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Preface

The development, characterization, and technological exploitation of new materials,
particularly as components in ‘smart’ systems, are key challenges for chemistry and
physics in the next millennium. New substances and composites including nanos-
tructured materials are envisioned for innumerable areas including magnets for the
communication and information sector of our economy. Magnets are already an
important component of the economy with worldwide sales of approximately $30
billion, twice that of the sales of semiconductors. Hence, research groups worldwide
are targeting the preparation and study of new magnets especially in combination
with other technologically important properties, e. g., electrical and optical proper-
ties.

In the past few years our understanding of magnetic materials, thought to be
mature, has enjoyed a renaissance as it is being expanded by contributions from
many diverse areas of science and engineering. These include (i) the discovery of
bulk ferro- and ferrimagnets based on organic/molecular components with critical
temperature exceeding room temperature, (ii) the discovery that clusters in high,
but not necessarily the highest, spin states due to a large magnetic anisotropy or
zero field splitting have a significant relaxation barrier that traps magnetic flux en-
abling a single molecule/ion (cluster) to act as a magnet at low temperature; (iii) the
discovery of materials exhibiting large, negative magnetization; (iv) spin-crossover
materials that can show large hysteretic effects above room temperature; (v) pho-
tomagnetic and (vi) electrochemical modulation of the magnetic behavior; (vii) the
Haldane conjecture and its experimental realization; (viii) quantum tunneling of
magnetization in high spin organic molecules; (viii) giant and (ix) colossal magne-
toresistance effects observed for 3-D network solids; (x) the realization of nanosize
materials, such as self organized metal-based clusters, dots and wires; (xi) the de-
velopment of metallic multilayers and the spin electronics for the applications. This
important contribution to magnetism and more importantly to science in general
will lead us into the next millennium.

Documentation of the status of research, ever since William Gilbert’s de Magnete
in 1600, provides the foundation for future discoveries to thrive. As one millennium
ends and another beacons the time is appropriate to pool our growing knowledge
and assess many aspects of magnetism. This series entitled Magnetism: Molecules to
Materials provides a forum for comprehensive yet critical reviews on many aspects
of magnetism that are on the forefront of science today.

Joel S. Miller Marc Drillon
Salt Lake City, USA Strasbourg, France
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1 Bimetallic Magnets: Present and Perspectives

Corine Mathoniere, Jean-Pascal Sutter, and Jatinder V. Yakhmi

1.1 Introduction

An important branch of the molecular magnetism deals with molecular systems with
bulk physical properties such as long-range magnetic ordering. The first molecu-
lar compounds with spontaneous magnetization below a critical temperature were
reported during the eighties [1, 2]. These pioneering reports encouraged many re-
search groups in organic, inorganic, or organometallic chemistry to initiate activity
on this subject, and many new molecule-based magnets have been designed and
characterized. A tentative classification can arise from the chemical nature of the
magnetic units involved in these materials — organic- or metal-based systems and
mixed organic-inorganic compounds. Of materials based only on magnetic metal
complexes, several families such as the oxamato, oxamido, oxalato-bridged com-
pounds and cyanide-bridged systems play an important role in the field of molecular
magnetism. This contribution focuses mainly on molecule-based magnets involving
oxamato and oxamido complexes. The most extensively used spin carriers are 3d
transition metal ions. The magnetic interactions between these ions are now well
understood and enable the rational synthesis of materials. This aspect will be high-
lighted in the first part of this contribution. The heavier homologs from the second
and third series have been envisaged only recently for the construction of hetero-
bimetallic materials. In the second part of this chapter we will briefly discuss the
very encouraging first results obtained with such ions.

In 1995 Olivier Kahn wrote a paper reviewing the magnetism of heterobimetallic
compounds [3]. An important part of this review was devoted to finite polynuclear
compounds, which can be considered as models for the study of exchange interac-
tions. Magnetic ordering is a three dimensional property, however, and the design of
a molecule-based magnet requires control of the molecular architecture in the three
directions of space. The results obtained in bimetallic supra-molecular materials by
our group and others show different features:

e the dimensionality can be controlled by the stoichiometry of the reagents during
the synthesis or by the number of solvation molecules;

1 This chapter is dedicated to the memory of Professor Olivier Kahn who passed away suddenly on
December 8, 1999. Many of the illustrative examples used in this contribution are results obtained
by his group.



2 1 Bimetallic Magnets: Present and Perspectives

e in a chemical system, the magnetic properties can be modulated by the nature
of metallic ions;

e these systems can be studied by alternative techniques which are complementary
of the magnetic studies.

In the following text we will describe briefly the structures and magnetic proper-
ties of the compounds by emphasizing their main features. In particular, the mag-
netic properties will be summarized in terms of the exchange parameter J, the or-
dering temperature, Tc for a ferro(or ferri)magnetic material or Ty for an antifer-
romagnetic material, and the coercive field Hcoerc, 1. €. the magnetic field applied
to cancel the permanent magnetization present in the material, which characterizes
the hardness of a magnet.

1.2 Bimetallic Magnetic Materials Derived
from Oxamato-based Complexes

1.2.1 Dimensionality and Magnetic Properties

1.2.1.1 Cu" Precursors

The general chemical strategy for the construction of bimetallic systems is based on
the use of the bis-bidentate metal-complex as a complex-ligand. The bis-oxamato Cu
precursors (shown in Scheme 1) and disymmetrical Cu!! complexes with two types
of bridging units (oxamato and carboxylato) (shown in Scheme 2) have mainly been
used for the preparation of extended bimetallic compounds.
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1.2 Bimetallic Magnetic Materials Derived from Oxamato-based Complexes 3

[Cu(pba)]>~ (Table 1) was first described by Nonoyoma in 1976 [4] and at the end
of the eighties it was used by Kahn and coworkers to design high-spin molecules,
namely (L M),Cu(pba) with M = Mn!!, Ni'l, L being a terminal ligand or bimetallic
chains MCu(pba) [5, 6]. [Cu(opba)]>~ was later synthesized by Stumpf; this precur-
sor enables the preparation of compounds with different dimensionality — high-spin
molecules [7], chain and ladders compounds, honeycomb layers, and interlocked
compounds (Table 1) [8].

These Cu precursors were chemically modified through their ligand skeleton. The

pba and opba ligands have been modified in two directions (Table 1):

e in the bridging moiety, by substituting the O (R; and Rj) atoms by N atoms,
to increase the overlap of magnetic orbitals, because of the more pronounced
diffuse character of the 2p(N) orbitals (next section);

e around the bridging moiety, by changing the nature of the R unit to modify the
crystal packing of the molecules.

1.2.1.2 Mechanisms of Exchange Coupling

In the bimetallic systems obtained from reaction of Cu'l compounds with other
transition metal ions, M, the magnetic ordering is ferrimagnetic. This means that
exchange interactions between Cu and M (Scy # Sm with S referring to the spin
state of the metal) in the systems are a result of overlap between magnetic orbitals.
If M has no orbital contribution (magnetically isotropic ion), the mechanism of
the dominant Cu!'-M interactions through an oxamato (or oxamido)-bridge is well
understood. In fact, both the planar structure of the Cu'! complex and the four
peripheral oxygen atoms give to the compound its efficient mediating character in
terms of magnetic connector. The Cu!l ion has one unpaired electron occupying
a dxy orbital which is delocalized toward the nearest nitrogen and oxygen atoms
and also toward the external oxygen atoms (Scheme 1). This magnetic orbital may
overlap strongly with magnetic orbitals of other ions linked to the Cul! brick by the
four external oxygen atoms. Structural investigations of several compounds in this
family have shown that the distances between the two metals, Cull-M, is approxi-
mately 5.3 A. Going further in the quantification of the exchange interactions, the
magnetic data can be interpreted in the paramagnetic regime with a phenomeno-
logical Hamiltonian in a spin-spin coupling scheme such as H = —JScy - Sm, where
J is the isotropic interaction parameter. For example, in Cul'-Mn!! pairs, J has
been found to be approximately —30cm~!. On the basis of experimental studies
(magnetism and neutron diffraction) and theoretical investigations (DFT calcula-
tions), the dominant mechanism is spin delocalization from the Cull ion towards
the planar skeleton of the N(O)-C-O bridging part of the ligand. A similar situa-
tion occurs for the Cu'-Ni!! pair, with additional Ni!! local anisotropy treated with
the phenomenological zero-field splitting. The resulting J is higher, and has been
estimated at J = —100cm ™. For other couples, for instance Cull-Co!!, Cull-Fell,
and Cull-Ln'!, the orbital contribution renders the interpretation of magnetic data
using the simple scheme described above extremely difficult. For these species only
qualitative interpretation of magnetic data has been achieved in order to determine
the nature of exchange interactions between Cull and the other ion.
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1.2.1.3 Discrete Molecules

One of the first high-spin molecules was prepared in 1988. By using [Cu(pba)]>~
as the core and [Mn(Meg-[14]ane-N4)]>* as a peripheral complex it is possible to
obtain a trinuclear linear CuMnj, species [5]. No single crystal was obtained, and a
structure in agreement with the magnetic properties was proposed. The compound
has ferrimagnetic behavior with an irregular spin state structure resulting from the
antiferromagnetic interaction between the peripheral Mn ions (Syn = 5/2) and
the middle Cu ion (Scy = 1/2). The low-temperature magnetic behavior is char-
acteristic of a high-spin ground state equal to S = 9/2. Efforts were later made
to obtain structural information for such species [9]. Let us mention the result of
Liao’s group. They succeeded in isolating crystals of binuclear and trinuclear com-
pounds with the Nill ion (Sx; = 1) [7]. The compounds are obtained by reaction of
CuL?~ (L = pba, pbaOH and opba) with NiL’>*, L being tetraamine ligands, the
final compounds having formula (L Ni)CuL or (L Ni),CuL?* (the trinuclear species
is shown in Fig. 1). The compounds have been magnetically characterized, and have
the expected ferrimagnetic behavior with an § = 3/2 ground state with a zero-field
splitting.

An other interesting example has been described by Ouahab and Kahn with
the opbaCl, ligand (Table 1) and its Cul! complex [10]. The reaction of the Cull
precursor with ethylenediamine, en, and Mn'! in the solvent DMSO led to an un-
precedented trinuclear species Mn'"!Cul!Mn!!l. The structure of this species has
been resolved (Fig. 2), and reveals that:

o the Mn!!l has replaced the Cu!! in the cavity N,O, of the opbaCl, ligand;

e the formation of the [Cu(en);]*t complex, because of the strong affinity of the
en for the Cull; and, finally,

e the self-assembling process between the anionic [Mn(opbaCl,)]~ and the cationic
[Cu(en)]*t complexes.

Fig. 1. Structure of the trinuclear cation [{Ni(cth),}Cu(pba)]** [7] (reproduced with per-
mission; Copyright 2001, the American Chemistry Society).
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Fig. 2. Structure of the trinuclear species
Cu(en),Mn(Clopba)(H,0), [10] (reproduced
’ % with permission; Copyright 2001, the American
c2 Cl1 Chemistry Society).

The linkage between the two complexes is realized through apical Cu—O bonds
of length 2.454 A. The delocalization of the spin density of the Cu'! towards the
oxygen atoms in the apical position has been postulated to be negligibly small, and
the magnetic data have been interpreted in terms of zero-field splitting of the Mn!!!
ion.

More recently, Journaux et al. obtained an interesting dinuclear Nay[Cuy(bis-
pba)] species by use of the bis-tetradentate ligand denoted bis-pba (Table 1 and
Scheme 3) [11]. They succeeded in isolating dinuclear Na4[Cu;(bis-pba)] species,
with weak intramolecular ferromagnetic interactions between the two Cull (J ~
1cm~1). The reaction of this dinuclear compound with four equivalent external com-
plexes such as [Ni(cyclam)]>* (cyclam = 1,4,8,11-tetraazacyclotetradecane) in ace-
tonitrile or with [Cu(tmen)]’>* (tmen = N, N, N, N-tetramethylethylenediamine)
in water affords hexanuclear anionic compounds of formula {Ni(cyclam)}4Cu;(bis-
pba) and {Cu(tmen)(H>O)},{Cu(tmen)},{Cu,(bis-pba)}, respectively [12]. The
structure of the Cug species is shown in Fig. 3. It is made of two symmetry-related
oxamato-bridged trinuclear units connected through the central carbon. In these
hexanuclear species, the interactions through the oxamato bridge were found to be
equal to J = —342cm~! for Cug and —82cm™! for Cu,Niy. The weak ferromag-
netic coupling between the two Cul! ions within the dinuclear synthon was masked
by intermolecular interactions and/or local anisotropy.
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Fig. 3. Structure of the cationic hexanuclear unit [{Cu(tmen)(H,O)}>{Cu(tmen)},{Cu;y(bis-
pba)}]** [12] (reproduced with permission from Journal of Inorganic Chemistry).

1.2.1.4 One-dimensional Systems: Chain Compounds

When the dianionic Cu precursor is reacted with a 3d metal cation, M"*, under sto-
ichiometric conditions 1:1, neutral compounds of formula MCuLxS are obtained,
S standing for solvent molecules. Different bimetallic chains have been structurally
and magnetically described. The bimetallic chains with M = Mn!! are described in
detail in the review written in 1995 by Kahn. A typical example of a linear bimetallic
chain is presented in Fig. 4. The magnetic properties of the chain compounds are well
understood in the paramagnetic region (5-300K), and are analyzed with theoreti-
cal models for ferrimagnetic one-dimensional systems, because of antiferromagnetic
coupling between two different spins (Syn = 5/2 and Scy = 1/2) [13]. Below 5K
magnetic ordering occurs because of interchain interactions, which are governed
by the crystal packing of the chains in the lattice. Actually, only one compound
has ferromagnetic (F) ordering, with 7c = 4.6 K, namely MnCu(pbaOH)(H,0)3,
which was the first molecule-based magnet belonging to the family described here
[2]. Other compounds have antiferromagnetic (AF) ordering with Ty between 1.8 K
and 5 K. The occurrence of F or AF magnetic ordering in these chain compounds is
related to the interchain metal-metal separations of the type Mn—Cu for ferromag-
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Fig. 4. MnCu(pba)(H,0)3 - 2H,O (top)
Structure of the chain compound (bot-
tom) Spin density map deduced from
polarized neutron diffraction data.

A,

nets and Mn-Mn and Cu-Cu for antiferromagnets [14]. Some of these antiferro-
magnets behave as metamagnets, where a small applied magnetic field (between 1 or
2kOe) can overcome the weak antiferromagnetic interchain interactions to induce
a long-range ferromagnetic-like ordering. Note that for a few compounds there is
no evidence of cooperative magnetic phenomena down to 1.8 K. They behave as
quasi-perfect one-dimensional ferrimagnets; one example is MnCu(opba)(DMSO);
which has a zigzag chain structure [15].

Two interesting features of these bimetallic chain compounds can be mentioned in
this section. First, the size of crystals (up to 15 mm?) of [MnCu(pba)(H,0)3] - 2H,0
(Fig. 4) enabled the performance of further physical studies such as polarized neu-
tron diffraction (p. n. d.) and optical spectroscopy (Section 1.2.4) [16, 17]. Secondly,
the magnetic properties of compounds of formula [MnCu(pbaOH)] - xH,O are
strongly dependent on the water composition. Just above we mentioned the com-
pound MnCu(pbaOH)(H,0O)3, which behaves as a magnet at 4.6 K. It is possible to
isolate another phase of this compound, MnCu(pbaOH)(H,O)3 - 2H,O, which has
three-dimensional antiferromagnetic ordering in zero fields with 7y = 2.4 K. The
bimetallic chains in both compounds are identical but in the latter the hydrogen-
bond network developed by the non-coordinated water molecules imposes crystal
packing with short interchain Mn-Mn and Cu-Cu separations, inducing antiferro-
magnetic interactions between the chains. The compound also has metamagnetic
behavior, because a field of 0.9kOe is sufficient to overcome these interchain in-
teractions giving rise to a ferromagnetic state [14]. When MnCu(pbaOH)(H;0)3 is
heated to 130°C one water molecule bound in the apical position of the copper co-
ordination sphere is removed, and the new compound, MnCu(pbaOH)(H;0O),, has
long range ferromagnetic ordering at 7c = 30K [18]. The release of H,O reduces
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the interchain distances, and this enhances the interchain exchange interactions by
a factor of 40. In Section 1.2.3 we will encounter other examples of magnetic or-
dering controlled by the water content of the material; these lead to the concept
of magnetic sponges.

1.2.1.5 Two-dimensional Systems: Layered Honeycomb Compounds

We have seen that magnetic ordering of chain compounds can occur, and is strongly
related to solvent molecules which impose the organization of the crystal packing.
The interchain magnetic interactions remain weak, however, and magnetic order-
ing occurs at low temperature. To increase these temperatures, chemists have to
build compounds with higher dimensionality. This section is devoted to bidimen-
sional compounds, which are prepared with the same building blocks as the one-
dimensional compounds but with different stoichiometries. Almost all of these 2D
compounds behave as ferrimagnets. Experimentally the long-range magnetic order-
ing is revealed by the temperature dependencies of the field-cooled magnetization
(FCM, which is measured by cooling the sample within a very small field, usually
H < 200e) and by the in-phase (xy,) and out-of-phase (xy;) molar susceptibili-
ties in the ac mode. The non-zero value of xy; indicates the presence of permanent
magnetic moment within the sample. The critical temperatures, denoted 7c, are de-
termined by the extremum of the derivative curve d(FCM)/dT or by the maximum
of the yxy, curve, if it exists. In both instances they correspond to the temperatures
where remnant magnetization vanishes, the latter is measured by turning the field
off at low temperature and then warming up the sample in strictly zero field. The
field dependence of the magnetization measured at low temperature enables the
determination of the coercive field.

The reaction of (NBuy),[Cu(opba)] with Mn!! in DMSO in 3:2 stoichiometry
yielded a compound of formula (NBuy);[Mn;{Cu(opba)}3,4DMSO] - 2H, O, which
is a ferrimagnet below Tc = 15K [15]. When Mn!! is replaced by Co!l, T¢ increases
to 29K [19]. Unfortunately, no crystals were obtained for these compounds; a lay-
ered honeycomb structure was proposed for the anionic part (Fig. 5), for compatibil-
ity with the chemical formulas of the compounds and, of course, with the magnetic
ordering occurring for temperatures higher than for the chain compounds. A theo-
retical approach was developed for a two-dimensional hexagonal model to derive
an analytical expression for the molar magnetic susceptibility, yn, in the paramag-
netic regime (40-300 K) using high-temperature expansions of the partition function
[20]. Comparison of theory and experiment led to determination of the exchange
parameter as J = —33.1cm™!, which is close to values obtained for related finite
or chain compounds.

The occurrence of magnetic ordering in these two dimensional compounds
might result from intralayer magnetic anisotropy and/or interlayer interactions. The
cations are probably located between the anionic layers, and it is possible that the
magnetic properties of these materials can be tuned by changing the size of the
cations and/or slight modification of the ligand. Table 2 summarizes the different
results. The magnetic behavior of the Mn derivatives strongly depends on the size
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Fig. 5. Structure of a honeycomb layer.

of the cations. For large cations such as [Ru(bipy)3]** magnetic ordering occurs at
lower temperature [21], and for small cations such as alkali metals, the compounds
have weak ferromagnetism [19], because of competition between antiferromagnetic
interlayer interactions and ferrimagnetic intralayer interactions. In contrast, all the
Co compounds are ferrimagnets with Tc ~ 30K, irrespective of the cation. Such
similar magnetic properties strongly suggests that the compounds adopt the same
structure.

For some of these compounds XANES and EXAFS studies showed that each
Mn!! is surrounded by three CuL complexes [22]. Journaux et al. compared experi-
mental magnetic data with two theoretical models. One is based on a two-sublattice
molecular field model in the mean field approximation, and is assumed valid for
three-dimensional structures. The second already introduced above is adapted for
hexagonal honeycomb layers. For all the examples studied the second approach
led to good fitting of the magnetic data, and gave J values in good agreement with
those deduced previously for other compounds of lower dimensionality. These struc-
tural and magnetic results lead to the conclusion that all these compounds are two-
dimensional, with a honeycomb layered structure.

Finally, introduction of a cation with an intrinsic property, for instance chiral-
ity for cations such as nicot and ambutol or the paramagnetic [FeCp3]*, has been
envisaged [23, 24]. Chirality was introduced with the objective of inducing the for-
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Table 2. Magnetic properties for the family of oxamato(oxamido)-bridged honeycomb lay-
ered ferrimagnets of formula Cat}[MY(CuL);] and Cat''[M}I(CuL);].

MI L Cat J (cm_l) Tc (K) Hcoerc (Oe)  Ref.
Mn  opba NBuj -32 15 <10 [15]
NEt} 17 <10 [19]
4

NMe; Ty = 15K [19]

Kt Ty = 15K [19]

Nat Ty = 15K [19]

FeCp3* 14 <20 [24]

CoCp;™* 13 <20 [24]

nicot** Ty = 15K [23]

ambutol™ Ty = 15K [23]

Ru(bipy);" 12 [21]

PPhg -31.8 115 10 [22]

Meopba PPhi —32.6 13 10 [22]
Me,opba PPhi -30.5 8 10 [22]
PhMe;opbox PPhi 12.5 5 [26]
PhPr,opbox PPhi 11.5 5 [26]
PhBuyopbox  PPhy 13.5 5 [26]

Co  opba NBuj‘; 305 1400 5 K)  [15]
NMe; 33 [19]

Cst 34 [19]

K+ 335 2000 (5K)  [19]

Nat 315 [19]

FeCp;* 27 3500 [24]

CoCp;™* 27.5 5300 [24]

Notes: Cp* = CsMes, nicot is the chiral N,N-dimethylnicotinium species and ambutol is the
chiral dimethylhydroxymethyl-2-ethylhydroxymethyl-1-propylammonium species.

mation of three dimensional coordination polymers in the same manner as for the
3D lattices obtained for the oxalato-bridged family discussed in another chapter of
this series [25]. The magnetic cation was expected to increase the magnetic inter-
action between the layers, but the results were slightly disappointing, because no
significant modifications of the magnetic properties were observed. These observa-
tions are, however, informative because they suggest future directions which might
afford three-dimensional molecule-based magnets. In fact, a chiral cation can in-
duce the formation of magnetic helicates only if it correctly fills the cavities formed
by the three dimensional lattice. This obviously did not happen with the examples
given above. Another way of filling the cavities of the anionic network is to use
bulky ligands. The results obtained with the bulkier PhR,opbox ligands (Table 1)
designed on the basis of this strategy are not conclusive [26]. Note that the com-
pound obtained with [FeCp3]* enabled a Mossbauer study which revealed that the
Fe'll ion begins to feel an internal field only at temperatures well below Tc. This
clearly indicates that the cation between the layers is not directly involved in the
long range magnetic ordering.
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1.2.1.6 Interpenetrated Two-dimensional Networks: Interlocked Compounds

To increase the dimensionality further Kahn and coworkers imagined the use of
a cation which would be capable of bridging two transition metal ions and which
would be paramagnetic, thus increasing the magnetic density of the compounds.
Cations belonging to the nitronyl nitroxide family, in which the unpaired electron
is equally shared between the two N-O groups, have been envisaged (Scheme 4).

—

4

N
1 N
9 R= CH3 or C2H5
On Ay

N

Scheme 4

The methyl and ethylpyridinium radical cations were used with success [27-29].
The structures of compounds with the formula (Etrad);[M,{Cu(opba)}3] have been
investigated by single crystal X-ray studies for M = Mn, Co, and by powder X-ray
studies for M = Mg, Ni [30, 31]. All the compounds are fully interlocked with a
general architecture made of two equivalent two-dimensional networks, denoted
A and B, each consisting of parallel honeycomb layers. Each layer is made up of
edge-sharing hexagons with an M!! ion at each corner and a Cu!! ion at the middle
of each edge (Fig. 5). The layers stack above each other in a graphite-like fashion,
with a mean interlayer separation of 14.8 A. The A and B networks are almost
perpendicular to each other, and interpenetrate in such a way that at the center of
each hexagon belonging to a network is located a Cull ion belonging to the other
network (Fig. 6). The networks are further connected through the radical cations;
this affords infinite chains of the kind Cup-Etrad—Cug-Etrad, where Cup and Cup
belong to the A and B network, respectively.

Fig. 6. Interpenetration of the two networks A and B.
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Fig. 7. FCM curve (e) and its derivative d(FCM)/dT (top) and in-phase x;, (A) and out-of-
phase xy; (V) plots of ac susceptibilities (bottom) against T for (Etrad);[Mn;{Cu(opba)}z].

Besides the aesthetic aspect of the structures, the compounds also had interesting
magnetic properties. They behave as ferrimagnets with Curie temperatures in the
range of 22-37K (Figs. 7 and 8 and Table 3). The x;, and xy; curves can have two
different general shapes, (i) a shape similar that of the FCM with x;,; > x\; as shown
in Fig. 7, or (ii) a peak-like shape as shown in Fig. 8 with maximum values for very
close temperatures. These differences are related to the coercivity of the material,
case (i) applies for a very weak coercivity (Heoerc < 100e) and case (ii) when a

Table 3. Magnetic properties for the family of oxamato(oxamido)-bridged interlocked fer-
rimagnets of formula (r-Rad);[M4/(CuL)3], where r = methyl- or ethylpyridinium.

MIT L Cat Tc (K) Heoere (Oe)  Ref.

Mn opba Merad 23 <10 [15]
Etrad 22.8 <10 [29]

Co opba  Merad 34 3000 (5 K) [15]
Etrad 37 8500-24 000 [29]

Ni opba  Etrad 28 500 [30, 31]

Mg opba  FEtrad Paramagnet =~ Paramagnet  [31]
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Fig. 8. In-phase xy; (A) and out-of-phase x,; (V) ac susceptibilities (bottom) for
(Etrad);[Coz{Cu(opba)}s]. The insert shows the field dependence of the magnetization for
two samples with the largest (o) crystals and smallest (H) crystals.

significant coercivity (Heoere > 1000 Oe) exists. As a result of the formation of the
3D networks the Curie temperatures are effectively increased by up to 8K for the
Mn and Co compounds, compared with the layered compounds (Table 2). But the
increase of Tc seems weak with regard to the three-dimensional connectivity of the
compound. In fact, the interaction between the interlocked layers is weak, and has
been estimated in (Etrad),;[Mg;{Cu(opba)}3]. Because the Mg ion is diamagnetic,
magnetic interactions occur only along the Cup—Etrad—Cug—Etrad chains. They are
ferromagnetic, as expected between Cu!! and a nitroxide group occupying the apical
position. Neglecting intermolecular interactions, the magnetic data were analyzed
by a chain model for § = 1/2 spins, leading to an exchange parameter of J = 8cm™!,
which is four times weaker in absolute values than the intralayer interaction [31].

1.2.1.7 Ladder and Honeycomb Lattices in 3d—4f Systems

The chemistry of the bis-bidentate Cu-oxamato complexes is not limited to the re-
action with 3d transition metals. Impressive extended structures have been obtained
when [Cu(opba)]?~ was reacted with lanthanide ions, Ln!!. The first compounds
of this kind were reported in 1992 for the Ln''-Cu(pba) system [32]. Two different
structures have been described for compounds of general formula Ln,{Cu(pba)}.
One consists of discrete ladders of Ln going from Tb to Yb, and Y, an architecture
similar to that of Lny{Cu(opba)}s shown in Fig. 9. The second results from con-
densed ladder-like motifs with a rearrangement of the rungs and is formed with Ln
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Fig. 9. Structure of the ladder-type compound Ln,{Cu(opba)}s.

belonging to the beginning of the Ln series. Interestingly, compounds of formula
Lny{Cu(opba)}s crystallize with the same structure all along the lanthanide series.
This structure consists of infinite ladders, parallel to each others, as shown in Fig. 9.
The side-pieces of a ladder are made of Lny{Cu(opba)}; units, and the rungs are
made of Cu(opba) units that bridge two Ln atoms belonging to either side-pieces
of the ladder. When seen along the direction of a rung the two edges of a ladder
are in an eclipsed conformation. Each Ln!!! ion is surrounded by three Cu(opba)
units, its coordination sphere being completed by three water molecules.

As mentioned in the Section 1.2.1.2, the magnetic properties of compounds
containing paramagnetic Ln ions are usually difficult to interpret. They are gov-
erned both by the thermal population of the Stark components of Ln!"' and by
the Ln!"-Cu!! interaction. To extract information on the nature of the Ln'-Cul
interaction the magnetic behavior of Lny{Cu(opba)}s can be compared with that
of LnyZn(opba); for each Ln'!! ion. Wide-angle X-ray scattering (WAXS) experi-
ments strongly suggest that the Zn''-containing compounds have also a ladder-type
structure [33]. For a LnyZn(opba); compound in which the only magnetic ion is
Ln'!, the magnetic properties are entirely governed by the thermal population of
the Stark components of Ln'!. The purpose here is not to enter into the details of
the procedure but to restrict ourselves to reporting some results [34].

The simplest example is that where the lanthanide element is gadolinium. The
ground state of Gd!!! is a pure Sgqg = 7/2 spin state, orbitally non-degenerate.
The Gd"'-Cu'! interaction is weakly ferromagnetic. All the spins of the material
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Table 4. Nature of the magnetic interaction between Ln""! and M! ions, as determined by
the experimental method described in the text.

Ln!!! Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
Compound
NizLnp af af af af af F F F f
CusLny af af af af af F F F f
CuLn pairs AF AF AF F F F F F AF
Kahn’s prediction

LT Vs + a LT Ag

Ln SMm Scd Sm Ln SMm
Overall AF interaction Opverall F interaction

AF - antiferromagnetic interaction, F — ferromagnetic interaction, af — proposed antiferro-
magnetic interaction, f — proposed ferromagnetic interaction.

tend to align along the same direction, and actually Gd;{Cu(opba)}z has long-range
ferromagnetic ordering at 1.78 K [35]. The Tb"'-Cu!! and Dy"'-Cu!! interactions
were also found to be ferromagnetic, and the appearance of long-range magnetic
ordering was also established for Tby{Cu(opba)}; and Dy,{Cu(opba)}; at 0.81 K
and 0.74 K, respectively, by specific heat measurements [36]. For all the other Ln!!!
ions, the interaction is not ferromagnetic; it is either not detectable by the magnetic
technique or very weakly antiferromagnetic. An ambiguity remains for Tm!!l,

A similar series of compounds has been obtained with the Ni(opba) precursor.
In the resulting Ln;Ni(opba)s compounds, the four-coordinated environment of the
Ni ion was completed by a solvent molecule (DMSO in this case), as confirmed by
EXAFS studies [37]. In the new geometry (pyramidal or octahedral), the Ni center
is paramagnetic. When the procedure described above is used to extract magnetic
information about the Ln'-Ni!! pair, ferromagnetic interactions are found in Ni'l—
Gd", Nill-Tb, Ni'l_Dy!!! pairs and perhaps in Nill-Ho!!!, and antiferromagnetic
interactions are obtained for Ni''-Ln!l with Ln going from Ce to Eu. These con-
clusions, similar to those obtained for Ln—Cu pairs (except for Tm), are in line with
the predictions of Kahn (Table 4) [38]. Results obtained for other Ln—Cu pairs seem
in agreement with our results [39]. It has been pointed out that geometrical consid-
erations do not seem to be crucial to the nature of exchange interaction between
Ln and a 3d ion, irrespective to what happens in 3d-3d pairs.

Finally, one can notice that the stoichiometry Ln,{Cu(opba)}3 might also corre-
spond to two-dimensional compounds with a honeycomb-like structure, reminiscent
of that shown in Fig. 5, and such a structure has actually been found [40]. During the
synthetic process, however, partial hydrolysis of the oxamato groups into oxalato
groups occurs. The formula of this compound is Nd,Cu(opba)g s(0x)3 - IDMF with
ox = oxalato and DMF = dimethylformamide. The Nd'!' ions occupy the corners
of the edge-sharing hexagons and the Cul! ions occupy the middles of the edges.
These edges are statistically made of Cu(opba) and Cu(ox); groups, with a proba-
bility of 0.5 for each. The Nd!'! are surrounded by nine oxygen atoms, six arising
from the bidentate oxamato or oxalato groups and three from DMF molecules. The
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magnetic properties for this and related compounds with the Nd;Cus stoichiome-
try are rather unexpected. All the compounds have a quasi-non-magnetic ground
state characterized by a xpm7 value tending to zero as the temperature approaches
absolute zero. This situation results from an almost perfect compensation between
the two Nd'!! and the three Cu!! local magnetic moments. Such compensation can
occur if the ratio p = gng/gcu is equal to a critical value which has been calcu-
lated as 1.73; gng and gcy are the Zeeman factors of the local Kramers doublets
of Nd'"! and Cull, respectively. If the Nd"! and Cu!! magnetic moments coupled
antiferromagnetically, but without accidental compensation, the behavior would be
ferrimagnetic, and x»7 would not tend to zero at low temperature.

1.2.2 Modulation of the Magnetic Properties

So far we have focused only on the temperature at which the magnetic ordering
occurs, and the possibilities of increasing this temperature by controlling the di-
mensionality of the covalent skeleton of the compounds. This section is devoted to
an other aspect of magnetic materials and their memory-effect characteristics. The
memory effect is associated with a property of the material with hysteretic behavior
with regard to a given perturbation. We already mentioned that the Co-containing
magnets described in Sections 1.2.1.5 and 1.2.1.6 have T¢ values almost twice as high
as their Mn analogs. They also have large magnetic hysteresis loops with rather large
coercive field values (Hcoere > 1000 Oe at 5K), whereas the Mn compounds have
rather weak coercive fields (Heoere < 10 Oe). The former can be regarded as hard
magnets, the latter as soft magnets. The coercive field for the interlocked Co com-
pound also depends on the average size of the crystals, and values as large as 24 kOe
can be reached for smaller crystallites (insert in Fig. 8).

It is well established that the coercivity of a magnet depends to some extent
on morphologic factors such as grain size and shape, and the defects within the
crystallites which would favor pinning of the ferromagnetic domain walls. The key
property of a molecule-based magnet with a large value of coercivity seems, how-
ever, to be a chemical — the presence of magnetic centers with unquenched orbital
momentum in the structure. In our example Mn!! is magnetically isotropic ion and
cannot, therefore, prevent the domains from rotating freely when a field is applied.
Replacing Mn!!, with an orbital singlet state (A1), by Co!l, with an orbital triplet
ground state (*T1), results in a dramatic increase in coercivity. Occasionally values
are much higher than those of the commercial atom-based materials Fe, O3 or CrO;.
Rather strong coercive fields are expected for molecular magnets in which Co! ion
is in distorted octahedral environment, because being magnetically anisotropic Co!!
can assume preferred orientations. The intrinsic anisotropy of Co!l certainly also
plays a role in intralayer anisotropy, which can be responsible for the increased T¢
values compared with those of the Mn analogs.

An other interesting example is the behavior of the Nill interlocked derivative
[30, 31]. First, the magnetization curves are rather unusual. The FCM curve recorded
within a very small field (1 Oe) has a break at 7c = 28 K, characteristic of the long-
range magnetic ordering, then passes through a maximum at 21 K, and finally de-
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Fig. 10. FCM curve (o) (1 Oe) for Etrady[Ni;Cus]. The figure also shows the in-phase, xy,
(a), and out-of-phase, x3; (V), versus T plots.

creases monotonically at lower temperatures (Fig. 10). The temperature at which the
magnetization vanishes (15 K) is the so-called compensation temperature, denoted
Teomp, and already observed for other ferrimagnets [25]. Below T¢omp the magneti-
zation is aligned in a direction opposite to that of the applied magnetic field. Also,
whereas the coercive fields for manganese and cobalt derivatives increase when the
temperature is reduced, the coercive field for (Etrad);[Niz{Cu(opba)}s] is highest
(1.2kOe) at Tcomp, and decreases above and below Teomp.

The peculiar behavior of the Ni derivative has been studied in detail, and analyzed
with the help of molecular field theory (MFT) and magnetic anisotropy [30, 41]. To
study the stability of the negative magnetization several FCM curves have been
recorded with increasing magnetic field. The FCM curve obtained with a field of
1000 Oe (Fig. 11) passes through zero for two different temperatures, namely Teomp
and Tcy. Furthermore, depending on the measurement process (cooling or warming
modes) double field-induced thermal hysteresis is observed for the magnetization
curves FCM and FWM. The two curves are not superimposed, as they are normally
for ferro(ferri)magnets, and the material strongly memorizes the strength of the
magnetic field when cooling. For the same applied magnetic field (1 Oe) the FWM
curve obtained after the sample was cooled in a field of 50kOe is almost the mirror
image of the FCM curve. To analyze these experimental data it is possible to use
MFT, which at least reproduces qualitatively the experiments. Using the Néel theory
for ferrimagnets [42], the compound may be described with three sublattices (Ni, Cu,
Etrad) characterized by their local magnetization, My;, Mcy, and Mgy.q (Fig. 12).
The antiferromagnetic interactions between My; and Mc, favor their antiparallel
orientation whereas the ferromagnetic Cu!l-Radical interactions favor the M, and
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Fig. 11. Magnetization versus T curves
for (Etrad);[Nip{Cu(opba)}s] obtained
in cooling (FCM) or warming modes
(FWM), recorded at 1000 Oe.

30

Fig. 12. Thermal dependence of
the magnetization sub-lattices
simulated with molecular field
theory (o) for My;; (V) for Mcy;
(a) for Mggraq; (-) for Ms.

MEraq Orientation in the same direction. To simplify the discussion below, we note

Ml/2 = Mcu + MEtrad-

Below T, the total magnetization Mg is the algebraic sum of the two contribu-
tions My; and My ,,. Ms, first, is positive as T is lowered, My; being larger in value
than Mj,. But My; and M;,; have different thermal dependencies and the two
contributions cancel out at the compensation temperature Tcomp, Ms is then equal
to zero. Below Teomp, M2 becomes larger than My; and Ms turns negative. This
negative magnetization corresponds to a metastable state, which exists because the
orientation of each sublattice is blocked by anisotropy (Heoerc is maximum at Teomp
with a value of 1.2kOe). As Hepere decreases when the temperature is reduced fur-
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ther, it might happen during the cooling mode measurement that H becomes higher
than Heeerc. In this circumstance the negative magnetization state is no longer sta-
ble, and we observe the magnetic pole reversal at Tcm with Mg > 0 (Fig. 11). The
same explanation applies for the warming mode process and explains the appear-
ance of the double field-induced thermal hysteresis. The efficiency of hard magnets
and ferrimagnets for information storage is well established. Molecular chemistry
thus provides access to materials exhibiting memory effects related to the block-
ing of the magnetization and its temperature-dependent orientation. Interestingly,
the use of a simple theory like MFT makes possible the design of compounds with
desired properties by controlling Tc, Heoere and Teomp.-

These results show that by quite a small alteration of the synthetic steps, for in-
stance by changing the metal ion M, the magnetic properties of molecule-based
magnets can be modified. The Mn, Co, and Ni derivatives have the same general
architectures, but the resulting magnets have very different features and these prop-
erties are simply related to the nature of the ion. The Mn derivative is a soft magnet
(Mn being an isotropic ion), the Co derivative is a hard magnet (because of the
strong intrinsic anisotropy of the Co ion), and the Ni derivative is an intermediate
case in terms of coercive fields. For the Ni ion the anisotropy is weaker than for Co
and finds its origin in the zero-field splitting effects. Its weaker anisotropy is respon-
sible for the interesting compensated ferrimagnetic behavior. If the anisotropy is
stronger no compensation temperature is observed, as shown for the Co derivative.

1.2.3 Dimensionality Modulation by a
Dehydration-Polymerization Process

We have seen in Section 1.2.1.4 that the magnetic properties of some molecular com-
pounds can be dramatically and reversibly modified by means of a mild dehydration-
rehydration process. This class of compound has been named molecular magnetic
sponges [43-46]. This is because they have “sponge”-like characteristics, viz. a re-
versible cross-over on dehydration to a polymerized long-range magnetically or-
dered state with spontaneous magnetization, and transform back into the isolated
units underlying the initial non-magnetic phase on re-absorption of water, i. e. re-
hydration of both non-coordinated and coordinated water molecules. For some of
these sponges a color change also occurs reversibly and simultaneously with the
change in magnetic properties at the transition temperature corresponding to the
dehydration-rehydration process.

The very first example of a molecule-based magnet obtained by reversible dehy-
dration of a paramagnetic (or antiferromagnetic) species was MnCu(obbz) - nH,O
with n = 5 or 1, and where “obbz” stands for oxamido(bis benzoato) (Scheme 2)
[47]. The pentahydrate has a chain structure and has a long-range antiferromag-
netic transition at Ty = 2.3 K, because of very weak interchain interaction. When
four out of five water molecules are removed, however, this interaction strengthens
and the monohydrate becomes a genuine magnet with 7c = 14 K. The dehydration
process is reversible.
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Because of the results obtained for the Co molecule-based magnets (Sections
1.2.1.5 and 1.2.1.6), study of such behavior in CoCu compounds seemed obvious. The
linear chain compound CoCu(pbaOH)(H,0)3 -2H;0, in which the ferrimagnetic
chains interact antiferromagnetically (7 ~ 2 K) within the lattice, was transformed
into [CoCu(pbaOH)(H,0)3] on removal of two non-coordinated water molecules
by thermal treatment. The three hydrate has ferromagnetic ordering at 7c = 9.5K.
Removal of a third water molecule, occupying the apical position in the copper
coordination sphere, yields a compound [CoCu(pbaOH)(H;0O),] with high values
of Tc = 38 K and Hgere = 5.66 kOe at 2 K [43]. The dehydration process is not only
reversible but also accompanied by color change, the blue pentahydrate turning
deep purple when dehydrated into the ferromagnetic CoCu(pbaOH)(H,O),, and
vice versa upon rehydration.

