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Preface

Applying old concepts to new technology is a very difficult task. Novel
and innovative approaches are required for one to reach a scientific
understanding of the ever-changing field of semiconductor nanostruc-
tures. While the growth of quantum structures, such as quantum dots
(also known as atomic designers), has the tendency to be an art rather
than a science, the fabrication of these structures changed our way of
looking at things. When I decided to create a graduate course on nano-
structures, I scanned the open literature for a suitable textbook that
would cover the topics of interest to students who are eager to learn
and understand semiconductor quantum structures at the nanoscale
limits. I struggled finding such an ideal textbook due to the fact that
the field of semiconductor nanostructures is changing so quickly and
the novelty of the field is presented in articles published in technical
journals and highly specialized reference books that are directed to-
ward highly specialized researchers and are not suitable as textbooks.
This is what motivated me to write this book, which covers various
concepts ranging from bulk semiconductor materials to semiconductor
quantum dots. To understand quantum wells, wires, and dots, it is im-
perative to possess a basic knowledge of quantum mechanics and how
one can apply Schrodinger’s equation to calculate the quantized elec-
tronic energy levels in such a tiny structure. This requirement is due to
the fact that classical mechanics is limited in providing an explanation
of almost all the properties of nanostructures. Quantum mechanics,
however, can provide insight and accurate predictions of phenomena
observed in cases of semiconductor nanostructures. This textbook is by
no means a complete or an ideal textbook, but it is one step in a changing
field full of limitless possibilities of innovations and inventions.

The textbook is designed to cover topics in the subject of hetero-
junctions and nanostructures that are of interest to graduate students
in electrical engineering, materials engineering, and applied physics.
Advanced undergraduate students as well as researchers in the field of

Xi
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Xii Preface

semiconductor heterojunctions and nanostructures may benefit from it.
Timagine that graduate students who use this textbook in their studies
will continue to use it as a reference book after their graduation.

The basic properties of bulk and low-dimensional systems down to
quantum structures with zero degrees of freedom are discussed. This
book is structured such that the discussion starts with bulk crystalline
materials, which is the basis for understanding the basic properties of
semiconductors. The discussion then evolves to cover quantum struc-
tures, such as single and multiple quantum wells. Then, attempts are
made to discuss and explain the properties of even lower-dimensional
systems, such as quantum wires and dots. In many cases, the theo-
retical derivation of various properties is simpler for quantum dots.
However, since the field is still in its infancy, there are too many un-
knowns and many of the properties of the lower-dimensional systems
are yet to be understood or have yet to reach their full potential. Thus,
the discussion regarding quantum wires and dots is limited to the more
mature properties of these quantum structures. Future updates of the
discussion will thus be necessary.

The topics covered in this textbook include an introduction to quan-
tum mechanics, quantization of electronic energy levels in periodic po-
tentials, tunneling, distribution functions and density of states, optical
and electronic properties, growth issues, and devices. Figure 1 sum-
marizes in a flowchart the major topics discussed. In a nutshell, the
chapters are devoted to the introduction of quantum mechanics; calcu-
lations of the energy levels in periodic potentials, quantum wells, and
quantum dots; derivation of the density of states in bulk materials and
quantum wells, wires, and dots, and the density of states under the in-
fluence of electric or magnetic fields; growth of the bulk materials and
quantum structures; optical properties; electrical and transport prop-
erties; electronic devices based on heterojunctions and nanostructures
such as ohmic and Schottky contacts, diodes, resonant tunneling diodes,
MODFETSs, HFETSs, Coulomb blockade, and single-electron transistors
(known as SETSs); and optoelectronic devices such as light-emitting
transistors, light-emitting diodes, photodetectors based on quantum
wells and quantum dots, edge-emitting lasers, VCSELs, quantum cas-
cade lasers, and laser diodes based on quantum dots. End-of-chapter
problems, appendices, tables, and references are included.

Students registering for courses based on this textbook should have a
basic knowledge of semiconductor materials and devices. While knowl-
edge in quantum mechanics is not required, it is however recommended
that students have taken undergraduate physics courses, such as uni-
versity physics and modern physics. The first chapter of this book covers
the basic formalism of quantum mechanics needed for a student in
electrical engineering to grasp the basic idea of how to calculate the
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Figure 1 A schematic illustrating the major topics and their locations in the textbook.

energy levels in a simple quantum well. To understand and appreciate
the beauty of quantum transport in quantum structure, the readers
must have some knowledge in the classical type of transport. This led
us to focus on both quantum transport, such as tunneling and coher-
ent transport in mesoscopic systems, and classical transport, such as
Boltzmann’s transport equation and formalisms.

When an electronic or optoelectronic device is under the influence
of an applied electric field and/or photonic excitation, the device is no
longer at equilibrium and its transport properties become more com-
plicated. The limits of various transport regimes, which are classified
according to the electron phase coherent length and compared to the
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de Broglie wavelength, are discussed in Chap. 7. Various scattering
mechanisms, which dominate the classical regime, are also discussed.
When a nanostructure possesses a capacitance on the order of atto-
farads, a new transport phenomenon occurs, known as a Coulomb block-
ade. This phenomenon, in conjunction with the quantum tunneling
effect, forms the basis for single-electron transistors. Discussion regard-
ing this new class of devices is presented in Chaps. 4, 7, and 9. While
these devices have the potential to revolutionize the current technology,
it should be pointed out that this current technology is still based on
carrier-injected and CMOS devices, where the transport is dominated
by carrier scattering rather than by ballistic or coherent transports.

In addition to electronic devices, a new generation of optoelectronic
devices is under intense research, including long-wavelength infrared
detectors based on intersubband transitions, edge-emitting quantum
well laser diodes, vertical-cavity surface-emitting lasers, and quan-
tum cascade lasers. All of these devices are discussed in the textbook.
Excitons play a major role in optoelectronic and photonic devices.
Theoretically, the exciton binding energy in a quantum well is larger
than that of excitons in the constituent bulk materials by a factor of 4.
Furthermore, it is predicted that the excitons binding energies are even
higher in quantum wires and dots. This can be translated to very fast
optoelectronic devices that can operate at room temperature. The text
presents a detailed discussion and derivation of the exciton binding
energies in direct bandgap bulk semiconductors, quantum wells, and
quantum dots.

Omar Manasreh
University of Arkansas
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Chapter

Introduction to Quantum
Mechanics

1.1 Introduction

Despite the many successful applications of classical mechanics (based
on Newton’s famous laws of motion) to a wide range of physical phenom-
ena, it was apparent at the beginning of the last century that many of
the known phenomena could not be explained in terms of the concepts
of classical mechanics. To meet the challenge of these classical inex-
plicable observations, a complete new theory, quantum mechanics, was
developed. The basic underlying assumptions of quantum theory are
quite different from those of classical mechanics, and they constitute a
fundamentally different way of looking at nature.

Quantum mechanics provides precise answers to many problems, but
it tells only the average value of many individual measurements made
on a given dynamical system in a certain initial state. One of the funda-
mental differences between classical mechanics and quantum theory is
that in quantum mechanics it is not possible to measure all variables
with specific accuracy at the same time, while in classical mechanics it
is. Another difference is that classically, the effects of the disturbances
due to the measurements can be exactly allowed in predicting the fu-
ture behavior of the system, whereas quantum mechanically the exact
effects of the disturbances accompanying any measurements are inher-
ently unknown. For example, in quantum mechanics the measurement
of the position of a particle introduces an unpredictable uncertainty
regarding its momentum.

Early examples of observations that required a revision of classical
mechanics are numerous. We will discuss a few of them here.

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



2 Chapter One

1.1.1 Blackbody radiation

The attempt of Max Planck to explain blackbody radiation from in-
candescent hot bodies was actually the first step in developing quan-
tum mechanics. In 1901, Planck described the spectral intensity of
blackbody radiation by assuming that the oscillators in equilibrium
with radiation can have certain discrete energy E,, given by

E, =nhw, forn=0,1,2,3,... (1.1)

where w, is the oscillator frequency and % is Planck’s constant. The
basic assumption of Planck’s work is that for a cavity radiator, the
number of internal degrees of freedom (standing waves) can be cal-
culated at a given frequency range per unit volume of the cavity to be
2 x 4mv?/c3, where v is the frequency, c is the speed of light, and 2 is
added to account for the fact that each electromagnetic wave can have
two orthogonal polarizations. However, none of these standing waves
in the cavity can take on all possible energies as Maxwell’s equations
imply, but can take on only certain integrally related discrete energies,
0, hw,, 2hw,, 3hw,, ... as shown in Eq. (1.1). Furthermore, it is assumed
that the probability that a standing wave has one of these energies asso-
ciated with it is given by the normal Boltzmann statistical distribution
function. With these assumptions, the mean energy of the oscillator can
be written as

Zn nhwoe(—nhwo/kBT)

E = =kBT[

Zne(*nhwo/kBT) (12)

ha)o/kB T
e(hoy/kpT) _ 1

Equation (1.2) differs by the factor in the brackets from the classical
calculation of the energy density derived by Rayleigh and Jeans in 1900,
which was given by E = 202kp T/(rc?). The final Planck expression of
the energy flux W can be written as

ho? 1

J— (o]
T 97c2 elhwo/ksT) _ 1 (1.3)

A plot of both the Rayleigh-Jeans and Planck expressions is shown in
Fig. 1.1. The quantity h or 2 = h/27 is known as Planck’s constant,
which was used as a parameter to fit Eq. (1.3) to the experimental
curves of the blackbody radiation. From the fitting procedures, it was
determined that 2 = 1.0546 x 10734 J's.

1.1.2 The specific heat capacity of solids

The classical result of the specific heat of solids was derived by Dulong
and Petit by assuming that the atoms in the solid crystal are simply
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Figure 1.1 Radiation laws for blackbody at 7' = 4000 K (w, =

2mv).

harmonic oscillators with a Maxwell-Boltzmann energy distribution as
predicted by the statistical theory. The total vibrational internal energy
per oscillator (U) for a system of 3N oscillators can be written as

E IS Ee BT R
8N = [FeE/ksTgE " (14

which gives E = 3NkpT. The specific heat capacity C, then can be
obtained as follows:

oF
C, = (8_T> = 3Nkg (1.5)

This result is in disagreement with the experimental measurements of
the specific heat capacity at low temperature. In 1911, Albert Einstein
presented a new model for the specific heat capacity of solids based on
the assumption that the energies of the harmonic oscillators (atoms in
a solid) are restricted to the discrete values given by quantum theory
as

En:(n—f—%)hw n=20,1,2,3,... (1.6)



4 Chapter One

The final results of Einstein’s model are as follows:
3N hw 3N hw

E= o T gho/ksT — 1
h(!) 2 ehﬂ)/kBT
L= 1.7
C, = 3NEp ( N ) e (17

By defining ®g = hw/kp, known as the Einstein temperature, the
expression for the specific heat of a solid can be rewritten as

ho >2 e®r/T

kT ) (e®s/T —1)2 (1.8)

C, = 3Nkg <

Finally, Debye regarded the atoms of the crystal as harmonic oscillators
coupled together by Hooke’s law of interatomic forces, which generate
acoustic waves that propagate over a range of frequencies from zero to
a maximum value given by the dispersion relation. The Debye result
for the specific heat capacity can be written as

Op/T

T \3 xte*
_ _xtet 1.
c, 9Nk(®D> / e (1.9)

where ®p = hw/kp is defined as the Debye temperature. Equation (1.9)
cannot be plotted analytically since the integral is very difficult to evalu-
ate. However, for low temperatures, ®p/T approaches infinity and the
integral can then be evaluated to be 47%/15. In the low temperature
limits, Eq. (1.9) reduces to C, = 12”4%(%)3. The specific heat capac-
ity results obtained from the three approaches discussed are shown in
Fig. 1.2.

1.1.3 Photoelectric effect

In 1887, Hertz, while conducting experiments on the generation of elec-
tromagnetism, discovered that electrons could be ejected from solids by
letting radiation fall onto the solid. Lenard and others found that the
maximum energy of these photoejected electrons depended only on the
frequency of the light falling on the surface and not on its intensity. It
was also found that for shorter wavelengths, the maximum energy of
the electrons was greater than for longer wavelengths. In 1905, Einstein
explained the photoelectric effect in a satisfactory way by making use of
Planck’s ideas. He assumed that radiation exists in the form of quanta
of definite size; that is, light consists of packets of energy of size Zw. He
also assumed that when light falls on a surface, individual electrons in
a solid can absorb these energy quanta. Therefore, the energy received
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Figure 1.2 The specific heat capacity of a single crystal plotted as

a function of temperature. The three curves represent the Dulong
and Petit, Einstein, and Debye models.

by an electron depends only on the frequency of the light and is inde-
pendent of its intensity. The intensity merely determines how many
photoelectrons will leave the surface per second. Thus, the maximum
kinetic energy of an electron excited by such light can be expressed as

E, =iw-w)=ho—qe, (1.10)

where hAw, = qg, or w, = q@,/k, which is known as the threshold fre-
quency, and g is the charge of the electron. Above this threshold
frequency, the light quanta has more than enough energy to excite the
electrons into the vacuum. The quantity ¢, is a characteristic property
of the metal called the work function. The electron must obtain energy
qo, from the incident light to be emitted as a photoelectron. Einstein’s
analysis of the photoemission phenomenon assumes that it can be con-
sidered as a two-body collision in which the light is giving up all its
energy to a single electron.

Other early experiments that were found difficult to explain in terms
of classical mechanics were Compton scattering, electron diffraction
from solid crystals, and emission and absorption spectra of atoms and
molecules. The failure of classical mechanics was associated with two
general types of effects. The first one is that physical quantities such as
the energies of the electromagnetic waves and of lattice vibrations of a
given frequency, or the energies and angular momenta associated with
electronic orbits in the hydrogen atoms, which in classical theory can
take on a continuous range of values, were found to take on discrete
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values instead. The second type of effect is called wave-particle duality,
where both the wave nature of light as shown by diffraction and inter-
ference effects, and the particle nature of light, as shown by the pho-
toelectric and Compton effects, are exhibited. Particle parameters (the
energy E and momentum p of a photon) and wave parameters (angular
frequency w = 27 v and wave vector k, where k = 27/, v = frequency,
and A = wavelength) are linked by the fundamental relations £ = hw
and p = ik, known as the Planck-Einstein relations. During each ele-
mentary process, total energy and momentum must be conserved.

1.1.4 The Bohr model of the atom

Classical mechanics failed to explain the sharply defined spectral lines
observed in the optical emission spectra of the elements. In 1913, Neils
Bohr found a way of quantizing the hydrogen atom that described
the spectrum of the element with impressive accuracy. This delay was
partly due to the fact that the atomic nucleus was not discovered until
1910 when Rutherford’s scattering experiments were performed. It was
only then that the concept of an atom as a point nucleus surrounded by
a swarm of electrons emerged. In Bohr’s model, a single electron of mass
m and charge g is assumed to move in a circular orbit around the nucleus
with a positive charge of gz, where z is an integer. In classical electro-
dynamics, accelerated charges like the orbiting electron always radiate
energy in the form of electromagnetic waves. Classically, one would ex-
pect the electron to continually lose energy, spiraling inward toward
the nucleus as its energy is depleted by radiation. Bohr suggested that
stable nonradiative states of the atom can exist, corresponding to circu-
lar electron orbits whose angular momentum L is quantized in integral
multiples of & so that

L, = mrnza)n =mr,v = nh (n=0,1,2,3,...) (1.11)

where v is the electron velocity in its orbit and r, is the orbit radius.
This quantization of the angular momentum also quantizes the orbit
radii and angular velocities as indicated in Eq. (1.11). The allowed total
energies, kinetic plus potential, can be written as

(1.12)

where ¢ is the permittivity of free space.
By equating the Coulomb force to the centripetal force, one can write
2q?

mraw; = pr—- (1.13)
n
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where r,0? is the centripetal acceleration. From Egs. (1.11) to (1.13),
one can obtain r,, w,, and E, according to the following relationships:

A egn2h?
rn = —”ni(;’; k (1.14)
mz2q*
n= (1.15)
mz2q*
A — (1.16)
2(4mey)2n2h?

By introducing the dimensionless unit o, known as the “fine structure
constant,”
q? 1 1
o = = N ——
(4mweg)he  137.036 137

1.17)

the quantities in Eqgs. (1.14) to (1.16) can be rewritten in much simpler
expressions such as
2 ) 2
rp = " wp, = @ and E, =
mzco n3h

The allowed energies are negative, corresponding to stable bound states
of the electron. For z = 1 (hydrogen atom) and n = 1, one can find that
r1 = 05293 A and E; = —13.62 eV. Thus, one can rewrite the orbit
radii and the energy as r, = n?r1 and E, = —E/n?. The energy levels
of the hydrogen atom are illustrated in Fig. 1.3.

B m(zac)?

W (1.18)

Ionization limit

ERRRtt

E;=E./9

E2= E1/4

Ground state, E:=-13.62 eV

Figure 1.3 Energy level diagram for the hydrogen atom derived from
Bohr’s model.
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Bohr’s model was significant in the development of quantum theory
because it showed the potential usefulness of its concepts in describ-
ing the structure of atoms and molecules. However, attempts to extend
Bohr’s model to helium and more complex atoms were not very success-
ful. These problems were not fully solved until after 1930, and in order
to work them out, a completely new and much more general theory of
quantum mechanics had to be developed. Still, Bohr’s atomic system
provided a simple picture of the structure of the one-electron atomic
system.

1.2 The de Broglie Relation

Classical mechanics failed to explain the narrow lines that composed
the atomic emission and absorption spectra. In other words, a given
atom emits or absorbs only photons having well-defined frequencies.
This can be easily understood if one accepts the fact that the energy of
the atom is quantized. The emission or absorption of a photon is then
accompanied by a jump in the energy of the atom from one permitted
value (E;) to another (E(). Conservation of energy implies that the pho-
ton has a frequency v such that hv;y = |E; — Ef|. In 1923, de Broglie
presented the following hypothesis: Material particles, just like pho-
tons, can have a wavelike aspect. He then derived the Bohr-Sommerfeld
quantization rules as a consequence of this hypothesis. The various
permitted energy levels appeared analogous to the normal modes of a
vibrating string. The electron diffraction experiment by Davisson and
Germer in 1927 strikingly confirmed the existence of the wavelike as-
pect of matter by showing that interference patterns could be obtained
with material particles such as electrons. One therefore associates with
a material particle of an energy E and momentum p, a wave whose an-
gular frequency is = 27v and a wave vector k given by the same rela-
tions presented by the Planck-Einstein relations (E = Ao and p = 7k).
The corresponding wavelength is

2 h
A= — = — (1.19)
k| |p

The small value of & explains why the wavelike nature of matter is very
difficult to demonstrate on a macroscopic scale.

Example Consider a dust particle of diameterr = 1 um and massm = 10~15
kg. For such a particle of small mass and a speed of v = 1073 m/s, the
de Broglie wavelength is A = 6.6 x 10734/(10715 x 1073) = 6.6 x 107 m =
6.6 x 1078 A. This wavelength is negligible on the scale of the dust particle.
Let us now consider a thermal neutron (m, ~ 1.67 x 10~27 kg) of energy
1.5k T . Hence, %mnu2 = p2/(2mn), where kg = 1.38 x 10723 J/K. This gives
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A =h/(BmukpT)"5 ~ 1.4 A at T = 300 K. This wavelength is on the order of
the lattice constant in crystalline solid. A beam of thermal neutrons falling
on a crystal therefore gives rise to diffraction phenomena analogous to those
observed using x rays.

Example Let us now examine the de Broglie wavelengths associated with
electrons (m, ~ 0.9 x 10739 kg). If the electron is accelerated by a potential
difference V, then the electron kinetic energy is E = gV = 1.6 x 10°1°V
joules. Since E = p2/(2m,), then A = h/(2m.E)%5 = 12.3/(V )05 A, With a
potential difference of several hundred volts, one can obtain a wavelength
comparable to those of x rays. Thus, electron diffraction phenomena can be
observed in crystals or crystalline powders.

1.3 Wave Functions and the
Schroédinger Equation

By considering the de Broglie hypothesis, one can apply the wave prop-
erties for the case of photons to all material particles. Thus, for the clas-
sical concept of a trajectory, the time-varying state is substituted by the
quantum state characterized by a wave function v (r, t), which contains
all the information (in terms of space r and time ¢) that is possible to
obtain about the particle. The wave function v (r, ) can be thought of as
a probability amplitude of the particle’s presence. The measurements
of an arbitrary physical quantity must belong to a set of eigenvalues.
Each eigenvalue is associated with an eigenstate. The equation describ-
ing the evolution of the wave function v (r, ) remains to be written. The
wave equation can be introduced by using the Planck and de Broglie
relations to yield the fundamental equation known as the Schrodinger
equation. The form of this equation for a particle of mass m, which is
subject to the influence of a potential V (r, t), takes the following form:

2
ihilﬂ(r, t) = —h—AI/f(r, t)+ Vv, t)y(r, t) (1.20)
ot 2m

where A is the Laplacian operator given by A = 32/9x2+92/9y%>+98%/022.
This equation is linear and homogeneous in ¥ (r, ). Consequently, for
material particles, there exists a superposition principle.

When V(x, t) = 0, the Schrodinger equation is reduced to

'ha (r, t) = hZA( t) (1.21)
l El/fr, ——% I//I‘, .

which is the wave equation for a free particle. A solution of this equation
has the form

Y(r, t) = Aelkr—ot) (1.22)
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where A is a constant and the dispersion relation obtained by substi-
tuting Eq. (1.22) into (1.21) is

hk?
=— 1.2

om (1.23)
Equations (1.19) and (1.23) give the relation between energy E and
momentum p as E = p?/(2m), where p = hk.

The constant A in Eq. (1.22) can be obtained by normalization. Using
the wave function form given by Eq. (1.22), one can write

lw(r, Oy (r, t)| = |A?  where y*(r, ¢) = Ae i kT (1.24)

This equation tells us that a plane wave of this type represents a particle
whose probability of presence is uniform throughout all space.

The principle of superposition tells us that every linear combination
of plane waves satisfying the dispersion relation given by Eq. (1.23) will
also be a solution of Eq. (1.21). This superposition can be written as

U(r, t) = / g(k)elkr—ot) g3k (1.25)

(27-[)3/2

where d®k is the infinitesimal volume element in k-space and g(k)
can be complex but must be sufficiently regular to allow differentiation
inside the integral. A wave function such as Eq. (1.25) is called a three-
dimensional wave packet.

1.4 Wave Packet at a Given Time

In this section, we follow Cohen-Tannoudji formalism, but the subject
of packets has been discussed in almost every quantum mechanics text-
book. The reason for discussing the wave packet is to demonstrate the
duality concepts and show how the uncertainty principle is obtained.
For the sake of simplicity, we will discuss the case of a one-dimensional
wave packet where the wave function depends only on x and ¢ as

1 .
t) = —— k)e!kr—ot) gk 1.26
b m/g( e (1.26)
For t = 0 we have
Y(x, 0) = J% / g(k)e** dk (1.27a)

The Fourier transform of this equation can be obtained as

g(k) = «/%—n / W(x, 0)e " dx (1.27b)
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Figure 1.4 The shape of the function |g(k)| is plotted along with
the real parts of the three functions whose sum gives the func-
tion ¥ (x) of Eq. (1.28). The real part of ¥ (x) is also shown. The
dashed-line curve corresponds to the function [1 + cos(Akx/2)]
which represents the form of the wave packet.

Thus, g(k) is the Fourier transform of ¥ (r, 0). The wave packet is given
by the x-dependent wave function expressed in Eq. (1.27a). If |g(k)|
has the shape depicted in Fig. 1.4 and v(x), instead of having the form
shown in Eq. (1.27a), is composed of three plane waves with wave vec-
tors of k,, k, + Ak/2 and k, — Ak/2 and amplitudes proportional to 1,
%, and %, respectively, then one can write the new wave packet as

w(x) — g@ |:eik,)x + lei(kngk/Z)x + lei(ko+Ak/2)x:|

Ve 2 2
= é%eikﬂx [1 + cos<%kx>} (1.28)
T

From Fig. 1.4, |{(x)| is maximum at x = 0. This result is due to the fact
that when x is zero, the three waves are in phase and interfere construc-
tively as shown in the figure. As one moves away from the value x = 0,
the waves become more and more out of phase and |y (x)| decreases.
The interference becomes completely destructive when the phase shift
between e’k* and ek-+2k/2% i5 equal to +7 and |y (x)| =0 when x =
+ Ax /2. In other words, |¥(x)| =0 when cos(Ak Ax/4) = — 1. This leads
to the following equation:

Ak Ax = 4rx (1.29)
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This equation shows that the larger the width of |{(x)|, the smaller the
width of g(k). Equation (1.28), however, shows that | (x)| is periodic in
x and therefore has a series of maxima and minima. This arises from
the fact that 1/(x) is the superposition of a finite number of waves. For
a continuous superposition of an infinite number of waves as shown in
Eq. (1.27a), such a phenomenon does not exist and |y(x, 0)| can have
only one maxima.

Let us return to the general wave packet formula shown in Eq. (1.27a).
Its form results from an interference phenomenon. Let a(k) be the
argument of the function g(k), which yields

g(k) = |g(k)[el*® (1.30)

Assume that a(k) varies sufficiently smoothly within the interval [k, —
Ak/2, k, + Ak/2], where |g(k)| is appreciable. Hence, when Ak is small
enough, one can expand a(k) around k ~ k, such that a(k) ~ a(k,) +
(k — ko)da/dKk|k—x,, which enables us to rewrite Eq. (1.27a) in the
following form:

pilkoxtatk,)] 0 ‘
e, 0~ / g(k) ek =) g )¢ (1.31)
T

where x, = —[do/dKlx_k,. Equation (1.31) is very useful for studying
the variation of |/(x)| in terms of x. When |x — x,| is large as compared
to 1/(Ak), the wave function oscillates rapidly within the interval Ak
as shown in Fig. 1.5. On the other hand, when |x — x,| is small as
compared to 1/(Ak), the wave function oscillates only once as shown
in the figure. Thus, when x moves away from x,, |y (x)| decreases. The
decrease becomes appreciable if e!k~k)@—%) ggcillates approximately
once. That is when

AK (x —x,) ~ 1 (1.32)
If Ax is the approximate width of the wave packet, then one can write
Ak Ax > 1 (1.33)

This classical relation relates the widths of two functions that are
Fourier transforms of each other. The important fact is that the prod-
uct Ak Ax has a lower bound that depends on the precise definition of
each width. With the help of the relation Ap = 2 Ak, Eq. (1.33) can be
rewritten as

Ap Ax > h (1.34)

This relationship is called Heisenberg’s uncertainty principle.
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Figure 1.5 Variation of the wave function versus k. When |x —x,| >
1/AKk, we see several oscillations, but when |x —x,| < 1/Ak, we see
only one oscillation.

The same procedure can be repeated by assuming
Y(r, t) = Ae't (1.35)

to obtain a wave packet that is localized in time and frequency with
their widths being related by

Aw At ~ 1 (1.36)

With the aid of the relation AE =% Aw, the uncertainty principle
becomes

AE At >h (1.37)

The inequalities shown in Eqgs. (1.34) and (1.37) are introduced to show
that % is the lower limit. It is possible that one can construct wave
packets for which the products of the quantities in these equations are
larger than 7.

Let us consider the time evolution of the wave packet where it is
given in one dimension by Eq. (1.26). If ® has a simple dependence on
k (nondispersive media), that is, w = v,k, where v, is known as the
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phase velocity, then Eq. (1.26) becomes

Ylx, t) = gk — k,)e’k*~vt) gk (1.38)

=/
2w
This means that the wave packet moves with its center at x = v,¢ and
its shape is unchanged with time. If we have a dispersive media and
(k) is more complex, we can use Taylor’s expansion to write

13%w

d
oK) = o(k,) + 8—1“;|k=ka(k ~ ko) + 5 g e, (K= k) 4o (139)

Assuming w(k,) = w,, ?Tﬂk:ka = vy, and g%‘;ﬂk:ko = «a, the wave packet
takes the following form:

ikpr—wot) [ . . ,
Ylx, t) = - Vor g(k — k,)ellkko)—ut) =5 (k)% g (1.40)
T

—00

If « = 0, the wave packet would move with its peak centered at x =
Ugt, where vy = g_§|k=ko is known as the group velocity. If « is not zero,
then the wave packet will change. Let us assume that g(k — k,) has a
Gaussian form

sk -k, = o~ (k—ko)?/(20Kk?) (1.41)
then the wave packet becomes

pilkox—an)t 1 ,
ot [(k—Ko)(x—vgt)— 3(k—k,)%(at—i/Ak?)] dk (1.42)
V2

—00

Yix, t) =

Thus, the probability |y (r, ¢)|?> depends on space and time and can be
expressed in the following form:

2. 2
(AK)*(x — vgt) } (1.43)

B
2 _ = [ — N
Wi, OFF = 27 exp[ 1+ o2t2(Ak)*

where B is a constant that may depend on time. For simplicity, we
assume that B is time-independent. This is a Gaussian distribution
centered at x = ygt, and the mean width in real space is given by

a?t?

where §x(0) = 1/Ak. For short times such as «?¢?(Ak)* « 1, the width
does not change appreciably from its starting value, but as time passes,
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Figure 1.6 Plot of |y (x, )|, given by Eq. (1.43), as a function of time for different
values of x, where Ak = 4 and « = 0.314. It is clear that this probability spreads in
time and space.

the wave packet will start spreading for « # 0. As an example, we plot-
ted Eq. (1.43) as a function of time for different values of x, as shown in
Fig. 1.6. It is clear that this function is spread out as x increases for a
fixed value of «. The probability function presented in Fig. 1.6 spreads
even faster for larger values of @ and becomes localized (unchanged) for
a=0.

1.5 Separation of Variables

The wave function of a particle whose potential energy is time-
independent must satisfy the Schrodinger equation [Eq. (1.20)]. Con-
sider the following wave function:

Y(r, t) = @) x (@) (1.45)

Substituting Eq. (1.45) into Eq. (1.20), we obtain

2

ihw(r)ix(w = x(t) [—h—mp(r) + V(r, H)e(r)x(t) (1.46)
ot 2m




16 Chapter One

Dividing both sides by ¢(r)x(¢), we get

ih 9 2
()= —— |——A
x(t) th ) o(r) l 2m v(r)

This equation equates a function of ¢ only and a function of r only. This
equality is only possible if each of these functions is in fact a constant,
which is set to be Aw. Thus, the left-hand side takes the following form:

+Vi(r, t) (1.47)

ih%x(t) =hox(t)  where x(¢) = Ae ' (1.48)

Similarly, the right-hand side of Eq. (1.47) can be written as

2
[—hAcp(r) + V(r, t)o(r) = hop(r) (1.49)
2m

Finally, the wave function can be written as
Y(r, 1) = p(re (1.50)

where the prefactor Ain x(¢) is incorporated in ¢(r). The wave function
presented in Eq. (1.50) is the solution for the Schrodinger equation. The
time and space variables are said to have been separated. A wave func-
tion of the form (1.50) is called a stationary solution of the Schrodinger
equation. This is because it leads to a time-independent probability
density |y(r, t)|?> = |¢(r)|2. In a stationary function, only one angu-
lar frequency w appears. According to the Planck-Einstein relations, a
stationary state is a state with a well-defined energy E = Aw (energy
eigenvalue). Equation (1.49) can be rewritten as

2
[—hA + Vi(r, t)} o(r) = hoe(r) (1.51)
2m

or
Ho(r) = E¢(r) (1.52)

where H is the differential operator known as the Hamiltonian
operator:

2
H= —h—A—i-V(r, t) (1.53)
2m

The operator H is a linear operator, since if «; and ay are constants, we
have

Hlo191(r) + aopa(r)] = Hay91(r) + Hagpo(r) (1.54)
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Equation (1.41) is the eigenvalue equation of the linear operator H. As
we shall see in the following chapters, Eq. (1.41) has a solution only for
certain values of E. This is the origin of energy quantization.

1.6 Dirac Notation

Each quantum state of a particle is characterized by a state vector
belonging to an abstract space S, called the state space of the particle.
Any element or vector of S-space is called a ket vector or simply a ket,
which is represented by the symbol |). Inside this ket we can place a
quantity, which distinguishes it from all others, for example, |¥). Also
we can define a bra vector with every ket |y) € S, which is denoted
(¥| € S*, where S* is the complex conjugate of S. The origin of this
terminology is based on the word bracket used to denote the symbol
(I}, hence the name bra for the left-hand side and the name ket for the
right-hand side of this symbol. Thus, the notation {¢|y) is identical to
the familiar wave mechanics expression

+00

(oly) = / ooy (x) da (1.55)

—00

The bra and ket satisfy the scalar products defined as

(i) = (o), 1¥)) (1.56a)
()" = (Vlo) (1.56b)

The product of two linear operators A and B is defined as (AB) |¢) =
A(B|y)). In general AB # BA. The commutator [A, B] is by definition
given as [A, Bl = AB — BA. Now let |¢) and |¢) be two kets; we de-
fine (p|A|¥) as the matrix element of A. Now assume that |¢) and |y)
are written in opposite order: |¢)(y|. This is actually an operator since
applying it to an arbitrary ket |x) yields |¢){(y|x) = a|¢), where « is a
real constant. Thus, applying |¢)(¥| to an arbitrary ket gives another
ket, which is the definition of an operator.

The order of symbols is very important in Dirac notation. The follow-
ing discussion is focused on the properties of bra and ket functions. If A
is a complex number and |/) is a ket, then A|y) is a ket, which can be
presented as

M) = |Ay) (1.57)
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One then must remember that (L/| = A*(y| is the bra associated with
the ket |Ay). Additionally,

(plr1r1 + Aotre) = A1 (p|¥1) + Ao (pl¥2) (1.58)
(M1 + Aapolyr) = Ailp1ly) + A5lpal¥) (1.59)

_[A ifly) #0 B iy
(Vly) = { 0 if [y} = 0 A = real positive number (1.60)

In Dirac notation, the wave function can be written as

¥) =Y Cilw) (1.61)

where {|u;)} is a discrete set for the basis of the ket |y).

1.7 Important Postulates

The discussion in this section is developed to help in answering the
following questions. How can the state of a quantum system at a given
time be described mathematically? Given this state, how can one predict
the results of the measurements of various physical quantities? How
can the state of the system at an arbitrary time ¢ be found when the
state at time ¢, is known?

First postulate. At a fixed time £, the state of a physical system is
defined by specifying a ket |y(¢,)) belonging to the state space S.
This postulate implies that a linear combination of state vectors is
a state vector. It should be emphasized here that the ket is not a
statistical mixture of states.

Second postulate. Every measurable physical quantity is described by
an operator in S-space. This operator is an observable. Unlike clas-
sical mechanics, quantum mechanics describes, in a fundamentally
different manner, a system and the associated physical quantities:
A state is represented by a vector and a physical quantity by an
operator.

Third postulate. The only possible result of the measurement of a
physical quantity is one of the eigenvalues of the corresponding
observable.

Fourth postulate. When a physical quantity is measured for a system
in the normalized state |y), the probability P of obtaining a non-
degenerate eigenvalue of the corresponding observable is

P = [(un|v)|? (1.62)
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where |u,) is the normalized eigenvector of the observable associ-
ated with the eigenvalue. If the eigenvalues are degenerate, several
orthonormal eigenvectors |u,) correspond to them. The probability
then can be rewritten as

&n

P=>"|{uny) (1.63)

i=1

where g, is the degree of degeneracy. However, for continuous nonde-
generate systems the probability of obtaining a result between o and
a + da is equal to

dP = |[(vl¥)|* da (1.64)

where |u,,) is the eigenvector corresponding to the eigenvalue « of the
observable associated with the physical quantity.

Fifth postulate. If the measurement of a physical quantity of a system
in the state |) gives the result a,,, the state of the system immediately
after the measurement is the normalized projection P, |v)/ /(v | Py|¥r)
of |¢) onto the eigensubspace associated with a,.

Sixth postulate. The time evolution of the state vector |y (¢)) is gov-
erned by the Schrodinger equation:

ih%ll/f(t)) — HO)[y(1)) (1.65)

where H(¢) is the observable associated with the total energy of the
system and, as stated before, is called the Hamiltonian operator of
the system.

1.8 Important Mathematical Tools

This section is intended to provide the needed basic mathematical tools
used in quantum mechanics without going through the rigorous proofs
that are required by mathematicians. Let us first introduce the terms
wave function space F and the state space £. The wave function intro-
duced earlier belongs to F, and the state vector belongs to £. F satisfies
all criteria of a vector space.

1.8.1 The scalar product

For each pair of elements of F, |¢p) and |¥), we associate a complex
number denoted (|¢), |¥)), which by definition is equal to (¢|y) = (|g),
|¥)) [see Eq. (1.56a)]. The quantity (¢|y) always converges so long as
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both wave functions belong to 7. Based on this definition we have

{ply)) = ((P]e))*
(@I + Agyrn) = Mpl¥)) + Ae({@|¥e)) Called linear (1.66)
(A191 + Ae@a|¥) = AT {@lY) + A5 {|Y) Called antilinear

If (p|y¥) = 0, then |¢) and |/) are said to be orthogonal. Furthermore,
lp) and |¥) must satisfy Eq. (1.60).

1.8.2 Linear operators

Equation (1.57) is a simple definition of a linear operator. Let A and B
be two linear operators. Their product is defined as

(AB)|y) = A(B|y)) (1.67)

B is first to operate on |y), and then A operates on the new product.
In general AB # BA. We call the commutator of A and B the operator
[A, B] defined as [A, B] = AB — BA. An example is the operator X and
d/0x that are operating on an arbitrary function |y).

Pl 0 d
{X, 5} ly) = <X£ - £X> 1¥)
9 3 0 d
=XV — - X1Y) = X y) — —(X|y)

9 9
= X@Il/f) =) —Xﬁll/ﬂ
= —|¥) (1.68a)
Thus

[X, i} _ 1 (1.68b)

Example

(a) Show that [A, B] = —[B, A].

(b) Expand [A, (B + C)].

(c) Expand [A, BC].

(d) Show that [X, Pyl = i%, where Py = 2.2,
Solution

(a) [A,Bl=AB-BA=—-(BA-AB)=-[B,A]

(b) [A,(B+C)]=AB+C)—(B+C)A=AB+AC-BA-CA=AB-
BA+AC-CA=[A, B] +[A, Cl.
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(c) [A, BC] = ABC — BCA. Adding BAC and subtracting BAC, we get
ABC — BCA + BAC — BAC = ABC - BAC + BAC - BCA = [A, BIC +
BIA, Cl.

d
(d) (ol[X, Pxlly) = (p|[XPx — PxX]|¢) = x(¢|Px|¥) — 7E(¢IXIK//)
h o
= x(p|Px|y) — — —(x{pl¥)
1 0x
0 h
= x(¢|Px|{) —x——(ol¥) — —(pl¥)
1 0x 14
h 0 h o h .
=x——(plY) —x——(ol¥) — = (pl¥) = ih{ply¥)
1 0x 1 0x 1
Then
[X, Px]l =ik
Similarly
R;, Pl —ihs,; wheres; —{ = =7
b L= TR0 WREre %ij = 0 fori # j

1.8.3 Action of a linear operator on a bra

Let (¢| be a well-defined bra, and consider the set of all kets |). With
each of these kets can be associated the complex number (p|A|v), which
is defined as the matrix element of A between (¢| and |y). Since A is
linear and the scalar product depends linearly on the ket, the matrix
element depends linearly on |). Thus, for fixed (¢| and A, we can asso-
ciate with every ket |¢/) a number that depends on | ). The specification
of {¢| and A therefore defines a new linear function, that is, a new bra
belonging to the conjugate state space £*. The new bra is denoted (p|A.
The relation that can define (¢|A can be written as

(plA)Y) = (pl(AlY)) (1.69)

This equation defines the linear operation on bras.

1.8.4 The adjoint operator Af of a linear
operator A

For every linear operator A, there is another linear operator A, called
the adjoint operator or Hermitian conjugate. This could be clearly
understood by examining Fig. 1.7. According to this figure, A is a linear
operator defined by the formula

[y = Aly) & (¥ = (y]AT (1.70)
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) - > y)=aly)
| |
w : W=lu] &

Figure 1.7 Definition of the adjoint operator At of an operator A
using the correspondence between kets and bras.

An operator A is a Hermitian ifit is equal to its adjoint, that is, if A = AT,
and the product of two Hermitian operators A and B is Hermitian if
and only if [A, B] = 0. Another important quantity is the trace of an
operator. Tr A is the trace of operator A, and it is defined as the sum
of the diagonal matrix elements of A. Thus, Tr A = >_ . (u;|Alu;). Tr
A is invariant and Tr AB = Tr BA. Also, Tr ABC = Tr BCA = Tr
CAB.

1.8.5 Eigenvalues and eigenfunctions
of an operator

The ket |1/) is said to be an eigenvector or eigenket of the linear operator
Aif

Aly) = Aly) (1.71)

where A is a complex number. This equation is called the eigenvalue
equation of the linear operator A. In general, this equation has a solu-
tion only when A takes on certain values called eigenvalues. The set of
the eigenvalues are called the spectrum of A. If |) is an eigenvector
for A, then «|y) is also an eigenvector, where « is an arbitrary complex
number.

Ala|y) = aAly) = arly) = Maly)) (1.72)

To get rid of «, the eigenvectors are usually normalized to 1:

(W) =1 (1.73)

The eigenvalue A is called nondegenerate when its corresponding eigen-
vector is unique to within a constant factor, that is, when all its associ-
ated eigenkets are collinear. On the other hand, if there exists at least
two linearly independent kets that are eigenvectors of A with the same
eigenvalue, this eigenvalue is said to be degenerate.
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To find the eigenvalues and eigenvectors of an operator, we shall
consider the case where the state space is of a finite dimension. If {|u;)}
is the base for all the state vectors in the state space and if we project
Eq. (1.71) on the basis vector |u;), we obtain

(Wil AlY) = Muil¥) (1.74)

Inserting what is called a closure relation, Jlujiul=1 between A
and |y), we obtain

D (wilAlu ) uj 1) = Muily) (1.75)

J

With the aid of the following relations

(uily) =C; (1.76)
(uilAluj) = Ajj (1.77)

we can rewrite Eq. (1.74) as

> (wilAluj)(ujly) =1Ci or Y [A;; —A8;1C; =0 (1.78)

J J

This equation can be considered to be a system of equations where
the unknowns are C;, which are the components of the eigenvector
in the chosen representation. This system is linear and homogeneous.
It is composed of N equations (j = 1,2,3,..., N) with N unknowns
(C;). It has a nontrivial solution if and only if the determinant of the
coefficients is zero (the trivial solution is C; = 0). This condition can be
written as

Det [A—AI] =0 (1.79)

where Ais an N x N matrix of A;; elements and I is the unit matrix.
This equation is called the characteristic equation, or secular equa-
tion, and enables us to determine all the eigenvalues of the opera-
tor A. The spectrum of the operator can be written in the following
form:

A —1 Ap Az -+ A
Aoy Aoy — 2 Ags - Aoy

. . . . =0 (1.80)
Ani Apna Ays -+ Any — X

This is the Nth-order equation in A; consequently, it has N roots
(real or imaginary). This characteristic equation is independent of the
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6(8)(36)
A
» X
Figure 1.8 The §-function: a
—&2 +&2 square function of width ¢ and
6(5)(x) — s for —&2<x <ie/? height 1/¢ centered at x = 0.
=0 for [x|>¢/2

representation chosen; therefore, the eigenvalues of an operator are the
roots of its characteristic equation.

The eigenvectors are then determined by choosing an eigenvalue A,,
which is a solution of the characteristic equation. Then look for the
corresponding eigenvector.

1.8.6 The Dirac §-function

The §-function is a distribution, but it is usually treated as an ordinary
function. Consider a §-function as shown in Fig. 1.8 with a width of ¢
and a height of 1/¢. By definition we have

+00

/ 5(x)dx = 1 (1.81)

—00

Let us evaluate the following integral, where f(x) is an arbitrary func-
tion. fj;o 8@ (x) f(x)dx. If ¢ is sufficiently small, the variation of f(x)
over the effective interval [—¢/2 + £/2] is negligible and f(x) remains
practically equal to f(0); therefore,

+00 +00
/ 8@ (x) f(x)dx ~ £(0) / 8 (x)dx = £(0) (1.82)

The smaller ¢ is, the better the approximation, and for the limit ¢ = 0,
we define the §-function as

f(0) for 0 € [a, b]

b
/S(x)f(x)dx = {O for 0 ¢ [a, b] (1.83)
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For a more general form of §(x — x,), we have

+00

/ 8(x —x,) f(x)dx = f(x,) (1.84)

—00

Other properties of the §-function are

8(—x) = §(x) (1.85a)
S(cx) = %'a(x) (1.85b)

1
HEGIESY W5(x —xj) (1.85¢)

Jo| T
x8(x — x,) = x,8(x — x,) (1.85d)
g(x)8(x — x,) = g(x,)8(x — x,) (1.85¢)

+00

/ 8x —y)8(x —2)dx = 8(y — 2) (1.85f)

The Fourier transform §,,(p) of §(x — x,) is

+0o0
_ 1 . 1 .
8, (P) = —= / dx P/ §(x — x,) = ———e'P*/h (1.86a)
P V2ernh Venh

and
- 1 .
8, (p) = = Fourier transform of §(x) (1.86b)
21 h
The inverse Fourier transform is
1 +00 1 +00
_ - ip(x—x)/h _ _— ip(x—x,) 1.
3(x — %) o7 / dpe o / dke (1.87)
Additionally, §(x) is a derivative of a unit step function 0(x), i.e.,
d
—0(x) = 8(x) (1.88a)
dx

and

_ 1 f )
o= / 59(y) dy (1.88b)
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Other properties of §(x) include the following:

—+00 400

/ §'(x) f(x)dx = — / 8(x) f(x)dx = —f'(0) (1.89)

and
§'(—x) = =8 (x) (1.90a)
x8'(x) = =8(x) (1.9056)

where the prime indicates the first derivative and Eq. (1.87) allows us
to write

A +00
§5'(x) = i / kd he'P ) (1.91)

The nth-order derivative (n) can be defined in the same way:

+00

/ 8™ (x) f(x) dx = (—1)" £™(0) (1.92)

Equation (1.90) can then be generalized to the following:

8P (—x) = (=1)"8™(x) (1.93a)
18 (x) = —nd"V(x) (1.93d)

The §-function is very useful in quantum mechanics as we will see in
subsequent chapters.

1.8.7 Fourier series and Fourier transform
in quantum mechanics

In this section we will review a few definitions that are important in
quantum mechanics. A function f(x) is said to be periodic if there exists
areal nonzero number L such that for all x: f(x+ L) = f(x), where L is
called the period of the function. If f(x) is periodic with a period L, then
all numbers nL, where n is an integer, are also periods of f(x). Another
important example of periodic functions is the periodic exponential. For
an exponential e*/ to have a period L, it is necessary to have e*l = 1,
that is, L = i2nm, where n is an integer. Thus, if f(x) is a periodic
function with a fundamental period of L, one can expand this function
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in the following form, known as the Fourier series:

27

flx) = Z ¢, et withk, = n—r (1.94)

The coefficients ¢, are given by the following formula:

xo+L

cnzé / dx e H*n* £ (x) (1.95)

Xo

where x, is an arbitrary number. The coefficients c, are called the
Fourier spectrum of f(x). Another useful relation, known as the Bessel-
Parseval relation, is

xo+L
1 o0
i | e = 3 el (1.96)
Now assume that we have two functions, g(x) and f(x) with the same

period and having Fourier coefficients d,, and c,, respectively. We can
generalize Eq. (1.96) according to the following relation:

Xo+L 00

1
7 / dx f(x)g(x) = Y cndy (1.97)

X, n=—0oo

If ¥ (x) is a one-dimensional wave function, its Fourier transform v(p)
is defined as

J(p) = J% / dxe 75/ () (1.98)
JT
and the inverse formula is
1 ji ipx/h.T
T

Another useful relationship in quantum mechanics is the Parseval-
Plancherel formula, which has the following general form:

o] oo

/w*(x)lﬁ(x)dxz /@*(p)l/_f(p)dp (1.100)

—00 —00
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1.9 Variational Method

There are several well-known approximations used to solve quantum
mechanical problems. One approximation is the variational method,
which has numerous applications in solid-state physics where the exact
solution requires extensive computational analysis. Let us consider
a nondegenerate arbitrary physical system with a time-independent
Hamiltonian H. The general solution of the Schrodinger equation can
be written as

Hlp,) = Enlon) (1.101)

where E, are the discrete eigenvalues for n = 0,1,2,... While the
Hamiltonian is known, the eigenvalues are not necessarily known. In
this case, the variational method can be used to obtain an approxi-
mate expression for the eigenvalues. This method is very useful for
cases where H cannot be exactly diagonalized. To proceed, let us choose
an arbitrary ket where the mean value of the Hamiltonian can be ex-
pressed as

(Y H|y)

H)=———=>

> E, (1.102)
(ly)

where E, is the ground-state eigenvalue, and the inequality is valid
if |¢) is the eigenvector of H with an eigenvalue of E,. Without going
through the derivation, we simply state the final result as

Hly) = (H)|y) (1.103)

This method can be generalized and applied to the approximate
determination of the eigenvalues of the Hamiltonian. Equation (1.103)
tells us that if the function (H)(«) obtained from the trial kets |/(«))
has several extrema, the extrema give the approximate values of the
function’s energies E,,.

As an example, let us find the first energy level of the simple harmonic
oscillator with the following Hamiltonian:

(1.104)

and the following trial function

Y(x) = e where o > 0 (1.105)
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The objective here is to evaluate (v |H|v) and (y|¥), which are

2
1
(v H|y) = \/g lzh—malﬂ + gmwza‘3/2

and (1.106)

W) =/ o=

"V 20

Divide the two expressions to obtain
h? 1

H)(a) = ~—a + —mao?a™? (1.107)

2m 8

We assume at the beginning that the wave function has extrema such
that the derivative of Eq. (1.107) is zero. This yields « = mw/(2h), which
can be substituted back into Eq. (1.107) to give (H)(«) = %hw This is
exactly the ground-state energy obtained from the exact solution (see
Chap. 2).

1.10 Perturbation

Simple physical systems such as simple harmonic oscillators and
hydrogen atoms can be solved exactly where the Hamiltonian is sim-
ple enough to generate exact eigenvalues. In general, the Hamiltonian
is very complicated for most systems, such as many electron atoms,
semiconductor heterostructures, multiple quantum wells, and quan-
tum dots. Solving the Schrodinger equation for such complicated sys-
tems is difficult, and therefore one needs to make several approxima-
tions to reach a reasonable answer. One of these approximations is the
perturbation theory. In this section we will treat the time-independent
perturbation (stationary) approximation, which is widely used in many
systems such as solid-state physics. To understand this approximation,
one needs to define a physical system and isolate the main effects that
are responsible for the main features of the system. Once these features
are understood, then the finer details could be discussed by considering
the less important effects that were neglected in the first approxima-
tion. Treating these secondary effects can be performed using the per-
turbation theory. Thus, the Hamiltonian of the system can be presented
in the following form:

H=H,+ H; (1.108)

where H, is the unperturbed Hamiltonian with known eigenvectors and
eigenvalues, and H; is the perturbation that describes the secondary
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effects in the system. The problem now is to find the modification of
the eigenvalues produced by adding H;. The matrix elements of H; are
assumed to be much smaller that those of H,. Let us now define a very
small real number A <« 1 such as

H;, = \H, (1.109)

where H 1 is an operator whose matrix elements are comparable to those
of H,. Perturbation theory deals with expanding the eigenvalues and
eigenvectors of H in terms of powers of A with a finite number of terms.
Let us assume that the discrete eigenvalues (E?) and eigenvectors
(l¢.)) are known for H,. The subscript u indicates the unperturbed
terms, and the superscript i is added in cases where we have degenerate
states. For the first approximation (unperturbed system) we have

H,|¢}) = E2|¢.) (1.110)

where the set of vectors |¢)) forms an orthogonal basis such that
(@L19%) = 818y and 3, 37 194 ) (¢} | = 1. Now we can consider the sys-
tem Hamiltonian that depends on the parameter A by substituting
Eq. (1.109) into (1.108):

H(\) =H,+1H; (1.111)

For A = 0 we have only the unperturbed Hamiltonian and the eigenval-
ues of H()) that depend on X. To find the approximate solution of the
Schrodinger equation, one needs to find E()1) and |y (L)) of H(A):

HM)ly ) = EMW)Iy (1) (1.112)

Let us assume that £ (1) and |/(1)) can be expanded in powers of A such
as

E(\) =E,+*E1+22Eg +---+ \"E, (1.113a)
and
[¥(R) = |0) + A1) + A2|2) + - - - + A"|n) (1.113b)
Substituting these expansions into Eq. (1.112), we obtain
(Hy+1H1) Y 2"y => 2"En > 2'n) (1.114)

From this equation we obtain the following relations. For the zeroth
order of A we have

H0|0) = Eo|0> (1115)
For the first order we have

(H,—E,)1)+(H; —E|0) =0 (1.116)
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For the second order we have

(H, — E,)I2) + (Hy — E1)|1) — E2|0) =0 (1.117)
and so on.
From the orthogonal property we have for the zeroth order
010y =1 (1.118)

For the first order we have
(YWY (L) = (0]0) + A[(1]0) 4 (0]1)] + O(1?) (1.119)

where O()\2) is a term of the second order. Since A is a real number, then
(1]0) = (0|1) = 0. Similarly, one can find from the second order in A that

(210) = (0]12) = —%(1|1) (1.120)

Let us consider the modification to the unperturbed E¢ defined in
Eq. (1.106). Consider first the zeroth perturbation for A — 0. By com-
paring Egs. (1.110) and (1.115), we have E, = E?, and |0) = |¢,). This
simple result demonstrates how to obtain the eigenvalues and eigen-
vectors of the H,. For the first-order correction, we need to determine E4
and |1) from Eq. (1.116). Let us project Eq. (1.116) onto the eigenvector
|@n) to obtain

(@nl(Hy — E,)|1) + (¢ul(H1 — E1)|0) = 0 (1.121)

By letting H, operate on the bra (¢,|, we find that the first term in this
equation is zero since |0) = |¢,). Hence, Eq. (1.121) is reduced to

E1 = (p,|H1(0) (1.122)
Substituting Eq. (1.122) into (1.113a), we have
E,(3) = EJ + Mga H110) + 00.2)
= E{ + (¢a| H110) + O(1?) (1.123)

Thus, the first-order correction to the unperturbed eigenvalue is the
mean value of the perturbed term Hj.

