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Preface

The development of micro- and nanoscale fabrication techniques has triggered
a broad scientific and technical revolution. A prime example is provided by
microelectronics, which has now become nanoelectronics. Other evolutionary
breakthroughs are now clearly established in the fields of optoelectronics,
materials, the production and conversion of energy, and techniques for data
processing and communications.

A remarkable feature of this trend is the way it has brought together
physicists and engineers. On the one hand, the classical laws used to model
macroscopic systems are generally unsuitable when system sizes approach
characteristic microscopic scales, such as the mean free path or the length
of carriers. The physical description of the individual or collective behaviour
of the basic elements must then be reassessed. On the other hand, the de-
velopment and integration of physical ideas exploiting very small structures,
such as ultrathin films, superlattices, nanowires, and nanoparticles, in order
to improve an industrial system, requires the physicist to understand some
of the more technical aspects of engineering.

The international community of thermal scientists, whether in research or
engineering, base their approach on the mass, momentum and energy conser-
vation equations associated with the laws of diffusion for conduction (Fourier)
and for mass transfer (Fick), and Newton’s law for conduction–convection.
For radiation, the radiative transfer equation is widely used to treat semi-
transparent media, grey or otherwise.

But this theoretical framework can no longer describe the conductive and
conductive–convective transfer regimes on very small space and time scales,
simply because the carriers undergo too few collisions. As the radiated ther-
mal wavelengths are of the order of a few microns, the radiative transfer
equation, and even the whole notion of luminance, become quite inappropri-
ate on submicron scales.

One does not even need to approach the limits of macroscopic models
to observe that the phenomenology of heat transfer is quite different on the
micron and centimeter length scales. Whilst heat transfer is generally felt
to be a slow process – the time scale for heat conduction in macroscopic
systems (∼ 50 cm) is a few minutes – the propagation of heat is an extremely
efficient process on the microscale (∼ 10 ns). Indeed, the diffusion time is
proportional to the square of the length. Moreover the thermal resistances of
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microscale structures are so small that they become of the same order as the
interface resistances between such structures. Microscale heat transfer thus
occurs practically without inertia, and is essentially equivalent to interface
heat transfer. Naturally, this is even more true for nanoscale heat transfer.

From the experimental standpoint, very weak and highly localised contri-
butions must be detected in order to measure the conductive flux in nano-
structures. For example, the methods used must not introduce high con-
tact thermal resistances. Ultrafast optical methods (nano- to picosecond)
and near-field microscopy are best suited to satisfy these criteria.

It is therefore clear that the study of heat transfer on micro- and
nanoscales requires a quite new approach on the part of the thermal sci-
ence community. The task here is to integrate the new physical models and
also the novel experimental devices now available to treat energy exchanges
in micro- and nanostructures.

There are many consequences for industry:

• In housing, superinsulating nanoporous materials can limit heat losses
whilst increasing the ground surface, and their conductivity in vacuum is
smaller than that of air.

• Nanofluids, i.e., heat-carrying liquids transporting nanoparticles, have
conductivities 10–40% higher than those of the base fluid and hence a
greatly enhanced transfer efficiency.

• In the nanoelectronics of processors, heating problems have led manufac-
turers to slow down the miniaturisation trend by switching to multi-unit
structures in which several computing units are integrated into the same
chip.

• Data storage will for its part be heat-assisted. Heating can activate or in-
hibit magnetisation reversal. It can also change the phase or the geometry
of a storage medium, and this over nanoscale areas.

• Thermoelectric energy conversion is currently undergoing a revolution
through manipulation of the thermophysical properties of nanostructured
materials. In 2002, certain superlattice alloys were able to produce an
intrinsic performance coefficient twice as high as had ever been measured
for a bulk solid material. This breakthrough was achieved by improving
thermal properties.

In all these fields of application, our understanding of the relevant heat mech-
anisms and the associated modelling tools remains poor or at best imperfect.

The present book brings together for the first time the physical ideas
and formalism as well as the experimental tools making up this new field of
thermal science. Although these are usually considered to be the jurisdiction
of the physicist, the aim of the book remains quite concrete, since it seeks
to solve the problems of heat transfer in micro- and nanostructured mate-
rials. The book itself results from a collaborative network in France known
as the Groupement de Recherche Micro et Nanothermique (GDR), bringing
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together teams organised by a unit of the Centre national de la recherche sci-
entifique (CNRS)1 and a unit of the department2 of Sciences pour l’Ingénieur .
This group combines research centres involved in thermal science, solid state
physics, optics and microsystems. Each chapter has been written by one or
several authors – sometimes belonging to different research teams – and then
edited by experts and non-experts in the GDR.

The first part of the book is theoretical, making the connection between
the fundamental approaches to energy transfer and the quantities describing
heat transfer. Chapter 1 considers the limits of classical models on small
scales. Chapters 2, 3 and 4 then treat the physical models describing heat
transfer in gases, conduction, and radiation, respectively, all on these small
scales.

The second part of the book covers the numerical tools that can be imple-
mented to solve the previously formulated equations in concrete situations.
Chapters 5 and 6 examine solutions of the Boltzmann and Maxwell equations,
respectively. Having discussed continuum models, microscopic simulations are
tackled in Chap. 7 via the Monte Carlo method and in Chap. 8 via the tech-
nique of molecular dynamics simulations. In each chapter, it is shown how to
calculate a heat flux or conductivity explicitly through various examples.

The last part of the book deals with experimental approaches. Chapter 9
introduces different forms of near-field microscopy and discusses their appli-
cations in thermal science. A thermal microscope is presented in some detail
with example applications. Chapter 10 discusses optical techniques as pro-
vided by the photothermal microscope and reflectometry, whilst Chap. 11
brings together optical and near-field microscopy in a single hybrid system.
This series of chapters on microscopy is followed by two chapters presenting
the thermal applications of femtosecond lasers in pump–probe configurations.
Chapter 12 deals with the electron–photon interaction on ultrashort time
scales and Chap. 13 treats of thermal–acoustic coupling in various types of
structure.

The book thus constitutes a particularly complete and original collection
of ideas, models, numerical methods and experimental tools that will prove
invaluable in the study of micro- and nano-heat transfer. It should be of
interest to research scientists and thermal engineers who wish to carry out
theoretical research or metrology in this field, but also to physicists concerned
with the problems of heat transfer, or teachers requiring a solid foundation
for an undergraduate university course in this area.

1 The French National Research Institute.
2 Science for Engineering.
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Professeur à l’Université Pierre et Marie Curie (Paris VI)
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Preface

The development of micro- and nanoscale fabrication techniques has triggered
a broad scientific and technical revolution. A prime example is provided by
microelectronics, which has now become nanoelectronics. Other evolutionary
breakthroughs are now clearly established in the fields of optoelectronics,
materials, the production and conversion of energy, and techniques for data
processing and communications.

A remarkable feature of this trend is the way it has brought together
physicists and engineers. On the one hand, the classical laws used to model
macroscopic systems are generally unsuitable when system sizes approach
characteristic microscopic scales, such as the mean free path or the length
of carriers. The physical description of the individual or collective behaviour
of the basic elements must then be reassessed. On the other hand, the de-
velopment and integration of physical ideas exploiting very small structures,
such as ultrathin films, superlattices, nanowires, and nanoparticles, in order
to improve an industrial system, requires the physicist to understand some
of the more technical aspects of engineering.

The international community of thermal scientists, whether in research or
engineering, base their approach on the mass, momentum and energy conser-
vation equations associated with the laws of diffusion for conduction (Fourier)
and for mass transfer (Fick), and Newton’s law for conduction–convection.
For radiation, the radiative transfer equation is widely used to treat semi-
transparent media, grey or otherwise.

But this theoretical framework can no longer describe the conductive and
conductive–convective transfer regimes on very small space and time scales,
simply because the carriers undergo too few collisions. As the radiated ther-
mal wavelengths are of the order of a few microns, the radiative transfer
equation, and even the whole notion of luminance, become quite inappropri-
ate on submicron scales.

One does not even need to approach the limits of macroscopic models
to observe that the phenomenology of heat transfer is quite different on the
micron and centimeter length scales. Whilst heat transfer is generally felt
to be a slow process – the time scale for heat conduction in macroscopic
systems (∼ 50 cm) is a few minutes – the propagation of heat is an extremely
efficient process on the microscale (∼ 10 ns). Indeed, the diffusion time is
proportional to the square of the length. Moreover the thermal resistances of
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microscale structures are so small that they become of the same order as the
interface resistances between such structures. Microscale heat transfer thus
occurs practically without inertia, and is essentially equivalent to interface
heat transfer. Naturally, this is even more true for nanoscale heat transfer.

From the experimental standpoint, very weak and highly localised contri-
butions must be detected in order to measure the conductive flux in nano-
structures. For example, the methods used must not introduce high con-
tact thermal resistances. Ultrafast optical methods (nano- to picosecond)
and near-field microscopy are best suited to satisfy these criteria.

It is therefore clear that the study of heat transfer on micro- and
nanoscales requires a quite new approach on the part of the thermal sci-
ence community. The task here is to integrate the new physical models and
also the novel experimental devices now available to treat energy exchanges
in micro- and nanostructures.

There are many consequences for industry:

• In housing, superinsulating nanoporous materials can limit heat losses
whilst increasing the ground surface, and their conductivity in vacuum is
smaller than that of air.

• Nanofluids, i.e., heat-carrying liquids transporting nanoparticles, have
conductivities 10–40% higher than those of the base fluid and hence a
greatly enhanced transfer efficiency.

• In the nanoelectronics of processors, heating problems have led manufac-
turers to slow down the miniaturisation trend by switching to multi-unit
structures in which several computing units are integrated into the same
chip.

• Data storage will for its part be heat-assisted. Heating can activate or in-
hibit magnetisation reversal. It can also change the phase or the geometry
of a storage medium, and this over nanoscale areas.

• Thermoelectric energy conversion is currently undergoing a revolution
through manipulation of the thermophysical properties of nanostructured
materials. In 2002, certain superlattice alloys were able to produce an
intrinsic performance coefficient twice as high as had ever been measured
for a bulk solid material. This breakthrough was achieved by improving
thermal properties.

In all these fields of application, our understanding of the relevant heat mech-
anisms and the associated modelling tools remains poor or at best imperfect.

The present book brings together for the first time the physical ideas
and formalism as well as the experimental tools making up this new field of
thermal science. Although these are usually considered to be the jurisdiction
of the physicist, the aim of the book remains quite concrete, since it seeks
to solve the problems of heat transfer in micro- and nanostructured mate-
rials. The book itself results from a collaborative network in France known
as the Groupement de Recherche Micro et Nanothermique (GDR), bringing
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together teams organised by a unit of the Centre national de la recherche sci-
entifique (CNRS)1 and a unit of the department2 of Sciences pour l’Ingénieur .
This group combines research centres involved in thermal science, solid state
physics, optics and microsystems. Each chapter has been written by one or
several authors – sometimes belonging to different research teams – and then
edited by experts and non-experts in the GDR.

The first part of the book is theoretical, making the connection between
the fundamental approaches to energy transfer and the quantities describing
heat transfer. Chapter 1 considers the limits of classical models on small
scales. Chapters 2, 3 and 4 then treat the physical models describing heat
transfer in gases, conduction, and radiation, respectively, all on these small
scales.

The second part of the book covers the numerical tools that can be imple-
mented to solve the previously formulated equations in concrete situations.
Chapters 5 and 6 examine solutions of the Boltzmann and Maxwell equations,
respectively. Having discussed continuum models, microscopic simulations are
tackled in Chap. 7 via the Monte Carlo method and in Chap. 8 via the tech-
nique of molecular dynamics simulations. In each chapter, it is shown how to
calculate a heat flux or conductivity explicitly through various examples.

The last part of the book deals with experimental approaches. Chapter 9
introduces different forms of near-field microscopy and discusses their appli-
cations in thermal science. A thermal microscope is presented in some detail
with example applications. Chapter 10 discusses optical techniques as pro-
vided by the photothermal microscope and reflectometry, whilst Chap. 11
brings together optical and near-field microscopy in a single hybrid system.
This series of chapters on microscopy is followed by two chapters presenting
the thermal applications of femtosecond lasers in pump–probe configurations.
Chapter 12 deals with the electron–photon interaction on ultrashort time
scales and Chap. 13 treats of thermal–acoustic coupling in various types of
structure.

The book thus constitutes a particularly complete and original collection
of ideas, models, numerical methods and experimental tools that will prove
invaluable in the study of micro- and nano-heat transfer. It should be of
interest to research scientists and thermal engineers who wish to carry out
theoretical research or metrology in this field, but also to physicists concerned
with the problems of heat transfer, or teachers requiring a solid foundation
for an undergraduate university course in this area.

1 The French National Research Institute.
2 Science for Engineering.
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Abstract. In this introductory text, we examine the three mechanisms of heat
transfer. For each one, we review the main ideas used in the traditional macroscopic
description of heat transfer. This is followed by a discussion of the length and time
scales characterising these transfer mechanisms. We then study the hypotheses
underlying these models in order to determine their field of validity. We outline
transfer mechanisms beyond the validity of macroscopic laws. The latter will be
discussed in more depth throughout the book.

1 Heat Conduction in Solids

1.1 Macroscopic Approach

Fourier Law

Heat conduction in a homogeneous medium is described by Fourier’s law,
which relates the flux to the temperature gradient by

φ = −k∇T , (1)

where k is the thermal conductivity.

Heat Equation

Energy conservation is expressed locally by

ρcp
∂T

∂t
= −∇ · φ , (2)

where cp is the specific heat capacity at constant pressure. Inserting the
Fourier law into this expression and assuming that the thermal conductivity
is homogeneous, we obtain a diffusion equation for the temperature field, viz.,

ρcp
∂T

∂t
= k∇2T . (3)

Defining the thermal diffusivity by a = k/ρcp, (3) becomes

∇2T =
1
a

∂T

∂t
. (4)

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 1–13 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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1.2 Characteristic Length and Time Scales

Characteristic Length and Time Scales for Conduction

The heat equation can be written in dimensionless form by setting t = t+t0
and x = x+L, where t0 and L are a characteristic time and length for the
problem. The equation then becomes

∇2
+T =

L2

at0

∂T

∂t+
. (5)

The problem now depends only on the dimensionless quantity at0/L2, known
as the Fourier number. In order to visualise the typical behaviour of a diffusive
phenomenon, it is useful to study the solution to the problem described by

∇2T − 1
a

∂T

∂t
= Sδ(t)δ(r) , (6)

which corresponds to the temperature field created by a heat pulse at t = 0
and r = 0. Choosing boundary conditions for an infinite medium in which
the temperature decreases to zero at infinity, the solution is

T (r, t) =
S

(4πat)3/2
exp

(
− r2

4at

)
. (7)

This solution describes a Gaussian spread of energy in space, with charac-
teristic width 2

√
at. We observe that, after a time t has elapsed, the heat is

spread out over a sphere of radius 2
√

at.

Applications

A practical application of this notion can be formulated in the following
question: when a bead of radius R is heated by absorption of heat at the
surface, how long will it take for the object to thermalise? The answer is
simply the time required for the heat to diffuse throughout its volume, i.e.,
a time of order tcd = R2/a.

If the bead is now heated in a way that varies sinusoidally in time, i.e.,

Q

[
1 + sin

2πt

T

]
,

the behaviour will be quite different depending on whether T is large or small
compared with the conduction time. If T � tcd, the system gradually ther-
malises, the bead becoming isothermal and following the temporal variations
imposed upon it. But if T � tcd, the system cannot follow the imposed vari-
ations. It behaves like a low-pass filter and only responds to the mean value
of the imposed flux. Moreover, the temperature field is not uniform.

Let us now examine several orders of magnitude. For most condensed
materials, the order of magnitude of the thermal diffusivity is 10−6 m2 · s−1.
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– For a sphere of radius 6400 km, the diffusion time is about

40 × 1012

10−6
= 4 × 1019 s .

Since one year is approximately π × 107 s, this gives a value of around
1012 yr. The Earth is thus unlikely to be isothermal, something we already
knew!

– For a distance of 0.3 m, we obtain 105 s or one day. We deduce that a
water pipe buried at a depth of 30 cm can get through the night without
freezing.

– For a sphere of diameter 1 cm, we obtain 100 s.
– For a sphere of diameter 100 nm, the homogenisation time drops to

10−8 s = 10 ns.
– What about a sphere of diameter 1 nm? We find a time of 1 ps, which is

correct to within an order of magnitude.

However, the above arguments are no longer applicable. We have reached
the limits of validity of our macroscopic heat transfer models, for we now
encounter another characteristic time of the physical problem. A difficulty
arises here because the picosecond is the typical phonon relaxation time.

Short-Time Limit of the Diffusion Equation

The problems arising from the relaxation time of the system appear very
clearly in the diffusion equation at short time scales. Indeed, looking at the
solution for the response to a localised heat pulse, we find that the tem-
perature field is modified instantaneously at every point of space from the
moment the pulse comes into effect. Now at a time t, the temperature cannot
have been modified beyond a distance ct, otherwise the effect of the pulse
would have propagated faster than the speed of light. The diffusion equation
must therefore be modified.

The physical origin of the problem lies in the fact that the Fourier law
describes an instantaneous response to the excitation. This basically amounts
to saying that we have neglected the response time of the system. Of course,
the response to a temperature gradient imposed suddenly in this way cannot
be instantaneous. The appropriate time scale can be ascertained for a linear
system in the following way. We know the time scale of the response to a step-
shaped excitation: it is the time required for equilibrium to be reestablished,
i.e., the relaxation time. This is determined by microscopic collision processes.
Now for any linear system, the response to a step function and the response
to a Dirac function are related by differentiation. The natural time scale of
the physical problem which marks out the domain of validity of the Fourier
law is thus the relaxation time.

From the Boltzmann equation, the Fourier law can be modified to [1]

τ
∂φ

∂t
+ φ = −k∇T , (8)
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where τ is the mean relaxation time. The resulting diffusion equation contains
an extra term corresponding to propagation at speed v =

√
a/τ . It is clear

from this equation that, if the characteristic time scale t0 is much longer
than the relaxation time τ , the Fourier law used earlier is valid. However,
if the time t0 characterising the evolution of the system is shorter than the
relaxation time, the traditional model is no longer valid. The above correction
must then be taken into account, which amounts to saying that the Fourier
law is dispersive.

Equivalently, we may compare a characteristic length scale for evolution
of the system with the mean free path. If the latter is much shorter than the
characteristic length, the local Fourier law is valid. If not, non-local effects
must be taken into account. In other words, the energy flux at a point depends
on the temperature gradient in a neighbourhood of this point.

Harmonic Conduction Regime

Let us consider the shape of a temperature field when we apply a modulated
heat source with angular frequency ω. Seeking a solution of form

T (r, t) = T0(r) + θ(r) exp(−iωt) ,

we obtain for the time-dependent part

∇2θ +
iω
a

θ = 0 . (9)

This equation has an analogous structure to the Helmholtz equation, i.e., a
harmonic propagation equation. One may then speak of thermal waves. If we
now seek a solution of the form exp(iKx), we find a complex wave vector

K =
1 + i√

2

√
ω

a
. (10)

The imaginary part of K describes attenuation of the wave during its prop-
agation. As discussed above, the system cannot respond to variations that
occur too quickly. This behaviour shows up here when we observe that high
frequency waves are damped over very short distances. It is easy to establish
the order of magnitude of the wavelength or the attenuation distance. One
only has to consider the Fourier number, using the period T as the character-
istic time, which yields l =

√
aT . Note that the amplitude is usually written

in the form

exp
i2πx

λ
exp

(
−x

δ

)
.

The decay length is thus the wavelength divided by 2π. Thermal waves are
therefore highly damped waves. Put another way, we are always in the near
field when we observe thermal waves.
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Looking again at the modified Fourier law (8), we observe that the con-
ductivity depends on the frequency. In the monochromatic regime, we have

φ = − k

1 − iωτ
∇θ . (11)

The time constant τ here is related to the phonon relaxation time, which is in
the picosecond range. There is no point in taking this effect into account for
frequencies less than 1/τ , i.e., a few THz. We may thus consider that thermal
conductivity is non-dispersive at low frequencies. This is analogous to what
happens with electrical conductivity, where dispersion effects can be ignored
up to a few GHz.

1.3 Short-Scale Transfer

To summarise, the main limitations of the macroscopic approach to conduc-
tion correspond to length and time scales comparable with the phonon mean
free path and the phonon relaxation time, respectively. In the Chapter on
Electrons and Phonons by Greffet in this volume, which deals with phonons,
we shall see that conductive transport can be described using a Boltzmann
equation. This type of equation will be investigated further in the Chapters
by Carminati in this volume, which treat the problems of transport in dilute
media and radiative transfer, respectively. The transition between a ballistic
transport regime and a diffusive regime will be discussed.

Another type of limitation arises when we consider geometrical dimensions
comparable with the phonon wavelength. In this situation, mode quantisation
effects become relevant. Consider the case of a wire a few nanometers in
diameter. The number of modes that can propagate is then discrete. This can
lead to quantisation of the conductance, a phenomenon that is well known in
electrical conduction [2] and which has recently been discussed in the context
of heat conduction [3].

2 Conduction in Fluids. Convection

2.1 Macroscopic Approach

Introduction

When we consider heat transfer in a fluid at rest, the heat flux is due to
conduction and can be described by the Fourier law. In the presence of gravity,
the density variation induced by temperature differences leads to forces which
can produce movement within the fluid. The phenomenon is called natural
convection. When it occurs, this transfer mechanism is much more efficient
than the conduction phenomenon. One also speaks of convection to describe
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energy transfer between a surface and a fluid. In the following, we shall not
discuss convection phenomena with mass transfer which are truly macroscopic
effects. We shall only address conduction in gases in the vicinity of a surface.

Transfer Near a Surface

We shall consider the problem of energy transfer between a surface separating
a solid (x < 0) and a fluid (x > 0). It can be shown classically that the heat
flux per unit area φ can be expressed in the form

φ = h(Ts − Tf) , (12)

where Ts and Tf are the temperatures of the surface and the fluid some
distance from the surface. The origin of this transfer is heat conduction in the
boundary layer. Owing to the condition of zero velocity at the surface itself,
the fluid has no overall motion along the surface and there is no convection,
i.e., no energy transfer associated with a mass transfer. The only energy
transport phenomenon is conduction in the fluid within the boundary layer.
We may thus express the fact that the flux at the surface is oriented normally
to the surface and has the form

φ = −kf
dT

dx
, (13)

where kf is the thermal conductivity of the fluid. This expression can be
written in a dimensionless way by introducing the dimensionless temperature

T (x) − Ts = (Tf − Ts)T +(x)

and a dimensionless variable x = x+L, where L is a characteristic length for
the system. We then have

φ = −kf(Tf − Ts)
L

(
−dT +

dx+

)
= h(Ts − Tf) , (14)

where h = kfNu/L is the exchange coefficient and the dimensionless num-
ber Nu is the Nusselt number. The latter represents the dimensionless tem-
perature gradient in the boundary layer, i.e., Nu = dT +/ dx+.

Characteristic Convection Time

It is useful to introduce a characteristic time scale associated with the con-
vective flow. This time scale arises when we consider a sphere of matter with
volume V and area S, cooling in a fluid. The energy balance equation is

ρcpV
∂T

∂t
= hS(T − Tf) . (15)
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We have assumed here that the sphere is isothermal which is justified if the
system evolves on a longer time scale than the conduction time. When we
solve this equation, we obtain an exponential temperature decrease with a
time constant τcv known as the convection time:

τcv =
ρcpV

hS
. (16)

2.2 Short-Scale Transfer. Ballistic Transport

Let us now consider the transfer between two parallel planes separated by
a distance d and with different temperatures. Molecules leaving one surface
carry out a random walk, undergoing collisions with other molecules. The
key parameter in this process is the mean free path, i.e., the average distance
travelled between two successive collisions. Clearly, if the distance d between
the two planes is small compared with the mean free path, the phenomenon
here will be profoundly different. The transfer is then said to be ballistic, since
molecules leaving one surface will go directly to the other without collision.
This is called the ballistic or rarefied gas regime.

To get a more quantitative idea, the order of magnitude of the mean
free path in air under normal conditions is around 40 nm. Hence, the energy
transfer between the apex of an AFM tip and a sample surface is ballistic.
It should be noted that ballistic transfer is considerably more efficient than
diffusive transfer. This is easy to understand. In the ballistic regime, every
molecule leaving a surface will reach the opposite surface and will thus play an
efficient role in the transfer of energy. In the diffusive regime, some molecules
undergo collisions in which they are scattered forward, in which case the
situation is much the same as before. However, some molecules are scattered
backwards and this reduces the efficiency of the energy transfer.

The relevant regime can be characterised by two characteristic time scales.
The first is the collision time and the second is the time-of-flight between the
two surfaces. As long as the time-of-flight is shorter than the collision time,
the regime is ballistic. To summarise, the usual approach to convective heat
transfer based on the use of an exchange coefficient is valid for distances
greater than the mean free path and time scales longer than the collision
time.

3 Radiation

3.1 Macroscopic Approach

Assumptions

The phenomenological description of radiative transfer is based on the notion
of specific intensity and the theory of geometric optics.
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Specific Intensity

A radiative energy flux crossing a surface of area dS in the direction u, in a
solid angle dΩ and a frequency band [ν, ν + dν] is expressed in the form

dφν = Lν(u, r) dS cos θ dΩ dν . (17)

The quantity L is the specific intensity. It depends on the frequency, the
direction and the point considered. It can be interpreted as the product of the
number nν(u, r) of photons per unit volume propagating in the direction u
with the energy hν per photon and the speed of propagation c.

Equilibrium Specific Intensity

In thermodynamic equilibrium, each mode is occupied by a number of pho-
tons given by the Bose–Einstein distribution. The number nν introduced
above is then given by

nν(u, r) =
1

exp(hν/kT ) − 1
. (18)

It remains to determine the number of modes per unit volume in the solid
angle dΩ. This can be found by counting the number of electromagnetic
modes in a finite cavity of side L and then letting L tend to infinity. The result
is 2ν2/c3. From there, we retrieve the expression for the specific intensity of
a black body, which is the specific intensity of equilibrium radiation, i.e., the
radiation when a system is in thermodynamic equilibrium:

L0
ν(T ) =

2hν3

c2

1
exp(hν/kT )− 1

. (19)

It should be noted that the only solutions of Maxwell’s equations taken into
account in the above reasoning are plane waves propagating in a vacuum.
Near an interface, inside a cavity of size comparable with the wavelength, or
in a wave guide, the solutions to Maxwell’s equations are different. The modes
change from one physical system to another. At equilibrium, each mode re-
mains occupied with a mean occupation number given by Bose–Einstein sta-
tistics. However, the number of modes per unit volume is no longer 2ν3/c3

and can vary significantly from one system to another.

Emitted and Absorbed Flux

At equilibrium, the specific intensity is denoted by L0
ν . The specific intensity

leaving a surface is the sum of the emitted and reflected specific intensities.
The emitted specific intensity is thus a fraction of the equilibrium specific
intensity. This fraction is given by the emissivity εν . Hence,

Le
ν(T ) = ενL0

ν(T ) . (20)
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The absorptance (or absorptivity) is defined as the ratio of the power ab-
sorbed per unit area and the power incident per unit area. It is denoted
by αν . From the reciprocity theorem, it can be shown that the polarised
directional monochromatic absorptance is equal to the polarised directional
monochromatic emissivity [4]:

αν(u) = εν(u) . (21)

The physical origin of this equality can be understood by noting that the
absorptance of a surface is nothing other than the transmission factor of the
interface. Indeed, all the energy passing through the surface is subsequently
absorbed in the semi-infinite medium. The emissivity can also be interpreted
as a transmission factor. Inside the opaque medium, there is radiation which
is transmitted across the interface before propagating in the vacuum. Looking
at the situation in this way, the emissivity is once again a transmission factor
of the interface. Kirchhoff’s law then arises as a consequence of the equal-
ity between the vacuum–medium and medium–vacuum transmission factors.
This equality in turn follows from the reciprocity principle as demonstrated
in the theory of electromagnetism. It expresses the fact that the signal deliv-
ered by a detector does not change when source and detector swap positions.
A more detailed discussion can be found in [5].

3.2 Characteristic Length and Time Scales

Several length scales arise in radiative problems: the wavelength, the skin
depth, and the coherence lengths.

Wavelength

An obvious characteristic length is the wavelength. It determines several types
of behaviour. On the one hand, if the relevant distances are smaller than the
wavelength, retardation effects can be neglected. The problem can then be
treated as a problem of electrostatics as far as the spatial variation of the
field is concerned. One should be careful, however, because certain properties
of the medium such as the dielectric constant still depend on the frequency.

The wavelength is also the length scale that determines the range of va-
lidity of geometric optics. When structures become comparable in size with
the wavelength, it becomes difficult to justify using light rays represented by
straight lines.

Finally, let us note the importance of the wavelength in transfer modes
between objects that are smaller than the wavelength. When an object is
smaller than the wavelength, it can be assimilated from the radiative point
of view with a dipole. For concreteness, consider two particles measuring a
few tens of nanometers and placed 100 nm apart. This situation can be en-
countered for example in soot, a substance made up of clusters of carbon
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nanoparticles with sizes of the order of about ten nanometers. Each nano-
metric particle can be described by a random electric dipole due to thermally
induced charge fluctuations. It thus creates a dipole field. At a distance of
around 100 nm, the particle creates a field dominated by the 1/r3 terms of the
dipole radiation. The 1/r terms normally kept in the far field are negligible in
this case! It is clear that the notions of emissivity and absorptance are inap-
propriate here. What we have just described is in fact the counterpart of the
van der Waals forces for energy transfer. One refers to energy transfer, while
the other refers to momentum transfer. Note finally that this type of transfer
which takes place via terms of electrostatic type in the electromagnetic field,
i.e., dipole–dipole coupling, can be described as near-field radiative transfer.
In the context of energy exchange between molecules and their surroundings,
this mode of transfer is often called non-radiative transfer. This term is used
because, in the language of quantum physics, this process does not correspond
to a photon emission and absorption process. However, it is nevertheless a
transfer of energy due to electromagnetic interactions.

Note also that the Fresnel reflection factor is defined for a plane wave [6].
In practice, a real beam can be assimilated with a plane wave if it is highly
directional, which amounts to saying that, at its narrowest point, the beam
radius is much greater than the wavelength. It follows that the concept of
reflection factor is meaningless for length scales shorter than the wavelength.

Skin Depth

When a medium is opaque, the field penetrates to a depth known as the
skin depth. It is denoted by λ/2π�(n), where �(n) is the imaginary part of
the complex refractive index n. The power is thus absorbed at the surface
throughout a layer of this thickness. Likewise, the emitted field is produced
in this layer. One may thus apply the idea of emissivity, provided that the
temperature field is uniform over the skin depth. If this is not the case, the
problem has to be treated as a semi-transparent medium.

Coherence Length

Another idea plays an important part in thermal emission phenomena. This
is the idea of spatial coherence length. When the field is incoherent, we add
together the intensities of the contributions from the different points on the
surface. In the case of a coherent field, the contributions from different points
of the surface can interfere with one another. This leads to a quite different
result. It can be shown that the coherence length is much shorter than the
wavelength when the media do not carry surface waves [5]. Otherwise, waves
propagating across the surface create a highly coherent field at the interface.
This leads to large anomalies in the emissivity and absorptance which can
be exploited to produce a profound modification in the radiative properties
of surfaces.
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Attenuation Constant in a Diffusive Medium

In a diffusive medium, there are two characteristic lengths associated with
the electromagnetic field. The first corresponds to what is called the visibility
in our weather reports. This is the distance characterising the attenuation
of a collimated beam, as given by the Beer–Lambert law. It is called the
extinction length. Extinction is due to absorption and scattering. The second
characteristic length corresponds to the distance beyond which the radiation
becomes isotropic so that the radiative flux tends to zero. This is called the
transport length.

Applying these definitions to the case of a cloud layer, the first distance
is that at which we may still glimpse several rays of sunshine, so that solid
objects still cast a faint shadow. The second definition corresponds to the
thickness at which the cloud layer becomes more or less opaque. This idea
will be further discussed in the Chapter on transport in dilute media by
Carminati in this volume.

Electromagnetic Origins of Thermal Radiation

The radiation from a heat source can be calculated within the framework of
electromagnetic theory. The method consists in applying the usual theory of
antennas. With this approach, we can relate the radiated fields to currents.
For thermal radiation, the currents are due to random motions of charges in
the matter, i.e., electrons in metals and ions in polar crystals. Each volume
element then behaves as a radiating random dipole moment. The problem
of thermal radiation from a surface reduces to that of a dipole behind an
interface. Since the average motion of the charges is zero, the mean radiated
field is zero. However, the mean squared value of the field is not zero. Carrying
out the calculation, one directly obtains the expression for the emissivity as a
function of the refractive index, as will be discussed in detail in the Chapter
by Joulain in this volume (see also [5]).

Flux Between Two Planes as a Function of Their Separation

At very short distances, radiative transfer is dominated by terms of electro-
static type, i.e., the components of the dipole field that decay as 1/r3 with
distance r. When there are surface waves, they are responsible for the main
part of the energy transfer. This contribution may be viewed as a heat flow
due to the tunnel effect. It can also be interpreted as a collision between
phonons in the upper interface and phonons in the lower interface in the case
of polar crystals. For metallic surfaces, one has collisions between surface
plasmons.
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4 Conclusion

To conclude, the main message to be understood from this brief overview
is that what we call nanoheat transfer in a rather convenient abbreviation
refers to heat transfer phenomena in contexts where we go beyond the usually
applied macroscopic laws. The frontier here is neither the micron nor the
nanometer. Rather, it is fixed by the length scales (mean free path) and time
scales (relaxation time) of the relevant physical systems. New phenomena
appear when we consider systems on length and time scales comparable with
or shorter than these intrinsic length and time scales.
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Abstract. This Chapter is an introduction to the kinetic theory of gases. As part
of a book on micro and nanoscale heat transfer, the aims are twofold:

– To introduce the necessary concepts and tools, and in particular, the idea of a
distribution function and the Boltzmann equation, to describe heat transfer in
dilute gases on short length and time scales.

– To introduce general notions in the theory of transport, based on the kinetic
approach, which will prove useful in later Chapters of the book, especially for
describing the transport of electrons and phonons in solids.

The Chapter is organised as follows. We begin by introducing the ideas of distribu-
tion function, average and flux. We then discuss the particular context of thermody-
namic equilibrium and show that, to describe systems that are out of equilibrium,
which provide the conditions for macroscopic transfer, one must be able to calculate
the distribution function in the most general situation. We introduce the underly-
ing formalism of the Boltzmann equation and a highly simplified model based on
the relaxation time. We can then discuss the idea of local thermodynamic equi-
librium (LTE), and also situations that are close enough to LTE to be treated by
perturbation methods. We shall show in particular how to demonstrate the Fourier
law in this regime and obtain an expression for the thermal conductivity of a gas.
We then turn to non-LTE regimes and in particular the ballistic transport regime
which arises when the characteristic size of the system is smaller than the mean
free path (or the observation time is shorter than the average time elapsed between
two collisions). We end with a concrete example in which we compare and comment
upon the orders of magnitude of exchanged fluxes in different regimes (convection,
Fourier-type conduction, ballistic transport).

1 Distribution Function and Flux

1.1 Distribution Function

We shall be concerned here with a monatomic gas (no internal degrees of free-
dom), made up of N identical atoms of mass m contained within a volume V .
The gas is assumed to be dilute, i.e., the average distance d ∼ (V/N)1/3 be-
tween molecules is much greater than the range a of the interaction potential.
It is also assumed to be a classical gas in the sense that the de Broglie wave-
length λ = h/

√
3mkBT � d. Each atom is therefore considered to be a

classical particle with well defined position and velocity.

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 15–35 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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In order to describe the properties of the gas, either in or out of equilib-
rium, we introduce the one-particle distribution function or velocity distrib-
ution function f(r, v, t) defined by

dn(r, v, t) = f(r, v, t) d3r d3v , (1)

where dn is the number of particles at time t with position inside the volume
element d3

r centered on the point r and velocity within the element d3
v of

the velocity space centered on v. The distribution function is the fundamen-
tal quantity in the kinetic theory of transport for gases and solids (see the
Chapter by Greffet on Electrons and Phonons in this volume).

The particle number appearing in (1) should be understood as an average
over a volume element d3

r that is infinitely small on the macroscopic scale
and over a time scale of the order of the time required by the particles to
cross this element. Two comments are in order here:

– The infinitesimal volume element must be large compared with the size
of the molecules. An order of magnitude for the molecular size is pro-
vided by the range a of the interaction potential. This implies that the
distances L over which spatial variations of the distribution function be-
come significant must be larger than a.

– The size of the infinitesimal volume element can be chosen arbitrarily
with respect to the average intermolecular distance d. This choice affects
the meaning attributed to value of the particle number dn in (1). If d3

r is
large compared with d, fluctuations in the number of particles in d3r will
be small and dn will be a macroscopic quantity. Otherwise the volume
d3

r contains on average a small number of particles and the fluctuations
in this number are of the order of its average value (a more detailed
discussion can be found in [1]). In this case the distribution function
fluctuates over a spatial length scale L such that a � L � d and on a
time scale θ such that τ0 � θ � τ , where τ0 is the duration of a collision
and τ is the average time between consecutive collisions. This situation is
encountered in the context of short-scale transport, of the kind we shall
be concerned with here.

1.2 Averages

Let G be a microscopic quantity associated with the gas particles. The macro-
scopic average of G at position r and time t (in the sense defined by the
volume element d3

r) is

〈G(r, t)〉 =
1

n(r, t)

∫
f(r, v, t)G(r, v, t) d3

v , (2)
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where n(r, t) is the number of particles per unit volume at point r and time t,
given by

n(r, t) =
∫

f(r, v, t) d3
v . (3)

For example, the instantaneous local average velocity 〈v〉 (also called the
hydrodynamic velocity) is given by

〈v(r, t)〉 =
1

n(r, t)

∫
f(r, v, t)v d3

v . (4)

This is the velocity used in fluid mechanics. Likewise, the internal energy per
unit volume is given by

〈E(r, t)〉 =
1

n(r, t)

∫
f(r, v, t)

1
2
m(v − 〈v〉)2 d3

v , (5)

where m(v − 〈v〉)2/2 is the kinetic energy of a particle in a reference frame
moving with the fluid.

1.3 Conductive Flux

The distribution function can be used to calculate fluxes associated with the
motion of the carriers, in this case the gas particles. Let G be an arbitrary
microscopic quantity and dS a surface element with unit normal n. The flux
density (or flux per unit area) of the quantity G through the surface element
dS is defined as

φG =
∫

G(r, v, t)f(r, v, t)(v − 〈v〉) · n d3
v . (6)

This corresponds to a diffusive flux, as can be seen from the presence of the
relative velocity v−〈v〉 with respect to the ensemble motion of an elementary
volume of gas.

The conductive flux which is of particular importance in the study of heat
transfer corresponds to the transport of kinetic energy:

φcd =
∫

1
2
m(v − 〈v〉)2f(r, v, t)(v − 〈v〉) · n d3

v . (7)

2 Thermodynamic Equilibrium

2.1 Definition

Thermodynamic equilibrium is a fundamental concept which is often used
intuitively. A formal definition can nevertheless be given [2]:
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If a closed system is in a state for which, in every macroscopic sub-
system and at every moment of time, the macroscopic physical quan-
tities are equal to their average value to very high accuracy, then
the system is said to be in statistical equilibrium (or thermodynamic
equilibrium, or again, thermal equilibrium).

Another definition in the form of a postulate upon which equilibrium statis-
tical physics can be constructed has been given by Callen [3]:

There exist particular states (called equilibrium states) of simple sys-
tems that, macroscopically, are characterized completely by the in-
ternal energy U , the volume V , and the mole numbers N1, N2, . . . , Nr

of the chemical components.

A simple system here would be an uncharged gas, for example. It is important
to note that, at equilibrium, the macroscopic quantities are homogeneous and
static. There is no macroscopic flux in this context.

2.2 Equilibrium Distribution Function

The distribution function at thermodynamic equilibrium at temperature T
can be calculated using standard techniques of equilibrium statistical physics
(see Appendix A). We obtain the Maxwell–Boltzmann distribution

f0 = n

(
m

2πkBT

)3/2

exp
(
− mv2

2kBT

)
, (8)

where n = N/V is the number of particles per unit volume and kB is the
Boltzmann constant. This distribution function is homogeneous and station-
ary and depends only on the speed v = |v| of the particles.

The function f0 is even with respect to the three components of the ve-
locity v. Inserting it into (4) and (6), we thus find that, at equilibrium, the
instantaneous average local velocity is zero and all macroscopic fluxes are
zero. In order to describe transport situations, we must find a way to calcu-
late the distribution function out of equilibrium. To do so, we use a dynamical
equation for the distribution function, first introduced by Boltzmann at the
end of the nineteenth century. This nonlinear equation is extremely difficult
to solve in the general case. We therefore introduce a simplification by con-
sidering situations out of equilibrium but nevertheless close to a state known
as local thermodynamic equilibrium. A perturbative approach can then be
used to linearise the problem. This is the subject of the rest of the Chapter.
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3 Boltzmann Equation

3.1 Dynamical Equation for the Distribution Function

Free Particles

The case of non-interacting particles is an ideal one. It applies to a good
approximation in the case of rarefied media to be discussed later, e.g., in
cases where the characteristic length scale of the system is shorter than the
mean free path.

In this case, it can be shown that (see Appendix B) the distribution
function satisfies

df

dt
(r, v, t) =

∂f

∂t
+ v ·

∂f

∂r
+

F

m
·
∂f

∂v
= 0 , (9)

where F is the external force applied to each particle, e.g., an electrical force
if the gas is made up of charged particles and placed in an external electric
field. The notation ∂/∂r (∂/∂v) denotes the gradient with respect to the
variable r (v).

Collisions and Their Role

Collisions between particles (and collisions with the walls of a container,
where appropriate) have the effect of suddenly changing the state of a given
particle, in a time that is assumed to be infinitely short and over a length scale
that is considered to be infinitely small, in conformity with the assumption of
a dilute medium. In the presence of collisions, we then have, quite generally,

∂f

∂t
+ v ·

∂f

∂r
+

F

m
·
∂f

∂v
=

(
∂f

∂t

)

coll

. (10)

The right-hand side expresses the variation per unit time of the distribution
function f(r, v, t) due to collisions. It can be written formally as

(
∂f

∂t

)

coll

= Γ+ − Γ− ,

where Γ+ expresses the effect of all collisions producing a particle in the state
(r, v, d3

r, d3
v) from some different state, and Γ− expresses the effect of all

collisions which, starting from a particle in the state (r, v, d3
r, d3

v), produce
a particle in some different state.

Boltzmann was the first to give an explicit expression for the collision
term, for the case where only binary collisions (involving just two particles
at a time) were taken into account. This hypothesis is natural in the context
of dilute media, since the probability of three or more bodies colliding at
the same instant is then extremely small. The demonstration is also based
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on the assumption of molecular chaos, the states of colliding particles being
statistically uncorrelated, and the hypothesis of elastic collisions. The proof
itself is rather tedious [4, 5] and it will be sufficient here merely to quote the
result, since it will not be used later:

(
∂f

∂t

)

coll

=
∫

v1

∫

4π

[
f(r, v′

1, t)f(r, v′, t)−f(r, v1, t)f(r, v, t)
]
|v−v1|

dσ

dΩ
d3v1 dΩ .

(11)

In this equation, we consider a binary collision involving just two particles
with velocities v and v1 before the collision and v′ and v′

1 after the col-
lision. The latter two outgoing velocities can be expressed in terms of the
incoming velocities in the case of elastic collisions. The solid angle dΩ con-
tains the direction of the relative velocity v′

1 − v′ after the collision and is
called the scattering solid angle, whilst dσ/ dΩ is the differential scattering
cross-section.

The original Boltzmann equation as formulated by Boltzmann himself at
the end of the nineteenth century is the dynamical equation (10) in which
the right-hand side has been replaced by the expression for the collision term
in (11). By abuse of language, (10) is often referred to as the Boltzmann
equation, whatever model is used to express the right-hand side.

3.2 The Relaxation Time Model

The collision term (11) is rather difficult to handle and the full Boltzmann
equation is nonlinear. In many situations, one can justify a rather rough
approximation for the collision integral based on the following observation.
When the gas evolves freely from a non-equilibrium state, it will tend asymp-
totically to an equilibrium state. It is the collisions that are responsible for
this return to equilibrium. We then have

(
∂f

∂t

)

coll

= −f − f (0)

τ(v)
, (12)

where τ(v) is a relaxation time describing the return to equilibrium within
the volume element under consideration. The function f (0) is an equilibrium
distribution function. It is called the local equilibrium distribution because
it generally depends on the volume element. This idea will be made more
precise in the next section. The relaxation time τ is often identified with the
collision time, i.e., the average time elapsed between consecutive collisions.
It depends a priori on the particle velocities and the interaction potential.
When it cannot be calculated, this parameter is fitted to experimental data
in the final formulas.
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4 Local Thermodynamic Equilibrium.
Perturbation Method

4.1 Dimensionless Boltzmann Equation

The idea underlying any perturbative approach is to seek a solution of an
equation in the form of an expansion in powers of some dimensionless para-
meter that is much smaller than unity. In order to determine such a parameter
in the present case, let us consider the characteristic length and time scales
associated with the distribution function:

– A characteristic length L for the spatial variation determined by the
geometry of the system.

– A characteristic time θ which is the macroscopic time associated with the
dynamical evolution of the system. This quantity has a clear meaning
when the system is not static.

– A characteristic scale U for variations in the speed of a molecule on
the spatial scale L (or over the time θ) under the action of an external
force F . We may write directly U = FL/mv (U = Fθ/m), where F is
the order of magnitude of the force F and v is the order of magnitude
of the particle speed (which may be identified with the root mean square
speed, for example).

Introducing these quantities into the Boltzmann equation in the relaxation
time model, we obtain

τ

θ

∂f

∂t∗
+

vτ

L
v∗ ·

∂f

∂r∗ +
Fτ

mU
F ∗ ·

∂f

∂v∗ = −
[
f − f (0)

]
. (13)

The quantities marked with an asterisk are all dimensionless. The derivatives
are carried out with respect to dimensionless variables and all terms involving
the distribution function f have the same order of magnitude.

4.2 Mean Free Path. Collision Time. Knudsen Number

We now consider a stationary system. Equation (13) becomes

vτ

L

(
v∗ ·

∂f

∂r∗ + F ∗ ·
∂f

∂v∗

)
= −

[
f − f (0)

]
, (14)

where U has been replaced by its expression U = FL/mv. We see that the
variations in f are driven by the dimensionless number Kn = vτ/L, known
as the Knudsen number. It can also be written as

Kn =
l

L
, (15)



22 Rémi Carminati

where l = vτ is the mean free path of the particles in the gas. The Knudsen
number is therefore the ratio of the particle mean free path and the charac-
teristic length scale of the system.

If we now consider a homogeneous but non-stationary system, it is the
second term on the left-hand side of (13) which vanishes and we obtain

τ

θ

(
∂f

∂t∗
+ F ∗ ·

∂f

∂v∗

)
= −

[
f − f (0)

]
, (16)

where U has been replaced this time by its expression U = Fθ/m. The
dimensionless number driving variations in f this time is still the Knudsen
number, but now expressed in the form

Kn =
τ

θ
. (17)

The Knudsen number is thus the ratio of the collision time and the macro-
scopic time scale characterising the dynamical evolution of the system. Note
that, given the equality L = vθ which is always valid up to an order of
magnitude, the two definitions of the Knudsen number are equivalent.

To exemplify this, let us evaluate the order of magnitude of the mean free
path l and the collision time τ for a gas in standard conditions. The mean
free path is given by

l =
1

nσ
, (18)

where n is the density and σ the scattering cross-section. The collision time
is given by

τ =
l

v
, (19)

where v is a typical particle speed, often taken as their average speed. For
a gas at room temperature and atmospheric pressure, we have n ≈ 2.5 ×
1025 m−3. The cross-section is of the order of πa2, where a is the range of the
interaction potential, which gives σ ≈ 10−18 m2. We thus obtain l ≈ 40 nm.
For nitrogen, the average molecular speed is 7 × 104 cm · s−1. The collision
time is then of the order of τ ≈ 10−9 s.

Depending on the value of the Knudsen number, we may specify three
regimes:

– If Kn � 1, the regime is said to be collisional. This is the regime consid-
ered in fluid mechanics and classical heat transfer, where the macroscopic
laws such as the Navier–Stokes equations, the Fourier law, and so on, are
valid. In this regime, the system is close to local thermodynamic equilib-
rium, a notion we shall make more precise shortly.

– If Kn � 1, the regime is described as rarefied. On spatial scales of the
order of the system size, or over times of the order of the observation
time, collisions between molecules play almost no role.
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– If Kn ∼ 1, we are in an intermediate regime for which it is very difficult
to simplify the Boltzmann equation and a solution of the full equation is
unavoidable.

The last two regimes are particularly important in micro and nanoscale heat
transfer.

4.3 Local Thermodynamic Equilibrium

The distribution function f (0) appearing on the right-hand side of (12) is the
one making the collision term equal to zero. To determine it, we seek the
function f which makes the collision integral (11) equal to zero. We obtain
the following expression (see [5] for details of the calculation):

f (0)(r, v, t) = n(r, t)
[

m

2πkBT (r, t)

]3/2

exp

⎧
⎪⎨
⎪⎩
−

m
[
v − 〈v(r, t)〉

]2

2kBT (r, t)

⎫
⎪⎬
⎪⎭

.

(20)

This distribution is formally the same as the full thermodynamic equilibrium
distribution (8), except that it involves the density n(r, t), the temperature
T (r, t), and the average speed 〈v(r, t)〉, which are local and instantaneous
quantities. They are in fact slowly varying functions of r and t, varying on the
macroscopic scale defined by the volume element d3r. The distribution (20)
is called the local thermodynamic equilibrium function (LTE).

At this point we observe that:

– The LTE corresponds to a non-equilibrium situation imposed by external
constraints, but in which each volume element d3

r is at every moment
of time in an equilibrium characterised by the temperature T (r, t) and
the density n(r, t) that are generally different from the values in a neigh-
bouring volume element.

– The LTE distribution f (0) makes the collision term equal to zero, but it
is not a solution of the Boltzmann equation. Indeed, we find that

∂f (0)

∂t
+ v ·

∂f (0)

∂r
+

F

m
·
∂f (0)

∂v
�= 0 .

For systems in the collisional regime (Kn � 1), we may seek a solution
of the Boltzmann equation which represents a small correction with re-
spect to the LTE distribution. To do this, we introduce an expansion of
the solution in powers of Kn. For systems close to LTE such as those
encountered in fluid mechanics or classical heat transfer problems, the
first order correction is generally good enough to calculate the fluxes.
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4.4 Perturbation Method. Linear Response

The perturbation method consists in seeking a solution f of the Boltzmann
equation in the form

f(r, v, t) = f (0)(r, v, t) + f (1)(r, v, t) + f (2)(r, v, t) + · · · , (21)

where f (i) is order i in Kn. Keeping only terms to first order, we have

f(r, v, t) = f (0)(r, v, t) + f (1)(r, v, t) , where

f (1)(r, v, t) � f (0)(r, v, t) . (22)

Substituting this expansion into the Boltzmann equation (12) and keeping
only first order terms in Kn, we obtain

f (1)(r, v, t) = −τ(v)
[
∂f (0)

∂t
+ v ·

∂f (0)

∂r
+

F

m
·
∂f (0)

∂v

]
. (23)

This first order solution can now be used to calculate the diffusion fluxes by
means of (6). We shall illustrate the method by working out the conductive
flux in a gas, which will lead to the Fourier law.

4.5 Fourier Law and Thermal Conductivity

Consider a gas in the stationary regime, with uniform pressure and zero
hydrodynamic velocity, so that the gas is at rest on the macroscopic scale.
Suppose also that there is no external force field.

To simplify the notation, we write f (1) = f (0)η, where η � 1. Then
by (23), we have

η = −τ
1

f (0)
v ·

∂f (0)

∂r
= −τv ·

∂ ln f (0)

∂r
. (24)

Since the function f (0) only depends on r through n(r) and T (r), we have
from (20),

η = −τv ·
(

1
n

∂n

∂r
− 3

2T

∂T

∂r
+

mv2

2kBT 2

∂T

∂r

)
. (25)

The pressure is uniform and in each volume element in LTE we have P =
n(r)kBT (r). This implies that

1
n

∂n

∂r
= − 1

T

∂T

∂r
.

Hence, (25) simplifies to

η = −τ

(
5
2
− mv2

2kBT

)
v ·

1
T

∂T

∂r
. (26)
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Having established an expression for η, we may now calculate the conductive
flux. Its component in direction j is

φj =
∫

1
2
mv2f (0)(1 + η)vj d3

v =
∫

1
2
mv2f (0)ηvj d3

v , (27)

because the contribution to the integral from the term containing just f (0) is
zero, this function having the same form as the perfect equilibrium distribu-
tion function f0 (and the flux is zero in perfect equilibrium). Substituting (26)
in (27), we obtain

φj =
nmτ

2

(
n

2πkBT

)3/2 ∫
v2vj

(
5
2
− mv2

2kBT

)

× exp
(
− mv2

2kBT

)
vi

1
T

∂T

∂xi
d3

v , (28)

where we have used the Einstein summation convention (summing over any
repeated indices). Only the term i = j gives a nonzero contribution. Finally,
we obtain

φj = −5
2

nk2
BTτ

m

∂T

∂xj
. (29)

This expression shows that the conductive flux is proportional to the tem-
perature gradient. We thus retrieve the Fourier law, demonstrated here for a
system close to LTE (collisional regime, Kn � 1). We may also identify the
thermal conductivity

κ =
5
2

nk2
BTτ

m
=

5
2

kBPτ

m
. (30)

Note that, in this expression, there is an implicit temperature dependence in
the collision time τ , depending on the interaction potential. For example, for
a hard sphere potential, we have τ = 1/nπa2v, where v ∝

√
T , which gives

κ ∝
√

T .

5 Example of a Non-LTE System.
Short-Scale Conduction in a Gas

One of the difficulties in modelling micro and nanoheat transfer lies in the
fact that the Knudsen number satisfies Kn ∼ 1, or even Kn � 1. One cannot
therefore apply the above perturbation method. In a system of size L shorter
than the mean free path, e.g., a 10 nm cavity containing a gas in normal
conditions, particles in ballistic flight from one wall to another play a key
role. For these particles, the particle–particle collision term has little effect,
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and the distribution function evolves within the system according to (9). It is
therefore essential to take into account the boundary conditions at the walls,
i.e., collisions with the walls.

It is also interesting to note that Boltzmann wrote as early as 1895 [4]:

At constant temperature, the theory shows that the mean free path
is inversely proportional to the density, and experiment rigorously
confirms this. Peculiar phenomena should thus arise when the size
of the container is comparable with the mean free path [. . . ]. At low
pressures and in rather small containers [. . . ] other properties are
involved, precisely when the distance between unequally heated re-
gions has become a small multiple of the mean free path, superposing
or partially substituting a direct form of transport by bombardment
from one wall to the other on the energy transport by diffusion or
circulation between neighbouring regions.

Before presenting an example of transfer in rarefied media, we shall first
discuss the idea of temperature on short length and time scales.

5.1 Can One Speak of Temperature on Short Scales?

When we wish to speak of micro and nanoscale heat transfer, the question
inevitably arises as to whether one can give meaning to the idea of temper-
ature on short space and time scales. This question can be tackled on the
basis of the discussion given at the end of Sect. 1.1.

The distribution function f can be defined on any length scale that is
large compared with the molecular size a, i.e., the range of the interaction
potential, and on any time scale that is long compared with the duration τ0

of a collision. Once f has been defined, it is always possible to define and
calculate the average value of a quantity using (2). For example, we may
define the average kinetic energy per unit volume (internal energy) of the gas
at a point r and time t by

〈E(r, t)〉 =
∫

f(r, v, t)
1
2
mv2 d3

v , (31)

assuming for simplicity that the hydrodynamic velocity is zero. If the system
has characteristic size L < l, where l is the mean free path, the distribution
function is defined on a volume element d3r whose characteristic size, which
we shall write as (d3

r)1/3, satisfies a � (d3
r)1/3 � L < l. According to

the discussion in Sect. 1.1, the distribution function f then fluctuates over
a length scale that is small compared with the mean free path l, and over a
time scale that is small compared with the collision time τ . The same is then
true of the average kinetic energy 〈E(r, t)〉.

For a dilute gas, we can always give a formal definition of the local,
instantaneous temperature by the relation

〈E(r, t)〉 = 3
2n(r, t)kBT (r, t) . (32)
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Fig. 1. Calculating the conductive flux in the ballistic
regime. The two flat walls are assumed infinite and
their separation d is much smaller than the mean free
path of the gas molecules

The quantity T (r, t) defined in this way is an average quantity in the sense
of (31), but one which fluctuates spatially on a length scale that is small com-
pared with the mean free path l, i.e., on a length scale that is small compared
with 10–100 nm for a gas in standard conditions, and on a time scale that
is small compared with the collision time τ , which is of the order of 10−9 s.
It is then difficult to attribute any real practical interest to this quantity,
although it can always be defined formally in this way.

5.2 Calculating the Conductive Flux in the Ballistic Regime

To illustrate the calculation of the conductive flux in a gas in the rarefied
regime, we consider the arrangement shown in Fig. 1. Two flat walls are sep-
arated by a distince d and held at slightly different temperatures T1 and T2.
The gas is taken to be nitrogen (mass of one molecule 10−26 kg), with density
n = 2.5 × 1025 m−3, which is correct for a gas at equilibrium at atmospheric
pressure and temperature T = 300 K. We assume that T1 = 320 K and
T2 = 300 K, and also that the cavity has nanometric dimensions d = 5 nm.
Under these conditions, the mean free path is l = 40 nm, whence the Knudsen
number is Kn = l/d � 1. We are thus in the rarefied gas regime and energy
transfer from one wall to the other occurs mainly by ballistic flight of the
molecules. In the gas, the distribution function thus evolves according to (9).

The main part of the problem is to establish the boundary conditions on
the walls, which alone determine the value of the distribution function at
every point. One thus makes the following hypotheses:

– Particles moving towards x > 0 had their last collision with the wall
at temperature T1. Assuming that one collision is enough to get the
molecule into equilibrium with the wall,1 these molecules are there-
fore characterised by a distribution function f+ which is an equilib-
rium distribution having the form of (8) for the temperature T1. Hence,
f+ = A exp(−mv2/2kBT1), where A is a constant to be determined (in
particular, because we do not know the density of these molecules).

1 This hypothesis can be improved by introducing an accommodation factor at
the wall. See, for example [6].
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– Likewise, particles moving twoards x < 0 had their last collision with the
wall at temperature T2 and are characterised by an equilibrium distrib-
ution function f− = B exp(−mv2/2kBT2), where B is another constant
to be determined.

The two constants A and B are found by expressing the fact that the total
particle density is n, and also the fact that the particle flux is zero at every
point, i.e., there is no average mass transfer. The calculation is detailed in
Appendix C. We find

A = 2n

√
T2√

T1 +
√

T2

(
m

2πkBT1

)3/2

, B = 2n

√
T1√

T1 +
√

T2

(
m

2πkBT2

)3/2

.

(33)

The conductive flux in direction Ox is thus

φcd =
∫

1
2
mv2f(v)vx d3

v , (34)

where f = f+ if vx > 0 and f = f− if vx < 0. Substituting the expressions
for f+ and f− into (34), we obtain

φcd =
m

2

∫ +∞

0

v5f+ dv

∫ π/2

0

2π sin θ cos θ dθ

+
m

2

∫ +∞

0

v5f− dv

∫ π

π/2

2π sin θ cos θ dθ . (35)

Finally, we obtain

φcd =
n
√

T1T2(2kB)3/2

√
πm(

√
T1 +

√
T2)

(T1 − T2) . (36)

We observe that the flux is independent of the distance between the walls,
provided that the ballistic hypothesis remains valid. Moreover, when T1 ∼
T2 = T , we may define an equivalent exchange coefficient heq in the way
usually done in convection studies. We obtain

heq =
nT (2kB)3/2

2
√

πmT
. (37)

For nitrogen, with the numerical values specified above, we obtain heq ≈
1.3 × 105 W · m−2 · K−1.

5.3 Transitions Between Regimes

To end this discussion, it is interesting to determine some orders of magnitude
of typical dimensions and exchange coefficients characterising the various
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Fig. 2. Geometry of the cavity used to examine tran-
sitions between regimes

transfer regimes in a flat gas film: convective transfer, diffusive conductive
transfer (Fourier law), semi-ballistic transfer, and pure ballistic transfer. To
do this, we shall examine the flux transferred between the two vertical walls of
a long cavity, like the one shown in Fig. 2. We assume that the cavity is filled
with air at atmospheric pressure. The left-hand wall is held at temperature
T1 = 320 K and the right-hand wall at temperature T2 = 300 K.

Convective Regime

For concreteness, let us take the dimensions of the cavity to be H = 1 m and
d = 10 cm. The air contained within the cavity undergoes natural convection.
The Rayleigh number associated with the size d is

Rad =
gβ(T1 − T2)d3

αν
, (38)

where g is the acceleration due to gravity, β is the thermal expansion coef-
ficient (β = 1/T for a perfect gas), α is the thermal diffusivity of air, and ν
is the viscosity, all evaluated at temperature Tm = (T1 + T2)/2. This gives
Rad = 1.75 × 106. The flux transferred through the fluid is then [7]

φcv =
λeq

d
(T1 − T2) . (39)

The apparent conductivity λeq is given in terms of the Rayleigh number and
the aspect ratio A = H/d of the cavity by [7]

λeq

λ
= 0.073Ra

1/3
d A−1/9 , (40)

where λ is the conductivity of the fluid at rest at temperature Tm. We ob-
tain here λeq = 0.2 W · m−1 · K−1. One can introduce a convection transfer
coefficient h = λeq/d, which is equal to 2 W · m−2 ·K−1 in the present case.
This value of h, of the order of a few W · m−2 · K−1, is typical for natural
convection transfer in gases under standard conditions.
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Diffusive Conductive Regime

If we reduce the cavity size so that the dimensions are now H = 1 cm and d =
1 mm (the aspect ratio therefore remaining the same), the Rayleigh number
becomes Rad = 1.75. We are now in the pure conduction regime, i.e., there is
no macroscopic fluid motion and natural convection cannot develop [7]. This
is the regime one finds between the two panes of a double-glazed window
panel. The equivalent transfer coefficient is then h = λ/d = 30 W ·m−2 ·K−1.

The regime considered here is collisional (Kn � 1). Transport is diffusive
and obeys the Fourier law. It is worth asking how big d can be for such a
regime, and for the above expression for h to remain valid. We know that
the Fourier law can be demonstrated for Kn � 1, i.e., provided that d is
large compared with the mean free path l of the molecules in the gas. Since
l = 40 nm for a gas at atmospheric pressure and standard temperatures,
the diffusive regime exists at least up to sizes d ∼ 400 nm. For this size
limit, the coefficient h already assumes a very high value, viz., h = 7.5 ×
104 W · m−2 · K−1.

Semi-Ballistic and Ballistic Regimes

When the system size is further reduced, e.g., for a cavity with H a few mm
and d = 5 nm, we enter a regime where ballistic transport begins to play a
significant role.

When Kn ∼ 1, the transport is semi-ballistic. When the molecules go
from one wall to another, they are involved in at most a small number of
collisions. A precise assessment of the flux transferred requires full solution
of the Boltzmann equation.

When Kn > 1, the transfer becomes largely ballistic and the flux is given
to a good approximation by (36). In particular, it becomes independent of
the distance d and the order of magnitude of the transfer coefficient is h ∼
105 W · m−2 · K−1.

Finally, it is important to note that:

– The mean free path is inversely proportional to the density. Depending on
the density of the gas, the ballistic regime is reached for different values
of the system size.

– Equation (37) shows that the transfer coefficient in the ballistic regime
varies linearly with the gas density. At very short distances, a modifica-
tion in the gas density (whilst remaining within the ballistic regime) can
significantly change the level of flux transferred by conduction.

6 Conclusion

In this Chapter we have introduced the basic formalism of the Boltzmann
equation. We have discussed situations close to LTE, where it is possible to
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carry out perturbative calculations of fluxes and transport coefficients. We
have also examined non-LTE situations such as are frequently encountered in
micro and nanoscale heat transfer. We have gone into some detail concerning
the example of ballistic conduction in a gas and given orders of magnitude
of the equivalent conductivities (or equivalent exchange coefficients) in the
various transport regimes (ballistic, semi-ballistic and diffusive). All these
methods and all these ideas extend to the description of electron and phonon
transport in solids.

A Equilibrium Distribution Function

Consider a monatomic gas consisting of N particles in a volume V , in equilib-
rium with a thermostat at temperature T . The average number of particles
with positions in a volume element d3

r centered on the point r and with
velocities in an element d3

v of the velocity space centered on v is

dN = f0 d3r d3v , (41)

where f0 is the equilibrium distribution function.
The usual approach in equilibrium statistical physics is to express dN

as the product of the number of quantum states (translational states here)
accessible to a particle, written dNacc, and the average number of particles N̄
per state. For a classical gas, the average number of particles is given by the
Maxwell–Boltzmann statistic

N̄ = N
exp(−mv2/2kBT )

ζ
, (42)

where ζ is the one-particle partition function calculated in the classical limit
(of large quantum numbers):

ζ =
∑

states p

exp
(
− Ep

kBT

)
=

∫ +∞

0

exp
(
− p2

2mkBT

)
4πp2V

h3
dp

=
V

h3
(2πmkBT )3/2 , (43)

where h is Planck’s constant. In the classical approximation, the number of
accessible states can be written

dNacc =
d3

rm3 d3
v

h3
. (44)

Hence, finally,

dN = m3 N

V
exp

(
− mv2

2kBT

)
1

(2πmkBT )3/2
d3

r d3
v = f0 d3

r d3
v , (45)
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Fig. 3. Schematic representation of the volume over which we calculate the number
of particles with given velocity v. Due to the velocity component in the x direction,
the particles which occupied the central volume element at time t will occupy the
dotted volume element at time t+dt. The particles which occupy the central volume
element at time t + dt are those which occupied the shaded element at time t

and we may identify

f0 = n

(
m

2πkBT

)3/2

exp
(
− mv2

2kBT

)
, (46)

where n = N/V is the number of particles per unit volume.

B Dynamical Evolution of the Distribution Function
for Free Particles

In this appendix, we shall demonstrate (9). Demonstrations based on other
approaches can be found in [1, 4, 5]. The proof given here is inspired by the
discussion in [8].