The dehydrated compound CoCu(pba)H,O was obtained by heating the parent
blue compound, CoCu(pba)(H;0)3 - 2H,0O (isostructural with the Mn compound
represented in Fig. 4) at 120°C under vacuum. If heating is stopped at 120°C, the
compound [CoCu(pba)H;O] begins to reabsorb water and the color changes back
from purple to blue. The compound decomposes if heated above 175°C. The plot
of xmT against T for CoCu(pba)(H,0)3-2H,0, with a minimum at 65K, is in-
dicatives of magnetic behavior typical of a bimetallic one-dimensional Co!'-Cu!!
ferrimagnet chain, ordering antiferromagnetically at 7K. The shortest interchain
separations between metal atoms are Cu—Cu and Co—Co. The dehydrated analog
[CoCu(pba)H, O] is, however ferromagnetic, with spontaneous magnetization be-
low 33K, as confirmed by the xm7 vs. T and ac-susceptibility data, and a large
coercive field of 3kOe at 2K, arising from the magnetic anisotropy of the Coll
ion in octahedral surroundings. We believe that the bimetallic ferrimagnetic chains
move closer to each other on loss of water molecules in such a manner that the
shortest metal ion distances are now between the Co!! ions of one chain and the
Cu'l jons of the adjacent chain. The dehydration-rehydration process, accompa-
nied by the color change from blue to purple is totally reversible. If left to stand in
air for ca. two days the dehydrated ferromagnetic compound regains the magnetic
characteristics of the original hydrated compound. One can, of course, also achieve
rehydration by adding water to the dehydrated compound in a controlled fashion.

In the following text, to describe the characteristics of the magnetic sponges
we have chosen CoCu(obbz)(H;0)4-2H;0 as a representative example; this is
described in sufficient detail below to bring the phenomenon of the softness of
the molecular lattice into focus. The compound CoCu(obbz)(H,0)4-2H,0 is a
binuclear and has four water molecules in the cobalt coordination sphere and
two additional uncoordinated water molecules. The Co!! is in octahedral en-
vironment, and the Cu! ion is in a square-planar environment. The xm7 for
CoCu(obbz)(H,0)4 - 2H,O tends to zero as T is lowered, as expected for antiferro-
magnetically coupled Co!Cul! pairs in a non-magnetic ground state (Fig. 13). The
combined effect of distortion and spin-orbit coupling on Co!! in an octahedral en-
vironment gives rise to low-lying Kramers doublets among which only the ground
Kramers doublet is thermally populated at low temperatures. The Co!! ion can then
have an effective spin of only S = 1/2, and a very anisotropic gco tensor. An an-
tiferromagnetic interaction between Co'l and Cul! (Scy = 1/2) in such a situation
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Fig. 13. xmT vs. T plots for CoCu(obbz)(H,0)4-2H,0 and its dehydrated versions to
CoCu(obbz)(H20)3 and to CoCu(obbz)(H,O) [46].

gives rise to a non-magnetic singlet state and a pseudo triplet state, split in zero
field. Thermogravimetric analysis revealed that CoCu(obbz)(H20)4 - 2H20O could
be dehydrated to give two well-defined new compounds. At approximately 100°C,
the two non-coordinated water molecules leave along with one water molecule from
the Co!! coordination sphere. The removal of these three water molecules is accom-
panied by a sort of polymerization process yielding a one-dimensional chainmag-
netic compound CoCu(obbz)(H,0)3 for which the ymT vs. T plot has a minimum
at 74K, but no long range magnetic order is observed down to 2 K. Heating this
compound further up to approximately 200°C resulted in the release of two more
water molecules and development of the polymerization process to give a bulk fer-
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rimagnetic compound CoCu(obbz)H,O with long-range magnetic ordering below
Tc = 25K (Fig. 13). The ymT vs. T plot for CoCu(obbz)H;O is indicative of long-
range magnetic ordering below Tc; this is confirmed by FCM, ZFCM, and REM
plots and by ac magnetic susceptibility data. Remarkably, this dehydration process
was completely reversible inasmuch as if a sample of CoCu(obbz)H,O is kept at
room temperature in the close vicinity of a source of water it can slowly re-adsorb
water and be transformed back into the original phase CoCu(obbz)(H,0)4 - 2H, O,
the chemical composition, X-ray structure, and magnetic and optical behavior of
which is exactly reproduced. The dehydration-rehydration process can be repeated
as many times as desired without any degradation of the material, if the temperature
does not exceed 275°C, the decomposition temperature.

Not only is CoCu(obbz)H,O a magnet, but it is a hard magnet, because the field
dependence of the magnetization at 5 K has a wide hysteresis loop with a coercive
field of 3kOe, indicating that Co'l must be in an octahedral environment, in con-
travention of the fact that this monohydrate has only one water molecule in the
cobalt coordination sphere; this might suggest tetrahedral coordination of the Co!l
ion. The octahedral environment around the Co!! ion can be restored only if the two
water molecules which were removed from the coordination sphere of Co while de-
hydrating the trihydrate CoCu(obbz)(H20)3 to the monohydrate CoCu(obbz)H,O
are replaced by two carboxylato oxygen atoms belonging to two neighboring chains,
which would also raise the dimensionality of the compound CoCu(obbz)H;O in
compatibility with the long-range magnetic order displayed by CoCu(obbz)H,O. In-
terestingly, infrared and Raman spectroscopy data are in line with this proposition.
The IR spectrum of CoCu(obbz)(H20)4-2H,0 in the 1550-1620cm~! range has
several intense and broad bands which can be assigned to the antisymmetric vcoo
vibrations of the monodentate carboxylato groups. The relative intensities of these
features decrease for the trihydrate [CoCu(obbz)(H,0O)3] and new IR bands start
appearing in the ranges 1600-1620cm~!, and 1660-1690 cm~!, signifying antisym-
metric vcoo vibrations of the bridging carboxylato groups, and very asymmetrical
carboxylato groups, respectively [44]. The relative intensities of these two groups
of bands increase further as we pass from the trihydrate [CoCu(obbz)(H,0)3] to
the monohydrate [CoCu(obbz)H,O].

This points to the formation of two Co—O bonds during dehydration, involv-
ing both bridging and strongly asymmetrical carboxylato groups at the expense of
two Co-H,O bonds. The Raman spectrum of CoCu(obbz)(H,0)4 -2H,0 is dom-
inated by the peak at 1415 cm™ L arising from the symmetric vcoo vibrations of
the monodentate carboxylato groups. Upon dehydration this band shifts to higher
energy and appears at 1428 cm~! for CoCu(obbz)H,O, assignable to the symmet-
ric vcoo vibrations of the bridging carboxylato groups. Upon rehydration of the
sample, in situ, the vcoo mode shifted from 1428 back to 1415 cm~ L, even its half-
width reverting from 10 to ca. 22 cm™!, underlining the complete reversibility of the
dehydration-rehydration process. It was, therefore, postulated that the compound
CoCu(obbz)(H20)3 has a chain structure and behaves as a one-dimensional ferri-
magnet without long-range ordering.

For the monohydrate CoCu(obbz)H, O the chains associate to afford a network of
higher dimensionality. The monodentate carboxylato groups of a chain create, upon
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dehydration, Co-O bonds involving Co!l ions belonging to the neighboring chains.
If it was so, the Coll ion in CoCu(obbz)H,O would be surrounded by six oxygen
atoms, one arising from a water molecule, two from the oxamido group, one from a
carboxylato groups, as shown schematically in Fig. 14. The shortest intermolecular
metal-metal separation in CoCu(obbz)(H;0), -2H,0 is 5.109 A between Co and
Cu, which happens to be shorter than the intramolecular distance of 5.295 A. Tt
seems, therefore, that in this case the molecular lattice was pre-formed to facilitate
the equilibrium of Scheme 5 which gets displaced towards the right if conditions
favor dehydration (i. e. vacuum or heating) whereas in the presence of excess water it
gets displaced towards the left. The reversibility of the dehydration-polymerization
process hinges on the simultaneous reversibility of:

e creation (breaking) of Co-carboxylato bonds, involving a step in the solid state,
and

e breaking (creation) of Co-water bonds, a step occurring in a solid-liquid hetero-
geneous phase.

Fig. 14. Proposed chain structure for CoCu(obbz)(H,O)3 and the two-dimensional structure
for CoCu(obbz)(H;0), obtained by association of chains [46].
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The non-magnetic compound CoCu(obze)(H20)4-2H,0O could also be grown
as single crystals and converted to the ferrimagnetic state upon dehydration at
190°C, with Tc values of 20K, and Hcoere of 1kOe at 2K. The color of the
compound changed from violet to dull green on dehydration and back to vio-
let on rehydration [45]. The structure of CoCu(obze)(H,0)4-2H,0 is isomor-
phous with that of MnCu(obze)(H,0)4-2H,0 [48], with the Co environment
identical with that observed for CoCu(obbz)(H20)4 - 2H;O. Interestingly, for both
CoCu(obbz)(H20)4 - 2H70 and [CoCu(obze)(H,0)4].2H, O the powder X-ray pat-
terns were strongly modified on dehydration, although the compounds remained
crystalline. Upon rehydration, the patterns returned to those of the starting com-
pounds.

Reversibility of the dehydration-rehydration process is well-known for many
hydrates. The novel and remarkable feature characterizing the sponges described
here (summarized in Table 5), is the reversible release of coordinated wa-
ter molecules, accompanied by a polymerization process. The Co—O bonds in
CoCu(obbz)(H20)4 - 2H, O, for instance, can be broken and created without de-
stroying the fundamental molecular architecture, although it is modified reversibly.
The dehydration process also increases the structural and magnetic dimensionality
of this sponge from zero (for isolated molecules) to two or three, depending on
the amount of dehydration; on rehydration the structure reverts to the original low
dimensionality (Fig. 15). Molecular magnetic sponges are illustrative of the softness
of the molecular lattice. Molecular chemistry thus provides a route to materials that
can pass reversibly from a non-magnetic state to a magnetically ordered state, and
the process of reversibility can be repeated without any fatigue of the molecule. This
is certainly not possible by any of the simple solid-state chemical processing routes.
Restoration of magnetic and physical properties upon rehydration points hopefully
to important dividends to be reaped from a synergy between two seemingly di-

Table 5. Features of the Co'!Cu!l molecular magnetic sponges after dehydration.

Compound After dehydration Tc  Hcoerc Color Ref.
(K) (Oe)
CoCu(pbaOH)(H,0)3 -2H,0 [CoCu(pbaOH)(H,0),] 38 5660 (2 K) Blue to [43]
deep
purple
CoCu(pba)(H,0)3 - 2H,0 [CoCu(pba)H;0] 33 300 (2K) Blueto [45]
purple
CoCu(obbz)(H,0)4 - 2H,0 [CoCu(obbz)H, 0] 25 3000 (5 K) [46]
CoCu(obze)(H20)4 - 2H,O [CoCu(obze)H,0] 20 1000 (2 K) Violet [45]
to dull

green
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verse disciplines of molecular chemistry and materials science. The color change
at a magnetic transition is a useful property for designing a molecular switching
device, and the high value of Hoerc might make these molecular magnets useful
in the construction of memory devices for storage of data if the 7¢ value can be
increased to approximately room temperature, and the color change occurs within
a few nanoseconds.

1.2.4 Alternative Techniques for the Studies of Exchange-coupled Systems

Asmentioned in Section 1.2.1.4, the chain compounds can be crystallized and control
of the temperature during the crystallization process enabled us to obtain crystals
the size of which was sufficient for physical studies. We investigated single-crystal
polarized neutron diffraction (p.n.d.) and optical spectroscopy for chain compounds
to obtain precise and complementary information to that gathered by magnetic
studies.

The p.n.d. technique enables the determination of spin-density maps, which
give precise information on mechanisms governing the exchange interactions. For
MnCu(pba)(H20)3 - 2H, O the spin density map (Fig. 4) reveals alternation of large
positive spin densities (full lines) in the Mn!! region and weak negative spin den-
sities (dotted lines) in the Cu!! region. Both positive and negative spin densities
are delocalized from the metal ion towards its nearest neighbors. This delocaliza-
tion is much more pronounced on the copper side than on the manganese side.
This situation reflects the stronger covalency of the Cu-N (or O) bonds compared
with the Mn—-O bonds. A better way of comprehending the spin delocalization is
to express the spin distribution with atomic spin populations. In the chain the Cull
carries 76% of the negative spin density whereas the Mn!! carries 97.6%, which is
consistent with the more covalent character of the bonds around the copper. Fi-
nally, the sum of the negative atomic spin populations is equal to —1.05 yg, and
that of the positive spin populations is equal to +5.05 ug. This description is very
close to a naive picture, when ignoring the spin delocalization, the metallic popu-
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lation would be Py = gMnSmn and Pcy = —gcuScu, gmn and gcy being the local
Zeeman factors. In fact, for antiferromagnetically (MnCu), systems, the spin pop-
ulations on the metal centers in the ground state depend on the number of repeat
units n [49]. It has been shown theoretically (DFT and DMRG approaches) that
for an isolated MnCu pair (n = 1) the ground state corresponds to mixing of the
(+5/2, —1/2) state with the (+3/2, +1/2) state. When n increases contamination of the
(4372, +1/2) state decreases, and then the ground state is only characterized by the
(+5/2, —1/2) component. These theoretical calculations are satisfactorily confirmed
by the experimental results.

The single-crystal polarized optical spectra of MnCupba(H,0)3 -2H,O at room
temperature is shown Fig. 16 [17]. Strong polarization of the absorption is observed
in the chain direction, because of the strong polarization of the Cu!! band at around
16000cm ! in this direction. They also reveal narrow and intense formally spin-
forbidden Mn!! transitions ®Aj, A1y, “Eg (Op) around 24000cm™! activated by
an exchange mechanism and strongly temperature-dependent [50]. Both polariza-
tion and thermal features of these bands have been interpreted in the pair mecha-
nism, first introduced by Tanabe. In particular, these optical studies offer an alterna-
tive means of determining the exchange parameter with the detailed temperature-
dependence studies of the spin-forbidden transitions. In the MnCu chain compound,
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Fig. 16. Polarized optical absorption spectra at room temperature perpendicular to the bc
face of a single crystal of MnCu(pba)(H20)3 - 2H,0 [17].
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J has been found to be Jopr = —25 cm ! which is exactly the value deduced from
magnetic studies. The optical technique also enables information to be obtained
about the excited state reached. In fact, careful thermal study of the spin-forbidden
Mn'! transitions reveals cold and hot components the energy difference of which
has been directly related to J and J*, where J* is the exchange parameter be-
tween Cul! and Mn!! in its first excited state. Our study revealed a J* value equal
to +40 cm~!. The change of sign between J (antiferromagnetic interaction between
Cu!l and Mn'") and J* (ferromagnetic interaction between Cul! and Mn*!!) is sur-
prising, and not yet fully understood. This behavior has been already described for
other MnCu compounds [51].

1.3 Bimetallic Magnets Based on Second-
and Third-row Transition Metal Ions

The ions from the second and third transition metal series have been considered only
very recently as spin carriers for the preparation of bimetallic magnets. These ions
are characterized by more diffuse valence orbitals compared with their 3d congeners,
a trend following the sequence 5d > 4d > 3d. To magnetochemists a more diffuse
singly occupied orbital suggests that an enhanced exchange interaction might be
expected between magnetic centers. Spin—orbit coupling is also often observed for
these ions, and is characteristic of compounds with magnetic anisotropy. A limitation
might, however, be that the ground state of species containing 4d or 5d metal ions
is usually derived from a strong field configuration, i.e. they are low-spin.

We will see below that the first information gathered from compounds containing
transition metal ions from the second or third series suggests exciting possibilities
for the preparation of bimetallic magnets with increased critical temperatures, with
coercivity, or even with photomagnetic properties. They also address the question of
the validity for 4d or 5d metal ions of rules applying for the analysis of the magnetic
properties of bimetallic compounds containing only 3d metals ions.

1.3.1 Examples of Ru(Ill)-based Compounds

The first example of molecule-based magnets involving metal ions from the second
or third transition metal series was an oxalate-bridged polymeric compound synthe-
sized from the building block [Ru!f(oxalato)3]>~ [52]. In this environment, the Ru
ion has a low-spin d> electron configuration with a magnetic moment of 2.03 ug at
room temperature [53]. The reaction of [Ru(ox)3]*>~ with Mn!!, Fell, or Cull in the
presence of tetrabutylammonium resulted in the formation of the two dimensional
compound, (NBuy)[M"Ru"(0x);], which has a honeycomb structure.

The molar magnetic susceptibility data for (NBuy)[Fe''Ru'"'(ox);] are repre-
sented in Fig. 17 in the form of the ym7T versus T plot. The minimum in the curve,
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even if weakly pronounced, indicates ferrimagnetic behavior with a Ru!'-Fe! anti-
ferromagnetic interaction. The low-temperature data suggest that the compound has
long-range magnetic ordering. This is confirmed by the field cooled-magnetization
(FCM) and remnant magnetization (REM) curves shown in Fig. 18. The FCM curve
shows a steep rise of the magnetization below 13 K and the REM curve indicates that
the remnant magnetization vanishes when the sample is heated to 13 K, behavior
typical of a magnet. Confirmation of the three-dimensional ordering at Tc = 13K
was provided by the temperature dependencies of the ac magnetic responses. Both
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the in-phase, x,,, and out-of-phase, x, ac magnetic susceptibilities pass through a
maximum.

We have already mentioned that the coercivity of a magnet is governed by both
chemical and structural factors. The chemical factor is the magnetic anisotropy of
the spin carriers and the structural factors are the crystal lattice symmetry and the
size and shape of the grains. In this species both Fe!l and Ru'! in distorted octahe-
dral surroundings are orbital triplet ions with first-order orbital momentum. These
ions therefore have magnetic anisotropy. The field dependence of the magnetiza-
tion measured at 2K for (NBuy)[Fe!'Ru!!(0x);] reveals indeed the occurrence of
a magnetic hysteresis loop, with a coercive field of 1.55kOe.

In contrast with the previous compound, long-range magnetic ordering is not ob-
served for (NBug)[Mn!'Ru'"!(0x)3] and (NBuy)[Cu'Ru!(0x)3] in the temperature
domain investigated. The magnetic behavior of these two compounds indicates that
the Cu'l-Ru! interaction is antiferromagnetic whereas the Mn!!-Ru!!! interaction is
ferromagnetic. The magnetic behavior of the Mn!'-Ru!!! and Fe!l-Ru!l compounds
could by analyzed quantitatively with a theoretical model for a honeycomb lattice
[54]. The spin Hamiltonian considered in the model is given in Eq. (1) where the
index M refers to the classical spin ion, Mn!! or Fe!l. Both single-ion anisotropy for
the M!! ion and anisotropic interaction have been neglected. The analytical expres-
sion used to fit the experimental data is given in Eq. (2). This expression is valid
for honeycomb lattices with alternation of quantum Sgry, and classical Sy spins at
the corners of the hexagons and for T > |J|S/2. For (NBuy)[Fe''"Ru"(0x)3] least-
squares fitting to the magnetic susceptibility datadown to 20K led to J = —9.7cm™1,
gru = 2.10, and gge = 2.13. For (NBuy)[Mn'"Ru"(0x);] fitting down to 5K gave
J =1.04cm™!, gry = 2.1, and gy = 1.97.

H=—J) Srui-Sm;+ (gRu > Srui + &M Y SM,j) -HB 1)
iJ i J
_ 3,2 Y2, 2 )3
T =g [S MY~ S8MERuS + &Ry ] ()

where y; = 0.335340.0186 K +0.5049 K? +0.4534 K3, y; = —0.0009 +2.0583 K —
0.3351 K2 + 1.8454 K3, y3 = 1.0095 + 0.0214 K + 1.1352K? + 0.5341 K3, K =
—JS/2kT, and S = [Spm(Sm + D]Y?

The magnetic properties of these compounds have revealed that with M = Mn
the Ru''l-M!! interaction is ferromagnetic whereas it is antiferromagnetic with M
= Cu and Fe. (NBuy)[Cu"Ru''(0x)3] is interesting because the nature of the in-
teraction does not respect the symmetry rules valid for the 3d metal ions. It is now
well understood that the nature of the interaction between two 3d magnetic centers
is governed to a large extent by the relative symmetries of the magnetic orbitals
[13]. A non-zero overlap integral between two magnetic orbitals favors an antiferro-
magnetic contribution whereas a zero overlap favors a ferromagnetic contribution.
When the interaction occurs between ions carrying more than one unpaired electron
the nature of the interaction is usually given by the weighted sum of each contribu-
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tion. These rules are in accordance with the ferromagnetic interactions found for
Cull-Cr!! or Nill-Cr!!! oxalate compounds. The Ru'!l jon in octahedral surround-
ing has a low-spin state arising from the tzsg configuration. Each of the #,, orbitals

centered on Ru is orthogonal with the dx?dy? type magnetic orbital of Cu'l. On the
basis of the orbital symmetries a ferromagnetic Cul'-Ru!!! interaction might have
been expected but it is found to be antiferromagnetic in (NBug)[Cu'Ru!"!(0x)3].
Obviously, the symmetry rules which applied for analysis of the magnetic properties
of polymetallic compounds formed with 3d metal ions seem not to be transposable
to Ru!l, A reason might be that the spin-orbit coupling mixes the symmetry orbitals
so that the eigenfunctions can no longer be labeled with the irreducible representa-
tion of the symmetry point groups. Study of more examples of exchanged coupled
systems involving Rull! will be necessary to rationalized this situation.

A second compound in which Ru'l is in exchange interaction with Mn!! has been
described. It consists in a 3D network of Ru(acac),(CN); units linked to Mn!! ions
and has long-range magnetic ordering at approximately 4 K [55]. Interestingly, the
magnetic behavior reveals that the Rul"'-Mn!! interaction through the cyano ligand
is ferromagnetic as through the oxalato-link in (NBug)[Mn'Ru!"(0x)s].

1.3.2 Mo, Nb, and W-cyanometalate-based Magnets

As for their 3d metal ion counterpart, cyanometalate derivatives of 4d and
5d ions have also been envisaged for the preparation of bimetallic magnets.
For instance, [Nb!Y(CN)g]*~, [Mo![(CN);]*~, and [WY(CN)g]>~ afford extended
three-dimensional networks in the presence of Mn!! ions. The structure of
[Mn,(H,0)sMo(CN);].4H,0 is depicted in Fig. 19. In this compound the Mol
center is linked through its CN ligands to seven Mn!! ions, and each Mn!! center
is thus connected to either three or four Mo units, setting up a 3D network. The
compounds formed with the three cyanometalates behave as magnets characterized
by Tc values of approximately S0K (50, 51, and 54 K, respectively, for the Nb [56],
Mo [57, 58], and W [59] derivatives).

The magnetic properties of the two phases of compound Mn,(H20)sMo(CN)5.
xH;0 (phase «, x = 4 and phase 8, x = 4.75) have been deeply investigated and
revealed rather complex behavior. These studies have been described in detail and
we will recall here only the general features of these materials. The temperature
dependence of the magnetic susceptibility of Mny(H20)sMo(CN)7 -4H;0 (phase
«) is represented in Fig. 20 as a plot of T against T. It is worth noting that in
the temperature range above Tc, i.e. 300 to SOK, xM7 increases continuously as T
is reduced. The plot of 1/ is also rather linear in the corresponding temperature
domain and its extension leads to an intersection with the temperature axis at 7 > 0.
Such features are usually characteristic of ferromagnetic interaction between the
magnetic centers, and initial results were interpreted is this way. Polarized neutron
diffraction study of a related Mn'!//Mo(CN);-based compound clearly established,
however, that the Mn"-Mo!!! interaction through the CN ligand is antiferromag-
netic [60]. The spin density map shown in Fig. 21 reveals alternation of positive spin
densities in the Mn ion region and negative spin density in the Mo region.
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Fig. 19. Mn,(H,0)sMo(CN); - 4H,O: (a) view of the 3D network; (b) coordination spheres
of the Mo™ and Mn'! centers.

An important feature of Mny(H20)sMo(CN);-xH;O ferrimagnets is their
strong magnetic anisotropy. Results from measurement of the dependence of M
on T and M on H (Fig. 22), performed on oriented crystals, are explicit. The origin
of this anisotropy is ascribed to the 4d3 low spin Mo ion (S = 1/2) in the Mo(CN);
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of the editor).



34 1 Bimetallic Magnets: Present and Perspectives

a) 350

»00000000000..

H//b
[ ’“0’ —
300 | ] = T

250 | ‘
AAAAAAAAAAAAA‘AA H//c* T
AAA“‘

200 [ —

150 |

3 *
[ .

100 L @ TH//a
; N

s

ot L L 122000 000000e
30 35 40 45 50 55 60 65 70

-1

M /emu Oe mol

b 12p

L4
»
"
>
>
=
™
.

M /Np
[

o * H/la
S s H e
- * H//b

~

fae)
el e ™ 733 T e L A

1R
Oﬁ. I
0

1 1

10 20 30 40 50
H/kOe

(=]

Fig. 22. (a) Temperature dependence of the magnetization for Mn, (H,O)sMo(CN); - 4H,O
along the a, b, and c¢* directions (external field H = 5Oe). (b). Field dependence of the
magnetization at 7 = 5K [57] (reproduced with permission; Copyright 2001, the American
Chemistry Society).

environment for which the strongly anisotropic g tensor have been found [61, 62].
Other factors, e. g. the anisotropic components of the Mo!!'-Mn!! interaction result-
ing from the local spin-orbit coupling for the Mo, and the low symmetry of the
crystal lattice might make significant contributions to the magnetic anisotropy of
these compounds [63]. Despite the anisotropy, however, no coercivity is observed.

The magnetic properties of the Mny(H20)sMo(CN)7 - xH,O compounds are
modified by partial dehydration leading to an increase in 7c up to 65K and to
the appearance of a magnetic hysteresis with a coercive field of 8500e¢ at 5K.
An even more pronounced effect is observed for the bidimensional compound
K>[Mn3z(H>0)sMo(CN);] - 6H,O involving the same spin carriers; for this ¢ is in-
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Fig. 23. Detail of the Mn—Mo connectivity in the 3D framework of Mn;(rea)MoCN7 - H,O
and temperature-dependence of the magnetization (H = 50 Oe) before and after annealing.

creased from 39 to 72K after H,O is released from the network. For this compound
dehydration also induces an increase in coercivity. Related effects are observed
when pressure is applied to the compound [64]. These observations suggest that
slight modification of the lattice and/or the coordination spheres of the metal ions
might have an important effect on the magnetic properties of the compounds. Sub-
stitution of HyO by an ancillary ligand in the coordination sphere of the M! ion
could be an easy way to control the conformation of such networks and, conse-
quently, their magnetic properties. A first result in this direction has been obtained
for the compound Mnj(tea)Mo(CN)7 - HyO, where rea stands for triethanolamine.
For this compound the ordering temperature is 75 K and can be further increased
to 106 K by smooth annealing (Fig. 23) [65]. The spin carriers and their connectivity
in the compound with a T¢c of 75 K are the same than those for the compound with
Tc = 51 K; the different magnetic behavior is clearly the result of small conforma-
tional differences in the structure.

It is interesting to compare the magnetic properties of a compound like
Mnj;(rea)Mo(CN); - H;O with a related compound, Mn3[Fe(CN)g], - 15H,O. For
both compounds the metal ion of the cyanometalate unit bears alocal spinof § = 1/2
but whereas the 7¢ for the compound formed with the 3d ion derivative is found at
9K, the compound with the 4d ion, Mo has 7¢ for 75K and even higher after an-
nealing. The same is also true for the compounds obtained with the cyanometalates
of Nb!V and WV, which also have a local spin of S = 1/2.
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1.3.3 Light-induced Magnetism

A recent issue in molecule-based magnets is light-driven magnetism, commonly
called photomagnetism. For instance, long range magnetic order can be induced
by light irradiation of Prussian-blue derivatives involving Fe—Co pairs. The photo-
physical properties of metal ions from the second and third transition metal se-
ries is well documented, and their potential as photo-active building blocks in
magnetic materials has been demonstrated with Mo!Y-based compounds. For in-
stance, the three dimensional compound obtained by reaction of the diamagnetic
[Mo!V(CN)g]*~ building block and Cu'! ions has paramagnetic behavior down to
2 K. When this compound is irradiated long-range magnetic interactions are ob-
served (Fig. 24) [66-68]. The appearance of the magnetic interaction is a conse-
quence of the photo-oxidation of Mo. Upon irradiation in the energy range of the
intervalence charge-transfer band of the compound the diamagnetic Mo!V trans-
fers an electron to a neighboring Cul! ion and becomes Mo" which is paramag-
netic with a local spin of § = 1/2. This magnetic center is then exchange-coupled
with the remaining Cu!! paramagnetic centers and long-range correlation appears
as the Mo! ions are oxidized to MoV. Related results are found for the chain com-
pound Mn!!(L),(H,0)Mo!V(CN)g - 5H,0, where L stand for a macrocyclic ligand
[69].

250
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Fig. 24. Dependence of magnetization on T for the compound Cu;Mo(CN)g - SH,O before
(O) and after (FCM o, REM 4 and ZFCM A) irradiation at 530 nm.
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This section would not be complete without mention of the very promising results
obtained with 4d and 5d metal ions in the construction of high-spin molecules (dis-
cussion of high-spin molecules is available elsewhere [9]). Starting from [M(CN)g]*>~
(M = MoV or WV) and Mn!! ions, well defined {(MngMg} molecular clusters with
a ground state of S = 39/2 and 51/2, respectively, for the W and Mo derivative,
could be synthesized [70, 71]. Related compounds are obtained with the diamag-
netic Mo!Y and W!V building blocks; this suggests the possibility of photo-induced
magnetism for these aggregates in the same way as for the 3D compounds [72].

The first molecule-based compound involving 4d metal ions and with long-range
magnetic interactions was described in 1998. Since then a few more heterobimetal-
lic magnets formed with building blocks comprising ions from the second or third
transition series have been reported. A general feature of these materials is the
temperature at which magnetic order is found —7c is significantly higher than for
most of the related 3d ion-based magnets. The spin-orbit coupling occurring for
these ions might, moreover, lead to materials with magnetic anisotropy, another
important feature of magnets, as was found for Mo!!l-based compounds. Although
the limited number of compounds and the diversity of spin carriers studied do not
currently enable conclusions to be drawn about general trends, it seems obvious
that these ions warrant more systematic investigation.

1.4 Concluding Remarks

The prominent role of structural dimensionality and nature of the active mag-
netic centers on the main characteristics of magnets, which are the temperature
below which spontaneous magnetization is observed and the magnetic anisotropy
which confers a memory effect to the material, are now well established and un-
derstood. The supramolecular chemistry of open-shell architectures provides ver-
satile access to compounds of desired topology and composition, and it is therefore
possible to design materials with properties predetermined at synthesis. Molecule-
based magnets with giant coercivity or complex magnetic behavior, e. g. multiple
magnetization-inversion can be prepared rationally.

Until now most studies have been on 3d paramagnetic ions; only very recently
have the heavier congeners, the 4d and 5d transition metal ions, been investigated.
The first results gathered with such ions show that not only do they have all the
features regarded as desirable in the contemporary study of molecular magnetism,
for example magnetic anisotropy or photo-physical properties, but the materials
obtained have spontaneous magnetization at temperature significantly higher than
those found for related 3d analogs. This opens interesting perspectives for the prepa-
ration of high-T¢c magnets and the number of molecule-based magnets involving
these ions will certainly increase rapidly in the coming years.
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2 Copper(II) Nitroxide Molecular Spin-transition
Complexes

Paul Rey and Victor I. Ovcharenko

2.1 Introduction

The design of molecular materials is attracting much interest from scientists, prob-
ably because it corresponds not only to a natural trend of chemical science and to a
economic need of society but also to a clear and aesthetic aspect of the professional
activity of chemists. Indeed, the molecular chemist is in the same situation as that of
an architect who has building blocks at his disposal and seeks to build a functional
structure. The building blocks at disposal of the chemist are atoms and molecular
fragments from which an infinite number of structures may be designed; depending
on functionality, however, the building blocks and assembling rules are different.

For example, molecular materials designed to have magnetic properties must in-
clude open shell fragments, transition metal ions or/and organic free radicals; these
spin carriers must also be associated in such a way that the nature of the mag-
netic interactions is controlled to produce the desired bulk material property. The
chemistry involved in the synthesis of molecular magnetic materials must therefore
take into account the organization of all space; it is a challenging problem requiring
chemical skill and intuition [1].

Pioneering investigations in this field produced extended structures in which
bridging diamagnetic organic fragments mediated magnetic interactions between
transition metal ions. Because most ligands mediate antiferromagnetic (spin-paired)
interactions, efforts have been directed toward the synthesis of organic fragments
able to link alternating, different, metal centers with the aim of obtaining ferri-
magnetic structures [2-4]. Indeed, if the metal ions have different spins and are
arranged regularly along a 1D (or any higher dimension) structure the resulting
magnetic moment will never cancel out, irrespective of the nature (ferro- or anti-
ferromagnetic) of the interaction. This strategy, however, suffers from an important
synthetic drawback — the design of organic fragments able to organize multidimen-
sional structures in which different metal ions are selectively and regularly arranged
into two inter-penetrating sub-lattices.

This difficulty is easily overcame if one of the spins is carried by the bridging
organic fragment itself. Indeed, alternation of spin carriers is then a consequence
of coordination, and ferrimagnetism naturally follows from the presence of differ-
ent organic (S = 1/2) and metallic (S > 1/2) magnetic centers. This strategy was
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introduced in the eighties with the use of stable nitroxide free radicals as building
blocks in the design of molecular magnetic materials [5, 6].

Fifteen years later it can be seen from examination of the literature that, among
molecules or molecular assemblies relevant to molecular magnetism, those contain-
ing stable nitroxide free radicals are playing a particularly important role [1]. This
situation is the consequence of their ability to assemble as purely organic crystals or
to function as ligands towards metal ions. Thus, one understands the popularity of
nitroxides in magnetic engineering, because the design of magnetic materials takes
advantage of the flexibility of organic synthesis and of the diversity of magnetic
situations found in coordination compounds.

2.2 Nitroxide Free Radicals as Building Blocks
for Metal-containing Magnetic Species

Although nitroxides have been known for more than one hundred years [7], their
chemistry was deeply investigated only in the sixties and seventies. Several hundred
individual compounds characterized by the presence of at least one NO group have
been prepared; these are classified as members of several classes of compound,
depending on structural features related to stability [8-10].

As a general rule, the presence of protons in a position « to the oxyl group is the
cause of bimolecular disproportionation of nitroxides; therefore, stable nitroxides
are characterized by permethylated or aromatic substituents, or conjugated struc-
tures as shown in Fig. 1.
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Fig. 1. Examples of nitroxide ligands: (a) piperidinyl (commercially available); (b) nitronyl;
(c) imino; (d) and (e) aromatic polynitroxides.
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Remembering that magnetism is a bulk property (or at least a finite collection of
spin carriers), bridging ligands, such as nitronyl (b) and imino (c) nitroxides, and poly
nitroxides, where nitroxyl groups are m-substituents of a phenyl ring (d and e), are
particularly attractive. They all have several oxyl groups and unsaturated structures,
enabling correlation of the unpaired spin density over the different coordination
sites.

2.2.1 Electronic Structure

The magnetic orbital (semi-occupied molecular orbital) in nitroxides is well estab-
lished as having 7* symmetry, in agreement with elementary molecular orbital the-
ory [11]. Polarized neutron diffraction studies performed on nitronyl and imino
nitroxides confirm these expectations. The important point to keep in mind is that
both potential coordination sites (O,O in nitronyl and N,O in imino nitroxides) carry
large and positive spin densities [12].

As sketched for nitronyl nitroxides in Fig. 2, both sites of coordination are equiv-
alent; in particular they play the same role concerning overlap with d orbitals of
transition metal ions.

O @— Fig. 2. Sketch of the magnetic orbital in nitronyl nitroxides.
@}/O The sp? carbon atom carries a negative spin density. The
R methyl groups have been omitted.

2.2.2 Coordination Properties

The oxygen atom of the nitroxyl group has weak Lewis base properties and binds
only to electron-acceptor metal centers. This is why the metal centers are surrounded
by fluorinated electron-withdrawing ligands, e. g. hexafluoroacetylacetonato groups,
in most studies devoted to the coordination chemistry of nitroxides. Most of our
knowledge of the coordination behavior of the oxyl group comes from the pioneer-
ing work of Doedens who characterized structurally the first metal complexes of
simple piperidinyl nitroxides (Fig. 1a) [13, 14].

According to Lewis the oxyl group can be represented as a neutral form and
another form in which the oxygen atom carries a formal negative charge (Fig. 3).

~ ) @g 7

N—OD
N —
<4 0 -
Fig. 3. Lewis representations of the oxyl
a b group.
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Fig. 4. Expected modes of binding of nitronyl nitroxides to metal ions: (a) non-bridging;
(b) u-1,3 bridging; (c¢) w-1,1 bridging; (d) ©-1,1 and w-3,3 bridging.

It is clear that the unpaired electron is delocalized on both atoms but that com-
plexation can favor one of these limiting formulas. In Fig. 3b, taking into account
the coordination properties of nitrones or alkoxides, one expects that the oxygen
atom might function as a u-1,1 bridging group as sketched in Fig. 4 for nitronyl
nitroxides.

Although derivatives of metal-hexafluoroacetylacetonates usually correspond to
coordination mode a or b and are discrete or 1D complexes, a few nickel(II) and
cobalt(I) complexes with a u-1,1 oxyl bridge have been characterized, and a man-
ganese(Il) complex probably has a structure corresponding to mode d. In contrast
with nitronyl nitroxides, in all other nitroxides, e.g. piperidinyl nitroxides or the
triradicals described in Figs. 1d and le, the oxyl group is never pu-1,1 bridging. This
behavior must be related to steric crowding — in nitronyl and imino nitroxides one
position « to the oxyl groups is not fully substituted, as observed in piperidinyl ni-
troxides for example, and steric crowding depends on the substituent in position 2.

Steric crowding is one of the main features governing the coordination properties
of nitroxides. Obviously, for metal ions where a strong Jahn-Teller effect is operative
one expects that steric crowding will play a major role, because bulky ligands are
expected to be better accommodated in axial positions. The coordination geometry
thus results not only from the steric demand of the ligand but also from the nature
of the metal ions. Importantly, the coordination geometry will result in specific ori-
entations of magnetic orbitals and will determine the nature and the magnitude of
the magnetic interactions. Let us examine crude guidelines for designing complexes

[6].

2.2.21 Oxygen Coordination

It is convenient to consider metal ions as different as possible. For example, man-
ganese(II) which is highly isotropic and has five unpaired electrons is much different
from copper(II) which has a single unpaired electron and is subject to strong Jahn—
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Teller effect. For metal ions where numerous d orbitals are singly occupied, anyone
interested in magnetic properties need not care much about the coordination geom-
etry, because one at least of the metal magnetic orbitals will have the right symmetry
for overlapping with the ligand magnetic orbital. In contrast, for copper(II), overlap
with the unique half-filled d orbital depends on the axial or equatorial binding of
the nitroxide ligand.

It has been observed that the structure of the nitroxide ligand can play a funda-
mental role in two ways. Bulky substituents favor axial coordination of the nitroxyl
group in octahedral complexes because steric crowding is released; when the free
radical ligand carries another donor group, e. g. to bridge two metal ions, the binding
is also generally axial for reasons of steric crowding, at least when the metal center
carries hexafluoroacetylacetonato groups. In this situation, the next metal ion can
be regarded as a “bulky substituent”. This is the rule for nitronyl and imino ni-
troxides (two coordination sites), for which the expected (and generally observed at
room temperature) binding geometry in polynuclear derivatives is axial. In contrast,
in complexes of nitroxides which do not carry extra coordination sites and are not
sterically demanding the observed binding geometry is equatorial. In the absence
of reliable theoretical calculations it seems that the actual binding geometry is the
result of a delicate balance between electronic and steric factors.

Therefore, because of a delocalized structure, the presence of two coordination
sites and a steric demand which can be monitored through the bulkiness of the
substituent in position 2, the coordination behavior of nitronyl nitroxides can be
tuned to obtain specific complexes and, consequently, specific magnetic properties.