For the eigenvector correction, let us project Eq. (1.116) onto the
eigenvectors |g0§,) # |@,) to obtain

(¢ |(H, — Eo)I1) + (¢h|(H1 — EDlg,) = 0 (1.124)

Recall that |0) = |¢,), the index p is different than n, and i is the de-
generacy index. Since the eigenvectors of H, associated with different
eigenvalues are orthogonal, then E1(¢,|¢,) = 0. Recall that E, = E},
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and let H, act on the bra (<p§3| to give EY . Equation (1.124) can then be
written as

(ES — E9){(¢h11) + (¢, | H1lgn) = 0 (1.125)

This equation gives the coefficients of the desired expansion of the eigen-
vector |1) on all the unperturbed basis states except |¢,):

; 1,
(l1) = g~ g (bl Halen) P #n (1.126)

The last coefficient (¢,|1) = 0 according to Eq. (1.119). Finally, the eigen-
vector |1) can be written as

Hilg,
ZZ (pp| 1|‘p ’p> (1.127)

p#n i

Consequently, the eigenvector |y,(1)) has the following form:

Hilgy
W) = lend + 3>~ ‘p”' 1"">y o)+ 002) (1.128)

p#n i

For the second-order perturbation theory, the energy correction is
obtained by projecting Eq. (1.117) onto the vector |¢,):

(0al(Hy — Ep|2) + (@nl(H1 — ED|1) — (9, E2|0) = 0 (1.129)

By letting H, operate on the bra (¢,| and knowing that E, = E?, the
first term is zero. The E; term is also zero since (¢,|1) = 0, and hence
Eq. (1.129) is reduced to

Es = (gu|H1|1) (1.130)

By substituting the expression of |1) as shown in Eq. (1.127) into (1.130),
the second-order corrections to the eigenvalue can be written as

Hilg,
Ey— ZZ'W 1"”’ (1.131)

p#n i p

The final expression for E,(i) to the second-order perturbation takes
the following form:

Hilgn
E,() = Eg + Mgl B1]0) + 22 ) 3 2L wp' 1"” + 003

p#n i p

Hilpn
+on H1l0) + > —F *0‘" 1'*” +0(3) (1.132)

p#n i P
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For the eigenvector |,(1)) corrections, one can project Eq. (1.129) onto
|¢},) to obtain the following result:

Hilp,) .
[0} = lgn) + 3737 R ‘”P' 1"” 1

p#n i

Hilon .
+3 3 (¢p| 150)2 i)+ 003 (1133)
p#n i

For additional details on the perturbation of the degenerate states, see
for example Merzbacher and Cohen-Tannoudji et al.

1.11 Angular Momentum

Angular momentum is a very important problem in many fields includ-
ing semiconductor materials. One may encounter angular momentum
when dealing with doping in semiconductors, solving the Schrodinger
equation for semiconductor energy bands, and in many other cases. In
this section, we will present the most important properties of angular
momentum without going through derivations. In dealing with angu-
lar momentum, one needs to distinguish between the spin, the orbital
angular momentum, and the total angular momentum. For the orbital
angular momentum of a spinless particle, we have three observables L,,
L,, and L, that are the components of the orbital angular momentum
operator L. The three components can be written as

L,=YP,—ZP,
L, =ZP, — XP, (1.134)
L.=XP,—YP,

where X, Y, and Z are the position observables and P,, P,, and P, are
the momentum observables. It was shown in Sec. 1.8.2 that
X, P,] = [Y,P,] = [Z, P,] = ih. Using this relation, we can write

[Ly, L] = ihL,
Ly, L] = ihL, (1.135)
(L., L] = ik L,

Similarly, the components of the total angular momentum J can be
expressed as

[Jx’ Jy] = thz
[Jy, J.] =ihd, (1.136)
[]., J.] = ihd,
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It can be shown that [J2, J] = 0. It is customary to use the following
raising and lowering operators:

Ji=dJ, k£ J, (1.137)

The eigenvalues of J 2 usually take the form j(j + 1)A where j > 0.
It can be shown that for orthogonal wave vectors |k, j, m), the corre-
sponding eigenvalues are

J:lk, j, m) = mhlk, j, m)

. — , (1.138)
Jilk, j,m)=hVj(G+ 1D —mm=EDEk, j, m+1)

where m is the quantum number that indicates the projections of the
angular momentum on the z axis. The addition of two angular momenta
or spin-orbit coupling are usually discussed thoroughly in quantum
mechanics textbooks. We may revisit the spin-orbit coupling when deal-
ing with quantization of energy levels in heterostructures and quantum
wells.

Summary

In this chapter we reviewed the basic concepts of quantum mechan-
ics needed for the analysis of bulk and low-dimensional semiconduc-
tor systems. Several examples, such as blackbody radiation, specific
heat capacity of solids, and photoelectric effects, showing the limitation
of classical mechanics were presented. The concept of duality and the
de Broglie relation were briefly discussed. The Schrodinger equation
and the concept of wave functions were presented, from which a spec-
trum of energy levels can be obtained. The concept of energy quantiza-
tion, probabilities, wave packets, the Heisenberg uncertainty principle,
Dirac notations, and the most important postulates of quantum
mechanics were discussed. Quantum mechanics models and theories re-
quire the knowledge of mathematical tools. Thus, we briefly discussed
the separation of variables, scalar product, linear operators, adjoint
operators, eigenfunction operators, the Dirac §-function, and the Fourier
transform. There are several approximations in quantum mechanics
that one needs to understand at early stages. The variational method
and perturbation are among them. These two approximations are
encountered in many quantum mechanical treatments of solids in
general and of semiconductors in particular. The derivation of the first-
and second-order perturbations is presented toward the end of the
chapter. Finally, the most important properties of the angular momen-
tum were discussed briefly at the end of this chapter.
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Problems

1.1 Show that the total internal energy per oscillator for a system of 3N os-
cillators is U = kT. Start with the Dulong and Petit model.

1.2 Derive Einstein’s expression for the specific heat capacity of a solid given
by Eq. (1.8).

1.3 The work function of a material is the minimum energy required to
remove an electron from the surface of the material. Calculate the maximum
wavelength of light for the photoelectric emission from gold (¢, = 4.90 V) and
cesium (¢, = 1.90 V).

1.4 Use the uncertainty relation to evaluate the ground state of the hydrogen
atom.

1.5 Calculate the de Broglie wavelength for (a) an electron with a kinetic en-
ergy of 104 eV, (b) a proton of kinetic energy of 102 eV, and (¢) a (150 kg) man
running at a speed of 0.25 m/s.

1.6 Starting from Eq. (1.35), write the Fourier transform of this wave function
in terms of g(w). Then assume that g(w) = |g(w)[e’?®). Derive the uncertainty
principle presented in Eq. (1.37).

1.7 Show that Ap Ax ~ AE At.

1.8 If |¢) can be normalized to unity and assuming that an operator A =
) (¥], show that A% = A.

1.9 Assume that [X, P] = ih. Show that [X, P2] = 2iA P, and then show that
[X, P"] = ihnP™ L,

1.10 Care must be taken when working with operators. The order of the opera-
torsis very important. Assume that A and B are operators that do not commute.
Show that eAeB, eBeA and eA*B are not equal.

1.11 Aseries oflines in hydrogen correspond to transitions to a final state char-
acterized by some quantum number n. If the wavelength of the
radiation giving rise to the first line is 657 nm, what are the wavelengths cor-
responding to the next two lines? Assume that An = 1.

1.12 Show that the integration of a §-function is a step function.

1.13 Derive the expression of the Fourier transform function shown in
Eq. (1.97).

1

114 IfA= (0

0 . . . .
1) write an expression for eA in matrix form.
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1.15 Show that Zj |uj)(uj| = 1. This is called the closure relation.

1.16 Find the Fourier transform of the following functions:

(a)
&(x):{; for -9 <x<§
0 for |x| > §
(b)
) = {e“” forx > 0
0 forx <0
(c)

W(x) = e_xz/az

1.17 Show that the second-order perturbation Schrodinger equation is given
by Eq. (1.117). Project this equation onto the wave vectors |¢,) to obtain the
final expression E,(1) to the second order as shown in Eq. (1.132).

1.18 Use the following trial function ¥ (x) = (x2 + @), where a is a positive
number, to calculate (H) for a simple harmonic oscillator as described in the
variational method approach.



Chapter

Potential Barriers and Wells

This chapter deals with particles in time-independent potential barri-
ers and wells. The quantum effects such as transmission through bar-
riers (tunneling) and energy quantization should increase when the
potential barrier varies over a distance shorter than the wavelength of
the quantum particle (either photon or electron). The time-independent
Schrodinger equation with an arbitrary potential was discussed briefly
in Sec. 1.5. In order to distinguish between the various possible val-
ues of the energy and the corresponding eigenfunctions, we label them
with a quantum number »n such that the Schrodinger equation can be
written as

and the stationary state of the particle has a wave function with the
form

Un(r, t) = @,(r)e Ent/R (2.2)

where v,,(r, ¢) is a solution to the Schrodinger equation [Eq. (2.1)]. The
exponential e *Ext/" is factored out in the Schrodinger equation, and
Eq. (2.2) is still called a time-independent wave function. Since Eq. (2.1)
is linear, it has other solutions of the form

Y(r,t) =Y Copn(r)e Frt/h (2.3)

where C,, are arbitrary complex numbers. In this chapter, we consider
only one-dimensional systems where the potentials are presented
by functions that make discontinuities along the x coordinate. These
functions may or may not represent real physical potentials, but we
shall use them for illustration on how to obtain the eigenvalues and
eigenfunctions.

37
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V)
A
Vo
1 11 Figure 2.1 Step potential where
V(x) = 0 for x < 0 (region I) and
V(x) =V, for X > 0 (region II).
> X
0

2.1 Stationary States of a Particle in a
Potential Step

Consider the potential step shown in Fig. 2.1 and consider that a particle
with a mass m is traveling from left to right with an energy E > V,,
where V, is the height of the potential step. The Schrodinger equation
for this potential can be written as

h? d?
— 5259 + V(@)g(x) = Eg(x) (2.4)

which can be rearranged in the following form:
2

d 2
T + ;TZL(E —V)e(x) =0 2.5)

The solution for Eq. (2.5) has the form of Eq. (2.3) in both region I (x < 0)
and region II (x > 0). Let us introduce the following positive numbers,
known as propagation vectors, k1 and ko, such that

2m(E) 2 2m(E —-V,)

ki = 2 forregionl and k; 2 for region II

(2.6)
Thus, the solutions of Eq. (2.5) for both regions can be expressed as

or(x) = Aeth1r | Beikix (2.7a)
pri(x) = Ce'*>* 4 De th2* (2.7b)

where A, B, C, and D are complex constants and are equivalent to the
constants C,, shown in Eq. (2.3). In quantum mechanics, the wave func-
tions in both regions must be matched. This requires the introduction
of boundary conditions, which are stated as follows:

1. The wave functions at the boundaries must be continuous. Thus
e1(x = 0) = gri(x = 0).
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2. The first derivative of both wave functions must also be continuous,
that is, Loi(x = 0) = Lonlx = 0), or j(x = 0) = ¢j;(x = 0), where
the prime stands for the first derivative.

By applying these boundary conditions to Eq. (2.7), we obtain

A+B=C+D ©2.8)
ik1A —ik1B = ikoC —ikoD '
Thus, the boundary conditions produces two equations with four un-
knowns. If we assume that the particle is coming from x = —oo, then
we can choose D = 0or A+ B = D and k1A — k1B = kyC. Even with
this simplification, we can only determine the ratios B/A and C/A,
which are shown as

B _hi-k . C_ 2
A_k1+k2 A_k1+k2

(2.9)

Thus far we have ¢;(x) composed of two waves or two parts; one rep-
resents the particle coming from x = —o0, and the other represents
the particle as being reflected from the potential step. Since we have
chosen D = 0, gr1(x) is composed of only one wave representing the
particle as being transmitted above the potential step with an energy
E >V,

The concepts of transmissions and reflections of particles based on
the ratios shown in Eq. (2.9) can be understood in terms of a prob-
ability current, which can be discussed as follows. Let us consider a
system composed of only a single spinless particle with a normalized
wave function of (r,#). A quantity known as a probability density is
defined as the probability dp(r, ¢) of finding the particle at time ¢ in
an infinitesimal volume d®r located at the point r in the system and is
defined as

dp(r,t) = p(r, t)d?r (2.10)
where
o(r,t) = |Y(r, t)? (2.11)

The probability density is analogous to an isolated physical system with
avolume charge density distribution in space of p(r, ¢). The total charge
in this case is conserved over time. But the spatial charge distribution
may vary within the system, giving rise to electric currents. More pre-
cisely, the variation of the charge, d®, during a time interval d¢ con-
tained within the volume V is given by —Idt, where I is the current.
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The current density J(r, ¢) according to the classical vector analysis can
be written as
ad
at
The objective here is to show that it is possible to find J(r, ¢), known
as the probability current, which satisfies an equation identical to

Eq. (2.12). Let us first assume that the particle under study is subject
to a potential V (r, ¢), and thus the Hamiltonian of the particle is

or,t) +divd(r,t) =0 (2.12)

p?
H=_—+V(r?) (2.13)

2m
The corresponding Schrodinger equation is
0 h?
h—y(r,t) = ———Ay(r,t) + V(x,t)y(r, t) (2.14)
ot 2m
and the complex conjugate equation is
L0 R .
ih—y*(r, t) = —— Ay (r,8) + V (x, )y *(r, £) (2.15)
ot 2m

where V(r,?#) is real and H is Hermitian. Multiply both sides of
Eq. (2.14) by ¥*(r, t) and both sides of Eq. (2.15) by —v(r, ¢), and then
add both equations to obtain the following:

. _R?
lhgw (r,t)w(r,t) - -

2m

[W*(r, OAY(r, t) — Y (r, ) Ay (r,t)]  (2.16)
By substituting Eq. (2.11) into (2.16), we obtain

b A

—p(r,t) + ——[¥*(r, ) Ay (x, t) — Y(r, ) Ay (r,t)] =0 (2.17)

ot 2mi
If we set

J(r,t) = %[w*(r, DVY(r,t) —y(r, ) Vyi(r, t)] (2.18)

then Eq. (2.17) can be written in the form of Eq. (2.12) since

divd(r,¢t) = V- -J(r,¢t)

h Vyi(r, t) - Vy(r, t) + v*(x, t) V2 (r, t)
—Vyl(r,t) - Vyi(r, t) — y(r, t)V2y*(r, t)

T 2mi

% V@, VY, 1) = v, V2 (x, 1)
= Second term of Eq. (2.16) (2.19)
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This proved the equation of local conservation of probabilities, and
we have found the expression for the probability current in terms of
the normalized wave function v (r, ). Hence, if we have a plane wave
¥(r,t) = Ae’™™™ we can calculate the probability density p(r, ¢) and the
probability current J(r, ) such that

o, t) = |y(r, 1) = |A>? (2.200)
and

J(r, t) = |A? hk = p(r, 1)V, (2.200)
m

where V, is the group velocity obtained with the help of hw = h%k2/2m.
The objective from the preceding derivation is to show that the prob-
ability current is proportional to |A|?2, and thus the definition of the
transmission 7' and reflection R coefficients depend on the squares of
the ratios of Eq. (2.9). In other words, the reflection coefficient can be
shown to be
2 |k — ka2 |? 4k 1k
- ’k1+k2 -1 G (2.21)
The transmission coefficient can thus be obtained from 7' + R = 1 or
from T = (kg/k1)|C /A%
The reflection and transmission coefficients are plotted in Fig. 2.2
as a function of the particle energy with a fixed potential height of
V, = 0.6 eV. It is clear from this figure that the transmission coefficient

R-

]'()7.....|....|....|....
r Transmission T

0.8F .

0.6 .

T,R

04 .

02F .
I Reflection R ]

00 0.6 0.8 1.0 1.2 1.4

E, eV

Figure 2.2 The transmission and reflection coefficients
plotted as a function of the particle energy E for a
barrier height of V, = 0.6 eV.
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T is zero for E < V, and starts to increase as the energy of the particle
increases above V,. The particle is completely transmitted when the
energy is way above the barrier. The reflection coefficient R exhibits an
opposite behavior since the sum of 7' and R is unity.

For the case when E < V,, the problem is quite different. Let us
assume that the propagation vectors are defined in a similar fashion as
in Eq. (2.6). The parameter k9 is a complex quantity since E < V, and
can be replaced by kg = ips = i+v/2m(V, — E)/h2. The wave function in
region II becomes

pr(x) = CeP?™ 4 De™** (2.22)

For the solution to remain bounded when x — o0, it is necessary to have
the coefficient C = 0, reducing the wave function to ¢r(x) = De "2*
while ¢1(x) remains the same as in Eq. (2.7a). The boundary conditions
at x = 0 give

B _ kl — ipz and D 2k1

= —_ = 2.23
A k1 +ipe A k1+1ipg ( )

The reflection coefficient can then be given as

B B*
A Ax

k1 —ip2 k1 +ipe
ki +ips k1 —ipe

R = ‘ =1 and T =0 (2.24)

Equation (2.24) shows that we have a total reflection. This effect is
demonstratedin Fig. 2.2 where R — land T — Owhen E « V,.Thisis
similar to classical mechanics where the particle is always reflected. In
quantum mechanics, however, the wave function in region II of Fig. 1.1
is an evanescent wave with the form e~*2*. Thus the particle has a
nonzero probability of being in region II, which is decreased as x is
increased.

The ratio B/A is complex, and a certain phase shift appears upon
reflection, which is due to the fact that the particle is delayed when it
penetrates the region x > 0. This effect is analogous to the phase shift
appearing when light is reflected from a metallic material. The delay
time 7 will be discussed later in Sec. 2.2.

2.2 Potential Barrier with a Finite Height

Let us now derive the transmission and reflection coefficient for a par-
ticle with an energy E larger than the potential barrier height V, and a
width L as shown in Fig. 2.3. First we assume that the particle coming
from x = —oo; thus the particle cannot be reflected back in region III
and there is only one wavevector associated with the particle in this
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Aeiklx - » S Ceikzx —p Feik]x
Be—iklx < - ¢ D@*"sz
Vo
I II 1
0 x=1L x

Figure 2.3 The wave function of a particle with energy E > V,,
is sketched with a potential barrier of width L and a height V.

region. The wave functions for the three regions can be written as

¢1 = Ae'F1* 4 Be ihix (2.25a)
¢ = Cetfs* 4 Deikex (2.25b)
¢ = Felfr* (2.25¢)

where A, B, C, D, and F are complex numbers. By applying the bound-
ary conditions at x = 0 and x = L, one can obtain the ratios A/F
and B/A. The best approach to solve this problem is by finding the
coefficients A and B in terms of C and D using the boundary condi-
tions at x = 0, finding C and D in terms of F' using the boundary
conditions at x = L, and then relating A and B to F'.

Let us start with the boundary conditions at x = L:

Cett2l | pe—ikel — Foikil (2.26a)
Choe*2l — Dhoe *2l — Fhieth1l (2.26b)

Multiply Eq. (2.26a) by k2 and add Eq. (2.26a) to (2.266); then subtract
the same two equations, to obtain the following two relations:

C _ kitke i L

= o, e (2.27a)
D _ kl — k2 i(k1+ks)L
Similarly, the boundary conditions at x = 0 gives
k1 + ko k1 — ko
A= D 2.2
ok C+ o (2.28a)
ki1—Fk k1+k
p=r1"Fen Rtk (2.28)

2k 2k
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By substituting Eqgs. (2.27) into (2.28) and with rearrangement, we
obtain

A ar k2 4+ k2

7= e lcos (kL) —1 ST sin (kgL) (2.29a)
B -7 lle k% _k% -

7= e ( T sin (kg L) (2.29b)

The transmission coefficient 7' can be obtained from Eq. (2.29a) as

* 27,2
0 L ik (2.30)
A A 4R2R2 4 (k2 — k2)” sin®(ksL)
Substitute the expressions
k2 = 2”;(2E) for regions I and III, and
om(E — V) (2.31)
k2 = % for region II

and insert in Eq. (2.30); then the transmission coefficient can be rewrit-
ten as

_|F F*
A Af

4E(E —V,)

T =
4E(E - V,) + VZsin®(\/(2m(E — V,)/R?L)

(2.32)

The reflection coefficient R can be obtained from the relation 7 + R = 1.
A plot of both R and T' are shown in Fig. 2.4 as a function of the barrier
width. This transmission coefficient is also plotted as a function of the
particle energy as shown in Fig. 2.5. The transmission coefficient plotted
in this figure exhibits oscillations for E > V,. When the sin term is zero,
we have kL = nxr, which gives E = (nhx)?/(2mL?) + V,. The displayed
curves for the transmission coefficient as a function of energy and a fixed
barrier width show that the number of oscillations is increased as the
barrier height is increased. Additionally, the transmission probability
is higher for thinner wells.

For the case of E < V,, one can go through the same analysis shown
previously to obtain an expression for the transmission coefficient. The
final expression of the transmission coefficient is identical to Eq. (2.32)
except for the fact that the sin argument is [-2m(V, — E)/h?]Y/2L.
This quantity is a complex number. By using the trigonometry relation
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Figure2.4 The transmission [Eq. (2.32)] and reflection (R =
1 — T') coefficients plotted as a function of the barrier
width L.

sin (ix) = i sinh (x) in Eq. (2.32) we can write the transmission coeffi-
cient as follows:

F F* 4E(V,— E
T=|——|= (2 ) (2.33)
A A*|  4E(V, - E) + V@sinh®(v/2m(V, — E)/R’L)
S I B UL I UL LR LN LN I
1.0 F -
= i ]
.80.8_- b
g€ ]
ER: 1
.50.6:- -:
£ o4l .
g I \V0=200mev ]
ool v, =100 meV ]
V,=50 meV ]
00'....|....|....|....|....|....|....|....|....|....'

0 100 200 300 400 500 600 700 800 900 1000
Energy E, meV
Figure 2.5 The transmission coefficient [Eq. (2.32)] plotted as a

function of particle energy for three different potential heights
(50,100, and 200 meV). The width of the potential wells is 100 A.
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Figure 2.6 The reflection and transmission coefficients plot-
ted as a function of the barrier width L.

A plot of T and R as a function of the barrier width is shown in Fig. 2.6.
For poL >> 1, where ps = [2m(V, — E)/A?]Y/2 we have 4E(V, — E) <«
VZsinh*(\/2m(V, — E)/h?L) and sinh®(/2m(V_,E)/h?L) ~ le?rL.

This leads to the following expression for the transmission coefficient:

JI6E(V,—B) L,

T 7

(2.34)

This equation is also plotted in Fig. 2.6, where we have shown the trans-
mission coefficient is plotted as T ~ exp(—2p9L). It is clear from this
figure that the particle penetrates the barrier and the probability of
finding the particle at x > 0 does exist. This behavior cannot be ex-
plained in terms of classical mechanics. The particle has a considerable
probability of crossing the barrier by the tunneling effect. The evanes-
cent wave has a range of 1/p. For a free electron of mass m, this range is
(1/p2) ~ 1.95//V, — E A, and for the conduction electron in GaAs with
an effective mass of m* = 0.067 m, we have (1/p2) ~ 7.55//V, — E A.

The tunneling of the particle through the barrier is shown schemat-
ically in Fig. 2.7 where the wave functions for the regions are shown
assuming the particle is traveling from the left to right. The reflected
wave functions in regions I and II are not shown. The wave function
inside the barrier is a decaying function with the width of the barrier.
This effect is due to the fact that £ < V, and the propagation vector ko
is a complex quantity. Thus the wave function takes the following form:
¢ ~ etker — e " where kg = ips.
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0 / V(x)

— ) Om(x)

Figure 2.7 A schematic diagram
showing the tunneling of a par-
ticle through a potential barrier.
The wave function inside the bar-
rier is a decaying function.

Since the ratio F/A [see Eq. 2.29a] is a complex number, a certain
phase shift appears upon reflection, which is physically due to the fact
that the particle is delayed when it penetrates the x > 0 region. To
demonstrate this kind of delay, we will revisit the step potential pre-
sented in Sec. 2.1 to estimate the delay time 7 needed for the particle
to penetrate the potential and be reflected back to region I. When E <
V,, we obtain relations between the wave function coefficients shown
in Eq. (2.23). The delay time 7 can be obtained from constructing
the wave packet of the particle as follows. First, let us introduce the

parameter
2mV,
ko =1/ e = k% —+ p% (2.35)

We will choose the value of 21 to be smaller than that of £, such that
the wave packet is formed for the total reflection case. As discussed in
Chap. 1, a function g(k1) is chosen to contain the wave packet charac-
teristics. Thus, this function is zero for 21 > k,. Our attention now is
focused on region I in Fig. 2.1. Let us set B/A = e~*% with tan(9) =
k2 — k%/k1. The wave packet at ¢ = 0, for negative x, can be written as

Y(x,0) = g(k)[Ae™* 1 Be*1¥] dp (2.36)

ko
=/
27 /

The wave function in the brackets is that presented in Eq. (2.7a). Since
the coefficients A and B have the same modulus, we can rewrite
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Eq. (2.36) with the help of B/A = e~*%’ as
1
Y(x,0) = —— / g(k)[e™* 4 ethixe=i20] g (2.37)
V2
i

As discussed in Chap. 1, we assumed that |g(%)| is real and has a pro-
nounced peak with a width of A%k about the value & = k; < k,. For
¥(x,t), we use the following general form:

ko ko
1 . 1 .
w(x’ t) = /dkg(k)ez(kx—wt) + /dkg(k)e—l(kx+wt+29) (2.38)
N 2m , N 2m ,

where o = Tik2/(2m). The first term of Eq. (2.38) represents the inci-
dent wave packet, and the second term represents the reflected wave
packet. From the argument of the first term and a constant phase con-
dition [(kx — wt) = constant phase], we have after differentiating

X =t [d—‘”} _ P, (2.39)

where x; is the center of the incident wave packet. Similarly, the center
of the reflected wave packet x,. can be obtained by differentiating the
argument of the second term in Eq. (2.38) to give

vt G r2gy| =l — @40

dk dk k=k, m /k2_k%

The results in Eq. (2.40) were obtained by differentiating tan(6) =
k2 — k$/k1, where we used the following procedure:

k2 k2
[1+ tan2(9)] do = 1+0T1 do
1
z_@ pEar dk,
# [
or (2.41)
%d9=—% dk
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At x, = 0, Eq. (2.40) gives the following expression for the delay time t:
_ [ do/dk 2m

da)/dk:|k—k1 RN

This equation tells us that the particle spends a time on the order of ¢
in the region x > 0 before retracting its steps. For Eq. (2.42) to be valid,
k1 must be larger than zero; i.e., the particle is not at rest, and 27 < &,,
or the particle energy is smaller than the barrier height (E < V,).

(2.42)

2.3 Potential Well with an Infinite Depth

Let us consider a potential well with an infinite depth as shown in
Fig. 2.8 where V(x) is zero for 0 < x < L and infinite everywhere else.
Inside the quantum well, the Schrodinger equation is

d? omE
T + ';:2 p(x) =0 (2.43)

By setting the propagation vector as & = \/2mE /h2, where E > 0, the
Schrodinger equation can be rewritten as

dz
@(/J(x) + k%p(x) =0 (2.44)

The general solution of this equation is
@(x) = A sin(kx) + B cos(kx) (2.45)

The boundary conditions in this case are ¢(0) = ¢(L) = 0. Thus, B in
Eq. (2.45) must be zero, reducing the wave function to p(x) = A sin (kx).

V(x=0)=oo Vix=L)=oo

Figure 2.8 A schematic of an
infinite potential well.
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To have a nontrivial solution at x = L, A cannot equal 0, which implies
that sin(kL) = 0. Hence,

kL =nn n=123,... (2.46)

By substituting the expression of k£ into Eq. (2.46), one can obtain the

eigenvalues as

E, - h%k? _ h%n2n?
2m 2mL2

n=123,... (2.47)

By normalizing the wave function and substituting for £ = nx /L, we
finally can write the wave function as

2 . (nxm
p(x) = \/; s1n<7x> (2.48)

The example of the potential well, when it is defined such that V, =0
for —L/2 < x < +L/2, can be solved by performing the transformation
x — x — L/2. The wave function becomes

2 . [nm L 2 . (nm nmw
o(x) = \/;sm {f <x — 5)} =\z sm(fx — ?) (2.49)

By expanding the sin function we obtain the following:

(™" Zgin(™" Y s ™) sin( ™
sin Lx 2 = sin Lx COoS 2 COoS Lx Sin 2

(2.50)
Forn=1,3,5,..., the wave function is proportional to cos (“x), which
is an even function. Forn = 2,4, 6, ..., the wave function is proportional

to sin (“7-x), which is an odd function. Thus, for —L/2 < x < +L/2, the
wave function is given as

L L

2
\/%COS(%DC) forn=1,3,5,...

The energy levels and the probability functions of a particle in an infi-
nite potential well are shown in Fig. 2.9. The energy levels are propor-
tional to n? as indicated in Eq. (2.47).

Esm<ﬂx> forn=2,4,6, ...

p(x) = (2.51)
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2 _
i« =2
@ sps " >
¢ apy 1= 16
i n?=9 Figure 2.9 Energy levels E, =
? 303 S 2 0 12y o En
hem*n®/(2mL?) of a particle in
<P*2(P2 n2=4 an infinite potential well plot-
- 2_ ted along with the probability
Qoo "7 ¢*(x)p(x) using the expressions
shown in Eq. (2.51).
x=-L/2 x=+L/2

2.4 Finite-Depth Potential Well

A one-dimensional finite-depth potential well is illustrated in Fig. 2.10
where the potential is defined as

L
V, for — 5 <x < +§
Vix) = I I (2.52)
0 forx<—§ and x>+§

The wave functions for the case where —V, < E < 0 can be chosen as

¢1 = Ae”™ + Be™ ™ (2.53a)
¢n = Ce'** 4 De~thx (2.53b)
o = Fel* + Ge™™* (2.53¢)

wherek = \/2mE /h? and p = \/2m(V, — E)/h2. To simplify the analy-

sis, we can assume that the particle is bound in the well so that B = 0.

V(x)
i
x =—-L/2 x=+L/2 X
0

1l I Figure 2.10 Finite-depth poten-
tial well plotted for a particle
with -V, < E < 0.
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By imposing the boundary conditions at x = —L/2, the relations be-
tween A, C, and D are obtained as follows:

; +ik
C = (—p+ik)L/2P A
¢ 2ik

. — ik
D= —(p+zk)L/2p l A
¢ 2k

(2.54)

With the help of Eq. (2.54) and the matching conditions at x = +L/2 we
can obtain the relations between A, F', and G according to the following:

E — e—pL/Z [(p + ik)2eikL _ (p _ ik)Ze—ikL]

A

G p*+k% (2.55)
A= %k sin(kL)

We still cannot obtain meaningful results without an additional as-
sumption. Since the particle is bound in the well, one would find it
necessary to set F' = 0. Thus, the first equality in Eq. (2.55) leads to
the following relation:

p—ik\' _ sp
o k) = e” (2.56)
l

Since p and % depend on E, Eq. (2.56) can only be satisfied for certain
values of E. In solving this problem, we consider the two possible cases
for the following relation:

p—ik — 4oikL

= 2.
o ik (2.57)
The first case is when (p — ik)/(p + ik) = —e?*L, which yields
L
% - tan(%) (2.58q)

Let us define &, such as ki = p? + k% =2mV,/h?, which leads to

1

KL\ p2+k% R2
cos2(kL/2) ) (2.580)

_ 2 (= Zo
_1—|—‘can(2 ="z~ e

Equation (2.58b) is equivalent to the following set of solutions:

kL k
cos(;)’ = E (2.59)
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|cos(KL/2)|
|sin(kL/2)| k, =4k

k, =5k

J(k)

0 1 2 3 4 5
nlk  2nlk 3nlk  4nlk  Snalk  6nlk
k

Figure 2.11 Graphic solutions of Egs. (2.59) and (2.60) giving
the bound states of a particle in a finite-depth potential well.

The second case is when (p —ik)/(p + ik) = +e**L. By following this
procedure, one can reach the following equation:

. (kL k

It is difficult to solve Egs. (2.59) and (2.60); however, a graphic solution
is possible. This solution is shown in Fig. 2.11, where the values of &,
are taken in units of 2. From this figure one can calculate the values
of the energy levels from the intersections of 2, and the sin and cos
curves. The intersections give the values of £ from which the energy
level values are calculated. The number of confined states in the well
can be obtained from the number of intersections that the straight line
makes with the curves. For example, when %, is 52 we have four even
states and three odd states. For the line marked &, = 2k, we have three
states (two even and one odd). This figure indicates that there will be
at least one bound state in the potential well.

The finite-depth well potential problems can be solved in a different
way, as discussed in many textbooks. Let us assume that the wave
functions for the three regions in Fig. 2.12 have the following forms:

¢r = Ae” (2.61a)
¢ = B sin(kx) + C cos(kx) (2.615)
¢ = De™ ™™ (2.61c)

where & = \/2mE /h2 and p = \/2m(V, — E)/h2.



54 Chapter Two

V(x)

x==L/2 X =+L/2
+V,

X

-

0

Figure 2.12 A sketch of a finite-depth potential well
plotted for a particle with 0 < E < V,,.

From the boundary conditions at x = —L/2 and x = +L/2 we have
the following set of equations:

L L
Ae "2 + B sin<%> -C cos(%) =0 (2.62a)

Ape L2 _ B cos(k2L> —Ck sin(kZL> =0 (2.62b)
B sin (%) +C cos(%) —DePE2 = ¢ (2.62¢)

Bk cos(kzL> —Ck sin(kZL> + Dpe L2 =0 (2.62d)

This is a system of four homogeneous linear equations for the coef-
ficients A, B, C, and D. For the nontrivial solution we must set the
determinant of the coefficients to zero. While the values of coefficients
are arbitrary, one can solve for their ratios. The determinant of the
coefficients can now be written as

. (kL kL
1 sin (7) c0s<?> 0
0 —kcos<kL) —ksin(kL> 0
2 2 erL2 _
0 sin @ cos @ -1
2 2
L L
kcos(%) —ksin(%) P

(2.63)
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This determinant can be expanded in minors to give

bn(82) (12 (2] o] <0

Divide by cos?(kL/2) to obtain

) pun() i) 0 e

By introducing 22 = p? + k% = 2mV,/h? and by knowing that Eq. (2.65)
can vanish by setting either of the quantities in the parentheses to zero,
one can obtain

kL kL
P Z B2 _p2 _ T L Jp2 _p2
ktan< 5 ) =4/k2—Fk%? and kcot( 5 > =/k2—F (2.66)

Once again, these equations can be solved graphically to obtain % val-
ues from which the energy eigenvalues can be determined. To find the
values of &, Eq. (2.66) is plotted in Fig. 2.13 for both expressions along
with the propagation vector p = v/ kg — k2. The intersections of p with
the functions tan(kL/2) and cot(kL/2) are shown as crosses for three

8 T T u T T T T T T T T T T
9 Q ) Q ) Q ) .
1 I I :
- 3 8 3 8 3 8 1
- ~2 «I ~2 «I -~ «I ~2 <

6 4 -
F(9 — k)I/Z d ]
L \\\ 4
| ™\

2
'(] _ k)I/Z

0 1 L L L L f L
0 1 2

kL

Figure 2.13 A plot of the expressions given in Eq. (2.66) as a function of £L. The
intersections of (£, — k)1/2 with the tan and cot functions determine the values
of £ and the number of bound states.
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values of p. While Figs. 2.11 and 2.13 are the graphical solutions for a
finite-depth potential well, we noted that the number of bound states in
Fig. 2.13 is twice as many as the number of bound states obtained from
Fig. 2.11. This is due to the fact that the x axis is plotted as kL instead
of kL/2. But the number of the bound energy levels in the quantum
well is the same for both of the cases discussed.

2.5 Unbound Motion of a Particle (E > V,)
in a Potential Well with a Finite Depth

Consider the potential well shown in Fig. 2.14 and consider that a par-
ticle is traveling from the left (x = —o0) to the right (x = +o00) with
energy E > V,. The propagation vectors are given by

2mE 12m(V,+ E)

and the wave functions are constructed for the three regions according
to Bastard (1988) and given as

o1 = ei/)(x+L/2) + re—ip(x+L/2) (2.68a)
o1 = aet* 4 Be~kx (2.68b)
oy = ter L2 (2.68¢)
V(x)
p k P
e —_— —_—
-p —k
-———— —-—————
0 ,,,,,,,,,,,
1 11 11T
_Vo """"""""""""""" T X
(’) )
-L/2 +L/2

Figure 2.14 A schematic presentation of a potential well with
a particle with energy E > 0 plotted along the x axis. The
potential well V(x) = -V, for —L/2 < x < +L/2.
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From the boundary conditions at x = —L/2 we have
147 = ae L2 4 geikl/2 (2.69a)
p — pr = ake kL2 _ gpoikL/2 (2.69b)

and the boundary conditions at x = +L/2 give
t = ae'®L/? 4 geikL/2 (2.70a)
pt = ake*l/2 — pRre~ikL/2 (2.700)
By multiplying Eq. (2.69a) by p and adding to Eq. (2.695) we obtain
2p = a(k +ple *L/2 — B(k —p)e'tL/? (2.71a)

and multiplying Eq. (2.70a) by p and subtracting it from Eq. (2.706) we
have

0=oa(k —ple*t? _ Bk +ple *L/2  or p= a:%eikl‘ (2.71b)

By dividing Eq. (2.71a) by (k —p)e**L/2 and utilizing Eq. (2.71b), we can
obtain the following:
p(k + p)e—ikL/Z
o =
2kpcos(kL) — i(k? +p?)sin(k L)

(2.72a)
f= p(k —petL/?
2kpcos(kL) — i(k2 +p2)sin(k L)
Substituting Eq. (2.72a) into (2.70a) and (2.69a) yields
1
" cos(kL) — Li(k/p +p/k)sin(k L)
and (2.72b)

_ i/2(k/p —p/k)sin(kL)
~ cos(kL)—Li(k/p +p/k) sin(kL)

Let the transmission coefficient be T(E) = |t(E)|?> and the reflection
coefficient be R(E) = |r(E)|?, where T(E) + R(E) = 1, then

TE) = 1 : 2
1+ 7(k/p —p/k)?sin”(kL)
and (2.73)
_ 2 gin2
R(E) = (k/p —p/k)*sin“(kL)

" 4+ (k/p—p/k)2sin® (kL)
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1.0F .
0.8F

0.6 Y

0.4; V0=150meV ]

Transmission

02F V,=224 meV —

0.0 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70

E, meV
Figure 2.15 The transmission coefficient [T'(E)] of an un-
bound particle (E > 0) plotted as a function of energy for
a optional well with a height of 224 meV and thickness

of 250 A. T(E) is also plotted for a similar potential well
of height 150 meV.

The transmission coefficient in this equation is a function of energy as
plotted in Fig. 2.15. It exhibits an oscillatory behavior as the energy of
the particle increases. It reaches unity when sin(kL) = 0 or kL = nr,
where n is an integer. The form of 7'(E) corresponds to constructive in-
terference inside the potential well. The discrete energies that fulfill
the condition 2L = nx are called transmission resonances (see Bastard
1988). They correspond to an enhanced probability of finding the parti-
cle inside the quantum well.

2.6 Triangular Potential Well

Another important potential well is the triangular quantum well. This
type of well is common at the semiconductor interfaces such as the
GaAs/AlGaAs heterojunction. In particular, the high electron mobility
transistor (HEMT) is based on the energy quantization in the triangular
well formed at the heterojunction interface. A schematic representation
of the conduction band edge of the GaAs/AlGaAs HEMT structure is
shown in Fig. 2.16. The space W is an undoped barrier region. If N is
the number of electrons transferred to the well per unit area (known
as the two-dimensional electron gas), the electric field & is given by
Gauss’s law as

(2.74a)
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0 VA

Figure 2.16 A schematic plot of the conduction band of a
HEMT structure.

where ¢ is the dielectric constant of the well material. For a triangular
well, as shown in Fig. 2.16, the electrostatic potential ¢(z) is linear in
the z > 0 region and is given by

0(z) = &z (2.74b)

The Hamiltonian for an electron in the triangular well, assuming that
the potential barrier is infinite at z = 0, can be written as
h? d?

H= “oman T V(@) +ep(2) (2.75)
where V,(2) is a periodic potential energy. Using the envelop function
approximation (this approximation will be discussed in more detail in
upcoming chapters) for a one-dimensional system, the wave function
can be written as

Y(z) =F(2U(2) (2.76)

where U (z) is the conduction band Bloch function for a zero wavevec-
tor and F'(z) is the envelop function that satisfies the effective mass
Schrodinger equation

2 g2
l - d + ecp(z)] F(z) =E,F(2) (2.77)

 2m* dz?

The index n identifies the eigenvalues, and m* is the conduction elec-
tron effective mass of the well material. The wave function F (z) can be
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further written as
F(2) = ey, (2) (2.78)

where &, is the two-dimensional wavevector perpendicular to the sur-
face normal, and x(z) satisfies the equation

h2 d2
“omr gz T e | x(2) = Enx(2) (2.79)
and
21,2
E,=E - ik, (2.80)
2m*

where E is the total energy eigenvalues of the carriers. The boundary
conditions to be satisfied by x(z) are x,(0) = x,(c0) = 0. A solution
that satisfies the boundary condition at infinity is the Airy function
(see Stern 1972, Balanski and Wallis 2000, and Ferry 2001) given by
Ail(2m*/h2e2E2)'3(eE;z — En)]. The boundary condition at z = 0 deter-
mines the allowed values of E,, as

2 902\1/3
E, = —<h ¢ 55) O (2.81)

2m*

The quantity a, is the zero of the Airy function and is approximated as

(see Stern 1972)
37 3\1%3

wheren=0,1, 2, ... The values of E,, are then

1/3 2/3
h? 3mef 3\1¥ :
E, = <2m*> [ 5 5 (n+ Z)} with
1/3 2/3
K2 9we’N
E, ~ 2.83
? <2m* ) ( 8eo€ > ( )
The triangular potential is a very good approximation for the poten-
tial distribution near the semiconductor interfaces. The quantity E, in
Eq. (2.83)is obtained as a function of the quantum number n, which rep-

resents the energy levels in the approximation of an infinite triangular
quantum well.
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2.7 Parabolic Potential Well

Another example of this extremely important class of one-dimensional
bound-states in quantum mechanics is the simple harmonic oscillator
where the potential can be written as

Vix) = %Kﬁ (2.84)

where K is the force constant of the oscillator. The Hamiltonian for this
potential is given by

R? 92 1
H=-_" — + “Kx? 2.
2m8x2+2 * (2.85)

The Schrodinger equation which gives the possible energies of the os-
cillator is
R? 92¢(x) L 1
2m  0x2 2

Kx20(x) = Enp(x) (2.86)

This equation can be simplified by choosing a new measure length
and a new measure of energy, each of which is dimensionless. ¢ =
(mK/R*)Y4x and »n=2E,/(hw), where w = /K /m. With these sub-
stitutions, Eq. (2.86) becomes

d?¢(7)
dx?

In looking for bounded solutions, one can notice that as ¢ approaches
infinity, n gecomes too small compared to 2. The resulting differential
equation can thus be easily solved to yield an asymptotic solution in
the following form:

+(—¢He)=0 (2.87)

o() ~ eH1/2 (2.88)

This expression for the asymptotic dependence is suitable only for the
negative sign in the exponent. It is clear that because of the very rapid
decay of the resulting gaussian function as ¢ goes to infinity, the function
will still have the same asymptotic dependence multiplied by any finite
polynomial in ¢ (see, for example, Dicke and Wittke 1960):

o(¢) = H(g)e 128 (2.89)

where H(¢) is a finite polynomial. By substituting Eq. (2.89) into (2.87)
one can obtain

’H H
d*HQ) _, dHE)

I e n—1DH()=0 (2.90)




62 Chapter Two

Ifwe assume a solution to this equation in the form of a finite polynomial
such that

H()=Ag+ A1z + A% + - + A" (2.91)

a recursion formula connecting the coefficients can be obtained in the
following form:

2n+1—n

Apg= —1T270 A >0 2.92
2= X nt D) or  n= (2.92)

For an upper cutoff to the coefficients so that the polynomial H(¢) re-
mains finite, the condition

must be satisfied. Substitute n = 2E,/(hw) into Eq. (2.93), we obtain
1
E, = (n + 2>hw (2.94)

The energy levels described by this equation and the parabolic potential
are shown in Fig. 2.17, where the energy levels are evenly spaced by
the amount of hw.

The polynomial solutions lead to wave functions that approach zero
at x = +o00, which can all be normalized. These polynomials are called
Hermite polynomials, and they are the acceptable solutions as wave
functions. The Hermite polynomial is defined as follows:

H(o) = (—1yet* L (o= (2.95)
dx”
. V(x) = 1/2Kx2

n=4,E,=9ho2

n=3,E,=7hw?

n=2,E,=5%0?2

Figure 2.17 A parabolic one-
dimensional potential well with
a few of the allowed energy lev-
els shown.

n=1,E,=3nho2
—/ n=0,E,="%o?

= X



Potential Barriers and Wells 63

o)

P ()
n=4 Classical
mechanics
w4 Quantum
n=3 mechanics
n=2
—
_ n=1 n=>5
¢ Y ¢
(a) (b)

Figure 2.18 (a) The lowest four wave functions of the simple harmonic oscillator are
plotted as a function of coordinate ¢. (b) The probability amplitude for n = 5 is shown
along the classical probability density of the simple harmonic oscillator.

Finally, the wave function can be written as
d n
@(0) = NoHp(0e™ V2 = Ny (=17 V25 (o) (2.96)
xn

The normalization factor N,, can be found to be

1 K\"?
N, = o] \/g where o = (n;L_z) (2.97)

The lowest four wave functions are illustrated in Fig. 2.18a. The prob-
ability amplitude for the n = 5 eigenstate is shown in Fig. 2.18b along
with the classical probability density. The first few Hermite polynomial
functions are shown in the following table.

N  Hy()

0 1

1 2

2 4:2-2

3 8:3-12¢

4 16¢* —48:2 412

5 32¢5—160¢3 +120¢

6 6475 —480¢% + 72072 — 120

Figure 2.18b shows several oscillations in the ¢*(¢)¢(¢) curve with their
amplitudes fairly small near the origin and considerably larger near
the end of the curve. As n increases, the probability density is becoming
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larger and larger near the end of the curves and smaller and smaller
near the center of the curve approaching the classical limit. According
to classical mechanics (see, for example, McKelvey 1993), the probabil-
ity of finding a particle in an interval of dx is proportional to the time d¢
it spends in the interval. This is in turn directly related to the velocity
by dx = v,dt. More precisely, if T/2 is the half-period of oscillation, the
function of time spent in dx is d¢/(T/2) or 2dx/(Tv,). This fraction is
the classical analog of the probability density ¢*(¢)p(¢). For a classi-
cal harmonic oscillator, conservation of energy requires that the total
energy E is

E = %muf + %mw2x2 = %msz2 (2.98)
Solving for v, we obtain v, = w(A? — x2)1/2, The classical analog to
©*(¢)p(¢) can then be written as p(x) dx, where

2dx dx
plx)dx = To. = A (2.99)

If the quantum energy is given by Eq. (2.94), then with the help of Eq.
(2.98) one can write the classical probability as

p(x) = 29% _ dx (2.100)

Tve 7@2n+1)/a—x2

where « is defined in Eq. (2.97). The classical probability is plotted in
Fig. 2.18b along with the quantum probability.

2.8 Delta-Function Potentials

The §-function problem will be discussed in this section for one par-
ticular reason. The current technology in optoelectronics is gravitating
toward semiconductor nanostructures. The recent research is focused
on the use of quantum dots for lasers and detectors. Quantum dots are
a small collection of semiconductor atoms such as InAs sandwiched be-
tween GaAs barrier materials. The quantum dots are sometimes called
the designer atoms. In other words, the quantum dots could be repre-
sented or approximated by §-function wells. A few §-function character-
istics were discussed in Sec. 1.8.6. First let us find the Fourier transform
of a step function similar to the potential step shown in Fig. 2.1. Let us
define a potential V(x) such as

2
Vix) = —h—AS(x) (2.101)
2ma

where a is a quantity with a dimension of length and A is a dimension-
less quantity introduced to characterize the strength of the §-function
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Mx)
1
X
] 0 =
A
Figure 2.19 A sketch of a §-
function with a width of a small
quantity ¢ and a strength of A.
—€2  +€2

(see, for example, Gasiorowicz 2003). The §-function well is shown in
Fig. 2.19. The Schrodinger equation can be written as

R? d%u(x) K2
e %S(x)u(x) = —|E,lux) (2.102)

By integrating Eq. (2.102) we can obtain the condition at x = 0 such as

+e g +e e
[d%u) dx_&/m)u(x)dx:—Z—mlEnl/u(wdx (2.103)
dx? a h?

The right-hand side of this equation is zero, since if we choose as an
example u(x) = Ae¥*, the right-hand side can then be proportional to
sinh(e) and lim,_,¢ sinh(¢) — 0. With the help of Eq. (1.83), one can
rewrite Eq. (2.103) as

du(x)|™* _ —&u(o)
dx |, a
or (2.104)
du(x) 3 du(x) . —&u(o)
dx x=+¢ dx x=—¢ B

For the solution of Eq. (2.102) at x # 0, we have

d2u(x) 2m
G~ gz | Enlu@ =0
or (2.105)
d2u(x)

dx?

—k2u(x)=0
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where & = \/2m |E,|/k2. The solution that satisfies Eq. (2.104) at all x
values except for x = 0 and vanishes at x = +o0 is

—kx

e
o = {

forx >0

forx <0 (2.106)

The amplitude of u(x) is the same by symmetry for x > 0 and x < 0,
and for simplicity, it was chosen as unity. From Egs. (2.104) and (2.106)
one can find that

A A

—k—k=— or 2k = — (2.107)
a a

Substituting the value of k into Eq. (2.107), we find the energy to be

R2x2
~ 8ma?

(2.108)

which means that there is only one bound state in the §-function po-
tential well. This is in many ways similar to small-size semiconductor
quantum dots, where each quantum dot has only one bound state. The
situation is different as the quantum dot size is increased beyond ap-
proximately five monolayers.

A more interesting problem is the double narrow-deep §-function po-
tential well shown in Fig. 2.20. The potential can be written as

K2
ma

Vix) = [6(x —a) + 8(x + a)] (2.109)

The potential is symmetric under the interchange x — —x; therefore,

the solutions have definite parity. Let us consider both even- and odd-
parity solutions.

V(x)

Figure 2.20 Double narrow-deep §-function potential.
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Even-parity solution. Let us consider the following wave function that
satisfies the even parity:

e~k forx >a
u(x) = { Acosh(kx) fora <x < —a (2.110)
ehx for x < —a

By applying the boundary conditions at x = a and with the help of
Eq. (2.104), we obtain the following relations:

e ** = Acosh(ka) (2.111)
and
—ka . A —ka
—ke — kA sinh(ka) = ——e (2.112)
a

The constant A can be eliminated by combining Eqs. (2.111) and (2.112)
to yield

tanh(ka) = i -1 (2.113)
ka

Equation (2.113) can be rewritten as

eka _ e—ka A
i 1 (2.114a)
or
2
e 2ka — 2ka _ 1 (2.114b)

Equation (2.113) can be used to obtain the eigenvalues graphically in a
manner similar to the finite-depth potential well. The result is shown
in Fig. 2.21. It is clear from this figure that there is only one solution
corresponding to an eigenvalue. Additionally, since tanh(ka) < 1 as
shown in the figure, it follows from Eq. (2.113) that

A 2)2
k> — or E h

—_— 2.11
2a - 8ma? ( %)

By comparing Eq. (2.115) to Eq. (2.107), it implies that the energy
level in the double §-function potential well is smaller (larger negative
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1.5"'I""|"--|----
1ok One intersection ]
< I tanh(ka) |
= L
\ -
0.5 -
i (Alka) -1
0.0 “————t i P
0.0 0.5 1.0 1.5 2.0
ka

Figure 2.21 A graphical solution for the eigenvalue of a
double §-function potential well.

number) than the energy level in a single §-function. The wave func-
tion of the double 3-function potential well [see Eq. (2.110)] is plot-
ted in Fig. 2.22 to show the singularities at +a and —a. The reduc-
tion of the energy level in the double §-function as compared to that
of the single §-function barrier is difficult to explain, but such an ef-
fect is observed experimentally in multiple quantum wells. It was ob-
served that the confined energy levels are reduced as the number of
quantum wells in the structure is increased. This, however, could be a
coincidence.

u(x)

- za -

A cosh(kx) .