For a gas of non-interacting particles, consider those particles with well-
defined velocity lying in the range from v to v + d3

v. Fix a spatial volume
element d3r and consider among these particles all those with positions be-
tween r and r + d3

r. At time t, we denote the number of such particles by
dn(r, v, t). We shall now ascertain how this number varies between times t
and t + dt, keeping only first order contributions.

Consider first the Ox direction. At time t, the dn particles occupy the
parallelepiped defined by (x, x + dx, y, y +dy, z, z + dz) (see Fig. 3). At time
t + dt:

– these same molecules occupy the volume element defined by

(x + vx dt, x + dx + vx dt, y, y + dy, z, z + dz) ,

– the molecules occupying the volume element (x, x+dx, y, y+dy, z, z+dz)
are those which occupied the volume element

(x − vx dt, x + dx − vx dt, y, y + dy, z, z + dz) ,

at time t. The number of such molecules is dn(x − vx dt, y, z, v, t).
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The change in the number of molecules with velocity in the range from v
to v + d3v and with position between r and r + d3r, due to the velocity
component in the x direction, is therefore

dn(x − vx dt, y, z, v, t) − dn(x, y, z, v, t)

=
[
f(x − vx dt, y, z, v, t) − f(x, y, z, v, t)

]
d3

r d3
v

= −vx dt
∂f

∂x
d3

r d3
v .

(47)

This result can be generalised, first by considering all three directions Ox,
Oy, and Oz, and secondly, by observing that in the presence of an external
force field, F dt/m plays the same role for the velocity v as v dt for the
position r. In one case we examine molecules with a given velocity and seek
the variation in their number within a volume element d3r, whilst in the
other case we are concerned with molecules having a given position and we
seek the variation in their number in a volume element d3

v of the velocity
space, under the action of the force F . Finally, we obtain

dn(r, v, t + dt) − dn(r, v, t) =
∂f

∂t
d3

r d3
v dt

= −v ·
∂f

∂r
d3

r d3
v dt − F

m
·
∂f

∂v
d3

r d3
v dt ,

whence we deduce the required result

∂f

∂t
+ v ·

∂f

∂r
+

F

m
·
∂f

∂v
= 0 . (48)

C Calculating the Constants A and B for the Flux
in the Ballistic Regime

To find the constants A and B in (33), we first express the fact that the
particle density is known and equal to n:

n =
∫

f(v) d3
v , (49)

where f = f+ if vx > 0 and f = f− if vx < 0. In spherical coordinates,
we have d3

v = 2π sin θv2 dθ dv, whence

n = A

∫ +∞

0

v2 exp
(
− mv2

2kBT1

)
dv

∫ π/2

0

2π sin θ dθ

+ B

∫ +∞

0

v2 exp
(
− mv2

2kBT2

)
dv

∫ π

π/2

2π sin θ dθ , (50)
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which eventually yields

n =
A

2

(
2πkBT1

m

)3/2

+
B

2

(
2πkBT2

m

)3/2

. (51)

To obtain a second equation relating A and B, we express the fact that the
particle flux in the direction Ox is zero at every point (no macroscopic matter
transfer):

qm =
∫

f(v)vx d3
v = 0 , (52)

where f = f+ if vx > 0 and f = f− if vx < 0. We thus obtain

0 = A

∫ +∞

0

v3 exp
(
− mv2

2kBT1

)
dv

∫ π/2

0

2π sin θ cos θ dθ

+ B

∫ +∞

0

v3 exp
(
− mv2

2kBT2

)
dv

∫ π

π/2

2π sin θ cos θ dθ , (53)

which yields finally,

AT 2
1 = BT 2

2 . (54)

The two equations (51) and (54) completely determine A and B, leading to
the expressions in (33).
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92295 Châtenay-Malabry Cedex
greffet@em2c.ecp.fr

Abstract. The aim of this Chapter is not to produce a complete course on electrons
and phonons, but rather to give a concise outline of a certain number of their basic
properties in order to be able to describe transport phenomena in crystalline solids.
Indeed, transport phenomena will provide the guiding motivation.

Transport phenomena in dilute media were discussed with the help of the Boltz-
mann equation in the Chapter on Transport in Dilute Media by Carminati in this
volume, in the context of the kinetic approach. The idea is to establish an expression
for the particle flux through a given area. We then deduce the flux of any quantity
transported by each particle. The Boltzmann equation is used to determine the
velocity distribution of the particles. It can be solved fairly straightforwardly if the
system is close to equilibrium. We thus introduce the idea of local thermodynamic
equilibrium (LTE). As we have seen, this notion can only be defined for length
and time scales greater than the mean free path and the average time between
consecutive collisions, respectively.

In this Chapter, we explain how to transpose this kinetic approach1 to the case
of electrons and phonons. The first step is to define the fluxes. The second is to
obtain the counterpart of the velocity distribution function. A difficulty arises be-
cause we can no longer apply classical mechanics. The system is described using
the wave functions of quantum mechanics. We must first revise the notion of flux
using the language of waves. It is no longer useful to introduce the particle aspect
when expressing the fluxes in this context. The next step is to find the counterpart
of the velocity distribution function. The velocity is not an observable for an elec-
tron in a crystal. What plays the role of the velocity distribution function is the
average occupation number of a state. At equilibrium, this is given by the Fermi–
Dirac distribution. We are still in the framework of the wave description, since the
stationary states are described by wave functions. However, it is the Boltzmann
equation which provides a way of determining the correction required to take into
account an imbalance due to the application of a temperature or potential gradient.
This is done by returning to a particle view of electrons or phonons. The problem
will thus be to see how to revert to a so-called semi-classical approach in terms of
particles in order to describe these objects.

1 The word ‘kinetic’ expresses the fact that transport is described by studying the
motion of the particles that transport the relevant quantity, e.g., energy, charge,
momentum, etc.

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 37–54 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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1 Electrons

1.1 Free Electrons

Introduction

The model of the free electron can be used to describe electrons in the con-
duction band. It amounts to replacing the interactions between an electron
and all other electrons and nuclei in the solid by a uniform potential that
can be chosen equal to zero. It is thus assumed that the electrons are non-
interacting. The state of the system is described by a wave function satisfying
the Schrödinger equation

−
N∑

i=1

�
2

2m
∆Φ(r1, r2, . . . , rN ) = EΦ(r1, r2, . . . , rN ) . (1)

Rather than studying the N -electron system, we shall limit the discussion
here to the one-electron wave function. This simplification is possible because
the wave function for an N -electron system can be written as a product of N
elementary wave functions:

Φ(r1, r2, . . . , rN ) = Ψ(r1)Ψ(r2) . . . Ψ(rN ) , (2)

where Ψ(r) is the solution of the time-independent one-electron Schrödinger
equation

− �
2

2m
∆Ψ = EΨ . (3)

As electrons are fermions, the wave function must change sign when two
electrons are permuted. This is the antisymmetrisation principle. The linear
combination of the one-electron wave functions with this property is called the
Slater determinant. For most of the applications we shall be concerned with,
it will not be essential to use the Slater determinant. Note in particular that,
when we use Fermi–Dirac statistics, we always work with states describing a
single particle. Note also that, in order to define the state of an electron, one
must also specify its spin state. We omit the spin index in the following for
notational simplicity.

Energy Spectrum and Wave Function

The energy spectrum of free electrons is obtained by seeking the solution
of the time-independent Schrödinger equation. The solution has the form
exp(ik · r)/

√
V , where the denominator is a normalisation factor ensuring

that the probability of finding the electron somewhere in the volume V of
the crystal is unity. Note that each of these stationary states or eigenstates
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gives a constant probability density equal to 1/V . An electron described by
a stationary state is thus delocalised. The energy of the electron is given by

E =
�

2k2

2m
. (4)

The dispersion relation between the energy and the wave vector is thus rep-
resented by a parabola.

It should be emphasised that the boundary conditions have not been
explicitly taken into account in the above. The discussion here is therefore
only valid for an infinitely extended system. In practice, the energy levels of a
given finite system will be modified. This is the same as the well known effect
in acoustics. In empty space, we have a dispersion relation of type Ω = vK,
where v is the speed of sound. In a closed container, a number of discrete
modes arise, and the smaller the container, the higher the natural frequencies
will become. In the same way, electronic states are discretised when the finite
size of the crystal is taken into account.

Density of States

To derive the energy or the conductivity of a solid, we must consider the
contribution of each electron and sum over all electrons. To do this, we have
to know the number of states dn(E) with energy in the range from E to
E + dE. We introduce the density of states g(E) with the relation

dn(E) = g(E) dE .

In order to count the states, we seek all possible solutions of the problem.
The exponential solution that we introduced above is the general solution
of the problem. Boundary conditions must be taken into account. In the
case of a box-shaped crystal with sides L1, L2, and L3, we require the wave
function to be zero on the walls of the box. This leads to stationary waves of
type sin(kxx) sin(kyy) sin(kzz), with the condition E = �

2k2/2m. Solving the
problem in this way, we can then count the states. However, this gives sta-
tionary states. To study transport phenomena, it is useful to work with plane
waves. Indeed, the flux associated with plane waves is nonzero, whereas the
particle flux associated with a stationary wave is zero. The difficulty here is
that we cannot find a solution of this type which satisfies the boundary condi-
tions. To get round this problem, one usually works with periodic boundary
conditions (Born–von Karman boundary conditions). We require the wave
function at x = 0 to equal the wave function at x = L1, the other end of
the crystal. This maneuver allows one to introduce the finite size of the crys-
tal whilst continuing to work with propagative solutions. This then requires
exp(ikxL1) = 1, whence kx = 2πp/L1, where p is an integer. The possible
values of the wave vector belong to a discrete set. For a one-dimensional
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problem, we thus have a number dN(kx) of states with wave vector in the
range from kx to kx + dkx given by

dN(kx) = 2
dkx

2π/L1
, (5)

where the extra factor of 2 arises due to spin degeneracy. In two dimensions,
we have

dN(kx, ky) = 2L1L2
dkx dky

(2π)2
, (6)

and in three dimensions,

dN(k) = 2L1L2L3
d3

k

(2π)3
. (7)

Note that the number of states per unit volume is therefore

dn(k) =
dN(k)

V
=

1
4π3

d3
k . (8)

The density of states is thus uniform in the reciprocal space.
It should be noted that the interval between two consecutive states de-

pends sensitively on the system size. As the size of the system decreases,
the density of states falls quickly, or put another way, the separation between
consecutive states increases. For example, it is now possible to fabricate semi-
conducting systems with sizes of a few tens of nanometers, where electrons
are confined in one, two or three dimensions. The energy levels depend sen-
sitively on the size in such systems.

We can now find an expression for the density of states g(E). In the recip-
rocal space, consider the surface defined by E(k) = E0. Let S(E) be its area.
A neighbouring surface corresponding to the energy E0 + dE0 is separated
by a distance dk in the reciprocal space such that dE0 = |∇kE(k)| dk. The
volume S(E) dk of the reciprocal space contains a number of states per unit
volume equal to dn = S(E) dk/4π3. We can now deduce that the density of
states is given by

dn(E) = g(E) dE =
S(E)
4π3

dE

|∇kE(k)| . (9)

Localised Electrons

Although the stationary states are delocalised, it is also possible to describe
a localised electron. To do so, we must construct a wave packet. The velocity
associated with such a wave packet is the velocity of the envelope of the wave
packet, known as the group velocity. It can be shown [1–3] to be equal to

1
�
∇kE(k) .
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1.2 Electrons in a Periodic Potential

It can be shown that any solution of the Schrödinger equation with a periodic
potential has the form of a Bloch wave [1–3]:

Ψk(r) = uk(r) exp(ik · r) , (10)

where uk(r) is a periodic function with period R equal to a vector in the
Bravais lattice of the crystal, and k belongs to the first Brillouin zone. The
Bloch wave is normalized over a cell of the Bravais lattice.

When a periodic potential is taken into account, gaps are introduced into
the energy spectrum. The last partially occupied band is called the conduc-
tion band. The band immediately below it is called the valence band. This
has many important consequences for transport phenomena. The distortion
of the dispersion relation near the edges of the Brillouin zone leads to two
effects:

– the density of states g(E) has a peak, the so-called van Hove singularity,
– the group velocity is zero at the edge of the Brillouin zone.

These two effects balance one another in the context of transport phenomena.
Indeed, we have seen that the density of states goes as 1/|∇kE|, whereas the
group velocity goes as |∇kE|. We shall see later on that it is indeed this
velocity that comes into expressions for fluxes.

1.3 Electrical Conduction

Particle Current Density

In this section, we shall establish the form of the electrical current density.
We begin by recalling the expression for the particle current density J , given
by

J =
�

m
� (Ψ∗∇Ψ) , (11)

for a wave function Ψ . This result is deduced from the fact that the electron
probability density is given by the squared modulus of the wave function.
Since the particle number is conserved, there has to be a probability current
density such that the continuity equation

∂|Ψ |2
∂t

+ div J = 0 (12)

is valid. This equation is easy to derive using the Schrödinger equation to
calculate ∂|Ψ |2/∂t.
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Note that the expectation value of the particle current in a Bloch state is
equal to the expectation value of the velocity operator. Indeed, the expecta-
tion value of the current operator in a Bloch state Ψk(r) is

Jk =
�

m
�

[∫
d3rΨ∗

k(r)∇Ψk(r)
]

, (13)

where the integral is taken over a Bravais cell. This result can be related to
the expectation value of the velocity operator in this same state:

〈v〉k =
〈

P

m

〉

k

=
�

im
〈∇〉k

=
�

im

∫
d3

rΨ∗
k(r)∇Ψk(r) . (14)

Electric Current Density

To obtain the contribution to the electric current density from a stationary
state Ψk, we simply multiply the particle current density by the electron
charge:

jq
k = −eJk = −e〈v〉k . (15)

To calculate the current density, we must now sum over all states. To do this,
we use the density of states in the reciprocal space and integrate over the
first Brillouin zone to give

jq =
∫

d3
k

4π3
n0(k)(−e)〈v〉k , (16)

where d3
k/4π3 is the density of states per unit volume and n0(k) is the

average occupation number of each state given by equilibrium Fermi–Dirac
statistics:

n0(k) =
1

exp E(k)−µ
kT + 1

. (17)

When all the states are occupied, we see that they can be associated in pairs
with opposite velocities. This shows that a filled band does not conduct a
current. In the same manner, at equilibrium, the states characterised by k
and −k balance one another in a partly filled band. We must therefore cal-
culate the perturbation of n(k) out of equilibrium. We shall investigate two
scenarios: the collisional regime described by Ohm’s law and the ballistic
regime.
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1.4 Semi-Classical Approach

In order to calculate the average occupation number of the quantum states
when the system is perturbed from equilibrium, e.g., by an electric field, we
shall use the Boltzmann equation (10) in the Chapter on Transport in Dilute
Media by Carminati in this volume. One of the key features of this approach
is that one refers to particles localised in space, so that the argument does
not strictly apply to electrons described by stationary states. Of course, the
Bloch states are delocalised throughout the crystal. We shall show that the
particle behaviour of an electron can be retrieved from a quantum description
of the states. Having done so, we will be able to use the Boltzmann equation
to calculate the electrical conductivity. The aim of the following discussion
will be to summarise the main results from the semi-classical description of
electrons. We shall then ask to what extent an electron can be represented
by a point particle of mass m with motion described by classical mechanics.
There are two issues here: the validity of a description in which a particle has a
well defined position, and the validity of the equations of classical mechanics.

Spatial Extent of an Electron

The first point to consider concerns the localisation of an electron. We have
seen that the idea of a wave packet can be used to move from a wave descrip-
tion in which the electron is delocalised to a situation in which the electron
is localised in space. However, if we wish the energy and momentum of the
electron to be well defined, the width of the wave packet in the reciprocal
space must be small compared with the size of the first Brillouin zone. This
amounts to saying that the width ∆kx of the wave packet must be very
small compared with 2π/a, where a is the lattice parameter of the crystal.
Moreover, a wave packet of width ∆kx in the reciprocal space has a width
∆x ≥ 2π/∆kx in the direct space. This follows from the properties of the
Fourier transform. Finally, we see that the spatial extent ∆x of the wave
packet must be much greater than the size of a unit cell in the crystal lat-
tice. We can only therefore treat the electron as a point particle in systems
for which all characteristic length scales are much greater than the lattice
parameter.

Electron Dynamics

The second point concerns the validity of the classical equations of motion.
To answer this question, one must use the Ehrenfest theorem [3]:

d〈R〉
dt

=
〈P 〉
m

,
d〈P 〉
dt

= −〈∇V 〉 , (18)

where 〈R〉 and 〈P 〉 are the expectation values of the position and momen-
tum operators when the electron is in a specified stationary state. These
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equations have precisely the same structure as the classical equations of mo-
tion. However, there is one significant difference: they refer to the average
value of the potential gradient. One needs the potential gradient evaluated
at 〈R〉 to retrieve the classical equation. If the extent of the wave packet is
very small compared with the length scale over which the potential varies,
the classical approximation will be justified. This is generally the case for the
type of electrical potential one might apply to a solid, which would vary over
length scales of a few microns to a few meters. In contrast, the spatial extent
of the wave packet is much greater than the lattice parameter, and this is the
length scale associated with the periodic potential due to the crystal lattice.
There are therefore internal forces which cannot be taken into account in the
context of the classical approximation. We shall see that these forces can be
accounted for by introducing the idea of an effective mass.

We shall now give the main results justifying a classical treatment of
electron motion. To begin with, it can be shown that the expectation value
〈v〉k of the velocity operator in a Bloch state:

〈v〉k =
1
�
∇kE(k) = ∇kω(k) . (19)

In other words, the expectation value of the velocity in a Bloch state happens
to equal the group velocity. Ehrenfest’s theorem shows that it is this value
that corresponds to the notion of velocity in classical mechanics, i.e., the ratio
of momentum to mass.

A second key result is the link between the central value of a wave packet
describing an electron and the force applied to this electron. Let k0 be the
central position of the wave packet in the reciprocal space. This value is
time dependent because the forces applied to the electron modify its energy.
Over a time dt, a force F supplies energy dE = F · v dt to the electron.
The electron thus acquires an energy dE = ∇kE(k) · dk0. Noting that the
electron velocity is given by ∇kE(k)/�, we obtain

�
dk0

dt
= F . (20)

Finally, we introduce an effective mass in order to write down an equation
relating the time derivative of the velocity to the external forces applied to
the particle. To do so, we calculate the time derivative of the average velocity
of the wave packet:

dvi

dt
=

1
�

d(∇iE)k0(t)

dt
. (21)

In this expression, only the central position k0(t) of the wave packet is time
dependent. Hence,

dvi

dt
=

1
�

∂2E

∂ki∂kj

dk0j

dt
=

(
1
m

)

ij

Fj , (22)
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where we have introduced the effective mass tensor defined by
(

1
m

)

ij

=
1
�2

∂2E

∂ki∂kj
. (23)

This relation can be used to relate the velocity to the external forces in a
way that maintains the structure of Newton’s equation. The forces due to the
periodic potential in the crystal are accounted for by including the effective
mass term. As can be seen, this effective mass is completely determined once
we know the dispersion relation. Note in particular that the effective mass,
which is the reciprocal of the radius of curvature of the dispersion relation,
can be negative. This means that a force oriented in the positive x direction
can produce motion in the negative x direction, for example. This can be un-
derstood when we remember that the electrons are described by a wave. At
the edge of the Brillouin zone, the wave associated with the electron under-
goes Bragg reflection, which corresponds to motion in the opposite direction.
Although we have arrived at a classical type of formulation, we stress that
wave effects have been taken into account in an effective manner by intro-
ducing this effective mass, which itself depends on the dispersion relation of
the electron waves.

1.5 Electrical Conductivity in the Collisional Regime

In the collisional regime, the distribution is close to the equilibrium distrib-
ution given by the Fermi–Dirac expression. We seek a correction describing
the perturbation introduced by the presence of an electric field. We follow
the same procedure as we did for conduction in dilute media. We use the
Boltzmann equation, which governs the evolution of the average occupation
number of each state:

∂n(r, k, t)
∂t

+
∂r

∂t
· ∇n(r, k, t) +

∂k

∂t
· ∇kn(r, k, t) =

(
∂n

∂t

)

coll

. (24)

We observe a certain number of differences. To begin with, the appropriate
variables here are no longer the position and the velocity but the position
and the wave vector. Furthermore, the Maxwell–Boltzmann velocity distrib-
ution function is replaced by a Fermi–Dirac distribution. We should stress an
important point at this stage. The Boltzmann equation was established using
the equations of classical mechanics. It follows directly from the Liouville the-
orem. In order to use it here, we must therefore consider the quasi-classical
approximation:

∂n(r, k, t)
∂t

+ 〈v〉k · ∇n(r, k, t) +
dk0

dt
· ∇kn(r, k, t) =

(
∂n

∂t

)

coll

, (25)

where r stands for the mean position of a wave packet, ∂r/∂t is given by the
mean value of the velocity operator which is given by the group velocity, and
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∂k/∂t is dk0/ dt = F /�. It is difficult to determine an explicit form for the
collision term. Within the framework of the relaxation time approximation,
we obtain

n(r, k, t) = n0(r, k, t) − τ

�
F · ∇kn0(r, k, t) . (26)

Note that the force is related to the electric field by F = −eE. Substituting
this expression for n into the equation giving the flux, we obtain

jq =
∫

e2〈v〉k
1

4π3

τ

�
E · ∇kn0(r, k, t) d3

k . (27)

Noting that

∇kn0(r, k, t) =
∂n0(r, E, t)

∂E
∇kE =

∂n0(r, E, t)
∂E

�〈v〉k , (28)

we eventually obtain

jq
i = e2

∫
τ(k)vivjEj

(
−∂n0

∂E

)
d3

k

4π3
. (29)

It is important to note the derivative of the Fermi–Dirac distribution in this
integral. This function is sharply peaked around the chemical potential and
has a rather small width of the order of a few kT . This reflects the fact
that only electrons with energy close to the Fermi level actually contribute
to conduction. It is clear that, if the Fermi level falls within a band gap, the
material will be a poor conductor, i.e., a good insulator.

1.6 Electrical Conduction in the Ballistic Regime

We shall now consider a specific geometry. A cylindrical wire of length less
than the mean free path connects two electron reservoirs. The electrons can
therefore pass through the wire without undergoing collisions. In this regime,
called the ballistic regime, the wavelike behaviour of the electrons plays a
fundamental role. To write down an expression for the flux, we go back to
the form established above in the wave approach. It is important to remem-
ber that the sum over the states is no longer a sum over plane waves, but a
sum over the electronic states in a cylindrical wire, i.e., in a wave guide. As
the radius of the wire is reduced, the number of modes also decreases. This
means that the electric current will decrease too. The conductance becomes
quantised in proportion to the number of modes. Each reservoir is described
by a different chemical potential which takes into account the electric po-
tential. We cannot use the relaxation time approximation. However, we may
describe the electrons coming from the positive or negative x directions by
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Fermi–Dirac distributions with chemical potentials µ+ and µ−, respectively.
We then have

jq =
∫

−e〈v〉k
1

4π3

[
n+(k) − n−(−k)

]
d3

k , (30)

where the integral is carried out over half a Brillouin zone with kx > 0. This
form is analogous to the expression for the flux of molecules in the rarefied gas
regime derived in the Chapter on Transport in Dilute Media by Carminati
in this volume.

Carrying out the calculation for a wire of cross-sectional area πa2 con-
necting two metals with Fermi energy EF, across which we apply a potential
difference U , we find that the current can be written [4]

I = GU =
2e2

h

k2
Fa2

4
, (31)

where 2e2/h is called the conductance quantum. The number multiplying
it is the number of modes that can propagate in the wire. The product of
the two numbers is called the Sharvin conductance. In the above calculation,
it is assumed that the metal can be described by a free electron gas. It is
also assumed that the radius a is big enough to avoid confinement effects.
Summing over all states amounts to summing over all solid angles. This
calculation is therefore very close to the calculation for ballistic transfer in
gases.

2 Phonons

In this section, we shall discuss how to calculate the thermal energy flux due
to the motion of atoms in a crystal.

2.1 Vibrational Modes in a Lattice

We begin by recalling the main ideas required to discuss heat conduction
phenomena in crystals.

Vibrational Modes. 1D Case

The system considered here is a linear chain of N atoms. The interatomic
distance is a. The position of the nth atom is xn(t) = na + un(t). We only
consider motion parallel to the Ox axis (longitudinal motion). It is assumed
that each atom only interacts with its nearest neighbours so that the energy
can be written in the form

E = T + V =
N∑

n=1

1
2
mu̇2

n +
1
2

N∑
n,m=1

Φ(xn − xm) . (32)
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Moreover, when the amplitude of the motions is small enough, a truncated
expansion of the interaction potential can be used, so that the energy becomes

E =
N∑

n=1

1
2
mu̇2

n +
1
2

N∑
n=1

K(un − un+1)2 , (33)

where K is the second derivative of the potential. This yields a set of coupled
dynamical equations for each atom, viz.,

mün = −K(2un − un−1 − un+1) . (34)

Description of Modes. Dispersion Relation

The system can be decoupled by seeking solutions of type

un(t) = u exp(ikna − iωt) .

Substituting this into the equation of motion, we obtain the dispersion rela-
tion

ω(k) = 2ω0 sin
ka

2
, (35)

where ω2
0 = K/m. This type of solution must satisfy a boundary condition

when the chain has finite length. Applying the periodic boundary condition,
i.e., un = un+N , as before, we obtain exp(ikNa) = 1, implying that k must
assume one of the discrete values k = 2πp/Na. We can now represent the
displacement of each atom by adding the possible contributions of each of
these solutions in the form

un(t) =
1√
N

N∑
p=1

Xp exp
[
ikpna − iω(kp)t

]
. (36)

We recognise here the same structure as a discrete Fourier transform. Invert-
ing, this yields

Xp exp
[
−iω(kp)t

]
=

1√
N

N∑
n=1

un(t) exp(−ikpna) . (37)

The last two equations show that the displacements of the atoms can be
represented by normal variables Xp. Each normal variable is a normal mode
of vibration of the chain, characterised by a wave vector kp = 2πp/Na and a
normal frequency ωp = ω(kp). In the same way, we can introduce a normal
variable for the momentum, viz.,

Pp =
1√
N

N∑
n=1

mu̇n(t) exp(−ikpna) . (38)
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2.2 Phonon Energy

Quantising the Energy

Replacing un(t) and u̇n(t) by their expressions in terms of normal variables in
the expression for the energy of the system, it can be shown2 that the energy
is the sum of the energies associated with each normal mode of frequency ωp:

E =
1
2

N∑
p=1

(
1
m

PpP
∗
p + mω2

pXpX
∗
p

)
. (39)

We see that the energy of the system is the sum of the energy of each mode.
Moreover, the structure of the energy of each mode is precisely that of a
harmonic oscillator of natural frequency ωp. Classically, the sum of the ki-
netic energy and the potential energy of a harmonic oscillator with complex
amplitude Xp and angular frequency ωp is

Ep = 1
2mω2

p|Xp|2 . (40)

We can now use the canonical quantisation procedure to show that the en-
ergy associated with each mode is quantised. We know that the position and
momentum variables must be replaced by operators. The result is a discrete
energy spectrum of the form Ep = (m + 1/2)�ωp. The vibration amplitude
and the quantum number m can be related by equating the two expressions
for the energy.

A phonon is a normal mode of vibration of the atomic chain, characterised
by frequency ωp and wave vector kp = 2πp/Na and with energy of the form
(m + 1/2)�ωp. It is clear that the particle aspect only refers to the energy.
The phonon is a delocalised vibrational mode. In the following, we shall
introduce the idea of the density of states and group velocity associated with
the phonon.

Average Energy of a Mode

It is easy to calculate the average energy of a mode by applying the standard
results of statistical physics. We consider the situation in which the crystal is
in equilibrium with a heat bath at temperature T . We then apply the standard
procedure of statistical physics to find the heat energy of the crystal. The
starting point is the observation that we must use the canonical ensemble.
The second important point is to give a careful definition of the state of the
system. It is defined as soon as the state of each mode is known, i.e., as
soon as the quantum numbers m associated with each mode are known. The

2 Simply insert (36) into (33) and use the identity
∑N

i=1
exp(ikpna) = Nδp,0.
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calculation shows that the energy of the crystal can be expressed in the form

E =
N∑

p=1

(
m̄p +

1
2

)
�ωp , (41)

where

m̄p =
1

exp
�ωp

kT
− 1

. (42)

2.3 Density of States. Optical and Acoustic Modes

The density of states in the reciprocal space is easily calculated. The wave
vectors of the modes have the form 2πp/L so that the number of modes in
an interval ∆k is L∆k/2π. This is easily generalised to three dimensions.

In the case of a 3D crystal, one must also take into account the fact
that the atoms can move, not only parallel to the wave vector (longitudinal
mode), but also perpendicular to the wave vector (transverse mode). There
is therefore one longitudinal mode and two transverse modes for each wave
vector.

Finally, we must also consider the case of crystals that are not monatomic.
When a crystal contains several atoms per unit cell, we can consider the centre
of mass of the unit cell in the way we have just described. Then we also find
three modes for each wave vector. These modes are called acoustic modes. To
these vibrational modes of the centre of mass, one must add the vibrational
modes associated with the relative motions of the atoms within the unit cells,
referred to as optical modes. Thus, when a unit cell contains two atoms, there
are three optical modes. Since the acoustic modes correspond to the motion
of the centre of mass of the unit cell, the phase of all the atoms within a
unit cell is the same. In contrast, for an optical mode, the atoms are out of
phase. For example, consider a crystal of NaCl. In the transverse acoustic
mode, the Na+ and Cl – ions move perpendicularly to the wave vector and
in the same direction. In contrast, in the transverse optical mode, the ions
move perpendicularly to the wave vector and in opposite directions. In the
first case, the relative distance between the ions is constant, whilst in the
second, the optical mode, it oscillates. When the optical mode is excited, a
dipole moment appears in the unit cell, which thus becomes an oscillating
electric dipole. This explains why it is called an optical mode.

It should be stressed here that the existence of discrete normal modes
of vibration with discrete frequencies is a purely classical feature. What is
quantum mechanical here is that the energy can only assume a discrete set
of values. From a classical point of view, one could say that the amplitude of
vibration cannot vary continuously.



Electrons and Phonons 51

2.4 Calculating the Heat Flux

The heat flux can be calculated in the following way. The energy flux along
the monatomic chain is given by the work done by the atom at xn−1 on the
atom at xn. The power due to these forces is simply

P = F · v = −K(un − un−1)u̇n . (43)

If the motion is due to a single mode, then

un(t) =
1√
N

Xp exp(ikpna − iωpt) . (44)

We can then calculate the time average of the power due to forces exerted by
atom n − 1 on atom n, viz.,

P =
1
2
�(Fu∗

n) =
1
2

K|Xp|2ωp

N
�

[
−i(1 − e−ika)

]

=
K|Xp|2ωp sin(ka)

2N
. (45)

Observing that

sin(ka) = 2 sin
ka

2
cos

ka

2
,

K = mω2
0 ,

vp =
∂ω

∂k
= aω0 cos

ka

2
,

ωp = ω0 sin
kpa

2
,

we may rewrite the result in the form

P =
Epvp

L
, (46)

where vp is the group velocity associated with mode p and Ep is the energy
of mode p. The energy flux can be set in the usual form of a product of an
energy per unit length and the velocity of the energy flow. It follows from the
above calculation that the energy flow velocity is the group velocity ∇kω.

In the general case, we must sum the contributions from all modes (all
polarisations and all wave vectors). To do this, we must know the average
occupation numbers of the various modes. At equilibrium, the modes prop-
agating from left to right and those propagating from right to left have the
same amplitude, so the resulting flux is zero. In any case, the general form
of the flux is

J =
∑

s

∫

BZ

d3
k

8π3

(
nk,s +

1
2

)
�ωk,s∇kωs , (47)

where the index s specifies the mode (optical or acoustic, longitudinal or
transverse).
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2.5 Calculating the Thermal Conductivity

Introduction

In order to use the formula established above for the heat flux, we need to
be able to determine the average occupation number of the states that are
not symmetric and which take into account the perturbation due to a tem-
perature gradient. The dynamical equation for the average occupation num-
ber of the vibrational states is the Boltzmann equation. Using this equation
amounts to assuming that we can define a local temperature with which we
can associate a local population of phonons. At first glance, this contradicts
the idea that the phonons are modes extending over the whole crystal. In
reality, the modes do not actually extend over the whole crystal, and this for
two reasons. Firstly, there are defects in the crystal, e.g., interstitial atoms,
dislocations, substitution impurities, etc., and these all tend to scatter the
waves. Secondly, the potential is not strictly harmonic. Anharmonic devia-
tions can be treated as scattering mechanisms for the phonons. The result of
these various phenomena is that a phonon will decay as it propagates, over
a characteristic distance called the mean free path which is typically of the
order of 10 nm. The theory discussed above which neglects these effects must
be considered as a theory that is only valid on length scales shorter than the
mean free path.

We may now ask how energy is transferred on length scales that are
greater than the mean free path. This brings us back to the idea of local
thermodynamic equilibrium. We consider that a region with dimensions ex-
tending over a multiple of the mean free path can be characterised by a
temperature. The modes are in equilibrium within this region because of col-
lisions. We can then define the average occupation number of the modes using
the Bose–Einstein distribution with a locally defined temperature.

Calculating the Average Occupation Number out of Equilibrium

Due to the temperature gradient, the average number of particles in a given
state is perturbed. We thus seek a solution close to equilibrium. We use
the Boltzmann equation in the relaxation time approximation to obtain this
correction. In the stationary regime this leads to

v · ∇rn = −n − n0

τ
, (48)

where the velocity is the group velocity. Seeking a solution of the form n =
n0 + n0φ, we find to first order,

n0φ = −τ
∂n0

∂T
v · ∇rT . (49)
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The flux is obtained by substituting this expression into the integral form of
the flux, which yields

J = −λ∇rT , (50)

where the conductivity λ is given by

λ =
∫

d3k

8π3
τv2 ∂n0

∂T
�ω . (51)

Observing that the contribution of a mode k to the specific heat capacity is

cv(k) =
∂n0

∂T
�ω(k) ,

and using Λ(k) to denote the mean free path of the mode, we may rewrite
the conductivity in the form

λ =
∫

d3
k

8π3
Λ(k)v(k)cv(k) . (52)
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Abstract. The aim of this Chapter is to introduce concepts and methods for mod-
elling radiative transfer on short length scales. Electromagnetic radiation propagat-
ing in an arbitrary medium is characterised by various length scales: wavelength,
coherence length, mean free path (of scattering, transport, or absorption), and skin
depth. In order to cover several areas of interest for micro and nanoheat transfer,
the discussion is divided into two parts.

In the first part (Sects. 1–3), we consider the propagation of radiation in scat-
tering and absorbing media. The basic tool is the equation of radiative transfer.
We shall consider in particular the case of systems with characteristic sizes of the
order of the mean free path l (or in which the evolution time is of the order of
l/c, where c is the energy propagation speed), but which remain large compared
with the wavelength and the coherence length. We describe the various transport
regimes (ballistic, multiple scattering and diffusive) and stress the analogy between
this situation and the problem of heat conduction.

In the second part (Sect. 4), we treat the case of systems with characteristic sizes
less than the wavelength and the coherence length. An electromagnetic formalism is
then essential for modelling radiative transfer. We introduce a general calculational
method based on the fluctuation–dissipation theorem. This method will be used in
the Chapter by Joulain in this volume, which is devoted to the study of radiative
transfer in nanostructures.

1 Radiative Transfer Equation

The radiative transfer equation (RTE) was introduced in astrophysics to
describe the propagation of radiation in interstellar media [1], and in nuclear
physics to describe the propagation of neutrons in reactors [2]. The RTE is
an equation for the transport of specific intensity. In this part, we introduce
the specific intensity in a phenomenological way, along with the phenomena
of absorption, scattering, and thermal emission. We then establish the RTE
by considering the energy balance.

1.1 Specific Intensity, Flux, Energy Density

The specific intensity Lν(r, r, t) is defined so that the monochromatic ra-
diative energy flux Pν crossing a surface element dS centered at the point

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 55–76 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Notation for defining specific intensity

r = (x, y, z), in an element of solid angle dΩ centered on the direction u, in
the frequency range [ν, ν + dν], and at time t is given by

Pν(r, u, t) = Lν(r, u, t)u · n dS dΩ dν . (1)

The notation is illustrated in Fig. 1. The specific intensity is expressed in
units of W · m−2 · sr−1 ·Hz−1.

We introduce the radiative flux vector qν , a non-directional quantity ex-
pressed in terms of the specific intensity Lν by

qν(r, t) =
∫

4π

Lν(r, u, t)u dΩ . (2)

The vector qν , defined here in the purely radiometric context, can be identi-
fied with the Poynting vector defined in the context of electromagnetic theory.
Its flux through an area S gives the global flux per unit frequency crossing
this area in units of W/Hz. However, it is more difficult to define the specific
intensity in the framework of electromagnetism, requiring the theory of co-
herence (see for example [3]). This difficulty arises because it is not obvious
how to translate the phenomenological idea of a flux crossing a surface in a
given direction into the language of waves (and indeed the Poynting vector
does not provide this information).

The energy density per unit frequency at point r and time t is given by

uν(r, t) =
∫

4π

Lν(r, u, t)
c

dΩ . (3)

The speed c in this equation is the speed of propagation of the energy. In a
particle view, the energy density uν(r, t) can be related to the photon density
nν(r, t) per unit volume and per unit frequency ν by uν(r, t) = nν(r, t)hν
where h is Planck’s constant. Note that, if the specific intensity is isotropic,
we have uν(r, t) = 4πLν(r, t)/c.

1.2 Absorption, Scattering and Thermal Emission

Absorption

Consider a monochromatic radiative energy flux Pν propagating in an absorb-
ing medium in a direction u that is perpendicular to the surface element dS.
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Let s be the curvilinear coordinate in the u direction. Over an element of
length ds, a fraction dPν of the energy is absorbed. Quite generally, we may
write

dPν(s + ds, u, t) = −κνPν(s, u, t) ds . (4)

The coefficient κν introduced here is the monochromatic absorption coeffi-
cient. Its reciprocal la = 1/κν is the absorption mean free path or absorption
length.

Extinction by Scattering

In the scattering process, a fraction of the energy initially propagating in the
direction u is scattered in a different direction u′, which leads to a reduction
in the energy flux in the direction u. We thus proceed as for absorption, in-
troducing a scattering coefficient σν . Its reciprocal ls = 1/σν is the scattering
mean free path or scattering length.

If we consider the energy propagating in a given direction, e.g., in a colli-
mated beam, then both the absorption and the scattering process contribute
to extinction of the incident energy. This can be written symbolically in the
form

extinction = absorption + scattering .

We speak of an absorbing medium when the absorption process dominates
over the scattering process, and conversely. For example, the particles sus-
pended in Indian ink or soot particles in smoke will tend to absorb visible
radiation rather than scatter it and hence appear black, whereas a cloud is
a highly scattering medium (and poorly absorbent) in the visible, so that it
appears white.

We thus introduce the extinction coefficient

βν = σν + κν . (5)

Its reciprocal lext = 1/βν is called the extinction length. In particular, the en-
ergy flux associated with a beam collimated in a given direction in a medium
decreases according to a power law

Pν(s) = Pν(0) exp(−βνs) ,

known as the Beer–Lambert law.
To characterise the scattering power of a medium, we define the albedo

by

aν =
σν

βν
=

σν

σν + κν
. (6)

If the albedo is zero, the medium is purely absorbing like Indian ink in the
visible. If it is equal to unity, the medium is purely scattering, like a cloud in
the visible.
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Scattering. Phase Function

During scattering, energy is redistributed in all directions. In particular, if
we are concerned with the change in the flux propagating in direction u be-
tween s and s+ds, energy initially propagating in a different direction u′ can,
after scattering, find itself propagating in the direction u. It then contributes
to an increase in the flux in the direction u. To describe this phenomenon,
we introduce the phase function pν(r, u, u′). It represents the fraction of the
energy flux which, arriving at point r in the direction u′, is scattered in the
direction u. Some examples of phase functions are given in Appendix. The
increase in the flux due to scattering between s and s+ds can then be written

dPν(s + ds, u, t) =
σν

4π

∫

4π

pν(s, u, u′)Pν(s, u′, t) dΩ′ ds . (7)

It is useful to make the following remarks:

– When the medium is homogeneous, the phase function is independent of
the position r, an assumption we shall make in the following.

– There are several normalisations for the phase function in the literature.
We shall use

1
4π

∫

4π

pν(u, u′) dΩ′ = 1 . (8)

If the phase function is constant, we speak of isotropic scattering. This
means that scattering leads to an equiprobable energy distribution in all
directions. Otherwise we speak of anisotropic scattering.

– The phase function depends on the direction of incidence u′ and the
direction of scattering u. For particles with some kind of symmetry, e.g.,
spheres, the phase function only depends on the relative angle Θ between
the two directions, and more precisely, on the cosine of this angle. We
then write pν(u, u′) = pν(cosΘ).

Thermal Emission

Over an element of length ds in the u direction, a fraction dPν of the energy
can be emitted thermally. We then write

dPν(s + ds, u, t) = ην ds , (9)

where ην is the monochromatic emission coefficient. If the medium is in local
thermodynamic equilibrium (LTE), the specific intensity at any point is the
equilibrium specific intensity n2L0

ν(T ) at the local temperature T , where n is
the real part of the refractive index of the medium and L0

ν(T ) is the Planck
function. Moreover, in LTE, the absorbed flux is equal to the emitted flux at
every point. We thus have [1]

ην = κνn2L0
ν(T ) . (10)
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Fig. 2. Notation for describing the
radiative energy balance. ds = c dt
in the direction u

1.3 Establishing the RTE. Radiative Energy Balance

We now examine the radiative energy balance for a volume element dV as
illustrated in Fig. 2. The negative contribution to the balance comes from ex-
tinction by absorption and scattering, whilst the positive contribution comes
from scattering and thermal emission.

Consider the directional energy density uν(s, u, t) which is related to the
specific intensity by

uν(s, u, t) =
Lν(s, u, t)

c
, (11)

where c is the speed of energy propagation. The energy balance for the ele-
ment dV can then be written

uν(s + c dt, u, t + dt) dV = uν(s, u, t) dV

− (κν + σν)uν(s, u, t) dV c dt

+ κνn2 L0
ν(T )
c

dV c dt

+
σν

4π

∫

4π

pν(u, u′)uν(s, u′, t) dΩ′ dV c dt .

Rearranging the terms in this equation and using (11), we obtain

Lν(s + c dt, u, t + dt) − Lν(s, u, t)
c dt

= −(κν + σν)Lν(s, u, t) + κνn2L0
ν(T )

+
σν

4π

∫

4π

pν(u, u′)Lν(s, u′, t) dΩ′ .

(12)

In the limit as dt tends to zero, the left-hand side of this equation tends to
the total derivative of the specific intensity, viz.,

1
c

d
dt

Lν(s, u, t) =
(

1
c

∂

∂t
+

∂

∂s

)
Lν =

(
1
c

∂

∂t
+ u · ∇

)
Lν , (13)
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where ∇ is the gradient operator with respect to the position variable r.
Finally, we obtain the radiative transfer equation in the form

1
c

∂

∂t
Lν(r, u, t) + u · ∇Lν(r, u, t) = −(κν + σν)Lν(r, u, t) + κνn2L0

ν(T )

+
σν

4π

∫

4π

pν(u, u′)Lν(r, u′, t) dΩ′ .

(14)

1.4 Discussion

The RTE is an integro-differential equation describing the transport of spe-
cific intensity, a quantity depending on position, direction, frequency and
time. There is an analogy between this equation and the Boltzmann equation
introduced in the kinetic transport theory for particles. This analogy will be
important in the Chapter by Lemonnier in this volume, where phonon trans-
port is used to model heat conduction in solids. In fact, many techniques have
been developed to solve the RTE in the context of radiative transfer [1, 4, 5].
These techniques can be extended to the case of heat conduction by phonons.

When deriving the RTE, we mentioned several length scales, namely the
absorption and scattering lengths. Depending on the ratio of the character-
istic length scales in the systems under investigation and these quantities,
various transfer regimes are observed: ballistic regime, multiple scattering
regime, and diffusive regime. We shall now describe these regimes. By virtue
of the analogy between the RTE and the Boltzmann equation for phonon
transport, it will be possible to transpose the physical phenomena that we
shall discuss directly to the case of heat conduction. We shall begin by consid-
ering the diffusive regime, then the regime in which the characteristic length
scales of the systems are of the order of (or shorter than) the mean free paths,
these being the relevant regimes in micro and nanoheat transfer.

2 From the RTE to the Diffusion Approximation

In this section, we shall show that, on large length and time scales, the RTE
simplifies to a transport equation for the energy density. This quantity no
longer depends on the direction of propagation, which greatly simplifies the
problem. The transport equation for the energy density, obtained in the large
scale limit, is a diffusion equation with the same form as the heat equation. In
the diffusion regime, the radiative flux is proportional to the gradient of the
energy density. The multiplicative coefficient is called the diffusion coefficient.

Once we have established the diffusion equation, we shall examine the
analogy between the diffusive regime for radiative transfer and heat conduc-
tion on large scales in a solid or gas (Fourier law). Note that the diffusion
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equation is encountered in many transport phenomena and is widely used in
practice in a range of fields from heat transfer, through photothermal imag-
ing, to imaging in biological media [6].

We shall then discuss transitions between the various regimes, on the basis
of the full RTE, as a function of the characteristic size of the system under
investigation. We shall be concerned in particular with the transition to the
non-diffusive (non-Fourier) regime, stressing the key behaviour and orders
of magnitude. The results obtained can be transposed directly (at least in a
qualitative manner) to the case of heat conduction.

To simplify the discussion, we consider a cold medium, in which thermal
emission in the medium can be neglected at the relevant frequencies. This
corresponds, for example, to visible radiation transfer in a medium at 300 K.

2.1 From the P1 Approximation to the Diffusion Equation

Consider a scattering medium in which the absorption length la is very long
compared with the scattering length ls (albedo close to unity). The diffusion
approximation is applicable a priori for such a medium if its characteristic
length is greater than ls. We are thus dealing with a medium in which there is
multiple scattering. During scattering, the specific intensity tends to become
isotropic. One can then seek an approximation for the specific intensity in
the form of a sum of an isotropic term and a correction depending on the
direction. This is the basic idea of the P1 approximation. This approxima-
tion can be approached systematically by expanding the specific intensity in
terms of the Legendre polynomials. We speak of the P1 approximation when
we retain only the first two terms in such an expansion, and the Pn approx-
imation when we go to order n. The P1 approximation is the usual starting
point for establishing the diffusion approximation [4]. Note that, if the ab-
sorption is not low, this approach is no longer valid. We shall return to this
point later. One can also use another approach, based on asymptotic analy-
sis of the normal modes of the RTE, originally developed to handle neutron
transport [2].

In this section, we shall outline the approach based on the P1 approxima-
tion. The starting point is the time-dependent radiative transfer equation.
The aim is to relate the radiative flux to the energy density. Using the Ein-
stein notation (summation over repeated indices), the RTE (14) becomes (in
a cold medium)

1
c
∂tL(r, u, t) = −ui∂iL(r, u, t) − βL(r, u, t)

+
σ

4π

∫

4π

p(u, u′)L(r, u′, t) dΩ′ . (15)

To simplify the notation, we have dropped the subscript ν on all radiative
quantities, bearing in mind that we are working with monochromatic radia-
tion throughout.
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Energy Conservation Equation

One can establish an energy conservation equation relating the energy density
defined by (3) and the radiative flux vector defined by (2). The RTE is an
energy conservation equation for that part of the radiation that propagates
in a given direction u. To obtain an equation involving the energy density,
we simply integrate (15) over all directions u, i.e., over dΩ. This yields

∂tu(r, t) = −∂iqi(r, t) − cκu(r, t) . (16)

Expression for the Radiative Flux

We now seek a general expression for the radiative flux vector. To do so,
we multiply (15) by uj and integrate once again over the directions u. This
yields

1
c
∂tqj(r, t) = −

∫

4π

ujui∂iL(r, u, t) dΩ − βqj(r, t)

+
σ

4π

∫

4π

p(u, u′)ujL(r, u′, t) dΩ′ dΩ . (17)

From this equation, we obtain an expression for the radiative flux vector:

qj(r, t) = − 1
βc

∂tqj(r, t) − 1
β

∫

4π

ujui∂iL(r, u, t) dΩ

+
a

4π

∫

4π

p(u, u′)ujL(r, u′, t) dΩ′ dΩ . (18)

The last term of this equation can be written more simply by using the
relation∫

4π

p(u, u′)uj dΩ = 4πgu′
j , (19)

where g is the average value of cosΘ = u · u′, viz.,

g = 〈cos Θ〉 =
1
4π

∫

4π

p(cosΘ) cos Θ dΩ . (20)

This result can be shown provided that the phase function depends only
on cosΘ, as happens for example in the case where the scattering particles
are spherical. We then obtain for the radiative flux

qj(r, t) = − 1
βc

∂tqj(r, t) − 1
β

∫

4π

ujui∂iL(r, u, t) dΩ + agqj(r, t) , (21)

which implies that

qj(r, t) = − 1
1 − ag

[
1
βc

∂tqj(r, t) +
1
β

∫

4π

ujui∂iL(r, u, t) dΩ

]
. (22)



Introduction to Radiative Transfer 63

This expression is quite general. The only assumption made so far concerns
the phase function, which must only depend on the cosine of the relative
scattering angle Θ.

Diffusion Approximation

In order to obtain an expression for the radiative flux in the form of a diffusion
equation, we introduce the P1 approximation, which amounts to assuming
that the specific intensity is quasi-isotropic. This assumption is valid if there
are sufficient scattering events to ensure isotropy, which is only possible if
the absorption is low enough. The specific intensity can then be represented
in terms of a basis of Legendre polynomials, in an expansion to order one [4].
This yields

L(r, u, t) =
1
4π

L0(r, t) +
3
4π

q(r, t) · u , (23)

where q is the radiative flux vector. Using this form for the specific intensity,
the second term in (22) can be written down explicitly. Finally,

qj(r, t) = − c

3[κ + σ(1 − g)]
∂ju(r, t) − 1

c[κ + σ(1 − g)]
∂tqj(r, t) . (24)

In this expression there is a term σ(1 − g) whose reciprocal defines a new
length scale. This is the transport mean free path, or transport length:

ltr =
1

σ(1 − g)
=

ls
1 − g

. (25)

This length scale is characteristic of variations in the radiative flux (and the
energy density) in the diffusive regime.

In many cases, the term ∂tqj in (24) is negligible compared with the
gradient of the energy density. To see this, we simply compare the two terms
[κ + σ(1 − g)]qj and ∂tqj/c. If τ is the characteristic time of flux variations
and q the order of magnitude of the flux, the order of magnitude of the first
term is [κ + σ(1 − g)]q ∼ q/ltr (for a low absorption medium), whilst that of
the second term is q/cτ . The second term is thus negligible if the condition
ltr � cτ holds. Even when ltr has a value of a few millimeters, the condition is
satisfied provided that τ > 0.1 ns.

Neglecting the term ∂tqj in (24), we obtain a radiative flux proportional
to the gradient of the energy density:

qj(r, t) = − c

3[κ + σ(1 − g)]
∂ju(r, t) = −D∂ju(r, t) , (26)

where we have introduced the diffusion coefficient D. This expression for the
flux has the form of the Fourier law, or Fick’s law, or Ohm’s law, which are
all diffusion equations.
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Having obtained this relation, it is easy to show that the energy density u
satisfies a diffusion equation. To do so, we substitute (26) into the energy
conservation equation (16). Neglecting the term in ∂tqj in that equation too,
we find that

D∆u(r, t) = ∂tu(r, t) + κcu(r, t) . (27)

2.2 Discussion

The result we have just established shows that, in the limit of long length
and time scales, the radiative energy density in a scattering medium obeys a
diffusion equation of the same type as the heat equation. The energy flux is
proportional to the gradient of the energy density. The diffusive regime thus
obtained is analogous to the regime in which the Fourier law is applicable in
the context of heat conduction. In this case, the distribution function char-
acterising the energy carriers (molecules in a gas and phonons in a crystal)
obeys Boltzmann’s equation (just as the specific intensity obeys the RTE).
The approach used to model heat conduction is therefore perfectly analo-
gous to the one used to model the propagation of radiation in a scattering
medium [7, 8]. The Fourier regime is obtained in the limit of small Knudsen
numbers (see the Chapter on Transport in Dilute Media by Carminati in
this volume), just as the diffusive regime is obtained in the limit ltr � L and
ltr/c � τ , where L characterises the size of the system and τ the dynamical
evolution of the system.

Two comments are in order concerning the derivation of the diffusion
equation (27):

– The approach using the P1 approximation leads to the diffusion coefficient

D =
c

3[κ + σ(1 − g)]
=

c

3(la + ltr)
.

However, other approaches are possible, leading to diffusion equations,
but with different diffusion coefficients. In particular, the dependence
of D on the absorption function varies from one approach to another.
This observation has been the subject of recent investigations due to
its importance in the field of imaging in a scattering medium, where
absorption cannot generally be ignored. See for example [9–11].

– If we keep the time-dependent term in (24), we obtain the so-called teleg-
rapher’s equation. This equation has the advantage of giving rise to a
bounded propagation speed equal to c/

√
3, and hence removes the main

disadvantage with the diffusion equation, which instantaneously gives a
nonzero response at an arbitrarily great distance from the source. This
disadvantage is well known in the theory of heat conduction on very
short time scales, since the heat equation exhibits the same problem of
instantaneous response.
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2.3 Rosseland Approximation

To end this section on the diffusion approximation, we shall now show how to
obtain the Rosseland approximation (allowing one to consider radiative con-
ductivity in an absorbing, non-scattering medium) from (26). We consider an
absorbing and emissive medium (dropping the hypothesis of a cold medium
here) which is optically thick locally (la less than the length scale on which
the specific intensity varies in the medium). At any point a local thermody-
namic equilibrium is then set up. The specific intensity is thus the equilibrium
specific intensity at the local temperature of the point under consideration.
At each frequency ν, we thus have

Lν(r, u, t) ≈ L0
ν

(
T (r)

)
. (28)

According to (26), the monochromatic radiative flux is then

qν,j(r) = −4π

3κ
∂jL

0
ν

(
T (r)

)
, (29)

using the fact that uν = 4πL0
ν/c. Integrating over the frequency, we obtain

the radiative flux as a function of the local temperature of the medium:

qj(r) = − 4
3κ

∂j

[
σST 4(r)

]
, (30)

where σS is the Stefan constant. Hence,

qj(r) = − 16
3κ

σST 3(r)∂jT (r) = −krad∂Tj(r) . (31)

This expression for the flux is formally analogous to the Fourier conduction
law. It reveals an equivalent radiative conductivity krad called the Rosseland
conductivity, which is strongly dependent on the temperature. The existence
of such a conductivity depends on the same assumptions as the diffusion
approximation investigated earlier.

3 Transport Regimes

In this section, we shall discuss the various transport regimes as a function
of the length and time scales characterising the system: ballistic regime, in-
termediate regime of multiple scattering, and diffusive regime. To do this,
we shall appeal to experimental results [12] and numerical simulation of the
RTE in plane geometries (transmission through a slab of scattering medium
of thickness L). The numerical method used is detailed in [13].
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Fig. 3. Flux transmitted in static regime through a slab of TiO2 particles with re-
fractive index n = 2.8 and average diameter 220 nm. The wavelength of the incident
light flux is 780 nm. The transport length is ltr = 0.95 µm. Left : Measurements [12].
The straight line is the linear dependence expected in the diffusive regime according
to (32). Right : RTE calculation [14]

3.1 Static Transmission.
Ohmic Conductance and Short-Scale Deviations

The experimental results represented in Fig. 3 (left) show diffuse transmissiv-
ity measurements through a slab of different thicknesses L [12]. The sample
is made of TiO2 particles with refractive index n = 2.8 and average diameter
220 nm. The slab thickness varies from 1.43 µm to 18 µm. The wavelength of
the incident light flux is λ = 780 nm. The transport length is estimated to be
ltr = 0.95 µm. Figure 3 (right) shows the results obtained from a static RTE
calculation.

In the diffusive regime, one can calculate the diffuse transmissivity T of
a slab in the static regime. This yields

T =
ltr + z

L + 2z
, (32)

where z is a length of the order of ltr which comes from the expression for the
boundary conditions on the faces of the slab in the diffusion approximation [4,
15]. This explains why the experimental results in Fig. 3 are represented as
a function of (L + 2z)−1. Note that, since the result (32) is only valid a
priori when L � ltr, we have T ∝ 1/L. This 1/L dependence of the diffuse
transmission is characteristic of the diffusive regime. Such behaviour occurs
in particular in the context of Ohm’s law (the electrical conductance of a
wire of length L is proportional to 1/L) and also Fourier’s law (the thermal
conductance of a flat wall of thickness L is proportional to 1/L).

Diffusive behaviour is clearly visible in Fig. 3 for large values of L (linear
regime). As L decreases, i.e., when 1/(L + 2z) increases, the experimental
points deviate from diffusive behaviour. This deviation is still more clearly
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visible in the numerical calculation, which was carried out for even smaller
values of L. This result is a first example of non-diffusive behaviour at short
length scales. In this example in the static regime, the deviation occurs for
scales L ∼ Ltr, which is of the order of 1 µm in this example.

3.2 Transitions Between Regimes in the Dynamic Case

The question of transitions between regimes has been studied in the context
of radiative propagation in scattering and aborbing media by various authors,
using the RTE as transport equation [16–20]. In the dynamical regime, the
analysis presented here is based upon the measurement (or calculation) of the
decay time of light pulses transmitted through a slab. The total hemispherical
transmissivity (integrated over angles) T (t) decreases exponentially over long
times. From this exp(−t/τ) decay, we can extract a decay time τ . One can
then introduce an effective diffusion coefficient D by identifying the decay
time with the one obtained in the diffusive regime. For a scattering and
absorbing medium, we then have

D =
L2

eff

π2

(
1
τ
− κc

)
. (33)

The effective length associated with the slab in this case is Leff = L+2z. As in
the static case, this comes from writing the boundary conditions on the faces
of the slab in the diffusion approximation. We then have z = z0(1+R)/(1−R),
where z0 = 0.7ltr is the so-called extrapolation distance and R the average
reflection coefficient at the interface between the scattering medium and the
medium outside the slab. It will not be relevant to the present discussion to
go into detailed discussions about how the boundary condition is obtained. It
is in any case approximate, since the diffusion approximation is not a priori
valid near the walls. For more detail, see for example [21].

Figure 4 (left) shows measurements [12] and Fig. 4 (right) shows a nu-
merical simulation based on solution of the time-dependent RTE [14,20]. The
quantity represented is the effective diffusion coefficient as a function of the
thickness L of the system. The coefficient D is normalised by its asymptotic
value, taken at L = 25 µm ≈ 27ltr. We observe a large deviation from the
diffusive regime when L < 8ltr. The agreement between the model using the
RTE and experiment is very good. Both show a deviation of more than 50%
at small thicknesses. As L decreases, we move progressively from a diffusive
transport regime of Fourier type, through an intermediate multiple scatter-
ing (non-diffusive) regime, to a regime where ballistic transport dominates
in the slab. Note that the RTE allows one to deal unambiguously with the
transitions between these regimes. The separation between the ballistic and
multiple scattering regimes in the RTE is discussed further in Sect. 3.3.

The numerical simulation also allows one to show that the change in the
effective diffusion coefficient at short length scales is extremely sensitive to
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Fig. 4. Effective diffusion coefficient of a slab as a function of its thickness L.
The slab contains TiO2 particles and is illuminated at wavelength λ = 780 nm.
Other parameters are g = 0.27, ls = 0.65 µm, and la = 200 µm (albedo a = 0.997).
The effective index of the slab is n = 1.39. (a) Measurements [12]. (b) Diffusion
coefficient D defined by (33), normalised by its asymptotic value D0. Continuous
curve: Reflection coefficient averaged over angles R̄ = 0. The inset shows the results
obtained for different levels of internal reflection

the level of internal reflection within the slab. The inset in Fig. 4 (right) shows
that, by modifying the average reflection coefficient R, the shape of the curve
D(L) is radically changed. One can even move from a decrease to an increase
in D at short length scales. This example thus shows that reflection at the
interfaces of a system becomes a dominating phenomenon when the system
size is of the order of, or smaller than, the transport mean free path ltr. This
phenomenon dominates bulk scattering and therefore drives the transmission
decay (and hence the value of the effective diffusion coefficient) over long
times.

It is worth stressing once again the analogy between the transmission of
radiation through a scattering slab (which can be treated using the RTE) and
the conduction of heat through a solid film (which can be modelled using the
Boltzmann equation). Figure 5 shows the equivalent thermal conductivity of
a Si film as a function of its thickness L (measurements and models [22]).
Note the reduction in equivalent conductivity at short length scales. The
resemblance with the results of Fig. 3 is striking. In particular, this result
brings out the role of reflection at the interfaces. Indeed, the experimental
results can only be explained if this phenomenon is taken into account in the
model.

3.3 Ballistic and Multiple Scattering Components in the RTE

To end this section on the RTE and transitions between regimes, we shall
show that the ballistic and multiple scattering contributions can be clearly
separated in the RTE. To do so, we assume that the system is illuminated
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Fig. 5. Thermal conductivity of an amorphous silicon dioxide layer as a function
of its thickness L. Note the reduction in the effective conductivity at small thick-
nesses [22]

by a collimated beam propagating in the direction u0. We then express the
specific intensity at any point in the form of a sum of a collimated (ballistic)
component and a multiply scattered component:

L(r, u, t) = Lbal(r, t)δ(u − u0) + Ldiff(r, u, t) , (34)

where the Dirac distribution δ(u − u0) is taken in the sense of an integral
over the solid angle dΩ, so that

δ(u − u0) =
δ(θ − θ0)δ(φ − φ0)

| sin θ0|
.

Inserting the decomposition (34) into the RTE (14), we obtain two equations.
For the ballistic component, the RTE becomes (assuming a cold medium)

1
c

∂

∂t
Lbal(r, t) + u · ∇Lbal(r, t) = −(κ + σ)Lbal(r, t) . (35)

Integrating this, we obtain the Beer–Lambert equation for the evolution of
the ballistic specific intensity. For a non-absorbent medium, we retrieve the
fact that the ballistic specific intensity decreases over a characteristic length
ls = 1/σ. For the multiply scattered component, the RTE becomes

1
c

∂

∂t
Ldiff(r, u, t) + u · ∇Ldiff(r, u, t) = −(κ + σ)Ldiff(r, u, t)

+
σ

4π

∫

4π

p(u, u′)Ldiff(r, u′, t) dΩ′

+
σ

4π
p(u, u0)Lbal(r, t) .

(36)
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Here we have a source term proportional to the ballistic component at the
relevant point and time. This term describes the fact that the energy leaving
the ballistic component by scattering is redistributed in the diffuse compo-
nent. The relative weight of ballistic transport and diffuse transport drives
the overall regime. It is only when all the energy is transported by the diffuse
component and the length and time scales are large compared with ltr and
ltr/c, respectively, that transport becomes diffusive.

4 Electromagnetic Approach to Thermal Emission

In this last section, we leave the problem of transfer in scattering and ab-
sorbing media to discuss the case of systems with dimensions smaller than
the wavelength, and possibly also the coherence length, e.g., two solid bodies
at typical temperatures, a submicron distance apart, and exchanging ther-
mal radiation. To handle this kind of situation, one is compelled to use the
formalism of electromagnetism. The Chapter by Joulain in this volume is de-
voted to a detailed study of this problem. Here we shall simply introduce the
general calculational method, based on the fluctuation–dissipation theorem.

4.1 Intuitive View of the Thermal Emission Mechanism

The mechanism of thermal emission can be understood and the emitted fluxes
calculated by appealing to elementary notions of electromagnetic radiation.
When a body is held at temperature T , the charges in it (essentially free
electrons for a metal or ions for a polar crystal) have disordered motion due
to thermal agitation. In each volume element, there is a fluctuating current
per unit volume (or fluctuating dipole moment) that can be given a statistical
description. As this current is time dependent, it radiates an electromagnetic
field which is the field emitted thermally by a heated body.

Given the current, the thermally emitted field can be calculated by solving
the problem of radiation by an antenna. However, the current is only known
statistically. Its average value is zero, and so therefore is the average of the
emitted field. (As Maxwell’s equations are linear, the relationship between the
current and the radiated field is linear.) However, the mean squared value
of the fluctuating currents is not zero. The mean power of the thermally
emitted field is therefore nonzero, as all the interesting quantities in heat
transfer, e.g., the power absorbed in a solid, the flux of the Poynting vector,
the energy density, etc., are quadratic quantities in the electromagnetic field.

4.2 Principle Underlying the Calculation of Thermal Emission.
Fluctuation–Dissipation Theorem

We shall describe here the basic idea behind the calculation of a field emitted
thermally at some fixed frequency ω by a body held at temperature T and
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described by its dielectric constant ε(ω) = n2(ω), where n is the complex
refractive index of the medium. The fluctuating current (and the field) are
stationary random variables. To work in the frequency domain, we introduce
the power spectral density.

Power Spectral Density. Spectral Correlation

Consider the electric field E(r, t). We introduce the correlation function of
the k and l components of the field:

Ckl(r, r′, t − t′) = 〈Ek(r, t)El(r′, t′)〉 ,

which depends only on the difference τ = t − t′ because the field is assumed
to be stationary in the statistical sense. The power spectral density is then
the temporal Fourier transform of the correlation function:

Wkl(r, r′, ω) =
∫ +∞

−∞
Ckl(r, r′, τ) exp(iωτ) dτ . (37)

This quantity is a measure of the spatial correlation of the field at the given
frequency. Indeed, we may write the spectral correlation function in the form

〈Ek(r, ω)El(r′, ω′)〉 = 2πWkl(r, r′, ω)δ(ω − ω′) . (38)

The presence of the Dirac distribution δ(ω−ω′) shows that there is no corre-
lation between the components at two different frequencies, which is a direct
consequence of the stationarity assumption. The same two expressions also
hold for the current density j(r, t).