Considering first-row transition metal ions, coordination through the oxygen
atom (all nitroxides except imino nitroxides) generally occurs such that the lig-
and magnetic orbital strongly overlaps with the metal orbital directed along the
M-0 bond. This situation results in strong antiferromagnetic metal-ligand interac-
tion. Axial binding to an octahedral or square planar copper(II) complex, however,
makes the ligand (7*) and metal (d,>_,») magnetic orbitals orthogonal to each other.
Accordingly, the interaction is ferromagnetic. Many of these complexes have been
characterized in which the interaction can be as large as +100cm ™~ (H = —JS$;S5)
but, because the metal coordination sphere is often distorted, pseudo-orthogonality
leads to weaker values of 10-30cm™!. Ferromagnetic behavior is also observed in
a few Ni(II) complexes where accidental orthogonality also occurs.

2.2.2.2 Nitrogen Coordination

Coordination of nitrogen in imino nitroxides complexes occurs through the nitro-
gen lone pair which is in the plane of the imidazolidine ring and orthogonal to the
* magnetic orbital. In this situation overlap and antiferromagnetic behavior are
disfavored so that, roughly, the rule is opposite to that governing oxyl(oxygen) co-
ordination — most interactions are ferromagnetic. This is particularly true for Cu(II)
and Ni(IT) (high-spin) complexes, all of which are characterized by ferromagnetic
interactions. Interestingly, these interactions are large, 300-400 cm™~! in copper(IT)
complexes and >100cm™~! in nickel complexes.



46 2 Copper(IT) Nitroxide Molecular Spin-transition Complexes

Quantitatively, interactions are strong as expected for exchange coupled species
where the spin carriers are directly bound. Actually, metal-nitroxide species belong
to the only known system where exchange interactions spread over a energy range
of 1000cm ™! (=500 to +500) are observed.

In addition to variety in coordination mode, nature, and magnitude of exchange
interactions, one must consider the consequence of including donor atoms in sub-
stituents in position 2 of a nitroxide ligand; this leads to more possibilities for the
design of molecular magnetic species. In particular, this short account is devoted
to copper(II) complexes of nitronyl and imino nitroxides, in which the substituent
includes a nitrogen binding site in a non-chelating position for the oxyl group, which
have peculiar magnetic properties.

2.3 Molecular Spin Transition Species

The preceding section stressed the diverse structural and magnetic situations en-
countered in nitroxide coordination chemistry and in particular in copper(II) com-
plexes. As already mentioned, axial and equatorial binding which corresponds to
opposite interactions depend on several factors. Spin pairing is probably a driv-
ing force for equatorial binding which is counterbalanced by steric effects favoring
axial coordination. It is, therefore, not unexpected that, in complexes with a pecu-
liar structure, the energy gap between axial and equatorial coordination should be
very weak. As a consequence, these complexes would undergo conversion between
these two forms and between two types of magnetic behavior under an appropriate
perturbation.

Such behavior is, indeed, observed in copper(I) complexes with 3-pyridylni-
tronyl, 3-pyridylimino, and pyrazolyl nitroxides (Fig. 5).

These ligands are tridentate. Although nitrogen coordination should occur to any
metal center, binding of the oxyl group requires use of acceptor metal fragments such
as hexafluoroacetylacetonates (M(hfac),). Structurally, these complexes belong to
two classes.

2.3.1 Discrete Species

For LNPy and Llpy, depending upon the proportion of reactants, different com-
plexes are obtained for each ligand. Among these are tetranuclear species, the struc-
ture of which is represented in Fig. 6 [15, 16]. They correspond to full participation
of all coordination sites and have a cyclic structure including two intra-cyclic octa-
hedral and two extra-cyclic penta-coordinated copper ions.

The only significant difference between the complexes of the nitronyl and the
imino nitroxide resides in the environment of the extra-cyclic metal centers which
are square pyramidal in the former and trigonal bipyramidal (nitrogen coordination)
in the latter. Coordination features in both complexes are unexceptional, because
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Fig. 5. Non-chelating nitroxides for which spin-transition-like behavior has been character-

ized.

Ay

_-gﬂ\“l’ {3 1

L 1)
Vi

Qe

Fig. 6. Room temperature
structure of the tetranuclear
species [Cu(hfac);]4(LNPy)s,.
In the analogous complex de-
rived from the imino nitrox-
ide, [Cu(hfac);]4(LIPy);, the
extra-cyclic metal centers are
trigonal bipyramidal.
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similar arrangements are found for nitroxides carrying substituents of similar bulki-
ness, e. g. a phenyl group. In particular, the oxyl ligation to the intra-cyclic metal ion
is axial at room temperature in both complexes, as is usually observed for bis(oxyl)
bridging ligands. The presence of an additional binding site in the pyridyl fragment
is, however, responsible for the formation of the cyclic structure observed.

The magnetic properties of both complexes are displayed in Fig. 7 as the tem-
perature dependence of x\T.

One observes two types of Curie behavior, one at high temperature (>120K)
corresponding to six independent S = 1/2 spins and another corresponding to two
independent § = 1/2 spins below 90 K. Keeping in mind that, at room tempera-
ture, the coordination of all oxyl groups is axial and that such geometry results in
a weak ferromagnetic interaction, the independence of the spins at high temper-
ature is straightforward to understand. The apparent disappearance of four spins
below 120K is explained by a crystal structure at 50K which shows that the axial
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oxyl coordination to the intra-cyclic copper ion has switched to equatorial at low
temperature. In this new geometry the interaction of the nitroxide ligand with the
metal center is strongly antiferromagnetic, so the magnetic behavior corresponds
to the two remaining uncoupled extra-cyclic copper(II) ions.

The analogous complex of the imino nitroxide has more complicated features.
Because crystal breaking precludes the determination of the structure at low tem-
perature, understanding of these features is more speculative. One observes at ca
70 K, however, a decrease of xuT which also corresponds to the pairing of four spins.
The high-temperature behavior is far more complicated than that of the nitronyl ni-
troxide analog — because nitrogen bonding of the imino nitroxide to the extra-cyclic
metal is ferromagnetic and large, the room temperature value of x)T is larger than
that expected for independent spins and increases as the temperature decreases.
There is then a transition to a xuT value corresponding to independent spins and
then a new smooth increase down to 70 K. This second transition has been tenta-
tively interpreted as a rearrangement of the extra-cyclic copper(I) coordination
sphere from trigonal bipyramidal to square pyramidal. This switch occurs with a
change of the nitrogen coordination from equatorial (short binding distance and
large ferromagnetic coupling) to axial (large binding distance and weaker ferro-
magnetic coupling).

Another difference between the magnetic behavior of the two complexes has
been observed. Whereas in the former the low-temperature transition occurs with-
out hysteresis, in the latter both transitions have rather large hysteresis loops. This is
in agreement with extensive rearrangement of the extra-cyclic metal center which,
as shown by the room-temperature crystal structure, should affect neighboring
molecules and occur cooperatively.

These compounds were the first examples of a new type of spin-transition be-
havior. It has been called molecular spin-transition because, in contrast with con-
ventional Fe(IT) or cobalt(II) spin-transition species, in these copper(II)-nitroxide
complexes the change in spin multiplicity involves several open-shell fragments.
Phenomenologically, however, structural and magnetic aspects of the changes are
very similar in both.

Although understanding of the structural features involved in the onset of the
transition is poor, it is apparent that crystal packing is of utmost importance. In-
deed, [Cu(hfac),]4(LIPy),] crystallizes as two polymorphs and the molecular spin
transition is observed in one only.

Both compounds have a cyclic structure but it was unknown whether 1D or
2D compounds could undergo such a conversion between two different magnetic
and structural states. Attempts have been made using the 5-pyrimidyl-substituted
nitronyl nitroxide (Fig. 5, LNPim), a tetradentate ligand, which gives a 1D structure
in which similar cyclic fragments are linked by copper(II) ions through the second
m-nitrogen of the pyrimidyl ring. In this compound, however, equatorial oxygen
binding to the intra-cyclic metal is observed at room temperature; on heating no
transition is observed before decomposition. Nevertheless, copper(Il) derivatives
of LnpyrR are 1D species with even richer magnetic behavior.
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2.3.2 One-dimensional Species

These are derivatives of nitronyl nitroxides whose spin-labeled heterocycle contains
a pyrazole fragment as substituents which may be easily modified [17]. These poly-
functional nitroxides react with transition metal ions, forming complexes differing
in structure and composition. In our study on Cu(hfac), complexes with LNPyrR we
revealed a family of chain heterospin complexes with spin-crossover-like behavior
at relatively high temperatures (130-230 K) [18-20]. Crystal cracking occurred for
only one of the complexes (with LNPyrMe); it occurred in the region of the transi-
tion temperature. For all other heterospin complexes, structure determinations were
successfully performed before and after the spin transition. This enabled tracing of
the structural dynamics in the systems. Whereas repeated cooling/heating cycles led
to considerable changes in unit-cell volumes, the cell contraction/expansion was gen-
erally reversible and X-ray analyses did not reveal any changes in crystal quality. For
this reason we called these crystals “breathing crystals”. Spin-crossover-like behav-
ior was found to be intrinsic to polymer chain compounds with a “head-to-head” or
“head-to-tail” motif. Unexpectedly, only half the total number of spins participated
in the spin-crossover-like effect. As mentioned above, for classical spin crossover
compounds, the magnetic moment decreases (gradually, abruptly, stepwise, or with
hysteresis) with temperature and usually the spins of all paramagnetic centers par-
ticipate in this process [21]. In our work participation of only half the total number
of spins in the spin transition needed a reasonable explanation.

Reactions of Cu(hfac), with LNPyrR in non-polar solvents (hexane or hep-
tane) in a 1:1 ratio lead to chain polymer complexes Cu(hfac);(LNPyrR) with
a “head-to-head” (Cu(hfac);LNPyrEt and Cu(hfac);LNPyrPr) or “head-to-tail”
(Cu(hfac);LNPyrMe and [(Cu(hfac),),LNPyrMe , LNPyrEt]) motif. Of particular
interest are the magneto-structural correlations in these complexes. It is reason-
able to start the discussion with Cu(hfac),LNPyrEt. The structure of the “head-to-
head” chain in Cu(hfac), LNPyrEt is shown in Fig. 8. The symmetry of the structure
does not change when the temperature is reduced (Table 1). The most remarkable

® C
" Fig. 8. The structure of the “head-to-head” chain in Cu(hfac),NITPyrEt

at 293 K; the methyl and trifluoromethyl groups and the hydrogen atoms
e N omitted for clarity.
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structural feature at 293 K is very short Cu-O and Cu-N axial distances —2.237 and
2.375 A, respectively, in the crystallographically independent centrosymmetric frag-
ments CuOg and CuO4N; (Table 2). As the temperature decreases the Cu-Oy axial
distances in the CuOg fragments gradually increase to 2.260 at 188 K and to 2.281 A
at 115K (Table 2). The Cu—Oy,, distances in the CuOg fragments also change. As
the axial distances along the O —Cu—Op axis are lengthened, the Cu-Oyg,. bonds
along one of the Opgc—Cu—Opy,e directions are shortened by a comparable value
(~0.043 A). The shortening of the Cu—Opg, distances from 2.028 to 1.985 A leads
to equalization of all Cu—Opg,c bond lengths in the CuOg fragments. At 188K, the
long axis of the Cu bipyramid in the CuO4N; fragment is shifted to another posi-
tion; the coordinated N atoms of the pyrazole heterocycles pass to the equatorial
position (dcun = 2.375-2.079 A), replacing two Opg,e atoms to the axial positions
(dewo = 1.996-2.269 A) (Table 2). As the temperature decreases further, the Cu-—
N distances in the CuO4N; fragments shorten whereas the Cu-Or, distances in the
CuOg fragments lengthen. It is, in general, reasonable to consider that the structural
motion occurring in solid Cu(hfac), LNPyrEt at reduced temperature is localized
within the CuOg and CuO4N; fragments, because the values of the angles and dis-
tances in the coordinated hfac-anions and LNPyrEt remain the same, within exper-
imental error. For the coordinated LNPyrEt these values are, moreover, almost the
same as those for the free ligand.

Figure 9 shows the temperature-dependence of the effective magnetic moment
of Cu(hfac),LNPyrEt. At room temperature the value of uefr is close to the theo-
retical value of 2.45 up. for a system of non-interacting spins of Cu?>* and nitrox-
ide based on the {Cu(hfac), LNPyrEt} fragment. When the sample is cooled from
room temperature to 225K, pesr gradually decreases to 2.4 ug, thus manifesting
non-trivial behavior. In all previously reported examples with the nitroxyl group
coordinated axially to the Cu?* ion, pes increased at low temperatures as a result
of a ferromagnetic exchange interaction. For the >N-*O-Cu>*-0°*-N< exchange
cluster with rather long Cu-O distances (>2.4A) and an axially coordinated ni-
troxyl group the ferromagnetic exchange interaction has received a reliable theo-
retical explanation [15, 22]. It was noted, however, that shortening of the Cu-Oge_N
axial distances can lead to a situation where the antiferromagnetic exchange inter-
action prevails [22]. The unprecedented short Cu-Op axial distance (2.237 A) in
the CuOg octahedron is the reason for the predominant antiferromagnetic inter-
action in the >N—-*O-Cu?*-0°*-N< exchange clusters in solid Cu(hfac), LNPyrEt
over the temperature range 225-300 K. It is worthy of note that the exchange in-
teraction is very sensitive to variation of the Cu-Op, distance. Low-temperature
structural studies on Cu(hfac), LNPyrEt showed that at 188 K the Cu-Oy distance
lengthened by no more than ~0.02 A (Table 2) but that the antiferromagnetic in-
teraction in the >N-*O-Cu?>"—O°*-N< exchange cluster vanished completely. The
transition occurred abruptly at 220K (Fig. 9). As the temperature decreased, the
Cu-Oge-_N distance continued to increase, although the exchange interaction in the
>N-*0-Cu?t-0O°*-N< cluster remained ferromagnetic, because of which pegt in-
creased until the temperature of ~25K was reached. Below this temperature, pef
started to decrease rapidly as a result of the antiferromagnetic intermolecular in-
teraction. The exchange parameters were estimated for Cu(hfac),LNPyrEt in the
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Table 3. Spin-crossover transition temperatures and optimum parameters for the theoretical
curves of perr(T) for the chain compounds.

T (K) gcu J (ecm™1) nJ (cm™1)
Cu(hfac),LMe¢ 146 213 +£0.03 88+02 —0.11 £ 0.02
Cu(hfac), LF" 220 200+ 001 26+6 —0.45 + 0.05
Cu(hfac),L*" 226 2.09 +£0.02 —-100£2 —0.39 £ 0.03
Cup(hfac)sLMeLE" 131 2124+£0.03 87+06 —0.26 £+ 0.01

temperature range 2-175 K by use of the cluster approximation and an isotropic spin
Hamiltonian by the procedure suggested elsewhere [23]. Neglecting the relatively
weak copper-nitroxyl exchange interaction across the paramagnetic ligand hetero-
cycles, one can choose an exchange cluster {Cu?*... >N-*O-Cu?t-O°*-N<}, where
the Cu?* ions belong to the CuO4N; and CuOg groups. The resulting optimum val-
ues of the g factor, exchange interaction (J) in the >N—*O-Cu?T—O°*-N< fragment,
and intermolecular interaction (nJ) are listed in Table 3. The calculated curve is
displayed as solid line in Fig. 9. In the approximation used nJ is actually a value
averaged over the intermolecular interactions and the copper-nitroxyl interactions
across the paramagnetic ligand heterocycles.

The motif of the Cu(hfac), LNPyrPr polymer chain is identical (“head-to-head”)
to that of Cu(hfac),LNPyrEt (Fig. 8). The low-temperature bond length varia-
tion in the alternate CuOg and CuO4N; coordination sites differs essentially from
that of Cu(hfac),LNPyrEt, however. As the temperature decreases all bonds of
the copper atoms with the donor atoms of the bridging LNPyrPr ligand (dcu—o
and dcy—N) are shortened (Table 2). The shortening is more pronounced for Cu—
O, than for Cu—Np. It is reasonable to assume that the shortening of the Cu—-Np
bonds in Cu(hfac); LNPyrPr is hindered by the propyl substituent, which is more
bulky than ethyl in Cu(hfac), LNPyrEt. When a single crystal of Cu(hfac), LNPyrPr
was cooled to 203 K, the distances between the copper atom and the coordinated
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nitroxyl oxygens in the CuOg groups decreased by 0.173 + 0.008 A, and by an-
other 0.126 + 0.007 A at 115K, whereas the distances between the copper atom
and the coordinated nitrogens of the pyrazole heterocycles in the CuO4N; frag-
ments decreased by only 0.069+0.010 A at 203 K and by another 0.052+0.008 A at
115 K. Whereas the Cu-Oy, distances in the CuOg fragments are significantly short-
ened, the Cu—Oyy,. distances in the CuOg groups along one of the Opgyc—Cu—Ohpgac
“axes” are lengthened by 0.144 and 0.155 + 0.010 A at 203K and by another 0.144
and 0.133 +0.008 A at 115K. The process that actually takes place in Jahn-Teller-
distorted CuQg octahedral groups is replacement of the Op —Cu-Or “octahedron
axis”, which is elongated at room temperature and shortened by 0.598 4 0.008 A
on cooling, by the Opgc—Cu—Opgye “axis”, which is elongated at low temperature
and lengthened by 0.576 + 0.008 A on cooling. This is vital to further discussion
of the magnetic properties of Cu(hfac),LNPyrPr. The observed low-temperature
rearrangement of the CuOg coordination fragments reflects the gradual shift of the
nitroxyl oxygens from the axial to equatorial positions; this leads to strong antifer-
romagnetic exchange interactions in the >N—*O-Cu?T—O*-N< exchange clusters.
The pes(T) curve, which smoothly decayed with temperature, falls abruptly below
230K to a plateau at uer ~ 1.8 up (Fig. 10), indicating that the antiferromagnetic
interactions increase sharply in the clusters. This fall in pefr to 1.8 up shows that
half of the total number of spins “vanish” in Cu(hfac); LNPyrPr when the sam-
ple is cooled to S0K. This is fully consistent with the decrease in the spin of the
>N-*0-Cu?t-0°*-N< exchange cluster to S = 1/2 as a result of increased antifer-
romagnetic interaction. The exchange integral in the >N-*O-Cu**-O°*-N< clus-
ter was estimated at —100 cm ™" for the low-temperature range (Table 3; calculated
curve shown as solid line in Fig. 10). Because of the high value of antiferromagnetic
exchange, at T < 50K the magnetic moment of Cu(hfac);LNPyrPr is the sum of
the residual spins of the exchange cluster and the Cu?* ions of the CuO4N, frag-
ments. As for Cu(hfac),LNPyrEt, u.g decreases in the range 300-250K (Fig. 3).
Consequently, the distorted octahedral CuOg fragments, and the analogous units

271
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1.5 Fig. 10. Dependence ett(T) for
Cu(hfac);NITPyrPr. The solid line is the

theoretical curve described in the text.
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in Cu(hfac); LNPyrEt, are responsible for the predominant antiferromagnetic ex-
change in the >N-*O-Cu?>"-0O°*-N< clusters for the axially coordinated nitroxyl
oxygens. As in Cu(hfac), LNPyrEt, the Cu-Oy distances are short (2.317 A) at room
temperature. These distances are, moreover, shortened to 2.144 A when the temper-
ature is reduced to 203 K. A structural study on Cu(hfac), LNPyrPr at 203 K clearly
demonstrated a tendency of the coordinated nitroxyl oxygens in the CuOg units to
pass from the axial to equatorial positions (Table 2). This structural motion in the
CuOg units is the reason for the halving of p.gr starting from 50K.

It is worth noting that at 203 K the symmetry of the structure changes (Table 1).
Structural solution for Cu(hfac), LNPyrPr at this temperature enabled us to record
the formation of flattened CuOg octahedra in the course of the transition, which is a
very rare occurrence for Cu?t complexes (Cu-Oy, 2.143 and 2.144 A, Cu-Opgyc 2.119,
2.130, 1.958, and 1.966 A; Table 2). At 115K, the initial symmetry of the structure
was restored (Table 1).

Whereas for Cu(hfac),LNPyrPr u.g decreases smoothly with temperature, for
Cu(hfac),LNPyrMe the u.g(T) curve reveals the presence of sharp transitions at
141 (cooling) and 146 (heating) K (Fig. 11). The only feature common to the mag-
netic behavior of the two compounds is that u.f is halved, indicating that half of
the total number of spins have “vanished”. At room temperature peff corresponds
to two weakly coupled spins (S = 1/2); below 140K it is close to the value typical
for one spin (S = 1/2) per Cu(hfac);LNPyrMe fragment. As the temperature de-
creases, [eff gradually increases over the whole temperature range 2-300 K, which
is indirect evidence of the axial coordination of the nitroxyl O atoms to the Cu?* ion
at rather large Cu-Or, distances. The experimental u.(T) dependence was used
to estimate the exchange integral. The experimental points in the transition region
were excluded, and the values of g below the transition temperature were pre-
liminarily re-normalized to the high-temperature range. As a result, the experiment
with the optimum parameters presented in Table 3 was well approximated by Cu?*—
O°*-N< as an isolated exchange cluster model. The theoretical curve is presented in
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Fig. 11 as a solid line. The measurement cycle fulfilled at temperatures from those
of liquid helium to room temperature and back was repeated many times for the
same Cu(hfac),LNPyrMe sample, and for samples obtained in different syntheses.
The pes(T) dependence was always reproduced with a narrow hysteresis loop of
5K (Fig. 11, insert). The presence of a hysteresis is also confirmed by the differential
curves of specific heat variation for the Cu(hfac),LNPyrMe sample (Fig. 12).
Structural study of Cu(hfac);LNPyrMe at 293K has revealed a chain poly-
mer structure of the compound (Fig. 13). The chain motif, however, differs es-
sentially from the chain motifs of Cu(hfac),LNPyrEt and Cu(hfac);LNPyrPr. In
Cu(hfac), LNPyrMe the chains are arranged on the basis of the “head-to-tail” prin-
ciple. The copper atom is surrounded by two hfac ligands with short Cu—O distances
in the equatorial plane and by the NO oxygen and pyrazole heterocycle nitrogen,
belonging to different bridging LNPyrMe, in the axial positions. The Cu-Oy, dis-
tance to the axial nitroxyl oxygen is rather long (2.484 A, Table 2); this explains the
predominance of the ferromagnetic exchange interaction in the Cu?*-Oe-N< ex-

o

¥ s | L
® Cu . . ..
Fig. 13. The structure of the “head-to-tail” chain in Cu(hfac),NITPyrMe
(6]
°

at 293 K; methyl groups on the 2-imidazoline heterocycle, trifluoromethyl
e N groups, and hydrogen atoms have been omitted for clarity.
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change clusters. The shortest distances between the non-coordinated NO oxygens
are long, 4.104 A, and the shortest interchain F...F contacts are at least 2.922 A.
Consequently, the exchange interactions between the paramagnetic centers are con-
centrated in the Cu>*-O®*~N< exchange clusters. This was taken into account when
choosing an isolated exchange cluster model for fitting the experimental pr(T) de-
pendence.

Because all CuOsN coordination groups are identical at room temperature, the
“disappearance” of only half of the total number of spins might not be explained
without structural solution of the low-temperature phase (at T < 140K). When
a single crystal of Cu(hfac);LNPyrMe was cooled, however, its quality deterio-
rated sharply and so was no longer suitable for X-ray diffraction analysis. Therefore
full structure determination below the transition temperature was not performed.
We simply found that on cooling the unit cell symmetry decreased to triclinic and
the unit cell volume was reduced by ~300 A3. The nature of the magnetic spin
transition in Cu(hfac); LNPyrMe was understood by investigating the mixed-ligand
complex Cup(hfac)s(LNPyrMe,LNPyrEt), readily isolated as an individual com-
pound from a hexane solution with equimolar amounts of Cu(hfac), LNPyrMe and
Cu(hfac), LNPyrEt and characterized by the same shape of the u¢(T) dependence
(Fig. 14).

The structure of Cup(hfac)4sLNPyrMeLNPyrEt is similar to that of
Cu(hfac);LNPyrMe. It is also built from infinite “head-to-tail” chains. Starting
from room temperature, however, it contains two crystallographically independent
copper atoms corresponding to CuOsN alternate coordination units of two types.
One has noticeably shorter Co—Or, and Cu-Np, axial distances (Table 2). The cop-
per atoms of these units form a considerably smaller angle (CuON 130.4°) with the
coordinated nitroxyl fragment. At low temperature the Or, and N1, donor atoms of
these units pass to the equatorial position, whereas the axial positions are occupied
by two oxygen atoms of the hfac ligands. When the Cu;(hfac)4(LNPyrMeLNPyrELt)
crystal is cooled to 115K, the Cu-O¢ distances decrease by 0.41 and the Cu-N
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distances by 0.27 A. These are certainly substantial changes, the largest among all
structural rearrangements occurring in the crystal on cooling. In CuOsN units of
the other type the Cu—-O¢ distances are shortened to a lesser extent (by 0.077 A)
and the Cu-Np distances remain almost the same, within experimental error,
as shown by a single-crystal study of Cup(hfac)s(LNPyrMeLNPyrEt) at 115K.
The Or and Ni, atoms stay in the axial positions and all equatorial positions
are occupied by the Oypg atoms, for which Cu—Opg,e < 2 A. Another motion
recorded in the crystal on cooling is a change in the angle between the plane of
the pyrazole ring and the plane of the CN, atoms of the O*-N-C=N-0O fragment
of the imidazoline heterocycle. At room temperature the angle is the same (7.5°),
within experimental error, for all bridging L. At 115K the angle decreases for half
of the total number of the bridging L, containing the O atoms that are shifted from
the axial to equatorial position in the coordination polyhedron; for the other half,
which contain the O atoms remaining in the axial positions, the angle increases
(Table 2). For the latter ligands, moreover, the N-O bond lengths are equalized to
1.286 A whereas for the former both N-O distances in the O*~N—C=N-O fragment
increase. Thus at 115K the alternate bridging L, and the alternate coordination
polyhedra CuOsN, become non-equivalent. The only point which was not clarified
during the crystal solution for Cuy(hfac)4(LNPyrMe, LNPyrEt) was — which of the
ligands, LNPyrMe or LNPyrEt, undergoes these changes? For structural solution
the methyl group in the ethyl fragment was taken with a weight of 0.5 for both
crystallographically independent L.

The above structural changes occurring in Cup(hfac)s(LNPyrMe,LNPyrEt) crys-
tals in the range from 293 to 115K make it possible to readily explain the form
of the experimental p.f(T) dependence for this compound (Fig. 14). Because the
polymer chains have a “head-to-tail” motif, the exchange interactions between the
paramagnetic centers in the Cu?*—O°*~N< exchange clusters prevail as they do in
Cu(hfac); LNPyrMe. Because the oxygen atoms of the nitroxyl groups in the CuOsN
coordination sites are axial at room temperature, the exchange interactions in the
Cu’*—O°*-N< clusters are ferromagnetic (Table 3 gives the estimated exchange pa-
rameters for Cuy(hfac)s(LNPyrMeLNPyrEt) and Fig. 14 shows the theoretical curve
(solid line)), leading to a smooth increase in ug in the high-temperature phase in
the range from 300 to 170 K. The same is observed for the low-temperature phase
in the range from 80 to 10 K. As for Cu(hfac),LNPyrMe, in the transition range
(170-180 K), the number of spins decreases by half. This is caused by the shift of the
coordinated Op, atoms of the nitroxyl groups in half of the total number of CuOsN
units from the axial to equatorial position and, as a consequence, by the change of
the exchange interaction in the Cu**—O®*-N< clusters from weak ferromagnetic to
strong antiferromagnetic, leading to spin compensation in these units. Because both
Cu(hfac), LNPyrMe and Cu;(hfac)s(LNPyrMeLNPyrEt) have the same (“head-to-
tail”) motif of polymer chains and the same shape of the u.f(7') dependence, for the
low-temperature phase of Cu(hfac),LNPyrMe one can admit an analogous struc-
tural rearrangement, leading to two structurally diverse coordination sites CuOsN
with essentially different exchange interactions in the Cu’*—O°*~N< clusters.

Thus, a family of heterospin complexes of Cu(hfac), with pyrazole-substituted
nitronyl nitroxides has been found for which spin-crossover phenomena are ob-
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served in the solid state. Direct X-ray diffraction studies of the single crystals of the
complexes at different temperatures have revealed the structural rearrangements
leading to these phenomena; these are crucial to understanding the magnetic prop-
erties. Experimental evidence has been obtained to support the assumption that
the coordinated nitroxyl oxygens pass from axial to equatorial positions. The tran-
sition is accompanied by a change of the exchange interaction in the Cu**-O*-N<
clusters from weak ferromagnetic for the axial coordination of the nitroxyl group
(dcu_o > 2.4 A) to strong antiferromagnetic for the equatorial coordination of the
nitroxyl oxygen (dcuo =~ 2A), leading to spin compensation between the Cu?*
ion and the nitroxyl fragment. This rearrangement is dominated by the Jahn-Teller
nature of the Cu?t ion, because of which the coordination site is constructed as an
elongated octahedron. The motif of the polymer chain (“head-to-tail” or “head-to-
head”) is unimportant for initiation of the thermally induced spin-crossover transi-
tions in the systems. In both the shortening of the Cu-O distance in the Cu**—-O°—
N< exchange cluster as a result of the shift of the coordinated oxygen atom from
the axial to equatorial position leads to halving of uefr (or to halving of the mag-
netic susceptibility) as recorded for Cu(hfac); LNPyrPr, Cu(hfac); LNPyrMe, and
Cu; (hfac)s(LNPyrMeLNPyrEt).

Rarely, it seems, the Cu-O axial distances in the Cu>*-O°*-N< exchange clus-
ter in the octahedron around the central atom are rather short (2.2-2.35A) at
room temperature. This leads to predominant antiferromagnetic exchange in-
teractions, despite the axial coordination in the Cu’*—O°*~N< clusters. At high
temperatures, therefore, uesr decreases for compounds (Cu(hfac),LNPyrEt and
Cu(hfac), LNPyrPr) with this structural feature. Still more exotic is the situation
when the structural rearrangement at the magnetic transition temperature leads to
a lengthening of Cu-O distances in the >N-*O-Cu’*-0O°*-N< exchange cluster,
resulting in a shift of exchange from antiferromagnetic to ferromagnetic. Yet these
coordination site dynamics are possible; we observed them for Cu(hfac), LNPyrEt.
It is reasonable to believe that a structural rearrangement of this type occurred in
the heterospin chains studied by Gatteschi et al. [24].

At low temperature for all the compounds under study we observed a consider-
able decrease (by 5-6%) in the unit cell volume (Table 1). The absolute value of the
decrease was large (up to 300 A) in accordance with the decrease in the size of the
unit cell. The greatest change was observed in the directions of infinite chains along
which shortening of the Cu. .. Cu distances was most substantial. The least amount of
compression or even lengthening at low temperatures (e. g. for Cu(hfac), LNPyrPr)
was observed in the direction along which the Cu—Opyg,e bonds lengthened. The
crystals under study have different mechanical stability at low temperature above
the spin-crossover transition point. The single crystals of Cu(hfac),LNPyrMe gen-
erally cracked. The quality of the single crystals of Cuy(hfac)4(LNPyrMeLNPyrEt)
deteriorated considerably in the course of cooling and during the low-temperature
X-ray experiment; the peak profiles of single-crystal reflections broadened and were
not restored in their previous form at elevated temperature. The single crystals of
Cu(hfac),LNPyrEt and Cu(hfac),LNPyrPr with a polymer chain “head-to-head”
motif were described as “breathing” (during the cooling/heating cycles); after their
cooling followed by an X-ray structural analysis and heating to room tempera-
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ture the peak widths of their reflections were completely restored. The fact that
Cu(hfac), LNPyrEt and Cu(hfac), LNPyrPr single crystals as macro-objects can un-
dergo drastic reversible compression or expansion is another peculiarity of the het-
erospin compounds under discussion.

2.4 Conclusion

This short account illustrates the exceptional potential of nitronyl and imino nitrox-
ides in the design of molecule-based magnetic materials. The fundamental bridg-
ing property of these ligands enables the building of extended structures in which
one can “play” with the magnetic orbitals. But, importantly, the role of the sub-
stituent can be optimized to obtain specific structural arrangements and specific
magnetic properties. Thus, it is shown how nitrogen containing non-chelating sub-
stituents might afford discrete cyclic or 1D structures depending on the nature of
the heterocycle fragment. One should notice that these structural differences are
the consequence of slight differences in the orientation of nitrogen coordination. In
1D compounds structural variety is augmented by the possibilities of head-to-head
or head-to-tail coordination.

Such structural variety is reflected in magnetic properties. For copper(Il) com-
plexes, in which the Jahn-Teller effect operates, oxyl coordination can result in ferro-
or antiferromagnetic behavior. Owing to the plasticity of the coordination sphere,
moreover, a complex might convert between these two types of behavior as a result
of a perturbation; this is a new family of “spin-crossover species”.

Heterospin systems based on Cu(Il) complexes with nitroxides are extremely
interesting for performing detailed studies of a variety of effects associated with
spin-crossover phenomena. Whereas few heterospin complexes with these effects
have been found, magnetic transition regions were detected within a wide temper-
ature range. For compounds described here this range is 30-250 K. The potential
upper limit for the temperature of the spin-crossover-like phenomena generally ac-
cessible for such complexes is confined to the decomposition temperature, which is
roughly estimated at 350400 K. As for classical spin-crossover complexes, investi-
gation of the relationship between the structural motion and the magnetic property
variation might provide unique information for further quantum chemical analy-
ses of the electronic structure of the exchange clusters. A valuable characteristic
of heterospin complexes capable of spin-crossover transitions is their easy prepara-
tion as high-quality single crystals with mechanical stability over a wide temperature
range. The single crystals are rich in easily functionalizable paramagnetic ligands.
This opens up prospects of detailed rationalization of all atomic motion in the space
of single crystals (i. e. structural dynamics in the range of phase transition) for de-
termination of factors governing the form of the w.s(7) dependence, and for selec-
tive modification of magnetic transition characteristics by preliminary design of the
paramagnetic ligand of desired structure. Additional possibilities for design of such
complexes are afforded by solid solutions such as Cuy(hfac)s(LNPyrMe LNPyrEt).
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Also, it seems quite feasible to determine the structural properties responsible for
the mechanical instability which sometimes arises in crystals cooled below the spin-
crossover transition temperature.

In our opinion, the exceptional ease of modification of the substituent makes
these spin transition compounds more attractive than the classical compounds based
on Fe or Co metal ions. In particular, use of chiral nitroxide ligands provides a unique
opportunity to include optical properties.
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3 Theoretical Study of the Electronic Structure and
Magnetic Interactions in Purely Organic Nitronyl
Nitroxide Crystals

Juan J. Novoa, Pilar Lafuente, Mercé Deumal, and Fernando Mota

3.1 Introduction

The nitronyl nitroxide radicals are a family of organic radicals giving rise to many
purely organic crystals with magnetic properties, among them bulk ferromagnets [1].
Their general structure, depicted in Fig. 1, is a five-membered ring in which two NO
radicals are linked to a sp? carbon and to a R group, where R is a substituent, which
at its simplest is H, but can be a variety of groups including highly functionalized
aromatic rings (Figs. 2 and 3). Each NO group is also linked to a sp® carbon. These
carbon atoms form a C—C bond with each other and each has two methyl groups
linked to it.

The magnetic properties of the purely organic crystals obtained from crystalliza-
tion of the nitronyl nitroxide radicals change with the substituent. Figure 2 includes
some examples of substituents the crystals of which have dominant ferromagnetic
properties; examples with antiferromagnetic properties are depicted in Fig. 3 [2].
Besides the radical, the magnetic properties of the purely organic crystals grown
for a given radical also depend on the polymorphic phase in which the crystal is
packed. This is a clear indication of the dependence of the magnetic intermolecular
interaction on the geometry of the crystal packing, i. e. intermolecular magnetic in-
teractions in nitronyl nitroxides depend on the relative orientation of the adjacent
radicals. Consequently, the rational design of purely organic crystals with dominant

+
N\ /N
C——C Fig. 1. General chemical structure of the members of the
\\s" \ ;\ nitronyl nitroxide family of radicals. R is any substituent
CH; E CH; (examples of substituents furnishing crystals with dominant
CH; CH, ferro or antiferromagnetism are given in Figs. 2 and 3).
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Fig. 2. Examples of substituents R for nitronyl nitroxides the crystals of which have domi-
nant ferromagnetic interactions. Below each structure we have indicated the refcode which
identifies the crystal in the Cambridge Crystallographic Database. When the crystal has not
been deposited in this database we have assigned to that structure an internal name which
begins with zero (details of the structures and the selection process are given elsewhere [2]).

ferro or antiferromagnetic interactions will be only possible when one has learned
how to control the way the crystals pack. This is a new branch of the supramolec-
ular chemistry called crystal engineering, which will not be treated here, despite
its intrinsic interest to the field. Instead the interested reader is directed to appro-
priate publications describing general knowledge in that field [3], the polymorphic
problem [4], and the possibility of predicting crystal packing from molecular struc-
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Fig. 3. As for Fig. 2, but for the substituents which give rise to crystals with dominant
antiferromagnetic interactions.

ture [5]. The crystal packing polymorphs of the simplest nitronyl nitroxide (the H-
substituted species) has been extensively studied [6], and many polymorphs were
found, among them those known experimentally. Finally, methods have been de-
veloped to enable the rationalization of theoretically predicted or experimentally
observed crystal packing, and good results have been obtained when the methods
were applied to the packing of many purely organic nitronyl nitroxides [7].
Given the large number of purely organic nitronyl nitroxide crystals with well
characterized structural and magnetic properties, we have selected this class of rad-
ical as prototypical for the study of the microscopic properties of the intermolecular
magnetic interaction. This kind of interaction, also called “through-space”, is differ-
ent from the “through-bond” interaction found in organometallic and coordination
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compounds, in which the magnetic centers are the metallic atoms (sometimes with
contributions from other atoms), and magnetic interaction is made possible by the
bonds that the non-metallic ligands create between the metallic centers. We should
point out that there have also been attempts to generate through-bond magnetism
in purely organic systems, by following the so called polymeric approach. In this
case, the magnetic centers would be organic radicals, which after a polymerization
process would be linked by covalent bonds, thus enabling the existence of though-
bond magnetic interactions between adjacent radicals. Until now this approach has
not succeed in achieving its final goal, although it has produced a variety of high-spin
oligomers [8].

Centering our attention on through-space magnetism, the view is far from clear
in many directions. From the quantum chemical point of view the origin of this in-
teraction is associated with the direct overlap of the orbitals of the adjacent radicals
involved in the interaction, although some experimental observations have been at-
tributed to the so-called dipolar interaction, in particular to the cooperative effect of
the collective dipolar interactions in layered magnets [9]. There is, however, no well
founded microscopic theoretical treatment capable of correlating the intermolecu-
lar geometry of a pair of radicals with their net magnetic behavior. As we will show
later, the most popular intermolecular mechanism yet, the so called McConnell-1
proposal [10], has a variety of weak points and failures when used to rationalize the
experimental properties of some crystals. First, it was designed specifically for 7—m
interactions, although it is commonly used for other types of interaction. Second,
the value of the J;; integrals, an important element of the McConnell-I proposal,
is not normally taken into consideration, and this will give rise to serious errors,
as we will discuss later. Given this situation, one can perform quantum mechan-
ical ab-initio computations on model systems to obtain the value of the low-high
spin energy separation, as a way of obtaining information about the nature of the
through-space magnetic interaction. In the rest of this chapter we will present re-
sults from these studies that give us insight into the nature and properties of the
through-space magnetic interaction.

3.2 Electronic Structure of Nitronyl Nitroxide Radicals

3.2.1 Fundamentals

Before discussing the electronic structure of these radicals, discussion of the method-
ology required to study the electronic properties of these radicals is required. We
will do so in a descriptive manner and focus on problems found in the application
of these methods to the study of nitronyl nitroxide radicals, omitting from this pre-
sentation unnecessary details of the methods; these are described in the original
work, to which the reader is referred.

The description of a radical by means of ab-initio methods requires careful choice
of the method to use. For such a task one must have a qualitative knowledge of
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the types of interaction present in the electronic structure of the compound being
described. These principles can be obtained by following an analysis such as that
presented in the next few paragraphs for the hydro-nitronyl nitroxide (HNN) rad-
ical, the simplest member of the nitronyl nitroxide family, in which R = H. This
radical has a five membered ring with two NO groups, two tetracoordinated C(sp>)
atoms, each with two methyl groups attached to them, and a tricoordinated C(sp?)
atom.

