.319 4.051
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Figure 3-12a presents retro-leapfrog parent of a POP-DWT, which has the
corresponding vertices of valence four (in dark). It is known that a bounding
polygon, of size 2d0, is formed around each original vertex (Chapter 5); it is now
obvious that the octagonal face in POP-DWT came out by the leapfrog operation
and the object in Figure 3-12a exhibits a PC covering.

The SW-pair PH-DWT has an all trivalent, parent map (Figure 3-12b).
Noticeably, the SW operation preserves the PC character of the original map. The
corresponding junction zones are detailed in Figure 3-12c,d and the PC structure of
A[20,7]/A[10,8] and SW(A[20,9]/A[10,9]) tori are given in Figure 3-12e,f.

As above mentioned, DWTs with a PH junction are less stable than their
corresponding POP SW-pair. It is generally true, excepting the case of PC
PH-DWT; both the kinetic and thermodynamic stability of such tori is higher
than its pair PC POP-DWT. Table 3-4 presents semiempirical data performed on
PC DWTs.

It was found that DWTs become more relaxed by increasing the tube length.
A supplementary stability is brought by the PC covering. We limited here to the
armchair achiral nanotubes, but it is also possible to construct tori by chiral nanotubes.

By extension, a perfect corannulenic PCor structure was proposed by Diudea11

(Figure 3-13). It is a disjoint set of (supra) faces covering all vertices in the molecular
graph (see Chapter 6). A molecule has a PCor if and only if it has a PC but the
reciprocal is not always true. The supra-organized corannulenic units are expected

(a) RLe(A[20,7]/A[10,8]) (b) RLe(SW(A[20,9]/A[10,9])) 

(c) A[20,7]/A[10,8] (d) SW(A[20,9]/A[10,9]) 

(e) PC of A[20,7]/A[10,8] (f) PC of SW(A[20,9]/A[10,9]) 

Figure 3-12. Retro-Leapfrog (a, b); PC junctions (c, d) and PC DWTs (e, f).
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Table 3-4. PM3 data for PC DWTs

Name v Sym HF/v
(kcal/mol)

GAP
(eV)

Junction
type

A[20,4]/A[10,5] 130 D5 23.830 5.635 POP
A[20,4]/A[10,8] 160 D5 18.603 5.624 POP
A[20,4]/A[10,11] 190 D5 20.994 6.190 POP
A[20,7]/A[10,5] 190 D5h 17.926 5.409 POP
A[20,7]/A[10,8] 220 D5d 12.678 5.589 POP
A[20,7]/A[10,11] 250 D5h 12.274 4.518 POP
A[20,7]/A[10,14] 280 D5d 14.917 5.181 POP
A[20,10]/A[10,8] 280 D5 15.652 3.875 POP

SW(A[20,6]/A[10,6]) 180 D5 16.855 5.033 PH
A[20,9]/A[10,9] 270 D5h 12.441 3.725 POP
SW(A[20,9]/A[10,9]) 270 D5h 12.051 4.266 PH

Figure 3-13. The PCor of A[20,7]/A[10,5] POP-DWT.

to contribute to the stability of the whole molecule and to a particular behavior in
the magnetic field.

Note that any DWT can be covered with a PCor structure by using generalized
map operations.

3.2. Conetori

If a graphene sheet is divided into six sectors, each with an angle of 60� (Figure 3-14),
and if m of these sectors (with m varying from 1 to 5) are selected sequentially with
the dangling bonds being fused together, a series of five single-walled nanocones is
obtained, with a linear angle 	 at the cone apex equal to 112�9�, 83�6�, 60�0�, 38�9�,
and 19�2�. These values correspond to the formula:12 	 = 2 arcsin�m/6�.
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Figure 3-14. The six sectors on a honeycomb lattice.

One can add two extreme cases: (i) the graphene sheet, with all m = 6 sectors
being involved, corresponding to a “cone” with an angle of 180�; and (ii) when
m = 6, one obtains a “cone angle” equal to zero, corresponding to a nanotube
capped at one end with any combination of hexagons and six pentagons, e�g., a “half-
buckminsterfullerene”. Thus a nanotube capped at one end can be considered as a case
of nanocones, as Ebbesen has observed by transmission electron microscopy.13,14

In the hereafter text, only cones ending in polygons of s = 3 to 5, with no other
polygonal defect of the graphite sheet, will be considered. The name of such objects
includes: {[tip polygon] CN_length of the cone body} (in number of hexagon rows –
Figure 3-15).

Conical zones may be involved in the construction of the DWT, suggested15 to
result by sealing, with an electron beam, a double-walled carbon nanotube DWNT in
two distinct positions. Proposals of toroidal structures bearing polygonal defects are
known since the pioneering times of nanoscience.16,17,18 Such structures, of genus 1,
including conical zones and called hereafter conetori, are built up by joining the
cones with two tubes, one internal and the other external, of distinct diameters. Their
name includes: {[apex:length]CT(junction, internal tube type, length), (junction,
external tube type, length)}, the length being given in number of hexagon rows.
The tube is either a H/Z (zig-zag) or V/A (armchair) one.19

The idea of possible synthesis of this kind of tori originates in the experimental
evidence of nanopeapods, a hybrid structure consisting of (coalesced) fullerene
molecules encapsulated in single-walled nanotubes. 20,21,22

Two conical units could be connected to form a fullerene, an hourglass (Figure
3-16), or a torus.

3.2.1. Conetori with: Internal H/Z-Tube, External V/A-Tube

In the case of conetori, the junction between the external and internal tubes is:
pentagon/ heptagon/pentagon: (5,7,5). Figure 3-17 presents a conetorus of such
junction, in the optimized form. The PM3 data are given in the top of figure.
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[3]CN3; v = 48

[4]CN3; v = 64 

[5]CN3; v = 80 

Figure 3-15. Nanocones ending in a trigonal, tertagonal or pentagonal apex.

([5:3]CN(7H0); v = 160 ([5:3]CN(7H1); v = 170 

Figure 3-16. Conical units joined to form hourglasses.

[3:3] CT(7H0),(5,7,5V4); v = 360 HF/v (kcal/mol) = 9.625
GAP(eV) = 4.304

Figure 3-17. A conetorus with internal H/Z-tube, external V/A-tube.
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Within a series of increasing size, the clear trend exists: the larger object the higher
molecular stability, mainly achieved by strain relief.

3.2.2. Conetori with: Internal H/Z-Tube, External Cone
(Without Tube)

A series of conetori with no external tube is presented in Figure 3-18. The two
conical shirts fit in a single joining zone: (�5� 6k� 5�� k = 0� 1� ���. Their general name
is: [n 
 k+1]CT(7H0),(5� 6k� 5) k = 0� 1� �� Note that, these tori have no internal tube
(see “0” in their name, above) but the junction of the two conical zones is made as
in the H-tubes. The positive curvature is induced by the presence of pentagons. The
PM3 data for these tori are given in Table 3-5. Again, the stability of molecules
increases with the size.

[5:1]CT(7H0),(5,6k,5,6); v = 90; (top)

[5:2]CT(7H0),(5,6k,5); v = 160; (top)

[5:3]CT(7H0),(5,6k,5); v = 360; (top)

(side) 

(side) 

(side) 

Figure 3-18. Conetori [5:k+1]CT(7H0),(5� 6k� 5); k = 0� 1� �� with internal H/Z-tube, external cone.
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Table 3-5. PM3 data for tori [5:k + 1]CT(7H0),(5� 6k� 5) k = 0� 1� �� having internal H/Z- tube and
“external” cone

Name v Sym. HF/v
(kcal/mol)

Gap
(eV)

SE/v
(kcal/mol)

[5:1]CT(7H0),(5,6k,5,6) 90 D5 21.987 5.569 9.458
[5:2]CT(7H0),(5,6k,5) 160 D5d 12.723 5.210 4.994
[5:3]CT(7H0),(5,6k,5) 360 C1 7.640 4.773 2.315

Table 3-6. PM3 data for conetori with internal V/A-tube and external cone

Name v Sym. HF/v
(kcal/mol)

Gap
(eV)

SE/v
(kcal/mol)

[5:2]CT(7,6,7V3),(5,6,5) 220 CI 19.580 4.259 4.475
[5:3]CT(7,6,7V3),(5,6,6,5) 310 CI 14.071 3.731 3.875
[5:4]CT(7,6,7V4),(5,6,6,5) 420 CI 9.570 4.633 2.934

Table 3-6. gives the PM3 data for these tori, which indicate moderate stability,
which increases with the size.

3.2.3. Conetori with: Internal V/A-Tube, External Cone
(Without Tube)

In full analogy to the objects presented in Section 3.2.2., tori with internal V-tube and
“external” cone can be built up. Figure 3-19 presents previous steps in construction
of such tori. The subscript RO indicates the SW rotation used to change the junction
zone. Their general name is: [n 
 k+1]CT(5,8,5Vm),(5� 6k� 5); k = 0� 1� ��

Even the small conetori of this type are strained structures (see above), it could
be imagined that, by increasing the number of atoms, they become more relaxed
molecules, as suggested in Figure 3-20. This huge object can be covered by disjoint
coronenes (by using the generalized map operation (2,2) – see Chapter 5); it offers
the opportunity to address the question of aromaticity of such totally resonant
molecular systems and consequently the possible increase of molecular stability.

[5:2]CT(5,8,5V2),(5,6,5); v = 220 [5:2]CT(7,6,7ROV3),(5,6,5); v = 220

Figure 3-19. Steps in construction of tori with internal V-tube, external cone.
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(2,2)([5:2]CT(7H0),(5,7,5V4))
v = 4320; SE/v = 0.52 kcal/mol

DCor

Figure 3-20. A conetorus with disjoint coronenic units. The strain energy SE/v is calculated in terms of
POAVI theory.

3.3. Diameter Doubling of SWNT

Diameter doubling of single-walled carbon nanotubes has been observed experi-
mentally. Armchair tubes were annealed at 1400 or 1500�C under vacuum, flowing
argon, flowing hydrogen atmosphere, etc. As many as 60% of the nanotubes so
treated coalesced with their neighbors, the proportion depending on the atmosphere.
The coalesced nanotubes show twice (and occasionally three times) the diameter
of the initial tubes. Only nanotubes with identical chirality are believed to undergo
coalescence.24,25

Studies by high-resolution transmission electron microscopy HRTEM, allowed
access to a variety of structural changes in carbon systems. Electron irradiation
removes carbon atoms from their lattice sites, by knock-on displacements. The atoms
can either be ejected from the tube, or migrate as interstitials along the inner or
outer surface. The high temperature ensures a high mobility of interstitials and
hence a rapid annealing of defects. Because of the vacancies, the system becomes
energetically unstable. When tubes are assembled in bundles, the irradiated tubes
will establish links in order to satisfy most of the dangling bonds. The fusion is
driven by the minimization of strain energy so that tubes with larger diameter are
created.26

Generation of interstitials at a graphite-diamond interface can lead to the trans-
formation of graphite to diamond.27 This phenomenon has also been studied by
electron microscopy.

A zipper mechanism was proposed for armchair nanotube coalescence. The
initial steps are similar to the formation of the local bridge between spherical
fullerenes, followed by a sequence of SW transformations. The resulted Y-junction
consists of an octagon and four heptagons, and it propagates axially, similar
to a zipper. The transformation cycle requires nine SW steps, the process
being exothermic. This transformation was evidenced experimentally by HRTEM.
Nanotubes, lying close and parallel to each other, at 800�C start to merge fast after
the initial connection. The main advantage of this mechanism is that such systems
are vacancy free. 28
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H/Z[18,6] D = 0.710 nm (side) H/Z t [18,6] t = 4k, k = 0, 1,… (top)

H/Z18[36,3] D = 1.406 nm (side) H/Z t [18,6], t = 4k + 2, k = 0, 1, … (top)

Figure 3-21. Zig-zag H/Z nanotubes before and after twisting.

In experiments with nanopeapods, the inner tube diameter growth, up to 0.71
nm distance from the host nanotube wall, was observed. The authors proposed a
model based on formation of achiral zig-zag nanotubes at the beginning of fullerene
coalescence. In the light of our previous results, 29 we propose the formation of
chiral/twisted zigzag tubes, a process often appearing in the synthesis of nanotubes,
which stepwise enlarges the diameter, up to the doubling one. Note that the final
tube is again achiral (and zigzag as well), and its length is half of the initial tube.
Figure 3-21 illustrates the diameter doubling by twisting (right hand column, top
view) of a zigzag polyhex nanotube.

The twisting leads to more relaxed molecules, by decreasing the strain of their
surface, as shown in Figure 3-22.
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Figure 3-22. Energy curve of the twisting process of H/Z[18,6].



New Classes of Toroidal Structures 67

The armchair tubes change to zigzag ones at the complete twisting (t = c),
but without diameter doubling. Such tubes can enlarge the diameter, either by the
zipper mechanism, or by previous transformation in zig-zag tubes, again by SW
isomerization (see Chapter 5).

Joining single-walled carbon nanotubes to form X, Y and T molecular junctions
are experimentally achieved by electron beam irradiation of crossed tubes. The
ultrasonic dispersion of SWNTs in solution leads to a random crisscrossing distri-
bution. These arrangements were monitored under TEM, and the crossing points
were irradiated for a short time. The two tubes merged together resulting an X
shaped junction. By further careful irradiation it was possible to remove the arms
of the junction in order to create a Y or T junction.30

The reason why the merging process takes place is the formation of dangling bonds,
under electron beam. It is noticeable that, in the absence of irradiation, the process does
not occur. The energy of the system is lowered by connecting the dangling bonds in
both tubes, which results in the junction. In the new surface, heptagons and octagons
appear to introduce a smooth negative curvature (see Chapter 7).

Conclusions

The coalescence of fullerene molecules, experimentally observed by TEM in
annealed/irradiated peapods, can be described by a sequence of Stone-Wales SW
bond rotations. Tubulenes can further be transformed, by SW, in other tubular
forms. The finally resulted double-walled nanotubes DWNTs could be precursors
of distinct-walled tori DWTs, with the apex zones decorated by non-hexagonal
faces. Semiempirical calculations proved that such tori are far more stable than the
classical polyhex ones, at least at small and moderate size.
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Chapter 4

Counting Polynomials of Nanostructures

4.1. Graph Theory Background

Graph theory applied in the study of molecular structures is an interdisciplinary
science, called chemical graph theory or molecular topology.1 A graph, G =
G�V�E� is a pair of two sets: V = V�G� is a finite, nonempty set of points (i.e.,
vertices) and E = E�G�, the set of unordered pairs of distinct points of V . In
a graph, v = �V�G�� and e = �E�G�� are the cardinalities of the sets V and E,
respectively. Each pair of points (vi� vj) (or simply (i� j) ) is a line (i.e., edge),
ei�j , of G if and only if �i� j� ∈ E�G�. Two vertices are adjacent if they are joined
by an edge. If two distinct edges are incident with a common vertex, they are
adjacent edges. The angle between edges as well as the edge length is disre-
garded. The term graph was introduced by Sylvester. 2 A complete graph, Kv, is
the graph with any two vertices adjacent. The number of edges in a complete
graph is v�v − 1�/2. A bipartite graph is a graph whose vertex set V can be
partitioned into two disjoint subsets: V1 ∪V2 = V ; V1 ∩V2 = Ø such that any edge
�i� j� ∈ E�G� joins V1 with V2. A graph is bipartite if and only if all its cycles are
even.3,4

A walk w is an alternating string of vertices and edges, w�1� n� = �v1� e1� v2� e2�
� � � � vn−1� em� vn�, vi ∈ V�G�, ei ∈ E�G�, m ≥ n− 1, such that any subsequent pair
of vertices (vi−1� vi� ∈ E�G�. Revisiting of vertices and edges is allowed. Then
V�w�1� n�� = �v1� v2� � � � � vn−1� vn� is the set of vertices of w�1� n�. Similarly,
E�w�1� n�� = �e1� e2� � � � � em−1� em� is the set of edges of w�1� n�. The length of a
walk, l�w�1� n�� = ∣

∣E�w1�n�
∣
∣ ≥ �V�w1�n��−1, equals to the number of its traversed

edges. The walk is closed if v1 = vn (i.e., its endpoints coincide) and is open
otherwise.

A path p is a walk having all its vertices and edges distinct: vi �= vj , �vi−1� vi� �=
�vj−1� vj� for any 1 ≤ i < j ≤ n. As a consequence, revisiting of vertices and edges, as

69
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well as branching, is prohibited. The length of a path is l�p�1� n�� = �E�p�1� n��� =
�V�p�1� n���−1. A closed path is a cycle (i.e., circuit). A graph is connected if every
pair of vertices is joined by a path. A path is Hamiltonian if it visits once all the
vertices of G. If such a path is a closed one, then it is a Hamiltonian circuit. 1,3,4

To any organic molecule, an adjacency matrix, A(G), can be associated.1,4 This
is a square table, of dimensions v×v, whose entries are defined as:

�A�G�	ij =
{

1 if i �= j and �i� j� ∈ E�G�
0 if i �= j or �i� j� 	 E�G�

(4.1)

A3

A�A3�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2
5 0 0 0 1 0 1 0 0 0 1 0 0 0 0 3
6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 3
7 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2
8 0 0 0 0 0 0 1 0 1 0 0 0 0 1 3
9 0 0 0 0 0 0 0 1 0 1 1 0 0 0 3
10 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2
11 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2
12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2
13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2
14 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2
CS 2 2 2 2 3 3 2 3 3 2 2 2 2 2 32

A(G) characterizes a graph up to isomorphism. It is symmetric vs. its main
diagonal and allows the reconstruction of the graph. The sum of entries in the ith

row/column equals the degree of ith vertex, which is a graph invariant. All the
following examples are given for the graph A3 associated to the anthracene.
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The distance matrix, DI(G), introduced in 1969 by Harary,3 is a square
symmetric table, of dimensions v × v, whose entries count the number of edges
along the shortest path p(i ,j) joining vertices i and j:

�DI�G�	ij =
{

l�p�i� j�� = min� if i �= j
0 if i = j

(4.2)

The entries in DI(G) represent just the topological distances in G. The matrix
DI of the graph A3 is presented below. The half sum of all the entries in the distance
matrix is the well-known Wiener W topological index:5

W =∑

i<j
�DI�G�	i j

(4.3)

DI�A3�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 2 3 2 1 2 3 4 3 5 6 5 4 41
2 1 0 1 2 3 2 3 4 5 4 6 7 6 5 49
3 2 1 0 1 2 3 4 5 4 3 5 6 7 6 49
4 3 2 1 0 1 2 3 4 3 2 4 5 6 5 41
5 2 3 2 1 0 1 2 3 2 1 3 4 5 4 33
6 1 2 3 2 1 0 1 2 3 2 4 5 4 3 33
7 2 3 4 3 2 1 0 1 2 3 3 4 3 2 33
8 3 4 5 4 3 2 1 0 1 2 2 3 2 1 33
9 4 5 4 3 2 3 2 1 0 1 1 2 3 2 33

10 3 4 3 2 1 2 3 2 1 0 2 3 4 3 33
11 5 6 5 4 3 4 3 2 1 2 0 1 2 3 41
12 6 7 6 5 4 5 4 3 2 3 1 0 1 2 49
13 5 6 7 6 5 4 3 2 3 4 2 1 0 1 49
14 4 5 6 5 4 3 2 1 2 3 3 2 1 0 41
CS 41 49 49 41 33 33 33 33 33 33 41 49 49 41 558

Randić has proposed a hyper-Wiener index,6 which is calculable as the half
sum of entries in the distance-combinatorial matrix DIp�G�: 1

WW =∑

i<j
�DIp�G�	i j

(4.4)

The entries of the DIp�G� matrix count all the paths np⊂p�i�j� included in the
shortest path p�i� j�, as defined below:1,7

�DIp�G�	ij =
{

np⊂ p�i�j�
 l�p�i� j�� = min � if i �= j
0 if i = j

(4.5)
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np∈p�i�j� =
(

�DI	ij +1
2

)

= ���DI	ij�
2 + �DI	ij�/2 (4.6)

The matrix DIp of the graph A3 is presented in the following.

DIp�A3�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 3 6 3 1 3 6 10 6 15 21 15 10 100
2 1 0 1 3 6 3 6 10 15 10 21 28 21 15 140
3 3 1 0 1 3 6 10 15 10 6 15 21 28 21 140
4 6 3 1 0 1 3 6 10 6 3 10 15 21 15 100
5 3 6 3 1 0 1 3 6 3 1 6 10 15 10 68
6 1 3 6 3 1 0 1 3 6 3 10 15 10 6 68
7 3 6 10 6 3 1 0 1 3 6 6 10 6 3 64
8 6 10 15 10 6 3 1 0 1 3 3 6 3 1 68
9 10 15 10 6 3 6 3 1 0 1 1 3 6 3 68

10 6 10 6 3 1 3 6 3 1 0 3 6 10 6 64
11 15 21 15 10 6 10 6 3 1 3 0 1 3 6 100
12 21 28 21 15 10 15 10 6 3 6 1 0 1 3 140
13 15 21 28 21 15 10 6 3 6 10 3 1 0 1 140
14 10 15 21 15 10 6 3 1 3 6 6 3 1 0 100
CS 100 140 140 100 68 68 64 68 68 64 100 140 140 100 1360

A matrix counting the edges on the longest path between vertices i and j, is
called the detour matrix, DE(G) 8,9

�DE�G�	ij =
{

l�p�i�j�� = max� if i �= j
0 if i = j

(4.7)

The matrix DE of the graph A3 is presented in the following.
The half sum of all the entries in the detour matrix is the detour w index:10,11

w =∑

i<j
�DE�G�	i j

(4.8)

In full analogy to the hyper-Wiener index, a hyper-detour index10,11 is defined:

ww =∑

i<j
�DEp�G�	i j

(4.9)
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DE(A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 13 12 11 10 13 12 11 12 13 11 10 11 12 151
2 13 0 13 12 11 12 11 10 11 12 10 9 10 11 145
3 12 13 0 13 12 11 12 11 10 11 11 10 9 10 145
4 11 12 13 0 13 10 13 12 11 12 12 11 10 11 151
5 10 11 12 13 0 9 8 7 12 13 11 10 11 12 139
6 13 12 11 10 9 0 13 12 7 8 12 11 10 11 139
7 12 11 12 13 8 13 0 13 8 7 13 12 11 12 145
8 11 10 11 12 7 12 13 0 9 8 10 11 12 13 139
9 12 11 10 11 12 7 8 9 0 13 13 12 11 10 139

10 13 12 11 12 13 8 7 8 13 0 12 11 12 13 145
11 11 10 11 12 11 12 13 10 13 12 0 13 12 11 151
12 10 9 10 11 10 11 12 11 12 11 13 0 13 12 145
13 11 10 9 10 11 10 11 12 11 12 12 13 0 13 145
14 12 11 10 11 12 11 12 13 10 13 11 12 13 0 151
CS 151 145 145 151 139 139 145 139 139 145 151 145 145 151 2030

The detour-combinatorial matrix DEp is defined as:1,10

�DEp�G�	ij =
{

np⊂p�i�j�
 l�p�i� j�� = max� if i �= j
0 if i = j

(4.10)

Number of paths np⊂p�i�j� included in the longest path joining i and j is calcu-
lated by:

np∈p�i�j� =
(

�DE	ij +1
2

)

= {
� �DE	ij�

2 + �DE	ij

}
/2 (4.11)

The matrix DEp of the graph A3 is presented in the following.
According to the principle of unsymmetric characterization of a path, Diudea

proposed1,12 the unsymmetric Szeged matrices, USZ, on the basis of Gutman’s
counting of non-equidistant vertices with respect to the endpoints of any edge/path
(i� j) in G, giving the well-known Szeged SZ index:13

�USZX(G)	ij =
{

ni��i�j� if i �= j
0 if i = j

(4.12)
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DEp(A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 91 78 66 55 91 78 66 78 91 66 55 66 78 959
2 91 0 91 78 66 78 66 55 66 78 55 45 55 66 890
3 78 91 0 91 78 66 78 66 55 66 66 55 45 55 890
4 66 78 91 0 91 55 91 78 66 78 78 66 55 66 959
5 55 66 78 91 0 45 36 28 78 91 66 55 66 78 833
6 91 78 66 55 45 0 91 78 28 36 78 66 55 66 833
7 78 66 78 91 36 91 0 91 36 28 91 78 66 78 908
8 66 55 66 78 28 78 91 0 45 36 55 66 78 91 833
9 78 66 55 66 78 28 36 45 0 91 91 78 66 55 833

10 91 78 66 78 91 36 28 36 91 0 78 66 78 91 908
11 66 55 66 78 66 78 91 55 91 78 0 91 78 66 959
12 55 45 55 66 55 66 78 66 78 66 91 0 91 78 890
13 66 55 45 55 66 55 66 78 66 78 78 91 0 91 890
14 78 66 55 66 78 66 78 91 55 91 66 78 91 0 959
CS 959 890 890 959 833 833 908 833 833 908 959 890 890 959 12544

ni�p�i�j� = ∣
∣
{
v
∣
∣v ∈ V�G�
xiv < xjv

}∣
∣ (4.13)

In the above, X = DI; DE and x denotes the metric of the elements of these
matrices. They can be symmetrized by the Hadamard multiplication with their
transposes T:

SMp = UM • �UM�T (4.14)

SMe = SMp •A (4.15)

where A is the adjacency matrix. The symbol • indicates the Hadamard (pairwise)
matrix product14 (i.e., [Ma • Mb]ij = [Ma]ij [Mb]ij ). For the symmetric matrices,
the letter S is usually missing. The subscript e / p denotes the calculation “on edge”
((i� j) is an edge) or “on path” ((i� j) is a path).

The Szeged matrix (defined on distances) of the graph A3 is presented in the
following. The elements of the corresponding “e”-calculated matrix are given in
bold-red.
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USZDI(A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 11 6 7 2 3 3 6 4 5 7 7 8 6 75
2 3 0 7 2 3 2 4 4 5 3 5 7 6 6 57
3 2 7 0 3 2 3 3 5 4 4 6 6 7 5 57
4 7 6 11 0 3 2 5 4 6 3 6 8 7 7 75
5 6 11 10 11 0 7 4 7 6 7 8 8 9 7 101
6 11 10 11 6 7 0 7 6 7 4 7 9 8 8 101
7 7 10 8 9 4 7 0 7 4 7 9 8 10 7 97
8 8 8 9 7 7 6 7 0 7 4 6 11 10 11 101
9 7 9 8 8 6 7 4 7 0 7 11 10 11 6 101

10 9 8 10 7 7 4 7 4 7 0 7 10 8 9 97
11 7 7 8 6 6 4 5 2 3 3 0 11 6 7 75
12 5 7 6 6 4 5 3 3 2 4 3 0 7 2 57
13 6 6 7 5 5 4 4 2 3 3 2 7 0 3 57
14 6 8 7 7 4 6 3 3 2 5 7 6 11 0 75
CS 84 108 108 84 60 60 59 60 60 59 84 108 108 84 1126

A Cluj fragment, 1,15,16,17,18 symbolized CJi�j�p, collects vertices v lying closer
to i than to j, the endpoints of a path p�i� j�. In other words, such a fragment
collects the vertex proximity of i against any vertex j, joined by the path p, with
the distances measured in the subgraph G-p, as shown in the following equation:

CJi�j�p = {
v
∣
∣v ∈ V�G�
 D�G−p��i� v� < D�G−p��j� v�

}
(4.16)

In cycle-containing graphs, more than one path could join the pair (i� j), thus
resulting more than one fragment related to i (with respect to j and a given path p).
By definition, the entries in the Cluj matrix are taken as the maximum cardinality
among all such fragments:

�UCJX�G�	i�j = max
p

∣
∣CJi�j�p

∣
∣ (4.17)

When the path p belongs to the set of distances DI�G�, the suffix DI is added to
the name of matrix: X = DI. When path p belongs to the set of detours DE�G�, the
suffix is DE. The Cluj matrices are defined in any graph and are, in general, unsym-
metric, exceptingsomesymmetricgraphs.Theycanbe symmetrized by the Hadamard
multiplication with their transposes, as shown above for the Szeged matrices.

In trees, due to the unicity of paths joining any two vertices, CJDI=CJDE and
CJi�j�p counts the paths going to j through i. Also, CJDIe = SZDIe in any graph
(compare the red-marched entries in SZDI and CJDI of A3) but the p-counted
matrices are different CJDIp �= SZDIp.

Basic properties of the Cluj matrices and applications of single number derived
descriptors have been presented elsewhere. 15,16,17,18 The Cluj matrices of the graph
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A3 are presented in the following. The elements of the corresponding “e”-calculated
matrix are given in bold-red.