—-a +a

Figure 2.22 A plot of the wave function [see Eq. (2.110)]
of a double §-function potential well as a function of x.
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Odd-parity solution. For the odd-parity solution, consider the following
wave function:

e~k forx > a
u(x) = { Asinh(kx) fora <x < —a (2.116)
—ehx for x < —a

The analysis here is similar to the analysis followed in the even-parity
solution case. By taking the boundary conditions at x = +a, and by the
help of Eq. (2.104), we have

A sinh(ka) = e~ *® (2.117a)
and

—ke* _ LA cosh(ka) = _&e*ka (2.117b)
a

Substituting Eq. (2.117a) into (2.1176), we obtain
s A -
coth(ka) = — — 1 or tanh(ka) = | — —1 (2.118)
ka ka

This equation can be solved graphically as was the case with the even-
parity solution discussed previously. The results are shown in Fig. 2.23.

1.5 T T T T LI — T T T [ T T T
(Vka - 1)} ka - 1)1
1.0 -
r tanh (ka)

= L i
=~
( - .

0.5 -

0.0 L L T B L1 L L1 | L1

0.0 0.5 1.0 1.5 2.0

ka

Figure 2.23 The graphical representation of the odd-parity solution of the dou-
ble §-function potential well.
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Equation (2.118) indicates that there is a singularity when A = ka. The
vertical line in Fig. 2.23 is due to the singularity when A is chosen to
be unity. When A is larger than one, for example, A = 4, the singularity
occurs at 4, which is not shown in the figure. As indicated in this figure,
there is only one bound state when A > 1. However, when A is less than
unity, we may or may not have a bound state due to the odd-parity
solution.

2.9 Transmission in Finite Double-Barrier
Potential Wells

This is a more complicated problem, and we will follow Harrison’s as-
sessment of the solution without giving explicit expressions to the trans-
fer matrix elements. Consider the double barrier potential shown in
Fig. 2.24. Harrison (2000) considered the case where L1 # Lo # L3. The
aim here is to obtain an expression for the transmission coefficient of
a particle traveling from z = —oo to z = +00, assuming that the par-
ticle mass does not change when it travels through the barriers. The
structure consists of five regions, and the solutions to the Schrodinger
equation within each region for £ < V, are

Region 1: y1(2) = Ae*? + Be itz

Region 2: y9(2) = CeP? + De P

Region 3: y3(2) = Fet*? 4 Ge i*? (2.119)
Region 4: y4(z) = HeP? + Je™*?

Region 5: y5(2) = Ke'k? 4 Le k2

where & = /2mE /% and p = \/2m(V, — E)/h?%. The boundary condi-

tions at z =0, Ly, L1 + Lo, and L1 + Ly + L give the following relations:

1463
i
V)i
L Ly Ly
1 2 3 4 5
: ~Z
Z=0

Figure 2.24 A sketch of a double-barrier potential
well.
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z=1,=0: A+B=C+D (2.120)
ikA—ikB = pC — pD (2.121)

z=1Iy=L;: Ce2 + De "z = Fel*l2 4 Ge I (2.122)
Cpe’2 — Dpe " = Fiket s — Gike 12 (2.123)

z=I3=Li+Ly: Fe'ls 4 Ge s = Herls + Je P (2.124)
Fike*s — Gike 3 = Hpe’'s — Jpe "l (2.125)

z2=14=Li+ Lo+ Ly: Hel* + Je "It = Ke*ls 4 Le s (2.126)

Hpe’"s — Jpe™ "'t = Kike™ "t — Like !
(2.127)

The best method to proceed from here is to put the results of Egs. (2.120)
to (2.127) in matrix form. This method is known as the transfer matrix
technique, and it yields

Ml(g) =M2(IC)) (2.1280)
M3<g) =M4(g> (2.128b)
M5(g> =M6(}JI) (2.128¢)
M7<Ij) =M8<Iz> (2.128d)

The coefficients of the outer regions can be linked by forming the trans-
fer matrix such as

A K
<B > = M; 'M,M; 'M,M; 'MM; ' Mg < L) (2.129)
Since we assumed that the particle is traveling from z = —co toz = 400,

then the coefficient L can be set to zero. Furthermore, if the 2 x 2 matrix
is written as M, we obtain

(2)-()

Thus, we have A = MK, and the transmission coefficient can be writ-
ten as
K . K*
A- A*

1

TE) = =
" My M|

(2.131)
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The matrix multiplication needed to obtain M;; using hand analysis
is tedious and time-consuming. However, this problem can be easily
solved using computer programs, such as Mathematica or MathLab.

2.10 Wentzel-Kramers-Brillouin (WKB)
Approximation

The potential barriers and wells considered thus far are geometrically
simple. If the barrier hight is an arbitrary function of the position,
the solution of the Schrodinger equation becomes very complicated. A
simple example where the barrier is a function of the distance is the
triangular potential well that is usually encountered at the semicon-
ductor heterojunction interfaces. This problem was discussed briefly in
Sec. 2.6, where the solution was expressed in terms of Airy functions.
Another example is the simple harmonic oscillator where the potential
is parabolic in distance (see Sec. 2.7). The solution of this problem is
expressed in terms of Hermite polynomials. For an arbitrary potential
barrier as shown in Fig. 2.25, one can follow the WKB approximation
discussed in most quantum mechanics textbooks. In this instance, we
will follow the Merzbacher treatment to summarize the WKB approxi-
mation. Let us consider Fig. 2.25a, where we show an arbitrary spatially

Turning point

Propagating wave

Figure 2.25 (a) Variation of a po-
tential barrier as a function of
the distance showing the corre-
sponding energy level. (b) An ar-

! ! bitrary potential well used for
Region1 :  Region2 ! Region3 the WKB approximation.

(b)

R | E (bound state)
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varying potential. The position a is called the turning point at which the
wave function changes from propagating to decaying. The propagation
vectors of both wave functions are given by

k(x) = i—n; [E —V(x)] for E > V(x) (2.132)
and
px) = 2—”; [V(x) — E] for E < V(x) (2.133)

The WKB approximation suggests that the wave functions, either de-
caying or propagating, are wave-type functions generally defined as

¥ (x) ~ ™ (2.134)

By applying the Schrodinger equation to the propagating wave function,
we have

32y (x)

dx2

+ E2(x)¢(x) =0 (2.135)

Assuming the proportionality constant of Eq. (2.135) is spatially invari-
ant, the Schrodinger equation becomes

2 ,i¢(x) )
e k2w = 0 (2.136)
0x2
which can be reduced to the differential equation of ¢(x) as
2 2
PRGN (T PR TR S (2.137)
9x2 9x

This equation is equivalent to the Schrodinger equation except that it
is nonlinear whereas the Schrodinger equation is linear. One, however,
can take advantage of the nonlinearity to solve Eq. (2.137). If we have
a true free particle, then the second derivative is very small, assuming
that the potential does not vary too much.

3%¢(x)
axZ 0

When Eq. (2.138) is omitted from Eq. (2.137), we obtain the first crude
approximation by replacing ¢ with ¢,:

i (2.138)

5 x
<2;;0> — kz(.’)C) or ©o = :I:/k(x) dx +C (2.139)
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The next approximation is to set Eq. (2.137) in the following form:

o\, 92¢(x)
(%) = 82w +i (2.140)

The nth approximation can be set for the right-hand side of this equation
to obtain the (n + 1)th approximation as follows:

Pni1(x) = ﬂ:/ \ R2(x) +ig)(x) dx + Cpya (2.141)

For n = 0, we have

o1(x) = :i:/ V@) +igl @) dx +C1 = :t/ VEX ) T ik (@) dx + Cy

(2.142)

The correct ¢(x) is baseless unless ¢i(x) is close to ¢,(x), which
means

k' (x)] < |k%(x)] (2.143)

If this condition holds, then the integrand can be expanded to obtain

o1(x) ~ / [:l:k(x) L Lk (x)} dx +Cy = :I:/k(x)dx + Lnlk@)] + €
2 k(x) 2
(2.144)

All ~ the above approximations are known as WKB approximations,
which leads to writing the wave function as

0 ~ J%Tweiifk(x)dx (2.145)

The equivalent solution for the decaying wave is

1 ij (x)dx
(x) % ——e~J 7 (2.146)
v Vk(x)
If k(x) is regarded as the effective wave number, then for the propagat-
ing wave function we have A(x) = 27 /k(x). If condition (1.143) holds,
then we have

Ax) < |p(x)] (2.147)

dp
dx
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where p(x) = £hk(x) is the momentum that the particle would possess
at point x. Condition (2.147) implies that the change of the momentum
over a wavelength must be small compared to the momentum itself.
This condition breaks down if £(x) is zero or varies violently, such as in
a sharp corner. The entire approach breaks down if the energy of the
particle is close in value to the potential extremum because proceeding
from left to right, the turning point a is reached before the particle gets
sufficiently far away from the turning point b (see Fig. 2.25b) for the
WKB approximation to hold.

To connect the waves from one type to another (decaying and prop-
agating) at the turning point requires mathematical details, which we
will not consider here, but the reader can find these details in other
textbooks such as in that by Merzbacher (1970). The connecting formu-
las are written in terms of sin and cos and are given as follows:

For x = a:
9 a - 9 —fkdx
—— cos k dx & —e ¢
o)
x . 2.148
9 a . 9 [ fdx
—— sin kdx — — | & — e
N / 4 N
For x = b:
f
g —Jkdx X -
ﬁe « & \/_cos /kd -1
b (2.149)
9 fkdx X e
—\/Eex @Tsm [kdx—4

Let us now consider the WKB approximation to solve the bound states in
an arbitrary potential well. Consider three regions in Fig. 2.25b where
the potential is arbitrary. The WKB approximation will be used in re-
gions 1, 2, and 3 away from the turning points. The connection formulas
(2.148) and (2.149) will be used near x = a and x = b. The requirement
is to have v(x) be finite, and the solution to the Schrodinger equation
must vanish as the particle moves outward from the turning points.
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The wave function can be written as

b

1 7fp(x)dx
Yi(x) ~ —e = forx <b
N
Yro(x) 2 cos /xkdx T forb<x <a
~ 2 - — <x <
VR O\ 4

2

2 r r T
—— cos kdx—/kdx——

2 h i T
———cos kdx | sin /kdx - —
b x

2 r r T
+—sin kdx | cos /kdx - —

1 fpdx
e forx >a
N

%

lﬂs(JC) ~

(2.150)

From the boundary condition at the turning point a, given by Eq. (2.148),
only the second term of ¥9(x) gives rise to a decreasing exponential sat-
isfying the boundary conditions at infinity. Thus, the first term of y5(x)
must be zero which leads to the following relation:

cos(/kdx) = (n—i—%)n n=0,1,2,3,... (2.151)
b

This equation determined the possible discrete values of E. The energy
E appears in the integrand as well as in the limits of integration, since
the turning points a and b are determined such that V(a) =V (b) = E.

For example, let us consider the triangular potential well shown in
Fig. 2.16. Since the potential is sharp at x = 0, the WKB approximation
cannot be used at this point. The energy E, can be related to the turning
points x, such that E,(x,) = V (x,) = e&x,, where & is the electric field.
For the turning point of the decaying function we have

b
7fp(x)dx
Y1(x) ~ ﬁe n for x > x, (2.152)
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This wave function must be connected to the cosine function according
to Eq. (2.148) such that

Y1 (x) ~ %cos (/kd _ %) (2.153)

This equation must vanish at x = 0, so the bound states are found from

the following relation:
Xn .
cos(/kd —4) =0 (2.154)

Then the propagation vector can now be written as

2 2 2meé,
k(x) = \/ hi; [E, — V()] = \/ ?n; le&yx, — eux] = \/ ’Z—Zg(xn —x)

(2.155)
Furthermore, the condition in Eq. (2.154) yields
g T T
——=02n+1= 2.1
/kdx =@+l (2.156)
Combine Eqs. (2.155) and (2.156) to obtain
¢ Tow
/kdx =(2n+ 1)5 + 1
0 % (2.157)
2meé&s b4 3
— 29 2
e /«/xn xdx 5 ( n~|—2>
0

The integral can now be evaluated to give

|2me&s 2 g5 @ 3
— =— - 2.158
P 3xn 5 2n + 9 ( a)

2/3 9 \1/3
Xp = [%” <2n~|— g)} (227> (2.158b)

Finally, substitute E,, = e&x, in Eq. (2.158b) to obtain the quantized
energy levels as

2/3 [ 2pop2\Y3
E, = [3_7[ <2n+§>:| (e 5Sh ) forn=0,2,3,... (2.159)

or

4 2 2m
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The results shown in this equation are in exactly the same form ob-
tained using the Airy function approach as shown in Eq. (2.83). Notice
that the particle mass in the WKB approximation is assumed to be
m, while the electron mass in Eq. (2.83) is assumed to be the effective
mass m*.

2.11 Energy Levels in Double Quantum Well
Structure

This is a typical example discussed by others (see, for example, Bastard
1988, Balkanski and Wallis 2000, and Singh 2003), but we will discuss it
briefly. Consider the two wells shown in Fig. 2.26 that are separated by
a potential barrier of width s. Assume that each well contains 7., > 1
bound states when they are isolated. The localized wave function decays
exponentially far away from the well. In the limit of infinite £, the bound
states (0 > E > —V,) are twofold degenerate. This means that the
particle can be found in either one well or the other. At a finite value
of h, the wave functions that describe the isolated wells are no longer
valid for the coupled well Hamiltonian of

H=T +Vi(2) + Va(2) (2.160)

where V1(z) and V3(z) are the potential energies associated with wells
1 and 2, respectively. Let x1(z) and x2(z) be the ground-state wave func-
tion for the isolated wells. The Schrodinger equations for the two wells
can be written as

[T +Vi@]x1(2) = E1x1(2)
[T + Va(2)]x2(2) = E1x2(2)

(2.161)

@)

z

hi2—L —hl2 0 h2 h2+L

Figure 2.26 Identical double potential wells separated
by a potential barrier of width A.
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where E; is the ground state in the isolated wells. The wave function
of the coupled wells can be expressed as

Y(2) = Arx1(2) + Az xa(2) (2.162)
and the Schrodinger equation can be written as
Hy(2) = Ey(2) (2.163)

Using Eqgs. (2.162) and (2.163), the matrix elements (¥ |H|y) can be
obtained as follows:

(Eq +V1 — E)A1 4+ (SEq +V12 —SE)A; =0

— — (2.164)
(SE1+Vi2—SE)A;1 +(E1+V1—-E)A, =0
where
S = (x1l x2)
V1= (alVa@ lx) = (x2l Vi@ I x2) (2.165)

Vie = (x11 V1@ x2) = (x2l Va(2) Ix1)

For no-trivial solutions, the determinant of the coefficients of A; and As
must be set to zero such as

E1+71—E SE1~|—712—SE _

SE1+712—SE E; —i—Vl—E =0 (2.166)
The solution of this determinant is obtained as
71 + V]z

For S « 1, Eq. (2.167) is reduced to E = E{ + V1 &+ V 13. The cou-
pling of the two wells produces a splitting of their ground-state level by
~ 2V 1. The quantities, S,V 1, and V 15 are the overlap, shift, and
transfer integrals, respectively, as illustrated in Fig. 2.27. The exact

Ey+ V= Vip(1)

Ej+ V1(2)

E\+ Vi + Vp(1)

Figure 2.27 Shifting and lifting the degeneracy of the two
ground-state isolated quantum wells due to the coupling
between the wells. The numbers in parentheses reflect the
degeneracy [see Bastard (1988) for additional details].
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solution of the double symmetric quantum well is given by Bastard

(1988) as
_2 p kY _ PR\
tan(kL) (k p> =7 (k + p>e (2.168)

where £ and p are the propagating decaying wave vectors, respectively.
The — and + signs are for the symmetric and asymmetric solutions,
respectively. This equation shows that as A is approaching infinity, there
is at least one eigenvalue in each of the isolated quantum wells. As A is
decreased to zero, the ground state evolves from the ground state in a
well of width L to a ground state in a well of width 2L.

Summary

The Schrodinger equation was constructed for several potential wells
and barriers including a step potential, single rectangular barrier, sin-
gle rectangular well, parabolic potential, single §-function, and double
3-functions. The quantized energy levels were derived for all these sys-
tems. The quantum transmission and reflection coefficients were de-
rived for a particle traveling with energy above or below the potential
barriers, bearing in mind that the sum of the two coefficients is unity.
One striking feature of the transmission coefficient of a particle with
an energy larger than the potential barrier is that the transmission
coefficient exhibits interference resonance. Finally, the transfer ma-
trix technique was introduced to derive the transmission coefficients
for more complex potential barrier systems, such as a double-barrier
potential.

The WKB semiclassical approximation was introduced to obtain the
quantized energy levels in an arbitrary smooth potential barrier. For
this approximation to work, the potential barriers should not exhibit a
large variation such as sharp corners or abrupt spatial variations. As
an example of how to apply this approximation, the energy levels in a
triangular quantum well, which commonly exists at semiconductor het-
erojunction interfaces, were derived and compared to the Airy function
solution. The energy levels of a simple harmonic oscillator were derived
for a single parabolic potential. In addition to the geometrically shaped
potentials, §-function potentials were also considered. The energy lev-
els for single and double identical §-function potentials were obtained
using graphical solutions.

The analysis and derivation of energy levels and transmission coeffi-
cients in this chapter were first presented for simple cases, such as the
step function and infinitely deep potentials. The derivation becomes
more complicated as the potential barriers and wells start taking on
complex structures, such as double barriers or double wells. For even
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further complex structures, the analysis can be obtained with the aid
of computer programs.

Problems

2.1 Derive an expression for the transmission coefficient for the potential bar-
rier shown in Fig. P2.1. Simplify your answer for the case of kga = nw, where
n is an even integer.

E>T,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
Vs
k
v, }
k] k2
x=0 x=a B}

Figure P2.1

2.2 Consider the potential well shown in Fig. P2.2. Derive an expression for
the energy levels in the potential well.

V:oo
Vo
E<V,
,,,,,,,,,,,, -
ki k3
ky
x=0 x=a -

Figure P2.2

2.3 Consider an infinite three-dimensional cubic potential well with a side a
where V (0) = 0for 0 < x < a and infinity everywhere else. Derive an expression
for the eigenvalues.

2.4 Consider the step potential barrier shown in Fig. 2.1 where an electron is
traveling from left to right with an energy of 2.0 eV and the potential height is
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2.2 eV. Determine the relative probability of finding the electron at 10 and 30
beyond the barrier.

2.5 Derive the normalization factor N, of the simple harmonic oscillator as
shown in Eq. (2.97).

2.6 Derive Egs. (2.59) and (2.60).

2.7 The eigenvalues of the Schrodinger equation for a finite well can be ob-
tained graphically as shown in Fig. 2.13. Start from the eigenfunctions shown
in Eq. (2.61) and use the boundary conditions at x = —L/2 and x = +L/2 to
derive Eq. (2.66).

2.8 For the WKB approximation to work the following inequality should be
valid: |&'(x)| < |£2(x)|. Show that if this condition holds, then A(x)|dp/dx| <
|p(x)| is true. Explain the meaning of your results.

2.9 Use the WKB approximation to derive an expression for the potential
Vix) = % Bx2, where g is a constant. Assume that 8 = mw?2, where m is the
mass of the oscillator. Compare your results to the simple harmonic oscillator
results shown in Sec. 2.7.

2n+1-—n

9 = m‘% forn < 0.

2.10 Derive the recursion formula: A,
2.11 Derive Eq. (2.90) from Eq. (2.87).

2.12 Derive the transmission coefficient for the step potential well shown in
Fig. 2.1 assuming that the particle is traveling from x = 400 to x = —oco with
energy E > V,.

2.13 Use the WKB approximation method to calculate the energy levels in
a spherical potential well with a radius R such as V(x) = 0 for x < R and
V(x) = oo for x > R. Compare your results to the results of Prob. 2.3 assuming
that the volume of the cube of side a is the same as the volume of the sphere
with radius R.

2.14 The §-function is very useful in solving many mathematical problems.
Show that the following properties of the §-function are true.

f(x)8(x) = f(0)8(x)
x8(x) =0

8(ax) = i5(96)
|a|

8(—x) = 8(x)



Chapter

Electronic Energy Levels in
Periodic Potentials

This chapter focuses on the discussion of quantum mechanics of a single
electron in a periodic potential. It is difficult to find such a system, but
the closest example is that of a free electron in a solid single crystal.
The free electron here means that there is only one electron in the
conduction band of the crystal. This simplistic example requires that
the atoms of the single crystal be perfectly arranged in a single lattice
and the electron-electron interactions be ignored. Such a one-electron
single-crystal approximation leads to a description of allowed electronic
energy levels in the crystal under the constraints of the Pauli exclusion
principle and Fermi-Dirac statistics. This approximation is actually the
foundation of most theoretical analyses of crystalline solids. Based on
this foundation, there are other approximations such as the absence
of imperfections in the single crystal, the tight-binding method, and
the effective mass approximation. For the one-electron single-crystal
approximation to work, the periodic potential must satisfy the following
relation assuming a one-dimensional crystal:

Vix)=V(x+ L) (3.1

where L is the period of the potential. The periodic potential could be
square-shaped, a §-function, or any arbitrary shape that repeats itself
in a periodic fashion and has the same periodicity of the lattice. The
Schrodinger equation of the one-electron single crystal can be written as

3%y (x)
92

If V(x) is a periodic function, then (2m/A?)[E, — V (x)] must be peri-
odic. A typical periodic potential is shown in Fig. 3.1. We plot a square

2
n {h—";[E _ V(x)]} W(x) =0 (3.2)

83
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J&)

o

o o

Figure 3.1 (@) Square periodic
potential wells and (b) a typi-
cal crystalline periodic potential
plotted along a line of ions. The
solid lines are the potential along
the line of ions, and the dashed
line is the potential along the line
between planes of ions.

(®)

periodic potential in Fig. 3.1a and a period potential due to a line of
atoms in a crystal in Fig. 3.15.

Independent electrons in a crystalline solid that each obeys a one-
dimensional Schrodinger equation with a periodic potential are com-
monly called Bloch electrons. A Bloch electron reduces to a free electron
when the periodic potential is zero. The discussion in this chapter starts
by introducing Bloch’s theorem. A simple model known as the Kronig-
Penney model will be presented in which the allowed and forbidden
energy bands are obtained for an electron in a periodic potential. The
discussion covers other approximations, such as a Bloch electron in a
weak periodic potential and an electron in a periodic §-function poten-
tial. Superlattice system will be briefly discussed as an example of a pe-
riodic structure. Additionally, the most widely used theories employed
to calculate the bandgaps of bulk semiconductor quantum structures
such as quantum wells and quantum dots will be briefly discussed.

3.1 Bloch’s Theorem

The Bloch theorem was derived in 1928 and was based on the nineteenth
century result of Floquet. This theorem states that the eigenstates of
the one-electron Hamiltonian in one dimension can be written as H =
—h2A/2m + V(x), where V(x + L) = V(x) and L is the period of the
periodic potential. The wave function can be chosen to have the form of
a plane wave e** times a function of periodicity ¢;(x) of the primitive
lattice cell such that

Y (x) = e gp(x) (3.3)
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where ¢ (x) satisfies the following condition:
or(x + L) = gp(x) (3.4)

The one-dimensional propagation vector k is introduced as a subscript.
Each k may have several eigenvalues. For the three-dimensional case,
x is replaced by r. By combining Egs. (3.3) and (3.4) we obtain

Yr(x 4+ L) = ™y (x) (3.5)

This equation states that the eigenstates of H can be chosen so that as-
sociated with each ¢ is a wavevector k£ such that the following condition
is satisfied for every L in the lattice:

V(x4 L) = ey (x) (3.6)

The proof of the Bloch theorem is left as an exercise. The Bloch theorem
is the key to answering many of the unresolved questions posed by
the free-electron theory and serves as the starting point for most of
the more detailed calculations of wave functions and energy levels in
crystalline solids including semiconductors and insulators.

3.2 The Kronig-Penney Model

Let us consider a periodic rectangular well potential as shown in
Fig. 3.1a. The Schrodinger equation for this periodic potential was
first solved by R. de L. Kronig and G. Penney in 1931, which led to
the well-known Kronig-Penny model. This model allows one to reach
an exact solution to the Schrodinger equation. While the model is a
crude approximation of real crystal potentials, it illustrates explicitly
most of the important characteristics of the quantum behavior of elec-
trons in real crystalline solids such as semiconductors. Using the one-
electron approximation, the wave function of the Schrodinger equation
can be obtained by assuming that the net force acting on the electron
is regarded as derivable from the periodic potential. The Schrodinger
equation has the familiar form given by Eq. (3.2). The periodic poten-
tial in this equation satisfies the following conditions: V(x) = 0 for
0 <x <aand V(x) =V, for —b < x < 0. Thus, the lattice constant can
be considered as L = a+b, which is the potential period. The wave func-
tions of the Schrodinger equation are given by Eq. (3.3). Substituting
the wave functions into the Schrodinger equation gives

82 eikx (pk(x)

i L {fi”; (E, - v<x>]}eikx @@ =0 G
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By performing the second derivative on e?** ¢(x), this equation can be
rewritten as

., dop(x)

32 (x)
2ik
x2 +a dx

- {kz — i—r; (E, — V(x)]} or(x) =0 (3.8)

The square periodic potential shown in Fig. 3.1a requires that two equa-
tions for ¢1(x) and gpo(x) be written such that

2

: :ialgx) + 2ik d(plg(cx) - (k2 - a2)<ﬂ1(x) =0 for0<x <a
2 i (3.9)
dx dx

where o? = 2mE, /h? and g2 = 2m(E, — V,)/h%. The solutions to these
two linear differential equations are taken as

wl(x) — Aei(a—k)x +Be—i(ot+k)x for0 <x <a
(3.10)
@o(x) = CelP=Rx | De=ilh+h)x  for _ph <x <0

where A, B,C, and D are arbitrary constants. Using the continuous
boundary conditions (i.e., the wave functions and their first derivatives
are continuous at the boundaries, at x = 0 and x = —b) one can obtain
the following four equations:

A+B=C+D
(la—kR)A—i(a+kR)B =i(B—k)C —i(B+Fk)D
ei(a—k)aA+ e—i(a+k)aB — e—i(ﬂ—k)bc + ei(ﬁ-‘rk)bD (3.11)
i(Ol _ k)ei(oz—k)aA _ l(a + k)e—i(a+k)aB — l(,B _ k)e—i(ﬂ—k)bC
—I,(ﬂ + k)ei(ﬂJrk)bD
Notice that the periodic function at x = a is the same as at x = —b. A
trivial solution of Eq. (3.11) would be toset A= B =C = D = 0. How-

ever, a nontrivial solution is to set the determinant of the coefficients
to zero such as the following:

1 1 -1 -1
ok ~(a+ ) ~(B— ) gk |,
eL(afk)a e*l(()t“rk)a _efl(ﬁfk)b _ez(/3+k)b =

(a — k)ei(a—k)a —(a +k)e—i(a+k)a _('3 _ k)e—i(ﬁ—k)b (,3 4 k)ei(ﬂ+k)b
(3.12)
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Using the determinant minor technique and very tedious algebra one

can reach the following well-known result:
—(a24 8% . .
T sin(aa) sin(Bbd) + cos(aa) cos(Bb) = cos(ka + kb) = cos(kL)
(0%

(3.13)

This equation is derived for the case where the electron energy E is
larger than the potential barrier height (E,, > V,). This means that
B2 is a positive real quantity. For the case where 0 < E,, < V,, 8 is a
pure imaginary number. By letting 8 = iy, we have 2 = —y2. From
the trigonometry relations, we have cos(ix) = cosh(x) and sin(ix) =
i sinh(x). Substitute these relations into Eq. (3.13) to obtain

—(Ol2 _ J/Z)

3 sin(aa) sinh(yb) + cos(aa) cosh(yb) = cos(ka + kb)
ay

=cos(kL) (3.14)

Additional approximations (see, for example, Kittle 1996) can be made
to Eq. (3.14). One of these approximations is based on the assumption
that the periodic square wells can be replaced by §-functions such that
the product of the width and height of the §-function remains finite.
Incorporating this simplified approximation reduces Eq. (3.14) to

P sin(oa)

+ cos(aa) = cos(ka + kb) = cos(kL) forE <V, (3.15)

where P = mbaV,/h%. The left-hand side of Eq. (3.15) is plotted as a
function of wa in Fig. 3.2. Notice that the function cos(k L) on the right-
hand side of Eq. (3.15) is always within the interval —1 < cos(kL) < +1
for all real values of £ L. For the nonzero imaginary part of 2L, we have
wave functions that diverge at +oo, which is not an acceptable solu-
tion for the one-electron approximation in a periodic potential. Thus,
there are ranges of energy in which no quantum states can exist. These
bands are shown as the shaded regions in Fig. 3.2. The unshaded bands
between +1 are the allowed energy bands in which energy states ex-
ist. Equation (3.15) is the dispersion relation, which gives the rela-
tion between the propagation vector £ and the energy E, for which the
Schrodinger equation has a solution.

To understand Fig. 3.2, one may consider the case where the potential
height is zero, which is the case of a free electron. Equation (3.15) is
then reduced to

cos(aa) = cos(kL) or a==Fk (3.16)

where E = E2K?2/(2m) is the free-electron energy, which is shown as the
dashed parabola in Fig. 3.3. Notice that the propagation vector for the
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(p/oa)sin(oa)+cos(oa)

1 L L] L] L] L] L] L L L) L
—Sn—4n -3n 2n -=r 0 n 2 3t 4n S¢m
o
Figure 3.2 A plot of the left-hand side of Eq. (3.15) with P =
10. The allowed energy bands are shown as the unshaded
bands for which the function lies between +1. The forbidden
bands are shown as the gray bands.
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Figure 3.3 The electron energy, E(k) versus k for both the Bloch
electron (segments) showing the allowed and forbidden bands
according to the Kronig-Penney model and the free-electron en-
ergy (dashed parabola).
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E(k)
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energy bands
Figure 3.4 Reduced-zone repre-
Forbidd, sentation of the allowed and for-
orowaaen bidden bands. The curve seg-
energy bands  ments of the Bloch electron
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k plane.
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free electron is written as K to distinguish it from the propagation vec-
tor £ of the Bloch electron. The solid segment lines in Fig. 3.3 represent
the allowed energy bands where the energy is a continuous function of
k. This figure illustrates the concept of allowed and forbidden bands in
solids such as semiconductor materials. Notice that % is continuous in
the allowed band. The discontinuities at ns/a in Fig. 3.3, where n is a
positive or negative integer, show where Bragg reflections take place.
At these places, the slope of the E (%) should be zero. The Bloch electron
energy bands can be presented by folding the curve segment as shown
in Fig. 3.4. This is called a reduced-zone representation. To understand
this representation, let us consider the right-hand side of Eq. (3.15)
which is a periodic function and satisfies the following condition:

cos(kL) = cos(kL + 2nm) = cos(kRL — 2nm) (3.17)

where n is a positive integer. This equation is still satisfied by adding
or subtracting 2nm from the cosine argument; hence, one can displace
the curve segments as shown in the figure.

3.3 Bloch Electron in a Weak Periodic
Potential

There are two fundamental reasons why the strong interactions of the
conduction electrons with each other in solids and with the positive
ions can have the net effect of a very weak potential (see, for exam-
ple, Ashcroft and Mermin 1976). First, the electron-ion interaction is
strongest at small separations, but the conduction electrons (by the



90 Chapter Three

Pauli principle) are forbidden from entering the immediate neighbor-
hood of the ions because this region is already occupied by the core
electrons. Second, in the region in which the conduction electrons are al-
lowed, their mobility further diminishes the net potential on any single
electron, for they can screen the fields of positively charged ions, dimin-
ishing the total effective potential. Thus the one-electron approximation
in a weak periodic potential has extensive practical applications.

The Bloch wave function, with a crystal momentum, of an electron
can be written as

Yi(r) =) Cr e 0" (3.18)
K

where Kk is the crystal momentum of the electron, or simply the prop-
agation vector of the electron in a periodic potential, and |[K| = 27 /a,
where a is the lattice constant. K is thus known as the reciprocal lattice
vector. The coefficients Cx_g and the energy E can be determined from
solving the Schrodinger equation using the wave function described in
Eq. (3.18), which gives

Cx_x + Z CrxVrk-xk=0 (3.19)

h2
[2(1; -K?-E
m K

where Vg _x is the Fourier transform of the periodic potential V(x).
Equation (3.19) is sometimes called the central equation. For the free-
electron case, Vk_xk is zero and Eq. (3.19) is reduced to

(B x—E)Crx=0 (3.20)

where E} = (A%/2m)(k — K)2. When Vk _x is not zero, but very small,
the analysis can be made for degenerate and nondegenerate cases of
free electrons. These two cases are discussed in more detail by Ashcroft
and Mermin (1976). For our purpose here, we will consider the energy
levels near a single Bragg plane discussed in the Kronig-Penney model.
Let us assume that two free electrons are within an order of V of each
other, but far from all other electrons. Equation (3.19) is then reduced
to a set of two equations:

(E — Eﬁ_K1>Ck7K1 = Ckal VKz*Kl

(3.21)
(E - Elsz2>Ck*K2 = Ck*Kl VKl*Kz

where E},_g is as previously defined. Since there are only two electrons

with two energy levels, i.e., a two-energy-level problem, the following

notations are introduced: K= Ks— K; and q =k — Kj. Hence, Eq. (3.21)
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is simplified as
E - E2)Cq=CqxV
(E = Eq)Cq = CaxVi (3.22)
(E - EZ—K)C(I*K =CqV.k =CqVg

Since we assumed that there is only a single Bragg plane, Eq. (3.22)
has solutions only if the determinant of the coefficient is zero such that

E-E —-Vk
. 4 o |=0 (3.23)
’—VK E-E; g
which leads to a quadratic solution
(E - E})(E - E{_g) = |VkI? (3.24)

with the following roots:

1 o o 1 [ [ 2
E=g(Eq+Byx)+ \/g (Eq-Eo x) +1Vil>  (3.25)

Equation (3.25) shows the effect of the weak periodic potential on the
nearly free electron eigenvalues Eq and EY_g when q is very close to the
Bragg plane, determined by K as shown in Fig. 3.5. When the electrons
possess energy close to the Bragg plane, we have Eg = EZ—K’ which
reduces Eq. (3.25) to

E = E} £ |Vg| (3.26)

This relation shows that at the Bragg plane one level is raised by |Vk|
and the other is lowered by the same amount. The result is shown in
Fig. 3.6. Another important result is that if Eq = E{ g, then

dE  h* 1
— = - -K 3.27

iqg m (q 2 ) (5.2
From Fig. 3.6 and Eq. (3.27) one can conclude that if q is on the Bragg

plane, then the gradient of E is parallel to the plane. Since from a math-
ematical point of view the gradient is perpendicular to the surfaces on

Figure 3.5 Bragg plane is defined
by K. If a point q is defined on the
plane, then q — K/2 is parallel to
the plane.
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AE

2{¥% |

Figure 3.6 Plot of the energy
bands given by Eq. (3.25) for q
parallel to K. The lower band cor-
responds to the minus sign, and
the upper band corresponds to
the plus sign in the equation. The
dotted line represents the free-
electron energy.

A 4

which a function is constant, the constant energy surfaces at the Bragg
plane are perpendicular to the plane. This conclusion is mostly valid
at high-symmetry points in the Brillouin zones, and it is illustrated in
Figs. 3.3, 3.4, and 3.6.

The wave functions for the case presented in Eq. (3.26) can be writ-
ten (see Ashcroft and Mermin 1976) for electrons in a weak periodic
potential as

a
%

N = N N[
=
'1
~ ~—
[V}

Q
o
7]

n
-
B
—~

forE:Ef1+|VK|,VK>O

fOI‘EZEg—|VK|,VK>O

[ (r)? (3.28)

o
]

sin forE:Efl+|VK|,VK<O

1 2
cos(QK-r) forE:Efl—lVK|,VK<O

Sometimes the two types of linear combination for Vi < 0 are called
“p-like” [|(r)|? o« sin(3K - r)?] and “s-like” [|y/(r)|? o cos(1K - r)?] wave
functions. The s-like combination does not vanish at the ion, while in
the p-like combination the charge density vanishes as the square of the
distance from the ion for small distances.
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3.4 One-Electron Approximationin a
Periodic Dirac 6-functions

It was mentioned in Sec. 3.2 that the Kronig-Penney model can be sim-
plified by assuming that the periodic potential can be approximated as
S-functions with a finite product of the width and height. In fact, this
assumption is quite feasible since the atoms in single crystals can be
considered as periodic §-function potentials in many theoretical mod-
els. This problem is treated by Mihaly and Martin (1996). Let us as-
sume that the atoms are arranged in a one-dimensional crystal with
a lattice constant of a. Each atom is thus represented by the potential
V(x) = aV,8(x) where V, is the height of the §-function. Assume that
the atoms are placed at x = na where n is an integer. The Schrodinger
equation between the atoms for the range 0 < x < a is

_ B2 dPy)
2m dx2

= Ey(x) (3.29)

and the wave function is
Y(x) = Ae'K* 4 Be'K* (3.30)

where K = \/2mE /h2. For the wave function in the full range —oco <
x < + 00, the Bloch wave function, Eq. (3.3), will be adopted and com-
bined with Eq. (3.30) to give

Y(x) = Ae'K* 4 Be iKx= oih¥ . (x) (3.31a)
op(x) = AeERx Be Ktk forO0<x <a (8.31d)

where ¢ (x) is a periodic function and can be generated for the whole
crystal by setting x = na. This function is continuous, but its derivative
is not, as shown in Sec. 2.8. The jump (discontinuity) in the derivative
of the §-function can be found by integrating the Schrodinger equation
over a small range around a such thata — ¢ <x <a + &:

V() mgre = V() —qe (3.32a)
d d 2maV,
alﬁ(x) s — aw(x) o =z Yia) (3.32b)

Since ¢ (x) is periodic, then ¢;(0) = ¢r(a), which in the limit of ¢ — 0
leads to

A—I—B — Aei(ka)a + Be*i(K+k)a (333)

The derivative of the Bloch wave function gives

dor(x)

dx (3.34)

%W(x) =ik eikx (Pk(x) +eikx



94 Chapter Three

Combining Eqs. (3.32b) and (3.34), we have

ikate) % o _ pikla—e) % o _ 2mTaQVoeika¢k(x)
or (3.35)
dor(x) dop(x) 2maV,
& |, dx |- nz O

By using the explicit form of ¢;(x) in Eq. (3.31a), the first derivative
yields
dor(x)
dx
Combining Egs. (3.35) and (3.36) to obtain

i(K—k)A—i(K+Ek)B —i(K —k)Ae"E—Pa 4 i(K 4 k)Be Ktk

. 2maV,

=3 (A+B) (3.37)

= i(K — k) A" KM% — (K 4 k)Be /K +hx (3.36)

One can now solve Eqs. (3.33) and (3.37) such that

1— ei(K—k)a 1— e—i(K+k)a A
l:i(K — k)1 - ei(K—k)a) —y (K +E)1— e—i(K+k)a) _ )/] <B ) =0
(3.38)

where y = 2maV, /k?. For a nontrivial solution, the determinant of the
coefficient should be zero:

1— ei(K—k)a 1— e—i(K+k)a
i(K —k)(1—elKhay ) j(K+k)1—e

—i(Kth)ay _ ’ =0 (3.39)

With simple algebra, the determinant gives the following solution:

ma?V, sin(Ka)
k2 Ka
which is the same form obtained for the Kronig-Penney model as illus-
trated in Eq. (3.15). The plot of this equation is similar to the plot shown
in Fig. 3.2. Equation (3.40) is derived for V, > 0, where E = A2K?%/(2m),
but when V,, < 0, we have negative energy. For this reason we can define
K =ip, which gives E = —h2p?/(2m), and Eq. (3.40) is changed to

cos(ka) = + cos(Ka) (3.40)

ma?V, sinh(pa)

2 P + cosh(pa) (3.41)

cos(ka) =

The graphical solution of Eq. (3.41) shows that at least one bound state
exists for V, < 0. The proof of this case is left as an exercise.
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[ Figure 3.7 A segment of the po-
i tential energy profile of a su-
'Vb I 1 perlattice plotted along the z
| direction.
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3.5 Superlattices

A semiconductor superlattice is a periodic structure that can be used
to illustrate the behavior of a periodic potential. This class of systems
is composed of a number of semiconductor quantum wells of thickness
L separated by barriers of thickness & as shown in Fig. 3.7. Generally
speaking, the number of periods ranges between 10 and 50, but for the
analysis here we assume that the number of periods is approaching
infinity. The superlattice here means that the quantum wells are close
to each other such that an electron can tunnel through the barriers
and exists in any of the wells with a nonzero probability. The potential
energy V(z) is a periodic function of z, where z is the growth direction,
with a period of d = L + h. Thus it can be written as

+00
V(i)=Y Vi(z—nd) (3.42)
where
~Vy  iflz—nd| < g
V(z—nd) = 3 (3.43)

Following Bastard formalisms, the form of the wave function solutions
can be chosen as

¥(2)
Agitle—nd) | Bo=ik@=nd) for the well, i.e. |z —nd| <

= . . d h
CeiPlz—nd—d/2) | De-ipe-—nd—d/2) for the barrier, i.e., |z — nd — 2‘ =5

(3.44)
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where k& is the propagation vector in the well and p is the propagation
vector in the barrier. Vectors £ and p are related through the energy
hZ p2 hZ k2
= =—Vp+
2m* 2m*
The parameter m* is the effective mass of the electron in the super-
lattice. Since the potential function of the superlattice is periodic, the
wave function expressed in Eq. (3.44) must satisfy the Bloch theorem
such that v,(z + nd) = 4(2), where we introduced the subscript g to
indicate the function is a Bloch function. Again, the g-space is called the
reciprocal or momentum space. Thus, the solution of the Schrodinger
equation can be limited to the first Brillouin zone (see Ashcroft and
Mermin 1976 or Kittel 1996 for further discussions on the Brillouin
zones). The continuity conditions at the interfaces labeled I and II in
Fig. 3.7 give the following results for the case of E > 0:

(3.45)

eikL/2A+ e—ikL/ZB — e—iph/ZC +eiph/2D
keikL/ZA _ kefikL/ZB — pefiph/ZC _ peiph/QD
ei(qu)L/ZA + efi(kJrq)L/ZB — e*i(pfq)h/QC + ei(p+q)h/2D
(k — q)ei(qu)L/ZA_ (k + q)efi(k+q)L/2B — (:3 _ k)efi(pfq)h/2

C—(p+ q)ei(p+q)h/2D
(3.46)

We used the Bloch theorem at interface II in a fashion similar to that
of the Kronig-Penney model discussed in Sec. 3.2. To solve these four
equations with four unknowns, we rely on the determinant method,
which gives

ik L/2 e—ikL/2 _e—irh/2 _eirh/2
keikl‘/2 —ke_ikL/z _pe—iph/2 pei/)h/Z —0
ez(k—q)L/Z e*t(k +q)L/2 7e*l(p*q)h/2 7ei(,u+q)h/2 -
(k — q)ei(k—q)L/Z —(k+ q)e—i(k+q)L/2 —(ﬂ _ k)e—i(pfq)h/Z (P 4 q)ei(erq)h/Z

(3.47)
The solution of the determinant is similar to that of Eq. (3.13), which
yields
—(k2+ p?

ko sin(k L) sin(ph) + cos(kL) cos(ph) = cos(gL + gh) = cos(qd)

(3.48)
Similarly, for —V;, < E < 0 we have

_(kz _ 7/2)

%y sin(k L) sinh(yh) + cos(k L) cosh(yh) = cos(qL + gh) = cos(qd)

(3.49)
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where p = iy. For the case where A is very large, Eq. (3.49) diverges

unless the multiplication coefficients were set to zero such that

k2 _ yz
2ky

cos(kL) — sin(kL) =0 (3.50)

The form of this equation is familiar to us; it is the solution of isolated
quantum wells (see Chap. 2).

Equation (3.49) tells us that the energy is a strong function of y.
However, in order to obtain approximate subband energy, one may use
the Taylor’s series to expand the left-hand side of Eq. (3.49). Thus, let
F (E) be the left-hand side of this equation, expanding this function
around E for the jth subband such that E — E; is very small, we obtain

oF (E)
oE

F(E)= F(E)|g_g, + (E—E;)+ (3.51)

E=E;

Retaining only the first-order terms, we have

F(E)|g-g, F(E)
E(q)zEj— OF (B) oF (E) (3.52)
E |p_g, E |p_g,

Since the right-hand side of Eq. (3.49) is equal to the left-hand side, i.e.,
F (E) = cos(qd), then we can write Eq. (3.52) as

Ej(@) =E; +S; + 2T, cos(qd) (3.53)
where
F(E)|E=Ej 1
i=arm) ™ isarmp o O
OE |p_g, IE  |g_g,

A typical plot of the energy band is shown in Fig. 3.8, where the band-
width is 47;. The parameters S; and 7, defined in Eq. (3.54) can be

E(g)

Figure 3.8 A plot of the energy
band [Eq. (3.53)] as a function of
the crystal momentum ¢q for a su-
perlattice of period d is shown for
the first Brillouin zone.

-n/d 0 n/d
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evaluated by assuming that the wave functions satisfy the Bloch the-
orem, and by considering the nearest-neighbor interactions. The final
results are given as

T, ={j,zI V2 |j,z—d) (8.55)
and
Sj=> (2 Viz—nd)|j,z2) (3.56)
n#0

3.6 Effective Mass

When the periodic potential is zero, we have a free electron with mass
m. But when the periodic potential is nonzero, the electron will move in
the periodic crystal with a different mass known as the “effective mass.”
It is usually denoted as m*. To obtain an expression for the effective
mass, one can start from the free-electron case and work the problem by
exerting a force on the electron. We know from previous discussions that
the energy of a free electron can be written as E = Aw = A%k?/(2m). By
using the duality concept, the wave packet of the electron is assumed to
be moving with a group velocity v, = dw/dk. When a force F is applied
to an electron, the electron is accelerated and the motion of the electron
is given by the classical relation

% _Foy, (3.57)

On the other hand, if the energy band of the electron E (k) is peaking at
k,, then one can expand E(k) about k,, assuming that k is very close
to ko. The linear term in (k — k) vanishes at k = k, and the quadratic
term will be proportional to (k—k,)? according to the following relation,
where Kk, is assumed to be a point of high symmetry:

Ek) ~ E(k,) + Ak — k,)? (3.58)

where A is a positive quantity since E is maximum at k,. It is obvious
that one can easily guess that A = £2/(2m*). Furthermore, for energy
levels with wavevectors near k,, we have

o — 10E Ak —ko)
" hok  m
The acceleration « of the electron in the applied force is thus given by

_dvy, hdk 1dhk 1dp 1
= T d e &t —mdt —m (360

(3.59)
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Furthermore, the first derivative of the group velocity with respect to
time can be expressed as

dvg 100E 103 0E 19 10 10E 1 3%E
—=-———=-——=-=—F.vy,=——-—F= —2—2F
9t hotok Kok o h ok ok’ ok 2 ok
(3.61)
By equating Egs. (3.60) and (3.61) one can find that
. (182E\"
m* = (ﬁﬁ) (3.62)
which can be written in the tensor form as
1 9%E 1
-1 9 Vi, E (3.63)

i _}?akiak ﬁz k

M1 is called the inverse of the effective mass tensor. This derivation
is made for the electron in the conduction band. The same procedure
could be followed for the hole in the valence band, and the result is
similar to Eq. (3.63) except the mass tensor has a minus sign from the
second derivative of the energy. From Eq. (3.63), one can conclude that
the curvature of the energy band is proportional to the inverse effective
mass tensor. This means that the smaller the effect mass, the larger
the band curvature.

3.7 Band Structure Calculation Methods

This section is concerned with the most common theoretical models
used to calculate the band structure of semiconductors, quantum wells,
and quantum dots. A brief discussion is presented for the tight-binding
method, the Kane theory also known as k- p theory, and the envelop
function approximation. The theoretical presentation here is very gen-
eral, and in most cases we simply show the results without going through
the derivation, which can be very extensive and complicated.

3.7.1 Tight-binding method

The calculation of energy bands in solids is a very difficult task, and as
mentioned in previous sections, there are many approximations that
one has to take into account to obtain reasonable answers. In addi-
tion to the approximation, discussed in the previous sections, there are
many other methods that are used to calculate the dispersion relation
E (k) in solids. Instead of considering a one-electron approximation in a
weak periodic potential where the energy of the electrons is perturbed
slightly, one may consider the electron-ion interaction to be very strong
such that the electron is localized and tightly bound to the positive ion.
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This approximation is called the tight-binding method, where the elec-
tron wave function is expanded in a series of functions that are localized
about the atoms in the crystal. Thus, if one takes a linear combination
of Bloch functions for one atom per unit cell, the resulting function is
called the Wannier function defined as

wa(r —R) = N712Y " e Ry, (r) (3.64)
K

where N is the number of atoms in the crystal and R is the interatomic
separation within the unit cell. Substitute the Bloch function Eq. (3.3)
in the Wannier function to obtain

wn(r _ R) — N71/2 Z efik-ReikT(pnk(r)
K

_ N1 Z ek TRy (r _R) (3.65)
K

If ¢,x is periodic and independent of k as is the case for a cubic lattice,
we have ¢, (r — R) = ¢k (r) = ¢,0(r) and Eq. (3.65) becomes

wa(r —R) = N 20,(r) Y "R
K

sin[r(r — R)/al

_ ar—1/2
=N ‘pnO(r) (r — R)/a

(3.66)

where a is the lattice constant. This equation is identical to the func-
tion f(x) = sin(x)/x, which is a localized function with a maximum at
x = 0 and decays in an oscillatory fashion as x — +o00. The expression
sin(x)/x is plotted as a function of x in Fig. 3.9 to illustrate the localiza-
tion of the Wannier wave function near an atom in a single crystal. The
Wannier functions, while useful for producing localized wave functions
at the lattice sites, are limited in the energy band calculations.

sin(x)/x

Figure 3.9 The expression sin(x)/x
is plotted as a function of x to il-

X lustrate how the Wannier function
is localized around the ions in the
crystal.
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The first-order energy can be obtained (see Kittle 1996) by calculating
the diagonal matrix element of the Hamiltonian of the crystal

(k[H[k) = N> > "™ (g, Hig;) (3.67)
Jj m

where ¢,, = ¢n(r — r;). By letting R,, = r,, — r; this equation can be
rewritten as

(kH|k) = N1 Z e U Rn / dV ¢*(r — Ry,)Ho(r) (3.68)

By neglecting all the integrals in Eq. (3.68) except for those on the same
atom and those between the nearest neighbor connected by R, we have

(kHK) = —a —y > e = E(k) (3.69)

where

o= —/dV ¢*(r)Hop(r)
and (3.70)
y = —/dV ¢*(r — Ry Hop(r)
The overlap integral y can be evaluated in Rydberg (Ry= me*/2k2) for
two hydrogen atoms in the 1s state as y = 2(1 + R/a,)e £/®, where
a, = h%/me?. The overlap integral indicates that the overlap energy is
decreasing exponentially with the interatomic separation R. For a cubic

case where the atomic s-level as an example is given by «, the energy
is given by

E(k) = —a — 2y(cos kya + cos kya + cos k,a) (3.71)

For the case where ka « 1, Eq. (3.71) is reduced to
E(k) = —a — 6y + yk2d® (3.72)
By using the definition of the effective mass (3.63), one can obtain
m* = h%/2ya?. Thus, for a smaller energy overlap, we have a larger

effective mass and a narrower energy band. For a body-centered cubic
(bce) structure with eight nearest neighbors we have

1 1 1
E(k) = —a — 8y cos ikxa cos gkya cos §kza (8.73)
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and for the face-centered cubic (fce) structure with 12 nearest neighbor
we have

1 1 1 1
E(R) = —a—4y (cos Ekya cos §kza + cos Ekza cos ikxa
1 1
+ cos Qkxa cos Ekya> (3.74)

For ka « 1, Eq. (3.73) is reduced to E(k) = —a — 12y + yk2%a®. Equa-
tions (3.72) to (3.74) reveal the characteristic feature of tight-binding
energy bands, where the bandwidth (the spread between the minimum
and maximum energies in the band) is proportional to the small over-
lap integral y. The narrower the bands, the smaller the overlap, and
in the limit of vanishing overlap, the bandwidth also vanishes and the
band becomes N-fold degenerate. This implies that the electron be-
comes bound to any one of the N isolated atoms.

3.7.2 k. p method

The advantage of using the k- p method is that the optical matrix el-
ements can be used as inputs in the band structure calculations. With
this method the calculations are made near k = 0 (the first Brillouin
zone center), but it can be extrapolated over the entire Brillouin zone.
Interpretation of the optical measurements, analytical expressions for
band dispersion, and effective masses can all be easily obtained around
high-symmetry points in the Brillouin zone. Before continuing the dis-
cussion, it is worth pointing out a few important aspects of the symme-
try points in the Brillouin zone. Group theory has been used extensively
in investigating crystalline materials, and there are several textbooks
on the subject (see, for example, Falicov 1966 and Koster 1957). In this
chapter we limit our discussion on the zine-blende structure, which is a
fce structure. Figure 3.10a is a sketch of the first Brillouin zone showing
a few of the high-symmetry points. For example, the [100] direction is
I' > A — X, the [110] directionisT" — ¥ — K, and the [111] direction
is ' - A — L. Each atom in the Brillouin zone has tetrahedral point
group symmetry, denoted T'; . The point group symmetry is defined with
respect to the three perpendicular crystallographic axes with the origin
placed at one of the two atoms in the primitive unit cell. This symmetry
has 24 operations commonly known as follows:

E. Identity

Cs operations. Clockwise and counterclockwise rotation of 120° about
the following axes: [111], [111], [111], and [111] axes (total of eight
operations).
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Figure 3.10 (a) A sketch of the first Brillouin zone of a face-centered cubic struc-
ture with a few high-symmetry points as indicated by the letters. () The band
structure of nearly free electrons in a zinc-blende-type crystal in the reduced zone
scheme. (After Yu and Cardona 2003).