The electronic structure of this molecule can be rationalized by looking at the
electronic structure of the constituting groups, and then at the ways these groups are
linked. The structure of each of the groups present in the HNN radical is presented
in valence bond (VB) terminology in the diagrams of Fig. 4. Thus, for instance, the
C(sp?) atom forms three bonds (with the H atom, and the nearby two N atoms).
Each of these bonds involves a pair of electrons, one from each of the atoms of
the bond. The electrons of this pair are coupled into a closed-shell singlet (i.e., the
two are in the same orbital, one with spin « and the other with spin 8, graphically
represented as upwards and downwards arrows). A C(sp?) atom has four valence
electrons and, given its topology, they must be placed among the three sp? hybrids
and one pure p orbital, perpendicular to the plane of the sp? hybrids. The three
sp” hybrids are involved in making one C-H or two C-N bonds, thus requiring
the presence of one electron in each hybrid. The remaining electron of the carbon
atom must, therefore, be located in the pure p orbital, that is, the C(sp?) atom
is a radical with an electron in a p orbital perpendicular to the molecular plane.
Consequently, it is a 7 radical. Using the same arguments, the C(sp?) atoms, which
form four bonds, have their four electrons involved in bond formation, so each
electron is sitting in each of the sp> hybrids. Consequently, these atoms have no
radical character. Finally, the NO groups have five valence electrons in the N atom
and six in the O atom. Three of the five electrons of the N atom are involved in
the sigma bonds formed by this atom (two C-N bonds and the N-O bond). They

Fig. 4. Electronic structure of the fragments
) 3 which constitute the HNN molecule, as ana-
Cisp?) Clsp) lyzed using the valence bond (VB) method.
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are, therefore, located in the sp? hybrids (defined by the geometry of the bonds).
The remaining pair of electrons must necessarily go to the pure p orbitals, singlet
paired (that is, one is an « electron and the other is a 8 electron). The topology of
the bonds of the O atom is compatible with sp, sp”> or sp> hybridization. We have
chosen sp? hybridization, but we could have chosen sp hybridization and reached
similar conclusions. In sp? hybridization the six valence electrons of the O atom
are located as follows: one is placed in the sp? hybrid pointing to the N atom, as
required for the formation of the N-O bond, and the remaining five electrons are
placed in the remaining two sp? hybrids and the pure p orbital. One can, therefore,
form two singlet pairs, leaving one orbital with a single electron. In principle, this
orbital can be one of the hybrids or the p orbital, but ab-initio computations show
that the option more stable energetically is that leaving the single electron in the
pure p orbital. According to this description, therefore, the NO group is a 7 radical
with the radical electron located on the O atom. There is, however, another way of
writing this structure, in which one of the electrons of the pure p orbital of the N
atom is shifted to the pure p orbital of the O atom. This alternative form (called
resonant forms or structures) is quite stable energetically for the NO group. Their
existence and stability gives rise to delocalization of the electron over the O and N
atoms, as elaborate MCSCF ab-initio computations have shown [11, 12]. We must,
therefore, visualize the NO groups as a 7 radical center in which the electron is
delocalized on the two atoms of the center.

When the structure of each constituting group is known, one can rationalize the
electronic structure of the HNN radical by linking each group as they are in the
molecule by means of C-N or C-C bonds. Each bond involves a pair of singlet-
coupled electrons, as already mentioned, thus giving rise to the formation of a closed-
shell singlet. The only degrees of freedom defining the electronic structure of the
HNN molecule are, therefore, the orbitals of the part with radical behavior, i. e. the
two NO groups and the C(sp?) atom. We must now find the molecular orbitals of
each fragment involved in the interaction between the fragments, by combining the
atomic orbitals of each fragment. Thus for the NO the mixing of the two pure p
orbitals which have three electrons gives rise to a bonding and antibonding com-
bination, and the unpaired electron goes to the antibonding combination. Because
of this the NO radical has no double bond. The orbitals of the C(sp?) atom are
as depicted in Fig. 4. The antibonding orbital of each NO fragment and the pure
p orbital of the C(sp?) atom now couple to form the molecular orbitals. This is a
three orbital-three electron system within a C, symmetry arrangement (in the crys-
tal geometry of the HNN molecule, this symmetry is slightly distorted). A system of
this type can give rise to the formation of the three molecular orbitals depicted in
Fig. 5, ordered energetically as bonding, non-bonding and antibonding, according
to the number of their nodes.

The most stable ordering of the three electrons in these orbitals is that indicated
in Fig. 5, which gives rise to a doublet. The quadruplet implies exciting one electron
from the ¢ bonding orbital to the ¢3 antibonding orbital. It is interesting to note
that the shape of the singly occupied orbital (SOMO) has a node on the C(sp?)
atom. This node has important physical consequences. One is the low delocalization
of the 7 electrons of the ONCNO group along the atoms of the R substituent.
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8 Fig. 5. Molecular orbitals of the 7 orbitals

carrying unpaired electrons in the fragments
(the two NO groups and the C(sp?) atom).
b 88 88 W This is a three orbital-three electron sys-
tem, which gives rise to bonding (¢1), non-

bonding (¢,), and antibonding (¢3) molecu-
lar orbitals. Besides these orbitals, the HNN

molecule has a variety of molecular orbitals
o ] l associated with the formation of the o bonds
(C-N, C-C, ...), which combine among

ON ) NO

themselves to produce orbitals adapted to

Csp® the symmetry of the molecule.

Another is the lack of spin on the C(sp?) atom in methods (e.g. the restricted-
open Hartree-Fock — ROHF — method) in which no spin polarization is allowed. It
is found experimentally that the C(sp?) atom has some spin [13-15]. One should,
therefore, use methods which permit the presence of spin polarization, by allowing
the mixture of the ground state wavefunction with some excited state wavefunctions
of the same multiplicity, obtained by exciting the electrons from the ¢ or ¢, orbitals
to the ¢3 orbital [16]. We will now focus our attention on presenting an overview
of the methods which one can use for proper description of the electronic structure
of the nitronyl nitroxide radicals.

The simplest could be an ROHF method [18], which computes the optimum shape
of the ¢1, ¢, and ¢3 orbitals in a single determinant wavefunction, forcing the oc-
cupation of these three orbitals to be 2, 1, and 0. As mentioned above, the ROHF
method is incapable of accounting for the spin polarization of the C(sp?) atom, be-
cause this effect implies partial occupation of orbitals which have contribution in the
C(sp?) atom. Such a polarization effect can be described by use of the unrestricted
Hartree-Fock (UHF) method, a method which produces occupation numbers for
the orbitals similar to those obtained by use of CI methods [19], i.e. it gives rise
to fractional occupancies of the ¢1, ¢ and ¢3 orbitals. The wavefunction computed
with the UHF method, however, is not a pure spin state. For HNN it is a mixture
of doublet and quadruplet components (it is, consequently, not an eigenfunction of
the $2 operator) [18]. This is a serious problem for the description of some prop-
erties (for instance, the spin distribution in some atoms of the nitronyl nitroxides
is overestimated, or has the wrong sign [13, 20]), although some other properties
are well described (the optimum geometry, for instance).

To avoid the spin contamination present in the UHF wavefunction while allow-
ing for the presence of spin polarization, a serious alternative, albeit more costly, is
the MCSCF method [18]. Unlike the different forms of the Hartree—Fock method
discussed before, the MCSCF method is multi-configurational. In this method the
weights of the configurations and the shapes of the orbitals are simultaneously op-
timized. One popular formulation of the MCSCF method employs complete active
spaces (CAS(n,m)) in which the multi-configurational space is the result of placing
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n electrons in m orbitals, in all possible forms. This space includes the lowest-energy
configuration employed in the Hartree—Fock method, and the excited ones responsi-
ble for the spin polarization. For HNN this can be achieved by use of an orbital space
which includes the ¢1, ¢», and ¢3 orbitals and their electrons (a CAS(3,3) space).
Larger spaces which include the CAS(3,3) space, e.g. the CAS(7,7) space, are also
adequate. They also include the possible polarization present between the o molec-
ular orbitals, and/or between o and & orbitals. The occupation of the ¢1, ¢, and ¢3
orbitals is again fractional, with values within the 2.0-0.0 range. The MCSCF compu-
tations include only a small amount of correlation energy (that associated with the
active space). To account for the remaining correlation, one can perform a second-
order Moller-Plesset on the MCSCF wavefunction, a method normally known as
CASPT?2 [21]. This method is known to provide a very good description of the en-
ergy splitting between the ground and excited states of the same and different spin
multiplicity in organic molecules and transition metal compounds [21]. Other mul-
tireference methods are the various levels of mono-reference Moller-Plesset (MP2,
MP3, ...), configuration interaction (CID, CISD, ...), or coupled cluster (CCSD,
CCSD(T), ...) methods [18]. These are based on the expansion up to some or-
der of the unrestricted Hartree—-Fock wavefunction. These methods suffer from the
problem of the spin contamination of the expanded wavefunction. In many of these
methods, in particular in expansions at low order like the MP2, the degree of spin
contamination is similar to that found in the unrestricted Hartree-Fock wavefunc-
tion. These methods should, therefore, be used with caution, because physically one
is describing some average of the properties of the doublet and quadruplet states,
the average increasing with the amount of spin contamination.

One can eliminate the problem of spin contamination of the wavefunction by
using projected methods, in which all higher multiplicity components are exactly
projected out [22], or approximate projected methods, in which only a few of these
components are projected out (normally the next in multiplicity, because it has
been observed that this component is that inducing more spin contamination) [23].
Although the resulting projected wavefunction is not variational, when applied to
nitronyl nitroxides the results seem similar to those from MCSCEF or other methods
of similar accuracy [24].

Besides the previous methods, one can resort to density-functional (DFT) meth-
ods [25]. These methods, based on the Hohenberg-Kohn theorems [26], enable the
use of the quantum theory to compute eigenstates directly in terms of the three-
dimensional single-particle monoelectronic density (p), instead of as a function of
the wavefunction (V). This speeds the computational process, the cost of which is
proportional to N3 (where N is the size of the basis set) instead of the much higher
orders found in the Moller-Plesset, configuration interaction, or coupled cluster
methods. The final expression for the energy obtained within the DFT methodology
takes the form:

Eprr = trthP + (1/2)trPJ(P) 4+ Eex(P) + Ecor(P) + V 1)

where h is the matrix representation of the monoelectronic Hamiltonian (kinetic
plus nuclear—electronic interaction), P is the density matrix, tr is the traze of the
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matrix, J(P) are the (ij|ij) Coulombic integrals, Ecx(P) is the exchange functional,
and E¢or(P) is the correlation functional (It should be noted that the products hP
and PJ(P) both give rise to energetic contributions.) The Hartree—Fock energy can
be obtained as a special case of Eq. (1) by making E.x(P) = (1/2)trPK(P) and
Ecor(P) = O(K(P) are the (ij|ji) exchange integrals, whose values depend on P).
The functionals used in the exchange and correlation parts are integrals of some
functions of the density and the gradient of the density. If the functional depends
only on the density, it is called local, whereas when it depends also on the gradient
of the density is called non-local. Many different functionals are proposed in the
literature for the exchange and correlation parts. Previous experience indicates that
the non-local functionals produce better results on chemical systems [27]. Among
the non-local functionals, the so called BLYP [28-30] and B3LYP [31,32] functionals
seem to be among the best, the second in particular.

When the UHF formulation of any of these two functionals is used to compute
the properties of the HNN molecule in its doublet ground state, it produces a wave-
function which has very small spin contamination from the quadruplet [13, 17]. This
gives validity to the predictions obtained with these functionals for HNN and other
nitronyl nitroxide radicals. It should, however, be noticed that small spin contam-
ination is not always observed. This has prompted some doubts on the validity of
the density-functional computations where such spin contamination is found. The
latest approach to this problem [21] is to accept that a single Kohn-Sham determi-
nant might lead to spin contamination for open-shell systems and still be a proper
solution, if the atomic spin density is properly described. The reason is that in the
Kohn-Sham method the density, and not the orbitals, has physical meaning and the
eigenvalues of the $2 operator for a given determinant are computed using the
orbitals.

3.2.2 Ab-initio Computation of the Electronic Structure
of Nitronyl Nitroxide Radicals

To illustrate the performance of the usual ab-initio methods in computing the elec-
tronic structure of the HNN molecule, and also to test the validity of the previous
qualitative description, we have computed the energy of the doublet ground state at
different computational levels. The quadruplet lies 81 kcal mol~! above the doublet,
at the MCSCF(7,7)/6-31+G(d) level. For the HNN geometry found in the «-phase
crystal [33], a UHF/6-31+G(d) calculation [34] gives a wavefunction for the doublet
whose expectation value for the $2 operator is 1.13, compared with the 0.75 value of
a pure doublet state, as obtained from direct application of the S(S + 1) expression
when S = 1/2. The UHF wavefunction, therefore, has 12% quadruplet contam-
ination. A natural orbital analysis of the UHF wavefunction [19] gives the result
that all the orbitals are doubly occupied (within 0.01 error) except for three orbitals
whose occupations are 1.81, 1.00, and 0.19. The shape of these three orbitals, dis-
played in Fig. 6, corresponds to that predicted above for the ¢1, ¢, and ¢3 orbitals
in our qualitative analysis (Fig. 5). Orbitals of the same shape are obtained after a
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SOMO-1 SOMO LUMO

Fig. 6. Plot of the SOMO-1, SOMO, and LUMO orbitals of the HNN radical computed at
the UHF/6-31+G(d) level. The contours plotted are those in which the orbital has a value of
40.1 atomic units. Shaded areas represent negative regions, and unshaded areas represent
positive regions.

ROHF/6-31+G(d) or MCSCF(7,7)/6-31+G(d) computation [35]. The MCSCF(7,7)
active space has 784 configuration state functions in it. Among these the dominating
configurations are the ROHF Hartree—Fock determinant, with a coefficient of 0.96,
and three configurations with coefficients 0.16, 0.15, and 0.09. All others have coef-
ficients <0.06. This means that the ROHF Hartree—Fock determinant describes the
basic structure of the system, and the spin polarization is introduced by these three
configurations of weight approximately 0.15. The occupation of the three orbitals in
the ROHF method is 2.00, 1.00, and 0.00, and in the MCSCF(7,7) computation be-
comes 1.91, 1.00, and 0.09. At the same time B3LYP/6-31+G(d) computations have
an $2 expectation value of 0.80, and the occupation of the ¢1, ¢2, and ¢3 orbitals
is 1.98, 1.00, and 0.02 electrons. Remember that the S? expectation value in DFT
computations has no physical significance (see comment above and Ref. [21]).

Although the overall shape of the orbitals computed by these methods seems sim-
ilar, there might be changes not observed under normal inspection. These changes
can, however, be quantified by computing the atomic charge on each atom; this de-
pends on the shape of the electron density, a property which depends on the shape of
the orbitals. Table 1 lists atomic charges obtained by a Mulliken population anal-
ysis of the wavefunction obtained by use of the UHF, MCSCF(7,7), and B3LYP
methods, using the 6-31+G(d) and cc-pVDZ [36] basis sets, and the experimental
geometry found in the «-HNN crystal. The results for UHF and MCSCF(7,7) will
be compared with the charges obtained by integrating the charge density over the
atomic region, defined according to Bader’s atoms-in-molecules (AIM) procedure
[37]. The results show the well known difference between the Mulliken and AIM
charges. They also show the dependence of the atomic charge values on the basis
set. Finally, they indicate that the density in the UHF and MCSCF(7,7) methods
is almost the same, but the B3LYP methods gives charges which differ from those
of the previous methods, although the qualitative picture is the same for all three
methods.
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Table 1. First row: atomic charges for the HNN radical computed from a Mulliken popula-
tion analysis of the UHF, MCSCF(7,7), and B3LYP wavefunctions, using the 6-31 + G(d)
basis set. Second row: similar results obtained by use of the cc-pVDZ basis set. Third row:
equivalent results from an AIM analysis of the cc-pVDZ wavefunctions. The geometry is
the experimental one for the a-phase of the crystal, and the basis set is the 6-31 + G(d)
basis. Values are given in atomic units.

Atom UHF  MCSCF(7,7)  B3LYP
H 0.27 0.27 0.22
0.08 0.08 —0.03

0.11 0.10
C(sp?) 0.33 0.33 0.47
0.35 0.35 0.32

1.19 1.22
N —0.14 —0.15 —-0.28
—0.06 —0.04 0.02

—0.62 —0.63
0 -0.22 —-0.23 —0.04
—0.40 —0.41 —0.35

—0.56 -0.57
C(sp®) —0.30 —0.35 —0.51
—0.23 —0.24 —0.28

0.39 0.39

Table 2. Values of some representative values which define the geometry of the HNN
molecule. The experimental values are compared with those computed by full optimization
of the geometry of the doublet state of this radical at the UHF/6-31+G(d) MCSCF(7,7)/6-
31+G(d) and B3LYP/6-31+G(d) levels. Two values are given in the experimental column
for all the angles except one, because the experimental geometry lacks the C, symmetry
found in the three theoretical geometry optimizations. Values of the distances are given in
A, and those for the angles in degrees.

Parameter Experimental UHF  MCSCF(7,7) B3LYP
C(sp?)-H 0.994 1.074  1.072 1.085
C(sp?)-N 1.337/1.329 1.349 1.341 1.345
N-O 1.279/1.289 1.240 1.238 1.267
N-C(sp?) 1.510/1.514 1.487 1.486 1.518
H-C(sp?)-N 122.6/127.3 124.9 124.5 123.9
C(sp?)-N-O 125.7/125.9 126.1 127.4 127.3
N-C(sp?)-N 110.1 110.2 111.0 112.2
O-N-C(sp’)  122.5/122.5 1224 1221 122.0

The results from geometry optimization for the HNN radical in its doublet state
performed at the UHF/6-31+G(d) and MCSCF(7,7)/6-31+G(d) levels are listed Ta-
ble 2, together with the experimental values from the «-HNN crystal. It is clear
that the UHF and MCSCF(7,7) values for this basis set are almost the same. The
computed results are different from the experimental values. The first concerns the
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Fig. 7. Valence bond description of the electronic
structure of the C(sp?)-X fragment, X being the
atom of the R substituent which is linked to the
C(sp?) atom of the five-membered ring of the
nitronyl nitroxides. The figure shows an example

- - in which R is a substituted aromatic ring and X
C(sp?) X=C(sp®) is a C(sp?) atom.

symmetry, which is lost in the experimental geometry, but is preserved (C; group) in
the UHF and MCSCF(7,7) computations. The largest differences are, furthermore,
between C—-H, N-O, and N-C(sp?) distances. The first discrepancy is most probably
because of the well known trend of X-ray fitting to give C-H distances which are
too short [38].

Let us now study the remaining members of the nitronyl nitroxide family. We
can rationalize the electronic structure of any nitronyl nitroxide by starting with
the electronic structure of the HNN radical and looking at the effect induced by
changing the R substituent from H to that found in the radical of interest. If the
atom of the R substituent linked to the C(sp?) atom (hereafter called X) has pure p
orbitals of the 7 type (e. g. the Cl atom, or another C(sp?) atom), these orbitals can
interact with the pure p orbitals of the C(sp?) atom. One ends up with the situation
depicted in Fig. 7, where the R substituent is linked to the five-membered ring C(sp?)
atom through another C(sp?) atom. The highest occupied orbital (which can be the
bonding or antibonding orbital, depending on the number of electrons sitting on
the pure p orbital of the X atom) will be that interacting with the pure p orbitals of
the NO fragments. For reasons of symmetry, however, the SOMO orbital (orbital
#> in Fig. 5) will remain unchanged, because of its node on the C(sp?) atom, and
the R fragment orbitals can only contribute to the SOMO-1 and LUMO orbitals
(¢1 and ¢3 in Fig. 5). This is what ab-initio computations also tell us, as illustrated in
Fig. 8 for the phenyl-nitronyl nitroxide (PhNN) molecule. Although at the crystal
geometry [13a], the five-membered and six-membered rings of the PANN molecule
are not coplanar (they are rotated 25° along the C-C bond connecting the five and
six-membered rings), there is a non-negligible contribution of the ring orbitals to
the SOMO-1 and LUMO orbitals. This enables the existence of spin polarization
through the SOMO-LUMO monoexcitations. Because the weight of the ROHF
Hartree-Fock determinant is again approximately 0.92, and those for the excited
configurations are approximately 0.15, this spin polarization mechanism does not
propagate the polarization very effectively, as we will discuss below. Consequently,
we should expect that all the nitronyl nitroxides should have a similar electronic
structure, because in the dominant determinant the distribution of the unpaired
electron is always similar. The situation is similar in all other nitronyl nitroxides
because of two experimental facts:
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SoMo-1

LUMO

Fig. 8. Plot of the SOMO-1, SOMO, and LUMO orbitals of the phenyl-nitronyl nitrox-
ide radical computed at the UHF/3-21G(d) level. The contours plotted are those in which
the orbital has a value of £0.1 atomic units. Shaded areas represent negative regions and
unshaded areas represent positive regions.

e the five-membered ring geometry is almost the same in all the nitronyl nitroxide
radicals which crystallize as purely organic crystals and the ONCNO group is
practically coplanar in that ring [39]; and

e the torsion angle between the ONCNO group and the six-membered ring in these
crystals takes values between 30 and —30° [39], thus enabling some mixing be-
tween the orbitals of the C(sp?) atom of the ONCNO group and those of the
six-membered ring.
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3.2.3 Spin Distribution in Nitronyl Nitroxide Radicals

To understand the magnetic properties of the molecular crystals of a purely or-
ganic radical it is helpful to know how the spin is distributed along the isolated
radical, to define the spin-containing regions of the radical. The magnetic interac-
tions in monoatomic and diatomic radicals decrease exponentially with distance.
At the same time the McConnell-I model bases its predictions on the atomic spin
located on the atoms for which distances are shortest. For a proper control of the
magnetism in the purely organic nitronyl nitroxide crystals, therefore, it seems es-
sential to understand the form in which the spin is distributed along the atoms of
the radical, for any given radical, and also the ways in which that distribution can
be modified, if desired.

First we will establish some basic concepts related to the spin density. The spin
density is a physically observable quantity obtained at each point by subtracting the
electron density of the « electrons minus the electron density of the 8 electrons (it is
normally assumed that the number of « electrons (n,) is larger than the number of
B electrons (ng) in systems where these two quantities are different; in this case, the
system is said to have an open shell electronic structure). As the electron density is
a monoelectronic function which depends on the Cartesian coordinates, so it is the
spin density. On the other hand, because the physical interpretation of the electron
density is the probability of finding an electron within an element of volume dv
(dv = dxdydz), the spin density should be interpreted as a monoelectronic function
which give us the probability of finding an excess of « electrons over 8 electrons
in any volume element. Integrated over the whole space this should give a number
equal to n, — ng. Although the spin density is a three-dimensional property, like
the orbitals, it is depicted in two-dimensional representations, in one of two forms:

e by looking at the values of the spin density in a two dimensional plane of the
space — the values in this plane are then plotted as a contour map, similar to the
contour maps used in geography; alternatively, they can be plotted as a hill map;

e Dby cutting space in parallel surfaces and then plotting in each surface the contour
of the desired spin density value; this is a three dimensional map which extends
over the whole space spanned by the molecule.

The two plots are complementary in some forms. The second ways gives a vol-
ume enclosing the region in which the density has a value higher than a selected
cutoff, although it does not give any information on how large the density can be
within that volume or about its variation from one point to another (Fig. 9). The first
type of plot gives a detailed information about the variation of density on a plane,
but no information of the variation in the nearby planes. One therefore chooses
the representation depending on the information required. Occasionally the two
representations can be used simultaneously. The two type of representations are
illustrated in Fig. 9 for the HNN molecule. The spin density on the nucleus, a prop-
erty of interest in NMR or ESR, is the value of the spin density at a specific point,
the nucleus.

Another way of representing the distribution of spin in space is by means of the
atomic spin population. This quantity is obtained by adding the spin density over
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Fig. 9. Representation of the spin density of the HNN radical in its doublet state. The spin
d ensity is cut along the ONCNO plane of the molecule in two complementary forms: (a)
as countour lines (solid lines are for positive contours, while broken lines are for negative
values; The smallest contours correspond to a 0.001 e A=3), and (b) as a 3D plot (the peaks
above the plane are positive, while those below the plane are negative; The two external
peaks are for the O atoms).
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the region of the space associated to each atom. Such a region can only be defined
in a precise way within the AIM methodology [36], although this procedure is com-
putationally very expensive. Consequently, a much more common approach is to
compute the atomic spin population on an atom by means of Mulliken population
analysis, computing the atomic charges on the atom coming from the o and 8 elec-
trons, and then subtracting these two values. Previous tests on the HNN molecule
[17] have indicated that the atomic spin population obtained by using Mulliken
population analysis is similar to that obtained by strict application of the Bader
AIM model, and we will see below that this is also true for other nitronyl nitroxide
radicals.

A word of caution should be introduced here when using atomic spin populations
— one should keep in mind that they represent the sum of all the values of the spin
density in a given region of the molecule. Consequently, they represent a sort of
average value of the density on that region. When the distribution is non uniform,
therefore, as for the spin distribution on atoms, there can be large variations in
the magnitude and sign of the spin in that region. For this reason the value of the
atomic spin on atoms with similar spin density on the nucleus can be very different,
i.e. the value of the spin density on the nucleus is not always proportional to or
representative of the atomic spin population on the corresponding atom. We will
see some examples in the following paragraphs.

We can now analyze the shape of the electron density maps. In a ROHF wavefunc-
tion, because the doubly occupied orbitals occupy the same part of space (because
of the restrictions inherent to the ROHF method), the spin density is equal to the
square of the SOMO orbital (Figs. 5 and 6). Therefore, the spin density has the
same shape as the SOMO orbital but without its negative regions (because corre-
sponds to excess « electrons). It therefore has a node in the C(sp?) atom, in contrast
with the experimental results, which established the existence of a region of nega-
tive density in the vicinity of the C(sp?) atom [13a, 14d, 15]. This node disappears
when the UHF method is used (projected or unprojected), or also at the MCSCF or
B3LYP level, because all of these methods allow the presence of spin polarization.
This is clearly illustrated by looking at the spin density distributions of Fig. 9, or at
the atomic spin populations of Table 3. Remarkably good agreement is obtained
between the B3LYP and MCSCF(7,7) results and the experimental results obtained
by projecting the spin density into atomic regions. The failure of the UHF method is
because of the spin contamination of the doublet, because when that contamination
was projected out the atomic spin population on the C(sp?) atom became —0.174¢.
These results are basis set-dependent, but numerical tests on smaller systems indi-
cated that they are similar when a double zeta plus polarization basis set is used
[17]. These results also indicate that most of the spin distribution is located in the
ONCNO group of atoms, with much smaller contribution on some of the C(sp?)
atoms, and negligible contributions on all H atoms. Finally, it is also interesting to
note the asymmetry of the atomic spin population, caused by the asymmetry of the
geometry (the full optimized symmetric radical does not have such asymmetry in
the atomic spin populations).

When the H of the HNN is replaced by another substituent, the spin distribution
does not change much from that described above for the HNN radical. This is illus-
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Table 3. Atomic spin population computed for the doublet state of the HNN radical (crystal
geometry at the UHF/6-31 + G(d) MCSCF(7,7)/6-31 + G(d) and B3LYP/6-31 + G(d) levels.
Two sets of values are given, because of the lack of symmetry of the crystal geometry of this
radical. The experimental values obtained for the equivalent atoms of the phenyl-nitronyl
nitroxide are also given for comparison. All the values are given in electrons.

Atom Experimental =~ UHF MCSCEF(7,7) B3LYP
H-C(sp?) 0.057 0.012 0.011

C(sp?) —0.121 —0.801 —-0.182 —0.238

N 0.278 0.523/0.539 0.272/0.264 0.285/0.276
O 0.262 0.388/0.352 0.304/0.297 0.335/0.321
C(sp®)-ring —0.025 —0.019/0.003 —0.009/0.013 —0.008/0.002
C(sp?)-methyl —0.019/0.001 0.012/—0.001 0.014/—0.004
H-methyl 0.009 <0.003 <0.001 <0.001

trated by comparing the spin-density map of the HNN radical (Fig. 9) and that for
the PhNN radical (Fig. 10). The overall shape of the spin density distribution in the
five-membered ring region is the same, and the size of the region enclosing the £0.01
density (in atomic units) threshold is very small on the atoms of the six-membered
ring (the R substituent). The shape of the PANN map is also nearly identical to that
obtained in polarized-neutron diffraction experiments [13a], except for small details

Fig. 10. Tridimensional representation of
the isodensity surface whose spin density
is 0.001e A=3 for the phenyl-nitronyl ni-
troxide radical (light: regions of negative
density; dark: regions of positive density).
Two views of the same spin density distri-
bution are presented: lateral (upper dia-
gram) and from above (lower diagram).




82 3 Theoretical Study of the Electronic Structure

Table 4. Atomic spin population for some atoms of the phenyl-nitronyl nitroxide radical
computed using the B3LYP functional and the following five basis sets: (a) 6-31G(d), (b)
cc-pVDZ, (c) cc-pCVDZ, (d) EPR-II, and (e) IGLO-III. The Mulliken and AIM values are
given. The atoms selected are the ONCNO group of the five-membered ring (the different
NO groups are identified as N;Oq and N;O»), and the C atom of the six-membered ring
(C-six) linked to the C(sp?) atom of the ONCNO group. The basis set size is also given in
the last row.

Mulliken Bader

Atom a b c d e b [¢
C(spz) —-0.216 —0.203 —-0.197 —-0.215 —-0.283 -0.154 -0.156
N1 0.295 0.285 0.284 0.291 0.340 0.270 0.276
01 0.351 0.355 0.354 0.350 0.358 0.343 0.338
N2 0.264 0.254 0.253 0.263 0.305 0.242 0.249
02 0.326 0.329 0.327 0.324 0.332 0.317 0.311
C-six 0.042 0.033 0.030 0.050 0.044 0.025 0.027
Size 289 323 459 408 816 323 408

in the six-membered ring region, probably associated with precision problems in
that region of the experiments. The same similarity is observed when comparing the
B3LYP/6-31+G(d) atomic spin populations for the HNN radical (C(sp?) = —0.238,
N = 0.285/0.276, O = 0.335/0.321 ¢~) and the atomic spin populations for the same
atoms in the PhNN radical (C(sp?) = —0.117, N = 0.209/0.233, O = 0.329/0.352¢7).
The values are smaller for all the atoms of the six-membered ring (all C atoms have
atomic spin populations whose absolute value is smaller than 0.017 e~, with sign al-
ternation relative to the five-membered C(sp?) atom; all H atoms have atomic spin
populations whose absolute values are smaller than 0.001 e™). These values of the
atomic spin populations remain almost invariant when the number of basis sets is
increased beyond the 6-31+G(d) set, as a numerical test with a variety of basis sets
has manifested (see Table 4, which collects the values of the atomic spin population
computed with basis sets of increasing quality on the ONCNO atoms of the five-
membered ring, together with the C atom of the six-membered ring linked to the
C(sp?) atom of the five-membered ring, as representative case) [40]. The quality
basis set is roughly proportional to the basis set size.

For more systematic sampling we performed the same study on all the radicals
of Figs. 2 and 3, i.e. the nitronyl nitroxides whose crystals are characterized by
dominant ferro- or antiferromagnetic interactions (45 radicals in total). Given the
large number of different radicals and the structural variety of their R substituent,
we devised a method of presenting the changes in the atomic spin population of
the functional groups in an unbiased form. After analyzing the results, we found
that a good way of representing the atomic spin population is by quoting the value
in the following four groups of atoms:
the C(sp?) carbon of the five-membered ring;
the whole ONCNO group;
the remaining atoms of the five-membered ring; and
the atoms of the R groups (see Figs. 2 and 3).
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Table 5. Atomic spin population (in atomic units) on regions of the «-nitronyl nitroxide
radicals included in the ferromagnetic subset. The first column lists the value on the five-
membered C(sp?) atoms, the second column on the ONCNO group, the third on the re-
maining atoms of the five-membered ring (r(5)-ONCNO in the text), and the last column
refers to the atomic spin population on the R group.

Refcode C(sp?) ONCNO  1(5)-ONCNO R

0003QN —0.20 1.43 0.08 0.17
000MPY —0.21 1.43 0.10 0.10
000PPY —0.20 1.41 0.10 0.13
00DPNP -0.22 1.46 0.09 0.21
OPBRPH —0.21 1.42 0.10 0.15
HAFXOB —0.21 1.43 0.08 0.17
LICMIT —0.19 1.37 0.08 0.13
MACOPY —0.23 1.45 0.08 0.08
MMEPYB -0.21 1.45 0.10 0.17
PEFMES —0.22 1.51 0.10 0.45
PEYPUA —0.20 1.42 0.10 0.13
YISCEI —0.19 1.40 0.10 0.15
YISCOS —0.23 1.46 0.08 0.05
YISNIX —0.20 1.41 0.10 0.11
YIWSEC —0.19 1.44 0.08 0.15
YODBUO —0.20 1.34 0.10 0.21
YOMYII —0.17 1.34 0.08 0.09
YUINEW —0.20 1.43 0.08 0.17
YULPOK —0.19 1.44 0.09 0.33
ZORHIX —0.21 1.43 0.08 0.11
Minimum —0.17 1.34 0.08 0.05
Maximum -0.23 1.46 0.10 0.45
Average —0.20 1.42 0.09 0.16
Standard deviation 0.02 0.04 0.01 0.09

Because the atomic spin population on the C(sp?) atom of the five-membered
ring is always negative, and on the NO atoms of the ONCNO groups is always
positive, a representative value of the amount of spin in the whole ONCNO group
is obtained by adding the absolute values of the atomic spin population for all atoms
of this group (from this number it is possible to obtain the NO groups population
by twice subtracting the atomic population in the C(sp?) atom). For similar reasons
a representative value of the spin in the remaining atoms of the five-membered
ring (which we call r(5)-ONCNO), can be obtained by adding the absolute values
of the atomic spin population on all participating atoms. The process was extended
also to the R group. The results for these sets of atoms [40] are collected in Table 5
for the ferromagnetic subset, and in Table 6, for the antiferromagnetic subset. The
total atomic spin population within the C(sp?), ONCNO and r(5)-ONCNO groups
is almost invariant between radicals, the most important changes being concentrated
on the R substituent. Thus, whereas the total atomic spin population on the five-
membered C(sp?) atom lies within the —0.16 to —0.23 range, the values in the R
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Table 6. The same data as in Table 5, but for the antiferromagnetic subset.

Refcode C(sp’) ONCNO r(5)-ONCNO R

0000AH —0.24 1.45 0.08 0.02
0000BR —0.20 1.40 0.09 0.02
000F5P —-0.22 1.43 0.08 0.08
003CLP —-0.22 1.46 0.08 0.17
00ONNMA —0.20 1.41 0.08 0.17
00PCLP —0.20 1.42 0.08 0.15
OPCF3P —0.22 1.45 0.09 0.17
2CLPNN -0.22 1.44 0.08 0.08
2N5OHP -0.22 1.43 0.08 0.06
3CL40OH —0.21 1.42 0.08 0.17
5CL20H —0.19 1.38 0.08 0.15
LASCAJ —0.21 1.43 0.09 0.25
LEMMAR —0.23 1.47 0.07 0.32
PEFMAO —0.21 1.46 0.07 0.25
SUKBIJ —0.20 1.43 0.08 0.08
SUKBOP —-0.22 1.46 0.07 0.33
WILVIW10 —0.20 1.46 0.08 0.13
YISCIM —0.21 1.44 0.08 0.17
YOMYOO —0.20 1.43 0.08 0.15
YOMYUU -0.21 1.44 0.09 0.17
YOXMAZ —0.18 1.39 0.08 0.11
YOXMED —0.20 1.41 0.09 0.31
YULPAW —0.19 1.42 0.08 0.17
ZIPTAT —0.20 1.42 0.08 0.17
Minimum —0.18 1.38 0.07 0.02
Maximum —0.24 1.47 0.09 0.33
Average —0.21 1.43 0.08 0.16
Standard deviation 0.01 0.02 0.01 0.09

substituent go from 0.05 to 0.45 electrons. At the same time each NO group has
an average of 0.51 electrons, with very little change between the maximum and
minimum values. So, one can safely generalize the conclusions obtained from the
PhNN radical to all other nitronyl nitroxides. The main reasons for such a similar
behavior are:

e the similar shape of the SOMO orbitals, which allows the presence of spin po-
larization only through the SOMO-LUMO and (SOMO-1)-LUMO excitations;
and

e the similar energy difference between the SOMO and LUMO orbitals.

There are, however, some radicals (PEFMES, LEMMAR, SUKBOP, YOXMED
and YULPOK) for which there are relatively important amounts of atomic spin
populations on the atoms of the R substituent, the only reason being a change in
the SOMO-LUMO energy difference.
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Besides the atomic spin population, much theoretical and experimental work
has been performed to obtain the amount of spin density on the atomic nucleus.
The reason for such interest is the dependence of NMR and ESR spectra on that
magnitude. In particular, the hyperfine coupling constants (kfcc, represented by the
symbol ay), which define the position of the lines in the NMR or ESR spectra, is
related to the spin density at the corresponding nucleus (p(rN)) by the equation
[41]:

81 ge
ax = — 5 exBnp () 2)

3 g
where g is the isotropic g-value for the radical, g¢ the g-value for the free electron,
gn is the gyromagnetic nuclear ratio, and By is the nuclear magneton of the nucleus
N.

The theoretical computation of Afcc has been performed previously on many
open-shell systems, among others on the first row atoms [42] and their hydrides
[43], the hydroxyl radical and five peroxy radicals [44], a subset of w-radicals [45],
and a variety of NO-containing radicals which included the HNN radical [46]. Also,
there are some interesting studies covering a wide variety of radicals [47]. The first
conclusion from these studies is the dependence of the computed Afcc on the method
and the basis set employed: good results are usually obtained by use of the QCISD
method [48] or the B3LYP density functional and basis set which describe well the
intermediate region between the core and the valence parts of the electron den-
sity. The basis sets of the last type are the IGLO-III [49], the EPR-II and EPR-III
basis sets of Barone [50], the core-valence correlation-consistent cc-pCVXZ [51],
and the s-uncontracted cc-us-pVXZ basis sets [52]. Even with these basis sets and
the QCSD method, however, the mean absolute deviation from the experimental
values in a subset of di-, tri-, and tetra-radicals can be as large as 4.5G, and a similar
value is obtained by using the B3LYP functional [47d]. Interestingly, the Afcc com-
puted for these radicals at the QCISD/6-311+G(2df,p) level are better than those
obtained at the QCISD/IGLO-III level; the two basis sets performed similarly at
the B3LYP level [47d]. One must, however, keep in mind that part of the success of
the B3LYP method in some systems has been attributed to fortuitous cancellation
of errors [42a]. This explains that higher quality basis sets do not always provide
hfcc values closer to the experimental results, as is found for the QCISD values.
This is clearly illustrated in Table 7, which collects the B3LYP Afcc computed for
the first row atoms [14d], using the same basis sets which give accurate Afcc results
at the QCISD level [42a]. In general, the values of the Afcc are strongly basis-set-
dependent, and large basis sets are needed to furnish, consistently, values close to
the experimental results (that is, the Afcc converge to a limit value when the size is
increased after some given quality). The EPR-II and EPR-III basis sets, considered
to give accurate results for DFT computed Afcc, reproduce the sign and magnitude
for all first row atoms, although errors of up to 5 Gauss are found in the B-O se-
ries, and even the time larger in the F atom. The errors computed with the QCISD
method for these two basis sets are not much smaller. This has prompted the gen-
eration of other basis sets, specifically designed for the study of Afcc, although in
the light of the results in Table 7 [42, 52], they are not much better than the EPR-II
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Table 7. Isotropic Afcc (in Gauss) computed for the first row atoms using the basis sets
indicated and the unrestricted formulation of the B3LYP method. The QCISD values of
Ref. [42a] are also given for comparison (second row).

Basis set B C N O F
IGLO-III 7.1 9.2 3.6 —93 72.9
EPR-II 3.9 7.7 29 —6.9 49.1
1.8 5.5 31 -85 84.1
EPR-III 6.2 8.2 35 -9.0 74.9
1.3 3.9 2.8 -87 88.2
cc-pCVDZ 2.3 01 -11 5.5 =742
-12 =23 -12 41 —-439
cc-pCVTZ 3.5 5.8 25 =75 61.7

1.7 45 25 =81 77.0
aug-cc-pCVDZ 43 3.0 02 22 —46.0

37 42 1.6 —-32 19.6
aug-cc-pCVTZ 46 75 32 -93 77.4

29 66 36 —109 1041
cc-us-pVDZ 6.1 7.4 27 —6.6 48.6
cc-us-pVTZ 60 79 31 =79 62.9
aug- cc-us-pvVDZ 80 104 4.0 -98 76.8
aug- cc-us-pVTZ 82 104 4.0 -99 77.3
Experimental 4.1 7.0 3.7 —-123 107.8

or EPR-III basis sets, despite their higher computational effort. More efforts are
needed in the search for better basis sets for the theoretical computation of Afcc at
the DFT level for all atoms. The situation is not, however, as dark when compounds
within the nitronyl nitroxide family are studied. Then one finds that B3LYP/EPR-II
calculations reproduce well the order of magnitude and the trends in the experimen-
tal Afcc, when compared with values obtained from ESR experiments performed in
a variety of solvents, thus enabling correction for environmental effects by means
of linear correlations [14d], or against NMR values. Thus, for instance, when the
B3LYP Afcc results are compared with the solvent-independent experimental ESR
values for the HNN radical (Table 8) one finds that the EPR-II, cc-pCVTZ, cc-
uspVDZ, and cc-uspVTZ basis sets give results of similar quality, the quality of the
other three basis sets being surprisingly close to the EPR-II results. In the original
work [14d] it was also found that the IGLO-III, basis set provided good results,
as did the aug-cc-pVDZ basis set (the ifcc values computed with this basis set are
approximately 2 G higher than the EPR-II, but this is the size of the recommended
correction factor one should add to the B3LYP/EPR-II results to match the ex-
perimental values) [14b, 14c]. The B3LYP/EPR-II computations reproduce fairly
well the main features of the solvent-independent Afcc values with the exception of
those for the five-membered C(sp?)nucleus. All basis sets yield good estimates of
the order of magnitude of the average Afcc value for the H of the CH3 groups. Un-
fortunately, no experimental values are known for the O atoms, although it is again
interesting to note the similarity between the EPR-II, cc-pCVTZ, cc-us-pVDZ, and
cc-us-pVTZ basis sets results. We also extended our search to the B3LYP/cc-pVDZ
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Table 8. Calculated B3LYP isotropic hyperfine coupling constants (in Gauss) for the opti-
mized geometry of the HNN radical using a variety of basis sets. The basis set size is also

indicated.