UCJDI(A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 11 6 6 2 3 4 4 4 4 6 6 5 5 66
2 3 0 7 2 2 2 4 3 3 3 5 5 4 5 48
3 2 7 0 3 2 2 3 3 3 4 5 4 5 5 48
4 6 6 11 0 3 2 4 4 4 4 5 5 6 6 66
5 10 10 10 11 0 7 6 6 6 7 8 7 7 7 102
6 11 10 10 10 7 0 7 6 6 6 7 7 7 8 102
7 8 8 8 8 4 7 0 7 4 4 8 8 8 8 90
8 8 7 7 7 6 6 7 0 7 6 10 10 10 11 102
9 7 7 7 8 6 6 6 7 0 7 11 10 10 10 102

10 8 8 8 8 7 4 4 4 7 0 8 8 8 8 90
11 6 6 5 5 4 4 4 2 3 4 0 11 6 6 66
12 5 5 4 5 3 3 3 2 2 4 3 0 7 2 48
13 5 4 5 5 3 3 4 2 2 3 2 7 0 3 48
14 5 5 6 6 4 4 4 3 2 4 6 6 11 0 66
CS 84 94 94 84 53 53 60 53 53 60 84 94 94 84 1044

UCJDE(A3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS

1 0 1 1 2 2 1 1 2 1 1 3 3 1 1 20
2 1 0 1 1 2 1 3 3 2 2 4 4 2 2 28
3 1 1 0 1 1 2 2 2 3 3 2 2 4 4 28
4 2 1 1 0 1 2 1 1 2 1 1 1 3 3 20
5 2 2 1 1 0 3 3 6 1 1 2 2 2 2 28
6 1 1 2 2 3 0 1 1 6 3 2 2 2 2 28
7 1 2 1 1 1 1 0 1 1 4 1 1 2 1 18
8 2 2 2 2 6 1 1 0 3 3 2 2 1 1 28
9 2 2 2 2 1 6 3 3 0 1 1 1 2 2 28

10 1 1 2 1 1 1 4 1 1 0 1 2 1 1 18
11 3 3 1 1 2 1 1 2 1 1 0 1 1 2 20
12 4 4 2 2 3 2 2 2 1 3 1 0 1 1 28
13 2 2 4 4 2 3 3 1 2 2 1 1 0 1 28
14 1 1 3 3 1 2 1 1 2 1 2 1 1 0 20
CS 23 23 23 23 26 26 26 26 26 26 23 23 23 23 340
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4.2. Counting Polynomials

It is well-known that a graph can be described by: a connection table, a sequence
of numbers, a matrix, a polynomial or a derived number (called a topological
index). In Quantum Chemistry, the early Hűckel theory calculated the levels of
�-electron energy of the molecular orbitals, in conjugated hydrocarbons, as roots
of the characteristic polynomial: 19,20,21

P�G�x� = det�xI −A�G�	 (4.18)

In the above, I is the unit matrix of a pertinent order and A the adjacency
matrix of the graph G. The characteristic polynomial is involved in the evaluation
of topological resonance energy TRE, the topological effect on molecular orbitals
TEMO, the aromatic sextet theory, the Kekulé structure count, etc. 19,20,21,22,23,24,25

The coefficients m�G�k� in the polynomial expression:

P�G�x� =∑

k
m�G�k� ·xk (4.19)

are calculable from the graph G by a method making use of the Sachs graphs,
which are subgraphs of G. Relation (2) was found independently by Sachs, Harary,
Mili, Spialter, Hosoya, etc. 1 The above method is useful in small graphs but, in
larger ones, the numeric methods of linear algebra, such as the recursive algorithms
of Le Verier, Frame, or Fadeev, are more efficient. 26,27

An extension of relation (4.18) was made by Hosoya28 and others29,30,31,32 by
changing the adjacency matrix with the distance matrix and next by any square
topological matrix.

Relation (4.19) is a general expression of a counting polynomial, written as a
sequence of numbers, with the exponents showing the extent of partitions p�G�,
∪p�G� = P�G� of a graph property P�G� while the coefficients m�G�k� are related
to the occurrence of partitions of extent k.

Counting polynomials have been introduced, in the Mathematical Chemistry
literature, by Hosoya,33,34 with his Z-counting (independent edge sets) Z�G�x� and
the distance degree (initially called Wiener and later Hosoya)35,36 H�G�x� polyno-
mials. Their roots and coefficients are used for the characterization of topological
nature of hydrocarbons.

Hosoya also proposed the sextet polynomial37,38,39,40 for counting the resonant
rings in a benzenoid molecule. The sextet polynomial is important in connection
with the Clar aromatic sextets, 41,42 expected to stabilize the aromatic molecules.

The independence polynomial43,44,45 counts selections of k-independent vertices
of G. Other related graph polynomials are the king, color, star or clique polynomials.
46,47,48,49,50 More about polynomials the reader can find in ref 1.
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Some distance-related properties can be expressed in the polynomial form, with
coefficients calculable from the layer and shell matrices. 51,52,53,54,55 These matrices
are built up according to the vertex distance partitions of a graph, as provided by
the TOPOCLUJ software package.56

4.3. Layer/Shell Matrices and Polynomial Coefficients

Let us define the kth layer/shell of vertices v with respect to the vertex i as:54

G�i�k = � v � v ∈ V�G�
 div = k � (4.20)

The collection of all its layers defines the partition of G with respect to i:

G�i� = �G�i�k 
 k ∈ �0� 1� ��� ecci	 � (4.21)

with ecci being the eccentricity of i (i.e., the largest distance from i to the other
vertices in G). The entries in the layer matrix (of vertex property) LM are defined as:

�LM	i�k = ∑

v�di�v=k

pv (4.22)

The zero column is just the column of vertex property �LM	i�0 = pi. Any
atomic/vertex property can be considered as pi. More over, any square matrix M
can be taken as info matrix, i�e�, the matrix supplying local/vertex properties as
row sum RS, column sum CS or diagonal entries given by the Walk matrix, 1 as
implemented in the TOPOCLUJ software. 56

The layer matrix is a collection of the above defined entries:

LM = {
�LM	i�k
 i ∈ V�G�
 k ∈ �0� 1� ��� d�G�	

}
(4.23)

with d�G� being the diameter (i.e., the largest distance) of G.
The entries in the shell matrix SM (of vertex pair property) are defined as:54

�SM	i�k = ∑

v�di�v=k

�M	i�v (4.24)

where M is any square topological matrix. Any other operation over the square
matrix entries �M	i�v can be used. The shell matrix is a collection of the above
defined entries:

SM = {
�SM	i�k
 i ∈ V�G�
 k ∈ �0� 1� ��� d�G�	

}
(4.25)
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The zero column �SM	i�0 could collect the diagonal entries in the parent
(weighted) square matrix. In the case that they are zero, by definition, �SM	i�0 = 1.
However, we prefer to leave out the zero column, without loosing the generality.
This is because the distance-related properties are better counted for k ≥ 1.

Vertex contributions to a polynomial P�G�x�, based on distance counting, can
be written as:

P�i� x� = �1/2�
∑

k
p�i� k� ·xk (4.26)

where p�i� k� is the contribution of vertex i to the partition p�G�k� of the global
molecular property P = P�G�. Note that p�i� k�’s are just the entries in LM or
SM (more exactly 1/2 the value because the contribution of each vertex is counted
twice).

Usually, the vertex/atom contributions to the molecular property vary, so that the
polynomial for the whole molecule is obtained by summing all atomic contributions:

P�G�x� =∑

i
P�i� x� (4.27)

In a vertex transitive graph, the vertex contribution is simply multiplied by N :

P�G�x� = N ·P�i� x� (4.28)

Thus, the coefficients p�G�k� are obtained as the column (half) sums of the entries
in LM or SM. Hence, P�G� is easily obtained as the polynomial value in x=1:

P�G� = P�G�x��x=1 (4.29)

A distance-extended/weighted property D_P(G) can be calculated by the first
derivative of the polynomial, in x = 1:

D_P�G� = P ′�G�x� =∑

k
k ·p�G�k� ·xk−1�x=1 (4.30)

Any square matrix can be used as an info matrix for the layer/shell
matrices, thus resulting an unlimited number of (distance-based) counting polyno-
mials. The property P can be taken either as a crude property (i.e., column
zero in LM) or within some weighting scheme (i.e., transformed by the
sequence: W-operator W(M1,M2,M3�, W(M) matrix, LM/SM) as implemented in
TOPOCLUJ.1,45,56

Some examples (calculated on the anthracene (G = A3) molecule) are given in
the following:

Layer Matrices. Case: pi = 1; the layer matrix of counting LC, and the counting
polynomial P(LC,G�x), written in the second bottom row of the table, is just the
Hosoya polynomial H�G�x�, with the meaning of a distance degree sequence. 1

The distance-extended property is the well-known Wiener index5 W .
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LC(A3)

k 1 2 3 4 5 6 7 v Meaning

1 2 3 3 2 2 1 0 14
2 2 2 2 2 2 2 1 14
3 2 2 2 2 2 2 1 14
4 2 3 3 2 2 1 0 14
5 3 4 3 2 1 0 0 14
6 3 4 3 2 1 0 0 14
7 2 4 5 2 0 0 0 14
8 3 4 3 2 1 0 0 14
9 3 4 3 2 1 0 0 14

10 2 4 5 2 0 0 0 14
11 2 3 3 2 2 1 0 14
12 2 2 2 2 2 2 1 14
13 2 2 2 2 2 2 1 14
14 2 3 3 2 2 1 0 14

196
m(LC, A3� k�∗ 16 22 21 14 10 6 2 98 paths

D_P 16 44 63 56 50 36 14 279 W

∗P(LC,G�x)=H�G�x�

Shell Matrices. The info matrix is the detour matrix DE:

SM (DE(A3��

k 1 2 3 4 5 6 7 CS(DE) Meaning

1 26 34 35 24 22 10 0 151
2 26 24 22 22 22 20 9 145
3 26 24 22 22 22 20 9 145
4 26 34 35 24 22 10 0 151
5 35 42 29 22 11 0 0 139
6 35 42 29 22 11 0 0 139
7 26 40 55 24 0 0 0 145
8 35 42 29 22 11 0 0 139
9 35 42 29 22 11 0 0 139

10 26 40 55 24 0 0 0 145
11 26 34 35 24 22 10 0 151
12 26 24 22 22 22 20 9 145
13 26 24 22 22 22 20 9 145
14 26 34 35 24 22 10 0 151

2030
m(SDE, A3,k) 200 240 227 160 110 60 18 1015 w

D_P 200 480 681 640 550 360 126 3037 DE_H_DI
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Info matrix is the (unsymmetric) Cluj Distance matrix UCJDI:

SM(UCJDI(A3��

k 1 2 3 4 5 6 7 CS(CJDI) Meaning

1 14 12 14 9 11 6 0 66
2 10 4 6 6 8 9 5 48
3 10 4 6 6 8 9 5 48
4 14 12 14 9 11 6 0 66
5 25 32 24 14 7 0 0 102
6 25 32 24 14 7 0 0 102
7 14 24 36 16 0 0 0 90
8 25 32 24 14 7 0 0 102
9 25 32 24 14 7 0 0 102

10 14 24 36 16 0 0 0 90
11 14 12 14 9 11 6 0 66
12 10 4 6 6 8 9 5 48
13 10 4 6 6 8 9 5 48
14 14 12 14 9 11 6 0 66

1044
m(UCJDI,A3,k) 112 120 124 74 52 30 10 522

D_P 112 240 372 296 260 180 70 1530 CJDI_H_DI

Info matrix is the (unsymmetric) Cluj Detour UCJDE:

SM(UCJDE(A3))

k 1 2 3 4 5 6 7 CS(UCJDE) Meaning

1 2 4 5 2 4 3 0 20
2 2 2 5 5 4 6 4 28
3 2 2 5 5 4 6 4 28
4 2 4 5 2 4 3 0 20
5 5 7 10 4 2 0 0 28
6 5 7 10 4 2 0 0 28
7 2 4 10 2 0 0 0 18
8 5 7 10 4 2 0 0 28
9 5 7 10 4 2 0 0 28

10 2 4 10 2 0 0 0 18
11 2 4 5 2 4 3 0 20
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(Contiued)

1 2 3 4 5 6 7 CS(UCJDE) Meaning

12 2 2 5 5 4 6 4 28
13 2 2 5 5 4 6 4 28
14 2 4 5 2 4 3 0 20

340
m(UCJDE,A3,k) 20 30 50 24 20 18 8 170

D_P 20 60 150 96 100 108 56 590 CFDE_H_DI

4.4. Cluj Polynomials

The Cluj polynomials are defined, on the basis of Cluj matrices, as: 57

CJ�G�x� =∑

k
m�G�k� ·xk (4.31)

They count vertex proximities of vertices i with respect to any vertex j in G,
joined to i by an edge {pe�i} (the Cluj-edge polynomials) or by a path {pp�i} (the
Cluj-path polynomials), taken as the shortest (distance DI) or the longest (detour
DE) paths. In (4.31), the coefficients m�G�k� are calculated from the entries of Cluj
matrices, as provided by TOPOCLUJ software program.56 The summation runs up
to the maximum k = ��p�� in G. The above published52 Cluj polynomials referred
to some partitions of the Cluj matrices given by the layer/shell matrices, with no
direct interpretation of the counting content.

In the case of CJDIe polynomial, an orthogonal edge-cutting procedure can be
used, as suggested in Tables 4-1 and 4-2. The same procedure was prior used by
Gutman and Klavžar for calculating the Szeged index of polyhex graphs. 58

Since the Cluj matrices are unsymmetric, two polynomials, one with respect
to the endpoint i (and to the first triangle of UCJDIe) and the other one referring

Table 4-1. Edge-cutting procedure for calculating Cluj polynomial in anthracene A3

CJDIe_i�A3� x� = 4x3 +8x7 +4x11
 D1�x=1 = 112 CJDIe_ j�A3� x� = 4x3 +8x7 +4x11
 D1�x=1 = 112
CJDIe�A3� x� = 8x3 +16x7 +8x11
 P1�x=1 = 32 = 2e
 D1�x=1 = 224
CJDIp�A3� x� = 16x2 +20x3 +30x4 +20x5 +28x6 +28x7 +20x8 +12x10 +8x11
 D1�x=1 = 1044
CJDEe�A3� x� = 28x+4x3
 D1�x=1 = 40
CJDEp�A3� x� = 84x+60x2 +24x3 +10x4 +4x6
 D1�x=1 = 340
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Table 4-2. Edge cut procedure for calculating Cluj polynomial in phenanthrene Ph3

CJDIe_i�Ph3� x� = 3x3 +2x5 +2x7 +4x9 +5x11 CJDIe_j�Ph3� x� = 5x3 +4x5 +2x7 +2x9+3x11

D1�x=1 = 124 D1�x=1 = 100
CJDIe�Ph3� x� = 8x3 +6x5 +4x7 +6x9 +8x11
 P1�x=1 = 32 = 2e
 D1�x=1 = 224
CJDIp�Ph3� x� = 18x2 +20x3 +36x4 +20x5 +14x6 +20x7 +28x8 +6x9 +12x10 +8x11
D1�x=1 =1050
CJDEe�Ph3� x� = 28x+4x3
 P1�x=1 = 32 = 2e
 D1�x=1 = 40
CJDEp�Ph3� x� = 84x+64x2 +30x3 +2x4 +2x6
 D1�x=1 = 322

to the endpoint j of the edge e�i� j� (and to the second triangle of the mentioned
matrix) can be written. However, they depend on the numbering and only their sum
polynomial is invariant (see Tables 4-1 and 4-2). This last polynomial will only be
taken into consideration in the following discussion.

4.5. Properties of the Cluj Polynomials

Among the properties of counting polynomials, the value in x = 1 and the first
derivative in x = 1 are the most important. In the case of CJDIe polynomial, the
value in x = 1, P�x=1 = 2e. It is evident, since every edge is visited twice.

The first derivative, in x = 1, gives the meaning of the topological property
collected by a matrix/polynomial. In this case, the following theorem holds:57

Theorem 4.1. In a bipartite graph, the sum of all edge-counted vertex proximities
equals the product v× e of the number of vertices and edges in G.

Demonstration. In a bipartite, planar graph, permitting orthogonal edge-cuts, for
every edge e�i� j� ∈ E�G� there is a clear separation of proximities {pe�i} and {pe�j}
of its endpoints. Let’s denote by pe�i and pe�j the cardinalities of the above sets. In
a bipartite graph, we always can write

pe�i +pe�j = v (4.32)

It follows that, for all edges, e ∈ E�G�, the total of edge-counted vertex proxim-
ities pe equals the product v× e, thus demonstrating the theorem.
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Recall that an orthogonal (or an elementary) edge-cut of a (polycyclic) bipartite
planar graph G, is a straight line segment, passing through the centers of some edges
of the graph, being orthogonal to these edges, and intersecting the perimeter of G
exactly two times, so that at least one polygon lies between these two intersection
points. 1,58,59 Note that trees also allow elementary edge-cuts.

In the orthogonal edge-cut procedure for calculating the CJDIe index, (i�e.,
the sum of all entries in the matrix UCJDIe), the total of edge-counted vertex
proximities pe = CJDIe�G�x�
D1�x=1 is calculated as:

pe =∑

c
m�G�c� · c · �pe�i +pe�j� = v ·∑

c
m�G�c� · c = v× e (4.33)

where the coefficients m�G�c� are related to the occurrence of co-distant edge-
cuts (see below) of extent c and

∑
c m�G�c� · c = e�G�. The above theorem can

be extended to 3D bipartite molecular structures, although the separation of the
proximities is not so evident. In toroidal polyhexes, CJDIe�G�x� = 3cn ·xcn/2 and
CJDIe�G�x�
D1�x=1 = �3/2��cn�2 = v×e irrespective of embedding and twisting.

Corollary to theorem 4.1. In bipartite graphs there are no equidistant vertices
with respect to the two endpoints of any edge.

The Cluj matrix counts the vertices lying closer to each of the endpoints of any
edge and leaves the equidistant vertices uncounted. Because of relation (4.32), it
follows that, in bipartite graphs, all vertices are counted and no equidistant vertices
exist. Next, for all of the edges in G, one obtains the total of vertex proximities, pe,
equal to v×e. This is the main result provided by the Cluj matrix/polynomial. The
vertex proximity calculation could be of interest in calculating the bond polarity
and molecular dipole moments. In this respect, weighted molecular graphs must be
used.

Recall that, in calculating the Szeged index13,60,61,62,63,64,65 (a topological index
related to the Wiener index,5 which counts all the shortest distances in a graph),
equidistant vertices are also not counted.

Another basic property is expressed by the following:57

Theorem 4.2. In a tree graph, the sum of all path-counted vertex proximities
is twice the sum of all distances in G or twice the Wiener index W: pp =
CJDIp�G�x�
D1�x=1 = 2W .

Demonstration. The column sums in the UCJDIp matrix equals the column sums
in the matrix of distances while the row sums in UCJDIp matrix are identical to
those in the Wiener matrix. 1,59 It is well-known that the half sum of entries in these
matrices counts all the distances in a tree graph, or the Wiener index. Since the first
derivative of the CJDIp polynomial is the sum of all entries in UCJDIp, it follows
that pp = CJDIp�G�x�
D1�x=1 = 2W , thus demonstrating the theorem.

In cycle-containing graphs, the Cluj index CJDIp is different from both the
Wiener and Szeged indices. 1,59
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Table 4-3. Formulas for Cluj-edge polynomials in acenes Ah; h = no. of hexagons in molecule

CJDIe�Ah−even� x� = 8 ·
h/2∑

k=1
x�4k−1� +2�h+1� ·x�2h+1� +8 · h∑

k=�h+2�/2
x�4k−1�
 D1�x=1 = 2�2h+1��5h+1�

= v · e
CJDIe�Ah−odd� x� = 8 ·

�h−1�/2∑

k=1
x�4k−1� + �2�h−3�+16� ·x�2h+1� +8 · h∑

k=�h+3�/2
x�4k−1�
 D1�x=1 = v · e

CJDEe�Ah−even� x� = �8h+4� ·x+4 ·
h/2∑

k=2
x�2k−1� +2 ·x�h+1�
 D1�x=1 = h2 +10h+2

CJDEe�Ah−odd� x� = �8h+4� ·x+4 ·
�h+1�/2∑

k=2
x�2k−1�
 D1�x=1 = h2 +10h+1

Table 4-4. Formulas for Cluj-edge polynomials in phenacenes Phh; h = no. of hexagons in molecule

CJDIe�Phh−even/odd� x� = 8 ·x3 +4 · h−1∑

k=2
x�4k−1� +6 · h−1∑

k=1
x�4k+1� +8 ·x4h−1
 D1�x=1 = v · e

CJDIe�Ah/Phh� = D1�x=1 = v · e = 2�2h+1� · �5h+1� = 2�10h2 +7h+1�

CJDEe�Phh−even� x� = �8h+4� ·x+h ·x3 +2 ·
h/2∑

k=2
x�4k−1�
 D1�x=1 = h2 +12h−2

CJDEe�Phh−odd� x� = �8h+4� ·x+ �h+1� ·x3 +2 ·
�h−1�/2∑

k=2
x�4k−1�
 D1�x=1 = h2 +10h+1

Formulas for calculating the Cluj polynomial CJDIe in acenes Ah and
phenacenes Phh, function of the number of their hexagons h, are given in Tables 4-3
and 4-4, respectively.

Theorem 4.3. A full Hamiltonian graph FH shows the minimal exponent value,
1, and the minimal value of the first derivatives of Cluj-detour polynomials:
CJDEp
D1�x=1 = v�v−1� and CJDEe
D1�x=1 = 2e.

Demonstration. A full Hamiltonian FH graph17 (Figure 4-1) has any pair of its
vertices joined by a Hamiltonian path (i�e., a path visiting all the vertices of G).
Considering that the Cluj fragments/proximities are counted by deleting the path
p�i� j� excepting its endpoints, the proximity of i is always 1, vs any other vertex
j in G. Thus, the exponent takes the minimal (unity) value. The coefficient of this
unique term of CJDEp polynomial is v�v-1�, as counted from the CJDEp matrix
(which shows all its non-diagonal entries equal to unity) by deleting the zeroes of
the diagonal. For CJDEe, the demonstration is immediate. Any FH graph shows all
the non-diagonal entries in CJDEp matrix equal to unity but the reciprocal is not
always true.

Corollary to theorem 4.2. If the FH graph is a complete graph, then:
CJDEp
D1�x=1 = CJDEe
D1�x=1 = 2e.

In complete graphs, all the vertices are adjacent. Thus, the two polynomials, defined
on edges and paths, respectively, coincide, thus v�v−1� = 2e.
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Figure 4-1. A full Hamiltonian FH graph.

4.6. Omega-type Polynomials

Two polynomials related to the Cluj polynomial are introduced in the following. One
is the Omega polynomial, 66 ��G�x�, which counts orthogonal edge-cuts and the
second one is the “non-Omega” N��G�x�, which is, in some extent, complementary
to the Omega polynomial.

Let G�V ,E� be a connected bipartite graph. Two edges e = �1� 2� and e’ =
�1’� 2’� of G are called codistant (briefly: e co e’) if for k = 0� 1� 2� � � � there
exist the relations: d�1� 1’� = d�2� 2’� = k and d�1� 2’� = d�2� 1’� = k+ 1 or vice
versa. For some edges of a connected graph G there are the following relations
satisfied:67,68

e co e (4.34)

e co e′ ⇔ e′ co e (4.35)

e co e′ & e′ co e′′ ⇒ e co e′′ (4.36)

though the relation (4.36) is not always valid. A simple counterexample is given
in Figure 4-2. By performing the medial Me operation on maps69,70,71,72,73,74 edges
become vertices, in the transform (Figure 4-2, b), and “codistant” (edges) could be
changed by “opposite” (vertices), as proposed by John et al. 67 The algorithm on
medial works on trivalent maps but complications appear in higher-valent vertex
maps, where virtual faces (corresponding to multivalent vertices) appear.

Let C�e� = �e′ ∈ E�G�
 e′ co e� denote the set of all edges of Gwhich are
codistant to the edge e. If all the elements of C�e� satisfy the relations (4.34–4.36)
then C (e� is called an orthogonal cut “oc“ of the graph G. The graph G is called
co-graph if and only if the edge set E�G� is the union of disjoint orthogonal cuts:
C1 ∪C2 ∪ � � �∪Ckand Ci∩Cj =Ø for i �= j� i� j = 1� 2� � � � � k. If any two edges of
an edge-cut sequence are codistant (obeying the relations (4.34) and (4.35)) and
belong to one and the same face of the covering, such a sequence is called a
quasi-orthogonal cut “qoc” strip. This means that the transitivity relation (4.36) is
not necessarily obeyed. Any oc strip is a qoc strip but the reverse is not always



Counting Polynomials of Nanostructures 87

Figure 4-2. Codistant edges, cf relations (4.34-4.36): {a} is an oc strip; {b} does not have all elements
codistant to each other (e�g., b1&b5; b7&b10), so that {b} is a qoc strip (see text). ��G1� x� = x4 +x10;
CI = 80; I� = 5�672086; N��G1� x� = 4x9 +8x10 +2x11; PI = 138.

true. 75,76 The term “co-distant” is synonym (in some extent) with “equidistant” or
“topologically parallel”.

Let m�G�c� denote the multiplicity of the edge-cut of length c (i�e., the number
of edges cut-off). In a bipartite planar graph the two polynomials are defined as:

��G�x� =∑

c
m�G�c� ·xc (4.37)

N��G�x� =∑

c
m�G�c� · c ·x�e−c� (4.38)

Their D1�x=1 give the total number of equidistant and non-equidistant edges vs
each edge in G�

��G�x�D1�x=1 = e = �E�G�� (4.39)

N��G�x�D1�x=1 = PI�G� (4.40)

where PI�G� is the Khadikar’s topological index.77 Note that Ashrafi et al. 78 have
proposed for N��G�x� the name PI�G�x�, because its first derivative gives the
Khadikar’s PI topological index, eq (4.40).

Two indices have been defined on the Omega polynomial. The first one, CI, is
derived from the first and second derivatives, in x = 1, as:

CI�G� = ���G�x�D1�2 − ���G�x�D1+��G�x�D2� �x=1 (4.41)

The second descriptor is calculable from all possible derivatives Dn, in x = 1,
and normalized to the first one (which equals the number of edges in G�

I��G� = �1/��G�x�D1� ·∑
n
���G�x�Dn�1/n �x=1 (4.42)

Analytical formulas for calculating the two polynomials and derived descriptors
in acenes and phenacenes are listed in Tables 4-5 and 4-6.
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Table 4-5. Formulas for Omega-type polynomials in acenes Ah; h = no. of hexagons in molecule

��Ah�x� = 2h ·x2 +x�h+1�
 �D1�x=1 = e = 5h+1
 D2�x=1 = h�h+5�

CI�Ah� = ��′�Ah��2 − ��′�Ah�+�′′�Ah�� = �5h+1�2 − �5h+1+h�h+5�� = 24h2

��Ah�x��x=1 = v/2 = 2h+1
N��Ah�x� = 4h ·x�5h−1� + �h+1� ·x4h
 D1�x=1 = 24h2

Table 4-6. Formulas for Omega-type polynomials in phenacenes Phh; h = no. of hexagons in molecule

��Phh�x� = �h+2� ·x2 + �h−1� ·x3
 D1�x=1 = e = 5h+1
 D2�x=1 = 8h−2
CI�Phh� = �5h+1�2 − �5h+1+8h−2� = 25h2 −3h+2
��Phh�x��x=1 = v/2 = 2h+1
N��Phh�x� = 2�h+2� ·x�5h−1� +3�h−1� ·x�5h−2�
 D1�x=1 = 25h2 −3h+2

Theorem 4.3. In a bipartite planar graph, CI and PI indices are identical.

Demonstration. From (4.41) and writing m�G�c� as simply m, CI is calculable as:

CI�G� =∑

c
��m · c�2 − �m · c+m · c�c−1�	� =∑

c
��m · c�2 −m · c2	

(4.43)

= e2 −∑
c
m · c2

On the other hand, from (4.38) and (4.40), PI is calculated as:

PI�G� =∑

c
m · c · �e− c� = e

∑

c
m · c−∑

c
m · c2 = e2−∑

c
m · c2 (4.44)

Clearly, the two indices are identical, because they transform into one and the same
ultimate expression, also proposed by John et al. 67 for calculating PI in benzenoid
hydrocarbon graphs. In the above, the following relation holds:

e�G� =∑

c
m · c = ��G�x�D1�x=1 = N��G�x��x=1 (4.45)

However, relation (4.38) is not always valid, so that CI is, in general, different from
PI, excepting the case of bipartite planar graphs.

In bipartite graphs embeddable in surfaces of g > 0, e�g., in toroidal polyhexes,
relation (4.38) is still more hidden, despite CI = PI . In case of the torus
T(6,3)H[8,12]:��G�x� = 12x4 +4x24
 e = 144; CI = 18240; N��G�x� = 96x122 +
48x136; PI = 18240. According to (4.38) the polynomial would be: N��G�x� =
96x120 +48x140 that gives the same PI index value. At this moment no generalization
of this case was found.

We stress here that polynomials CJDI(G,x� and N��G�x� describe, in a same
manner, collections of non-equidistant subgraphs (vertices and edges, respectively),
with addition being the most simple and natural operation.
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4.7. Hosoya Polynomial in Toroidal Nanostructures

4.7.1. Polyhex (6,3) Covering

The general form of the (vertex) Hosoya polynomials, in vertex transitive graphs
such as tori T(6,3)H[c�n] and T(6,3)V[c�n], (regular graphs, having v = c ×n -
Figure 4-3), in going from normal T(6,3)H to normal T(6,3)V tori, are: 79,80

Case: T(6,3)H[c�n]
n > c.