Cs operations. Rotations of 180° about the [100], [010], and [001] axes
(total of three operations).

S4 operations. Clockwise and counterclockwise rotations of 90° fol-
lowed by a reflection on the plane perpendicular to the rotation about
the [100], [010], and [001] axes (total of six operations).

S operations. Reflections with respect to the (110), (110), (101),
(101), (011), and (011) planes (total of six operations).

Another notation of the irreducible Ty group is I'y, I'e, I's, 'y, and
I's, which is mostly known in semiconductor physics. This notation is
reached by the fact that the wave function of a wavevector k at the I'
point in the Brillouin zone (the center of the zone) always transforms
like the irreducible representation of the point group of the crystal. Us-
ing these group theory notations, Yu and Cardona (2003) constructed
the nearly free electron band structure in a zinc-blende crystal assum-
ing that the crystal potential is vanishingly small as shown in Fig.
3.106. This figure resembles in many ways the band structures obtained
by more complex theory such as k- p and pseudopotential methods. A
generic band structure for GaAs is sketched in Fig. 3.11 showing the
point group symmetries at L, I', K and X extrema in the first Brillouin
zone.
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Figure 3.11 A generic energy band structure of GaAs
plotted as function of a wavevector. The point group sym-
metries at L, ", and X points in the first Brillouin zone
are shown.

The k- p method is an approximation method that is most valid in
the vicinity of the band extrema of electrons and holes in single-crystal
solids such as semiconductors. This method can be derived from the
one-electron Schrodinger equation using Bloch wave functions in the re-
duced zone scheme. The wave function for an extrema at the wavevector
k, can be written as

llfnk(r) — ezk-runk(r) — elk-rezko~re—zko-runk(r)

— eik,)«rei(kfk(,)munk(r)

_ eiko.reiAk-runko+Ak(r) (3.75)

where Ak = k — k. Substitute the wave function into the Schrodinger
equation

2
[2p ;t V(r)}wnk(r) = Epcnk(r) (3.76)
m
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where p = —iAV is the momentum operator and V(r) is the periodic
potential, to obtain

2 pk,- AAk- h2(k, + AKk)?
p- P, P (k, + Ak)

P + V()| Unk,+ak(T)
2m m m 2m

= E ik, +aklUnk,+ak(T) (38.77)

The subscript n indicates the energy level of interest. If one assumes
that the wave functions u,k,(r) and the eigenvalues E,, are solved for
the case of k = k,, the term involving Ak can be treated as a pertur-
bation term. Additionally, the terms %%k,-Ak/m and h2(AK)2/2m are
constants and can be combined withE,y . If the energy E,x has an ex-
trema at k = k,, the terms linear in Ak must vanish due to the fact
that the first derivative of the energy is zero at the extrema. Putting
all these together, Eq. (3.77) can be reduced to

2 hk- h2Kk?2
P’ hkp

+ V(r) | umx(r) = E ki (r) (3.78)
2m m 2m

Notice, that we replaced k, + Ak with k in Eq. (3.78).

For a nondegenerate band such as the conduction band (I'; symme-
try), one can obtain the effective mass as follows. Using standard nonde-
generate perturbation theory, the wave function u,; and the eigenval-
ues E i can be expanded to second-order k in terms of the unperturbed
wave functions u,x, and eigenvalues E,x_ such as

Unk = Unk, + ’%,;n wg';”k'j{_%ilf”) Uk, (3.79)
and
On the other hand, Eq. (3.80) is usually expressed as
Enx = En, + h;:z (3.81)

where m* is defined as the effective mass of the band. It is thus clear
from Egs. (3.80) and (3.81) that the effective mass can be written as

1 1 2 |(unk, K- Pk, )2
= ° ° 3.82
m*  m + m2k? = E.x, — Eyx, ( :
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This equation shows that the electron mass in a period potential is dif-
ferent from that of the free electron due to the coupling of electronic
states in different bands through the k- p term. The matrix elements
(nk, |Plunk,) are nonzero for the conduction band of symmetry I'; and
the valence band of symmetry I'y of zinc-blende structures such as
GaAs. Equation (3.82) also shows that the energy separation (E,x, —
E,x,) between the two bands nand n’ determine the relative importance
of the contribution of 7’ to the effective mass of n. Thus, if E,x, > E,x,,
the n’ bands will contribute a positive term to 1/m* as is the case for
the conduction band in zinc-blende structures and if E,x, < E,x,, the
n’ bands will contribute a negative term to 1/m* as is the case for the
top of the valence bands.

The effective mass in the conduction band in direct semiconductors
is determined mainly by the coupling of the I'; conduction band and the
I’y valence band via the k - p term as follows:

1 1 2{(Tilk-pITa)

— 3.83
my  m, m2k2E, (3.83)

where m} = conduction band effective mass
m, = free-electron mass
I'1e = I'1 conduction band
'y = I'4 valence band
E; =E,x, — E,x, = band gap

Moreover, it is customary to represent I'y wave functions as |X), |Y),
and |Z). From the Ty symmetry, it can be shown that the only nonzero
elements of (' | k-p|Ty) are

(X1p«IT1) = (Y |pyIT1) = (Z|p.IT1) =iP (3.84)

Substituting Eq. (3.84) into (3.83), one can write the effective mass as
2

Mo 14 28 (3.85)
m¥ moEg

It was found that 2P2/m, ~20 eV since P for most zinc-blende semi-
conductors is close to those calculated for the nearly free electron P =
2rh/a,. The bandgap E, is typically less than 2 eV, which leads to
2P%/(m,Eg) > 1, and Eq. (3.85) is reduced to

m, _ 2P?

m;  moEg
For GaAs, E; = 1.52 eV at 4.2 K, and this gives m} ~ 0.076m,. This
value is in good agreement with the effective mass of 0.067m, measured
by cyclotron resonance technique.

(3.86)
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The analysis is more complicated for degenerate bands such as the
top of the valence band in zinc-blende semiconductors. To apply the k - p
method to calculate the dispersion near the top of the valence band in
direct zinc-blende semiconductors, one needs to consider the highest I'y
valence band at the center of the Brillouin zone. The wave functions of
the valence bands are p-like and are denoted by |X), |Y ), and |Z). The
electron spin is 3, and the wave functions are denoted by 1 and | for
spin-up and spin- down respectively. For semiconductors with heavier
atoms such as Ga, As, and Sb, one expects that spin-orbit coupling to
be significant, and it must be included in the unperturbed Hamilto-
nian (Hy,) for states near k = 0. This spin-orbit Hamiltonian can be
written as

Hy, =211s (3.87)

where A = spin-orbit coupling constant
I = angular momentum
S = spin

The total angular momentum can be defined as j = I + s and the z-
component of j is m; = £j,£(j — 1), ... The wave functions of j and
m; are expressed as linear combinations of the wave functions of the
orbital angular momentum and spin 4 and | as follows:

=111
= (L) | +v21,00 1)

~— ~—

NI STV

1 1
, —g>=ﬁ(|l,— )+ +/2(1,0) 1)
lJm;) = (3.88)
! = =11,-1

v 3) = 2505001 = v2(1,1) )
,—3)=201,0) ) - v2/1,-1)

DN NM—‘ DNojCo Do l\')IOD M\CAJ

The p-like I'y states in a zinc-blende crystal can be compared to the
atomic p-wave functions to define the “/ = 1”-like state such as

11,1) = —(1X) +iY))/vV2
[1,0) = |Z) (3.89)
11, -1) = (1X) —i]Y)/v2
where the j = % and j = % states can be obtained by substituting
Eq. (3.89) into (3.88).
The nonzero momentum matrix elements due to coupling I'ycand Iy,
are given by Eq. (3.84), while the nonzero matrix elements between I'y,
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and the sixfold degenerate I'y. band states are

(X Py IT4c(2)) = (Y| P: [Tac(x)) = (Z] px ITace(y)) = 1Q
(3.90)
(X1P: IT4c(y)) = (Y [ Px IT4e(2)) = (Z] Py [Tae(x)) = iQ

where |X),|Y), and |Z), as mentioned earlier, are the wave functions
for Iy,.

The effective Hamiltonian can now be obtained by calculating the
6 x 6 matrix elements from the following relation:

Hi H
=Hj+ 3 5 e (3.91)
k#Ty,

To simplify the notation, the six I'y, wave functions can be written as
$1 =13/2,3/2) ¢2 =13/2,1/2)
g5 =13/2,-1/2) ¢4 =13/2,-3/2) (3.92)

b5 =11/2,1/2) b6 =11/2,-1/2)

and the doubly degenerate 'y, and sixfold degenerate I'y. conduction
band wave functions as ¢7 to ¢14. The H{; can be calculated as follows:

2
, h%Kk2? ﬁk-p h2Kk? hk p 1
Hiy = (ol 5 —+ = - >+;‘<¢1| e 90 B g,
_ h?K? Ek-p |
— )| —
= om, +(¢1| |¢>1) <’(¢1| . IT1c) E,
fik- 21
- (‘«m Pirg) —/> (3.93)
m, E;
where E, is the bandgap between I’lc and the j = valence band, E|
is the bandgap between I'y. and j = valence band and
hk-p 21 | P
(‘(¢1| m IT1e) E_o> —EL(kx-l-ky)
(3.94)

2 1 1 2 2 2
7 | = Mkl + Ry +2k)

hk-
(‘(qm mop IFee)| 3

o<
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Here, the following terms are introduced for simplicity:

—h,ZPZ
L= m2E,
—th2
M= g,
—h,ZPz
L= e e, a0
—ﬁ2Q2
M = &, 1 Ay
The final result forHy, is
R’k 1,,
= — 4 = MFE? .
n= g +3 (k2 +k2) + ME; (3.96)

Similar procedures can be used to obtain the rest of the matrix elements.
These matrix elements are as follows:

N
H, = —(kk, —ik,k,)
12 Jg y
Hy, =0
Hie = ‘/§Hi3
Hys =0
H/ _ L(H, H/ )
25 = /2 22 11
Hés = Héz
Hy; = —(Hjg)"
Hi4 = Hﬁ
Hys = —(Hip)"

Hge =0

1
Hiy=—=[(L—M)(k% k%) —2iNk.k
=5 LMK y
o - LH,
15 — «/E 12
A2k? 1
H) = —— + =(M + 2L)k>
292 2m0 + 3( + )
1
—5(L- M) (k2 + k2)
H2/4 = His
, 3., (3.97)
H26 = \/;le
H§4 = —H{2
Hée = H2,5
Hys = —\/E(His)*
A2k2 1
’ _ - - 2M/ L/ k2
5% = oo + 3 [( + L)
1
——(L-M)| - A,
L)
Hée = Hé5
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The matrix {Hi’j} is hermitian, which means Hi’j = [H ]/.i]*, and the
matrix can be written as

rHy Hj, Hi, 0 Hi; Hig 1
* 1 ’ 3
(Hiz) Hz/z 0 H{3 \/;(H22 - Hh) \/gHiz
(His)* 0 Héz _Hi2 _(HZ/G)* H2/5
H.. =
v o (H}y)* CHp' Hy  VEHR —H»
Hig* W/ §Hy, - HY!  —Hy)  —V2H] Hgg 0
[ GFHR ) -y 0 Hy
(3.98)

This matrix can be diagonalized with some approximation, such as for
small k, the matrix elements H{;, H{4, and H,; are zero and by limiting
the eigenvalues to k? terms only, the 6 x 6 matrix reduces to 4 x 4 and
2 x 2 matrices.

The 2 x 2 matrix gives the doubly degenerate j = %F7 band as

Rk 1 P |
ESO—H55—2”LO+3|:(2M +L)k _2(L_M):|_AO
h2k? 2 P2 Q?
A XYy 2 3.99
+2m0{ 3| m (B, + 00 | m(EL+ Ay } (3:99)

which yields a constant spherical surface for the spin-orbit valence band
and an effective mass given by

mo _ 4 2 p2 N Q>
mo(Eo + Ay)  mo(E, + A,)

- — 3.100
p—— 3 ( )

The dispersion for the j = % bands was first obtained by Dresselhaus
et al. (1955) by diagonalizing the following 4 x 4 matrix:

Hy, H,  Hy 0
Hj,* Hy 0 H;

m = | Hn / 13 (3.101)
(HIS) 0 H22 _H12

0 (Hp* (-Hyp» Hj

The secular equation for this matrix reduces to two identical equations
of the form

(H{; — E)(Hyy — E) = |[H{y|* + |H{s| (3.102)
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The solutions for this equation are

1 / / 1 / I ’ / I /
Ei= §(H11 + Hyy) + 5\/(H11 + Hyp)? — 4H{ Hyy — |Hip* — |Higl?)

= AK? + |/ B2K2 + C2(k2k? + k2k2 + h2k2) (3.103)

where A, B, and |C|? are called the valence band parameters and are
related to the momentum matrix elements and the energy gaps by

om, 2/ P2 2Q?

A=1— | ——— .104
2 3 (mE mE) (3104
2m, 2/ —P? Q>

B == 3.104b
k2 3 (moEo moE[)> ( )

om, \? 16P2Q2
( h2 C) = W (31040)

They are given in the units of (52/2m,)?, and their values for GaAs are
—17.0,-4.5, and 38, respectively. The dispersion of I's (j = 2) bands
near the zone center is given by Eq. (3.103), which was derived after
much simplification, and it is valid only for energies smaller than the
spin-orbit splitting. Moreover, the values of A and B are negative due
to the dominant 2P2/(3m,E,) > 1 term in Eq. (3.104). This implies
that the effective masses of these bands are negative. The concept of
heavy and light holes can be introduced here as them being particles
with negative masses. Their energies are given by

Eu, = AK® — \[B?K? + C2(k2k2 + k2k2 + k2k2)  (3.1050)

Eyp = A + /B2K2 + C2(k2k? + k2k2 + k2k2)  (3.105)

where hh stands for “heavy hole” and lh stands for “light hole.” The hole
band dispersions along the [100] and [111] directions are parabolic, but
the hole masses are different along the two directions according to the
following:

12
L _2_A B (3.106b)

mmn k2
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and
1
k(|(111): —_—
Mhh
1
Mih

2

= —A+B<
2

= —A—B(

|C|2 1/2'
— 1
1+332> (3.107a)
1/27
IC|?
1+ — A
+ 353 (3.107b)

Taking the average of Egs. (3.106) and (3.107) and expanding the square

root, we have

1 —

mi, k2
11
my,  h?

—2A+2B (1 +

l—2A — 2B (1 +

IC|?
15 B2> (3.108a)
C 2
1|2;2>] (3.108b)

Notice that in the limit of C = 0, Eq. (3.108) is reduced to Eq. (3.106).
By plugging in the values of A= —7, B = —4.5, and |C|? = 38 for GaAs
into Eq. (3.108), we find that mj, = 0.556m, and mj, = 0.079m,, which
are in good agreement with the experimental values of mj, = 0.53m,
and mj;, = 0.08m,. The energy contours of the heavy and light holes are
shown in Fig. 3.12. These contours are called warped spheres.

(010)

(a) Heavy hole

semiconductors.

(010)
4

(100)

(b) Light Hole

Figure 3.12 Constant energy surfaces of the J = %(Fg) bands in zinc-blende
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Another note is that the parameters A, B, and C are related to the
Kohn-Luttinger parameters, y1, y2, and y3 according to the following
relations:

2]320 nn=-4A

K2 B

V=3 (3.109)
k2 B2 (C?

om, P\ 4 T12

The Kohn-Luttinger parameters for GaAs are y; = 6.790, y» = 1.924,
and y3 = 2.681. For Al,Ga;_,As, these parameters are y; = 6.790
— 3.0x,y2 = 1924 — 0.694x, and y3 = 2.681 — 1.286x. The Kohn-
Luttinger parameters are introduced in the following k - p Hamiltonian,
which was derived for I'yvalence bands:

B2 5
HL = [(y1+—)/2>V2—2]/2(V'J)2+2(V3_VQ)
2m, 2

x (V224 V22 + vaf)} (3.110)
with the following eigenvalues:

hZ
2m,

E. - {ylkz £\ JarBRi 112 (v — 2) (K202 + 2R2 + kgkg)}

(3.111)

where J = (J,, J,, J,) is an operator whose effects on the I'y valence
bands are identical to those of the angular momentum operator on the
Jj= % atomic states.

3.7.3 Envelope function approximation

The theoretical calculations of the energy states in the semiconductor
heterostructures are very complicated and require computer analysis.
One approach is to find the boundary conditions at the heterojunc-
tion interfaces where the wave functions are almost invariant. This
approach is called envelope function approximation and has been used
successfully (see, for example, Bastard 1988 and Bastard et al. 1991)
in determining the energy states in quantum wells, superlattices, and
heterojunctions. Following Bastard’s formalism, the envelope function
approximation assumes that the constituents of the quantum wells are
lattice-matched with abrupt interfaces such as GaAs/AlGaAs multiple
quantum wells, as shown in Fig. 3.13. This figure shows two types of
multiple quantum wells. Type I is illustrated in Fig. 3.13a, where the
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Figure 3.13 A sketch of the band alignment of the
quantum wells for (a) type I such as GaAs/AlGaAs
quantum wells and (b) type II such as InAs/InGaShb
superlattices. The dashed lines represent the con-
fined energy levels in both the conduction and valence
quantum wells. The layers A and B are designated as
the wells and barriers, respectively.

electrons and holes exist in the same layer. An example of this type is
GaAs/AlGaAs multiple quantum wells. The second type of band align-
ment is called type II, which is illustrated in Fig. 3.13b where the elec-
trons are located in one layer and the holes are located in the adjacent
layer. A typical example of this band alignment is found in InAs/ InGaSb
superlattices.

Inside each layer of the multiple quantum wells, the wave function
is expanded in the periodic part of the Bloch functions such as

Y(r) = Z f,f‘(r)ufko for — g <z< g (well) (3.112a)

n

and

Y(r) = Z fB(r)unk for z > g or z< —g (barrier) (3.112b)

where fA(r) is the envelope function and u4 ik, (r) is the Bloch function in
the well. Equation (3.112) stands for the barrler and the summation is
over all the finite energy bands. If one assumes that the Bloch function
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is the same for the well and the barrier, then Eq. (3.112) becomes
Y(r) =Y AP @u, (3.113)

Itis thus required to determine the function £A-2 (r), where fA(r) stands
for the wave function in the well and f,2(r) stands for the wave function
in the barrier. The assumption of identical Bloch functions in the well
and the barrier implies that the interband matrix element is the same
for the barrier and the well, which yields

A, 2) = fE(xi,z2) (3.114)

where r, is the xy plane and the subject interface along the growth axis,
which is z, occurs at z = z,. Since the lattice constants are assumed to be
the same for both the well and the barrier, the envelope wave function
can be factorized as

1 .
fAB(r,,2) = ﬁe“kﬂﬂ XA (2) (3.115)

where ais the sample area and k, is the (%,, k,) bi-dimensional wavevec-
tor, which is assumed to be the same for both A and B, and X,‘;"B (2)isa
slowly varying function with respect to the host’s unit cells. To summa-
rize, the heterojunction wave function ¥ (r) is composed of the sum of
the product of the rapidly varying Bloch function u () and the slowly
varying envelop function fA5.

Since the effective masses in the A and B layers are different, the
equation of motion of the envelope functions inside the well and the
barrier are

R% [ d?
E.+V(2) - 5= (— + k2 +k§> xa,8(2) = Exap(z) (3.116)

2u(z) \ dz2
where E. is the conduction band edge in the well, which can be set to
zero, V.(z) is zero in the well and equal to the conduction band offset
in the barrier, and u(2) is either m’ in the well or m} in the barrier.
Notice thatk, = vkZ + k. We assume that Eq. (3.116) is written for the
conduction band, but the case of the valence band is more complicated.
The boundary conditions are those of the BenDaniel-Duke conditions

such that
L L
XA (j:Z) = XB (i2>
and (3.117)
1 dxa2) _ 1 dxs@)
my dz 2=+L/2 B myp dz 2=+L/2
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The effective mass mismatch leads to a discontinuity in the deriva-
tive of the envelope function at the interfaces and k, adds a steplike
variation to the barrier V.(2) since the effective potential is now V.(z) +
h?k2 /[2u(2)]. The wave functions of the bound states can be chosen for
the even state as

Xeven(2) = Acos(kaz) for the well
Xeven(2) = Bel ks-L/2)] for the barrier (3.118)
and

Xeven( —2z) = Xeven(Z)

and for the odd state as

Xodd(2) = Asin(kyz) for the well
Yoad(z) = Bel ks(zL/2)] for the barrier (3.119)
and
Xodd(—2) = —Xodd(2)

where the even and odd states are shown schematically in Fig. 3.14.
The wavevectors are given as follows

(3.120)

(
)

\// E2(odd state)
N

Figure 3.14 A sketch of the con-
duction quantum well plotted
with the ground state (even) and
the excited state (odd).

\El (even state)

| | \ N/
-L2 0 +LR2
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The BenDaniel-Duke boundary conditions give the following straight-
forward relations from which the energy levels are obtained:

Kk
tan(ksL/2) = mf B for the even state (3.121)
mBkA
and
Kk
—cot(kaL/2) = mf B for the odd state (3.122)
mBkA

The left-hand sides of Egs. (3.121) and (3.122) are plotted as a func-
tion of (kaL/2) in unit of kg for several values of m}/m% as shown
in Fig. 3.15 with k; = 0. The nodes indicate the intersections that
correspond to the values of (ksL/2) from which the bound states can
be obtained. It is clear from this figure that the ratio of the effective
masses plays a major role in determining the eigenvalues. As mj/m%
is increased, the values of the bound energy levels are decreased.
Another note from Fig. 3.15 is that the energy levels seem to reach
constant values for higher m% /m ratios, which implies that kyL = nx
forn=0,1,2,...This result resembles the infinite-depth potential well
where the wave function is zero at the boundary conditions. This is
actually the essence of the envelope function approximation where the
wave function vanishes at the interfaces. By varying L/2 and reploting

5 mB/mA Even Odd Even
L 0.25
4L 0.5
3 - 1
g
2k \2
10
1 L P
0 L/ > N n
0 1 2 3 4 5

kL2

Figure 3.15 The left hand-sides of Egs. (3.121) and (3.122)
plotted as a function of (ksL/2). The right-hand side of
either equation is plotted for several values of m}/m}
in units of kp. The nodes indicate the intersections from
which the energy levels are obtained.
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200

100

Electron Energy (meV)

Figure 3.16 The energy-level dia-
gram for electrons in GaAs/AlGAs
quantum wells versus the GaAs
well thickness. The conduction
band offset was taken as 0.245
0 0 50 100 150 eV,. (After Bastard 1988)

L(A)

Fig. 3.15, one can obtain the confined energy levels as a function of the
well width. A typical example is shown in Fig. 3.16.

The energy levels of electrons in superlattices can be calculated an-
alytically or by the aid of a computer using Eq. (3.47) for the simple
case of k&, = k, = 0 and for the approximate isotropic effective masses
(mp = m3). As a comparison between the quantum wells and superlat-
tices, the energy levels are sketched as a function of the barrier width
h as shown in Fig. 3.17. The illustration in this figure is that when
the barrier width is large enough, the energy levels resemble those of

Electron Energy (eV)

Figure 3.17 The bound energy
levels in quantum wells are
transformed into minibands as
the barrier width 4 is decreased.
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quantum wells. As the barrier width decreases, the neighboring quan-
tum wells interact with each other and the energy levels are broadened
to form minibands. It should be pointed out that the envelope func-
tion approximation may not yield satisfactory results for short-period
superlattices.

The calculation of the holes’ energy bands in quantum wells and su-
perlattices is complicated and will not be discussed here. The 6 x 6k - p
matrix of the J = % and J = % valence bands were briefly discussed in
Sec. 3.7.2. For additional reading materials on this subject, the readers
are encouraged to search the open literature. The hole effective masses
of the J = % and J = % states, in the framework of the envelope
function approximation, are obtained (see Yu and Cardona 2003) as
follows:

*
mj, 1

= ———, for z-direction and
mo  Y1— 2y
mj 1
hy _ for y-direction
me Y1+ Y2
. L (3.123)
Mz _ ———, for z-direction and
mo  y1+2y2
mj. 1
by for y-direction
mo Y1i—Ve
where the subscript 2 stands for the J = % state (heavy hole) and [

stands for J = % state (light hole).

Summary

In this chapter, we introduced the periodic potentials and various ap-
proximations used to calculate the single-electron energy levels in these
type of potentials. The periodic potential was considered here because it
can represent a real single-crystal solid. The Bloch theorem was briefly
discussed. It provides a means to construct the wave function of a single
electron in a periodic potential. Once the forms of the wave functions
and the periodic potentials are known, then the Schrodinger equation
can be solved. The solution of the Schrodinger equation, however, can
be complicated, and in fact is impossible to obtain exactly for a real crys-
tal. Therefore, several approximations were introduced to construct the
dispersion relations. The Kronig-Penney theory was introduced here
because it provides the concept of energy bands in solids.

A few examples of periodic potentials were introduced in this chapter,
which include a weak periodic potential, periodic §-function potential,
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and semiconductor superlattices. The concept of the effective mass of
a charge carrier, such as an electron or hole, was discussed. Expres-
sions for the electron, heavy hole, and light hole effective masses were
derived.

The tight-binding method, k - p model, and the envelope function ap-
proximations were discussed because of their applicability to construct-
ing the band structure of bulk materials as well as that of quantum
structures, such as quantum wells, superlattices, and quantum dots.
The quantization and calculations of the energy levels in quantum wells
were discussed, and the BenDaniel-Duke boundary conditions were in-
troduced. These boundary conditions are very helpful in calculating the
discrete energy levels in a quantum well.

Problems

3.1 Show that if V (x) is a periodic function, then f(x) = (2m/k?)[E, — V (x)]
is also a periodic function and that f(x + L) = f(x).

3.2 Provide a proof of the Bloch theorem.
3.3 Derive the Kronig-Penney model in the momentum space (reciprocal space).

3.4 Solve the determinant of the one-electron approximation with the periodic
8-function potential. Start from Eq. (3.39) and obtain the relationship shown in
Eq. (3.40).

3.5 Show graphically that Eq. (3.41) has at least one bound state. When do
you expect to see more than one bound state? Show your results.

3.6 Use the wave packet analysis to show that the group velocity is the gra-
dient of the electron energy such that v, = %% Sketch E and vg in the first

Brillouin zone.

3.7 Assume that an electronic energy band has an extremum at k, = 0. Use
the Bloch wave function in the Schrodinger equation to derive Eq. (3.78).

3.8 Reproduce Fig 3.14 for a GaAs/AlGaAs isolated quantum well, determine
the energy values for the first three bound states as a function of m}/m},
and then plot E as a function of the effective masses ratio. Assume that the
conduction band offset is 0.3 eV and that m% = 0.067m,, where m, is the free-
electron mass. When does the ground state becomes zero?

3.9 Calculate the first and seocond energy levels in a GaAs/AlGaAs quantum
well with a thickness of 100 A and a conduction band offset of 0.30 eV. The
effective masses are m} = 0.067m, and mj = 0.092m,.
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3.10 Consider the following periodic §-function’s potential V(x) = 2’;‘; Aa
Zn 3(x + na), where A is a positive dimensionless constant, m, is the mass of
the electron, and a is the lattice constant. Use Eq. (3.41) to derive an expression

for the lowest energy level at £ = 0 and then find the bandgap at k = n/a.

3.11 Use the BenDaniel-Duke boundary conditions to obtain Eqgs. (3.121) and
(3.122).
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Chapter

Tunneling Through
Potential Barriers

The tunneling phenomenon was briefly discussed in Chap. 2 for a sin-
gle potential barrier, single potential well, and a double-barrier struc-
ture. This effect was first reported by Esaki in a narrow germanium
pn junction (see Esaki 1959). Currently, there are many devices based
on the tunneling effect such as resonant tunneling diodes, point contact
diodes, Schottky diodes, bipolar transistors, and field-effect transistors.
One important aspect of the tunneling effect is that the tunneling time
of carriers is proportional to the function exp(—2pL), where p is the
decaying wave vector inside the barrier and L is the width of the poten-
tial barrier. The wave functions of the tunneling carriers are character-
ized as propagating waves in the wells and evanescent waves inside the
barriers. In this chapter, we will discuss examples that are relevant to
semiconductor heterojunctions and nanostructures.

In Sec. 2.2 we showed the form of the transmission coefficient for a
particle tunneling through a rectangular barrier. When the product of
the decaying wavevector and the width of the barrier is much larger
than unity, the transmission coefficient is approximated by Eq. (2.34).
For a potential barrier with an arbitrary shape as depicted in Fig. 4.1
(solid line), the exact derivation of the transmission coefficient becomes
more complicated. It can be obtained with the help of approximation
methods. For example, the WKB method becomes very handy in
obtaining an approximate form of the tunneling probability.

To obtain an approximate expression for the transmission coefficient
in case of an arbitrary potential barrier, as shown in Fig. 4.1, as opposed
to the rectangular potential barriers shown as the dashed line in the
figure, one can consider the barrier as being composed of small rectan-
gular segments as shown in the figure. The form of the transmission

123
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Figure 4.1 An arbitrary potential barrier divided in
many small rectangular segments and overlapped
on a rectangular potential barrier (dashed line) for
comparison.

coefficient for each segment is identical to the expression presented in
Eq. (2.34). The total transmission coefficient can now be approximated
by the product of the transmission coefficient of the segments such as

T(E) = T1(E)To(E)T3(E) - - - Tyw(E)

Z —2pd,
=T (4.1)

where the transmission through the nth segment of a width d, is
T.(E) x e 2,9 The number of segments can be made large enough
so that the integration can be used instead of summation as follows:

1
T(E)~T,exp —2/,o(x)dx (4.2)
lo

where the integration limits (/ and /,) correspond to the turning points,
as shown in Fig. 4.1, and p(x) is the wavevector inside the barrier. We
encounter the form of this transmission coefficient when we introduced
the WKB approximation method discussed in Sec. 2.10.

4.1 Transmission Through Potential Barriers

In this section we will discuss several examples that demonstrate the
transmission (tunneling) of a particle, such as an electron, through dif-
ferent types of potential barriers. Let us first illustrate the transmission
coefficient for an electron traveling through a §-function barrier. This
simple example is very important since the atoms in semiconductors or
even small quantum dots can be seen by a traveling particle, such as
an electron, as a §-function potential. This approximation is very useful
in understanding the basic idea of tunneling through potentials. Let us
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assume that the §-function potential barrier is represented by Fig. 1.8
and is defined as V (x) = A8(x), where X is the strength of the §-function.
The wave functions can be written as

Yr(x) = e 4 Ae~thx forx <0
. (4.3)
Ymi(x) = Be'™ forx > 0

where & = \/2mE /h%. The boundary conditions for §-function poten-
tials were discussed in Sec. 2.8 and are given by

i) = yu(©)  and  W(0) — yi(0) = %wmm (4.4)

where m is the mass of the traveling particle. These boundary conditions
yield a transmission coefficient of
254
T(k) = |B? = _RRT (4.5)
k2h* + m2)2
This simple result shows that the transmission probability is unity
as . — 0 and decreases drastically as the strength of the §-function,
depicted in A, is increased. The transmission coefficient behavior as a
function of X is shown in Fig. 4.2.
The step function potential discussed in Chap. 2 is a very simple
case. A more complicated case is shown in Fig. 4.3 where the potential
barrier is a smooth function. Let us assume that a particle is traveling

1.00 k

0.75 F

T(E)

0.50 F

0.25

0.00L

Figure 4.2 The transmission coefficient plotted as a function
of A for a particle traveling through a potential barrier with a
strength A.
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A V)
X
0 /"— >
Figure 4.3 A step potential bar-
rier changes continuously with x.
.............................. -\{)

from left to right with an energy E > 0 and the potential barrier has
the form V(x) = —V,/(e*/® + 1) where V, is shown in Fig. 4.3 and a is a
positive number. This form of a function is common at solid surfaces as
opposed to the step function shown in Fig. 2.1. The potential changes
continuously over a distance of an interatomic separation such that
x > 0 is inside the material and x < 0 is for outside the material. The
Schrodinger equation for this potential can be written as

h% d? \%
-~ _|E+ °
2m dx2 ex/a 41
This is a difficult equation to solve. However, by choosing the transfor-
mation

Y(x) =0 (4.6)

2mE
h2

C=—e " ylx) =) where k& = 4.7

one can rewrite the equation of motion as

d2u(x) ) du(x)
1 + (1 - 2ika)(1—2¢) T

where K, = /2mV,/h2. The solution of this equation, which is for
x — oo(¢ — 0), is finite and behaves asymptotically as a traveling
(propagating) wave. For the wave function inside the material (x > 0)
the wave function is still a propagating wave. Without going through
extensive algebra, we merely present the reflection coefficient R as

¢(1-2¢) - K2a*u(x)=0 (4.8

| P(@ika)T[-i(K + k)alT[1 — i(K +k)al [*  sinh®[ra(K — k)]
"~ |N(—2ika)Ti(K —k)alT[1+i(K +k)al| — sinh®[ra(K + k)]
(4.9)

R

where K = \/2m(E + V,)/h? and T is the well-know I'-function. The

transmission coefficient isthen 7 =1 — R. A plot of T and R is shown
in Fig. 4.4 (solid lines). We also plotted 7' and R for the step function
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Figure 4.4 The transmission and reflection coefficients plotted for
both the smooth step function (solid lines) and sharp step function
(dashed lines).

potential (dashed lines) in this figure. It is clear that the transmission
probability is higher in the case of a continuously changing potential
step (Fig. 4.3) as compared to the sharp step (Fig. 2.1).

Another example of potential barriers is that when two semicon-
ductor materials with different bandgaps are grown to form a hetero-
junction, a bandgap offset in both the conduction and valence bands is
formed. In the absence of band bending, the conduction band discon-
tinuity can be presented by Fig. 4.5. The potential form in this figure
can be obtained if the material with a larger bandgap is graded. For
example, the potential profile can be formed by growing Al,Ga;_,As on
GaAs, where x is incrementally varied from 0.3 to 0 during growth. The
band bending is usually formed when there is a separation of charges at

Vix)
AEc \ - Figure 4.5 GaAs/AlGaAs hetero-
T X >E junction is plotted in the absence
l 1 N x of band bending. The turning
0 points are labeled —x; and xo.

GaAs Graded AlGaAs
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the modulation-doped heterojunction interfaces, as shown in Fig. 2.16.
According to the WKB method (see Sec. 2.10), the transmission coeffi-
cient T'(E) is given by the following form:

T(E) ~ exp [—2 | (x)| dx] (4.10)

—x1

where —x; and x2 are the turning point, and

R(x) = \/2;; (AE, — eEx — E) 4.11)

is the wavevector of an electron traveling from left to right with a ki-
netic energy E. Here AE, is the conduction band offset and V (x) =
(AE. — e&x) is the form of the graded potential. Notice that e£ is the
slope of the potential, which can be thought of as band bending due to
an applied electric field £. As a matter of fact, under the influence of an
applied electric field all the band structures in the real space exhibit
a band bending similar to the potential profile shown in Fig. 4.5. The
kinetic energy E of the particle is determined according to the WKB ap-
proximation from the following relation: V (x2, —x;) = E. Substituting
Eq. (4.11) into (4.10) and performing the integration we have

T(E) ~ exp {_2 / \/2m*(AEC —E —e€x) dx]

FLZ

—x1

2m*\'2 [ 4 a9 [
~ _ _F _ /2
exp{( 2 ) L),eg(AEC E —eéx) ] o
~exp|— SY2M Ng. _ By (4.12)
3 he&

Notice that at x = x2 we can approximate (AE, — E —efx) = 0, and
at x = —x; we have (AE., — E —efx) = (AE. — E). The transmission
coefficient is plotted in Fig. 4.6 in units of %%, and the band offset
is taken as AE, = 0.3 eV. The transmission coefficient is approaching
unity when the energy of the electron reaches the value of the band
offset as shown in the figure.

For a sharp step potential such as shown at x = —x; in Fig. 4.5,
the WKB approximation may not provide a reasonable answer. A rea-
sonable solution for the transmission coefficient would be if this step
potential is smoothed as shown in Fig. 4.7. One may write the potential
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Figure4.6 The transmission coefficient plotted as a function
of the particle (electron) energy E.

profile in the following form: V(x) = —Fx —e?/4x, where F is a positive
constant. This potential represents the change of the potential near the
surface of a solid with the second term known as the electrical image
potential. The transmission coefficient can be written in the same form
as Eq. (4.10) with

2m* e?

Figure 4.7 A potential profile
near the surface of a solid is plot-
ted as a function of the distance
from the surface.
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Neutral Region

~

Metal d -
Depletion region

Figure 4.8 Schottky barrier formed between a metal
and n-type semiconductor, such as GaAs.

The solution for the transmission coefficient is more complicated and
will not be presented. However, the final expression of 7'(E) is identical
to Eq. (4.12) when the third term of Eq. (4.13) approaches zero.

Another well-known barrier is the Schottky barrier formed between
a metal and a semiconductor when they are in contact, as shown in
Fig. 4.8. The depletion region is formed near the interfaces where a
built-in electric field exists due to separation of charges. The Fermi
energy Er is pinned at an energy E, = eV; below the conduction band
of the semiconductor. The depletion potential V; can be obtained as
follows assuming that the semiconductor is uniformly doped:

€o€r 26,6,

d d
2
v, =/5dx=/eNdx dx = ¢Ved (4.14)
0 0

where £ = built-in electric field given by Gauss’s law as £ = eNy /¢, ¢,
N, = number of electrons transferred from ionized donor atoms
€, = permittivity of space
¢, = dielectric constant of semiconductor

For an n-type GaAs, E, is about 0.7 eV with little variation for different
metals.

If one assumes that the barrier has the form V(x) = E,[1 — (x/d)?],
the transmission coefficient of an electron traveling with an energy
equal to the Fermi energy can be written as

d
2
T ~ exp —;/\/2m*E¢ {1— <df) ]dx =exp<—j;(;,/2m*E¢>
0
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Figure 4.9 The transmission coefficient obtained for a

Schottky potential barrier profile is plotted as a function of
the depletion length inside the semiconductor, such as GaAs.

where [ is defined as the decaying length and is given as [ = /2k2/
V(72m*E,), which is approximately 6.0 A for GaAs. The transmission
coefficient in Eq. (4.15) is plotted as a function of the depletion length d
for I = 6.0 A as shown in Fig. 4.9. It is clear from this figure that the
transmission coefficient approaches unity when the depletion length is
very small. This requires that the semiconductor material be heavily
doped.

4.2 Tunneling Through Pyramidal
Potential Barriers

In Chap. 2 we discussed tunneling through a rectangular potential bar-
rier, which resembles a quantum barrier. The two-barrier structure was
also briefly discussed. In this section, we will discuss tunneling through
barriers that resemble low-dimensional semiconductor structures such
as quantum dots. A typical example of a quantum dot structure is shown
in Fig. 4.10a where an Ing3Gag7As quantum dot is grown on a GaAs
buffer layer and then capped by undoped GaAs. Semiconductor quan-
tum dots tend to grow in pyramidal-like shapes. To simplify the cal-
culations of the transmission coefficient through the quantum dot, we
assume a one-dimensional potential profile, as shown in Fig. 4.1056. The
potential barrier that resembles a one-dimensional triangular shape
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0.5 um GaAs:Si
120 monolayers GaAs
e, A
(@) h
v
. A
Ing3GaggAs:Si A
0.5 um GaAs:Si
Substrate Figure 410 (a) A typical struc-
ture of a semiconductor quan-
Vix) tum dot sandwiched between
the buffer and barrier layers.
E (b) A potential energy profile
? resembles the shape of a one-
(b) X dimensional quantum dot.
-a +a "

can be chosen as

Vo(l—i—E) for—a<x< 0

V@=1v,(1-%)  for0 zx=a (416

a

0 for |x] > a
Let us assume that the quantum dot is standing alone and the GaAs
barrier does not exist. Moreover, assume that the potential profile takes

the same shape as the pyramidal quantum dot. The wavevector of an
electron tunneling through the dot can be characterized as

k =4/ 2m2E outside the dot
h 4.17)

2 —E
K= % inside the dot
Schrodinger equations can now be written for the three regions as
2
dilg+k21// =0 for |x| > a (4.18a)
dx
2
d—f — (B2 -k2+E2E)y =0 for—a=x=0 (4.18b)
dx a
d?y

ayv (192 g2 9%\,
— (ko k koa)w_o for0<x<a  (4.18¢)
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where k, = \/2mV,/h?. By making the following transformation

¢ = (:—2>2 (kf — k2 +k3§) and 1= (;—2>2 (kf 2 —kfg)
(4.19)

Schrodinger equations for a particle inside the potential barrier can be
rewritten as

2
%—{1//:0 for—-a<x< 0
g2 (4.20)
d—f—mpzo for0<x <a
n

The form of this equation was encountered in the triangular well formed
at the heterojunction interfaces in Chap. 2. The solutions of Eq. (4.20)
can be written in terms of Airy functions Ai(x) and Bi(x) as

etkx 4 Apikx forx < —a
V¥ = BAi(¢) + CBi(¢) for —a<x<0
DAi(n) + EBi(n) forO0<x <a

Fetkx forx > a

(4.21)

By applying the boundary conditions at x = —a, 0, and a, the coefficients
in Eq. (4.21) can be determined from the following relations:

e ke 1 Aethe — BAi(—1) + CBi(—2)
ivae " — Aei®) = BAY (<)) + CBi/(=1)
BAi(u) + CBi(u) = DAi(u) + E Bi(u)

., , , , (4.22)
BAi'(n) + CBi(u) = —DAi'(n) — EBi(w)
DAi(—)) + E Bi(—1) = Fe'*®
DAi'(—1) + E Bi'(—1) = —iv/AFet*e
The integral forms of Airy functions are given as
17 3
Ai(x) = — /cos(g + ;x)d;

T 3

0 (4.23)

3 3 3
Bi(x) = 1 /exp(—g— + {x)dg“ + 1 /sin(g— + ;x)d;
b4 3 b4 3
0 0



134 Chapter Four

0.8

© / U U \

0.4 @
0.2
(b)
0
0 0.5 | 1.5 2
Energy (eV)

Figure 4.11 The transmission coefficient plotted as a function
of energy for a pyramidal-shape potential barrier (curve a)
using the exact solution described in Eq. (4.24). The WKB ap-
proximation yields similar results (curve b).

The prime in Eq. (4.22) indicates the first derivative of the Airy
functions. The transmission coefficient is simply |F |?, which can be
obtained from Eq. (4.22) after performing a few algebraic steps and is
given as

T(E)=|F?
_ A
~ [Bi(wAi'(—1) — Ai()Bi'(=1)12 + A[Bi(w)Ai(—2) — Ai()Bi(—1)]2
5 1
[Bi'(w)Ai'(—1) — Ai'(j0)Bi'(—2)]2 + A[Bi'(w)Ai(—1) — Ai'(1)Bi(—1)]2

(4.24)

where » = (k,)?3(k%2/k2) and u = (k,)¥3(1—k2/k2). The Airy
functions were normalized such that Ai'(x)Bi(x) — Ai(x)Bi'(x) = 1.
A plot of Eq. (4.24) is shown as curve a in Fig. 4.11. The transmis-
sion coefficient reaches unity as the energy of the particle reaches
V, = 0.5 eV and then starts to oscillate. These oscillations are called
interference resonance, and they are discussed in Chap. 2 for potential
wells.

The analytical derivation of the transmission coefficient is time-
consuming. However, computer-assisted analysis is simple in this case.
On the other hand, one can use the WKB approximation to obtain a
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similar result. In the WKB approximation, the transmission coefficient
has the following form:

T(E) ~ exp —2/’/1—?[V(x)—E]dx

~ exp _4/ %[V(’” ~Eldx
0

[ ga\/2m/n?
_SaVEMIT e (4.25)

~exp|—g v

This expression is plotted as curve b in Fig. 4.11. The upper limit value
of the transmission coefficient is limited to the condition when £ = V.
In this case, V, was chosen as 0.5 eV.

4.3 Double-Barrier Potential

Tunneling through a double-barrier structure is the basis for the reso-
nant tunneling diode. This structure was briefly discussed in Chap. 2,
but we will look at this problem in more detail in this section. For
the simplest case, we have chosen the barriers and well widths to be
identical, as shown in Fig. 4.12. By following the transfer matrix proce-
dure described in Sec. 2.9, the transmission coefficient was presented in
Eq. (2.129). To simplify the analysis for the transmission coefficient of
an electron traveling with an energy E < V,, from x = —o0 to x = +00,
one can assume that the widths of the well and the two barriers are
the same. Typical materials for this structure are GaAs for the well
and AlGaAs for the barriers. Since the electron effective mass does
not change considerably in the well (im* = 0.067m,) and in the barrier
(m* = 0.094m,), we assumed that it is the same for both materials.

Vix)
A

B

A\

0 L L L

Figure 4.12 A double barrier-well structure commonly
encountered in resonance tunneling diodes.
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With these assumptions in mind, we derived an expression for the
transmission coefficient as

64[E(V, — E))?
TE)= ——"°% ~“~ 4.26
(E) D+ D, (4.26)
where Dy = {[(V, — 2E)%2 —4E(V, — E)] cosh(2pLy)
—V 2[2sinh*(pLy) cos(2k Ly,) + 11}2
Dy = [A(V, — 2E)JE(V, — E) sinh(2pL)
+2V 2 sinh®(pLy) sin(2k L)1
L, = well width
Ly = barrier width

2m*E
k=5

[2m*(V,—E
p = n (hZ )

The transmission coefficient is plotted as a function of the electron en-
ergy for a barrier of height V, = 0.10 eV and three different widths
(L = 50, 100, and 150 A) as shown in Fig. 4.13. The peaks in the trans-
mission coefficient correspond to the electron energy as being resonant
with the confined energy levels in the well. As the well width increases,
the number of confined energy levels is increased for a fixed poten-
tial barrier. When the electron energy is larger than the barrier, inter-
ference resonance peaks can be observed, which correspond to virtual
states in the continuum. Notice that the number of resonance peaks and

Log[T(E)]

-10

(a) Lw:LBZSOA
(b) Lw=Lg=100A
-15¢ (¢) Lw=Ls=150A
~20}
V=0.10 eV

0 20 40 60 80 100 120 140
Energy (meV)

Figure 4.13 Transmission coefficient plotted as a function of
electron energy in a double-barrier structure for three differ-
ent well (Lw) and barrier (Lp) widths.
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Figure 4.14 Transmission coefficient plotted as a function of
electron energy for a fixed well width and three different bar-
rier heights.

their energy positions change as the well width is varied. For example,
there is only one state for a well thickness of 100 A and a barrier height
of 0.10 eV.

When the well width is fixed and the barrier height is increased,
one would expect to observe additional bound states as illustrated in
Fig. 4.14. In this figure, the transmission coefficient is plotted for three
different barrier heights. The ground state is expected to slightly shift
as the barrier height increases. Additionally, one can observe the reso-
nance peaks to shift as a function of the barrier height.

The hand analysis of the double-barrier potential is very intensive,
while computer-aided analyses of complex structures such as the
double-barrier potential structure are easy to handle. The WKB method
provides a useful approximation in tunneling problems. Let us assume
that the rectangular double-barrier structure can be represented by a
double-barrier potential with arbitrary shapes as shown in Fig. 4.15
(dashed curve). The turning points are labeled ¢; (i = 1, 2, 3, and 4). By
using the WKB boundary conditions at these turning points, one can
write a 2 x 2 transfer matrix from which the transmission coefficient
can be obtained (see, for example, Gildenblat et al. 1995):

T,T,
T(E) = — — (4.27)
4cosQ(I)+1(Tl+T,) sin“(I)

where T; = exp(—2y;) and T', = exp(—2y,) are the transmission coeffi-
cients to the left and to the right, respectively. The parameters y;, ¥,
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Figure 4.15 Arbitrary double well-barriers (dashed curve)
superimposed on the identical double rectangular barri-
ers. The turning points are labeled q;.

and I are given by

az a4
y,=/|k|dx, yr=/|k|dx,
a as

2m*(E —-V)
hZ

(4.28)
as
Iz/kdx where k& =
az

For symmetrical barriers, Eq. (4.27) is reduced to the standard form
found in quantum mechanics textbooks (see, for example, Bohm 1953):

1

4 exp <4 fz k dx) cos? (afg k dx) + sin® (j k dx)

ay

T(E) = (4.29)

A plot of Eq. (4.29) is shown in Fig. 4.16 for three different well sizes
assuming that the electron effective mass is the same in the well and
in the barriers. The height of the barriers is assumed to be V, = 0.3 eV.

Again, the peaks in Fig. 4.16 are the electron energy that is coinciding
with the confined energy levels in the well at which T'(E) = 1. These
energy levels can be derived from the following relation:

2mA(E, = V) —> x  forE,>V (4.30)

For AE <« E,, T(AE + E,) can be expanded to give a Lorentzian line
shape near the resonance

F2
2+ (AE)?

where I is the full width at half maximum.

T(E,+ AE) = (4.31)
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Figure4.16 Transmission coefficient obtained from the WKB

approximation is plotted as a function of electron energy

in a double arbitrary barrier structure for three different
well sizes.

4.4 The pn-Jdunction Tunneling Diode

Tunneling diodes are currently used in many applications including
locking circuits, low-power microwave devices, and local oscillators. A
typical structure of a pn-junction tunneling diode is shown in Fig. 4.17.
One of the basic requirements for this homojunction is that both the n-
and p-type junctions are degenerate, which means that they are heavily
doped, such as the Fermi energy is pinned above (below) the conduction

Depletion region

Figure 4.17 A sketch of a typical band diagram of a pn-
junction tunneling diode.
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(valence) band minimum (maximum) as shown in the figure. The deple-
tion region acts as the potential barrier. The carrier tunneling requires
that occupied energy states exist on the side from which the electron
tunnels and that an empty state exists on the side to which the electron
can tunnel. Both states should be at the same energy level, and tunnel-
ing can occur from the n-junction to the p-junction or vice versa.

The current of the tunneling diode is composed of three components
(see, for example, Sze 2002): the tunneling, excess, and thermal currents.
At the thermal equilibrium, the tunneling current from the valence band
to the conduction band (I,_,.) and the current from the valence conduc-
tion band to the valence band (I._,,) are balanced, and they can be
expressed as

E.
Ic=A / LEI(E)T (1 - f(E)n(E)dE  (4.32)

E,

E,
I.o=A / BEM(ET (- f(E)n(E)dE  (4326)

Ec

where A = constant

f.(E), f,(E) = Fermi-Dirac distribution functions for the conduction
and valence bands, respectively
n.(E), n,(E) = density of states in conduction and valence bands,
respectively
T; = tunneling probability (transmission coefficient)

The tunneling probability is taken as

ﬂmEg/Q)ex (_&) (433)

2v/2ehE E

T: =exp <—
where E, = bandgap of semiconductor
& = built-in electric field
E | = energy associated with the momentum
perpendicular to direction of tunneling
E = 4\/§eh5/(3nm*E§/2) = measure of the significant range of
transverse momentum

The value of E is usually small, which means that only an electron
with a small transverse momentum can tunnel. When a bias voltage is
applied to the pn junction, the observed tunneling current I, is

E,
Li=ly—Ic—A / (B — f(E)NTn Eny(E)dE  (4.34)
E.
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Current

Peak Excess current
Band-to-band
tunneling current

Thermal current

v
A% Ve Voltage
Figure 4.18 Static current-voltage characteristics of a typ-
ical tunnel diode. The current is composed of three com-
ponents: band-to-band tunnel current, excess current, and
thermal current. The sum of the three currents is shown as
the thick curve with the well-known peak and valley.

The tunneling current in this equation is derived by Demassa and Knott
(1970) and is simplified according the following expression:

Vv Vv
I, =1p V7 exp(l - V—op> (4.35)

where I” and V P are the peak current and peak voltage, respectively,
defined in Fig. 4.18. The V ? was determined by Demassa and Knott
tobe VP = (V, + V,)/3 where V,, and V,, are the degeneracy voltages
defined in Fig. 4.17.