Atom EPR-1I cc-pvDZ cc-pvIZ cc-cvpvDZ cc-cvpvIZ cc-us-pvDZ cc-us-pvIZ
H 5.96 5.25 5.46 5.21 5.42 4.95 5.38
C(sp?) —-15.05 —-17.06 —-10.44 —12.75 —13.75 —14.50 —14.40
Ny 5.15 6.94 3.24 3.62 5.10 4.88 5.25
N, 5.15 6.94 3.24 3.62 5.10 4.88 5.25
(O)] -949 —-16.63 —6.04 —4.78 —9.96 -9.14 -9.96
(07} -949 —-16.63 —6.04 —4.78 -9.96 -9.14 -9.96
C(sp?) —-2.65 —2.80 —2.22 —2.50 —2.46 —2.60 —2.52
C(sp®) —-2.65 —-2.80 —2.22 —2.50 —2.46 —2.60 —2.52
C-me 3.53 3.26 3.18 3.10 332 3.19 331
C-me 1.56 1.71 1.56 1.52 1.60 1.55 1.58
C-me 3.53 3.26 3.18 3.10 332 3.19 3.31
C-me 1.56 1.71 1.56 1.52 1.60 1.55 1.58
H-me —-024 021 —-0.22 —0.20 —-0.21 —-0.21 -0.21
H.me -032 -0.28 —0.31 —0.28 —0.32 —0.28 —0.32
H-me -025 -0.23 —0.21 —0.22 —0.22 -0.21 —0.22
H-me 0.42 0.32 0.44 0.32 0.42 0.35 0.41
H-me —-0.67 —0.54 —0.62 —0.55 —0.63 —0.56 —0.62
H-me —-038 —0.31 —0.33 —0.31 —0.33 —0.30 —0.34
H-me 0.32 0.28 0.31 0.28 0.32 0.28 0.32
H-me —-025 -0.23 -0.21 —-0.22 —-0.22 —-0.21 —-0.22
H-me —-024 -0.21 —0.22 —0.20 —0.21 —0.21 —0.21
H-methyl —-0.38 —0.31 —0.33 —0.31 —0.33 —0.30 —0.34
H-methyl 0.42 0.32 0.44 0.32 0.42 0.35 0.41
H-methyl —0.67 —0.54 —0.62 —0.55 —0.63 —0.56 —0.62
Basis Size 143 119 512 133 655 161 604

hfcc and they showed a surprising good agreement with the solvent-independent
values obtained from ESR measurements [14d]. Similar conclusions can be reached
when comparing the results for the PhNN radical [14d] or the values computed for a
variety of phenyl-nitronyl nitroxide radicals and the experimental solid state NMR
results [17]. The torsion angle between the five and six-membered rings only has a
small effect on the Afcc values, and small changes are also found when going from
one nitronyl nitroxide to another, or when changing the solvent used.

Finally, comparison of the Afcc values of Table 8 and the atomic spin populations
of Table 3 shows that the size of the density on the nucleus is not always proportional
to the atomic spin population. This is not a surprising effect in the light of the
considerations above about the atomic spin populations.
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3.3 Magnetic Interactions in Purely Organic Molecular Crystals

3.3.1 Basics of the Magnetism in Purely Organic Molecular Crystals

“Magnetism at its bottom is not well understood” [53]. This assertion, written some
years ago, is still (at least partially) valid in relation to the mechanism of the magnetic
interaction in purely organic molecular magnets, because the microscopic mecha-
nism responsible for the presence of ferro or antiferromagnetism is not well un-
derstood in full nowadays, despite serious work performed in this field of research
during recent decades.

The basic foundation of magnetism is well known — particles with a net spin tend
to align in parallel or antiparallel fashion. The interaction responsible for the align-
ment is called magnetic interaction. In molecular systems, the electronic state of
which comprises only closed-shell electrons, there is only a very small magnetic in-
teraction, is called diamagnetism. Much more interesting, because of their strength,
are the interactions present when the molecules have net spins (that is, they are radi-
cals, biradicals, ... ), in which one can distinguish two classes of magnetic interaction
between a pair of molecules: ferromagnetic interactions, when the ground state is a
triplet (the electrons are said, in a simplistic form, to order in a parallel manner, that
is, both in an « or g state; note, however, that this description is only valid for two
out of the three states present in the triplet state) [54], and antiferromagnetic inter-
actions, in which the ground state is a singlet (the electrons are, one in an « state,
and the other in a g state) [54]. Within a given crystal a molecule makes contact
with nearby radicals (of the same kind in a purely organic crystal, or of different
type in co-crystals). As we will see later, these interactions decrease exponentially
with distance, so a common approach has been to look at the shortest contacts made
by each molecule, that is, with their so-called nearest neighbors. If all these interac-
tions are of the same type and are propagated along the three directions of space
we have a three dimensional ferro or antiferromagnet (also called bulk ferro or an-
tiferromagnets). In most of these the magnetic interactions are of different kinds.
If, however, one type of interaction is much stronger than the others, one can talk
about crystals having dominant ferro or antiferromagnetic interactions. These crys-
tals can be identified, for instance, by the shape of the xT versus T curve as the
temperature decreases: a continuous exponential increase of x 7T after some value
of T is indicative of the presence of dominant ferromagnetic interactions; a contin-
uous exponential decrease indicates the existence of dominant antiferromagnetic
interactions. The presence of magnetic interactions can be noted only at low values
of T, in which the separation from the magnetic ground state to the first excited
state is lower than the thermal energy. Otherwise, the population in the ground
state decreases while that in the first excited state (and possibly others) increases.
At some given temperature there is a random number of pairs with ferro and anti-
ferromagnetic interactions, each pair changing in a random way from one state to
the other, and no net magnetic behavior can be observed. In these circumstances
one talks about paramagnetism, because the macroscopic systems behave like pairs
of magnetically non-interacting particles. There are many other interesting collec-
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tive magnetic phenomena besides ferro and antiferromagnetism (ferrimagnetism,
metamagnetism, spin glasses, ...) [1]. Their microscopic mechanism can be treated
as special cases of the ferro and antiferromagnetic situations described above; for
instance the two interacting spins have different S values, or are oriented in such a
way that their net component is not zero, or the energetic spacing between ground
and excited states enables special collective long-range behavior. Thus we will only
concentrate on the ferro and antiferromagnetic cases.

The entry door to modern molecular magnetism is to understand which orien-
tations of pairs of radicals give rise to ferromagnetic interactions and which give
antiferromagnetic interactions. Of all the possible general mechanisms envisaged
for magnetic interactions proposed in the literature (see Ref. [1], particularly Ref.
[1b]), some have been accepted as explaining intermolecular magnetic interactions —
the first mechanism or proposal of McConnell (consequently called the McConnell-
I mechanism or proposal) [10], the second mechanism or proposal of McConnell
(therefore called the McConnell-II mechanism or proposal) [55], and spin—dipolar
interactions [56]. Besides these three mechanisms, there is strong evidence that the
superexchange mechanism, originally applied to intramolecular (“through-bond”)
magnetic interactions, also applies to (“through-space”) magnetic interactions [9,
57]. Other mechanisms based on orbital theories (extension of Hund rules to the
intermolecular case, orthogonality of the intermolecular orbitals, ...) [1, 58] have
also been proposed and applied with various amounts of success, although we will
see later on that the magnetism in purely organic nitronyl nitroxide crystals usually
involves more than one orbital.

Let us briefly mention the basics of the previous mechanisms. The McConnell-I
mechanism is based on the sign of the atomic spin population of the atoms making
the shortest contacts between the interacting molecules. The McConnell-1I mech-
anism is based on the importance of charge-transfer configurations, and indicates
that high spin multiplicity is favored by orbital degeneracy. Kollman and Kahn [59]
showed that the McConnell-II mechanism fails to describe the properties of the
bulk ferromagnet Fe(III)(CsMes); (TCNE) ™, and suggested that the McConnell-I
mechanism or some other model should be used instead. The spin-dipolar mech-
anism is based on the classical view of the spin as a dipole. Here, the interaction
between two spins is described, classically, as the interaction between two magnetic
dipoles. Its value depends on the distance as r—> [56]. It should be noticed that
the classical model of the spin is included within any ab-initio quantum-mechanical
treatment of the interaction between two spins. The dipolar interactions are said to
be responsible for the presence of magnetic interactions in some layered materi-
als with large distances between the layers [9], although Kinoshita [60] numerically
dismissed its importance in nitronyl nitroxide crystals. Finally, the superexchange
mechanism has been proposed for hydrogen-bonded purely organic nitronyl ni-
troxide crystals and co-crystals in which there are no short contacts between the
spin-containing groups (the ONCNO groups) but in which magnetic interactions
are observed [57]. The magnetic interaction is postulated to take place through the
H-O hydrogen bonds, in such a way that some groups which have almost no spin on
them (see above) act like carriers for the magnetic interaction (by analogy with the
role played by the ligands in the magnetic metal-ligand-metal interactions) [1d].
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3.3.2 The McConnell-I1 Mechanism: A Rigorous Theoretical Analysis

Among all models of through-space interaction, by far the most popular is the
McConnell-I mechanism originally introduced by McConnell [10] in 1963 to ex-
plain intermolecular magnetic interactions between aromatic radicals. This author
suggested that the magnetic interactions present between two aromatic radicals A
and B could be described by the Heisenberg Hamiltonian:

5 AB AB A B
AAP =— 3" JhBSASE (3)
ieA,jeB
In this expression, J;?B are two-center exchange integrals of the form:
JEB = [ijlij]+ 20 | )G 1| j) (4)

that is, they depend of the bi-electronic integrals [ij|ij], the overlap integrals (i |
J), and the monoelectronic integrals (i | & | j) (see Ref. [18] for their analytical
expression and physical meaning). S’IAS‘?, on the other hand, is the product of the
spin operator of atoms i and j from fragments A and B, respectively [61].

Equation (3) is a particular case of the general form of a Heisenberg Hamiltonian
[62], whose most general expression is of the form:

A A 1.
HABZQ—ZJ,']' <2SiSj+§Iij> 5)
iJ

The intra-fragment terms in this expression can be neglected making the assumption
that their contribution to the expectation values is the same between states.
Equation (3) was replaced, by McConnell, by the simplified expression:

AAB — _§AGE 3 JABpA B ©)
i€eA,jeB

which is the equation normally employed when applying the McConnell-I mecha-
nism. In this expression, S and S are the total spin operators for the fragments

A and B, respectively, J;;‘B are two-center exchange integrals defined above, and

,ol.A and ,0;3 are the products of the atomic spin population on atoms i and j (the

first from fragment A, and the second from fragment B). We have seen that the
Hamiltonian of Eq. (6) is phenomenological, because there is no strict mathemati-
cal way of deriving it from Eq. (3) [62]. Despite this, when the singlet-triplet energy
difference is computed using Eqgs. (6) and (5) some similarities arise. This can be
illustrated for the example in which only one unpaired electron is found in frag-
ments A and B; their interaction can give rise to a singly degenerated singlet (S)
state or a triply degenerated triplet (T) state. Using the expression:

A 1
($288) = S[(S(S+1) = Sa(Sa +1) = Sp(S5 + 1] (7)
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it is possible to see that (SASBYT — 1/4 and (SASBYS — —3/4. From here, the
singlet-triplet energy difference computed from Eq. (6) is:
4 S 4 T
ieA,jeB

Equation (8) is the cornerstone of the McConnell-I mechanism. It predicts the
relative stability of the singlet and triplet states as a function of the exchange inte-
grals J/?B and the products of the atomic spin populations (,ol.A and pf). The value
of the exchange integrals is not known, although, in general, their sign is negative.
Consequently, it is assumed that a triplet ground state is obtained when the products
of atomic spin populations are also negative (that is, the two atomic spin popula-
tions have opposite signs). Furthermore, not all the pairs need to be considered.
If the J;;‘B or plApB component of a term in the sum of Eq. (8) is negligible, this
term can be discarc{ed. This explains why normally only those terms associated with
the shortest atom—atom contacts involving atoms with non-negligible atomic spin
populations are considered. In practical terms, this implies making the exchange in-
tegrals for all terms zero except for the shortest contacts. This assumption is based
on the fact that the exchange integrals decrease exponentially with the distance,
but we will see later that, given the angular dependence of the molecular orbitals,
these integrals depend on factors such as the symmetry and relative position of the
atoms within the fragments.

When the singlet-triplet energy difference is computed from Eq. (5), its value is
given by the equation:

ES—ET =0 (P§ - P}) 9)
i

where P;; are elements of the exchange density matrix of the singlet and triplet
states, given by the expectation values (of the singlet or triplet wavefunction):

A A 1.
P;j =<— (25,’Sj+§]ij>> (10)

where /; ; is the identity operator. For a single configuration of a perfectly paired
valence bond wavefunction [61], P;; is equal to 1 when the pair is coupled into
a singlet, or —1 when the pair is coupled into a triplet. For uncoupled electrons
(that is, i and j belong to different spin-paired functions) it takes a value of —1/2.
Comparison of Egs. (8) and (9) shows that predictions of the McConnell-I equation
are only strictly valid if the following association is possible:

,o,-A/o}3 & PS — Pg (11)

There is no a priori reason why the product of atomic spin populations should be
related to the difference between the singlet and triplet exchange density matrices.
We have recently explored the possibility that in intermolecular interactions, at the
distances found in purely organic molecular crystals, the atomic spin density of the
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dimer could be approximated as a sum of that for each fragment, and that sum
would be different for the singlet and triplet states. We are currently testing this
possibility for several nitronyl nitroxides [63].

We can now apply the McConnell-I mechanism to nitronyl nitroxides, where
90% of the atomic spin population is located in the ONCNO groups, negative in
the C(sp?) atom and positive elsewhere. A common approach has been to look at
only the shortest contacts made by these groups. Usually, the McConnell-I equation
(Eq. 6) is employed without computing the JiAB and only taking into account the
shortest contacts. This is equivalent to assuming that these integrals are equal to
—1 for the shortest contacts and 0 for the remaining contacts. The equation is also
extended to non-rx - - - 7w interactions. In these situations the only magnetic interac-
tions of importance are those in which the short contacts are between the atoms
of the ONCNO groups (because those have 90% of the atomic spin population).
In particular, these contacts will be antiferromagnetic when they are of the type
O---O,N--:N, O---N, or C---C and ferromagnetic when the shortest contacts
are of the type C---O or C---N. The magnetic character of the remaining pairs of
interactions (H--- O, - --) should be negligible.

The failure of these predictions are readily apparent for the hydrogen-bonded
nitronyl nitroxides in which there are no short contacts between the ONCNO groups
but for which magnetic behavior can be measured experimentally [57]. As men-
tioned above, the magnetism in these crystals has to be explained by use of an-
other intermolecular mechanism (superexchange). There are also other inconsis-
tencies between the McConnell-I predictions and the experimental behavior of
nitronyl nitroxides with short ONCNO - .. ONCNO contacts [64]. The failure of
the McConnell-I mechanism can also be demonstrated by comparing its predictions
with ab-initio results computed for simple model dimers, e.g. the H,NOONH;
dimer [65]. The HoNO - - - ONH, dimer was studied by orienting the two molecules
as shown in the upper part of Fig. 11, with the NO groups pointing towards each
other. One of the groups was moved along the a-c plane, while preserving the four
NO---ON atoms in the same plane, and the H atoms are in symmetric positions
relative to that plane. The O--- O distance was fixed at 3.0 A. The results for the
singlet-triplet energy difference computed along that surface scan, obtained by use
of a variety of ab-initio methods, are plotted in the lower part of Fig. 11. They
show that, irrespective of the method used (B3LYP, MCSCF(6,4), CASPT2(6,4),
CCSD(T)), there is a change from singlet to triplet in the ground state as the dimer
is moved away from its collinear (NO - - - O angle = 180°) to a perpendicular con-
formation (NO---O angle = 90°). This contradicts what McConnell-I predicts —
according to this mechanism, the interaction should be antiferromagnetic at all the
points in Fig. 11.

There is an important point about the McConnell-I mechanism which must still
be addressed: why does it work in some cases but fail in others?. To answer to this
question we must know the source of the failure. We addressed this question by
using Eq. (9) to compute the singlet-triplet energy difference for the [2.2]paracy-
clophanes [66], after rigorous computation of the exchange integrals ( J;?B) and the
exchange density matrix. We studied the ortho, meta, and para conformers of this
radical, because they were previously used as experimental proof of the validity of
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Fig. 11. Top: Variation of the singlet-triplet energy difference found in the HyNO dimer as the
dimer is moved along the a—c plane. The energy difference has been computed by subtracting
the energy of the singlet and triplet states by use of the methods: MCSCF(6,4), CASPT2
on the MCSCF(6,4) computations, CCSD(T) and B3LYP. In the latter two cases the energy
of the singlet was that taken from broken-symmetry computations. Bottom: Definition of
the geometrical orientation of the molecules of the HNO dimer.

the McConnell-I mechanism. Although our computations correctly predict the mul-
tiplicity of the ground state, when the components of Eq. (9) are analyzed in detail
one finds that the reason for the success of the McConnell-I model in this exam-
ple is cancellation of many Jl.;'fB (PE — P;) terms associated with the non-shortest
contacts. This cancellation is a result of the small value of the Ji’;‘B integrals, as-
sociated with the high symmetry of the [2.2]paracyclophanes; this gives rise to the
direct alignment of many atoms of the nearby rings. This effect will, however, dis-
appear when the high symmetry is lost and many other Jl.‘J’.‘B integrals start to be
non-negligible [62]. Interestingly enough, the association between (PS — P;) and
,olAp?, Eq. (11), is correct for this molecule, so the biggest error seems to be the
form used to evaluate the exchange integrals (as mentioned before, in the normal
use of the McConnell-I mechanism, they are not evaluated).
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Summarizing the previous paragraphs, one cannot usually trust results from the
McConnell-I mechanism, at least without taking into account the numerical values
of the JﬁB integrals. This is the main source of error introduced in its normal use,
according to the previous considerations. When the method works is because there
is a fortuitous situation which cancels many of these integrals, leaving only those
terms which also appear in the normal use of the McConnell-I mechanism. A more
accurate mechanism, capable of considering situations not currently properly han-
dled by the McConnell-I mechanism, is therefore needed. For such a task, we need
to obtain information about the nature of the through-space magnetic interactions
in an unbiased form. We will do so in the following sections, by combination of
ab-initio and crystallographic studies.

3.3.3 Theoretical Analysis of Through-space Intermolecular Interactions

To understand the intermolecular magnetic interaction between open-shell
molecules is helpful to have a qualitative idea about the shape of the potential
energy surface for the intermolecular interaction between the two radicals. The
simplest example of an interaction between radicals is the interaction between two
H atoms (Fig. 12). At very large distances the ground state corresponds to two iso-
lated H atoms (the A and B atoms), each with an electron in a 1s orbital, that is,
with a spatial configuration of the type 1sa(1)1sp(2). These electrons can each be
in a spin configuration of the type o, a8, B or B8, which gives rise to the forma-
tion of one singly degenerate singlet and a triply degenerate triplet state. Because
the two atoms are too far away to interact, the two states are energetically degen-
erate (Fig. 12, right). If the two atoms become closer the two 1s atomic orbitals
combine into bonding ¢; and antibonding ¢, molecular orbitals. If one electron
is placed in each of these molecular orbitals (¢1(1)¢2(2) configuration) and their
single occupancy is preserved, the singlet and triplet states (hereafter identified as
the S; and Tj states) are expected to be repulsive, because the number of bonding
and antibonding orbitals is the same. One can, on the other hand, allow double
occupancy of the lowest energy bonding orbital, thus obtaining a ¢;(1)¢;(2) con-
figuration (normally written in the compact form ¢;(1)?). At short distances, the
#1(1)? configuration corresponds to the formation of a H-H bond, and gives rise
to a singlet state which we will identify as Syp. The energy of the Sy is equal to the
energy of a hydrogen molecule in its ground state and, consequently, it lies below
the energy of two isolated H atoms. If, however, the double occupancy is preserved,
at large distances one dissociates into a 152A configuration, i. e. one hydrogen atom
has two electrons and the other has none (this corresponds to dissociation into H™
and H™). Such a zwitterionic state is higher in energy than dissociation into two H
atoms in their 1s orbital, as shown in Fig. 12. There must, therefore, be a point at
which the Sy potential energy curve crosses the S; and T curves, a sort of transition
state, at energies above the H plus H dissociation. When the Sy and S; states are
allowed to mix (as in the MCSCEF, CI or MP2 computations, or also partially in the
UHF computation) the curves obtained after the mix (called adiabatic curves) are
those indicated with broken lines. In this case, the transition state disappears, as is
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interfragment distance

Fig. 12. Diagram showing variation of the energy with the intermolecular distance for the
states generated by the interaction of two monoelectronic radicals. The continuous lines
indicate the diabatic energy curves, that is, those obtained when the states are not allowed to
interact with other states when computing their energy. The discontinuous curves (adiabatic
curves, obtained when the diabatic states are allowed to interact) overlap the continuous
curves, except in the places where they are explicitly drawn. Sg, S; and Ty identify the lowest
energy singlet, first excited singlet, and ground state triplet states. No space symmetry was
considered.

found experimentally. The resulting wavefunction for the singlet state is, however,
a mixture of the Sy closed shell singlet state and the open shell S; singlet state, with
different weights. Close to the minimum of the curve the dominant component of
the mixture is the closed shell component; at the So—S1 crossing point it is practically
50% of each state; at large distances, it is dominated by the S; state. It is easy to
define the weight of each state by looking at the occupation of the natural orbitals
(obtained from diagonalizing the first-order density matrix, as the eigenvalues). An
RHEF will give an occupation of the ¢ (1)¢2(2) orbitals of 2.0 and 0.0 at all the points
of the Sy curve. An UHF computation will, however, give values close to 2.0 and 0.0
near the minimum of the Sy curve, but progressively these values will go to 1.0 and
1.0, as the H-H distance is enlarged and the Sg and S; states increase their mixing.

When the H atom (the simplest radical) is substituted by more complex radicals,
the process is slightly more complex, because one has to take into account the en-
ergetic effect induced by the non-bonding electrons. In such circumstances analysis
of the interactions and their energetic character is easier if the electronic structure
of the fragments is analyzed in valence-bond (VB) terms. We can understand the
main changes by looking at the interaction between two XH; molecules directed
in such a way that their shortest contact is the X--- "X contact. We can start our
analysis with the simple case in which X = C. The C atom has four valence electrons
which, given the geometry of the CH, molecule, can be placed in three sp? hybrids
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NH, NH3

Fig. 13. Valence-bond diagram showing the distribution of the electrons in the interaction
between two CHj or two NHj radicals in their ground state.

and in a pure p orbital perpendicular to these hybrids. Two of the sp? electrons
form a bond against one 1s electron of an H atom. The electronic structure of the
CH; molecule therefore contains two C—H bonds and two unpaired electrons, one
in an sp? orbital and the other in a pure p orbital. This gives rise to a triplet or an
open-shell singlet state, the relative stability of which is not known before perform-
ing ab-initio computations. Alternatively the two electrons could be located either
in the sp? hybrid or in the pure p orbital, thus giving rise to a closed-shell singlet.
Among all these possibilities, ab-initio computations tell us that the ground state is
the triplet generated from the (sp?)!p! configuration; this is depicted in Fig. 13.

The electronic structure of the NH, molecule is similar to that of CH,, but with
one more valence electron. This extra electron must go into one of the singly occu-
pied orbitals in the CH,. Of the two possibilities (sp? hybrid or the pure p orbital),
the most stable is the sp? hybrid (Fig. 13), and the ground state of the NH;, molecule
is of the 7 type (*B,). The orbitals of the H,NO fragment were qualitatively pre-
dicted before the use of VB arguments, and are similar to those for the NH,, with
the only difference that the SOMO is the bonding combination of the pure p or-
bitals of the O and N atoms (Fig. 4), and in HyNO there are two lone-pair electrons
on the O atom whereas in NHj there is only one of these pairs.

Using the information on the electronic structure of the isolated fragments, one
can rationalize the structure of the two XH; molecules in their ground state, as they
get closer, with their X atoms facing each other. One must keep in mind that as such
a decrease in distance occurs two singly occupied orbitals overlap, thus giving rise to
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bonding (¢ ) and antibonding (¢,) dimer orbitals. If two electrons are placed in the
bonding orbitals (closed-shell singlet state) a new bond is formed whereas if the two
electrons are placed one in the bonding and the other in the antibonding orbital,
no new bond in formed. In the second alternative one can place the electrons in an
open-shell singlet state (i.e. a ¢gpag,B configuration), or a triplet state (a PpaPac
configuration). If the number of electrons in the fragment orbitals overlapping more
strongly is three or four, the interaction is repulsive and no new bond is ever formed,
whatever the state. This is clearly shown by study of the interaction energy curves
of Fig. 14, which depict the variation of that energy as a function of the X---X
distance for all or some of three orientations of the XH, dimers — oo orientation,
in which the two sp? hybrids are overlapped, 7 orientation, in which the two pure
p orbitals of 7 symmetry are overlapped, and sp orientation, in which the sp? hybrid
of one fragment overlaps the pure 7 orbital of the other fragment.
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Figure 14 shows the interaction energy computed at the MCSCF(6,4)/6-31 +
G(2d,2p) level for the CH;, NHj3, and H,NO dimers. It is apparent that in the sin-
glet state of the 0o CHj dimer, the aggregate is more stable than at dissociation,
because of the formation of two new bonds, giving rise to the HyC=CH; molecule
in its ground state (the equilibrium distance being 1.33 A). If a triplet state is se-
lected for the same dimer, one of the bonds is broken and the dimer is less stable.
Parallel behavior is observed for the #= CH, dimer, although at smaller interaction
energies. In the NH, dimer only the singlet state of the 7 orientation is attrac-
tive at all distances. The other states are repulsive everywhere, or form a transition
state at short distance with another state, and then become stable (the oo/singlet
and om/singlets). The triplet states are always repulsive. Finally, in the HNO dimer
all states of the oo orientation are repulsive, and only a very shallow minimum is
found in the w7 orientation at large distances (this is probably associated with the
so-called basis set superposition error, shortened as BSSE [67]). All of this indicates
a decrease in the tendency of the XH; dimers of first row atoms to form bonds be-
tween the radicals as the number of lone pairs increases. In fact, no bonds have
yet been observed between the NO groups in nitronyl nitroxide crystals, in good
agreement with previous considerations.

The results in Fig. 14 can now be connected with the curves of Fig. 12. The curves
computed in Fig. 14 correspond to the adiabatic curves of Fig. 12 (those with broken
lines), because in all cases the singlet at short distance is a closed-shell state whereas
at large distances they dissociate into two neutral fragments (the diabatic curves, the
solid lines in Fig. 12, will dissociate into a double charged positive-negative dimer).
It is interesting to note that although the stability of the Sy curve has changed,
the physical phenomenon occurring is the same, and that depending on the inter-
fragment distance, the Sy state is a closed-shell singlet, or becomes an open-shell
singlet. This is clearly shown in Fig. 15, where the variation of the occupation number
of the SOMO and LUMO orbitals is shown for different distances. The distance at
which this change starts to be important depends on the stability of the Sy state —
more stable means changes at larger values of the r distance. The reason for such
behavior can be understood by looking at Fig. 12 — when the Sg solid curve is deeper,
the crossing of the Sp and S; solid lines is shifted towards larger distances. This
behavior corresponds to the results of Fig. 15 — for the HyNO dimer, the stability
of which is very small, the occupation number of the ¢; and ¢, SOMO orbitals of the
fragments is equal to 1 up to very short distances (these distances are never reached
by the dimer, because they are well within the repulsive well of the potential energy
curve). In the CH; and NH, dimers, however, occupation of the SOMO orbitals
(¢1 and ¢y, in the NH; dimer, and ¢1, ¢», ¢3, and ¢4, in the CH, dimer) departs
from 1.0 at very large distances, and becomes 1.5 at approximately 3 A. We can,
therefore, consider the CH, and NH; dimers to be dominated by their open-shell
singlet component up to 3 A, whereas the H,NO dimer is an open-shell singlet up
to 1A.

The change in the nature of the singlet ground state from open-shell to closed-
shell has important implications for the nature of the magnetic interaction —a closed-
shell singlet will induce diamagnetic behavior when propagated over all the dimers
of the crystal, whereas an open-shell singlet will induce antiferromagnetic behavior.
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For a given X - - - X interaction one can adjust the character of the singlet by chang-
ing the value of the X -- X distance found in the crystal. This can be achieved by
inducing the formation of hydrogen bonds in positions near the X atoms, by placing
the right functional groups in the molecule. These new hydrogen bonds will force
the X--- X distance to take the desired value. Alternatively, one can change the
type of radical, thus moving the So—S; crossing towards the desired position.
Finally, it is necessary to mention that the previous qualitative analysis does not
give us any information on the position of the triplet curve relative to the singlet
curves. The Ty triplet curve is repulsive for the H - - - H example of Fig. 12, but can
be attractive in other circumstances, for instance the CH, dimer (Fig. 14). For the
NH; and H,NO dimers, more representative for intermolecular magnetic interac-
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tions because no o bond is formed, the triplets are always repulsive. Finding the
regions in which their stability is greater than those of the Sg or Sy singlet is the
aim of intermolecular magnetic studies. Unfortunately, there is currently no simple
qualitative argument which can be used to find these regions.

A step towards understanding the triplet-singlet crossing responsible for the
ferro—antiferro macroscopic transition can be taken by analysis at the ab-initio
valence-bond level of the singlet—triplet crossing found in Fig. 11 for the angular
displacement of the HyNO dimer. We can do such analysis in valence-bond terms by
use of Eq. (9), when an appropriate valence-bond basis set has been selected, and
the values of the J;; exchange integrals and the (PS. — Pg) matrix elements have been
computed on this basis. This can be achieved by using MCSCF(6,4) computations
after adequate transformations to go from the molecular-orbital representation into
the equivalent valence-bond form [68]. The singlet-triplet splitting can therefore be
rationalized, in valence bond terms, as the result of the interactions between the
three H,INO orbitals plotted in Fig. 16 — two o orbitals, one located in the N atom
and the other in the O atom, and a 7 antibonding orbital, delocalized over the two
atoms. The valence-bond basis set is composed of the three orbitals in each of the
fragments.
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Fig. 16. Shape of the valence-bond orbitals of
the HyNO fragment employed in the analysis
of Fig. 11.
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Analysis of the values of the J;; exchange integrals and the (PS — P;) matrix
elements generated by these orbitals shows that the main changes of the angle are
associated with the inter-fragment elements coming from the = orbital of one frag-
ment and the sp orbital of the other fragment, so we will concentrate here on their
values (Table 9). The variation of the A(J;P;j) m—m and so-m energetic compo-
nents with the angle must be compared with the change reported in Fig. 11 for
the AE(S — T) values, for which there is a maximum in the ferromagnetic prop-
erties at approximately 120° and the antiferromagnetic behavior at 180° and 90°.
One should mention here that addition of the A(J;; P;;) terms reproduces this vari-
ation at slightly higher energies (approx. 10cm~'). The A(J; jPij) m—m energetic
components are always antiferromagnetic whereas the sp—m energetic components
are always ferromagnetic. The antiferromagnetic—ferromagnetic-antiferromagnetic
change is parallel to a decrease towards zero of the intermolecular A(J;; P;;) m—m
elements and a simultaneous increase from zero of the intermolecular A(J;; P;;)
so—n terms. The overall result comes from addition of these two opposite terms
— when the A(J;; P;j) m—m elements dominate the interaction is antiferromagnetic
whereas the interaction is ferromagnetic when the dominating term is the A(J;; P;;)
so—n term. As shown in Table 10, the changes in the sizes of the terms are mainly
associated with changes in the values of the J;; so—n integrals (last column of Ta-
ble 10) and with the simultaneous decrease in the values of the J;; 7—m integrals.
This variation is qualitatively similar to the change expected in the so—7 and 7—n
overlap integrals. Our valence-bond analysis thus shows that the presence of fer-
romagnetism in the HoNO dimer of Fig. 11 is because of a subtle balance of the
SOMO-SOMO and (SOMO-1)-SOMO interactions, the first giving rise to antifer-

Table 9. Calculated values (in atomic units, and multiplied by 1073) of the (J;; P;;) terms
for the m and sy and sp valence bond orbitals of fragments 1 and 2, when the O--- O-N
angle between the two fragments is equal to 150°).

b4 so(1) sn(1)

b4 —0.0716 0.1110 0.0001
s0(2) 0.0040 0.0013  —0.0002
sN(2) —0.0002  —0.0003 0.0000

Table 10. Variation with the O---O-N angle of the values of the inter-fragment (J;; P;;)
terms, P;;, and J;; for the 7 and sg valence-bond orbitals. The angles are given in degrees
and all the other values in atomic units.

(% (Jij Pij) m—m (Jij Pij) so—m Pij m-m Pij so-m Jij -1 Jij so-m
180  —0.00011 0.00000 2.000 0.034 —0.00002 0.00000
150  —0.00007 0.00011 2.000 0.034 —0.00001  —0.00095
140  —0.00005 0.00011 2.000 —-0.017 —0.00001 —0.00145
120 0.00000 0.00025 2.000 —-0.017 0.00000  —0.00209
100  —0.00011 0.00020 2.000 0.035 —0.00003  —0.00164

90  —0.00033 0.00011 2.000 0.034 —0.00010  —0.00089
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romagnetism, the second to ferromagnetism. This change is driven by the changes
in the values of the J;; integrals and the signs of the AP;; so—n elements.

The previous analysis has been focussed on a simple model dimer. Although this
dimer is not representative of the electronic structures found in all nitronyl nitroxide
radicals, or the variety of relative orientations of the NO groups, it has clarified
some of the physics of the problem, namely, that the McConnell-I mechanism is an
oversimplification of the real physics (it lacks sensible foundation and its normal
use fails to reproduce the behavior of a simple case). It was also shown that the
presence or absence of ferromagnetism in the H,NO dimer is because of a balance
between the SOMO-SOMO and (SOMO-1)-SOMO interactions, that is, does not
follow a one-orbital model. Finally, we have presented a curve-crossing model which
enables understanding of the basics of the intermolecular magnetic interaction in
simple terms. In the following sections, we will describe how to obtain information
about the nature of magnetic intermolecular interaction by combining results from
analysis of the crystal packing of purely organic molecular crystals and accurate
ab-initio computations on realistic nitronyl nitroxide aggregates.

3.3.4 Experimental Magneto-structural Correlations

The proper means of obtaining experimental magneto-structural correlations on
purely organic crystals is by unbiased analysis of the packing of crystals with the
same kind of dominant magnetic interactions over the usual range of temperatures
analyzed (usually 2-300 K). The largest magnetic interactions in these crystals can
be assumed to be always of the same as the dominant interactions (that is, all short
nearest-neighbor contacts between radicals in the crystal can be assumed to be of
the dominating type, or much smaller in size).

To obtain unbiased experimental magneto-structural correlations for nitronyl ni-
troxide magnetic crystals one must study the packing of all the crystals of this type
with dominant ferro or antiferromagnetic properties (the FM and AFM subsets, re-
spectively). From a combined search on the Cambridge Crystallographic Database
and from crystals provided by a variety of authors it is possible to select 23 FM
and 24 AFM crystals, all with R factors smaller than 0.1 or without large distor-
tion (and thus with well refined structures), omitting also those crystals containing
transition metals or which are co-crystals [2]. The radicals belonging to these two
subsets are those shown in Figs. 2 and 3, which also indicate the refcode (when
available, otherwise an internal refcode which begins with a zero was assigned).

When the two FM and AFM subsets are created it is possible to analyze the
packing of these crystals, looking at the relative disposition of the radicals in the
nearest-neighbor contacts. In accordance with previous studies of the spin distri-
bution, most of the spin population is located on the ONCNO group of the five-
membered ring. It thus seems natural to search first for magneto-structural correla-
tions involving the relative disposition of nearby ONCNO groups. One can define
the relative orientation of two ONCNO groups, given that the geometry of these
groups in different crystals is almost invariant [69], by means of the six geometrical
parameters of Fig. 17. The values of these parameters (Table 11 and Fig. 18) within
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Table 11. List of ONCNO - -- ONCNO contacts for crystals of the FM and AFM subsets
within the range of distances indicated. Percentages of ferro- or antiferromagnetic interac-

tions are also given.

Range (A)  Total contacts  FM contacts

%

AFM contacts

%

0-3 0 0
04 24 10
0-5 92 36
0-6 204 90
0-7 378 167
0-8 608 274
0-9 901 416
0-10 1312 611

0
42
39
44
44
45
46
47

0
14
56

114
211
334
485
701

0
58
61
56
56
55
54
53

the two subsets are distributed in a nearly uniform form over the range of values
for all classes of parameter. Two important facts emerge from this distribution:

e there is no correlation between the presence of short NO--- ON contacts and
the presence of antiferromagnetism (Table 11), as was previously assumed; and
e there are no specific orientations of the ONCNO groups characteristic of either

ferro- or antiferromagnetic interactions (Fig. 18).

Both facts contradict the normal use of the McConnell-I mechanism, which pre-
dicts that short ONCNO - - - ONCNO contacts should lead to antiferromagnetism,
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Fig. 18. Distribution of values defining the ONCNO - - - ONCNO orientation (intermolecular
distance, D, angle A1, and dihedral angle 73) in nitronyl nitroxide crystals with dominant
ferro- or antiferromagnetic interactions. The parameters are defined in Fig. 17.

and the angular dependence of these interactions, as the O atom of one group gets
closer to the C atom of the other.

When a similar analysis is performed for the C-H - - - ONCNO contacts of the FM
and AFM subsets a similar conclusion is reached, i. e. there is no statistically signifi-
cant difference between the contacts found in the FM and the AFM subsets. One can
therefore conclude that no magneto-structural correlation based only on one type of
contact is possible for these crystals. This result is quite surprising, because one ex-
pects that the magnetic interaction should be affected by the geometry, as shown in
Fig. 11. The most likely explanation of this result is, therefore, that more than one type
of contact is playing a role in defining the nature of the dominant magnetic interaction,
i.e. it depends, for instance, on the relative geometry of the ONCNO - - - ONCNO
and the C-H--- ONCNO contacts. Such a conclusion clearly goes against normal
understanding of McConnell-1 predictions, because in order to exist such cooperat-
ing interactions, parts of the molecule which hold small spin populations (see above)
must participate in magnetic interactions. In particular, the magnetic cooperation
could occur through the hydrogen bond (C-H - - - ONCNO contacts), although we
have already found that the spin population on the H atoms is always very small,
irrespective of the H atom and radical considered (thus McConnell-1 would predict
a small magnetic role for these contacts, unless large J values could be attributed
to such hydrogen bond interactions).

As a consequence of these facts we can rule out simple magneto-structural cor-
relations which try to predict magnetic behavior in terms of ONCNO - - - ONCNO
relative positions. The intermolecular interactions between nitronyl nitroxide rad-
icals result from a combined interaction involving more than one functional group
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of the molecule. This study does not, however, identify which groups participate,
their importance, and the geometrical dependence of the interactions induced by
each group. For such a task, we need to perform well designed theoretical studies
aimed at clarifying these points.

3.3.5 Theoretical Magneto-structural Correlations

The cooperativity between all the functional groups of the radicals in defining the
net character of the radical-radical magnetic interaction, reached in the previous
section, requires further testing before its final acceptance. We therefore decided to
perform theoretical studies aimed at establishing, without any doubt, the validity of
such a conclusion. In this section we summarize these studies, after briefly presenting
the methodology employed.

3.3.5.1 Theoretical Tools for the Study of Intermolecular Magnetic Interactions

The nature of the magnetic interaction between a pair of radicals can be established
by use of the Heisenberg Hamiltonian, as described in detail in the previous sections.
Although these methods are very efficient for analysis of the magnetic interaction,
currently, however, the use of Egs. (6)-(9) to obtain quantitative results is com-
putationally more demanding than the use of molecular-orbital methods aimed at
the computation of the energy difference between the high spin and low spin states
(singlet and triplet for the interaction of doublet radicals).