Fluctuation–Dissipation Theorem

We have seen that the interesting quantities in heat transfer are quadratic in
the field, and hence also in the current density (the relationship between the
latter being linear). The fundamental quantity is therefore the spectral cor-
relation function of the currents in the emitting medium. When this medium
is in thermodynamic equilibrium at temperature T , this correlation function
is given by a general theorem of statistical physics called the fluctuation–
dissipation theorem [23]. The result can be written in the form

〈jk(r, ω)jl(r′, ω′)〉 = 4πωε0ε
′′(ω)Θ(ω, T )δklδ(r − r′)δ(ω − ω′) , (39)

where δkl is the Kronecker delta and Θ(ω, T ) is the mean energy of a har-
monic oscillator in equilibrium at temperature T . The quantity ε′′(ω) is the
imaginary part of the dielectric constant which describes absorption in the
medium. We observe here that, if the medium is non-absorbent so that ε′′ = 0,
it does not emit thermal radiation.
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Relationship Between Field and Currents. Green Function

Once the current correlation function is known, the only remaining problem
is to relate the radiated field to the currents, whereupon all the important
quantities, e.g., energy density, exchanged fluxes, etc., can be calculated.
Since Maxwell’s equations are linear, the most general relation is

Ek(r, ω) = iµ0ω

∫

V

Gkl(r, r′, ω)jl(r′, ω) d3
r′ , (40)

where the integral is taken over the whole volume of the body and sum-
mation is implied over repeated indices (Einstein convention). The quantity
Gkl(r, r′, ω) is a tensor because the field is not generally collinear with the
current. This is the Green tensor, or simply the Green function. To calculate
it, we must calculate the radiation from a current element (or point dipole)
in the given configuration. The problem of thermal radiation is thus reduced
to the purely classical problem of radiation from an antenna. This extremely
powerful method was developed by Rytov in the 1950s [23]. In the context of
short-scale radiative transfer, it has the great advantage that it involves no
limiting assumptions about the radiation. Indeed, problems of interference,
diffraction, near field, and polarisation are all rigorously accounted for in this
approach. The only restriction is the use of a dielectric constant to describe
the medium, whence the medium is treated macroscopically.

This method can be used to calculate the near-field thermal emission
from a flat source [24] or the radiative transfer between bodies separated by
nanometric distances [25]. The method is described and exemplified in [26],
for example. In the context of the present book, a detailed discussion of
the application to radiative transfer in nanostructures will be given in the
Chapter by Joulain in this volume.

Appendix. Examples of Phase Functions

Angular Dependence

The phase function depends on the angles of incidence and scattering. For
particles with some symmetry, e.g., spheres, the phase function depends only
on the relative angle between the two directions. In spherical coordinates, we
have u(θ, φ) and u′(θ′, φ′). The cosine cosΘ = u · u′ of the relative angle is
given by

cosΘ = µµ′ +
√

1 − µ2
√

1 − µ′2 cos(φ − φ′) , (41)

where µ = cos θ and µ′ = cos θ′.
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Constant Phase Function

The simplest phase function is the constant phase function p(cosΘ) = 1.
Scattering is isotropic and the anisotropy factor g is exactly zero.

Rayleigh Phase Function

If the particle is non-absorbent and very small compared with the wavelength
of the incident wave (a so-called Rayleigh particle), it behaves as an electric
dipole. If the incident wave is non-polarised, the phase function is then

p(cosΘ) = 3
4 (1 + cos2 Θ) . (42)

Henyey–Greenstein Phase Function

A widely used model is that associated with the Henyey–Greenstein phase
function. This function depends only on the two parameters cosΘ and g:

p(cosΘ) =
1 − g2

√
(1 + g2 − 2g cosΘ)3

. (43)

In particular, this phase function satisfies the normalisation specified in (8).

Mie Phase Function

The Mie theory proceeds by exact solution of the scattering of a plane electro-
magnetic wave by a homogeneous and optically isotropic spherical particle.
Given the refractive index np of the particle, the index nh of the host medium,
the particle radius r, and the wavelength λ = λ0/nh of the incident wave in
the host medium, the Mie theory delivers the extinction, scattering and ab-
sorption cross-sections of the particle, together with the albedo a, the phase
function p(cosΘ), and the anisotropy parameter g, all as a function of the
particle size parameter X = 2πr/λ. These are the properties of a single par-
ticle. If the scattering by different particles is assumed to be independent and
we know the concentration of particles in the medium, we can obtain all the
parameters of the RTE, e.g., extinction length, scattering length, absorption
length, and phase function of the medium, in the form of simple relations.

Expansion in Terms of Legendre Polynomials

In the general case, the phase function pν(cosΘ) can be expanded in terms
of Legendre polynomials:

p(cosΘ) =
M∑

n=0

anPn(cosΘ) . (44)
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The an are expansion coefficients and the Pn(cosΘ) are the Legendre poly-
nomials of degree n. The series converges after a finite number of terms
depending on the required accuracy. The number of terms is determined by
the anisotropy of the phase function. The more anisotropic it is, the more
terms are required in the expansion. For example, if we expand the Henyey–
Greenstein phase function in terms of Legendre polynomials, we obtain the
relation an = gn.
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Abstract. We discuss two popular methods for solving the radiative transfer equa-
tion in the field of thermal radiation, which can be used to calculate conduction on
nanoscales under certain hypotheses. After a brief summary of the theory leading
to a radiative transfer equation for phonons, we present the P1 method and the dis-
crete ordinate method. The first is based on a global approach to transfer in which
the only unknown is the local internal energy. In particular, it uses an approximate
treatment of the boundary conditions and for this reason becomes somewhat inac-
curate when transfer is dominated by ballistic phonons from the bounding surfaces.
The second method takes into account the directional aspect of the transfer and
yields better results than the P1 method, except near the diffusive regime. It solves
a transport equation in a discrete set of directions. Integrated quantities such as
the internal energy and flux are evaluated using quadrature formulas. Whereas the
partial differential equation derived in the P1 approach can be solved by standard
methods, the numerical system associated with the discrete ordinate method is
more specific, particularly in cylindrical geometries.

1 Introduction

Heat conduction is no longer correctly described by the Fourier law in submi-
cron scale objects (10–100 nm). One must go back to the basic physics of the
phenomenon which, in non-metallic materials, is the physics of vibrations in
a crystal lattice. In this case, the main energy carriers are phonons. These are
sufficiently analogous1 to photons to justify defining a phonon intensity as
1 The behaviour of phonons and photons is similar in several ways, whether the

similarity be real or contrived in some sense by hypothesis. In particular, they are
both bosons, i.e., their equilibrium distribution is the Bose–Einstein distribution.
These quasi-particles are treated as classical particles beyond a certain length
scale, i.e., the coherence length for phonons and the wavelength for photons, and
their propagation is described in each case by a Boltzmann equation. Moreover,
the relaxation time approximation used to describe collisions between phonons
leads to the definition of a kind of absorption coefficient, as for photons, despite
the different physics. (Photons interact together, whereas photons interact with
matter.) Finally, when we introduce the Debye model, the equilibrium intensity
of the phonons is analogous to a Planck function, with the speed of sound rather
than the speed of light (and up to a factor of 3/2).

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 77–106 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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well as a transfer equation that is identical under certain hypotheses to the
one used for thermal radiation in absorbing–emitting media. For this reason,
several computational methods taken over from radiative transfer (or neu-
tronics, where these methods were originally developed) can be used to make
predictions concerning conduction on nanoscales.

In this Chapter, we present two of the most popular of these methods: the
P1 method and the discrete ordinate method. The first is more succinct. It
does not directly use the intensity as variable. As we shall see, the intensity
is a quantity depending on the direction of propagation. Instead, it uses an
integrated quantity proportional to the internal energy. The method leads to
a simple second order partial differential equation, which is easy to solve by
standard numerical methods. However, this succinctness is obtained at the
expense of the ballistic component of transfer (arising from the bounding sur-
faces), and for this reason the P1 method is only applicable in media with di-
mensions significantly greater than the mean free path of the energy carriers.
On the other hand, the discrete ordinate method completely accounts for the
directional aspect of the intensity. It involves solving the transfer equation in
a finite number of directions and calculating the integrated quantities, such
as the internal energy or the flux, by quadrature formulas. Although this
method has a reputation for accuracy, and economy in terms of computer
time, these general considerations must be reassessed in each case. However,
it has become very popular and is today the most widely used method in the
context of thermal radiation.

Before going into the details of the two methods, we shall outline the
main features of the theoretical model used to describe heat conduction on
nanoscales as energy transport by phonons. The reader wishing to go further
with this theory should refer to the basic textbooks on solid state physics,
e.g., [1–4].

2 Theoretical Model

2.1 Intensity. Internal Energy. Flux

In insulating and semiconducting materials at room temperature, heat propa-
gates mainly by vibrations of the atoms making up the crystal lattice. Quan-
tum mechanics shows that the energy of each mode is a multiple of �ω,
where ω is the angular frequency and � is Planck’s constant divided by 2π.
This introduces the idea of the phonon as both a vibrational quantum of
the lattice and a quasi-particle of zero mass carrying energy �ω. Beyond a
certain length known as the coherence length, phonons behave like classical
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particles2 and, by analogy with thermally radiated photons, one can define a
phonon radiative intensity [5]:

Iω(x, t, s) =
1
4π

D(ω)nω(x, t, s)�ωvω , (1)

where D(ω) is the number of modes per unit volume with angular fre-
quency ω, while vω is the group velocity and nω the average number of
phonons3 with angular frequency ω moving in the direction of the unit vec-
tor s. At any point x in this phonon gas, the internal energy density and the
flux can be calculated as spectral quantities and as total quantities by:

eω(x, t) =
1
vω

∫

4π

I(x, t, ω, s) dΩ , (2)

e(x, t) =
∫ ωmax

0

eω(x, t) dω , (3)

q′′
ω(x, t) =

∫

4π

I(x, t, ω, s)s dΩ , (4)

q′′(x, t) =
∫ ωmax

0

q′′
ω(x, t) dω . (5)

The integrals are carried out over all directions in space, i.e., 4π steradians, so
that dΩ denotes an elementary solid angle around the direction s, and in (3)
and (5), over the whole spectrum up to the cutoff frequency ωmax imposed
by the periodicity of the crystal lattice.

When the medium is locally in equilibrium at temperature T , the number
of phonons has a Bose–Einstein distribution and the internal energy is given
by

e ≡ e0(T ) =
∫ ωmax

0

(
e�ω/kBT − 1

)−1

D(ω)�ω dω , (6)

2 One then considers that the phonons have lost all information concerning their
wavelike character, and in particular concerning the phase differences from one
phonon to another. This loss of coherence is observed physically over distances of
the order of the nanometer due to random superposition of a large number of in-
terference patterns, whereupon it is no longer possible to observe any interference
fringe.

3 To simplify the notation, we assume that the quantities appearing here, i.e.,
D, nω, and vω, are averaged over all branches of the dispersion curves of the
material.
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which yields in the Debye model4 [2]

e0(T ) =
4σphT 4

cs
F (ΘD/T ) , F (z) =

∫ z

0

x3 dx

ex − 1∫ ∞

0

x3 dx

ex − 1

, (7)

where ΘD is the Debye temperature of the material, F is the fraction of the
equilibrium radiation of phonons between zero and the cutoff frequency, cs is
the speed of sound in the material, and σph is the Stefan–Boltzmann constant
of the phonons given by

σph =
π2k4

B

40c2
s�

3
. (8)

2.2 Transfer Equation

Phonon propagation is governed by the transport equation

∂nω

∂t
+ vωs · ∇nω =

dnω

dt

∣∣∣∣
col

≈ n0
ω − nω

τω
, (9)

in which the right-hand side accounts for the rates of creation and destruction
of phonons after collisions. Since it is difficult to obtain an exact expression
for this term, one appeals almost exclusively to the relaxation time approxi-
mation [2, 4]. This consists in assuming that the source term is proportional
to the difference n0

ω−nω, where n0
ω is the equilibrium distribution of phonons

with angular frequency ω at the given local temperature. The proportionality
factor is the reciprocal of a time τω which, multiplied by the speed of propa-
gation, gives the phonon mean free path between consecutive collisions, viz.,
Λω = vωτω . Multiplying (9) by D�ω/4π, we obtain

1
vω

∂Iω

∂t
+ s · ∇Iω = κω(I0

ω − Iω) , (10)

where we have set κω = Λ−1
ω . This new equation is formally identical to the

radiative transfer equation in an absorbing–emitting material and is often
called the phonon radiative transfer equation. Here, κω plays the role of
4 This model amounts to assuming that the group velocity vω is independent of ω

and equal to the speed of sound cs in the material, and also that [2]

D(ω) =
3ω2

2π2c3
s

, ω ≤ ωD ,

where ωD is the cutoff frequency related to the Debye temperature ΘD of the
material by ωD = kBΘD/� and kB is the Boltzmann constant.
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an absorption coefficient5 and I0
ω(T ) = D(ω)n0

ω(T )vω/4π is the equilibrium
radiation intensity at the local temperature T . Integrating (10) over the whole
spectrum and all directions in space, it follows that

∂e

∂t
+ ∇ · q′′ =

∫ ωmax

0

(
4πI0

ω −
∫

4π

Iω dΩ

)
dω . (11)

When there is no internal heat source, the left-hand side of this equation
is zero, implying the same of the right-hand side. This fixes the radiative
equilibrium conditions for phonons:6

∫ ωmax

0

∫

4π

Iω dΩ dω = 4π

∫ ωmax

0

I0
ω dω , (12)

with, in the Debye model,
∫ ωmax

0

I0
ω dω =

σphT 4

π
F (ΘD/T ) . (13)

Boundary Conditions

In order to solve the transfer equation (10), one needs to know the intensity
entering the medium at its boundaries. This amounts to fixing Iω for all
directions s such that s · n > 0, where n is the local inward normal. There are
essentially two types of boundary condition. The first consists in attributing
to Iω a known value I∗ω that depends only on the properties of the starting
surface, and in particular its temperature. In this case, we set

Iω(xw, s, t) = I∗ω(xw, s, t) , for s · n > 0 , (14)

which also fixes the normal component of the flux leaving the boundary:

q′′out,ω(xw, t) =
∫

s · n>0

I∗ω(xw, s, t)s · n dΩ . (15)

The outgoing intensities are usually assumed to be isotropic, i.e., I∗ω indepen-
dent of s, in particular if one chooses I∗ω equal to the equilibrium intensity

5 Unlike photons, phonons do not interact with matter. Strictly speaking they are
not therefore either emitted or absorbed. However, they are created or destroyed
during collisions, through mechanisms that essentially involve three bodies: two
phonons give a phonon (destruction) or a phonon gives two phonons (creation).
The term ‘absorption coefficient’ for κω does not refer to a physical reality but
arises from a formal analogy between the phonon and photon transfer equations.

6 Note that this equality is only valid after integration over the whole spectrum. It
cannot be applied separately at each frequency, since generally

∫
4π

Iω dΩ dω �=
4πI0

ω.
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at the temperature of one of the walls,7 i.e., I∗ω = I0
ω(Tw). In this case, since∫

s · n>0
s · n dΩ = π, we have the simple result

Iω(xw, s, t) =
q′′out,ω(xw, t)

π
independent of s . (16)

A pure reflection condition can also be applied at the wall, which is then
treated as an adiabatic surface. Phonon reflection is general considered to be
either diffuse, i.e., the reflected flux is uniformly spread over all directions,
or specular, i.e., mirror-type reflection, or indeed a combination of the two.
In the general case, this leads to

Iω(xw, s, t) =
p

π

∫

s′ · n<0

Iω(xw, s′)|s′ · n| dΩ′ + (1 − p)Iω(xw, ŝ) , (17)

where p is the level of diffuse reflection and ŝ the direction symmetric to s
with respect to the normal n.

2.3 Diffusive Regime

When the characteristic size L of the medium becomes large compared with
the mean free path of the phonons (κωL � 1), the intensity can be expanded
in a Taylor series:

Iω = I0 +
1

κωL
I1 +

1
(κωL)2

I2 + · · · . (18)

Substituting this into (10) gives to first order,

Iω = I0
ω − 1

κω
s · ∇I0

ω . (19)

The standard thermal radiation calculation which leads to the definition of
the Rosseland conductivity can be used here to give

q′′ ≈ −4π

3

∫ ωmax

0

1
κω

∇I0
ω dω , κL � 1 , (20)

or, since I0
ω depends only on the local temperature,

q′′ ≈ −λ∇T , λ =
4π

3

∫ ωmax

0

1
κω

∂I0
ω

∂T
dω . (21)

We thus retrieve the Fourier law in the limit of the diffuse regime which
prevails on length scales much greater than the phonon mean free path.
7 This corresponds to the black body assumption in thermal radiation.
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Fig. 1. Axes used to specify the position x of
the field point and the direction of propagation s
(Cartesian coordinates). ψ and φ are the polar an-
gles specifying s and µ, η, and ξ are the direction
cosines

3 The P1 Method

One of the main difficulties when modelling radiative transfer of phonons,
photons or any other particle stems from the directional nature of this mode
of energy propagation. For this reason, one often seeks through approximate
methods to treat the directional aspect in the most global manner possible in
order to limit computation time. This is exemplified by the Rosseland model
in the diffusive regime. The P1 method presented in this section achieves
this aim of avoiding directional calculations whilst remaining relatively re-
liable. It was first developed to model stellar radiation in astrophysics [6],
then in neutronics [7], where the discrete ordinate and Monte Carlo meth-
ods were also devised. It takes its name from a class of methods known as
the PN methods, based on an expansion of the specific intensity in terms
of a basis of orthogonal functions (the spherical harmonics associated with
the Legendre polynomials PN ), truncated at order N . Experience shows that
the order 1 expansion already gives good results, whereas higher order ex-
pansions often considerably complicate the calculations without significantly
improving accuracy. A complete description of the method in the context of
thermal radiation can be found in the book by Modest ([8], Chap. 15). An
example application to phonon transfer is described in [9].

3.1 General Idea

In the stationary regime, the transfer equation (10) reduces to

s · ∇Iω + κωIω = κωI0
ω . (22)

Solving this equation for a given angular frequency ω amounts to handling a
five-variable integro-differential equation. There are three position variables,
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i.e., the components of the vectors x, and two variables to characterise the
directions s, i.e., two polar angles, or two of its three direction cosines, the
third being related to the first two since the sum of their squares is equal to
unity. The idea of the spherical harmonic method is to decompose the specific
intensity relative to a basis of orthogonal functions (generalised Fourier series
expansion):

Iω(x, s) =
∞∑
l=0

l∑
m=−l

Im
l (x)Y m

l (s) . (23)

Here, Y m
l are the spherical harmonics defined by

Y m
l (Ω) = (−1)(m+|m|)/2

[
(l − |m|)!
(l + |m|)!

]1/2

eimψP
|m|
l (cosψ) , (24)

where ψ and φ are the polar angles (zenith and azimuth) characterising s

in the local frame attached to the field point (see Fig. 1), and P
|m|
l are the

associated Legendre polynomials.8 The point about this decomposition is
that it replaces the unknown Iω(x, s) by the coefficients Im

l (x) which do not
depend on the direction.9

In theory, we now simply replace Iω by its expansion in the transfer equa-
tion (22), then multiply the resulting equation successively by each of the
functions Y m

l and integrate the result over all directions. The orthogonality
of the spherical harmonics means that we obtain as many partial differential
equations as unknowns Im

l , i.e., theoretically, an infinite number! In practice,
of course, the expansion must be truncated. To first order, this yields10

Iω(x, s) = I0
0 (x)Y 0

0 (s)+ I−1
1 (x)Y −1

1 (s)+ I0
1 (x)Y 0

1 (s)+ I1
1 (x)Y 1

1 (s) , (25)

8 The associated Legendre polynomial (of the first kind) P m
n is defined to be one

of the solutions of the differential equation

d

dξ

[
(1 − ξ2)

dM

dξ

]
+

[
n(n + 1) − m2

1 − ξ2

]
, −1 ≤ ξ ≤ 1 .

When m = n, we obtain the standard Legendre polynomial Pn. The first poly-
nomials P m

n are mutually orthogonal in the sense that

∫ 1

−1

P m
n (ξ)P m

n′ (ξ) dξ = 0 , if n �= n′ .

9 However, they do depend on the frequency. The subscript ω has been omitted
here to simplify the notation.

10 Experience shows that even order truncations are not very accurate. So to im-
prove on the P1 method, one must go to P3. This brings in 16 unknown functions
instead of 4 for P1. Beyond this, calculation time becomes prohibitive.
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or, since P 0
0 (cos ψ) = 1, P 0

1 (cosψ) = cosψ, and P 1
1 (cosψ) = sin ψ,

Iω(x, s) = I0
0 (x) +

I−1
1 (x)√

2
e−iφ sin ψ + I0

1 (x) cosψ − I1
1 (x)√

2
eiφ sin ψ . (26)

This is the P1 approximation. There are four unknown functions: I0
0 , I−1

1 , I0
1 ,

and I1
1 , and the expansion (23) amounts to representing the intensity by a

relation of the form11

Iω(x, s) ≈ aω(x) + bω(x) · s , (27)

where the four unknowns are now the scalar aω and the three components of
the vector bω. Integrating Iω then sIω over all directions of space, we obtain
the relations12

aω(x) =
1
4π

∫

4π

Iω(x, s) dΩ =
Gω(x)

4π
, (28)

bω(x) =
3
4π

∫

4π

Iω(x, s)s dΩ =
3
4π

q′′
ω(x) , (29)

where Gω is the incident spectral radiation, related to the internal energy by

e(x) =
∫ ωmax

0

Gω(x)
vω

dω , (30)

and q′′
ω is the spectral flux. At this stage, we still have four unknowns, i.e.,

Gω and the three components of q′′
ω. To proceed from here, we return to the

local energy balance (11) which gives, in the stationary regime,

∇ · q′′
ω = κω(4πI0

ω − Gω) . (31)

11 Since eiφ = cos φ + i sin φ, (26) can be rewritten in the form

Iω(x, s) ≈ I0
0 (x)︸ ︷︷ ︸

aω(x)

+
I−1
1 (x) − I1

1 (x)√
2︸ ︷︷ ︸

bω1(x)

sin ψ cos φ︸ ︷︷ ︸
µ

− i
I−1
1 (x) + I1

1 (x)√
2︸ ︷︷ ︸

bω2(x)

sin ψ sin φ︸ ︷︷ ︸
µ

+ I0
1 (x)︸ ︷︷ ︸

bω3(x)

cos ψ︸︷︷︸
ξ

,

which reads Iω(x, s) ≈ aω(x) + bω(x) · s, where (µ, η, ξ) are the components of
s and (bω1, bω2, bω3) are the components of the vector bω.

12 Note that
∫
4π

dΩ = 4π,
∫
4π

s dΩ = 0, and
∫
4π

ss dΩ = 4πδ/3, where δ is the
unit tensor with components δij = 0 if i �= j and δij = 1 if i = j. Here ss is
the symmetric second rank tensor whose components are the products of the
direction cosines of s taken in pairs, viz., µ2, µη, µξ, η2, ηξ, and ξ2.
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This also corresponds to the transfer equation (22) integrated over all direc-
tions. Repeating this integration but after multiplying (22) by the vector s,
we obtain13

∫

4π

s∇ · (sIω) dΩ + κq′′
ω = 0 . (32)

Now since Iω is approximated by (Gω + 3s · q′′
ω)/4π,

∇ · (sIω) =
1
4π

∇ · (sGω) +
3
4π

∇ · [s(s · q′′
ω)] , (33)

and a rather tedious expansion shows that14
∫

4π

s∇ · (sIω) dω =
1
3
∇Gω . (34)

Hence (32) implies that

q′′
ω(x) = − 1

3κω
∇Gω(x) , (35)

which means that the flux derives from a potential −Gω/3κω. Substituting
this in (31), we have

∇ ·
[
− 1

3κω
∇Gω

]
= κ

(
4πI0

ω − Gω

)
, (36)

so that, when κω is independent of x,

∇2Gω(x) − 3κ2
ωGω(x) = −12πκ2

ωI0
ω . (37)

This is a Helmholtz equation. Its solution provides the incident radiation
field over the whole region. Once Gω is known, the radiative flux is obtained
from (35) and the internal energy from (30).

In a grey medium, i.e., one in which κω does not depend on the frequency
so that κω = κ is constant, (37) applies to total quantities and we may drop
the subscript ω. The equilibrium condition (12) then gives

∫

4π

I dΩ = G = 4πI0 . (38)

The P1 model then reduces to the simple Laplace equation

∇2G = 0 , or ∇2I0 = 0 , (39)

given that I0(T ) = e0(T )/4π.
13 Note that we can write ∇ · (sIω) in the place of s · ∇Iω, since s is a constant

vector.
14 We use once again the results

∫
4π

dΩ = 4π,
∫
4π

s dΩ = 0, and
∫
4π

ss dΩ =

4πδ/3, together with
∫
4π

sss dΩ = 0, where sss is the rank three tensor whose
components are the products of the direction cosines of s taken in threes, i.e.,
µ3, µ2η, µ2ξ, µηξ, etc.
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3.2 Boundary Conditions

In order to solve the differential equation (37), one needs to be able to specify
boundary conditions for Gω . Now those we have, viz., (16) and (17), are given
in terms of intensities and there is no exact way of expressing these conditions
in terms of incident radiation. The most widely used approximate model is the
Marschak model [10] based on global conservation of the normal component
of the flux through the boundary. Hence using the approximate expression

Iω(x, s) ≈ 1
4π

[
Gω(x) + 3q′′

ω(x) · s
]

for the intensity, the flux entering into the medium along the normal n at a
point xw on the bounding surface is given by15

Jw =
∫

s · n>0

Iω(xw, s)s · n dΩ =
1
4

[
Gω(xw) + 2q′′

ω(xw) · n
]
.

Then, eliminating q′′
ω with the help of (35), we have

4Jw = Gω(xw) − 2
3κω

∂Gω

∂n
(xw) , (40)

where ∂Gω/∂n = n · ∇Gω denotes the derivative of Gω along the normal to
the wall. If (16) is applicable, then Jw = q′′emit,ω(xw), which implies that

2
3κω

∂Gω

∂n
(xw) − Gω(xw) = −4q′′emit,ω(xw) . (41)

For a perfectly reflecting wall (without being able to distinguish the diffuse
and specular cases, which are treated in the same way in the P1 method), we
have simply16

∂Gω

∂n
(xw) = 0 . (42)

3.3 Numerical Solution

No particular problem arises in solving the Helmholtz equation (37) with
boundary conditions of type (41) or (42). It is a linear, second order, ellip-
tic partial differential equation with linear boundary conditions. Good algo-
rithms exist for solving this kind of problem, e.g., Gauss–Seidel method, ADI
methods, or multigrid algorithms, and so on [11]. Note that we are treating
the radiative problem here by solving a single partial differential equation,
in contrast to methods where we work directly with the intensity (discrete
ordinate method) and where there are as many equations to solve as discrete
directions taken into account. This is the great advantage of the P1 method,
justifying its popularity even today.
15 We use

∫
s · n>0

s(s · n) dΩ = n
∫

s · n>0
ss dΩ and

∫
s · n>0

ss dΩ = 2πδ/3.
16 The reflection condition is equivalent to the insulation condition q′′

ω · n = 0, or
since q′′

ω ∝ ∇Gω, ∇Gω · n = ∂G/∂n = 0.
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3.4 Advantages and Disadvantages

The advantages of the P1 method were discussed above: simple formulation,
linear problem, only one equation to solve, and economical in computation
time. However, its main drawback comes from the approximate treatment of
the intensity and the fluxes from the bounding walls. The early truncation of
the expansion of Iω in the Marschak model (for the boundary conditions) im-
plicitly assumes that the intensity has a certain degree of isotropy.17 This is
justified if we are close to the diffusive regime because in this case Iω tends to
equal I0

ω , which is isotropic. However, it is not justified when ballistic transfer
dominates. To remedy this situation, a modified version of the P1 method has
been developed, in which radiation is treated by separating the contribution
from the walls and the contribution from the medium itself. If we have an
exact method for handling wall–wall exchanges (taking into account attenu-
ation in the medium), P1 is only used to deal with phonons produced in the
medium. The two solutions (radiation from the walls and radiation from the
medium) are superposed to yield a complete solution [8, 9]. This time, in the
limit of a purely ballistic medium, the method will be exact and P1 maintains
its good behaviour for highly absorbent media. This makes the method more
precise globally.

4 Discrete Ordinate Method

The discrete ordinate method uses numerical quadrature to calculate integrals
along solid angles arising in the calculation of internal energy and radiative
fluxes. It begins by discretising the angle space in a finite number of directions
in which the radiative transfer equation is then solved, so as to produce several
values of the intensity at every point. The weighted sum of these intensities
is then used to calculate the values of eω and q′′

ω locally.
This method is due to Chandrasekhar [12], but it was then largely devel-

oped for application to neutronics by Carlson and Lathrop [13]. Their work
in the 1960s is still the reference today. The application of discrete ordinates
to thermal radiation is mainly due to Fiveland [14–16]. A good description
of the method can also be found in the book by Modest ([8], Chap. 16). It
has also been applied recently to phonon transfer [17–23].

17 Multiplying the transfer equation (22) by s and integrating over all directions,
we obtain the relation ∇P ω + κωq′′

ω = 0, where P ω is the radiative pressure
tensor given by P ω =

∫
4π

ssIω dΩ. If Iω is isotropic, then P ω = 4πIωδ/3 (see
previous footnotes) and Gω = 4πIω. Hence P ω = Gωδ/3 and we have

1
3
∇Gω + κq′′

ω = 0 ,

which corresponds to (35), used in P1.
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4.1 General Idea

Calculating the Internal Energy and Flux Vector

The discrete ordinate method proceeds as follows:

– The transfer equation is solved in a finite number of directions sm, m =
1, . . . , M . For each direction, the intensity field18 Im(x, t) = Iω(x, t, sm)
is calculated over the whole region by solving

1
vω

∂Im

∂t
+ ∇ · smIm + κωIm = κI0(T ) . (43)

– The integrals appearing in (2) and (4) are calculated using quadrature
formulas such as

eω(x, t) ≈ 1
vω

M∑
m=1

wmIm(x, t) , (44)

and

q′′
ω(x, t) ≈

M∑
m=1

wmIm(x, t)sm , (45)

where wm are the weights.

Calculating the Incident Boundary Fluxes
and Expressing Boundary Conditions

The use of quadrature formulas extends to the calculation of boundary fluxes.
Hence the radiative flux incident at a point xw on the wall can be calculated
using

q′′
inc,ω(xw, t) =

∫

s · n<0

Iω(xw, t, s)|s · n| dΩ

≈
∑

m′ s.t. sm′ · n<0

wm′Im′(xw, t)|sm′ · n| , (46)

where n is the inward normal vector. Note that the quadrature formula only
involves some of the M discrete directions here since the domain of integration
is no longer 4π steradians, but 2π steradians.

The boundary conditions applying to Im can be deduced directly from (16)
and (17). They concern all directions m leaving the boundary, i.e., such that
sm · n > 0. We thus impose

Im(xw, t) = Iemit,ω(xw, sm, t) , (47)
18 To simplify notation, the index ω is omitted for Im although it is indeed a spectral

quantity.
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Fig. 2. Directions defining the S4 quadrature (first octant)

if the emission from the wall is given, and

Im(xw, t) =
p

π

∑
m′ s.t.s′

m · n<0

wm′Im′(xw, t)|s′
m · n|+(1−p)Im̂(xw, t) , (48)

for pure reflection. The last expression assumes that the direction sm̂ sym-
metrical to sm with respect to n is also one of the M discrete directions. This
is generally the case by virtue of the rules of symmetry used to construct the
quadratures, provided the boundary is parallel to a coordinate plane.

4.2 Choice of Quadratures

SN Quadrature

In multidimensional problems, the most commonly chosen quadratures are
the SN quadratures [13, 15]. They are constructed by imposing strict rules
of symmetry to ensure that no direction of propagation is favoured. Hence,
if sm = (µm, ηm, ξm) lies in the quadrature, then:

– All directions (±µm,±ηm,±ξm) also lie in the quadrature and have the
same weight.

– All directions found by permuting (µm, ηm, ξm) also lie in the quadrature
and are attributed the same weight.

One consequence of the first constraint is that it suffices to define the direc-
tions of the quadrature in one octant of the sphere, e.g., for µ, η, ξ > 0, and
then all others are determined by symmetry over the full 4π steradians of
solid angle.
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Fig. 3. Schematic representation of quadratures S4 to S12 in the first octant of the
sphere. All directions carrying the same number are attributed the same weight

To order N , the SN quadrature comprises M = N(N + 2) directions.
Hence S2 comprises 8 directions, S4 has 24 and S6 has 48. However, in 2D
configurations, the symmetries of the problem mean that one need only use
half of the directions, multiplying each weight by 2.

In addition to the symmetry conditions already mentioned,19 the weights
wm must satisfy

M∑
m=1

wm =
∫

4π

dΩ = 4π , (49)

in order to provide a good representation of the radiative emission at all
points in the medium. Note that another desirable condition,20 viz.,

M∑
m=1

µmwm =
∫

4π

µ dΩ = 0 , (50)

is automatically satisfied due to the quadrature symmetries. Moreover, we
have seen that the incident fluxes on the boundary walls are calculated by
integrating, not over the full 4π sr, but over just half of the space. This is
why we also generally require

M∑
m s.t.µm<0

|µm|wm =
∫

2πs.t.µ<0

µ dΩ = π , (51)

19 Any direction deduced from another by symmetry considerations must have the
same weight.

20 This condition refers equally to any of the direction cosines µ, η or ξ.
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Table 1. Directions and weights for quadratures S4, S6 and S8 (first octant) [24]

Quadrature Direction cosines Weight
µ η ξ w

S4 0.295 875 9 0.295 875 9 0.908 248 3 0.523 598 7
0.295 875 9 0.908 248 3 0.295 875 9 0.523 598 7
0.908 248 3 0.295 875 9 0.295 875 9 0.523 598 7

S6 0.183 867 0 0.183 867 0 0.965 601 3 0.160 951 7
0.183 867 0 0.695 051 4 0.695 051 4 0.362 646 9
0.183 867 0 0.965 601 3 0.183 867 0 0.160 951 7
0.695 051 4 0.183 867 0 0.695 051 4 0.362 646 9
0.695 051 4 0.695 051 4 0.183 867 0 0.362 646 9
0.965 601 3 0.183 867 0 0.183 867 0 0.160 951 7

S8 0.142 255 5 0.142 255 5 0.979 554 3 0.171 235 9
0.142 255 5 0.577 350 3 0.804 008 7 0.099 228 4
0.142 255 5 0.804 008 7 0.577 350 3 0.099 228 4
0.142 255 5 0.979 554 3 0.142 255 5 0.171 235 9
0.577 350 3 0.142 255 5 0.804 008 7 0.099 228 4
0.577 350 3 0.577 350 3 0.577 350 3 0.461 717 9
0.577 350 3 0.804 008 7 0.142 255 5 0.099 228 4
0.804 008 7 0.142 255 5 0.577 350 3 0.099 228 4
0.804 008 7 0.577 350 3 0.142 255 5 0.099 228 4
0.979 554 3 0.142 255 5 0.142 255 5 0.171 235 9

in order to ensure accurate flux calculations over surfaces perpendicular to
the x axis and, by symmetry, over any wall parallel to a coordinate plane. For
S6 and higher orders, further constraints are required to determine all the
weights. These are generally supplied by imposing conservation of moments,
e.g.,

M∑
m=1

µ2
mwm =

∫

2π

µ2 dΩ =
4π

3
.

The reader will find a complete review of the generation of the SN quadratures
in [24].

Data for quadratures S4, S6 and S8 are given in Table 1. A detailed list
of quadratures S2 to S12 can also be found in the appendix to [20].

Other Quadratures

Other quadratures can also be used with the discrete ordinate method. Hence,
one can select a set of MN directions by choosing M and N discrete values
of the polar angles characterising s. They are generally attributed uniform
weights w = 4π/MN . These quadratures may involve an arbitrary number
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Fig. 4. Control volume for integrating the transfer equation in Cartesian coordi-
nates

of directions21 (up to restrictions on computation time) and are reputed
to reduce certain inaccuracies due to the discretisation of the propagation
directions.22 A review of the various possible quadratures can be found in [21].

Setting up Cartesian Coordinates

For clarity, we restrict the discussion here to the stationary regime23 and
2D geometries. The extension to three dimensions is immediate, at least in
Cartesian geometries. In this case, the transfer equation becomes

µm
dIm

dx
+ ηm

dIm

dy
+ κωIm = κωI0

ω . (52)

Consider a rectangular region x = (x, y) ∈ [0, L]×[0, H ] covered by a uniform
mesh with I×J cells of size ∆x∆y. For each cell, the edges are specified with
the usual conventions by indicating the four cardinal points, as shown in
Fig. 4.
21 The SN quadratures are often limited to S20 because beyond this point, the

construction rules may involve negative weights wm.
22 This concerns in particular the problem known as the ray effect (see Sect. 4.5).

It is less important for quadratures with constant weights, but these generally
require a greater number of directions to obtain an overall accuracy equivalent
to results with the SN quadratures.

23 The use of the discrete ordinate method to handle non-stationary problems has
recently come to the fore in connection with studies of radiative phenomena on
ultrashort time scales (shorter than the time taken for light to cross the medium).
Numerical diffusion and stability problems are then generally encountered in the
time scheme. For more detail, see [20], for example.
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4.3 Integrating the RTE over a Control Volume

Integrating (52) over a control volume gives

µmAx(Im,E − Im,W) + ηmAy(Im,N − Im,S) + κω∆V Im,P = SP∆V , (53)

where

Ax = ∆y , Ay = ∆x , ∆V = ∆x∆y , SP = κωI0
ω(T ) . (54)

When the direction cosines µm and ηm are both positive, the direction of
propagation is such that, for each control volume, the specific intensities are
known on the edges W and S and unknown at the center P of the cell, and
on the edges E and N (see Fig. 4). Two further relations are thus required to
eliminate Im,E and Im,N and thereby calculate Im,P explicitly. These relations
are obtained by interpolation by assuming that

Im,P = Im,W + a(Im,E − Im,W) = Im,S + b(Im,N − Im,S) , (55)

whereupon

Im,E = Im,P +
Im,P − Im,W

a
, Im,N = Im,P +

Im,P − Im,S

b
. (56)

The coefficients a and b vary between 1/2 and 1 and may be different from
one point to another. When a = 1/2 = b, interpolations are globally second
order in ∆x and ∆y. This corresponds to the so-called diamond scheme. For
all other values of a and b, accuracy is only first order but the stability of the
scheme is better. This is the case in particular when a = 1 = b (step scheme),
which simply imposes Im,E = Im,N = Im,P.

Having eliminated Im,E and Im,N via the interpolations (56), (53) reduces
to an explicit relation between the unknown intensity Im,P, the known values
of Im,E and Im,N, and the source term SP :

Im,P =
λxIm,W + λyIm,S + ∆V SP

λx + λy + λ0
, (57)

where

λx =
µmAx

a
, λy =

ηmAy

b
, λ0 = κω∆V . (58)

Once Im,P has been calculated, the values of the other unknowns Im,E and
Im,N can be deduced from the interpolation formulas (56). Hence, assuming
that we are working on cell (i, j), we can move to the calculation in cell
(i + 1, j) using:

– Im,W(i+1,j) = Im,E(i,j), a value just calculated or else imposed by bound-
ary conditions if i = 0.
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Fig. 5. Orientation of control volumes in the direction of sm

– Im,S(i+1,j) = Im,N(i+1,j−1), a value calculated previously at level j − 1 or
else imposed by boundary conditions if j = 0.

This assumes that the region of calculation is swept out, when µm > 0 and
ηm > 0, by varying j from 1 to J and that, for each value of j, i then varies
from 1 to I.

If the direction cosines are not positive, the above formulas remain valid
provided that the orientation WESN of the cells is taken in the direction
of propagation as shown in Fig. 5, and that |µm| and |ηm| are used in the
definitions of λx and λy instead of µm and ηm, respectively. The region of
calculation is also swept out differently, but one can account for all cases in
a global way using the following sequence:

– vary j from J1 to J2 with an increment kj ,
– for each value of j, vary i from I1 to I2 with an increment ki,

with the correspondence

I1 I2 ki

µ > 0 1 I 1
µ < 0 I 1 −1

J1 J2 kj

η > 0 1 J 1
η < 0 J 1 −1

. (59)
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Fig. 6. Axes for curvilinear coordinates

Discrete Ordinates in Cylindrical Coordinates

Angular Redistribution

For a region described in cylindrical coordinates r, θ, z, the transport term
on the left-hand side of the transfer equation is expressed in the form24

∇ · (sIω) =
µ

r

∂(rIω)
∂r

+
1
r

∂(ηIω)
∂θ

+ ξ
∂Iω

∂z
, (60)

where µ, η, ξ are the direction cosines of s in the local frame R(x) =
{P (x), e1, e2, e3} (see Fig. 6).

In contrast to the Cartesian case, the orientation of the coordinate axes
changes with the position of the point P (x). Hence, a direction s that is
the same at every point with respect to a fixed frame R0 = {O, i, j, k}
will be viewed at different angles ψ, φ in each frame R(x). It follows that the
direction cosines µ, η, ξ, which are themselves functions of ψ and φ, depend on
the coordinates of the position x = (r, θ, z). In fact, in cylindrical coordinates,
only φ varies with θ, in such a way that

φ
∣∣∣
R(x)

= φ
∣∣∣
R0

− θ =⇒ ∂φ

∂θ
= −1 . (61)

Hence the derivative with respect to θ appearing in (60) must be decomposed
into

∂

∂θ

∣∣∣∣
s const./R0

=
∂

∂θ

∣∣∣∣
µ,η,ξ

+
∂φ

∂θ

∣∣∣∣
r,z

∂

∂φ
=

∂

∂θ

∣∣∣∣
µ,η,ξ

− ∂

∂φ
. (62)

24 Recall that, since s is a constant vector (it does not change with the position x
when we move along a given trajectory or optical path), the two expressions
s · ∇Iω and ∇ · (sIω) are equal. These two terms have the same expansion in
Cartesian coordinates, but not in cylindrical coordinates. The term ∇ · (sIω)
arises when the transport term in the transfer equation is expressed in conser-
vative form, which lends itself well to numerical treatment by a finite element
method.
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Fig. 7. Control volume for integrating the
transfer equation in cylindrical coordinates

However, the derivatives with respect to r or z do not introduce extra terms
since the orientation of the frame does not change when we move along r
or z keeping θ constant. Hence the full expression for the transport term is,
in cylindrical coordinates,

∇ · (sI)
∣∣∣
µ,η,ξ

− 1
r

∂(ηI)
∂φ

=
µ

r

∂(rI)
∂r

+
η

r

∂I

∂θ
+ ξ

∂I

∂z
− 1

r

∂(ηI)
∂φ︸ ︷︷ ︸

A.R.

, (63)

where the term marked A.R. corresponds to the so-called angular redistrib-
ution. Finally, the transfer equation can be written

µ

r

∂(rIω)
∂r

+
η

r

∂Iω

∂θ
+ ξ

∂Iω

∂z
− 1

r

∂(ηIω)
∂φ

+ κωIω = κωI0
ω(T ) . (64)

4.4 Integrating over a Control Volume

To simplify the discussion, we consider here a problem with azimuthal sym-
metry, i.e., ∂/∂θ ≡ 0. Consider a uniform mesh in the plane x = (r, z) ∈
[R1, R2] × [0, L] with I × J cells of size ∆r∆z. For an annular space, R1

and R2 are the small and large radii, respectively, and for a hollow cylinder,
R1 = 0 and R2 is the internal radius of the cylinder.

The faces of each cell are specified by analogy with the Cartesian case (see
Fig. 7). The transfer equation expressed in a direction m of the quadrature
and integrated over a volume element ∆V = r∆r∆z centered on P then gives

µm(AEIm,E − AWIm,W + ξmAz(Im,N − Im,S)

− ∂(ηmIm,P)
∂φ

∆r∆z + κω∆V Im,P = SP∆V , (65)
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where

AE = rE∆z , AW = rW∆z , Az = rP∆r , SP = κωI0(TP) . (66)

Let us now integrate (64) over an element of solid angle δΩm centered on the
direction sm. The integral

∫

δΩm

∂(ηmIm,P)
∂φ

dΩ ,

which arises here cannot be evaluated analytically because the domain over
which ψ and φ vary to describe δΩm is generally unknown.25 However, when
the directions m− 1, m and m + 1 lie on the same latitude, we may consider
that the discretised expression for this integral takes the form

∫

δΩm

∂(ηmIm,P)
∂φ

dΩ ≈ αm+1/2Lm+1/2,P − αm−1/2Lm−1/2,P , (67)

where it remains to define the coefficients αm±1/2. For all other terms in (64),
the integration over δΩm is carried out using the approximation

∫

δΩm

f(Ω) dΩ ≈ wmf(Ωm) . (68)

Dividing the whole equation by wm, this leads to

µm(AEIm,E − AWIm,W + ξmAz(Im,N − Im,S)

− ∆r∆z

wm

(
αm+1/2Im+1/2,P − αm−1/2Im−1/2,P

)
+κω∆V Im,P = SP∆V .

(69)

Conservation of Intensity

The coefficients αm±1/2 are determined in such a way as to guarantee that
the discrete form (69) of the transfer equation does indeed vanish when we set
κω = 0 = SP and Im,E,W,S,N,P = I0 constant. Noting that AE−AW = ∆r∆z,
we see immediately that this condition requires

I0∆r∆z

(
µm −

αm+1/2 − αm−1/2

wm

)
= 0 , (70)

or

αm+1/2 − αm−1/2 = µmwm . (71)

25 In fact, even when this integration is possible analytically, e.g., for a quadra-
ture generated by direct discretisation of the polar angles, the result has to be
modified anyway to guarantee conservation of the intensity (see below).
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This recurrence relation is used to calculate the coefficients α step by step
for directions situated on the same latitude, once the starting value is known.
Suppose that the directions M1 ≤ m ≤ M2 are all on the same latitude ξ = ξl

(l = 1, N).26 Since the angular redistribution term vanishes when integrated
over φ ∈ [0, 2π], the same must be true of the discretised expression. This
implies that

M2∑
m=M1

(
αm+1/2Im+1/2,P − αm−1/2Im−1/2,P

)

= αM2+1/2IM2+1/2,P − αM1−1/2IM1−1/2,P = 0 . (72)

By periodicity, we have IM2+1/2,P = IM1−1/2,P. Hence, αM2+1/2 and αM1−1/2

must be equal, and furthermore, physically, they can only be zero. If we now
observe that the index M1−1/2 of latitude l coincides with the index M2+1/2
of the previous latitude l−1, we simply require α1/2 = 0 for the first of them
(M1 = 1) in order to ensure the same for all the values αM1−1/2. Finally,
the recurrence relation (71) can be used to find αm±1/2 for m = 1, . . . , M ,
starting from α1/2 = 0.

Discretised Expression

From the above discussion, the discretisation of the transfer equation over a
control volume gives

µm(AEIm,E − AWIm,W + ξmAz(Im,N − Im,S)
− ARIm+1/2,P + ALIm−1/2,P + κω∆V Im,P = SP∆V , (73)

where

AE = rE∆z , AW = rW∆z , Az = rP∆r , (74)

AR = ∆r∆z
αm+1/2

wm
, AL = ∆r∆z

αm−1/2

wm
. (75)

Let us assume that the intensities are known not only on faces W and S, but
also at P for the direction m− 1. The interpolation relations (56) apply with

Im+1/2,P = Im−1/2,P +
Im,P − Im−1/2,P

c
, (76)

and, as for a and b, 1/2 ≤ c ≤ 1. We can then obtain an explicit relation
between Im,P and the known values of the specific intensities in the form

Im,P =
λrIm,W + λzIm,S − λdIm−1/2,P + SP∆V

µm
AE

a
+ λz − AR

c
+ λ0

, (77)

26 For example, in the S4 quadrature, the directions 5 ≤ m ≤ 12 are all at latitude
ξ = 0.9082483.
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where

λr = µmAE

(
1
a
− 1

)
+ AW , λz = ξm

Az

b
, (78)

λ0 = κω∆V , λd =
AR

c
− µm∆r∆z . (79)

As in the Cartesian case, these expressions remain valid when µm or ξm are
negative. One then orients the cell WESN according to the direction of propa-
gation of the radiation, replacing µm and ξm by |µm| and |ξm| in (77) and (78).

First Direction on Each Latitude

The values of Im−1/2,P must be initialised before beginning the calculation
in the first direction of each latitude. To do this, we consider each time the
particular direction η = 0 for which there is no angular redistribution, for
one is then in the plane of symmetry (r, z) in which the orientation of the
local frame does not change. The specific intensities in the direction η = 0
are calculated by simply setting λd = 0 in (77) and (79). The values thereby
obtained are only used to initialise the field Im−1/2. They are not taken into
account for the calculation of e or the fluxes since this particular direction
does not belong to the quadrature set.

4.5 Advantages and Disadvantages

The discrete ordinate method is certainly the most widely used method today
for thermal radiation calculations, but also in neutronics, the field where it
was first devised. The only real challenge in terms of accuracy comes from
the Monte Carlo method,27 but the latter requires considerably longer com-
putation times. Although the transfer equation must be solved in each of the
discrete directions of the quadrature (so that the same calculation is repeated
up to 24 times with S8, for example), this solution is completely explicit (no
matrices need to be inverted) and hence very fast. Moreover, the discrete
ordinate method can take into account all directional aspects of the transfer
and in particular it can handle non-isotropic boundary conditions, such as
specular reflection, or the Snell–Descartes law at the interface of two media
with different group velocities. Globally, the ratio of accuracy to computation
time is excellent. However, there are certain limitations, e.g., for applications
to arbitrary geometries and/or non-rectangular meshes, as well as in essen-
tially diffusive media. In addition, there are two specific numerical problems
that may impair the accuracy of the method.
27 In the hierarchy of methods used for radiative calculations, the zone method ([8],

Chap. 17) has a reputation for great accuracy, but requires an enormous calcu-
lational effort for the evaluation of exchange factors and hence a considerable
computation time. There is little doubt that the Monte Carlo approach is prefer-
able.
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The first relates to the interpolation (56) of the intensity within the unit
cell. The centered (diamond) scheme can produce negative intensities locally,
resulting in undesirable fluctuations in the solution. The step scheme is more
stable from this point of view, but it is also less accurate because it introduces
a great deal of numerical diffusion. A simple solution to this problem is to
calculate the interpolation coefficients at each point using [22]

a = max
(

1
2
, 1 − |µm|Ax

κω∆V + 2|ηm|Ay

)
, (80)

b = max
(

1
2
, 1 − |ηm|Ay

κω∆V + 2|µm|Ax

)
, (81)

in Cartesian geometry, and [23]

a = max
(

1
2
, 1 − |µm|AW

κω∆V + 2|ξm|Az + 2|AR|

)
, (82)

b = max
(

1
2
, 1 − |ξm|Az

κω∆V + 2|µm|AE + 2|AR|

)
, (83)

c = max
(

1
2
, 1 − |AL|

κω∆V + 2|µm|AE + 2|ξm|Az

)
, (84)

in cylindrical geometries. Negative intensities are then avoided, whilst main-
taining the accuracy of the scheme as close as possible to second order.

The other problem is related to the discretisation of the directions in
space, which leads to the so-called ray effect. This occurs for instance when
the medium has a small region (surface or volume) at high temperature in rel-
atively cold surroundings. If the medium is homogeneous, this source would
normally affect all points at similar distances from its center in roughly the
same way. Now among these points, there are some from which none of the
discrete directions actually intercepts the source. The calculation thus at-
tributes no flux to them. Furthermore, a point which sees the source in a
solid angle δΩ in one of the directions sm will be attributed a flux calculated
with the solid angle wm (the weight of sm) rather than δΩ. Hence, the en-
ergy from the source, even if it is globally conserved by the numerical scheme,
is incorrectly distributed. This leads to results fluctuating around the exact
solution. There is no good remedy for this problem, inherent in the discretisa-
tion of the propagation directions, and particularly relevant in a dominantly
ballistic regime. It diminishes (without theoretically disappearing altogether)
when the number of discrete directions is increased.28

28 However, for a given number of directions, it increases when the spatial mesh is
refined.
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Appendix. P1 Method and Hyperbolic Heat Equation

In Sect. 3.1, we discussed the P1 method in the stationary regime. In this
appendix, we shall outline the more general case of a variable regime and
show how to recover the hyperbolic heat equation from P1, at least under
certain conditions.

P1 Method in Non-Stationary Regime

Integrating (10) and also (10) multiplied by s over the whole 4π sr solid angle,
we obtain

1
vω

∂Gω

∂t
+ ∇ · q′′

ω + κωGω = 4πκωI0
ω , (85)

1
vω

∂q′′
ω

∂t
+ ∇Pω + κωq′′

ω = 0 , (86)

respectively, where Pω is the tensor
∫
4π ssIω dΩ. As before (see Sect. 3.1),

the P1 approximation amounts to assuming that

Iω(x, t, s) ≈ Gω(x, t)
4π

+
3
4π

q′′
ω(x, t) · s , (87)

which yields29

∇Pω ≈ 1
3∇Gω . (88)

Equation (86) then becomes

1
vω

∂q′′
ω

∂t
+

1
3
∇Gω + κωq′′

ω = 0 . (89)

Hyperbolic Transport Equation

Differentiating (85) with respect to t and dividing by vω, we obtain

1
v2

ω

∂2Gω

∂t2
+ ∇ ·

(
1
vω

∂q′′
ω

∂t

)
+

κω

vω

∂Gω

∂t
= 4π

κω

vω

∂I0
ω

∂t
. (90)

Hence, according to (89),

1
v2

ω

∂2Gω

∂t2
− 1

3
∇2Gω − κω∇ · q′′

ω +
κω

vω

∂Gω

∂t
= 4π

κω

vω

∂I0
ω

∂t
. (91)

29 We have
∫
4π

ss dΩ = 4πδ/3 and
∫
4π

ss[q′′
ω(x) · s] dΩ = q′′

ω(x)
∫
4π

sss dΩ, where∫
4π

sss dΩ = 0 (zero tensor). This gives Pω = Gω(x)δ/3, and hence ∇Pω =
∇Gω/3.
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Using (85) to reexpress ∇ · q′′
ω, we find

1
v2

ω

∂2Gω

∂t2
− 1

3
∇2Gω − κω

(
4πκωI0

ω − 1
vω

∂Gω

∂t
− κωGω

)
+

κω

vω

∂Gω

∂t

= 4π
κω

vω

∂I0
ω

∂t
, (92)

which simplifies to

1
v2

ω

∂2Gω

∂t2
+2

κω

vω

∂Gω

∂t
− 1

3
∇2Gω +κ2

ωGω = 4πκω

(
κωI0

ω +
1
vω

∂I0
ω

∂t

)
, (93)

or, dividing by κ2
ω,

τ2
ω

∂2Gω

∂t2
+ 2τω

∂Gω

∂t
− Λ2

ω

3
∇2Gω + Gω = 4π

(
I0
ω + τω

∂I0
ω

∂t

)
, (94)

where

Λω =
1
κω

, τω =
1

vωκω
, (95)

so that Λω is in fact the mean free path and τω the relaxation time introduced
in Sect. 2.2.

Diffusive Regime

The approximation of purely diffusive transport amounts to assuming that30

Gω ≈ 4πI0
ω . (96)

In this case, using the notation introduced for (95), (89) divided by κω to-
gether with (94) become

τω
∂q′′

ω

∂t
+ q′′

ω = −4πΛω

3
∇I0

ω , (97)

τ2
ω

∂2I0
ω

∂t2
+ τω

∂I0
ω

∂t
− Λ2

ω

3
∇2I0

ω = 0 . (98)

30 From (19), Iω = I0
ω − (1/κω)s · ∇I0

ω and hence

∫

4π

Iω dΩ = 4πI0
ω − 1

κω
∇I0

ω ·
∫

4π

s dΩ

︸ ︷︷ ︸
=0

.
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Since the internal energy density (per unit frequency) is31 eω = 4πI0
ω/vω, the

last equation can also be written as

τ2
ω

∂2eω

∂t2
+ τω

∂eω

∂t
− Λ2

ω

3
∇2eω = 0 . (99)

If we now assume that τω, Λω, and vω are independent of the frequency
(analogous to the assumption of a grey medium in thermal radation), i.e.,
τω = τ , Λω = Λ, and vω = v, we can express the preceding equations in
terms of total quantities, i.e., integrated over the whole spectrum:

τ
∂q′′

∂t
+ q′′ = −4πΛ

3
∇I0 = −Λv

3
∇e , (100)

τ2 ∂2e

∂t2
+ τ

∂e

∂t
− Λ2

3
∇2e = 0 , (101)

with

e =
4πI0

v
=

4π

v

∫ ωmax

0

I0
ω dω . (102)

Comparison with the Hyperbolic Heat Equation

The hyperbolic heat equation (HHE), viz.,

τ
∂2e

∂t2
+

∂e

∂t
− ∇ · (λ∇T ) = 0 , (103)

where e = ρcT is the internal energy density, follows from the modified
Fourier law:

τ
∂q′′

∂t
+ q′′ = −λ∇T . (104)

These two equations should be compared with (101) and (100), respectively,
which can also be written in the form

τ
∂2e

∂t2
+

∂e

∂t
− Λ

τv︸︷︷︸
=1

∇ ·
(

Λv

3
∂e

∂T
∇T

)
= 0 , (105)

τ
∂q′′

∂t
+ q′′ = −Λv

3
∂e

∂T
∇T . (106)

The analogy between HHE and the non-stationary P1 model is then estab-
lished by setting

λ =
Λv

3
∂e

∂T
=

4πΛ

3
∂I0

∂T
, (107)

in the diffusive regime and for a medium whose characteristics (relaxation
time, mean free path, and propagation speed of phonons) are independent of
the frequency.
31 From (2). See last footnote.
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Abstract. Heat transfer of radiative origin is treated classically by the transport
equation of a phenomenological quantity called the specific intensity (see the Chap-
ter on Radiative Transfer by Carminati in this volume). This quantity and its
dynamical equation are based on a radiometric approach (incoherent addition of
fluxes, geometrical optics). When the relevant distances become as small as the
wavelength or less, such hypotheses are no longer valid. One must then go back to
the more general ideas of electromagnetic theory.

The aim of this Chapter is to show how to calculate heat transfer of radiative
origin from the equations governing the electromagnetic field. We begin by review-
ing these equations. We then show how to calculate the quantities relevant to heat
transfer, such as the radiative flux. We also review the theory of dipole radiation,
which will prove helpful in the ensuing radiative transfer calculations.

In Sect. 2, we examine how a small dipolar sphere at temperature T will radiate
in vacuum, and how transfer occurs between two such dipolar spheres at different
temperatures. We then calculate the electromagnetic energy density near a surface
at temperature T (Sect. 3). We shall see how this energy density is modified in the
near field, particularly when the materials in place can carry surface waves. Finally,
in Sect. 4, we investigate the near-field radiative transfer between two plane surfaces,
bringing out the key role played once again by surface waves.

1 Review of Electromagnetism

1.1 Maxwell’s Equations and Constitutive Relations

In matter, the electromagnetic field is completely determined by the four
quantities E, D, B, and H , where E is the electric field, D is the electric
displacement, B is the magnetic induction, and H is the magnetic field. In
the presence of free charge and current densities, ρ and j, the fields obey
Maxwell’s equations:

∇ · B = 0 , ∇ · D = ρ , (1)

∇ × E = −∂B

∂t
, ∇ × H = j +

∂D

∂t
. (2)

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 107–131 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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The local conservation of charge is ensured by the second equations of (1)
and (2), which together imply that

∂ρ

∂t
+ ∇ · j = 0 . (3)

If we now append the Lorentz force law describing the force on a particle
of charge q, moving with velocity v, viz., f = q(E + v × B), we then have
a complete dynamical description of the charges and electromagnetic fields
(classical and non-relativistic). We shall often be dealing with monochro-
matic quantities in this Chapter. Any time signal can be decomposed into
monochromatic signals by the Fourier transform:

ψ(r, t) =
1
2π

∫ ∞

−∞
ψ(r, ω)e−iωt dω .

The fields are related by constitutive relations. For linear, isotropic media,
these relations are

D(r, ω) = ε0ε(r, ω)E(r, ω) , B(r, ω) = µ0µ(r, ω)H(r, ω) ,

where ε is the dielectric constant and µ the relative permeability. These are
local relations in space and in frequency. They are therefore a priori nonlocal
in the reciprocal space, i.e., the space of wave vectors k, and in time. In
the following, we shall restrict to the case where the dielectric constant and
permeability are local quantities in the direct space. However, in the temporal
space, we will have relations like

D(r, t) =
∫

ε0ε(r, t − t′)E(r, t′) dt′ .

The medium is then dispersive. When there is no free current, as we shall
assume throughout this Chapter, the Fourier frequency components of the
electromagnetic fields obey a wave equation of the form

∇2ψ(r, ω) + µε
ω2

c2
ψ(r, ω) = 0 , (4)

known as the Helmholtz equation. The product ε0µ0 = 1/c2 is the reciprocal
of the square of the speed of an electromagnetic wave in vacuum, whereas
εµ = n2 is the square of the refractive index n of the medium. Equation (4)
has solutions of the form

ψ(r, ω) = Aeik · r + Be−ik · r , (5)

where k = ku and k =
√

µεω/c.



Radiative Transfer on Short Length Scales 109

1.2 Plane Wave Expansion

Any electromagnetic wave can be expanded in plane waves. Consider a mono-
chromatic component of an electromagnetic wave propagating in the positive
z direction. If we know this component at a point r = (x, y, z) and if this
wave is square summable in the plane (x, y), then this component can be
written in the form of a Fourier transform

ψ(r, ω) =
∫

dα dβ

4π2
ψ(α, β, z, ω)ei(αx+βy) . (6)

Substituting this into the Helmholtz equation (4), we find that ψ(α, β, z, ω)
satisfies

∂2ψ(α, β, z, ω)
∂z2

+
(

µε
ω2

c2
− α2 − β2

)
ψ(α, β, z, ω) = 0 , (7)

whence,

ψ(r, ω) =
∫

dα dβ

4π2
ψ(α, β, z = 0, ω)ei(αx+βy+γz) , (8)

where γ2 = µεω2/c2 − α2 − β2, �(γ) > 0, and �(γ) > 0 if �(γ) = 0. Any
electromagnetic wave is then expressed as a sum of plane waves with wave
vector k = (α, β, γ) and amplitude ψ(α, β, z = 0, ω), and this sum is none
other than the Fourier transform of ψ(r, ω) in the plane z = 0.

We now consider the case of a two-dimensional light beam, i.e., in the
(x, z) plane, with width ∆x in the plane z = 0, propagating in the positive
z direction. Let us investigate the amplitudes in its plane wave expansion.
Consider the three cases:

– ∆x � λ (λ = 2πc/ω). Writing the Fourier transform of the field in the
plane z = 0, we note that its spatial Fourier components will assume large
values for spatial frequencies α lying in the range from −2π/∆x to 2π/∆x.
In this case, the plane wave expansion will be limited to components for
which γ2 remains positive and will be very close to ω2/c2. The wave
vector k will thus lie very close to the z direction.

– ∆x ∼ λ. The spatial frequencies α lying in the range from −2π/∆x to
2π/∆x ensure that γ2 will be close to zero. Now when γ is close to zero,
we have a component making an angle close to π/2 with respect to the
normal. The beam will have a very large opening angle (diffraction).

– ∆x � λ. The spatial frequencies are essentially those for which γ2 < 0,
i.e., γ is pure imaginary and the spatial frequencies correspond to ex-
ponentially decaying evanescent waves. Very little light is transmitted
through a hole with dimensions less than the wavelength.

One of the useful aspects of this expansion is that Maxwell’s equations are
particularly simple for plane waves. Hence the expansion (8) generalises to a
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vectorial form in three dimensions, and for all the fields. For each plane wave,
Maxwell’s equations become

ik · B(k, ω) = 0 , ik · D(k, ω) = 0 , (9)
ik × E(k, ω) = iωB(k, ω) , ik × H(k, ω) = −iωD(k, ω) , (10)

when there is no free current. The plane waves are therefore transverse, i.e.,
the fields are orthogonal to k. The third Maxwell equation also shows that
the vector triple

(
k, E(k, ω), B(k, ω)

)
is right-handed.

1.3 Energy Conservation, Poynting Vector, and Energy Density

We shall now calculate the power dissipated in a volume V containing charges
and currents. To do so, we must calculate the work done per unit time by
the Lorentz force. Consider the non-dispersive case. For a continuous current
distribution, the dissipated power is given by [1]

P =
∫

V

j(r, t) · E(r, t) d3
r . (11)

Eliminating j with the help of the fourth Maxwell equation, we obtain

P =
∫

V

[
E · (∇ × H) − E ·

∂D

∂t

]
d3r . (12)

Using ∇ · (E × H) = H · (∇ × E) − E · (∇ × H) and the third Maxwell
equation,

P =
∫

V

j(r, t) · E(r, t) d3
r

= −
∫

V

[
∇ · (E × H) + E ·

∂D

∂t
+ H ·

∂B

∂t

]
d3

r . (13)

We now set

u = 1
2 (E · D + H · B) and S = E × H ,

where u is the electromagnetic energy density associated with the free
charges [2] and S is the Poynting vector. We deduce the local form of the
conservation of energy, viz.,

∂u

∂t
= −∇ · S − j · E . (14)

Hence the variation of the electromagnetic energy in a volume is equal to
minus the sum of the work done by the Lorentz force and the flux of the
Poynting vector. In permanent regime, the work done by the Lorentz force is
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minus the flux of the Poynting vector. We shall use these relations in what
follows.

When there is dispersion, it is essential to work with monochromatic quan-
tities. In this case, the relevant quantities for transfer calculations, such as
the power dissipated, the Poynting vector, or the energy density, will be os-
cillating quantities. They must therefore be averaged over a period. Consider,
for example, the power dissipated at frequency ω. We have

E(r, t) = �
[
E(r, ω)e−iωt

]
= 1

2

[
E(r, ω)e−iωt + E∗(r, ω)eiωt

]
,

with an analogous expression for the current j. We now calculate

j(r, t) · E(r, t) = 1
4

[
j(r, ω)e−iωt + j∗(r, ω)eiωt

]

·
[
E(r, ω)e−iωt + E∗(r, ω)eiωt

]

= 1
2�

[
j(r, ω) · E∗(r, ω) + j(r, ω) · E(r, ω)e−2iωt

]
. (15)

The second term averages to zero over a period. Therefore the average dissi-
pated power is

P (r, ω) = 1
2�

[
j(r, ω) · E∗(r, ω)

]
. (16)

In the same way, the Poynting vector is

S(r, ω) = 1
2�

[
E(r, ω)×H∗(r, ω)

]
, (17)

and the energy density is

u = 1
4�

[
E(r, ω) · D∗(r, ω) + B(r, ω) · H∗(r, ω)

]
. (18)

1.4 Potentials

Since B satisfies ∇ · B = 0, it can be derived from a vector potential A, i.e.,

B = ∇ × A . (19)

Substituting into the third Maxwell equation, we obtain

∇×
(

E +
∂A

∂t

)
= 0 .