The excess current is mainly due to defect-assisted tunneling, where
the carriers tunnel through defective states in the bandgap. This com-
ponent of the total current is usually present when the bias voltage is
higher than the normal operational conditions. The access current can
be understood by inspecting Fig. 4.19, where the bias voltage V is high.
Notice that V' is multiplied by the electron charge e in order to project
the voltage on the energy scale. The main process of the excess current
is that an electron can drop from the conduction band (point A) to the
defect state (point B) and then tunnel to the valence band (point C).
Other routes are possible, but the presented process is the most common
route for an electron to tunnel from the conduction band to the valence
band. For a bias voltage V' the energy E, that the electron must have
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Depletion region

Defect
State

Eg

Figure 4.19 A sketch of the pn-junction bandgap show-
ing defect-assisted tunneling, which causes the excess
current under a high bias voltage.

to tunnel is given by
E.,~E;—eV +e(V,+V,) ~e(Vy; — V) (4.36)

where Vy; is the built-in potential. The tunneling probability is essen-
tially identical to that given by Eq. (4.12) except (AE. — E) is replaced
by E,:

4 /2m* a
T, ~ —— B~ —ZXE3? 4.
exp( 3 7o x ) exp( x (4.37)

where a, ~ 4v/2m*/(3he) and £ is the electric field. The electric field
across a step function can be written as £ = 2(Vy,; — V )/ W, where W
is the depletion region width given by

26 (No+Ng 1z

where ¢, = permittivity of space
N, = concentration of acceptors
N4 = concentration of donors



Tunneling Through Potential Barriers 143

The current density </, associated with the excess current process can
be written as

Jy~AD,T, (4.39)

where D, is the volume density of the occupied levels at energy E, above
the top of the valence band and A is a constant. Substituting Eqs. (4.36)
through (4.38) into (4.39), we have (see Chynoweth et al. 1961)

Jy~ A D, exp{—d,[E; —eV +0.6(V, — V,)I} (4.40)

where A; is a constant. This relation shows that the excess current
depends on the density of states and the applied voltage. Equation (4.40)
can be rewritten as (see Roy 1971)

4 [m*e,
J. ~ Jy exp -3 n]lvi (V- VOV)
~ Jy exp[As(V = V)] (4.41)

where Jy = valley current density
VY =valley voltage
Ay = constant
N*=NyNyg/N,+ Ny

Equation (4.41) is plotted as the long-dashed curve in Fig. 4.18.
Finally, the third component of the tunneling diode current density
is the minority-carrier injection current given by

eV
Jth = Jo |:eXp<kBT

) _ 1} (4.42)
where J, = the reverse saturation current density

kp = Boltzmann constant

T = temperature

The thermal current density is plotted as the short-dashed in Fig. 4.18.
The sum of the three currents is plotted in this figure as the thick solid
curve which shows the characteristic peak and valley encountered in
tunneling diodes.

4.5 Resonant Tunneling Diodes

The bandgap alignment of the resonant band structure consists of two
doped layers (bottom and top contact layers), two barriers, and one well
with at least one bound energy state. When the structure is biased, the
electrons tunnel from the bottom contact through the barriers, with a
tunneling probability approaching unity, when the bound state in the
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Bound state

Fermi sea Fermi sea
of electrons of electrons

GaAs:Si AlGaAs GaAs AlGaAs GaAs:Si

Figure 4.20 A sketch of a typical conduction band struc-
ture of a resonant tunneling diode is shown with the
degenerate contact layers.

well is resonant with the Fermi energy level of the bottom layer. A typi-
cal structure consists of a thick degenerate GaAs:Si bottom layer, 50-A
Al 3Gag 7As barrier, 50-A GaAs well, 50-A Al 3Gag7As barrier, and a
thick degenerate GaAs:Si top contact layer. The structure is shown in
Fig. 4.20 under zero bias. The I-V characteristic of the resonant tun-
neling diode can be understood by examining Fig. 4.21. For a small
bias voltage, the bound state is assumed to be above the Fermi sea of
electrons that is present in the bottom contact layer and the tunneling
through the bound state is minimum, as shown in case (a). As the bias
voltage is increased, the bound state becomes resonant with the Fermi
energy level of the contact layer and the electrons start to tunnel giving
rise to current. The current continues to rise and peaks when the bound
state is aligned with the bottom of the electron band as shown in case
(c). The current drops abruptly as the bound state moves further down
from the Fermi electron sea by increasing the applied bias voltage. If
the GaAs well contains more than one bound state, then the number of
peaks in the I-V curve will increase accordingly. The negative differen-
tial conductivity exhibited in the I-V curve is very useful in amplifiers
and oscillators.

Another example of resonant tunneling diodes is the InAs/AlSb
double-barrier structure shown in Fig. 4.22a. The band offset is approx-
imately 1.0 eV. This band offset can accommodate more energy levels as
compared to the GaAs/AlGaAs system. In addition, the electron effec-
tive mass in InAs is about three times smaller than that of GaAs, which
leads to higher mobility and better transport properties. Four confined
energy levels are shown in this figure. The tunneling of electrons occurs
mostly through the ground state E1, but additional tunneling can oc-
cur through the excited states giving rise to additional peaks in the I-V
characteristic curve as shown in Fig. 4.22b. The tunneling occurs when
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Figure 421 The I-V characteristic of the resonant tunnel-
ing diode with a single bound state is sketched as a func-
tion of bias voltage V.

E;(i = 1,2,3, and 4) is aligned, under bias voltage, with the Fermi
sea of electrons in the InAs to the left of the structure. The typical I-V
characteristic of the resonant tunneling diode is sketched in Fig. 4.2006,
which exhibits four peaks corresponding to four bound energy levels in
the well. In general, any peak voltage (V ?) should be larger than 2E; /e
due to voltage drops in accumulation and depletion regions.

For zero temperature and a §-function line shape, the current density
of the resonant tunneling diode is derived by Ferry (2001) as

_ eV m*E,

J, = 9273 for 2(&, — Er) <eV < 2, (4.43)

where &, = width of transmission
V = applied bias voltage
&, = energy of ground state in well
Er = Fermi energy level
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(a)
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InAs  AlIShb Inds  AISb [nAs

E E,
Peak E, E;

Figure 4.22 (a) A sketch of the
InAs/AISb double-barrier reso-
nant tunneling diode showing
four bound states. (b) A typical
I-V characteristic of the tunnel-
ing resonant diode showing the

Valle
atiey peak and valley voltages.

Equation (4.43) is sketched in Fig. 4.23. For temperatures other than
0 K, one would expect to observe broadening in the I-V curve and the
current density to be convoluted with a line shape such as a lorentzian.
A sketch of the I-V curve at T > 0 K is shown as the dashed line in
Fig. 4.23.

The limitation of the resonant tunneling diode is the “valley” current
as shown in Fig. 4.18. For a device application, in particular digital cir-
cuits, it is desired to have a low valley current. In reality, it is difficult to
achieve a zero valley current, but with creative designs one can reduce

Figure 423 The I-V curves ob-
tained from the simple model de-
rived by Ferry (2001) is plotted
for both §-function (7' = 0 K) and
lorentzian (T' > 0 K) line shapes.
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Figure 4.24 A schematic band-edge diagram of a InAs/AlSb/GaSbh, AlSb/InAs double-
barrier resonant interband tunneling diode under (a) zero bias voltage and (b) nonzero
bias voltage.

the valley current to an acceptable value. One possible design is pro-
posed by Kitabayashi et al. (1997) and is based on the InAs/AISb/GaSb
structure as shown in Fig. 4.24a. The structure in this figure is called
the resonant interband tunneling diode.

The bound state in this case is in the valence band of the GaSb
well. The tunneling current will flow when the bound state is lined up
with a conduction band of the n-type InAs contact layer as illustrated
in Fig. 4.24b. The electrons tunnel from the conduction band of the
n-type InAs (left layer) through the bound state and then tunnel from
the bound state to the conduction band of the n-type InAs on the right-
hand side of the structure. With the large AISb barriers, the peak cur-
rent can be maintained at higher values by reducing the barrier thick-
nesses. The valley current in this structure is significantly reduced
when the bound state becomes resonant with the bandgap of the InAs
layer on the left of Fig. 4.24b.

4.6 Coulomb Blockade

For many electronic devices such as metal-oxide-semiconductor field-
effect transistors and bipolar transistors, the number of electrons
involved in the transport is vary large such that the energy quanti-
zation is irrelevant. However, the role of energy discreteness becomes
increasingly very important in nanoscale devices where the capacitance
in the structure is extremely small. The capacitance of parallel plates



148 Chapter Four

of an area A and separated by a distance d is given by

€, A

C = - (4.44)
where € is the dielectric constant of the material between the two plates
and ¢, is the permittivity of space. Let us consider a pn junction made
of GaAs and with a cross section of 0.1 x 0.1 mm? and a thickness of
10 nm. The energy associated with one electron process is (see Aleiner
et al. 2002)

o2

E, = 50 (4.45)
Substituting Eq. (4.43) into (4.44), one can obtain a value of E; to be
much smaller than kg T' even for a temperature as low as that of liquid
helium. On the other hand, if the junction cross section is on the order
of 10 x 10 nm? and has a thickness of 20 A, the single electron energy
is on the order of 15 meV. This single electron energy is larger than
kT even for T = 100 K. This implies that the energy of a single-
electron process is very important in nanostructures. One can think of
the single-electron energy as the energy required to add one electron to
the capacitor. The energy E; is thus defined as the charging energy.

For any structure with a very small capacitance on the order of
attofarads, the electrostatic potential caused by a single electron has a
profound effect on the tunneling process. Generally speaking, this hap-
pens in quantum dot systems where the transport property is regulated
by the quantization of the charge in units of the elementary charge e
inside the nanostructure. This effect is called the Coulomb blockade.
The conditions of observing the Coulomb blockade are such that the
capacitance C and conductance G of the device satisfy the following
inequalities:
2 o2

C « kB—T and G« ﬁ (4.46)

where kp is the Boltzmann constant and e? /(27 4) is called the quantum
conductance (inverse of the quantum resistance). The main feature of
the Coulomb blockade is the total suppression of the current in a finite
interval of external bias voltage such that

e e
where V} is the applied bias voltage. To illustrate this process, let us
examine the current (I) versus the bias voltage (V;) characteristic of
a thin tunnel junction as shown in Fig. 4.25. For the Coulomb block-
ade effect to be observed the thermal energy should be smaller than
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Figure 4.25 Illustration of Coulomb blockade in a thin junc-
tion with a small capacitance (~ aF').

the charging energy. When the bias voltage is zero, there is no electron
tunneling through the barrier. When the bias voltage is increased, elec-
tron flow through the barrier remains zero as long as the bias voltage
energy eV} is smaller than the charging energy E. Electron flow occurs
when eV}, is larger than E; as illustrated in the last panel. The cur-
rent voltage profile is shown with a solid dot indicating the values of
the bias voltage. The charge quantization and Coulomb blockade effect
are the basis of electronic nanostructure devices such as single-electron
transistors. More discussion on this effect will be presented in Chap. 9.

Summary

Tunneling of particles through potential barriers is a quantum effect.
This effect was reviewed in this chapter and several examples were dis-
cussed. These examples cover simple structures, such as the §-function
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and more complex structures such as a quantum well with a double
barrier. Several devices based on the tunneling effects, such as the
pn-junction tunneling diode and resonant tunneling diode, were pre-
sented. The I-V characteristic curve of the pn-junction tunneling diode
is composed of three components that contribute to the overall tun-
neling diode current. These components are the tunneling current, the
excess charge current, and the minority-carrier injection current. The
sum of these three currents gives a peak-and-valley characteristic fea-
ture with a negative differential resistance. The negative differential re-
sistance behavior is what makes these devices attractive for low-power
microwave applications.

Coulomb blockage is an effect encountered in nanostructures where
the capacitance of the structure is on the order of attofarads. The
Coulomb blockade is a tunneling effect, and its main feature is the total
suppression of the current in a finite interval of external bias voltage.
For the Coulomb blockade effect to be observed, the thermal energy
kT should be smaller than a characteristic energy associated with
one electron process known as the charging energy.

Problems

4.1 Consider Fig. 4.7 where the potential can be written as V(x) = —Fx —
2 /(4x). Use the WKB approximation to determine the transmission coefficient.

4.2 Considertheidentical double potential barriers shown in Fig. P4.2. Use the
WKB approximation to derive an expression for the transmission coefficient.
The turning points are labels x1, x5, x3, and xy4.

A

X X2

AV(x)

Figure P4.2

4.3 Show that the transmission coefficient of the double barrier-well structure
shown in Fig. 4.12 is given by Eq. (4.26).

4.4 Use Eq. (4.26) to determine the number of bound states in a InAs/
AlSb/InAs/AlSb/InAs double-barrier resonant tunneling diode. Assume that the
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well width is 80 A and the barrier width is 25 A. The conduction band offset in
this system is ~1.0 eV and the electron effective mass in InAs is 0.023m,.

4.5 Assume that the peak voltage V£ in a resonant tunneling diode is 0.7 V.
Calculate the ground-state energy level of a resonant tunneling diode made of
GaAs/AlGaAs with a well width of 60 A and barrier widths of 25 A using Eq.
(4.26). Assume the band offset is 0.3 eV. Compare your results with the value of
V& = 0.7 V. Give an explanation for the difference between the values obtained
for E; and V£

4.6 The empirical tunneling current in the pn junction is given by Eq. (4.35).
Derive an expression for the negative differential resistance. Find the largest
negative  differential resistance and the corresponding voltage.
Assume that VZ = 0.4V, and I = 30 mA.

4.7 Consider a thin GaAs tunnel junction with a thickness of 7 nm and area of
100 A x 100 A. What is the temperature needed to generate a thermal energy
equivalent to the charging energy? Assume that the dielectric constant of GaAs
is 11.56.

4.8 Derive expressions for the transmission and reflection coefficients of a
particle of mass m traveling from right to left and tunneling through a §-function
potential barrier of form V(x) = A8(x).

4.9 Use acomputer program, such as Mathematica to plot Eq. (4.24). Compare
your results to Fig. 4.11.
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Chapter

Distribution Functions and
Density of States

Semiconductor heterojunctions and nanostructures consist of large
numbers of identical particles such as electrons, atoms, holes, and har-
monic oscillators. In such cases, it is impossible to try to trace the mo-
tion of each individual particle. An alternative way of looking at these
large numbers of particles is to settle for knowing averages of relevant
dynamical quantities over the entire range of possible system configu-
rations. This leads to the construction of the macroscopic properties of
the system and to an understanding of how energy, velocity, and mo-
mentum are distributed among the particles that form the system. The
branch of physics that addresses the distribution function of a system
links the microscopic properties of the system to its macroscopic do-
mains and is called statistical mechanics. For physical systems such as
semiconductor materials, there are constraints associated with any dis-
tribution function. For example, the number of particles is finite, or the
total energy of the system is constant. These constraints usually alter
the probabilities associated with the possible system configurations.
The techniques of statistical mechanics have been applied to a variety
of physical problems in many fields of study, including those involv-
ing gases, liquids, polymers, metals, semiconductors, transport theory,
DNA, adsorption, spectroscopy, and optical and electrical properties
of solids. Statistical thermodynamics is usually applied to a system
in equilibrium. This branch of statistical mechanics links thermody-
namics and molecular physics. Thermodynamics, on the other hand,
provides connections between the properties of the system without
supplying any information about the magnitude of any one of them,
while statistical thermodynamics assumes the existence of atoms and
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moleculestocalculate thermodynamic quantities from a molecular point
of view. Statistical thermodynamics is further divided into two areas:
(1) the study of systems of molecules in which molecular interaction is
neglected, such as for dilute gases, and (2) the study of systems in which
molecular interactions are of prime importance, such as for liquids.

To illustrate the terminology of statistical mechanics, let us consider
the energy states of a particle in a three-dimensional infinite cubic po-
tential well. These energy states are given by

72h?

2ma?

E = E(ky, ky, k) = (2 +n} +n2) (5.1)
where a = length of one side of cube

m = mass of the particle
ny, ny, N, = positive integers

The degeneracy g(E) is given by the number of ways that an integer
M = 2ma?E/h? can be written as the sum of the squares of three positive
integers. The result could be an erratic and discontinuous function for
small values of n,, n,, and n,, but it becomes smooth for large values
of ny, ny, and n,. Consider a three-dimensional space spanned by &, =
ny/a,ky = ny/a, and k, = n;/a as shown in Fig. 5.1. Equation (5.1) is
the equation for a sphere of radius k, where k* = k2 4 k2 + k2. Now,
it is possible to calculate the number of states in the range dk. This
is simply obtained by finding the volume of the shell between 2 and
k + dk, which is given as

AV}, = 4nk2dk = 47 (h—':’) VE dE (5.2)
If n., n,, and n, are positive integers, then Eq. (5.2) should be divided
by 8. Moreover, Eq. (5.2) should be divided by the volume of the unit
cell in k-space, which is (7 /a)?, to give the density of state in the shell

k,

dk

Figure 5.1 A spherical surface of
a constant energy is plotted in

k:.' the k-space. The shell of thick-
ness d Kk is used to calculate the
density of states of a particle
in a box.
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with thickness dE. The density of state can now be written as

3/2
g(E)dE = 1.1 4 <2m) VEdE

8 (7/a)® B2
3 2 3/2
- % <h’2> VEJE (5.3)

If one assumes that the energy E = 3kgT/2, T = 300 K, m = 9.11 x
103! kg, and a@ =100 A, the density of state can be easily obtained as
g(E)dE = 8.40 x 10>’ dE. Thus, even for a system as simple as a particle
in a box, the degeneracy can be very large at room temperature.

For a system consisting of N -noninteracting particles, the degeneracy
is extremely high. The energy of the system is

2ma2 Z n .+ n —|—n 2ma2 ZRZ (5.4)

where nZ;, n?;, n;,and R? are positive integers. The degeneracy of
the system can be calculated by generalizing this procedure for a one-

particle system. The density of state can be written as

N
8(E)dE = || g,;(E)dE
J
N
_ ﬁ ﬁ 2_m SN2 E(3N/2—1)dE (5.5)
T(N + DI(3N/2) \ 272 h? '
where I'(x) is the gamma function given by
[x) = / et dt (5.6)
0
The gamma function has the following properties:
Mx+1) =T (x) (5.7a)
n+1) =n! for n = integer (5.7b)
r (%) _JE (5.7¢)
1 (2n)!

The density of state g(E)dE is calculated to be on the order of 10V,
where N is on the order of Avogadro’s number. For N = 10, we obtain a
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density of state the order of 101°%9. Thus, the concept of density of state
is very important for macroscopic systems.

5.1 Distribution Functions

Consider a liter of salt solution. From a macroscopic point of view, we
can completely specify the system by a few parameters such as volume,
concentration, and temperature. Regardless of the complexity of the
system, it requires only a small number of parameters to describe it.
From a microscopic point of view, there are enormous numbers of quan-
tum states associated with the fixed macroscopic properties. Gibbs in-
troduced the concept of ensemble, which is a virtual collection of a very
large number of systems, denoted A, each constructed to be a replica
on the macroscopic level of a particular system of interest. Suppose
that an isolated system has a volume V, contains N molecules, and
is known to have an energy E. Thus, the ensemble would have a vol-
ume AV, contain AN molecules, and have a total energy of AE. Each
of the systems in this ensemble is a quantum mechanical system of N
interacting molecules in a container of volume V. The values of N and
V and the interaction between molecules are sufficient to determine
the energy eigenvalues E;of the Schrodinger equation along with their
associated degeneracies g(E;). These energies are the only eigenval-
ues available to the system. The fixed energy of the system E is one of
these E;’s, and there is a degeneracy g(E). While the systems in the
ensemble are identical at the macroscopic level, they may differ at the
molecular level. Nothing has been said thus far about the distribution
of the member of the ensemble with respect to the degeneracy of the
possible quantum states.

The ensembles are required to obey the principle of equal a priori
probability, which states that every g(E) is represented an equal num-
ber of times in the ensembles. Thus, each g(E) is treated equally, and
the number of systems in the ensemble is an integer multiple of g(E).
An alternative interpretation of the principle of equal a priori probabil-
ities is that an isolated system is equally likely to be in any of its g(E)
possible quantum states.

The most commonly used ensemble is called the canonical ensemble,
in which the volume, number of particles, and the temperature are
constant. The occupation number refers to the number of systems of the
ensemble occupying a specific quantum state. The occupation numbers
must satisfy the condition

S e =4 (5.8)
J
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where ajis the occupation number of the jth state and A is the total
number of the systems in the ensemble, and the condition

Y aE;=E (5.9)
J

where E; is the energy of the jth state and E is the total energy of
the ensemble. These two conditions mean that all the members of the
ensemble are included in the calculations and the total energy of the
system is fixed. The number of ways, Q(a) = Q(ay, ag, as, ...), that any
particular distribution of the a;’s can be realized is the number of ways
that A distinguishable objects (ones that we can label uniquely) can be
arranged in groups, such as q; in the first group, as in the second group,
etc., is

Al Al

al!aglagl... Haj!
J

(5.10)

The overall probability P; that a system is in the jth quantum state
is obtained by averaging the fraction aj/A of the systems or members
of the canonical ensemble in the jth state with an energy E;. It can be
written as

a
P. = J
=

A A Y Qa)

7. 12 %@
“ (5.11)

where the notation a;(a) indicates that the value a¢; depends on the dis-
tribution and summations over all distributions that satisfy Eqgs. (5.8)
and (5.9). Given the probability that a system is in the jth state, one
can calculate the canonical ensemble average of any property M from
the following relation:

M=) M;P; (5.12)
J

where M is the value of M in the jth quantum state. For more discus-
sion on this subject, see McQuarrie (1976).

5.2 Maxwell-Boltzmann Statistic

For a distinguishable number of particles, IV, in a container with many
compartments g;, the number of ways that the particles can be
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distributed among the compartments can be written as

N! Lo
Q(Nl,Nz,...,Nj)z ; ng ' (513)
HNi!izl

i=1

where giN " is the degeneracy of finding the N; particle in the g; compart-
ment. The problem of determining what set of values for the numbers
N1, N3, N3, ...,N; will make  as large as possible, subject to the con-
straints of a constant number of particles, >/ | N; = N = constant,
and constant energy, >/ ,&N; =E = constant (where ¢; is the total
energy of the system consisting of N; particles), is more or less a mathe-
matical exercise. To maximize a function of many variables with a given
constraint, one can apply the Lagrange method of undetermined mul-
tipliers as follows:
of | g | 08

= 5.14
0x; to 0x; +h 0x; ( )

where f = function to be maximized
a, B = undetermined multipliers
g1, 82 = constraints

To maximize Eq. (5.13) with two constraints, one can maximize the
logarithm of Q since the logarithm of products is converted to a sum
which is much easier to handle mathematically. Hence, one can write

1n(Q)+ozZN +,928, =0 (5.15)

=1 =1

The first derivative with respect to the N jparticle of the logarithm of
Eq. (5.13) is

J J
BZNilngi BZhINL'!

8111(9) _ dlnN! n i=1 =1
dN; 0N, AN, dN;
=O+1ngj —lan
=Ing; —InN; (5.16)

It follows that the derivatives of the two constraints are

J J
0 E N; el Z N
o la:]i/,j =« and ﬂ’:alT = Be; (5.17)
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Substituting Eqgs. (5.16) and (5.17) into Eq. (5.15), we have
Ing, —InN; +a+pe; =0 (5.18)

The quantity IV; in this equation is the most probable number of par-
ticles to be found in the jth energy level, and g; is the number of the
quantum states associated with the jth energy level. Thus, N;/g; is
the average number of particles per quantum state at that energy level,
which is by definition the distribution function f(¢;). Equation (5.18)
becomes

Nj = f(e;) = e (5.19)
8j

Without going through the thermodynamic derivation, it is found that

1

“keT (5.20)

B =

where kp is the Boltzmann constant and T is temperature in kelvins.
The task now is to determine the multiplier «. From Eq. (5.19) the
number that occupies the jth quantum state can be written as

Nj = gje"‘eﬁgf (521)
It follows that the total number of particles in the system is

N = ZNJ- = Zgje“e-ff/kBT =e* Zgje-gf/kBT (5.22)
J J J

which can be solved for the quantity e* such as

. S (5.23)

= Zgjeisj/kBT
J

Substituting Eq. (5.23) into (5.21) we have

Ngje—Sj/kBT

N, = &8/ =
J Zgje—Sj/kBT
J

(5.24)

When the system is composed of a quasi-continuum eigenvalues, the de-
generacy g; can be replaced by the density of state g(E) dE, the popu-
lation IV can be replaced by the function N(E) dE, and the summation
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can be replaced by integration over the region of allowed energies. These
substitutions allow one to rewrite Eqgs. (5.21) to (5.24) as

N(E)dE = f(E)g(E)dE = e®e /T g(E)dE (5.25)
N = / N(E)dE = e / e ETg(BVdE  (5.26)

N
¢ = 2
¢ e E/ksT g(E)dE (5.27)
Ne-E/ksT g(E) dE

[e E/ksT g(E)dE

N(E)dE = (5.28)

For an ideal monatomic gas in a cubic container with sides of length
a, the density of states can be presented by the expression shown in
Eq. (5.3). By substituting this expression in to Eq. (5.27) we have

e” = N (5.29)

3/2 00
a3 2m _
2 (%) ettt VEdE

Let x = E/kpT, which implies that dE = kpTdx and vVE = kT J/x.
Substituting these quantities back into Eq. (5.29) yields

e’ = N (5.30)

a3 ([ 2mkpT 3/2 %
B —X
53 ( - ) of e~*/xdx

The integral in this equation is a '-function [see Eq. (5.6)] with an
argument of 3. The function I'(2) can be evaluated from Eq. (5.7d) to
be /7 /2. Substitute this quantity back into Eq. (5.30) to obtain

a_ﬂN( nh? )3/2

e (5.31)

ad mkgT

Finally, substitute Eq. (5.31) into (5.19) to obtain the following expres-
sion for the distribution function:

5 \3/2
f(E)=@< mh ) ¢ E/knT (5.32)

ad mkgT

This expression is known as the Maxwell-Boltzmann distribution func-
tion, which is applicable to noninteracting particles in a system whose
density of states is defined by Eq. (5.3). A plot of this function is shown
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J,,5(E) (Axbit. units)
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Figure5.2 Maxwell-Boltzmann distribution function plot-
ted as a function of energy for four different temperatures.

in Fig. 5.2 for four different temperatures. It is clear that this function
becomes steeper as the temperature decreases.

5.3 Fermi-Dirac Statistics

The Maxwell-Boltzmann distribution function is applicable to classical
systems where the particle can be identified and labeled. For quan-
tum systems, there is no way one can distinguish between electrons or
protons, for example. Quantum systems are composed of inherently in-
distinguishable particles, and therefore Maxwell-Boltzmann statistics
cannot be applied. In addition to this point, the Pauli exclusion principle
requires that the spin of particles be taken into consideration. These
two points require a different distribution function known as the Fermi-
Dirac distribution. The number of ways of realizing a distribution of N ;
indistinguishable particles is determined as follows:

Qrp (N1, Ng, N3, ...,N) =[] -2 (5.33)
1;[ N;!(gj — N;)!

where g; are the quantum states. The logarithm of this equation is

InQpp =Y Ing;!—> InN;! - In(g; — N;)! (5.34)
J J J
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Taking the first derivative of Eq. (5.34) with respect to N;, we can write

9 Ing;! 9 InN;! aXIn(g; — N))!
] J J

8anFD _ J
ON; B ON; oN; oN;
BZIn(gj—Nj)!

=0—InN; + —2
B a(g — N,)

=—InN,; +1In(g — N;)
8i

=In(=> -1 5.35

n(Ni ) (5:35)

Lagrange’s method of undetermined multipliers can now be applied to
maximize Eq. (5.35) by using Egs. (5.14) and (5.15), which yields

1n<% _ 1) = —a— BE; (5.36)

The quantity g;/N; is called the Fermi-Dirac distribution function
frp(E;) and can be written as

N; 1

E = fFD(Ei) = m (5.37)

1

where g is as defined in Eq. (5.20) and « in the Fermi-Dirac distribution
function is taken to be

Er

= kT (5.38)

o

where Er is known as the Fermi energy level. Substituting Egs. (5.20)
and (5.38) into Eq. (5.37) yields

1
1+ e Ei—Er)/kT

frp(E;) = (5.39)

This function, known as the Fermi-Dirac distribution function, is plot-
ted as a function of energy for different temperatures as shown in
Fig. 5.3. Notice that at T = 0 K, frp becomes a step function.

For quasi-continuous energy levels in which the degeneracy is repre-
sented by a density-of-state function, we can write

g(E)dE

(5.40)
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Figure 5.3 Fermi-Dirac function plotted as a function of en-
ergy for four different temperatures.

Substitute Eq. (5.39) into (5.40), and then integrate to give

g(E)dE
N =/fFD(E)g<E>dE=/W

a® <2m)3/2 Vi JVE dE

A 1T e® ErisT (5.41)

The integral in this equation is difficult to evaluate analytically. For
(E — Er) > kT, one can find a solution, for this integral, of the
following form:

ad (2m 3/26EF/kBTﬁ(kBT)3/2
4(%)

3 3/2
(M) oEr k5T (5.42)

or

b
F B a3 (:!n,lk 'l ) ( )

The Fermi energy of the form of Eq. (5.43) is plotted for bulk GaAs mate-
rials as a function carrier concentration with respect to the conduction
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Figure 5.4 The Fermi energy plotted as a function of carrier
concentration using Eq. (5.43) for different temperatures. The
Fermi energy was taken with respect to the bottom of the con-
duction band minimum of GaAs.

band minimum as shown in Fig. 5.4. The curves obtained in this figure
were plotted for different temperatures between 300 and 4.0 K. The con-
duction band minimum was included as a function of temperature as
well. The sample size was chosen as a cubic specimen with a side of
1 cm. It is customary to divide the density of state by the volume in
real space so that the volume of the sample would not show in the fi-
nal expressions of either the Fermi energy or the carrier concentrations
[Eq. (56.42)]. As the temperature decreases, the Fermi energy is reduced
due to carrier freeze-out.

5.4 Bose-Einstein Statistics

Bose-Einstein statistics are used for particles that possess zero or in-
teger spins (S = 0,1, 2, 3, ...) which do not obey the Pauli exclusion
principle. These particles are still indistinguishable. The most common
particles that follow Bose-Einstein statistics are photons (S = 1). In
this case, an arbitrary number of particles can occupy a single quan-
tum state, and hence the number of ways of arranging N particles in
the system can be written as

N; - 1)!
Qpg (N1, N2, N3,...,N,) = H (N 'é_ggj_ 1)’) (5.44)
J
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One now can proceed to maximize this function using Lagrange’s method
of undetermined multipliers as described in Secs. 5.2 and 5.3. The final
results can be written as

1
fBE (E) = m (5.45)

where fgg(E) is the Bose-Einstein distribution function and « can be
considered zero since the photons can be easily created and annihilated,
and therefore the constraint of having a constant number of particles
can be easily discarded. The function fgg(E) can be reduced to

1
fee(B) = 7pr—1 (5.46)

The three distribution functions (Maxwell-Boltzmann, Fermi-Dirac, and
Bose-Einstein) are plotted as a function of energy in Fig. 5.5 at T = 300
and 77 K with the Fermi energy chosen as Er = 0.2 eV. It is obvi-
ous from this plot that the three distribution functions are in good
agreement with each other when (E — Er) > kpT . The agreement
is even improved as the temperature is reduced from 300 to 77 K. In
many semiconductor cases, the Fermi-Dirac distribution function can

1.50

1.25

0.00 L— - : —
0.10 015 020 025 030 035 040

Energy (eV)
Figure 5.5 Fermi-Dirac ( fpp), Maxwell-Boltzmann ( fjg), and Bose-

Einstein ( fgg) distribution functions plotted as a function of energy at
T =300 K (dashed lines) and at T' = 77 K (solid lines).
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be approximated as a Maxwell-Boltzmann distribution function, in par-
ticular when exp [(E — Er )JkgT 1> 1.

5.5 Density of States

To understand the energy and momentum distribution among particles
in a system, one needs to answer the question of how many states are
available for these particles to occupy in a particular system. For a large
number of particles in a three-dimensional system, such as electrons
in a crystalline semiconductor, the answer to this question can be un-
derstood by applying Bloch’s theorem (see Sec. 3.1) to the crystalline
semiconductor where the wave function exhibits periodicity within the
period structure (crystal) such as

w(x7y72) = I//(x + Lx’y +Ly,2+ Lz)
= explilky(x + Ly) + ky(y + Ly) + ko(z + L)1}
= expli(kyx + kyy + k.2)] expli(ky Ly + kyL, + k.L;)] (5.47)
where L, = L, = L, = L is the period of a cubic crystal. For Bloch’s

theorem to be valid the second exponential of Eq. (5.47) must be unity,
which implies that

kL =2mn, kyL = 2mn,, k.L =2nn, (5.48)

where n,, n,, and n, are integers. The volume of a unit cell (V)in the
k-space occupied by one state is

(2m)3

- (5.49)

VP = kokyk, =

Other states are obtained by assuming other values for n,, n,, and n,
such as (000), (100), (110), (200), and (210), which gradually fill a sphere
ofradius k. The Fermi energy is thus defined at zero temperature where
the states within the sphere of radius ky are all occupied and states
for k > ky are all empty, where ky is the Fermi wave vector.

We can define the density of states g(E) as the number of states per
unit energy per unit volume of real space (see, for example, Harrison
2000) such that

oN
g(E) = ﬁ (5.50)

It follows that the total number of states, IV, is equal to the degener-
acy times the volume of the sphere in k-space divided by the volume
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occupied by one state (primitive unit cell) and divided again by the
volume of real space such that

_AmkE 1 1 4nk?

N =2 Gy v = 220y 55D

where we assume V = L2. For electrons of spin %, the degeneracy is 2
for spin-up and spin-down. The density of states can be written as

aN ok

g(E) = Wﬁ (5.52)
where
oN 4 k?

From the effective mass approximation, the energy of the electrons is
assumed to be parabolic in k-space as follows:

2,2
E = Ik (5.54)
2m*
which yields
£\ 1/2
L (@) . (5.55)
IE I 2VE
Substituting Eqgs. (5.53) to (5.55) into Eq. (5.52), we obtain
1 /2m*\*?
Ey=—|— E .
8(E) = ( h2) vE (5.56)

A plot of g(E) as a function of energy is shown in Fig. 5.6 where the
effective mass is assumed to be m* = 0.067m,. The inset is the three-
dimensional sphere of radius kz in the k-space. This is a typical ex-
ample of electrons in bulk semiconductor material such as GaAs or
silicon.

To understand the concept of Fermi energy and the distribution of
electrons and holes in a semiconductor, let us first assume that the
semiconductor is intrinsic, which means that the number of electrons
in the conduction band is equal to the number of holes in the valence
band. The density of states for both the conduction and valence bands
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Figure 5.6 The density of states of a three-dimensional (3D) sys-
tem, which is a typical bulk material such as semiconductor sin-

gle crystals. The calculations were made for the electron effective
mass in GaAs. The inset is a sphere in the k-space of radius kg.

can be written as follows:

1 /2m:\*?
ge(E):—( mg) E—Ec and

27-[2 hZ
) - 52 (5.57)
gh<E>=ﬁ(h2> B, E

where the subscripts e and £ stand for electrons and holes, respectively,
and E.and E, are the bottom and top of the conduction and valence
bands, respectively. The result of plotting Eq. (5.57) is shown in Fig. 5.7.
The electron distribution function is given by the Fermi-Dirac function
Eq. (5.39), while the distribution function of holes can be expressed as
the distribution function of unfilled states (1 — f¥p):

1
1+ e(E—Er)/kgT

fA(E)=1— frp(E)=1—
1

= —FERT T (5.58)

The superscript 4 is introduced to refer to the hole distribution func-
tion. The electron and hole concentrations are shown as the shaded
areas in Fig. 5.7. The carrier concentrations are plotted for intrinsic
GaAs materials as shown in Fig. 5.7a. In this figure the number of elec-
trons [n(E)] is equal to the number of holes [p(E)]. For n-type GaAs,
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n(Ey=g (EV(E)
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Figure 5.7 The distribution function, density of states, Fermi energy level, and carrier
population for (a) intrinsic and (b) n-type GaAs are sketched as a function of energy. The
y-axis unit is taken as an arbitrary unit since we have several overlaid parameters.

where the material is doped with donors, the Fermi energy is shifted
toward the conduction band as shown in Fig. 5.76 and n(E) > p(E)
as indicated by the shaded area. The Fermi-Dirac distribution function
is also shifted. For a degenerate n-type semiconductor (heavily doped
semiconductor), the Fermi energy is pinned above the conduction band
minimum. Similarly, for a p-type semiconductor, the Fermi energy will
be shifted toward the valence band and for a degenerate p-type semi-
conductor, the Fermi energy is resonant in the valence band.

It was shown, as illustrated in Fig. 5.5, that the Fermi-Dirac distri-
bution function can be approximated by the Maxwell-Boltzmann func-
tion for (E. — Er) > kgT, where E. is the bottom of the conduc-
tion band. This is a valid assumption for an intrinsic or lightly doped
semiconductor where Er is pinned near the midgap. This implies that
expl(E — Er)/kgT] > 1, which yields

1 1
fro(E) = 1+ e E—Er)/ksT ~ g(E—Ep)/ksT
— e—(E—EF)/kBT — eEF/kBTe_E/kBT (559a)
and
1 1

h —
frp(E) " 14 eE-Er)/ksT — o—(E—Er)/kpT 4 ]

~ e+(E—EF)/kBT — e—EF/kBTeE/kBT (559b)
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With this Maxwell-Boltzmann approximation, the electron and hole
densities can be easily evaluated for a semiconductor at equilibrium as
follows:

2(E)dE
nOZ/fFD(E)g(E)dEZ/W

1 (2m;>3/2°? VE — E.dE

= 92 72 (1 + e E—Ep)/kpT )
o0
1 /2mrkpT \*?
_ W( meth ) o Er—Ec)/kpT /e‘xﬁdx
0

3/2
_ L (2mksT N ke VT
- 2772 hZ

2
* 3/2
_1 (M) / ¢~ (Ee—Ep)/kpT

4 Th?

= Noe BerEr)/ksT (5.60)

where n, is the electron density and N, is given by
1 (2m:kpT \*?
N.=- | ——— 5.61
{2 (5.61)

The density of states used in this derivation is given by Eq. (5.57).
Similarly, the hole concentration p, can be obtained as

1 /2miksT \*/*
po = Nye Er-EJ/ksT  whore N, = : ("“LTQ*) (5.62)
T

The mass action law, n,p, = ni2, where n; is the intrinsic carrier concen-
tration, can now be written as

1/2
1 (2mikpT \*? 1 (2mikpT \**
= VTP = [4 (;ﬁﬁ) 4 (;ﬁﬁ)

x e—(EF —Eu)/kBTe—(Ec—EF)/kBT

3/2
_1 (2 vmimeksT ) o—(Ec—E))/k5T

4 Th?

4 Th?

— 3/2
_1 <2V mhmekBT) e EslksT (5.63)
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where E; = E, — E, is the bandgap energy. The intrinsic carrier con-
centration is thus independent of the Fermi energy level. The Fermi
energy for an intrinsic semiconductor can be evaluated by equating n,
and p,, which yields

. 3/2 . 3/2
1 (2mkpT \* o—E—Er)/kar _ L (2mikpT ! o—(Er—E)/ksT
4 Th2 4 wh?

or (5.64)

£\ 3/2
2Ep —(E.+E)]/ksT _ [ Mh
m;

el
Taking the natural log of both sides and rearranging, we have

Ep =SB, +E)+ 2hpT In <ﬂ> (5.65)
2 4 mk*

e

Usually the top of the valance band is taken as a reference point, which
can be set as zero. The intrinsic Fermi energy at room temperature is
~0.78 eV for GaAs with mj = 0.45m,, m} = 0.067m,, and E. = 1.48 eV.

5.6 Density of States of Quantum Wells,
Wires, and Dots

The density of states in low-dimensional systems is derived in this sec-
tion. To avoid confusion about how the low-dimensional systems are
defined, we consider that the charge carriers have degree-of-freedom
directions and confinement directions. For bulk materials, there are
three degree-of-freedom directions and zero confined directions. Thus,
bulk materials are called three-dimensional systems. Quantum wells
are considered to be two-dimensional systems, which means that the
charge carriers have two degree-of-freedom directions and one confined
direction. In this case, the growth direction is the confined direction.
Quantum wires on the other hand, have one degree-of-freedom direction
and two confined directions. Thus, quantum wires are considered one-
dimensional systems. When the charge carriers are confined in three
directions, the structure is called a zero-dimensional system. We refer
to this as a quantum dot system.

5.6.1 Quantum wells

The density of states in a quantum well system is restricted to the k.%,
plane shown in the inset of Fig. 5.8 where the electrons or holes are now
confined in this plane and their motion is restricted along the growth
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Figure 5.8 The density of states as a function of energy for
a two-dimensional system such as GaAs/AlGaAs multiple
quantum wells. The inset illustrates the two-dimensional
confinement where the charge carriers are confined in the
ky ky plane.

axis (z direction in the real space, or k, direction in the momentum
space). The total number of states per unit cross-sectional area is given
by the area in k-space divided by the area of the unit cell in k-space
and divided by the area in real space:

1 1 k2

ND —opp?—— =2 — 5.66
T /L2 12 T “(2n)2 (5.66)
where Factor 2 = spin degeneracy of electrons
L? = real space square area
27/L? = two-dimensional primitive unit cell in k-space
The density of state can be expressed as
2D 2D
&P(E) = oN _ IN"" 0k
oE ok OE
kN [2m*\'? 1 *
=<_>< ";) Lo (5.67)
b4 h oWE nh

where the energy E is defined in Eq. (5.54). Notice that the density of
states is independent of energy. If there is more than one confined state
in the quantum well system, the density of states at a given energy is the
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sum over all subbands below that particular energy. Hence Eq. (5.67)
can be rewritten as

gP(E) =) h2Y(E E;) (5.68)

Jj=1

where n is the total number of confined subbands below a particular
energy and Y is a step function defined as

1 for £ > E;

0 forE <E, (5.69)

Y(E - E;) ={

The two-dimensional density of states is plotted in Fig. 5.8 for three
confined subband energy levels. A typical system of two-dimensional
structure is GaAs/AlGaAs multiple quantum wells, where three energy
levels can be confined in a well of thickness 200 A and a barrier height
of ~0.3 eV. The barrier height is determined by the Al mole fraction of
the AlGaAs layer.

For n-type GaAs/AlGaAs multiple quantum wells, the total number
of electrons (n?P) within a subband is given as

n? — / g(E) fep(E) dE (5.70)
Subband

where fpp(E) is the Fermi-Dirac distribution function defined in
Eq. (5.39). Substituting Egs. (5.39) and (5.57) into Eq. (5.70) yields

o0

/ a2 (e T +1)
E;

(5.71)

To integrate this equation, we let y = exp[(E — Er)/kpT ], which gives
dy = ly/(kpT)IdE and y; = exp[(E; —EF)/kpT ]. Inserting this trans-
formation into Eq. (5.71) we have

skgT [ d
nQ_D_m B Yy

R (y + Dy
i

(5.72)

The integral in this equation can be solved using integration by parts or
by using the Mathematica software. The result of the integration gives

dy 1
=—In(1+-= .
oDy n < + y> (5.73)
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Substituting Eq. (5.72) back into Eq. (5.71) and rearranging, the density
of electrons in the jth subband is finally obtained as

oo mkpT 1\]|®  mksT 1

i T yj
T
_ %1 (14 e Er—Ep/ksT (5.74)
T

For n bound subbands in the quantum wells we have

op _ M kBT In(1 + e Er—Ep/ksT (5.75)
=3P =TS
It appears from this equation that the Fermi energy Er is explicitly
independent of temperature when (Er — E;) >> kg T . However, for the
limit n?P 7A%2 « m*kgT, the Fermi energy can be approximated as
Er ~E; + kT In[n?Prh?/(m*kp T )). The Fermi energy in the latter
limit is plotted as a function of the two-dimensional (2D) electron den-
sity as shown in Fig. 5.9. In this figure, the Fermi energy was plotted for
different temperatures with respect to the first bound state (E;) which
was taken as 20 meV. The Fermi energy is below the bound state for
population on the order of 5 x 10! cm~2 and at 7 > 100 K. This can
be understood by the fact that the Fermi energy in the preceding for-
malisms is merely a quasi-Fermi energy which describes the occupancy
of the subband energy levels.

100 . . . :
s T=300 K ]

80t T=200 K

= oOF T=100 K]
£ a0k :
< A0 T=77K ]
o0 o ]
2t ]
g2 E =20 meV]
£ :
5 ]
5 ]
=20 3
40 L PSRN TP | ) 1 ]
0 2 4 6 8 10

.’ (10%em™)

Figure 5.9 The Fermi energy plotted as a function of the
2D carrier concentration for the first subband energy level
(n%D) at different temperatures. The first subband energy
level (E1) was taken as 20 meV.
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Figure 5.10 A schematic presen-
tation of GaAs/AlGaAs quantum
wire showing two directions of
confinement (y and z directions)
and one degree of freedom (x di-
rection).

5.6.2 Quantum wires

The charge carrier confinement in semiconductors can be further de-
creased by reducing the number of degrees of freedom in the carrier mo-
mentum. This can be accomplished through photolithography or even
self-assembled epitaxial growth of what is called quantum wires. A
typical example of an n-type GaAs/AlGaAs quantum wire is sketched
in Fig. 5.10 where the electrons in the GaAs layer are confined in both
the growth direction (z direction) and the y direction, but they can move
along the x direction. The z and y directions are called the directions of
confinements, and the x direction is called the degree-of-freedom direc-
tion. The quantum wire usually refers to a one-dimensional (1D) sys-
tem. Thus, for quantum wells, we have one direction of confinement and
two degree-of-freedom directions. In contrast, the bulk materials have
three degree-of-freedom directions and zero directions of confinement.

The density of states of the 1D system can be obtained by assuming
that the electron momenta fill states along a line as shown in Fig. 5.11.
The total number of states can be obtained by dividing the total length
of the quantum wire (2k) by the primitive unit cell and then dividing

O I R 2 ER A L O

0 T k=2wL

Figure 5.11 A quantum wire of length 2k divided into one-
dimensional primitive unit cells of length &, = 27 /L.
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by the length in the real space such as

2k 1 2k
D _ 1_4k
n" = @ /DL~ (5.76)

where nlP is the total number of states, and the 2 is included to ac-
count for the electron spin degeneracy. The density of states can then
be written as

on'®  on' ok

1D
E) = = .
g'P’(E) B K OE (5.77)
where
antl 2 ok om\Y? 1
& - @4?) ovE

The second term of this equation is obtained from Eq. (5.54). Substitut-
ing Eq. (5.78) into (5.77) we have

(5.79)

N\ 1/2
ng(E) _ (Zm ) 1
T

#” ) =JE

Following the same discussion for the 2D system, the total density of
states of the 1D system with an n number of confined energy levels is
given as

1\ 1/2 n
g'2(E) = (Zm ) > éY(E -E) (5.80)
j=1

n2h? VE - E;

where Y (E — E;) is a step function defined in Eq. (5.69). A plot of the
density of states of a quantum wire is shown in Fig. 5.12 for four bound
states. The inset is an illustration in the k-space for the two confinement
directions (2, and %, directions) depicted as the two ellipses and the
one degree-of-freedom direction depicted as the &, line indicated by the
arrow as the solid thick line. Notice that the units of the density of state
areJ 1. m™! =1.602 x 1072 eV~1. cm.

The linear electron density in the quantum wire can be obtained
in a fashion similar to that of the two-dimensional system where the
population density for the jth subband can be expressed as

2m*>1/27 dE
iE) ) VBB T 1)

(5.81)

P = [ &°(B) fro( ) dE = (

0
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Figure 5.12 The density of states for a GaAs/AlGaAs quantum
wire is plotted as a function of energy for four bound states
labeled j = 1,2, 3, and 4. The inset is the k-space illustration of
the two confinement directions (%, and k,) and the one degree-
of-freedom direction (k).

The total linear density of states for a quantum wire with n bound states
is thus

=> nP (5.82)

The integral in Eq. (5.81) is difficult to solve but can be evaluated
analytically in the limit of (E — Er)/kgT > 1 or in the limit of
(E — Ep)/kgT <« 1 and numerically between these two limits. For
example, when (E — Er)/kgT > 1, Eq. (5.81) becomes

dE

1/2
2h2) / JE —E;(eE-Er)ksT)

niP & (
2m*kgT e Er—E)/ksT xdx
2h2
0
<2
(2

mkpT N (Er-Ep kT

2Rk

. 1/2
m kBT> o Br—E))/ksT (5.83)
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Figure 5.13 The Fermi energy plotted as a function of the 1D
carrier concentration for the first subband energy level at
different temperatures. The first subband energy level (E;)
was taken as 20 meV.

where we used the transformation x = (E — E;)/kpT . The general
form of this equation is similar to that shown in Eq. (5.60). The Fermi
energy is plotted with respect to the first bound state (E1) as a function
of the quantum wire carrier concentration for different temperatures
as shown in Fig. 5.13. There is a similarity between the behavior of the
Fermi energy in quantum wires and quantum wells as a function of the
electron density as shown in Figs. 5.9 and 5.13.

5.6.3 Quantum dots

The quantum dot is characterized by having three confinement di-
rections and zero degree-of-freedom directions as shown in the inset
of Fig. 5.14 where we sketch the confinements in the k-space. The
wavevector of the quantum dot is represented by the white dot where
the three circles in the figures intercept as indicated by the arrow. Be-
cause of the lack of dispersion curves the wavevector selection rules
are absent. The density of state is thus represented by the number of
confined states divided by the energy interval. If the energy interval
is approaching zero, then the density of states is simply a series of
3 -functions centered on the confined energy levels (E1, Es, E3, ...) as
shown in Fig. 5. 14. The energy levels are entirely discrete and are
given by

w2h? (2 nd  n2
Ennm=a—|"2+2+2> .84
e = 5o | 12 + L2 + L2 (5.84)

where L., L,, and L, are the dimensions of the quantum dot and n,, n,,
and n, are positive integers.
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Figure 5.14 The density of states of a quantum dot is presented by a series of
S-functions centered on the confined energy levels. The inset is the k-space
presentation of the quantum dot showing confinement in three directions.
The energy dispersion is absent and is represented by the white dot where
the three circles intercept.

5.7 Density of States of Other Systems

This section focuses on deriving the density of states for systems that
are occasionally encountered in semiconductor physics, in particular,
superlattices and bulk materials under the influence of magnetic or
electric fields. The density of states in quantum wells and wires under
the influence of an external electric field will be briefly discussed.

5.7.1 Superlattices

Semiconductor superlattices were discussed in Chap. 3 where we ap-
proximated the confined energy levels by using minibands when the
barriers were too thin. A typical example of superlattices is InAs/InGaSb
type Il superlattices. The quantized energy levels are given by Eq. (3.50).
One approach to estimate the density of states in superlattices is to take
the general form

g(E)=) §E —Ej) (5.85)

j=1
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where the sum is over all the eigenvalues. This general form of the den-
sity of state is actually very convenient since the eigenvalues are quan-
tized regardless of how small the separation is between them. The
eigenvalues of the electrons in the superlattices can be expressed as
(see Bastard 1988)

K2k
2m*
The density of state is thus
h?k?
8(E)=2 Y §|E—Eyq— = (5.87)
n,q.k| 2m

and the factor 2 is included for spin degeneracy. Converting the sum
into an integral and using the §-function definition, the density of state
in the k-space becomes

w/d

2/Y[E—En(q)]dq
0

1 Nd m*

g =2 T Tr 12

w/d

_Ndm [YIE-E@lda=YgB) 69
0 n

) h2

where Y [E — E,(q)] is a step function, Nd is the length of the super-
lattice, the superscript s was introduced to indicate that the density
of states is for the superlattice, g;(E) is the density of states associ-
ated with the nth miniband, and the integral limits are the first Bril-
louin zone boundary. Since the miniband has a width such that E;, <
En(q) < Emax, g,sl(E) = 0 for En(q) < Epnin andgfl(E) =N [m*/(T[hZ)] for
E,(q) > Epax. The jump from one miniband to the next is not abrupt
as it is in the case for quantum wells or wires. This is due to the fact
that E,(q) = E, + S, + 2T, cos(qd) is a function of the wavevector
(q) as described in Eq. (3.53). The final results of the density of states
according to Bastard (1988) can be written as

0 for E < (E,+ S, —2|T,|)
* -E+E,+ S,
gs(E) _ Warc Cos (W) for |E — En — Sn| < 2|Tn|
Nm*
e for E > (Ey + Sy +2|T))
T

(5.89)
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Figure5.15 The density of states of a superlattice structure plot-
ted as a function of energy. The width of the bands are indicated
by W;, where: = 1,2, 3.

A plot of Eq. (5.89) is shown for three minibands in Fig. 5.15. Notice that
the widths of the minibands increase as the subband quantum number
n increases. The density of state is also multiplied by the number of
superlattice periods, N .

5.7.2 Density of states of bulk electrons in
the presence of a magnetic field

Bulk electrons here are assumed to be electrons in the conduction band
of bulk semiconductor materials so that they have three degree-of-
freedom directions. The allowed eigenvalues are quasi-continuum. In
the presence of a magnetic field, each energy level splits into what is
called Landau energy levels. The separation between the Landau en-
ergy levels is directly proportional to the strength of the magnetic field.
The eigenvalues of an electron in a magnetic field parallel to the growth
axis are given by
2 k 2

1 h
Eibo=|n+=)ho+-—=+0.8"upB (5.90)
vz Uz 2 2m*

where n = Landau quantum number
w. = cyclotron frequency = (eB)/(m*c)
up = Bohr magneton
g* = effective Lande g-factor
0, = spin eigenvalues :t%
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Using the general definition of the density of state [Eq. (5.85)], we have

g%(E)= Y 8(E—Enp.) (5.91)

n,kz,0,

where the superscript B is introduced to indicate the presence of a
magnetic field. Substituting Eq. (5.90) into (5.91), we obtain

BE)Y= Y s|E- nt 2 )n L B
8 = S 2 We Im* 028 B
=y 5( ) > gPE) (5.92)
n,kz,0, nk,0;
where
1
x=FE — (n—i— 5) hw. — o,8*up B (5.93)
The degeneracy of any Landau level in one-dimensional %,-space be-
comes
LL, | h2k2
g8 y
94
2E) = )212/5<x - )dk (5.94)

where [ is the magnetic length given by (fic/eB)Y2, and the quantity
L.L,/[(27)%?] is included due to the degeneracy of any level in the
ki k, plane. Let y = h%k2/(2m*), which leads to dy = (A%k./m*)d k..
Using this transformation, the density of states is further simplified

such that
2 )%/‘/ 86 — y) dy
(271)21271 \ 2x (271)212 \/ h2

X [E — <n+ ;) hw, — azg*uBB]

L.L, (2m\*? 1 e
R O e

82

gBE) =

-1/2
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Figure 5.16 The density of states of electrons in the conduc-
tion band of a bulk semiconductor material plotted as a func-

tion of energy for both a zero magnetic field and in the pres-
ence of a magnetic field.