The use of molecular-orbital methods to define the nature of the magnetic in-
teractions between radicals has been covered in detail in the other chapters of this
book [70], so we will only emphasize here some aspects related to the particularities
of the application of these methods to intermolecular interactions. As in the study of
magnetism in systems containing transition metals, two kinds of molecular-orbital
method can be used to study the magnetic character of purely organic radicals. The
first set of methods, which we can regard as conventional methods, is based on sep-
arate computation of the energy of the high spin and low spin states of interest.
Here, we can, in principle, use any of the methods (HF, CI, MCSCF, MP2, CCSD,
QCISD,...) developed over the years for the study of molecules and aggregates, and
described in detail in well known texts [18]. The second kind of molecular-orbital
method, the so called dedicated methods [71], is designed for direct computation
of the energy difference between the high- and low-spin states, after obtaining the
analytical expression for that energy difference. The second kind of method has not
yet been applied to the study of through-space magnetic interactions, although their
application to the study of through-bond interactions has resulted in very promising
performance at lower cost than that of the use of the first class of methods [72]. We
will, therefore, focus on summarizing the properties and problems of conventional
methods, when applied to the study of through-space magnetism.

Two main problems are associated with the use of many of the conventional
methods - the presence of spin contamination in some of the states and the difficulty
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(or impossibility) of describing some of the states of interest in an appropriate form.
The first problem is associated with the use of methods whose wavefunctions are
not eigenvalues of the 52 operator. In general, this is true for all methods which use
an UHF determinant (UHF, UMP2, ...), with the special case of the unrestricted
version of the DFT functionals already mentioned. Because the UHF determinants
are not always eigenfunctions of the 52 operator, the computed wavefunction can
be an average of the wavefunction of the desired state and other states of higher
or lower spin multiplicity. The wavefunction is said to be spin contaminated, the
amount of that contamination being computed by looking at the expected value of
the §2 operator — in a pure spin state it should be equal to S(S + 1), where S is the
eigennumber defining the spin multiplicity of the state (defined as 25 + 1), i.e. is
equal to zero for a singlet, 1/2 for a doublet, one for a triplet, and so on. Thus, when
the expectation value of the 52 operator for a doublet (25 + 1 = 2, consequently
S = 1/2) differs from 3/4, the doublet is contaminated by states of higher multiplicity
(in this example the only possible source of contamination). The importance of this
spin contamination in our high—low spin computations is that the energy computed
with a spin contaminated wavefunction is an average of the energy of the pure
spin states, thus making the value of the energy difference unreliable. A possible
solution to the spin-contamination problem might be the use of spin-projected UHF
wavefunctions, exact or approximate [23], an approach followed by Yamaguchi in
the computation of the intermolecular magnetic interactions of a variety of systems
[73]. The spin-contamination problem can be completely avoided by use of methods
which, by construction, do not suffer from spin contamination and are capable of
describing any type of spin multiplicity. One example is the MCSCF method (the
name standing for multi-configurational self consistent field methods). This method
is capable of properly describing the sign of the high-low spin energy differences for
many intramolecular systems [20a], and it has recently been shown that it is also
capable of describing the sign of the difference for model intermolecular dimers
[74]. The quality of the MCSCEF results can be improved to quantitative accuracy
when compared with experimental values or results from full-CI computations, by
including the dynamic correlation not taken into account by the MCSCF method.
One efficient means of achieving this is to perform a multi-reference second order
Moller-Plesset (MP2) computation on the MCSCF wavefunction, a method which
has been named CASPT?2 [20a].

The second type of problem is encountered in the description of the open-shell
singlet state (that associated with a ¢1a(1)¢8(2) configuration), which cannot be
described within the framework of the RHF method, or by all the methods which
take its determinant as starting point. This configuration is, however, likely to be
that associated with the ground state Sg state, given the large distance between
the radicals and the small interaction energy involved. Besides the possible spin-
contamination problem described above, one must be sure the final solution has the
desired spin distribution (in the example mentioned here an « spin in one of the
radicals and a $ spin in the other) because the UHF solution often results in no net
spin density on each center (i. e. one has ended in the closed-shell state). In such cir-
cumstances one must resort to the so called broken-symmetry approximation [75],
which enables one to end in the open-shell singlet by mixing the SOMO-LUMO
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orbitals (if they are of different symmetry, otherwise the SOMO and other orbital),
thus forcing a decrease in the symmetry of the Hamiltonian and wavefunction rela-
tive to the symmetry of the molecule. A broken solution of an UHF wavefunction is
known to be equivalent to a small CI calculation [75]. When such a wavefunction is
fed as a starting wavefunction into a coupled cluster method, e. g. the CCSD(T), and
the energy is compared with that computed with the same method from the UHF
triplet, it is possible to obtain reasonable results for singlet-triplet energy separation
in the HoNO dimer (Fig. 11), in contrast with accurate methods such as CASPT2,
which is known to give results close to the full-CI method in simple radical dimers
[74]. We will call these computations BS-CCSD(T).

The use of a broken-symmetry (BS) solution has also been found to be adequate
within the density-functional (DFT) formalism [25-27]. The DFT wavefunction of
many radical dimers has been found to result in small spin contamination (although
this is not always so). The energy difference between the broken-symmetry singlet
and the triplet wavefunctions is found to be similar to that from CASPT2 computa-
tions for the HoNO dimer (Fig. 11), at least when the B3LYP functional is employed
(BS-B3LYP computations). Similar behavior is also found in real nitronyl nitroxide
dimers, as we will see later. The advantage of these BS computations is that they take
only a fraction of the computational effort required for CASPT2 or BS-CCSD(T)
computations. This BS-DFT approximation has been extensively used, and given ex-
perimental results with very good reproducibility, for computation of the magnetism
in transition metal dimers [76]. Some controversy has, however, arisen on exact form
in which the singlet-triplet energy difference should be computed when the open-
shell singlet state is computed using the BS-DFT approximation [75, 72b]. Recent
evidence seems to be in favor of use neither of the spin-restricted Kohn-Sham for-
malism or and kind of spin-correction technique [76, 77], to avoid a contaminated
value of the spin for the Slater determinant. Here, in line with previous findings
for inorganic compounds, we will consider the expression AES™T = Egg(S) — E(T),
which is equivalent to saying that the BS-DFT method reproduces well the energy
of the open-shell singlet (the alternative solution is AES™T = 2(Egs(S) — E(T)),
which is known to work better for Hartree-Fock wavefunctions, but the latest ev-
idence seems to indicate that this is not so in the DFT formalism). Thus, we will
not use such a factor in the following results. It is, in any case, worth noting that
the inclusion of such a factor does not change the sign of the high-low spin energy
difference.

3.3.5.2 Cooperativity in Magnetic Interactions —
the LICMIT and WILVIW10 Crystals

The LICMIT [78, 79] and WILVIW10 [80, 81] crystals are the two crystals of the
ferromagnetic and antiferromagnetic subsets studied in the Section 3.3.4 for which
the intermolecular ONCNO - - - ONCNO distances are shortest (3.157 and 3.158 A,
respectively, although in the second crystal there is also another contact at 3.384 A).
Besides the similarity in the values of the distances, the two ONCNO groups sep-
arated by the shortest distances in these two crystals are distributed in a nearly
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Fig. 19. Geometrical disposition of the radicals in the shortest ONCNO - - - ONCNO contacts
found in the LICMIT and WILVIWI10 crystals. The H atom of the meta OH group is not
shown in LICMIT.

identical manner (Figs. 19 and 20). If, therefore, one assumes that the dominant
magnetic interaction is determined solely by the shortest ONCNO - - - ONCNO in-
teraction, it is clear that the magnetic interaction for the shortest contacts of the
LICMIT and WILVIW10 crystals should be of the same type. In the WILVIW10
crystal one could argue that the second contact at 3.384 A could have the opposite
character, but, as mentioned above, if this is true one would have a crystal with com-
peting interactions of opposite sign. This is not what is found in the experimental
measurements. Furthermore, analysis of the geometry of the 3.384 A contact indi-
cates that the relative orientation of the ONCNO groups is similar to that found
when the distance is 3.158 A. There is, therefore, no reason to expect a different
magnetic nature for the shortest (and expectedly dominating) dimers on the ba-
sis of the ONCNO groups. This is also predicted by the McConnell-I mechanism,
which will predict those contacts as antiferromagnetic. Consequently, there are two
possible options:

e the magnetic interactions between the ONCNO groups in these three examples
are of different types, because of the small geometrical differences between these
dimers; or

e other groups, besides the ONCNO groups, also play a decisive role in defining
the character of the magnetic interactions in these three dimers.
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Fig. 20. Front, upper, and side view of the space disposition of the ONCNO groups in the
dimers of Fig. 19.

We can investigate the validity of the first option by computing the nature of the
ONCNO - - - ONCNO intermolecular interaction of the three dimers of Fig. 19 [82].
For this purpose one can take the real radical dimers and delete all the atoms except
those in the ONCNO groups, also adding hydrogens in the places where N-C(sp?)
or C(sp?)-C bonds occur in the real dimer, to preserve the oxidation state of the
atoms. The directions of the new N-H and C-H bonds are the same as that of the
substituted N-C(sp®) or C(sp?)—-C bond, and their lengths are the optimum for each
ONH-CH-HNO fragment in a B3LYP/6-31+G(2d,2p) optimization. We performed
MCSCF(6,6)/6-31G and MCSCF(6,6)/6-31G(d) computations on the geometry of
these three ONH-CH-HNO model dimers to calculate the singlet-triplet energy
difference, after verifying that the addition of diffuse functions did not affect the sign
and magnitude of the singlet—triplet energy difference on tests performed on the
H,;NO dimer. One must note here that the CAS(6,6) space was used in the MCSCF
computations, because each monomer requires a CAS(3,3) space to enable proper
description of the spin polarization in the ONCNO group (i. e. for the presence of
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Table 12. Values of the AES-T energy difference (cm~!) computed for the (ONH-CH-
HNO), model dimer making the shortest contacts in the LICMIT and WILVIW10 crystals.
The MCSCF method was used, with the basis set indicated. The results are compared with
those from B3LYP broken-symmetry computations using the same basis set.

Crystal Basis set MCSCF  CASPT2  B3LYP
LICMIT 6-31G -0.8 -2.0
6-31G(d) —1.0 -23 -1.8
WILVIW10  6-31G —2.0a —542
—16.4° —14.0b
6-31G(d) —1.8¢ -0.8 —522
—17.6° -97 —15.0b

4Dimer with a ONCNO - -- ONCNO contact of 3.159 A.
bDimer with a ONCNO - .- ONCNO contact of 3.383 A.

negative spin on the central C(sp?) atom and positive spin on the two atoms of the
NO groups). The results of these MCSCF computations (Table 12) show that the
singlet is always the ground state for all three dimers, i. e. the magnetic interaction
is antiferromagnetic in character. Interestingly, for WILVIW10 the dimer with the
shortest O - - - O distance has not the strongest antiferromagnetic interaction, clearly
indicating the importance of the angular parameters in defining the strength of the
antiferromagnetic interactions in ONCNO - - - ONCNO interactions. The basis set
does not seem to have a substantial effect on the results. When the dynamic correla-
tion is taken into account by means of CASPT?2 calculations, the results are almost
the same.

We repeated the previous computations at the broken-symmetry B3LYP level
(see above) to test the performance of this methodology. The nature of the interac-
tion (Table 12) is qualitatively the same as obtained previously at the MCSCEF level,
and the size of the interaction is also very similar, although the B3LYP results slightly
exaggerate the antiferromagnetic nature of the interaction, consistent with the trend
previously found in Fig. 11 for the H,NO dimers. Taking that trend into account we
can therefore feel safe when applying the broken-symmetry B3LYP methodology to
the study of the magnetic character of the interaction between ONCNO-containing
dimers.

The MCSCF and B3LYP results on the LICMIT and WILVIW10 dimers indicate
that the three dimers of Fig. 19 have the same magnetic character. Thus, the only
remaining option is the second, i.e. that groups of the LICMIT and WILVIW10
radical with much smaller spin population than the ONCNO group cooperate in
establishing the nature of the magnetic interaction in the dimer. Such behavior,
if confirmed, will explain the lack of correlation between the relative disposition
of the ONCNO groups and the dominant magnetic character of the interactions
found experimentally when analyzing the packing of crystals with dominant ferro or
antiferromagnetic interactions. We therefore performed broken-symmetry B3LYP
computations in the three dimers of Fig. 19, using the full geometry of these dimers
and the 6-31+G(d) basis set. These computations gave a singlet—triplet energy dif-
ference of 1.3cm~! for the LICMIT dimer, fortuitously close to the experimental



3.3 Magnetic Interactions in Purely Organic Molecular Crystals 111

result (1.3 cm™1). For the shortest and largest contact in the WILVIW10 dimers these
results are —9.1 and —28.2cm ™!, respectively (to be compared with an experimen-
tal average energy difference of —102.9cm~!). When these results are compared
with those obtained with the isolated ONCNO groups (Table 12) one has proof
of the important role that other groups, that hold approximately 10% of the spin
population, play in defining the character of the magnetic interaction in these rad-
icals. We thus have a numerical proof of the presence of cooperativity among the
spin-containing and non-spin-containing groups of these radicals in establishing the
nature of the magnetic interactions between their radical dimers.

As a final test on the validity of our analysis we computed the singlet-triplet en-
ergy difference for all the dimers of the first coordination sphere of the radicals in
the LICMIT and WILVIWI10 crystals (these are the dimers with the shortest con-
tacts within the crystal). We also performed the calculations at the broken-symmetry
B3LYP/6-31+G(d) level [83]. There are five different kind of dimer in the first coor-
dination sphere of the LICMIT radical; the shortest O - -- O distances in these are,
in increasing order, 3.158, 4.594, 5.525, 5,856, and 6.294 A. The singlet-triplet energy
difference for all these dimers in the LICMIT crystal are, in the same order, 1.34,
0.15,0.02, —0.15, and 0.09 cm~!. The shortest contact interaction studied previously
is, therefore, by far the most dominant. Interestingly, all but one of these dimers
are of the ferromagnetic type. Although we will not discuss the values here, similar
results were also obtained for the WILVIW10 crystal.

3.3.5.3 Magnetic Patterns

If the magnetic interactions in the dimers depend on more than one functional group,
the relevant information is the number and relative disposition of these functional
groups in the two molecules. This type of information is given the general name
pattern in the field of crystal engineering [7c, 84]. When associated with magnetic
properties, therefore, we decided to name it magnetic pattern. Different patterns can
have similar or identical relative disposition of the ONCNO groups but different
disposition of other groups and thus their magnetic character will be different. This
is the source of the apparent inconsistencies found when analyzing the packing of
the crystals with dominant ferro or antiferromagnetic interactions as a function of
one functional group. In view of this new evidence one must learn how to perform
such analysis in terms of patterns.

One can assign the magnetic character of any given pattern by direct computa-
tion of the energy difference between the high and low spin states present in that
pattern. From that computation we know that the pattern for the shortest contact in
the LICMIT crystal (Fig. 19) is ferromagnetic, whereas the two found in the WIL-
VIWI10 crystal are antiferromagnetic. It is, however, also useful to know the reasons
for that change in behavior, i. e. to identify what groups in the molecule cooperate
with the ONCNO - - - ONCNO magnetic interaction in each instance. To achieve this
one can progressively extract groups from the full dimer and compute the result-
ing effect in the low—high energy difference (in this example singlet-triplet). Thus,
if the LICMIT dimer is substituted by a ONH-CH-HNOONH-CR-HNO dimer
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(R = substituent), the resulting interaction between the LICMIT radical and the
ONH-CH-HNO radical is ferromagnetic, by a value of 0.31 cm~!, compared with the
1.3 cm~! value previously found for the full LICMIT dimer, and the —1.8 cm™~! value
found for the (ONH-CH-HNO); dimer (all are broken-symmetry B3LYP compu-
tations). It is, therefore, the C—-H and O-H groups present in the six-membered rings
that make the difference. In particular, it seems likely to be the effect of the short
O-H - - - ONCNO contacts. Such contacts are not possible in the WILVIW10 dimers,
although one finds short C(sp?)-H - - - ONCNO contacts in the shortest dimer (that
with a 3.158 A O - - - O distance). Computation for the full dimer now gives a value
of -9.1 cm~1, that for the ONH-CH-HNO - -- ONH-CR-HNO dimer —5.7cm™!,
and that for the (ONH-CH-HNO), dimer —5.2cm~! (all are broken-symmetry
B3LYP computations). The short C(sp?)-H - - - ONCNO contacts in WILVIW10 are,
therefore, not capable of changing the nature of the antiferromagnetic interaction
generated by the short ONCNO - - - ONCNO contacts. The same can be said about
the C(sp?)-H - - - ONCNO contacts found in the large-distance dimer of Fig. 19 (the
full dimer has an interaction of —28.2cm~! whereas the WILVIW10 - .. ONH-CH-
HNO dimer interaction is —20.9cm~!, and the (ONH-CH-HNO), dimer interac-
tion is —15.0cm™1). So, the ferromagnetic nature of the interactions found in the
dimer of the LICMIT crystal shown in Fig. 19 must be attributed to the short O-
H--- ONCNO contacts present in that dimer.

When the character of the patterns has been properly characterized one can study
the magnetic pathways within the crystal, by identifying the location in the crystal
where these patterns are repeated. This will enable rationalization of the magnetism
in the magnetic crystals of interest. We can apply this procedure qualitatively to the
LICMIT crystal with the data given above. The data mentioned indicate the presence
of strong ferromagnetic interactions between dimers, and smaller ferromagnetic in-
teractions connecting these dimers with nearby dimers. We are currently working
on procedures to determine whether these data reproduce the x T — T behavior in
the experimental range of temperatures [85].

Acknowledgments

This work was supported by DGES (Projects PB95-0848-C02-02 and PB98-1166-
C02-02) and CIRIT (Projects 1997SGR-00072 and 1999SGR-00046). We are also
grateful for contact with generous allocation of CPU time provided by CESCA
and CEPBA on their computers, also made possible by a joint CIRIT-University of
Barcelona grant. Finally, the authors also want to thank Professors J. Veciana and
M. A. Robb for their invaluable support and cooperation in parts of this work.



References 113

References

(1]

(13]

For a recent reviews, see: (a) E. Coronado, P. Delhags, D. Gatteschi, and J. S. Miller
(Eds.), Molecular Magnetism: From Molecular Assemblies to the Devices, NATO ASI
Series E, vol. 321, Kluwer Acad. Publishers, Dordrecht, 1996; (b) J. S. Miller, A. J.
Epstein, Angew. Chem. Int. Ed. Engl. 1994, 33, 385; (c) M. Kinoshita, Jpn. J. Appl. Phys.
1994, 33, 5718; (d) O. Kahn (Ed.), Magnetism: A Supramolecular Function, Kluwer,
Dordrecht, 1996; (e) P. M. Lahti (Ed.), Magnetic Properties of Organic Materials, Marcel
Decker, New York, 1999; (f) O. Kahn (Ed.), Mol. Cryst. Liq. Cryst. 1999, 334/335,
1-712/1-706.

For details of the selection of the crystals and methodology see: (a) M. Deumal,
J. Cirujeda, J. Veciana, J. J. Novoa, Adv. Mat. 1998, 10, 1461; (b) M. Deumal, J. Cirujeda,
J. Veciana, J. J. Novoa, Chem. Eur. J. 1999, 5, 1631.

A. Gavezzotti, J. Am. Chem. Soc. 1991, 113, 4622; (b) A. Gavezzotti, (Ed.), Theoretical
aspects of computer modeling, John Wiley, Chichester, 1997.

(a) A. Gavezzotti, Acc. Chem. Res. 1994, 27, 309; (b) J. Bernstein, J. Phys. D: Appl.
Phys. 1993, 26, B66; (c) J.D. Dunitz, J. Bernstein, Acc. Chem. Res. 1995, 28, 193;
(d) J. Bernstein, R. J. Davey, J.-O. Henck, Angew. Chem. Int. Ed. Engl. 1999, 38,
3440.

R. J. Gdanitz, in A. Gavezzotti (Ed.)Theoretical aspects of computer modeling, John
Wiley, Chichester, 1997; (c) J. Perlstein, J. Am. Chem. Soc. 1992,114, 1955; (d) J. R.
Holden, Z. Du, H. L. Ammon, J. Comput. Chem.1993,14, 422; (¢) B. P. van Eijck, W. T.
M. Mooij, J. Kroon, Acta Crystallogr. 1995, B51, 99; (f) A. M. Chaka, R. Zaniewski, W.
Youngs, C. Tessier, G. Klopman, Acta Crystallogr. 1996, B52, 165; (g) M. U. Schmidt,
U. Englert, J. Chem. Soc., Dalton Trans. 1996, 2077; D. W. M. Hofmann, T. Lengauer,
Acta Crystallogr. 1997, AS3, 225; P. Vermer, F. J. J. Leusen, Rev. Comput. Chem. 1998,
12, 327.

G. Filippini, A. Gavezzotti, J. J. Novoa, Acta Crystallogr., 1999, B55, 543.

(a) JJ. Novoa, M. Deumal, Mol. Cryst. Lig. Cryst. 1997, 305, 143. (b) M. Deumal,
J. Cirujeda, J. Veciana, M. Kinoshita, Y. Hosokoshi, JJ. Novoa, Chem. Phys. Lett.
1997, 265, 190. (c) J.J. Novoa, in Implications of Molecular and Materials Structure for
New Technologies, (J.A.K. Howard, EH. Allen, G.P. Shields, Eds.), Kluwer Academic
Publishers, Dordrecht, 1999.

A. Rajca, Chem. Rev. 1994, 94, 871.

V.; Laget, C.; Hornick, P;; Rabu, M.; Drillon, R., Ziessel, Coord. Chem. Rev. 1998,
178-180, 1533.

H. M. McConnell, J. Chem. Phys. 1963, 39, 1910.

A. Ricca, J. Weber, M. Hanus, Y. Ellinger, J. Chem. Phys. 1995, 103, 274. MCSCF
computations on the HyNO radical. These computations also indicate that the H,NO
molecule is slightly non-planar, although when the vibrational motion is taken into
account is effectively planar.

MCSCF computations performed by us using a complete active space of seven electrons
and seven orbitals (CAS(7,7)) and a cc-pVDZ basis set, predict that the charge on
the O atom is —0.31 atomic units, that is, has 0.31 electrons more than the six valence
electrons one associates to the O atom when isolated (the charge in the N and H atoms
are 0.05 and 0.13 atomic units, respectively). The atomic spin population on the O, N
and H atoms is 0.68, 0.33 and 0.01 atomic units.

For neutron diffraction data on nitronyl nitroxides, see: (a) A. Zheludev, V. Barone, M.
Bonnet, B. Delley, A. Grand, E. Ressouche, R. Subra, J. Schweizer, J. Am. Chem. Soc.



114

(14]

[15]

[16]

3 Theoretical Study of the Electronic Structure

1994, 116, 2019; (b) F. M. Romero, R. Ziessel, M. Bonnet, Y. Pontillon, E. Ressouche,
J. Schweizer, B. Delley, A. Grand, C. Paulsen, J. Am. Chem. Soc. 2000, 122, 1298.
Some recent articles in which the ESR and experimental results are compared are:
(a) V. Barone, A. Grand, D. Luneau, P. Rey, C. Minichino, R. Subra, New. J. Chem.
1993, 17, 545; (b) V. Barone, A. Bencini, M. Cossi, A. di Mateo, M. Mattesini, F. Totti,
J. Am. Chem. Soc. 1998, 120, 7069; (c) C. Adamo, A. di Mateo, P. Rey, V. Barone, J.
Phys. Chem. A, 1999, 103, 3481; (d) J. Cirujeda, J. Vidal-Gancedo, O. Jiirgens, F. Mota,
J. J. Novoa, C. Rovira, J. Veciana, J. Am. Chem. Soc., (accepted for publication).
For a recent work on NMR comparing the DFT and NMR results see, for instance:
H. Heise, F. H. Kohler, F. Mota, J. J. Novoa, J. Veciana, J. Am. Chem. Soc. 1999, 121,
9659.

Notice that some methods which include spin polarization do not give the right answer
to the size and sign of the atomic spin population in some of the atoms, due to the
presence of spin contamination of the wavefunction by states of other multiplicity.
This is the case of the UHF, UMP2, and similar methods. The problem is not present
in other methods like the unrestricted formulation of the density—functional methods,
among others. See, for instance, references (13a) and (17).

J. J. Novoa, F. Mota, J. Veciana, J. Cirujeda, Mol. Cryst. Liq. Cryst. 1995, 271, 79.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Macmillan, New York, 1982.
P. Pulay, T. P. Hamilton, J. Chem. Phys. 1988, 88, 4926.

(a) B. O. Roos, K. Andersson, M.P. Fiilscher, P-A. Malmgqvist, L. Serrano-Andres, K.
Pierloot, M. Merchan, Adv. Chem. Phys. 1996, 93, 219; (b) J. J. McDouall, K. Peasley,
M. A. Robb, Chem. Phys. Lett. 1988, 148, 183.

J. Pople, P. M. Gill, N. C. Handy, Int. J. Quantum Chem. 1995, 56, 303.

(a) P.O. Lowdin, Phys. Rev. 1955, 97, 1509; (b) 1. Mayer, Adv. Quantum Chem. 1980,
12, 189.

(a) Y. G. Smeyers, L. Doreste-Suarez, Int. J. Quantum Chem. 1973, 7, 687; (b) H.B.
Schelegel, J. Chem. Phys. 1986, 84, 4530; (c) S. Yamanake, T. Kawakami, K. Yamaguchi,
Chem. Phys. Lett. 1994, 231, 25.

K. Yamaguchi, M. Okumura, J. Maki, T. Noro, H. Namimoto, M. Nakano, T. Fueno,
K. Nakasuji, Chem. Phys. Lett. 1992, 190, 353.

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, Oxford, 1989.

P. Hogenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

B. B. Laird, R. B. Ross, T. Ziegler (Eds.), Chemical Applications of Density-Functional
Theory, ACS Symposium Series 629, American Chemical Society, Washington DC,
1996.

The BLYP functional is built by adding the non-local exchange functional of Becke
(reference 29) and the non-local functional of Lee—Yang—Parr (reference 30).

A. D. Becke, Phys. Rev. A 1988, 38, 3098.

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.

The B3LYP functional is a combination of the three parameter non-local functional
of Becke (reference 32), for the exchange part, and the Lee-Yang—Parr non-local
functional (reference 30), for the correlation functional.

A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

Y. Hosokoshi, M. Tamura, K. Nozawa, S. Suzuki, M. Kinoshita, H. Sawa, R. Kato,
Synth. Met. 1995, 71, 1795.

A UHF/6-31+G(d) calculation indicates a UHF computation using the 6-31+G(d) basis
set. The same convention will be used in the rest of this work to indicate the method
and monoelectronic basis set employed.



References 115

A MCSCF(7,7)/6-31+G(d) computation is a MCSCF computation using a complete
active space of determinants generated by placing seven electrons in seven orbitals,
in all possible forms. The 6-31+G(d) basis set is the monoelectronic basis employed.
This is a basis set in principle superior to the 6-31+G(d) basis set. See: T.H. Dunning,
Jr., J. Chem. Phys. 1989, 90, 1007.

R. E. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford,
1990.

G. A. Jeffrey, W. Saenger, Hydrogen bonding in biological structures, Springer-Verlag,
Berlin 1991.

(a) M. Minguet, D. B. Amabilino, J. Cirujeda, K. Wurst, I. Mata, E. Molins, J. J. Novoa,
J. Veciana, Chem. Eur. J. 2000, 6,2350; (b) J. Cirujeda, Ph. D. Thesis, Universitat Ramon
Llull (Barcelona), 1997.

M. Deumal, P. Lafuente, F. Mota, J. J. Novoa, Synth. Met. (submitted). Joel Miller’s
ACS Award Symposium, San Francisco, 2000.

W. Weltner, Jr. Magnetic Atoms and Magnetic Molecules, Dover, New York, 1989.

I. Carmichael, J. Phys. Chem. A 1997, 101, 4633. (b) V. Barone, Chem. Phys. Lett.,
1994, 226, 392.

D. M. Chipman, J. Chem. Phys. 1989, 91, 5455.

(a) S. D. Wetmore, R. J. Boyd, L. A. Eriksson, J. Chem. Phys. 1997, 106, 7738; (b) S.D.
Wetmore, L. A. Eriksson, R. J. Boyd, J. Chem. Phys. 1998, 109, 9451.

C. Adamo, V. Barone, A. Fortunelli, J. Chem. Phys. 1995, 102, 384.

(a) C. Adamo, A. di Matteo, P. Rey, V. Barone, J. Phys. Chem. A 1999, 103, 3481; (b)
V. Barone, A. Bencini, M. Cossi, A. di Matteo, M. Mattesini, F. Totti, J. Am. Chem.
Soc. 1998, 120, 7069.

(a) L. A. Eriksson, V. G. Malkin, O. I. Malkina, D. R. Salahub, J. Chem. Phys. 1963, 99,
9756; (b) L. A. Eriksson, V. G. Malkin, O. I. Malkina, D. R. Salahub, Int. J. Quantum
Chem. 1994, 52, 879; (c) J. Wang, B. G. Johnson, R. J. Boyd, L. A. Eriksson, J. Phys.
Chem. 1996, 100, 6317; (d) J. W. Gauld, L. A. Eriksson, L. Radom, J. Phys. Chem. A
1997, 101, 1352.

Quadratic Configuration Interaction including single and double excitations from the
Hartree—Fock determinant. This method is one of the most accurate ab initio methods,
giving for many properties results close to the full-CI method. See J.A. Pople, M. Head-
Gordon, K. Raghavachari, J. Chem. Phys. 1987, 85, 7382.

W. Kutzelnigg, U. Fleischer, M. Schindler, NMR-Basic Principles and Progress,
Springer, Heidelberg, vol. 23, p. 165, 1990.

V. Barone, Recent Advances in Density Functional Theory, Part 1, (D. P, Cong, Ed.),
World Scientific Publishing Co., Singapore, p. 287, 1995.

D. E. Woon, T. H. Dunning, J. Chem. Phys. 1995, 103, 4572.

Obtained by fully decontracting the inner s component of the cc-pVXZ basis sets. See:
T. Helgaker, M. Jaszunski, K. Ruud, A. Gérska, Theor. Chem. Acc., 1998, 99, 175.
The New Encyclopaedia Britannica, 15 ed., Chicago, 1986.

This is a simplistic but visual representation of the state in a pair of electrons, as the
electrons are antisymmetric, according to the Pauli Principle. According to it, there
are four possible spin configurations, a«, af, Ba, and BB, but the wavefunction is the
antisymmetric solution associated to each configuration which is eigenvector of the $2
operator. The determinant associated to c«« will be represented as the |¢«| determinant.
Among these four determinants, those associated to the «o and g spin-configurations
are eigenfunctions for the triplet. The other two configurations are not eigenfunctions of
the §2 operator. However, the combination of determinants |a«|—|B8| is eigenfunction
of the triplet, while the |aa|+|B8] is eigenfunction of the singlet. This is what is meant



116

3 Theoretical Study of the Electronic Structure

in a strict way, when one talks about spin alignments in a pair of electrons. One has
to keep in mind this, when graphically representing the triplet and singlet states by
two arrows in the same direction and in opposite directions, respectively.

H. M. McConnell, Proc. Robert A. Welch Found. Conf. Chem. Res. 1967, 11, 144.
(a) R. S: Drago, Physical Methods for Chemists, 2nd edition, Saunders College Pub-
lishing, Ft. Worth, 1992, chapter 9; (b) N.W. Ashcroft, N.D. Mermin, Solid State Physics,
Hold-Saunders Int. Ed., 1981.

(a) J. Veciana, J. Cirujeda, C. Rovira, J. Vidal-Gancedo, Adv. Mater. 1994, 4, 1377; (b)
T. Akita, Y. Mazaki, K. Kobayashi, Chem. Commun. 1995, 1861; (c) T. Kawakami, S.
Takeda, W. Mori, K. Yamaguchi, Chem. Phys. Lett. 1996, 261, 129.

An excellent overview of the orbital mechanisms has been given by J. Veciana in a
chapter of reference [la] (pages 425-448).

(a) C. Kollmar, M. Couty, O. Kahn, J. Am. Chem. Soc. 1991, 113, 7994; (b) C. Kollmar,
O. Kahn, Acc. Chem. Res. 1993, 26, 259.

K. Takeda, K. Konishi, M. Tamura, M. Kinoshita, Mol. Cryst. Lig. Cryst. 1995, 273,
57. See also pages 463-464 of reference [la], from a review of M. Kinoshita.

Their general expression is given in: R. Pauncz, Spin Eigenfunctions, Plenum Press,
New York, 1979.

M. Deumal, J. J. Novoa, M. J. Bearpark, P. Celani, M. Olivucci, M. A. Robb, J. Phys.
Chem. A, 1998, 102, 8404.

P. Lafuente and J. J. Novoa, work in progress.

M. Deumal, Ph. D. Thesis, Universitat de Barcelona, 1999.

J. J. Novoa, M. Deumal, P. Lafuente, M. A. Robb, Mol. Cryst. Liq. Cryst. 1999, 335,
603.

(a) A. Izuoka, S. Murata, T. Sugawara, H. Iwamura, J. Am. Chem. Soc. 1985, 107,
1786; (b) A. Izuoka, S. Murata, T. Sugawara, H. Iwamura, J. Am. Chem. Soc. 1987,
109, 2631.

(a) S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553; (b) F. B. van Duijneveldt, J. G. C.
M. van Duijneveldt-van de Rijdt, J. H. van Lenthe, Chem. Rev. 1994, 94, 1873; (c) J. J.
Novoa, M. Planas, M.-H. Whangbo, Chem. Phys. Lett. 1994, 225, 240; (d) J. J. Novoa,
M. Planas, M. C. Rovira, Chem. Phys. Lett. 1996, 251, 33; (e) J. J. Novoa and M. Planas,
Chem. Phys. Lett., 1998,.285, 186.

J. P. Malrieu et al, J. Phys. Chem. 1995, 99, 6417, as implemented by M. A. Robb and
M. Bearpark, (to be published).

A detailed analysis of the intramolecular geometry of many nitronyl nitroxide radicals
has shown that the internal geometry of the ONCNO group is nearly invariant (see
reference 39).

E. Ruiz et al. in J. S. Miller, M. Drillon (Eds.): Magnetism: From Molecules to Materials,
Vol. 2, Wiley-VCH, Weinheim 2001.

J. Miralles, O. Castell, R. Caballol, J. P. Malrieu, Chem. Phys. 1993, 172, 33.

See, for instance: (a) O. Castell, R. Caballol, R. Subra, A. Grand, J. Phys. Chem. 1995,
99, 154; (b) R. Caballol, F. Illas, I. De, P. R. Moreira, J. P. Malrieu, J. Phys. Chem. A
1997, 101, 7860.

See, for instance: (a) K. Yamaguchi, Y. Toyoda, T. Fueno, Chem. Phys. Lett. 1989, 159,
459; (b) K. Yamaguchi, M. Okumura, J. Maki, T. Noro, H. Namimoto, M. Nakano, T.
Fueno, K. Nakasuji, Chem. Phys. Lett. 1992, 190, 353.

S. Yamanaka, M. Okumura, K. Yamaguchi, K. Hirao, Chem. Phys. Lett. 1994, 225, 213.
(a) L. Noodleman, J. Chem. Phys. 1981, 74, 5737; (b) L. Noodleman, E. Davidson,
Chem. Phys. 1986, 109, 131; (c) L. Noodleman, D. A. Case, Adv. Inorg. Chem. 1992,
38, 423.



(85]

References 117

See, for instance: (a) J. Cano, P. Alemany, S. Alvarez, M. Verdaguer, E. Ruiz, Chem.
Eur. J. 1998, 4, 476; (b) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc.
1998, 120, 11122; (¢) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 1999,
20, 1391.

See the extensive and detailed discussion in the work of: J. Gréfenstein, A. M. Hjerpe,
E. Kraka, D. Cramer, J. Phys. Chem. A 2000, 104, 1758. See also J. Pople, P. M. Gill,
N. C. Handy, Int. J. Quantum Chem. 1995, 56, 303.

The LICMIT crystal belongs to the P2¢/n spatial group, with cell parameters a =
15.142A,b=12.320A,c =7.196 A, and g = 99.18°. It has four molecules per unit cell,
packed forming parallel strips along the c direction, in which the molecules are ordered
in an up-up disposition (primary structure). The strips form planes (secondary struc-
ture), ordered in a T-shaped disposition among themselves (tertiary structure). The
shortest ONCNOONCNO contacts are found between molecules of parallel strips,
connecting radicals in one strip with these in the nearby parallel strip (these molecules
present an up-down disposition). It presents ferromagnetic properties up to 0.5K, and
a J/kg value +0.93K. See reference [79].

(a) T, Sugawara, M. M. Matsushita, A. Izuoka, N. Wada, N. Takeda, M. Ishiwara, J.
Chem. Soc. Chem. Commun. 1994,1723; (b) M. M. Matsushita, A. Izuoka, T. Sugawara,
T. Kobayashi, N. Wada, N. Takeda, M. Ishiwara, J. Am. Chem. Soc. 1997, 119, 4369.
The WILVIWI1O0 crystal belongs to the P-1 space group, with cell parameters a =
11.843A, b = 12.695A, ¢ = 9.532 A, o = 95.53°, B = 90.55°, and y = 146.89°. This
crystal has two molecules per unit cell, packed forming planes along the b—c direc-
tions. Each plane is made by replicating a strip of molecules, ordered within the strip
in an up-up disposition. The strips are the primary structure, and the plane is the sec-
ondary structure. These planes then pile up to form the crystal (tertiary structure). The
shortest ONCNO~ONCNO contacts are found within the planes, between adjacent
molecules of the same strip. It shows dominant antiferromagnetism, being its J/kp
constant —74 K. See reference [81].

K. Awaga, A. Yamaguchi T. Okuno, T. Inabe, T. Nakamura, M. Matsumoto, Y.
Maruyama, J. Mater. Chem. 1994, 4, 1377.

M. Deumal, J. J. Novoa, J. Mol. Struct. Theochem. 2000, 506, 287.

M. Deumal and J. J. Novoa, Preliminary results computed using the Broken-symmetry
approach.

(a) A. 1. Kitaigoroddsky, Molecular crystals and molecules, Academic Press, New York,
1973; (b) G. R. Desiraju, Crystal engineering. The design of organic solids, Elsevier,
Amsterdam, 1989; (c) M. C. Etter, Acc. Chem. Res. 1990, 23, 120; (d) J. Bernstein, R.
E. Davis, L. Shimoni, N.-L. Chang,, Angew. Chem. Int. Ed. Engl. 1995, 34, 1555; (e)
G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.

M. Deumal, M. A. Robb, J. J. Novoa, (to be published).



Magnetism: Molecules to Materials IV. Edited by Joel S. Miller and Marc Drillon
Copyright © 2002 Wiley-VCH Verlag GmbH & Co. KGaA
ISBNs: 3-527-30429-0 (Hardback); 3-527-60069-8 (Electronic)

4 Exact and Approximate Theoretical Techniques
for Quantum Magnetism in Low Dimensions

Swapan K. Pati, S. Ramasesha, and Diptiman Sen

4.1 Introduction

The non-relativistic Schrodinger equation of a system of electrons is spin-
independent. It therefore seems at first glance that the solutions of the Schrodinger
equation should also be spin-independent. Because the electrons are indistinguish-
able, however, forces the total wave function, a product of the spin wave function
and the spatial wave function, to be antisymmetric. This in turn implies that for two
electrons, a spatially symmetric wave function should be associated with an anti-
symmetric spin wave function and vice versa. The different charge distribution in the
spatially symmetric and antisymmetric wave functions leads to different coulomb
repulsions by virtue of which the spin states which are symmetric and antisymmetric
have different energies [1]. Dirac represented the splitting between the energies of
the two spin states by the spin operator —2.J S:-S j» where J is the exchange integral
involving the two spatial orbitals in which the two electrons are singly occupied. In
most open-shell atomic systems the exchange integral J is large enough to force
the total spin of the ground-state configuration to be the largest permissible value.
This in essence is Hund’s rule of maximum multiplicity and is also the reason why
we find transition and rare earth metal ions in high spin states in nature.