The quantity in brackets thus derives from a scalar potential V and we obtain

E = −∇V − ∂A

∂t
. (20)
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The choice of potentials A and V is not unique. Hence, if we take any function
Φ(r, t) and add ∇Φ to A and −∂Φ/∂t to V , the fields derived from these
new potentials will be the same. We are free to choose A and V such that

∇ · A +
1
c2

∂V

∂t
= 0 . (21)

The choice of such a relation between A and V is called a gauge condition and
in particular, (21) is known as the Lorentz gauge condition. In this gauge, the
potentials A and V satisfy very similar equations and have simple expressions
in terms of the charge and current distributions [1]:

A(r, t) =
µ0

4π

∫
j(r′, t − |r − r′|/c)

|r − r′| d3
r′ , (22)

V (r, t) =
1

4πε0

∫
ρ(r′, t − |r − r′|/c)

|r − r′| d3
r′ , (23)

where the integrals are taken over the region occupied by sources. These
relations are the expressions for the retarded potentials, which are similar in
form to the formulas in magnetostatics and electrostatics. The main difference
comes from the fact that, in these expressions, the influence of a charge or
current element at r′ at time t is only felt at r at a later time t + |r − r′|/c.
Hence the term ‘retarded’ potentials.

1.5 Dipole Radiation

We shall now calculate the electromagnetic field in vacuum created at r by a
monochromatic electric dipole at the origin. The polarisation density vector,
or dipole density vector, is given in complex notation by

P (r, t) = p0e−iωtδ(r) .

The current density is related to the dipole density by j = ∂P /∂t, whence
j(r, t) = −iωp0e−iωtδ(r). We set r = rur. From the expression for the
retarded potentials, we write the vector potential in the form A(r, t) =
A(r)e−iωt, where

A(r) = − iωµ0

4π

p0eikr

r
, (24)

and k = ω/c. From the expression for the vector potential A and the general
relation ∇×(fA) = f∇ × A + (∇f)×A, we obtain the following formula
for the magnetic induction B:

B(r) = − iωµ0

4π
eikr

(
ik
r
− 1

r2

)
ur×p0 . (25)
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In vacuum, the fourth Maxwell equation can be used to relate the electric
field to the magnetic induction by

E = − c2

iω
∇ × B .

Using the general relations

∇×(ur×p0) = −(p0 · ur)
ur

r
− p0

r
, ur×(ur×p0) = (p0 · ur)ur − p0 ,

we obtain the following expression for the electric field E:

E(r) =
eikr

4πε0

×
[(

−k2

r
− ik

r2
+

1
r3

)
ur×(ur×p0) + 2ur(p0 · ur)

(
1
r3

− ik
r2

)]
, (26)

or alternatively,

E(r) =
k3eikr

4πε0

{[
1
kr

+
i

(kr)2
− i

(kr)3

]
p0

+ur(p0 · ur)
[

3
(kr)3

− 3i
(kr)2

− 1
kr

]}
. (27)

This electric field can also be written in the form of a contraction of a second
rank tensor (matrix)

←→
G 0 with the vector p0, viz.,

E(r) =
←→
G 0(r) · p0 , (28)

where

←→
G 0(r) =

k3eikr

4πε0

{[
1
kr

+
i

(kr)2
− i

(kr)3

]←→
I

+(ur ⊗ ur)
[

3
(kr)3

− 3i
(kr)2

− 1
kr

]}
, (29)

with
←→
I the identity matrix and ur ⊗ur the tensor product of ur with itself.

To clarify these expressions for E and B, take p0 = p0z and consider
spherical coordinates ur, uθ and uφ. In this case, ur×p0 = −p0 sin θuφ and
ur×(ur×p0) = p0 sin θuθ. Then E and B can be written

B(r) =
iµ0ωp0 sin θeikr

4π

(
ik
r
− 1

r2

)
uφ , (30)

E(r) =
p0 sin θeikr

4πε0

(
−k2

r
− ik

r2
+

1
r3

)
uθ +

2p0 cos θeikr

4πε0

(
1
r3

− ik
r2

)
ur .

(31)
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There are two important regimes here. The first is the short-range regime for
which r � λ, i.e., kr � 2π, and the fields become

B(r) = − iµ0ωp0 sin θ

4πr2
uφ , (32)

E(r) =
2p0 cos θ

4πε0r3
ur +

p0 sin θ

4πε0r3
uθ . (33)

We recognise here the expression for the electrostatic electric field.
The other regime, of particular importance in the present context, is the

far-field regime, for which r � λ. The fields then become

B(r) = −µ0ω
2eikrp0 sin θ

4πrc
uφ , (34)

E(r) = −ω2eikrp0 sin θ

4πε0rc2
uθ . (35)

We observe that the fields B and E go as 1/r in the far field. They are also
orthogonal and in phase. Moreover, we have |E|/|B| = c. Hence, far from
the dipole, at a point r = rur, the electromagnetic field behaves as a plane
wave propagating in the direction ur. The direction of the plane wave and
the structure of the field depend on the observation point. We can say that
the electromagnetic field has a local plane wave structure.

We obtain the power radiated by the dipole by calculating the flux of the
Poynting vector through a sphere of infinite radius. At an infinite distance
from the dipole, we keep only the terms of the far-field approximation in the
Poynting vector S = �(E × B∗)/2µ0. The latter points in the direction ur.
Hence,

S =
p2
0ω

4 sin2 θ

32π2ε0c3r2
ur . (36)

We recover the classical dipole radiation pattern. In particular, the emission
is maximal in the direction perpendicular to the dipole axis and zero along
the axis. The total power is obtained by integrating the flux to obtain

P =
∫

S · rr dΩ =
p2
0ω

4

32π2ε0c3

∫ π

0

sin3 θ dθ

∫ 2π

0

dφ =
p2
0ω

4

12πε0c3
. (37)

2 Calculating Radiative Transfer
on Short Length Scales

In this section, we shall calculate radiative transfer in contexts involving
nanoparticles, treating the latter as electric dipoles. To begin with, we calcu-
late the thermal radiation from a dipole particle throughout space. We then
calculate the short-range radiative transfer between two dipole particles at
different temperatures.
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2.1 Thermal Emission from a Nanoparticle

Consider a particle with characteristic size of the order of ten to a hundred
nanometers. We shall be concerned with heat transfer at standard temper-
atures, so that the electromagnetic field associated with heat exchange will
have a typical wavelength of the order of ten microns. We may therefore
expect the electromagnetic field to be constant within the particle. We will
be able to apply the dipole approximation. This nanoparticle will be char-
acterised by a polarisability α(ω) relating the electric dipole moment p to
the electric field E by p(ω) = ε0α(ω)E(ω). The fluctuation–dissipation the-
orem (see Sect. 4.2 of the Chapter on Radiative Transfer by Carminati in
this volume and [3]) tells us that the fluctuations in the dipole moment are
related to the imaginary part of the polarisability and to the temperature T
according to

〈pi(ω)p∗j (ω
′)〉 =

4π

ω
ε0�

[
α(ω)

]
Θ(ω, T )δijδ(ω − ω′) , (38)

where the energy Θ(ω, T ) of an oscillator1 at equilibrium is

Θ(ω, T ) =
�ω

e�ω/kBT − 1
. (39)

From the power radiated by an elementary dipole oscillating at frequency ω
as given by (37), we shall calculate the power P (ω) radiated by the particle
in a frequency interval dω, whereupon the total radiated power will be P =∫ ∞
0 P (ω) dω. In the present case the dipole is given by

p(t) =
∫ +∞

−∞
p(ω)e−iωt dω

2π
.

In order to calculate the radiation in a frequency band dω, we take the
expression for a monochromatic dipole and replace p0 by p(ω) dω/2π and
δ(ω−ω′) by 1/ dω. Note that, since thermal dipoles are random, one must sum
the contributions from the three polarisation directions (|pi|2, i = x, y, z).

1 The term �ω/2 does not appear in this expression because we are concerned with
energy transfer. For a more detailed discussion, see [4].
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Moreover, in the heat transfer context, we are only concerned2 with positive
frequency quantities [4]. Hence,

P (ω) dω = 4 × ω4

12πε0c3
× 3〈|px(ω)|2〉

(
dω

2π

)2

=
ω3

π2c3
�[α(ω)]Θ(ω, T ) dω . (40)

The power radiated into space is proportional to the imaginary part of the
polarisability, which is related to the scattering cross-section of the particle.

2.2 Radiative Power Exchanged
Between Two Spherical Nanoparticles

Consider two spherical nanoparticles labelled 1 and 2, with dielectric con-
stants ε1(ω) and ε2(ω) and temperatures T1 and T2, respectively. We shall
now calculate the power dissipated in each of them. The heat exchange will be
the difference between these two powers. We begin by calculating the power
of the electromagnetic field of particle 1 dissipated by particle 2, viz.,

P1→2(ω) =
1
2
�

∫

2

j(r′, ω) · E∗(r′, ω) d3
r′ . (41)

Now in particle 2, j(r′, ω) = −iωε0(ε2−1)Eloc(r′, ω), where Eloc is the local
field3 in particle 2. Hence,

P1→2(ω) =
ωε0

2

∫

2

�(ε2)|Eloc(r′, ω)|2 d3
r′ . (42)

We are still in the context of the dipole approximation. The spherical
nanoparticle is considered to be immersed in a uniform incident field Einc.
We then know [1] that, to a first approximation, the incident field is related
to the local field by

Eloc(r′) =
3

ε2 + 2
Einc(r′) . (43)

2 The quantities x(t) we are concerned with here are real. Their Fourier transforms
therefore satisfy the relation x(−ω) = x∗(ω). All spectral information in real sig-
nals is thus contained in the positive frequencies. We introduce analytic signals xa

which, for positive frequencies, have the same value as the Fourier transform of
the signal and, for negative frequencies, are zero. We have x(t) = 2�[xa(t)].
Here, P (ω) is the analytic signal associated with the real power. Since it is a
quadratic quantity, it follows that P (ω) is equal to four times the value of the
power calculated with the complex quantities.

3 The electric displacement is D = ε0εE = ε0E + P . We deduce that P =
ε0(ε−1)E. Since j = ∂P /∂t = −iωP , we deduce that j(ω) = −iωε0(ε−1)E(ω)
for the spectral quantities.
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Since the polarisability of a spherical particle of radius a is given by

α2 = 4πa3 ε2 − 1
ε2 + 2

, (44)

we find that

P1→2(ω) = ε0
ω

2
�(α2)|Einc(r2, ω)|2 , (45)

where r2 is the position of particle 2. We now calculate the incident field
on particle 2 produced by the fluctuating currents of particle 1 at tempera-
ture T1. Let

←→
G (r2, r1) be the vacuum Green tensor giving the electric field

at r2 produced by an elementary dipole placed at r1. With the usual con-
ventions for Green functions in electromagnetism, we have

Einc(r2, ω) = µ0ω
2←→G (r2, r1, ω) · p .

Equation (45) involves the squared modulus of Einc(r2, ω). To use the fluc-
tuation–dissipation theorem (38), we evaluate Einc(r2, ω)E∗

inc(r2, ω
′) (scalar

product of two vectors). Hence,

Einc(r2, ω)E∗
inc(r2, ω

′)

= µ0ω
2ω′2 ∑

n,m,l=x,y,z

Gnm(r2, r1, ω)G∗
nl(r2, r1, ω

′)pm(r1, ω)pl(r1, ω
′) .

(46)

Taking the ensemble average of Einc(r2, ω)E∗
inc(r2, ω

′) and using (38), we
obtain

〈
Einc(r2, ω)E∗

inc(r2, ω
′)
〉

= 4πµ2
0ε0ω

3�[α1(ω)]Θ(ω, T1)
∑
n,m

|Gnm(r2, r1, ω)|2δ(ω − ω′) . (47)

It remains only to find the various components of the Green tensor which were
almost calculated in the last section. Indeed, (27) gives the expression for the
electric field produced by a monochromatic elementary dipole p0. To obtain
the Green function in a frequency band dω, we follow the same procedure
as in the last section. We replace δ(ω − ω′) by 1/ dω and

←→
G (r2, r1, ω) by←→

G 0(r2 − r1)× (dω/2π)2 × 1/µ0ω
2. Taking into account the fact that we are

using analytic signals to restrict to positive frequencies [4] and keeping only
terms in 1/(kr)3, the power transferred from particle 1 to particle 2 over a
frequency band dω is

P1→2(ω) dω = 4 × ε0
ω

2
�(α2) × 4πµ2

0ε0ω
3�[α1(ω)]Θ(ω, T1)

× dω

4π2
×

∑
n,m

|Gnm(r2, r1, ω)|2 . (48)
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Equation (29) implies that

∑
n,m

|Gnm(r2, r1, ω)|2 =
3

8π2k4|r2 − r1|6
. (49)

In the same way, we find an analogous equation for the power transferred from
nanoparticle 2 to nanoparticle 1. Finally, after simplifying all the factors, the
power exchanged between the two nanoparticles becomes

P1↔2 =
3

4π3

�[α1(ω)]�[α2(ω)]
|r2 − r1|6

[
Θ(T1, ω) − Θ(T2, ω)

]
. (50)

Note the spatial dependence of this transfer, going as 1/d6, typical of the
induced dipole–induced dipole interaction. These are interactions of van
der Waals type. Microscopically, they can be interpreted in the following
way. Thermal or quantum fluctuations distort the charge distributions in a
nanoparticle, thereby generating a fluctuating dipole. This fluctuating dipole
induces a field on the other nanoparticle which distorts its charge distribu-
tion, thereby generating a second dipole. The interaction between these two
correlated dipoles induces an energy transfer and a force, the so-called van
der Waals force.

In addition to this, (50) shows that the transfer depends on the imagi-
nary part of the polarisation of each nanoparticle. For spherical particles of
radius a, it can be shown that

�[α(ω)] = 4πa3 3�[ε(ω)]
|ε(ω) + 2|2 . (51)

We thus observe that, if the real part of the dielectric constant is close to
−2 at some frequency and if its imaginary part is small, �(α) will be large.
There is then a resonance at the surface of the sphere. Such resonances occur
in metals at visible wavelengths and in polar materials (like glass, SiC, and
III–V and II–VI semiconductors) at infrared wavelengths. Figure 1 shows the
power exchanged between two spherical nanoparticles of amorphous SiO2

(glass) of radius 5 nm, set 100 nm apart. One of the particles is at 500 K and
the other at 300 K. Note that power is only exchanged at certain wavelengths
corresponding to resonances of the material. The total power exchanged is
1.69 × 10−15 W. This leads to a time scale of 10−2 s for changes induced in
the temperature of a nanoparticle.

3 Thermal Near-Field Emission from a Plane Surface

In this section, we shall study the electromagnetic field above a flat interface
separating a material at temperature T (medium 2, permittivity ε) from a
vacuum (medium 1) (see Fig. 2). We investigate this electromagnetic field
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Fig. 1. Power exchanged between two spherical nanoparticles of amorphous SiO2

(glass) of radius 5 nm, set 100 nm apart

Fig. 2. Plane interface separating a semi-infinite material (permittivity ε) at tem-
perature T from the vacuum

via two quantities, the radiative flux and the electromagnetic energy density,
which will be calculated using the Green functions for a system with an
interface. Consider the energy density, for example. To obtain this quantity,
we must calculate 〈E(r, ω)E∗(r′, ω′)〉 and 〈H(r, ω)H∗(r′, ω′)〉. If we know
the Green functions

←→
G E and

←→
G H relating the current in the material to the
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field above the interface, then we can use the fluctuation–dissipation theorem
to calculate the required quantities. If there is an electric current j at r2, then

E(r1, ω) = iµ0ω

∫ ←→
G E(r1, r2, ω) · j(r2, ω) d3

r2 , (52)

H(r1, ω) =
∫ ←→

G H(r1, r2, ω) · j(r2, ω) d3
r2 . (53)

For example, let us calculate 〈E(r, ω)E∗(r′, ω′)〉, the averaged value of the
scalar product of the fields:

〈E(r, ω)E∗(r′, ω′)〉 =

〈
µ2

0ωω′
∫ ←→

G E(r, r′, ω)

· j(r′, ω) d3r′←→G E∗
(r1, r

′′, ω′) · j(r′′, ω′) d3r′′
〉

. (54)

The fluctuation–dissipation theorem applied to the electric currents tells us
that

〈jm(r′, ω)j∗l (r′′, ω′)〉 = 4πε0�(ε)ωΘ(ω, T )δmlδ(r′ − r′′)δ(ω − ω′) . (55)

Substituting this into (54) yields

〈|E(r, ω)|2〉

= 4πµ2
0ω

3ε0Θ(ω, T )
∑

m,l=x,y,z

∫
�[ε′′(r′, ω)]|GE

ml(r, r′)|2 d3
r′ . (56)

The last integration is only carried out over the lower half-space because
the imaginary part of the dielectric constant is zero in the upper half-space.
The Green functions for a system with an interface can be found in the
literature [5]. When the currents are in medium 2 and the field is required in
medium 1, the Green functions are given by

←→
G E(r, r′) =

i
16π3

∫
1
γ2

(ŝts21ŝ + p̂+
1 tp21p̂

+
2 )eiK · (R−R′)ei(γ1z−γ2z′) d2

K ,

(57)
←→
G H(r, r′) = − k0

16π3

∫
1
γ2

(−p̂+
1 ts21ŝ + ŝtp21p̂

+
2 )eiK · (R−R′)ei(γ1z−γ2z′) d2K,

(58)

where r = (R, z), the wave vector is k = (K, γ), and

γi = εik
2
0 − K2 , K = KK̂ , ŝ = K̂ × ẑ , p̂±i =

|K|ẑ ∓ γK̂

nik0
,



Radiative Transfer on Short Length Scales 121

with

ts21 =
2γ2

γ1 + γ2
, tp21 =

2n1n2γ2

ε1γ2 + ε2γ1
,

the Fresnel transmission factors in polarisations s or p. These Green functions
are expressed as integrals of elementary plane waves. From the expressions
for the Green functions, we see that the behaviour of the Fresnel factors will
play a dominating role in the behaviour of the energy density.

The calculations leading to the energy density, and later the Poynting
vector, are somewhat tedious. Since they all follow the same pattern, we
shall only go into all the details for 〈|E(r, ω)|2〉. To begin with, we calculate

∫

z<0

�(ε)|GE
ml(r, r′)|2 d3

r′ .

Substituting in the expression for the Green tensor of the electric field, we
obtain

∫

z<0

�(ε)|GE
ml(r, r′)|2 d3

r′

=
1

256π6

∫ 0

−∞
dz′

∫
d2R′ d2K d2K ′ e

i(K−K′) · (R−R′)

γ2(K)γ∗
2 (K ′)

× eiz[γ1(K)−γ∗
1 (K′)]eiz′[γ∗

2 (K′)−γ2(K)]

×
[
(êm · ŝ)ts21(ŝ · êl) + (êm · p̂+

1 )tp21(p̂
+
2 · êl)

]

×
[
(êm · ŝ)ts∗21(ŝ · êl) + (êm · p̂+∗

1 )tp∗21(p̂
+∗
2 · êl)

]
. (59)

The integration over R′ produces a Dirac distribution in the integral equal to
4π2δ(K − K ′). The integration over K ′ is then immediate. The integration
over z′ is also simple when the dielectric constant is uniform throughout the
material. One then integrates exp[−2�(γ2z

′)] from −∞ to 0. One can also
use the relation ω2/c2ε′′ = 2�(γ2)�(γ2) in medium 2. Finally, the squared
modulus of the electric field can be written

〈E(r, ω)E∗(r′, ω′)〉 =
µ0ωΘ(ω, T )

16π3

∫
d2K

�(γ2)
|γ2|2

e−2�(γ1)z

×
[
(êm · ŝ)ts21(ŝ · êl) + (êm · p̂+

1 )tp21(p̂
+
2 · êl)

]

×
[
(êm · ŝ)ts∗21(ŝ · êl) + (êm · p̂+∗

1 )tp∗21(p̂
+∗
2 · êl)

]
. (60)

It remains to calculate all the terms in the second and third lines of the
integrand. This is a straightforward but lengthy exercise. After grouping all
the terms, we observe that the cross terms involving products of Fresnel
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coefficients for different polarisations contribute nothing to the final result.
Hence,

〈E(r, ω)E∗(r′, ω′)〉 =
µ0ωΘ(ω, T )

8π2

∫ ∞

0

K dK
�(γ2)
|γ2|2

e−2�(γ1)z

×
[
|ts21|2 +

|tp21|2(K2 + |γ1|2)(K2 + |γ2|2)
|n1|2|n2|2k4

0

]
. (61)

We also have the following relations:

�(γ1)(1 − |rs
12|2) + 2�(γ1)�(rs

12) = �(γ2)
|γ1|2
|γ2|2

|ts12|2 , (62)

�(ε∗1γ1)(1 − |rs
12|2) + 2�(ε∗1γ1)�(rs

12) = �(ε∗2γ2)
|n1|2
|n2|2

|γ1|2
|γ2|2

|ts12|2 , (63)

�(ε∗1γ1) = �(γ1)
|γ1|2 + K2

k2
0

, (64)

�(ε∗1γ1) = �(γ1)
K2 − |γ1|2

k2
0

. (65)

The expression for the squared modulus of the electric field now becomes

〈E(r, ω)E∗(r′, ω′)〉

=
µ0ωΘ(ω, T )

8π2

{∫ ω/c

0

K dK

γ1

(
1 − |rs

12|2
2

+
1 − |rp

12|2
2

)

+
∫ ∞

ω/c

2K dK

γ1

[
�(rs

12) + �(rp
12)

(
2K2

k2
0

− 1
)]

e−2|γ1|z
}

. (66)

From (19), multiplied by 4 because we are using analytic signals, and feeding
in the above calculation together with the result for the squared modulus of
the magnetic field, we have

u(ω, T ) =
Θ(ω, T )ω

2π2c2

{∫ ω/c

0

K dK

γ1

(
1 − |rs

12|2
2

+
1 − |rp

12|2
2

)

+
∫ ∞

ω/c

K3 dK

k2
0 |γ1|

[
�(rs

12) + �(rp
12)

]
e−2|γ1|z

}
. (67)

The expression for the energy density is thus the sum of two terms. In the
first, the parallel wave vector lies between 0 and ω/c, i.e., it corresponds
to a wave propagating in vacuum. In the second, the parallel wave vector
is greater than ω/c, i.e., it corresponds to a wave decaying exponentially,
known as an evanescent wave. Since these waves decay, they are not expected
to contribute a long way from the interface. In the presence of a ‘black’
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Fig. 3. Energy density for three different heights above an interface separating
a semi-infinite medium of amorphous SiO2 at temperature T = 300 K from the
vacuum

material, i.e., one in which the Fresnel reflection factors rs
12 and rp

12 are zero,
we find an energy density equal to half of what would be found inside a cavity
in thermodynamic equilibrium. This is comforting, because we have indeed
calculated the electromagnetic energy density due to the presence of thermal
currents in a half -space.

Figure 3 shows the electromagnetic energy density at various distances
from a half-space filled with amorphous silica at T = 300 K. This material
is polar and has surface resonances, something we shall return to shortly.
At a distance of 100 µm from the interface, i.e., a greater distance than the
characteristic wavelength of thermal radiation, we observe a curve for the
electromagnetic energy density that is very similar to that of a black body,
except that there are ‘gaps’ at certain wavelengths. These correspond to
frequencies for which glass is highly reflective. When we move closer to the
surface, at distances shorter than the typical wavelength of thermal radiation,
we find that the energy density increases and that peaks appear at those
same wavelengths for which there were gaps further out. Finally, at very
short distances, we find that the energy density has increased at certain
wavelengths by more than 4 orders of magnitude, and that it has become
almost monochromatic. This behaviour contrasts starkly with that of a black
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body. It is due to the presence of surface waves close to the interface, which
decrease as one moves perpendicularly away from the interface.

Surface waves are electromagnetic waves which, physically, are associated
with a collective oscillation in the material. In a metal, surface waves are
associated with a collective oscillation of electrons. One then speaks of surface
plasmon polaritons. These resonances occur in the visible wavelength range.
In a polar dielectric material, surface waves are associated with a collective
oscillation of optical phonons. One then has phonon polaritons. From the
standpoint of electromagnetic theory, these waves only exist in polarisation p.
The dispersion relation between their wave vector parallel to the interface and
the angular frequency ω is

K =
ω

c

√
ε

ε + 1
. (68)

A necessary condition for the existence of such waves is that the dielectric
constant be less than −1. Figure 4 shows the dispersion relation of a surface
wave. Note that the modulus of K is always greater than ω/c. This implies
that the surface waves are evanescent waves and that they will play a negligi-
ble role far from the interface. We also observe the presence of an asymptote
at a certain angular frequency corresponding to �[ε(ω)] = −1. For slightly
lower frequencies than this critical value, there are a great many surface waves
for an interval dω. This implies that the density of states of the surface waves
will be large close to the resonance frequency. Since the energy density is the
product of the density of states and the mean energy of a state, we may
predict that the peaks in the energy density will correspond to peaks in the
density of states, i.e., to asymptotes of the dispersion relations of the surface
waves. These peaks also correspond to the resonances of �(rp

12). Indeed,

�(rp
12) =

2�(ε)
|ε + 1|2

has a peak when the dielectric constant is close to −1 and its imaginary
part is not too large. Note that, from a practical point of view, the local
detection of the energy density above a surface can be used to measure the
local electromagnetic density of states [6].

We can also calculate the radiative flux from a semi-infinite space at tem-
perature T . To do so, we must calculate the ensemble average of the Poynting
vector due to the presence of fluctuating currents. Given the geometry of the
system, we only need to evaluate

〈Sz(r, ω)〉 = 1
2�[〈ExH∗

y − EyH∗
x〉] .

By analogous calculations to those used to find the energy density, it can be
shown that this quantity has the form

〈Sz(r, ω)〉 =
�ω

4π2

1
e�ω/kBT − 1

∫ ω/c

0

K dK(1 − |rs
12|2 + 1 − |rp

12|2) . (69)
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Fig. 4. Dispersion relation for surface waves propagating along an interface sepa-
rating the vacuum from a polar material. The dispersion relation is located under
the light cone (dotted line), thereby revealing the evanescent nature of the surface
waves

We see that only the propagative waves contribute to the expression for the
radiative flux. There is no surprise here, since there are no waves coming in
from positive z values.4 Moreover, it can be shown that, if there is axial sym-
metry about the direction normal to the interface, then 2πK dK = dΩ cos θ,
and hence,

〈Sz(r, ω)〉 =
�ω3

4π2c2

1
e�ω/kBT − 1

∫

Ω=2π

cos θ dΩ

2π
(1 − |rs

12|2 + 1 − |rp
12|2) .

(70)

For a black body, we find that the emitted flux is indeed equal to πL0
ω(T ),

where

L0
ω(T ) =

�ω3

4π3c2

1
e�ω/kBT − 1

is the black body intensity. Otherwise, we observe that the expression for the
flux has the same form as in classical theory:

q(ω) = 〈Sz(r, ω)〉 =
∫

dωε′ω(θ)L0
ω(T ) cos θ dΩ , (71)

provided that we identify the emissivity ε′ω(θ) = (1 − |rs
12|2 + 1 − |rp

12|2)/2.

4 Consider a scalar field ψ(z) = aeikz +be−ikz. For such a field, the current is given
by j = �(ψ dψ∗/dz). If k is real, then j = k(|a|2 − |b|2), whereas if k is pure
imaginary, the current is proportional to �(ab∗). We thus see that evanescent
waves can only contribute to the current in the presence of an ‘advancing’ wave
and a ‘retreating’ wave, i.e., both a and b different from zero. This argument also
applies to vector fields for which the current is then the Poynting vector.
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Fig. 5. Two semi-infinite materials 1 and 2, separated by a medium 3 (the vacuum)
of thickness d

4 Near-Field Radiative Transfer Between Two Planes

In this section, we shall be concerned with the radiative transfer occurring
between two semi-infinite spaces at different temperatures T1 and T2, sepa-
rated by a vacuum, as shown in Fig. 5. The media 1 and 2 are characterised
by dielectric constants ε1 and ε2, and medium 3 is the vacuum. The radiative
transfer between the two media is characterised by the radiative flux. Recall
that, according to the classical theory of radiation, this radiative flux can be
written

q(ω) =
∫ 2π

0

cos θ dΩ

∫ ∞

0

dω
ε′1ωε′2ω

1 − ρ′1ωρ′1ω

[
L0

ω(T1) − L0
ω(T2)

]
, (72)

where the ε′iω are the directional emissivities and the ρ′iω are the directional
reflectances.

To carry out a full calculation, we must once again calculate the ensemble
average of the Poynting vector. The idea is the same as before, except that
the Green functions of the system have changed. Indeed, the flux can be
written [7, 8]

q(ω) = 〈Sz(d+, T1)〉 − 〈Sz(0−, T2)〉 , (73)

where Sz(d+, T1) is the vertical component of the Poynting vector at z = d+

and due to the fluctuating currents in medium 1. Likewise, Sz(0, T2) is the
vertical component of the Poynting vector at z = 0 and due to the fluctuating
currents in medium 2. To to this calculation, we thus require the Green
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functions relating the currents in medium 1 to the field in medium 2. These
Green functions are given by

←→
G E(r, r′, ω) =

i
16π3

∫
1
γ1

(ŝts12ŝ + p̂+
1 ts12p̂

+
2 )ei[K · (R−R′)]eiγ2z−iγ1z′

,

(74)
←→
G H(r, r′, ω) = − k0

16π3

∫
n2

γ1
(−p̂+

2 ts12ŝ + ŝtp12p̂
+
1 )ei[K · (R−R′)]eiγ2z−iγ1z′

,

(75)

where

ts,p
12 =

ts,p
13 ts,p

32 eiγ3d

1 − rs,p
13 rs,p

32 e2iγ3d
. (76)

We observe that the Green function for two interfaces is the same as the
Green function for one interface, except that the single-interface transmission
coefficient has been replaced by a generalised double-interface transmission
coefficient which takes multiple reflections into account. It can be shown that
the flux can be expressed as a sum of two terms q(ω) = qprop(ω) + qevan(ω).
The first term qprop(ω) is the contribution from propagating waves:

qprop(ω) =
∑

i=s,p

∫
dω dΩ cos θ

2
(1 − |ri

31|2)(1 − |ri
32|2)

|1 − ri
31r

i
32e2iγ3d|2

[
L0

ω(T1)−L0
ω(T2)

]
.

(77)

Note that 1−|rs,p
31 |2 and 1−|rs,p

32 |2 are the energy transmission factors between
media 3 and 1 and media 3 and 2 for polarisations s and p, respectively. As
we saw previously, these transmission coefficients can be identified with an
emissivity. There is a great similarity between the formula for the flux for
propagating waves and the classical expression for the radiative flux between
two semi-infinite materials. The denominator seems different. However, note
that the flux expression includes an integral over frequency. The function
eiγ3d varies much more quickly with ω than the Fresnel factors. We thus find
an average of |1 − ri

31r
i
32e

2iγ3d|2 when we integrate. This average is equal
to 1 − |ri

31|2|ri
32|2. Identifying the reflectance with the squared modulus of

the Fresnel reflection factor, it follows that the expression for the classical
radiative transfer between media 1 and 2 is equal to the contribution of the
propagating waves to this transfer.

The second term in the expression for the flux is

qevan(ω)

=
∑
s,p

∫
dω

∫ ∞

ω/c

2K dKe−2�(γ3)d
�(ri

31)�(ri
32)

|1 − ri
31r

i
32e2iγ3d|2

L0
ω(T1) − L0

ω(T2)
k2
0

.

(78)
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Fig. 6. Radiative transfer coefficient for different separations between the semi-
infinite materials at temperature T = 300 K [8]

Fig. 7. Monochromatic transfer coefficient for separation d = 10 nm at temperature
T = 300 K [8]

This is the contribution from evanescent waves. This is not zero when there
are two interfaces because there are advancing and retreating waves in the
cavity. As the separation decreases, this term becomes more and more impor-
tant, as can be seen from the exponential e−2�(γ3)d in the integrand. When
the materials are capable of carrying surface waves, the evanescent waves
propagating along each interface can interact. A further transfer can then
occur by the tunnel effect.

We define a radiative transfer coefficient as the limit of the ratio of the
radiative flux and the temperature difference between the two media when
this temperature difference tends to zero, viz.,

hR(ω) = lim
T1−T2→0

q(ω)
T1 − T2

. (79)
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Figure 6 shows hR(ω) as a function of the distance between two semi-infinite
media made of glass or SiC. For a separation greater than the wavelength
of the thermal radiation, i.e., for d > 10 µm, the transfer does not depend
on the separation. At shorter separations, the transfer increases as 1/d2 with
decreasing d. For a separation of 10 nm, the transfer coefficient has increased
by 4 orders of magnitude relative to its far-field value. If we consider, for a
separation of 10 nm, the dependence of hR(ω) on the frequency (see Fig. 7),
we find that the transfer is large in the near field for frequencies corresponding
to surface waves. The heat transfer is thus practically monochromatic in the
near field due to the presence of surface waves, as mentioned earlier. We can
obtain an asymptotic expression for the transfer:

hR(ω) ∼ 1
d2

�(ε1)�(ε2)
|1 + ε1|2|1 + ε2|2

× kB

(
�ω

kBT

)2 e�ω/kBT

(e�ω/kBT − 1)2
. (80)

This expression explains the 1/d2 dependence of the transfer coefficient as
well as its strong frequency dependence. Indeed, when there are surface waves,
in particular when the dielectric constant is close to −1, we find that the
radiative transfer coefficient has a peak, just like the Fresnel reflection factor.

5 Conclusion

We have seen that the calculation of thermal radiation requires two ingre-
dients. The first is the laws of classical electromagnetism, used in classical
radiation calculations for the current in an antenna, for example. The second
is the fluctuation–dissipation theorem which relates current fluctuations to
thermal or quantum fluctuations in the medium. We have applied these ther-
mal calculations to several simple systems. We observe that, at short distance
scales, thermal radiation can behave quite differently from the predictions of
classical radiation based on a radiometric approach. We have seen in particu-
lar that the presence of surface waves can significantly increase heat transfer
on the nanoscale.
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Abstract. The study of heat transfer on short length and time scales involves
understanding the behaviour of microscopic heat carriers in order to quantify the
average heat and energy flux. In dilute media, an intermediate statistical analysis
is based on a local average of these carriers, namely, the velocity distribution func-
tion, and the Boltzmann equation. This same equation also governs the dynamical
evolution of the local electron density, the number of phonon modes in conduction,
and the spectral intensity in radiation. The approach is invaluable, especially when
the carrier collision term is easy to integrate and the geometry of the system is
simple.

However, if the interaction physics is not given in terms of these densities by
a simple relation, there is no choice but to return to the carrier trajectories. This
is the goal of the technique known as molecular dynamics. When the geometry is
also complex and as a consequence the system size becomes large, the computation
time required by molecular dynamics calculations is prohibitive. The Monte Carlo
method takes microscopic constituents into account by sampling them in a relevant
way, in order to produce the most accurate statistical averages possible on the basis
of a limited number of operations. The behaviour of a small number of carriers is
thus described independently under realistic physical constraints. Random sampling
involves choosing the carriers and the rules governing their behaviour according to
probabilistic laws imposed by:

– the laws of physics,
– a reasonable computation time,
– optimal accuracy for the calculated average value.

Today the Monte Carlo method is used in many areas of research. It is a basic
tool for statisticians [1] and chemists use it to study equilibrium configurations of
structures and molecules [2, 3], or to predict phase change phenomena [4].

Monte Carlo calculations of neutron fluxes [5], radiative fluxes [6–8], and matter
fluxes in fluid flows [9] can be found in a correspondingly vast literature. The Monte
Carlo technique can even be extremely effective in solving transport problems in
complex geometries [10]. It has thus become a standard tool for tackling transport
problems.

However, its application to heat fluxes, either on very short length and time
scales in gases, or in crystals [11, 12] remains rather novel. In these contexts, it
provides a way of taking into account the finer details of physical interaction mech-
anisms which standard statistical methods could only do at great cost in analytical
complexity.

Whereas the Monte Carlo technique only partially describes systems in macro-
scopic configurations, by selecting certain energy carriers, it is interesting to note

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 133–154 (2007)
© Springer-Verlag Berlin Heidelberg 2007



134 Sebastian Volz

that, on short scales and in certain cases, it provides a direct simulation of all
elementary carriers and sometimes an even greater number of carriers.

1 Introduction

1.1 Aims

We shall not attempt an exhaustive description of heat flux calculations,
since we shall only be concerned with molecular transport in gases and pho-
non transport in crystals. Short scale electronic and radiative heat flux cal-
culations were discussed in the Chapter by Lemonnier and the Chapter by
Joulain in this volume, respectively. Although the first flux can be deduced
from a particle description – it is shown how to treat the electron as a particle
in the theoretical part of the book (Part I) – whereupon it may be calculated
using the Monte Carlo approach, the second can only be estimated using a
wave description and remains inaccessible to this technique.

The solution of the radiative transfer equation by the Monte Carlo method
now belongs to the state of the art in this field. Note, however, that it is only
valid when the characteristic dimensions are greater than the wavelength of
the field, i.e., of the order of a few microns as far as thermal radiation is
concerned.

Section 2 describes the basic features of the Monte Carlo technique, and
Sect. 3 calculates the heat flux in gases on length scales of the order of the
mean free path. An application to the heat exchange between a nanometric
tip and a sample surface is discussed. Section 4 discusses phonon transport
on length scales of a small multiple of the mean free path.

The approaches adopted in Sects. 3 and 4 are in fact complementary.
The two methods apply in the same way to the two types of carrier, but
they are based on sampling techniques adapted to the relevant length scales.
By organising the Chapter in this way, we incorporate models of two types
of carrier: one is the atom or molecule identified with a point mass, and the
other is the phonon whose quasi-particle behaviour makes it more like a wave.

1.2 Heat Flux and Energy Carriers

We shall be concerned in this Chapter with the heat flux generated by atomic
motions. In gases and dielectric crystals, heat transport is related only to
these motions. The atom is treated as a point mass with known trajectory,
i.e., position and velocity. We shall show that the heat flux is the sum of
a convective flux, in the form of a product of the velocity and the energy,
and a work flux of the kind commonly defined in point particle mechanics or
electromagnetism.
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The expression for this heat flux φ in terms of the atomic positions ri

and velocities vi, together with the interaction forces F ij , is deduced from
the energy conservation equation

∂e

∂t
= −divφ , (1)

where e is the energy. This is combined with the microcanonical expression
for the instantaneous local energy

e =
∑

i

eiδ(r − ri) , (2)

where ei is the energy of an atom. Multiplying by the position vector r and
integrating over the volume V of the system, we arrive at

∫

V

r
∂

∂t

∑
i

eiδ(r − ri) dV = −
∫

V

rdivφ dV . (3)

Integrating by parts, we obtain

∂

∂t

∑
i

∫

V

reiδ(r − ri) dV = −
∫

V

div(rxφ) dV i −
∫

V

div(ryφ) dV j

−
∫

V

div(rzφ) dV k +
∫

V

φ gradrx dV i

+
∫

V

φ gradry dV j +
∫

V

φ gradrz dV k , (4)

where subscripts x, y and z refer to the space directions described by unit
vectors i, j and k making up an orthonormal basis. The first three terms
on the right-hand side can be expressed as surface integrals which vanish
because the system is assumed to be isolated. The gradient terms are equal
to the unit basis vectors, e.g.,

gradrx =
∂rx

∂rx
i = i .

The right-hand side of (4) thus becomes equal to the average flux over the
volume V . On the left, the Dirac distribution localises the integral at ri.
Finally, the average flux operator can be written [13]

φV =
∂

∂t

∑
i

riei . (5)

The distribution of the time derivative leads to

φ(t)V =
∑

i

viei +
n−1∑
i=1

∑
j>i

rij(F ijvi) , (6)
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when the atomic energy is replaced by its expression in terms of kinetic and
potential energies.

In dilute gases, molecules interact on very short time scales compared
with the time intervals between collisions. For this reason, the second term
on the right-hand side of (6) involving the interaction force becomes negligi-
ble on average and the energy ei reduces to the kinetic energy of the particle.
The first term on the right-hand side describes the heat flux stemming from
the displacement of an atom carrying only its kinetic energy. This is the con-
vective flux mentioned earlier. We shall calculate this flux by describing the
free trajectories between consecutive pairs of instantaneous collisions. These
collisions will nevertheless take into account the nature of the interaction
potential.

The second term for its part describes the flux stemming from the
work done by the motion of an atom in the potential field of its neigh-
bours. This dominates in solid media and hence describes the phonon flux.
In the harmonic approximation,1 and treating the distance between atoms
as much greater than their displacements about their equilibrium positions
(rij = r0

ij = const.), the second term can be rewritten in the form [14, 15]

φ(t)V =
n−1∑
i=1

∑
j>i

r0
ij ([Cij ]rijvi) . (7)

It can be shown that the product r0
ij [Cij ] is related to the group velocity

vgq and the term rijvi is related to the sum of the phonon energies over all
modes. These transformations lead to the Peierls expression already obtained
in the Chapter on Electrons and Phonons by Greffet in this volulme:

φ(t)V =
∑

q

vgqnq�ωq . (8)

This new expression raises the question of how many phonons there are in
the mode q, a number denoted by nq. These are treated as particles moving
at the group velocity vgq. It is only in this framework that one can carry out
a statistical calculation of the particle kinetics using Monte Carlo techniques.

After describing the foundations of the Monte Carlo method, we shall
show how to use it to calculate the convective flux in Sect. 3 and the work
flux in Sect. 4.
1 The interaction force is assumed linear in the interatomic distance, i.e., F ij =

[C ij ] · rij , where Cij is the tensor of force constants.
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2 Calculating the Heat Flux
with the Monte Carlo Method

2.1 Basic Idea

The idea of the Monte Carlo method is to describe the dynamical evolution
of objects as a succession of random (or stochastic) processes whose prop-
erties are determined by probability distributions. From these independent
processes, we extract an average representing a state variable of the system.
The probability distributions are designed to optimise the computation time,
proportional to the number of trials, and the accuracy. This abstract defini-
tion indicates that a very broad class of problems can be handled, from macro-
and mesophysical problems, to the social sciences, urban development, stock
markets, and so on.

In this book, we shall of course limit the discussion to calculation of the
heat flux, considered as a state variable, from the behaviour of the objects
that transport the heat. This behaviour is described by a series of processes,
the carrier trajectories, governed by probability distributions representing,
for example, collisions or interactions with surfaces. Unlike the molecular
dynamics technique, these trajectories will not be deterministic processes.
Since they obey probabilistic laws, they are called random walks.

2.2 Sampling Random Walks

The energy carrying entities modelled in the Monte Carlo techniques are
usually ‘packets’ of elementary carriers whose properties (direction, velocity,
length, etc.) are assumed identical. These are packets of photons in radiation,
molecules in fluid mechanics, or phonons for conduction in crystals. However,
in the special case of short length scales, the number of elementary carriers
can be very small and the true number of these carriers can actually be
modelled. The very idea of a packet loses some of its meaning.

In typical models, the trajectories of the packets are assumed to be gov-
erned to some extent by the laws determining the behaviour of a single car-
rier, an assumption that is not always fully justified. In the same way, in the
present context, the random walks will be determined by certain physical
constraints imposed upon a single molecule or phonon, an assumption that
is now easier to justify. For example, the velocity of a packet of molecules
emerging from a collision will be determined by the laws of conservation of
momentum and energy as defined in point particle mechanics.

These random selection laws could also be identified with some kind of
average behaviour obtained by statistical physics. The mean free path of a
molecule between two collisions will be chosen according to a probability
distribution of Beer type. This guarantees that the mean free path of our
carriers is indeed equal to the mean free path measured or predicted by other
means.
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Apart from their suitability with regard to the constraints of microscopic
physics and average characteristics, the probability distributions determining
the random walks are also required to shorten computation times. Since the
aim is to predict average fluxes or energies, the way the trajectories are
sampled will directly determine the rate of convergence of our average to its
exact value.

Since these averages are in fact integrals over the parameters of the ran-
dom walk, let us see what probability distribution we must use to calculate,
for example, the flux φm related to the emission of molecules from an infinite
plane surface. We define nMB

D (v) as the number of molecules per unit volume
with velocity in the range from v to v + dv. The molecular flux is the sum of
the contributions from all molecules:

φm =
∫

vz>0

vzn
MB(v) d3v , (9)

whose velocity vector v points into the empty half-space. Since the number
of molecules nMB

D is given by the Maxwell–Boltzmann distribution (see the
Chapter on Transport in Dilute Media by Carminati in this volume), and
since also vz = v cos θ and the volume element of the hemisphere is d3

v =
v2 sin θ dθ dφd|v|, it follows that

φm = n

∫

vz>0

v3e−mv2/2kBT d|v|
∫ π/2

0

sin θ cos θ dθ

∫ 2π

0

dφ , (10)

where nD is the prefactor in the expression for nMB
D and z is the axis perpen-

dicular to the surface and oriented towards this half-space. The estimation of
such a quantity by the Monte Carlo method consists in calculating the three
integrals, or averages, which form the expression for the mass flux with the
help of a probabilistic approach that we shall now outline.

For example, to calculate the integral over the magnitude of the velocity,
we can choose regular intervals between 0 and a cutoff value b. This is the
standard rectangle method illustrated in Fig. 1. Another approach involves
randomly drawing values for the velocity magnitude and then summing the
areas of the rectangles defined by this new sequence of magnitudes. If we
use a uniform distribution function, each magnitude is treated as having the
same importance. This probability distribution p is given by

p(|v|) =
1
b

. (11)

If a large enough number of draws is made, the scale on the horizontal axis will
be discretised into intervals of identical width and we recover the rectangle
method.

The draws are now made in such a way as to associate with a magnitude
value vi a weight equal to the value at vi of the function to be integrated:

p(|v|) =
v3 exp(−mv2/2kBT )∫

v3 exp(−mv2/2kBT ) d|v| . (12)
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Fig. 1. Calculating an integral by the rectangle method. The accuracy is the same
as can be obtained by randomly drawing a sequence of values of x to define the
rectangles when the distribution is equiprobable

Fig. 2. Calculating an integral by defining rectangles using a random sequence of
values of x. The distribution is optimised to calculate the most significant contri-
butions more accurately

Under these conditions, as can be seen from Fig. 2, the greater the contribu-
tion of the function to the integral, the more magnitude values will be drawn.
Hence, a smaller number of draws will lead to an equal or greater accuracy
than can be obtained by the rectangle method. The approach described above
is conducted systematically in the treatment of heat transfer by the Monte
Carlo method any time a quantity characterising the trajectories has to be
summed. Under these conditions, a considerable amount of time can be saved.
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Fig. 3. Dimensions characterising a dilute gas:
d is the diameter of a molecule and δ the average
distance between two molecules

2.3 Calculating the Statistical Error and Average

Quite generally, the properties of probability functions allow one to estab-
lish an expression for the exact integral of a multivalued function f over a
volume V in the form

I =
∫

Ω

f(x1, . . . , xN ) dΩ =
V

N

N∑
i=1

f(x1i, . . . , xNi) ± V

√
〈f2〉 − 〈f〉2

N
,

(13)

where N is the number of draws. Apart from the gain in computation time,
the Monte Carlo method thus provides an exact solution for the value of the
integral when the number of draws tends to infinity. This behaviour sets it
apart from finite element techniques whose accuracy is limited by the order of
the numerical scheme. The last equation shows the possibility of controlling
the error in the value of the integral and predicting the gain in accuracy
obtained by extending the computation time.

3 Ballistic and Quasi-Ballistic Transport in Gases

Fluid flows are usually modelled using the Navier–Stokes equation, but only
if the medium can be considered as a continuous and dilute gas of particles.
When the characteristic dimensions are smaller than the mean free path and
the continuous medium hypothesis is not valid, the Navier–Stokes equation
is no longer applicable. The Monte Carlo method then provides an alterna-
tive. After describing the implications of the dilute gas approximation on the
nature of collisions, we shall show how to calculate the heat flux without
appealing to the continuum approximation.

The Avogadro laws state that the number of molecules per unit volume,
or number density n, of a gas depends on the temperature and pressure, but
is independent of the composition of the gas. As the volume available to a
molecule is 1/n, the average separation between molecules is the length δ =
n−1/3. For low densities, the space available to a molecule is large compared
with its diameter d, and only a very small part of space is actually occupied
by molecules. Each molecule thus moves around without interacting with
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the others. Moreover, when a collision occurs, it is only likely to involve two
molecules, i.e., collisions are binary. We have thus defined the condition δ � d
for a dilute gas and described its consequences for collisions.

The continuum model is no longer valid when the characteristic length L
of the system becomes comparable or less than the mean free path Λ of the
molecules [9]

Λ =
1√

2π(d/2)2n
.

This relation expresses the fact that the volume Λπ(d/2)2 containing a par-
ticle on a trajectory of length equal to the mean free path must contain a
collision partner. Λ is the average distance covered by the molecule between
two consecutive collisions. When the Knudsen number, defined as the ratio of
the mean free path to the characteristic dimension of the system Kn = Λ/L,
is greater than or equal to unity, the molecule moves around without colli-
sions and the transport is said to be quasi-ballistic. For air at atmospheric
pressure, the mean free path is 50 nm.

3.1 Molecules and Heat Flux

We now describe the calculation of the heat flux through a gas between two
surfaces at different temperatures. In the stationary regime and when the
trajectories are purely ballistic (no collisions between molecules), this flux
can be expressed as the difference between the fluxes emitted by the two
surfaces 1 and 2:

φh

∣∣∣
α

=
∫

v,1→2

1
2
mv2vαnMB

D (v) d3
v −

∫

v,2→1

1
2
mv2vαnMB

D (v) d3
v , (14)

where α denotes the direction under consideration. The flux carried by a
particle is defined as its kinetic energy multiplied by its speed in direction α.
If we now wish to introduce collisions and find out the dynamic evolution
and spatial distribution of the flux, the Monte Carlo technique can be used.

In the following, we propose an approach that can be applied when the
Knudsen number is greater than 3. Below this, the number of collisions be-
tween particles during their motion between the two surfaces becomes too
great and the temperatures of the collision partners then depend on their
position in the interstice. This situation is discussed in Sect. 4.

We assume that the molecules in the interstice are in equilibrium with
their surroundings. The originality of this approach resides in the calculation
of a heat flux response that is spatially resolved and temporally impulsive. To
estimate the heat flux received by an infinite plane surface in response to a
molecular flux φm emitted by a second, finite surface indicated by subscript D,
we begin by taking into account the stationary molecular flux emitted:

φs
m = SD

∫

vz>0

vznD(v) d3
v =

4SDnD

(2π)3/2

(
kBTD

m

)1/2

. (15)
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Fig. 4. Left : Random walks from a hot to a cold surface. Travel times t1, t2, etc.,
are estimated for each molecule. Right : Referring all trajectories to the same time
origin, the impulse response is obtained. Times t1 and t2 now refer to a time scale
in which all molecules leave simultaneously

This has the dimensions of a number of particles per unit time (d3v = d|v| dΩ,
where Ω is the direction variable). SD denotes the emitting area and nD(v)
is the number of particles per unit volume with speeds between v and v+dv.
The latter is proportional to nD and the Maxwell distribution. z denotes the
vertical axis, orthogonal to the plane surface.

To estimate the response to a pulse of mass flux leaving surface D, treated
for example as a disk (represented by the lower part of the cylinder in Fig. 4),
trial particles are launched successively from this same surface and the travel
time t of each molecule between ejection from the disk and arrival at the
receiving surface is calculated. The departure time is then assumed to be the
same for all molecules.

When they arrive at the surface, the translational and rotational kinetic
energies received are recorded in annular regions of constant width dr given
by the increase in the radius. The result is a time-dependent radial energy
function E(r, t) corresponding to the energy deposited between times t and
t + dt. The radial heat flux per unit area is then deduced from

〈φh(r, t)〉 =
E(r, t)

dtπ(r2
i − r2

i−1)N
, (16)

where N is the total number of particles emitted. This quantity has dimen-
sions of W ·m−2. Physically, this heat flux can be considered as the response
to a Dirac pulse of molecular flux coming from the disk. It is therefore the
transfer function which relates the excitation (the molecular flux φm) to the
response (the heat flux φh at the surface):

φh(r, t) =
∫ t

0

〈φh(r, t − τ)〉φm(τ) dτ . (17)

The right-hand side is a convolution. In the stationary case, the quantity φm

becomes independent of time and the thermal response reduces to the time
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integral of the impulse response. This response can thus be deduced from (17)
as

φs
h(r) =

∫ t

0
E(r, τ) dτ

dtπ(r2
i+1 − r2

i )N
SD

∫ t

vz>0

vzn(v) d3
v . (18)

3.2 Random Walk Distributions

As mentioned in Sect. 2.2, the flux of emitted molecules can be expressed
in the form of an integral over the directions of the velocities carrying a
term cos θ, due to the projection of the velocity on the normal, and a term
sin θ dθ dφ, which is the element of solid angle:

φm = nD

∫

vz>0

v3e−mv2/kBT d|v|
∫ π/2

0

sin θ cos θ dθ

∫ 2π

0

dφ . (19)

In order to calculate the integrals, the probability distributions of the angles θ
and φ must be defined by the normalised functions

p(θ) dθ =
sin θ cos θ dθ∫ π/2

0 sin θ cos θ dθ
= 2 sin θ cos θ dθ , (20)

p(φ) dφ =
dφ∫ 2π

0 dφ
=

dφ

2π
. (21)

The angle φ is drawn directly as 2πRf , where Rf is a random number drawn
equiprobably from the interval [0, 1]. To obtain the value of sin θ, we use the
relation between the distributions of dependent variables:

p(θ) dθ = p(Rθ) dRθ . (22)

By integration, assuming that Rθ is distributed uniformly between 0 and 1,
i.e., p(Rθ) = 1, this implies that

∫ θ

0

p(θ′) dθ′ = sin2 θ = Rθ , (23)

and hence that sin θ will be obtained by taking the square root of the random
number Rθ. The magnitude of the velocity must be drawn with a normalised
probability distribution whose primitive can be calculated:

p(|v|) d|v| =
v3e−mv2/2kBT dv∫

vz>0 v3e−mv2/2kBT dv
=

(
kBT

m

)2

v3e−mv2/2kBT d|v| , (24)

whereupon

p(|v|) = 1 − e−mv2/2kBT

(
1 +

mv2

kBT

)
= R(|v . (25)
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Fig. 5. Interaction volume for two molecules. The
grey molecule will interact with the black one be-
cause it is situated within the cylinder determined
by the black one

Fig. 6. Centre of mass interaction of the two molecules colliding at the relative
velocity with a fixed scattering centre. The angle χ denotes the deflection of the
relative velocity vector before and after the collision

To determine the sequence of magnitudes |v| = P−1(R|v|), we invert P by
seeking the zeros using a technique such as dichotomy.

Finally, the distance travelled l is given by a Beer decay law p(l) = e−l/Λ.

3.3 Collision Distributions

In the kinetic approach, a simple model involves treating a molecule as a hard
sphere of diameter d. Two molecules collide if they are included in a cylinder
of cross-sectional area equal to the total collision cross-section σT = πd2 and
height equal to the product of the relative speed by the free path time ∆t,
as shown in Fig. 5.

In the Monte Carlo simulation, collision conditions are satisfied for trans-
fer between two surfaces if the molecule is located in the gas interstice at the
end of the free path. The velocity at which the test molecule leaves the colli-
sion is determined from the energy and momentum conservation laws applied
to the relative velocity vector cr.

The collision distribution for two hard spheres is given by b = (d/2) sinχ,
where b is the impact parameter, i.e., the shortest distance between the two
molecules if they do not interact (see Fig. 6). The relative velocity cr has
conserved magnitude, whilst its direction is determined by the collision dis-
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tribution. The velocity c∗1 of the test molecule after the collision is deduced
from the conservation laws [9]:

c∗1 =
c1 + c2 + c∗r

2
, (26)

where the asterisk indicates the velocity after the collision. The velocity c2

of the collision partner is randomly drawn in the same way as for the initial
velocity except that the angle θ ∈ [0, π] must satisfy cos θ = 1 − 2Rθ.

3.4 Transfer Between a Hot Tip and a Surface

We now examine the heat transfer between a hot cylindrical tip with one
face parallel to a cold surface. The height e between the tip and surface
varies from a small multiple of the mean free path of the gas molecules in the
interstice to some fraction of this distance. The standard continuum approach
is therefore inapplicable, and so is a purely ballistic calculation. According
to the predictions of statistical physics, when the pressure increases, the heat
flux must rise in the same proportion [9]. Indeed, for two infinite parallel
surfaces held at temperatures T1 and T2, this flux is

φh =
P (2kB)3/2

kB(πm)1/2(T 1/2
1 − T

1/2
2 )

(T1 − T2) . (27)

However, this equation was established for purely ballistic transfer. Now the
mean free path, which is inversely proportional to the pressure, will fall when
the pressure is raised. Collisions will become more frequent and the flux will
drop. The Monte Carlo simulation is able to account for contributions from
these two competing effects, in such a way, for example, as to optimise the
pressure and the height of the heating element to ensure maximal transfer of
heat flux.

We make the following hypothesis. The gas is made up of nitrogen mole-
cules N2 with collisions governed by the following parameters:

– Diameter of interaction potential at 273 K is d = 0.415 nm.
– Molecular mass is 46.5 × 10−27 kg.
– Collision partners are at the temperature TS of the plane and the sur-

roundings, since it can be shown that they have travelled on average a
distance equal to the mean free path.

– Collisions are of hard sphere type.

Moreover, the density per unit volume of particles leaving the disk for the
surface is assumed to be given by conservation of mass and the number of
molecules in the case of two parallel plates:

nD = n
T

1/2
S

T
1/2
D + T

1/2
S

, (28)
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Fig. 7. Schematic view of simulated system. A disk of radius rD = 25nm and
temperature TD = 800 K is parallel to a surface at temperature TS = 300 K. The
height e of the disk above the surface is variable. The pressure of the exchange gas
is imposed in the range 1–30 bar

where n is the average density per unit volume of molecules in the interstice,
viz.,

n =
P

kB(TDTS)1/2
, (29)

with kB the Boltzmann constant and P the pressure. The mean free path Λ
is simply defined by the relation Λ = 1/

√
2π(d/2)2n. It is assumed again that

the molecule is fully adapted to the surface before leaving it, i.e., it is at the
same temperature as the surface.

The calculations have all been carried out for N = 106 trials, a number
shown by tests to lead to reasonable accuracy. The computation time varies
between about 10 s in the ballistic case to a few minutes when the height e
is equal to three times the mean free path. The radius of the disk is equal to
25 nm.

The method is validated by calculating the flux from the disk to the
surface in ballistic transfer conditions to begin with, then when the tip–
surface separation is 10 nm. We had previously calculated analytic solutions in
this configuration. A satisfactory agreement was obtained between the result
of the Monte Carlo simulation and the calculation in the ballistic case, with
an observed deviation of 0.1%. Figure 8 shows the values of the exchanged
fluxes in molecular nitrogen gas at 1 bar between a disk of radius 25 nm at
temperature 800 K and a surface at 300 K.

It can be shown that the heat flux drops off sharply when the tip moves
away from the surface, since it has the value 40 MW ·m−2 in the ballistic
regime and twenty times less when the tip is located at a height of 100 nm.

We have described the method for calculating the heat flux in a gas when
the dimensions of the gas interstice are of the same order as the mean free
path and the number of collisions suffered by a test molecule remains less
than 3. These dimensions are of the order of a hundred nanometers at normal
pressure. We have shown by calculation that the heat flux drops off sharply
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Fig. 8. Radial fluxes exchanged between a hot disk (T = 800 K) of radius 25 nm
placed at variable height e above a cold surface (300 K). The ambient temperature
was 1 bar. The grey continuous curve corresponds to the pure ballistic case and
the configuration with infinite parallel planes. The black dashed curve corresponds
to the pure ballistic case for the disk and an infinite parallel plane, and the black
continuous curve to the predictions of the Monte Carlo simulation

when the separation between the heat exchanging surfaces becomes of the
order of the mean free path. We shall now examine the problem of heat
transfer in solids. The heat carriers are phonons which can be treated as
particles whose kinetics is to be determined.

4 Ballistic and Quasi-Ballistic Transport
in Insulating Crystals

The problem here is to calculate the phonon flux given in (8) for transport
scales varying between a few phonon wavelengths (10 nm) to macroscopic
dimensions. Particle kinetics on these scales has already been described for
gases [9] and we shall put it to use here. However, there are fundamental dif-
ferences between phonons in a solid and molecules in a dilute gas. A phonon is
a particle characterised by a frequency, a polarisation, a wave vector, a group
velocity and a position. Moreover, interactions with other phonons are 3-body
interactions, i.e., each involves three such quasi-particles, and these interac-
tions obey rules depending on the above characteristics. The large number
of relevant parameters makes the Monte Carlo method a prime candidate. In
the Chapter by Chantrenne in this volume, it is shown that the domain of
application of the molecular dynamics technique is restricted to conditions
where the classical limit is observed. In the present case, with realistic pho-
non populations obeying a Bose–Einstein distribution, heat transfer involves
quantum phenomena, in particular at low temperatures. We emphasise that
the simulation to be described now has only been achieved recently [12, 13].
Although it could be improved in certain ways, it lays the foundations for
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more sophisticated methods in the future. The theoretical points used here
can be found in the Chapter on Electrons and Phonons by Greffet in this
volume.

4.1 Phonons, Temperature and Heat Flux

Equation (8) provides the definition of the heat flux as a function of the num-
ber of phonons, the energy quantum, and the group velocity. This definition
was introduced in the Chapter on Electrons and Phonons by Greffet in this
volume.

4.2 Isothermal Cell Technique

Since the characteristic length scale of the system to be described is a small
multiple of the mean free path, this system can be subdivided into small cells
in which there is local thermodynamic equilibrium. These cells are assumed
to be isothermal.

The number of phonons to be handled in such a system is equal to the
product of the number of modes, i.e., three times the number of atoms, and
the Bose–Einstein statistic (∼ 1). Clearly, the simulation method could not
handle all the particles over regions with dimensions a few times the mean
free path. As in simulation techniques for dilute gases, reference particles
are therefore chosen in a proportion R of approximately 10−5, reducing the
number of phonons that are actually analysed to about 106 if, for example,
the simulated volume is a cube of side approximately one micron.

This proportion will thus determine the number of phonon trials in each
cell. Before selecting the reference particles, the number of phonons in the
cell is given by the product of the total number of phonons Ntot and the ratio
of the volume VC of the cell to the total volume Vtot of the system. Finally,
the number NC of phonons selected in the cell can be written

NC = NtotR
VC

Vtot
∼ 104 . (30)

4.3 Modelling Random Walks

The random walk of a phonon is selected by choosing the characteristics of
this phonon, i.e., position, frequency, polarisation, wave vector, and group
velocity:

– The initial position is drawn uniformly from the volume or surface ele-
ment.
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– The frequency is drawn by dividing the Brillouin zone into regular inter-
vals of width ∆ω. The probability of drawing a given interval is given by
the normalised number of phonons

p(ω) =
n0(ω, LA)D(ω, LA)∆ω + 2n0(ω, TA)D(ω, TA)∆ω

∑
p=LA,2TA

∫ ωD

0

n0(ω, p)D(ω, p) dω

, (31)

where n0 is the average number of phonons given by the Bose–Einstein
distribution, D(ω) is the density of states, i.e., the number of states per
frequency interval, and ωD is the Debye frequency. The factor of 2 corre-
sponds to the two branches of transverse acoustic modes assumed non-
degenerate (identical). These are modes in which atoms move perpendic-
ularly to the direction of propagation. The optical branches are neglected
here to simplify the discussion. They are only present in crystals contain-
ing more than one atom per unit cell in the lattice. They contribute
little in themselves, but they can play a role via their interactions with
the acoustic modes. Integration of p is carried out numerically and it is
inverted in the same way as the velocity magnitude (see Sect. 3.2).

– The polarisation is selected from the average fraction of phonons with
longitudinal acoustic (LA) polarisation:

p(NLA) =
n0(ω, LA)D(ω, LA)

n0(ω, LA)D(ω, LA) + 2n0(ω, TA)D(ω, TA)
, (32)

at frequency ω. TA denotes the two branches of transverse phonons. To
obtain the polarisation, a random number can be drawn uniformly be-
tween 0 and 1. If this number is less than p(NLA), the polarisation is
longitudinal.

– The wave vector can be calculated in the isotropic approximation. Its
magnitude is given by the frequency, assuming that the polarisation and
dispersion curve are known. The direction of the vector is drawn in the
same way as the direction of the velocity vector in Sect. 2.

– The norm of the group velocity vg is found from the dispersion curves,
given the frequency and polarisation. The direction of the group velocity
is identical to the direction of the wave vector.

The test phonon is now launched. It will move ballistically between two con-
secutive interactions with other phonons, or with the system surfaces, inter-
faces, impurities, charges and defects.

Trajectories are described in two stages:

– The position vector is modified by the increment vg∆t. The length of this
increment must not exceed the average cell size. This restricts the time
increment ∆t. When the phonon goes from its initial cell to a neighbour-
ing cell, the energy of the particle is subtracted from the total energy Ei
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of the first cell and added to that of the second cell. The temperatures of
the cells are then deduced from their energies as time passes, by inverting
the formula

Ei

V R
=

∑
p,ωj

n0(ωj , p, Ti)D(ωj , p)�ωj∆ω , (33)

where V denotes the volume of the system and it should be remembered
that the number of phonons n0 depends on the equilibrium tempera-
ture. The temperature obtained is injected into the probability distribu-
tions (31) and (32).

– The interaction probability is selected. The relaxation time τi correspond-
ing to each interaction must be established over the spectrum for the two
polarisations and as a function of temperature. The resulting average
interaction time is deduced from the Matthiessen rule:

1
τ

=
∑

i

1
τi

. (34)

The law giving the probability that there is no interaction during the
time interval ∆t is found from the total number of particles Nnc that
have not suffered collisions at time t + ∆t :

Nnc(t + ∆t) = Nnc(t)
(

1 − ∆t

τ

)
, (35)

since ∆t/τ gives the probability of collision during the interval ∆t. It
follows that

Nnc(t + ∆t) − Nnc(t)
∆t

=
dNnc(t)

dt
=

Nnc(t)
τ

, (36)

and hence a time dependence e−t/τ for the number of particles that have
not undergone collisions. This is therefore the time dependence of the
non-interaction probability distribution for our test particle. It is the
same as the one used to select the free path length of gas molecules in
Sect. 2. Here a uniformly distributed random number greater than e−∆t/τ

will impose interaction.

The interaction leads to a modification of the frequency, polarisation and
wave vector of the test phonon. One method involves selecting the frequency
as done initially but with the temperature of the cell in which the particle is
now located. Likewise for the polarisation and wave vector.

An advanced model [13] makes a distinction between ‘normal’ contribu-
tions, for which the momentum is exactly conserved during the collision, and
‘umklapp’ interactions, where the sum of the two wave vectors of the inter-
acting phonons cannot be represented in the Brillouin zone. In the first case,
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Fig. 9. Temperature profile in a silicon film with totally absorbent walls. Symbols
correspond to different film thicknesses as indicated

the direction can be assumed unchanged, whereas in the second, it can be
assumed random.