By including the spin degeneracy, the total density of states can be
rewritten as
3/2 ~1/2
= (57) ho > - (n+ 5 ) hon—og'uaBy

(5.96)
Notice that we dropped L,L, from the last expression to obtain the
density of states per unit area. A plot of the density of states described
in Eq. (5.96) is shown in Fig. 5.16 for both B = 0 and B # 0. The density
of states for B # 0 is zero only for E < E/. The energies labeled E,
correspond to o, = +% and E, correspond to o, = —%. This analysis
indicates that only %, is a good quantum number. The magnetic field
produces energy quantization in the xy plane. One may imagine this
situation by assuming that the electrons are trapped in the Landau
circular orbits in the xy plane generated by the magnetic field, but the
electrons can move along the z axis in a helical form. This form of motion
is analogous to the confinement of electrons in a quantum wire as it is
clear from the density of states in both cases that they have the same
energy dependence as shown in Egs. (5.80) and (5.96).

For two-dimensional systems such as multiple quantum wells, the
confinement occurs along the growth axis (z direction), which is not
a good quantum number. By applying a magnetic field parallel to the
growth direction, the x and y directions are no longer good quantum
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numbers. This implies that the electrons are confined in the three di-
rections without any degree-of-freedom directions. In this case, the den-
sity of states is similar to that of the quantum dots. In other words, the
density of states is a series of §-functions as shown in Fig. 5.14.

5.7.3 Density of states in the presence of an
electric field

The density of states under the influence of an electric field is very
complicated, and yet it is very important to understand the behavior of
the density of states in devices that operate under applied bias voltage.
In this section, we will follow the analyses of Davies (1998) and Davies
and Wilkins (1988). When a semiconductor is experiencing an applied
bias voltage, the conduction and valence bands bend or vary in a way
that the properties of the device have to be solved using self-consistent
calculations. An example of how the semiconductor bands are changed
under bias voltage is shown in Fig. 5.17 for a type I quantum well. It is
evident that the interfaces are modified into triangular shapes similar
to the simple heterostructures discussed in Sec. 2.6 .

If one assumes a constant electric field is applied to a heterojunction,
the electrostatic potential energy (e¢) is

ep =elz (5.97)

where e = charge of electron
& = electric field
z = distance from interface

Figure 5.17 (a) A quantum well
in the absence of an electric field.
(b) The modified band structure
in the presence of an electric
field. As can be seen, the applica-
tion of an electric field to a quan-
tum well modifies the energy lev-
els and wave functions.
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Figure 5.18 A triangular quan-
tum well formed by applying a
uniform electric field. Three en-
ergy levels are shown along with
their wave functions. The wave
functions have the form of Airy
functions that satisfy the bound-
Energy ary conditions.

The stationary Schrodinger equation can be written as

2 72
_ AR o) = Evplo) (5.98)
2m*  dz2
The solution of this equation is expressed in terms of the Airy function
W) = Ai(@) (5.99)
where
1/3 1/3
(eEh)? h?
&, = [ oy ] =e&z, and 2o = <2m*e€ (5.100)

The Airy function is plotted for three energy levels in a triangular quan-
tum well as shown in Fig. 5.18. For any particular energy level, the wave
function in Fig. 5.18 exhibits propagation behavior for E < e£z and tun-
neling behavior for E > e£z. This feature has a very interesting effect
on the local density of states at fixed values of z. To demonstrate this
effect, consider the general definition of the density of states:

8(E,2) =) [yx(2)*8(E — Ex) (5.101)
k

where the sum is over all eigenstates, labeled by k. The formalism of
obtaining the density of states for quantum wells, quantum wires, and
bulk materials under the influence of an electric field was reported by
Davies (1998) and the final results are

. 2 [2m* . E —eéz
gin(E,2) = ﬁ*/ 7 Ai® <_T> (5.102)

(B, 2) = ’;—Ail(zwm (5.103)
T
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Figure 5.19 The density of states under the influence of a uniform electric field is plotted
as a function of energy for (a) quantum wires, (b) quantum wells, and (¢) bulk materials.
(After Davies 1998).

where
g = E-etz (5.104)
&
and
Ail (x) = /Ai(y) dy (5.105)

Finally, the density of states for a 3D system is

*

5V 2m*E,{[AT(S)]” — STAI(S)]?} (5.106)

m
wh

ggD(E, Z) =
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Figure 5.20 The density of states is plotted as a function of
energy for both the conduction and valence bands with (rip-
pled curves) and without (smooth curves) an applied electric
field. Notice that the densities of states have leaked into the
fundamental bandgap causing an apparent decrease in E.
For simplicity, we assume the electrons and holes have the
same effective mass.

where S is defined in Eq. (5.104). The superscript £ is added to indicate
the density of states under the influence of an applied electric field.
Equations (5.102), (5.103), and (5.106) are plotted as a function of en-
ergy, as shown in Fig. 5.19. For simplicity, it is assumed in this figure
that the ground-state energy values for the quantum wire and quantum
well are zero and the conduction band minimum is also set to zero. It
can be seen from Fig. 5.19 that the density of states tunneled below the
energy levels in the three cases. An interesting feature in the bulk mate-
rial is that the density of states has a tail that extends below the bottom
of the conduction band minimum as shown in Fig. 5.19c¢. A similar result
is obtained for the hole density of states as shown in Fig. 5.20 where we
assumed that the effective mass of the electrons and holes are the same.
The tunneling of states in the fundamental bandgap E,, when a uni-
form electric field is applied, leads to the Franz-Keldysh effect. Photons
with an energy of AE < E,; can be absorbed. The oscillations observed
in the density of states when an electric field is applied are difficult to
observe by using the optical absorption technique, due to the fact that
most photons with energies above the fundamental bandgap energy are
reflected or absorbed at the edge of the conduction band. However, these
oscillations can be observed using the photoreflectance technique. The
absorption tail due to the tunneling of states into the bandgap can be
expressed as (see, for example, Mitin et al. 1999 and Fox 2001)

. 3/2
«(E)  exp l_ (%) ] for ho < Ej (5.107)
F
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where

2

WF =e_ w £2/3 (5.108)
2n \ mim;j

where m}and mj are the electron and hole effective masses, respectively,
and £ is the constant applied electric field. The Franz-Keldysh effect has
no significant applications in bulk semiconductors, but it can wash out
the desired excitonic effect.

Summary

The distribution functions and density of states play a major role in the
transport, electrical, and optical properties of semiconductor materials
and devices. Thus, knowledge of these important parameters is nec-
essary before proceeding. In this chapter we presented derivations for
the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein distribution
functions. The Fermi-Dirac distribution function is widely used in both
bulk and low-dimensional semiconductor materials, since it describes
the distribution of particles with one-half spin, such as electrons and
holes. It should be pointed out that these distribution functions were
derived for systems at equilibrium. For nonequilibrium cases, different
analyses are applied. These analyses are presented in Chap. 7.

A fair amount of discussion in this chapter was devoted to the den-
sity of states in various systems. The density of states was derived for
bulk semiconductors and then compared to the density of states in low-
dimensional systems, such as quantum wells, wires, and dots. The den-
sity of states was also derived for semiconductor superlattices and bulk
materials under the influence of a magnetic field. Electron motion in
the presence of a magnetic field is confined to a two-dimensional plane.
This condition is similar to confinement of electrons in quantum wires.

The density of states in bulk semiconductors, quantum wells, and
quantum wires exhibits oscillatory behavior under the influence of an
electric field. Additionally, the density of states leaks into the funda-
mental bandgap in the case of bulk materials causing an apparent de-
crease in the bandgap. It also exhibits a tail below the bound energy
levels in the case of quantum wells and wires.

The distribution functions and density of states were used to obtain
the Fermi energy level in bulk semiconductor, quantum well, and quan-
tum wire systems. The expressions for the Fermi energy levels are
always easy to handle. These expressions can yield an approximate
behavior of the Fermi energy levels in certain regimes, such as high-or
low-temperature regimes. A plot of the Fermi energy level as a function
of temperature or as a function of carrier concentrations was shown for
these systems.
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Problems

5.1 The I'-function is very useful in solving many statistical problems. Show
that '(n) = (n — DI'(n— 1) and I'(n) = (n — D).

1

5.2 The gaussian distribution P(x) = e(x —%)2/(202), is used occasion-
ally to describe certain properties in semiconductors. For example, the diffusion
of carriers can be described by a gaussian function. Show that ffooo P(x)dx = 1.
Plot P(x) as a function of x for at least three different values of . What type
of distribution do you obtain when o —07?

5.3 Plot the Fermi energy as a function of carrier concentration for different
temperatures (see Fig. 5.4) using Eq. (5.43) for a cubic GaAs sample of an edge
of 1075 cm.

5.4 Show that the hole concentration in an intrinsic semiconductor is given
by Eq. (5.62).

5.5 Calculate the density of states for the following: (a) bulk GaAs, (b) the
lowest state of the GaAs/AlGaAs quantum well, and (¢) the lowest band GaAs/
AlGaAs quantum wire. Express your answer in terms of energy, centimeters,
and electronvolts.

5.6 Consider Fig. P5.6 where we plotted the energy levels in the GaAs/AlGaAs
quantum well. The Fermi energy is shown to be above the bound state E;.
(a) Calculate the Fermi energy position for a 2D electron density of
4 x102cm=2 at T = 300, 77, and 4.2 K.
(b) Calculate the Fermi energy levels at T' = 300 and 77 K for the following
2D electron densities: 3 x 101 em™2,1 x 102 cm™2, and 5 x 1013 em™2.

E;
Ep
E
! I 30meV  Figure P5.6
AlGaAs GaAs AlGaAs

5.7 Use the general definition of the density of states as described by the
summation of §-functions [Eq. (5.85)] to derive the density of states for bulk
semiconductors (3D system), quantum wells (2D system), and quantum wires
(1D system).

5.8 For the Bose-Einstein distribution function (5.45), assume that the total
number of the particles, N, with spin zero and mass m in a two-dimensional
system is constant. Derive an expression for the parameter «.
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5.9 The electron density in bulk GaAs can be written as

oo
1 <2m;kBT)3/2 VE —E.dE

T on2 72 (1+ eB—Er)/ksT)

No = NcFy/5(n),

where F'1/2(n) is the Fermi integral and for n > 1.25 it is approximated as
Fy5(n) = (4/3)73/2 93/2 + (73/2/6) n'/2, where n = (Ep — E.)/kpT . Plot the
Fermi energy as a function of electron density for 7' = 300, 200, 100, 77, and
4.2 K.

5.10 The electron thermal energy in the conduction band of GaAs can be ex-
pressed as kg T . Plot the magnetic field required to split the energy levels into
Landau levels as a function of temperature. From the graph, find the magnetic
field required to generate Landau levels at 4.2, 77, and 300 K.

5.11 Consider a quantum dot to be a cubic quantum box with a finite potential
V, outside the well. For bound states in the quantum well, the energy E <
0. Assume that the density of states is 3D-like inside the well. Calculate the
number of states inside the quantum dot for V, = 0.6 eV and for Ly, = L, =
L, =150 A.

5.12 Plot Eq. (5.107) for several values of the electric field. When do you start
to see an effect on the band-edge absorption?
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Optical Properties

The optical properties of any material are the result of photon interac-
tions with the constituents of the material. The aim of this chapter is
to describe photon interactions with semiconductor materials, includ-
ing low-dimensional systems, that lead to effects that are the basis for
many technologies, such as detectors, emitters, optical communications,
display panels, and optical oscillators. The interaction of photons with
electrons in semiconductor materials is most important and gives rise
to many phenomena. Electrons in semiconductor materials can absorb
photons and be excited from the valence band to the conduction band.
Thisis called the interband transition. The inverse of this process occurs
when electrons decay from a higher energy level, such as a conduction
band, to a lower energy level, such as a valence band, and photons are
emitted. This is the basis for light-emitting diodes (LEDs) and laser
diodes. Electrons can absorb photons and be excited from one state to
another within a particular band, such as a conduction band. This tran-
sition is called an intraband transition. In low-dimensional systems,
such as quantum wells, wires, and dots, electrons can be excited by
photons and jump from one confined energy level to another. When the
electrons are excited from a bound state to another bound state in the
conduction band of a quantum well, for example, the transition is called
an intersubband transition. These terminologies are also applied to
heavy or light holes in semiconductors. These transitions are illustrated
for a bulk material in Fig. 6.1a and for a quantum structure in Fig. 6.15.

The band-to-band transition in a bulk material is usually referred to
as the optical bandgap. In the case of a quantum structure, the conven-
tional optical bandgap is no longer allowed, and the effective bandgap is
referred to as the transition from the ground state in the valence band
to the ground state in the conduction band, as illustrated in Fig. 6.15.
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Figure 6.1 Illustrations of various electronic transitions are
shown for (a) a bulk semiconductor material and (b) a quan-
tum structure.

Thus, the effective bandgap in quantum structures is larger than the
conventional optical bandgap in bulk materials. If an electron is excited
from the valence band to the conduction band of a semiconductor, it
leaves behind a positively charged hole. This process is called electron-
hole pair generation. When the electron and hole interact with each
other due to Coulomb interaction, the result is called an exciton. The
excitonic energy levels are usually formed in the fundamental bandgap,
as shown in Fig. 6.2a. The exciton may move about the crystal. In this
case, the electron-hole pair is called a free exciton or a Wannier-Mott ex-
citon. If the exciton is trapped by an impurity or an atom in the crystal,
it is called a bound exciton or a Frenkel exciton, as shown in Fig. 6.25.
The binding energy of a free exciton is usually smaller than that of a
bound exciton.

Many experimental techniques are used to probe electronic transi-
tions in semiconductors. Essentially, the electron-photon interaction is
the most dominant process in optoelectronic devices based on semicon-
ductors and their nanostructures. In this chapter, we discuss various
aspects of the optical properties of bulk semiconductors and low-
dimensional systems.

6.1 Fundamentals

The interaction of photons with any material can be understood from
Maxwell’s classical electromagnetic theory. In MKS units, the four
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Figure 6.2 (a) A schematic presentation of excitons’ en-
ergy levels with respect to the conduction band. (b)
The bound electron-hole pairs for both free and bound
excitons.

Optical Properties

Maxwell equations that govern electromagnetic phenomena are

v.e=P"
€o
B
VXE = —po—
Moat
V-B=0
VXB—EOE=J
ot

where £ = electric field
B = magnetic field
o = electric charge density
J = electric current density

€, = permittivity of free-space (8.854 x 1012 F/m)
o = permeability of free-space [47 x 10~7 W/(m - A)]
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(6.1a)

(6.10)
(6.1c)
(6.1d)

For the interaction of electromagnetic waves with electrically polarized

material, we have

D=¢E+P

(6.2)
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where D is the electric displacement vector and P is the polarization
vector. In the linear limit, the polarization vector can be written as

P=cy-& (6.3)

where ¥ is the dielectric susceptibility tensor. Combining Egs. (6.2) and
(6.3) we have

D=c(l+x-E=¢€&E (6.4)

where €= 1+ ¥ is the dielectric tensor. These tensors can be written in
terms of the scalar quantities € and y, such that Te=1+7T X, where I
is a unit tensor.

For a conductive medium, the current density is related to the electric
field according to the following relation:

Jr =o€ (6.5)

where o is the electrical conductivity, which may be a complex quantity,
and J7 is the total current density composed of both the steady-state
and the time-dependent current densities. For the optical properties of
semiconductors, we are concerned with the time-dependent contribu-
tion to the current density. Hence, the steady-state contribution can be
ignored. The time-dependent current density can now be written as

P
Jr =Jd=— 6.6
T % (6.6)
Substituting Eq. (6.6) into (6.1d ) and using Eq. (6.2) we have
oD
VxB=— (6.7)
at

By substituting Eq. (6.2) into (6.1a), we have
v.D-P) »p

ve-Y2Z0_F
€o €o (6.8)

~V-D=V-P+yp

Substituting the continuity equation dp/dt + V -J = 0 into Eq. (6.8),
we obtain

vV:-D=0 (6.9)

The wave equation for nonmagnetic materials can be derived by taking
the curl of Eq. (6.15):

0
VxVxS:—u(,%VxB (6.10)
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Substituting Eqgs. (6.4) and (6.7) into Eq. (6.10), we obtain

a2E € %€
VXVXEZ—,LLOQ)EB?:—gm (6.11)
where ¢ = 1/./11,€, is the speed of light. Recall that VXV X& =
V(V-E)— V2€ and V - £ = 0; hence Eq. (6.11) becomes

vee - £ V¢

— 6.12
c2 9t? ( )

A solution of this wave equation is a plane wave with the following form:
Er,t) =E,explilk-r — wt)] (6.13)

where £, = amplitude of electric field
k = propagation vector
o = angular frequency

Substituting this solution into the wave Eq. (6.12), one can obtain the
following dispersion relation:

2k? = w?e (6.14)

The dielectric constant ¢ is frequency-dependent, and its explicit form
is required to evaluate the dispersion relation. Substituting Eq. (6.14)
back into (6.13) yields

E(r,t) =E,exp {iw <f1§r - tﬂ (6.15)

The dielectric constant is related to the refractive index n, (w) according
to the following relation:

n(w) = Velw) (6.16)

Both the refractive index and the dielectric constant are complex num-
bers and can be written as

n(w) = ni(w) + ing(w) (6.17a)
e(w) = e1(w) +iea(w) (6.17b)

where n; and €; are the real parts and ny and €5 are the imaginary parts.
Substitute Eqs. (6.16) and (6.17a) into Eq. (6.15) to obtain

wng(w) ~

k-r} exp {Lw(%l;r—t)} (6.18)

E(r,t) =E,exp {—
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The intensity I of the electromagnetic wave is related to the electric
field according to the following relation:

2 ~
I o |E(r, 1) « |E,|? exp [—%(w)k-r}
o |€,]% exp[—a(w)k - 1] (6.19)

where a(w) is the optical absorption coefficient and is defined according
to Eq. (6.19) as

20n3(w)  wez(w) (6.20)

olw) = c T em(w)

The optical absorption coefficient can also be obtained by using Beer’s
law:

I1(z) = I, expl—alw)z] (6.21)

where I(z) is the electromagnetic radiation intensity at a distant z
inside the media and I, is the intensity at z = 0.

6.2 Lorentz and Drude Models

The classical Lorentz model is applicable to solids with bandgaps. This
model is analogous to the quantum-mechanically treated interband
transitions. The Lorentz model assumes that the electron is bound to
the nucleus like a mass attached to a spring. The motion of the jth
electron in a solid can be described according to the following equation
of motion:

Ld2x; o dX; .
dt; +m rd—tf + m*w?x; = —e& (6.22)

where m* = effective mass of electron
I' = damping constant
&€ = electric field

The second term on the right-hand side of this equation represents
various dampings, such as collisions, and the third term is the Hooke’s
law restoring force. The time-dependent x and € can be taken as

X; = X,; expl—iwt]
oY , (6.23)
E =&, expl—iwt]
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The solution of Eq. (6.22) is thus given as
e&

e 6.24
% = (0 — o) +iTa)] (624
The induced dipole moment P per unit volume V is given by
Ne’€
¢ (6.25)

X
P= —eJZ VJ - - m*[(w? — w2) +ilo]
where N is the electron concentration. Using Egs. (6.2) and (6.4), one
can obtain the dielectric constant as
Ne?
eom*[(0? — w2) +il'w]

w)=1- (6.26)
For electrically neutral solids with free electrons, there exists a plasma
with equal concentrations of positive and negative charges. If the damp-
ing and Hooke’s force are ignored in Eq. (6.22), the plasma frequency
can be obtained as wf, = Ne?/(e,m*). Interband electronic transitions
in semiconductors contribute to the dielectric constants, and this contri-
bution, labeled ¢, should be included in Eq. (6.26). The final expression
for the complex dielectric constant is

5

2
(a)2 - a)g) +ilw (6.27)

e(w) = € [1 -

where w, is redefined as a)lz, = Ne2/(e,esom®). The real and imagi-

nary parts of €¢(w) can now be evaluated and given by the following
expressions:

w2 (0* — 7)

2 — a)g)Z + 2?2

e1(w) = €x |1 — (6.28a)
(a)

2
a)pFa)

(a)2 — a)g)z + 2?2

(6.28b)

e(w) = e
Notice that /e ~ n,.for w > w,. The absorption coefficient defined in
Eq. (6.20) can be rewritten as
eoowza)?,l"

cn () [(w? — a)g)2 + IM'2w?]

(6.29)

a(w) =

The absorption coefficient has a lorentzian lineshape. In the Lorentz
model, the optical absorption is derived for band-to-band transitions.
This is a very simplistic form of the optical absorption of interband tran-
sitions. In real semiconductor material, there are many effects that have
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to be included when deriving this coefficient. For example, momentum
matrix elements or the oscillator strengths need to be considered.
For I' « w and w, = 0, the absorption coefficient is reduced to

This absorption coefficient expression is actually the result of the Drude
model. Notice that a(w) o w2, which is the characteristic behavior of
free-electron absorption. The electrical conductivity can be obtained
according to the Drude model by setting the restoring force (Hooke’s
law) in Eq. (6.22) to zero. The solution of the equation of motion becomes

e&

= mrole 1D (631

Xj

By taking the first derivative of x; with respect to time, we have v; =
9x; /0t = —iwxj, where v; is the electron velocity. Substituting this
derivative into Eq. (6.31) one obtains

ie€

" m*(w+il) (6:32)

v; =

On the other hand, the conduction current density is J = —Nev;. Mul-
tiply Eq. (6.32) by the electron change and by the electron concentration
to obtain

iNe’€

One can see that the conductivity o(w) is

iNe*
O’(a)) == m (634)

The real and imaginary parts of the dielectric constant in the Drude
model can be obtained by setting w, = 0 in Eq. (6.28). For v = 0, the
conductivity is reduced to its direct current (dc) value of

Ne? . Ne?t

6.35
m*I’ m* ( )

o(w) =

where © = I''! and is designated as the scattering time.



Optical Properties 199

Conduction
band

,,,,,,, =
Interl?z.md e
transition E,
k
Valence
Figure 6.3 A sketch of the direct
band

bandgap energy showing the ver-
tical interband transition.

Direct band gap semiconductor

6.3 The Optical Absorption Coefficient
of the Interband Transition in Direct Bandgap
Semiconductors

A direct bandgap semiconductor is characterized by having its valence
band maximum and conduction band minimum at the same k-value
in reciprocal space, or momentum space, as shown in Fig. 6.3. It is
customary to assume that this £-value is zero, which is designated as
the center of the first Brillouin zone and in group theory is labeled
as I'-point symmetry. Many authors have taken different approaches
to the calculation of the optical absorption of interband transitions in
semiconductors. In our case, we follow the steps taken by Balkanski and
Wallis (2000). The absorption coefficient is defined according to Beer’s
law as shown in Eq. (6.21). By taking the first derivative of the light
intensity with respect to z, we have

I3 _ I atw) (6.36)
dz

For a sample with a cross-sectional area of A, the rate of energy absorp-
tion is

% =—-Adl =ITa(w)Adz (6.37)
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where dI is the change in light intensity after the light passes through
the sample. The rate of energy absorption can also be written as

dE

o= hoW!, (6.38)
where hw is the photon energy and W/, is the total transition probability
of an electron transition from a valence band state to a conduction
band state. The absorption coefficient can be rewritten by combining
Egs. (6.37) and (6.38) as

hoW!,
IA dz

a(w) = (6.39)
The two major items that need to be determined in this equation are the
I(z) and W,.. The intensity can be obtained by assuming that it is the
mean value of the Poynting vector S = £ x B. The electric and magnetic
fields can be written in terms of the vector potential A as £ = —9A/dt
and 4, B =V X A. Let A=A, cos(k-r—wt). The electric and magnetic
fields can now be written as

E = —wA,sin(k-r — wt) (6.40a)
woB = -k x A, sin(k-r — wt)] (6.400)

The Poynting vector takes the following form
S="A,x[kxA,sin’(k-r— wt)] (6.41)
Mo

Thus, the intensity I can be written as

2
[—(S)= wznl:(;z))

1A, (6.42)

where (S) is the time average of S over one period. In reaching the
form shown in Eq. (6.42), the dispersion relation (6.14) and the vector
analysis identity A x (B x C) = (A-C)B—(A - B)C were used assuming
that k and A, are orthogonal. Substituting Eq. (6.42) into (6.39), we
have

21,chWi, 2h? 1,

_ _ W 6.43
() o ARV eoeny |ALIZV RV (6.43)

The next step is to evaluate W!,. The approach here is to evaluate
the transition probability (W,.) from one Bloch state in the valence
band to another Bloch state in the conduction band. In obtaining the
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transition probability, the photon-electron interaction can be treated as
a perturbation in the following Hamiltonian:

2
H= L-’_eA) +Vi(r)
2m,
2
_ P pATAP+- ALV (644
2m, 2m, 2m,

where p = momentum
A = vector potential
V (r) = electron potential energy

For low light intensities, A? can be neglected. Because the photon mo-
mentum is negligible, the term rising from p acting on A can also be
neglected. Notice that we use the free-electron mass instead of the elec-
tron effective mass. The photon-electron interaction Hamiltonian can
be written as

e
H =
2m,

Ap (6.45)

The transition probability of an electron from the valence band to the
conduction band is given by the Fermi golden rule:

Wy = 2%|(ké|H/|kv>|25(Ekg — Ex, —ho) (6.46)

where (k)| and |k,) are Bloch states in the conduction and valence
bands, respectively. The §-function is included to conserve the energy.
If A has the form A = A, cos(k -r — wt), the interband matrix element
of H' can be written as

e

(ké|H/|kv) = (k;;|Ao -plky) (6.47a)

2m,

Substitute Eq. (6.47a) into (6.46) to obtain
neZ 2 ’ 2
Wee = 55 1A, 1" I(K, IPalky)|"8(Ex, — Ex, — ho) (6.47b)
2hm?2 ©

where p4 is the momentum component along the A direction. In or-
der for Eq. (6.47b) to be evaluated, the Bloch form of the valence and
conduction bands are used such as

(k. lpalk,) = / e ¥ Tor (r)pae’™ px, (1)d °r (6.48)

crystal
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Taking the integral over one primitive unit cell and summing over all
the unit cells, Eq. (6.48) can be rewritten as

(K. |palk,) Z/ ik *(r)pAe o, (r)d °r
-y / RO o (1) (kg + Pk, (1) Pr (6.49)

where the summation is over all unit cells and the integration is over
one unit cell labeled /. The term ik 4 is the result of the p 4 operation on
the exponential part of the wave function, and k4 is the component of
the wavevector in the A direction. Utilizing the periodicity of the crystal
where r = R(]) + 1" and ¢}, (r) = ¢ [R() + 1] = ¢, (r'), Eq. (6.49) can
be written as

(Klpall) = 3 ek R0 / KO o (1) (e y + ), ()T

cell0
(6.50)

where the sum is over all unit cells in the crystal and the integral is
over the unit cell labeled “0.” The sum over all unit cells obviously gives
the number of cells in the crystal. The wave functions ¢y, (r) and gy, (r)
are orthogonal, which means that the first term of the integral is zero.
The momentum matrix element can now be written as

(K, [palk,) = N o / o1, ()P, ()d *r 6.51)
cell0

where N is the total number of unit cells in the crystal. The momentum
matrix element can now be written as

ve = A,?P25(Ey — Ej — .52
W, 2h 2| I"P*3(Ex, — Ex, — ho)dkx (6.52)
where
P=N / o1 ()P agi, (X)d°r (6.53)
cell0

The quantity P was briefly discussed in Sec. 3.7.2. It is a number known
for many semiconductors. For example, 2P2/m, ~ 25.7 (eV) for GaAs,
~ 20.9 (eV) for InP, and ~ 22.2 (eV) for InAs (see Singh 2003). The
S-function, 8k, in Eq. (6.52) gives the selection rules for the direct
transition from the valence band to the conduction band.
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The total transition probability from the valence band to the conduc-
tion band over all k and k' is obtained by summing over all k and k/,

=2 Z Z Woe 5 (1 — f5) (6.54)

where X and (1 — fx¢) are Fermi-Dirac distribution functions for a
full valence band and an empty conduction band, respectively. The fac-
tor 2is added to account for the electron spin degeneracy. For a two-band
model at T = 0 K, we have fK =1, fk¢ = 0 and

k2 h2R?
Ekc - Ekv = Eg + 2m: + 2m§
h’k?
=Fyt g, (6.55)

where m is the reduced mass of the electron and hole system given by

1 1 1
—=—+— (6.56)
my omg o mg
Putting all these together, Eq. (6.54) can be rewritten as (see Balkanski
and Wallis 2000)

e2V

Wlfc = 271 2 |AO| P /S(Ekc - Eku - ha))d3k (657)

where V is the volume of the semiconductor sample. The integral in
Eq. (6.57) can be evaluated using spherical coordinates as

i h2k?
/B(Ekc — By — ho)d’k = 4n/k28 E;—ho+ 5 | dk

r

0

h2k2

=A4r /v S| Eg —ho+ kdk
2m;

= 471“2"1*

I LU e E,

r: R

fa(E —ho+ E)E

o\ 3/2
- 271( ;;) o — By (6.58)
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Figure 6.4 The optical absorption coefficients as a function of
the photon energy for GaAs bulk material. The bandgap was
chosen at 1.52 eV.

This expression is valid for hw > E,, and it is zero for hw < E,. Sub-
stituting Eqgs. (6.58) and (6.57) into Eq. (6.43), we obtain the following
expression for the optical absorption coefficient of direct interband tran-
sition in a bulk semiconductor:

241,chW?, e%h ) <2m: > 32 1

a(w) = = W2 %\/ha) —-E, (6.59)

on|A, 12V 2me,cn,m2

A plot of the absorption coefficient given by Eq. (6.59), using GaAs pa-
rameters, is shown in Fig. 6.4. The energy is plotted for iw > E,. The
optical absorption coefficient can be expressed in terms of the oscilla-
tor strength f,., which is defined as f,. = 2P?2/(m, ho). The maximum
value of f,. can be obtained from the sum rule (see, for example, Wooten
1972) as

‘1 — m—i‘ for electron
foe e (6.60)
1+ —: for hole
my

When the direct interband transition is forbidden at k = 0, but allowed
atk # 0, the optical absorption coefficient depends on the photon energy
as a(w) o (hw — E4)%? /(hw) (see Pankove 1971). It should be noted that
Fig. 6.4 does not include the absorption from either excitons or other
valleys.
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6.4 The Optical Absorption Coefficient
of the Interband Transition in Indirect
Bandgap Semiconductors

The interband transition in an indirect bandgap semiconductor such
as Si occurs between the valence band maximum and conduction band
minimum that are located at different 2-values, as shown in Fig. 6.5.
In a direct bandgap semiconductor, the interband transition is excited
by only electron-photon interactions. The interband transition of an
indirect bandgap semiconductor requires electron-photon and electron-
phonon interactions. A phonon is the quanta of lattice vibrations. Thus,
momentum and energy conservation require that

k.=k,tq (6.61a)
ho =E, — E, £ hopy (6.610)

where q is the phonon wavevector and 7w, is the phonon energy. The
plus and minus signs are for emission or absorption of phonons, respec-
tively. The optical absorption coefficient can be derived in a manner
similar to that of the direct bandgap semiconductor. However, due to
electron-phonon interactions, several steps have to be modified. For
example, the electron-phonon matrix element must be included in the
analysis. Furthermore, the argument of the §-function must include the
phonon energy. The number of phonons (from Bose-Einstein statistics)

Conduction
band
ho,
S [
Eg ho Indlre.ct
transition
Y k.
Valence Figure 6.5 A sketch of an in-
band direct bandgap semiconductor
showing the indirect interband
transition.

Indirect band gap semiconductor
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must also be included. The final result is

 Aho + hopy — E" B exp(hap/kp T )(ho — hwyy, — Ep)"

(w)= exp(hopn/kpT) — 1 exp(hopn/kpT ) — 1

(6.62)

where A and B are constants, n = 2 when a vertical transition is allowed,
and n = 3 when vertical transitions are not allowed (see Wooten 1972).

6.5 The Optical Absorption Coefficient of
the Interband Transition in Quantum Wells

A typical example of an interband transition in a type I quantum well
is shown in Fig. 6.1b, where the electrons are excited from the bound
ground state in the valence band to the bound ground state in the con-
duction band. The steps used to calculate the interband transition in
quantum wells are similar to those discussed previously for optical ab-
sorption of the interband transition in direct bandgap bulk semicon-
ductor materials. There are, however, a few modifications that must be
included:

1. The density of states appears explicitly in Eq. (6.59). Its form is given
by Eq. (6.57) except that the effective mass is replaced by the reduced
mass. Hence, the notation “reduced density of states” is introduced.
For a two-dimensional system, such as a multiple quantum well, the
reduced density of states

\ 3/2
1 (Zmr> fo — B,

272 \ 2
needs to be replaced by the reduced two-dimensional density of states

2D
8cv _ m;

L = > (g 88 YO(Epm — hoo) (6.63)
where Enm = Eg + E? + El']n (664)

and (g'|g") = overlap integral between z-dependent envelop
functions of conduction band and valence band
L = width of quantum well
©® = Heaviside step function

Notice that E,,, is the photon energy required to excite the inter-
band transition in the quantum well. The energies E” and E]* cor-
respond to the energies of the ground bound states in the conduction
and valence bands, respectively. The width of the well is introduced
in Eq. (6.64) to account for the transformation of the momentum



Optical Properties 207

matrix element [Eq. (6.53)] as it goes from the three-dimensional
system to the two-dimensional system.

2. The number of wells, N, should be included in the final expression
of the optical absorption coefficient.

3. The absorption coefficient is calculated for the wells only.

4. The overlap integral defined in (1) provides the selection rules for the
transition. Let us assume that the envelope function has the form

Fo, (r) = e®Tiy (2) (6.65)

The overlap integral can now be written as
L/2

(& | g = (mk, |nK,) = i s / C@xde (6.66)
_L/2

Thus, the overlap integral is nonzero if and only if x”(z) and x¢(2)
are both odd parity or both even parity.

By considering all these modifications, the optical absorption coefficient
of the interband transition in type I multiple quantum wells can be
written as

e2?N,m* P2
="' O, —h 6.67
2¢,cn, hLm?2 ho ; ( @) ( )

a(w)
We assumed that the square of the overlap integral [Eq. (6.66)] is unity,
and, therefore, it was not included in the absorption coefficient expres-
sion. Equation (6.67) is valid for both heavy holes and light holes. The
only difference is that the reduced mass m} is different. Notice that 7w
in the denominator is the minimum photon energy needed to cause
an electronic transition from the valence band to the conduction band
within the quantum well. If the definition of the oscillator strength is
foe = 2P2/(m,hw), where its maximum value is given by Eq. (6.60),
then the optical absorption coefficient can be rewritten as

e?N,m}

lw) = 4e,cn,.hLm,

foc > O(Epm — o) (6.68)

For example, the oscillator strength for an electronic transition in a
GaAs/AlGaAs quantum well is f,. = |1—1/0.067| = 13.925. This quan-
tity is comparable to the value obtained from f,. = 2P2/(m,hw) =
25.7/1.75 = 14.68 for iw = 1.75 eV. A plot of the absorption coefficient
depicted in Eq. (6.68) is show in Fig. 6.6. The ladder-like behavior of the
optical absorption is due to the step function, which is the characteristic
signature of the reduced density of states in the quantum well.
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Figure 6.6 The optical absorption coefficient in a 30 A GaAs/
AlGaAs quantum well plotted as a function of photon energy.

6.6 The Optical Absorption Coefficient
of the Interband Transition in Type I
Superlattices

A typical example of a type II superlattice is an InAs/InGaSb structure
as shown in Fig. 6.7. In this figure, we plotted the conduction band
as a thick line and the valence band as a thin line. The bound states
are shown as the dotted lines, and the wave functions for the ground

InGaSb InAs

Figure 6.7 A sketch of the band alignment of the InAs/
InGaSb superlattice is shown. Minibands are formed due

to the overlap of the wave functions as indicated by the
dashed line.
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bound states in the conduction band are plotted as the dashed lines. The
barrier material is grown thin enough to allow the wave functions to
overlap, forming what are called minibands for both the holes and the
electrons. The wave functions for the holes are not shown. The intrigu-
ing property of this system is that the interband transitions are indirect
in real space as indicated by the arrows in the figure, but the system ex-
hibits a direct bandgap in k-space. The energy dependence of the optical
absorption of the band-to-band transitions can thus be described by the
Pankove expression, a(w) o (hw — Ez)3?/ho. This energy-dependence
is valid at least near the band edge.

The analysis of the optical absorption coefficient for the type II su-
perlattice is more complicated than interband transitions in type I
superlattices. This is due to the fact that the overlap integral is no
longer unity. In this section we simply report (for full derivation, see
Bastard 1988) the absorption coefficient of the interband transition
between the ground state of the heavy hole in an InGaSb layer and
the ground state of the electron in the conduction band of an InAs layer
as follows:

e’mP?Py(E,) [ —x

nomZol?L |1+ 22 + arc tan(x) (6.69)
e S

alw) =

where Py(E1) is the probability of finding the electron in an InAs layer
while in the CB1 state (see Fig. 6.7) and is given by
B 2

Py(E1) = T (6.70)

The parameters B, and k. are the amplitude of the envelope wave func-
tion of the electron in the barrier and the corresponding propagation
vector, respectively. In other words, the electron envelope wave function
in the barrier (InGaSb) is given by x{(z) = B.exp[—k.(z — L/2)]. The
subscript “1” indicates the wave function for the ground state (CB1).
The parameter x in Eq. (6.69) is given by the following expression:

- Jho — El"As L AE, — E
2m;, \/ha) EXr4s + AE, CB1
=/ i (6.71)

where AE, = valence band offset
EAs = InAs bandgap
E¢p1 = electron ground state in the conduction band

The rest of the parameters in Eq. (6.69) were defined previously. The
lineshape of the optical absorption coefficient is defined by the behavior
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(h(D—Eg)3/2

[—x/(1+4x?)]+ arctan(x)

Figure 6.8 The lineshape of the
optical absorption coefficient de-
fined by Eq. (6.69) is plotted as
a function of photon energy (&,).
The lineshape defined by (%, —
E;)3/2 is also shown.

Absorption Coefficient

htx) Photon Energy

of the quantity in the square brackets, which is plotted in Fig. 6.8.
The onset of the optical absorption profile occurs at hw, = E?AS —
AE, + Ecp1. Above this onset, the lineshape appears to depend on the
photon energy according to the relation a(w) ~ (ho— E,)*2. This energy
dependence implies that the direct electronic transition is forbidden.
The latter relation is plotted in Fig. 6.8 for comparison purposes.

6.7 The Optical Absorption Coefficient
of the Intersubband Transition in Multiple
Quantum Wells

Intersubband transitions in low-dimensional quantum structures have
been investigated for their infrared application as detectors and lasers.
The intersubband transitions are generated in n- or p-type quantum
well structures with at least one bound state as shown in Fig. 6.9. In
this figure, we have shown (a) a bound-to-bound transition, where both
the ground state and the first excited state are bound; (b) a bound-to-
continuum transition, where the ground state is bound while the first
excited state is resonant in the conduction band; (¢) the transitions
between the states depicted in k-space; (d ) the optical absorption line-
shape for the bound-to-bound transition; and (e) the optical absorption
profile for the bound-to-continuum transition.

As indicated in Fig. 6.9d and e, the optical absorption profile of
the electrons that undergo the intersubband transition from bound to
bound is different from that of a bound-to-continuum transition. Let
us first obtain the optical absorption coefficient for the bound-to-bound
transition, which has a lorentzian lineshape. The envelope wave func-
tion for the two bound states in Fig. 6.9a can be written as

Yok, (1) = T2y, (2) (6.72)
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Figure 6.9 Bound-to-bound and bound-to-continuum configurations
for intersubband transitions in n-type quantum well structures. The
transitions are shown in k-space along with their optical absorption
coefficient profiles.

where

2

— cos (ﬁ) for n = odd integer (6.73a)
(2) L L

Xn =

2 . /nmz .
7 sin (T) for n = even integer (6.73b)

and L = width of thickness of quantum well
k) = /kZ+k2
r, =xX+yy

Following the procedure discussed in Sec. 6.3, the optical absorption
coefficient can be written as

2 .
alw) = —— W = Z|z|pzu>| 8(E; — Ei —ho)(fp — fip)

(6.74)

where frp is the Fermi-Dirac occupation function and i and j are the
initial and final states, respectively. The factor 2 is added for the elec-
tron spin degeneracy. There are a few approximations in this equation.
First, the free-electron mass was replaced by the electron effective mass.
Second, the number of quantum wells is included to account for the
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absorption from all quantum wells. Third, the momentum component
was taken along the z direction, which is the growth direction. Fourth,
i and j were used, but they stand for (n, k,) and (n/, K',), respectively.
The momentum matrix element can be expressed as

(nky|p.In'K) = 8k, Kk (n|p:|n) (6.75)

The wavevectors k; and k', were removed from the bracket since they
are not good quantum numbers for p, to operate on them. The §-function
was introduced to conserve the momentum. By using the wave func-
tions described in Eq. (6.73), one can find that the nonvanishing matrix
elements of p, are those associated with the following selection rule:

n —n = odd integer (6.76)

which means that only transitions between subbands with opposite
parity are allowed. For n is odd and »’ is even, the matrix element can
be written as

L2
oy 2 nwz L d 2 . (nnz
(nk, | p: 'K, ) = / \/ECOS(T)(—LhE%/Esm( T )dz

~L/2

2ihn { sin[(n’ +n)x/2]  sin[(n’' —n)x/2]

For n = 1 and n’ = 2, the momentum matrix element is —i8%/3L and
the absorption coefficient is

} (6.77)

n+n n—n

27e?Nyh 1 [ 8h\? R
a(a))—ieocnrm*th—w<3—L) > 8(Ew — En—ho) (fi™ — fip )

k,,n,n
(6.78)

If the quantum wells are doped and the Fermi energy is above the
ground state (n = 1, k), and if the excited state (' = 2, k') is com-
pletely empty, then one can write

Z fiss=N1  and ZfFD = (6.79)

The factor 2 is for electron spin degeneracy. Substituting Eq. (6.79) into
(6.78), we have

2 2
mme“*Nyh 1 [ 8h
o) = T e <ﬁ) SAE —how) (6.80)

where [ is the total thickness of the quantum wells and AE = E9 — E;.
In this expression we substituted N = nj/area, where n; is the electron
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sheet density, or the two-dimensional electron gas density. The oscilla-
tor strength can now be defined as

2 2
fo1=2P = 2 (8h) (6.81)

m*hw  m*how \ 3L

where the subscript “01” stands for the electronic transition from the
ground state to the first excited state and P is the value of the momen-
tum matrix element along the z direction. An equivalent definition of
the oscillator strength is fo; = (2m*w/h)|(nk |z|n’'K/ )|?. Notice that hw
is the photon energy required to excite a transition from the ground to
the excited state. For a GaAs/AlGaAs quantum well of thickness 100 A
and iw = 150 meV, fj; ~ 1.08. A typical example of the intersubband
transition in GaAs/AlGaAs multiple quantum wells (MQWs) is shown in
Fig. 6.10, where the solid lines represent experimental measurements
at 300 and 77 K and the dashed lines represent lorentzian lineshape
fits for both spectra. The peak position shift of the intersubband transi-
tion is explained in terms of the many-body effect (see Manasreh 1993).
Since the experimental measurements show broadening due to several
effects, the §-function in Eq. (6.80) can now be replaced by a Lorentzian
lineshape. By inserting Eq. (6.81) into (6.80), we obtain

2
mme“Nyh for r (6.82)

o) = 7l(ho — AE)? + T'2]

2¢,cn,. m*l

where I' is the half-width at half of the maximum.

0.66 T T T T —
[ GaAs/AlGaAs MQWs
(a) T=300K
[ ®T=77K
0.64 ]
S
S 0.62
el
§ L
,_2 L
0.60
0.58 by

800 900 1000 1100 1200 1300 1400
Wave number (cm")

Figure 6.10 Absorbance of the intersubband transition in
75-A GaAs/AlGaAs MQWs measured at 300 and 77 K (solid
lines). The dashed lines are lorentzian fits of the data.
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Intersubband transitions in n-type semiconductor quantum wells
were found experimentally to be excited by a photon with an electric
component parallel to the growth axis (z axis). Thus, the momentum
matrix element should contain the following factor:

£.Z~sinb (6.83)

where € = unit vector of light polarization
6 = internal incident angle
Z = unit vector along z direction.

If the light is polarized in the xy plane, the electron-photon coupling
is zero. But if the light has a component parallel to the growth axis
(z axis), then the electron-photon coupling is nonzero and the intersub-
band transition can be observed. If the light reaches the sample at an
angle, then the light intensity has to be scaled by a factor of cos 6. The
absorption coefficient for the intersubband transition in n-type quan-
tum wells can now be rewritten as

nime?Nyh . sin?6 r
2e,cnom*l " cosd nl(hw — AE)2 + 2]

If 0 is 45°, then the factor (sin®6/cos 6) is ~0.71. One can now state the
polarization selection rule for n-type quantum wells: The electron-photon
coupling for a spherically symmetric band in a quantum well is nonzero
for photons polarized along the growth direction of the quantum well.
For a bound-to-continuum intersubband transition, the calculation of
the momentum matrix element is more complicated since the excited
state is a propagating plane wave as shown in Fig. 6.956. This problem
has been discussed by Choi (1993) who derived the optical absorption

lineshape as
Vho + E1— AE,

1+ C2%(hw + E1 — AE.)|ho — (Ey — E1)]?

(6.84)

alw) =

(6.85)

a(w)

where AE,. = conduction band offset
E., E5 = ground and first excited states, respectively
C = constant

For this expression to be valid, the excited state should be above AE..
A similar expression was derived by Liu (1996).

Because of the small thickness of the quantum wells, the measured
optical absorption of the intersubband transition is usually very small.
One way to increase the absorption intensity is to fabricate a waveguide
where the light will make multiple passes. Figure 6.11 shows the mea-
surements of the absorbance of the intersubband transition for both
the Brewster’s angle and the waveguide configurations. Notice that the
absorption coefficient can be obtained by dividing the absorbance by
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Figure 6.11 Intersubband transition in 75-A GaAs/AlGaAs
MQWs measured at T = 77 K using the (a) Brewster’s an-

gle and (b) waveguide configurations. The inset is a sketch
of a waveguide with multiple passes.

the total thickness of the active region in multiple quantum wells. For
a 75-A well and 50 periods, the total thickness of the active region is
0.375 um for a single pass. The effective optical active region in the
waveguide configuration is 0.374 times the number of passes the pho-
tons will make before exiting the sample. It is clear from Fig. 6.11 that
the signal obtained from using the waveguide configuration is much
larger than that obtained using the Brewster’s angle configuration due
to multiple passes that the photons make inside the waveguide.

The preceding discussion is directed toward n-type multiple quantum
wells, such as GaAs/AlGaAs, where the well is doped with a donor such
as Si. It is quite possible, however, that intersubband transitions can
be observed in p-type multiple quantum wells where the dopant is an
accepter such as Be. In p-type multiple quantum wells, quantum con-
finement is in the valence band, as shown in Fig. 6.12. The momentum
matrix elements show that normal incident photon-electron coupling
is possible due to bands mixing as detailed by Brown and Szmulowicz

Hhl

Lhl Figure 6.12 Intersubband tran-
sitions in p-type GaAs/AlGaAs
Hh2 multiple quantum wells shown
for transitions for heavy hole
Valence band Lh2 (HH) bound states (solid lines)
—— b and for light hole (LH) bound

AlGaAs GaAs AlGaAs state (dashed lines).
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(1996) and Szmulowicz (1995). Transitions between heavy holes and
light holes energy levels are also possible.

6.8 The Optical Absorption Coefficient of
the Intersubband Transition in GaN/AlGaN
Multiple Quantum Wells

III-nitride semiconductors have been studied for their applicationsin the
visible and ultraviolet spectral regions. They can also be used for infrared
applications by investigating the intersubband transitions in quantum
structures such as GalN/AlGaN multiple quantum wells and quantum
dots. The most common crystallographic structure of III-nitride ma-
terials is the wurtzite (hexagonal) structure. A large spontaneous po-
larization oriented along the ¢ axis occurs due to the lack of inversion
symmetry and the large ionicity associated with the covalent nitrogen
bond (Bernardini et al. 1997). The electrostatic charge densities as-
sociated with the piezoelectric polarization field influence the carrier
distributions, electric field, and consequently, a wide range of optical
and electronic properties of nitride materials and devices. The total
polarization at the GaN/AlIGaN interface is the sum of the effective
piezoelectric polarization and the difference spontaneous polarization
(Morkog et al. 1999 and Yu 2003). A typical value for the total polariza-
tion is on the order of —0.096x C/m?2, where x is the Al mole fraction in
the AlGaN (Morkog et al. 1999). For x = 0.3, the total polarization is
—0.0288 C/m?. Notice that 1 C/m? = 6.24 x 10'* electrons/cm?. Thus, one
AlGaN/GaNinterface canproduceatotal polarization charge onthe order
of ~1.80x 103 electrons/cm?. A test of the polarization-induced charges
istomeasuretheintersubband transitionin certain GaN/AlIGaN multiple
quantum well structures, as shown in Fig. 6.13a and b. In Fig. 6.13a, we
designed a sample where the well is ~35 A GaN and the barrieris 100 A
bulk Al 35GagesN. Thus, this sample has one AlGaN/GaN interface,
which contributes a sheet carrier density of ~1.80 x 103 cm~2. On the
other hand, the structure in Fig. 6.135 is made of a similar well, but the
barrier is composed of four 10 A GaN/15 A Aly 65Gag 35N. Hence the total
number of interfaces that contribute polarized induced charges is five
(one from the well and four from the superlattice barrier). Indeed, when
the intersubband transitions were measured for the two samples in the
waveguide configuration, we obtained the absorbance spectra shown
in Fig. 6.13c. By examining Fig. 6.13¢c, we noted that the spectrum in-
tensity obtained for the sample with a superlattice barrier [spectrum
(a)] is approximately five times larger than the spectrum intensity ob-
tained for the sample with a bulk burrier [spectrum (2)]. Hence, the total
polarization-induced sheet carrier density is ~9.00 x 103 cm~2 for a
sample with five interfaces. This is a straightforward test of measuring
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Figure 6.13 Structures of the GaN/AlGaN multiple quantum well designed such that (@)

the barrier is bulk and (b) the barrier is composed of GaN/AlGaN short period superlattice.
(¢) The intersubband transition spectra for the two samples were measured at 77 K.

the polarization-induced sheet carrier density. The optical absorption
coefficient of the intersubband transition in GaN/AlGaN multiple quan-
tum wells is similar to that obtained for the intersubband transition in
GaAs/AlGaAs multiple quantum wells.

ITI-nitride semiconductor materials have a wide range of applications,
and their use as we have seen in Fig. 6.13c extends from the ultraviolet
and visible spectrum to near the infrared spectral region. In addition
to their optoelectronic applications, the III-nitride materials have been
used for high-power modulation-doped field-effect transistors.

6.9 Electronic Transitions in Multiple
Quantum Dots

The intersubband transitions in multiple quantum wells discussed in
Sec. 6.8 show that there is a selection rule that permits electron-photon
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coupling at a certain angle of incident light. Maximum electron-photon
coupling occurs at the Brewster’s angle, while the waveguide configu-
ration allows one to obtain a stronger absorption intensity due to the
multiple passes that the light makes before exiting the sample. In the
multiple quantum well case, the wave functions of the ground and ex-
cited states are highly symmetrical (s-type) and the transition is deter-
mined by the overlap integral or by the selection rules determined from
the momentum matrix elements. In the case of quantum dots, there is a
strong p-type mixture in the conduction band states (see Singh 2003).
For an eight-band k- p model, the wave functions of the electronic en-
ergy levels in quantum dots can be written according to Singh as

8
Yn(x) = () j (x) (6.86)

Jj=1

where ¢,; is the envelope part and «; is the central cell part. The mo-
mentum matrix element can now be written as

pfri= Z Udrj Pl ) jrluj) + (wjplu;)brjij)} (6.87)
JJ’
The absorption coefficient can now be written for bound-to-bound tran-

sitions with a Lorentzian lineshape as

2
_ mme*Ngh 1 4 9 r
o) = ot & PR e~ AEE 1T (6.88)

where n; = number of electrons per unit area in each
quantum dot layer
N, = number of quantum dot layers
l.y = average quantum dot layer thickness
€ = direction of polarization unit vector

A typical example of a multiple quantum dot structure is depicted in
Fig. 6.14a. In this figure we sketched Iny3Gag7As triangular-shaped
quantum dots grown by the molecular beam epitaxy technique using
Stranski-Krastanov mode with GaAs being the barrier. The wetting
layer and the average quantum dot height are shown. Two samples
were designed such that the intersubband transition is bound-to-bound
(Fig. 6.14b) in one sample and bound-to-continuum in the other
(Fig. 6.14c). Waveguides were made from these two samples to allow
the light to make multiple passes to increase the optical length. The av-
erage thicknesses (/) of the bound-to-bound and bound-to-continuum
samples were 25 and 15 monolayers (ML), respectively. A monolayer of
Ing 3Gag 7As is approximately 2.588 A.
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Figure 6.14 (a) A sketch of an InGaAs/GaAs multiple quan-
tum dot structure used for optical absorption coefficient
measurements showing the wetting layers, triangular-
shaped quantum dots, and contact layers. (b) Bound-to-
bound transition. (¢) Bound-to-continuum transition.