H�i� x� = 1+3kxk�k=1�2������c/2−1� +�3c/2−1�xc/2 (4.46)

+ �3c/2−k�x�c/2+k��k=1�2������c/2−1� +cxk�k=c�c+1������n−1� +�c/2�xn

Case: T(6,3)H[c�n] = (6,3)V[c�n]
n = c:

H�i� x� = 1+3kxk�k=1�2������c/2−1� +�3c/2−1�xc/2

+ �3c/2−k�x�c/2+k��k=1�2������ c
2 −1� + (4.47)

+ �c/2�xn

Case: T(6,3)V[c�n]
c+2 ≤ n ≤ 2�c−1�:

H�i� x� = 1+3kxk�k=1�2������n/2−1� +�3n/2−1�xn/2+
+ �3n/2−k�x�n/2+k��k=1�2������c−1−n/2� +�2n−3c/2−1�xc+

(4.48)

+ �2�n− c�−4k	x�c+k��k=1�2�������n−c�/2−1� +x�c+n�/2

Case: T(6,3)A[c�n]
n = 2c:

H�i� x� = 1+3kxk�k=1�2������c−1� +�5c/2−2�xc + �2c−4k�x�c+k��k=1�2������c/2−1� +
(4.49)

+x�c+n�/2

(a) T(6,3)H[12,50]; v = 600 (b) T(6,3)V[20,100]; v = 2000

Figure 4-3. The (6,3) covering embedded in the torus.
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Case: T(6,3)A[c�n]
n ≥ 2�c+1�

H�i� x� = 1+3kxk�k=1�2������c−1� +�5c/2−1�xc +2cxk�k=c+1�c+2������n/2−1� +
+ �2c−1�xn/2 + �2c−4k�x�n/2+k��k=1�2������c/2−1� +x�c+n�/2

(4.50)

A “normal” torus, in the above relations, means a toroidal net having the number
of hexes across the tube smaller than around the torus. The “normal" status is
already reached at n > c, in (6,3)H tori, while n ≥ 2�c + 1� is needed in case of
(6,3)V tori.

As mentioned in Section 4.3, the coefficients of the vertex Hosoya polynomial
are just the entries in the LC matrix1,51 or the (vertex) Distance Degree Sequence
DDS(i) (i�e., the number of vertices lying at distance k form the vertex i).

The polynomial coefficients can be viewed as a “distance degree” spectrum,
useful in topological characterization of graphenes. In case of the (normal)
T(6,3)[20,n] series, the spectra (per vertex d�i� k� values) are shown in Figures 4-4
and 4-5.

The repeat terms: cxk�k=c�c+1�����n−1 and 2cxk�k=c+1�c+2�����n/2−1, respectively, are
the only changes, as n increases, in the spectrum of a given series (i�e., a series of
fixed c). By changing the series, the spectrum will change drastically, according to
the general formulas (4.46 to 4.50).

DDS of T(6,3)H[20,n] series
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Figure 4-4. The distance degree spectrum of the tori T (6,3)H[20,n].
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DDS of T(6,3)V[20,n] series
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Figure 4-5. The distance degree spectrum of the tori T(6,3)V[20,n].

The first derivative35 of the Hosoya polynomial (in x = 1) enables the calculation
of the well-known Wiener5 number W .

In case of the normal series of tori, the first derivative of the Hosoya polynomial
gives the following formulas. 79,80

Case: T(6,3)H[c,n]

W = nc

2

[
c/2−1∑

k=1

3k2 + �3c/2−1�c/2+
c/2−1∑

k=1

�3c/2−k��c/2+k�+
n−1∑

k=c

ck+nc/2

]

(4.51)

Case: T(6,3)A[c�n]

W = nc

2

⎡

⎢
⎢
⎣

c−1∑

k=1
3k2 + �5c/2−1�c+

n/2−1∑

k=c+1
2ck+�2c−1�n/2

+
c/2−1∑

k=1
�2c−4k��n/2+k�+ +�n/2+ c/2�

⎤

⎥
⎥
⎦ (4.52)

By expanding the sums one obtains:

T�6� 3�H�c�n	  W = 1
24

nc2�6n2 + c2 −4� (4.53)

T�6� 3�V�c�n	  W = 1
24

nc2�3n2 + c2 +3nc−4� (4.54)
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Expansion of (4.48) (case T(6,3)V[c,n]; c+2 ≤ n ≤ 2�c−1�� also leads to (4.54).
Moreover, the formulas for the other two cases:

n = c  W = c3

24
�7c2 −4� (4.55)

n = 2c  W = c3

12
�19c2 −4� (4.56)

can be deduced from the first derivative of the corresponding polynomials (eqs. 4.47
and 4.49, respectively), as well as from eq. 4.54. Relation (4.55) is also a particular
case of eq (4.53), proving the self-consistency of the formulas (4.53) and (4.54) for
calculating the Wiener index in polyhex tori.

As examples, the (vertex) Hosoya polynomials and Wiener numbers for the pair
of isomers (T(6,3)H[24,72]; T(6,3)V[24,72]) are given below.
T(6,3)H[24,72] (12×72 hexes)

H�i� x� = 1+3x+6x2 +9x3 +12x4 +15x5 +18x6 +21x7 +24x8+
27x9 +30x10 +33x11 +35x12 +35x13 +34x14 +33x15 +32x16 +31x17+
30x18 +29x19 +28x20 +27x21 +26x22 +25x23 +24x24−71 +12x72

W(T(6,3)H[24,72]) = 5.4736128×107

T(6,3)V[24,72] (24×36 hexes)

H�i� x� = 1+3x+6x2 +9x3 +12x4 +15x5 +18x6 +21x7 +24x8+
27x9 +30x10 +33x11 +36x12 +39x13 +42x14 +45x15 +48x16 +51x17+
54x18 +57x19 +60x20 +63x21 +66x22 +69x23 +59x24 +48x25−35

+47x36 +44x37 +40x38 +36x39 ++32x40 +28x41 +24x42 +20x43

+16x44 +12x45 +8x46 +4x47 +x48

W(T(6,3)V[24,72] ) = 3.6820224×107

4.7.2. Twisted T(6,3)HVt[c�n] Tori

By twisting some rows of squares in the (4,4) net, the polyhex (6,3) net, resulted by
a cutting procedure, 81,82 will appear as twisted and the object is chiral (Figure 4-6 –
see also Chapter 2). In the name of twisted tori, t indicates the number of twisted
rows (in the range 0, 2,.., c�.
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T(6,3)HV4[10,50]; v = 500; (side) (top)

Figure 4-6. An H-twisted,V-cut polyhex torus (non-optimized geometry).

General formulas for the Hosoya polynomial and the Wiener index in tori of
T(6,3)HVt[c�n] series are:80

Case: �n/2� > 2�c+1�; t < c:

H�i� x� = 1+3kxk�k=1�2������c−1� +�3c−1− �c− t�/2	xc+
+ �2c+ t −k+1�x�c+k−1��k=2�3�����t +2cxk�k=c+t�c+t+1������n/2−1� +
+ �2c−1�xn/2 + �2c−4k�x�n/2+k��k=1�2�������c−t�/2−1	 +�t +1�x�n/2+�c−t�/2	

(4.57)

W = cn

2

[
c−1∑

k=1

3k2 + �3c−1 − �c− t�/2	c+
t∑

k=2

�2c+ t −k+1��c+k−1�+

+
n/2−1∑

k=c+t

2ck+ �2c−1�n/2+
�c−t�/2−1∑

k=1

�2c−4k��n/2+k�

(4.58)

W = cn

24

[
c3 +3c2n+3cn2 +3ct2 +4t3 −3nt2 −4c−4t

]
(4.59)

Case: �n/2� > 2�c+1�; t = c.

H�i� x� = 1+3kxk�k=1�2������c−1� +�3c−1�xc + �3c−k�x�c+k��k=1�2������c−1�

(4.60)

+2cxk�k=2c�2c+1������n/2−1� +cxn/2
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W = cn

2

[
c−1∑

k=1

3k2 + �3c−1�c+
c−1∑

k=1

�3c−k��c+k�+
n/2−1∑

k=2c

2ck+ cn/2

]

(4.61)

W = c2n

24
�8c2 +3n2 −8� (4.62)

4.7.3. Covering ((4,8)3)S

The ((4,8)3) covering is a trivalent decoration consisting of alternating squares and
octagons. Such a net can be derived, from the (4,4) net, either by a cutting procedure
83 or by the leapfrog map operation,81 or also by the Stone-Wales84 edge rotation
in a polyhex (6,3) net. 71,85 Optimized ((4,8)3) nanotori are illustrated in Figure 4-7.

The isomer T((4,8)3)HS[c,n] contains, on dimension “c”, half of the number
of (4,8) pairs in T((4,8)3)VS[c,n]. Conversely, the number of (4,8) pairs in
T((4,8)3)VS[c,n], on dimension “n”, is half of that in T((4,8)3)HS[c,n]. The
leapfrog operation provides the the “RLe”embedding.

General formulas for the Hosoya polynomial and Wiener index in tori
T((4,8)3)S[c,n] of both H- and V-series are given in the following.83 Several cases
can be delimited:

4.7.3.1. Tori T((4,8)3)HS[c,n]
 0 mod(c,4)

Case: c < n; normal T((4,8)3)HS[c,n] torus; c = 4p; n = 2r

H�i� x� = 1+mkx
k�k=1������2p−1� +�m2p −1�x2p + �m�2p+k� −4k�x�2p+k��k=1������p−1�

+4pxk�k=3p������2r−1� +�4p−1�x2r + �4p−4k�x�2r+k��k=1������p−1� +
+x�2r+p�

(4.63)

(a) T((4,8)3)HS[20,100]
v = 2000; q = 10; p = 50

(b) T((4,8)3)RLe([10,30])
v = 1200; q = 10; p = 30

Figure 4-7. The ((4,8),3) covering, in S and R embedding, respectively.
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W = 4pr

[
2p−1∑

k=1

mkk + �m2p −1�2p+
p−1∑

k=1

�m�2p+k� −4k��2p+k�+

+
2r−1∑

k=3p

4pk+ �4p−1�2r +
p−1∑

k=1

�4p−4k��2r +k�+ �p+2r� 	

(4.64)

where mk is defined by the following recursion:

m0 = 0
 m1 = 3
 m2 = 5� and

mk = m� k− mod �k�2�
2 +1� +m� k+ mod �k�2�

2 −1� = m� k+2
2 � +m� k−1

2 �
(4.65)

with �x� being the greatest integer part of a real number x.
Alternatively, for k = 3s + t, and t = 0� 1� 2:

mk =
2 ·31/2 sin

(
2k

�

3

)

9
+8k/3 = 8s +

⎧
⎨

⎩

0� if t = 0
3� if t = 1
5� if t = 2

(4.66)

With (4.66), recursion (4.65) becomes:

mk = 8 ��k− mod �k� 3��/3	+3 mod �k� 3��2− mod �k� 3��− (4.67)

− ��1− mod �k� 3���5 mod �k� 3�/2	

Expansion of relation (4.64) leads to the formula:

W = 16
3

p2r�p2 +6r2 +3pr −1� (4.68)

which can be translated to [c, n] dimensions as:

W = c2n�c2 +24n2 +6cn−16�/96 (4.68’)

Case: c = n ;
T((4,8)3)HS[c,c]=T((4,8)3)VS[c,c], or T((4,8)3)HS[4p,4p]=T((4,8)3)
VS[4p,4p]

H�i� x� = 1+mkx
k�k=1������2p−1� +�m2p −1�x2p + �m�2p+k� −4k�x�2p+k��k=1������p−1�

+4pxk�k=3p������4p−1� +�4p−1�x4p + �4p−4k�x�4p+k��k=1������p−1� + x5p

(4.69)
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The summation of the corresponding terms, after appropriate handling, leads to
the following simple relation for the Wiener index:

W�p� = 32
3

p3�31p2 −1� (4.70)

W�c� = c3�31c2 −16�/96 (4.70’)

Case: c > n; T((4,8)3)HS[c,n]; this case turns to T((4,8)3)VS[n,c].

4.7.3.2. Tori T((4,8)3)VS[c,n]; 0 mod(n,4); c = 2p; n = 4r.

Case: 2p < 4r < 4p. Two additional parameters are needed:

d = 3r −2p (4.71)

s = �2p−2r� (4.72)

Case: d < 0

H�i� x� = 1+mkx
k�k=1������2r−1� +�m2r −1�x2r + �m�2r+k� −4k�x�2r+k��k=1������r−1�

+n ·xk�k=3r������2p−1� +�4r −1�x2p + �4r −4k�x�2p+k��k=1������r−1� +
+x�2p+r�

(4.73)

Case: d > 0

H�i� x� = 1+mk ·xk�k=1������2r−1� +�m2r −1� ·x2r

+ �m�2r+k� −4k� ·x�2r+k��k=1�����2p−2r−1�

+ �m2p − �4s +1�� ·x2p + �m�2p+k� −4�s +2k�� ·x�2p+k��k=1�����d

+ �4r −4k� ·x�2p+k��k=�d+1�������r−1� +x�2p+r�

(4.74)

Case: n = 2c

H�i� x� = 1+mkx
k�k=1������2p−1� +�m2p −2�x2p+

+ �m�2p+k� −8k�x�2p+k��k=1������p−1� +x3p
(4.75)

The Wiener index corresponding to relation (4.75) is:

W�p� = p3

6
�436p2 −19� (4.76)
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or

W�c� = 2c3�109c2 −16�/96 (4.76’)

Case: 4p < 4r < 6p. The additional d parameter is of the form:

d = 3p−2r (4.77)

while s is the same as in (4.72).

H�i� x� = 1+mk ·xk�k=1������2p−1� +�m2p −1� ·x2p+
+ �m�2p+k� −4k� ·x�2p+k��k=1������2r−2p−1�

+ �m2r − �4s +1�� ·x2r + �m�2r+k� −4�s +2k�� ·x�2r+k��k=1�����d

(4.78)

+ �4r −4k� ·x�3p+k�
�k=1������r−1� +x�p+2r�

Case: 6p ≤ 4r; normal torus T((4,8)3)VS[2p,4r].

H�i� x� = 1+mkx
k�k=1������2p−1� +�m2p −1�x2p + �m�2p+k� −4k�x�2p+k��k=1������p−1�

+4xk�k=3p������2r−1� +�4p−1�x2r + �4p−4k�x�2r+k��k=1������p−1� +x�p+2r�

(4.79)

W = 4pr

[
2p−1∑

k=1

mkk + �m2p −1�2p+
p−1∑

k=1

�m�2p+k� −4k��2p+k�+

+
2r−1∑

k=3p

4pk+ �4p−1�2r +
p−1∑

k=1

�4p−4k��2r +k�+ �p+2r�	

(4.80)

By developing (4.80) results in the formulas:

W = 16
3

p2r�p2 +6r2 +3pr −1� (4.81)

W = c2n�2c2 +3n2 +3cn−8�/24 (4.81′)

Observe that relations [(4.64), (4.80)] and [(4.68), (4.81)] are identical. This is
a consequence of the isotropy of the ((4,6)3)S net. In the above, “normal” torus
means the torus having the number of (4,8) pairs around the tube smaller than
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Table 4-7. Wiener Index in Tori T((4,8)3)S.

Torus T((4,8)3)S W [p,r] Equivalent torus

H[12,12] 80,064 [3,6] V[12,12]∗

V[6,24]
H[12,14] 122,640 [3,7] V[6,28]
H[12,16] 178,176 [3,8] V[6,32]
H[12,24] 564,480 [3,12] V[6,48]
H[24,6]∗ 80,064 [3,6] V[6,24]
H[24,8]∗ 155,136 [4,6] V[8,24]
H[24,10]∗ 264,000 [5,6] V[10,24]
H[24,12]∗ 413,568 [6,6] V[12,24]
V[12,12]∗ 80,064 [3,6] V[6,24]
V[12,20] 264,000 [6,5] V[10,24]
V[16,20]∗ 563,200 [5,8] V[10,32]
V[16,24]∗ 864,768 [6,8] V[12,32]
V[16,28] 1,254,400 [7,8] V[14,32]
V[16,32] 1,744,896 [8,8] V[16,32]
V[8,20] 96,000 [4,5] V[10,16]
V[8,24] 155,136 [4,6] V[12,16]∗

V[8,28] 234,752 [4,7] V[14,16]∗

V[12,36] 1,180,224 [6,9] V[18,24]∗

V[12,40] 1,564,800 [6,10] V[20,24]∗

∗ values non-calculable by eqs (4.68), (4.81), (4.68’), and (4.81′)

around the large hollow of the torus. Formulas (4.68), (4.81), (4.68’), and (4.81′)
are applicable particularly in normal tori. On domains where no close formula is
given, the following relations (accounting for the involved embedding isomers) are
useful: 83

WT��4�8�3�HS�c�n	 = WT��4�8�3�VS�c/2�2n	 (4.82)

WT��4�8�3�VS�c�n	 = WT��4�8�3�HS�2c�n/2	 = WT��4�8�3�VS�n/2�2c	 (4.83)

Always an equivalent torus will be found, to verify the true result. Table 4-7
gives examples of Wiener index calculation, along with some of the equivalent tori.

4.8. Omega Polynomial in Tubular Nanostructures

4.8.1. Polyhex (6,3) Covering

In the Schlegel-like representation86 of a nanotube (Figure 4-8), the points lying
on the central circle have to be identified to those on the external circle to give the
corresponding torus.
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Figure 4-8. (a) Armchair tube TUV[8,5]; p = 4; q = 5; TH[4,8] (b) zig-zag tube TUH[8,5]; p = 4;
q = 5; TV[4,8]; for the corresponding tori q = 4.

Two types of cuts appear in such polyhex, untwisted structures: one radial
(denoted R) and another circular (denoted C), as shown in the corresponding
polynomial:

��G�x� = R�G�x�+C�G�x� (4.84)

4.8.1.1. Armchair Tubes TU(6,3)V[2p,q] and Tori T(6,3)H[q,2p]

Case of “armchair” tubes, TUV[2p,q], or TUV[c,n] in general, in Diudea’s nomen-
clature, 87,88 with p = c/2 and q = n, as given in Figure 4-8a. For all polyhex
armchair tubes the circular term C is the same:75

C�G�x� = 2p ·xq−1 (4.85)

The radial term R varies function of the tube structure:

q = even 

R�G�x� = 2p ·xq/2 (4.86)

q = odd 

R�G�x� = p ·x�q+1�/2 +p ·x�q−1�/2 (4.87)

The corresponding CI indices are:

CI�TUV�2p�qe	� = p2�3q −2�2 −2p�q −1�2 −pq2/2 (4.88)

CI�TUV�2p�qo	� = p2�3q −2�2 −2p�q −1�2 − �p/2��q2 +1� (4.89)



100 Chapter 4

For the example in Figure 4-8a: ��TUV�8� 5	� x� = 4 ·x2 +4 ·x3 +8 ·x4; CI = 2524;
I� = 1�404541
Case of tori, TH[q,2p]. An “armchair” nanotube TUV[2p,q+1] (Figure 4-8a, p = 4;
q = 4), is transformed in a torus H[q,2p] as above mentioned, with q (q = even,
always by this construction) winding around the tube while p around the central
hollow of the torus.

The radial term in such tori is the same for all the cases: 75

R�G�x� = 2p ·xq/2 (4.90)

and the circular term C vary as:

C�G�x� = k ·x2pq/k (4.91)

with k being the greatest common divisor of q and 2p.
In [c,n] terms, the Omega polynomial is:

��TH�c� n	� x� = n ·xc/2 +k ·xcn/k (4.92)

The index is calculated as:

CI�TH�q� 2p	� = 9p2q2 −k�2pq/k�2 −2p�q/2�2 (4.93)

For the example in Figure 4-8a: ��H�4� 8	� x� = 8 ·x2 +4 ·x8; CI = 2016;
I� = 2�247207.

4.8.1.2. Zig-zag Tubes TU(6,3)H[2p,q] and Tori T(6,3)V[q,2p]

Case of zig-zag tubes TUH[2p,q] (Figure 4-8b, p = 4; q = 5).
The circular and radial terms are as follows:75

C�G�x� = �q −1� ·xp (4.94)

R�G�x� = 2p ·xq (4.95)

and the corresponding index:

CI�TUH�2p�q	� = p2�3q −1�2 − �q −1�p2 −2pq2 (4.96)

For the example in Figure 4-8b: ��TUH�8� 5	� x� = 4 · x4 + 8 · x5; CI = 2872;
I� = 1�578425
Case of tori, TV[q,2p].

These tori correspond to “zig-zag” tubes, in a Schlegel-like projection (Figure 4-
8b, p = 4; q = 4). The circular term C is the same for all the cases: 75

C�G�x� = q ·xp (4.97)
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and the radial term R varies as follows:

R�G�x� = k ·x2pq/k (4.98)

with k being as above.
In [c,n] terms, the Omega polynomial is:

��TV�c� n	� x� = c ·xn/2 +k ·xcn/k (4.99)

The index is calculable as:

CI�TV�q� 2p	� = 9p2q2 −k�2pq/k�2 −p2q (4.100)

For the example in Figure 4-8b: ��TV�4� 8	� x� = 4 ·x4 +4 ·x8; CI = 1984;
I� = 2�274070.

4.8.1.3. Twisted/Chiral Tori T(6,3)VVt[c,n]

The interest was oriented to the chiral/twisted T(6,3)VVt[c,n] objects, because
they offer cases of single term Omega polynomials, with direct interpretation of
their spirality. We present here a factorization procedure enabling the derivation of
formulas for a whole class of chiral polyhex toroids.

Within the present factorization procedure, 89,90 the Omega polynomial of a torus
T is written (cf. (4.101)) as the product:

��T�x� = fk/ki
·��Ti� x� =∑

ci
fk/ki

·m�Ti� ci� ·xfk/ki
·ci (4.101)

In the above relation, k is the size factor multiplying the net ratio r = c/n to give
the actual size s: s = r ·k. Next, ki refers to the divisors of k and, correspondingly,
Ti and ci refer to the object showing the ki size factor. Finally, fk/ki

is the factor to
be used in the actual procedure.

Case: T(6,3)VVt[c,n]. The chosen class shows a net ratio �c/n� = �4/6�and the
size factor is: k = c/4 = n/6. Next, c = kc1; n = kn1, with c1 = 4 and n1 = 6 being
the net dimensions of the first (smallest) family of objects in this class . A family
of twisted tori includes all the objects having the same [c,n]-dimensions (implying
the same k� and 0 ≤ t ≤ c, in Diudea’s system.87 In the case of T(6,3)VVt[c,n],
the maximum twisting is taken t = c/2, to ensure all the objects are distinct (see
Section 2.6). Figure 4-9 illustrates a torus of this class, which shows a single term
Omega polynomial.

The procedure to derive formulas for a whole family of chiral polyhex toroids
is as follows.90

1. If k is odd, (k = 1� 3� ��) and prime number, formulas for two sub-series of tori
can be written: (a) objects having the twisting t = 4s + 2 and (b) objects with
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Side view Top view 

Figure 4-9. Torus T(6,3)VV10[20,30], with the twisted region in the front (non-optimized).

t = 4s, the limits for s being given in Table 4-8. The objects of series (a) show a
single term in the Omega polynomial while those in the series (b) show a double
term polynomial. Formulas for the non-twisted objects are also included. All the
formulas in Table 4-8 are given in three forms: (i) general, non-factorized; (ii)
factorized vs. k1 = 1 and (iii) factorized vs. any divisor of k, ki = i.

2. Take a non-prime k-value and find its divisors. Factorize first the t-parameter
of the divisors and next write the corresponding (distinct) polynomial formulas
(by using the factors fk/ki

- see Tables 4-8 and 4-9) for all the possible divisors.
Complete the actual t-parameter up to t = c/2 and use the corresponding formulas

Table 4-8. Formulas for the Omega polynomial of T(6,3)VVt[c,n] polyhex tori; �c/n� = �4/6� ·k
k t -mode s Omega polynomial

odd 0 - (a)c ·xn/2 + �c/2� ·x2n; non-twisted; non-chiral
(b)kc1 ·xkn1/2 +k�c1/2� ·x2kn1

(c)fk/ki
�ci� ·xfk/ki

�ni/2� +fk/ki
�ci/2� ·xfk/ki

�2ni�

4s+2 0� 1� 2� ��� �c−12/8� (a)n/k ·xkn

(b) n1 ·xk2n1

(c) fk/ki
�ni/ki� ·xfk/ki

�kini�

4s 1� 2� ��� �c−4�/8 (a)c/k ·xkn/2 + c/2k ·x2kn

(b) c1 ·xk2n1/2 + c1/2 ·x2k2n1

(c) fk/ki
�ci/ki� ·xfk/ki

�kini/2� +fk/ki
�ci/2ki� ·xfk/ki

�2kini�

4s+2 �c−4�/8
 (a)3t ·xcn/2t = n ·xn

t = c/2 (b)kn1 ·xkn1

(c)fk/ki
�ni� ·xfk/ki

�ni�

even 0 - as for k = odd

4s+2 0� 1� 2� ��� �c−8/8� (a)c/2k ·xkn + c/2k ·x2kn

(b)c1/2 ·xk2n1 + c1/2 ·x2k2n1

(c)fk/ki
�ci/2ki� ·xfk/ki

�kini� +fk/ki
�ci/2ki� ·xfk/ki

�2kini�

4s c/8
 t = c/2 as for k = odd
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Table 4-9. Examples of Omega Polynomial and CI Index in Polyhex Tori of T(6,3)VVt[c,n] Series

k; [c,n] t –mode &fk/ki
s t Omega polynomial CI

k=odd
1; [4,6]

0 0 4x3+2x12 972
4s+2 0 2;c/2 6x6 1080

3; [12,18]
0 0 12x9+6x36 96228

4s+2 0 2 6x54 87480
4s 1 4 4x27+2x108 78732

4s+2 1 6; c/2 18x18 99144
5; [20,30]

0 0 20x15+10x60 769500
4s+2 0 2 6x150 675000

4s 1 4 4x75+2x300 607500
4s+2 1 6 6x150 675000

4s 2 8 4x75+2x300 607500
4s+2 2 10; c/2 30x30 783000

9; [36,54]
0 0 36x27+18x108 8266860

4s+2 0 2 6x486 7085880
4n 1 4 4x243+2x972 6377292
f9/3 - 6 18x162 8030664
4s 2 8 4x243+2x972 6377292

4s+2 2 10 6x486 7085880
f9/3 - 12 12x81+6x324 7794468
4s+2 3 14 6x486 7085880

4s 4 16 4x243+2x972 6377292
4s+2; f9/3 4 18; c/2 54x54 8345592

k=even
2; [8,12]

0 0 8x6+4x24 18144
4s+2 0 2 2x24+2x48 14976

4s 1 4; c/2 12x12 19008
4; [16,24]

0 0 16x12+8x48 311040
4s+2 0 2 2x96+2x192 239616
f4/2 - 4 4x48+4x96 285696
4s+2 1 6 2x96+2x192 239616

4s; f4/2 2 8; c/2 24x24 317952
6; [24,36]

0 24x18+12x72 1609632
4s+2 0 2 2x216+2x432 1213056
f6/3 - 4 12x108 1539648
f6/2 - 6 6x72+6x144 1524096
f6/3 - 8 8x54+4x216 1469664
4s+2 2 10 2x216+2x432 1213056

4s; f6/2; f6/3 12; c/2 36x36 1632960
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for (prime number) odd k objects given in Table 4-8. Note that the factorizing
mode is dominant with respect to the actual twisting t-mode.

3. Write formulas for the even series (k = 2� 4� ��) analogously; remark the only
new formula is for t = 4s +2.

4. Calculate the actual Omega polynomial and the corresponding CI index.

The actual procedure starts with k = 1 and, recursively, provides formulas for
families of k > 1. Examples are given in Table 4-9. Note that, at various t-values
within the same t-mode (either 4s+2 or 4s), degenerate polynomial and CI values
appear.

The remark on spirality refers to the formula 3t ·xcn/2t = n ·xn for the single term
Omega polynomial of the maximum twisted objects of this class. As a hexagon is
the start of three edge-cut strips, t = n/3 is just the number of spirals of this object.
For the other objects, t is more hidden, because of the degeneracy of edge-cut
modes (Table 4-9).