In solids containing transition metal or rare earth ions surrounded by ligands, the
relative alignment of the unpaired spins at the metal site is not at all obvious. To
understand this we should examine the possible pathways for the delocalization of
the valence electrons in the system. If the favorable delocalization pathways involve
antiparallel alignment of the metal-ion spins the nature of the exchange interaction
between the metal-ion spins is antiferromagnetic; otherwise it is ferromagnetic. This
is because delocalization of electrons reduces their kinetic energy and the ground
state therefore corresponds to an alignment of spins that enables maximum delo-
calization. This is indeed the reason why the ground state of a hydrogen molecule
is a spin singlet. In a system with degenerate partially occupied orbitals Hund’s
coupling favors high-spin alignment of the electrons on an ion. If delocalization
pathways exist that allow for these high-spin states in the process of delocalization,
alignment of the spins on two neighboring centers will be ferromagnetic. If delocal-
ization pathways exist only when these high-spin states are aligned antiparallel, one
would have an antiferromagnetic alignment of the spin. Thus, the overall nature of



120 4 Exact and Approximate Theoretical Techniques ...

the spin alignment is governed by competition between the Hund’s coupling and
electron delocalization [2, 3].
Given a collection of spins, the exchange Hamiltonian for the system is written:

H=>Y 788, 1)
ij

where J;; is the effective exchange integral for the interaction between the spins at
sites “i” and “j”. Because the spins in the cluster arise from unpaired electrons of
a transition metal ion in a crystal field, it is natural to expect that the spin—orbit and
spin—spin interactions of the electrons in the ion could alter the nature of the total
spin on the ion by giving the net spin a preferred direction of orientation. Such a
situation can be easily handled by treating each J;; as a vector and generalizing the
exchange Hamiltonian as:

H =Y (58585 + 05878 + 155:55) 2)
Such a model is often referred to as the XY Z spin model [2]. Two extreme cases
are often studied:

e the spin is assumed to have no projection on the X-Y plane, in which case the
resulting model is the Ising model and corresponds to scalar spins; and

e the spin is assumed to have no projection on the z-axis, in which case we have
an XY model or a planar spin model.

The Ising model is a discrete classical model, because it consists of no non-
commuting operators in its Hamiltonian, whereas the XY model could be classical
or quantum mechanical. Usually, when dealing with large site spin systems, it is not
uncommon to assume that the spins are classical, in the spirit of Boht’s correspon-
dence principle.

In the crystalline state, the spins in the solid would be arranged on a lattice. If
the exchange interaction is predominant between spins along a single crystalline
direction, the model could be treated as a one dimensional array of spins. There
are many examples of solids for which this is true [4]. Likewise, it is also possible
that the interactions amongst spins is large along two crystallographic directions
and weak along a third direction; this would result in two-dimensional spin system
[5].

In this review article, we will mainly concern ourselves with the study of isotropic
spin clusters and one-dimensional spin systems, sometimes in the presence of an
external magnetic field. We will be mostly interested in properties of the ground
state and low-lying excitations, because these are the states which govern the low-
temperature properties of systems such as the specific heat and magnetic susceptibil-
ity. The symmetries of a system often enable us to characterize the energy eigenstates
in terms of quantum numbers such as the total spin, Siot, the component of the to-
tal spin along some particular direction, say, Siot,;, Spin parity (which is a symmetry
for states with Siot; = 0), the wave number, k, for a translation-invariant system,
and possibly other spatial symmetries depending on the structure. We will discuss
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below how the use of symmetries can help to reduce the numerical effort required
to study the low-energy states.

In the next two sections we introduce some exact numerical methods and describe
the application of these methods to magnetic clusters. In Section 4.4, we discuss
two analytical methods which use field theoretic approximations. In Section 4.5, we
describe an innovative way of solving the spin Hamiltonians, which goes beyond
the conventional techniques and is based on the density matrix renormalization
group (DMRG) theory. Various applications of DMRG to the properties of low-
dimensional extended chains are described in Sections 4.6 to 4.8.

4.2 Exact Calculations

The properties of a spin Hamiltonian can be computed from the eigenstates of the
Hamiltonian, which are in turn obtained by setting up the Hamiltonian matrix in a
suitable basis and diagonalizing it thereafter. Although the procedure itself is quite
straightforward, the space spanned by the Hamiltonian rapidly increases with the
number of the spins in the system. The Fock space dimensionality of a system of n
spins with spin s; is given by:

Dp = H(zsi +1) (3)

i=1

The Hamiltonian matrix is block-diagonal in structure with each block corre-
sponding to specified values of the quantities conserved by the Hamiltonian. Thus,
for an isotropic spin system, the z-component of the total spin, Mg, and the total
spin S are conserved. Restricting the Fock space to specified values of Mg and S
gives Hilbert spaces whose dimensionalities are smaller than the Fock space dimen-
sionality.

Whereas constructing spin basis functions which are eigenstates of the total 82
operator is quite simple, construction of spin-adapted functions (SAF, eigenstates
of the total §? operator) is not direct. Perhaps the simplest and chemically most
appealing way of constructing SAF is by the valence bond (VB) method which
uses the Rumer—Pauling rules. This method is best illustrated by applying it to a
system of 2n spins, each possessing a spin of half, in the total spin S = 0 sector. A
total spin singlet can be formed by choosing pairs of sites and spin-coupling each
of these obtain a singlet. The product of these singlet pairs will be a spin eigenstate
of the operator Stzotal. This is illustrated in Fig. 1. There are, however, more ways
to spin-couple in pairs than the number of linearly independent singlet states, e. g.
the state |3) in Fig. 1 can be expressed as a linear combination of the states |1)
and |2). The overcompleteness can be avoided by resorting to the Rumer—Pauling
rules. To implement this rule we arrange the 2n spins at the vertices of a regular
2n-gon and draw lines between pairs of sites that are singlet-paired. According to
the Rumer—Pauling rule the subset of these encompassing all diagrams (to be called
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Fig. 1. A schematic representation of the VB dia-
grams for eight spin-1/2 objects. States |1) and |2)
are legal VB diagrams and |3) is an illegal VB di-
3> agram.

I, =50 >

Fig. 2. VB diagram for spin-1/2 objects with total spin 1/2

m SN (I1)) and total spin 1 (|2)). Their bit representations (0

A * AR R 5 and 1) and the unique integer I; representing them are
SEh &= \S=§/2/ = shown. P and P’ are the phantom sites. |3) is a singlet

VB diagram corresponding to two spin-1, a spin-5/2, and

I,=3724 18> a spin-3/2 object.

“legal” diagrams) with no crossing lines forms a complete and linearly independent
set of states [6].

The Rumer—Pauling rules can be easily extended to construct complete and lin-
early independent basis sets in higher-spin Hilbert spaces involving spin-1/2 objects.
This is done most easily with the help of phantom sites. If we wish to construct VB
diagrams for total spin S subspace involving n spin-1/2 objects we introduce 25 ad-
ditional sites to be called phantom sites. Besides imposing the Rumer—Pauling rules
on the diagrams with n + 2 sites, we impose the additional constraint that there
should be no singlet lines amongst the 25 phantom sites. In Fig. 2 we show a few
examples of VB diagrams with higher total spin.

It is also quite simple to extend the VB rules to spin clusters made up of different
site spins [7]. If the spin at a site is s;, then we replace this site by a set of 2s; sites,
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each with spin-1/2. We then proceed with constructing the VB basis, as though the
system is made up entirely of spin-1/2 objects, with one difference — we impose the
additional constraint that there should be no singlet lines within the subset of 2s;
sites which replace the spin s; at site i. The VB diagrams with total spin § > 1/2
are constructed as before with the help of phantom sites. An example of a legal VB
diagram involving higher site spins is shown in Fig. 2.

Generating and storing the VB diagrams on a computer is also quite simple. We
associate one bit with every site. The state of the bit is “1” if, in the VB diagram, a
line begins at the site; the state is “0” if a line ends at the site. Thus, we can asso-
ciate an integer of n bits with every VB diagram involving n spin-1/2 objects. This
association is unique if we decipher the bit pattern of the integer corresponding
to the diagram from inside-out, much like expanding an algebraic expression with
multiple parentheses. In Fig. 2 we have also shown the bit pattern and the associ-
ated integer for each VB diagram. The VB diagrams are generated on a computer
by checking the bit pattern in all n-bit integers to see if they satisfy the criterion
for representing the desired VB diagram. This also enables us to generate the VB
diagrams as an ordered sequence of the integers that represent them, a fact that
helps in rapid generation of the Hamiltonian matrix.

The Hamiltonian matrix in the VB basis can be easily constructed by knowing
the action of the operator S; S, for spin-1/2 particles (i) on a singlet line joining sites
i and j and (ii) on the pair of sites i and j singlet paired to two different sites i’ and
j' (Fig. 3). For Hilbert spaces with non-zero total S, the Hamiltonian involves spin
exchange between the real sites only. These exchange operators could, however,
lead to VB diagrams in which the phantom sites are interconnected. In this event,
simply neglecting these resultant states is sufficient to ensure we are dealing exactly
with the spin S Hilbert space. The Hamiltonian for spin clusters with arbitrary spins
can be treated as consisting of operators with only spin-1/2 objects. This is done by
replacing the spin-exchange operator between sites i and j, Si-S; ;» by the operator
( 2&1 fk) (lel n), where the operators 7; and 7; are the usual spin-1/2 operators.

The matrix representing the Hamiltonian in the VB basis is, in general, non-
symmetric, because the VB basis is non-orthogonal. The matrix itself is sparse, how-
ever. There are efficient numerical algorithms [8] for obtaining the low-lying eigen-
states of sparse non-symmetric matrixes, and it is possible to solve a non-symmetric
matrix eigenvalue problem for a million by million matrix with approximately 100
million non-zero matrix elements on a powerful PC-based workstation.

Bs-Dlr—p = -l

& Dl =t

v T
Fig. 3. Effect of operation by the operator (S, S ;—1/4) on a state with a singlet line between

sites i and j and on a state with sites i and j singlet paired with two different sites i’ and
./

J-
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Although VB theory guarantees spin purity in the computed eigenstates of the
spin-conserving Hamiltonians, it has several drawbacks. Computation of quantities
such as spin—spin correlation functions and spin densities is not easy, because a site-
spin operator operating on a VB diagram spoils the spin purity of the diagram. This
could be overcome by converting the eigenstate of the Hamiltonian in the VB basis
to the constant M basis. Another difficulty with the VB procedure is exploiting the
spatial symmetries of the problem. Operation by a spatial symmetry operator on
a legal VB diagram could lead to illegal VB diagrams. Disentangling these illegal
diagrams into legal diagrams can be computationally prohibitive [9].

In more general spin problems, it is often advantageous to use the constant M ba-
sis and exploit all the spatial symmetries. Partial spin symmetry adaptation in these
cases is also possible by using the spin-parity operator. The effect of the spin-parity
operator on a basis state is to flip all the spins in the state. In the Mg = 0 sector, it
is possible to factor the Hilbert space into odd and even parity Hilbert spaces. The
odd (even) parity Hilbert space is spanned by basis vectors with odd (even) total
spin. This also has the effect of reducing the dimensionality of the Hilbert space
and providing partial spin symmetry adaptation. It is rather simple to set up the
Hamiltonian matrix in the symmetry-adapted basis. The Hamiltonian matrix is sym-
metric and usually very sparse. The lowest few eigenstates can be easily computed
by employing the Davidson algorithm. Given these eigenstates, the computation of
properties can proceed by converting an eigenstate in the symmetrized basis into
that in the unsymmetrized basis. The orthogonality of the basis states and the simple
rules involved in obtaining the resultant when a basis state is operated upon by any
type of spin operator in any combination affords easy computation of a variety of
properties of a magnetic system.

The exact diagonalization techniques discussed above are, in general, applicable
to systems whose Hilbert space dimensionality is approximately 10 million. The ma-
jor problem with exact diagonalization methods is the exponential increase in the
dimensionality of the Hilbert space with increasing system size. Thus, the study of
larger systems becomes not only CPU-intensive but also memory-intensive as the
number of non-zero elements of the matrix increases rapidly with system size. With
increasing computer power, slightly larger problems have been solved every few
years. To illustrate this trend, we consider the spin-1 Heisenberg chain. In 1973, ten
years before the Haldane conjecture, De Neef [10] used the exact diagonalization
procedure to solve an eight-site spin-1/2 chain. In 1977 Blote [11] diagonalized the
Hamiltonian of a chain of ten sites. In 1982 Botet and Jullien [12] increased this to
twelve sites. In 1984 Parkinson and Bonner [13] solved the 14-site spin-1 problem
and in the same year Moreo [14] solved the sixteen-site spin-1 chain. In 1990 Taka-
hashi [15] pushed this up to eighteen sites and in 1994 Golinelli et al. [16] produced
a solution for the low-lying states of a twenty-two-site spin-1 chain. The growth in
chain length of the longest spin-1 chain solved is almost linear with time, increas-
ing by approximately two sites every three years. Just to remind ourselves, the Fock
space dimensionality in this case increases as 3" with chain length N. The size of the
matrix also increases similarly and the CPU and storage scales quadratically with the
size of the matrix, if we are targeting only a few eigenstates. For this reason, for sys-
tems which span much larger spaces, the focus has shifted to approximate techniques.
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4.3 Applications to Spin Clusters

Some of the magnetic clusters that have been studied extensively in recent years
are the Mny, [17], Feg [18], and V5 [19] clusters. These clusters are characterized
by many interesting phenomena, e.g. quantum resonant tunneling and quantum
interference [20]. Fundamental to a proper understanding of these phenomena is
a knowledge of the low-energy excitation spectrum in these systems. The meth-
ods discussed under exact diagonalization schemes enable us to calculate the low-
energy excitation spectrum, given a set of exchange constants. The exchange con-
stants themselves are not known with any certainty, however. It is, therefore, all
the more important to be able to perform exact diagonalization studies of low-lying
states to infer the possible sign and magnitude of the exchange constants [7].

The geometry and exchange parameters for the Mnj, cluster are shown in Fig. 4.
The crystal structure suggests that the exchange constant J; is largest and anti-
ferromagnetic in nature [21]. On the basis of magnetic measurements it has been
suggested that J; has a magnitude of 215 K. The magnitude and sign of the other
exchange constants are based on comparisons with manganese systems in smaller
clusters. It has been suggested that the exchange constant J, and J3 are antiferro-
magnetic and have a magnitude of approximately 85 K. For the exchange constant
J4, however, there is no concrete estimate, either of the sign or of the magnitude. In
an earlier study the Mn'"'-Mn!V pair with the strongest antiferromagnetic exchange
constant was replaced by a composite spin-1/2 object [22] and the exchange Hamil-
tonian of the cluster solved for three different sets of parameters. It was found that
the ordering of the energy levels was very sensitive to the relative strengths of the
exchange constants. In these studies, J4 was set to zero and the low-lying excited
states were computed. Only states with spin S up to ten could be obtained because
of the replacement of the higher-spin ion pairs by the compositespin-1/2 objects.

. ,, . o Fig. 4. Schematic diagram of the exchange interac-
§=2 S =312 tions between the Mn ions in the Mnj; Ac molecule.
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The technique described earlier, however, enables exact computation of the low-
lying states of Mny,. The results of the exact calculations are presented in Table 1. We
note that none of the three sets of parameters studied using an effective Hamiltonian
gives the correct ground and excited states when an exact calculation is performed.
It seems that setting the exchange constant J4 to zero cannot yield an § = 10 ground
state (Table 1, Cases A, B, and C). When J3 is equal to or slightly larger than J,
(Table 1, Cases A and B), we find a singlet ground state, unlike the result of the
effective Hamiltonian in which the ground state has § = 8 and S = 0 respectively.
The ground state has spin S = 6 when J3 is slightly smaller than J, (Table 1, Case
C). In all these cases the first few low-lying states are found to lie within 20K of
the ground state.

When we use the parameters suggested by Chudnovsky [17] (Table 1, case D),
we obtain an § = 10 ground state separated from an § = 9 first excited state by
223 K. This is followed by another § = 9 excited state at 421 K. Only when the
exchange constant Jy is sufficiently strongly ferromagnetic (Table 1, case E) do we
find an S = 10 ground state with an S = 9 excited state separated from it by a gap
of 35K, which is close to the experimental value [23]. The second higher excited
state has § = 8, and is separated from the ground state by 62 K.

In Fig. 5 we show the spin density [24] for the Mny; cluster in the ground state
for the S = 10, Mg = 10 state. Although the manganese ions connected by the
strong antiferromagnetic exchange have opposite spin densities, it is worth noting
that the total spin density on these two ions is 0.69, very different from the value
of 0.5 expected if these ions were indeed to form a spin-1/2 object.

The Feg cluster is shown in Fig. 6. Each of the Fe ions has a spin of 2 and the ground
state of the system has a total spin S = 10, with the S = 9 excited state separated
from it by approximately 20 K. All the exchange interactions in this system are
expected to be antiferromagnetic. Although the structure of the complex dictates
that the exchange interaction J, along the back of the butterfly should be small
in comparison with the interaction J; across the wing [25]. It has previously been

1.59 1.81 1.59

]‘JU (
.IHI

Fig. 5. Spin densities in the ground state
(S =10, MS = 10) of Mnj, Ac for parameter
values J; = 215K, J, = 85K, J3 = 85K, and
Jy=—645K.
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9 T4

Fig. 6. Schematic diagram of the exchange interactions
between the Fe ions in the Feg molecule.

Table 2. Energies of a few low lying states in Feg. The exchange constants corresponding
to the different cases are: Case 1. J; = 150K, J, = 25K, J3 = 30K, J4 = 50K; Case
2. J1 = 180K, J, = 153K, J3 = 22.5K , Jgs = 525K, Case 3. J; = 195K, J, = 30K,
J3 =52.5K, Jy =22.5K. All energies are in K.

Case 1 Case 2 Case 3

S E (K) S E (K) S E (K)
10 0.0 10 0.0 10 0.0
9 13.1 9 3.4 9 39.6
8 27.3 8 10.2 9 54.2
9 41.7 7 20.1 9 62.4

reported that such a choice of interaction parameters would not provide an S = 10
ground state [26].

Results from exact calculation of the eigenstates of the Feg cluster using three
sets of parameters is shown in Table 2. In two of these cases J; is very much smaller
than J;. We find that in all these cases, the ground state has spin S = 10 and the
lowest excited state has spin § = 9. One of the main differences among the three
sets of parameters is in the energy gap to the lowest excited state (Table 2). For the
set of parameters used in the earlier study, this gap is the lowest at 3.4 K. For the
parameter sets 1 and 3 [27] this gap is, respectively, 13.1 K and 39.6 K. Whereas in
cases 1 and 2 the second excited state is an § = 8 state, in case 3 this state also has
spin 9.

The spin densities in all the three cases for the ground state are shown in Fig. 7.
The spin densities are always positive at the corners. In cases 1 and 2, the spin density
on the Fe ion on the backbone is positive and negative on the remaining two Fe
sites [28]. In case 3, however, the negative and positive spin density sites for Fe
ions in the middle of the edges are interchanged. This is, perhaps, because in cases
1 and 2 the exchange constant J3 is less than Jy whereas in case 3 the opposite is
true. Thus a spin-density measurement can provide relative strengths of these two
exchange constants. In all three case the difference between the spin densities in
the ground and excited states is that the decrease in the spin density in the excited
state is mainly confined to the corner Fe sites.
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Fig. 7. Spin density in the ground state (S = 10, Ms = 10) of Feg for three different parameter
values: (a) J;1 = 150K, J, = 25K, J3 = 30K, Jy; = 50K; (b) J; = 180K, J» = 153K,
J3 =225K, Jy =525K; (c) J1 =195K, J» =30K, J3 =52.5K, Jy =22.5K.

4.4 Field Theoretic Studies of Spin Chains

One-dimensional and quasi-one-dimensional quantum spin systems have been stud-
ied extensively in recent years for several reasons. Many such systems have been
realized experimentally, and a variety of theoretical techniques, both analytical and
numerical, is available to study the relevant models. Because of large quantum fluc-
tuations in low dimensions, such systems often have unusual properties such as a
gap between the ground state and the excited states. The most famous example of
this is the Haldane gap which was predicted theoretically in integer spin Heisenberg
antiferromagnetic chains [29], and then observed experimentally in a spin-1 system
Ni(CyHgN,)>,NO,(ClOy4) [30]. Other examples include the spin ladder systems in
which a small number of one-dimensional spin-1/2 chains interact among each other
[31]. It has been observed that if the number of chains is even, i. e. if each rung of
the ladder (which is the unit cell for the system) contains an even number of spin-
1/2 sites the system effectively behaves like an integer spin chain with a gap in the
low-energy spectrum. Some two-chain ladders which have a gap are (VO),P,07
[32], SrCu; O3 [33], and Cuy(CsHpN3),Cly [34]. Conversely, a three-chain ladder
which effectively behaves like a half-odd-integer spin chain and does not have a gap
is SroCu30s5 [33]. A related observation is that the quasi-one-dimensional system
CuGeOs3 spontaneously dimerizes below a spin-Peierls transition temperature [35];
the unit cell then contains two spin-1/2 sites and the system is gapped.

The results for the gaps discussed above are all in the absence of an external
magnetic field. The situation becomes more interesting in the presence of a magnetic
field [36]. It is then possible for an integer spin chain to be gapless and a half-odd-
integer spin chain to have a gap above the ground state for appropriate values of
the field [37-45]. This has been demonstrated in several models by use of a variety
of methods such as exact diagonalization of small systems and bosonization [46,
47]. It has, in particular, been shown that the magnetization of the system can have
plateaus at certain non-zero values for some finite ranges of the magnetic field.
Further, for a Hamiltonian which is invariant under translation by one unit cell,



130 4 Exact and Approximate Theoretical Techniques ...

the value of the magnetization per unit cell is quantized to be a rational number
at each plateau [37]. In Section 4.8, we will study the magnetization plateau which
can occur in a three-chain ladder.

In the next two subsections we will discuss some field theoretic methods which can
be used for studying spin chains and ladders. These methods rely on the idea that the
low-energy and long-wavelength modes of a system (i. e. wavelengths much longer
than the lattice spacing, a, if the system is defined on a lattice at the microscopic
level) can often be described by a continuum field theory.

4.4.1 Nonlinear o-model

The nonlinear o-model (NLSM) analysis of antiferromagnetic spin chains with the
inclusion of J, (next-nearest neighbor coupling) and § (dimerization) proceeds as
follows [48]. The Hamiltonian for the frustrated and dimerized spin chain can be
written as:

H= J1 Z [1 — (—1)i3] Si . S,-_,.l + ) ZS, . S[+2 4

The interactions are shown schematically in Fig. 8. The region of interest is defined
by Jo > 0 and 0 < § < 1. We first do a classical analysis in the S — oo to find the
ground state configuration of the spins. Let us make the general ansatz that the
ground state is a coplanar configuration of spins with the energy per spin being
equal to:

J J
ep = S [71(1 +8)cos Oy + 71(1 — 8)cos by + Jp cos(f; + 92)} 5)

where 6; is the angle between the spins Sy; and Sy;4+1 and 6, is the angle between
the spins Sy; and Sp; 1.

Minimization of the classical energy with respect to 6; yields the following three
phases:

e Néel phase: This phase has 6; = 6, = m; hence all the spins point along the
same line and they go ... 1]1] ... along the chain. This phase is stable for
1-8%2>4h/5

1+8
1-8

1 i1 3 5 7

Fig. 8. Schematic picture of the frustrated and dimerized spin chain.
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e Spiral phase: Here, the angles 6; and 6, are given by:

, 1 '1—32+ s 4h |
COS = — —_—
TS N N A AR W
and
cos b = ! _1_52+ ) 4J2_ (6)
2T s |4/ 182 )

where 7/2 < 01 < 7w and 0 < 6, < 6;. Thus the spins lie on a plane. This phase
is stable for (1 —82) < 4J4/J; < (1 —82)/8.

e Colinear phase: This phase (which needs both dimerization and frustration) is
defined as having 6; = 7 and 6, = 0; hence all the spins again point along the
same line and they go ... 1]1] ... along the chain. This phase is stable for
(1—68%)/8 <4h/J;.

These phases and their boundaries are depicted in Fig. 9. Thus even in the classical
limit § — oo, the system has a rich ground state “phase diagram” [49].

We can now go to the next order in 1/, and study the spin wave spectrum about
the ground state in each of the phases. The main results are: In the Néel phase, we
find two zero modes, i. e. modes for which the energy wy vanishes linearly at certain
values of the momentum, k, with the slope dwy /dk at those points (the velocity) being
the same for the two modes. In the spiral phase we have three zero modes, two with
the same velocity describing out-of-plane fluctuations and one with a higher velocity
describing in-plane fluctuations. In the colinear phase we get two zero modes with

1.0 ,
0.8 |
Colinear
06 |
)
04t
L
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02 Spiral 1
00 | L t ) | N t )
0.0 0.2 0.4 0.6 0.8 1.0
Jz

Fig. 9. Classical phase diagram of the spin chain in the J, —§ plane.
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equal velocities just as in the Néel phase. The three phases also differ in the behavior
of the spin-spin correlation function S(g) =), (So . Sn) exp(—ign) in the classical
limit. S(g) is peaked atg = (01+6»)/2,1.e.atqg = w inthe Néel phase,atn/2 < g < 7
in the spiral phase, and at ¢ = /2 in the colinear phase.

To study the interactions between the spin waves it is convenient to derive a semi-
classical NLSM field theory which can describe the low-energy and long-wavelength
excitations. The field theory in the Néel phase is given by an O(3) NLSM with a
topological term [29, 47]. The field variable is a unit vector with the Lagrangian
density:

1 =2 C =p 0 - - =
E—ch2¢> 2g2¢ t ;0 ¢ xe (7
where ¢ = 25(1 —4J, —8%)1/2 is the spin wave velocity, g2 = 2/[S(1 —4.J, —8%)1/?] is
the coupling constant (which describes the strength of the interactions between the
spin waves), and 6 = 2x S(1—3) is the coefficient of the topological term (the integral
of this term is an integer which defines the winding number of a field configuration
¢(x,1)). Note that 6 is independent of J, in the NLSM. (Time and space derivatives
are denoted by a dot and a prime, respectively). For (mod2x) = 7 and g less than
a critical value it is known that the system is gapless [47, 50]. For any other value
of 0, the system is gapped. For J, = § = 0 one therefore expects that integer spin
chains should have a gap whereas half-odd-integer spin chains should be gapless.
This is known to be true even for small values of S like 1/2 (analytically) and 1
(numerically) although the field theory is derived for large S only. In the presence
of dimerization one expects a gapless system at certain special values of §. For § = 1,
the special value is predicted to be 6, = 0.5. We see that the existence of a gapless
point is correctly predicted by the NLSM. As we will see later, however, according
to reliable numerical results from DMRG 3§, is 0.25 for J, = 0 [51] and decreases
with J, as shown in Fig. 10. These deviations from field theory are probably because
of higher-order corrections in 1/S which have not yet been studied analytically.
In the spiral phase it is necessary to use a different NLSM which is known for
3 = 0[52, 53]. The field variable is now an SO (3) matrix R. The Lagrangian density
is:

1 L
L= —TrRTRPy) — ——Tr(RTR'P)), (8)
2cg? 2g2

where ¢ = S(1 + y)/1 -2, g2 =2/ + y)/1 — y/S with 1/y = 4J>, and P and
P; are diagonal matrixes with diagonal elements (1,1,2y(1 — y)/(2y%> — 2y + 1))
and (1, 1, 0), respectively. Note that there is no topological term. Hence there is no
apparent difference between integer and half-odd-integer spin chains in the spiral
phase. A one-loop renormalization group [52] and large N analysis [53] indicate
that the system should have a gap for all values of J, and S, and that there is no
reason for a particularly small gap at any special value of J;.

Finally, in the colinear phase, the NLSM is known for § = 1, i.e. for the
spin ladder. The Lagrangian is the same as in Eq. (7), with ¢ = 45V Jx(J2 + 1),
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g>=./1+1/J2/8, and 6 = 0. There is no topological term for any value of S, and
the model is therefore gapped [54].

The field theories for general § in both the spiral and colinear phases are still not
known. Although the results are qualitatively expected to be similar to the § = 0
case in the spiral phase and the § = 1 case in the colinear phase, quantitative features
such as the dependence of the gap on the coupling strengths will require the explicit
form of the field theory.

4.4.2 Bosonization

Another field theoretic method for studying spin systems in one dimension is
the technique of bosonization [46, 47, 55-57]. This technique consists of mapping
bosonic operators into fermionic ones, and then using whichever set of operators
is easier to compute with. For instance, consider a model with a single species of
fermion with a linear dispersion relation E(k) = v, where the £+ denotes the
right- and left-moving fermions, respectively (with the corresponding fields being
denoted by ¥r and v ), and v denotes the velocity. Similarly, consider a model with
a single species of boson with the dispersion relationship E (k) = v|k|; the right- and
left-moving fields are denoted by yr and . respectively. Then it can be shown that
these operators are related to each other as:

o 1 . A N 1 . 5
~ e~ i2VmTPR  gnd AN eTi2JTéL 9
IRE e Y, ©)

The length parameter « is a cut-off which is required to ensure that the contri-
bution from high-momentum modes do not produce divergences when computing
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correlation functions. It is convenient to define the two bosonic fields:

p=¢r+¢L and 0 =—¢r+¢L (10)
Then the fermionic density is given by:

1 9¢
T 0x
where pg is the background density; fluctuations around this density are described
by the quantum fields ¢ or ¢.

Although the dispersion relationship is generally not linear for all the modes of
a given system, it often happens that the low-energy and long-wavelength modes
can be studied using bosonization. For a fermionic system in one dimension these
modes are usually the ones lying close to the two Fermi points with momenta +kr,

respectively. One can define right- and left-moving fields yyr and /1. which vary
slowly on the scale length a:

p—po =Vl + ¥ P = - (an

¥ (x) = Yr(x) e 4y (x) e TREY (12)

Quantities such as the density will generally contain terms which vary slowly as
well as terms varying rapidly on the scale of a:

p—po = UHY = ygvg + U P +e Yy et g
= L 99 _1 i2y/m§—2kgx) —i 2T h—2kpx)
=~ el +e ] (13)

One can compute various correlation functions in the bosonic language. Consider
an operator of the form:

A

Omn = eiZﬁ(m<13+né) (14)

we find the following result for the two-point equal-time correlation function at
spatial separations which are much larger than the microscopic lattice spacing, a

(15)

A Al a\2m2K+n2/K)
(01T O (6055, O)10) % S (=)

where K denotes an interaction parameter which will be described below. Note that
the correlation function decays as a power law. In the language of the renormal-
ization group, the scaling dimension of Om . is given by m?K +n?/K.

We can now study a quantum spin chain using bosonization. To be specific, let
us consider a spin-1/2 chain described by the anisotropic Hamiltonian:

N
A= le [2 (s S+ Si_S;jA) +J,8i8E - th} (16)
1=



4.4 Field Theoretic Studies of Spin Chains 135

where the interactions are between nearest-neighbor spins only and J > 0. S‘f =
§¥+i8” and §; = §F—i§ are the spin raising and lowering operators and & denotes
a magnetic field. Note that the model has a U (1) invariance, namely, rotations about
the S¢ axis. When J, = J and 4 = 0 the U(1) invariance is enhanced to an SU(2)
invariance, because at this point the model can be written simply as H = J ) S; -
Si+1. Although the model in Eq. (16) can be solved exactly by use of the Bethe
ansatz, and one has the explicit result that the model is gapless for a certain range
of values of J,/J and i/ J (see Ref. [39]), it is not easy to compute explicit correlation
functions in that approach. We therefore use bosonization to study this model.

We first use the Jordan—Wigner transformation to map the spin model to a model
of spinless fermions. We map a 4 spin or a | spin at any site to the presence or
absence of a fermion at that site. We introduce a fermion annihilation operator ;
at each site, and write the spin at the site as:

Si=v i —1/2=h; —1/2

and

87 = (~Digy e i (17)

where the sum runs from one boundary of the chain up to the (i — 1)th site (we
assume open boundary conditions here for convenience), n; = 0 or 1 is the fermion
occupation number at site i, and the expression for S’f is obtained by taking the
Hermitian conjugate of Si_. The string factor in the definition of Sl_ is added to
ensure the correct statistics for different sites; the fermion operators at different
sites anticommute, whereas the spin operators commute.

We now find that:

1

~ J A~ A
H=- Z[5<w,.+w,-+1+h.c.>—fz<ﬁi — 1/ (i1 — 1/D+h(R; — 1/2)] (18)

We see that the spin-flip operators C lead to hopping terms in the fermion Hamil-
tonian, whereas the interaction term leads to an interaction between fermions on
adjacent sites.

Let us first consider the non-interacting case given by J, = 0. By Fourier trans-
forming the fermions v = » j v | e~kia/ /N, where a is the lattice spacing and
the momentum, k, lies in the first Brillouin zone —x/a < k < 7 /a, we find that the
Hamiltonian is given by:

A= Zwklzz_&k 19)
k
where
wy = —J cos(ka) — h (20)
The non-interacting ground state is the one in which all the single-particle states

with w; < 0 are occupied and all the states with w; > 0 are empty. If we set the
magnetic field 2 = 0 the magnetization per site m = ) ; S7/N will be zero in the
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ground state; equivalently, in the fermionic language, the ground state is precisely

half-filled. Thus, for m = 0, the Fermi points (w; = 0) lie at ka = +x/2 kpa. Let

us now add the magnetic field term. In the fermionic language, this is equivalent

to adding a chemical potential term (which couples to 7; or S‘lz) In that case, the

ground state no longer has m = 0 and the fermion model is no longer half-filled.
The Fermi points are then given by +kp, where:

kpa = 7r(m +1/2) 1)

It turns out that this relationship between kr (which governs the oscillations in
the correlation functions as discussed below) and the magnetization m continues to
hold even if we turn on the interaction J;, although now the simple picture of the
ground state (with states filled below some energy and empty above some energy)
is no longer valid.

In the linearized approximation, the modes near the two Fermi points have the
velocities (dwy/0k = tv, where v is some function of J, J,, and h. Next, we in-
troduce the slowly varying fermionic fields g and v as indicated above; these
are functions of a coordinate, x, which must be an integer multiple of a. Finally, we
bosonize these fields. The spin fields can be written in terms of either the fermionic
or the bosonic fields. For instance, $¢ is given by the fermion density as in Eq. (17)
which then has a bosonized form given in Eq. (13). Similarly:

3~+(x) — (_1)x/a |:e+ik]:x/a&a—(x) +e—ik}:x/a&1—4i-(x)]

N [e*"” [ dx (@ ENFED+1/2a) 4 h.c.] (22)

where (—1)*/* = 41, because x/a is an integer. This can now be written entirely in
the bosonic language. the term in the exponential is given by:

o T R T S )
1.7+ / N o — T 1z _
/_ AT = - [ iR = [drw +dw] (3)
where we have ignored the contribution from the lower limit at x = —o0.

We can now use these bosonic expressions to compute the two-spin, equal-time
correlation functions G (x) = (0|7 S%(x)S?(0)|0). We find that:

c1 Lo cos(2kgx)

2z _ 2 “1
G=x) =m +x2 2T 0K

and

(=¥ (=1)*/* cos(2kx)

- ey —
G +G () =c3 2K T T K12k

(24)
where c¢1...c4 are constants. K and v are functions of J,/J and h/J; the exact

dependence can be found elsewhere [39]. For 2 = 0, K is given by the analytical
expression:

1 2
<= 1+ ~ sin~! (%) (25)
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Note that at the SU (2) invariant point J, = J and # = 0, we have K = 1/2, and
the two correlations G** and G~ have the same forms.

In addition to providing a convenient way of computing correlation functions,
bosonization also enables us to study the effects of small perturbations. For instance,
a physically important perturbation is the dimerizing term:

TJ /asn o A .
V=5 (-1 [5 (Sjsi+1 + 5 sj;l) + st,.zsizﬂ} (26)
i

where § is the strength of the perturbation. On bosonizing we find that the scaling
dimension of this term is K. Hence it is relevant if K < 2; it then produces an energy
gap in the system which scales with § as:

AE ~ §1/25) (27)

This kind of phenomenon occurs in spin-Peierls systems such as CuGeO3; below
a transition temperature Ty, they go into a dimerized phase which has a gap [58].

4.5 Density Matrix Renormalization Group Method

One method which held promise for overcoming the difficulty of exploding dimen-
sionalities is the renormalization group (RG) technique in which one systematically
eliminates the degrees of freedom of a many-body system. Although this technique
found dramatic success in the Kondo problem [59], its straightforward extension to
interacting lattice models was quite inaccurate [60].

In early 1992 the key problems associated with the failure of the old RG method
were identified and a different renormalization procedure based on the eigenval-
ues of the many-body density matrix of proper subsystems was developed [61, 62].
This method has come to be known as the density matrix renormalization group
(DMRG) method and has found dramatic success in solving quasi-one-dimensional
many-body Hamiltonians.

In a real-space RG approach, one begins by subdividing the total system into
several blocks A, and proceeds to build effective blocks iteratively so that at each
iteration each effective block represents two or more blocks of the previous itera-
tion, without increasing the Fock space dimensionality of the blocks from that which
existed at the previous iteration. Usually, one starts with each A, consisting of a
single site. Because the Hilbert space grows exponentially with increasing system
size, one truncates the number of states kept at each iteration.

The main reason for the failure of the old RG methods is the choice of the states
retained at each stage of the iteration [61]. White [62], recognized that the weak-
ness of the old RG procedure was in the truncation of the Fock space of a block
on the basis of the eigenvalues of the block Hamiltonian being re-normalized. He
replaced this choice by introducing a truncation scheme completely different from
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that was used in the old quantum RG procedures. The choice is the eigenvalues of
the reduced density matrix of the block constructed from the desired state of the
full Hamiltonian. The truncated Fock space is now spanned by the m eigenvectors
of the reduced density matrix of order / x/ (m < 1) corresponding to the m highest
eigenvalues of the reduced many-body density matrix. The reason for choosing the
eigenvalues of the reduced density matrix as a criterion for implementing a cut-
off is that, the larger the density matrix eigenvalue, the larger is the weight of the
eigenstate of the density matrix in the expectation value of any property of the
system. This result becomes evident when all the dynamic operators are expressed
as matrixes on the basis of the eigenvectors of the density matrix. The expectation
value of any operator A is simply:

(A) = ZAHP[/ Z,Oi (28)

where p; is the density matrix eigenvalue. The larger the value of a particular p;,
the larger is its contribution to the expectation value, for a physically reasonable
spread in the diagonal matrix elements A;;.

The many-body density matrix of a part of the system can be easily constructed
as follows. Let us begin with given state |)s of S, which is called the universe or
superblock, consisting of the system (which we call a block) A and its environment
A’. Let us assume that the Fock space of A and A’ are known, and can be labeled
liYa and |j) 4, respectively. The representation of |/)s in the product basis of i
and j4 can be written as:

W)s =D Wijli)a x [j)a (29)
ij

where we assume the coefficients ¢;; to be real, without loss of generality. Then
the reduced many-body density matrix for block A is defined as:

Prl = Z Vkjvij (30)
J

The eigenvalue p; of the density matrix p gives the probability of finding the
corresponding eigenstate |u;)4 in the projection of |¢/)s on block A. It therefore
follows that the eigenvectors with the highest eigenvalues of the density matrix
of A are the optimum or most probable states to be retained while the system is
augmented.

In the early literature on quantum chemistry the eigenvectors corresponding to
large eigenvalues of one-particle density matrixes were employed as the orbital basis
for performing a configuration interaction (CI) calculation. The eigenvectors of the
density matrix were called the “natural” orbitals and it was observed that the CI
procedure converged rapidly when the “natural” orbitals were employed in setting
up the Slater determinants [63].

The DMRG scheme differs from the “natural” orbital scheme in two important
respects:
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e the reduced density matrixes are many-body density matrixes, and
e the size of the system in terms of the number of sites being studied at each iter-
ation is usually augmented by two sites.

The Hamiltonian matrix that one encounters from iteration to iteration, how-
ever, remains roughly of the same order while the matrix elements keep changing
(re-normalized). In this sense the procedure can be called a renormalization pro-
cedure. The coupling constants (the Hamiltonian matrix elements) keep changing
while the system size increases, as in the RG procedure performed within a blocking
technique.

4.5.1 Implementation of the DMRG Method

We now describe the procedure to carry out the computations. One starts the com-
putation with a small size system, 2n, which can be solved exactly, 1 < n < 4,
depending on the degree of freedom at each site. By exact diagonalization, one
gets the desired eigenstate of that system. The density matrixes of the left and right
blocks, each consisting of n sites (in principle it is not necessary to have the same
number of sites for the two blocks, although in practice this is what is most generally
used) are obtained from the desired eigenstate. The density matrixes are diagonal-
ized and at the first iteration usually all the density matrix eigenvectors (DMEYV)
are retained. The Hamiltonian matrix of the left and right blocks (denoted A and
A’) obtained in any convenient basis are transformed into the density matrix eigen-
vector basis. So also are the matrixes corresponding to the relevant site operators
in both blocks. Now, the iterative procedure proceeds as follows.

1. Construct a superblock S = A e oA’ consisting of the block A, two additional
sites o, and o’ and the block A’. Thus, at the first iteration, the system S has
n+1+14n=2n42 sites.

2. Set up the matrixes for the total Hamiltonian of the superblock S in the direct
product basis of the DMEV of the blocks A and A" and the Fock space states
of the new sites. Considering that the new sites are spin-S sites with (25 + 1)
Fock states each, the order of the total Hamiltonian matrix will be m?(28+1)2 x
m2(2S + 1)2, where m is the dimension of the block DMEYV basis.

3. Diagonalize the Hamiltonian of the superblock S = 2n + 2 to find the desired
eigenstate |1). Using the state |i), evaluate all the properties of the superblock
of interest.