Typical optical absorbance spectra for bound-to-bound and bound-
to-continuum intersubband transitions obtained for multiple quantum
dots are shown in Fig. 6.15. The solid lines are the experimental spectra
and the dashed lines are theoretical spectra. For the bound-to-bound
spectrum (a), a Lorentzian lineshape was used as given by Eq. (6.82).
The bound-to-continuum spectrum (b) was fitted with a lineshape de-
scribed by Eq. (6.85). The bound-to-continuum transition exhibits an
asymmetrical lineshape due to the fact that the transition occurs be-
tween the bound ground state and all available states in the continuum,
including the resonant state, which has the propagation property shown
in Fig. 6.14c¢. Notice that the optical absorption coefficient of the inter-
subband transition contains the electron effective mass. This is due to
the higher-order terms arising from the canonical transformations of
the effective mass theory (Wallis 1958).

The sketch shown in Fig. 6.14a indicates that the dot size is the same
for all dots in the structure. This picture, however, is very simplistic
since the self-assembled quantum dot shows that there is a variation
in size, shape, and strain causing a variation in the energy levels, which
leads to an inhomogeneous broadening in the quantum dot ensemble
properties. An example of this effect is the interband transitions in
quantum dot ensembles, where the distribution of the quantum dot
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Figure 6.15 Optical absorbance spectra obtained for two
multiple quantum dot structures with average dot height
of (a) 25 monolayer (ML) and (b) 15 ML. The solid lines
represent the experimental spectra, and the dashed lines
represent the theoretical spectra.

size is assumed to be a gaussian lineshape of the form

(6.89)

PRY
Gla) — (a ao)}

1
— X
V2o, P [ 202

where o, is the standard deviation and is given by o, = \/{a — a,)2. The
quantum dots are assumed to be cubic in shape with an average side
of length a, (see Wu et al. 1987). The same analysis can be applied to
spherical quantum dots with an average radius r,. The optical absorp-
tion coefficient for the interband transition in a quantum dot can be
written as

2me’h | P,)?
eocnhm2a® ho

alw) =

2422
S (@l + 1)s <ha) ~E, - %) (6.90)

n,l

where ), (2] + 1) = degeneracy of energy level
P, = momentum matrix element
E; =bandgap

The selection rules dictate that An = 0, which means the allowed tran-
sitions are those between HH; and E;, HHy and Ey, and so on. The
reduced effective mass m} was defined previously [see Eq. (6.56)]. The
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convolution of Eqgs. (6.89) and (6.90) gives

2we’h |P,2 1

221

= 204+1
() eccnhm? ho /270, zl:( +1
i 72h%n2\ 1 (@ —ap)?
0
Letting
2m*a?
2 r o
x° = 7-[2712 (ha)—Eg)
Oq
§=—,
Qo
Ao 2ne®h P> m
 epenyhm2a® ho 27 2h2
we have

A20+1 (n/x —1)2
ww =5 S5 em -

n,l

(6.92)

A plot of Eq. (6.92) is shown in Fig. 6.16 for different values of £, assum-
ing that the parameter A is the same for all transitions. The absorption
peak position energies can be expressed as

2h2
ho = Eg+a?
2mka?

(6.93)

where E; is the bandgap of the bulk material and x can be read directly
from Fig. 6.16. If one ignores the small red shift of the peak position
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Figure 6.16 Absorption coeffi-
cient of interband transitions in
quantum dot ensembles having
a gaussian distribution plotted
as a function of reduced photon
energy. The spectra shown are
for three different standard
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energy due to the broadening effect, x is taken as an integer as shown
in the figure. It is clear from Eq. (6.93) that the peak positions are
determined solely by the size of the quantum dots for known electron
and hole effective masses.

6.10 Selection Rules

6.10.1 Electron-photon coupling of
intersubband transitions in multiple
quantum wells

It was found experimentally that the intersubband transitions in n-type
multiple quantum wells can be observed when the incident light has
a polarization component in the z direction or growth direction. The
light has electrical (£,) and magnetic (B,) components which are or-
thogonal to each other and to the propagation direction, as illustrated
in Fig. 6.17. For normal incident light, as illustrated in Fig. 6.17a, the
electrical component is perpendicular to the z axis, and therefore, the
electrical component along the z axis is zero. However, when the in-
cident light reaches the surface of the sample at an angle ¢ from the

Figure 6.17 Reflection and trans-
mission of an electromagnetic
wave showing the electric (£,)
and magnetic (B,) fields with re-
spect to the direction of propaga-
tion. (@) Normal incidence gives
a zero component of the electric
field along the propagation di-
rection. (b) Incidence at an an-
gle ¢ from the normal yields a
nonzero component of the elec-
tric field along the z direction.
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normal, as illustrated in Fig. 6.17b, the electric field has a component in
the z axis suchthat £, -2 = F, cos ¢ = F, sin 6. The maximum electron-
photon coupling occurs when ¢ is the Brewster’s angle. For GaAs, with
a refractive index of 3.27, ¢ is 73°. Thus, 6 = sin '[(sin 73)/3.27] = 17°.
The electron-photon coupling selection rule for a spherically symmetric
band in a quantum well is that this coupling is nonzero for photons
polarized along the growth direction of the quantum well. For intersub-
band transitions in p-type multiple quantum wells, this selection rule
is no longer valid and the photon can be absorbed at normal incident
due to heavy hole and light hole wave functions mixing.

6.10.2 Intersubband transition in multiple
quantum wells

The envelope functions of the bound states in the conduction quantum
well are given by Eq. (6.73) for the even and odd states. The momentum
matrix element is given by Eq. (6.75). Since the momentum operator,
p. = —ihd /dz, changes the parity of the wave function, the wave func-
tions in the integral (n| p. | ') must have opposite parities for a nonzero
momentum matrix element. In other words, |n) and |n’) must have dif-
ferent parities, which leads to the selection rule (' — n) = odd integer.
The same conclusion can be reached if the dipole matrix element is
used instead of the momentum matrix element such that (n|z|7n/). In
this case, z is an odd function and, therefore, |n) and |n/) must have
different parities for the integral to have a nonzero value.

6.10.3 Interband transition

The selection rules of interband transitions in multiple quantum wells
can be understood by examining the wave functions of the valence and
conduction bands, which can be written as

lt) = %uv(r)wnh(Z) exp(ik, -r,) (6.94q)
|f) = leuc(r)wnfe(z) exp(ik’ -r’) (6.94b)

where [k, |=/k2 + k2
ey

lri| = /2% +y?
uy(r), u.(r) = envelope functions for valence and conduction
bands, respectively
©nn(2), ene(z) = wave functions for bound states in valence and
conduction bands, respectively
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The exponentials are the plane waves for free motion in the xy plane.
Either the momentum or the dipole matrix element can be used to
determine the allowed interband transitions. The conservation of mo-
mentum allows one to set k; = k' since the photon momentum is very
small compared to the electron momentum. The matrix element M can
now be written as

= (fIrl) (6.95)
For quantum wells, we have
(flxli) = (flyli) # (flzl) (6.96)

Since the interband transition is in a plane perpendicular to the growth
axis or z direction, we are concerned about evaluating the matrix ele-
ment along the x or y direction, which yields

= (flxli) = %//uif(r)go,’;e(z)xuv(r)wnh(z)d31- dz

%/uj(r)xuv(r)d3r/(p,’i,e(z)wnh(z) dz

1
= V(uclxluv)(n/e |7’Lh> = Mcann’ (6.97)
where
%(uclxutv) = Mcv (698)
and
(ne|nh) = My (6.99)

where M,,, is known as the electron-hole overlap. If one assumes that
the wave functions of the bound states in the valance and the conduction
bands have the forms

(2) = \/gcos nre + nr
©Pnh =\Vz 7 2

oo B (2
gne(2) = \[ T cos | —F 5

then the electron-hole overlap integral is

nrz nrz n'm
nn = —F o = Onn/ .101
L/cos( +2>cos<L +2)dz 8 (6.101)
—L/2

(6.100)
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From this equation, we have the following selection rule: n = n’ or
An=0.

6.11 Excitons

A brief discussion of excitons in bulk semiconductors and low-
dimensional systems is presented in this section. Excitons in GaN thin
films are discussed as an example for bulk materials. Then, excitons in
quantum wells and quantum dots are discussed.

6.11.1 Excitons in bulk semiconductors

Excitons are quasi-particles used to describe electron-hole pairs cou-
pled by Coulomb interaction in a manner similar to the hydrogen atom.
As mentioned in the introduction of this chapter, there are two types
of excitons; free and bound excitons as illustrated in Fig. 6.2. Excitons
in semiconductors are stable so long as their binding energy is smaller
than the thermal energy (kg T ). The optical absorption and photolumi-
nescence emission of excitons affect the optical properties of the band
edge of semiconductors and their heterojunctions. Exciton absorption
is profound at low temperatures in most direct bandgap semiconductor
materials, and it can even be observed at room temperature in semi-
conductors, such as GaN, where the binding energy of the exciton is
slightly larger than the room temperature thermal energy. Figure 6.18

Exciton energy
levels

pUBq UONINPUOD)

Figure 6.18 Illustration of the
band edge absorption of a di-
rect semiconductor in the ab-
sence (dashed curve) and in the
presence of excitons (solid lines).
The exciton energy levels (n =1,
2, and 3) are shown. R,, is the
= exciton binding energy in bulk
semiconductors.

Optical Absorption coefficient

f Photon Ener'gy



226 Chapter Six

illustrates how the free exciton affects the band edge absorption of a
pure semiconductor material at low temperature. The dashed line in
this figure depicts the band edge absorption of a direct bandgap semi-
conductor without the exciton effect. The solid curve is the band edge
absorption with the exciton effect included. The lines labeled n = 1, 2,
and 3 are the excitonic energy levels.

To obtain the exciton energy levels, one needs to solve the Schrodinger
equation for a two-body problem. By considering the relative motion of
the electron-hole system and ignoring the motion of the center of mass
(the kinetic energy of the center of mass which is translation invariant),
the Schrodinger equation can be written as

k2 e2
B 2u* B drmee,r

] Wex = EnIpex (6102)

where the first term is the relative motion of the electron-hole system
(kinetic energy), the second term is the Coulomb interaction energy
between the electron and hole, € is the dielectric constant of the ma-
terial, r is the distance between the electron and hole, and m* is the
exciton reduced effective mass [1/u* = (1/m?) + (1/mj)]. The exciton
wave function can be written as

Yex X X (1 )pe(re)py(rp) (6.103)

where x(r) is the envelope function and ¢.(r.) and ¢,(r;) are Wannier
functions that represent the electron and hole band edge states, res-
pectively. Equation (6.102) can be solved in a manner similar to the
hydrogen atom, where the energy levels can be written as

*,4 *
ure w* Ry
B, —— ___# hm (6.104)
2(4mee,)2h>n? mye2 n?

where m, is the free electron mass and Ry is the hydrogen atom Ryd-
berg constant given by Ry = mye?/[2(4re,)2h?] = 13.60 eV. The quan-
tity Rex = n* R /(m,€2) can now be called the exciton Rydberg constant.
The radius of the electron-hole orbit can be written as

dree,h?n?  myen?

r,= 3 = apg = N’y (6.105)
nre w*

where ay is the Bohr ra@ius of the hydrogen atom given by ag =
4eh?/(mye?) = 0.5293 A, and ae is the exciton Bohr radius. The
exciton binding energy can be taken as R, or the energy of the ground
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TABLE 6.1 Several Well-known Direct Bandgap Semiconductor Materials
and Their Properties?

Material E,, eV m mj € EPulk meV abulk A
InSh 0.23 0.013 0.40 16.8 0.61 706.2
InAs 0.35 0.027 0.40 15.15 1.50 317.0
GaSb 0.75 0.042 0.40 15.69 2.10 218.5
GaAs 1.52 0.067 0.54 13.18 4.67 117.0
InP 1.35 0.073 0.64 12.56 5.65 101.4
CdTe 1.48 0.086 0.60 10.6 10.02 67.8
ZnTe 2.39 0.12 1.30 8.7 19.90 41.9
GaN 3.44 0.20 0.60 9.50 22.60 33.5
ZnO 3.28 0.24 0.78 8.1 33.00 23.4

“E,; = bandgap; m}, m; = electron and heavy hole effective mass, respectively, in units of
electron mass (9.11 x 107°! kg); € = dielectric constant; EPY* = exciton binding energy; a2 =
exciton radius.

state. For example, the binding energy of a free exciton in GaAs is
found to be 4.35 meV, assuming that the electron and heavy hole ef-
fective masses are 0.067m, and 0.54m,, respectively, and the dielec-
tric constant is taken as 13.6. The Bohr radius of the free exciton in
GaAs is calculated to be 12.07 nm. The equivalent temperature to the
free exciton binding energy is ~50 K. Thus, the free exciton in GaAs
is stable at temperatures below 50 K. In a highly pure GaAs sam-
ple with high mobility, the free exciton is observed at temperatures
as high as 180 K. As a comparison, we calculated the binding energy
of the free exciton in GaN material to be ~23.4 meV for electron and
heavy hole effective masses of 0.20m, and 0.60m,, respectively, and
for a dielectric constant of 9.2. The Bohr radius is found to be ~3.24
nm. The equivalent temperature to the exciton in GaAs is ~271 K,
which means that free excitons can be observed at room temperature
in relatively pure GaN samples. The exciton binding energy and ra-
dius were calculated for a few semiconductor materials and are given
in Table 6.1. The exciton binding energy increases as the bandgap in-
creases. On the other hand, the exciton radius decreases with increasing
bandgap.

Excitons are mostly observed at the high symmetry points in the
Brillouin zone such as the I'-point (the center of the Brillouin zone).
At these points the slopes of the energy bands are zero and the group
velocities of electrons and holes are the same, which is a necessary
condition to observe excitons. The excitonic energy levels in a direct
bandgap semiconductor can be written as

*,4
wre Rex
E,=E,—————=FE,— — 6.106
& 24mee,)2hn2 £ n2 ( )
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If the motion of the center of mass of the exciton is included in the
Schrodinger equation, the excitonic energy levels become

Rk, Rex

E,—E
st oM T w2

(6.107)

where k. is the exciton wavevector and M = m} +mj. The exciton cen-
ter of mass in this equation behaves like a particle with mass M and a
wavevector K¢;. The translational energy of the exciton center of mass,
which is usually very small, can be dropped from Eq. (6.107). The driv-
ing force of exciton generation is the Coulomb interaction between the
electron-hole pair. If this interaction is zero, the exciton energy levels
will vanish. The exciton functions are hydrogen atom-like functions.
For example, the ground-state wave function can be written as

$%(r) = 1 e T/ ex (6.108)
@

The free-exciton radius in many semiconductors that have a bandgap
in the range of 1 to 2 eV is on the order of 100 A, which means that
the exciton is spread over many unit cells as shown in Fig. 6.2. In wide-
bandgap materials, such as GaN and ZnO, the exciton radius is smaller,
but the binding energy is larger and free excitons are observable even
at room temperature. The stability of the exciton at room temperature
is very important for exciton-based device applications.

The optical absorption spectra of excitons have been reported for
many direct bandgap semiconductor materials. For example, optical
absorption measurements on wurtzite GaN thin films, grown on sap-
phire, exhibit three free excitons, as shown in Fig. 6.19. A room tem-
perature spectrum shows excitonic behavior near the band edge ab-
sorption. When the sample is cooled to 10 K, the spectrum shows the
three excitons, lines A, B, and C. These excitons are usually observed
in epitaxially grown thin films with thicknesses ranging from 0.1 to
1.0 um. Within this thickness range, absorption above the bandgap is
possible since thick layers tend to absorb and/or reflect light just above
the band edge. An alternative technique used to measure the absorp-
tion coefficient above the bandgap is ellipsometry. The absorption coef-
ficient can then be obtained from the imaginary part of the dielectric
constant.

The origin of the A, B, and C excitons can be understood by examin-
ing Fig. 6.20. In this figure, the band structure is sketched at the center
of the Brillouin zone where the wurtzite structure has a nondegenerate
energy level for the conduction band (CB) and a degenerate energy level
for the valence band (VB). The valence band energy level splits into two
energy levels (I'1, I's) under the action of the axial crystal field (A;).
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Figure 6.19 The optical absorption coefficient spectra of
GaN thin film measured at 300 and 10 K. The three exci-
ton lines, A, B, and C, are clearly visible in the spectrum
measured at 10 K.

The spin-orbit interaction (Ag,) causes a similar effect on the valence
band. The combined actions of A, and Ay, result in splitting of the
valence band into three energy levels, labeled I'y, I'7, and I'7. The tran-
sitions from the three valence energy levels to a single conduction band
energy level dominate the optical absorption near the band edge of GaN.
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Figure 6.20 A sketch of the band structure near the funda-
mental band edge in wurtzite GaN showing the effect of the
crystal field and spin-orbit interactions on the valence band.
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The three exciton transitions are labeled E ;, Ef, and EgC , while E; is
the bandgap transition in the absence of the exciton effect.

The excitonic energy levels in GaN have been investigated by many
techniques. GaN thin films are epitaxially grown on lattice mismatched
substrates, such as sapphire or SiC. The interfaces are usually plagued
by dislocations and extended defects. The structural property of the
thin film usually improves as the thickness of the layer increases. Con-
versely, optical absorption above the band edge becomes difficult as
the layer thickness increases. However, the photoreflectance technique
is useful in this case, where the excitonic bound states are probed.
Fig. 6.21 is a typical photoreflectance spectrum measured at 10 K for
a 7.2-um-thick GaN thin film grown on sapphire. The exciton tran-
sition for n = 1,2 and oo are shown for excitons A and B. The re-
flectance from exciton C is very weak due to the fact that its energy
is way above the bottom of the conduction band. In addition to the
splitting of the valence band under the crystal field and spin-orbit in-
teractions, a fine structure splitting of the exciton lines (on the order of
1 meV) due to electron-hole exchange interaction may occur. This fine
structure, however, has not been observed yet.

LI R S B S B S B B B B B B B B S N B S

GaN/sapphire
B-exciton n=1 2 © 10K
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Figure 6.21 Photoreflectance spectrum from 7.2-um-thick GaN
grown by metal-organic chemical vapor deposition (MOCVD)
on (0001) sapphire substrate is shown as a function of photon
energy. The excitonic energy levels (n = 1 and 2) are shown for
excitons A and B. (After Schmidt and Song 2002.)
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The optical absorption of the exciton in bulk semiconductors was de-
rived by Elliot (1957) and is given by

%2;;)— 'ae; for ho ~ E,
Olox = ( j) (6.109)
¢ exp(mw
0 Sinh(ﬂé‘) fOI‘ ha) > Eg

where o, is the optical absorption in the absence of Coulomb interaction

[see Eq. (6.68)] and ¢ = aex/\/Aw — Ej.

6.11.2 Excitons in quantum wells

The Hamiltonian of the exciton in a quantum well does not have a sim-
ple analytical solution, but the problem can be solved using the varia-
tional method described in Chap. 1. If the variational wave function is
assumed to have the form

2
ex

it (r) = 2 v (6.110)
T

where r is the relative coordinate of the electron and hole in the xy
plane, then the Hamiltonian in polar coordinates can be written as

2 2 2
H— 17} {18(3)4_18] e 6.111)

p— —_—— r_ [ — p—
2u* |ror \' or r2 962 4ee,r

Using the variational method, one can write the energy expectation
value as

gy _ Lo OH(r, O)r dr df
= [l (x,0)p(x,0)r dr dO

To simplify the solution of Eq. (6.112), let us set & = 1/a.x, where & is
the variational parameter. Equation (6.112) can be rewritten as

E_/ R SR b AR W e R
(E) = | exp(—r§ 2u* |ror or r2 992 4dmee,r

x exp(—ré)rdr do

B h2$2 2825
| 2ur 4dwee,

(6.112)

(6.113)

The energy can now be maximized as follows. Take the first derivative
of (E)with respect to £ and equate the results to zero to obtain

2u*e?

= (6.114)
W4mee,

¢
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Substituting Eq. (6.114) back into (6.113), the exciton ground-state en-
ergy EP is

an _ 2M*€4
° T h(4mee,)?
et 3D
= _m = —4E; (6.115)

where E3P is the exciton ground-state energy of the bulk material. One
can generalize this result according to the following expression:
3D=——£%3 n=1,2.3... (6.116)
(n—3)
The exciton binding energy in quantum wells is equal to 4 R¢x. The Bohr
radius of the exciton in a quantum well (aZ) is the inverse of the quan-
tity given by Eq. (6.114), which is one-half the exciton radius (a2P) in
bulk material (a2 = a2P/2). The theoretical value of the exciton bind-
ing energy in a quantum well presented in Eq. (6.115) is the upper
limit, which is a difficult limit to reach experimentally. Experimentally,
the exciton binding energy in quantum wells is ~2.5E3P. This is still a
substantial enhancement of the exciton binding energy, which is very
important for many optoelectronic device applications. An example of
exciton binding energy in quantum wells is shown in Fig. 6.22, where
the binding energy is calculated as a function of the well width of an
infinite-depth CdTe quantum well (see Harrison 2000). The binding

Exciton Binding Energy (meV)

1 10 100 1000
Well Width [_ (&)

Figure 6.22 Exciton binding energy in an infinite-depth
CdTe deep quantum well. (After Harrison 2000.)
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energy limits in this figure satisfy the bulk limit (—10.1 meV) when the
well thickness is too large (1000 A) and the quantum well theoretical
limit [~4 x (—10.1) meV] when the well thickness approaches zero. No-
tice that the energy is negative, which implies that the exciton ground
state is a bound state.

6.11.3 Excitons in quantum dots

The calculation of exciton binding energy in quantum dots is very compli-
cated. The most common approximation used is the variational method,
which requires knowledge of a trial function and a Hamiltonian as dis-
cussed in Sec. 6.11.2. The analysis for quantum dots is more complicated
due to the variation of the size and shape of the quantum dots. Generally
speaking, the exciton binding energy is much higher in the case of quan-
tum wells and dots as compared to bulk materials due to electron and
hole confinement in quantum structures. Accompanying the increase in
exciton binding energy is a reduction of the exciton Bohr radius. While
reports in the open literature indicate a variety of results for various
quantum dot shapes and sizes, a general consensus is that the binding
energy in quantum dots increases as the size of the dot decreases. An
example is reported by Grundmann et al. (1995) and shown in Fig. 6.23,
where the exciton binding energy is plotted as a function of the base
length of an InAs/GaAs pyramidal quantum dot size. The exciton bind-
ing energies (Rex) in bulk GaAs and InAs are indicated in the figure.
The behavior of the exciton binding energy in quantum dots shown in
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Figure 6.23 Exciton binding energy as a function of the
InAs/GaAs pyramid base length. (After Grundmann et al.
1995).



234 Chapter Six

100:---1----|""|""|""|"-'
902_ GaN E

80 - Spherical quantum dot
70F
60
S0F
40F
30
20F = 3
10F B .

ex

AL, (meV)

O:AAAAIII PV DY S | L J Ty

0 50 100 150 200 250 300
Quantum dot Radius (1&)

Figure 6.24 Variation of change in exciton binding energy
as a function of dot size for GaN. (After Strenger and Bajaj
2003.)

Fig. 6.23 is the trend that most theoretical calculations exhibit. For
example, the change in the binding energy in an ionic semiconductor
spherical quantum dot was shown recently to have the following form
(see Stenger and Bajaj 2003)

hZ 2
ABex o g o + EQ™ (6.117)

where R is the radius of the sphere and E2'X is the exciton binding
energy in bulk materials. A plot of this equatmn is shown in Fig. 6.24
for a GaN spherical quantum dot. The dashed line in Fig. 6.24 repre-
sents the exciton binding energy in a bulk GaN material, and the solid
line represents the change in the exciton binding energy as a function
of the quantum dot radius. Again, the behavior of the binding energy
in Fig. 6.24 seems to be universal for most quantum dot materials.
While optical absorption from excitons in quantum dots has not been
reported, perhaps due to the significantly small optical length, theo-
retical results indicate that excitons in quantum dots could have large
oscillator strengths (see, for example, Bimberg et al. and references
therein).

6.12 Cyclotron Resonance

The cyclotron resonance technique has been used to determine the ef-
fective masses of charge carriers in high-purity bulk semiconductors
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as well as heterojunctions and quantum wells. This technique requires
both electric and magnetic fields. Early experiments used microwave ra-
diation in conjunction with the magnetic field. Then, the technique was
developed to incorporate an infrared laser light instead of microwave
radiation. With this configuration, the magnetic field is swept over a
specific range to obtain the cyclotron resonance spectrum. Most re-
cently, infrared light was used instead of laser light. The latter con-
figuration provided a quick determination of the effective masses since
the magnetic field is fixed and the infrared radiation is scanned using
Fourier-transform infrared spectroscopy, as shown in Fig. 6.25.

An electron with a charge e and velocity v, under the influence of a
magnetic field B, will experience a force F (Lorentz force) given by

F=evxB (6.118)

When vis perpendicular to B, the magnitude of this force is | F| = |e|vB.
On the other hand, the centripetal force ., due to a uniform circular
motion of a particle with mass m and acceleration v?/r, is given by

UZ

Fe = m-—- (6.119)
By equating the two forces in Eqs. (6.118) and (6.119), one can obtain
the radius r and the period T' of the circular orbit as

2
=2 and 7= (6.120)
eB v

The angular frequency of the particle is called the cyclotron frequency,
which is given by

r

w=2_Y_E2 (6.121)
r
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This equation can be modified for charge carriers in semiconductors as

le| B
==

(6.122)

We

where m* is the charged particle effective mass. For cyclotron resonance
to work, the electric field £ of the radiation should have a nonzero
component in the plane of the cyclotron motion. The cyclotron reso-
nance condition occurs when the radiation energy is equal to the energy
needed for the charge carrier to make a transition between adjacent
Landau energy levels. To determine the cyclotron resonance condition,
the equation of motion of a free charged particle under the influence of
electromagnetic and magnetic fields can be written as

m* (d—”+3> —e(E+vXB) (6.123)
dt T

where the first term in parentheses on the left-hand side is due to the
particle acceleration and the second term is due to collisions, which are
characterized by the relaxation time t of the carriers. The velocity v is
the drift velocity under the influence of the electric field £. The mag-
netic field associated with the electromagnetic radiation is too small
compared to the applied magnetic field, and hence, it is ignored.

Let us take the polarization of the electric field along the x direction
and the magnetic field along the z direction. Since the particle motion
is in the xy plane, the drift velocity has two components, one in each of
the x and y directions. Thus, we can write the electric, magnetic, and
velocity, fields, respectively, as

E =&, expiowt)
B =B, (6.124)

v = (uk + vyY) exp (Pwt)

Substituting Eq. (6.124) into (6.123) we have
m <—Lw + r) vy = e& +ev, B, (6.125a)
) 1
m* (—La) + —) vy = —eu, B, (6.125b)
T

Solving these two equations for v,, we have

e&, —iw+11

x = - 6.126
ST Clo+ )2 1 w? ( )
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where w, is defined by Eq. (6.122). The current density in the x direction
can be written as

Jx =eNv, = o(w)&, (6.127)

where N is the number of carriers. Combine Eqs. (6.127) and (6.126) to
yield
e2NE, —iw+T1!
m* (—iw+ 1712+ w?
_ e2N €&, 1—iwt
m* (0 —?)12+1- 2wt

jx=

(6.128)

This leads to the following expression for the conductivity:

e?Nt 1-—iwr

m* (0?2 — 0?)12+1 - 20t

o(w) =

1—-iwt

6.129
(a)c2 - wz)tz +1—- 2wt ( )

= O’O
where o, is the dc conductivity given by o, = 2N t/m*. The frequency-
dependent conductivity is a complex quantity given by

o(w) = o1(w) + ios(w) (6.130)

where o1(w) and o9(w) are the real and imaginary parts, respectively,
of the conductivity and are given by

1+ (‘%2 + w2)12
[1+ (02 — 0?)72]? + 4?72

(6.131a)

o1(w) = Oo

20T — ot [1+ (0? — 0?)7?]

14 (02— w2)t2}2 + 4?72

(6.1315)

oo(w) = o,

In the Faraday configuration, where the electric field is perpendicular
to the magnetic field, the power absorbed by the carriers is given by

1+ (wf + a)2)t2

P(») = Re(j&x) = 00|E: 5 (6.132)
14 (02 — 0?)72]" + 40?12
For v = w. and w.t > 1, the power is reduced to
1
P(w.) = §ao|5,c|2 (6.133)

A plot of the relative power absorbed [P (w)/P,], where P, = 0,|&|?, is
shown in Fig. 6.26 for a GaAs/AlGaAs high electron mobility transistor
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. spectrum (solid line) obtained
m* =0.0727 m, for a GaAs/AlGaAs high elec-
tron mobility transistor (HEMT)
structure. The dashed line is the
theoretical fit using Eq. (6.132).

0.8
-~
E
=}
=
g
E B =7 Tesla
173 T=5K
% 06 Figure 6.26 Cyclotron resonance
5 T=30ps
=
&
=
=~

11
GaAs/AlGaAs HEMT ng=42x10 cm?

0.5
60 80 100 120
Wave number (cm'l)

structure. This figure shows the transmission spectrum obtained from
the Fourier-transform infrared spectroscopy setup shown in Fig. 6.25.
The dashed line is a fit of the experimental spectrum using Eq. (6.132).
The effective mass was determined from the cyclotron frequency, which
was used as a fitting parameter. Notice that the electron effective mass
of 0.0727m, is slightly larger than the electron effective mass in bulk
materials. The larger effective mass in heterostructures has been obser-
ved in many semiconductor quantum structures. Notice that Fig. 6.26
displays the transmission spectrum. Taking the negative of [P (w)/P,]
is the proper form for fitting the transmission experimental results.

The cyclotron resonance is due to energy level quantization in the
presence of electric and magnetic fields. These energy levels are
known as Landau levels and can be obtained by solving the Schrodinger
equation. Neglecting the crystal potential, the Hamiltonian can be
written as

H = [P2+(Py—eA)® + P2 +g*ugo,B (6.134)

2m*

where A = vector potential given in Landau gauge as
A=(0,Bx,0)
up = Bohr magneton given by eh/(2m*)
g* = effective g-factor
0, = electron spin quantum number given by +1/2.

Notice that the magnetic induction (H) is given by H = ¢,B = V X A.
The wave function is an envelope function, which can be written as

Y(x,y,2) = exp(ikyy + ik2)u(x) (6.135)
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The Schrodinger equation can be written as

1
{Zm* [P2+ (P, —eA)?+ P2 +g*/LBUzB}1//(x,y, 2)=Evy(x,y,2)

(6.136)
Use momentum operators to give
92 Bx\? 2m*
BL;(;) = <ky - %) u(@) + 5 Eu(x) =0 (6.137)
where
7’L2k2
E' =E — Zmi —g*upo,B (6.138)
Equation (6.137) can be rewritten as
R 92 *(eBx  hky\*

This equation is a one-dimensional harmonic oscillator equation with
frequency w. and energy given by

1
E' = (n + §>hwc (6.140)
Substituting Eqgs. (6.138) into (6.140), we have
1 h2k2
E,=(n+ = |hw. + —= +g*upo.B (6.141)
2 2m*

As this equation indicates, the electronic energy level E will split under
the influence of a magnetic field into Landau energy levels, with n being
the Landau quantum number, separated by Aw.. Furthermore, each
Landau level will split into two levels due to the inclusion of electron
spin. Thus, the electronic energy levels are quantized in the xy plane
(the plane perpendicular to the magnetic field) and have translational
energy [h2kz2 /(2m*)] along the z direction (the magnetic field direction).

6.13 Photoluminescence

With the increasing importance of nanostructures in optoelectronics,
photoluminescence becomes a powerful technique that is used to char-
acterize semiconductor micro- and nanostructures. This is because it
provides information on many fundamental properties of semiconduc-
tors and nanostructures such as crystalline order, strain, composition,
doping, surface carrier depletion depth, crystal damage, quality of inter-
faces, layer thickness, extended defects, microscopic defects, and surface
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Figure 6.27 Absorption and photoluminescence (PL) spectra of
Ing 50Gag 4gAs/Ing 50Alg 4gAs multiple quantum wells plotted
as a function of the wavelength. The spectra were measured
at 77 K.

quality. Thus, this technique is one of the most important and versatile
for investigating compound semiconductors and their nanostructures.
The interband optical absorption process in a semiconductor involves
the excitation of an electron from the valence band to the conduction
band after absorbing the photon. The reverse radiative process, where
the photoexcited electron decays from the conduction band to the va-
lence band, is called photoluminescence. In this process, the electron
emits energy (photon) as it drops from the conduction band to the va-
lence band. Luminescence can also be observed by injecting electrons
into the semiconductor material, in which the injected electrons decay
to the valence band by emitting photons. This process is called electrolu-
minescence. Photon emission is more complicated than photon absorp-
tion in a semiconductor, but the emission results are easier to analyze.
A comparison between absorption and emission is shown in Fig. 6.27,
where we present the optical absorption and photoluminescence spectra
for Ing 50Gag 4gAs/Ing 50Alg 4gAs multiple quantum wells. The optical ab-
sorption spectrum threshold occurs at ~1.14 um (~1.088 eV), while the
photoluminescence peak occurs at 1.16 pm (1.069 eV). The optical ab-
sorption threshold and the photoluminescence peak are expected to be
identical since the bandgap is the same at a constant temperature. The
reason for the difference between the absorption and emission is due to
electron-phonon coupling. Electron-phonon coupling in a semiconduc-
tor involves extensive theoretical analysis. The simplest model used to
explain electron-phonon coupling is the configuration coordinate model.
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The configuration coordinate model is illustrated in Fig. 6.28. Let us
consider the interband transition in a direct bandgap semiconductor
material. In reality, the atoms vibrate in a solid, and the total energy
of the electron is the sum of electronic and vibronic energies. The total
energy of an electron in the valence band can be expanded in a Taylor
series about a coordinate minimum @, such that

dE 1d2E 5
E(Q)=E(Qo)+@(Q—Qo)+§d—Q2(Q—QO)+~-~ (6.142)

Since the expansion is made about an extrema, the first derivative in
Eq.(6.142)is zero. Thus the valence band can be presented by a parabola
around @, as shown in Fig. 6.28. The conduction band can be presented
in a similar manner with a minimum at @ > ,. The electron-phonon
coupling is zero when @; = @,. Each parabola represents a simple
harmonic oscillator with a quantized energy

1
E9@ () = <n+ 5);% n=0,12,. .. (6.143)

where w, is the phonon angular frequency and E 8o,Q1 (¢ ») is the phonon
energies associated with the valence and conduction bands. The opti-
cal absorption of the interband transition is presented by a series of
arrows pointing upward in the figure, where the electrons are excited
from the phonon ground state E(?"(a)p) in the valence band parabola to
the phonon ground and excited states in the conduction band parabola
E®(w,). On the other hand, the photoluminescence or emission
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transitions are presented by the arrows pointing downward, where the
electrons decay from the phonon ground state, E®'(w),), in the conduc-
tion band to the phonon levels, E 2 (w),), in the valence band. The tran-
sition (either absorption or emission) between E&(w,) and E&(w,) is
called the zero phonon line (ZPL), which means it is a pure electronic
transition with zero electron-phonon coupling. The electronic transi-
tions between E &1 (w p) and EQ (wp) forn # 0 are called phonon replicas.
The difference between the absorption (E,) and emission (E,) energies

ZPL

c} TA phonon replicas
g

3

Absorbance

8350 8625 8900 8175
Wave number (cm™1)
(a)

2000 F
’Q I InAs/GaAs Quantum dots
B L T=77K
= 1500
g

F ~36.4 meV

21000 i
& [
L
E [
Q»—j 500

Energy (eV)
(b)

Figure 6.29 Zero phonon lines and their replicas in (a) EL2 defect in GaAs (Manas-
reh and Covington 1987) and (b) InAs/GaAs single-layer quantum dots grown by
the molecular beam epitaxy technique.
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is called the Stokes shift and can be written as
E,—-E., =2Shw, (6.144)

where S is a dimensionless parameter called the Huang-Rhys factor.
It is a measure of strong (large value of S) or weak (small value of S)
electron-phonon coupling. Half of the Stokes shift is called the Franck-
Condon shift, which is commonly referred to as dp_¢c = Shw,,.

Notice that phonon replicas are observed at the higher energy side
of the zero phonon line in the case of the absorption spectrum, which
indicates that phonons are absorbed by the electrons. In the case of
emission (photoluminescence), the phonon replicas occur at the lower
energy side of the zero phonon line, which means that the electrons
emit phonons as they decay from the conduction band to the valence
band. Two examples of zero phonon lines and their phonon replicas are
shown in Fig. 6.29. The first example is the optical absorption of the
zero phonon line associated with the EL2 defect in GaAs (Fig. 6.29qa).
The zero phonon lines occur at 8378 cm~! (1.0387 eV), and the repli-
cas are those of the TA phonon mode (~10 meV) in GaAs (recall that
1.0 eV = 8065.46 cm™1). The second example is the photoluminescence
zero phonon mode observed in InAs/GaAs single-layer quantum dots
(Fig. 6.29b). The zero phonon line peak is indicated as ZPL. The stronger
peak around 0.934 eV is also a zero phonon line due to the fact that the
quantum dots have two dominant sizes. The ripples below 0.9 eV are
due to phonon replicas separated by an average energy of ~36.4 meV.
This phonon energy is most likely to be the optical phonon mode gen-
erated at the InAs/GaAs interfaces.

Photoluminescence (PL) can be observed in semiconductors and their
nanostructures if electrons and holes are generated by optical excita-
tion followed by radiation emission. If the electrons recombine with the
holes without emitting radiation, the transition is called nonradiative.
Photoluminescence technique is currently a standard technique in both
industry and academia. It is used to calibrate epitaxial growth rate and
growth quality, as illustrated in Fig. 6.30. A test of the epitaxial growth
would be to grow a few quantum wells with different thicknesses, as
shown in Fig. 6.306, where GaAs/AlGaAs quantum wells grown on semi-
insulating GaAs substrate were chosen as an example. The barrier
thickness is usually chosen to be thick enough to prevent tunneling
between wells. As the quantum well thickness is reduced from 20 to
3 nm, the bound states are squeezed outward and the interband tran-
sition energy is increased, as shown in Fig. 6.30a. The corresponding
photoluminescence spectrum is shown in Fig. 6.30b, where the PL in-
tensity is plotted as a function of photon energy. The PL energy (Epr,)
can be written as

EpL(L;) = Eg + Ecpi1(L,) + Exmi(L;) — Ee(L,) (6.145)
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Figure 6.30 (a) A sketch of four GaAs/AlGaAs quantum wells grown by
the molecular beam epitaxy technique on GaAs semi-insulating sub-
strate. (b) Photoluminescence spectrum measured at 7' = 77 K for the
structure described in (a).

where E, = fundamental bandgap of bulk GaAs material, is
taken as 1.50 eV (12,098cm 1) at T =77 K
E g1 = ground bound state in conduction band
Eyp1 = bound ground state of heavy hole in valence band
E . = exciton binding energy
L, = well width
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The PL peak observed for the 20-nm quantum well exhibits a structure
with a shoulder at the higher energy side. This is due to the presence
of bound and free excitons in the quantum well, which is an indication
of high structural interfaces.

The excess electron concentration N created by the laser excitation
in the PL experiment is equal to the excess hole concentration, which
is given by the rate equation as

dN N

F7a— (6.146)
where 1, is the lifetime for the carriers that undergo radiative recom-
bination, which is the inverse of the Einstein coefficient for the sponta-
neous emission rate. Integration of this equation yields

t
N({t)=N, exp(——) (6.147)
T
where N, is the excess electron concentration at ¢ = 0. The radiative
recombination rate R, is defined as
dN N
R, =—=—— 6.148
r= g . ( )
When the nonradiative recombination rate R, is considered, the total
spontaneous recombination rate R can be written as

R, =R, + R, (6.149)
For exponential decay, the internal quantum efficiency n; is given by
the carrier lifetime as
71 1

;= r = A
L i+l 1+41,/n (6.150)

where 1, is the lifetime of the carriers that undergo nonradiative recom-
bination. The internal quantum efficiency of the interband transition
is equal to unity when 7, is zero.

It is possible to estimate the radiative recombination lifetime from
the carrier concentration in direct bandgap semiconductors. The rela-
tionship between the lifetime and the carrier concentration is left as an
exercise.

6.14 Lattice Vibrations and Phonons

In semiconductor crystals, the atoms are tightly coupled to one another
and the binding energy is called cohesive energy, which is defined as the
energy needed to separate a crystal into independent ions located large
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Figure 6.31 A one-dimensional illustration of a crystal
with a lattice constant a showing the longitudinal dis-
placement of a few atoms.

distances from each other. The thermal kinetic energy of the atoms in
the crystal is simply the vibrational energy of motion, which propa-
gates in the crystal as waves. These waves are called acoustical or sonic
waves. The quanta of these waves are called phonons. Phonons in semi-
conductors can absorb or scatter light in the infrared spectral region. To
understand how the acoustical waves propagate in a solid, let us first
consider a one-dimensional monatomic lattice, as shown in Fig. 6.31.
By including only the nearest-neighbor interaction and assuming that
the vibrational amplitudes are smaller than the lattice spacing, one can
write the force on the nth atom as
9%u,
Fon=m— 5 =yna —un) = y@n = tn-1) =y Wnst + tn1 — 2up)
(6.151)

where m is the mass of the atom and y is the force constant. For a sol-
ution having the character of a traveling wave, we have for the nth atom

Uy = Aei(kxn—wt) — Aei(kna—wt) (6152)

where k£ = propagation constant
o = angular frequency
x, = na (a = lattice constant)

Similarly, the solutions for the nearest-neighbor atoms are

Upi1 = Aez(kxnﬂfwt) — Ael[k(nwtl)afwt] — elkaun

(6.153)

i(kxy,_1—wt) — Aei[k(n—l)a—a)t] — e—ika

U,_1 = Ae U,

The dispersion relation can be obtained by substituting Eqs. (6.152) and
(6.153) into Eq. (6.151) and canceling u,, as follows:

A A 9 4
w2 =2 (2 ekt _gikay = 2Y (1 _ coska) = —¥ sin? (Q) (6.154)
m m m 2
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Figure 6.32 A one-dimensional
model of a crystal with a lattice
constant a showing the trans-
verse displacement of a few

n-2 n-1 n k1 2 atoms.
O =Equilibrium position @ =Instantaneous position
This equation can be rewritten as
. (ka

where w,, = \/4y/m and the absolute value sign is given to indicate
that o is a positive quantity. The displacement of the atoms shown
in Fig. 6.31 produces a longitudinal acoustic wave with a frequency
described by Eq. (6.155).

For transverse acoustical waves, the atoms are displaced, as shown
in Fig. 6.32. In addition to the atomic displacement shown in this figure,
it is also possible to simultaneously displace the atoms perpendicular
to the plane of the page. Thus, one may obtain two transverse modes.
The equation of motion of the transverse modes of the nth atom can be
obtained in a similar fashion as the longitudinal mode

9%u,
F,= mB—t2 = Ye(Upt1 + Un-1 — 2u,) (6.156)

where y; is the transverse force constant. The dispersion relation of the
transverse mode is obtained as
. (k
sin (;) ‘ (6.157)

where of, = \/4y;/m. A plot of the dispersion relations for both the
longitudinal (L) and transverse modes (7'; and T'3) is shown in Fig. 6.33.
When the force constants are the same for both the transverse modes,
the dispersion relation becomes degenerate with 7'y = T's.

For a more complicated case, let us consider a linear one-dimensional
diatomic lattice model, as shown in Fig. 6.34, where the chain is com-
posed of two alternating atoms of masses M and m (M is assumed to

_ ¢
W= w,
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2 Figure 6.33 The angular fre-
quency o of the longitudinal
(L) and transverse (T'; and T'5)
waves in a one-dimensional
monatomic lattice is plotted as
a function of the propagation
constant k.

=3

-n/a n/a

be larger than m). The equations of motion of atoms 2n (mass m) and
2n + 1 (mass M) can be written as

92ugy,
Fon=m 8t22 = y(Ugni1 + uan-1 — 2u2,) (6.158a)
82uZn—#—l
Fony1 = MT = y(Ugnt2 + u2n — 2U2n41) (6.158b)

where y is the force constant and the u’s are the atomic displacements
from the equilibrium. The solutions to Eqgs. (6.158a) and (6.158b) can
be expressed as

Uop = Aei(2kna—a)t) and Uons1 = Bei[k(2n+1)a—wt] (6.159)

Similarly, the displacement of the atoms labeled 2n + 2 and 2n — 1 can
be written as

Usnio = Aez[k(2n+2)a—wt] — u2n612ka

(6.160)

Bei[k(Zn—l)a—wt] — u2n+1e—i2ka

Uon-1 =

Uzn-2 U2n-1 Un U2n+ U2n+2
O =Equilibrium position @=Instantaneous position

Figure 6.34 A one-dimensional chain of diatomic crystal
with atomic masses M and m.
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Substituting Eqs. (6.155) and (6.156) into Eq. (6.154) and evaluating
the time derivative of ug, and wug,.1, the equations of motion can be
rewritten as

(ma? — 2y)ug, + y(1+e 25 yg, .1 =0
) (6.161)
y(1 4 ¥ )y, + (Mw? — 2y ugn 1 =0

These two homogeneous equations can be solved by equating the deter-
minant to zero such that

(mwz _ 2)/) }/(1 +672ika)
y(1+e%ka)  (Maw? - 2y)

= (mw? — 2y)(Mw? — 2y) — 4y? cos®(ka) = 0 (6.162)

where 1+ cos(2ka) = 2 cos?(ka) is used in this expression. The solution
of Eq. (6.162) can be expressed as

. 2
2o V) 1#1_M‘

mM (m + M2 (6163

This dispersion relation has two roots (w; and w_), which are plotted in
Fig. 6.35. The two branches are called optical (w,) and acoustical (w_)
modes. The maximum value of the optical branch is \/y(m + M)/(mM)

W
Optical branch / Jr(m+ M) i)
(J)+ J2¥im

Forbidden frequency region

Acoustical
branch

-/2a 0 n/2a
k

Figure 6.35 The dispersion curve for the diatomic one-
dimensional lattice. The first Brillouin zone is extended
between —7/(2a) and +7/(2a) since the unit cell is 2a.
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and there is a forbidden frequency gap at the Brillouin zone boundaries
extended between /2y/m and \/2y/M. This gap is reduced to zero for
m=M.

Phonon energy or frequency in semiconductors can be measured by
infrared spectroscopy and Raman scattering techniques providing that
the phonon density of states is large. Phonon modes can be infrared
active and/or Raman active. Selection rules that govern the phonon
absorption are outside the scope of this book, but detailed discussions
and analyses are reported by many authors (see, for example, Bir-
man 1984). To calculate the phonons’ density of states, let us consider
the simplest case of a monatomic one-dimensional crystal. To determine
the number of phonon modes with different values of & that fall in the
frequency interval from w to w +dw, one can obtain from the dispersion
relation, expressed in Eq. (6.157), the following:

ka
(%)|

dow = 4—yd Hsin <ka>H = \/4—)/9 cos
m 2 m 2
y ka
=a4y/—|cos | — || dk (6.164)
m 2

If one assumes that the one-dimensional crystal is a large circle that
contains N atoms, where N > 1, then the atomic displacements satisfy
the following conditions: uy, = u, and e#*V¢ = 1. From the second
condition, one can obtain the following relation:

27 p
= — 1
k Na (6.165)

where p is an integer that satisfies the following relation: —N/2 < p <
N /2. These relations indicate that % is discrete with IV possible values
corresponding to N different standing waves. The number of modes dn
in the interval dw is

N m dw

With the help of Eq. (6.157), the cos(ka/2) can be expressed as

ka . 9 (ka w’m
cos (?> = \/1 — sin <?) = \/1 v (6.167)

The phonon density of states, gyn, can now be defined as

1 dn 2 1
gph(a)) Na dw Ta wr2n — 0)2 (6 68)

where w,, = /4y/m. The density of states expressed in Eq. (6.168)
approaches infinity as o approaches w,,, and it has a constant value
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TABLE 6.2 Energy of the Phonon Modes in Several Semiconductor Materials
Reported in meV for Three Different Symmetry Points in the First Brillouin Zone

r(000) X(100) L(111)

Material LO TO LO TO LA TA LO TO LA TA

GaAs 358 330 354 309 27.8 9.7 292 321 256 7.6
InAs 299 269 200 262 180 135 23.7 266 18.0 9.0
InSb 245 220 16.0 21.7 14.7 49 196 209 123 4.1

AlSb 242 22.7 — — 36.4 9.8 286 376 314 7.6
AlAs 495 442 — — 12.7 127 — — — 9.9
GaSb 299 282

Si 638 63.8 503 569 503 184 515 60.1 462 14.0
Ge 369 369 282 337 282 101 303 344 264 8.0

NOTE: LO= longitudinal optical, TO= transverse optical, LA = longitudinal acoustic, TA =
transverse acoustic.

when o approaches zero. The same analysis can be applied for a di-
atomic chain using the dispersion relation described in Eq. (6.163). The
analysis, however, is a little bit more complicated.

For three-dimensional crystals, such as Si and GaAs, the calcula-
tions of the phonon modes and their density of states are more exten-
sive and require computer analysis. Table 6.2 summarizes the energy
of the phonon modes in several semiconductor materials. A typical
example of phonon Raman scattering is shown in Fig. 6.36 for a semi-
insulating GaAs sample. The Raman scattering spectrum in this figure

F T Tt T YTy
1.0x10* - Phonon modes in -
[ semi-insulating GaAs :
Z sox10° T=300K ]
= 8.0x10° [ r )
g g LO
g 6.0x10°F ]
2 : N
Z st TO ]
=1 [ x J
= i 2TA ]
§ 2.0x10° F lTor ] LAY -
8 [
a 0.0 —h JJ_N L
it Siofes Raman seatering |y v S

-400 -300 -200 -100 O 100 200 300 400
Raman shift (cm'l)
Figure 6.36 A Raman scattering spectrum obtained at 300 K for

a semi-insulating GaAs sample. The spectrum shows Stokes and
anti-Stokes phonon modes.
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was obtained using a Fourier-transform infrared spectrometer in con-
junction with a 1.06-um YAG laser. The spectrum shows two sets of
peaks called Stokes and anti-Stokes phonon scattering, which is known
as the Raman effect. To understand this effect, consider an incident
laser beam of an energy hw;, which is scattered by a semiconductor sam-
ple. The radiation consists of the laser beam (hw;) and weaker beams
of energies hw; + hw. The beam with the energy hw; — hw; is called the
Stokes Raman scattering line, and the beam with the energy Aw; + hw
is called the anti-Stokes Raman scattering line. These lines are shown
in Fig. 6.36. The most important aspect of Raman scattering is that w
is independent of w;. The effect was predicted by Smekal (1923) and
experimentally measured by Raman (1928). Raman scattering is con-
sidered as an inelastic scattering of light in which an internal form of
motion (vibrational modes) of the scattering system is either excited or
absorbed during the process.

Phonon modes in wurtzite structures such as GaN are more compli-
cated than the phonon modes in diamond or zinc-blende structures. For
more discussion on the subject see, for example, Manasreh and Jiang
(2002) and Pattada et al. (2003). Raman spectroscopy is a very useful con-
tactless technique in probing the charge carrier concentration in semi-
conductors. Charge carriers can be detected in Raman spectra through
the coupling of the longitudinal optical phonon mode with plasma oscil-
lations. The collective oscillation (plasmon) of an electron or hole gasin a
solid is a longitudinal excitation, and its frequency w, can be written as

2
ne (6.169)

w =
P m*€,€xo

where n = charge carrier concentration
m* = charge carrier effective mass
€, = permittivity of space
€5 = high-frequency dielectric constant of material
(related to refractive index n, such that €., ~ nf)

A typical example of Raman scattering from the longitudinal phonon-
plasmon coupled mode in a doped semiconductor quantum well is shown
in Fig. 6.37 for an InGaAsN/GaAs single quantum well grown by metal-
organic chemical vapor deposition technique on semi-insulating GaAs
substrate. The macroscopic electric field of the plasma wave interacts
with the polarization field associated with the longitudinal optical (LO)
phonons in polar semiconductors, such as GaAs (zinc blende) and GaN
(wurtzite) materials. This coupling splits the LO phonons into two
LO-plasmon coupled (LOPC) modes, known as L, and L_. The low-
frequency mode L_ shifts from 0 cm~! to the TO frequency, while the
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Figure 6.37 A Raman scattering spectrum obtained for an
InGaAsN/GaAs single quantum well sample (gray line). The
spectrum shows the LO and TO phonon modes and the L,
branch of the LOPC mode. The solid black line is the result of
the fitting analysis using Egs. (6.170) and (6.171), which shows
both the L, and L_ branches of the LOPC mode. The inset is
the expansion of the spectral region in the vicinity of LO and
TO phonon modes.

high frequency mode L, shifts from LO frequency to the plasma fre-
quency w, for increasing the carrier concentration (see, for example,
Mooradian and Wright 1966 and Absteiter et al. 1978).