4.8.2. Covering ((4,8)3)

In the Schlegel representation86 of a ((4,8)3) nanotube (Figure 4-10), the points
(of degree 2) lying on the central circle have to be pairwise joined to those on the
external circle to give the corresponding torus. 76

4.8.2.1. Tori T((4,8)3)S

A torus T((4,8)3)S[c,n], in Diudea’s notation,1,55,87 is now written as
T((4,8)3)SH[2q,2p] and T((4,8)3)SV[2p�2q], to specify the H/V embedding and

(a) v = 64 (b) v = 48 

c'

c'

r

r
c

c

Figure 4-10. (a) Tube TU((4,8)3)S[8,8]; (p = 4;q = 4); ��G�x� = 4pxq +�q−1�x2p = 16x4 +3x8 Torus
T((4,8)3)SH[8,8]; (p = 4;q = 4); ��G�x� = 2pxq +2qx2p = 8x4 +8x8 (b) Tube TU((4,8)3)RLe([6,2]);
p = 6; q = 2; ��G�x� = �q − 1�xp +pxq + 2px2q = 6x2 + 12x4 +x6 Torus T((4,8)3) RLe[2,6]; q = 2;
p = 6; ��G�x� = qxp + pxq + 2mdx2pq/md = 6x2 + 2x6 + 4x12 The points of degree 2 lying on the
central circle of a tube have to be pairwise joined to the opposite ones on the external circle to give the
corresponding torus.
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Table 4-10. Tori T((4,8)3)S[c,n]

H-embedding: [c,n] = [2q,2p]; (q,p�

1 Case: p = kq; k = even
R�G�x� = p ·x2q C�G�x� = 4q ·xp H[16,96]; (8,48): 48X16+32X48

2 Case: p = kq; k = odd; p = �k/2�q

R�G�x� = 2p ·xq C�G�x� = 2q ·x2p H[12,12]; (6,6): 12X6+12X12

H[16,24]; (8,12): 24X8+16X24

H[16,48]; (8,24): 48X8+16X48

H[12,18]; (6,9): 18X6+12X18

3 Case: md > 1; (p = �k/3�q ; k = even); md = maximum common divisor
R�G�x� = 2p ·xq C�G�x� = q ·x2p

C ′�G�x� = md ·x2pq/md

H[12,16]; (6,8): md = 2:
16X6+6X16+2X48

H[24,32]; (12,16): md =4:
2X12+12X32+4X96

H[36,48];(18,24): md =6:
48X18+18X48+6X144

4 Case: md = 1
R�G�x� = 2p ·xq C�G�x� = q ·x2p

C ′�G�x� = 2 ·xpq

H[20,22];(10,11): md = 1:
22X10+10X22+2X110

V-embedding: [c,n] = [2p,2q]; (p�q�

1 Case: q = 2p

C�G�x� = 3q ·xq none V[8,16]; (4,8): 24X8

2 Case: q = kp; k = even
R�G�x� = q ·x2p C�G�x� = 4p ·xq V[20,80]; (10,40): 40X20+40X40

3 Case: md > 1; (q = kp; q = �k/2�p; k = odd)
R�G�x� = q ·x2p C�G�x� = 2p ·xq

C ′�G�x� = md ·x2pq/md

V[16,48];(8,24); md = 8:
24X16+16X24+8X48

V[16,24] ;(8,12); md=4:
16X12+12X16+4X48

V[20,28] ;(10,14); md = 2:
20X14+14X20+2X140

4 Case: md > 1; (q = �k/3�p; k = even)
R�G�x� = q ·x2p C�G�x� = 2p ·xq

C ′�G�x� = 2md ·xpq/md

V[24,32];(12,16); md = 4:
24X16+16X24+8X48

5 Case: md = 1
R�G�x� = q ·x2p C�G�x� = 2p ·xq

C ′�G�x� = 2 ·xpq

V[22,24];(11,12); md = 1:
22X12+12X22+2X132

square/octagon units. In these tori, q(divisible by 4) is winding around the tube
while p around the central hollow of the torus. The parameters of (4.102) are given
in Table 4-10.
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The contributions to the global polynomial can be expressed, as in the case of
polyhex tori (Section 4.8.1):

��G�x� = R�G�x�+C�G�x�+C ′�G�x� (4.102)

The last C’ term may fuse with C to give a unique “circular” contribution.76

Domains eventually not covered by the formulas in Table 4-10 can be solved by
using the following formulas which show the equivalence of the symbols (generated
by the Torus software91), associated with identical graphs:

T��4� 8�3�SH�c� n	 = T��4� 8�3�SV�n� c	

T��4� 8�3�SH�c� n	 = T��4� 8�3�SH�2n� c/2	

T��4� 8�3�SV�c� n	 = T��4� 8�3�SV�n/2� 2c	

4.8.2.2. Tori T((4,8)3)R

A torus T((4,8)3)RLe((4,4)[q,p]) is obtained by leapfrogging the torus T(4,4)[c,n],
so that the correspondence c = q and n = p is straightforward.76 For such tori, the
parameters of (4.102) are given in Table 4-11.

4.8.2.3. Tubes TU((4,8)3)

Tubes are generated from tori either by tube cross-cutting or by around hollow-
cutting. In the case of tubes, the radial/circular specification from tori is however
improper, so that we limit to give the terms of the sum simply as A, B, C terms:76

��G�x� = A�G�x�+B�G�x�+C�G�x� (4.103)

The parameters of (4.103) are given in Table 4-12.
All the Omega polynomial descriptors herein presented have been calculated by

the Omega Counter software. 92

Table 4-11. Tori T((4,8)3)RLe((4,4)[q,p]) (unique embedding)

Case: p = q

R�G�x� = 2p ·xq C�G�x� = 2q ·x2p Le [10,10]: 20X10+20X20

Case: otherwise; md = maximum common divisor

R�G�x� = p ·xq C�G�x� = q ·xp

C ′�G�x� = 2md ·x2pq/md

Le[5,15]; md = 5:
15X5+5X15+10X30

Le[5,12]; md=1:
12X5+5X12+2X120
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Table 4-12. Tubes TU((4,8)3)S[c,n] and TU((4,8)3)RLe((4,4)[q,p])

TU ((4,8)3)S[c�n]; tubes are obtained by cutting the tori as:

(a) Cut torus H[c,n]: across-tube; (TUS(p,q��; c = 4p; n = q; around-hollow (TUG(p,q��; c = 2q; n = 2p

(b) Cut torus V[c,n]: across-tube; (TUS(p,q��; c = 2p; n = 2q; around-hollow (TUG(p,q��; c = q; n = 4p

A�G�x� = 4p ·xq

B�G�x� = �q −1� ·x2p

TUG(H[16,24]); (12,8): 48X8+7X24

TUG(V[16,24]); (6,16): 15X12+24X16

TUS(H[16,24]); (4,24): 23X8+16X24

TUS(V[16,24]); (8,12): 32X12+11X16

TU ((4,8)3)R[c�n]; tubes are obtained by cutting the tori either across-tube or around-hollow

A�G�x� = �p−1� ·xq

B�G�x� = q ·xp

C�G�x� = 2q ·x2p

TUSR(Le[7,8]); (7,8): 7X7+7X8+14X16

TUGR(Le[7,8]); (8,7): 8X7+6X8+16X14

4.9. QSPR Studies by Omega-derived Descriptors

Among the single number descriptors provided by the Omega polynomial, one is
of particular importance: np, the number of pentagon fusions, appearing as the
coefficient of the first power term, which accounts for more than 90% of the variance
in heat of formation HF of small fullerenes, e�g., C40 and C50.

Pentagon fusion is a major destabilizing factor in the classical fullerenes. To
account for this, Albertazzi et al. 93 have proposed the number np, of pentagon-
adjacency: np ≤ 30 for any fullerene and varies from 20 to 10 within the C40 set.
The maximum value occurs for the hemidodecahedral capped isomer 40:1, and the
minimum for the two isomers 40: 38 and 40: 39.

Resuming to the np descriptor, it can be derived from the relations:

np = 180−pv (4.104)

pvk = �1/2�
∑

pi
�LV�Du�M��	i�k (4.105)

with summation running over all entries, in the layer matrix of valences LV,
corresponding to pentavalent vertices in the dual of molecular graph. The pvk

parameter94 is the sum of faces size at the kth shell around each pentagon, in the
original graph. In case k = 1, (the subscript k omitted), it varies between 150 (in
C20) and 180 (in IPR fullerenes), and from 160 to 170 within the set of C40 isomers
(see below). In IPR fullerenes, np = 0, as expected. The number 180 is calculated
as: �12×5×6�/2 and represents the maximum value of pv.

The other two indices CI and I�, derived from the Omega polynomial, contribute
rather poor to the global correlation.

Even better is correlated the strain energy SE, calculated according to POAV1
procedure. 95,96,97 The less strained isomer is 38-D2.

The set of C40 fullerene graphs, are presented in Table 4-13, in an ordering given
by their spiral codes. 98 The plots of the correlating study are given in Figures 4-11
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Table 4-13. Structure of the C40 isomers

C40:1

C40:4

C40:7

C40:10

C40:13

C40:16

C40:19

C40:2

C40:5

C40:8

C40:11

C40:14

C40:17

C40:20

C40:3

C40:6

C40:9

C40:12

C40:15

C40:18

C40:21
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Table 4-13. (Continued)

C40:22 C40:23 C40:24

C40:25 C40:26 C40:27

C40:28 C40:29 C40:30

C40:31 C40:32 C40:33

C40:34 C40:35 C40:36

C40:40

C40:37 C40:38 C40:39
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C40 fullerene (40) isomers C50 fullerene (273) isomers 
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Figure 4-11. The plot heat of formation HF (kcal/mol) vs np in C40 and C50 fullerene isomers.

C40 fullerene isomers C50 fullerene isomers 
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Figure 4-12. The plot POAV1 strain energy SE (kcal/mol) vs np in C40 and C50 fullerene isomers.

and 4-12 while the corresponding topological and energetic parameters are listed
in Table 4-14.

Semiempirical calculations have been performed by using the PM3 Hamiltonian,
in standard parametrization supplied by HyperChem software (optimization by

Table 4-14. Topological and Energetical Parameters of C40 Isomers.

C40i np pv PM3 HF/atom (kcal/mol) SE/atom (kcal/mol)

1-D5d 20 160 26.053 15.908
2-C2 16 164 24.057 14.724
3-D2 18 162 24.809 15.243
4-C1 15 165 23.542 14.474
5-Cs 14 166 23.008 14.264
6-C1 14 166 22.960 14.111
7-Cs 15 165 23.811 14.443
8-C2v 15 165 23.589 14.492
9-C2 13 167 22.847 13.838
10-C1 13 167 22.588 13.810
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Table 4-14. (Continued)

C40i np pv PM3 HF/atom (kcal/mol) SE/atom (kcal/mol)

11-C2 15 165 24.081 14.464
12-C1 13 167 22.304 13.794
13-Cs 13 167 22.692 13.809
14-Cs 12 168 21.982 13.577
15-C2 12 168 22.520 13.677
16-C2 13 167 22.469 13.839
17-C1 13 167 22.395 13.742
18-C2 14 166 23.151 14.143
19-C2 13 167 22.903 13.934
20-C3v 12 168 22.721 13.552
21-C2 12 168 22.325 13.603
22-C1 12 168 21.991 13.527
23-C2 13 167 23.235 13.935
24-Cs 11 169 21.638 13.281
25-C2 12 168 22.134 13.578
26-C1 11 169 21.444 13.249
27-C2 12 168 21.967 13.431
28-Cs 12 168 21.927 13.597
29-C2 11 169 21.328 13.227
30-C3 12 168 22.272 13.610
31-Cs 11 169 20.972 13.166
32-D2 14 166 23.425 14.082
33-D2h 14 166 24.922 14.212
34-C1 12 168 22.113 13.494
35-C2 11 169 22.192 13.262
36-C2 11 169 22.042 13.166
37-C2v 11 169 21.231 13.123
38−D2 10 170 20.408 12.887
39-D5d 10 170 20.629 13.066
40-Td 12 168 21.569 13.312

Polak-Ribiere conjugate-gradient method, at RMS gradient <0�01 kcal/(Å·mol)).
Strain energies were supplied by our JSCHEM software program.99

Conclusions

Counting polynomials represent a diverse class of polynomials, based or not on
various topological matrices. The coefficients of some of the polynomials discussed
in this chapter were calculated either from matrices or by means of orthogonal edge-
cuts. Basic definitions and properties of the Hosoya, Cluj and Omega polynomials
were given. Analytical formulas for calculating these polynomials in tubular nanos-
tructures were presented. Utility of descriptors derived from the counting polyno-
mials to predict some physico-chemical properties of fullerenes was exemplified.
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73. M. Ştefu, M. V. Diudea and P. E. John, Studia Univ. “Babes-Bolyai”, 2005,50(2), 165–174.
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Chapter 5

Operations on Maps

5.1. Introduction

Covering a local planar surface by various polygonal or curved regions is an ancient
human activity, nowadays mathematically founded.1,2

Three regular tessellations: (4,4), (6,3) and (3,6), called Platonic, are known
back from the Greek and Roman mosaics and fascinated the viewers at all the times.

Lattice transformation is one of the ways in understanding the stability and
chemical reactions occurring in nanostructures. 3–5

A map M is a combinatorial representation of a (closed) surface. 6,7 Several
transformations (i�e�, operations) on maps are known and used for various purposes.

Let us denote in a map: v– the number of vertices, e – the number of edges,
f – the number of faces and d – the vertex degree. A subscript “0” will mark the
corresponding parameters in the parent map.

Recall some basic relations in a map:
∑

d vd = 2e (5.1)
∑

s fs = 2e (5.2)

where vd and fs are the number of vertices of degree d and number of s-gonal faces,
respectively. The two relations are joined in the famous EULER (1758) formula:8

v− e+f = ��M� = 2�1−g� (5.3)

with � being the Euler characteristic and g the genus9 of a graph (i�e., the number
of handles attached to the sphere to make it homeomorphic to the surface on which
the given graph is embedded; g = 0 for a planar graph and 1 for a toroidal graph).
Positive/negative � values indicate positive/negative curvature of a lattice. This
formula is useful for checking the consistency of an assumed structure.
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5.2. Simple Operations on Maps

5.2.1. Dualization Du

Dualization of a map starts by locating a point in the center of each face. Next,
two such points are joined if their corresponding faces share a common edge. It is
the (Poincaré) dual Du(M). The vertices of Du(M) represent the faces of M and
vice-versa. 7 In the transformed map, the following relations exist:

Du�M� � v = f0� e = e0� f = v0 (5.4)

Dual of the dual returns the original map: Du(Du(M�� = M . Tetrahedron is
self dual while the other Platonic polyhedra form pairs: Du(Cube) = Octahedron;
Du(Dodecahedron) = Icosahedron (see Figure 5-1 for symbols hereafter used). It is
also known the Petrie dual.

5.2.2. Medial Me

Medial is achieved by putting new vertices in the middle of the original edges. 7

Join two vertices if the edges span an angle (and are consecutive within a rotation
path around their common vertex in M�. Medial is a 4-valent graph and Me(M� =
Me(Du(M��, as illustrated in Figure 5-2a. The transformed map parameters are:

Me�M� � v = e0� e = 2e0� f = f0 +v0 (5.5)

The medial operation rotates parent s-gonal faces by �/s. Points in the medial
represent original edges, thus this property can be used for topological analysis of

Tetrahedron T Cube C Octahedron O Dodecahedron D  Icosahedron I 

Figure 5-1. The five Platonic polyhedra.

(a) Me(C ) = Cuboctahedron (b) Tr(O) = Truncated Octahedron 

Figure 5-2. Medial and Truncation.
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edges in the parent polyhedron. Similarly, the points in dual give information on
the topology of parent faces.

5.2.3. Truncation Tr

Truncation is achieved by cutting off the neighborhood of each vertex by a plane
close to the vertex, such that it intersects each edge incident to the vertex.7

Truncation is similar to the medial, the transformed map parameters being:

Tr�M� � v = 2e0 = d0v0� e = 3e0� f = f0 +v0 (5.6)

This was the main operation used by Archimedes in building its well-known 13
solids. 5 Figure 5-2b illustrates a transform by this operation.

5.2.4. Polygonal Pn Capping

Polygonal capping (n= 3, 4, 5) of a map is achieved as follows: add a new vertex in
the center of each face. Put n-3 points on the boundary edges. Connect the central
point with one vertex on each edge (the end points included). Thus, the parent face
is covered by triangles (n = 3), quadrilaterals (n = 4) and pentagons (n = 5). The
P3 operation is also called stellation or triangulation. When all the faces of a map
are thus operated, it is referred to as an omnicapping Pn operation. The transformed
map parameters are:

Pn�M� � v = v0 + �n−3�e0 +f0� e = ne0� f = s0f0 (5.7)

so that the Euler’s relation holds.
Maps transformed by the above operations form dual pairs:

Du�P3�M�� = Le�M� (5.8)

Du�P4�M�� = Me�Me�M�� (5.9)

Du�P5�M�� = Sn�M� (5.10)

Vertex multiplication ratio by this dualization is always:

v�Du�/v0 = d0 (5.11)

Relations (5.8) – (5.10) enable the construction of Archimedean objects, when
applied on the Platonic solids. 5,7 Their duals are known as the objects of Catalan.
Relations (5.8) and (5.10) will be detailed below. Eq. 5.11 comes out from: v�Du� =
f�Pn�M�� = s0f0 = d0v0 (eqs 5.4 and 5.7). Note that all the operation parameters
herein presented refer to regular maps (i�e., having all vertices and faces of the
same valence/size). Figure 5-3 gives examples of the Pn operations realization.
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(a) P3(D) (b) P4(D) = (C10)a (c) P5(D) = (C9)a

Figure 5-3. Polygonal Pn operations on the Dodecahedron D; (a) Symbols in the brackets are identical
to those used in ref. 5 for Catalan objects (i�e., duals of the Archimedean solids); (for other operation
names see ref. 11).

5.2.5. Snub Sn

Snub is a composite operation10 that can be written as:

Sn�M� = Dg�Me�Me�M��� = Du�P5�M�� (5.12)

where Dg means the inscribing diagonals in the quadrilaterals resulting7 by
Me(Me(M��. The true dual of the snub is the P5�M� transform: Du(Sn�M�� = P5�M�.
Similar to the medial operation, Sn(M� = Sn(Du(M��. In case of M = T , the snub
Sn(M� = I .

Of chemical interest is the easy transformation of the snub (i�e., regular
pentavalent graph) into the leapfrog transform (i�e., regular trivalent graph –
see below), by deleting the edges of the triangle joining any three parent
faces (Figure 5-4, in black). This is particularly true in the snub of trivalent
parent maps.

The transformed parameters are derivable from eqs. 5.4, 5.7 and 5.10 (with
n = 5):

Sn�M� � v = s0f0 = d0v0� e = 5e0� f = v0 +2e0 +f0 (5.13)

The multiplication ratio is v/v0 = d0, the same as for Le(M), both of them
involving the dualization.

Sn(D) = (A9)a C60 = (A12)a

Figure 5-4. Snub of Dodecahedron; a Symbols in the brackets are identical to those used in ref. 5 for
the Archimedean solids. Note the insulated pentagons in C60.
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5.3. Composite Operations

5.3.1. Leapfrog Le

Leapfrog (tripling) is a composite operation12–19 that can be written as:

Le�M� = Du�P3�M�� = Tr�Du�M�� (5.14)

A sequence of stellation-dualization rotates the parent s-gonal faces by 	/s.
Leapfrog operation is illustrated, on a pentagonal face, in Figure 5-5.

A bounding polygon, of size 2d0, is formed around each original vertex. In the
most frequent cases of 4- and 3-valent maps, the bounding polygon is an octagon
and a hexagon, respectively.

If the map is a d0 regular graph, the following theorem holds:17,18

Theorem 5.1. The number of vertices in Le(M) is d0 times larger than in the
original map M, irrespective of the tessellation type.

The demonstration follows from the observation that, for each vertex of M , d0

new vertices result in Le�M� � v/v0 = d0v0/v0 = d0. The same result can be derived
from eqs. 5.4, 5.7 and 5.8 (with n = 3) or directly from eqs. 5.8 and 5.11. The
complete transformed parameters are:

Le�M� � v = s0f0 = d0v0� e = 3e0� f = v0 +f0 (5.15)

being the same as for Tr(M), eq. 5.6.
Note that in Le(M� the vertex degree is always 3, as a consequence of the

involved triangulation P3. In other words, the dual of a triangulation is a cubic net. 7

It is also true that truncation always provides a trivalent lattice.
A nice example of using Le operation is: Le(Dodecahedron) = Fullerene C60.

The leapfrog operation can be used to insulate the parent faces by surrounding
bounding polygons.

A retro-leapfrog19 RLe operation can be imagined:

RLe�M� = RP3�Du�Le�M��� (5.16)

It is performed by cutting all vertices in the dual (of leapfrogged map) with degree
lower than the maximal one (Figure 5-6). Hereafter, the letter “R” in the front
of a map operation name will denote the corresponding retro-operation. As a 3D
realization, RLe is illustrated in Figure 5-7.

P3 Du

Figure 5-5. The Leapfrog Le operation on a pentagonal face.
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Du RP3

Figure 5-6. The Retro-Leapfrog RLe operation on a pentagonal face.

Le (M); v = 48 Du (Le (M)); v = 26

v = 20 M’ = Cubeoctahedron; v = 12

Figure 5-7. The Retro-Leapfrog RLe operation.

5.3.2. Quadrupling Q

Quadrupling (chamfering) 17– 20 is another composite operation, achieved by
the sequence:

Q�M� = RE�TrP3
�P3�M��� (5.17)

where RE denotes the (old) edge deletion (dashed lines, in Figure 5-8) in the
truncation TrP3 of each central vertex of the P3 capping. The complete transformed
parameters are:

Q�M� � v′ = �d+1�v� e′ = 4e� f ′ = f + e (5.18)

The Q operation leaves unchanged the initial orientation of the polygonal faces.

Theorem 5.2. The vertex multiplication ratio in a Q transformation is d0 + 1
irrespective of the original map tessellation.
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P3 TrP3

Figure 5-8. The Quadrupling Q operation on a pentagonal face.

With the observation that, for each vertex of M , d0 new vertices appear in
Q�M� and the old vertex is preserved, the demonstration is immediate: 17,18 v =
d0v0 +v0� v/v0 = d0 +1. The complete transformed parameters are:

Q�M� � v = �d0 +1�v0� e = 4e0� f = f0 + e0 (5.19)

Q operation involves two 	/s rotations, so that the initial orientation of the
polygonal faces is preserved. Note that, the quadrupling transform of a 4-valent
map is not a regular graph anymore (because of mixing the new trivalent vertices
with the parent 4-valent ones). Only Q�M� of a 3-valent map is a 3-regular graph.

Q insulates the parent faces always by hexagons. An example of this operation is:
Q (Dodecahedron) = Fullerene C80. It is also called “chamfering” (edge chamfering
being equivalent to vertex truncation20).

The retro-quadrupling19 RQ operation is based on the sequence:

RQ�M� = E�RTrP3
�P3�M��� (5.20)

and it is performed by adding new edges parallel to the boundary edges of the
parent faces (Figure 5-9) and deletion of these faces. As a 3D realization, RQ is
illustrated in Figure 5-10.

5.3.3. Septupling Operations

Two main operations on maps, leading to Platonic tessellations in open lattices, are
known: the septupling S1 and S2 operations. 10,19,21,22–25

The S1 operation was also called21 Capra Ca – the goat, by the Romanian
name of the English leapfrog children game. It is a composite operation that can
be written as a sequence of simple operations:

S1�M� = TrP5
�P5�M�� (5.21)

RTrP3E

Figure 5-9. The Retro-Quadrupling RQ operation on a pentagonal face.
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C80

Figure 5-10. The Retro-Quadrupling RQ operation.

with TrP5 meaning the truncation of new, face centered, vertices introduced by P5

pentagonal capping, which involves an E2 (i�e., two new points put on each edge)
operation.

The nuclearity of the GOLDBERG (1937) polyhedra20 (related to the fullerenes)
is obtained by using the parameter:

m = �a2 +ab+b2�� a ≥ b� a+b > 0 (5.22)

which is the multiplication factor m = v/v0: in a 3-valent map, Le ((1,1); m = 3�Q
((2,0); m = 4 and S((2,1); m = 7. The m factor was used since the ancient Egypt
for calculating the volume of truncated pyramid, of height h: V = mh/3.

S1 insulates any face of M by its own hexagons, which are not shared with any
old face. It is an intrinsic chiral operation24 (it rotates the parent edges by �/�3/2�s
and was extensively illustrated in ref.25. Since pentangulation of a face can be done
either clockwise or counter-clockwise, it results in an enantiomeric pair of objects:
S1S�M� and S1R�M�, with the subscript S and R given in terms of the sinister/rectus
stereochemical isomery.

S1 can continue with the open operation:

Opk�Si�M�� (5.23)

where k represents the number of points added on the boundary of the parent faces,
that become the open faces. The resulting open objects have all the polygons of
the same �6 + k� size. The above operation sequence enables the construction of
negatively curved networks. Figure 5-11 gives the steps of S1 realization on a square
face in a trivalent lattice, up to the open structure.

Theorem 5.3. The vertex multiplication ratio in an S transformation is 2d0 + 1
irrespective of the original map tiling.
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P5(M) S1(M) Op(S1(M)) 

Figure 5-11. Septupling S1 operation on a square face, up to the open structure.

For demonstration, observe that, for each old vertex, 2d0 new vertices (Figure 5-8)
appear and the old vertex is preserved in the transformed map. Thus, v = 2d0v0 + v0

and v/v0 = 2d0 +1.
The S2 operation10,22 is a simpler one (Figure 5-12); it can be achieved by

putting four vertices on each edge of the parent map M (E4 operation) and next
join these new vertices in order (–1, +3):

S2 = J�−1
+3��E4�M�� (5.24)

It insulates the double sized parent faces by pentagons and parent vertices by
pentagon d0-multiples; the transformed objects are non-chiral ones.

Chirality in S2 is brought by the Op operation Op2a, achieved by putting two
points on alternative edges of the double sized parent face boundary (Figure 5-12).

In case of a closed product, the transformed lattice parameters are identical to
those of S1(eq. 5.25); differences appear in case of open objects (eqs. 5.26 and
5.27). Note that both the septupling operations keep the parent vertices (see the
vertex counting formulas – eq. 5.25).

The transformed lattice parameters are shown in the following relations:

S1�M� & S2�M� � v = v0�2d0 +1�� e = 7e0� f = f0�s0 +1� (5.25)

Op�S1�M�� � vOp = v0�3d0 +1�� eOp = 9e0� fOp = f0s0 (5.26)

Op2a�S2�M�� � vOp = v0�4d0 +1�� eOp = 11e0� fOp = f0s0 (5.27)

where d and s are the vertex degree and face size, respectively; the subscript zero
refers to the original map M .

Figure 5-12. Septupling S2 operation on a square face, up to the open structure.
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The iterative n-time operating (on maps with any vertex degree, d0 ≥ 3� leads
to the following lattice parameters, transformed by both S1 and S2:

vn = v0qn (5.28)

en = e0m
n

fn = f0�s0pn +1�

where:

qn = 2d0pn +1� n ≥ 2 (5.29)

pn =
n−1∑

i=0

mi = �mn −1�/�m−1� = m�m� � � �m+1� � � �+1�n−2 +1 (5.30)

The parameter m is that defined in relation (5.22). From (5.29), it is obvious that:

pn = �qn −1�/2d0 (5.31)

For trivalent maps (i�e., those with d0 = 3), the above parameters become:

qn = mn (5.32)

pn = �mn −1�/6 (5.33)

vn = v0m
n (5.34)

en = e0m
n

fn = f0�s0�m
n −1�/6+1�

For S1 and S2the transformed lattice parameters will be:

vn = 7nv0� en = 7ne0� fn = f0�s0�7n −1�/6+1� (5.35)

In case of a cage opening after the nth iteration, the lattice parameters are as
follows:

vn
Op �S1� = v0qn +f0s0 = v0�d0 +qn� (5.36)

en
Op�S1� = e0m
n +f0s0 = e0�m

n +2�

fn
Op�S1� = f0�s0pn +1�−f0 = f0s0pn

vn
Op2a
�S2� = v0qn +2f0s0 = v0�2d0 +qn� (5.37)

en
Op2a
�S2� = e0m

n +2f0s0 = e0�m
n +4�

fn
Op2a
�S2� = f0�s0pn +1�−f0 = f0s0pn
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RTrP5 RE2

Figure 5-13. The Retro-Capra RCa operation on a pentagonal face.

The two septupling operations represent twin operations in that, the trans-
formed objects, representing repeat units in D- , FRD- and P-type negatively curved
surfaces, belong to the complementary labyrinths (see Chapter 7).

Retro-capra RCa operation is achieved by the sequence:

RCa�M� = RE2�RTrP5
�M�� (5.38)

In words, delete the smallest faces of the actual map and continue with RE2

(Figure 5-13).
As a 3D realization, RCa is illustrated in Figure 5-14.
Denote by F a fullerene and its retro operation by R��F� = F ′. The question is:

exists such an F’ cage? The answer is no, in case the retro-operation will produce
an irregular graph, eventually having dangling bonds. Some other information, like
those comprised in eqs. (5.15),(5.19) and (5.25) will be helpful in getting the answer
to the above question.

In case of a negative answer, no specific properties, derived from the above
operations (see the next section), could be assigned to F. Let consider, for example,
the fullerenes C80: 80:1, D5d and 80:6, D5h in the Atlas of Fullerenes. 26 The
first one is the quadrupling of C20 while the other is not. The molecule with the
symmetry D5d will preserve the character of the orbitals in C20 (the degeneracy of
the orbitals HOMO, LUMO, LUMO+1, LUMO+2) which is not the case of that
with the symmetry D5h. The three discussed operations preserve, at least in part, the

C140 RTrP5 (D); v = 80

Figure 5-14. The Retro-Capra RCa operation.
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symmetry of the parent structures, so that the knowledge on the operations involved
in construction of a fullerene is useful in structure elucidation studies. 24

5.3.4. Molecular Realization of Septupling Operations

Examples for the molecular realization of septupling operations are given here only
for closed objects. Involvement of these operations in building infinite lattices of
negative curvature will be presented in Chapter 7.