4. Construct the reduced many-body density matrix, p, for the new block Ae. If
the system does not have reflection symmetry, construct the density matrix, p’,
for the new right block eA’ also.

5. Diagonalize the density matrix, p, and if necessary p’. Usually, the density ma-
trix is block-diagonal in the z-component of the total spin of the block, and it
becomes computationally efficient to exploit such quantum numbers. Construct
a non-square matrix Q, with m columns, each column being an eigenvector of the
density matrix corresponding to one of the m largest eigenvalues. The number
of rows in the matrix O corresponds to the order of the density matrix.
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6. Construct the matrixes corresponding to the Hamiltonian, Hy,, of the new left
block Ae, and the site spin operators (8% and S*) of all the necessary sites. The
S- operators are simply the adjoints of the St operators.

7. Re-normalize all the matrixes corresponding to the block and site operators by
using the RG transformation matrix O, e.g. Hje = OHuoOT. The resulting
re-normalized matrixes are of order m x m and the procedure amounts to a
simultaneous change of basis and a truncation.

8. Replace the A by Ae. If the system does not have reflection symmetry replace
A'by Ale.

9. Go tostep 1.

Use of the block-diagonal nature of the density matrix, besides reducing the CPU
time requirement, also enables one to label the DMEV with the appropriate z-
component of the total spin of the block (M, 4). The Fock space of the individual
sites that are added at each iteration are eigenstates of the site spin and number
operators. This enables us to target a definite projected spin (Mj) state of the total
system.

We now briefly describe the mathematical notation we have used so far for various
states. A state of Ae is given by the tensor product of a state of A with quantum
number ¢, and an index i, and a state o, of the additional site. Thus:

g1, 0)ae = lq,i)a X |0) @31)

A state of a superblock S = A e @A’ is given by:

|qA5 M,G, CIA,Vy T)A = |CIA7 M70>A0 X |QA7V5 T).A (32)

The eigenstate of the Hamiltonian of the super-block can be written as:
> U a0, qan v, T)s (33)

qprssT
The density matrix for Ae then will have a block structure and can be expressed as
1,0,T 1,0,T

IOZAVU _ Z qu 24,0, qA ‘]A o, (34)
G, T

This algorithm is called the infinite lattice DMRG algorithm because this procedure
is best suited for the system in the thermodynamic limit, i.e. when the properties
of the system are extrapolated to the infinite system size limit.

4.5.2 Finite Size DMRG Algorithm

If we are interested in accurate properties of the system at a required size it is pos-
sible to improve on the accuracies obtainable from the infinite DMRG procedure.
This involves recognizing that the reduced many-body density matrixes at each iter-
ation correspond to a different system size. For example, when we are performing
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the DMRG procedure to obtain the properties of a system of 2M sites, at an iteration
corresponding to 2p sites (n < p < M), the reduced density matrix we construct
is that of a block of p sites in a system of 2p sites. If, however, our interest is in
the 2M-site system we should employ the density matrix of the block of p sites in
a 2M-site system. It is possible to construct, iteratively, the p-site reduced density
matrix of the 2M-site system. This is achieved by the so called finite-size algorithm
[62]. This method provides highly accurate solutions even when the states of the
full Hamiltonian have inhomogeneous (symmetry breaking) properties.

To obtain the 2M-site result we should perform the infinite lattice algorithm up
to p = (M — 1) sites first storing all operators in each iteration. Now the algorithm
for finite lattices with reflection symmetry (left block = right block), proceeds as
follows.

1. On reaching a system size of 2M sites, obtain the density matrix of the block of
M sites.

2. Use the density matrix of M sites on the left and that of (M —2) sites on the right,
add two new sites as in the infinite DMRG procedure, and obtain the desired
eigenstate of the 2M system.

3. Now obtain the reduced density matrix of the (M +1) sites from the eigenstate of
the previous iteration obtained in the direct product basis of the DMEYV of the
M-site, (M —2)-site density matrixes, and the Fock space states of the individual
sites.

4. Go back to step 2, replacing M by (M + 1) and (M —2) by (M — 3) and iterate
until a single site results on the right and (2M — 3) sites result on the left.

5. Because the system has reflection symmetry, use the density matrix of the
(2M — 3) sites on the right and construct the 2M system as built-up from three
individual sites on the left and (2M — 3) sites on the right. Obtain the desired
eigenstate of the 2M system in this basis.

6. Now obtain the new 2-site density matrix on the left and (2M — 4) site density
matrix on the right. Replace the single-site on the left by two sites and 2M — 3)
sites on the right by (2M — 4) sites in step 5.

7. Repeat steps 5 and 6 until (M — 1) sites are obtained both on the left and right.
The properties of the 2M system obtained from the eigenstates at this stage
corresponds to the first iteration of the finite-size algorithm. We can now go back
to step 1 and carry through the steps to obtain properties at later iterations of
the finite-size DMRG algorithm.

In systems without reflection symmetry, the DMEV of the right and left parts
are not identical even if the sizes of the reduced systems are the same. The finite-
DMRG algorithm in this case involves first constructing the density matrixes of the
left part for sizes greater than M and on reaching the density matrix of 2M — 3)
sites, reducing the size of the left-part and increasing that of the right, from one
site to (M — 1). This will result in the refined density matrixes of both the right and
the left blocks of the total system, for block sizes of (M — 1). At this stage, we can
compute all the properties and continue the reverse sweep until the right block is
of size (2M — 3) and the left block is of size 1. The forward sweep that follows will
increase the block size on the left and reduce that on the right. We would have
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completed the second iteration when the two block sizes are equal. The forward
and reverse sweeps can be continued until we reach the desired convergence in the
properties of the whole system.

4.5.3 Calculation of Properties in the DMRG Basis

At the end of each iteration, one can calculate the properties of the targeted state
[64]. The reduced many-body density matrix computed at each iteration can be
used to calculate the static expectation values of any site operator or their products.
Care should be taken to use the density matrixes appropriate to the iteration. The
expectation value of a site property corresponding to the operator A; can be written:

(Ai) = Tr(pA) (35)

where p is the density matrix of the block in which the site i is situated and A; is
the matrix of the re-normalized site operator at site i. For calculating correlation
functions, one can use a similar equation. The correlation function between two site
operators belonging to separate blocks can be written as:

(AjA;) = Tr(pAiA)) (36)

The accuracy of this procedure turns out be very poor, however, if the sites i and
J belong to the same block [62]. The reason is that one feature implicit in the above
procedure is the resolution of identity by expansion in terms of the complete basis.
Unfortunately, the basis in which the site operators are represented is incomplete
and such an expansion is therefore error-prone. To circumvent this difficulty it has
been suggested [62] that one obtains the matrix representation of the products of
the site operators from the first occurrence of the product pair (ij) and, by re-
normalizing the product operator f?,-j = A;Aj, at every subsequent iteration until
the end of the RG procedure. Then, the correlation function between A; and A j
(where i and j belong to the same block) can be evaluated as:

(A;Aj) = Tr(pB;j) (37)

This procedure is usually found to be more accurate.

4.5.4 Remarks on the Applications of DMRG

The DMRG method is currently the most accurate method for large quantum lattice
models in one dimension. It can be applied to interacting bosonic, fermionic, or spin
models and to models which have interactions among them. The overall accuracy
of the DMRG method is exceptionally high for one-dimensional systems with only
nearest neighbor interactions. For a spin-1/2 chain where exact Bethe ansatz ground-
state energy is available the DMRG ground state energy per site in units of the
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exchange constant J is found to be accurate to seven decimal places with a cut-off
m = 100 [62]. The method is found to be almost as accurate for the one-dimensional
Hubbard model, where again the DMRG results are comparable with exact results
obtained from the exact analytical Bethe ansatz solution [65].

Because higher dimensionality is equivalent to longer-range interactions within
one dimension, the model also restricts the range of interactions in one dimension. It
has been noted that the number of DMEYV that should be retained in a calculation on
higher dimensional systems, for accuracies comparable with that in one dimension,
scales exponentially with dimensionality. Thus, to obtain accuracy comparable with
that obtained in a chain of L-sites for a cut-off m, in a L x L square lattice, the
number of DMEV that must be retained for the corresponding two-dimensional
lattice is ~ m?

Extending the range of interactions to next-nearest neighbors does not signifi-
cantly reduce the accuracy [66]. Inclusion of cyclic boundary conditions, however,
reduces the accuracy of the method significantly — although in one-dimension the
DMRG method still would outperform any other method for the same system size.
In the DMRG procedure the most accurate quantity computed is the total energy. In
dealing with other quantities, e. g. correlation functions, caution must be exercised
in interpreting the results.

The density matrix eigenvalues sum to unity and the truncation error, which is
defined as the sum of the density matrix eigenvalues corresponding to the discarded
DMEY, gives a qualitative estimate of the accuracy of the calculation and provides
a framework for extrapolation to the m — oo limit. The accuracy of the results
obtained in this way is unprecedented [67, 68]. The accuracy of the ground state
energy per site for the spin-1 chain is limited by the precision of machine arithmetic,
e.g. e, = 1.401484038971(4). Similarly, the accuracy persists even when calculating
for the Haldane gap — e. g. the gap is evaluated to be 0.41050(2).

Another aspect of the DMRG technique worth noting is that the method is best
suited for targeting one eigenstate at a time, although it is possible to obtain rea-
sonable results for a set of states by using an average many-body reduced density
matrix constructed as a weighted sum of the density matrixes corresponding to each
of the states in question. One way of constructing the average density matrix is by
using a statistical weight for the chosen set of states; the averaged density matrix
in this instance is given by:

ppxi = Y Vi Vizj expl—Beil/ Y exp[—pei] (38)
i i

where B = 1/kgT and kg and T are the Boltzmann constant and temperature,
respectively. One can thus extend the DMRG method to finite temperatures.
Finite size algorithms have been used extensively to study edge states and systems
with impurities, where substantial improvement of the accuracy is needed to charac-
terize the various properties of a finite system. The DMRG method has been applied
to diverse problems in magnetism: study of spin chains with § > 1/2 [69], chains
with dimerization and/or frustration [51, 66, 70, 71], and coupled spin chains [66, 72,
73], to list a few. Highly accurate studies have been performed of the structure factor
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and string-order parameter (topological long-range order) [67] and edge states in
Haldane phase systems [74]. Dynamic properties for both spin and fermionic sys-
tems with DMRG have also been reported within the maximum entropy method
[75] and the continued fraction [76] and correction vector [77] approaches. DMRG
has also been successfully formulated to obtain low-temperature thermodynamic
properties for a variety of spin systems [78, 79], and the solution of models of spin
chains dynamically coupled to dispersionless phonons [80]. Nishino and Okunishi
have also derived two re-formulations of DMRG - the product wave function renor-
malization group (PWFRG) [81], and the corner transfer matrix renormalization
group (CTMRG) [82] methods. These methods are a means of calculating dynamic
correlation functions in spin chains and obtaining highly accurate results for the
two-dimensional Ising model at criticality.

4.6 Frustrated and Dimerized Spin Chains

It is well known that the one-dimensional XY chain can be mapped on to a one-
dimensional non-interacting spinless fermion model. The isotropic spin chain will
then map on to a chain of interacting spinless fermions. According to the Peierls
theorem a partly filled one-dimensional band of non-interacting fermions is unsta-
ble with respect to a lattice distortion that results in an insulating ground state. It has
been shown that introduction of interactions in the Peierls system leads to greater
instability. The mapping between the Heisenberg spin chains with equal nearest-
neighbor exchange interactions (uniform spin chain) and the spinless fermion model
suggests that such a spin chain is also unstable with regard to a lattice distortion
leading to alternately strong and weak nearest-neighbor exchange constants, i.e.
a dimerized spin chain. What is of importance is that such dimerization is uncon-
ditional — no matter how strong the lattice is, the lattice dimerizes, because the
exchange energy gained as a result of dimerization always exceeds the strain en-
ergy. This is because the gain in exchange energy varies as 8> In § whereas the strain
energy loss varies as 82, where § is the magnitude of dimerization that leads to the
nearest neighbor exchange constants alternating as J(1 &+ 4).

In recent years, many systems which closely approximate the one-dimensional
spin chain have been synthesized. What has been observed in these experimental
systems is that besides the nearest-neighbor antiferromagnetic exchange there is
also a second neighbor exchange J, of the same sign and comparable magnitude.
Such a second neighbor interaction has the effect of frustrating the spin alignment
favored by the nearest-neighbor interaction. Realistic study of these systems there-
fore requires modeling them using both dimerization and frustration. Theoretically,
spin chains with frustration only (J — J, model) were studied by Majumdar and
Ghosh. Interestingly, they showed that for J, = J/2, the ground state is doubly
degenerate and is spanned by the two possible Kekulé structures (Fig. 11). It is
quite gratifying to note that a century after the Kekulé structure for benzene was
proposed there is actually a Hamiltonian for which the Kekulé structure happens
to be the ground state!
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@ Fig. 11. Doubly degenerate ground states (a) and
i 3 3 3 : ¢ : (b) of the J — J, chain (see Fig. 8 for § = 0) at
Jp» = J/2. The solid line between sites i and j

(b) represents a singlet, [| 1) ;) — | i,-Tj)]/\/E.

Although most of the discussion above is restricted to spin-1/2 chains, there has
been much interest in the higher-spin chains after the conjecture of Haldane which
predicts that for uniform spin chains the excitation spectrum of integer spin chains
is qualitatively different from that of half-odd-integer spin chains. The latter have a
gapless excitation spectrum whereas the excitation spectrum of the former is gapped.
The synthesis and study of integer spin chains have indeed confirmed this conjecture.

Notwithstanding many interesting exact analytical solutions for spin chains, there
are still many situations for which such solutions have been elusive. The exact solu-
tions are basically confined to the uniform Heisenberg model and the frustrated and
dimerized model along the line 2J, +§ = 1 in the J, —§ plane, with J = 1. Reliable
numerical study of these models therefore requires the development of techniques
which are highly accurate so that the results of large finite systems can be scaled or
extrapolated to the thermodynamic limit. As has already been discussed, the DMRG
technique is ideally suited, because of its high accuracy for quasi-one-dimensional
systems.

The Hamiltonian for the frustrated and dimerized spin chain is given in Eq. (4)
and is shown schematically in Fig. 8. A few low-lying states in a sector with a given
value of the total spin component, Mg are obtained at representative points in the
Jo» — & plane, using the DMRG method. The ground state is always the first (lowest
energy) state in the Mg = 0 sector. The accuracy of the DMRG method depends
crucially on the number of eigenstates of the density matrix, m, which are retained.
Working with m = 100 to 120 over the entire J; — § plane gives accurate results.
This can be verified by comparing the DMRG results for these m values with exact
numerical diagonalizations of chains with up to 16 sites for spin-1 systems [83] and
22 sites for spin-1/2 systems [84]. The chain lengths studied vary from 150 sites for
J> > 0 to 200 sites for J, = 0. The DMRG results are also tracked as a function of
N, the chain length, to verify that convergence is always reached well before 150
sites. The numerical results are much better convergent for open chains than for
periodic chains, a feature generic to the DMRG technique [62, 68].

The quantum phase diagrams obtained for a spin-1/2 chain is shown in Fig. 12.
The system is gapless on the line A running from J, = 0 to Jyc = 0.241 for § = 0,
and is gapped everywhere else in the J, — § plane. There is a disorder line B given
by 2J, 4+ 8 = 1; the peak in the structure factor S(g) is at gmax = 7 to the left of B
(region I), decreases from 7 to 7/2 as we go from B up to line C (region II), and
is at gmax = /2 to the right of C (region Ill). This is in agreement with the results
obtained in Section 4.4 by use of the NLSM approach. The correlation length goes
through a minimum on line B.

In the spin-1 case (Fig. 10), the phase diagram is more complex. There is a solid
line marked A which runs from (0, 0.25) to approximately (0.2240.02, 0.20£0.02),
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Fig. 12. “Phase” diagram for the
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shown by a cross. To within numerical accuracy the gap is zero on this line and the
correlation length £ is as large as the system size N. The rest of the “phase” dia-
gram is gapped. The gapped portion can, however, be divided into different regions
characterized by other interesting features. On the dotted lines marked B, the gap is
finite. Although & goes through a maximum when we cross B in going from region
II to region I or from region III to region IV, its value is much smaller than N. There
is a dashed line C extending from (0.65, 0.05) to about (0.73, 0) on which the gap
seems to be zero (to numerical accuracy), and £ is very large, but not as large as
N. The straight line D satistying 2/, + 8 = 1 extends from (0, 1) to approximately
(0.432, 0.136). Regions IT and III are separated by line E which goes down to about
(0.39, 0). Across D and E the peak in the structure factor decreases from 7 (Néel)
in regions I and II to less than 7 (spiral) in regions III and IV. In regions II and III
the ground state for an open chain has a fourfold degeneracy (consisting of states
with § = 0 and S = 1), whereas it is non-degenerate in regions I and IV with § = 0.
The regions II and III, where the ground state is fourfold degenerate for an open
chain, can be identified with the Haldane phase; the regions I and IV correspond
to a non-Haldane singlet phase. The lines B, D, and E meet in a small region V
where the ground state of the system is numerically very difficult to find. Note that
the numerically zero gap at (0.73, 0) is unexpected from either bosonic mean-field
theory [85] or the NLSM approach discussed earlier.

For the spin-1 system, there is a striking similarity between the ground state
properties of the dimerized and frustrated model (Eq. 4) as a function of J, (with
8 = 0) and the biquadratic model:

H= Z [Si S+ BES; - Si+1)2] (39)
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as a function of (positive) g [70]. For J» < 0.39 and B < 1/3 both models are in
the Néel phase and are gapped. For J; > 0.39 and 8 > 1/3, the two models are
in the spiral phase and are generally gapped, although the model represented by
Eq. (4) is “gapless” for J, = 0.73 and the model represented by Eq. (39) is gapless
for B = 1. Qualitatively, the cross-over from the Néel to the spiral phase (but not
the gaplessness at a particular value of J, or 8) can be understood by means of the
following classical argument. Let us set the magnitudes of the spins equal to 1 and
define the angle between spins S; and S, to be nf. The angle 0 can be obtained by
minimizing cos 6 + J, cos26 in Eq. (4), and cos6 + 6 cos? @ in Eq. (39). This gives
us a Néel phase (6 = ) if J, < 1/4 and 8 < 1/2 in the two models, and a spiral
phase for larger values of J, and 8 with § = cos 1 (—1/4J,) and 6 = cos~ 1 (—1/28),
respectively. The actual crossover points from Néel to spiral are different from these
classical values for spin-1. In the classical limit S — oo the ground state of the model
is in the Néel phase for 4/, < 1— 82, in a spiral phase for 1 — 82 < 41 < (11— 82)/8,
and in the colinear phase for (1 —§2)/8 < 4J, (Fig. 9).

As is apparent from Fig. 8, § = 1 results in two coupled spin chains wherein
the inter-chain coupling is 2 and the intrachain coupling is J>. By use of DMRG
one can study the dependence of the gap A and the two-spin correlation function
C(r) on the inter-chain coupling J. In Fig. 13 A is plotted against J for spin-1/2
and spin-1 systems. For spin-1/2 the system is gapped for any non-zero value of
the inter-chain coupling J, although the gap vanishes as J — 0. The gap increases
and correspondingly the correlation length decreases with increasing J. For coupled
spin-1 chains one obtains the somewhat surprising result that both the gap and the
correlation length & are fairly large for moderate values of J. Note that the variation
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Fig. 13. Gap A vs J for coupled spin chains (§ = 1). Spin-1/2 and spin-1 data are indicated
by crosses and circles, respectively.
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of the gap with J for spin-1 (shown as circles) is much less than that for spin-1/2
(crosses).

The NLSM derived in Section 4.4 can be expected to be accurate only for large
values of the spin S. It is interesting to note that the numerically obtained “phase”
boundary between the Néel and spiral phases for spin-1 is closer to the classical
(S — oo) boundary 4J, = 1 — 2 than for spin-1/2. For instance, the crossover from
Néel to spiral occurs, for § = 0, at J, = 0.5 for spin-1/2, at 0.39 for spin-1, and at
0.25 classically.

To conclude this section, we have studied a two-parameter “phase” diagram for
the ground state of isotropic antiferromagnetic spin-1/2 and spin-1 chains. The spin-
1 diagram is considerably more complex than the corresponding spin-1/2 chain,
with surprising features like a “gapless” point inside the spiral “phase”; this point
could be close to a critical point discussed earlier in the literature [50, 86]. It would
be interesting to establish this more definitively. Our results show that frustrated
spin chains with small values of S have features not expected from large S field
theories.

4.7 Alternating (S1, S2) Ferrimagnetic Spin Chains

Ferrimagnets belong to a class of magnet with spontaneous magnetization be-
low a certain critical temperature. Several attempts have been made to synthe-
size molecular materials with spontaneous magnetization at low temperatures [87,
88]. These are quasi-one-dimensional bimetallic molecular magnets in which each
unit cell contains two spins with different spin values, with the general formula
ACu(pbaOH)(H,0)3.2H20, where pbaOH is 2-hydroxyo-1,3-propylenebis(oxa-
mato) and A = Mn, Fe, Co, or Ni; they belong to the alternating or mixed spin
chain family [88, 89]. These alternating spin compounds have been seen to have
ferrimagnetic behavior. It is important that there are many other classes of ferri-
magnetic system — homometallic chains with different Lande factors [90] and topo-
logical ferrimagnets [91, 92], with behavior very similar to that of mixed-spin sys-
tems.

The thermodynamic behavior of these ferrimagnetic spin compounds is very in-
teresting [89, 93]. In very low magnetic fields these systems have one-dimensional
ferrimagnetic behavior. Plots of x T against T (where x is the magnetic suscep-
tibility and T the temperature) have a rounded minimum - as the temperature
is increased x 7 decreases sharply and goes through a minimum before increasing
gradually. The temperature at which this minimum occurs differs from system to sys-
tem and depends on the site spins of the chain. The variation of the field-induced
magnetization with temperature is also interesting because the ground state is a
magnetic state. These exciting observations have motivated us to study ferrimag-
netic systems with arbitrary spins s; and s alternating from site to site. It would
also be of interest to know the thermodynamic properties of systems with varying
s1 and sp.
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4.7.1 Ground State and Excitation Spectrum

We start our discussion with the Hamiltonian for a chain with spins s; and s on
alternating sites (with s; > s, without loss of generality):

A=73[A+881, 820+ 1 =582, 8111] (40)

where the total number of sites is 2N and the sum is over the total number of unit
cells N. S;, corresponds to the spin operator for the site spin s; in the nth unit
cell. The exchange integral J is taken to be positive for all our calculations; § is the
dimerization parameter and lies in the range {0, 1}.

Before describing our numerical results, we briefly summarize the results of a
spin-wave analysis for the purposes of comparison [79]. We will first state the results
for § = 0. According to spin-wave theory, the ground state has total spin Sg =
N(s; — s2). Let us define a function:

w(k) = J\/(sl —52)2 +4s152 sinz(k/Z) (41)
where k denotes the wave number. The ground state energy per site is given by:

E 1 (™ dk
g0 = 0 _ —Js1s0 + —f —[=J(s1+ 52) + (k)] (42)
2N 20 w

The lowest branch of excitations is to states with spin S = Sg—1, with the dispersion:
w1 (k) = J(—s1 +52) + w(k) (43)

the gap vanishes at k = 0. There is a gapped branch of excitations to states with
spin S = Sg + 1, with the dispersion:

w2(k) = J(s1 — 52) + w(k) (44)

the minimum gap occurs at k = 0 and is given by A = 2J(s; —s2). In the ground state
with §¢ = Sg the sublattice magnetizations are given by the expectation values:

G\ 1 _1 ”%J(sl—i—sz)
<Sl*">_(”+2> Zfo 7wk

and

(85,) = (s1 —s2) — (55 ) (45)

The various two-spin correlation functions decay exponentially with distance; the
inverse correlation length is given by £~ = In(s{ /s2). The results with dimerization
(8 > 0) are very similar. In fact, within spin-wave theory the minimum gap A to
states with spin § = Sg + 1 is independent of §.
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We now use the powerful DMRG method to study the system defined by Eq. (40)
both with and without dimerization —§ # 0 and § = 0 respectively. We have consid-
ered alternating spin-3/2/spin-1 (hereafter denoted (3/2, 1)), spin-3/2/spin-1/2 (de-
noted (3/2, 1/2)), and spin-1/spin-1/2 (denoted (1, 1/2)) chains with open boundary
condition for the Hamiltonian given by Eq. (40). We compute the ground-state prop-
erties for these three systems by studying chains with 80 to 100 sites. The number
of dominant density matrix eigenstates, m, that we have retained at each DMRG
iteration also varies between 80 to 100. With increasing Fock space dimensional-
ity of the site spins, we increase m to obtain more accurate results. We follow the
usual steps for the “infinite system” DMRG method discussed above [62, 66, 94],
except that the alternating chains studied here are not symmetric between the left
and right halves; hence the density matrixes for these two halves must be sepa-
rately constructed at every iteration of the calculations. We have also verified the
convergence of our results by varying the values of m and the system size.

The ground states of all the systems lie in the $* = N(s; — s2) sector, as veri-
fied from extensive checks performed by obtaining the low-energy eigenstates in
different S¢ sectors of a 20-site chain. A state corresponding to the lowest energy
in §* = N(s; — s2) is found in all subspaces with | S| < N(s; — s2), and is absent
in subspaces with |S?| > N(s; — s2). This shows that the spin in the ground state is
SG = N(s1 — 52). (Actually, the lowest energy states in the different S* sectors are
found to be degenerate only up to 107 J. Such small errors are negligible when
studying thermodynamics at temperatures higher than, say, 1072J) .

In Fig. 14, we show the expectation value of site-spin operator S’f , (spin density)
at all the sites for the (3/2, 1), (3/2, 1/2), and (1, 1/2) chains. The spin densities are
uniform on each of the sublattices in the chain for all three systems. For the (3/2, 1)
chain the spin density at a spin-3/2 is 1.14427 (the classical value is 3/2), whereas at
spin-1 site it is —0.64427 (classical value 1). For the (3/2,1/2) chain the spin density
at a spin-3/2 site is 1.35742 and at a spin-1/2 site it is —0.35742. For the (1, 1/2)
chain the value at a spin-1 site is 0.79248 and at a spin-1/2 site it is —0.29248. These
can be compared with the spin-wave values of 1.040 and —0.540; 1.314 and —0.314;
and 0.695 and —0.195 for the spin-s; and spin-s; sites of the (3/2, 1), (3/2,1/2), and
(1, 1/2) systems, respectively. We note that the spin-wave analysis overestimates
the quantum fluctuations for systems with small site-spin values. We also notice
that there is a greater quantum fluctuation when the difference between site spins,
|s1 —s2]| is larger. This is also seen in spin-wave theory. The spin density distribution
in an alternating (s, s2) chain is more similar to that of a ferromagnetic chain than to
that of an antiferromagnet, with the net spin of each unit cell perfectly aligned (but
with small quantum fluctuations on the individual sublattices). In a ferromagnetic
ground state, the spin density at each site has the classical value appropriate to
the site spin, whereas for an antiferromagnet this averages out to zero at each site,
because the ground state is non-magnetic. From this standpoint the ferrimagnet
is similar to a ferromagnet and is quite unlike an antiferromagnet. The spin-wave
analysis also yields the same physical picture.

Because of the alternation of spin-s; and spin-s, sites along the chain, one must
distinguisp between three different types of pair correlation, <‘§f,0*§f,n)’ (Sioﬁin>
and (SfOSén). We calculate all the three correlation functions with the mean val-
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Fig. 14. Expectation values of the z-components of the two spins vs the unit cell index, n,
for an alternating spin chain. The upper and lower points are for the spin-s; and the spin-s;
sites respectively.

ues removed by subtraction, because the mean values are non-zero in all these three
systems, in contrast with pure antiferromagnetic spin chains. In the DMRG proce-
dure we have computed these correlation functions from the sites inserted at the
last iteration, to minimize numerical errors. In Fig. 15, we plot the two-spin correla-
tion functions in the ground state as a function of the distance between the spins for
an open chain of 100 sites for all three cases. All three correlation functions decay
rapidly with distance for each of the three systems. From the figure it is clear that,
except for the (3?03’57”) correlation, Ehe gorrelations are all almost zero, even for
the shortest possible distances. The (S} (S5 ) correlation has an appreciable value
[-0.2 for (3/2, 1), —0.07 for (3/2, 1/2), and —0.094 for (1, 1/2)] only for the nearest
neighbors. This rapid decay of the correlation functions makes it difficult to find
the exact correlation length & for a lattice model, although it is clear that & is very
small (less than one unit cell) for the (3/2, 1/2) and (1, 1/2) cases, and a little larger
(1 < & < 2) for the (3/2, 1) system. Spin-wave theory gives & = 2.47 for (3/2, 1),
& = 0.91 for (3/2, 1/2), and ~ £1.44 for (1, 1/2) cases. (We should remark here
that our £ is not to be confused with the conventional definition of the correla-
tion length; the latter is actually infinite in these systems, because of the long-range
ferrimagnetic order).
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Fig. 15. Subtracted two-spin correlation functions as a function of distance between the two
spins. (a) spin-s;—spin-s; correlations, (b) spin-sp—spin-s, correlations, and (c) spin-s;—spin-s;
correlations. In each figure, squares correspond to (3/2, 1), circles to (3/2, 1/2), and triangles
to (1, 1/2) systems.

The lowest spin excitation of all three chains is to a state with § = Sg — 1. To
study this state we target the 2nd state in the S* = Sg — 1 sector of the chain. To
confirm that this state is a S = Sg — 1 state we have computed the 2nd state in the
§% = 0 sector and find that it also has the same energy. The corresponding state is,
however, absent in $¢ sectors with |$?| > SO — 1. Also, from exact diagonalization
of all the states of all the s; — s, alternating spin chains with eight sites we find that
the energy ordering of the states is such that the lowest excitation is to a state with
spin S = Sg — 1. We have obtained the excitation gaps for all three alternating spin
chains in the limit of infinite chain length by extrapolating from the plot of spin
gap against the inverse of the chain length (Fig. 16). We find that this excitation is
gapless in the infinite chain limit for all three cases.

To characterize the lowest spin excitations completely, we also have computed
the energy of the S = Sg + 1 state by targeting the lowest state in the $* = Sg +
1 sector. In Fig. 17 we have plotted the excitation gaps to the S = Sg + 1 state
from the ground state for all three systems as a function of the inverse of the chain
length. The gap saturates to a finite value of (1.0221+£0.0001)J for the (3/2, 1) case,



4.7 Alternating (S, S2) Ferrimagnetic Spin Chains

153

- gz __ D08
of o
; 5 0.03 o
o O d o w'-
”g ' 4 éﬁ
( a
Y 0.04 0.08 0 002 004 008 008
(2N) (2N
. 0.0e
I\'.'J
¥4} (1,112)
& o
 0.04 EH:(
“ e
L P
<] ﬁ_ﬁ‘
a(‘. 0.04 0.08
(eNy!

Fig. 16. Energy difference (units of J) between the ground state and the lowest energy state
with spin § = Sg — 1 as a function of inverse system size. Sg is the total spin of the ground

state.
1.0224
— o —
9] o) 1.8562
A (@2.1) A (32,112)
I 1.0222 :
. / &
4 s El= 4
0
18558 oo
1'0220 0.04 0.08 0 0.05 O.;l 0.15
(2Ny" (2N)
— D
— 1.279525
T
%]
A (1,172)
©
93]
4 -lll]]Jl]]Jm]]]IﬂID:!DD‘E/j
1.2795210 0.04 1 008
(2NY

Fig. 17. Excitation gap (units of J) from the ground state (spin S = Sg) to the state with
spin S = Sg + 1, as a function of the inverse system size.



154 4 Exact and Approximate Theoretical Techniques ...

12 271
n o 1]
JS” 32.) Ugg b BRI
A AN
b1 ! D/D/D
[0 [0
[02] [92] 1.9 O
s ] — D/D
% DD/D LH i
3
o 004 008 e 0.08
8 )
15
- (1,1/2)
b D/D
v 1.4 o
A o
1 D/
| o
S 1af T
S 135DD/
W
<4
R T 0.08
b

Fig. 18. Excitation gap (units of J) to the state with spin S = Sg + 1 from the ground state
(S = Sg) as a function of § for the dimerized alternating chain. The exponent is 1.0 £ 0.01
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(1.8558 £0.0001)J for (3/2, 1/2), and (1.2795 £ 0.0001)J for (1, 1/2). It seems that
the gap is also higher when the difference in site spins, |s; — s3], is larger. The site
spin densities expectation values computed in this state for all three cases are found
to be uniform (i. e. independent of the site) on each of the sublattices. This leads
us to believe that this excitation cannot be characterized as the states of a magnon
confined in a box, as has been observed for a spin-1 chain in the Haldane phase
[67].

We have also studied the spin excitations in the dimerized alternating (s1, s2)
chains, defined in Eq. (40). We calculate the lowest spin excitation to the § = Sg—1
state from the ground state. We find that the S = Sg — 1 state is gapless from the
ground state for all values of §. This result agrees with the spin-wave analysis of
the general (s1, s3) chain. The systems remain gapless even while dimerized unlike
the pure antiferromagnetic dimerized spin chains. There is a smooth increase of the
spin excitation gap from the ground state to the S = Sg + 1 state with increasing §
for all three systems studied here. We have plotted this gap against § in Fig. 18. The
gap has almost linear behavior as a function of §, with an exponent of 1.0 & 0.01
for all three systems. This seems to be an interesting feature of all ferrimagnets.
The spin-wave analysis shows, however, that this excitation gap is independent of
8 for the general (s1, s3) chain. The similar behavior of these three alternating spin
systems suggests that a ferrimagnet can be considered as a ferromagnet with small
quantum fluctuations.
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4.7.2 Low-temperature Thermodynamic Properties

We have varied the size of the system from 8 to 20 sites to calculate the thermo-
dynamic properties. We imposed periodic boundary conditions to minimize finite
size effects with 81 N+l = 81 1, so that the number of sites is equal to the number
of bonds. We set up the Hamiltonian matrixes in the DMRG basis for all allowed
S¢ sectors for a ring of 2N sites. We can diagonalize these matrixes completely to
obtain all the eigenvalues in each of the ¢ sectors. As the number of DMRG basis
states increases rapidly with increasing m, we retain a smaller number of dominant
density matrix eigenvectors in the DMRG procedure, i.e. 50 < m < 65, depending
on the S* sector and the size of the system. We have checked the dependence of
properties (with m in the range 50 < m < 65) for the system sizes we have studied
(8 < 2N < 20), and have confirmed that the properties do not vary significantly for
the temperatures at which they are computed; this is true for all three systems.

It might appear surprising that the DMRG technique which essentially targets
a single state, usually the lowest energy state in a chosen S* sector, should provide
accurate thermodynamic properties, because these properties are governed by the
energy level spacings and not by the absolute energy of the ground state. There are,
however, two reasons why the DMRG procedure yields reasonable thermodynamic
properties at low temperatures. First, the projection of the low-lying excited state
eigenfunctions on the DMRG space which contains the ground state is substantial;
hence these excited states are well described in the chosen DMRG space. Second,
the low-lying excitations of the full system are often the lowest energy states in
different sectors in the DMRG procedure; hence their energies are quite accurate
even on an absolute scale.

The canonical partition function Z for the 2N site ring can be written as:

7 = Ze—ﬂ(Ej—B(M)j) (46)
J
where the sum is over all the DMRG energy levels of the 2N site system in all the
S% sectors. E; and (M); denote the energy and the z-component of the total spin
of the state j, and B is the strength of the magnetic field in units of 1/gup (g is
the gyromagnetic ratio and up is the Bohr magneton) along the Z direction. The
field-induced magnetization (M) is defined as:

Zj (M); e B(E;—B(M);)

M) = — (@7)

The magnetic susceptibility x is related to the fluctuation in magnetization:

x = B[(M?) — (M)?] (48)

Similarly, the specific heat Cy is related to the fluctuation in the energy and can
be written as:

— = B*(E?) — (E)] (49)
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In the discussion to follow we present results on the 20-site ring, although all
calculations have been performed for system sizes from 8 to 20 sites. This is because
the qualitative behavior of the properties we have studied are similar for all the ring
sizes in this range for all three systems.

The dependence of magnetization on temperature for different magnetic field
strengths is shown in Fig. 19 for all three systems. At low magnetic fields the mag-
netization decreases sharply at low temperatures and has paramagnetic behavior at
high temperatures. As the field strength is increased, the magnetization decreases
more slowly with temperature, and for high field strengths the magnetization has a
broad maximum. This behavior can be understood from the type of spin excitations
present in these systems. The lowest energy excitation at low magnetic fields is to a
state with spin s less than Sg, so the magnetization initially decreases at low temper-
atures. As the field strength is increased the gap to spin states with S > Sg decreases
as the Zeeman coupling to these states is stronger than to states with S < Sg. The
critical field strengths at which the magnetization increases with temperature varies
from system to system, because this corresponds to the lowest spin gap of the cor-
responding system. The behavior of the system at even stronger fields turns out to
be remarkable. The magnetization in the ground state (7 = 0) increases abruptly,
signalling that the ground state at this field strength has S° > Sg. The temperature-

M/Z2N
M/2N

=}

Fig. 19. Plot of magnetization per site as a function of temperature, 7, for four different
values of the magnetic field B. Squares are for B = 0.1J/gu, circles for B = 0.5J/gus,
triangles for B = J/gup, and diamonds for B =2J/gug.
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dependence of the magnetization has a broad maximum, indicating the presence
of states with even higher spin values lying above the ground state in the presence
of this strong field. In all three cases, the ground state at very high field strengths
should be ferromagnetic. For the systems at such high fields, the magnetization de-
creases slowly with increasing temperature because no other higher spin states lies
above the ground state. Although we have not studied such high-field behavior, we
find that the field strength corresponding to switching the spin of the ground state
sG to sg + 1 is higher for the (3/2, 1/2) system compared with the (3/2, 1) and (1,
1/2) systems. The switching field seems to depend on the value of |s; — s3|. We see
in Fig. 19 that for the (3/2, 1) and (1, 1/2) cases the ground state has switched to
the higher spin state at the highest magnetic field strength we have studied but that
in the (3/2, 1/2) case the ground state has not switched even at the field strength,
indicating that the excitation gap for this system is larger than for the other two. For
the (3/2, 1/2) case the same situation should occur at very high magnetic fields. Thus,
we predict that the highest S is attained in the ground state at high magnetic field
and that this field strength increases with increasing site-spin difference |s; — s2].
The dependence of xT/2N on temperature for different field strengths is shown
in Fig. 20 for all three systems. For zero field the zero temperature value of x7T is
infinite in the thermodynamic limit; for finite rings it is finite and equal to the av-

xT/oN

Fig. 20. x T (defined in the text) per site as a function of temperature T for different magnetic
fields B. Zero field results are shown by squares, B = 0.01J/gugp by circles, B =0.1J/gusp
by triangles, and B = J/gup by diamonds.
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erage of the square of the magnetization in the ground state. For the ferrimagnetic
ground state xT/2N, as T — 0, is given by Sg(Sg + 1)/6N. As the temperature
increases this product decreases and passes through a minimum before increasing
again. For the three systems studied here the minimum occurs at different tem-
peratures depending on the system. For the (3/2, 1) alternating-spin system it is
at kgT = (0.8 £ 0.1)J, whereas for the (3/2, 1/2) and (1, 1/2) systems it occurs at
kT = (1.0 £ 0.1)J and kT = (0.5 £ 0.1)J, respectively. These results agree well
with previous numerical calculations on small system sizes [95]. The minimum oc-
curs because states with S < Sg become populated at low temperatures. In the
infinite chain limit, these states turn out to be the gapless excitations of the system.
The subsequent increase in the product x T is because of the higher energy-higher
spin states being accessed with further increase in temperature. This increase is slow
for the (3/2, 1/2) case, because in this system very high spin states are not accessi-
ble within the chosen temperature range. It has been found experimentally in the
bimetallic chain compounds that the temperature at which the minimum occurs in
the x T product depends on the magnitudes of the spins s; and s [93]. The Ni/—
Cu’! bimetallic chain has a minimum in x 7/2N at a temperature corresponding to
55cm~! (80K); an independent estimate of the exchange constant in this system
is 100cm~! [96]. This is in very good agreement with the minimum theoretically
found at the temperature (0.540.1)J for the (1, 1/2) case. Drillon et al. also found
the minimum to be at T = 0.5J for the (1, 1/2) system [97]. The minimum in x 7 /2N
vanishes at B = 0.1J/gup which corresponds to approximately 107 for all three
systems. It would be interesting to study the magnetic susceptibility of these systems
experimentally under the action of such high fields. The low-temperature zero-field
behavior of our systems can be compared with that of the one-dimensional ferro-
magnet. In the latter the spin-wave analysis shows that the product x T increases
in proportion to 1/T at low temperatures [98].

In finite but weak fields, the behavior of x T is different. The magnetic field opens
up a gap and x T falls exponentially to zero for temperatures less than the gap in
the applied field for all three systems. Even in this case a minimum is found at the
same temperature as in the zero