The Raman intensity I is proportional to the imaginary part of the
inverse of the total dielectric function (see, for example, Manasreh and
Jiang 2002 and references therein):

I, « Im (_ 1 ) (6.170)

e(w)

where the dielectric function contains the contribution from lattice vi-
bration and the conduction electrons, which is given by

e(w) =€ ;
> wro — @2 — ol w(w—iy)

2 9 2
14 “o~®o _ % ] 6.171)

The parameters I' and y are the damping constants of the phonon and
plasmon, respectively. The plasmon frequency w, is obtained by fitting
the LOPC Raman spectrum using Eqs. (6.170) and (6.171), with w,, T,
and y as fitting parameters. An example is shown in Fig. 6.37, where
the gray line spectrum is the experimental result and the thin black
line spectrum is the theoretical fit. The plasmon frequency in this case
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Figure 6.38 A plot of the L, mode as a function of the plasmon fre-
quency for a series of InGaAsN/GaAs single quantum well samples (solid
squares). The solid lines are plots of L, and L_ given by Eq. (6.172). The
dashed lines represent the LO and TO phonon frequencies in an InGaAsN
quantum well.

is obtained as 909 cm~!. Using this value in Eq. (6.169), the carrier
concentration is obtained as 7.56 x 1018 ¢cm3 for €5, = 12.25 and m* =
0.067m,.

Asmentioned previously, the LOPC mode splits into two modes known
as the L, and L_ branches. These two branches are approximately ob-
tained by setting I' = ¥ = 0 and solving Eq. (6.171) for ¢(w) = 0, which
yields

1/2

L, = 2 {(a}% + a)i) + \/(a)% + a)l%)z — 4w%a)g (6.172)

The fitting analysis of the experimental spectrum in Fig. 6.37 reveals
the presence of both L, and L_. The L_ region along with the LO and
TO phonon modes are replotted in the figure inset for clarity. The same
fitting procedure was repeated for several InGaAsN/GaAs single quan-
tum well samples with different nitrogen contents. The plasmon fre-
quency w, was obtained for each sample by fitting the experimental
spectra, as described previously. Additionally, the frequency maximum
of the L, branch was obtained directly from the experimental LOPC
mode spectra. To compare the experimental results to the theoretical
predictions, the L, and L_ modes are plotted as a function of w, using
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Figure 6.39 The frequency maximum w,, of the L, branch as a function
of the carrier concentration obtained from the data in Fig. 6.37. The
solid line is a first-order linear fit of the data.

Eq. (6.172), as shown in Fig. 6.38. The experimental data were plotted
in this figure as solid squares. The dashed lines represent the LO and
TO phonon modes in the quantum well.

The plasmon frequency is used to calculate the carrier concentra-
tion in a series of samples with different nitrogen content. The results
are showninFig.6.39wherethefrequency maximumof the L, branch is
plotted as a function of the calculated carrier concentration. The solid
line in this figure is the result of the linear fit of the data from which the
following empirical expression is obtained: [n] = 2.35 x 10'(w,, — 502)
cm~3 where [n] is the carrier concentration. This expression can be used
to obtain the carrier concentration directly from the peak of the L,
mode, which is measured directly by Raman scattering in the unit
of cm™1.

In addition to the determination of the carrier concentration using
Raman scattering, the plasmon damping rate y, which is used in the
fitting analysis, can be used to calculate the carrier drift mobility w«
through the following relation: © = e/(m*y). The drift mobility values
estimated from the plasmon damping rate are on the order of 100 to
200 cm?-V~1.s71 which is in good agreement with those reported by
Young et al. (2003). Even though the carrier concentration and drift
mobilities are estimated from fitting a simple model based on Drude
theory to Raman scattering spectra, the results provide a good indica-
tion of the material quality and its feasibility for device application.
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Summary

The optical properties of bulk semiconductors and their low-dimensional
quantum structures were discussed in this chapter. We started the
chapter by defining the difference between the bulk and quantum well
materials with the emphasis on interband and intersubband transi-
tions. Bound and free excitons were illustrated in crystalline structures.
The basic electromagnetic formalism was introduced with a fundamen-
tal discussion regarding the refractive index, dielectric constant, and
linear optical absorption coefficient. The optical absorption coefficients
of interband transitions in direct and indirect semiconductor materials
were derived using the Fermi golden rule. The formalisms were exten-
ded to derive the optical absorption coefficients of interband transitions
in type I and type II quantum wells. Detailed discussions on the opti-
cal absorption coefficient of the intersubband transitions in quantum
wells and quantum dots were presented for both bound-to-bound and
bound-to-continuum cases. An example of intersubband transition was
presented for GaN/AlGaN multiple quantum wells, where the piezo-
electric doping is significant. A complete section on the selection rules
of both interband and intersubband transitions was presented.

Excitons in both bulk and quantum structures play a major role in the
optoelectronic devices. Detailed analysis of the exciton binding energy
and radius was presented for bulk semiconductors, quantum wells, and
quantum dots. An attractive feature of semiconductor low-dimensional
quantum structures is that the binding energies of the excitons are
much higher than those of the excitons in bulk materials.

Selected techniques used to optically characterize the semiconductor
quantum structures, such as cyclotron resonance, photoluminescence,
and Raman scattering were discussed. Finally, lattice vibrations and
phonons were briefly discussed at the end of the chapter.

Problems

6.1 The electric and magnetic fields can be written in terms of vector (A) and
scalar (¢) potentials such as € = —% — V¢ and B = M—l‘)VXA. Rewrite the four
Maxwell’s equations in terms of these two potentials.

6.2 Show that Eq. (6.9) is valid.

6.3 Use the complex definition of the refractive index and the dielectric con-
stant to show that the optical absorption coefficient can be expressed as a(w) =
weg(w)/leny(w)].

6.4 Derive expressions for the real (n;) and imaginary (ny) parts of the refrac-
tive index in terms of the real (¢1) and imaginary (eg) parts of the dielectric
constants. Plot ny, ng, €1, and €5 as a function of w. Assume N = 1017m—2 and
m* = 0.067m,.
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6.5 The oscillator strength of the interband transition can be defined as f;,. ~
2P2/[my(Es, — Ep,)]. Additionally, the sum rule for a solid can be written as
Zm 4n fmn = |1 —my/m}|, where we sum the oscillator strength of electronic
transitions from all m states to n states with the same k-value. Use these
expressions to calculate the absorption coefficient of the interband transition
in GaAs for (hw — Eg) = 0.1eV.

6.6 Calculate the optical absorption coefficient of the interband transition in
20A GaAs/AlGaAs quantum well. Assume that the transition occurs from the
ground state of the heavy hole in the valence band to the ground state of the
electron in the conduction band. The photon energy required to excite this tran-
sition is 1.75 eV.

6.7 Calculate the oscillator strength and the optical absorption coefficient of
a bound-to-bound intersubband transition in GaAs/AlGaAs multiple quantum
wells. Assume that the number of wells is 50, the well width is 75 A, the half-
width at half of the maximum is 7 meV, the electron density is 5 x 1011 cm~2,
and the photon energy required to excite the transition is 180 meV.

6.8 Show that the Brewster’s angle of GaAs is 73°. What does this angle mean?

6.9 Figure P6.9 is a waveguide made of GaAs with a thickness of 0.4 mm. The
photons enter the sample at 45° from the formal as shown in the figure. Finish
the design of this waveguide such that three passes will be made by the photons
before they exit the sample. The GaAs refractive index is 3.4. What would be
the length of the waveguide?

D
~

)45O

Figure P6.9

6.10 Use the definition of the oscillator strength of intersubband transition in
GaAs/AlGaAs multiple quantum wells as fo; = (2m*w/h)|(nk L |z|[n'K ) |2 where
(nk |z|n'K/, ) is known as the overlap integral. Calculate the oscillator strength
for a 100-A-thick well where the photon energy needed to excite the transition
is hw = 0.15 eV.

6.11 A time-dependent quantum operator can be written as dM(¢)/dt =
(i/h)(H,M — MH,). Use the dipole matrix element to show that the oscillator
strength can be written as fo1 = (2m*w/h)|(nk |zIn'K/ )|%.

6.12 Calculate the optical absorption band edge associated with an HH{-E;
transition of a InAs/GaAs quantum dot at room temperature. Assume that the
quantum dot has a cubic shape with a side length of 6.5 nm. Compare your
results to the bandgap of bulk InAs material.
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6.13 Calculate the dipole matrix element of 1 — 2,1 — 4, and 2 — 3 transi-
tions in an infinite GaAs quantum well. The well width is of 10 nm, the effective
mass is 0.067m,, and the wave functions of the bound states can be expressed
as ¢n(z) = \/2/d sin(nrz/L). Calculate the corresponding wavelengths of these
three transitions.

6.14 Search the literature for the electron and heavy hole effect masses, band-
gaps, and dielectric constants of five direct bandgap semiconductor bulk mate-
rials other than those listed in Table 6.1. Calculate and plot the exciton bind-
ing energy and the exciton radius in these materials as a function of their
bandgaps.

6.15 Start from the Schrodinger equation and a trial function of the form
¥ = exp(—ry/agp), where r; = 1/x2 +y2 and agp is the exciton radius in
quantum wells. Show that the exciton binding energy in quantum wells can be
written as EZ? = —4E§,P and agsp = 0.5a3p, where 2D and 3D indicate two-
dimensional (quantum wells) and three-dimensional (bulk material) systems,
respectively.

6.16 A GaAs/AlGaAs quantum well has an effective electron mass of 0.072m,,.
A peak in the cyclotron resonance spectrum was observed at 20 meV. Calcu-
late the magnetic field used to generate this peak. Estimate the splitting of
Landau levels due to the electron spin. Assume g* = 1.75 and up = 9.27 x
10724 J/T.

6.17 Inthe photoluminescence experiment, the carriers spontaneous recombi-
nation rate can be written as R; = Bnp, where B is a constant, n is the electron
concentration, and p is the hole concentration. On the other hand, this rate can
be written as the sum of the spontaneous rates at thermal equilibrium and
in the presence of the excess carriers. Derive an expression for the lifetime of
the excess carriers and express your answer for the two cases of high and low
injection rates.

6.18 A band-to-band photoluminescence transition was observed for InGaAs
thin film at 1825.68 nm. Calculate the In composition needed to produce this
peak. Repeat the same process to obtain the Al fraction in AlGaAs thin film
which has a PL peak at 689.62 nm. Search the literature to obtain the bandgap
of In,Ga;_,As and Al,Gaj_,As as a function of the mole fraction x.

6.19 Consider the diatomic one-dimensional crystal model shown in Fig. P6.19
where the force constants are indicated as y; and y5 and the masses of the atoms
are given as M7 and M,.

(a) Show that the dispersion relation can be written as

2
w2:a;_o <1j:\/1—1"2sin2 (%))
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Figure P6.19
where
M M 4 4M{ M
w0y — \/(V1+V2)( 1+ My) and 2o e . 1M, .
MM, (y1+v2)? (M1 + My)

(b) Show that when M; = My = M and y; = y5 = y, the optical and acoustical
branches of the dispersion relation can be written as

sin(lﬂ)‘ and i —\/ﬂ‘cos(@)‘
4 Woptical = M 4

6.20 Show that the frequency gap width (Aw) between the optical and acous-
tical branches in Fig. 6.35 can be written as

4y

Wacoustical = M

4y
vmM

6.21 Derive the imaginary and real parts of the inverse of the dielectric con-
stant shown in Eq. (6.171). Plot the inverse of the imaginary part as a function
of angular frequency o using the following values for n-type GaN parameters:
[ =50cm™!, y =360 cm™!, w, = 550 em™!, w0 = 734 em™!, wpo = 531
em ™1, m* = 0.22m,, and €., = 4.84. Calculate the electron concentration.

Aw? = u)_%_(()) -

6.22 A plasmon damping rate of y = 950 cm~! was obtained by fitting the
Raman spectrum of the LOPC mode with Eq. (6.170). Calculate the carrier
drift mobility from this damping rate value. What is the carrier relaxation time
that corresponds to this damping rate? Assume that the carrier effective mass
is 0.067m,.
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Chapter

Electrical and Transport
Properties

7.1 Introduction

Electric currents in semiconductors are due to the net flow of electrons
and holes under bias voltages, and transport is the process that de-
scribes the motion of the charged particles. The two major transport
processes are the drift and diffusion mechanisms. The drift mechanism
is basically the movement of charged carriers under the influence of ap-
plied electric fields, and the diffusion mechanism is the flow of charged
particles due to the density variation. Transport properties in semi-
conductors can be very complicated, depending on the actual size of
the samples. Thus, it is worth discussing the classical and quantum
limitations and regimes.

In order to define the limits of various transport regimes, one may
scale the size of the sample against the de Broglie wavelength. This de
Broglie wavelength A can be expressed, as an example, for an electron
traveling with a thermal kinetic energy in a semiconductor as

L R [ (7.1)
T p V2mE  Vmr '

where h = Plank’s constant
p = momentum
E = energy
Ao = de Broglie wavelength of a free electron
m* = electron effective mass in semiconductor

The room temperature de Broglie waveleI}gth of a free electron is ~76 A,
and that of an electron in GaAs is 295 A. The de Broglie wavelength
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Figure7.1 de Broglie wavelength plotted as a function of
electron effective mass in several semiconductor mate-
rials. The electron energy is assumed to be that of room
temperature thermal energy.

for a selection of semiconductor materials is plotted as a function of the
electron effective mass, as shown in Fig. 7.1. The range of de Broglie
wavelengths in this figure spans 660 to 167 A. For temperatures as low
as 4.2 K, the de Broglie wavelength upper limit increases to a fraction
of a micron. This implies that the wavelength is comparable with the
size of semiconductor structures and devices in the nanostructure limit.
Hence, a quantum mechanical treatment of the transport properties in
nanostructures must be considered.

When electrons in semiconductors lose their wavelike behavior, they
can be treated classically. This could happen when the electron scatter-
ing from impurities and imperfections of the host crystal is dominant.
Another reason why electrons lose their wavelike behavior is related to
finite temperature and electron statistics. The electron scattering pro-
cess in semiconductors and heterojunctions is dominated by scattering
from impurities (including dopants), native defects, phonons, and inter-
faces. The scattering processes can further be divided into elastic scat-
tering, where the particle energy is conserved while the momentum is
changed, and inelastic scattering, where both the momentum and en-
ergy of the particle are changed. In elastic scattering, the motion of the
electron remains coherent. The time 7, between two successive elastic
collisions is called the mean free time and can be used to define the
mean free path [, between scattering events, such that [, = t,v, where
v is the electron group velocity (v = p/m). The wavelike properties of
the electrons are coherent when they travel a distance /.. Additionally,
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for elastic scattering, the electron wavelike properties remain coherent
even for distances larger than /,. For inelastic scattering, the electron
wave functions have different energies, and the probability of finding
the electron in any state is time-dependent. The distance between in-
elastic collisions, /;, in which the electrons preserve their coherent prop-
erties, is called the inelastic scattering length. Generally speaking, /;
is larger than /,, which means that the electrons undergo several colli-
sions before losing their energy. The inelastic scattering length can be
written as [; = /Drt;, where 1; is the time between inelastic collisions
and D is the diffusion coefficient given by D = v?t, /a, with « = 3 for
bulk, @ = 2 for quantum wells, and o = 1 for quantum wires.

The temperature effect can cause the destruction of quantum coher-
ence of electrons in semiconductors. As discussed in Chap. 5, the Fermi-
Dirac distribution function is broadened as the temperature increases.
Ifthe thermal energy kg T is much smaller than the Fermi energy, wave
functions of the electrons maintain their amplitudes, but the phase
varies slightly. If the variation of the phase is sufficiently small, the
temperature broadening does not break the quantum coherence prop-
erties of the electrons. For temperatures high enough that electrons
with different energies participate in the transport process, the wave
function phase is spread, which leads to the destruction of the quantum
coherence. The phase spreading time due to the temperature effect tp
can be estimated from the uncertainty principle as 17 = h/(kgT ). The
corresponding thermal diffusion length /7 is obtained as

| Dh
lT = v DTT = kB—T (72)

This length is the distance that electrons travel before their quantum
coherence is destroyed. The thermal dephasing of the electrons occurs
for both elastic and inelastic scattering.

The dephasing effects caused by inelastic collisions and thermal
spreading can occur simultaneously. The coherence length [ is thus de-
termined by the smaller value of either the inelastic scattering length
or the thermal diffusion length. The superposition of the electrons’ wave
functions determines the transport properties in heterojunctions and
nanostructures. The coherence length defines the limit below which the
electrons have wavelike characteristics. This leads to the definition of
mesoscopic systems, which are characterized by physical dimensions
smaller than the coherence length. Mesoscopic devices cannot be char-
acterized by macroscopic transport material parameters such as con-
ductivity and drift velocity. Mesoscopic device and system behavior is
determined by wavelike phenomena and is strongly dependent on the
geometry of the sample, contacts, and position of the scatterers.
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L Figure 7.2 Device geometry with
% contacts used to define various
transport regimes.

Let us assume that the dimensions of the device with the contacts
described in Fig. 7.2 are L, < L, < L,. The various regimes can be
defined as shown in Table 7.1. Based on a comparison between device
dimensions and the de Broglie wavelength A, one can define the bulk
device such that L,, L,, and L, are all much larger than 1. For quantum
well devices, L; is on the order of A, but L, and L, are much larger than
L. For quantum wire devices, L, and L, are on the order of A, while L, is
much larger than A. Finally, for a quantum box (dot), all the dimensions
are on the order of A.

The other aspects of transport properties are time and frequency.
The time between successive collisions is defined as the lifetime, or
free-flight time, which was previously labeled as .. This time is usu-
ally much greater than the scattering duration time t;. In the classical
regime, the relationship between lifetime and the size of the device is
very important. For example, the transit time #, = L./v determines
the speed at which the signal propagates through the device, where v
is the electron drift velocity. The inverse of the transit time determines
the ultimate frequency at which the device can operate. For further
discussion see Mitin et al. (1999).

The analysis of transport properties in quantum structures, such
as quantum wells and dots, is more complicated than that for bulk

TABLE 7.1 Transport Regimes in Semiconductor Devices Given in Terms of
Device Dimensions

Quantum regime L, ~ ) is comparable with the electron wavelength.
Mesoscopic regime L, <4, where [, is the coherence length, also
known as the dephasing length.
Classical regime L,>1
Classical ballistic regime The mean free path of elastic collisions is larger than
L, > L,).

Classical transverse size effect  * Effects related to the mean free path: Both L, and
L, are on the order of [,.
* Effects related to diffusion: Both L, and L, are on
the order of /;, where /; is the inelastic scattering
length.

NOTE: The wavelength 1 is taken as the de Broglie wavelength, and the interconnect dis-
tance is L,.
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Figure 7.3 Transport mechani-
sms in quantum wells are shown
by the arrows. (A) The dashed
arrows represent the parallel
transport, (B) the solid arrows
represent the vertical transport
by tunneling, and (C) the dot-
ted arrows represent the vertical
transport after photoexcitation
or thermionic process.

materials. For example, three transport mechanisms can be distin-
guished in a multiple quantum well structure, as shown in Fig. 7.3.
Mechanism A, depicted by the dashed arrows, is the parallel transport,
where the electron’s motion is along the y axis. Mechanism B, repre-
sented by the solid arrows, is the tunneling through barriers, where
the electron transport is along the growth axis, or z direction. This
transport is called vertical or perpendicular transport. Mechanism C,
represented by the dotted arrows, is a vertical transport resulting from
the excitation of carriers to higher energy levels that are close to the top
of the barriers or resonant in the continuum. The excitation of carriers
can be accomplished by electron-photon coupling, as is the case for in-
tersubband transitions or by thermionic emission of the electrons over
the barriers. Processes A and C can be analyzed classically or quantum
mechanically, while process B is purely a quantum process.

7.2 The Hall Effect

Historically, Hall-effect measurements have been used extensively in
determining majority carrier concentrations and their mobilities in
bulk and thin-film materials. Two-dimensional electron gases formed
in quantum wells and at heterojunction interfaces have been investi-
gated by this technique. Electric and magnetic fields are essential to
observe this effect. A sketch of the sample configuration is shown in
Fig. 7.4. The motions of the electrons and holes under the influence of
the electric and magnetic forces are shown. The configuration in this
figure is constructed such that the electric current follows along the
x axis, while the magnetic field is in the z direction. The force on both
electrons and holes is in the —y direction. In an n-type semiconductor,
where the majority carriers are electrons, there is a buildup of nega-
tive charges at the y = 0 surface. For p-type material, positive charge
buildup is also at the y = 0 surface. The net change produces an electric
field in the +y direction.
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4 o~ ,/ t Figure 7.4 A sketch of a sample
7L Z under the influence of electric
I l and magnetic fields. This config-
s — +: ||: — uration is called the Hall bar.
Vy

In the steady-state case, the magnetic force is balanced by the electric
force such that the net force is zero and can be expressed as

F=0=e(&+vxB)
=e(&X + &Y + &2 — v E.Y) (7.3)
This equation yields
& =vuB, (7.4)

where v, is the drift velocity in the x direction. The electric field along
the y direction expressed in Eq. (7.4) is called the Hall field, which
produces the following voltage across the width W of the sample:

Vi =EW =EgW (7.5)

where £, = £y is called the Hall field. The voltage Vy is called the Hall
voltage. It is negative for n-type semiconductors and positive for p-type
semiconductors. Thus, the polarity of the voltage is used to determine
whether the material is n-type or p-type. For n-type semiconductors,
the Hall voltage can be obtained by substituting Eq. (7.4) into (7.5) to
give

Additionally, the drift velocity can be expressed as

eny  engA - engWd (7.7)

Uy = —

where A is the area of the sample surface at x = L in Fig. 7.4, which
is given by the product of the sample’s width W and thickness d, and
ng is the Hall electron concentration, which means the concentration
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obtained by Hall measurements. By substituting Eq. (7.7) into (7.6), the
Hall voltage can be rewritten as

I.B.

Vg =—
H edny

(7.8)

The Hall voltage and the current can be measured experimentally.

Hence, Eq. (7.8) can be used to determine the electron concentration
1,B,
eVHd

Similarly, the hole concentration in p-type semiconductors can be ob-
tained as

(7.9

ng =

I.B,
= 7.10
P= Vud (7.10)
Hall mobility can now be obtained from the following relation:
2 Ve W
I, = J,Wd = eng 11,6, Wd = W (7.11)

where L is the length of the sample and V, is the applied voltage (see
Fig. 7.4). From Eq. (7.11), one can obtain the electron Hall mobility as
_L.L  GL
T eVingWd  engWd
where G is the sample conductance. The hole Hall mobility can be ob-
tained in a similar manner as

_L.L  GL
"~ eV,pWd  epWd

Another parameter that is often discussed is the Hall coefficient Ry,
which is defined as

(7.12)

In

iy (7.13)

. ré&, _ r
a Jsz o nge

where r is the Hall factor, which is close to unity. For example, r is in
the range of 1.0 to 1.3 for GaAs.

Generally speaking, the geometry of the sample plays a significant
role in the concentration and mobility results obtained from Hall-effect
measurements. The most common geometrical shape used for Hall-
effect measurements is the van der Pauw geometry shown in Fig. 7.5.
When using this geometry for the measurement of sheet resistance or
sheet carrier concentration, one does not need to know the sample geom-
etry. The thickness of the sample, however, should be known for volume
resistivity and carrier concentrations. The validity of the van der Pauw

Ry (7.14)
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(a) (®)

Figure 7.5 The van der Pauw configuration is shown
for a sample with arbitrary shape. The configura-
tions are for (@) resistivity and (b) Hall-effect measure-
ments.

configuration requires that the sample has a flat, homogeneous, and
isotropic surface.

The relationship between the current I and the voltage V, in
Fig. 7.5a is determined by mapping the arbitrarily shaped sample ge-
ometry onto a geometry that is more regular. The Laplace equation is
then solved for the simpler geometry. The final results can be obtained
as follows: The resistance between points i and j can be expressed as

Vi

T’j (7.15)

Riju =

where the current enters contact i and leaves contact j, and V; is the
voltage difference between contact £ and contact /. For B, = 0, the
resistivity p is given by

d (R R
m (M)f (7.16)

™Y 2
where d is the sample thickness and f is determined from the following
equation:

g _T_ i = % arccosh [; exp(lnfz)] (7.17)

where @ = Ra1 34/R32.41 if this ratio is greater than unity; otherwise
® = Rg32,41/R21,34 (see Look 1989). The factor f is usually close to unity
for small values of @ and on the order of 0.3 for large values of Q.

Another useful approximation is to first obtain @ and then calculate
o from

In(0.5 — )

= 05+ (7.18)

Q
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and calculate f from

In(0.25)

= (05 +a) + 1005 —a) (7.19)

f

The resistivity measurements can even be made more accurate when
averaging p by including the two contact permutations and by reversing
the current for all four permutations such that

nd
p= 81n(2) [(R21,34 — Ri2,34 + R32.41 — Roza1) fa
+(Ry3,12 — R34,12 + R14,23 — R41,23) B] (7.20)

where f4 and fp are determined from @4 and @p, respectively, by
applying either Eq. (7.17) or (7.19). The quantities @ 4 and @p are
given by

_ Ro134 — Rig34

= (7.21a)
Q@a R3p 41 — Ros m1
Ry312 — R3q410

=0 o= (7.21b)
Qs Ri493 — R41,03

The Hall voltage between contacts 4 and 2 can be written as
2BI
Vi = 'OMT (7.22)

and the Hall coefficient is obtained by averaging Vg 42 and Vg 31

d [Rsi142 + R42,13}

AL

B, (7.23)

Itis also useful to average the Hall coefficient over current and magnetic
field polarities. Doing so minimizes the magnetoresistance and many
other effects, such as contact resistance.

7.3 Quantum Hall and Shubnikov—de Haas
Effects

Quantum transport in low-dimensional semiconductor systems is very
interesting and offers the investigation of remarkable properties, such
as the quantum Hall effect, the Shubnikov—-de Haas effect, ballistic
transport, and the fractional quantum Hall effect. For example, the
Shubnikov—de Haas effect allows one to precisely measure the carrier
concentrations formed at heterojunction interfaces. The investigation
of two-dimensional systems in a perpendicular magnetic field provides
quantization in Hall resistance (Klitzing et al. 1980), which results from
the quantization of the energy in a series of Landau levels. The Landau
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Si, p-type

Figure 7.6 (a) A sketch of the device geometry used for both quan-
tum Hall-effect and Shubnikov-de Haas measurements. (b) A
cross section of the n-type MOSFET device showing the channel
underneath the oxide (Si02) layer. (¢) The band bending near the
oxide-Si interface showing the 2DEG.

magnetic length Iy (also known as the cyclotron radius of the lowest
Landau energy level) assumes the role of wavelength in the quantum
Hall effect, which is given by

| h
lg = oB (7.24)

For B = 10 T, the magnetic length is [z ~ 8.12 nm.
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The original quantum Hall-effect device geometry used by Klitzing
et al. (1980) is shown in Fig. 7.6a. The quantum Hall effect (QHE) mea-
surements are made by probing the Hall voltage across points 1 and 2,
while the Shubnikov—de Haas (SdH) measurements are made by prob-
ing the voltage across points 1 and 3. The device is symmetrical such
that the QHE can be measured across points 3 and 4 and SDH mea-
surements can be obtained across points 2 and 4. The initial QHE mea-
surements were made on a Si metal-oxide semiconductor field-effect
transistor as schematically shown in Fig. 7.66. A two-dimensional elec-
tron gas (2DEG) is formed in the channel underneath the oxide layer
as the gate voltage is applied. To create the channel, the gate voltage
needs to be larger than the threshold voltage of approximately 0.7 V.
The formation of the channel is very essential for the observation of
both the QHE and SDH effects. The band bending at the oxide-Si inter-
face is formed by applying a gate voltage larger than 0.7 V, as shown in
Fig. 7.6¢. The density of the 2DEG depends on the gate voltage, as well
as on the drain source voltage.

Device geometry similar to that shown in Fig. 7.6 a has been applied to
many semiconductor heterojunctions and quantum wells. The quantum
Hall-effect and Shubnikov—de Haas measurements from a device with
such a geometry are shown in Fig. 7.7 for an InAs/AlGaSb single quan-
tum well. A gate, in this case, is not needed since the 2DEG is formed in

8000 [T T T T T
InAs/AlGaSh 4
n 11000
6000 | T=110K L
v 1800
S S
24000 1600
Q a
1400
2000 |-¢——
1200
2
N o
0 1 2 3
Magnetic Field (T)

Figure 7.7 The quantum Hall-effect resistivity p,, observed
as a function of the magnetic field. The parallel resistivity
pxx Tepresents the Shubnikov—de Haas effect. The vertical
arrows indicate electron spin-up or spin-down, and the inte-
ger numbers represent the filling factor. Notice that py, and
pxx are sheet resistivities and their unit is ohm.
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the quantum well due to the quantization of the energy levels in the two-
dimensional nature of the quantum well. The InAs/AlGaSb single quan-
tum well was chosen due to its high electron mobility and large band
offset, which provide good carrier confinement. Furthermore, this sys-
tem exhibits a large spin splitting due to the large effective g* value
(~ —7.6) in InAs, as compared to other systems, such as GaAs/AlGaAs
quantum wells (g* ~ —0.2). The g* is obtained from the following ex-
pression, which is derived from the fourth-order effective mass theory
(Palik et al. 1961):

. Q-0 -y)
g_2<1 — ) (7.25)

where x =1/(1+ A/E,)
y=m"/m,
and A = spin-orbit splitting energy in valence band

7.3.1 Shubnikov-de Haas effect

This effect manifests itself in the oscillations of the parallel resistivity
pxx Obtained for the 2DEG in an InAs/AlGaSb single quantum well
system in the presence of a high magnetic field, as shown in Fig. 7.7.
The oscillations observed in p,, are periodic as a function of 1/B, in two-
dimensional systems due to the constant density of states for Landau
levels. The periodicity of p,, can be used to extract the 2DEG carrier
density. Since the resistivity is expected to be minimum when the Fermi
level lies between two Landau levels, where the density of states is the
smallest, one can define the Landau level filling factor v as

nsh

2
eB, (7.26)

where n; is the density of the 2DEG and the filling factor v is an integer
(1, 2, 3,...). This equation assumes degenerate spin and valley Landau
levels. Thus, for adjacent Landau levels, we have

e 1

An accurate measurement of ng is obtained for larger v (small values
of B,) where the spin-splitting is minimum, as shown in Fig. 7.7. The
sheet carrier density obtained by this method is more accurate than that
obtained by conventional Hall-effect measurements. This is mainly due
to the fact that the conventional Hall effect does not distinguish between
2D and 3D carriers, but the results from both techniques are usually
very close in value. The carrier concentration can also be obtained by
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Figure 7.8 The inverse of the magnetic field plotted as a
function of the consecutive minima obtained from p,, in
Fig. 7.7. The line is a linear fit to the data. The slope of the
line is used to calculate the density of the 2DEG

plotting B! against the consecutive minima of p,, (n), as shown in
Fig. 7.8. The slope of the plot is related to the 2DEG density through
the following relation, n; = e/(slope x h).

While the effective mass is not included in the SdH oscillations, it can
be determined by investigating the oscillation amplitudes as a function
of temperature and magnetic field of the low-field oscillatory conduc-
tivity expression derived by Ando et al.

) nse’ty 1 2wetf)? 27n%kpT
= O‘xx = —_
Pue m* 1+ @2 | 1+ (wetp)? T,

272k T 2nE
x cosh 7 ks cos it exp| — il (7.28)
hwc ha)c (x)cff

where Ey is the Fermi energy given by

RRE 2nhln,
T 2m* T m*

Er (7.29)

and s = scattering time corresponding to dephasing of
Landau state
we = cyclotron angular frequency = ‘en'%

kp = Boltzmann’s constant
T = temperature
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Figure 7.9 (a) A sketch of an
InAs/AlGaSb single quantum
well showing two bound states
. (Eq1 and Ej), the Fermi energy
Yonobroadening joue) (), and the Landau lev-
€ els. (b) Landau levels are filled up
to the Fermi energy level, which
-—— contains all allowed states when
: i the magnetic field is zero. (¢c) En-
.E ) ergy representation of Landau
levels and Fermi level. The Lan-
dau levels are broadened due to
various scattering mechanisms.

N
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Density of States

The scattering time 7; can also be extracted from Eq. (7.28). Both the
effective mass and scattering time values can be quite different from
the values obtained from the Hall-effect and cyclotron resonance mea-
surements.

The origin of the oscillations in p,, can be understood by examining
Fig. 7.9. An n-type doped InAs/AlGaSb single quantum well is sketched
in Fig. 7.9a, where we assume two bound states E; and E5 exist with
the Fermi energy Er(0) at a zero magnetic field assumed to be between
E;1 and E,. By applying a magnetic field along the growth axis (z di-
rection), each electronic energy level splits into an n number of Landau
levels with an energy described in Sec. 6.12, Eq. (6.140). The separa-
tion between Landau levels is Zw.. The density of states per unit area
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of each Landau level is obtained from the following relation:

m* m*w. eB,

27rh2> =90k — 7 (7.30)
As discussed in Chap. 5, the density of states for bulk semiconductor
material under the influence of a magnetic field resembles the quan-
tum wire density of states due to the confinement of the electrons in
Landau orbits in the xy plane. In quantum wells and heterojunctions,
the electrons are confined in the z direction. By applying a static mag-
netic field along the z direction, the electrons are further confined in
the xy plane as shown in Fig. 7.95, leading to a zero degree of freedom
(confinement in the three directions). Thus, the density of states of each
Landau energy-level is simply a §-function with a degeneracy of e B,/ h.
This is shown in Fig. 7.9¢ as the solid vertical lines labeled “No broad-
ening.” In reality, however, the impurities, alloy fluctuations, interface
roughness, and crystal imperfections will broaden the §-function den-
sity of states. This broadening of Landau levels is depicted as a gaussian
lineshape (see the curves labeled “With broadening” in Fig. 7.9¢). The
dashed-dotted line in Fig. 7.9¢ is the two-dimensional density of states
of the electronic energy levels E; in the absence of the magnetic field.
The states at the tails of the Landau levels are called localized states,
and they play an important role in the quantum Hall effect. As the
magnetic field is increased, Landau levels are swept across the Fermi
levels giving rise to the observed oscillations in py,.

(hw,) (

7.3.2 Quantum Hall effect

As a starting point, it is very beneficial to understand the Drude clas-
sical model of the magnetoresistance in semiconductors. The classical
equation of motion of an electron in the presence of magnetic (B) and
electric (€) fields can be expressed as

dv
dt
where v is the drift velocity and t is the scattering time. The magnetic
field is applied along the z axis, and £ and v are assumed to vary with

time as exp(—wt). This equation can be expressed in its three compo-
nents as

m* 2 4 ml = _e(E+vxB) (7.31)
T

dv v
*d—tx m*% = —e&; —ev, B,
m d—ty + 73’ = —e&y +ev, B, (7.32)
d
o + e —e&,
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By multiplying Eq. (7.32) by the carrier concentration n; and the elec-
tron charge —e, and comparing the results with the relation

j=5-& (7.33)

where & is the conductivity tensor, one can obtain the components of
the conductivity tensor as

0,(1 —iwt)

0. = 0. =

T 1 (0 - 0?) 12 - 2wt

O = —22 (7.34)

1—-iwt
OpWw, T

0. = —0. =

w 1 (a)2 — wcz) 2 — 2iwt

Oxz = Ozx = Oyz = Ozy = 0

where 0, = nse?t/m* is the conductivity in the absence of the magnetic
field. For the steady-state case where dv/dt = 0, the conductivity tensor
can be written as

o 1 —w,T 0
g=—2 _|or 1 0 (7.35)
1+ (eecn)? \ 0 1+ (wer)?

Thus, the conductivity in a two-dimensional system in the presence of
a magnetic field applied along the z direction can be expressed as

&= ﬁ (61” _‘;C’) (7.36)
and the resistivity tensor is related to the conductivity tensor as
p=5" (7.37)
The resistivity tensor can now be written as
p= aulr(,zy (Zy ;‘”) (7.38)

The condition w.r > 1 implies that the carriers are collisionless. By
applying this condition to Eq. (7.34), one can obtain o,, ~ 0 and o, ~
—nge/B. In the presence of collisions, where w.t > 1, we have

ne w?t?

Uxx = 735 31 . 9 9
B, 1+ o272
nge Oy

B, w:rz

(7.39)

Oxy = —
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where these conductivity components are simply the sum of the colli-
sion and collisionless parts. When the Fermi energy level is between
Landau levels labeled n and n+ 1, no elastic scattering can occur at low
temperatures (7' < 4.2 K), and the energy separation between consec-
utive Landau levels is Aw,. This case is thus equivalent to the condition
w.T 3> 1, which gives 0., ~ 0, and o, is given by its classical collision-
less value. From the density of states per Landau level, eB/h, one can
write the carrier density n; as ny = neB/h, where n is the nth Landau
level. The Hall conductivity o, can be expressed as

nge e neBz e 1h
ne e — 2= d o =-— 7.40
B, B, h "n MY PuT e (7.40)

Oxy =

This equation shows that the Hall resistivity takes quantized values
of 25812.87/n whenever the Fermi energy level lies between filled-
broadened Landau levels, as illustrated by the plateaus in Fig. 7.7.
This is called the quantum Hall effect.

The quantum Hall effect is observed for integer filling factors as de-
scribed in Eq. (7.26). However, at low temperatures (T' < 5.2 K), a
fractional value of the filling factor v has been observed for the low-
est Landau level in many heterojunction systems with high mobility.
In this case, v can take on values of p/q, where p and ¢ are integers.
This is called the fractional quantum Hall effect (see Tsui et al. 1983).
Laughlin (1983) provided an explanation of the fractional quantum Hall
effect based on the condensation of electrons or holes into a collective
ground state due to electron-electron or hole-hole interactions. This
ground state is separated from the nearest excited state by an energy
of 0.03¢2 /1y, where Iy is the Landau magnetic length. The possibility
of a repulsive interaction between carriers of the same charge, leading
to a condensation, is related to the two-dimensional character of the
system. The condensed phase consists of quasi-particles called anyons,
of fractional charge 2//, where [l = 3,5, 7, ..., that follow statistics in-
termediate between Fermi-Dirac and Bose-Einstein formalisms.

7.4 Charge Carrier Transport in Bulk
Semiconductors

As discussed in the introduction of this chapter, there are several mech-
anisms that impact charge transport in bulk and low-dimensional sys-
tems. For example, tunneling, which is discussed in previous chapters,
is a quantum effect that cannot be explained in terms of classical the-
ory. In this section, we discuss various transport properties of bulk
semiconductors.
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7.4.1 Drift current density

The resultant movement of the electrons and holes in semiconductors
under the influence of an applied electric field is called drift, which
gives rise to the drift currents. The equation of motion of an electron
with mass m* under the influence of an electric field € is given by

dug(t)
* = —e& 7.41
m'— e (7.41)
where vy (¢) is the drift velocity, which, after integration, is given as
E
va(t) = —=¢ (7.42)
m*

The drift velocity increases linearly with time between collisions. The
mean value of the drift velocity is

o0

(va) =/vd(t)P(t)dtz—e—i/tP(t)dtz—e—ZS (7.43)
m m
0 0

where 7 is the time that it takes for a carrier to suffer two successive
collisions and P(¢) is the probability that a carrier has not made a
collision at time ¢ and is given by

P@) = Lexp <—5> (7.44)
T T

From Eq. (7.43), the electron mobility can be expressed as u = |e|t/m*.
The current density can now be written as

Je = —nev, = neu.E (7.45)

where n is the electron density and the subscript e stands for electrons.
For holes, the current density is

Jn = pev, = peup€ (7.46)

where p is the hole density. For the preceding current densities we have
assumed that the drift velocity is linearly dependent on the electric field
and that the mobility is independent of the electric field. This may not be
the case for high electric fields (£ > 10* V/cm). In the case of the high
electric field regime, the relaxation time, drift velocity, and mobility
can all be dependent on the electric field. For additional discussion on
the saturation of the drift velocity, see Look (1989) and Sze (2002). For
mixed conduction, where both electrons and holes are present, the total
current density is the sum of Egs. (7.45) and (7.46), which gives a total
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conductivity of

nte Pty
o)
m, my

o = nepie + peuy = e> ( (7.47)

The mobility in this equation is called conductivity mobility. The carrier
mobility can be determined by different methods, such as the Hall-effect
and magnetoresistance techniques, which may lead to different val-
ues for the mobility. The mobility determined from various techniques
depends, however, on the scattering time or the relaxation time, which
was defined previously as the time between two successive collisions
or scattering events. The determination of the scattering time depends
on several effects that take place as the charge carrier is drifting from
one end of a material to the other under an applied electric field. For
example, the scattering mechanisms in GaAs include defect scattering,
such as intrinsic defects, charged and neutral impurities, and alloy-
ing; carrier-carrier scattering; and lattice scattering. Lattice scatterings
may be due to intervalley scattering (acoustical and/or optical phonons)
and intravalley scattering (phonons, deformation potential, piezoelec-
tric, etc.). The scattering time 7 can be written as

1 1 1 1
i1 1. 1. (7.48)
T T1 T2 73

where the subscripts indicate different types of scattering. Conse-
quently, the mobility of electrons can be expressed as

1 1 1 1
1. 1.1, (7.49)
no Mmoo M2 U3

For example, the mobility due to lattice scattering was shown to depend
on T 3/2 where T is the temperature (Smith 1978), and the mobility
due to impurity scattering varies as T'3/2/N;, where N; is the total
impurity concentration.

The mobility also depends on the effective mass of the charge carri-
ers. When the effective mass is obtained from the conductivity measure-
ments, it is called the mobility effective mass. The values of the mobility
effective mass may differ from those obtained from the cyclotron reso-
nance and Shubnikov—de Haas experiments.

For low values of an applied electric field, the drift velocity of charge
carriers in semiconductor materials and devices exhibits a linear re-
lationship as a function of the electric field. However, many devices
operate at high electric fields (£ ~ 1 to 100 kV/cm) where the drift ve-
locity is no longer linear with £. An example of the drift velocity under
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Carrier Drift Velocity (cm/s)

Electric Field (V/cm)

Figure 7.10 Carrier drift velocities as a function of the electric
field for SiGe, GaAs, and InP.

the influence of a high electric field is shown in Fig. 7.10, where the
drift velocity becomes almost independent of the electric field for Si
and Ge. The drift velocity saturation, which is independent of the elec-
tric field, in this figure is due to the fact that electrons (holes) gain high
energy (hot electrons or holes) from the electric field and their scatter-
ing rates are increased, leading to a reduction in the scattering time
(scattering lifetime). The reduction in lifetime causes the mobility to
decrease.

The curves related to GaAs and InP in Fig. 7.10 exhibit a negative dif-
ferential mobility at high electric fields, which produces a negative
differential resistance. This characteristic, however, is useful in the de-
sign of oscillators and low-power microwave devices. The drift velocity—
electric field behavior in GaAs, as well as in many direct bandgap mate-
rials can be explained in terms of the conduction valley occupancy (see,
for example, Singh 2003). As shown in Fig. 7.11, the electrons move in
the high-mobility (ur) ' valley at low electric fields, where the effec-
tive mass is 0.067m,. The velocity peaks at around 4 to 5 x 10° V/cm,
where most of the electrons are still in the I" valley. At higher electric
fields, the electrons gain enough energy to transfer to the L valley where
the electron effective mass is much heavier (~0.22m,) and the mobil-
ity (uz) is lower. The transfer of the electrons from the I' valley to the
L valley is the cause of the negative differential mobility, which leads
to the negative differential resistance. To observe the negative differ-
ential resistance, the energy separation between the L and I" valleys
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Figure 7.11 Illustration of the electron transfer from the I' valley to

the L valley in the conduction band of GaAs as the applied electric

field is increased. The associated drift velocity behavior as a function

of the electric field is shown with a negative slope on the right-hand

side of the peak.

should be much larger than 2T so that the L-valley will not be ther-
mally populated with electrons. In the case of GaAs, this separation
energy is ~0.32 eV. An additional condition necessary to the observa-
tion of the negative differential resistance is that the separation be-
tween the L and I' valleys should be less than the bandgap of the semi-
conductor to avoid populating the L valley by exciting carriers from
the valence band to this valley through mechanisms such as impact
ionizations.

When electrons are injected into a semiconductor by application of
an electric field, they suffer several collisions in a certain period of
time (several picoseconds) before they reach a steady-state distribu-
tion. If electrons are injected into the upper valley, where the effective
mass is high, the injected electrons may have velocities lower than the
steady-state velocity for a short period of time. This leads to what is
called velocity undershoot. Velocity overshoot is when the electrons are
injected ballistically into the sample and stay in the I' valley with ve-
locities higher than the steady-state velocity. Eventually the electrons
suffer scattering, and their velocity decreases in time to the steady-state
velocity.

The negative differential resistance is very useful in microwave de-
vices and oscillators. The negative-slope region in the drift velocity
versus electric field curve usually occurs when a high electric field
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(> 5 x 10% V/cm) is applied to semiconductor materials, such as GaAs
or InP. In this region, instability can arise and current oscillation can
occur. These oscillations were first observed by Gunn in 1963 and are
called Gunn oscillations. These oscillations are observed in thin sam-
ples (on the order of 10 um) under the influence of an electric field higher
than a critical field (£.), as shown in Fig. 7.11.

The frequency of the oscillations is found to be equal to the electron
drift velocity divided by the length of the sample. The origin of Gunn
oscillations is that there is a fluctuation called the electric field domain
formed near the cathode, as shown in Fig. 7.12a, where the carriers pile
up on the left-hand side of the domain, while the carriers on the right-
hand side of the domain are depleted, as shown in Fig. 7.12b. Because
of the negative differential resistance for £ > &, the increase in the
field inside the domain causes further slowing down of the electrons in-
side the domain, which leads to more charge pileup. The pileup process
continues until most of the applied field is across the domain.

Only one domain can exist inside the sample at one time. The do-
main drifts across the sample from the cathode toward the anode at
the saturation velocity under the influence of an applied bias voltage.
The domain disappears once it reaches the anode, and a new domain
is formed, giving rise to current oscillation. If the saturation velocity
is 107 cm/s and the length of the sample is 10~* cm, the oscillation
frequency is 10 GHz. This frequency is in the microwave region. Thus,
Gunn diodes are known as microwave generators and have applications
in radar and communications.

7.4.2 Diffusion current density

When there is a spatial variation of carrier concentration in semicon-
ductors, the carriers move from regions of high concentration to regions
of low concentration. The movement of the carriers results in what is
called diffusion current. The carrier diffusion is governed by Fick’s law,
which states that the carrier flux 7, is proportional to the concentration
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gradient. For electrons, Fick’s law has the following form:

F =-D, " (7.50)
dx

where D, is the electron diffusion coefficient and » is the electron con-
centration. Fick’s law can be verified by assuming that the electron con-
centration in a semiconductor at a constant temperature varies along
the x axis such that n(x) is described by the curve in Fig. 7.13. The
average electron flux 7 crossing the concentration profile from the left
can be expressed as follows:

=Dl n(=Dupm
T2t - 2

F1 (7.51)

where T = mean free time between collisions
[ = mean free path
vgn = electron thermal velocity (v, = 1/7)

Similarly, the average electron flux F; crossing from right to left is

_ v
T2

The net carrier flow from left to right is thus the difference between the
two fluxes,

Fa (7.52)

H=H—B=%W4%mm (7.53)

One can now expand the carrier concentration at x = +/ by using the
Taylor series to the first order to obtain

Uth dn dn
Fa= 5 [0 =17 —n(0) —1 2
dn dn
= vl go=-De o (754
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where D, = vy,l. The diffusion current density for conduction electrons
can now be expressed as

Jo =eD,— (7.55)

Jp=—eDp— (7.56)

where Dy, is the hole diffusion constant and p is the hole concentration.
When both the electric field and concentration gradient are present, the
current densities for electrons and holes can be written as

Jo. =neu.€ + eDed—n (7.57a)
dx

Jy = peur€ — eth (7.57b)

dp
dx
For mixed conduction in three dimensions, the total current density,
which consists of the drift and diffusion components for both electrons
and holes, can be generalized as

J =neu.E + peurE +eD,Vn(r) —eDVp(r) (7.58)

For a semiconductor at equilibrium, the current density of each type of
carrier must be zero. For electrons, Eq. (7.57a) can be written as

d
nej,E = —eDed—Z (7.59)

Furthermore, the electric field is related to the electric potential V(r)
according to the following relation:
E=-VV({r) (7.60)
Substituting Eq. (7.60) into (7.59), we have
nu.VV(r) = D, Vn(r) (7.61)

The carrier concentration under nondegenerate conditions can be writ-
ten as

n(r) = N, exp| 20~ e:B (rT) —Er (7.62)

where the conduction band edge is modified in the presence of the ap-
plied voltage V(r). By taking the gradient of Eq. (7.62), one can obtain
_en(r)VV(r)
kT

vn(r) (7.63)
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Substituting Eq. (7.63) into (7.61) gives

p, = kBT ke (7.64)
e

Similarly, the hole diffusion coefficient is

_ kT py
T e

Dy, (7.65)

Equations (7.66) and (7.67) are known as the Einstein relations. Sub-
stituting Eqs. (7.64) and (7.65) into Eqs. (7.57a) and (b), respectively,
we obtain

Jo. = ue(ne€ +kpT Vn) (7.66a)

Jy = un(pe€ —kgT Vp) (7.66b)

It is clear from these equations that the current density is proportional
to the mobility even in the presence of carrier diffusion.

In high-frequency electronic components, an additional current den-

sity contribution, called the displacement current density, becomes im-

portant. Assume that the electrons in a semiconductor material are
subject to an alternating current (ac) electric field of the form

E =&, exp(—iwt) (7.67)

The displacement current density J; is given by

oD

Jg = — 7.68
d = (7.68)
where D is the electric displacement given by

D =ee,&E (7.69)

where ¢ is the dielectric constant and ¢, is the permittivity of space
(8.85 x 10712 F/m). Combining Egs. (7.67) to (7.69) yields

J; = —iwee, &€ (7.70)

By combining Eq. (7.70) with the static contribution of the current den-
sity derived above, we have

J = (0 —iwee,)E (7.71)

Thus, the electrical conductivity is composed of dc and ac components.
Again, the ac component is significant and cannot be neglected in the
case of high-frequency devices.
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7.4.3 Generation and recombination

For a semiconductor at thermal equilibrium and zero bias voltage, the
product of electron (n) and hole (p) concentrations is given by np = n?,
where n; is the intrinsic carrier concentration. Many electronic de-
vices, such as bipolar transistors and pn-junction diodes, operate on
the principle of carrier injection. For excess carriers, the semiconduc-
tor is no longer at equilibrium and np > n?. The generation of excess
carriers can be accomplished by several techniques, but the most com-
mon methods are either applying a bias voltage or illuminating the
sample with photons. The thermionic process is when electrons gain
enough thermal energy to allow them to make transitions to higher
energy levels. The introduction of excess carriers is called carrier gen-
eration. When the system is at nonequilibrium, a process exists to re-
store the system back to equilibrium. This mechanism is called recom-
bination. For example, when a semiconductor sample is illuminated
with light, electrons absorb the photons to make the transition from
the valence band to the conduction band, leaving behind holes with
positive charges. The excited electrons recombine with holes in the va-
lence band, releasing energy in the form of photons (luminescence) or
phonons (thermal energy). If photons are emitted as a by-product of
the recombination, the process is called radiative recombination. Non-
radiative recombination occurs when the energy of the electron is ab-
sorbed by the lattice. When the excited electrons recombine directly
with holes in the valence band, the process is called direct recombina-
tion. If the recombination process is made through centers with energy
levels lying in the fundamental bandgap, the process is called indirect
recombination.

Direct recombination is common in direct bandgap materials such as
GaAs and GaN. Figure 7.14 illustrates the generation and recombina-
tion processes in a direct bandgap semiconductor. The quantity g, is the
light generation rate, g, is the thermal generation rate, and R is the
recombination rate. The units of these rates are number/(cm?-s). For

Conduction band
A A
g, R
gf t Figure 7.14 Direct generation
and recombination of electron-
hole pairs during illumination of
Y the sample with photons.

Valence band
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thermal equilibrium, g, is zero and g, = R. For direct recombination,
where the bottom of the conduction band and the top of the valence
band are lined up, the recombination rate is given by

R =o,pn (7.72)

where o, is the recombination rate proportionality constant. For the
nonequilibrium case when an n-type semiconductor specimen is subject
to illumination by light, the recombination rate can be written as

R = a patty = () + An) (p) + Ap) (7.73)

where n, = total majority carrier concentration
pn = total minority concentration
n? = equilibrium majority carrier concentration
p? = equilibrium minority carrier concentration

An and Ap are the excess carrier concentrations defined as
An=n,—n, and Ap = p, — p; (7.74)

To maintain charge neutrality, An and Ap must be equal. The total gen-

eration rate G is the sum of the thermal and light generation rates. Thus,

the net rate of change of the hole concentration can be expressed as

dp,
dt

For the steady-state case, the left-hand side of Eq. (7.75) i