As above mentioned, S1 rotates the parent bonds, so that it provides chiral
transforms. The iterative application of S1 may lead to either chiral/twisted or non-
chiral/non-twisted transforms: for example, the sequence S1S�S1S�M�� results in a
twisted structure while S1R�S1S�M�� provides a non-twisted object (Figure 5-15).

When applied on fullerenes, S1 leads to chiral structures. In this respect, C140 is
the only fullerene with a Platonic covering (a single size of equivalent faces) of the
form: (([5]Cor)3), where [5]Cor is the [5]corannulenic supra-face22 (Figure 5-14).
In other fullerenes, S1 provides Archimedean coverings (([5]Cor,[6]Cor)3).

Applied on polyhex toroidal objects, S1 provides the Platonic (([6]Cor)3)
covering (Figure 5-16).

In the opposite, S2 applied to closed cages, leads to non-twisted objects. Its
iterative application reveals the fractal fashion of the covering (Figure 5-17). The

S1S (S1S (O)); v = 390 (side) S1R (S1S (O)); v = 390 (side) 

S1S (S1S (O))top) S1R (S1S (O)) (top) 

Figure 5-15. Sequence of S1 pro-chiral operations on Octahedron: S1S ,S1S transform is still twisted
while S1R,S1S one is no more chiral.
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Figure 5-16. A chiral toroidal structure with the Platonic covering (([6]Cor)3).

(a)  S2(D); I; v = 140 (two-fold axis) (b) (S2)3(D); I; v = 6860 (five-fold axis)  

Figure 5-17. Iterative S2 operation on Dodecahedron: observe the fractal covering in case of 3-time
repetition (b).

S2(H[8,24]); v = 1344 

Figure 5-18. A toroidal lattice having Archimedean covering ((5,12)3) = S2(6,3), with local signature
(3,0).
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fractal characteristic22,27,28 can be seen even in the algebraic form of pn parameter
(eq. 5.30).

The only fullerene constructible by S2 is C28, when applied on the Tetrahedron.
Applied on toroidal objects, S2 leads to an Archimedean covering (Figure 5-18).

All the above closed objects show a positive curvature (i�e., they have � � 0 –
see eq. 5.3).

5.4. Generalized Operations

Recently, Peter E. John29,30 has proposed a generalization of operations on maps,
inspired from the work of Goldberg,20 and its representation of polyhedra in the
�a
 b� “inclined coordinates” �60� between axes). The multiplicity factor m for
trivalent maps is given by eq. (5.22).

Figures 5-19 and 5-20 illustrate the method on the hexagonal face. The points
of the “master” hexagon must lie either in the center of a lattice hexagon or on a

(2,2)

xy

(2,2)

xy

(4,0)

(4,0)

Figure 5-19. Generalized (a, a� and (a, 0) operations.

(a) (3,2); m = 19

(3,2)xy (3,2)xy

(b) C(3,2); m = 13 

Figure 5-20. Generalized (a, b� operation: a = b + 1 (5a) and (central face and first connected atoms)
“cut” C(a,b� (5b), the last one corresponding to m(3,1) =13 factor.
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Table 5-1. Inclined coordinates �a
 b�, multiplication factor m = �a2 +ab+b2�, number of atoms v and
operation symbols ( running on Dodecahedron, C20�

(a
b) m v Operation Obs.

1 (1, 0) 1 20 I Identity
2 (1, 1) 3 60 Le1
1 Rotated by �/s; achiral
3 (2, 0) 4 80 Q2
0 Non-rotated; achiral
4 (2, 1) 7 140 Ca2
1 Rotated by �/�3/2�s; chiral
5 (2, 2) 12 240 Le1
1, Q2
0 Rotated by �/s; achiral
6 (3, 0) 9 180 Le1
1, Le1
1 Non-rotated; achiral
7 (3, 1) 13 260 – Rotated; chiral
8 (3, 2) 19 380 – Rotated; chiral
8’ (3, 2)∗c 13 260 – Rotated; chiral
9 (3, 3) 27 540 Le1
1, Le1
1, Le1
1 Rotated by �/s; achiral
10 (4, 0) 16 320 Q2
0, Q2
0 Non-rotated; achiral
11 (4, 1) 21 420 Le1
1, Ca2
1 Rotated; chiral∗∗

12 (4, 2) 28 560 Q2
0, Ca2
1 Rotated by �/2s; chiral
13 (4, 3) 37 740 - Rotated; chiral
14 (4, 4) 48 960 Le1
1, Q2
0, Q2
0 Rotated by �/s; achiral
15 (5, 0) 25 500 – Non-rotated; achiral
16 (5, 1) 31 620 – Rotated; chiral
17 (5, 2) 39 780 – Rotated; chiral
18 (5, 3) 49 980 Ca2
1, Ca2
1 Chiral/achiral∗∗

19 (5, 4) 61 1220 – Rotated; chiral
20 (5, 5) 75 1500 – Rotated; achiral

∗ c = cut; ∗∗ achiral, when the sequence CaR(CaS(M�� is used.

lattice vertex, so that in the center of the parent hexagon must be a new hexagon.
The edge length of the parent hexagon is counted by the primitive lattice vectors
�x
 y�.

A similar procedure was used by Coxeter, 31 who built up icosahedral
polyhedra/fullerenesasdualmaster triangularpatches, representedbypairsof integers.

For the (3,2) Cut operation – Figure 5-20b, the central face and first connected
atoms were cut off.

Some of the generalized composite operations, corresponding to non-prime m,
can be expressed as sequences of operations, as shown in Table 5-1. It is obvious
that �a
a� also noted Lea
a and (a,0) or Qa
0 operations provide achiral transforms
(e�g., fullerenes of the full Ih point group symmetry) while �a
 b�
a �= b, (also noted
Caab� result in chiral transformed maps (e�g., fullerenes of the rotational I point
group symmetry). 24 The (a,0) operations produce non-rotated maps. The above
generalized operations, as implemented in the software package CageVersatile, 32

work on any face and any vertex-degree maps.
In case of a trivalent regular map, relations (5.1) and (5.2) can be rewritten as:

3 ·v0 = 2 · e0 = s0 ·f0 (5.39)
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Keeping in mind the multiplication factor m (see (5.22)), the number of vertices
in the transformed map is:

v = m ·v0 (5.40)

Eq. 5.39 leads to:

3 ·v = 3 ·m ·v0 = 2 · e (5.41)

e = 3
2

·m ·v0 = 3
2

·m · 2
3

e0 = m · e0 (5.42)

The above operations introduce new hexagons, keeping the original faces. Thus,
the number of faces of any size s in M is:

fs = f6 +f0 (5.43)

Relation (5.39) becomes:

2 · e =∑
s ·fs = 6 ·f6 + s0 ·f0 (5.44)

Substitution of e from (5.42-13) in (5.44-15) leads to:

f6 = m−1
6

· s0 ·f0 (5.45)

fs = m−1
6

· s0 ·f0 +f0 (5.46)

In the case of n-iterative operations, eqs. 5.34 hold for all the presented opera-
tions running on a trivalent regular M0. The above relations are particularly true
for the 3-valent Platonic solids: tetrahedron T , cube C and dodecahedron D.

For maps of different degree, some relations were above presented (in the case
of Le, Q and Ca).

Figure 5-21 gives an example of molecular realization of a chiral generalized
operation.

Sequences of operations or special single generalized operations, leading to
corazulenic supra-coverings, have been created at the TOPO group Cluj (see
Chapter 6.2).

5.5. Isomerization Routes on Tubular Nanostructures

A particular case of map operations, allowing only changes of connectivity, is the
popular edge flipping, patterned by Stone and Wales. 33 Rotating a selected edge
enlarges the size/folding of joint polygonal faces concomitant with reduction in size
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of the previously shared faces (Figure 5-22). A corresponding transformation was
found to occur in real fullerene molecules (a rearrangement reaction) and further
gained a Quantum Chemical support. 34,35 Routes of isomerization, by Stone-Wales
SW operation, of the polyhex nanotubes have been proposed10,25,36 and will be
presented in the following.

(a) (3,2)(D); m = 19; v = 380 (b) C(3,2)(D); m = 13; v = 260

(c) (3,2)(D); optimized (d) C(3,2)(D); optimized

Figure 5-21. The generalized (3,2) and C(3,2) operations performed on the Dodecahedron.

(a) (b) (c)

Figure 5-22. The Stone-Wales SW rearrangement, as local (a and b) or long-range transformation
(c – the glide direction indicated by the arrow).
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5.5.1. Isomerizations on (6,3) Net

Let the (6,3) net be embedded in the cylinder, as (6,3)H/Z or (6,3)V/A
(Figure 5-23 a,b) and let denote by H�i
j�
�p
r� the edges lying horizontal (i�e�, parallel
to the horizontally oriented tube generator) in a schematic lattice representation.
The first subscript bracket encodes the relative location of the start-point of rotating
edges along the tube while the second one the location of edges around the tube.
Mark V�i
j�
�p
r� the edges lying vertical (i�e�, perpendicular to the tube generator).
The marked edges will be rotated by the SW isomerization and the above symbols
play the role of a true rotational operator.

The hexagonal (6,3) covering is transformed into the “rhomboidal-bathroom-
floor” tiling37 R((4, 8)3) (Figure 5-23c) by operations:

H�1
3�
�1
3���6
 3�H� = ��4
 8�3�R = V�1
3�
�1
3���6
 3�V� (5.47)

When edge rotation follows a spiral path, like that illustrated in Figure 5-24,
the covering is, after optimization by an MM procedure, a “square-bathroom-floor”
((4,8)3)S lattice. 36

The operation can be written as:

V�1
5�
�1
5���6
 3�H� = ��4
 8�3�S (5.48)

Similarly, the operation:

V�1
5�
�1
5�
1a��6
 3�H� = ��5
 7�3�SP (5.49)

(a) H(1,3),(1,3) ((6,3)H/Z) (b) V(1,3),(1,3) ((6,3)V/A)  (c) ((4,8)3)R 

Figure 5-23. Zig-zag (6,3)H/Z and armchair (6,3)V/A nanotubes and the SW lattice resulted by rotating
the marked bonds.

((4,8)3)SV(1,5),(1,5)((6,3)H)

Figure 5-24. A spiral path of SW edge rotation and its transform.
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provides a spiral ((5,7)3)SP net, 38 Figure 5-25. Note the combination V & H, for
describing a spiral path and the subscript 1a for a “leave one row/column out” way
in getting an “alternating” spiral net.

The same operation can be done on the (6,3)V net, thus resulting the pair
embedding isomers.

Different pentaheptite ((5,7)3) lattices4 can be obtained by the following
operations:

H�1
5�
�1
5���6
 3�H� = ��5
 7�3�V (5.50)

V�1
5�
�1
5���6
 3�V� = ��5
 7�3�H (5.51)

These coverings will be illustrated in the next section.

5.5.2. Isomerizations on ((4,8)3) Net

The ((4,8)3) covering, particularly ((4,8)3)R, transforms to either (6,3)V or (6,3)H
net by operations:

H�1
4�
�1
4����4
 8�3�R� = �6
 3�V (5.52)

V�1
4�
�1
4����4
 8�3�R� = �6
 3�H (5.53)

as a unique intermediate in the isomerization of the (6,3) net. Other isomerizations of
this covering are rationalized by eqs. (5.54 and 5.55) and illustrated in Figures 5-26
and 5-27.

H�1
7�
�1
7����4
 8�3�R� = ��5
 7�3�H (5.54)

V�1
7�
�1
7����4
 8�3�R� = ��5
 7�3�V (5.55)

The pentaheptite H/V((5,7)3) lattice is encountered39 in the chemical net of
ThMoB4. It is a 2-isohedral tiling2 (i�e., it has only two face orbits), with the
local signature (t5, t7� = (1, 3). Crespi et al. 40 (1996) stated that such nanotubes
would show metallic behavior. This statement appears quite strange, since these

V(1,5),(1,5),1a ((6,3)H) ((5,7)3)SP

Figure 5-25. A spiral path of SW edge rotation and its spiral net product.
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H(1,3),(1,3) (((4,8)3)R) ((5, 7)3)H 

Figure 5-26. SW isomerization of ((4,8)3)R to ((5,7)3)H lattice.

V(1,7),(1,7) (((4,8)3)R) ((5, 7)3)V  

Figure 5-27. SW isomerization of ((4,8)3)R to ((5,7)3)V lattice.

pentaheptite nets can be termed fully-pentalenoid (well-known as an anti-aromatic
unit) rather than fully-azulenoid, according to Kirby.41

Other combinations of SW rotation, on ((4,8)3)R, are as follows:

V�1
3�
�1
6��H�1
4�
�1
7����4
 8�3�R� = ��5
 7�3�HA (5.56)

H�1
6�
�1
3��V�1
7�
�1
4����4
 8�3�R� = ��5
 7�3�VA (5.57)

The resulting net is a 2-isohedral tiling with a (2,4) signature. It is a periodic
(i�e., face-regular) covering, described as a capped tubulene.42 An example is given
in Figure 5-28.

Other isomerizations are derivable form the two above ones:

H�1
6�
�1
5��V�1
7�
�1
4����4
 8�3�R� = ��5
 6
 7�3�HA (5.58)

V�1
5�
�1
6��H�1
4�
�1
7����4
 8�3�R� = ��5
 6
 7�3�VA (5.59)

and the operation is illustrated in Figure 5-29. This novel lattice has the local
signature: t5j(0, 4, 1); t6j(2, 2, 2); and t7j(1, 4, 2), j = 5
 6
 7.

In the VA embedding, ((5,6,7)3) covering is deducible from C60 by cutting off
two hexagonal parallel rings. It was also described as a capped tubulene.42

Note that the ((4,8)3) lattices are deductible from the square (4,4) covering, by
some basic operations on maps. The above SW edge rotations have been performed
by the CageVersatile 1.1 original program.32
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V(1,7),(1,4) (((4,8)3)R) H(1,6,),(1,3) (V(1,7),(1,4) (((4,8)3)R) ((5,7)3)VA 

Figure 5-28. The pathway to ((5,7)3)VA lattice

Figure 5-29. The pathway to ((5,6,7)3)VA lattice.

Conclusions

Various covering lattices, encountered in spherical and tubular nanostructures, can
be achieved, mainly by operations on maps, by cutting procedures or by Stone-
Wales SW edge rotations. The most versatile and deeply involved in the electronic
structure of nano-molecules are the geometrical-topological operations on maps.

In addition to the classical simple operations, like dualization and truncation, the
first three operations in the list of Goldberg, leapfrog/tripling, chamfering/quadrupling
and capra/septupling, play a central role in modelling nanostructures. The other opera-
tions, called here generalized operations, can be considered (at least those of non-prime
multiplication factor) combinations of the three above operations. Some sequences of
operations provide corazulenic supra-coverings.

Cutting procedures have been developed with the aim of generating large
sized tubular and toroidal objects, associated to nanostructures. Stone-Wales edge
rotations enable covering changes in both spherical and tubular objects. Several
new coverings and routes of possible isomerization reactions have been presented.
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Chapter 6

Aromaticity of Nanostructures

6.1. Introduction

Modeling nanostructures, scientist often used the embedding of a polygonal lattice
in a given 3D surface S. Such a “combinatorial” surface is called1 a map M.
Analytical formulas, for generating a smooth surface, can be found in Mathematical
recipes, available on internet. The coordinates of the lattice points are obtained by
partitioning S, either by dedicated algorithms or by simply drawing vertices and
edges on display, with the aid of some builders to switch from 2D to 3D. Another
way uses templates, or unit blocks with a prescribed spatial arrangement. This
last technique is also used (or naturally happens) in self assembling reactions, in
experiments (or occurring in vivo).

The covering of a map can be transformed by several geometrical-topological
operations, like the popular Stone-Wales edge flipping2 or the operations on maps,
detailed in Chapter 5. These operations have been proposed for rationalizing3,4 the
transformations observed in nanostructures, in relation structure-stability5,6 or even
in their growth mechanisms.7– 10

Recall that an embedding is the representation of a graph on a surface such that
no crossing lines appear; 11,12 the genus is the number of handles attached to the (or
holes performed in a) sphere to make it homeomorphic to S.

A polyhedral cage obeys the Euler theorem:13

v− e+f = ��S� = 2�1−g� (6.1)

where ��S� is the Euler characteristic, v, e, f , and g being the number of vertices,
edges, faces, and genus, respectively.
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The composite operations and some generalized map operations14 obey the
truncated pyramid volume formula in calculating the nuclearity, in a 3-valent trans-
formed map:

m = �a2 +ab+b2�� a ≥ b� a+b > 0 (6.2)

with m being the multiplication factor (m = v/v0) by a given operation. Thus, Le
is: (1,1); m = 3; Q is: (2,0); m = 4 and Ca/S1 corresponds to (2,1); m = 7.

Sequences of map operations are usually commutative, e�g., Le(Q�M�� =
Q�Le�M��, irrespective of the vertex degree of M or its subsequent regular/irregular
character. Some others are non-commutative, as will be shown below. All the opera-
tions on maps were performed by the CageVersatile15 software package, which
works on any face, any vertex-degree maps and any type of surface.

6.2. Aromaticity of Nanostructures

The aromatic character is a multi-conditional molecular property, including
energetics, electronic structure, magnetic response, geometric characteristics or
chemical behaviour. 16–18 Consequently, various orderings are expected in sets of
molecules with respect to different aromaticity criteria.

An energetic criterion of aromaticity would say: more aromatic character, more
stable structures. 17,18 Despite the resonance energy19–21 play an important role in
the stability of (at least) planar polyhex structures, the strain appearing in fullerenes,
nanotubes, etc., will decide the overall stability (and reactivity) of such molecules.
Data on the molecules discussed within this chapter are given immediately after
their structure is presented. Tables include values of the heat of formation HF and
HOMO-LUMO Gap (PM3 data) along with the strain energy, in terms of POAV1
theory.22–25 The �-energy per electron of these cages (in � units, in the simple
Hückel approximation) is also included in the following tables. It parallels TRE20

and appears to be larger for corannulenic closed-shell 26 cages than for corazulenic
ones (see below).

An electronic criterion requires �-electron delocalization18 (and bond length
equalization). However, aromaticity is a local property, in the sense that small
benzenic or naphthalenic units, rather than larger circuits, firmly manifest in
chemical reactions. The �-electron distribution is presented in terms of the
numerical Kekulé valence structure representation:27–34 each double bond in a
geometrical Kekulé structure gets the number 2 for the two �-electrons of the
double bond; if the double bond is shared by two rings it gets only the number 1.
Thus, the local flower covering can be described by the �-electron content. In
contrast to the geometrical Kekulé structures, the numerical Kekulé structures
enable construction of a single numerical structure to account for the superposition
of the geometrical Kekulé structures as in the Clar representation35,36 (see
below).
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With regard to stability, a higher Kekulé structure count K is associated with
a higher stability. 18,37 There are, however, 20 C60 isomers with K>12	 500 (the
K-value of Buckminsterfullerene C60) although they are less stable (non-spherical,
non-IPR, strained isomers). 38–40 As above mentioned, strain in the 
-frame is an
important energetic factor, particularly in non-planar molecules, where it may revert
the expected ordering. Thus, in toroidal polyhexes, the thin-tubed tori, with the
highest strain, have the largest K value�41 It appears that that K alone is not a
reliable guess of energetically favorable structure. The conjugated circuits count
has been proved to be more reliable. 18–44

A magnetic criterion would infer �-electron delocalization, with direct conse-
quences on the magnetic properties, as reflected in the diamagnetic susceptibility
and NMR chemical shifts. These effects can be rationalized in terms of ring currents
induced by the external field. Ring-current effects have long been recognized as
important indicators for aromaticity. 18 Depending on the number of �-electrons,
diatropic or paratropic ring currents may occur.

In fullerenes, enhanced aromaticity, as assessed by the magnetic criterion, does
not necessarily imply additional stabilization. The considerable strain of the 
-frame
can dominate the stability and reactivity. 17

A structural/geometric criterion of aromaticity would predict for C60 a
pronounced bond-length alternation between [6,6]- and [5,6]-bonds.17,18 Experi-
mental data have also shown that, in neutral fullerenes, the bonds shared by two
hexagons (i�e., [6,6]-bonds) are shorter than the pentagon-hexagon bonds (i�e., [5,6]-
bonds). 45,46 The bond-length alternation implies cyclohexatriene and [n]radialene
substructures, which is strongly supported by the regio-selectivity of addition
reactions. 17

Based to the geometric criterion, an index of aromaticity, called HOMA
(harmonic oscillator model of aromaticity)47–51 was derived on the difference
between the actual CC and the CC equalized bond lengths. The data in the following
tables are calculated52 cf. ref. 51. Within a single polycyclic conjugated structure,
different rings normally show different local aromaticity, 53 which can be accounted
for by the HOMA values (ranging from 1 for benzene to about zero for non-aromatic
and negative values for anti-aromatic molecules).

Clearly, the aromaticity is a multi-dimensional phenomenon.54,55 Even so, the
structural features of molecules have to prevail, in the aromaticity assessment, over
the observable properties, as Kekulé himself has stressed in the early days of this
theory.18

Also clear is that fullerenes are far from the “super-aromatic” dream of
researchers, they approaching rather a “super-alkenic” character, 38 with the
additions the most favored reactions. The electron deficiency of these molecules
arises from the presence of 12 pentagons, instead of hexagons, in the sheet of
graphite, needed to close a cage. Nanotubes are even less reactive, due to the low
pyramidalization of the sp2 carbon atoms. Attempts to predict the aromaticity of
nanotubes of nanotori have been done56–58 (see also Chapter 2).
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6.3. Corannulenic Cages

A Clar structure35,36 is a valence structure having the maximal number of disjoint
aromatic �-sextets. It can be drawn by superposing all the Kekulé structures with
the highest degree of freedom.18 Aromatic �-sextets are defined as six �-electrons
localized to a single benzene ring separated from adjacent rings by formal CC single
bonds. The Clar theory has attracted attention of many theorists. 17,18 59–64

A polyhedral map may have a perfect Clar PC structure, which is a set of disjoint
faces (built up on all vertices in M) whose boundaries form a 2-factor. Recall that a
k-factor is a regular k-valent spanning subgraph. A PC structure is associated with
a Fries structure, 65 which is a Kekulé structure having the maximum possible (v/3)
number of benzenoid (alternating single-double edge) faces. A Kekulé structure is
a set of pairwise disjoint edges/bonds of the molecule (defined over all its atoms)
that coincides with a perfect matching and a 1-factor in Graph Theory.66 A trivalent
polyhedral graph, like that of fullerenes, has a PC structure if and only if it has a
Fries structure. 26

Note that, only in polyhex structures (e�g., polyhex tori, where the assignment
empty/full can be interchanged between two adjacent hexagons), the PC structure
consists of v/3 disjoint hexagons (i�e., a 2-factor), as previously Clar suggested. In
fullerenes, the PC structure must include all the odd faces (e�g�, pentagons), usually
assigned as empty �-electron faces. However, the associate Fries structure ensures
the total resonance (i�e., conjugation, double-simple bond alternation). 26

Such structures represent totally resonant sextet TRS benzenoid molecules
which it is expected to be extremely stable, according to the VB theory.26,67,68 Fully
benzenoid hydrocarbons are 6n �-electron systems, whose Clar structures have only
disjoint benzene rings, mutually connected by CC single bonds.18 The concept of
totally/fully-resonant coverings (mainly benzenoids) has been discussed by several
authors. 68–77

Leapfrog78,79 Le�1	1�, or simply Le, is the only operation providing PC transforms,
which can be embedded in surfaces of any genera (e�g., g = 0; 2, Figure 6-1).

(a) Le(Le(D)) = C180; v = 180; g = 0
A2-factor [5,6]; PC

(b) (2,2)(Op(S1(T))); v = 264; g = 2
A2-factor [6,7]; PC

Figure 6-1. Perfect Clar PC structure embedded in the sphere (g = 0) and (open) tetrahedron (g = 2).



Aromaticity of Nanostructures 141

Patterns larger than benzene, e�g�, naphthalene or azulene (i�e., a pair of
pentagonal-heptagonal carbon rings) have been considered with respect to the Clar
theory.35,36 By extension,80–83 corannulenic supra-faces (eventually called flowers)
may be of interest.

A coronene-like flower is symbolized as [n:x,y]Fw, with n, x, y being the
folding of the core and its surrounding polygonal faces, respectively. Such flowers
could appear either as intersect, joint or disjoint units.

A tiling is called Platonic if it consists of a single type of faces (similar to the
Platonic solids). Archimedean is that tiling consisting of more than one (usually
two) type(s) of faces. Platonic and Archimedean will refer here to only supra-face
tessellation. Our CageVersatile program15 enables the flower embedding in surfaces
of any genera and lattices of any vertex degree.

A joint corannulenic JFw pattern can appear either as a Platonic ((e�g�,
([5:65]Fw,3), ([6:66]Fw,3) or ([7:67]Fw,3) in case of open structures) or an
Archimedean (e�g�, (([5:65]Fw,[6:66]Fw)3) supra-covering. The degree of the net
is, in the most cases, 3 so that it will be omitted in the hereafter Schäfli notations,
excepting the cases of different degree.

The case [5:65]Fw is unique (S1�D� = C140 (Figure 6-2). This is achieved by
the sequence (Le&Ca/S1) or by the pro-chiral (4,1)-generalized operation.

The case [6:66]Fw is encountered in polyhex tori tessellated by the (Le&S1)
sequence (Figure 6-3a).

A disjoint corannulenic DFw structure is a disjoint set of flowers, covering all
the vertices in the molecular graph. Some sequences of operations (e�g�, Le&Q;
Q�4	0�c&Trs) or the generalized Le�2	2� operation provide a DFw covering. Such
a transform is necessarily associated with a PC structure, but the reciprocal is
not always true. The cage C240, in Figure 6-4a, is illustrated as a DFw Platonic
covering. In the top of figures, the �-electron population of a covering is often given
(Figure 6-4b).

By virtue of the involved Le�1	1�, polyhex tori transformed by Le�2	2� are metallic
(and eventually chiral). The torus in Figure 6-3 shows both JFw and DFw coronenic

S1(D) = C140; [5:65]JFw 

Figure 6-2. Platonic [5:65]JFw tessellation; contour of flowers in dark/blue.
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(a) S1(T(6,3)V[4,24]); v = 672; g = 1
 Platonic 48 × [6:66]JFw; chiral
 Clar hexagons: 7 × 48/3 = 112 

(b) S1(T(6,3)V[4,24]) = (2,8,12,–24); v = 672; g = 1
Platonic 28 × [6:66]DFw; chiral

Clar hexagons: 4 × 28 = 112 

Figure 6-3. Coronenic patterns: joint JFw (a) and disjoint DFw (b – the torus is also given in four integer
notation). Both JFw and DFw are associated to PC-Fries structures; flowers in dark/blue contour.

covering and also metallic character. 83 Criteria for metallic and coronenic DFw in
polyhex tori are given in Chapter 2.

Figure 6-5 accounts for [5:65]Fw corannulenic flowers by means of their comple-
mentary (connected) substructures.

Figure 6-6 illustrates the corannulenic flowers [5:65]&[6:66]JFw on C420 forming
an Archimedean supra-covering .

The supra-organized corannulenic units are expected to contribute to the stability
of the whole molecule. 80,84,85 Semiempirical calculations (with the PM3 Hamiltonian)
proved in part this expectation.82

Data listed in Table 6-1 show IPR fullerenes, out of the destabilizing effect of
abutting pentagons;77,86–90 they are also totally resonant structures and obey the Clar’s
6n rule. It is reasonably to consider a molecule as more stable as its HF (a measure
of thermodynamic stability) is lower and HOMO-LUMO gap (a measure of kinetic
stability) is larger. Thus, the lower the ratio HF/Gap, the stable is a molecule.

The HF values, listed in column 3, decrease as the cage size increases and the same
trend is valid for the Gap (column 4). The above trend is still preserved in case of

(a)  Le(2,2)(D); v = 240; Platonic 12×[5:65]DFw  (b)  Coronene π-electron population:  (0(36)) 

Figure 6-4. C240; Disjoint DFw structure (a); a coronene supra-face with a [6]radialene substructure (b).
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Q(Le(D)) = C240; [5:65]DFw Ca(Le(D)) = C420; [5:65]&[6:66]JFw

Figure 6-5. Corannulenic covering on Dodecahedron obtained by: Le (tripling), Q (quadrupling) and Ca
(septupling, S1�; the flowers’ contour is evident in the complementary (connected) substructures.

HF/Gap ratio (column 5) and this is also true for the strain energy SE, calculated in
terms of POAV1 theory22–25 (column 6). For the total �-energy E�, evaluated in terms
of the simpleHückel theory (column7) the trend is reversed. Thesedataclearly indicate
the effect of size on the stabilization of these molecules. Even C60 shows the highest
SE value, its exceptional stability is due, in others, by the equal strain distribution over
all equivalent atoms.