Following the interaction processes, the cell energies must be modified
whenever energy conservation has not been respected by the frequency cor-
rection. Phonons must therefore be added or removed so as to recover the
energy calculated for the cell before the interaction. The energy of these cre-
ated phonons must depend on the cell temperature but also on the probability
of destruction of phonons in a mode.

4.4 Conduction in a Thin Film

Consider a silicon film whose faces are held at two different temperatures.
Phonons will tend to move from the hot end towards the cold end by reflecting
off the lateral boundaries of the system. The temperature profile can be
calculated in the stationary regime using the Monte Carlo method. Figure 9
shows the results when the walls are absorbent, for thicknesses between 2 nm
and 4 µm (adapted from [13]).

The heat flux crossing the film in its plane is found by calculating the
amount of energy crossing a reference plane per unit time. In the stationary
regime, the ratio of this flux to the temperature gradient leads to an estimate
of the thermal conductivity using the Fourier law. This calculated conduc-
tivity, shown in Fig. 10, is in good agreement with measured values [13].

These results show that the Monte Carlo approach described here can
be used up to the diffusion limit, i.e., characteristic lengths greater than ten
times the mean free path.
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Fig. 10. Conductivity of silicon and germanium at different temperatures. Exper-
imental measurements and Monte Carlo predictions

5 Conclusion

In this Chapter, we have introduced the Monte Carlo method for calculating
heat fluxes in gases and dielectrics in terms of the behaviour of elementary
heat carriers (molecules or phonons). We have shown how this method can
be used to simulate not only the ballistic and quasi-ballistic regimes, but also
the diffusive transfer regime. Apart from the possibility of representing most
length and time scales, it has been shown that this approach is well suited
to distinguishing the various types of carrier and integrating key physical
interaction mechanisms. It can handle molecules and phonons just as well as
photons and electrons. Finally, it can describe quantum population effects.
By virtue of its flexibility and ease of implementation, it can be considered as
an essential method for simulating heat transfer on the micro- and nanoscales.
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Abstract. The aim in this Chapter is to show how molecular dynamics can be
used to study conductive heat transfer in matter in terms of an atomic description
of that matter. Molecular dynamics can only be used to study heat transfer by
phonons, i.e., vibrations of the atomic lattice. It therefore only applies to dielectric
materials, i.e., electrical insulators and semiconductors, in which the concentration
of free electrons in the lattice is low enough to ensure that heat transfer by electrons
is negligible compared with heat transfer by phonons.

There will be two applications here:

– Prediction of the thermal conductivity of macroscopic materials on the basis of
a description of their atomic structure: crystals, amorphous materials, with and
without defects (voids, substitution defects, interstitial defects, dislocations,
and grain boundaries), multilayer composite materials, superlattices, and so
on.

– Prediction of the thermal conductivity of nanostructures: nanoparticles, nano-
wires, nanofilms, nanotubes, and so on.

Since molecular dynamics is not widely used in the heat transfer community, the
first part of this Chapter presents the basic principles and implementation of the
technique. Section 2 discusses the methods most widely used to calculate the ther-
mal conductivity with the help of molecular dynamics simulations. The thermal
conductivity can be calculated on the basis of behavioural models. We shall see in
Sect. 3 that molecular dynamics can be used as a tool for determining the vibra-
tional properties of the materials required in these models.

1 Principles of Molecular Dynamics

In this section, we discuss the essential ideas required to understand the
principles, implementation and limitations of molecular dynamics. For more
details, the reader is referred to the many textbooks devoted to this subject,
e.g., [1–4], which served as a basis for the present discussion.

1.1 Definitions and Notation

Molecular dynamics is a numerical computation technique that can simulate
the behaviour of materials on the atomic scale. In its simplest version, the
atom is treated as an elementary particle. The system studied is thus made

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 155–180 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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up of atoms modelled by point masses, each with three degrees of freedom
corresponding to the three space directions (x, y, z). To each atom, labelled
by an index i, is associated a mass mi, a position ri, a velocity vi, and an
acceleration ai. Bold face symbols thus denote 3-component vectors corre-
sponding to the three space directions.

The total energy Ei of an atom is equal to the sum of its kinetic en-
ergy Eki and its potential energy Epi. This potential energy is partly due to
a field originating outside the system and acting in some specific way on each
particle, denoted by Eext

pi (ri), e.g., electromagnetic field or gravity, and it is
partly due to the interaction potential due to all other atoms or molecules
within the system, denoted by Eint

pi . The total potential energy of a system
is the sum of the external and internal potential energies, viz.,

Ep =
∑

i

(
Eint

pi + Eint
pi

)
. (1)

The total force F i on atom i is equal to the gradient of the total potential
energy of the system with respect to the position of this atom, i.e.,

F i = −∇Ep(ri) . (2)

It can be expressed as the sum F ext
i +F int

i of an external force resulting from
the external potential field and an internal force due to the potential energy
of interaction between atoms:

F ext
i = −

∑
j

∇Eext
pj (ri) , (3)

F int
i = −

∑
j

∇Eint
pj (ri) , (4)

The total force F i is related to the acceleration ai by Newton’s law

F i = miai . (5)

The velocity and position vectors of all particles are found by integrating this
equation with respect to time for all atoms.

When the system is in equilibrium, molecular dynamics provides an en-
semble of states of the system described by the positions, velocities, and
forces associated with all particles as a function of time. Macroscopic prop-
erties of the system can then be calculated using statistical physics. These
include elastic constants, binding energies, surface energies, phonon disper-
sion curves and densities of states, etc. When the system is not in equilibrium,
the dynamical evolution of the set of positions and velocities is used to deter-
mine transport properties such as viscosity, thermal conductivity, or diffusion
coefficient, or to study phenomena such as the creation and propagation of
defects, diffusion, phase transformations, surface reconstructions, etc. The
choice of system and the way molecular dynamics is implemented will de-
pend on the properties of the phenomenon under investigation. The various
systems can be categorised as follows:
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– microcanonical if the particle number N , the volume V , and the total
energy E are all constant during the simulation,

– canonical if it is the particle number, volume, and temperature T that
are constant,

– isobaric–isothermal if it is the particle number, temperature, and pres-
sure P that are constant,

– grand canonical if it is the volume, temperature, and potential energy
that are constant, but the particle number is allowed to vary.

In molecular dynamics, all numerical values of the quantities used or cal-
culated are small: displacements are less than one nanometer, forces are of
the order of the nanonewton, energies are of the order of the electronvolt
(1.6 × 10−19 J), and the time steps used in the calculation are of the order
of the femtosecond. The units usually used in physics are not well-suited to
this, since they would lead to large numerical errors. A change of units is
therefore necessary. The most widespread choice, although not the only one,
is based on the definition of a new time unit:

ut =
√

mc

1010
, (6)

where m is the mass of the atom under consideration and c the reciprocal of
the electronvolt, viz., c = 6.24145× 1018 eV/J.

With this unit of time, the following relations can be used to convert
values of quantities used in molecular dynamics to the values expressed in SI
units:

∆tr(s) = ∆tMD

√
mc

1010
time step , (7)

rr(m) = rMD10−10 distance , (8)

vr(m/s) = vMD
1√
mc

velocity , (9)

F r(N) = F MD
1010

c
force , (10)

ar(m/s2) = aMD
1010

mc
acceleration , (11)

Er(J) = EMD
1
c

energy , (12)

Tr(K) = TMD
1

ckB
temperature , (13)

where kB = 1.38066 × 10−23 J/K is the Boltzmann constant. In this new
system, the temperature is expressed in eV and thus corresponds to an energy.
This makes sense, because the temperature and the average kinetic energy
〈Ek〉 of the particles are related by

T (K) =
2

3kB
〈Ek〉 , (14)
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in the SI system.
Using this change of units, for a monatomic system, the mass m of the

relevant atom does not come into (5). Note, however, that this is no longer
true when there is more than one element to be taken into account. In this
case, one of the masses is taken as a reference and a mass correction factor is
required in the equations. Moreover, all calculated quantities typically have
values in the range from 10−3 to 10+3. If very large or very small values are
obtained during a calculation, then there is likely to be an error somewhere.

1.2 Integrating Newton’s Equation

We shall present two of the most widely used algorithms for integrating
Newton’s equation. It should be borne in mind that r, v, a, and F are
3-component vectors.

Verlet Algorithm

This is the simplest algorithm. The position at time t is approximated by
writing the following truncated expansions:

r(t + δt) = r(t) + δt
∂r

∂t
+

1
2

δt2
∂2r

∂t2
+

1
2 × 3

δt3
∂3r

∂t3
+ O(δt4) , (15)

r(t − δt) = r(t) − δt
∂r

∂t
+

1
2

δt2
∂2r

∂t2
− 1

2 × 3
δt3

∂3r

∂t3
+ O(δt4) , (16)

whereupon

r(t + δt) + r(t − δt) = 2r(t) + δt2
∂2r

∂t2
+ O(δt4) . (17)

This can also be written

r(t + δt) = 2r(t) − r(t − δt) + δt2
∂2r

∂t2
+ O(δt4) , (18)

where

∂2r

∂t2
= a(t) =

F (t)
m

. (19)

The approximation is order δt4. The estimate of the particle positions at
time t does not depend on their velocities. However, the particle velocities
still have to be calculated in order to find the kinetic energy and hence the
temperature. The velocity is obtained by subtracting (16) from (15):

r(t + δt) − r(t − δt) = 2δt
∂r

∂t
+ O(δt3) , (20)
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where

∂r

∂t
= v(t) . (21)

The approximation to the velocity is O(δt2). In order to calculate the velocity
at time t, the position must already have been calculated at time t + δt.

Gear Algorithm

The basic idea here is to use the values of the position and its derivatives
at time t to predict their value at time t + δt. With the new values of the
particle positions at time t+δt, the forces and hence the accelerations can be
recalculated at time t + δt. As there is a difference between the values of the
predicted and recalculated accelerations, the particle accelerations are then
corrected. However, this correction also affects the position and its derivatives
according to a scheme devised by Gear.

The algorithm is based on a truncated expansion of the position:

r(t+δt) = r(t)+δt
∂r

∂t
+

1
2

δt2
∂2r

∂t2
+

1
2 × 3

δt3
∂3r

∂t3
+

1
2 × 3 × 4

δt4
∂4r

∂t4
+· · · .

(22)

The expansion has been cut off after the fourth order term as an illustration
of the method, but it can be allowed to include more terms. We introduce
the notation

χ0(t) = r(t) , χ1(t) = δt
∂r

∂t
= δtv(t) , χ2(t) =

1
2

δt2
∂2r

∂t2
=

1
2

δt2a(t) ,

(23)

χ3(t) =
1

2 × 3
δt3

∂3r

∂t3
, χ4(t) =

1
2 × 3 × 4

δt4
∂4r

∂t4
. (24)

Predicted values are attributed a superscript p. For χ0(t + δt) to χ4(t + δt),
they are given by

χp
0(t + δt) = χ0(t) + χ1(t) + χ2(t) + χ3(t) + χ4(t) , (25)

χp
1(t + δt) = χ1(t) + 2χ2(t) + 3χ3(t) + 4χ4(t) , (26)

χp
2(t + δt) = χ2(t) + 3χ3(t) + 4χ4(t) , (27)

χp
3(t + δt) = χ3(t) + 4χ4(t) , (28)

χp
4(t + δt) = χ4(t) . (29)

The predicted values of the positions χp
0(t + δt) = rp(t + δt) can be used to

recalculate the forces applied to each atom, and hence the corrected value of
the acceleration from

χc
2(t + δt) =

1
2

δt2ac(t + δt) .
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All corrected values carry the superscript c. Setting

∆χ2 = χc
2(t + δt) − χp

2(t + δt) ,

the corrected values of the position and its derivatives are calculated as fol-
lows:

χc
n(t + δt) = χp

n(t) + Cn∆χ2 , (30)

where

C0 =
19
120

, C1 =
3
4

, C2 = 1 , C3 =
1
12

, C4 =
1
12

.

Several iterations of corrections are sometimes required. However, in molecu-
lar dynamics, since determination of the forces involves a lot of computation
time, only one correction stage is carried out. The coefficients Cn proposed
by Gear depend on the number of derivatives taken into account and are
determined so as to obtain a stable and accurate calculation scheme.

Choice of Integration Algorithm

Several algorithms are described in the literature. The choice is based on
a compromise between the following criteria: stability, accuracy, simplicity,
computation time, and required memory.

The discretisation error in the Gear algorithm drops off more rapidly than
in the Verlet algorithm when the time is reduced. However, the Gear algo-
rithm is more complicated to implement and requires more computation time
and memory. The Verlet algorithm is time symmetric. In other words, if the
time step becomes negative (or if all velocities are reversed at some time t),
then all particles will follow their trajectories in the opposite directions, up
to rounding errors. This is not so for the Gear algorithm. This can produce
a tendency for the total energy to deviate as time goes by, the discrepancy
depending mainly on the truncation order.

1.3 Interaction Potentials

It is essential to calculate the total potential energy (1) of a system in order
to carry out a molecular dynamics simulation, because it is a prerequisite for
obtaining the forces exerted on each atom. This energy can be written

Ep =
∑

i

Ee
1(ri) +

1
2

∑
i

∑
j �=i

Eij
2 (ri, rj)

+
1
3

∑
i

∑
j �=i

∑
k �=j

Eijk
3 (ri, rj , rk) + · · · . (31)
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The first term corresponds to the potential energy due to an external field.
The second term is the potential energy due to pairwise interactions. Further
terms are in some sense corrections to the pairwise interactions, since the
potential energy of a pair of atoms or molecules depends on the simultaneous
presence of other atoms or molecules. The potential energy due to the third
term can represent more than 10% of the total potential energy, as happens in
silicon or germanium. The determination or choice of interaction potential lies
at the heart of molecular dynamics. Its complexity and accuracy determine:

– The dynamics of the atoms or molecules. The potential must lead to cor-
rect simulation of observed physical phenomena. For example, it has been
shown experimentally for different materials, e.g., gold, silicon, that the
organisation of surface atoms is a rearrangement of the bulk crystalline
configuration. These surface phenomena are generally the most difficult
to model. Quantitatively, calculated properties must correspond to ex-
perimentally measured effects, up to the error inherent in the numerical
and experimental results.

– The computation time. This is mainly taken up by evaluation of inter-
action forces, i.e., calculation of the potential energy and its derivatives.
The more terms are included in the potential, the more time is required
for calculations. For this reason, two-body and three-body potentials are
most commonly used. In the literature, effective two-body potentials have
been put forward to cater for multiple interactions without unacceptable
increase in computation time.

The potential energy of external origin (gravity, electromagnetic field) poses
no problem because the description of these potential fields is well known.
The difficulty arises when calculating the potential energy due to interaction
between atoms, which depends partly on short range forces. These are mainly
repulsive nuclear forces leading to an exponential decay of the potential en-
ergy for increasing separations between the particles. Interactions between
atoms also depend on long range forces of electrostatic origin which depend
on the local electron density of the system. This is the most difficult term to
evaluate because the electron density has complex space dependence. Elec-
tronic configurations can be determined from ab initio calculations, whose
results can only be used in molecular dynamics if the associated interaction
potential is described analytically in a relatively simple way. To a first ap-
proximation, the electrostatic potential energy is a sum of three terms:

– Attractive or repulsive electrostatic forces due to the pointlike spatial dis-
tribution of the charges. For example, these may be the electric charges
on each atom in an ionic crystal, which have the same positions as the
atoms. The potential energy due to these forces is additive, i.e., the po-
tential energy of each pair is independent.

– Attractive induction forces due to distortion of the electrostatic field by
insertion of a new atom. The potential energy of each atom due to these
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forces is not additive, i.e., for each atom, its value depends on the position
of all the other atoms.

– Dispersion forces caused by instantaneous fluctuations in the electrostatic
field due to electron motions. These are attractive and dominate in the
case of metallic materials, for example. As for the induction forces, the
potential energy due to dispersion forces is not additive.

A general form for the potential energy of a particle i in the absence of an
external potential can be found in the literature:

Ei
p =

∑
j �=i

E2(ri, rj) =
1
2

∑
j �=i

φ(rij) + F
(∑

j �=i

f(rij)
)

, (32)

where rij is the distance from particle i to particle j. The function φ is a
pairwise potential which mainly accounts for short range forces and electro-
static forces. The function F represents the effects of induction and dispersion
forces. However, the functions F and φ can be considered as mathematical ob-
jects with no particular physical significance and whose only role is to provide
a correct representation of the interactions. When F is zero, E2 is effectively
a pairwise potential. If F is not identically zero, then E2 is considered to be a
pairwise functional.

Whatever potential is considered, it will involve several parameters in a
function defined from physical considerations. The parameters can be deter-
mined in two ways:

– The first approach is to identify the parameters by minimising the dis-
crepancy between the actual properties of the material and the values of
these properties calculated either from the results of molecular dynamics
simulations, or from analytical expansions derived from the potential and
leading to an expression for the required properties [5–10].

– The second approach is to identify the parameters by minimising the
discrepancy between the values of the atomic positions and the forces on
these atoms obtained by ab initio calculation and the values obtained by
the molecular dynamics calculation [11]. Another solution is to determine
the parameters of the potential by minimising the differences between the
properties calculated by molecular dynamics (thermophysical constants,
dispersion curves, configuration energies) and those obtained by ab initio
calculations [12].

Precise knowledge of these parameters is essential since their values will
largely determine simulation results.

1.4 Implementing the Simulation

A simulation begins by defining the initial state characterised by the type of
particles and potential, the particle positions, the boundary conditions, the
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Fig. 1. Periodic boundary condition

velocity field of the particles, and the initial temperature. To simplify the
discussion, we consider only an ensemble of atoms of the same element with
zero average velocity (fixed centre of gravity) and without rotational motion
around the centre of gravity. Only one interatomic potential is required and
the choice of potential is directly related to the type of atoms and the physical
phenomena under investigation.

In most cases, the initial position of an atom corresponds to the theoretical
position in the crystal. For example, gold crystallises in a face-centered cubic
configuration, iron in a body-centered cubic configuration, and cobalt in a
hexagonal configuration. If the aim is to simulate the behaviour of small
crystals, the particles are then positioned in such a way as to constitute the
desired monocrystal and the surfaces are left free. If the aim is to study the
bulk properties of a material, then a large enough body of particles must
be defined to ensure that the presence of free surfaces no longer influences
the bulk behaviour of the material. This condition requires the definition of
a very large number of particles, and this leads to exorbitant calculational
effort. In order to reduce the number of particles, a practical solution is to
define periodic boundary conditions. A cubic box is filled with particles. As
time goes by, when a particle leaves the box through one face, it automatically
reenters it through the opposite face (see Fig. 1). This operation is achieved
for each pair of opposite faces of the box. This device is used to simulate
materials with infinite dimensions.

In this box, a particle undergoes interactions with all particles included in
a sphere of radius equal to the maximal distance of application of the potential
field, called the cutoff value (see Fig. 2). For the periodic boundary condition
to be consistent, the box must have dimensions such that the sphere defined in
this way does not include the same particle twice. This condition is necessary,
but not always sufficient to obtain a realistic simulation. The dimension of
the box also depends on the physical phenomenon under investigation.

An initial velocity must be attributed to each particle. This velocity is
defined by a magnitude and a direction. The initial velocity field serves to
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Fig. 2. Determination of interacting atoms under periodic boundary conditions.
(a) The dimension of the box is greater than the cutoff radius so that interacting
atoms are only counted once. (b) The dimension of the box is smaller than the
cutoff radius in one direction. Some atoms are counted twice

represent the thermal agitation of the particles. The velocity field must there-
fore satisfy the following criteria:

– The directions of the vectors must be uniformly distributed in space.
– The sum of the velocity vectors must be equal to 0, i.e., no overall motion

of the atoms:

N∑
i=1

vi
x = 0 ,

N∑
i=1

vi
y = 0 ,

N∑
i=1

vi
z = 0 .

– The magnitudes of the velocity vectors must obey the Maxwell–Boltz-
mann distribution corresponding to the temperature T (in K) of the
particle ensemble. The distribution function of the magnitude has the
form

f(v) = cv2 exp

(
− mv2

2kBT

)
, (33)

where c is a normalising constant such that
∫ ∞
0

f(v) dv = 1.
– The average kinetic energy must satisfy

1
N

N∑
i=1

1
2
mv2

i =
D

2
kBT , (34)

where D is the number of dimensions of the problem.
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In practice, the initial velocity field satisfies only the first two criteria. The
magnitude of all the velocity vectors is the same and equal to

vi =

√
DkBT

m
, ∀ i = 1, . . . , N . (35)

Indeed, experience shows that, allowing the system to evolve freely from this
initial velocity field, the distribution function of the velocity magnitude will
evolve naturally after a few tens or hundreds of time steps to the Maxwell–
Boltzmann distribution [13]. To calculate the initial velocity field, one must
therefore fix the temperature.

1.5 Energy Distribution

Recall that the motion of the atoms as time goes by can be decomposed with
respect to a basis of periodic progressive wave functions called vibrational
modes, characterised by their angular velocity ω and speed of propagation v.
The relation between ω and v is

v =
dω

dk
, (36)

where k is a translation vector under which the system is invariant. The var-
ious vectors k are defined in the reciprocal space, in the first Brillouin zone
of the atomic lattice under consideration. For a wave vector, the angular ve-
locity is given by the dispersion relation. The energy of a vibrational mode is
equal to the energy quantum of a phonon at the relevant frequency multiplied
by the average number of phonons at this frequency [14, 15]:

Ek(T ) = �ωk〈n(ωk)〉 , (37)

where 〈n(ωk)〉 is given by the Planck distribution function

〈n(ωk)〉 =
1

exp(�ω/kBT ) − 1
. (38)

In molecular dynamics, the behaviour of atoms and molecules is described
by classical mechanics. The main consequence of this description concerns
the distribution of energy over the various vibrational modes of the system.
Indeed, all vibrational modes have the same energy kBT . In molecular dy-
namics, the average number of phonons is therefore given by

〈nMD(ω)〉 =
kBT

�ω
. (39)

This is the limiting value of the number of phonons given by the Planck
distribution when the temperature tends to infinity.
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Fig. 3. One-dimensional harmonic system

To sum up, for a system at given temperature T , molecular dynamics
overestimates the energy of the system and the phonon population. This
important point is illustrated by a chain of harmonic oscillators comprising N
point masses m connected by springs of stiffness K, only able to move in the
x direction and constrained by periodic boundary conditions (see Fig. 3). At
rest, the masses are a distance a apart and the potential energy of the system
is zero, i.e., zero force between the masses. The vibrational modes of this
oscillator chain are progressive plane waves characterised by the dispersion
relation

ω = 2

√
K

m

∣∣∣∣sin
ka

2

∣∣∣∣ , (40)

where

k =
2πn

aN
, n = 1, . . . , N . (41)

The maximal angular velocity is ωM = 2
√

K/m. Figure 4 shows the tem-
perature variation of the dimensionless total energy of the system obtained
by dividing the Planck distribution by the energy of the system as calcu-
lated for a classical description. The energy of the quantum system tends to
that of the classical system for infinite temperatures. Figure 5 compares the
densities of states of the classical and quantum systems for two temperature
values. At the low temperature (kBT/�ωM = 0.32), the classical system has
higher density of states than the quantum system. At the high temperature
(kBT/�ωM = 80), the classical system has identical density of states to the
quantum system.

2 Thermal Conductivity Calculation

Three techniques are used to calculate the thermal conductivity from mole-
cular dynamics simulations:

– equilibrium molecular dynamics (EMD),
– non-homogeneous non-equilibrium molecular dynamics (NHNEMD),
– homogeneous non-equilibrium molecular dynamics (HNEMD).
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Fig. 4. Temperature variation of the dimensionless total energy of a quantum har-
monic system found by dividing by the total energy of the same system considered
with a uniform distribution per vibrational mode

Fig. 5. Phonon number as a function of the dimensionless angular velocity. Upper :
kBT/�ωM = 0.32. Lower : kBT/�ωM = 80. The average phonon numbers calculated
by the classical and quantum approaches are equal in (b)

The temperature must be ascertained before the thermal conductivity can
be calculated. Indeed, for a system in equilibrium, the thermal conductiv-
ity is calculated at a given temperature which must be known, and for a
non-equilibrium system, the temperature gradient in the system must be de-
termined.

Whatever technique is used, the temperature calculation is based upon
the hypothesis of local thermodynamic equilibrium and equipartition of en-



168 Patrice Chantrenne

ergy over all vibrational modes and polarisations. For non-equilibrium sys-
tems, the hypothesis of local thermodynamic equilibrium is based upon the
assumption of a small difference between the actual distribution function and
the Maxwell–Boltzmann velocity distribution [16]. We have checked that, in
a non-equilibrium system (solid argon at 25 K) with a temperature gradient
of 3 × 108 K/m, the difference between the distribution functions does not
exceed 2%. In non-equilibrium molecular dynamics, due to the small system
sizes (a few times the interatomic distance), temperature gradients are much
greater than actual temperature gradients. However, the temperature levels
always remain reasonable compared with the temperature variations arising
in a phase change. The instantaneous temperature of an ensemble of N atoms
is given in terms of the average kinetic energy of these atoms by

3
2
kBT (t) =

1
N

N∑
i=1

1
2
miv

2
i . (42)

The standard deviation of the temperature is proportional to the temperature
and inversely proportional to the square root of the number of atoms [17]:

σ
(
T (t)

)
∝ T (t)√

N
. (43)

Hence, if the number of atoms is large enough (of the order of 1023 for a
macroscopic system), statistical variations in the temperature are negligible.
In molecular dynamics, the number of atoms considered varies from ten to
tens of thousands. Then statistical variations in the instantaneous tempera-
ture can no longer be ignored. A time average must be calculated to reduce
the standard deviation in the temperature:

〈
T (t)

〉
=

1
Nt

Nt∑
i=1

T (ti) , (44)

σ
(〈

T (t)
〉)

∝ T (t)
Nt

√
N

. (45)

Figure 6 shows the autocorrelation function for instantaneous temperatures
calculated at each time step during a molecular dynamics calculation. From
the figure it is clear that temperatures remain highly correlated over a time
span equal to a few hundred time steps. The time average is then evaluated by
using only one instantaneous temperature every 800 time steps, for example.
It seems that the definition of the correlation time is still open to debate.
Hence, Lukes et al. [18] define the autocorrelation time as equal to the average
phonon relaxation time.

2.1 Equilibrium Molecular Dynamics

The system considered here is microcanonical, with constant pressure, vol-
ume, and energy. Since the system evolves without constraint, after a certain
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Fig. 6. Autocorrelation function of the local temperature in a system. Results
obtained for a carbon nanotube C(5.5) of length 10.4 nm under a temperature
gradient of 60 K at an average temperature of 900 K. Brenner interaction potential.
Time step 0.0005 ps

number of time steps, it reaches a thermodynamic equilibrium with a constant
average temperature. However, due to temperature fluctuations, the instan-
taneous flux also varies, even though its average value is still zero because the
system is at equilibrium. The conductivity calculation uses the fluctuation–
dissipation theorem from the linear response theory, which relates the trans-
port properties to instantaneous fluctuations in the system. The thermal
conductivity can thus be deduced from variations in the instantaneous flux
of an equilibrium system using the Green–Kubo relation [1, 2, 19, 20]

λ =
V

3kBT 2

∫ ∞

0

〈φ(0)φ(t)〉dt . (46)

In order to determine the thermal conductivity, one must therefore calculate
the instantaneous flux in the system [21]:

φ(t) =
N∑

i=1

viEi −
1
2

N∑
i,j=1

rijviF ij . (47)

The first term on the right-hand side represents the energy transported by
each atom moving with velocity vi. In solids, this term is generally negligi-
ble [22].

One drawback with the method lies in the fact that it is difficult to obtain
a sufficiently accurate estimate of the integral in (46). This requires simula-
tions with a relatively large number of time steps, which may become pro-
hibitive for the computation time when sophisticated interaction potentials
are used.

2.2 Non-Homogeneous Non-Equilibrium Molecular Dynamics

This is certainly the simplest technique to understand and implement, for it
is equivalent to the well known guarded hot plate experiment. The idea is
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Fig. 7. Configuration for simulating heat transfer. Left : Periodic boundary con-
ditions. The simulation enclosure and the system have the same size. Right : Free
surface conditions. The simulation enclosure is bigger than the system

to simulate one-dimensional heat transfer in a system by inserting a hot and
a cold source, then measuring the flux exchanged between the sources and
the temperature gradient. The definition of the hot and cold sources depends
on the type of boundary conditions used, i.e., periodic or free surface (see
Fig. 7). To simulate the heat transfer, one of the techniques proposed in
the literature [23] consists in exchanging atoms between the hot and cold
sources. Since this technique is rarely used, we shall not go into detail. The
most widely used approach consists in modifying the velocity field of the
atoms belonging to the heat sources in such a way as to impose either the
thermal power exchanged between the hot and cold sources [18, 24, 25], or
the temperature of these sources [26–30].

Imposed Power

As the flux φ is imposed, the amount of energy to give to the hot source and
take from the cold source in each time step is equal to

Φ = φS∆t . (48)

This quantity of energy (or its absolute value) is supplied by modifying the
kinetic energy of the hot and cold sources. The velocity field is thus multiplied
by a weighting coefficient equal to

αc(t) =
√

1 − Φ/Ek
c (t) (49)

for the cold source and

αh(t) =
√

1 − Φ/Ek
h(t) (50)
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for the hot source, where Ek
c (t) and Ek

h(t) are the instantaneous kinetic en-
ergies of the cold and hot sources, respectively.

The exchanged power is perfectly constant. The permanent regime is
reached when the average temperature profile becomes stable in time. When
the system does not conserve energy, the temperature begins to drift. The
average temperature of the system is generally close to its initial temperature.

Imposed Temperatures

The temperatures T ∗
h (t) and T ∗

c (t) of the hot and cold sources are calculated
after integrating Newton’s equations. These temperatures are not the re-
quired temperatures Th and Tc. The velocity field of the hot and cold sources
is thus multiplied by a weighting coefficient to make the correction. The
weighting coefficients are

√
Th(t)
T ∗

h

and

√
Tc(t)
T ∗

c

for the hot and cold sources, respectively. With this method, the energies
Φh(t) and Φc(t) released (in absolute value) by the hot and cold sources,
respectively, are given by

Φh(t) = Nh [Th − T ∗
h (t)]

3kB

2
(51)

and

Φc(t) = Nc [Tc − T ∗
c (t)]

3kB

2
, (52)

where Nh and Nc are the numbers of atoms in the hot and cold sources.
With this method, the temperature gradient between the sources can be

perfectly controlled. The instantaneous fluxes exchanged by the heat sources
are calculated from the energies Φh(t) and Φc(t) by

φ(t) =
Φ(t)
S∆t

, (53)

where S is the cross-sectional area through which the heat flows and ∆t is
the time step.

In the permanent regime, the average fluxes 〈Φh(t)〉 and 〈Φc(t)〉 must be
equal in absolute value. This is therefore a simple way to check the principle
of energy conservation. To illustrate the method, the temperature profile in
a system is shown in Fig. 8. The system is an fcc crystal of solid argon with
dimensions 60a0 in each of the x, y and z directions. Periodic boundary
conditions are imposed in the three directions. The thickness of the hot and
cold sources is 12a0. Although the average temperatures of the hot and cold
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Fig. 8. Temperature profile in a system with thermostatically controlled hot and
cold sources. Black dots indicate the positions of the hot and cold sources

Fig. 9. Evolution of average fluxes exchanged between hot and cold sources

sources are held constant during the simulation, the temperature profile is
not uniform in these regions. Rather, it has a parabolic appearance specific to
macroscopic media with internal heat sources. Figure 9 shows the evolution
of the average fluxes (over 5000 time steps) exchanged by the heat sources.
The permanent regime is reached after about 50 ps.

2.3 Homogeneous Non-Equilibrium Molecular Dynamics

This calculational technique was devised by Evans [31, 32]. It consists in
applying a homogeneous external force field to the system to produce a heat
flux. Simultaneously, a Gaussian thermostat [33, 34] is applied to hold the
temperature constant. If Fext is the external force, the equation of motion is
then

mai =
1

2N

⎡
⎣∑

j

F ij(Ei − E)F ext

−
∑

j

F ijrij · F ext +
∑

j

F jkrjk · F ext

⎤
⎦ − αmvi , (54)
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and α is the coefficient of the Gaussian thermostat given by

α =

(∑
i

m2
i vi · vi

)∑
i

mi

2N

[∑
j

F ij + (Ei − E)F ext

−
∑

j

F ijrij · F ext +
∑

j

F jkrjk · F ext

]
· vi . (55)

Under these conditions, using perturbation theory, Evans showed that the
thermal conductivity can be written

λ = lim
Fext→0

〈φ(t)〉
TFext

. (56)

In order to determine the thermal conductivity, one thus requires the average
flux 〈φ(t)〉 [the instantaneous flux calculated with (5)] for different values of
the force Fext. The value of the latter must be small enough to constitute a
small perturbation from equilibrium, i.e., to justify linear perturbation theory.

3 Determining Vibrational Properties

In dielectric materials, heat transfer by conduction is due entirely to vibra-
tions of the atomic lattice. In crystals with a periodic structure, these vi-
brations can be decomposed with respect to a basis of progressive waves
characterised by a wave vector k and a polarisation p. In Sect. 3.1, an expres-
sion is established for the thermal conductivity in terms of the vibrational
modes, while Sect. 3.2 explains how the properties of these vibrational modes
can be determined via molecular dynamics simulations.

3.1 Heat Transfer by Phonons

An analytical formulation of thermal conductivity can be given by decompos-
ing lattice vibrations into vibrational modes [14,15]. In a system of volume V
and temperature T , the number of phonons with wave vector k and polarisa-
tion p is given by the Planck distribution function (38), in which the angular
speed ω depends on k and p. The relation ω(k, p) is given by the dispersion
curves. The internal energy of the vibrational mode (k, p) is the product of
the number of phonons in this vibrational mode and the energy quantum of
each phonon:

U(k, p) = �ω〈n(k, p)〉 . (57)

The specific heat of the vibrational mode (k, p) is then given by

C(k, p) =
∂U(k, p)

∂T
= kBx2 ex

V (ex − 1)2
, (58)
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with

x =
�ω

kBT
. (59)

Now treating the phonons as particles and using the kinetic theory of gases,
the thermal conductivity of phonons associated with a vibrational mode (k, p)
in a direction x can be written

λx(k, p) = C(k, p)v2(k, p)τ(k, p) cos2
(
θx(k)

)
, (60)

where v is the phonon propagation speed, equal to the group velocity of the
vibrational mode (k, p), viz.,

v(k, p) =
dω

dk
, (61)

τ(k, p) is the relaxation time, and θx(k) is the angle between the heat transfer
direction and the wave vector k. The total thermal conductivity is thus equal
to the sum of the thermal conductivities associated with each vibrational
mode (k, p), i.e.,

λx =
∑

k

∑
p

λx(k, p) =
∑

k

∑
p

C(k, p)v2(k, p)τ(k, p) cos2
(
θx(k)

)
. (62)

The relaxation time depends on all the interactions undergone by the
phonons. These fall into three categories:

– Interactions between phonons and the system boundary [35–39].
– Phonon–phonon interactions involving three phonons. To each type of

collision, there correspond relaxation times τN and τU, for which various
relations have been proposed [35, 40–44].

– Phonon–defect interactions. Work by Klemens [45, 46] forms the basis
for most studies concerning the influence of defects on thermal conduc-
tivity [47–50]. The cases investigated correspond to very low defect con-
centrations (less than 2%), for which the true vibrational behaviour can
be considered as a superposition of the vibrational behaviour of the per-
fect material and a perturbation.

As mentioned in the last section, the total relaxation time is given by the
relation

1
τ

=
∑

i

1
τi

. (63)

The thermal conductivity can be calculated analytically using (62) provided
that the following data are known:
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– The different vibrational modes. For a crystal, this is a basic problem
of solid state physics. Although trivial for a 1D system, the problem
can become quite involved for crystals depending on the geometry of the
Brillouin zone.

– The dispersion curves from which the angular speed ω and the group
velocity of the vibrational modes can be calculated. The difficulty here
lies in modelling them, because the number of dispersion curves is equal
to the number of possible directions of the wave vectors.

– The relaxation times due to the various interactions.

3.2 Determining Vibrational Properties

We shall illustrate the determination of vibrational properties via molecular
dynamics simulation by considering the example of a Lennard–Jones crystal
at constant temperature (T = 0.215 LJ units). The system is a face-centered
cubic crystal with characteristic dimension Na0 whose directions ([100], [010],
[001]) are aligned with the x, y, and z axes. Periodic boundary conditions
are used in all three directions. Phonons are considered as plane waves. For
this demonstration, only those vibrational modes with wave vectors in the
z direction and with longitudinal polarisation are characterised. There are N
atomic planes (indexed by s = 1, . . . , N) perpendicular to the z direction. At
each time step, the displacement u(s, t) (s = 1, . . . , N) of these planes in the
z direction is calculated relative to their equilibrium position. The Fourier
transform of these instantaneous displacements can be used to calculate the
instantaneous amplitude A(k, t) for each wave vector. The time average of
this vibration amplitude is related to the angular frequency by [51]

〈
|Ak|2

〉
=

kBT

mω2
. (64)

The dispersion curve can then be determined. It can be shown that this curve
does not depend on the system size, although the bigger the system, the
better the resolution with which this curve can be determined (see Fig. 10).
Moreover, we have also checked that the dispersion curve does not depend
on the temperature, provided that it remains low. Indeed, the higher the
temperature, the greater the enhancement of anharmonic effects. Under the
simulation conditions, the dispersion curve has the same shape as would be
predicted for a 1D harmonic system, viz., ω(k) = ωM sin(ka0/2), where ωM

depends on the parameters of the potential. This relation can be used to
determine the group velocity v(k) = dω/ dk (see Fig. 11).

The relaxation time is determined by analysing the autocorrelation of the
real part of the amplitude of the vibrational modes, viz.,

〈
Ak(t)Āk(0)

〉
. The

amplitude of this function decreases exponentially with a characteristic du-
ration equal to twice the relaxation time of the phonon number (see Fig. 12).
The relaxation time can thus be identified for different wave vectors (see
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Fig. 10. Dispersion curve for wave vectors in the direction [100] of an fcc Lennard–
Jones crystal for two dimensions of the system: L = 18a0 (continuous curve without
symbols) and L = 142a0 (curve with symbols). The dotted curve corresponds to the
dispersion curve of a 1D harmonic system

Fig. 11. Group velocity in Lennard–Jones units as a function of the wave vector

Fig. 12. Autocorrelation
〈
Ak(t)Āk(0)

〉
of the vibration amplitude as a function of

time, in arbitrary units. Left : k = 2π/a. Right : k = 2π/10a

Fig. 13). The 1/ω2 dependence generally predicted has been recovered to a
good level of accuracy.
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Fig. 13. Reciprocal relaxation time (Lennard–Jones units) as a function of the
square of the dimensionless wave vector

Conclusion

We have presented the Molecular Dynamics computational technique and
described the different simulation strategies (EMD, NEMD, HNEMD) allow-
ing for the calculation of the thermal conductivity. As MD only involves the
classical treatment of the atom dynamics, then only phonon heat transfer in
dielectric media at high enough temperatures can be investigated. Due to the
computational time, the use of MD is limited to systems which characteristic
length is lower than a few nanometers. To estimate the thermal conductiv-
ity of large dielectric systems at low temperatures, other method such as
the Monte Carlo technique, the P1 and the Discrete Ordinate method which
were described in the previous chapters, might be used to solve the Boltz-
mann equation for phonons. These latter methods require the knowledge of
the vibrational properties of the matter, namely, the dispersion curves and
the phonon relaxation times. This information can be determined on small
systems by using MD and a relevant interatomic potential.
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Abstract. Fundamental research and continued miniaturisation of systems (ma-
terials or components) have instigated and still require today the development of
specific investigative methods for studying phenomena or properties in many ar-
eas of science. This Chapter is concerned with a whole range of methods based on
near-field microscopy and developed for the study of micro- and nanoheat transfer.
Section 1 describes the working principles of various near-field microscopes as a
prerequisite to understanding how they are put to use in the study of heat transfer.
Section 2 discusses the type of information than can be obtained and describes the
main developments that have given access to such information. Section 3 describes
a certain type of local probe microscopy that plays an important part in the science
of microheat transfer.

1 Introduction to Near-Field Microscopy

This section1 discusses recently developed ways of investigating the structure
and properties of materials, although it does not claim to be exhaustive. We
shall see how the transition was made from the scanning tunneling microscope
(STM) to scanning force microscopes (SFM) and microscopes using waves or
diffusion effects, in particular, the scanning thermal microscope which is the
subject of this Chapter.

1.1 Basic Principles of Near-Field Microscopy

The new high-resolution forms of microscopy known as near-field microscopy
all exploit the short-range interaction between a fine tip and the sample under
investigation. Depending on the type of investigation, the interaction may be
static, e.g., van der Waals force, or it may be dynamical, in which case a
wave or dynamical diffusion effect can be used. Resolution can be submicron
or even nanometric. In the best cases, atoms can be localised (AFM, STM),

1 Contributed by B. Cretin and P. Vairac.

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 181–238 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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but as far as the emerging techniques are concerned, resolution is usually in
the range 10–100 nm.

To understand the difference between the far field and the near field,
we shall consider here only microscopes using propagation or diffusion. In
standard microscopes (optical, acoustic, or electronic), the beam is focused
on the sample object and detection occurs at distances well above the relevant
wavelength. The ultimate resolution of conventional microscopes is imposed
by a physical limit, viz., the impossibility of obtaining a spot in the focal
plane of the lens with dimensions smaller than half the wavelength. This limit,
known as the diffraction limit, follows from the laws of diffraction and is often
expressed in the form of the Rayleigh criterion. A simplistic and approximate
evaluation of the resolution can be obtained from the Heisenberg uncertainty
principle, which relates the spatial localisation to the spectral width of the
wave used to investigate the sample:

∆x∆kx ≥ 2π . (1)

This relation shows that, if we use the mathematical spectrum (including
negative values),

∆kx max =
4π

λmin
. (2)

Then the limiting resolution given by the uncertainty principle in the case
where we have equality is

∆xmin =
λmin

2
. (3)

This value does indeed agree with the limit given by the Rayleigh criterion if
the propagating medium has a refractive index close to that of the vacuum.

In contrast, near-field microscopes are able to go beyond this physical
limit by several orders of magnitude because the interaction they exploit is
rather different.

Specific Features of the Near Field
in the Case of Propagation or Diffusion

Recall that the one-dimensional propagation equation has the general form

∂2X

∂t2
= v2 ∂2X

∂x2
, (4)

a partial differential equation in which X represents the field of the propagat-
ing physical quantity, x is the space coordinate, and v is the phase velocity of
the wave. As an example, longitudinal elastic waves in a non-absorbent solid
medium are solutions to the equation (plane model)

∂2u

∂t2
=

E

ρ

∂2u

∂x2
, (5)
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whereupon the speed of the longitudinal wave is

vL =

√
E

ρ
. (6)

In these formulas, u is the displacement field, E is Young’s modulus, and ρ is
the density of the medium. In the permanent sinusoidal regime, the solution
takes the form

u = u0ei(ωt−kx) , (7)

for propagation towards positive x, where u0 is the amplitude of the elastic
wave, ω is the angular frequency, and k is the wave vector parallel to the
propagation axis.

Microscopes based on propagation are exemplified by the optical micro-
scope and the acoustic microscope. Considering the wave–particle duality, the
scanning electron microscope (SEM) can be classified in the same category.

The diffusion equation has a rather different form, since it only involves
a first derivative with respect to time. In 1D, this equation is

∂X

∂t
= a

∂2X

∂x2
, (8)

where a is the diffusivity. A representative example here is the heat equation

∂θ

∂t
= a

∂2θ

∂x2
, a =

κ

ρC
, (9)

where θ is the temperature, κ is the thermal conductivity, and C is the specific
heat capacity. In this case, the solution for a sinusoidal excitation is

θ = θ0eiωte−ix/µTe−x/µT , (10)

where θ0 is the amplitude of the temperature field, ω the angular frequency,
and µT the thermal penetration depth, sometimes called the skin depth.

As an indication, we give some orders of magnitude for thermally conduct-
ing and insulating materials. The values in Table 1 correspond to periodic
excitations of period T . The results explain why a probe or other analytical
device based on heat diffusion cannot reach deep layers in reasonable obser-
vation times. The microscopes using this diffusion are mainly the thermal
microscopes. We shall see later that near-field microscopes using evanescent
fields are also subject to a diffusion equation.

When the source is very small, the 1D model can no longer be used and the
physical behaviour is fundamentally different. Indeed, the main effect leading
to attenuation is energy dispersion. Hence, for a point source, a propagating
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Table 1. Order of magnitude of the thermal diffusion length

Period T µT for brick µT for aluminium
(a ∼ 10−6 m2/s) (a ∼ 8 × 10−5 m2/s)

1 ms 18µm 0.16 mm
1 s 0.57 mm 5 mm
1 yr (31.5 × 106 s) 3.2 m 28 m

field can be expressed in the form (approximate form if r is small compared
with the wavelength)

XP =
X0

r
ei(ωt−kr) ≈ X0

r
eiωt(1 − ikr) , (11)

and a diffusive field can be put into the similar form

XD =
X0

r
ei(ωt−r/µX)e−r/µX ≈ X0

r
eiωt

(
1 − i

r

µX
− r

µX

)
. (12)

In practical terms, the 1/r term dominates in the diffusive case and it is
therefore difficult to distinguish the two types of behaviour when the interac-
tion between the field and the defect occurs at a distance much smaller than
λ/2π (propagation) or µX (diffusion).

This phenomenological approach gives an insight into the near field. In
practice, the models used are more elaborate, since they must take into ac-
count size effects which do not show up in the 1/r behaviour of the field.

1.2 Historical Perspective: From Conventional Microscopy
to Near-Field Microscopy

The conventional optical microscope was the starting point for the long series
of microscopes which followed, or sometimes preceded, the requirements of an
industry that sought to miniaturise the products it manufactured. The origin
of the microscope comprising two distinct optical systems is attributed to
the Dutch spectacle-maker Janssen at the end of the sixteenth century [1,
2]. This instrument was gradually improved and led to many discoveries,
e.g., the discovery of micro-organisms by Pasteur. However, by the end of
the nineteenth century, it had become accepted, particularly after the work
of Lord Rayleigh, that the resolution limit of this type of microscope was
something like half the wavelength [3–5]. Optical microscopes have since been
perfected and now approach this ultimate resolution, sometimes allowing a
3D reconstruction of certain transparent objects (confocal microscope [6]).
Despite this achievement, other physical principles had to be considered in
order to gain access to higher resolutions, or to observe within opaque objects.

The second great step in the history of microscopy had its origin in the
work of Louis de Broglie, who studied the wave nature of the electron. In
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1924, he proposed that the motion of any particle was accompanied by the
simultaneous propagation of a wave of wavelength [7–9]

λ =
h

mv
, (13)

where h is Planck’s constant, m the relativistic mass of the particle, and v its
speed. This discovery made it possible to envisage resolutions that had never
been contemplated before. By 1930, the analogy between geometrical optics
and ‘electronic optics’ was already established. The first electron microscope
images were obtained by Davisson and Calbick in 1931. Given the very short
equivalent wavelength (about 1 Å for an acceleration potential of 100 V),
this type of microscope soon became widespread. In practice, the scanning
electron microscope achieves resolutions in the range 1–10 nm, but its main
advantage is its depth of field. (The depth of field of a microscope increases
as the wavelength gets shorter.) On the other hand, there are two drawbacks
with this technique: it can only be used under very high vacuum and non-
conducting samples must be metallised.

Still by analogy with the optical microscope, the scanning acoustic mi-
croscope was developed in 1974. It was based on older work due to Langevin,
who invented the sonar in 1917, and Sokolov, who suggested using ultrasonic
acoustic waves to detect defects in metals in 1929. The first microscope built
by Quate works by transmission [10–12]. The acoustic wave generated by a
piezoelectric material is focused by a lens and passes through the object. The
attenuation of this wave depends on local inhomogeneities. After scanning,
the acoustic wave detected, converted and visualised on a monitor images the
acoustic properties of the object. The main advantage of this microscope is
its ability to image the interior of opaque objects, e.g., metals, ceramics, or
composite materials. One drawback with this microscope arises due to the
attenuation of the acoustic wave at high frequencies, which precludes im-
provement of the resolution. The reason why this microscopy took so long
to develop is that the computers required for this level of data acquisition,
storage and image restitution were not yet available.

As far as thermal microscopy is concerned, it is difficult to attribute its
invention to anyone in particular owing to the wide range of different tech-
niques [13–20]. However, it was progress in optical physics (lasers, modula-
tors) and optoelectronics (infrared detectors) which led to its development in
the 1960s and its application to non-destructive testing a decade later. A suit-
able means of detection combined with a scanning technique was then able
to provide a thermal image that was complementary to the images produced
by other forms of microscopy. The thermal microscope may be thought of as
occupying a position midway between microscopes using waves and near-field
microscopes, because the dynamical behaviour of heat transfer corresponds
to an evanescent field. The historical development of the scanning thermal
microscope is described in detail in Sect. 2.
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Many other types of microscopy have been developed, using X or gamma
rays, charged particles, or infrared or ultraviolet electromagnetic waves.

A decisive step was taken at the beginning of the 1980s with the in-
troduction of a novel concept: given that the laws of diffraction forbid the
observation of details smaller than the wavelength, a tiny probe must be used
to detect field perturbations near inhomogeneities and hence improve reso-
lution. The first microscope based on this idea concerning the near field, the
electron scanning tunneling microscope, was built by Binnig and Rohrer in
1982 [21–23]. It was a revolutionary invention that won them the Nobel Prize
for Physics. The scanning tunneling microscope detects the tunnel current be-
tween a fine metal tip and a conducting material [24]. The lateral resolution
of this microscope can reach 0.2 nm and allows observation of the electronic
fields around atoms. Individual atoms can be discerned on the images.

The second major family of near-field microscope uses atomic interaction
forces. The invention of the atomic force microscope (AFM) is attributed to
Quate, Binnig and Gerber in 1986 [25]. Forces are measured by means of a
fine tip rigidly connected to a tiny cantilever. The latter has a certain elas-
ticity and bends under stress, so that an optical measurement can then be
made. This microscope has the advantage of being able to examine materi-
als that are poor electrical conductors, in contrast to the scanning tunneling
microscope. Atomic force microscopes are now widely used to characterise
surfaces on the nanoscale (mainly the state of the surface). The high sensi-
tivity of AFM cantilevers makes new force measurements possible (magnetic
forces, electrostatic forces, and so on) with a vast range of applications.

At the same time as the AFM was being developed, the optical near field
was being used to devise new types of microscope, sensitive to light waves
in this case. The first optical near-field microscopes appeared simultaneously
in the US and Germany (Massey, Fischer 1983). These microscopes used
a hole with diameter smaller than the wavelength. Today, optical near-field
microscopes use either a tapered optical fibre, often metallised, or a cantilever
including a wave guide and a tip. Several types of near-field optical microscope
have already been industrialised. The servo system controlling the tip–sample
separation generally uses a vibrational motion of the tip parallel to the sample
surface, the so-called dynamic mode AFM. More recently, measurements of
tip heating have led to the development of hybrid microscopes combining
near-field optics and heat transfer.

The acoustic microscope takes its place among the latest near-field mi-
croscopes. The invention of the truncated tip acoustic microscope is due to
Zienuk and Latuszeck in 1986 [26]. However, a resolution better than 1 µm
was only achieved in 1989 by Takata et al. [27]. Today, commercially pro-
duced microscopes are used to carry out topographic studies or combine AFM
and acoustic effects. Acoustic techniques using the tip in contact mode are
particularly useful because they can identify the local mechanical properties
of materials, as does the nanoindenter. Moreover, defects located below the
surface can be detected down to a depth that usually exceeds a few microns.
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Fig. 1. General layout of a scanning near-field microscope

Over the last few years, new techniques have emerged which now pro-
vide a genuine arsenal for applied research. Applications and observation
instruments are likely to continue to proliferate over the coming years, going
hand in hand with the miniaturisation of many industrial products (micro-
electronics, data storage for multimedia or computing, local sensors, etc.).
The scanning thermal microscope (SThM) is naturally one of the techniques
currently under development with a promising future in many areas.

1.3 Scanning Probe Microscopes

We shall now describe the operating principles of the main families of scan-
ning probe microscope, excepting the thermal microscopes. The general
scheme of a near-field microscope is shown in Fig. 1.

In this type of microscope, whatever physical interactions are used, data
is acquired sequentially, by scanning. At each scan, the relative positions of
the sample and tip are controlled by piezoceramics allowing three orthogo-
nal translations. One adjusts the tip–sample distance. It is associated with
an electronic circuit which servo controls the height or interaction intensity.
Practically speaking, piezoelectric translators generally have a small ampli-
tude motion. Other units must therefore be incorporated to ensure the rough
approach of the tip. Moreover, special precautions must be taken to minimise
unwanted variations in the tip–sample separation due to external mechanical
vibrations or thermal drift. Mechanical antivibration devices use mass–spring
systems or damping materials such as rubber. Piezoceramics allow continuous
displacements down to the picometer scale but nonlinearities and hysteresis
in these materials limit the performance of the microscope unless an accurate
(e.g., capacitive) position sensor is integrated into the system.

It should be stressed that scanning microscopes cannot obtain images in
real time, in contrast to the kind of full field techniques often available in
the far field. In practice, in near-field microscopy, it often takes around a
minute to acquire an image. This is a serious limiting factor for observing
motion. Scanning rates are usually limited by the relevant detection physics,
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Fig. 2. Schematic view of a tunnel junction

e.g., servo control of the distance, and the acquisition frequency per point is
generally less than 10 kHz. In concrete terms, the limiting scan rate can be
evaluated once the temporal response of the system is known. Typically, for
a measurement time constant τ (sensor and, where necessary, signal process-
ing), and for a pixel size Tp, the maximal displacement speed Vmax will be
of the order of 2Tp/τ (acquisition time corresponding to at least two time
constants to reduce measurement error due to integration).

Scanning Tunneling Microscopy (STM)

Although it was first demonstrated theoretically in 1928, the tunnel effect was
not put to use until 1982 when it gave birth to the first laboratory microscope,
the scanning tunneling microscope (STM) which could form images of atoms.
In 1986, its inventors, Binnig and Rohrer of IBM, Zurich, were attributed the
Nobel Prize for Physics. The exceptional resolution of the STM inspired the
development of a whole range of techniques based on an analogous principle
and grouped together under the name of scanning probe microscopy. One of
the basic characteristics of the STM is its ability to image conducting surfaces
and, in some cases, insulating systems adsorbed onto a conducting surface.
(It does not normally work for insulating surfaces.)

The tunnel effect was already well known to physicists at the beginning of
the twentieth century. It was investigated more completely with the advent
of junction semiconductors and in particular the use of diodes. As a first
illustration of the phenomenon, consider a metal–insulator–metal structure.
The metal electrodes are assumed to be flat. When one electrode is raised
to a potential with respect to the other, a tunnel current can flow if the
distance between the electrodes is small enough. Figure 2 illustrates a simple
1D model of a tunnel junction.

A potential barrier that is square at zero bias voltage separates the two
metals characterised by their Fermi levels. (If a voltage V is applied across
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Fig. 3. Example of an STM image with atomic resolution: Si(111)7×7. Courtesy
of F. Palmino, MINADO Group, CREST, FEMTO-ST

the electrodes, the Fermi level shifts by an energy eV.) For low bias potentials
compared with the barrier height, the tunnel current is given by [24]

I ∝ exp
(
−2

�

√
2mφd

)
, (14)

where m is the electron mass, φ the difference between the kinetic energy
and the height of the potential barrier, and d the distance between the tip
and sample.

For typical orders of magnitude (energy ∼ eV, d ∼ 10 Å), the tunnel
current is very small and highly sensitive to the separation between the elec-
trodes, i.e., it can change by an order of magnitude for a variation of a few
angstrom units in the separation. This relation also shows that the slight-
est irregularity on the electrode surface will localise the tunnel current as
a result of the smaller separation at this point. It also explains why, for a
homogeneous material, holding the voltage and tunnel current constant is
equivalent to scanning the surface at a constant height. An example image is
shown in Fig. 3. After a specific preparation, the crystal lattice of the silicon
surface appears very clearly, demonstrating the ability of the STM to image
electronic orbits of atoms.

Atomic Force Microscopy (AFM)

The need for conducting samples seriously limits the field of application of the
scanning tunneling microscope. To get round this drawback, Binnig, Quate,
and Gerber invented the atomic force microscope, based on the detection
of atomic scale forces. The AFM images a surface by means of short range
atomic interactions between the tip and sample surface, in particular, the van
der Waals attraction. More generally, scanning microscopes that use forces
(SFM) can exploit different physical interactions, e.g., electrostatic or mag-
netic interactions. The advantages of this technique lie mainly in the flexi-
bility of the cantilever which limits damage to the probe tip during contact
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Fig. 4. Schematic view of the atomic force
microscope

Fig. 5. Atomic force as a function of
tip–sample separation d

and the possibility of servo controlling the distance or the force on arbitrary
materials, STM being restricted to conductors. On the other hand, the reso-
lution is less good than with an STM because the force–distance dependence
is not exponential as in an STM.

The operating principle of the AFM is illustrated in Fig. 4. It consists in
bringing a very fine tip close to the surface. The tip is located at the end of
a cantilever with low stiffness. The resultant force exerted between the tip
and surface causes a deflection of the cantilever which can be measured with
an optical deflectometer (laser and photodiodes). The image of the forces
(essentially topographic) is obtained by scanning the tip above the surface.

The three main operating modes of the AFM are:

– contact mode,
– non-contact mode,
– tapping® mode.

For the STM, we saw that the dependence was exponential. For the AFM,
this dependence is completely different, as can be seen from the sketched
graph in Fig. 5. The contact point is usually defined as the distance origin.
Short range repulsion between ionic cores give rise to the repulsive part of
the forces, while van der Waals forces produce the attractive part.

Van der Waals interactions which bind molecules together can be de-
scribed by a potential of the form W = −C/d6, where d is the distance be-
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tween molecules assumed to be uncharged. From a more macroscopic stand-
point, we shall be concerned with the interaction between a sphere and an
infinite plane (approximate model for the tip–sample interaction). In this
case, the attractive potential can be written in the form [28]

W = −CR

6d
, (15)

where R is the radius of the sphere, i.e., the radius of the tip apex. The
interaction force is therefore

F = −∂W

∂d
= −CR

6d2
. (16)

The forces arising in the AFM are typically of the order of nN.
The atomic force microscope usually operates in attractive mode. The

repulsive mode corresponds to a pressure of the tip on the surface. In fact,
two types of complementary force are involved:

– Contact forces given by the Hertz contact theory which was established
for two spherical surfaces in contact and which can be applied to the
sphere–plane contact. For an applied load P and a tip radius R, the
radius of the contact zone is given by the relation

a =
(

3PR

4E∗

)1/3

,
1

E∗ =
1 − v2

1

E1
+

1 − v2
2

E2
, (17)

where E1 and E2 are the Young’s moduli of the sample and tip, and v1

and v2 are their Poisson ratios, respectively.
– Adhesive forces. These tend to prevent the tip and sample from separating

after contact. They are given by

Fadh = nπR∆γ , (18)

where ∆γ is the interface energy (of the order of 1 J/m) and n is a con-
stant between 1.5 and 2.

In practice, the relevant forces are a combination of van der Waals forces
and surface tension, in addition to binding forces and repulsion when there
is contact. More realistic expressions for contact forces are provided by
the Johnson–Kendal–Roberts (JKR) model, the Derjaguin–Muller–Toporov
(DMT) model, and the more general model due to Maugis, formulated in
1992 [29].

Note that the atomic force microscope is sometimes coupled with a heat
microsensor to carry out a combined topography–temperature survey. The
force is servo controlled by the force sensor of the AFM and a feedback
loop. In this way, the interaction between the temperature sensor and the
sample can be held constant. (In some cases, the heat flux can be servo
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Fig. 6. Example of an AFM image. Silicon surface machined by FIB. Courtesy
of F. Palmino, MINADO Group, CREST, FEMTO-ST

controlled because the measured temperature is necessarily inaccurate owing
to conduction in the sensor.)

Figure 6 shows an example of an AFM image. The subject is a silicon
wafer, machined by focused ion beam (FIB). The image size is 6 × 6 µm2.
The tip goes down to a depth of 20 nm in the holes (machine depth).

Optical Near-Field Microscopy

In 1972, Ash and Nichols [30] showed that it was possible to work in the
near field with microwaves. They obtained a resolution close to λ/60. The
extension to visible wavelengths was achieved by Pohl et al. with a resolution
of λ/20 using an optical stethoscope. These were the first images obtained
by scanning near-field optical microscopy (SNOM) [31].

Near-field optical microscopes can be divided into two subfamilies [32,33]:

– Scanning near-field optical microscopy (SNOM or NSOM). The source is
an aperture with dimension less than the wavelength. Detection is in the
far field, either in transmission or in reflection. This was the first kind of
system to be demonstrated.

– Scanning tunneling optical microscopy (STOM) or photon scanning tun-
neling microscopy (PSTM). In this type of microscope, depicted schemat-
ically in Fig. 7, the sample is illuminated by an evanescent light field
obtained by total internal reflection. The name ‘tunneling optical micro-
scope’ comes from the fact that detection uses the tunnel effect.
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Fig. 7. Schematic illustration of STOM. The sam-
ple is illuminated by total internal reflection as in-
dicated by the lower arrows

In an optical near-field microscope, the source is a low power laser (a few
mW). Detection is made by a photodiode or photomultiplier (one detector
suffices in all forms of scanning microscopy). The mechanical setup must have
the same quality as an STM setup, i.e., antivibration system, piezoelectric
displacement unit, etc.

Applications are similar to those of classical optics but with resolution on
a scale of around 10 nm:

– Fine imaging, particularly in biology, and topographical measurements.
– Nanoscale photolithography. This may provide an opportunity for reduc-

ing the size of electronic circuits, for example.
– Fluorescence imaging and analysis of local spectra. This can be used to

study quantum wells or to detect isolated molecules.
– Spectroscopy. The near-field technique is particularly useful in the in-

frared (long wavelengths). The main advantage is to be able to charac-
terise a sample locally, even down to the detection of a single molecule.

Scanning Nearfield Acoustic Microscopy

Acoustic microscopy is physically very similar to optical microscopy, since
both use waves. However, in practice, the acoustic technique is much more
complex because two types of wave are involved: compression waves and shear
waves. What is more, they propagate at different speeds, both much slower
than the speed of light [34]. In conventional acoustics, to obtain a lateral
resolution of the order of one micron, one must work at frequencies greater
than GHz. However, one must then use specialised and costly electronics,
not to mention the fact that the decay coefficient of acoustic waves increases
quadratically with the frequency, severely limiting the depth of penetration.

The scanning acoustic microscope has attracted much interest around
the world, although it remains at the laboratory prototype stage. Various
acronyms have sprung up to designate vibrating tip acoustic microscopes,
including AFAM, SLAM, UFM, SMM and others [35–41]. However, in prac-
tice, all devices so far developed use resonant vibrations of cantilevers loaded
by the tip, whose frequency depends on the tip–sample contact. The working
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Fig. 8. Schematic illustration of the
scanning microdeformation microscope
(SMM), developed at LPMO, FEMTO-
ST, France

principle illustrated in Fig. 8 is similar in many ways to a dynamic mode
AFM whose tip is brought into contact with the sample.

Historically, the force modulation microscope (FMM) was introduced by
Maivald et al. [42]. A periodic displacement at low frequency (a few kHz) is
imposed on the sample by a piezoceramic located under the sample. The tip
in contact with the sample follows the harmonic vibrations. Local variations
in the elasticity of the sample can be deduced by measuring the amplitude of
the cantilever displacements. However, this technique has two disadvantages:

– the stiffness of the cantilever is generally unsuitable,
– one always measures motion resulting from a combination of normal and

lateral forces.

An alternative consists in using a mesoscale tip. In this case, the elastic
constants of the surface can be measured and defects in the bulk just below
the surface can be imaged, to a depth of the order of at most 50 times the
contact radius [43].

In practice, the results are not easily analysed and the accuracy of the
measurements is low when the resolution is improved. Typically, there is an
accuracy of 20–50% for contact radii of the order of 10 nm, compared with
better than 5 % for contact radii of the order of 1 µm. This inaccuracy is
related to poor knowledge of the tip geometry and the presence of forces
that are difficult to model on the atomic scale because they depend on the
surroundings, e.g., temperature, hygrometry.



Scanning Thermal Microscopy 195

2 Development of Scanning Thermal Microscopy

The aim here2 is to describe the development of scanning probe microscopy
in the field of heat transfer. This began with the development of a scan-
ning tunneling microscope (STM) that could produce images of insulating
materials. Then with the advent of the atomic force microscope (AFM), var-
ious techniques were devised, based mainly on the design of new thermal
probes, with the aim of improving the resolution obtained by photothermal
methods. These probes can measure temperatures or detect heat fluxes lo-
cally with high spatial resolution and good sensitivity. In this way a new
family was born within the category of scanning probe microscopes (SPM),
called scanning thermal microscopes. The sudden expansion of this form of
microscopy is due to the fact that it responds to a need to determine thermal
properties of materials with submicron resolution, and to detect subsurface
defects or hot spots in microsystems.

2.1 Near-Field Microscopy and Heat Transfer

Techniques Based on STM

The scanning tunneling microscope exploits the possibility for electrons to
get past a potential barrier between the surface of a sample material and
the extremely fine metallic STM tip. The main drawback with the STM is
that it can only be used to study electrically conducting materials. Shortly
after the invention of the STM, and before the advent of the atomic force
microscopes (AFM), Wickramasinghe and coworkers had the idea of using
the STM in association with heat detection as a way of making images of
insulating materials.

In 1986, this group proposed the scanning thermal profiler in which the
standard STM tip is replaced by a thermocouple tip, i.e., a tungsten tip
shaped like an STM tip is coated with an insulating layer except at the very
apex, followed by a layer of nickel. The end of the probe then constitutes one
of the two soldered joints of a thermocouple. The voltage across the tungsten–
nickel junction is proportional to the temperature [44]. The tip thus works
as a thermocouple, an electromotive force being induced by the temperature
difference between two solder joints (hot and cold) constituted by the junction
of two different metals. The cold solder joint is the one held at a reference
temperature.

The tip is heated by a current of constant strength until its temperature
reaches an equilibrium value above room temperature. When this heated
probe is brought toward the sample surface, the heat transfer taking place
through the air causes the tip to cool down. The resulting variations in the
thermoelectric voltage in the thermocouple depend on the separation be-
tween the tip and the sample. By controlling these variations, the surface
2 Contributed by N. Trannoy.



196 Cretin et al.

Fig. 9. Schematic diagram of the thermocouple, supported by a piezoelectric ele-
ment that is used to modulate the tip–sample distance at frequency ω1 around its
average position. The thermoelectric voltage is servo controlled at this frequency
to hold the distance constant

relief can be reconstructed as the tip scans across it. To reduce the effects of
external perturbation, a major problem in scanning tunneling microscopy, a
piezoelectric system is used to generate vertical oscillations of the tip at a
frequency of about 1 kHz. This system is associated with a servo loop on the
alternating thermoelectric voltage in order to hold the tip–sample distance
fixed (see Fig. 9). At this frequency, the amplitude of these oscillations is less
than a nanometer and hence smaller than the tip–sample gap (several tens
of nanometers). Based as it is on a thermal interaction process between the
tip and sample, this microscope can be used to make topographical images of
surfaces with a spatial resolution estimated by its authors at 100 nm, without
ever coming very near the sample surface.

The method has been modified in order to obtain images of the tem-
perature field at the surface of active samples. The sample is heated by an
alternating current at a different frequency (ω2) to the one used for tip os-
cillations. During exploration of the sample surface, variations in the ther-
moelectric voltage are recorded at this new frequency in order to obtain the
surface temperature, the tip–sample separation being servo controlled as be-
fore. In this device, images cannot be obtained simultaneously. This technique
has been tested on an aluminium film deposited on a glass substrate. The
surface profile of the aluminium film revealed a particle standing 30 nm high
which shows up on the temperature survey. The measured variations in the
thermal signal near the particle correspond to temperature variations of the
order of millidegree. However, in reality it is difficult to separate thermal from
topographic data, since the heat flux required to maintain the tip position
depends on the thermal properties of the sample [45].

Attempts have been made to improve this device in order to acquire the
topography and temperature map simultaneously. Hence, the rear face of
the sample was heated by a laser beam modulated at frequency ω2 [46].
The authors estimate that the minimal detectable temperature variation is
around 1 m◦, which corresponds to a flux of a few nanowatts. However, it was
observed that heating the sample modifies the map of its surface relief.
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This technique has also been adapted to photothermal absorption spec-
troscopy in order to determine the chemical composition of a material. This
adaptation is based on the fact that chemical elements absorb light at char-
acteristic wavelengths. Since an increase in temperature at a certain wave-
length indicates that radiation has been absorbed, the sample temperature
is measured as a function of the wavelength, using a thermocouple tip, when
the sample is illuminated by a tunable laser. The absorption spectrum then
reveals the chemical composition of the sample [47]. To enhance the spa-
tial resolution of the microscope, the thermocouple is replaced by the STM
tip–sample couple, in which the tip is made from either tungsten or platinum
(typical materials for the STM tip) and its apex is assumed to be monoatomic.
The sample surface must therefore be metallic. The thermoelectric effect in-
duces a potential difference between the two elements of the thermocouple,
and this potential difference depends on the energy absorbed by the sample
atoms. By scanning the sample surface, one obtains a map of the optical
absorption. This technique, known as the tunneling thermometer, has been
used to measure the optical absorption spectrum of a gold film. It has also
been able to acquire simultaneously the topography and a thermal map of a
quartz sample covered with aluminium dots. Further details appear on the
thermal image due to the difference in optical absorption of the materials.
The temperature sensitivity of this thermocouple is estimated at 0.01 K. It
is limited by Johnson noise in the tunnel resistance and the relatively low
thermoelectric coefficient of the tip–sample junction (3 µV · K−1).

Replacing the optical excitation by electrical heating, the spatial variation
of the thermoelectric voltage across the tip–sample system can be measured.
This technique, called scanning chemical potential microscopy (SCPM), has
been used to detect the gradient of the chemical potential as a function of
the surface temperature of an MoS2 semiconductor and graphite [48].

Stopka, Oesterschulze et al. returned to the idea of the thermocouple
tip originated by Wickramasinghe [49–52]. The thermocouple tip used is
made of Au/constantan (constantan is a nickel–copper alloy) with sensitiv-
ity 43.2 µV · K−1. The distinguishing feature of their device is that the tip is
heated rather than the sample. To this end, the tip is directly irradiated by
a laser beam whilst the sample remains at room temperature. Whereas the
topographic image is obtained using the standard servo system of the STM
to maintain the tip at constant height (whence the tunnel current remains
constant too), thermal images are obtained by recording the variations in the
thermoelectric voltage by means of a second circuit (see Fig. 10). Depending
on whether the laser beam is modulated or not (DC or AC modes), the image
will reflect either the thermal conductivity or the thermal diffusivity of the
sample. These authors call their microscope the scanning thermal microscope
(SThM). The spatial resolution achieved by this method is 30 nm.

This technique is far from simple and the authors themselves recognise
that the images are difficult to interpret because the contrast mechanism is
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Fig. 10. Schematic view of the experimental arrangement combining the STM
(left) with the thermocouple tip control system (right)

misunderstood. Indeed, this type of device has raised a certain number of
questions to which answers have since been provided:

– Modulating the laser source modulates the tunnel current, and this has
an effect on the imaging process.

– The thermal response depends on the position of the point on the tip at
which the laser beam is focused. Phase analysis of the tunnel signal has
allowed a clear separation of effects due to the tip and those due to the
sample [53].

– This device operates at low frequency and in this case the thermal diffu-
sion length is rather large, possibly even larger than the thickness of the
substrate under investigation.

A study of the thermoelastic behaviour of the tip and sample has been car-
ried out to determine the potential of the scanning thermal microscope. It
has been shown that the STM can measure the thermal expansion of the sam-
ple quantitatively with a resolution of picometric order in the case where the
sample is only subject to laser excitation [53,54]. The experimental responses
in both amplitude and phase correspond to the predictions of a thermoelas-
ticity model, except when the probe is irradiated. In the latter case, the signal
amplitude is much larger and, in particular, the responses are different for
each tip used. The thermal coupling between tip and sample has also been
studied with the aim of determining the influence of tip proximity on the
thermal behaviour of the sample. As the distance between the STM tip and
the sample is less than 1 nm, hence smaller than the mean free path of the
molecules (66 nm), heat exchange by conduction in the ballistic regime can be



Scanning Thermal Microscopy 199

considered and described by an exchange coefficient of 40×103 W · m−2 · K−1.
Under these conditions, the influence of the tip on the temperature field of the
sample turned out to be rather small for a tunnel effect microscope [55, 56].

A laser excitation is often used to obtain thermal information. Now the
photon interaction with the tunnel junction involves several mechanisms that
can influence the tunnel current and the tip–sample bias voltage: thermal ex-
pansion, thermoelectric voltage due to the temperature difference, optical
rectification, and surface photovoltage for semiconductors. The situation is
generally recognised to be rather complex. The thermal expansion of the tip
has been one of the phenomena often neglected, and yet it was shown to influ-
ence the data gathered in a way depending on the geometrical characteristics
of the tip [53, 55, 56]. To analyse the thermoelectric voltage phenomenon,
a study was carried out in ultrahigh vacuum where only the tip was irra-
diated [57]. It was shown that, under these conditions, the thermoelectric
voltage could be correlated with the crystal orientation of the surface under
investigation.

It is thus clear that the results obtained with a scanning tunneling micro-
scope are not easily interpreted. Images are obtained through rather specific
types of coupling between the tip and sample [58,59] and phenomena such as
the presence of a water film on the sample surface, for example, have to be
taken into account [53]. Moreover, the main disadvantage of the STM is that
it requires an electrically conducting surface. To be able to observe integrated
circuits, for instance, it would be necessary to coat them with a metallic film
which might well hide some crucial data.

Techniques Based on AFM

The advent of AFM provided a way of overcoming these various difficulties.
Indeed, quite apart from the fact that any type of sample could be observed,
it offered the advantage of two independent systems:

– A device for obtaining the surface topography by controlling the contact
force between tip and sample.

– An independent system for controlling thermal measurements, depending
on the operating principle of the probe (see Fig. 11).

Even though they involve heat transfer, most of the techniques discussed
above are limited to observation of surface topography. Temperature maps
obtained in this way do not contain any information intrinsic to the thermal
properties of the sample, because this data is mixed in with topographical
data. However, since the temperature measurement by a tip–sample junction
is related to the thermal conductivity of the sample, it should be possible to
obtain thermal conductivity profiles.

It was with this in mind that attempts were made to improve these tech-
niques using the AFM [60]. Indeed, the AFM is sensitive to the electrostatic
force field. For an AFM tip coated with a metallic film, this field depends on
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Fig. 11. Schematic view of the experimental arrangement for a scanning thermal
microscope based on AFM

the contact potential between tip and sample. The contact potential between
two metals depends on various parameters such as the work function or the
temperature change of one of the two interacting materials. Hence, in a new
setup, the heating of a metallised AFM tip or sample is used to generate
a variation in the contact potential, which itself is controlled by measuring
the electrostatic force field. This technique has been applied to an Si sample
carrying a rectangular SiO2 structure, the whole thing being coated with a
layer of tungsten. The AFM tip was coated with a gold layer. This study
succeeded in obtaining a map in which the contrast was related to thermal
conductivity variations across the sample.

The methods discussed above are restricted to electrically conducting ma-
terials. In 1993, Majumdar et al. developed a new technique, also based on
the AFM principle, which could study both conducting and non-conducting
samples [61]. The AFM tip–sample interaction is used to establish the topog-
raphy of the sample surface, but the tip is replaced by a thermal probe. The
latter is a thermocouple comprising two wires, one made of chromel and the
other of alumel, rather like a K-type thermocouple, and these two wires pro-
vide a large enough stiffness coefficient to form the cantilever required for an
AFM setup. To measure the deflection of this cantilever, a small glass plate
coated with a metallic sheet, e.g., aluminium, is used as a tiny mirror that
reflects the laser beam (see Fig. 12).

When the probe is in contact with the sample, the temperature difference
between the tip and sample generates a thermoelectric voltage in the thermo-
couple junction. When the sample is explored, the local temperature is mea-
sured while the tip–sample force is held constant. By holding the cold junction
of the thermocouple at a reference temperature, the measured variations in
the thermoelectric voltage provide a thermal image related to the tempera-
ture of the sample. This technique has been used to record simultaneously
the surface topography and the temperature map of a (metal/semiconductor)
field-effect transistor. The images obtained were able to locate regions heated
to a few degrees above the average temperature of the transistor (70 ◦C). Since



Scanning Thermal Microscopy 201

Fig. 12. Schematic view of a thermocouple tip adapted to serve as an AFM probe

the temperature sensitivity depends on the electronic noise, improvements in
the detection method made it possible to measure temperature variations of
just 0.1 K [62].

Another type of thermal probe that can be adapted to the AFM setup,
but not based on a thermocouple, was suggested by Pylkki et al., namely the
thermoresistor (see Fig. 13) [63, 64]. This probe comprises a Wollaston wire,
i.e., a wire made from platinum–rhodium alloy, coated with silver and then
electrochemically etched in such as way as to leave the platinum–rhodium
wire exposed over a length of 200 µm. The wire is bent into a V shape and
forms the thermoresistive element of the probe. When a current flows through
it, this probe can serve both as the heat source and the detector, or simply
as the detector, depending on the current strength. The idea is to measure
the dependence of the electrical resistivity of the tip on the temperature
difference between tip and sample. This probe can be used in two different
modes:

– A passive mode where a very weak constant current flows in the wire and
the probe temperature is recorded during scanning. This mode is rather
sensitive to the temperature of the sample surface.

– An active mode where a stronger current serves to initiate the heating of
the thermoresistor, thereby generating a loss of flux upon contact with
the sample, this heat flux being influenced by the thermal conductivity
of the sample.

This microscope, called the scanning thermal microscope (SThM), can oper-
ate at constant current or constant temperature, with a feedback loop holding
the probe resistance constant. Surface topography and qualitative images of
thermal conductivity variations can be obtained simultaneously. Since its in-
vention, this microscope has undergone as many studies concerning the device
itself as concerning its applications. Section 3 is devoted to this method.
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Fig. 13. Experimental arrangement for an AFM equipped with thermoresistive tip

Simply replacing the standard AFM tip by a heat sensitive probe thus
gives simultaneous and independent access to topographic and thermal infor-
mation (temperature and/or conductivity, depending on the type of probe).
Since 1996, several thermal probes have been developed although most have
remained at the development stage. We shall describe the evolving design of
such probes in the next section.

2.2 Thermal Probes

For scanning thermal microscopy in the AFM configuration, the key fea-
ture is the thermal probe. New lithographic techniques have facilitated the
development of such probes. These tips can be classified into three groups:
thermocouple junctions, dynamical cantilevers, and thermoresistive tips.

Thermocouple Tip

In this device, the thermoelectric voltage is directly proportional to the tem-
perature. The first thermocouple tip to be adapted to an AFM was the one
due to Majumdar presented earlier. A lateral resolution of 500 nm was an-
nounced for a temperature sensitivity of 1 K. The size of the thermocouple
junction in this probe is around 25 µm. Heat transfer through the air cannot
therefore be neglected and it raises the time constant of the probe–air sys-
tem, estimated at 56 ms. The water layer present at the sample surface is not
taken into account, although it contributes to increasing the exchange area
between the probe and sample.

The other problem with this probe is that it is subject to deformation.
In 1995, Majumdar and coworkers tried to improve it by bonding a small
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Fig. 14. Schematic diagram of a ther-
mocouple tip formed by depositing gold
and platinum films, each 35 nm thick, on
different arms of the cantilever of a stan-
dard AFM tip (0.5 µm thick)

diamond on the junction at the end of the thermocouple. The facets of this
diamond constitute a rather fine AFM tip. This adaptation of the probe
provides a non-deformable tip under the action of contact forces and also
reduces heat resistance between surface and sample, due to the high thermal
conductivity of the diamond. However, this type of probe does not improve
lateral resolution, even though it was the first able to detect short-circuit
defects in transistors. The main difficulty here is in fabrication, which is
difficult and non-reproducible.

To overcome the problem of reproducibility and attempt to improve the
spatial resolution of thermal microscopes, various solutions have been pro-
posed using commercial silicon or silicon nitride AFM tips. These AFM tips,
often pyramidal in shape, have a radius of curvature of the order of ten
nanometers and an apex angle of around 35◦. They are held on the end
of a cantilever made from a rectangular or V-shaped bar with micrometric
length and width for a thickness of a few micrometers. The other end of the
cantilever is joined to a parallelipiped measuring a few millimeters, used to
manipulate it and place it in the AFM head.

A first probe was fabricated by depositing gold and platinum films, each
of thickness 35 nm, on different arms of a V-shaped cantilever (which holds
a silicon nitride tip) [62]. The Au−Pt thermocouple junction thereby formed
is rather large, i.e., around 40 µm as compared with 25 µm for the previous
device, and is thus too sensitive to the heat flux by conduction through the
surrounding air (see Fig. 14). The spatial resolution is not better and thermal
images are even distorted. However, the temperature sensitivity is improved
from 1 K to 0.1 K.

Other proposals are based on specific techniques producing finer thermo-
couple junctions.

In 1996, Luo et al. succeeded in significantly increasing the spatial reso-
lution of this type of tip by using a metallic evaporation technique to form
deposits and by applying strong electric fields to the end of the thermocouple
to make it as fine as possible (see Fig. 15). The junction could be made as
small as 200 nm for an estimated sensitivity of 6 µV · K−1. The spatial reso-
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Fig. 15. Schematic diagram of the thermocouple tip proposed by Luo et al. [65,66]

Fig. 16. Schematic diagram of a thermocouple tip directly integrated into the
cantilever structure

lution was reduced to 10 nm but topographic images contained unexplained
artifacts [65, 66].

In the same year, Suzuki et al. suggested directly integrating a thermo-
couple into the structure of the cantilever itself [67]. As can be seen in Fig. 16,
each face of the cantilever arm is made from a metal film. The device is fabri-
cated by successive use of techniques such as low-pressure chemical vapour de-
position (LPCVD), photolithography and electrochemical etching. The ther-
mocouple junction created at the tip apex has a sensitivity of 8 µV ·K−1.
This junction is extremely fine. The radius of curvature of the tip apex is
estimated to be around 10 nm. Despite this performance, images could not
be obtained with this probe.

Mills, Weaver and coworkers used electron beam lithography to make
a tip [68]. They succeeded in obtaining a very fine tip which could acquire
topographic images with very high spatial resolution (40 nm) and a thermal
image resolution estimated at 80 nm. The thermocouple consisted of a gold
film and a palladium film on a pyramidal silicon base coated with silicon
nitride and shaped to provide probe and cantilever at the same time (see
Fig. 17). The silicon base was then eliminated so that the remaining structure
formed a cantilever with an Au/Pd thermocouple at the end. It was shown
that, with this tip, all image contrast was due to temperature change in the
thermocouple and that there was no artifact due to the topography in the
thermal images. The only drawback with this probe is its fragility.

In fact, various deposition methods have been tested for tip design. The
development of a new probe is a rather lengthy and difficult business.
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Fig. 17. Schematic diagram of the
thermocouple tip proposed by Mills
et al. [68]

Fig. 18. Bimetallic tip

Dynamic Cantilevers

Thermal probes exploiting thermal expansion have also been proposed.
A bimetallic cantilever is made from a silicon nitride AFM tip on which
a thin metallic layer of aluminium or gold has been deposited, to a thickness
of 50 nm, for example [69]. The sample below the tip is heated by an alter-
nating current and absorption of heat by the tip induces a vertical bending of
the cantilever due to the difference in thermal expansion coefficient between
the two materials comprising it (see Fig. 18). With this probe, one detects
the temperature and thermal expansion of the cantilever, which are related
by measuring the deviation of a laser spot. This technique gives an estimated
temperature sensitivity of 3 mK and a lateral resolution of 400 nm [69]. Unlike
the thermocouple probe, the whole cantilever serves as a temperature sensor
and conductive heat exchange through the air therefore dominates.

Another measurement design based on the dynamical behaviour of a stan-
dard AFM probe in contact with an active (hence heated) sample was pro-
posed in 1999 to obtain the local thermal expansion and temperature [70].
This new device is called the Scanning Joule Expansion Microscope. It can
achieve spatial resolutions of 20 nm. It has been used successfully to study
heat generation in a metallic interconnect of diameter 0.5 µm buried under a
passivation layer. This idea was put forward to overcome the fragility prob-
lem arising in thermal probes. However, it is not simple, because it is based
on careful control of cantilever dynamics, still a delicate matter today.

Thermoresistive Probes

The first thermoresistor, described in the last section, was devised by Pylkki
et al. [63, 64]. The cantilever arm is made from a Wollaston wire ending in a
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Fig. 19. Schematic diagram of a passive thermoresistive probe based on an AFM
tip

platinum–rhodium wire of diameter 5 µm which constitutes the heat sensitive
element of the probe (see Fig. 13). The general technique is based on measur-
ing the variation in electrical resistivity of this element. As the contact zone
between probe and sample is greater than in the case of a standard pyrami-
dal AFM probe, the topographic images lose resolution. Further studies have
been carried out to understand the measurement mechanism of this probe
by determining the various modes of heat transfer taking place around the
probe. They are described in Sect. 3.

In order to enhance the spatial resolution, a probe was developed by
Lederman et al. and modified by Mills et al. [71, 72]. To make this, the can-
tilever is first coated with an aluminium film to form two electrodes which
are then joined by a resistive platinum ribbon covering a standard pyramidal
AFM tip (see Fig. 19). This probe is in fact passive and sensitive to temper-
ature variations on the sample surface. The spatial resolution of this probe
is estimated at 100 nm and the temperature sensitivity is of the order of one
degree. It has been used to detect voids under a passivation layer of thickness
2 µm coating the aluminium wires of an electronic device.

In contrast to the others, the last two probes just discussed have been
commercialised: the Lederman probe from 1999 to 2004, and the Pylkki probe
since 1997, originally with the TopoMetrix AFM microscope.

Applications for these thermoresistive probes arose in 1999, but remained
rather qualitative until 2000, when a more quantitative approach was dis-
cussed in the literature.

More recently (in 2001), building on their experience in CMOS fabrication
processes and silicon technology, a German team proposed a thermoresistive
nanoprobe integrated into a piezoresistive cantilever (see Fig. 20) [73]. The
thermoresistive element is obtained by a novel technique which consists in
growing a platinum wire in an electron beam and specific atmosphere. The
nanowire thereby obtained is 70 nm in diameter and 5 µm in length. This
novel probe operates in the same modes as the probe made by Pylkki et al.,
i.e., in passive mode where the temperature is recorded by measuring the
probe resistance, and in active mode where the heated probe is sensitive to
the thermal conductivity of the sample. The spatial and thermal resolutions
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Fig. 20. Schematic diagram of
the probe proposed by Rangelow
et al. [73]

were 20 nm and 10−3 K, respectively. To optimise the probe, attempts are
now being made to control the cantilever dynamics [74, 75].

Apart from the techniques associated with thermoresistive probes, none
of the ingenious ideas described above have witnessed any great increase in
their field of applications. Images are hard to interpret physically and require
a deeper examination of various modes of heat transfer around these probes
in an AFM microscope:

– solid–solid (probe–sample) conduction,
– conduction through the surrounding gas,
– conduction towards the probe support,
– conduction through the water meniscus depending on the probe temper-

ature (or evaporation),
– radiative heat transfer,
– convective heat transfer occurring along the probe.

Depending on the probe configuration, the physical characteristics of the
probe, the prevailing temperatures, environmental conditions (temperature,
hygrometry, and so on), the measurement will reflect the contribution of each
of these transfer mechanisms in unequal proportions. Depending on the state
of the sample surface, the probe configuration will also affect the coupling
between topographic and thermal data.

The probes proposed up to now are not perfect. A good compromise has to
be found between spatial resolution, temperature sensitivity (with a response
time suitable for imaging), but also a certain level of feasibility when it comes
to reproducibility in fabrication. Research is still under way in this area.

3 SThM with the Micrometric Thermoresistive Wire
Probe

This section3 discusses the current understanding of the first commercialised
scanning thermal microscope known as. After describing the device and its
main operating modes, we discuss the various parameters controlling the
contrast in thermal images that can be obtained with it. We then examine
ways of evaluating the impact of these parameters on measurement and in
particular on calibration of the microscope for localised thermal metrology. To
end, we present a number of examples without attempting to be exhaustive.
3 Contributed by S. Gomès.
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3.1 Goals

The scanning thermal microscope proposed by Pylkki et al. [63, 64] was de-
signed to tackle the experimental problems raised in determining the thermo-
physical properties of microstructures such as grains and grain boundaries,
thin films, and powder particles. This determination is essential if we are to
understand and model heat transfer and macroscopic properties of heteroge-
neous materials.

It was also designed to be able to detect local heating at the surface of
active samples, in particular in order to study surface temperature fields and
the flux of heat transfer inside microelectronic and optronic components.

3.2 Method

Experimental Setup

The basic setup is shown schematically in Fig. 21. There are four main ele-
ments:

– A thermal probe. This is the thermoresistive tip developed by Dinwiddie
et al. in 1994 [76]. This probe comprises a cantilever arm with a thermore-
sistive element at the end. The cantilever arm is made from a Wollaston
wire, i.e., a silver wire of diameter 75 µm containing a platinum–rhodium
(10%) filament of diameter 5 µm. The thermoresistive element is obtained
by electrochemically etching this wire over a length of about 200 µm. The
thickness of silver surrounding the platinum filament is thereby removed
over this length. Once the filament has been exposed, it is bent in a
V shape to give the tip its final shape.

– A displacement, positioning and optical control4 system to guide the
thermal tip in its motion relative to the sample surface. The operating
principle is the same as in an AFM used mainly in (constant force) contact
mode.

– A thermal unit controlling the electrical resistance of the tip (i.e., its
average temperature) and the power dissipated within it.

– A data acquisition, visualisation and processing system. As the AFM
system and thermal control system are independent, to each value of
the tip–sample force there correspond surface functions Stopo(X, Y ) and
Sth(X, Y ) represented by 3D recordings of grey levels or false colours
which correspond to the topography and locally measured ‘thermal’ sig-
nals.

The topographic and thermal data acquisition and processing system is pro-
vided by a PC which pilots the AFM tip.
4 A mirror is attached to the cantilever arm of the thermal probe, which has

stiffness constant 5–20 N ·m−1.
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Fig. 21. Left : Experimental configuration of the scanning thermal microscope.
Right : SEM image of the thermoresistive tip

Fig. 22. Electrical circuit for the thermal unit. Dashed lines: Components used for
the constant temperature mode. Dotted and bold lines: Electrical connections used
in the passive mode

Thermal Measurements

The thermal probe constitutes one leg of a Wheatstone bridge with ratio
R1/R2 (see the circuit diagram for the thermal unit in Fig. 22). The electrical
resistance of the tip is controlled by adjusting the variable resistance RC of
this bridge. At equilibrium,

RC =
R2

R1
(RP + Rwire) , (19)

where RP and Rwire are the electrical resistances of the tip and the wires
(including the cantilever arm) connecting the probe to the circuit of the
thermal unit.
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Given the linearity of the relation between the electrical resistance of the
thermoresistive element and its temperature, the resistance RC can be used
to control the average temperature Top of the tip:

RC =
R2

R1

{
RP0

[
1 + αP(Top − TP0)

]
+ Rwire

}
, (20)

where RP0 is the electrical resistance of the tip at a reference tempera-
ture TP0 and αP is the temperature coefficient of the electrical resistivity
of the platinum–rhodium (10%) filament, viz., αP = 0.00165 K−1.

Measurements can be made in DC regime and/or AC regime. For the AC
regime, the circuit just described is completed with a synchronous detection
device. This provides simultaneous access to the amplitude and phase of the
harmonic registered in the AC voltage across the tip (see Fig. 22). Like any
thermoresistive sensor, the thermal probe of this SThM can be used in various
operating modes, i.e., one passive mode and two active modes:

– Passive Mode. This is usually called the temperature contrast mode.
The thermal probe is used as a resistive thermometer. A constant current
is applied, chosen small enough to ensure that the Joule heating of the
tip can be neglected (I = 1–2 mA). During a scan, a temperature change
at the sample surface can cause a temperature variation ∆TP in the tip
and hence a change in the electrical resistance of the probe given by

∆RP = RP0αP∆TP . (21)

This variation in the electrical resistance implies a change in the differ-
ential voltage output from the circuit of the thermal unit. Acquisition
of the variations in this voltage thus amounts to detecting local heating
at the sample surface. In the AC regime, the useful components of the
signal are those extracted at the modulation frequency f of the power of
the source exciting the sample.

– Active Modes. In this case, a larger current passes through the resis-
tive element of the probe. Heated by the Joule effect, the tip is used as a
source to excite the sample. There are two possible active measurement
modes: either the current through the probe is held constant (constant
current mode), or the electrical resistance of the probe, i.e., the average
temperature Top of the thermoresistive element, is held constant (con-
stant temperature mode or thermal conductivity contrast mode).

– Constant Current Mode. As in the passive mode, the differen-
tial voltage output from the amplification chain of the thermal unit
is recorded. Controlling the variation in the electrical resistance of
the heated tip by acquiring this voltage, the evolution of the sensor
temperature can be monitored and variations in its flux losses can be
detected while the sample surface is being scanned.

– Constant Temperature Mode. In this mode, the Wheatstone
bridge is equipped with a feedback loop acting on its equilibrium
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voltage in such a way as to hold the average temperature of the tip
constant. During an experiment, any flux lost from the heated tip
to its surroundings (including the sample) is compensated for elec-
trically by servo controlling the equilibrium voltage of the bridge. If
this voltage is recorded when the sample surface is scanned by the
probe, one can obtain an image whose contrast contains, among other
things, information concerning the local thermal conductivity of the
observed materials.

In the AC regime, a sinusoidal current is superposed on the continuous
current to heat the tip in a periodic manner. The synchronous detection
system is used to extract the amplitude and phase of the useful compo-
nent of the AC signal. We shall see in Sect. 3.5 how analysis of the third
harmonic of this signal has been used to study the local thermophysical
properties of samples.

3.3 Thermal Image Contrast

Visualisation is useful for qualitative analysis of any phenomenon. For ex-
ample, the thermal images shown in Fig. 23b (constant temperature mode)
and Fig. 23d (constant current mode) have a contrast which clearly reveals
respectively:

– variations in the thermal conductivity at the surface of and just beyond
an SiO2 step on an Si substrate [77],

– the detection of a hot spot inside a MOSFET under breakdown [78].

However, the analysis of SThM images is not always as trivial as in these
examples and the thermal image remains a complex ensemble made up of a
multitude of entangled data.

Thermal Signal

In imaging mode, the rate at which the surface is scanned is chosen slow
enough to justify assuming that the tip can reach its energy equilibrium. In
the DC regime, for example, during production of a 100 µm× 100 µm image,
with a tip speed of 25 µm · s−1 and 512 points per profile, the spatial interval
of 195 nm between measurements is covered in 8 ms. This is two orders of
magnitude greater than the temporal response of the tip, estimated to be
several hundred µs [79].

Whatever SThM mode is used, the thermal signal Sth is a voltage whose
variations are determined by the variations in the electrical power P dissi-
pated in the tip. P is determined by the various forms of heat transfer to
and from the tip. Quite generally, the energy equilibrium of the tip is given
in the AC regime by

iωmCPTPω = Pω − QWω − Qconvω − Qelω − QSω , (22)
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Fig. 23. (a) Topographic and (b) thermal images of an SiO2 step of thickness
240 nm on an Si substrate, acquired in constant temperature mode [77]. (c) Topo-
graphic and (d) thermal images of the rear surface of the substrate (thickness 5 µm)
of a MOSFET under breakdown, acquired in constant current mode. Reprinted
from [78] with permission of Elsevier. Note that the thermal signal is higher, re-
vealed by a brighter shading in the thermal images, when the effective thermal
conductivity of the sample is high [see (b)] in constant temperature mode, or when
the sample temperature is high [see (d)] in constant current mode

where m is the mass of the tip, CP is the specific heat capacity of the tip,
TPω is the component of the tip temperature with frequency f = ω/2π, and
the subscript ω denotes the component at frequency f of the (positive or
negative) powers QW, Qconv, Qel, and QS described below (with ω = 0 in
DC regime):

– QW is the heat rate transferred to the Wollaston support of the filament.
The Wollaston, composed mainly of silver, which is a very good conduc-
tor, acts as a heat sink for the tip. The flux transferred to it is very large
and in particular causes a temperature gradient along the thermoresis-
tive filament. This gradient has been demonstrated in DC regime by local
measurements of temperature at different points of a tip heated by the
Joule effect (see Fig. 24) [80].

– Qconv is the heat rate exchanged by convection with the surrounding air.
Its contribution has been demonstrated experimentally. By analysing the
signal obtained in DC regime in the constant temperature mode for a
tip without contact immersed in different gases, it has been shown that
the power dissipated in the tip (to keep its temperature constant) is
higher when the tip temperature and/or the thermal conductivity of the



Scanning Thermal Microscopy 213

Fig. 24. Temperature profile measured using a thermocouple with junction diam-
eter 1µm over a half-length of a tip heated by the Joule effect and immersed in air
(no contact). Reprinted from [78] with permission of Elsevier

surrounding gas are large (see Fig. 25). This is an indication of convective
exchange along the whole length of the filament. Its direct contribution
to heat transfer from the tip to its environment is estimated to be of the
order of 10% of P [80].

– Qel is the heat rate resulting from thermoelectric effects such as the
Thomson effect within the sensor. This flux has been shown to be negli-
gible [77]. Hence, in the DC regime (ω = 0), we have

P = QW + Qconv + QS . (23)

– QS is the heat rate exchanged with the sample. Exchanged locally be-
tween the tip and sample while the sensor is displaced, its variations lead
to the observed contrast of the thermal image. Variations in the power
dissipated in the tip, and hence in the thermal signal, will be larger when
the variations in this flux are greater.

Tip–Sample Heat Transfer

Quite generally, the tip–sample heat transfer is characterised in scanning ther-
mal microscopy by different heat transfer mechanisms which depend heavily
on the tip environment and the region under investigation. For measurements
carried out in air, these mechanisms include transfer at a distance, i.e., radi-
ation and conduction through the air, and transfer by direct contact between
two solids, i.e., direct solid–solid conduction or conduction via a water film
adsorbed onto the tip and sample surfaces if the contact temperature is low
enough for the water not to evaporate (see Fig. 26) [81].

Short-Range Heat Transfer Between Two Solids

– Radiative transfer. The classical theory of heat exchange by radiation
predicts the validity of the Boltzmann law for distances d > λth, where λth
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Fig. 25. Variation in the DC signal in constant temperature mode as a function
of the tip temperature for measurements carried out in surrounding gases with
different thermal conductivities and without contact. Reprinted from [80] with per-
mission of Elsevier

Fig. 26. Different modes of heat transfer between tip and sample

is the wavelength of the thermal radiation given by Wien’s law (λth =
10 µm for T = 300 K). This transfer acts over a large part of the surface of
the thermoresistive filament. In active mode, its contribution is estimated
to be of the order of 10−8 W · K−1 [82], which is less than 1/100 of the
conductances corresponding to other forms of exchange (discussed below).
It is usually neglected. In the passive mode, it depends on the temperature
and the size of the hot spot on the sample. The end of the tip (regions
for which d is less than a few µm) is exposed to near-field radiative heat
transfer. According to Lefèvre [82], this transfer is theoretically even more
negligible than the last.

– Thermal conduction through air. The contribution of thermal conduc-
tion through the air is easily observed experimentally in the constant
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Fig. 27. Sth as a function of displacement z obtained in air for copper, glue and
duralium in DC regime. The tip temperature TP is 102 ◦C [83] ©Copyright 1999,
IOP Publishing Ltd

temperature mode. When a heated tip approaches the sample, the power
dissipated in the filament to hold the temperature constant increases this
all the more so as the sample is thermally conductive (see Fig. 27) [83].
During contact measurements, this exchange contributes significantly to
tip–sample heat transfer. Its conductance is estimated to be of the order
of 2.5 × 10−6 W · K−1 [82]. There are three transfer regimes via the air
depending on the distance z between the relevant region of the tip and
the sample surface [84]. In theory, diffusive transfer acts on areas of the
tip situated at distances greater than 100 times the mean free path la of
the air molecules (la ∼ 50 nm at atmospheric pressure). Between 100la
and la, transfer occurs in the so-called slip regime. The conductive flux
goes as 1/z as for diffusive transfer, but it is stronger due to the re-
duced collisional regime (see the Chapter on Transport in Dilute Media
by Carminati in this volume). More locally, the region of the tip situated
at a distance less than la from the sample undergoes ballistic exchange
(Knudsen regime) with the surface. The conductive flux is then indepen-
dent of z [81, 82]. Simple geometrical considerations lead to an estimate
of 1 µm for the radius of the region where ballistic exchange coupling oc-
curs. It is interesting to note that, in the passive mode, the contribution
of this transfer to the tip–sample coupling depends on the heated area of
the sample.

Contact Heat Transfer Between Two Solids

– Heat transfer via the water film on the sample surface. This transfer
has been shown to favour thermal coupling between the tip and sam-
ple [81, 83]. The associated thermal conductance and radius of coupling
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are estimated at 2 × 10−5 W · K−1 and 100–300 nm, respectively [80, 84].
For the active modes, the probe temperature can affect the thickness of
the water meniscus formed between the tip and sample when contact
is made in ambient air with nonzero relative humidity. The heat trans-
fer through this water film falls off as the tip is heated. Although this
coupling seems a priori to be able to improve thermal image contrast,
the thickness of the adsorbed water layer depends on the hydrophilic
properties of the sample. Consequently, the thermal image contrast will
be linked to the hydrophilic properties of the sample. To get round this
problem, it is recommended when studying a given sample in constant
temperature mode to determine the tip temperature at which the water
contribution becomes negligible and to work at a higher tip temperature.

– Direct solid–solid thermal conduction. Transfer by direct solid–solid con-
duction is revealed for good heat conductors by a sudden jump in the
heat flux exchanged between the thermal probe and the sample when
they come into contact, followed by an increase in this flux as the tip
gradually penetrates into the material (for tip temperatures that have
been shown to be high enough to evaporate the water meniscus adsorbed
onto the tip and sample surfaces). For example, variations in the ther-
mal signal can be observed, the signature of the contribution from direct
solid–solid conduction, when contact is made and further pressure ap-
plied to a tip heated to 102 ◦C with samples of copper and duralium (see
Fig. 27). A similar experiment has been carried out in nitrogen, showing
that the flux then exchanged is independent of the nature of the surround-
ing gas [83]. The contribution of this exchange to the coupling depends
on the thermal conductivity of the sample and the force applied during
the measurement. The conductance was reported to vary between 0 and
5 × 10−6 W · K−1 [82].

Although all these heat transfer mechanisms contribute to the tip–sample
coupling, their contributions are closely related to the properties of the sam-
ple itself. The cross-section of the cylinder through which the main part of
the exchanged heat flux is transferred, dependent as it is on the environmen-
tal conditions in which the measurement takes place, will limit the lateral
thermal resolution of the tip.

Tip Resolution

This SThM can simultaneously image topographic contrast and thermophys-
ical properties or local heating of sample surfaces. One must therefore distin-
guish two lateral resolutions: thermal resolution and topographic resolution.

Lateral Topographic Resolution

This corresponds in theory to the smallest distance beyond which two vari-
ations of the same height can be distinguished in the topographic image of
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a flat sample. Limited by surface expansion phenomena and by the size and
geometry of the tip, it will always be less good (of the order of 150 nm for
topographic details of height 10 nm) than can be achieved with a typical
AFM tip (with a radius of curvature of a few nm).

Lateral Thermal Resolution

This is defined as the smallest distance beyond which two variations with
identical temperature or thermophysical property can be distinguished in
the thermal image of a plane, mirror-polished sample. In practice, it can be
defined in terms of a criterion of type −n dB (n = 2 or 3) by analogy with
the classical resolution criteria of Rayleigh or Sparrow, for example. It is of
course a function of:

– tip temperature and environmental conditions prevailing during measure-
ment (see last section),

– the sensitivity of the thermal signal to variations in the relevant thermal
parameter (thermophysical property or temperature),

– the minimum detectable flux,
– characteristics of the sample such as thermophysical properties, size,

depth in the sample of surface and/or subsurface details,
– characteristics of the tip, each tip being unique since it is fabricated

manually.

This explains the wide spread of values to be found in the literature.
Using a −2 dB criterion, Hammiche et al. [85] obtain a lateral resolution

of 1.5 µm for micrometric copper particles, coated and emerging from a poly-
mer matrix in the DC regime constant temperature mode. This resolution
deteriorates noticeably when the particles are buried at depths of several mi-
crometers (≤ 5 µm) in the matrix. Moreover, the experiment showed that
the tip can detect surface details with dimensions of a few hundred nanome-
ters [86, 87]. The detection of smaller details (20–30 nm) has also been an-
nounced in AC regime [88].

Investigation Depth

The volume of matter probed by a tip in scanning thermal microscopy can
be shown to be confined to the tip–surface heat exchange region in the case
of purely diffusive materials [89]. For a thermal contact of submicron size
characterised by a given power density passing through it, the depth of in-
vestigation depends in theory mainly on the size of this contact region and
depends only very slightly on the thermal properties of the sample in DC
regime [89]. In practice, the contact power density between the tip and sam-
ple depends on the thermal properties of the sample. This is due to the very
principle of contact measurement (see Sect. 3.5). Like the lateral thermal res-
olution, the investigation depth of the SThM depends on the five parameters
listed above. Given the submicron lateral thermal resolution announced for
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the tip we are considering here (assumed to be of the order of magnitude of
the tip–sample thermal contact radius), we may consider the SThM to have
a ‘visibility’ to a depth of the order of a few µm in this regime. Studying
films of amorphous compounds (C:H/Si:O) deposited on Si(001) substrates
in DC regime, Ruiz et al. [90] estimated at 5 µm the minimal film thickness
for which only the properties of the film and not the effective properties of
the film–substrate system are detected. In the AC regime, the investigation
depth still depends mainly on the size of the thermal contact region (see the
Chapter by Cretin and Vairac in this volume).

Apart from the tip–sample heat transfer mechanism, the geometrical rela-
tionship between the surface of the long thin tip and the surface of the sample
also influences thermal image formation. In every case, the reconstruction of
the topography of surface features with the SThM tip will be as important as
the thermal reconstruction itself. Thermal analysis of the SThM image will
only be possible in regions that are resolved clearly enough in the topographic
image, the ideal surface being flat and mirror-polished.

Artifacts in Thermal Images

Given the size and shape of the probe, any thermal (or topographic) image
will be affected to some extent by the sample topography.

Artifacts Caused by Topography

Variations in the flux between the tip and sample caused by variations in the
thermal coupling area when the tip follows the profile of dips and humps (see
Fig. 23a and b), or when it is in multiple contact with the sample, will tend
to affect the contrast in the thermal image. An extreme case is illustrated in
Fig. 28. This shows topographic and thermal images, obtained in DC regime
constant temperature mode, of a silicon oxide array (1.4 W · m−1 · K−1) on an
Si substrate (148 W · m−1 · K−1). The shape of the holes (diameter 600 nm,
depth 240 nm) is completely distorted in the topographic image. The thermal
tip cannot enter inside the hole due to its size. The result is a reduction in
contact and near-field heat transfer, whence a thermal contrast that does not
reflect the contrast in the thermal conductivity of the sample and a loss of
information.

It is thus essential to analyse the state of the sample surface with a stan-
dard AFM tip in order to obtain a better knowledge of the surface topography
to be observed with the SThM, otherwise there is a risk of interpreting topo-
graphic artifacts as local variations in thermal properties.

Artifacts Caused by Tip Shape

Owing to the V shape of the tip, the contact area and thermal coupling area
on the sample surface have elliptical rather than discoidal shape. As can be
seen from the reference frame shown in Fig. 29, this results in a distortion
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Fig. 28. Left : 3D topographic images with an AFM tip (a) and with an SThM
tip (b) of an SiO2 array on an Si substrate. Right : Thermal image of the same.
Holes with diameter 600 nm and depth 240 nm are spaced 1.1 µm apart [77]

Fig. 29. Effective heat exchange region.
Left : Side view. Right : Top view with frame
of reference

of the topographic and/or thermal details which will be more pronounced in
the X direction (in both types of image). It is clear that the lateral resolution
of the tip will be less good in this same direction.

Other Sources of Error

Other factors can also affect the thermal contrast:

– The tip apex may pick up and carry a dust grain or some other form of
contamination during scanning.

– So-called stick-and-slip phenomena, where the tip motion stops and starts
in an uncontrollable manner.

– Local variations in mechanical, thermal, and thermomechanical proper-
ties of a sample: the contact (and hence the thermal coupling) area, de-
termined for a given tip–sample mechanical stress, can vary significantly
depending on the properties of the material making up the sample. It
is therefore advisable to establish the mechanical properties of a sample
before attempting to analyse the thermal image made from it.

It should also be borne in mind that the geometries of the two surfaces in
contact are poorly known and that effects such as local roughness, capillary
forces, adhesive forces, and interatomic forces can vary from one material to
another (see Sect. 1.3).
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Some of these factors can be significantly reduced by optimising the SThM
control parameters.

3.4 Controlling and Optimising SThM Functions

As in any experimental device, a certain number of precautions are neces-
sary in order to obtain good measurements. The first stage of the analysis
procedure is to acquire the image to be processed. Prior to this operation,
samples must always be carefully prepared (cleaning and fine polishing). This
facilitates the processing of the thermal image. In particular, the following
points should be taken into account:

– The environment of the setup, e.g., ambient temperature, relative hu-
midity of the air, must be perfectly checked and controlled to guarantee
stability.

– The contact and displacement of the tip relative to the sample must occur
in optimal conditions. Special attention must be given to positioning
of the tip in order to minimise the risk of error. This is achieved by
suitably adjusting the tip–sample force (which must be small enough to
avoid damage to either tip or sample), the gain of the feedback system
controlling the force, and the scan rate.

– The response time of the system must be determined and optimised in
order to optimise in turn the speed of the sensor, the spatial interval
for data acquisition, and the temperature modulation frequency (in AC
regime), so as to obtain the most accurate measurement possible [91].

In addition, as for any experimental measurement, one must estimate the
experimental error and the influence of the environment and the sensor itself
on the measurement.

3.5 Analysing Measurements in Constant Temperature Mode

The constant temperature mode is by far the most widely used. Various
approaches have been proposed to clarify the dependence of the thermal
signals in this mode on the thermophysical properties of samples.

DC Regime

In the DC tip heating regime, the measured signal (thermal signal) Sth is the
equilibrium voltage of the Wheatstone bridge, servo controlled to hold the
electrical resistance RP of the tip constant (see Fig. 22). This voltage varies
linearly with the voltage VP applied to the thermoresistive sensor:

VP = Sth − (R1 − Rwire)I , (24)
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where R1 is a resistance of the bridge, Rwire is the resistance of the wires
connecting the tip to the bridge, and I = Sth/(RP + Rwire + R1) is the
current in the probe.

As discussed in Sect. 3.3, the electrical power P dissipated in the tip,
given by P = V 2

P/RP = VPI and determined by heat exchange from the
heated tip to its environment (its Wollaston support, the surrounding gas,
and the sample during a contact), governs the thermal signal:

P =
V 2

P

RP
= QW + Qconv + QS . (25)

Let PJ and PC be the powers dissipated in the tip without and with contact:

PJ =
V 2

PJ

RP
= QW + Qconv , (26)

PC =
V 2

PC

RP
= QWC + QconvC + QS . (27)

Sensitivity to Thermal Conductivity of the Sample

In 1998, Ruiz et al. [90] proposed a first SThM calibration procedure for
determining the thermal conductivity of samples. From measurements of the
thermal signal made with a given probe for different homogeneous, mirror-
polished, rigid samples with known thermal conductivity, they calculated the
variation ∆P = PC − PJ required to hold the temperature Top of the tip
constant for each sample. They then produced a calibration curve giving a
perfectly linear dependence of ∆P on the thermal conductivity kS of the
samples. Assuming ∆P proportional to the power QS supplied to the sample
by the tip, they suggested that this linearity corresponds to that of QS as a
function of kS, viz., QS = CRkS, where CR is a constant proportional to the
product ac(Top − Ta), where ac is the tip–sample contact radius, Top is the
operating temperature of the probe deduced from (19) and (21) (the probe
is thus assumed to be isothermal), and Ta is the ambient temperature.

Although Gorbunov et al. [92] held to this analysis of the measurements,
the calibration method was questioned by other research groups [80, 93, 94].
Indeed, Lefèvre et al. [94] recently proposed a more detailed study. Figure 30
gives the experimental results they obtained with two microscopes and dif-
ferent tips.

These measurements do not agree with the linearity announced by Ruiz
et al., but reveal an asymptotic behaviour in measurements obtained for ther-
mal conductivities greater than a few tens of W · m−1 · K−1. This indicates
the much reduced sensitivity of the SThM at high conductivities [80]. The
various approaches to the measurements discussed below explain this nonlin-
earity.
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Fig. 30. Dependence of the ratio ∆P/PJ on the thermal conductivity of standard
samples determined from experimental data obtained with two SThMs and different
tips. Smoothing curves are deduced from (36). Reused with permission from S.
Lefèvre et al. [94]. ©Copyright 2003, American Institute of Physics

Other Approaches to Measurement

In the first approach, the difference ∆P = PC − PJ is assumed to be fully
transmitted to the sample and the tip is assumed isothermal (at tempera-
ture Top). However, Callard et al. [93] and Gomès et al. [77, 80] showed in
1999 that these hypotheses cannot reasonably be accepted.

Due to its size, the tip can be treated as a kind of thermal fin of uniform
section. The corresponding Biot number is found to be four orders of magni-
tude less than unity [80]. However, it cannot be treated as isothermal. The
heat sink effect of the tip’s Wollaston support, which leads to a temperature
gradient along the platinum filament, cannot be neglected (see Sect. 3.3).

Moreover, as for any contact method of thermal metrology, a constric-
tion effect is caused by converging thermal current lines in the measurement
region. The quantity of heat then exchanged between tip and sample per-
turbs not only the temperature field in the sample, but also the temperature
distribution in the probe. There are two consequences:

– In this measurement region, the temperatures of the sample and the tip
apex are no longer the temperatures TP and T∞ they had before the tip
approached the sample, but the perturbed temperatures TPC and TSC.
Assuming heat transfer from the tip to the sample through a projected
area on the sample of small radius b (given the submicron resolution of the
tip, this hypothesis is justifiable), energy conservation at the tip–sample
interface can be expressed in the form [95]

QS = G(θPC − θ0) = 2πbkSθ0 , (28)

where G is the thermal conductance of the tip–sample heat transfer,
θPC = TPC − T∞ and θ0 = TSC − T∞. Note, however, that this equation
is only valid for a purely diffusive conductive heat transfer mechanism in
the sample.
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Fig. 31. Description of the tip and its
environment

– Losses from the tip to its support vary. Assuming invariant convection
losses from the tip,

∆P = ∆QW + QS . (29)

In order to solve the equation ∆P = f(kS) relating the measurement to
the thermal conductivity of the sample, one must first solve the differ-
ential equation expressing the energy balance at the tip given by (26)
and (27). The problem now is therefore to solve this equation.

Let AP be the cross-sectional area, p the perimeter, kP the thermal conduc-
tivity, and ρP the electrical resistivity of the tip. These quantities will be
assumed invariant under temperature change. By symmetry, the probe will
be modelled by two fins of length L (2L = 200 µm) and diameter a = 5 µm
(see Fig. 31).

Under these hypotheses and in the stationary regime, the temperature
distribution along the wire heated by the Joule effect satisfies the standard
differential equation

kP
∂2θP(z)

∂z2
+

phP

(
θP(z)

)
AP

+
ρPI2

A2
P

[
1 − αPθP(z)

]
= 0 , (30)

where θP(z) = TP(z) − T∞ is the axial temperature, hP (estimated to be
of the order of 1000 W · m−2 · K−1 [80]) is the convective transfer coefficient
along the tip, z denotes the spatial parameter, and I is the current through
the tip, deduced from the measurement to be processed [see (24)].

Direct solution of this equation does not lead to a simple relation ∆P =
f(QS) to calibrate the SThM. Lefèvre et al. [94] therefore simplified it. We
now describe their method.

Since the convection loss given by phP

(
θP(z)

)
/AP and the power gain

due to the thermoelectric effect given by −ρPI2αPθ(z)/A2
P are estimated at

10–20% of the power ρPI2/A2
P supplied by the Joule effect, (28) reduces to

the form

kP
∂2θP(z)

∂z2
+

ρPI2
PC

A2
P

= 0 . (31)
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In order to respect the fact that the probe temperature is held constant
whatever its environment, the value of the current IPC in this new equa-
tion is equated with the value deduced from measurements with or without
contact depending on the situation considered. The expression for the local
temperature in the probe is then

θP(z) = − ρPI2
PC

2kPA2
P

z2 + Az + B , (32)

where A and B are constants determined by the boundary conditions

QW = 2GAg

(
θP(z = 0)

)
, (33)

which expresses the heat rate from the tip to its support at z = 0 (see Fig. 32)
with GAg = 3.7 × 10−3 W ·K−1 the conductance of the tip support, and

QS = G(θPC − θ0) = 2πbkSθ0 , (34)

which expresses the tip–sample coupling, assumed to occur only at the tip–
sample interface at z = L (see Fig. 32). The coefficient 2 in (33) accounts for
the fact that the tip comprises two branches.

Identifying the tip conductance GPt = kPAP/L = 5.9 × 10−6 W ·K−1 in
seeking the constants a and b in the parametric form QS = akS/(b + kS) and
considering GAg � GPt, Lefèvre et al. obtain

∆P = 3
2QS (35)

and

∆P

PC
=

V 2
PC − V 2

Pi

V 2
PC

=
3
4

GkS/(G + 2GPt)
GGPt

πb(G + 2GPt)
+ kS

. (36)

Equation (35) shows that ∆P and QS can be considered proportional. Equa-
tion (36) shows the dependence of the measurement on the thermal conduc-
tivity kS of the sample, the conductance G of the heat exchange taking place,
and the radius b of the tip–sample thermal contact region. Independent of the
tip temperature, this relation can be used to calibrate any SThM device pro-
vided that the values of G, GPt and b are accurately known. It can be shown
that a precise quantitative characterisation of the thermal conductivity in
the DC regime of the constant temperature mode can only be envisaged for
poorly conducting materials (kS < a few tens of W · m−1 · K−1) with a lower
limit for highly insulating materials. In this last case, the flux released by the
sample is very low and this whatever the conductance of the tip–sample heat
exchange [94].
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AC Regime

The AC regime was developed to improve the sensitivity of the SThM [96] and
to be able to control the volume of matter probed by adjusting the modulation
frequency of the probe temperature. Various measurement analyses have been
carried out in this regime to characterise the local thermal conductivity and
diffusivity of materials.

In this regime, measurements are based on the 3ω method developed
by Cahill et al. in 1987 [97]. This method uses a narrow thermoresistive
band (width 100 µm) which simultaneously plays the role of thermometer and
modulated excitation source for the sample on which it has been deposited.
It has been shown to be a valid way of determining the thermal conductivity
of materials.

In the SThM configuration, an alternating current Iω = Iωm cos(ωt) is
added to the continuous current in the tip. Modulation frequencies between
100 Hz and several tens of kHz are used. This frequency range is essentially
related to the time response of the tip and hence to the finite heat capacity
of the sensor and the dimensions of the tip [98, 99]. The signals recorded by
synchronous detection are the amplitude and phase of the third harmonic of
the alternating voltage then generated across the tip, whose average temper-
ature 〈TP〉 is held constant. Under these conditions, the 2ω component P2ω

of the power dissipated in the probe leads to a modulation of the tip temper-
ature at the same frequency 2ω. This is written

∆TP2ω = TP2ωm cos(2ωt) , (37)

where TP2ωm is the amplitude of the temperature modulation.
From the relation ∆RP = RP0αP∆TP, it can be shown that the amplitude

V3ωm of the third harmonic of the measured alternating voltage (V = RI)
has the form

V3ωm =
IωmRP0αPTP2ωm

2
. (38)

Hence V3ωm depends only on the variations in the amplitude of the second
harmonic of the tip temperature.

Approach to Measurement

In 1999, Fiege et al. [99] made a direct application of the approach proposed
by Cahill et al. [97] to determine the thermal conductivity of samples using
the 3ω method to process the SThM measurement. We shall only quote the
approximate equation they used. This equation relates the amplitude of the
second harmonic of the tip temperature to that of the power per unit length
of the tip filament (p2ω = P2ω/2L):

TP2ωm =
P2ω

πkS
(C − ln ω) , (39)
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Fig. 32. Amplitude of V3ω (mV) as a
function of f (logarithmic scale). [99]
©Copyright 1999, IOP Publishing
Ltd

where C is a term independent of the frequency and a function of the thermal
diffusivity of the sample and the effective diameter of the tip–surface thermal
contact region.

Figure 32 shows the measurements of the amplitude of the signal obtained
by Fiege et al. for samples of known conductivity and various current modu-
lations ω. These curves are linear in the logarithm of the frequency and have
a slope inversely proportional to the thermal conductivity of the materials. It
can be shown within the framework of the approximations used in this first
approach that [99]

V3ω(t) = IωmαP
P2ω

4πkS
(C − ln ω) sin(3ωt − φ) ∝ 1

kS
, (40)

where φ is the phase difference between this voltage and the current Iω .
Since the constant C can be determined from measurements on refer-

ence samples, this approach can be used to calibrate the SThM to carry out
thermal conductivity measurements, provided that the samples analysed have
similar roughness and elasticity/hardness to the reference samples. Using this
method, Fiege et al. estimated the thermal conductivity of silver and gold
with an error less than 2 % [99].

A quite different approach was developed by Majumdar [95] to understand
the thermal image contrast in AC regime. He studied the energy balance of
the probe in a contact situation. Considering the allowed frequency range of
the probe, he noted in particular that, if the Wollaston has much higher AC
conductance than the sample, and more precisely, in the case of materials
with high thermal diffusivity, the phase will tend to be independent of the
properties of the material for high frequencies.

A better understanding of measurements made in the AC regime requires
solution of the differential equation expressing the energy balance near the
tip. Various groups (LEO in Reims, France [89,100,101] and LET in Poitiers,
France [82]) are currently working on this problem.

Some Applications in Constant Temperature Mode

Given the non-ideal size and shape of the tip considered here, quantitative
thermophysical characterisation of materials is only currently possible for
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Fig. 33. Thermal images of the same region
of a polyvinyl methyl ether/polystyrene
blend deposited on glass after vari-
ous exposure times at a temperature
of 105 ◦C (Top = 35◦). ©Copyright
1996 from [107]. Reproduced by permis-
sion of Taylor & Francis Group, LLC.,
http://www.taylorandfrancis.com

Fig. 34. SThM image of a palladium line
800 nm wide on a glass substrate. Reused
with permission from L. Zhou et al. [87].
©Copyright 1997, AVS The Science &
Technology Society

plane and mirror-polished surfaces. The SThM is thus used mainly to study
nanostructured materials [102, 103] in the form of thin films [90, 93, 104].

In the first work by Hammiche et al. [105–107], the SThM is used to spec-
ify phase separation processes in polymer blends. For example, spinodal and
binodal processes were observed in the polyvinyl methyl ether/polystyrene
blend. Figure 33 shows a binodal decomposition. Polystyrene nodules are
clearly seen to form and grow in the blend. This work led in particular to a
new method for calorimetric analysis with the SThM, known as calorimet-
ric analysis with scanning microscopy (CASM), which should prove useful in
the pharmaceutical industry. The probe is then used as a vector for phase
separations and changes in volumes of a few µm3 of matter [100].

Apart from its use for thermal characterisation of materials, the SThM
in constant temperature mode has been shown to be a promising tool for
writing metallic features of submicron dimensions. Zhou et al. [87] have used
the heated tip to induce local chemical transformation of a palladium acetate
film into metallic palladium. Metallic lines of width 800 nm and thickness
20–35 nm, like the one imaged thermally in Fig. 34, have been written on the
surface of a glass substrate by this process.
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3.6 Analysing Measurements in Constant Current Mode

The probe is used here as a thermometer. The probe is supplied by a current
held constant at a low enough level to avoid heating the tip.

In the DC regime, the signal Sth is the differential voltage output by the
amplification chain of the thermal unit (see Fig. 22). This voltage is more or
less linear in variations of the voltage applied to the tip, and hence also in
variations of the average temperature of the tip:

Sth ∝ Aamp

{
RP0

[
1 + αP(TP − TP0)

]
+ Rwire

}
I , (41)

where I is the current in the probe and Aamp is the gain of the amplification
chain of the measured differential voltage.

In the AC regime, modulation of the sample temperature at frequency f
leads to modulation of the tip temperature at the same frequency. The signals
then measured are the amplitude and phase of the alternating component of
the voltage across the tip. These signals, in particular the phase, are more
sensitive than the DC signal and heavily dependent on the subsurface ther-
mophysical properties of the materials making up the sample [108].

Many groups are currently working to clarify the dependence of the DC
and AC signals on the local sample temperature. Since no results have yet
been published regarding this work, we shall not discuss the measurement
approach for this mode, but simply give some examples of its use.

Some Applications in Constant Current Mode

The main fields of application for this mode are in microelectronics and opto-
electronics. It is particularly worth mentioning the work by Fiege et al. [78],
which demonstrates the ability of the SThM to detect hot spots induced by
local degradation within the components of integrated circuits (see Fig. 23).
The SThM can reveal highly localised energy dissipation by mapping the
surface heating either on the front or the rear side of the thinned substrate
of integrated circuits.

Gomès et al. [109] were able to specify where damage had occurred on a
MOS structure subjected to strong electrical stress. The DC regime thermal
image shown in Fig. 35 reveals highly localised heating with a lateral extent of
the order of a few hundred nanometers, not only at the edge of the capacitor
(a result already obtained by electrical studies of degradation phenomena),
but also in the vicinity of small zones which seem to be the signature of grain
boundaries resulting from the fabrication process.

Patino-Lopez et al. [110] used an SThM to characterise the thermal be-
haviour of PN thermoelectric couples. Figures 36a and b show the amplitude
and phase, respectively, of the AC temperature measured along an active
PN junction for three modulation frequencies f of the current supplying the
junction.
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Fig. 35. Thermal image of the gate surface in
a MOS structure at breakdown [109]

Fig. 36. Temperature profiles. (a) Amplitude. (b) Phase. Courtesy of Patino-Lopez
et al. [110]

These profiles show that there are three heat sources within the sam-
ple. The largest is located at the PN interface, and the other two at the
metal–doped semiconductor interfaces. The PN junction has higher Peltier
coefficient than the other junctions and heat is more confined at the PN junc-
tion given the low thermal conductivity of the constituents of the structure
here. Note also that the thermal diffusivity of the semiconducting materials
making up this junction is estimated, successfully in this characterisation, by
analysing the variation of the phase of the signal measured at frequency f
as a function of the distance between the measurement point and the central
source of excitation within the component.

The use of the SThM tip to test the surface temperature of materials is
also found in hybrid photothermal setups where attempts are being made
to improve the lateral resolution of the probe [111]. These setups will be
considered in the Chapter by Cretin and Vairac in this volume.
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3.7 Conclusion

This microscope is now an integral part of the experimental landscape in
submicron heat studies. However, much remains to be done to understand
the measurements, especially in the constant current mode. The reader is
referred to the review [79] for a more complete overview of applications and
developments regarding the use of the SThM.
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Abstract. Optical measurement techniques are well suited to many heat trans-
fer problems, insofar as they are non-contact and generally non-invasive. Far-field
measurements of infrared thermal emission were for a long time the predominant
method. But today these techniques have reached their limits: the spatial resolution
is not adequate for micro and nanoheat transfer analysis.

In this Chapter, we shall review the main optical techniques devised recently
to overcome these limitations. A great many of these techniques operate in a mod-
ulated regime, taking advantage of the excellent signal-to-noise ratio provided by
lock-in detection, but also exploiting the spatial confinement of the modulated part
of the heat obtained in the alternating regime.

1 Generating Thermal and Thermoelastic Waves

Among all phenomena able to create thermal excitations in a material, it is
mainly thermoelectric and optical excitations that are used experimentally.
In an electrically functionalised solid, it is thus possible to generate a thermal
excitation by passing an electric current through the sample. This excitation
can be used as a probe to measure the thermal properties of nearby materi-
als. However, it sometimes constitutes the subject of the investigation itself,
particularly in the case of integrated circuits within which it constitutes a
potential source of damage that must be characterised.

In materials or systems that are not suitably functionalised for electrical
excitation, it is clear that thermal waves cannot be created by the Joule ef-
fect. When the material is optically absorbent, an amplitude-modulated light
wave, often called a pump, can be used to generate a thermal wave. These
so-called photothermal methods have been used with some success since the
1970s, since they are able to probe absolutely passive samples without any
contact.

In the next section, we shall successively examine these phenomena and
establish their contribution to the source term in the heat equation.

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 239–286 (2007)
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1.1 Generating Waves by Thermoelectric Effects

Joule, Peltier, and Thomson Effects

In addition to the energy taken from the electric field by the electron gas
and the energy removed by heat conduction, there is a further release or
absorption of heat energy, characteristic of the Peltier and Thomson effects.
Under these conditions the heat equation becomes [1]

k∇2(∆T ) − ρC
d∆T

dt
= −j2

σ
+ T j(∆S)T + T j

∂S

∂T
(∇T )x , (1)

where the first term on the left-hand side is the energy removed by heat
conduction and the second is the change in the internal energy, i.e., the
energy stored in the form of heat. On the right-hand side, the first term,
always negative, represents the energy borrowed from the electric field by
electrons. This energy, once given up to the lattice by electron collisions
with impurities, produces the Joule effect. It is always present and its sign
is independent of the current direction. The heat source thereby produced
is delocalised. The second term on the right-hand side is nothing other than
the heat exchanged by the Peltier effect between the lattice and the electron
gas, with S the thermoelectric power of the material. It is generated by
a discontinuity or inhomogeneity in the medium. Its sign depends on the
current direction. The Peltier heat source is localised in space, e.g., at the
interface of two materials. The third term on the right-hand side of (1) arises
from the coupling between the electric current and the temperature gradient
it induces. This is the Thomson effect. It behaves as a delocalised source
whose sign depends on both the current direction and the direction of heat
flow (the temperature gradient).

Note. The Peltier and Thomson effects, whose signs depend on the current
direction, are thermodynamically irreversible even though the sign of the heat
source term changes when the direction of the current is reversed.

All these terms can be identified experimentally by the type of nonlinearity
they produce. Indeed, the Joule effect produces a signal at twice the excitation
frequency. The Peltier effect is linear in the current and the signal it produces
is at the same frequency as the current. On the other hand, the expression
for the Thomson effect shows us that this type of nonlinearity generates a
great many harmonics which cannot necessarily be detected owing to the
weak dependence of the thermoelectric power on the temperature.

Temperature Fields and Displacement Fields

The frequency behaviour or temporal dynamics of a thermal system are
tightly linked to the boundary conditions or the mode of excitation (heat
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Fig. 1. 1D model showing boundary condi-
tions

or temperature source). Indeed, the size and shape of a system will largely
determine its temporal or frequency response. Waves will diffract on obstacles
or interfere with one another [2–4].

1D Semi-Infinite System

The system is illustrated in Fig. 1. A heat flux with uniform distribution is
injected at the interface and diffuses into the semi-infinite medium. Temporal
responses are given by [5]
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The angular frequency ω and phase reference are those of the heat flux im-
posed at the surface, viz.,

φ(0, t) = φ0 cos(ωt) . (4)

Diffusive Propagation

This propagation occurs in the positive x direction with speed v(ω) given by
the phase of the wave:

ω
(
t − x

v

)
= ωt − x

√
ω

2α
, hence v(ω) =

√
2αω . (5)

This speed is seriously affected by dispersion since it depends on the fre-
quency. We thus note the following points:
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– Low frequency signals propagate very slowly. On the other hand, high
frequency signals decay rapidly but propagate at very high speeds.

– The attenuation depends on the depth and the frequency.
– There is a phase difference of π/4 between the exciting flux (4) and the

temperature response at x = 0 given by (2). This reflects the existence of
a skin effect, perfectly analogous to the electromagnetic effect occurring
in conducting materials.

– The spectral composition of a signal varies as a function of the position x.
Figure 2 shows the temperature response to a heat pulse at different
depths in the material. These results were simulated using the model
described by Carslaw and Jaeger [5].