Table 6-2 lists the main topological and geometrical data for the corannulenic
cages discussed here. The classes of equivalence of the three map parameters: vertices,
edges and faces, have been obtained by investigating the graphs G (for vertices) and
their medials Me(G� (for edges) and duals Du(G) (for faces). The actual bond lengths
classes (column 7) confirmed those obtained by investigating the medials. The column
8 in Table 6-2 gives formulas for the �-electron content, referring to the original
Platonic objects, transformed by appropriate map operations. The counting starts with
the corannulenic core as the first number in the brackets while the second one refers

(a) Ca((Le(C20)) = C420 (b) C420; JFws

Figure 6-6. Archimedean [5:65]&[6:66]JFw tessellation, with radialenic (0(35�� [5:65] (a) and alternating
(3(0,3)3� [6:66] (b) supra-faces, in dark/blue contour.
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Table 6-1. Data for corannulenic cages: heat of formation per atom, HF (kcal/mol); HOMO-LUMO GAP
(eV); HF/GAP (×100; eV; PM3); strain energy per atom SE (kcal/mol; POAV1); total �-electron energy
E� (�-units; simple Hückel) and HOMA index of aromaticity

Cage
6n

Sym. HF Gap HF/Gap SE E� HOMA HOMA
[5:65]Fw

HOMA
[6:66]Fw

1 2 3 4 5 6 7 8 9 10

1 C60 Ih 13.512 6.593 8.890 8.257 1.553 0.169 0.251 –
2 C180 Ih 7.594 5.542 5.946 3.154 1.567 0.478 0.502 0.529
3 C240 Ih 6.584 5.113 5.587 2.506 1.569 0.524 0.504�a� 0.510�b�

0.582�c�

4 C420 I 5.362 4.507 5.162 1.672 1.572 0.606 0.613�a� 0.595�b�

0.642�c�

(a) [5]radialenic: (0,35�; (b) alternating: (3(0,3)3�; (c) [6]radialenic: (0,36).

Table 6-2. Topological and geometrical data, tiling type and �-electron content of some leapfrog
fullerenes

v G f Du�G� e Me�G� Bond length �-Electron
content∗/6n

rule

Operation/
Tiling type

1 2 3 4 5 6 7 8 9

1 60 (60) 32 (12)
(20)

90 (30)
(60)

(30: 1.3990)
(60: 1.4013)

�03s�f/3

/ n = 10
Le(M)
PC

2 180 3×�60� 92 (12)
(20)
(60)

270 (30)
2× �60�

(120)

(60: 1.3857)
(60: 1.3875)

(120: 1.4053)
(30: 1.4257)

(0 3s�f (0s�f/3

/ n = 30
Le(Le(M��

PC
[5]Radialene

3 240 2×�60�

(120)
122 (12)

(20)
(30)
(60)

360 4× �60�

(120)
(60: 1.3805)
(60: 1.4134)
(60: 1.4264)
(60: 1.4384)

(120: 1.4445)

(0 3s�f (0 d�sf/d

/ n = 40
Le(Q�M��

DFw

4 420 7×�60� 212 (12)
(20)
3× �60�

630 (30)
10×(60)

(60: 1.3821)
(60: 1.4051)
(30: 1.4066)
(60: 1.4115)
(60: 1.4251)
(60: 1.4285)
(60: 1.4358)
(60: 1.4360)
(60: 1.4364)
(60: 1.4378)
(60: 1.4387)

�03s�f

(d (0 3)d)sf/d

/ n = 70

Le(Ca(M))
JFw

∗ Formulas refer to the original Platonic solids, transformed by map operations (see text).
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to its surrounding hexagons. The superscripts d, s and f represent the vertex degree
and size (i�e., folding) and number of faces in the original map, respectively. All the
cages obey the 6n rule of Clar. 35,36 The column 9 indicates the map operation by which
the cage is obtained from the dodecahedron and the tiling type as well. Note that PC
and corannulenic DFw and JFw coverings account for the maximum possible (v/3)
number of benzenoid faces, being an important structural feature defining the aromatic
character.

Resuming to Table 6-1, the HOMA values for the whole molecules show again an
increase of aromaticity, paralleling the E�-values. The HOMA is useful to compare
the aromaticity of some substructures, eventually to confirm an increased aromaticity
for those supra-faces more populated with �-electrons. Coronene units [6:66]Fw show
a higher aromaticity for the Kekulé structures of radialenic type (with electron distri-
bution: (0,36) – Table 6-1, column 10) than for those of alternating type (with electron
distribution: (3(0,3)3�.

The corannulenic [n:6n]Fws show increasing aromaticity (Table 6-1, columns 9
and 10) as the number of atoms increases (the topological resonance energy TRE – an
aromatic stabilization energy – was found higher in larger fullerenes18).

Note that coronene itself [6:66]Fw is not a totally resonant hydrocarbon,18 because
anyoneKekulé structure leaves somecarbonatomsoutside sextet rings. However,Clar
proposed91 that if the three sextets of coronene can migrate into the neighboring rings,
an extra ring current will be formed. Thus, the sextet migration current is an argument
in favor of the coronene enhanced aromaticity (compared to some other polycyclic
hydrocarbons, e�g�, naphthalene and anthracene). 92

Counter circulation of “rim and hub” currents is a characteristic of the corannulenes
[n]Fw, as shown by the ipsocentric93 CTOCD (continuous transformation of origin
of current density) calculations. 94,95 This is one reason for the need of a disjoint DFw
structure.

6.4. Corazulenic Cages

Corazulenic flowers, 80 analogue to the corannulenic [n:6n]Fws, can be achieved via
several map operation sequences. Any sequence of operations can be applied to any
cage but we look here for minimal size cages, eventually of interest for chemists. The
best results areobtained for triangulatedmaps,particularly the (triangulated)Platonics.
When the operations in a sequence are commutative, the dual-pair will produce either
non-distinguishable transforms or different transforms leading to a unique Stone-
Wales SW rotated product.

The SW isomerization was performed on corazulenic supra-faces ([n:(7(5c��n]Fw
or [n:(7(5d��n]Fw), which are taken as the main Fw patterns in a covering; n is just
the vertex degree in the original Platonic map. Direct ways to RO-transforms are also
known.

Of particular interest is the SW rotation of the spokes of the n-gonal hub of [n �
�7�5d��n]Fw, leading to disjoint corazenic flowers [n � �5	 7�n/2]Fws. Note that any
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supra-face or Fw has its own intersected/superposed “counterpart”, called here co-Fw.
Of course, the attribute Fw and co-Fw are interchangeable. The covering by a sequence
of operations is given in terms of supra-faces.

The five Platonic polyhedra and their symbols herein used are: T (tetrahedron),
O (octahedron), C (cube), D (dodecahedron, and I (icosahedron). The dual pairs are:
T&T (self-dual); O&C and D&I .

The symbol used for cages in the hereafter tables will include the actual nuclearity,
the original cage and the map operation sequence (by its m-factor). When obtained by
SW edge-rotation, the suffix RO is added.

Figure 6-7 illustrates the most frequent azulenic patterns appearing in (yet
hypothetically) fullerenes. In comparison, two corannulenic flowers: Coronene = 6 �
66]Fw and Sumanene = 6 � �5	 6�3]Fw, often coupled with the corazulenic patterns,
are given in Figure 6-8.

6.4.1. Covering by n � �7�5c��n� Fw Patterns

The pattern [n � �7�5c��n]Fw shows the corazulenic flower in an angular heptagon-
pentagon [7�5c�] arrangement. It is provided by the sequences:80,96 Trs�Q�P5�M��) or
Trs�Q�S2�M��). Its SW transform is a sumanenic flower [2n � �5	 6�n]Fw.

The covering is given in terms of supra-faces and the multiplication factor m refers
to the original map nuclearity. The size of the flowers’ core is related to the size of

[4:(7(5c))4]Corazulene [4:(7(5d))4]Corazulene

Figure 6-7. Corazulenic patterns

Coronene  =  [6:66]Fw Sumanene = [6:(5,6)3]Fw

Figure 6-8. Corannulenic patterns
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faces of the parent p (Platonic cage), dual d or their double size; to specify the above
relatedness the following symbols are used: sp, sd, sdp and sdd, respectively. Details of
the covering are given in the top of figures.

6.4.1.1. Sequence Trs�Q�P5�M��); m = 22.

Within this sequence, P5�O� = P5�C� so that no distinction can be made between
the transforms of the dual-pair objects. Figure 6-9 illustrates two cages covered by
the above operation sequence (up to SW transforms). Out of the main flower, the
corazulenic [n � �7�5c��n]Fw, hexagon-triple [h-triple]co-Fw and hexagons can be
evidenced.

Table 6-3 lists the energetic and structural data for the cages having m = 22.
They are open closed or pseudo-closed �-shell cages (Table 6-3, column 6) and
are less strained (column 5) than C60. HOMA index of aromaticity (column 7)
finds the corazulenic cages more aromatic than C60. However, the ratio DF/Gap
is in favour of C60 (with the lowest value – row 4, column 4). The rotated cages,
derived from cube/octahedron, (Table 6-3, row 3, column 4) appear the most stable in
this series.

According to Fowler and Pisanski, 26 the �-electronic shells of neutral graphitic
cages are classified, function of their eigenvalue spectra, as: (i) closed (cl),
when xv/2 > 0 ≥ xv/2+1; (ii) pseudo-closed (pscl), in case xv/2 > xv/2+1 >
0; (iii) meta-closed (mcl), with 0 ≥ xv/2 > xv/2+1 and (iv) open (op), when
the v/2th (HOMO) and v/2 + 1th (LUMO) molecular orbitals are degenerate:
xv/2 = xv/2+1.

Observe in Table 6-3, the co-Fws remain unchanged, under SW isomerization.

176O-22
6 × [4:(7(5c))4]Fw & 8 × [h-triples]co-FW

n = sd = 4

176C/O-22RO
6×[n:(5,6)n/2]Fw & 8×[h-triple]co-Fw

n = sdp /sdd = 8 

Figure 6-9. Corazulenic pattern [4 � �7�5c��4]Fw, designed by Trs�Q�P5�M��), and its SW transform
[8 � �5	 6�4]Fw; contour in dark/blue.
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Table 6-3. Data for corazulenic [n � �7�5c��n] cages (of m = 22), designed by Trs�Q�P5�M��), and their
SW isomers: heat of formation per atom, HF (kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV;
PM3); strain energy per atom SE (kcal/mol; POAV1); total �-electron energy E� (�-units; simple Hückel)
and HOMA index of aromaticity. For comparison, fullerene C60 is included.

Cage Sym. HF Gap
HF/Gap

SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 88T-
22RO

T 11.847 4.051
12.690

4.457 1.549
op

0.316 0.287
0.370

4× 6 � �5	 6�3]
4× [h-triple]co-Fw

2 176O-
22

O 11.033 3.556
13.463

2.865 1.536
cl

0.224 0.111
0.559

6× 4 � �7�5c��4]
8×[h-triple] co-Fw

3 176C/O-
22RO

O 9.436 4.006
10.221

2.946 1.549
pscl

0.267 0.177
0.680

6× [8:(5,6)4]
8×[h-triple] co-Fw

4 C60 Ih 13.512 6.593
8.893

8.257 1.553
cl

0.169 0.251
0.169

4× 5 � 65]
4×[6:(5,6)3] co-Fw

6.4.1.2. Sequence Trs�Q�S2�M��).

The multiplication factor is m = 10d0 (with d0-the vertex degree), in the triangulated
Platonic parent, or m = 30 in the trivalent dual. The main pattern, corazulenic [n �
�7�5c��n]Fw, n = sd changes by SW into sumanenic pattern [n � �5	 6��n/2]Fw, n = sdd

(Figure 6-10).
The sequence of map operations is non-commutative because of S2. This implies

the clear difference between the dual-pair rotated transforms (Figure 6-11 and Table 6-
4, rows 3 and 4). This is more evident for the corannulenic co-Fw which, in the
30RO-series, isArchimedean: [(n � 6n�&sdd]DFw,n = sdp.Observe theco-Fwremains
unchanged, under the SW isomerization (Table 6-4, rows 2 and 3).

Remark, in Table 6-4, the highest aromatic character of 120T -30RO,
(HOMA=0.402, row 1, column 7), in spite of the highest value of strain (4.792 kcal/mol

(a) 240O-30; 6×[4:(7(5c))4]Fw (b) 240O-30RO; 6×[8:(5,6))4]Fw

Figure 6-10. Corazulenic pattern [n � �7�5c��n]Fw, n = sd, (designed by Trs�Q�S2�M��) sequence) changes
to sumanenic pattern [2n � �5	 6��n]Fw, by SW.
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(a) 240O-30RO
Archimedean: [(n:6n)&sdd] co-DFw

n = sdp = 6; sdd = 8

(b) 240C-30RO
Archimedean: [(n:6n)&sdd] co-DFw

n = sdp = 8; sdd = 6

Figure 6-11. Difference between the transforms by Trs�Q�S2�M��) of the dual-pair octahedron (a) and
cube (b) and finally SW rotated RO.

Table 6-4. Data for corazulenic [n � �7�5c��n] cages (of m = 30), designed by Trs�Q�S2�M��), and their
SW isomers: heat of formation per atom, HF (kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV;
PM3); strain energy per atom SE (kcal/mol; POAV1); total �-electron energy E� (�-units; simple Hückel)
and HOMA index of aromaticity.

Cage Sym. HF Gap
HF/Gap

SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 120T -
30RO

Th 9.579 5.640
7.370

4.792 1.563
cl

0.402 0.365
0.502

4× 6 � �5	 6��3�

4× 6 � 66� co-DFw
2 240O-

30
Oh 9.371 4.783

8.502
2.357 1.545

cl
0.205 −0�022

0.645
6× 4 � �7�5c��4]
8× 6 � 66] co-Fw

3 240O-
30RO

Oh 7.283 5.273
5.993

2.107 1.558
cl

0.386 0.290
0.528
0.821

6× 8 � �5	 6�4]
8× 6 � 66] co-DFw
&6× sdd; sdd = 8

4 240C-
30RO

Oh 12.960 6.175
9.107

4.285 1.561
cl

0.044 0.273
−0�086

0.392

8× 6 � �5	 6�3�

6× 8 � 68] co-DFw
&8× sdd; sdd = 6

on the whole molecule, distributed as: 6.154/[6 � �5	 6��3]Fw and 3.7324/[6:66]Fw.
This is due to the coronene [6:66] contribution but also to the presence of benzene ring
(the core of sumanenic flower [6 � �5	 6��3]) in an Archimedean covering (Figure 6-12).

6.4.2. Covering by [n � �7�5d��n] Fw, 3

Several sequences of map operations lead to the corazulenic [n � �7�5d��n]Fw, n = sd

pattern. Its SW transform is a corazenic flower [2n � �5	 7�n]Fw .
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(a) 120T-30RO (b) Archimedean [(n:6n)&sdd]co-DFw
n = sdp = 6; sdd =  6

Figure 6-12. The most aromatic cage originating in a corazulenic [4 � �7�5c��4] fullerene derived from
tetrahedron by Trs�Q�S2�M��); contour of Fws in dark/blue.

6.4.2.1. Sequence Trs�S1�S2�M��).

The above sequence generates a corazulenic flower in the [7(5d)] arrangement. 80

S1 = Capra induces chirality while truncation (of the selected vertices) provides a
face-folding of seven in the final trivalent map. The multiplication factor is m = 17d0

in the triangulated Platonic or m = 51 in the trivalent dual pair. Note that S1�S2�M�� �=
S2�S1�M��, in words, the operation sequence is non-commutative.

The tilinggivenbytheabovesequence isamixtureofcorazulenic [n � �7�5d��n]Fw,
n = sd and coronenic [n � 6n]co-Fw, n = sdp (Figures 6-13 and 6-14), separated by
naphthalene and pyrene units.

Table 6-5 lists data on cages of this covering. They are pseudo-closed .�-
shells, except 408O-51 (entry 2), a corazulenic cage which shows a closed .�-shells
(column 6) and the highest aromaticity (column 7). The high value of HOMA index
is due to the coronene flowers [6:66] but the corazulenic [4 � �7�5d��4] flower is

1020I-51; g = 0
12×[5:(7(5d))5]Fw & 20×[6:66]co-Fw

1644(Op2a(S2(T )))-51; g = 2
12×[7:(7(5d))7]Fw & 20×[6:66]co-Fw 

Figure 6-13. Covering by Trs�S1�S2��M��) in two different embeddings.
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(a) C1020 (b) C408 

Figure 6-14. Corannulenic [6 � 66]Fw and corazulenic [n � �7�5d��n]Fw patterns, designed by
Trs�S1�S2��M��), in the Schlegel projection: n = 5 (a) and n = 4 (b))).

more aromatic than in other cages (see the next tables), maybe a consequence of the
size effect (?), also supported by the lowest HF value in this series.

In the RO-series, the covering is: [n � �5	 7�n/2]Fw, n = sdd; [n � 6n]co-Fw, n = sdp.
The octahedron-derivative 408O-51RO is far more stable than that of its dual pair
408C-51RO (the last one not included in Table 6-5).

6.4.2.2. Sequence Trs�S1f �Q�M��).

In the above sequence, Q is the quadrupling map operation, S1f represents the septu-
pling operation performed so that the original faces of M remain untransformed
and Trs is the truncation of selected vertices. The sequence leads to a Platonic
disjoint corazulenic [n � �7�5d��n]DFw, n = sd, chiral (by virtue of S1 = Ca2	1�

Table 6-5. Data for corazulenic [n � �7�5d��n] cages (of m = 51), designed by Trs�S1�S2��M��), and their
SW isomers: Structural, energetic and aromatic parameters: symmetry Sym, heat of formation per atom
HF (kcal/mol); HOMO-LUMO GAP (eV); strain energy per atom SE (kcal/mol; POAV1); total �-electron
energy E� (�-units; simple Hückel) and HOMA index of aromaticity.

Cage Sym. HF Gap SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 204T -
51RO

T 11.190 3.808 3.470 1.553
pscl

0.234 −0�074
0.313

4× 6 � �5	 7�3]
4× 6 � 66]co-Fw∗

2 408O-
51

O 7.532 3.330 1.466 1.556
cl

0.503 0.340
0.631

6× 4 � �7�5d��4]
8× 6 � 66]co-Fw∗

3 408O-
51RO

O 9.425 3.841 2.195 1.553
pscl

0.297 −0�121
0.562

6× 8 � �5	 7�4]
8× 6 � 66]co-Fw∗

∗there are also naphthalene and pyrene as co-Fws
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covering; the co-Fw shows a sumanenic [n � �5	 6�n/2]Fw, pattern which forms an
Archimedean [n � �5	 6�n/2&sd]co-DFw, n = sdp covering.80

The sequence (Q&S1f /Ca�2	1�f&Trs) is equivalent to the generalized14 “DAZU”
operation and its multiplication factor ism = 8d0 in the triangulated Platonic orm = 24
in the trivalent dual pair. Table 6-6 lists data for cages of m = 24.

Of particular interest 96 is here the SW rotation of the spokes of the n-gonal
hub of [n � �7�5d��n]Fw. It leads to a Platonic covering by disjoint corazenic [n �
�5	 7�n/2]Fw patterns. The rotation also changes the sumanenic flower to a corazenic
one, so that both Fw and co-Fw are of corazenic type and both are disjoint. For
a dual-pair, the corazenic [n � �5	 7�n/2] Fw and co-Fw are: n = sdp and n = sdd,
respectively.

As an alternative tessellation, a Platonic anti-aromatic disjoint covering by
pentalenes (i�e., abutting pentagons) can be evidenced (see below). The tessellation by
disjoint pentalenes represents a generalized26,96 perfect Clar structure, in the sense the
faces composing the 2-factor represent pentalenic contours.

The covering of 96T -24 is a Platonic disjoint [n � �7�5d��n]DFw, n = sd = 3 while
the co-Fw forms an Archimedean disjoint [n � �5	 6�n/2&sd]co-DFw, n = sdp = 6;
sd = 3 covering (Figure 6-15).

Tetrahedron is self-dual, so that the SW edge-rotation on 96T -24 provides
only one RO-cage (Table 6-6, row 2). Moreover, identical Fw (coming out from
the parent face) and co-Fw (accounting for the vertex degree of the parent,
or the parent face of the dual) are obtained (row 2, column 9). Figure 6-16

Table 6-6. Data for corazulenic [n � �7�5d��n] cages (of m = 24), designed by Trs�S1f �Q�M��), and their
SW isomers: heat of formation per atom, HF (kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV;
PM3); strain energy per atom SE (kcal/mol; POAV1); total �-electron energy E� (�-units; simple Hückel)
and HOMA index of aromaticity.

Cage Sym. HF Gap
HF/Gap

SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 96T -24 T 16.040 4.580
15.197

6.338 1.545
mcl

0.190 0.054
0.091
0.567

4× 3 � �7�5d��3]DFw
4× 6 � �5	 6�3]co-DFw
4× sd; sd = 3

2 96T -
24RO

T 13.869 4.780
12.590

5.348 1.527
pscl

0.017 0.098
0.098

−0�285

4× 6 � �5	 7�3]DFw
4× 6 � �5	 7�3]co-DFw
12×DPentalene

3 192O-
24

O 12.039 4.755
10.989

3.194 1.536
cl

0.173 0.041
0.267
0.249

−1�878

6× 4 � �7�5d��4]DFw
4× 6 � �5	 6�3]co-Fw
4× 6 � �5	 6�3]co-Fw
6× sd; sd = 4

4 192C/O-

24RO

O 15.696 3.866
17.618

3.256 1.527
pscl

0.033 −0�154
0.292

−0�883

6× 8 � �5	 7�4]DFw
8× 6 � �5	 7�3]co-DFw
24× DPentalene
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(a) 96T-24; Platonic[n:(7(5d))n]DFw, n = sd = 3 (b) 96T-24; Archimedean [n:(5,6)n/2&sd]co-DFw,
n = sdp = 6; sd = 3

Figure 6-15. Corazulenic pattern [n � �7�5d��n]DFw, n = sd and its co-Fw designed by Trs�S1f �Q�M��).

illustrates the cage 96T -24RO, with its disjoint corazenic flowers (6-16a) and the anti-
aromatic disjoint pentalenes (6-16b).

Between the two 96-cages, the RO-isomer appears more aromatic by the Kekulé
structure count K criterion (1,149,200 for 96T -24RO vs 1,095,664 for 96T -24).
The same ordering is given by the energetic criterion HF (which is lower for 96T -
24RO, this being classified as more stable) but the reverse ordering is suggested by
the total. �-electron energy E� and total HOMA index (Table 6-6, rows 1 and 2,
columns 6 and 7).

Closer to the K-criterion ordering is that given by local HOMA-Fw values
which only account for the flowers (not for the connection between the disjoined
supra-faces).

The tessellation by disjoint pentalenes represents a generalized26,96 perfect
Clar structure, in the sense the faces composing the 2-factor represent pentalenic
contours.

(a) 96T-24RO; Platonic [n:(5,7)n/2]DFw, n = sdp (b) 96T-24RO; Platonic disjoint pentalenes

Figure 6-16. Aromatic and anti-aromatic patterns: corazene (a) and pentalene (b), designed by
Trs�S1f �Q�M��).
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(a) 192C/O-24RO; Platonic 6×[8:(5,7)4]DFw (b) 192C/O-24RO; Platonic 8×[6:(5,7)3]co-DFw

Figure 6-17. Corazenic disjoint flowers [n � �5	 7�n/2]; n = sdp (a); n = sdd (b), designed by
Trs�S1f �Q�M��).

The transforms of the dual-pair: octahedron (covered by [4 � �7�5d��4]Fw) and
cube (with [3 � �7�5d��3]Fw pattern), by (Q&Ca�2	1�&Trs), provide, after SW edge-
rotation, the only 192C/O-24RO cage (Table 6-6, row 4). Because of the trigonal faces,
192C-24 could not be optimized and consequently is missing in Table 6-6. Figure 6-17
illustrates the cage derived from C/O.

For corazene/isocoronene [6:(5,7)3], Fowler et al. 97 have recently predicted, in
the ipsocentric93 description, a single, unopposed, intense diatropic perimeter current
arising from its four. � HOMO electrons; they qualified isocoronene as super-
aromatic, on the magnetic criterion. By the energetic criterion, the coronene is,
however, more stable/aromatic.

As a general trend, the corazulenic flowers are less aromatic than the corresponding
co-Fws and the whole molecule is at least non-aromatic, with local manifestation of
aromaticity/antiaromaticity (Table 6-6).

A special attention is further devoted to the most stable corazulenic cage of series
24: C192 = 192O − 24. It shows a Platonic, disjoint corazulenic [4 � �7�5d��4]DFw
covering (Figure 6-18), which is a non-alternant, non-benzenoid pattern; the co-Fw
forms an Archimedean [n � �5	 6�n/2&sd]co-DFw, n = sdp = 6; sd = 4, sumanenic
covering.

C192 is a generalized perfect Clar structure, 80 with the 2-factor designed as corazu-
lenic [4 � �7�5d��4] disjoint flowers. The analysis by the geometric criterion enabled
us to bring evidence for some of the dominant Kekulé valence structures.

The four-fold symmetric structure, having the valence structure called80

“Radialene” (i�e., based on [n]radialene substructures – Table 6-7, row 1) undergoes
a Jahn-Teller98 distortion to give a two-fold symmetry but more stable structure.

Among thousands of Kekulé valence structures, that called “Radialene”, has no
Kekulé benzene KB rings, thus it was assigned as the anti-Fries99 valence structure.
The valence structure called “Triphenylene” (with triphenylene [6 � �0	 6�3]Fw the
main substructure – Figure 6-18) shows the maximum possible 32 KB rings, thus
being identified as the Fries65 valence structure (Table 6-7, row 2). Note the alter-
nation of triphenylenic (�3�0	 3�3�v/2) and tripentylenic (�3�1	 2�3�v/2) units within the
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sumanenic [6:(5,6)3]Fws,as shownby the localHOMAvaluesand�-electronpartition
(Table 6-6, row 3, Table 6-7, row 2 and Figure 6-19).

The “Kekulé-Dewar” valence structure80 (Table 6-7, row 3 and Figure 6-20) is
a special one: the [5]radialenic subgraphs show only four equal length CC double
bonds while the fifth is longer. As the “longer” bonds of two neighbor pentagons
are located at the “para” 2,5-position of a 1,4-cyclohexadiene unit, it is tempting
to consider the two opposite carbon atoms being joined by an “ineffective” bond,
as in the Dewar valence structure of benzene. Thus, the whole valence structure
consists of 8KB &12DwB, disregarding the azulenic flowers. Our JSCHEM program
52 enabled the separation between CC singe and double bonds, at a threshold of 1.4005
angstroms, and drawing the valence structures. Note the high local HOMA values
(high aromaticity) of the Kekulé KB and Dewar DwB in the Kekulé-Dewar valence
structure.

(a) 192O-24; Platonic6×[ n:(7(5d))n]DFw
n=sd=4

(b) 192O 24; Archimedean [n:(5,6)n/2&sd]co-DFw
n=sdp=6; sd =4  

Figure 6-18. Covering by Trs�S1f �Q�M��), M = O: (a) corazulenic disjoint flowers [n � �7�5d��n]DFw
(joined here only by Dewar “ineffective“ bonds; (b) sumanenic disjoint flowers [6 � �5	 6�3]DFw.

Table 6-7. Partition of �-electrons and subgraph count in 192O-24.

Valence
Structurea

�-Electron partitionb Subgraph
count

HOMA-
subgraph

1 2 3 4

1 Radialene
(anti-Fries)

(0,5)sf (2)sf (2)sf/2(0)v/3 Ø KB;
6×[4]Rad;
8× 6�Rad

0.173

2 Triphenylene
(Fries)

(1sf/2 ) (2sf � (3sf/2� (3(0,3)3�v/2

(3(1,2)3�v/2
32KB 0.463

3 Kekulé-Dewar (1,2,3)sf/2 (2)sf/2 (3,(1,2)3�v 8KB+12DwB 0.670
4 Disjoint corazulene

[4 � �7�5d��4]DFw
(1s/2,(3,1)s/2,(4,1)s/2,2s/2�f (3,1,1,1)v 6× 4 �

�7�5d��4]
0.041

a The valence structure is named by the main substructure, for which units count and HOMA value is
given. b Partition is given for the whole covering; counting the electrons in the above partitions equals the
multiplication m by the map operations: 192O-24; m = 24.
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(a) Triphenylenic sumanene [6:(5,6)3]Fw:
(3(0,3)3) (gray)

(b) Tripentylenicsumanene[6:(5,6)3]Fw:
(3(1,2)3)v/2 (yellow)

Figure 6-19. The “Triphenylenic-Kekulé” valence structure of 192O-24 with two distinct alternating
[6 � �5	 6�3]Fw and their �-electron population.

The six disjoint corazulenic units [4 � �7�5d��4] (Table 6-7, row 4; HOMA =
0�041) are complementary to the Fries substructure (HOMA = 0�463). More
precisely, the Fries substructure is defined on all the vertices except the azulenic
flower’s core.ThecombinedoverallHOMAvalueof0.173 for192O-24, is somewhere
between non-aromatic and aromatic character.

In the ipsocentric description, we found100 for corazulene (the hydrocarbon corre-
sponding to the supra-face [4 � �7�5d��4]Fw, as appears in 192O-24) to show the
magnetic properties of a circulene, with paired counter-rotating paratropic-hub and
diatropic-rim currents (Figure 6-21). In comparison, the isomeric cornaphthalene
shows strong local diatropic circulations in separated parts of the perimeter, being a
clear support for the regio-selectivity of chemical reactions in such (yet hypothetical)
molecules.