Equations (2) and (3) show the rather special behaviour of thermal waves
near a surface. Indeed, the temperature and displacement of the surface can
be written in the form

∆T (0, t) =
φ0

k
δTH cos
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ωt − π
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√
2α
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, (6)

u(0, t) = −φ0
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)
= −φ0

k

2α

ω
cos

(
ωt − π

2

)
. (7)

Note that the surface temperature behaves to fractional order in (jω)−1/2 (in
the sense of the Fourier transform), whereas the expansion obeys an integer
power law in (jω)−1. This behaviour arises naturally in the step tempera-
ture and expansion responses. It can be shown that the step response of the
temperature to a constant heat flux φ0 is given by [5]

∆T (x, t) =
2φ0

k

[(
αt

π

)1/2

e−x2/4αt − x

2
erfc

(
x

2
√

αt

)]
, (8)

and the temperature at x = 0 is given by

∆T (x, t) =
2φ0

k

(
αt

π

)1/2

. (9)

This step response is typical of a fractional system. Indeed, the step re-
sponse (8) has Laplace transform

L
[
∆T (x, t)

]
=

√
α

φ0

k

e−x
√

p/α

p3/2
, (10)

where p is the Laplace variable. The temperature transfer function for the
system can then be deduced:

HT (p, x) =
√

α

k

e−x
√

p/α

p1/2
. (11)
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Fig. 2. Spread of a heat pulse at different stages in its propagation

Likewise, the transfer function for the surface displacement is

Hu(p, x) = η

∫ ∞

x

HT (p, ξ) dξ = −η
α

k

e−x
√

p/α

p
. (12)

Only the motion of the surface x = 0 is relevant here and we retrieve the
integer behaviour of (7), viz.,

Hu(p, 0) = −η
α

k

1
p

. (13)

Thermoelastic Waves

The temperature field produced in a system subject to thermal excitation
can be calculated using analytic or numerical methods of varying degrees of
complexity. The thermoelastic problem is much more difficult to formulate
since it involves the coupling between heat conduction and elastic wave prop-
agation. It cannot be solved by a simple expansion calculation, which remains
too rough an approximation in most cases. The behaviour of the surface mo-
tion produced by a thermal excitation can be modelled. The model chosen
is depicted in Fig. 3. It represents an isotropic semi-infinite medium. The
surface is assumed to be stress free and heat is propagated purely by linear
conduction in the semi-infinite medium. We are concerned with the surface
displacement. This displacement is due to the contribution of (transverse and
longitudinal) elastic terms, together with a contribution of thermal origin.

Calculation shows that, superposed on a Rayleigh wave, there is a sur-
face thermal wave originating from the coupling between thermal and elastic
effects. This wave is interpreted in terms of plane evanescent waves. In sili-
con, the two waves, acoustic and thermal, propagate at speeds 3217 m/s and
1.46 m/s, respectively, for a frequency of 2 kHz. The motion of particles in
the medium is illustrated in Figs. 3 and 4. Particles at the interface describe
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Fig. 3. Thermoelastic model

Fig. 4. Representation of
thermoelastic waves

circles with radii that fall off exponentially as they propagate. This circular
polarisation becomes linear for particles located a half wavelength under the
surface. This confers a rather unusual surface aspect on the wave.

1.2 Optical Generation

When the material is optically absorbent, an amplitude-modulated light wave
can be used to generate a thermal wave. (These so-called photothermal meth-
ods are able to probe absolutely passive samples without any contact.)

Among the non-stationary photothermal methods, we shall distinguish
those using modulation, which appeal to the true notion of thermal wave,
from the pulsed methods. The latter include in particular the flash method [6],
the converging thermal wave method [7, 8], and the transient thermal grat-
ing [9], which we shall not discuss in any detail here.

Optical Generation of a Thermal Wave

Modulated photothermal methods are based on work by Bell in the nineteenth
century, taken up again by Rosencwaig and Gersho in the 1970s. In the
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simplest case, an amplitude-modulated plane wave with angular frequency ω
produces a thermal wave of the form ∆T (z) = T (z0)eiωte−σ(z−z0) if it is fully
absorbed at z0 (opaque sample), with a propagation constant σ =

√
iω/α.

However, this 1D formalism is only rarely used in practice, whenever the
heating is obtained by a focused laser beam (confined source with Gaussian
distribution). Let us consider the simple case of a semi-infinite medium with
thermal conductivity α and heat density ρC, at the surface of which is focused
an intensity-modulated laser beam in TEM00 mode. The transverse energy
distribution in the beam is Gaussian. Moreover, the light energy of the laser
is partially absorbed in the bulk according to the Beer–Lambert law and then
converted into heat. This heat source can be described by

S(r, z) =
1
2
p
β(1 − R)

πr2
g

e−r2/r2
ge−βz(1 + eiωt) , (14)

where P is the incident power of the pump beam, R and β are the coeffi-
cients of optical reflection and absorption of the sample at the wavelength
of the pump beam, rg is the Gaussian radius at 1/e of the pump beam, ω is
the angular frequency of modulation, and r and z are the polar coordinates
defining the position in the medium, with −z the outward normal to the
sample surface. The aim is to determine the temperature field, which must
satisfy the heat conservation equation, viz.,

∂(ρCT )
∂t

= −divq + S .

In a homogeneous and isotropic medium, we assume that the heat flux q is
related to the thermal gradient by the Fourier law q = −k∇T . Moreover,
there are boundary conditions at z = 0. If we assume that heat losses by
conduction, convection, or radiation are negligible, these can be written

−q · z = k
∂T

∂z
= 0 . (15)

At z = +∞, the temperature T of the sample is equal to the ambient tem-
perature Ta, i.e.,

lim
z→+∞T = Ta . (16)

When periodic boundary conditions are imposed on the medium (harmonic
flux or bulk heat source), the problem can be solved by decomposing the
temperature into three terms, viz.,

T (M) = Ta + Tc(M) + ∆T (M)eiωt , (17)

where Tc is the continuous component of the local temperature rise, ∆T is
the complex amplitude of local periodic temperature variations, and ω = 2πf
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with f the modulation frequency of the periodic heat source. As the problem
is linear, ∆T and Tc can be determined independently.

In the periodic regime, the heat conservation equation has the form of a
wave equation, viz.,

∇2(∆T ) − i
ω

α
∆T = −∆s

k
, (18)

where ∆s is the periodic component of the heat source given by

∆s =
1
2
P

β(1 − R)
πr2

g

exp
(
−r2

r2
g

)
exp(−βz) . (19)

Note that the characteristic wave number of the last equation is complex,
reflecting the irreversibility of the heat diffusion phenomenon as well as the
evanescent nature of thermal waves.

The problem has cylindrical symmetry. Writing the equation in the system
of polar coordinates specified above, we obtain

∂2∆T

∂z2
+

∂2∆T

∂r2
+

1
r

∂∆T

∂r
− i

ω

α
∆T = −∆s

k
. (20)

Integral transformations can be used to simplify the solution of these equa-
tions. The Hankel transformation (of order 0 here) is well suited to this type
of problem with cylindrical geometry. The last equation transforms to

∂2∆T̃ (u, z)
∂z2

−
(
4π2u2 + i

ω

α

)
∆T̃ = −∆s̃

k
, (21)

where ∆T̃ (u, z) and ∆s̃(u, z) are the zero order Hankel transforms of the
functions ∆T (u, z) and ∆s(u, z), defined by

∆T̃ (u, z) = 2π

∫ +∞

0

∆T (r, z)J0(2πru)r dr , (22)

and

∆s̃(u, z) = 2π

∫ +∞

0

∆s(r, z)J0(2πru)r dr , (23)

with J0 the order 0 Bessel function of the first kind and u the variable conju-
gate to r in the Hankel space. Equations (15) and (16) then have the following
simple expressions in the Hankel space:

∂∆T̃

∂z
= 0 , lim

z→+∞∆T̃ = 0 . (24)

Formulated in this way, it is easy to solve the second order differential equa-
tion (21). Taking into account the conditions (24), the solution can now be
written

∆T̃ (u, z) =
β(1 − R)P

2k(β2 − q2
th)

exp
[
−(πrgu)2

] [
β

qth
exp(−qthz) − exp(−βz)

]
,
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Fig. 5. Amplitude (left) and phase (right) of the periodic temperature rise at the
surface of a sample of nickel heated by an intensity-modulated Gaussian laser of
radius 1µm at e−1

(25)

with

q2
th = 4π2u2 + i

ω

α
. (26)

Apart from a few simple cases, it is difficult to obtain analytic solutions.
To find the thermal profile, the inverse transformations are often carried out
numerically:

∆T (r, z) = 2π

∫ +∞

0

∆T̃ (u, z)J0(2πur)u du . (27)

Figure 5 displays the results of such a calculation for a nickel sample, with
α = 0.23 cm2 · s−1 and k = 91 W · m−1 · K−1, showing the effect of an ex-
tended heat source. The amplitude of the temperature measured at the cen-
ter becomes finite, whilst the phase is shifted away from φ = 0. Near the
heating point, the phase no longer varies linearly in time. One must move
to a distance of the order of 2rg to recover this linear decay. The effect of
the extension of the heat source, determined by diffraction phenomena, is a
limitation of the spatial resolution in the measurements which is fixed partly
by the chosen modulation frequency, and partly by the wavelength of the
pump beam.

Semiconducting Materials

More complex phenomena are produced when semiconducting materials are
excited photothermally. We shall discuss these briefly here and the reader is
referred to the review in [10] for further details. The equilibrium state of the
semiconductor is perturbed by light since carriers in the form of electron–hole
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pairs are created when a photon is absorbed with energy greater than the
band gap. Indeed, such a photon absorption allows an electron to transit from
the valence band to the conduction band. The rate at which such carriers are
generated has the form

GL(λ, z) =
[
1 − R(λ)

]
α(λ)Φ0(λ)e−β(λ)z , (28)

where λ is the wavelength, Φ0 is the light flux, R is the reflection coefficient,
and α is the absorption coefficient of the material.

In a direct band gap semiconductor, the absorbed energy is reemitted
radiatively by band-to-band recombination. In an indirect band gap semi-
conductor such as silicon, the carriers relax non-radiatively (phonon), with
characteristic time of picosecond order. The free carriers then diffuse in the
bulk before recombining, essentially non-radiatively. The diffusion equations
in a semiconductor must therefore account for all these phenomena. Tak-
ing into account carrier generation by thermal agitation, the temperature
rise ∆T and the excess carrier density ∆n for a semiconductor subjected to
modulated illumination can be written

d∆n

dt
= D∇2∆n +

dn0

dt

∆T

τ
+ GL − ∆n

τ
, (29)

d∆T

dt
= α∇2∆T +

1
ρCp

[
Eg∆n

τ
+ (hν − Eg)GLeiωt

]
, (30)

where D is the electron diffusivity and τ the recombination lifetime.
Much work is still being carried out on these phenomena, since they pro-

vide information about many important properties of semiconductors. How-
ever, in the heat transfer context, experimenters commonly seek to eliminate
effects due to carriers in order to simplify signal interpretation, either by
coating the semiconductor with an opaque layer, or by reducing the light
flux sufficiently to make the influence of carriers negligible.

Light Sources and Modulation

In order to obtain a sufficient power, the most widely used sources are lasers,
although arc or filament lamps are preferred in certain cases. The main crite-
ria to guide this choice are power, wavelength (to obtain enough absorption
in the relevant material), and the required range of modulation frequencies.

Modulation can be obtained by modulating the source itself. This is the
case with Q-switch lasers (Nd:YAG up to a few kHz), passive mode-locked
lasers (Ti:sapphire, of the order of 100 MHz), or active mode-locked lasers.
More simply, some sources have a fast enough response to allow direct mod-
ulation of their supply, e.g., arc lamps and some gas lasers (CO2, a few kHz),
but also laser diodes and lasers pumped by laser diodes. Modulation frequen-
cies of a few GHz can then be attained.
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Another method involves modulation a posteriori using a continuous
source. For frequencies up to a few kHz, the easiest approach is often to
use a mechanical modulator or chopper.

Beyond this, if the source is sufficiently collimated (laser), acousto-optical
modulators or Pockels cells are generally used. These provide efficiencies of
the order of 80% if the light is polarised, and half this value otherwise. The
first type of modulator uses an acoustic wave at a few hundred MHz. In a
crystal, this creates a refractive index grating which diffracts the light beam.
By modulating the amplitude of this acoustic wave, an alternating deflection
is obtained, and hence the beam is modulated at frequencies limited by the
carrier frequency to about 30 MHz. Pockels or electro-optical cells use the
rotation of the polarisation induced by an electric field in a crystal placed
between polariser and analyser. The Pockels effect is fast and frequencies of
MHz order can be achieved, although at relatively high cost.

For the record, we should mention modulators using magneto-optical ef-
fects or based on liquid crystals.

2 Detecting Thermal and Thermoelastic Waves

A fair number of optical phenomena can be induced by the presence of a
thermal wave in a material. Many infrared detection techniques are based
on the modification of black body emission. However, with the exception
of recent work in the very near infrared1 and studies in the near field [11],
diffraction limits the resolution of these techniques to around ten microns,
precluding any possibility of submicron scale measurement.

Raman spectroscopy uses inelastic light scattering, which yields informa-
tion about vibrations of the crystal lattice, and hence also the temperature.
Although it is a relatively slow and complex technique, it can yield absolute
temperatures by calculating the ratio between the Stokes and anti-Stokes
scattering lines [12]. In direct band gap semiconductors, one can also use
photoluminescence, mentioned briefly above, to obtain information about the
temperature [13, 14].

Here we shall focus on measurements obtained by analysing an optical
wave that has been reflected by the surface under investigation. Indeed, the
temperature influences the permittivity ε of a material, and thereby also its
complex index and its reflection coefficient. Moreover, changes in temperature
lead to surface displacements which modify the phase of the optical wave.
To account for these effects, it is useful to introduce the idea of a complex
reflection coefficient for an electric field:

R(t) =
[
r0 + ∆r(t)

]
ei[φ0+∆φ(t)] . (31)

1 B. Serio and B. Cretin: presented at the SFT Congress, 2003
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For the very small variations that we are measuring, interferometric and re-
flectometric signals sint(t) and srefl(t), respectively, are proportional to varia-
tions in the phase and amplitude of the complex reflection coefficient. In the
following sections, we shall make a distinction between techniques based on
the measurement of srefl(t) (reflectometry) and those based on measurement
of sint(t) (interferometry):

sint(t) = si0∆φ(t) , (32)

srefl(t) = sr0
∆R(t)

R0
= 2sr0

∆r(t)
r0

, (33)

where si0 and sr0 are the interfringe and average reflectance signals, respec-
tively, and ∆R(t)/R0 is the relative variation of the reflection coefficient of
the sample.

In the experimental situations we are concerned with here, variations in
the amplitude and phase of the reflection coefficient are mainly due to temper-
ature variations ∆T (t) and normal surface displacements u(t), respectively.
The quantities most directly accessible to an external probe are the surface
displacement and the temperature. Under these conditions, for small signals
such that u(t) � λ, the signals can be interpreted according to

sint(t) = si02ku(t) , (34)
srefl(t) = sr0κ∆T (t) , (35)

where k and κ are the wave vector of the laser and the coefficient of ther-
moreflectance of the tested component, respectively. It thus transpires that
measurements of srefl(t) only provide temperature information after calibra-
tion, whereas displacement measurements using sint(t) are absolute, but only
lead to information about the temperature after an analysis that sometimes
proves complex.

2.1 Reflectometry

Temperature Dependence of R

As we have just explained, reflectometry measurements depend on the rela-
tionship between permittivity and temperature. This dependence is phenom-
enologically common to all materials, but can involve very different physical
processes. Unfortunately, apart from those materials commonly used in op-
tics (see the volume entitled Thermodynamic Coefficients by Ghosh in [15])
and some semiconductors, it is difficult to find values of κ in the literature.
In some transparent dielectrics, this dependence can be largely explained us-
ing a simple electrostriction model to calculate ε(T ), and hence R(T ) and κ,
taking expansion into account [16].

In metals, several phenomena come into play to modify optical properties
with temperature [17, 18]:
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– Expansion reduces the plasma frequency and shifts the energy levels,
leading to a shift in the Fermi energy. This can be affected by certain
constraints, in particular related to the substrate. An increase in the
Fermi level with temperature is also possible, but should have little effect
for moderate temperature variations.

– The jump in the Fermi distribution increases, affecting certain interband
transitions.

– The increase in the phonon population reduces the electron relaxation
times and shifts energy bands because of electron–phonon interactions.

In metals correctly described by a Drude model, e.g., aluminium, a reasonable
value of the coefficient κ can be obtained.

Finally, in semiconductors, it is essentially the temperature dependence
of the band gap that causes variations in R(T ), and hence in κ.

In addition to this, just as the permittivity ε, the refractive index n, and
therefore the reflection coefficient R all depend strongly on the wavelength λ
of the illuminating light, the coefficient κ also varies significantly with λ.
In many cases, one must carry out a genuine spectroscopic investigation to
optimise the sensitivity of thermoreflectance measurements. This can be ob-
tained sequentially by changing the illumination wavelength by means of a
monochromator, or in a parallel way with a CCD setup like the one described
below (see Fig. 6) [19].

Finally, the presence of a transparent layer on the surface can significantly
alter the measured signal. This situation is commonplace with materials used
in microelectronics. These are usually coated with a passivation or encapsu-
lation layer, generally of SiO2 or Si3N4, which is transparent in the visible.
Interference then occurs, inducing fringes in the spectra of R(λ) and κ(λ).
These phenomena have been measured [19–22] and modelled [19, 23].

As a consequence it is generally impossible to use the values of κ provided
in the literature for this type of stratified structure, where tiny variations in
the refractive index and thickness can significantly modify κ. Moreover, it is
crucial to choose λ so that κ(λ) is not too small, or even zero. Generally, a
calibration has to be carried out on each material in order to obtain κ and
hence the temperature.

Calibration

Three methods are available to obtain a value of ∆T which can be correlated
with reflectometry measurements to obtain κ:

– Temperature values can sometimes be obtained by modelling, but the
temporal sampling required for numerical calculation of ∆T distinctly
complicates the calculation. Moreover, the result depends sensitively on
how accurately one knows the thermophysical properties of the medium.
On length scales shorter than the micron, these properties are often
poorly understood and an accurate calibration is rarely possible [24].
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Fig. 6. Left : Spectroscopic setup for obtaining spectra R(λ) and κ(λ). Right : R(λ)
(top) and κ(λ) (bottom) measured for gold coated with a layer of Si3N4

– A thermometer standard can be deposited on the sample. For passive
samples, in particular, this may be a microthermocouple deposited on
the surface by means of a micromanipulator [22]. If this thermocouple is
small enough not to perturb the temperature value, and if the thermal
contact is good, a local temperature value can be obtained on any mate-
rial. In electronic circuits, many elementary components such as transis-
tors, diodes, and resistors, have stongly temperature-dependent electrical
characteristics. Their characteristic can then be calibrated in an oven so
that they can subsequently be used as temperature sensors. In particu-
lar, interconnects behave as resistive elements in which the temperature
induces resistance variations, and these in turn react back on the elec-
trical current to generate harmonics that can be analysed to obtain a
temperature value [24].

– Finally, when a sample does not lend itself to the above methods, the
temperature has to be controlled and measured by external means. To
do so, the sample is placed on a Peltier module and a temperature sensor
fixed as close as possible to it. The reflectance and temperature are mea-
sured simultaneously by varying the temperature more slowly than the
thermal time constant of the system (typically 10−2 Hz). At such low fre-
quencies, lock-in detection is not very effective (1/F noise) and a simple
averaging filter can be used in the same way. To compensate for motion
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of the sample caused by expansion of the Peltier module, which defocuses
the optical system, the position can be servo controlled [24, 25].

Focused Approach. Single Detector

The most widely used technique for measuring thermoreflectance [26] con-
sists in collecting on a photodiode the intensity I reflected from a laser beam
(called the probe beam) with continuous incident intensity I0. For small tem-
perature variations ∆T , corresponding to small variations in R(T ), we may
write

R(T + ∆T ) = R(T ) + κ∆T . (36)

Assuming that R(T ) ≈ R(Ta) = R0 and that ∂R/∂T is constant as a function
of T , the periodic component of the reflected light intensity I can be written
to first order as

i = I0R(T ) ≈ I0R0

(
1 +

1
R0

κ∆T

)
. (37)

The harmonic signal measured in the photodiode is then directly proportional
to the periodic temperature rise ∆T at the point where the probe beam
reflects off the surface. The amplitude of the measured signal thus depends
via the coefficient κ on the optical properties of the surface. The phase of
the signal relative to the thermal excitation depends only on the thermal
diffusivity of the sample.

From this idea, and as described earlier, two types of setup can be used,
depending on the origin of the heat source used to generate the periodic
temperature rise ∆T :

– For most ‘passive’ samples, the simplest way of producing a temperature
modulation is to use a sufficiently powerful heating laser focused on the
surface of the material.

– Some ‘active’ samples already include a heat source. This is the case for
integrated circuits, electronic components, and laser diodes.

This microscope [27] comprises three main subsystems:

– an optical device for focusing and positioning the detection (and heating)
beams,

– a device for measuring the reflected flux,
– the electronics required for the measurement.
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Fig. 7. Single-beam photothermal microscope. Left : Setup used to measure local
thermal diffusivities in a passive sample. Right : Setup used to measure temperatures
in an active sample

System for Measuring Local Properties (Passive Samples)

The probe beam comes from a continuous wave laser with power of the order
of a few tens of mW, e.g., a diode at λ = 670 nm. It is focused in the same way
as the pump at the sample surface. After reflection on the sample surface,
the probe passes once more through the dichroic mirror, a quarter wave
plate and a polarisation splitter which directs it fully toward the photodiode.
An interference filter centered on the probe is used to prevent any part of
the pump beam from returning to the photodetector. The signal from the
photodiode is filtered by lock-in detection to extract the amplitude and phase
of the periodic signal from background noise.

The pump beam comes from a continuous wave laser, e.g., ionised argon
Ar+, λ = 514 nm, with adjustable power typically between 10 mW and 1 W.
An acousto-optical crystal modulates the beam intensity at a frequency fixed
by a generator. The pump beam, after reflecting off a dichroic mirror, is
focused on the sample surface by a metallographic microscope. To make the
measurement, the pump beam has to be moved relative to the probe beam.
When the sample is homogeneous, it makes strictly no difference which beam
is moved. Since the problem is then symmetrical, the only relevant factor
is the separation between the heating point and the detection point. In this
setup, it is generally the probe that is fixed [27]. This guarantees the stability
of the measurement by removing the effects of optical defects on the surface,
such as scratches or spikes. By moving the pump beam to different points
on the sample surface, one obtains a map of the periodic temperature rise.
To facilitate these movements, a computer controls the motion of two step
motors which act on the orientation of the dichroic mirror, thereby regulating
the relative positions of the pump and probe beams. The tasks carried out by
the various pieces of apparatus are piloted by a programme which automates
the measurements and stores experimental data.
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In order to detect local inhomogeneities in the sample such as thermal
barriers, one can use a method derived from the one described here which
consists in setting the two beams in coincidence and shifting the sample.

Systems for Measuring Heating (Active Samples)

When making point measurements on an active sample such as an integrated
circuit, the sample must be moved to reveal heating, or conversely, the probe
beam must be moved. The latter configuration can save scanning time pro-
vided that the scanning mirror is light enough. In the end, the measurement
speed is limited by the time constant required by the lock-in detection to
obtain a satisfactory signal-to-noise ratio. In some cases, a system can be
appended to correct defocusing, undesirable interference effects, or lateral
movements, in order to compensate for motion due to expansion of the sam-
ple [24].

For these two types of setup, in optimal operating conditions, i.e., for
a signal limited by photon noise, for a typical reflective sample such as a
metal [28], relative reflectance variations of the order of 10−8 can be mea-
sured. For a coefficient κ of the order of 10−4 K−1, this is equivalent to a
temperature variation of 10−4 K.

Detector Arrays and Imaging

These experiments are rather lengthy if one aims to obtain images with sev-
eral hundred to several thousand measurement points per side. It may then
be preferable to use a multiplexed setup, i.e., an array of detectors which can
directly obtain a full-field image of the temperature rise at the sample sur-
face without scanning. In the following, we shall limit the discussion to active
samples, although it obviously transposes to passive samples by replacing the
electrical modulation by external heating.

Multiplexed setups have the advantage of significantly reducing the ac-
quisition time when high definition images are required. Furthermore, they
do not involve the use of a coherent light source, i.e., a laser. If one uses
a light-emitting diode (LED) or a bandpass interference filter, it is easy to
adjust the illumination wavelength so as to obtain an optimal coefficient κ(λ)
for the material under investigation. Finally, the risks of perturbing the op-
eration of an integrated circuit by carrier creation are significantly reduced
since the illumination of the sample is much weaker than with a focused laser
(up to 1 kW/mm2).

This reduction in the light flux is imposed by the maximal number of
photons that can be accumulated in the CCD sensors per unit time before
they become saturated. This quantity is thus related to the depth of the
CCD wells (of the order of N = 250 000 for the best cameras, and gener-
ally inversely proportional to the pixel size), and to the camera frame rate
(a few tens of frames per second). If the setup is limited by photon noise,
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Table 1. Characteristics of a CCD camera (Dalsa 1M30)

Well depth Readout noise Definition Frame rate Conversion dynamics
N (frame/s)

250 000 1.5 10242 30 4096 (12 bits)

Table 2. Maximal performance (temperature resolution) as a function of integra-
tion time for a GaAs sample, with dR/dT = 1.7 × 10−4 K−1. Note that this is a
simulation that only takes into account photon noise and the readout noise of the
camera. The true performance is necessarily less good due to the presence of other
noise sources

Accumulation time 0.13 s 1 s 1min 1 h

Temperature resolution (K) 2.39 0.86 0.11 0.01

a signal-to-noise ratio of
√

N is achieved for one frame. Summing over n
frames, one thus achieves a signal-to-noise ratio of

√
nN . For a camera of

maximal frame rate F , the signal-to-noise ratio is thus
√

NF
√

t, where t is
the integration time. So in the end, if the system is limited by photon noise,
it is the quantity

√
NF (well depth times frame rate) which determines the

sensitivity.
With a camera operating at 30 frames per second, up to 30 × 250 000 =

7.5 × 106 photons can thus be accumulated per second and per pixel, which
makes around 3 pW per pixel at λ = 550 nm. This type of power density limits
the risks of perturbing the measurement by carrier creation. However, there
is a distinct deterioration in the signal-to-noise ratio which can be partly
compensated by accumulating a large number of frames and optimising the
wavelength of the source. Depending on the integration time, the signal-to-
noise ratio remains about two orders of magnitude lower than what can be
obtained with a single detector. However, it should be borne in mind that
the measurement is made simultaneously over 106 pixels. When an image
is required with more than a few tens of pixels per side, the multidetector
array approach is considerably faster. In all other cases, the single detector
approach is probably preferable.

Homodyne Operation

Since most CCD cameras operate at frequencies of at most a few tens of Hz,
the setup has to be adapted to suit the chosen modulation frequency. For
frequencies below 10 Hz, the circuit is illuminated by a continuous source
and the camera is synchronised directly with the modulated phenomenon.

Sampling is based on multiplexed lock-in detection. A detector functions
by successive integrations to carry out the sampling in such a way that one
can ascertain the amplitude and phase of a modulated phenomenon of pe-
riod T [29], as shown in Fig. 9. This provides information similar to the data
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Fig. 8. Thermoreflectance microscope using a detector array. Left : Homodyne op-
eration. The circuit operates at frequency f and the camera is triggered at 4f .
Right : Heterodyne operation by double amplitude modulation. The circuit oper-
ates at frequency F and the illumination is modulated at frequency F + f . The
camera is triggered at four times the beat frequency f

provided by a lock-in amplifier, but adapted to the possibilities of a CCD
camera. Shannon’s sampling theorem requires the acquisition of at least two
images in order to obtain the modulation amplitude. A classic arrangement
for multiplexed lock-in detection consists in using four images I1, I2, I3 and I4

per period rather than just two, in order to obtain information about the
phase as well [29]. The amplitude and phase then represent the modulus and
argument of the complex number I1 − I3 + i(I4 − I2).

Heterodyning by Double Amplitude Modulation

For circuit operating frequencies greater than one quarter of the maximal
frequency of the camera (a few tens of Hz), it becomes impossible to carry
out adequate sampling of reflectance variations. One can then modulate the
flux of the light-emitting diode at a slightly different frequency to that of the
phenomenon under investigation (heterodyne operation, illustrated in Fig. 8).
Information about the amplitude and phase of ∆R is then accessible at the
beat frequency between the modulation frequency of illumination and that
of the heating. If a low enough beat frequency is chosen, the camera can then
be used to measure the alternating temperature variations, even for supply
frequencies in the circuit as a high as GHz [30].
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Fig. 9. Multiplexed lock-in detection

2.2 Interferometric Probes

These probes measure any normal displacement of the surface, of whatever
origin, i.e., acoustic in the form of Rayleigh, Lamb or bulk waves [31–33], or
thermal [34–37], either in permanent or transient regime.

The phase kx of a laser beam reflected from a vibrating surface is modu-
lated by the displacement u(t) of that surface. The reflected electric field Ep

of the probe beam is given by

Ep = E0 exp
{
i
[
ωt + φp + 2ku(t)

]}
, k =

2π

λopt
, (38)

where φp contains the phase delay due to propagation as well as the phase
shift induced by reflection. If ku(t) � 1, i.e., the amplitude of the surface dis-
placement is small compared with the optical wavelength, the electric field Ep

can be considered to be constituted by a low phase modulation. Under these
conditions, the spectrum of Ep comprises a central line at the optical carrier
frequency and two side bands. Let us consider the standard problem of a
sinusoidal displacement

u(t) = u cos(ωut + φ) . (39)

The two side bands consist of two lines shifted by ±ωu from the carrier (see
Fig. 10). The amplitude of the two lines is given by J1

(
2ku(t)

)
. For low index

modulations, the Bessel function can be approximated by

J1

(
2ku(t)

)
≈ ku(t) . (40)

The electric field can thus be expressed in the form

Ep = Ep0

{
exp[i(ωt + φp)] + ku exp

[
i
(
(ω + ωu)t + φp +

π

2

)]

−ku exp
[
i
(
(ω − ωu)t − φp − π

2

)]}
. (41)
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Fig. 10. Spectrum of the magnitude of the phase-modulated electric field

Fig. 11. Transposition of the optical frequency spectrum to radiofrequencies

Information concerning the amplitude of the surface motion u is contained in
the side bands. When the modulation frequency is high enough, the side bands
can be detected using a Fabry–Perot cavity as a frequency discriminator.
These cavities behave like resonant circuits with very high quality factors. It
is thus possible to achieve a frequency resolution of a few tens of MHz.

Another method consists in mixing the probe beam Ep with a reference
beam Er which is coherent with the first in such a way that they interfere.
The beams are mixed in a photodetector sensitive to the square of the electric
field intercepting it. It thus delivers an electric current proportional to the
mixture of the two waves.

There are two coherent detection methods: a heterodyne method which
mixes the coherent beams with a frequency shift between them, and a ho-
modyne method in which there is no shift between the beams. These two
techniques are discussed in the next two sections.

Heterodyne Interferometry

In this approach, the frequency of one of the two beams, the reference or
the probe beam, is shifted by an amount fi = ωi/2π called the intermediate
frequency [31, 32, 34, 38, 39]. The latter is the frequency at which the signal
is processed. The ratio between the carrier frequency and its side bands is
thereby reduced. One can then use an electronic filter with lower quality
factor than the Fabry–Perot optical cavity. This transposition is illustrated
in Fig. 11.
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Fig. 12. Device developed by Dieulesaint and Royer [33]

Figure 12 shows a Mach–Zender heterodyne interferometer developed by
Dieulesaint and Royer [32]. A source beam is separated into two parts by
a first polarisation splitter. The frequency of the probe beam is shifted by
an acousto-optical modulator with collinear input and output. The shift fre-
quency is 70 MHz.

It then crosses another polarisation cube beam splitter and reflects off
the device under test (DUT). After crossing the quarter wave plate twice,
it is deflected towards the photodetector. The reference beam, deflected by
the first cube, goes through the prism to the photodetector. The two beams,
probe and reference, interfere after the output polariser.

The electric fields Ep and Er of the probe and reference waves are

Ep = E0 exp
{
i
[
(ω + ωi)t + φp + 2ku(t)

]}
, (42)

Er = E0 exp
[
i(ωt + φr

]
. (43)

The current I(t) supplied by the photodiode is proportional to the complex
square of the resultant electric field:

I(t) = S(Ep +Er)(Ep +Er)∗ =
I0

2

{
1+cos

[
ωit+2ku(t)+φp−φr

]}
, (44)

where I0 = 2SE2
0 and S is the sensitivity of the photodetector (A/W).
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Fig. 13. Broad band coherent electronic detection

The current is thus the image of the probe beam transposed to radiofre-
quencies. We then deduce the new expression

I(t) = I0

{
exp

[
i(ωit + φp − φr)

]
+ ku exp

[
i(ωi + ωu)t +

π

2
+ φp − φr

]

−ku exp
[
i(ωi − ωu)t − π

2
− φp + φr

]}
. (45)

We deduce that the ratio of the amplitude of a side band to its carrier directly
yields the amplitude of the surface displacement. This is only valid in the
permanent sinusoidal regime. To detect the transient regimes, broad band
detection with phase demodulation is required (see Fig. 13).

Part of the output signal is filtered to extract the carrier. Then, after
shifting the phase by π/2, it is mixed with the signal itself. After filtering,
this mixing yields the vibration of the object. In order to eliminate random
phase fluctuations of mechanical or thermal origin (φp −φr), present in both
signals, the passband of the selective filter must be greater than the phase
noise spectrum. Figure 14 shows the passband of the selective filter.

On the one hand, the passband of such a device is bounded by a low-
frequency cutoff determined by the quality factor of the selective filter. The
latter depends on the required signal-to-noise ratio. In every case, the low-
frequency cutoff is bounded by the maximal value of the quality factor of
the selective filter. Displacements of frequency lower than a few tens of kHz
cannot be detected with this technique. In addition, the passband is also
bounded by a high-frequency cutoff imposed by the carrier frequency fi.

Cretin and Hauden [34] have used a fractional phase-locked loop to detect
oscillations at frequencies below kHz.
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Fig. 14. Passband of selective filter

Stabilised Homodyne Michelson Interferometer

Homodyne interferometry can be used to overcome two difficulties inherent
in heterodyne techniques:

– The lower bound of the passband which precludes the possibility of
detecting slow surface displacements (at frequencies below kHz). This
bound is imposed by the quality factors of selective filters used in the
detection setup.

– The need to work with low modulation index, which limits the maximal
amplitude of surface displacements to 20 nm.

The homodyne technique consists in mixing the probe wave with a reference
wave at the same frequency. Under these conditions, the frequency is shifted
towards the zero frequency. We shall show that this type of interferometry
compares favourably with heterodyne interferometry, even in experimental
situations where the latter can be implemented under optimal conditions.

In the Michelson interferometer shown in Fig. 15, a laser beam is split
into two beams by a beam splitter. The probe beam is reflected off the object
and the reference beam off a mirror. The intensities of the return beams
are assumed equal. These beams are mixed at the device output where they
interfere and are picked up by a photodetector. The latter delivers an electric
current I(t) proportional to the resultant intensity after wave mixing:

Ep = E0

{
i
[
ωt + φp + 2ku(t)

]}
, (46)

Er = E0

[
i(ωt + φr)

]
, (47)

I(t) = S(Ep + Er)(Ep + Er)∗ =
I0

2

{
1 + cos

[
2ku(t) + φp − φr

]}
, (48)

where I = 2SE2
0 and S is the sensitivity of the photodetector (A/W).
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Fig. 15. Michelson interferometer with active stabilisation [1]

The photocurrent thus varies sinusoidally with the difference in length
Lp − Lr between the probe arm and the reference arm via the ‘static’ phase
difference φp − φr between the two arms of the interferometer:

φp − φr = 2
2π

λ
nair(Lp − Lr) . (49)

The sensitivity of the interferometer is maximal when

cos
[
2ku(t) + φp − φr

]
= 0 .

For small amplitude displacements 2ku(t) � 1, this happens when

φp − φr =
π

2
(2n + 1) ,

where n is an integer, i.e., for an optical path difference equal to

nair(Lp − Lr) = (2n + 1)
λ

8
. (50)

To hold the sensitivity constant at small surface displacements, an op-
erating point is defined for which the two waves are in phase quadrature.
This operating point (P in Fig. 16) is held mid-fringe by servo controlling
the position of the reference mirror using a feedback loop. The phase quadra-
ture is thus guaranteed independently of the random variations in the optical
paths. To achieve this, the reference mirror is carried by a piezoelectric block
commanded by the low-frequency part of the interferometric signal. The low-
frequency part of the noise contains most of the spectrum of phase variations
of thermal and mechanical origin.
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Fig. 16. Output intensity of the interferometer as a function of the length difference
Lp − Lr between the two arms

When the interferometer is stabilised at its operating point, the instru-
mental profile I can be linearised about the point of inflection for small
displacement amplitudes. Now

I(t) =
I0

2

{
1 + cos

[
2ku(t) + φp − φr

]}
, (51)

φp − φr = (2n + 1)
π

2
, (52)

and for ku(t) � 1,

cos
[
2ku(t) + (2n + 1)

π

2

]
= (−1)n sin

[
2ku(t)

]
≈ (−1)n2ku(t) ,

whence

I(t) ≈ I0

2
[
1 + (−1)n2ku(t)

]
. (53)

Then for the dynamic component of the signal, we have

I(t) = (−1)nI0ku(t) . (54)

This type of instrument therefore delivers a signal proportional to the normal
surface displacement u(t). The sign of the signal can be changed by varying n
by one unit.

Focused Approach. Single Detector

Figure 17 shows an experimental device integrating surface reflectance and
displacement measurements with a laser beam focused at the diffraction limit.
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Fig. 17. Setup for combined interferometric, polarimetric and reflectometric mea-
surements

All operating modes are indicated. It can be used to carry out interferomet-
ric, reflectometric, or polarimetric measurements to analyse variations in the
reflection coefficient by amplitude, phase or depolarisation measurements. It
integrates a visualisation system and the signal is detected by lock-in detec-
tion or using a digital oscilloscope.

Interferometry

The setup is similar to a homodyne Michelson interferometer with active
stabilisation in which the beam splitter is the polarisation cube P3 associated
with the quarter wave plates L6 and L7, as shown in Fig. 17 [40, 41]. The
performance of this setup depends on how well the position of the reference
mirror has been servo controlled. By taking the sum and difference of the
interferometric signals obtained for the positive and negative interfringes,
this servo control allows one to measure variations in the amplitude and
phase of the reflection coefficient for the electric field:

R(t) =
[
r0 + ∆r(t)

]
ei[φ0+∆φ(t)] . (55)
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For the very small variations measured here, the interferometric and reflec-
tometric signals Sint(t) and Srefl(t) are proportional to the variations in the
phase and amplitude of the complex reflection coefficient:

Sint(t) = Si0∆φ(t) , (56)

Srefl(t) = Sr0
∆R(t)

R0
= 2Sr0

∆r(t)
r0

, (57)

where Si0, Sr0, and ∆R(t)/R0 are the interfringe signal, the average re-
flectance signal, and the relative variation of the reflection coefficient of the
sample.

Calibrating Measurements

Variations in the amplitude and phase of the reflection coefficient are es-
sentially due to temperature variations ∆T (t) and normal surface displace-
ments u(t), respectively. The quantities most directly accessible to an exter-
nal probe are the surface displacement and the temperature. Under these
conditions, and for small signals such that u(t) � λ,

Sint(t) = Si02ku(t) , (58)
Srefl(t) = Sr0κ∆T (t) , (59)

where k and κ are the wave vector of the laser and the thermoreflectance coef-
ficient, respectively, of the device under test. It transpires that displacement
measurements are intrinsically absolute, whilst temperature measurements
can only be made after calibrating the test bed described previously.

Interferometry

The phase variation

φ0 + 2k∆U(t) +
[
∆φp(t) − ∆φr(t)

]

contains three contributions:

– The first is a constant phase shift, perfectly controlled by the position of
the Wollaston.

– The second corresponds to a difference in level ∆u(t) between the two
laser spots.

– The third is produced by a variation in the anisotropy of the refractive
index of the material

[
∆φp(t) − ∆φr(t)

]
. This signal is maximal when

the beam polarisations correspond to the principal axes of anisotropy,
and disappears when they are perpendicular to them.

All these contributions can be measured independently from one another by
examining the sums and differences and by changing the distance between
the two laser spots. This instrument can operate in four different modes:
differential interferometry, profilometry, polarimetry, and goniometry.
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Performance

The performance of the devices discussed above has been achieved through
a concerted effort with regard to each element of the test bed: laser stabil-
ity, careful construction of mechanical parts, optimised active stabilisation for
each feature, the passband and detector noise, have all contributed to achiev-
ing a level of performance that remains unequalled to our knowledge in the
field of electronic device characterisation. Measurements can be made at any
frequency from DC to 125 MHz. The experimentally determined sensitivity
is 10−16 m/Hz−1/2 for a 1 mW laser, limited only by photon noise.

Phase Imaging. Detector Arrays

As we shall see later, single point measurement techniques can be used to map
displacement or temperature fields. To do this, the whole sample surface must
be scanned and the image reconstructed, which is very time-consuming. To
remedy this, we have considered imaging techniques that use not just one or
a pair of detectors, but CCD arrays. These methods involve illuminating a
whole region of the device under test and analysing the phase of the reflected
wave front. It is then possible to measure the surface displacement field.

One of the major differences between this type of approach and the point
measurement techniques concerns the passband. Indeed, the latter is imposed
by the video acquisition rate, generally 50 Hz. For signals with characteristic
frequencies less than 50 Hz, the video rate is adequate. However, this imposes
a severe restriction on applications. To extend the available frequency domain,
we have used heterodyne and stroboscopic techniques.

Interferometric Imaging

The first approach uses the device described above [42, 43]. To this end, a
lens is placed upstream of the cube beam splitter in the Michelson interfer-
ometer described earlier to disperse the beam. This serves to illuminate a
broad region of the sample which, by interfering with the reference beam,
produces fringes on a CCD array. This device was used to measure optical
path variations in biological cells. It is difficult to process the interferograms
obtained, the treatment being poorly suited to deformable objects owing to
the fact that the reference wave front is planar.

Thermoplastic Holography

Holographic techniques are ideal for analysing conformational changes in the
wave front. One records a hologram of the object at rest that will produce the
reference wave. When the object deforms, its image is made to interfere with
the reference image on a CCD array. Interference fringes then appear super-
posed on the image of the object. These fringes constitute isodisplacement
contours for the surface.
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Fig. 18. Holographic
test bed

In contrast to interferometric imaging as described earlier, the fringes are
only present when the object deforms. As long as the wave front remains
unchanged, the fringes do not appear.

The hologram is recorded in a conventional manner, as shown in Fig. 18.
In contrast, our choice of technique using films, then thermoplastic plates,
was guided by development methods. Wet chemical development processes
are not well suited to the observation of small objects, since the film has
to be moved to be developed in this way. Moreover, once the film has been
developed, bleached, then fixed, the separation of the fringes in the recorded
interference pattern will have evolved from its initial state, so that a shift
is required in the wavelength to restore the image as it was when recorded.
It then becomes difficult to reposition it perfectly in order to superpose the
‘object’ and ‘reference’ waves.

The test bed is illustrated schematically in Fig. 18. In this approach, the
hologram is developed thermally. The idea is to heat the thermoplastic film
above its glass transition temperature so that the change in its thickness
modulated by the light intensity distribution is permanently fixed. The dif-
fraction efficiency obtained with this kind of holographic material can be as
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much as 20%. The recording is obtained at a temperature of around 80 ◦C.
To reconstitute the hologram correctly, the film must be kept at a tempera-
ture close to the recording temperature, otherwise the recorded grating may
contract and one obtains the same wavelength shift for the image restitu-
tion. At 80 ◦C, it is difficult to eliminate convection, especially over areas of
several square centimeters. Moreover, the thermoplastic films are costly and
consumable. These are the two main reasons for moving towards a digital
technique, viz., speckle interferometry.

Electronic Speckle Pattern Interferometry (ESPI)

Speckle interferometry techniques are a natural development of the holo-
graphic methods described above. The difficulties arising in the development
of the thermoplastic film led us to replace it by a CCD sensor on which the
‘object’ and ‘reference’ waves interfere. The spatial resolution of the CCD
sensor (20 µm or 50 lines/mm) is much lower than can be obtained with a
thermoplastic film (1 µm or 1 000 lines/mm). This is why the angle between
the ‘object’ and ‘reference’ waves is significantly smaller.

Two approaches can be distinguished in ESPI, one for measuring surface
displacements in the plane, and the other for measuring them out of the
plane:

– Measuring Out-of-Plane Displacements. The idea here is to mea-
sure the phase change of each speckle of the moving surface [44]. This is
achieved by interfering a reference wave with the object wave, as shown
in Fig. 19. The setup is similar to the Michelson interferometer in which
the images are made to interfere. Superposing the light scattered by the
object on that arriving from the reference arm produces a new speckle
pattern on the CCD camera. Everything happens as though the rough
sample surface were made up of tiny mirrors with sizes related to the
speckle sizes. In fact, the average speckle size on the CCD is directly re-
lated to the magnification of the imaging system and its numerical aper-
ture. A diaphragm can be used to adjust the size of the grains to the pixel
size in the camera in order to obtain good spatial sampling of the image.
The displacement of each mirror is then measured by interferometry on
each grain formed on the camera.
The acquisition and processing procedure has four stages. The phase φsp

of each grain relative to the reference wave is first determined for the
object at rest. The intensity of each pixel then recorded by the camera
can be written in the form

Irest =
I0

2
(
1 + V cosφsp

)
, (60)

where I0 is the average intensity, and V and φsp are the contrast and
phase of the speckle. A four-image phase shift technique is used. The
idea is to record a set of four images obtained by carrying out controlled
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Fig. 19. ESPI setup for measuring out-of-plane displacements

phase steps. A combination of these four images can be used to determine
in an independent manner the intensity, the contrast and the phase of
the speckle image of the sample at rest.
Expansion of the sample modifies the phase of speckle grains and the
intensity detected by the camera can be written in the form

Irest =
I0

2
(
1 + V cosφsp + ∆

)
, (61)

where ∆ is the phase associated with the normal displacement of the
sample surface.
A new set of four images is recorded. The same procedure is then applied
as for the sample at rest. One thus obtains the same contrast image, the
same intensity image, and the phase image of the deformed device. At
this stage, none of the images yet obtained are in a usable form, because
overwhelmed by noise due to the random nature of the speckle distribu-
tion. To establish the surface displacement undergone by the sample, one
subtracts the two phase images obtained for the sample at rest and the
operating sample. The result constitutes a phase map which can be used
to measure the surface displacements modulo 2π. A phase unwrapping
algorithm is then applied to reconstruct the deformed surface. As long
as the displacements are small enough, the decorrelation of the speckle
grains does not affect the image quality. For larger surface displacements,
the images must be filtered, which affects lateral resolution.

– Measuring In-Plane Displacements. In-plane displacement measure-
ments are made by illuminating the sample surface by a sinusoidal grat-
ing [44]. To do this, the surface is illuminated by two plane waves that
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Fig. 20. ESPI setup for measuring in-plane displacements

interfere with an angle α1 + α2, as shown in Fig. 20. The process is the
same as the one used for out-of-plane displacement measurements.

3 Applications

3.1 Temperature and Displacement Fields.
Orders of Magnitude

Local Thermal Diffusivity and Thermal Resistance

To illustrate the prospects for photoreflectance as a way of characterising
complex materials, we consider the example of studies carried out on alu-
minium nitride ceramics [45]. An approach combining macroscopic and sub-
micron measurements has been used to establish the properties of different
phases in a composite ceramic and relate them to the macroscopic conduc-
tivity of the ensemble. Figure 21 shows the isophases, obtained using the
single-beam photothermal microscope described above, around the heating
point located at the grain center. The separation between these isophases re-
veals the thermal conductivity of the material. The more widely spaced they
are, the greater is the thermal conductivity. The AlN grains and secondary



272 Stefan Dilhaire et al.

Fig. 21. Isophases obtained in a grain of AlN (left) and in the secondary phase
(right) at a modulation frequency of 1 MHz. The length scale is in microns

Fig. 22. Thermal barriers in moving from one grain to another. Experiments are
carried out with the two beams superposed, at a modulation frequency of 1MHz

phase grains (YAG or YAP) exhibit thermal conductivity values differing by
almost an order of magnitude.

In order to deduce a macroscopic conductivity from the properties of
these two phases, one must also be able to measure the interface resistance
associated with grain boundaries [46]. This type of study can be carried
out using the same microscope in a slightly different mode from the last.
The pump and probe beams are now focused on the same point. A thermal
barrier perpendicular to the surface will cause an asymmetry in the hot spot
associated with a point source close to the thermal barrier. Indeed, as one
moves towards the obstacle, the heat can no longer spread out isotropically
and one observes an anisotropic local temperature rise. One thus scans the
sample in search of phase and amplitude variations in moving from one grain
to the next, as shown in Fig. 22.
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Fig. 23. Left : Diffused resistance on an integrated circuit. Right : Schematic of
interferometric measurement

Detecting Interference of Thermoelastic Waves
in Operating Integrated Circuits. Optical Ammeter

One technique for characterising a material involves generating thermoelastic
waves inside it and examining the way they propagate. When devices are
running, they can generate elastic waves which can be used to probe the
semiconductor on which the device is implanted. For example, thermoelastic
waves are emitted by ohmic contacts when a current passes. Consider the
ohmic contacts represented by points A and B on the device in Fig. 23 (left).

When an electric current goes through these contacts, heat is both de-
posited and absorbed by the Peltier effect due to the potential barrier crossed
by the electrons when they move from the metal to the semiconductor. The
two facing contacts are Peltier heat sources in phase opposition. These sources
generate thermoelastic waves that propagate in the surrounding material.

The thermoelastic deformations of the contacts can be detected by in-
terferometry and followed as they propagate in the silicon. To do this, the
resistor is supplied by a sine wave current of amplitude 50 mA at a frequency
of 10 kHz. Figure 24 shows how the amplitude of the deformation of contact
A varies with the electrical current through it. The Joule and Peltier con-
tributions are measured there, discriminating between them by the choice of
harmonic analysed in the lock-in detector. Indeed, the Joule effect, which is
quadratic in the current, occurs at 20 kHz, whereas the Peltier effect, being
linear, occurs at the same frequency as the current. Measuring the slopes of
the two curves plotted on a log–log graph, the linear and quadratic depen-
dencies of the these two phenomena can be identified.

Given the two curves in Fig. 24, the interferometer can be calibrated
for use as an optical ammeter. Indeed, by measuring the amplitude of the
surface motion, the electric current through the device can be unambiguously
determined.

The amplitude and phase of the surface displacement field can be mapped
by scanning the device. The latter is supplied by a sine wave current at 10 kHz
between points A and B in Fig. 23. The resulting phase and amplitude im-
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Fig. 24. Surface displacement of an ohmic contact for different currents. Discrim-
inating between Joule and Peltier effects

ages are shown in Fig. 25. Destructive interference between the thermoelastic
waves originating in contacts A and B is clearly visible. Figure 25 (left) shows
a map of the amplitude of the surface displacement. The two heat sources
can be perfectly located at the two ohmic contacts. There is very rapid decay
as one moves away from the sources and the disappearance of the signal on
the median line between them attests to the effects of destructive interfer-
ence. The two sources have roughly the same amplitude, but are completely
out of phase. Figure 25 (right) shows the phase map of the surface motion.
The phase opposition of the two sources is clearly visible. Likewise, one can
see a region near the sources where the phase varies linearly with the po-
sition, reflecting the wavelike nature of the heat transfer, whence the name
thermoelastic waves. Destructive interference is revealed by an abrupt jump
of 180◦ in the phase. The planar aspect of this phase change reflects the
homogeneous nature of the medium explored by the thermoelastic waves.

This example provides a good illustration of how the exploration of devices
by optical probes can take advantage of phenomena arising from the operation
of the device itself. These naturally occurring phenomena are often ignored
because they cannot be detected by standard electronic test equipment.

3.2 Locating Hot Spots and Mapping Temperature

Locating Defects. Qualitative Imaging

A rapid CCD-based imaging technique is particularly well suited to the prob-
lem of locating defects. In a first stage, approximate localisation can be
achieved for circuits measuring up to a few millimeters across. This can then
be followed up by high-resolution imaging of a more restricted region cen-
tered on the detected defect. We shall illustrate this process for devices made
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Fig. 25. Map of the sinusoidal surface displacement generated by the Peltier effect
at the ohmic contacts A and B. Left : Amplitude (pm). Right : Phase (degree)

by ST Microelectronics with an etch resolution of 180 nm. These circuits in-
clude several ensembles each comprising 10 000 transistors, among which one
must be able to detect a single transistor with a source–drain leakage current
generating anomalous heating. Even at low frequencies, this hot spot may
be extremely localised as a result of thermal insulation due to the fact that
the transistor is embedded in a thermally insulating dielectric matrix. This
stacking of dielectric layers used as electrical insulation between the different
metal layers, or as a final protection of the circuit, can measure as much
as 6 µm thick. This precludes the use of a surface probe, e.g., a scanning
probe, since it would be impossible to achieve the required resolution once
the heat has diffused and spread through such a thickness. Optical techniques
are therefore particularly well suited to this task.

The transistors shown in Fig. 26 have been biased at Vsource = 0 =
Vsubstrate and Vdrain = 1.4 V, whilst the gate voltage is modulated between
0 and 1.26 V at a frequency of 1 Hz. Two seconds of data acquisition suffice to
locate the hot spot at low magnification. The higher resolution images shown
here result from three minutes of accumulated data. This type of image can
be used to study the effects of the transistor geometry on the appearance of
crystal defects which lie at the origin of these source–drain leakages [47].

Quantitative Imaging

Laser Diodes

Optoelectronic components such as laser diodes are also subject to significant
thermal strain [48,49]. For laser diodes using a ridge waveguide on the surface,
confinement of the light generates significant heating. The laser diodes shown
in Fig. 27 displayed an abnormally low damage threshold, suggesting the
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Fig. 26. Left : Thermoreflectance image of an array of 10 000 transistors (ST Mi-
croelectronics) observed using a ×50 objective (50 × 50 µm2). When the ensem-
ble is non-defective, only the supply tracks manifest a moderate temperature rise.
Right : Similar structure with localised defect (image 135× 135 µm2). Insert : Zoom
(42 × 42µm2) on an image obtained on the same sample 20 min later. The ap-
pearance of the hot spot has changed due to a significant source–drain leakage.
The spatial resolution is evaluated here at 350 nm (FWHM of the smallest imaged
structures). The active regions visualised here are located 6 µm below the sample
surface (Si3N4)

existence of a localised hot spot that was the source of the rupture. The
small size of these structures obviously precludes the use of infrared imaging
as a quantitative method. On the other hand, thermoreflectance imaging
has been carried out on both the upper face of laser diodes (gold coated to
provide electrical contact) and on the emission facets (GaSb substrate and
active layers). The wavelength was optimised and calibration was carried out
on each material in turn.

These measurements and calibrations led to concordant temperature im-
ages in a quite independent manner. The continuity of the temperatures
across adjacent facets was obtained to an accuracy of the order of a few
percent.

It was thus possible to measure heating effects in several of these diodes
for different supply voltages, thereby revealing the anomalous heating of one
of the emission facets. This facet then led to the destruction of the ensemble
by prematurely reaching the melting temperature of one of the materials.

MEMS Study

The sample here is a microelectromechanical system (MEMS) [50] made from
Si3N4 and a polysilicon heating resistor deposited on a thin SiO2 membrane.
An image of this resistor is shown in Fig. 28. The size of the membrane is
800× 800 µm2 and the active zone covers a square measuring 200× 200 µm2.
Two metallic lines end the resistor to allow a four-point measurement. The
heating element continuously dissipates 2 mW by the Joule effect.
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Fig. 27. Left : Schematic of a GaInAlAsSb laser diode used with the P face up-
wards. Centre: Temperature image on the upper surface, coated with gold. The
laser diode is supplied with a square modulation between 0 and 312 mA, at 1.78 V
and 1 Hz. Light wavelength λ = 473 nm. Calibration coefficient (1/R) dR/dT =
2.6×10−4 K−1. Right : Temperature images obtained on the lateral emission facets,
with λ = 670 nm and (1/R) dR/dT = 2.6 × 10−4 K−1

Fig. 28. MEMS made from Si3N4 and a
polysilicon heating resistor deposited on
a thin SiO2 membrane

Thermoreflectance imaging can be used to map regions of higher tem-
perature, as shown in Fig. 29. Quantitative measurement of the temperature
landscape is obtained by calibrating on a sample in an oven. To begin with,
the electrical resistance of the sample is measured as a function of the tem-
perature in the oven. The optical measurement is understood and calibrated
by simultaneously measuring the reflectance variation and the electrical re-
sistance. It is then possible to acquire the reflectance map calibrated as a
function of temperature. A temperature variation of 45 K with respect to the
ambient temperature can be measured on the image in Fig. 29, from which
the thermal resistance of the sample can be deduced to be 22.5 × 103 K/W.

Metallic Interconnects of Components in an Integrated Circuit

The structures studied here are known as SWEATs (standard wafer level
electromigration accelerated test). Two structures of this kind are shown in
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Fig. 29. Temperature map of the
MEMS in Fig. 28

Fig. 30. Left : Map of average reflectance. Right : Map of relative reflectance vari-
ation converted to temperature

Fig. 30 (left). The image shows an aluminium track with irregular geometry
deposited on a dielectric layer, itself deposited on a silicon substrate.

Measurements are made pointwise with a step of 2 µm over an area of
90×140 µm2 [see Fig. 30 (left)]. Bright and dark zones are visible, correspond-
ing to large and small temperature increases, respectively, and a highly non-
uniform temperature distribution appears on the right-hand part of struc-
ture A, which is the only part to be supplied electrically. The sensitivity
of the measurement is sufficient to be able to map temperature fields with
amplitudes as low as a few degrees.

3.3 Measuring Thermophysical Properties

Measuring Diffusivities in Composite Structures

As discussed in Sect. 1.1, heat diffusion in the alternating regime depends
on the modulation frequency. Using this frequency dependence of the ther-
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Fig. 31. Phase and amplitude of the thermoreflectance signal for a gold-coated
ZrO2 ceramic. The simulation (continuous curves) provides a good description of
the experiment for modulation frequencies between 10 kHz and 1MHz using the
same parameters: αZrO2 = 0.01 cm2/s and αAu = 1 cm2/s

mal diffusion (µ =
√

D/πF ), different depths of the same sample can be
preferentially probed. This possibility is particularly well suited to the study
of multilayer structures, for which the thermal parameters can be extracted
from individual layers.

Figure 31 shows measurements made on a simple system comprising a
ZrO2 substrate coated with gold which absorbs the beam at the surface.
Hence, at high frequencies, heating due to the pump laser remains essentially
confined within the surface gold layer. Using a model similar to the one
described in Sect. 1.2, fitting is mainly sensitive to the thermal parameters
of this gold layer. Lower frequencies can then be used to probe the substrate
and hence to obtain its thermal properties. The fact that a satisfactory fit
can be obtained with the same parameters over a wide frequency range is
generally a good indicator of the reliability of the diffusivity values.

Identifying Thermophysical Properties in Integrated Circuits

The method uses a metal interconnect track on an integrated circuit as heat-
ing element [51,52]. Its operating temperature is closely linked to the thermal
properties of the substrate, but also those of the dielectric layer on which it
is deposited. Figure 32 is a schematic cross-section of the test structure.

The reflectometer must first be calibrated. This means determining the
thermoreflectance coefficient of the sample at the point being probed. It can
be shown that this coefficient depends heavily on experimental conditions,
such as the numerical aperture of the microscope objective, or the presence
of a dielectric (passivation) layer on the samples, should there be one. The
repeatability of measurements is ensured by servo controlling the sample
position in the neck of the beam.

After calibration, the reflectometer can be used to carry out absolute
measurements of surface temperature. We have been able to determine a
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Fig. 32. Cross-section of the device used for identifying thermophysical properties.
BCB = benzocyclobutene

Fig. 33. Role played by time scales in the identification of thermophysical proper-
ties

thermoreflectance coefficient of −2.5 × 10−5 K−1 with 14% uncertainty for
gold at a wavelength of 633 nm.

Thermophysical properties are identified by comparing measurements
with a model for the diffusion of heat in a multilayer medium. The model
uses the thermal quadrupole method. For a given layer, each incoming (tem-
perature flux) vector is related to an outgoing (temperature flux) vector by a
2×2 matrix. The problem is simplified by a double Fourier or Laplace–Fourier
transform depending on whether the analysis is harmonic or transient. We
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then compare the reflectometric measurements with the model predictions.
The properties of the various layers can subsequently be estimated by an opti-
misation method, a linear regression based on a least squares analysis. These
values minimise the mean squared deviation between the optically measured
and calculated temperatures. The thermal conductivities and heat capaci-
ties of thin films can then be determined directly in integrated circuits. The
values obtained can subsequently be used in more sophisticated numerical
simulations. Figure 33 shows how thermal conductivities and heat capacities
can be determined, when uncorrelated, simply by analysing on different time
scales. Short times (the first few hundred nanoseconds) provide information
about the properties of the heat source. Heat propagation at intermediate
times (microseconds) can be used to identify the properties of the insulating
layer. Finally, temperature variations over long times are governed by the
thermal conductivity of the silicon substrate.
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Abstract. In this Chapter we discuss microscopes able to achieve submicron res-
olution using thermoelastic effects. Section 1 reviews the physical effects that can
be exploited, while Sect. 2 uses a 3D model to illustrate the main features of this
kind of microscopy, describing the phenomenon of super-resolution common to all
near-field imaging techniques. Section 3 then discusses several hybrid microscopes
and Sect. 4 describes the prospects for a technique that is still in its infancy.

1 Physics of Microscopes
Combining Thermal and Thermoelastic Effects

As we saw in Sect. 1.1 of the Chapter by Cretin et al. in this volume, heat
transfer phenomena, which are diffusion phenomena, are naturally compara-
ble with the evanescent fields to be found in the various forms of near-field
microscopy. Several phenomena are often coupled together and it is some-
times difficult to determine the origin of the various contributions making up
the results. For instance, a SNOM heats the surface and thereby behaves as
a scanning thermal microscope (SThM).

For a phenomenological approach, we consider the basic far-field configu-
ration [1]. We assume that the sample is heated by a modulated laser. (This
could be another kind of beam, such as an electron beam, but this type of
excitation makes it impossible to work at ambient pressure.) The physical
processes coming into play and the main sensors used to detect their effects
are shown schematically in Fig. 1.

The thermal wave produced (dynamical solution of the heat diffusion
equation) can be detected directly by a microthermocouple [2] or a pyro-
electric sensor [3], but the latter form of detection only works correctly in
transmission, i.e., coupling is only possible with reflected radiation from the
source. To obtain an image, the surface of the object has to be scanned,
usually electromechanically. The following techniques have been used suc-
cessfully:

– Detection of the thermoacoustic signal in the surrounding gas using a
microphone. This method follows directly from the use of the photoa-
coustic effect discovered by Bell in 1881. It is very sensitive provided that
one uses a photoacoustic cell [4–6] leading to a resonance at the working
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Fig. 1. Photothermal effect, secondary effects, and detection method

frequency. The microphone nevertheless limits the frequency band to a
maximum of the order of 50 kHz.

– Radiometric detection [7–9]. Modulation of the infrared emission from
the material reflects the dynamical evolution of the temperature since,
according to Stefan’s law for a black body (a correction has to be applied
in practice)

∆W = 4σT 3∆T .

An infrared (IR) detector allows one to determine the temperature (dy-
namical component) and also the thermal conduction properties.

– Use of the mirage effect [10–13]. This method uses the fact that a light
beam is deflected when it passes through a region where the gas is heated,
due to variations in the refractive index. In this case, a second beam,
parallel to the sample surface, is required to carry out the detection.
The method is limited physically to low modulation frequencies since it
is sensitive to the temperature gradient near the heated surface (probe
beam at grazing incidence).

– Measurement of reflectance variations [14–16]. The optical reflection co-
efficient of a material depends on the surface temperature of the sample.
The relative reflectance variation is related to the temperature by

∆R

R
=

1
R

dR

dT
∆T ,
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where dR/ dT is a temperature coefficient that depends on the material.
This method uses a light beam that reflects off the sample surface near
the heated point. Normal incidence is required for fine-tuning purposes.

– Use of thermodeformation [17]. Under heating, the sample surface ex-
pands and deforms with an amplitude that depends on the thermal prop-
erties and expansion. Let αT be the expansion coefficient of the material
and T (z, t) the temperature of the sample in a 1D model. Then the mo-
tion of the sample surface can be expressed in the form

u(0, t) =
∫ ∞

0

αTT (z, t) dz .

In this 1D model, the displacement varies as 1/f , favouring low fre-
quency operation. The information obtained is more complete (including
the thermomechanical effect), but at the same time more difficult to in-
terpret. The probe beam can be simply deflected, detecting its deviation
by a quadrant photodiode, or its phase can be detected using an inter-
ferometric technique. In the first case, the device is sensitive to the local
slope of the surface (gradient technique), whereas in the second it is the
normal displacement at the surface that is measured. Note that only in-
terferometry can provide an absolute displacement measurement that is
reliable over time, since a variation in the laser power or local reflectance
modifies the result obtained with an optical deflectometer.

– Thermoelastic or thermoacoustic measurements [18,19]. Dynamical heat-
ing involves high frequency components which, through expansion, pro-
duce elastic waves that propagate through the sample. The waves can
be directly converted into electrical signals using a piezoelectric sensor,
or detected without contact using an interferometer. Note that the ther-
moacoustic method favours acoustic information at high frequencies. The
microscope then behaves as an acoustic microscope with thermal excita-
tion. Frequencies in the range 10–200 MHz are then used.

Table 1 summarises the different possibilities for detection and their char-
acteristics in the far field. The lateral resolution is not specified in the table
because it depends on the excitation beam, e.g., using a laser focused by a mi-
croscope objective, a resolution of 500 nm is easily achieved. In transmission,
detection is made on the opposite side of the sample. This kind of detection
is not ideal because it requires the sample to have a specific type of geometry.