In view of evaluating the number of Kekulé valence structures, a criterion of
aromaticity, we used101 a procedure based on the divide et impera strategy. Let G
be any graph with V�G� and E�G� being the set of its vertices and edges, respec-
tively. For each V ′ ⊆ V�G�	 G − V ′ denotes the graph obtained from G by deleting
the vertices in V ′ and all edges adjacent to them. For each E′ ⊆ E, we denote by
G−E′the graph obtained by deleting all the edges in E ′. Denote by K�G� the set of all
Kekulé structures of G.

(a) 192O-24; [4:(7(5d))4]DFw & [6:(5,6)3]DFw  (b)192O-24; [6:(5,6)3]DFw 

Figure 6-20. The “Kekulé-Dewar” valence structure of 192O-24 in 3D (a) and Schlegel projection (b).
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Figure 6-21. Total � current-density map of corazulene 192O-24

The number of Kekulé structure of C192 is equal to 1,771,875,132,416. To obtain
this result, observe that, by cutting 16 edges, the graph in Figure 6-22 (i�e., the
Schlegel35 projection of C192� disintegrates in two components. Denote these edges
Ecut = �e1	 ��e16�; denote the “interior” component of G−Ecut by G1 and “exterior”
component by G2. Write the vertices of G1 v1	1	 v1	2	 ��v1	96 and vertices of G2 by
v2	1	 v2	2	 ��v2	96 in such a way that ei = �v1	i,v2	i� for each i = 1	 � � � 	 16. Let X be
any subset of Ecut. Denote K = K�G� the set of all Kekulé (geometrical) structures
of the molecule and its cardinality (i�e., Kekulé structures count) k = k�G� = �K�.
Denote KX all the Kekulé structures having all the edges in X double and all edges
in Ecut −X single.

Clearly, K is a disjoint reunion: K = ⋃

x⊆Ecut

Kx and whence �K� = ∑

x⊆Ecut

�Kx�. Denote

V1�X� = �v1	i � ei ∈ X� and V2�X� = �v2	i � ei ∈ X�. It is immediate that �Kx� =
�K�G1 −V1�X��� · �K�G2 −V2�X��� and next:

k�G� = ∑

X⊆Ecut

�k�G1 −V1�X�� ·k�G2 −V2�X��� (6.3)

Formula (6.3) is thegroundformulaofouralgorithm. It isdifficult to findallKekulé
structures of a graph with 192 vertices but in this way we have 2×216 = 131072 times
the number of Kekulé structures of graphs with at most 96 vertices. In fact, for half of
them, we need not to count the Kekulé structures, because they have odd number of
vertices and therefore the Kekulé structure count gives 0.

Evaluation of �K�G1 −V1�X�� or (�K�G2 −V2�X�� is based on:

Lemma 6.1. LetGbe any graph,v ∈ V�G�andu1	 � � � 	 uk all the neighbors ofv. Then:
k�G� = k�G−v−u1�+k�G−v−u2�+ � � �+k�G−v−uk� .

The algorithm, developed by Vukičević, 64,101,102 was used to find the
Kekulé structure count of corazulenic C240 = 240O-30 fullerene: K =
2	 423,740,251,144,960. The corannulenic fullerene C240 shows K =
21,587,074,966,666,816, which is one order of magnitude larger than that for the
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corazulenic isomer. This suggests the corannulenic fullerene C240 is more aromatic
and more stable than the corazulenic C240. A lower HF value (6.584 vs 9.371), a lower
ratio HF/Gap (5.587 vs 8.502) and a higher HOMA value (0.524 vs 0.205) – see also
Tables 6-1 and 6-4) also support the above ordering. Of course, such huge numbers
are useless and the researcher must find the far less number of equivalence classes of
the geometrical Kekulé structures, as suggested Randić et al. 64

6.4.2.3. Sequence Trs�Ca�3	2�c�M��.

In the above sequence, Ca�3	2�c represents the generalized operation Ca�3	2� with the
faces of original map cut-off. It provides joint corazulenic flowers [n � �7�5c��n]Fw,
n = sd which can be red [n � �7�5d��n]Fw as well; the co-Fw is a joint corazenic
pattern [n � �5	 7�n/2]JFw (Figure 6-23). The joint is, however, not perfect (as in
Capra Ca-transforms) but by means of the co-Fws core, thus being an Archimedean
covering.

This is theonlyoperationsequence thatput together twocorazulenicpatterns,being
in a mutual relation by SW. The multiplication factor is m = 5d0 in the triangulated
Platonic or m = 15 in the trivalent dual pair. 96

Rotating the spokes of the corazulenic flowers of 60T -15 results in 60T -15RO
which is just C60 (Table 6-8, row 2). The transformed by (Ca�3	2�c&Trs� of either
octahedron ([4 � �7�5c��4]Fw) or cube ([3 � �7�5c��3]Fw) provide, after SW edge-
rotation, one and the same 120C/O-15RO cage (Table 6-8, row 4). It is covered
by sumanenes [n � �5	 6�n/2], both as Fw and co-Fw, in Archimedean coverings
(Figure 6-24): [n � �5	 6�n/2&sdp]JFw; n = sdd = 8; sdp = 6 and [n � �5	 6�n/2&sdd]co-
JFw, n = sdp = 6; sdd = 8.

Except 60T -15, which includes triangles, the other members of the series are of a
high stability (Table 6-8, column 4), closed .�-electron shells.

The HOMA index does not reflect properly the stability in this series or the
aromaticity is not responsible here for the whole stability of a molecule (compare rows
2 and 4, columns 4 and 7).

Figure 6-22. Divide et impera strategy in the case of 192O-24
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The K-criterion is also in favor of C60 = 60T -15RO: 12,500 when compared
with 60T -15: 5,096. The same is true for the RO-cage derived from cube/octahedron:
120O-15RO; 58,083,472, vs 120O-15; 46,676,224. In comparison, 120T -30RO;
136,861,056, supports the higher stability of this last 120-cage (designed by
Trs�Q�S2�M��)) vs the above isomers103 (see also Table 6-4).

6.4.2.4. Sequence Le(S2�T��

The sequence of the title (a non-comutative one) provides a disjoint sumanenic
[n � �5	 6�n/2]DFw; n = sdd pattern in a Platonic covering. The co-Fw forms
an Archimedean joint of coronenic [n � 6n]Fw, n = sdp and pentylenic [p �
�0	 5��p/2]Fw, p = sdd patterns. The tripentylene [6 � �0	 5�3]Fw can be viewed as
an analogue of the triphenylene [6 � �0	 6�3]Fw. Even no corazulenic covering is
generated by the title sequence, the actual patterns are related to those designed
by the above discussed sequences, this being the reason of including the current
section.

(a) 120O-15; [n:(7(5c))n & sdp]JFw
n=sd=4; sdp=6; Archimedean

(b) 120O-15; [n:(5,7)n/2 & sd]co-JFw
n=sdp=6; sd =4; Archimedean

Figure 6-23. Two corazulenic flowers tessellating the 120O-15 cage, designed by Trs�Ca�3	2�c�M��.

(a) 120O-15RO; [n:(5,6)n/2& sdp]JFw
n=sdd=8; sdp=6; Archimedean

(b) 120O-15RO; [n:(5,6)n/2& sdd]co-JFw
n=sdp=6; sdd=8; Archimedean

Figure 6-24. Two sumanenic patterns [n � �5	 6��n/2]Fw; n = 8 (a) and n = 6 (b) in the SW edge-rotated
120O-15RO cage
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Figures 6-25 and 6-26 illustrate the transformed by Le�S2�T�� of tetrahedron and
cube, respectively. Table 6-9 gives the energetic data and aromaticity in terms of
HOMA index.

These cages are pretty stable structures, with the ratio HF/Gap lower than that
of C60. The most unstable appears the transform of cube 168C-21 (Table 6-9,
row 3, columns 3 and 4), which is anti-aromatic, according to the negative global
HOMA value. Quite strange is tripentylene, the most aromatic substructure, in
terms of HOMA, while [8]coronene [(8:68�]Fw is the most anti-aromatic one, as
expected.

E� , calculated at Hückel level of theory (Table 6-9, column 6), does not fit
neither with the PM3 data nor the HOMA results. The HOMO-LUMO gaps are well
pronounced, as these cages show closed. �-shells.

Table 6-8. Data for corazulenic [n � �7�5c��n] cages (of m = 15), designed by Trs�Ca�3	2�c�M��, and their
SW isomers: heat of formation per atom, HF (kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV;
PM3); strain energy per atom SE (kcal/mol; POAV1); total �-electron energy E� (�-units; simple Hückel)
and HOMA index of aromaticity.

Cage Sym. HF Gap
HF/Gap

SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 60T -15 T 21.350 5.360
17.284

9.716 1.525
cl

−0�090 −0�153
−0�026

4× 3 � �7�5c��3] JFw
4× 6 � �5	 7�3] co-Fw

2 60T -
15RO

Ih 13.512 6.593
8.893

8.257 1.553
cl

0.169 0.169
0.375

4× 6 � �5	 6�3] JFw
4× JR6 co-Fw

3 120O-
15

O 13.717 5.007
11.888

4.057 1.514
cl

−0�073 −0�019
0.017

6× 4 � �7�5c��4] JFw
8× 6 � �5	 7�3] co-Fw

4 120C/O-
15RO

O 12.454 6.014
8.986

4.567 1.543
cl

−0�036 −0�054
0.116

6× 8 � �5	 6�4] JFw
8× 6 � �5	 6�3] co-Fw

(a) 84T-21; [6:(5,6)3]DFw
Platonic

(b) 84T-21; [(6:66)&(6:(0,5)3]co-JFw
Archimedean

Figure 6-25. Disjoint sumanenic covering [n � �5	 6��n/2]DFw, n = sdd = 6 (a) and coronenic- pentylenic
[�6 � 66�&�n � �0	 5��n/2]co-JFws, n = sdd = 6 (b)
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(a) 168C-21; [6:(5,6)3]DFw
Platonic

(b) 168C-21; [(8:68)&(6:(0,5)3]co-JFw
Archimedean

Figure 6-26. Platonic disjoint sumanenic covering [n � �5	 6��n/2]DFw; n = sdd = 6 (a) and Archimedean
joint of coronenic [n � 6n]Fw, n = sdp = 8 and pentylenic [p � �0	 5��p/2]Fw, p = sdd = 6 tessellation (b)

Table 6-9. Data for sumanenic [n � �5	 6�n/2]Fw; n = sdd cages (of m = 21) and their SW isomers: heat of
formation per atom, HF (kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV; PM3); strain energy
per atom SE (kcal/mol; POAV1); total �-electron energy E� (�-units; simple Hückel) and HOMA index
of aromaticity.

Cage Sym. HF Gap
HF/Gap

SE E�

shell
HOMA HOMA-

Fw
Fw

1 2 3 4 5 6 7 8 9

1 84T -
21

T 11.795 6.234
8.213

6.334 1.559
cl

0.251 0.287
0.339
0.139

4× 6 � �5	 6�3]DFw
4× �6 � 66�]co-JFw
4×�6 � �0	 5�3]co-JFw

2 168O-
21

O 9.354 5.672
7.158

3.176 1.494
cl

0.245 0.223
0.491

−0�093

6× 8 � �5	 6�4]DFw
8× �6 � 66�]co-JFw
6×�8 � �0	 5�4]co-JFw

3 168C-
21

O 17.312 6.477
11.602

4.456 1.556
cl

−0�474 −0�009
−0�470

0.165

8× 6 � �5	 6�3]DFw
6× �8 � 68��co-JFw
8×�6 � �0	 5�3]co-JFw

6.5. Retro Endo-Kroto Reaction

It is the place to mention another operation, which model the so-called Endo-Kroto
104 reaction (Figure 6-27), claimed in the mechanisms of fullerene growth. A C2 unit
is inserted into a hexagonal face, thus increasing the number of carbon atoms of a
fullerene. In our case, more interesting is the “retro” operation, denoted REK, which
leads to the smaller precursor. 96

Several cages having fused pentagons (i.e., pentalenes) can be looked for the REK
operation: 204T -51RO (Table 6-5, row 1) leads to C180 (derived from C20 = D by
Le&Le;Table6-1, row2)and300I-15 leads toC240 (derived fromDbyLe�2	2�–Table6-
1, row 3). The products of REK operations above mentioned are included in the list of
the most stable cages herein discussed. Other examples are given in Table 6-10; the
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Figure 6-27. The Endo-Kroto growth operation.

name of these objects includes information on both the original cage and product by
REK. These objects represent somewhat strained structures, with relatively high HF
values.HOMAindexclassifies themasanti-aromaticoratmostnon-aromatic (Table6-
10, columns 7 and 8). They are, however, closed shells, with high HOMO-LUMO
gap (column 4). The cage 192O_24RO_144REK (Figure 6-28) shows a tessellation
equivalent to the “naphthylenic” covering embedded on the torus;105 its K = 70,556,
640,625.

Table 6-10. Data for cages derived by the retro Endo-Kroto operation: heat of formation per atom, HF
(kcal/mol); HOMO-LUMO GAP (eV); HF/Gap (×100; eV; PM3); strain energy per atom SE (kcal/mol;
POAV1); total �-electron energy E� (�-units; simple Hückel) and HOMA index of aromaticity.

Cage
6n

Sym. HF Gap
HF/Gap

SE E� HOMA HOMA
-Fw

Fw

1 2 3 4 5 6 7 8 9

1 96T_24RO_
72REK

Oh 17.23 6.479
11.539

9.250 1.542
cl

0.039 0.117 6× 4 � 64]Fw

2 192O_24RO_
144REK

Oh 20.187 6.937
12.628

7.719 1.540
cl

−0�357 0.450
−0�229
−0�229
−0�235

8× R6]
8× 6 � 66]Fw
6× 8 � 68]Fw
12× 4 � 64]Fw

3 120O_15_
96REK

Oh 14.152 5.970
10.287

7.405 1.550
cl

0.145 0.773
0.031

16× R6]
6×4 � 64]DFw

(a) four-fold symmetry (b) two-fold symmetry

Figure 6-28. Tessellation by retro Endo-Kroto operation: 192O_24RO_144REK
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Conclusions

Sequences of classical or single generalized map operations were used to obtain coran-
nulenic and corazulenic flowers as covering patterns for nanostructures.

The aromaticity of some cages tessellated by these chemically interesting supra-
faces is discussed in terms of several criteria. The covering was given as �-electron
partitions within Kekulé valence structures.

As a structural/geometric parameter of aromaticity, HOMA index enabled evalu-
ation of local aromatic character of the discussed supra-faces and brought evidence for
several dominant Kekulé valence structures.

Disjoint corannulenic flowers, in Platonic coverings, provided fully resonant
graphs, associated to the most aromatic/stable structures herein discussed. Next
stable cages were those having a disjoint corazulenic ([n � �7�5c��n]Fw or [n �
�7�5d��n]Fw) coverings; these supra-faces were isomerized by the SW edge-rotations.
Of particular interest was the SW rotation of [n � �7�5d��n]Fw, leading to disjoint
corazulenic/isocoronenic flowers [n � �5	 7�n/2], predicted to show super-aromatic
character, on the magnetic criterion.

New generalized perfect Clar structures, with the 2-factor designed as pentalenes
or corazulenic [4 � �7�5d��4] disjoint flowers have been evidenced. Noticeable in this
respect is the “Kekulé-Dewar” valence structure of the cage C192.

Alternative co-Fw description revealed some Archimedean disjoint coverings,
involved in the predicted good stability/aromaticity of some newly proposed cages.

Several operation sequences enabled joint flower coverings, with good stability
and locally manifested aromatic (or anti-aromatic) character.

A retro Endo-Kroto operation was proposed to go back from cages tessellated
with pentalenes (known as anti-aromatic, destabilizing patterns) to the more stable
precursors.

All the herein described operations and their products are aimed to be helpful in the
process of molecular structure elucidation and in guiding researchers in finding novel
nano-structured materials.
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Chapter 7

Triply Periodic Nanostructures

7.1. Introduction

Carbon allotropes, intensively studied in the last decade,1– 5 consist of either finite
or infinite entities, structured at molecular or intermolecular level, with sizes ranging
from angstroms to nano- or up to micro-meters. Function of their (repeat) unit
dimensionality, one can distinguishes:

(i) zero-dimensional sp2-bonded objects, of (quasi) spherical shape, held together
by van der Waals forces; this class includes the carbon fullerenes and related
functionalized structures (eventually showing non-classical tessellation, lattice
heteroatoms, endo-or exo-hedral metals and or chemical functional groups).

(ii) one-dimensional sp2-bonded objects, of linear shape, either finite (capped),
hemi-capped or open/infinite molecular structures; their tessellation is polyhex
(by virtue of Euler theorem6), with caps tilled as in fullerenes.

(iii) two-dimensional sp2-lattice of graphite, of hexagonal tiling, with cohesion
ensured by van der Waals forces.

(iv) three-dimensional sp3-lattice of diamond, with repeat units of tetrahedral
symmetry, held together by covalences.

(v) three-dimensional sp2-lattices of spongy carbon.

This last class of allotropes deserves more attention.
A three-dimensional, covalently bonded sp2-carbon network is necessarily

conceivable to feel the gap between the above mentioned lower-dimensional
allotropes and the diamond. Several theoretical conjectures have predicted the possi-
bility of negatively curved graphite-like structures, 7–12 as described by the infinite
triply periodic minimal surfaces TPMSs. These hypothetical structures have been
termed schwarzites, in the honor of H. A. Schwarz, 13,14 who first investigated,
in the early nineteen century, the differential geometry of this class of surfaces.

167
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Total energy calculations, carried out with ab initio methods8,10 as well as with
classical15 and tight-binding16 simulations, have shown that carbon schwarzites
are energetically more favorable than fullerenes of comparable absolute Gaussian
curvature. 17 These data suggested that negatively curved carbon networks may
appear during the fullerene and nanotube synthesis, at least as random (amorphous)
schwarzites, if not in a periodic, crystalline form.

Porous carbon allotropes, synthesized by plasma-enhanced CVD, by Zaakhidov
et al., 18 have various structures: diamond or inverse opal, depending on the
synthesis conditions. Graphite inverse opals, obtained by surface templating, provide
examples of both dielectric and metallic crystals. The Raman spectra of the inverse
opal materials (tetrahedral and cubic, respectively) indicated the presence of sp2

carbon. The synthesis of large amounts of carbon foam (obtained by using pulsed
microplasma, in the presence of a metallorganic catalyst) was reported by Barborini
et al. 19 and Benedek et al. 17 They brought clear evidences of a nanostructured 3D
lattice, consisting entirely of covalently bonded sp2 carbon. The simulated HRTEM
images showed a spongy carbon with the topology of random schwarzites. The
extremely high porosity (pores with diameters ranging from 50 to 600 nm)17 and
low density of these nanoporous carbon materials suggested many possible appli-
cations, as thermal insulators, in catalysis, in gas and energy storage, in gas and
liquid purification, in templating biomaterials and in electrochemistry, as well.

Carbon sponges are also useful in investigating negatively curved lattices. They
seem to result by self-assembling of various repeat units, some of them encountered
in 3D junctions of nanotubes.

7.2. Background on Surface Curvature

An embedding is a representation of a graph on a surface S such that no edge-
crossing occurs. 20,21 Two embeddings �1 and �2 are combinatorially equivalent if
there is a one-to-one correspondence between their vertices v, edges e, and faces
f , such that the incidence between their constitutive substructures is preserved.

A polyhedral lattice, embedded in an orientable surface S obeys the Euler’s
theorem:6

v − e+f = x�s� = 2�1−g�s�� (7.1)

where ��S� is the Euler characteristic and g the genus (i�e., the number of holes
performed in a plastic sphere to make it homeomorphic to S). Positive/negative �
values indicate positive/negative curvature of a lattice embedded in S.

A surface is orientable, when it has two sides, or it is non-orientable, when it
has only one side, like the Möbius strip.

The negative curvature can be induced in graphite (the reference, of zero
curvature) by replacing hexagons by heptagons, or larger sized rings. Such nets
form only open structures, in the opposite to those having pentagons or smaller
rings, which bring positive curvature, and which form closed cages/polyhedra.
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Curvature is the amount by which a geometric object deviates from the planarity.
It is usually measured either as Gaussian curvature K or as mean curvature H .
These are defined at each point on the surface as functions of the surface principal
curvatures at the point:

K = ±k1 ·k2 (7.2)

H = 1
2

�k1 +k2� (7.3)

To evaluate these at a given point of the surface, consider the intersection of the
surface with a plane containing a fixed normal vector at the point. This intersection
is a plane curve, having a curvature k = 1/r; if the plane is varied, this curvature will
change, and there are two extreme values – the maximal and the minimal curvature,
called the principal curvatures, k1 and k2. Accordingly, the extreme directions are
called principal directions. Usually, a curvature is taken positive if the curve turns
in the same direction as the surface’s chosen normal, otherwise it is negative. 22– 24

A surface S is flat if K�p� = 0 and it is minimal if H�p� = 0, for every p ∈ S.
The integral of the Gaussian curvature over the whole surface is closely related

to the Euler characteristic ��S� (Gauss-Bonnet theorem) of the surface:22,25

∫

S
KdS = 2���S� (7.4)

The above theorem relates the geometric curvature to the topology, as shown
in eq 7.1 for an orientable surface. In case of a non-orientable surface, the Euler
characteristic reads:

��S� = 2−n�S� (7.5)

In the above relation, n is the number of cross-caps needed to be attached to
the sphere to make it homeomorphic to that non-orientable surface. 26

If S is a topohedral surface in 3D, the count of vertices v, edges e and faces f ,
is given by the Euler relation (7.1). If g = 0, then (7.1) reads:

v− e+f = 2 (7.6)

If a polyhedron has all degree-3 vertices, and each edge is shared by two faces,
then:27

3v =∑

s
s ·fs = 2e� f =∑

s
fs (7.7)

where fs is the number of s-gonal faces and (7.1) becomes:

�1/3�
∑

s
s ·fs − �1/2�

∑

s
s ·f +∑

s
fs = 2�1−g� = � (7.8)

∑

s
�6− s� ·fs = 12�1−g� = 6� (7.9)
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Relation (7.9) gives the number of s-folded polygons for a surface of a given
genus. Special cases are the Platonic- (with a single kind of polygons) and the
Archimedean- (with two kinds of polygons) tessellations. If we consider polygons
with s = 3	 4 � � � 9 sides, equation (7.9) reads:

3f3 +2f4 +f5 −f7 −2f8 −3f9 = 12�1−g� (7.10)

In (7.10), f3, f4...f9 represent defects in the graphitic covering, leading to the
curvature of the polyhedra; observe f6 is not present (since hexagon produces
zero Gaussian curvature), the number of hexagons being arbitrary. Archimedean
fullerenes must always contain 12 f5; thus f6 comes out from (7.7):

5 ·f5 +6 ·f6 = 60+6 ·f6 = 3v

f6 = v/2−10 (7.11)

There is a theorem of Descartes 22,23 stating that the overall angular defects
(i�e., disclinations) are proportional to the Euler’s characteristic, if S is a topohedral
surface in 3D:

S∑

p


p = 2���S� (7.12)

Mean curvature is closely related to the first variation of surface area. Surfaces
everywhere having the mean curvature H = 0 are called minimal surfaces (i�e., with
minimal local area). The shapes taken by soap films are minimal surfaces. Unlike
Gaussian curvature, the mean curvature depends on the embedding, for instance, a
cylinder and a plane are locally isometric but the mean curvature of a plane is zero
while that of a cylinder is nonzero.

7.3. Carbon Lattices Embedded in TPMSs

Triply periodic minimal surfaces TPMSs have, by definition, translational symme-
tries in three independent directions. They are saddle-shaped, everywhere except at
certain flat points. A TPMS belongs to one of the crystallographic space groups as
its symmetry group and, if it has no self-intersections, it partitions the space into
two disjoint labyrinthine regions. Its topology is characterized by two interlacing
networks, the labyrinth graphs.

A carbon lattice, having all sp2 atoms, can be embedded in a TPMS. According
to relations (7.1) and (7.4), a TPMS graphene will have a negative average Gauss
curvature � < 0, (unlike fullerenes with � > 0, or open and toroidal tubulenes, with
� = 0) and zero mean curvature H = 0, for every point belonging to the graphene net.
It was conjectured that a covalent lattice, of all sp2 carbon, embedded in a minimal
periodic surface is energetically more favorable than fullerenes of comparable
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Gaussian curvature. 17 The generic name adopted for such carbon allotropes is
periodic schwarzites. 11,17

Periodic schwarzites are generated by covalent connections of identical repeat
units. The unit cell may contain one or more such units/elements. The centers of
the elements can be viewed as the nodes of a corresponding dual lattice, i�e., one
of the two complementary labyrinths.

The dual lattice of the Four-connected diamond structure defines a class of cubic
schwarzites, with two elements per unit cell (i�e., bielemental schwarzites). They
are tessellations of a D-type minimal surface. Monoelemental cubic schwarzites
with a sc, or bcc or fcc dual lattice are also possible. P-type schwarzites have the
structure of a simple monoelemental cubic lattice. They include a special class of
structures known as polybenzenes. 28

Numerical computations of minimal surfaces may be done with several
techniques. The classical method assumes knowledge of the Weierstrass integration
formulas and does a numerical integration. Another method relies on the finite
element theory and needs the calculation of partial differential equations with
numerical techniques. 29

For visual representation, a minimal surface can simply be approximated by a
trigonometric expression14,30,31 corresponding to the lowest-order terms of a Fourier
expansion. For example, D- and P-type surfaces are well described in the (x, y, z�
space by:

D− type � cos�x� cos�y� cos�z�+ sin�x� sin�y� sin�z� = 1 (7.13)

P − type � cos�x�+ cos�y�+ cos�z� = 0 (7.14)

Each (open) Platonic object is the zeroth element of an infinite series of larger
schwarzites, obtained by inserting an arbitrary number of hexagons (f6 > 1) in each
unit. For example, the D-type schwarzites of Platonic-Archimedean tessellation
(with only heptagons and hexagons) form a family of crystals with 2�28 + 2f6�
atoms in the unit cell. Figure 7-1 illustrates the zero members of the D- and P-type
series of schwarzites, designed by (open) Ca/S1 map operation as Platonic (7,3)
coverings.

Isomeric forms of schwarzites are possible, by analogy to spherical fullerenes
(see the next section).

The repeat units of schwarzites can be seen as junctions of nanotubes, of minimal
length. Systematic search of unit cells of possible schwarzites, by the aid of map
operations (see Chapter 5), will be presented in the next section and in the Atlas of
junctions.

Some other surfaces with cubic symmetry have been described (named here by
the Schoen’s notation32): IWP, FRD, OCTO, C(D), and G.29

At the end of this section, we recall that random schwarzites have experimentally
been obtained by supersonic deposition of carbon clusters in the presence of catalyst
nanoparticles, 17 and look like a porous spongy carbon. The numerical simulation
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(a) Op(Ca/S1(T ))
v = 40(28); e = 54; f7

 = 12; g = 2
(b) Op(Ca/S1(C ))

v = 80(56); e = 108; f7
 = 24; g = 3

Figure 7-1. The first three members of the infinite families of D- (a) and P-type (b) schwarzites; the
numbers in brackets account for the atoms in the repeat units.

of the TEM images brought evidence that random schwarzites grow in the form
of a TPMS. These new structures consist of a fully covalent 3D lattice of sp2

carbon.
Among the most prominent scientists who contributed to the development

of TPMSs theory we enumerate: Schwartz, 13,14 Neovius, 33 Schoen,32 Coxeter, 34

Fischer and Koch,35 etc. The scientists of the last decade have added experimental
evidences of the molecular realization of these fascinating structures.

7.4. Nanotube Junctions

The operation leading to open (repeat) units, as those encountered in schwarzites,
is called Opr (Chapter 5, eq 5.23) and is an Er homeomorphic transformation of
the parent edges. Most often r = 1 thus being omitted. The Op operation can be
coupled to any map operation ��G� as Op���G�� and performed in various ways
to obtain either pro-chiral or achiral units.

Unit blocks provided by opening map transforms could model the junctions
of carbon nanotubes; these are obtainable by “nano-welding” crossing tubes in an
electron beam.36

The genus of an open structure is calculable from (7.1). For the five Platonic
solids, the genus of the corresponding Op�G� is: 2 (Tetrahedron T ); 3 (Cube C);
4 (Octahedron O); 6 (Dodecahedron D) and 10 (Icosahedron I ). However, due to
the dual parity, the transformed (open) structures (e�g., nanotube junctions) belong
to only three classes of symmetry: tetrahedral (g = 2); octahedral (g = 3) and
icosahedral (g = 6).

To the above, a class of digonal symmetry (g = 1) and some of planar symmetry
(of g = 1�5	 2	 2�5	 � � � ) have to be added.

Insertion of hexagons in the primary Op���G�� junctions, in view of strain
relief, can be achieved by a second map operation �2�Op��1�G���. Observe the
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map operation preserves the genus of the parent structure and its class of symmetry.
In the following, the main classes of junctions are presented.

7.4.1. Digonal Junctions

A digonal junction or simply a link between two nanotubes of same or different
tessellation is the simplest junction (Figure 7-2a); observe the number of pentagons
equals that of heptagons. Capping a nanotube by fullerene halves can also be
considered as a digonal junction. Coalescence of spherical fullerenes to peanut-
shaped periodic structures (Figure 7-2b) or a single torus realization (Figure 7-3 –
see also Chapter 2) are also digonal junction objects. Conetori and DWT represent
different types of toroidal structures (see Chapter 3). Bent tubes can be viewed as
digonal junctions (Figure 7-4). Other examples are given in the Gallery.

The occurrence of such junctions in real synthesis of nanotubes, or in nano-
welding under electron beam has been reported.36 Shapes of bamboo, tapers, knees,
etc. have been observed.37– 40 Digonal junctions of Z&A nanotubes have been
proposed as nano-diodes. 41 Carbon tori is believed to be obtained experimentally. 42

7.4.2. Planar Junctions

Experimental synthesis of Y-type and T-type junctions have been reported.36,39,43– 46

For such objects, non-integer g-values are calculated, from the Euler’s theorem
or as g = no. open faces/2; in case of Y-type junctions g = 1�5 (Figure 7-5).

(a) J[(5,5)&(10,0)]
v = 140; e = 200;  f6

 = 50;  f5
 = 5; f7

 = 5; g = 1 
(b) v(k 6k (56)k (65)k 7k – Z[2k,1] – r)

k = 5; r = 4; v = 12kr = 240

Figure 7-2. An A/Z-junction and a periodic kfz-tubulene.

Tv((566)
k/2

(665)
k/2

7
k 
–

 
Z [2k,0]

 
– r); k

 = 6; r = 30; v = 8kr = 1440

Figure 7-3. A toroidal embedding of the ((5,6,7)3) pattern.
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(a) K[TU(9,0)&TU(6,6)]
v = 87; e = 120; f6

 = 31; f5
 = 1; f7

 = 1; g = 1   (b) T(6 × K[TU(5,5)&TU(5,5)])
v = 780; f6

 = 366; f5
 = 12; f7 =

 12; g = 1 SE = 2.629

Figure 7-4. A knee and a torus made by knees.

(b) Y[TU(9,0)&TU(6,6)]
v = 432; g = 1.5 

(a) Y[TU(9,0)&TU(6,6)]
v = 132; e = 183; f6 = 44; f7 = 6; g = 1.5

Figure 7-5. An Y-junction.

(a) D5[TU(4,8)]
 v = 70; e =; f6 = 90; f5 = 2; f8 = 10; g = 2.5

(b) D5[TU(4,8)]
 v = 670; g = 2.5  

Figure 7-6. A D5-junction.

Analogously, for a D5-type junction, a value of g = 2�5 is obtained (Figure 7-6).
Observe the chirality of both the body and tubes of this junction, provided by the
pro-chiral operation Capra. Also observe the parent faces are surrounded by their
own hexagons, forming an Archimedean �5 � 65�� �8 � 68�� JFw covering (the flower
contours in black/red).

Such junctions have been inferred in construction of some nano-networks, with
possible electronic applications.
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(b) DT; v = 2196; g = 2
(a) X[TU(9,0)]

v = 252; e = 360; f6 = 94; f7 = 12; g = 2

Figure 7-7. An X-junction and the corresponding double torus.

In case of k = even, the simplest junction is of X-type36 (Figure 7-7) and if
the tubes are pairwise closed, the objects represent tori of high genera. Other tori
with planar junctions are presented in Figure 7-8. Bond currents in double tori as
those in Figures 7-7 and 7-8 have been evaluated in terms of homology groups. 47

Conclusion of this study is the junction is the most important piece in deciding the
electromagnetism of a carbon (multi) torus.

7.4.3. Tetrahedral Junctions

A systematic construction of multi tori can be based on the Platonic solids: they are
operated by some map operations, e�g., quadrupling Q, capra Ca, etc., and next every
original face opened and pairwise joined by appropriate nanotube segments. In this
way, repeat units in possible infinite lattices or finite multi tori can be constructed.
Figure 7-9 illustrates some double tori and the corresponding junctions. 48

Among various possible combinations of �2�Op��1�G��� we propose here a
classification by the first map operation. This is the operation before opening and
it dictates the type of “negative” face nfs, i�e., the polygon of size s > 6 which
induces the negative curvature.

v = 624; e = 936; f5 = 10; f6 = 278; f7 = 22; g = 2 v = 936; e = 1404; f7 = 12; f6 = 454; g = 2; D2h

Figure 7-8. Double tori.
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DT(T); v = 124; e = 186; f7 = 12; f6 = 48; g = 2 Op(Ca2,1(T)); TUV/A[3,0]

DT(T); v = 480; e = 720; f6 = 226; f7 = 12; g = 2;

DT(T); v = 1740; e = 2610; f6 = 856; f7 = 12; g = 2

Le(Op(Ca(T)); TUV/A[3,3]

Le22t(Op(Ca(T))); TUV/A[6,6]

Figure 7-9. Double tori and the corresponding junctions.

Let’s now introduce the three basic (open) operations: leapfrog Le1	1, quadru-
pling Q2	0 and capra Ca2	1/S1 (more about these symbols the reader can find in
Chapter 5). The objects in Figure 7-10 are transforms of the tetrahedron T .

In infinite lattice, the above units provide Platonic (nfs,3) coverings. Observe
the units provided by the S1 (Figure 7-10) and S2 (Figure 7-11) operations49 are
isomeric in infinite array (they all have 28 vertices but different embedding and
chirality). The primary joining tube will of course be enlarged by applying the
second map operation (see the Gallery), with the most important consequence the

(a) Op(Le1,1(T)); nf9 = 4; Tu(3,0)
      v = 24(12); e = 30; f = 4; g = 2

(b) Op(Q2,0(T)); nf8 = 6; Tu(3,0)
     v = 28(16); e = 36; f = 6; g = 2

(c) Op(Ca2,1/S1(T)); nf7 = 12; Tu(3,0)
    v = 40(28); e = 54; f = 12; g = 2

Figure 7-10. The main open repeat units.
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(a) Op11(S2(T)); nf7 = 12; Tu(6,0)
     v = 52(28); e = 66; f7 = 12; g = 2

(b) Op2a(S2(T)); nf7 = 12; Tu(3,3)
      v = 52(28); e = 66; f7 = 12; g = 2

Figure 7-11. Isomeric repeat units with nf7, derived by S2 operation.

(a) E2a(Q(C)); v = 56; e = 72
      f8 = 12; g = 3; TU(2,2)  

(b) TT(C); v = 264; e = 396; f8 = 12; f6 = 116; g = 3

Figure 7-12. A core unit derived from cube C and its triple torus.

drop of strain energy; the evolving tube is given (in two integer symbols50) in the
top of the objects.

7.4.4. Octahedral Junctions

The objects in Figures 7-12 and 7-13 were inferred in the molecular realization
of the Dyck graph51 (on 32 vertices of valence 3, 48 edges, 12 octagons, girth 6,
diameter 5, and chromatic number 2, genus g = 1, with an embedding of the graph
on the torus). 52,53 They can work as octahedral junctions (i�e., cores) in triple tori. 48

Similar objects can be obtained by (open) Capra of cube (Figure 7-14a; core
in Figure 7-1b); when repeat the operation a more relaxed object is obtained48

(Figure 7-14b).
The strain energy SE, in terms of the POAV1 theory,54– 57 of such objects of

high genera48 is relaxed as the number of atoms increases. It is evident, when
compare the structures in Figure 7-14 (320 atoms 2240 atoms), with a clear drop
in their strain.

Out of triple tori, the junctions derived from cube by applying map operations
(see the Gallery) can model octahedral junctions of nanotubes. They are involved
in the realization of the schwarzites of P-type (see below).
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(a) E1(Q(C)); v = 56; e = 72
      f8 = 12; g = 3; TU(4,0)  

(b) TT(C); v = 296; e = 444; f8 = 12; f6 = 132; g = 3

Figure 7-13. A core unit derived from cube and its triple torus.

(a) TT(C); v = 320; e = 480; f7 = 24; f6 = 132; g = 3;
      SE = 9.29

(b) Ca2,1(TT(C)); v = 2240; e = 3360; f7 = 24; 
      f6 = 1092; g = 3; SE = 2.54

Figure 7-14. A triple torus (g = 3) and its core derived from the cube.

7.4.5. Icosahedral Junctions

When the opening operation is coupled to a composite operation like capra Ca, the
transform of dodecahedron D can model an icosahedral junction, as illustrated in
Figure 7-15, together with the corresponding multi-torus. 48

(a) Op(Ca(D)); v = 200; e = 270; f7 = 60; g = 6 (b) v = 3530; e = 5295; f7 = 60; f6 = 1695; g = 6

Figure 7-15. An icosahedral junction and its multi-torus.
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7.4.6. Structures of High Genera

Structures of high genera can be modeled, as above mentioned, by opening
the Platonic solids, operated by appropriate map operations. Such units may form
either infinite lattices of negative curvature or closed cages, showing porous
structure. 48 Spongy carbons have been recently synthesized.17 Objects like those
in Figure 7-16, of genus 2 and 3, respectively, can be built up by joining a conical
domain lattice with each of the open faces of a junction unit and finally joining all
the conical domains to each other. The core of the object in Figure 7-16b is the
junction Op�Ca2	1/S1�T�� (Figure 7-10c).

The objects in Figure 7-17 are derived from the junctions in Figures 7-12a and
7-13a. They are isomers comprising either V/A or H/Z inner tubes. Observe their
relatively low strain energy and the pretty stability of the object in Figure 7-17b,
in terms of PM3 data. 48

The object in Figure 7-18 has the core the junction Op�Ca�D�� (Figure 7-15a).
Objects of high genera have also been modeled by Lenosky et al., 8,10 Terrones

et al. 9,11 and more recently by Lijnen and Ceulemans.58

Structures have been optimized at the Amber MM and PM3 (HyperChem) level
of theory and the strain energy SE in POAV1 terms, by the JSChem software
program.59

(a) v = 206; e = 309; f5 = 12; f6 = 72; f9 = 2; g = 2 (a) v = 136; e = 204;  f6 = 40; f7 = 24; g = 3

Figure 7-16. Finite spongy carbons of trigonal and tetrahedral symmetry.

g = 5; SE = 5.47
SE = 5.65; D2h
HF = 17.74 kcal/mol; Gap = 4.56 eV

Figure 7-17. Finite spongy carbons of octahedral symmetry.



180 Chapter 7

v = 1220; e = 1830; f6 = 470; f7 = 120; g = 11 (five fold) (three fold)

Figure 7-18. Finite spongy carbons of icosahedral symmetry.

7.5. Periodic Schwarzites

7.5.1. D- and FRD-Type Schwarzites

A spongy carbon allotrope, with all covalently bonded sp2 atoms, which
lattice can be embedded in a TPMS is called a TPMS-graphene or a periodic
schwarzite, 11,17,60,61 in the honor of H. A. Schwarz,13,14 who first investigated, in
the early nineteen century, the differential geometry of such surfaces. The most
frequently considered minimal surfaces in modeling schwarzites are of D-, FRD-
and P-types. 7,8,11,15,17,19,28,29,60,61

Various repeat units of D-schwarzites can be designed by applying the map
operations (Chapter 5).

Figures 7-19a,b illustrate the chiral pair of the S1-transformed tetrahedron:
Op�S1S�T�� and Op�S1R�T��, put together by identifying their common open face,
such as they appear (in an “intercalate” conformation) in the bi-elemental cell of
an sp2 diamond lattice, of a (7,3) Platonic tessellation24 (Figures 7-19c,d). For
diamond-like structures, the reader can find supplementary information in refs.60
and61.

The building block Op�S1�T��, (Figure 7-10c), as “eclipsed” bi-elemental cell,
enabled construction of a supra-dodecahedron,52,53 a multi torus of genus 21, having
a (7,3) Platonic tessellation (Figure 7-20a). Its core is given by Op2a�S2�D��
(Figure 7-20b). A similar structure can be built up starting from Op2a�S2�T��
(Figure 7-11b), while its core is Op�S1�D�� (Figure 7-15a). Such supra-dodecahedra
represent twin labyrinths interlaced in construction of the FRD-type surface; they
could appear by a self-assembling process. 24 In the following, the assembling
process is seen as a “map operation” and symbolized by “D�G�”. Similarly, the
core-structure is denoted by “C�G�”.

Thus, the twin labyrinths can be achieved either starting from tetrahedral units
or from dodecahedral ones. The twin labyrinths above presented can be written as
D�Op�S1�T���;[Op2a�S2�D��] and D�Op2a�S2�T���;[Op�S1�D�], with the objects in
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(b) Op(S1S(T ))–Op(S1R(T )); top

(c) Diamond lattice (7,3); side
SE = 8.756 

(d) Diamond lattice (7,3); top

(a) Op(S1S(T ))–Op(S1R(T )); side

Figure 7-19. Repeat units and the sp2 diamond (D-type surface) of Platonic (7,3) tessellation.

(a) D(Op(S1(T))); two fold axis
v = 620; e = 900; f7 = 240; g = 21

SE = 8.854

(b) C(D(Op(S1(T)))) = Op2a(S2(D))
v = 260; e = 330; f7 = 60; g = 6

SE = 0.092

Figure 7-20. A supra-D structure of (7,3) Platonic tessellation, by S1, and its core.

the square brackets being the core of the supra-dodecahedra. The free boundary
of the core changes from “armchair” �S2� to “zigzag” �S1� and vice-versa. This is
just the expected complementarity of the objects derived by the twin (open) S1/S2

operations.
A supra-D structure can be further transformed in view of obtaining different

Platonic or Archimedean tessellations. For example, the objects in Figure 7-21a are
transformed by Le2	2-operation62 in: Le22��D�Op2a�S2�T����;[�Op�S1�D����). They
show a Platonic, disjoint corannulenic52,53[7:67]DFw supra-covering (Figure 7-22).
Supplementary information is given in the top of figures.
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(a) D(Op2a(S2(T))); two fold axis
v = 680; e = 960; f7 = 240; g = 21

SE = 2.097

(b) C(D(Op2a(S2(T)))) = Op(S1(D))
v = 200; e = 270; f7 = 60; g = 6

SE = 1.573

Figure 7-21. A supra-D structure of (7,3) Platonic tessellation, by S2, and its core.

(b) Le2,2(C(D(Op2a(S2(T)))))
=Le22(Op(S1(D))); Platonic 60×[7:67]DFw

v = 1680; e = 2400; f = 710; g = 6

(a) Le2,2(D(Op2a(S2(T))))
Platonic 60×[7:67]DFw

v = 6720; g = 21; SE = 0.318

Figure 7-22. Supra-D structure (Figure 7-14a) transformed by Le2	2 operation.

In another example, Ca/S1 operation provides a Platonic covering of
joined [7:67]JFw tessellation in the S1R�D�Op2aS�S2�T���;[Op�S1S�D��]) embedding
(Figure 7-23).

It is known that the curvature elastic60 energy decreases in the series: sphere >
cylinder > saddle > flat surface. The average strain energy SE values for C60 and
a (6,6) nanotube are about 8.3 and 1.6 kcal/mol, respectively. In the open units of
infinite lattices herein designed, the strain value drops up to 0.31 kcal/mol (see the
top of figures), clearly supporting the above decreasing sequence of energy. It is
expected that, as the number of atoms increases, the lattice becomes more and more
relaxed. Thus, the energy gain from the repeat units to large structures will promote
the self-assembling reaction.

Corannulenic disjoint covering is expected to give a particular magnetic
response, due to the diamagnetic ring current of the flower periphery (see Chapter 6
and also refs.47 and63)
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(a) S1R(D(Op2aS(S2(T))))
Platonic [7:67]JFw

v = 4280; g = 21; SE = 0.322

(b) C(S1R(D(Op2aS(S2(T)))))
= S1R(Op(S1S(D)))

Platonic 60 × [7:67]JFw
v = 1160; e = 1650; f = 480

g = 6; SE = 0.335

Figure 7-23. Supra-D structure (Figure 7-21a) transformed by S1 operation.

A self-assembling process can be described for an open C60 structure. The
repeat unit is Le�Op�Ca�T���; v = 84�60� and the common edges have to be
identified in the process of building the supra-dodecahedron D�Le�Op�Ca�T����;
[Op�Ca�3	2�C�I��] (Figure 7-24).

Intermediate steps are presented in Figure 7-25.
The open embedding of the above supra-dodecahedron shows g = 21 while the

closed one is g = 11 (cages of genus 11 have also been reported by Terrones and
Terrones. 64). Observe the identical covering of the (quasi) spherical units to that
of C60, from which the open unit of v = 60 can be obtained by cutting off the
edges sharing the pentagons and hexagons in the tetrahedral disposition. The above
repeat unit Le�Op�Ca�T��� (v = 1 × 60, Figure 7-25) shows a joint triphenylenic

D(Le(Op(Ca(T)))); [Op(Ca(3,2)C(I))]
v = 20 × 60; e = 1740; f6 = 320; f7 = 180; g = 21

5-fold; open
v = 1200; e = 1800; f5 = 60; f6 = 340; f7 = 180

g = 11; 2-fold; closed 

Figure 7-24. The supra-dodecahedron D�Le�Op�Ca�T����;[Op�Ca�3	2�C�I��] in open and closed
embedding.
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v = 5 × 60 v = 8 × 60 v = 10 × 60

v = 2 × 60 v = 3 × 60
1 × Le(Op(Ca(T))) 

v = 84(60); e = 78; f6 = 16; g = 2

Figure 7-25. Intermediate steps in construction of supra-dodecahedron D�Le�Op�Ca�T����;
[Op�Ca�3	2�C�I��].

[6:(0,6)3]JFw covering, expected to show a high aromatic character and to contribute
to the stability of the whole structure (see also Chapter 6).

The above supra-dodecahedron may evolve in a linear array, as shown in
Figure 7-26. The core of these structures is described as Op�Ca�3	2�C�I�� (Figure 7-
26b), in an embedding of g = 6. The dark/red lines are those shared by two structural
units.

A simpler repeat unit is llustrated in Figure 7-27a. The pair
Op�Le�T��/Op�Le�I�� provides a FRD-type surface29 (space group Fd 3 m� tessel-
lated as D�Op�Le�T���;[Op�Le�I��], (Figure 7-27c,d) with the same meaning of

(b) C(D(Le(Op(Ca(T))))) 
= Op(Ca(3,2)C(I)); 20 × [6:(6,7)3] Jfw 
v = 420; e = 570; f6 = 80; f7 = 60; g = 6(a) v = 50 × 60; e = 4380; f6 = 800; f7 = 480; g = 51

Figure 7-26. A linear array of D�Le�Op�Ca�T���� and its core.
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(c) D(Op(Le(T))); [Op(Le(I))]
v = 480; e = 690; f = 170; 

f6 = 80; f8 = 90; g = 21
2-fold axis; SE = 6.739

(d) D(Op(Le(T)))
5-fold axis

(a) Op(Le(T))
v = 24; e = 30; f = 4; g = 2

(b) C(D(Op(Le(T)))) = Op(Le(T))
v = 120; e = 150; f6 = 20; g = 6

Figure 7-27. The supra-dodecahedron D�Op�Le�T���;[Op�Le�I��] and its repeat units.s

symbols as above. The tetrahedral unit is the smallest open unit Op�Le�T�� tiled
by disjoint hexagons. The corresponding core is Op�Le�I�� (Figure 7-27b) and, as
in the case of C�D�Le�Op�Ca�T�����, the starting Platonic is the icosahedron.

By connecting Op�Le�I�� with other twelve identical objects results in an FRD-
domain, of genus 66 (Figure 7-28a). It can be capped, to obtain the compact array A
of 13 spheres24 A�Op�Le�I��� (Figure 7-28c,d). This array shows a core described as
D�Op�Le�T���, identical to the supra-dodecahedron illustrated in Figure 7-27c,d.
This clearly demonstrates the complementariness of the units, derived from tetra-
hedron and dodecahedron, respectively, concerted in the construction of the FRD-
type surface.

The unit D�Op�Le�T��� may evolve in a linear array, as shown in Figure 7-28b.
Let’s now start a construction by the object D�Op�Le�T���;[Op�Le�I��]. The

steps (Figure 7-29) are essentially the same as those for the supra-dodecahedron
D�Le�Op�Ca�T����; [Op�Ca�3	2�C�I��] (Figure 7-27) but the repeat unit is just
a supra-dodecahedron. Finally the array A�D�Op�Le�T����;[D�Op�Le�T���] is
obtained (Figure 7-30); its core is just the starting supra-dodecahedron. The unit
of v = 1200 (Figure 7-29c) can be seen as the cap of structure with v = 1920
(Figure 7-29b), whose reunion (formally) leads to the target structure. The 13
spheres represented in Figure 7-28 are here surrounded by the tetrahedral units
whose array generates the spherical parts of the twin labyrinth in an infinite lattice.
The above array, as infinite embedding, shows g = 131.
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(a) FRD-type surface; A(Op(Le(I)))
Infinite; v = 1560; e = 2160; f = 470

f6 = 260; f8 = 210; g = 66; 5-fold axis; SE = 3.72  

(c) A(Op(Le(I)))
Finite; v = 1920; e = 2880; f = 902

g = 30; 5-fold axis; SE = 3.73 
(d) 13 × Op(Le(I)); 3-fold axis

g = 30

(a) Linear lattice of D(Op(Le(T)))
Infinite; v = 1200; e = 1740; f = 440

f6 = 200; f8 = 240; g = 51; SE = 6.499

Figure 7-28. Spherical (a, c, d) and linear (b) evolution of D�Op�Le�T��� unit.

(a) v =1800; 5-fold axis; top (b) v =1920; 5-fold axis;

(b´) v =1920 ; side (c) v =1200 (side)

Figure 7-29. Steps in construction of the array A�D�Op�Le�T����; [D�Op�Le�T���].
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A(D(Op(Le(T))); [D(Op(Le(T)))].
v = 3120-5; e = 4590; f6 = 520; f8 = 690; f = 1210; g = 131; 5-fold axis

Figure 7-30. The array A�D�Op�Le�T����; [D�Op�Le�T���].

Among several proposed synthetic routes for carbon schwarzites, two of them
appear conceivable: one suggests the carbonization of foamed polymers, whereas
the other infers the fullerenes as templates. Both routes ultimately converge to dual
labyrinth structures, which could evolve from either a tetrahedral or a spherical
(dodecahedral) repeat unit.

7.5.2. P-Type Schwarzites

The P-type surface shows the space group Pn 3 m; a molecular realization, achieved
by the two septupling map operations is exemplified in Figure 7-31. Observe the
combination of the pro-chiral units, provided by these operations, in obtaining non-
twisted (achiral) lattices of high genera. The pair lattice units are easily deduced as:
Op�S1�C��/Op2a�S2�C��, disregarding the chirality. The sequence Si�Opn�Si�M���

Lattice of 8 × (Op(S1S (C)) & Op(S1R(C)))
v = 544; e = 768; f = 192; g = 17; SE = 2.127 

Lattice of 8 × (Op2aR(S2(C)) & Op2aR(S2(C)))
v = 640; e = 864; f = 192; g = 17; SE = 0.857 

Figure 7-31. Platonic (7,3) tessellation of the P-type surface by the two septupling map operations.
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SE = 0.186 v = 2848; e = 4128; f = 1248; g = 17
SE = 0.318 

Lattice of S1R(8 × (Op(S1S (C)))); side
Platonic (7:67)JFw tessellation

v = 2848; e = 4128; f = 1248; g = 17
SE = 0.318  

Lattice of Le22(8 × (Op2aR(S2(C))));
Platonic (7:67) DFw tessellation

v = 5376; g = 17

Figure 7-32. Transformed S1�G� coverings of the P-type surface.

or similar others, may provide variations of the P-surface covering (e�g., those
shown in Figure 7-32).

UnitblocksprovidedbyOp�S1�C��andOp2a�S2�C��operations49,65 (Figures 7-31
and 7-32) could model the junctions of carbon nanotubes, obtainable by
“nano-welding” crossing tubes in an electron beam.36 The large hollows appearing
in the above objects could explain the porosity of the spongy carbon materials.

Lattices of this type have been described in refs.7,8,9,15,24,28,66 Note that
(7,3) tessellation is also called Klein tessellation, after F. Klein, 67,68 whose graph
is a representation of the automorphism of (heptakis) octahedral group.69

All the presented structures have been computed by the original software
program CageVersatile 1.5. 70

Conclusions

Spongy carbon nanostructures, also called schwarzites, recently synthesized, consist
of highly connected covalent networks, periodic in the three dimensions of the
Euclidean space. Triply periodic minimal surfaces TPMSs were claimed as the
intimate structures of schwarzites.
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A systematic construction of nanotube junctions was based on the Platonic
solids, operated by some map operations, and next every original face opened.
The eventual pairwise joining of the open faces by appropriate nanotube segments
leads to multi-tori. If, instead of tubes, conical domains are used, it would result
in some finite spongy carbons. The junctions can be self-assembled in networks
(schwarzites) of high genera (and subsequently tessellated by some map operations).
POAV1 strain energy calculations for structures of thousands atoms have shown
that such structures are very relaxed and approach to the graphite sheet. Data support
previous literature results indicating a decrease of energy in the series: sphere >
cylinder > saddle > flat surface.

Calculations at various levels of theory have predicted extremely interesting
properties (mechanical, thermal, electric, magnetic or theoretic ones) of spongy
nanostructures.

Details of junctions herein discussed and other examples, classified by the
operation before the opening, the are given in the Gallery, at the end of this book.
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Gallery of Carbon Nano Junctions and Derived
Infinite Lattices

Abbreviations used:
T – tetrahedron
C – cube
D – dodecahedron
Le1�1

Le2�2

Q2�0

Q3�0

Ca2�1

Ca3�2

nfs – negative face of size s
Op – open
Op1�1 – consecutive open
Op2a – alternating open
A – array
D – supra dodecahedron
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194

Op�Le1�1�T��; nf9

Op(Le1.1(T))-TU(3,0); v = 24

Le1.1(Op(Le1.1(T)))- TU(3,3); v = 36

Le2.2(Op(Le1.1(T)))- TU(6,6); v = 72

Q2.0(Op(Le1.1(T)))-TU(6,0); v = 48



195

Q3.0(Op(Le1.1(T)))-TU(9,0); v = 72

Ca2.1(Op(Le1.1(T)))- TU(6,3); v = 120

Op�Q2�0�T��; nf8

Op(Q2.0(T))-TU(3,0); v = 28

Le1.1(Op(Q2.0(T)))–TU(3,3);v = 48



196

Le2.2(Op(Q2.0(T)))-TU(6,6) ; v = 120

Q2.0(Op(Q2.0(T)))-TU(6,0); v = 64

Q3.0(Op(Q2.0(T)))-TU(9,0); v = 180

Ca2.1(Op(Q2.0(T)))-TU(6,3); v = 148
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Ca3.2(Op(Q2.0(T)))-TU(9,6); v = 268

Op�Ca2�1�T��; nf7

Op(Ca2.1(T))-TU(3,0); v = 40

Le1.1(Op(Ca2.1(T)))-TU(3,3); v = 84

Le2.2(Op(Ca2.1(T)))-TU(6,6); v = 264



198

Q2.0(Op(Ca2.1(T)))-TU(6,0); v = 112

Q3.0(Op(Ca2.1(T)))-TU(9,0); v = 216

Ca2.1(Op(Ca2.1(T)))-TU(6,3); v = 160

Ca3.2(Op(Ca2.1(T)))-TU(9,6); v = 496
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Op2a�S2�T��; nf7

Op2a(S2(T))-TU(3,3); v = 52

Le1.1(Op2a(S2(T)))-TU(9,0); v = 120

Q2.0(Op2a(S2(T)))-(6,6); v = 184

Ca2.1(Op2a(S2(T))-TU(12,3)
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Op1�1�S2�T��; nf7

Op1(S2(T))-TU(6,0); v = 52

Le1.1(Op1(S2(T)))-TU(6,6); v = 84

Q2.0(Op1(S2(T)))-TU(12,0); v = 112

Ca2.1(Op1(S2(T))-TU(12,6); v = 268
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Op2a�S2�C��; nf7

Op2a(S2(C))-TU(4,4); v = 104

Le1.1(Op2a(S2(C)))-TU(12,0); v = 240

Q2.0(Op2a(S2(C)))-TU(8,8); v = 368

Ca2.1(Op2a(S2(C)))-TU(16,4); v = 368



202

Op2a�S2�D��; nf7

Le1.1(Op2a(S2(D))–TU(15,0)
v = 600

Q2.0(Op2a(S2(D)))–TU(10,10)
v = 684

Ca2.1(Op2a(S2(D)))–TU(20,5)
v = 918

Le1.1(Op2a(S2(D)))-TU(15,0)

Q2.0(Op2a(S2(D)))–TU(10,10)

Ca2.1(Op2a(S2(D)))–TU(20,5)
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P-type networks

Ca2.1R(Op(Ca2.1S(C)) 4 × Ca2.1R(Op(Ca2.1S(C))) 8 × Ca2.1R(Op(Ca2.1S(C))) 

Op(Le1.1(Le1.1(Le1.1(C)))) 4 × Op(Le1.1(Le1.1(Le1.1(C)))) 8 × Op(Le1.1(Le1.1(Le1.1(C)))) 

4 × Op(Le1.1(Le1.1(C)))) 16 × Op(Le1.1(Le1.1(C)))) 
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D- and FRD-type networks

126 × Op(Ca2.1(T)); v = 3816

v = 3120–3; 3-fold axis v = 3120–2; 2-fold axis

A�D�Op�Le�T��); [D�Op1�Le1�1�T��)]
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