Combined microscopes using several of these detection methods at the
same time, e.g., simultaneous thermal and thermoelastic detection, have only
been developed since the mid-1990s, due to their complexity. In going from
the far field to the near field, several options become possible:

– Reduction of source dimensions, e.g., replacing the focused laser beam by
a tapered optical fibre with very small radius of curvature at the apex
(SNOM type).
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Table 1. Possible means of detection. To give an order of magnitude, a displace-
ment resolution of 10−15 m/Hz1/2 corresponds to a typical temperature resolution
of 10−5 K/Hz1/2

Detection Detected Mode of Characteristics
method contributions operation (pass band, resolution)

Piezoelectric Thermal, Transmission ∼ 100 MHz

thermomechanical 10−17 m/Hz1/2

(at resonance)
Photoacoustic Thermal, Reflection ∼ 10 kHz

(microphone) thermomechanical (closed chamber) 10−5 K/Hz1/2

Thermo- Optical, Reflection ∼ 100 MHz

reflectance thermal ∼ 1µm, 10−3 K/Hz1/2

Mirage effect Optical, Reflection ∼ 10 kHz

thermal 10−7 K/Hz1/2

Thermo- Optical, Reflection ∼ 10 MHz

deformation thermal, 10−14 m/Hz1/2

thermomechanical
Pyroelectric Thermal Transmission ∼ 100 kHz

Variable resolution
Thermocouple Thermal Reflection ∼ 100 Hz

10−4 K/Hz1/2

Radiometric Optical, Reflection, ∼ 1GHz

thermal transmission 10−4 K/Hz1/2

Interferometric Optical, Reflection, ∼ 100 MHz

thermal, transmission 10−15 m/Hz1/2

thermomechanical

– Reduction of the sensor dimensions. A local probe of the kind used in
STM or AFM can detect thermomechanically generated deformations, or
a thermal microsensor can be placed on an AFM tip.

These microscopes will be discussed in the next section.

2 Microscopes and Their Resolutions

As we have seen, the thermal and mechanical aspects of detection are two
important features to be taken into account (the optical resolution is obvious
here). We shall thus be concerned with these two features. To estimate the
resolution, the thermoelastic conversion has to be modelled. Indeed, many
models have been devised to do this, both in 1D [20,21] and in 3D [22,23]. We
shall simplify the thermoelastic model, complex by its very nature, as far as
possible, by assuming cylindrical symmetry and using integral transforms [24,
25] which reduce the complexity of the calculation.
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Fig. 2. Geometry of the photother-
mal excitation model

2.1 3D Model with Cylindrical Symmetry

In order to interpret the mechanisms of photothermoacoustic generation in
thermoelastic microscopy, a 3D model is required [26]. Indeed, the heat source
is extremely small compared with the dimensions of the sample. To analyse
the behaviour of the material, we shall make the following simplifying as-
sumptions:

– The material is homogeneous and isotropic, with linear behaviour and
radius R0 � h for thickness h.

– The excitation has Gaussian profile, a rough approximation in the near
field, but one that makes it possible to use cylindrically symmetric inte-
gral transforms.

– The excitation occurs at the centre of the object at a fixed frequency f .
– Inertial effects are neglected, which is perfectly realistic at low frequen-

cies.

The Hankel transformation, which is so useful in cylindrical geometry (see
Fig. 2), is given by

F (s) =
∫ ∞

0

rJ0(sr)fr(r) dr = TH0

[
fr(r)

]
.

To carry out the temperature calculation, we separate the space and time
variables, viz., Θ(r, θ, z, t) = T (r, θ, z)eiωt and calculate T . The heat diffusion
equation is

∇2Θ − a
∂Θ

∂t
= −Pcα exp

(
− r2

w2

)
exp(−αz) exp(iωt) ,

where w is the radius of the excitation at 1/e, α is the reciprocal of the
penetration depth of the excitation beam, and Pc is a constant to be specified
later. This is solved using the zero order Hankel transform with boundary
conditions

∂T

∂z
= 0 at z = 0 and z = h ,
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i.e., zero dynamic flux on the upper and lower faces. The full expression for
the temperature field is given by the sum of the particular and the general
solutions:

T = K ′
∫ ∞

0

sJ0(sr) ds
e−w2s2/4

α2 − s2 − ν2

×
{

e−αz −
α cosh

[
(h − z)

√
s2 + ν2

]
√

s2 + ν2 sinh
(
h
√

s2 + ν2
)
}

,

where

K ′ = −Pcαw2

2
, Pc =

4Pt(1 − R)
π2κw2

.

The calculation of the displacement is considerably simplified by using the
Youngdahl stress functions which lead to the thermoelastic equations [25]

∆Ω =
1

2(1 − ν)

[
−∂2Ψ

∂z2
+ 2(1 + ν)αTΘ

]
, ∆Ψ = 0 ,

where ν is the Poisson ratio. The constants appearing in the homogeneous
solutions of the last system are found from the boundary conditions

T (D)
zz = 0 , T (D)

rz = 0 at z = 0 and z = h ,

expressing the fact that the dynamic strains T
(D)
zz and T

(D)
rz are zero at the

surface. The details of the calculation are given in [26]. The final result for
the Hankel transform of the displacement of the sample surface at z = 0 is

ũ
(D)
z

C0

∣∣∣∣∣
z=0

= −s
3 − 4ν

4(1 − ν)
P (s) + s

3 − 4ν

4(1 − ν)
Q(s) − sG(s) + sH(s)

− αe−w2s2/4

α2 − s2 − ν2

(
1

α2 − s2
− 1

ν2

)
,

where the polynomials P (s), Q(s), G(s), and H(s) are calculated from the
boundary conditions, and C0 is a constant. The interesting solution to the
problem, i.e., normal surface displacement, is calculated numerically from the
relation

u(D)
z = C0

∫ ∞

0

sJ0(sr)
ũ

(D)
z

C0
ds .

We have used this model to calculate the temperature and displacement fields
in a metal, viz., aluminium, which is weakly anisotropic. The normalised
temperature is plotted in dimensionless coordinates (variable r/w, where r
is the radial coordinate) in Fig. 3. The excitation frequency f has been fixed
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Fig. 3. Radial temperature field in dimensionless coordinates r/w for several values
of the source radius w. Excitation frequency 1 kHz. Material Al

at 1 kHz, guaranteeing operation in super-resolution mode [27], which is of
near-field type. At this frequency, the thermal diffusivity µT in aluminium
is around 150 µm. The model was applied for various values of the source
radius in order to bring out the scaling effect. It is clear from the curves that
the classic behaviour of exponential type becomes less marked as the source
radius decreases below the value of µT.

The second important feature of the analysis concerns the resolution.
By analogy with the classic resolution criteria of Rayleigh or Sparrow, for
example, we define the resolution from a −3 dB criterion. This value may
seem somewhat arbitrary, but it leads to a physically acceptable resolution,
roughly equal to the radius of the excitation source, as can be seen in the
figure. (Note that this criterion is defined here relative to the field amplitude.
In optics, the square of the field is usually used.) Clearly, for very small radii
compared with the thermal diffusivity, energy dispersion dominates and, for
this reason, the resolution is constant in dimensionless variables. This is a
fundamental point, justifying the reduction of the source dimensions in order
to obtain a high resolution. Note that the thermoelastic resolution for its part
is strongly dependent on the frequency. This point is not discussed here but
can be found in [27].

The model can also be used to calculate the temperature distribution
inside the sample in order to determine another fundamental imaging para-
meter, namely the investigation depth. We define this depth from the con-
ventional definition (depth at 1/e) which results from the 1D analysis and
many experiments carried out with thermal images [28–30]. It is interesting
to note the differences between the levels chosen for the investigation depth
and resolution criteria. These values result from the physical model and the
history of microscopy. Figure 4 shows the isolevel curves at 1/e for tempera-
ture fields and displacement fields, for the same source radius (1 µm in this
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Fig. 4. Profiles at 1/e of the temperature and normal displacement fields as a
function of r and z for a source with Gaussian profile of radius 1 µm heating an
aluminium sample at different modulation frequencies fm

case, well below the value of µT) and for different excitation frequencies. As
can be seen from Fig. 3, the isothermal curves are superposed, whereas the
isodisplacement curves are very different and hence depend on the excitation
frequency. The latter must therefore be chosen high enough to guarantee a
surface effect. (The curve at 1 kHz comes out of the figure and is not therefore
shown here.) The difference between these two types of behaviour is explained
by the effect of integrating the expansion over the whole dynamically heated
region. (The investigation depth clearly involves the value of µT.)

We have seen that the thermal resolution RT is approximately equal to w,
the source dimension, in super-resolution mode. Moreover, RT is independent
of the frequency as long as the source dimension is small enough compared
with the diffusion length. If we consider a submicron source (the model is not
appropriate for near-field optical excitation, but the thermal model is valid
down to the nanoscale), we may expect the same behaviour.

Super-resolution has also been demonstrated experimentally. Figure 5
shows images obtained with an argon (Ar+) laser focused on a polycrys-
talline nickel sample. The region scanned is 256 µm×256 µm2, with each pixel
measuring 1 µm. The excitation frequency was fixed at 80 kHz. (Any other
frequency could have been chosen. At this frequency, the diffusion length in
nickel is around 10 µm and super-resolution is achieved.) The normal displace-
ment was measured with an optical interferometer [31]. Amplitude images are
shown for two optical magnifications, viz., ×20 and ×100. In the image ob-
tained with the ×100 objective, the contrast is rather limited. As we have
seen, this follows from the smaller investigation depth. For this magnification,
no contrast can be seen in the phase image (not shown here), as predicted by
the model when the spot is much smaller than the thermal diffusion length.
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Fig. 5. Super-resolution in thermoelastic amplitude images of a polycrystalline
nickel sample. (a) ×20 objective. (b) ×100 objective

When focused with the ×20 microscope objective, the excitation beam has
radius approximately 4 µm (compared with an estimated 0.7 µm for the ×100
objective). The amplitude of the displacement normal to the surface is of the
order of 1 nm. This value is easily detected with any laser probe that has
a reasonable signal-to-noise ratio. The high resolution interferometer used,
with a typical vertical resolution of 3 fm/Hz1/2, was able to obtain very high
quality images. Metal samples are particularly interesting to observe because
thermomechanical anisotropy is a source of contrast within grains [32, 33].

3 Combined Photothermoelastic Microscopy

With the advent of the scanning thermal microscope, many other micro-
scopes were then developed to tackle the problem of non-destructive evalua-
tion (NDE), or for combined metrology. These photothermal and photother-
moelastic microscopes of near-field type derive from the three main families
of near-field microscope: STM, AFM, and SNOM. However, a more global
classification can be based on the physical features of the local probe used in
the microscope, as we shall now describe.

3.1 Microscopes Based on a Thermoelectric Probe

Techniques deriving from SNOM [34,35] are particularly simple to implement
since tapered optical fibres (which may be metallised at the end) receive a
high power density at their apex and thereby implicitly constitute a source
of heat [36]. Thermal effects can thus be detected in all near-field optical
microscopes using a fibre with metallised tip. Several variants have been in-
vestigated. For example, Goodson et al. [37] called their method by the name
of near-field optical thermometry (NFOT). A laser beam is injected into the
optical fibre. At the other end of the fibre, the tip is held at a constant dis-
tance from the sample by the standard shear-force method (frictional motion
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produced by a piezoelectric tuning fork). Light leaving the fibre and inter-
acting with the sample is collected by a microscope objective and detected
by a photomultiplier tube (PMT). The amplitude and phase of the signal are
extracted using a lock-in amplifier. In this experiment, the sample is heated
by the Joule effect and the method is thus limited to conducting samples like
STM. At least four configurations can be applied in the near-field thermo-
optical techniques:

– Detection in transmission mode (through the sample), with light collec-
tion in the far field.

– Measurement of light reflected from the sample, with light collection in
the far field.

– Detection of light going back into the fibre after interaction with the
sample.

– Measurement of the infrared wave emitted by the sample following heat-
ing (emission of black body type) and collected by a fibre that is trans-
parent to infrared wavelengths.

The microscope developed at LPMO [38] is shown in Fig. 6. This incor-
porates a highly sensitive photodetector to pick up reflectance variations in
the near field (by transformation of evanescent waves into propagative waves
as a result of the near-field optical coupling). In parallel, a piezoelectric sen-
sor placed under the sample (PZT tube) for the purpose of topographic servo
control is also used to obtain thermoacoustic information in the near field. To
do this, the piezoelectric signal is acquired at the modulation frequency of the
high power laser beam. This microscope is called the multi-acquisition scan-
ning thermoacoustic microscope (M-SThAM). Six images can be acquired
simultaneously:

– an optical near-field image,
– a topographic near-field image,
– two photothermal near-field images (amplitude and phase),
– two photothermoacoustic near-field images (amplitude and phase).

Figure 6 shows the setup schematically.
In this device, the near-field photothermoelastic source is an intensity-

modulated laser whose beam, injected into a tapered optical fibre, heats the
sample locally. In a similar way to the far-field device, the excitation laser
beam is produced by a high power laser (Ar+). The intensity is modulated
by an acousto-optical modulator with control electronics piloted by a low fre-
quency generator which delivers a voltage at the frequency fmodulation. The
excitation laser beam is thus reflected by the dichroic mirror and then in-
jected into the optical fibre after being focused by a microscope objective.
The optical energy injected into the fibre propagates to the end where it be-
comes the near-field photothermoelastic source. Local dynamical heating of
the sample spreads, as we have seen theoretically, over a region with dimen-
sions of the same order as the terminal diameter of the tapered fibre, i.e.,
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Fig. 6. Configuration of the M-SThAM

50–200 nm. This local heating modulates the local reflectance of the sample
and generates thermoacoustic waves which are detected in transmission.

Thermoacoustic vibrations at the modulation frequency fmodulation (LF
generator) are detected by a piezoelectric sensor placed below the sample. The
signal obtained in this way is sent to the lock-in amplifier 2 in order to extract
the amplitude (energy part) and phase (propagative part) of the thermoa-
coustic signal. Photothermal detection is carried out by a sensitive (far-field)
photodetector equipped with an interference filter with central wavelength
equal to the wavelength of the HeNe laser beam. This probe beam is also in-
jected into the optical fibre and used to detect both the optical signal (static
reflectance) and the photothermal signal by transforming evanescent waves
into propagative waves via the near-field coupling. Photothermal information
is provided by the photodetector, its associated electronics, and the lock-in
amplifier 1.

In order to separate thermoacoustic or photothermal information from
topographic information, we have designed a topographic servo control device
for SNOM-type fibres. (In near-field thermoelastic microscopy, control of the
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Fig. 7. Phase of the signal detected by acoustic transmission beneath the sample,
and hysteresis. Frequency 10.9 kHz. Vibration amplitude 2 nm peak-to-peak. Tip
dimensions 100 nm (optical fibre)

tip–sample separation is used to eliminate the effects of interference fringes
occurring between the end of the fibre and the sample surface.) Now most
near-field optical microscopes use the shear-force technique which is based on
a transverse vibration of the fibre and which therefore, by friction, leads to
a further elastic effect. A new method has been devised, inspired directly by
work on near-field acoustic transmission microscopy undertaken at LPMO:
the perturbation generated by a tip with vertical vibrational motion in quasi-
contact conditions with a plane surface is transmitted to the lower face of
the sample. Figure 7 shows the phase of the acoustic transfer function for the
vibrating fibre–sample–piezoelectric transducer system.

As the vibrating tip approaches the sample, several phenomena arise in the
signal detected beneath the sample. With vertical vibration, the tip induces:

– elastic (contact) forces, mainly Hertz and adhesive forces,
– viscoelastic (non-contact) forces due to coupling with the air.

In the harmonic regime, this is expressed theoretically by a phase rotation of
90◦ in the quasi-contact region. The servo control uses this phase sensitivity
of the acoustic interaction, the phase being detected by the lock-in amplifier 3
in Fig. 6. It allows one to obtain a vertical resolution of around 2 nm over a
range of 2 µm. The microscope has obtained sets of images with resolutions
of the order of 50 nm. The images shown in Fig. 8 were obtained on a porous
silicon sample coated with an aluminium layer of thickness about 1 µm. The
image size is 2 × 2 µm2. The amplitude of the vibrations at the end of the
fibre is 10 nm and the excitation frequency is 7 kHz. The working distance
is around 50 nm and the estimated resolution about 80 nm. Note that the
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Fig. 8. Images of a porous silicon sample coated with an aluminium layer. Image
size 2×2 µm2. (a) Photothermal amplitude image (7 kHz). (b) Photothermal phase
image. (c) Topographic image

topographical profile does not correspond to the amplitude and phase images
which are essentially related to thermal features of the sample.

3.2 Microscopes Based on Detection of Expansion

As we saw in the Chapter by Cretin et al. in this volume, AFM and STM
microscopes can provide precise measurements of sample topography. If the
sample is heated by the Joule effect or by a light beam (other methods can
also be used, such as an electron beam), the thermoelastic deformation or
vibration can be detected by these near-field microscopes with a lateral res-
olution that may reach or go below the nanometer. Thermal expansion can
be related to the temperature gradient but this technique is not calibrated
for absolute temperature (expansion of the tip which is also heated). Various
acronyms have been used for this type of microscope. For example, micro-
scopes measuring the expansion due to the Joule effect, called scanning Joule
expansion microscopes (SJEM) [39], derive from AFM. The sample is dynam-
ically heated by a current and the normal component of the displacement due
to thermal expansion is detected by servo controlling the AFM tip separa-
tion. Temperature calibration requires a good understanding of the physical
properties of the sample [40]. The thermal expansion of the tip can also be
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Fig. 9. Scanning thermoelastic microscope (SThEM)

detected because it is coupled to that of the sample [41] and several inter-
disciplinary methods have been developed [42]. As we saw in the theoretical
discussion, the resolution is essentially related to the dimensions of the local
probe which behaves as a heat sink. The STM is extremely sensitive to ther-
mal expansion because its vertical resolution is around 1 pm. This interesting
behaviour has been successfully used to study local thermal expansion [43].
The hybrid microscope based on the AFM technique (SThEM) [44] measures
the local expansion of the sample. The setup is shown schematically in Fig. 9.

The probe is topographically servo controlled at the sample surface by an
acoustic method. It is placed at the end of a vibrating beam, excited at its
resonance frequency by an oscillator. The resonance frequency of the beam
is modified by the interaction between tip and sample. It is this frequency,
measured by a phase-locked loop, which constitutes the servo signal. Working
distances of the order of 100 nm are then ensured, with a resolution of the
order of 10 nm. The system can be used to detect thermomechanical effects
by demodulating the servo signal at the excitation frequency of the sample.
The resulting images (see Fig. 10) provide local thermoelastic information.

These images include thermal properties, expansion coefficients and the
mechanical anisotropy of the structure. The lateral thermoelasticity resolu-
tion can reach the same level as the lateral topographic resolution. The images
shown in Fig. 10 were obtained with an AFM tip (radius around 20 nm). The
sample is an integrated circuit of the type used in an operational amplifier,
which has been opened to give access to the microchip. The topographic
image was obtained with a cantilever vibrating at 65 kHz. The circuit was
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Fig. 10. Scanning thermoelastic microscope (SThEM) images of an AD549 circuit
supplied at 1.3 kHz. Image size 100× 100 µm2. Maximum height difference 200 nm.
(a) Amplitude (mV). (b) Phase (degrees). (c) Topography (frequency in kHz)

used electrically at a frequency of 1.3 kHz in operating conditions close to
maximum power (integrated current limited to 20 mA in the chip). The ther-
moelastic image shows the same region after synchronous detection at the
frequency of the current. The absence of frequency doubling (Joule effect) is
justified by the presence of a continuous component.

4 Prospects

Combined microscopes do of course remain open to improvement. Further-
more, the underlying physics needs to be much better understood, e.g., in
order to be sure that measured data uniquely reflects some specific physical
phenomenon. On the other hand, all the preliminary stages in the develop-
ment of these microscopes have now been accomplished and they could soon
be made commercially available, like the SThM, which combines the AFM
with heat measurements. The most probable applications concern the three
fields of nanometrology, nanofabrication and data storage.

The widespread industrial demand, e.g., in the semiconductor industry,
nanobiotechnology, and development of materials, for accurate measurements
on the nanoscale (submicron spatial resolution in 3 space directions) and
simultaneous measurement of the physical properties of materials will in-
evitably lead to the design of new measurement instruments based on near-
field microscopy. An illustration of the trend in the fabrication of ever smaller
devices by high technology industries is provided by Moore’s law, shown
graphically in Fig. 11 [45]. Very high density circuits are likely in the near
future. This trend will have repercussions in other areas such as microme-
chanics, and more generally, in microfabrication, opening the way to nan-
otechnology.

To satisfy this demand, major research programmes have been set in mo-
tion and they have already produced the first tools in this field [46, 47], still
specialising in one type of measurement. The main obstacles to the develop-
ment of these tools are of a physical nature: geometry of the tip and the way
it evolves in time, and the many forces (capillary, adhesive, frictional, etc.)
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Fig. 11. Moore’s law. The trend in
microelectronic component sizes

that can come into play to influence measurement results. Another practical
problem is the (re)positioning of the sample (3 rotations and 3 translations)
independently of drift effects. Finally, one of the limitations of scanning tech-
niques is the unavoidably long aqcuisition time (acquisition frequency less
than 1000 sample/s). Regarding local thermal measurements, the stakes are
high, because it is one of the few techniques able to access the third dimen-
sion, and it proves to be particularly useful for characterising new components
such as nanotransistors, carbon nanotubes, data storage devices, and so on,
or thin films.

A major challenge for nanotechnology is nanofabrication, naturally car-
ried out with the help of scanning probe microscopes. Once again, a multipur-
pose microscope is required for manipulation and testing during fabrication.
Many techniques have been published, but nanofabrication systems including
testing based on SPM are still at the laboratory research stage [47–54].

One application which looks interesting, but which has not yet led to
any form of combined microscopy, is data storage. Several demonstrators
have been made to validate the principle of thermomechanical read and write
methods [46, 47, 55–57]. A specific illustration is the high density AFM data
storage technique developed by IBM, Zurich. It uses an array of 32× 32 tiny
cantilevers, each of which can read and write on a polymer base. When the
tips are heated, the surface takes on an uneven aspect which can then be read
by AFM. In the latest version of this system, data is stored at a much higher
density (200 Gbit/in2) than on today’s magnetic hard disks. This system,
known as Millipede, can now achieve data flow rates of 32 kbit/s, which is still
rather slow for computer applications but already acceptable for onboard data
systems. It is not clear whether this technique will ever be widely adopted,
but it offers good prospects for the development of combined microscopes.
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1 Introduction

Electron interactions and in particular the coupling between electrons and
phonons are all-important parameters in many electronic properties of met-
als, such as resistivity or superconductivity. The development of femtosecond
laser sources and time-resolved optical techniques has given selective access
to various interaction mechanisms in bulk solid metals and metallic nanopar-
ticles [1–4]. These studies are based on selective excitation of electrons by a
first pulse (pump) and real-time monitoring of the energy redistribution in
a metallic object and towards its surroundings by a second pulse (probe).
Information is extracted via the strong correlation between electronic and
vibrational kinetics and changes in the measured optical properties as a func-
tion of the delay between the pump and probe pulses [1]. After the electrons
have thermalised, i.e., a few hundred femtoseconds [5–7], changes in the op-
tical properties essentially reflect changes in the electron temperature. Its
dynamical evolution is thus correlated with energy exchange mechanisms:
interactions between electrons and vibrational modes of the lattice, energy
transfer from electrons or the metallic lattice to vibrational modes of the
environment, and so on [8, 9].

Following a general discussion of electronic and vibrational structures in
noble metals in Sect. 2, we go on to consider several important aspects of
their optical properties, i.e., of the dielectric constant, and in particular,
their dependence on the electron distribution in bulk metals and in confined
systems such as nanoparticles (Sect. 3.1). We then describe the excitation
of conduction electrons by femtosecond laser pulse (Sect. 3.2). The temporal
evolution of the electron distribution and its return to equilibrium will be
modelled in Sect. 4 using the Boltzmann equation for an electron gas and its
limit for a thermalised electron distribution, viz., the two-temperature model.
Several experimental results obtained for films and metallic nanoparticles in
various time or intensity regimes are also outlined in Sect. 4. We end with a
brief introduction to the detection in the time domain of acoustic vibrations
in metallic nanospheres (Sect. 5).

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 309–332 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Silver. (a) Calculated band structure [10]. (b) Band structure for free
electrons [11]. (c) First Brillouin zone (bcc). (d) Fermi surface [10]

2 Electronic and Vibrational Structures
in Metallic Systems

2.1 Electronic Structure of Noble Metals

Gold, silver, and copper are noble metals made of atoms with the same elec-
tronic structure: their d orbitals are full and they each have one electron
on an s-type orbital. The latter are delocalised in the crystal lattice and will
constitute the conduction electrons (see Table 1). Their crystal lattice is face-
centered cubic (fcc). The first Brillouin zone of the reciprocal lattice (bcc) is
shown in Fig. 1 [10].

Electronic Band Structure in Bulk Metals

The noble metals have similar band structures, including a set of five valence
bands with low dispersion, called the d bands (because mainly composed
of electron levels originating in the d orbitals of the atoms), and a half-
filled sp band called the conduction band (see Fig. 1) [10]. All the electron
bands are therefore either filled or empty, except for the conduction band
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Table 1. Noble metals. Electron configuration in the atomic structure. Lattice
constant a. Electron density in the conduction band ne. Effective mass for the
conduction band me normalised by the free electron mass m0. Fermi energy EF.
Interband transition threshold �Ωib [10, 11]

Atomic a ne me/m0 EF �Ωib

structure (Å) (1022 cm−3) (eV) (eV)

Ag [Kr] 4d105s1 4.08 5.86 1 5.49 3.9
Au [Xe] 4f145d106s1 4.07 5.90 1 5.53 2.4
Cu [Ar] 3d104s1 3.61 8.47 1.5 4.67 2.1

which is filled up to the Fermi level EF. (This is only strictly true at zero
electron temperature Te, but remains an excellent approximation at higher
temperatures in metals for which kBTe � EF.) The conduction band is quasi-
parabolic, which justifies the commonly found description of the conduction
electrons as being quasi-free. Their dispersion relation is thus

E(k) =
�

2k2

2me
. (1)

This expression represents the energy E of a state of the conduction band
with wave vector k, taking the zero energy at the bottom of the band. The
corresponding band structure gives a fairly good representation of the true
conduction band (see Fig. 1), justifying the approximation. The effective
electron masses me, determined from the infrared dielectric constant [11, 12],
are given in Table 1. The Fermi surface separating occupied and free states
at zero temperature is then spherical, giving a fairly good representation of
the true Fermi surface except in the vicinity of the L points (see Fig. 1d).

Most electron properties only involve a small number of the electron
bands, and often even involve only the conduction band states near the
Fermi energy. This is the case, at least qualitatively, for the interactions
of the conduction electrons, such as electron–electron and electron–phonon
interactions, and for the optical response in the infrared to visible range of
the electromagnetic spectrum. These properties can to a large extent be de-
scribed using a simplified model of the band structure. The conduction band
is then described by an isotropic parabolic model with dispersion relation
given by (1) and the d bands by dispersionless states (see Fig. 2).

The model is well-suited to interpreting studies of electron properties
based on optical techniques, provided that the photon energies are signifi-
cantly lower than the interband transition threshold. For optical frequencies
close to this threshold, the detailed band structure and anisotropy of the
material must be taken into account. Absorption is then dominated by elec-
tron states near the L point of the Brillouin zone, whose dispersion has been
modelled by Rosei et al. [13, 14].
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Fig. 2. Simplified model of the electronic band structure in noble metals. Isotropic
parabolic conduction band and dispersionless d bands

Electronic Band Structure in Confined Metals

Although quantum confinement effects are very important in nanoscale semi-
conductor particles (confinement of excitons whose Bohr radius is compara-
ble with the particle dimensions and confinement of electron states with low
quantum number, close to the centre of the Brillouin zone), these effects are
considerably less relevant to metallic particles. For the latter, since the elec-
tron density is much higher, electrical and optical properties arising from the
response of electrons near the Fermi level involve states with high quantum
number [15, 16]. It is then possible to introduce a continuum of states and
use an approach similar to the one for the bulk medium, at least for sizes
greater than 2 nm [17]. Size effects then arise as corrections, especially for op-
tical properties, and to a large extent, the electronic band structure described
above can be used down to dimensions of a few nanometers.

Electron Distribution

An electron state with wave vector k and given spin can only be occupied by
one electron (fermion). For a thermalised distribution at temperature Te, its
occupation probability is given by a Fermi–Dirac distribution (see Fig. 5)

f
(
E(k)

)
=

1

exp
E(k) − EF

kBTe
+ 1

. (2)

This description of the electrons as independent quasi-particles (Fermi fluid
model) corresponds to the bulk medium (states defined by k) [11]. Given
the fact that confinement has little effect on the band structure, it can be
extended to confined media.
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Fig. 3. Dispersion curves of acoustic phonons measured by neutron diffraction in
silver [10]

2.2 Lattice Vibrations

Phonon Dispersion Relation

The unit cell of noble metals comprises one atom. The only lattice vibrations
are thus the acoustic modes, which can be longitudinal (L) or transverse
(T1 and T2) [10, 11]. For each of the three branches, there are Ni modes in
the first Brillouin zone, where Ni is the number of ions forming the lattice.
The dispersion relation ω = ω(q) of acoustic phonons is shown for silver in
Fig. 3 [10]. For small wave vectors, the relations are linear and a speed of
sound can be defined by ω(q) = vsq.

The true dispersion relation is often replaced by an isotropic linear re-
lation, viz., ω(q) = ωq = vsq (Debye model). The first Brillouin zone must
then be replaced by a sphere of radius qD which contains Ni modes:

qD = (6π2Ni)1/3 =
(

2
Z

)1/3

kF ,

where Z = 1 is the valence of the metal. The phonon dispersion relation
is better reproduced using a sinusoidal model, at least along axes of high
symmetry (ΓL and ΓX):

ωq = ωM sin
πq

2qΓX
,

with �ωM = 21 meV in Ag. If we assume an isotropic dispersion relation, we
must once again restrict to wave vectors shorter than qD (close to qΓX).
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The occupation number of the vibrational mode ωq at the lattice temper-
ature TL is given by the Bose–Einstein distribution

N(q) =
1

exp
�ωq

kBTL
− 1

. (3)

Lattice Vibrations. Vibrational Modes of Nanoparticles

The phonon description of vibrational modes in a crystal lattice is based on
the translation invariance of the lattice structure. For a finite medium, this
invariance is spoilt by the presence of interfaces which impose new bound-
ary conditions and hence a new quantisation of the vibrations. Using the
solid state physics approach, only phonons associated with a wavelength λph

greater than or comparable with the size of the object are significantly mod-
ified. For acoustic vibrations, with frequency ωph = 2πvs/λph, where vs is
the speed of sound, the low frequency modes will therefore be replaced by
confined vibrational modes.

For large clusters comprising several hundred atoms, these modes can be
described using a macroscopic approach. They then correspond to the de-
formation eigenmodes of a finite homogeneous elastic object (see Sect. 5).
Their properties, frequency and damping, are correlated with the size, shape
and environment of the object and can therefore be used to analyse nano-
materials. In this model, only low energy modes are altered and this leads to
only small changes in properties associated with lattice vibrations, except at
low temperatures. A more accurate description must be based on an atomic
approach which takes into account the different environment of the surface
atoms and hence the different forces to which they are subject. A reduction
in the density of states of high frequency vibrational modes has thus been
discovered for nanospheres, as compared with the bulk medium [18]. This
model can only be carried out numerically, however, and it is difficult to in-
tegrate into an electronic relaxation model. The bulk medium model will be
used as a first approximation.

3 Optical Properties of Metals

3.1 Optical Response at Equilibrium

Bulk Noble Metals

In a metal, light–matter interactions involve two electronic mechanisms which
explain the optical response. The first is due to quasi-free electrons of den-
sity ne in the conduction band and is associated with optical transitions
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within the same band, or intraband transitions (see Fig. 2). Its contribution
to the dielectric constant is described by the Drude model [9]

εDrude = 1 −
ω2

p

ω(ω + iγ0)
, (4)

where ωp = nee
2/ε0me is the plasma frequency of the metal. Absorption,

described by the imaginary part of the dielectric constant, is proportional to
the average optical collision rate of the electrons, denoted by γ0(ω). This term
corresponds to collisions between three quasiparticles, where an electron–
electron or electron–phonon collision occurs with simultaneous absorption of
a photon of frequency ω. This reflects the fact that direct absorption of a
photon by an electron cannot occur because the wave vector of the photon
is very small compared with the wave vector of the electrons, and such an
absorption would correspond to a vertical transition with constant electron
wave vector (see Fig. 2). Absorption must therefore be assisted by a third
particle, either another electron or a phonon, to ensure conservation of both
energy and momentum. At room temperature, electron–phonon interactions
dominate.

The second mechanism is related to optical transitions between two elec-
tronic bands, or interband transitions, from filled bands to states in the con-
duction band, or from the latter to empty bands of higher energy. In the alkali
metals, these transitions occur at high frequencies and only lead to a small
correction to the real part of ε in the optical domain. In the noble metals,
it is much more important and is essentially due to transitions between the
d bands and the sp conduction band (see Fig. 2). A d-band electron can only
be excited into an unoccupied state of the conduction band (Pauli exclusion
principle), i.e., above the Fermi energy EF. There is therefore a threshold
frequency Ωib for interband photon absorption (see Table 1) which gives the
characteristic colour of these metals in their bulk solid phase.

When there are bound electrons, the dielectric constant of the metal is
written as the sum of two terms:

ε = εDrude + δεib
1 . (5)

The interband term dominates the optical response in the visible and ul-
traviolet, whereas the intraband term is the more important in the red and
infrared. It leads to a negative real part for the dielectric constant in this
spectral region.

Metallic Nanoparticles

For clusters with dimensions greater than 2 nm, absorption mechanisms are
very similar and involve the same basic concepts. Size effects appear as cor-
rections and in the optical properties are manifested mainly by an increase
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in the optical collision rate of electrons arising in the Drude model [19]. From
a classical standpoint, this corresponds to the fact that electron–surface col-
lisions are no longer negligible compared with other interaction processes
and must therefore be taken into account in the optical collision rate of the
electrons. In contrast, the interband dielectric constant of the metal is only
slightly modified down to sizes of the order of 2 nm [20].

The most important effect on the optical properties is due to the dielectric
confinement described in the Mie theory [21, 22]. For metallic nanospheres
that are much smaller than the relevant optical wavelengths, absorption is
enhanced near the frequency ΩR such that

ε1(ΩR) + 2εm = 0 . (6)

At the frequency ΩR, a resonance is observed in the absorption spectrum.
This is the so-called surface plasmon resonance (SPR). This corresponds to a
frequency for which the electromagnetic field seen by a nanoparticle is greatly
increased compared with that of the incident wave, due to the resonant po-
larisation caused by charge displacement. From a classical standpoint, the
surface plasmon resonance can be associated with the resonant excitation by
the external electromagnetic field of a collective electron oscillation within
the nanoparticle. This oscillation can be compared with the collective oscil-
lation of an electron gas in a bulk solid (plasmon mode at ωp), modified by
the presence of interfaces.

3.2 Femtosecond Pump–Probe Method

Basic Principle

Ultrafast electron kinetics and, in particular, interactions with the lattice can
be investigated using a femtosecond pump–probe technique. The basic idea is
illustrated schematically in Fig. 4. A first pulse (pump) perturbs the medium,
inducing a change in its optical properties (transmission T or reflection R).
Their dynamic evolution and hence also the return of the system to equilib-
rium are measured by a second, time-delayed pulse (probe). The change ∆T
or ∆R in the transmission and reflection of the probe for a delay t between
the pump and probe is given by the convolution of the impulse response of the
system with the pump–probe cross-correlation. The time resolution is thus
limited by the duration of the intensity correlation between the two pulses
and is measured by replacing the sample by a nonlinear crystal.

Femtosecond Optical Excitation

In most experiments, the electron distribution is first driven out of equi-
librium by intraband absorption of a femtosecond laser pulse with central
frequency ωpp (see Fig. 5). For a purely intraband excitation (ωpp < Ωib),
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Fig. 4. Transmission pump–probe experiment

Fig. 5. Creation of a non-equilibrium electron distribution in a metal by intraband
absorption of a laser pulse of frequency ωpp at time t = 0

an electron in a state of energy E below the Fermi level absorbs a photon
and is excited into a state of energy E + �ωpp. More precisely, the change
in the occupation number for a state of energy E is expressed as the sum of
two terms: one expresses the departure of electrons which absorb a photon
and are excited into a state of higher energy, and one expresses the arrival
of electrons from states of lower energy. Taking into account the density of
states (parabolic band), the change in occupation number is given by

dfexc(E) = Aexc

{√
E − �ωppf(E − �ωpp)

[
1 − f(E)

]

−
√

E + �ωppf(E)
[
1 − f(E + �ωpp)

]}
, (7)

where the constant of proportionality Aexc describes the energy injected into
the electron gas. For a finite width laser pulse, the excitation is assumed to
be proportional to the temporal shape I(t) of the pump pulse.
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Femtosecond Optical Probe

For a sufficiently weak perturbation, changes ∆T or ∆R in the transmission
or reflection can be written as linear combinations of the changes in the
dielectric constant ε = ε1 + iε2 of the medium with, for example,

∆T

T
(ωs) =

∂ ln T

∂ε1
(ωs)∆ε1(ωs) +

∂ ln T

∂ε2
(ωs)∆ε2(ωs) (8)

for the change ∆T in the transmission. The information obtained will depend
on the probe frequency ωs. Out of resonance, i.e., when ωs is far from the
interband transition threshold Ωib (see Fig. 2), the change in the imaginary
part of the interband dielectric constant is simply

∆εib
2 (�ωs) ∝

√
�Ωd + �ωs

(�ωs)2
∆f(�Ωd + �ωs) , (9)

using a simplified model which neglects bending of the d bands and assumes
an isotropic parabolic conduction band as shown in Fig. 2.

For a probe frequency ωs such that the occupation number of the final
states is not modified by the pump, i.e., such that �Ωd + �ωs < EF − �ωpp,
equivalent to ωs +ωpp < Ωib, the change in εib

2 (ωs) will be zero. However, the
real part of the interband dielectric constant, which depends on the integrated
absorption spectrum, will be changed. ∆εib

1 can be calculated from (7) using
the Kramers–Krönig relation:

∆εib
1 (�ωs) ∝ −

∫ √
E′[f(E′) − f0(E′)

]

(E′ − EF + �Ωib)
[
(E′ − EF + �Ωib)2 − (�ωs)2

] dE′ ,

(10)

where E′ = �Ωd + �ω′. The integral is restricted to energies for which the
distribution f is out of equilibrium. The states with energy E′ furthest away
from the Fermi level, initially populated or depopulated by the pump, relax
very quickly on a time scale of a few femtoseconds. The integral will thus be
limited to states close to EF and, away from resonance (�ωs < �Ωib), can
be simplified by expanding in terms of the parameters (E′ − EF)/�Ωib and[
�ωs/(E′ − EF + �Ωib)

]2, viz.,

∆εib
1 (�ωs) ∝

∫
E′√E′[f(E′) − f0(E′)

]
dE′ ≡ ∆ue . (11)

The change in εib
1 out of resonance is thus proportional to the excess en-

ergy ∆ue of the electron gas compared with its initial energy. The same
result is obtained from numerical simulations, using the calculated electron
distributions and the Rosei band structure model or a parabolic model.
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In addition, the change in the intraband contribution to ε1 is negligible
compared with that of the interband term. Out of resonance, the time evolu-
tion of ∆ε1 thus reflects the time evolution of the excess energy of the electron
gas. This provides a selective way to study the evolution of electron–lattice
energy transfers as a function of the electron distribution.

4 Electron–Lattice Interactions. Energy Exchange

Electron interactions and in particular energy exchanges between electrons
and the lattice can be studied by driving the two systems out of equilibrium
by selectively exciting electrons, then monitoring their thermalisation in the
time domain. The system, initially at equilibrium (Te = TL = T0), is excited
by absorbing a laser pulse, whereupon the electron distribution is modified.
If short enough pulses are used (< 100 fs), the distribution is then out of
equilibrium and can no longer be described by an internal temperature. The
return to equilibrium occurs via two interaction mechanisms. Collisions be-
tween electrons conserve the total energy of the system and redistribute the
energy in the electron gas (internal thermalisation at an electron temperature
Te > T0). This thermalisation takes place on a time scale of a few hundred
femtoseconds [6, 7]. Collisions with phonons transfer the energy injected into
the electron gas to the lattice within a few picoseconds [8], effecting a return
to equilibrium at a temperature TL. Since the lattice has a much bigger heat
capacity than the electron gas (typically, 100 times greater), it is only slightly
perturbed (TL ≈ T0).

4.1 Kinetic Model. Boltzmann Equation

Except at very short times, less than or of the order of 10 fs, electron re-
laxation kinetics can be described using a one-particle approach, neglecting
coherence effects. The electron gas is then fully characterised by its distri-
bution function f(k). Energy exchanges, and hence the evolution of f , are
described using the Boltzmann equation. For a homogeneous system, this
reads [6]

df(k)
dt

=
df(k)

dt

∣∣∣∣
e–e

+
df(k)

dt

∣∣∣∣
e–ph

+ L(k, t) . (12)

The first two terms represent the change in occupation number of the state k
due to electron–electron and electron–phonon interactions, respectively, while
the last term L(k, t) describes its perturbation by the pump pulse at time t.
For a conduction band with isotropic dispersion, this equation simplifies enor-
mously because the occupation numbers only depend on the magnitude of
the wave vector k. The same goes for the scattering rate and the excitation
function. In the isotropic parabolic band model, the Boltzmann equation can
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thus be uniquely expressed in terms of the energy of the electron states:
f(k) = f(E).

For an intraband excitation, the perturbation function L(E, t) for the
pump pulse is proportional to (7):

L(E, t) =
I(t)∫

I(τ) dτ
dfexc(E) . (13)

We shall only be concerned here with electron–phonon interactions, i.e., en-
ergy exchanges between conduction electrons and the lattice.

4.2 Electron–Phonon Interaction. Bulk Metals

Electron–phonon interactions correspond to processes in which one electron
emits or absorbs a phonon with energy Eph = �ωq and wave vector q:

E−Eph(q) em E abs E+Eph(q)

• � • � •
k − q abs k em k + q

The scattering rate is given by

df(k)
dt

∣∣∣∣
e–ph

=
2π

�

∑
q

|M |2F−(k, q)δ
(
E(k) − E(k − q) − �ωq

)

+
2π

�

∑
q

|M |2F+(k, q)δ
(
E(k) − E(k + q) + �ωq

)
, (14)

where

F−(k, q) = −f(k)
[
1 − f(k − q)

][
1 + N(q)

]
+

[
1 − f(k)

]
f(k − q)N(q) ,

(15)

F+(k, q) = −f(k)
[
1 − f(k + q)

]
N(q) +

[
1 − f(k)

]
f(k + q)

[
1 + N(q)

]

= −F−(k + q, q) . (16)

The phonon emission process depends on the phonon occupation number
through the factor 1 + N , which includes a spontaneous term and a stim-
ulated term, whereas the absorption rate only involves a stimulated term,
proportional to N .

Interactions between electrons and acoustic phonons in noble metals can
be described to a first approximation by a deformation potential mechanism,
i.e., lattice vibrations modulate the crystal potential and hence the energy of
the electronic bands. The interaction matrix element is obtained by replac-
ing the electron–phonon interaction Hamiltonian by the first order expansion
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with respect to q of the energy shift of the conduction band due to a vibra-
tional mode with wave vector q [23, 24]. The scattering amplitude is then
given by

∣∣M(q)
∣∣2 =

�
2Ξ2q2

2ρV �ωq
, (17)

where ρ is the density of the material, and Ξ is the deformation potential
defined as the change in energy of the minimum of the conduction band for
a unit expansion of the lattice. This expression is only valid for small q,
i.e., q � kF, a condition which is not satisfied for all electron–phonon colli-
sions. Actually, for the conditions we have assumed, viz., �ωpp, kBT0 > �ωD,
where ωD is the Debye frequency, and for isotropic bands, the dependence of
the coupling constant on q has very little influence on the results and only
leads to a modification of the value of Ξ, which will be treated as an ad-
justable parameter. In the following, we will write the scattering rate in the
form

df(E)
dt

∣∣∣∣
e–ph

= Γ−(E) + Γ+(E) . (18)

The expression for Γ± depends on the model used to describe the phonon
dispersion relation:

– Debye Model. In this model,

Γ±(E) =
GD√

E

∫ Eph max

0

E2
phF

±(E, Eph) dEph , (19)

where

GD =
Ξ2

√
m

4
√

2π�4ρv4
s

, Eph = �vsq ,

Eph max = min
(
�vsqD, 2vs

√
2mE

)
.

For isotropic dispersions for the conduction band and vibrational modes,
the functions F± depend only on the energies, viz.,

F±(E, Eph) = F±(
E(k), �ω(q)

)
= F±(k, q) .

– Sinusoidal Dispersion Relation. In this model,

Γ±(E) =
GS√
E

∫ qmax

0

q3

ωM sin(πq/2qD)
F±(E, q) dq , (20)

where

GS =
Ξ2

√
m

4
√

2π�ρ
, qmax ≈ qD ≈ qΓX , �ωm ≈ 21 meV for silver .
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The results of numerical calculations made with the two models, and also for
the Einstein model (ωq = constant), are in fact identical, up to a renormal-
isation of the effective coupling constant G (or Ξ). This is due to the fact
that, since the initial energy given to the electrons is much greater than the
phonon energy and the temperature is greater than the Debye temperature,
the dynamics of energy loss from the electron gas to the lattice is insensitive
to the actual dispersion of the phonons.

4.3 Energy Exchange in the Thermal Regime.
Two-Temperature Model

Several hundred femtoseconds after the optical excitation, the electrons are
thermalised and energy transfer from the electrons to the lattice can be de-
scribed by the two-temperature model. This considers the energy balance
between two subsystems, viz., the conduction electrons and the lattice, each
described by its own temperature. It can be deduced from the Boltzmann
equation for the electrons where only the electron–phonon collision term is
included. This amounts to assuming that the electron–electron collisions are
efficient enough to maintain the electronic system at all times in internal
thermal equilibrium at temperature Te. The dynamical evolution of the en-
ergy density (or the temperature) in each system is then given by a system
of two coupled differential equations [25, 26]:

⎧
⎪⎪⎨
⎪⎪⎩

Ce
∂Te

∂t
= −H(Te, TL) + p(t) ,

CL
∂TL

∂t
= +H(Te, TL) ,

(21)

where H represents the energy exchanges and p(t) the selective excitation
of the electron gas by the pump pulse. [p(t) must in fact be replaced by the
initial condition Te(t = 0) = Texc.] The quantities Ce and CL are the elec-
tron and lattice specific heat capacities, respectively. This expression is only
valid for a homogeneous system, i.e., where the temperatures have no spa-
tial dependence, a hypothesis also previously used implicitly for the electron
distribution, assumed uniform in the system studied in Sect. 4.1. It can be
generalised to the case of inhomogeneous electron or phonon temperatures by
adding a heat diffusion term to (21). This generalisation is necessary when
optically thick systems are involved, since longitudinal diffusion then plays
an important role (the optical absorption length in a metallic film is typically
of the order of 15 nm), or when time scales are long enough for transverse
scattering out of the excited region to become significant.

For high temperatures Te and TL compared with the Debye tempera-
ture TD, the electron temperature evolves according to

due

dt
= Ce

dTe

dt
− H(Te, TL) = −g(Te − TL) , (22)
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where g, independent of the lattice temperature, is the electron–phonon cou-
pling constant usually used in femtosecond studies [1–4,27]. For an electron–
phonon interaction described by a deformation potential and the Debye
model, g is given by

g = Ξ2 kBm2q4
D

16ρπ3�3
. (23)

The system (21) associated with (22) is nonlinear, because the electron heat
capacity depends on the temperature. For free electrons,

Ce(Te) =
∂ue

∂T
=

π2nekB

2
Te

TF
= γ0Te . (24)

The system (21) can be solved analytically to give

Teq ln
Te − Teq

Texc − Teq
+ T̃ ln

Te + T̃

Texc + T̃
= −G

T̃ + Teq

2CL
t , (25)

where
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Teq = −CL

γ0
+

[(
CL

γ0

)2

+ T 2
exc + 2

CL

γ0
T0

]1/2

≈ T0 +
γ0

2CL
(T 2

exc − T 2
0 ) ,

T̃ = Teq + 2
CL

γ0
≈ 2

CL

γ0
.

(26)

Here Teq is the temperature of the thermalised electron–lattice system
and Texc the excitation temperature of the electrons, i.e., the temperature
of the conduction electrons after excitation by the pump pulse at t = 0, as-
suming that the system is thermalised at all times and neglecting the pulse
width.

However, when the perturbation is weak (Te −TL � TL), we may assume
that Ce is constant, i.e., Ce ≈ γ0T0, which leads to a simpler expression
where Te falls off exponentially:

Te(t) − TL(t) = (Texc − T0)e−t/τe–ph , (27)

with time constant τe–ph = CeCL/g(Ce + CL). The electron gas then has
excess energy ∆ue(t) = Ce

[
Te(t)−TL(t)

]
and evolves as ∆Te. Since the heat

capacity of the lattice is large compared with that of the electrons, we have
τe–ph ≈ Ce/g = C0T0/g, and TL(t) ≈ T0. This exponential decrease pre-
dicted by the two-temperature model agrees well with experimental results
in the weak excitation regime (see Fig. 6). For strong excitations, the energy
transfer is slower and has no exponential behaviour. In agreement with the
two-temperature model, the exponential regime is reached after a few pi-
coseconds, when the electron distribution is cold enough to justify neglecting
the temperature dependence of the electron heat capacity Ce (see Fig. 6).
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Fig. 6. (a) Change in the reflectance of a gold film of thickness 20 nm for weak and
strong excitation pulses (maximum electron temperature rises 50K and 1100 K,
respectively). Dotted curves are calculated using the Boltzmann model. (b) As
in (a), but plotted on a logarithmic scale

Fig. 7. (a) Change in the real part of the dielectric constant of a gold film of
thickness 20 nm in the case of a weak excitation. Dashed and dotted curves are
calculated assuming instantaneous thermalisation of the electrons (two-temperature
model) and using the Boltzmann model, respectively. (b) As in (a), but for a silver
film. The dashed line corresponds to exponential decay

As stressed above, this regime is of course only reached when the electron
temperature has been established. Prior to this, a non-exponential regime is
predicted which reflects the slower energy exchanges between an athermal
electron distribution and the lattice. The results obtained by numerical sim-
ulation of the electron kinetics (Boltzmann equation) agree quantitatively
with experimental results (see Fig. 7). The exponential decay predicted by
the two-temperature model is only observed when the electron temperature
has been established, i.e., after a few hundred femtoseconds.
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4.4 Electron–Lattice Interactions in Metallic Nanoparticles

Many studies have been carried out on clusters of different shapes and
sizes. The intrinsic effect of size reduction on electron–phonon interactions is
still the subject of debate. In particular, energy transfer to the surrounding
medium, which becomes more efficient as the cluster size decreases, can play a
role. Indeed, in contrast to metallic films, when a medium comprising metal-
lic nanoparticles dispersed in a matrix is excited by a laser pulse, a set of
hot spots is created, viz., the nanoparticles. For a uniform temperature to be
established, energy must diffuse out from the nanoparticles into the matrix.
The two-temperature model must therefore be generalised by introducing the
matrix temperature Tm. Assuming that the nanoparticles are independent,
we can write [28]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ce
∂Te

∂t
= −g(Te − TL) + p(t) ,

CL
∂TL

∂t
= g(Te − TL) + SLm ,

Cm
∂Tm

∂t
= ∇ · (κm∇Tm) ,

(28)

where Cm is the heat capacity of the matrix and κm is its thermal conduc-
tivity. Tm varies spatially with the distance r from the relevant nanoparticle.
The electron and lattice temperatures are assumed uniform in the particle.
Assuming also that the temperature is continuous at the particle–matrix in-
terface, energy exchange between a nanosphere of diameter D and the matrix
is given by

SLm = 6
κm

D

∂Tm

∂r

∣∣∣∣
r=D/2

. (29)

For short pulses, the system is thus much more difficult to describe. The
description then depends on the matrix and the quality of the interface.
However, if the relevant time scale is short compared with the typical time
for transfer of energy from the particle to the matrix, this energy transfer
can be neglected and the problem is the same as for a bulk medium.

Recent results obtained for weak excitation in noble metals have shown
that the electron–lattice energy transfer time is independent of the matrix
and also of the way the nanoparticles were elaborated, indicating a weak
contribution from the environment [9]. In complete contrast, in the strong
excitation regime, measured relaxation times were observed to depend signif-
icantly on the matrix [2, 29].

In the weak excitation regime, a reduction in the energy transfer time τe–ph

was shown for silver and gold as the cluster size diminished (see Fig. 8).
This variation is similar to the one demonstrated for the electron–electron
coupling [7] and is probably due to a similar surface effect.
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Fig. 8. Electron–lattice energy transfer time τe–ph as a function of size for silver
nanospheres dispersed in BaO−P2O5 (black dots), Al2O3 (black squares), MgF2

(black diamonds), and water (black triangles). The dotted curve interpolates be-
tween experimental points. The insert shows changes in the measured absorption
on a logarithmic scale as a function of the pump–probe delay for two average di-
ameters (26 and 6 nm) and in a silver film of thickness 23 nm

5 Acoustic Vibrational Modes of Nanospheres

The acoustic vibrational modes of lowest frequency in a material are associ-
ated with atomic displacements in the lattice on a much longer scale than the
interatomic distance (ωph = 2πvs/λph, where vs is the speed of sound). For
a finite material, they can be described using a macroscopic approach that
neglects the periodic and discontinuous features of the crystal lattice. They
then correspond to deformational eigenmodes of a continuous and homoge-
neous elastic object. Their properties depend only on the speed of sound, the
density ρ of the material, and the boundary conditions imposed by the shape
of the object and the surrounding material.

5.1 Vibrational Modes

The vibrational eigenmodes of an isotropic elastic sphere of diameter D were
studied by Lamb in the nineteenth century [30–33]. This work was generalised
to the case of a sphere in an infinite and isotropic elastic matrix, notably in
geophysics to model inclusions in the Earth’s crust [34, 35]. Up to a scale
factor, the problem is the same for nanospheres. It consists in solving the
Navier equation for displacements inside and outside the sphere which satisfy
the requirement that the displacement and stress should be continuous at the
interface r = D/2. There are two types of vibrational eigenmode: torsional
and spheroidal modes. The first have zero radial displacement component and
thus correspond to a constant volume oscillation [32,33]. The direction of the
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Fig. 9. Vibrational modes of a homogeneous elastic sphere [30]. Left : Radial spher-
oidal mode. The expanding and contracting motion of the sphere is like breathing.
Right : Torsional mode without expansion. Continuous and dotted curves show the
surface displacement and internal motion, respectively

displacement vector is parallel to the surface of the sphere, which corresponds
to the twisting of an elastic body. The second type of mode have a nonzero
radial displacement component and is therefore associated with a change in
volume (see Fig. 9).

Only the second type of mode is observed in time-resolved experiments for
which the excitation is isotropic. For the same reason, among the spheroidal
modes, those corresponding to a purely radial displacement are preferentially
observed. The fundamental radial mode (n = 1) of a sphere is its breathing
mode (expansion and contraction). The frequencies of the radial modes are
inversely proportional to D, i.e.,

ωn ≈ 2πnv
(s)
L

D
, (30)

where v
(s)
L is the longitudinal speed of sound in the sphere and n is the

order of the mode. The vibration frequency is largely independent of the
environment and very close to the frequency of the acoustic phonon with
wavelength λph = D/n.

The motion of a sphere placed in a matrix is accompanied by the prop-
agation of a spherical wave in the matrix. The mechanical contact between
sphere and matrix induces an energy loss and hence a damping of the radial
modes. The damping rate γn is proportional to the ratio between the energy
flux through the surface (∝ D2) and the energy stored in the sphere (∝ D3),
hence proportional to D−1. More precisely, it is in most cases determined
by the ratio of the acoustic impedances ρvL of the materials making up the
matrix (m) and the sphere (s):

γn ≈ ρ(m)v
(m)
L

ρ(s)D
. (31)

It is only nonzero when there is a matrix, and it is very sensitive to its nature
and in particular its elastic properties, as well as the quality and type of
interface.
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Fig. 10. (a) Change in the absorption detected by a probe pulse as a function of its
delay with respect to the pump pulse for silver nanospheres of diameter D = 24 nm
dispersed in glass. The oscillations of period T1 = 7.6 ps are due to the fundamental
radial vibrational mode n = 1 (breathing mode). (b) Signal measured under the
same conditions for two pump pulses separated by a time T1/2. The oscillations of
period T2 = 3.5 ps are due to the harmonic mode n = 2. Transient peaks correspond
to the electron response

5.2 Time-Resolved Studies

The period of these modes lies somewhere in the picosecond region. The
associated periodic motion can thus be monitored by optical methods with
subpicosecond resolution. Using a femtosecond pump–probe technique, the
excitation and detection of the fundamental breathing mode (n = 1) of the
spherical nanoparticles have been demonstrated in the case of metallic and
semiconducting materials [4, 36, 37]. In this type of study, several thousand
clusters are observed at the same time. Their motion, triggered by the pump
pulse, induces a modulation in the interatomic separation of atoms making
up the clusters, and hence also a modulation in their electronic properties,
i.e., density of conduction electrons and energies of the electron bands. This
is reflected in a modulation of the absorption by the medium (a modulation
of the spectral position of the surface plasmon resonance in the case of silver)
which is detected by the probe pulse (see Fig. 10).

Such a response can only be observed if all the clusters oscillate in phase.
For metals, the energy given to the electrons by the pump pulse is quickly
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transferred to the lattice. It is thus heated in a time τe–ph ≈ 1 ps which is
shorter than the expansion time of a cluster, i.e., the period Tn of the or-
der n breathing mode (T1 ≈ 3 ps for D = 10 nm). This rapid heating triggers
a simultaneous increase in size in all the excited nanoparticles, followed by
an oscillation around their new equilibrium size corresponding to their new
temperature. The fundamental breathing mode is preferentially launched be-
cause the associated displacement is very close to an isotropic expansion, and
the other modes make smaller contributions.

This process can be simply described using the image of an oscillator
whose equilibrium position is displaced more quickly than its own period. The
oscillation begins with an extremal displacement amplitude, in agreement
with the phase of oscillations observed experimentally (see Fig. 10). In fact,
the highly excited electrons exert a pressure which induces an expansion of
the lattice, and this also contributes. This adds to the expansion due to the
anharmonicity of the crystal potential and modifies the phase of the motion
for strong excitations or very small nanoparticles.

The radial modes have also been studied by Raman spectroscopy, but
it was only possible to measure their frequencies. Time-resolved techniques
also provide information about the frequency ω1 = 2π/T1 of the fundamental
mode and its intrinsic damping γ1. The damping observed in the time do-
main is due partly to the size dispersion of the nanoparticles. They oscillate
at slightly different frequencies, and after their initial in-phase excitation,
slowly drift out of phase (inhomogeneous damping). It is also caused by en-
ergy transfer to the environment. The latter depends on its nature, e.g., glass,
polymer, liquid, etc., and on the interface, e.g., the presence of defects, ad-
sorbed molecules, and so on. Once the size dispersion has been determined by
electron microscopy, this intrinsic contribution γ1 can be measured. We have
shown that it varies as 1/D and can be used to obtain information about
the material, such as the quality of the nanoparticle–matrix interface or the
presence of adsorbed molecules.

By demonstrating the coherent excitation of cluster motion by a fem-
tosecond pulse, one can envisage its optical control by means of a sequence of
pulses (see Fig. 10). This has been achieved in the simplest case, with a pair
of pulses separated by a half-period of the fundamental breathing mode. The
second pulse then serves to stop the fundamental mode. After a half-period,
the size of the clusters is maximal. If the intensity of the second pulse is
chosen correctly, the energy injected carries the cluster temperature to the
value corresponding to their maximal radius. The system is therefore in equi-
librium once again. However, the motion of the first harmonic mode (n = 2),
with almost double the frequency, is strengthened. As for the fundamental
mode, its properties (frequency and damping) can then be determined.
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[32] Y. Satô, T. Usami: Geophys. Magn. 31, 15 (1962) 326
[33] A. C. Eringen, E. S. Suhubi: Elastodynamics (Academic Press, New York 1975)

326
[34] V. A. Dubrovskiy, V. S. Morochnik: Earth Phys. 17, 494 (1981) 326
[35] A. Tamura, K. Higeta, T. Ichinokawa: J. Phys. C 15, 4975 (1982) 326
[36] M. Nisoli, S. D. Silvestri, A. Cavalleri, A. M. Malvezzi, A. Stella, G. Lanzani,

P. Cheyssac, R. Kofman: Phys. Rev. B 55, R13424 (1997) 328
[37] T. D. Krauss, F. W. Wise: Phys. Rev. Lett. 79, 5102 (1997) 328

Index

acoustic modes, 313
in nanoparticle, 309

acoustic strain
potential, 320, 323

Boltzmann equation, 319, 322, 324
electron gas, 309

Bose–Einstein distribution, 314
Brillouin zone, 310, 313

L point, 311

cluster, 314, 315, 325, 328
collective excitation, 329
size, 325, 329

collective oscillation, 316
conduction

electron, 309, 310
conduction band

isotropic parabolic, 311, 312, 317–319
noble metals, 310, 311
Rosei model, 318

copper, 310

Debye model, 313, 321, 323
Debye temperature, 322
density of states

electron, 317
dielectric constant, 309, 315, 318

imaginary part, 315
noble metals, 315

real part, 315, 318, 324
dispersion relation

conduction electrons, 311
phonon, 313, 314, 321
sinusoidal, 321

Drude model, 315

Earth’s crust, 326
Einstein model, 322
electron

density of states, 317
distribution, 309, 312
effective mass, 311
gas, 309, 323
specific heat capacity, 322
temperature, 309, 311, 322
thermalisation, 309, 319, 322–324

electron–lattice interaction, 319, 325
electron–phonon interaction, 309, 329

in bulk, 320, 322
in nanoparticle, 325, 326

electron–surface collisions, 316
electronic band structure, 310, 312

in bulk metal, 310, 311
in nanoparticle, 312

exciton, 312

femtosecond laser, 309
excitation, 316
probe, 318



332 Fabrice Vallée

femtosecond pump–probe method, 316,
319

time resolution, 316
Fermi fluid, 312
Fermi level, 311, 312, 315, 317, 318
Fermi surface, 310, 311
Fermi–Dirac distribution, 312

gold, 310
dielectric constant, 324
reflectance variation, 324

hot spot, 325

interband transition, 315, 316
threshold, 311, 318

intraband transition, 315–317, 319, 320

lattice parameter, 311
light–matter interaction, 314

matrix temperature, 325
Mie theory, 316

nanoparticle, 309
breathing mode, 327–329
electron–phonon interaction, 325, 326
electronic band structure, 312
metallic, 309, 312, 315, 316
optical response, 315, 316
polarisation, 316
semiconductor, 312
size dispersion, 329
vibrational modes, 314, 326, 329

Navier–Stokes equation, 326
noble metals, 310, 312

band structure, 311
conduction band, 310, 311
dielectric constant, 315
interband transition threshold, 311
lattice structure, 310
optical response, 314, 315
unit cell, 313
valence bands, 310

optical transitions, 314

Pauli exclusion principle, 315
phonon

acoustic, 313, 320
dispersion relation, 313, 314, 321

probe beam, 309, 316
frequency, 318

pump beam, 309, 316, 320, 322
pump–probe delay, 309, 316, 326

quantum confinement effects, 312

Raman spectroscopy, 329
reciprocal lattice, 310
reflectance

relative variation, 324
Rosei band structure, 318

scattering
electron–phonon, 320, 321

silver, 310
acoustic phonons, 313
band structure, 310
dielectric constant, 324
nanosphere, 328

specific heat capacity
electron, 322
lattice, 322

surface plasmon, 316, 328

temperature
lattice, 314, 323
matrix, 325

thermal
conductivity, 325

thin film, 309
gold, 324
silver, 324

time-resolved optical methods, 309,
328, 329

two-temperature model, 309, 322–324

vibrational modes, 309, 313, 314
nanoparticle, 314
nanosphere, 326, 329
spheroidal, 326, 327
torsional, 326, 327



Investigation of Short-Time Heat Transfer
Effects by an Optical Pump–Probe Method

Bernard Perrin

Institut de Nanosciences de Paris, UMR 7588 CNRS and University of Pierre and
Marie Curie, 140 rue du Lourmel, 75015 Paris
bper@ccr.jussieu.fr

Abstract. The study of heat transfer properties on micro- and nanoscales gener-
ally requires one to work on time scales ranging between a few picoseconds and a
few nanoseconds, whether one is concerned with diffusion over short length scales or
heat exchanges involving small volumes of matter. Optical methods are particularly
well-suited to the study of small systems for various reasons:

– Non-contact measurements are possible.
– The optical penetration length can be extremely short, e.g., 10–30 nm in metals.
– Measurements can be made with a broad temporal dynamic range, whether

one is working in the frequency domain, e.g., photothermal measurements with
modulated optical sources, or in the time domain.

In this context, the development of reliable and easy-to-use femtosecond laser
sources has considerably enhanced the potential of optical methods. In the pres-
ent Chapter, we describe how femtosecond lasers are used, and in particular, the
pump–probe method for studying heat transfer in micro- and nanoscopic systems.
In this technique, an ultrashort laser pulse is split into two parts: one (the pump),
very intense, excites the medium under investigation, whilst the other (the probe),
weaker and slightly delayed with respect to the first by being made to follow an
optical path of variable length, is used to detect the physical effects induced by the
first. By controlling the path of the probe beam to within 1µm, a time resolution
well below the picosecond is possible, more than adequate to study heat transfer
phenomena.

Although thermal and elastic effects may be quite well decoupled on long time
scales, this is certainly not the case for the time scales considered here (picosecond to
nanosecond). We therefore begin by describing acoustic effects caused by absorption
of a femtosecond pulse in a simple geometry, namely, an opaque film, neglecting
heat diffusion (Sect. 1.1). Having understood the way acoustic effects manifest
themselves in the response of a system heated by a first pump pulse, we shall
examine three simple situations (Sect. 1.2):

– heat diffusion in an opaque film,
– heat diffusion in a substrate in the presence of an interfacial thermal resistance,
– cooling of a nanoparticle in solution or embedded in a matrix.

We then tackle the mechanisms relevant to optical detection of heat or acoustic
gradients, and discuss the difficulties involved in determining the heat diffusion
(Sect. 2). Finally, in Sect. 3, we describe the main features of a pump–probe exper-
iment, including several detection devices (reflectometry and interferometry). We
also discuss effects induced by the repeat rate of pulsed lasers.

S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics Appl. Physics 107, 333–359 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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1 Acoustic and Thermal Generation
by Ultrashort Laser Pulse

1.1 Acoustic Generation in the Absence of Heat Diffusion

Consider an opaque film in which a laser pulse is absorbed over a distance κ−1
ν ,

where κν is the optical absorption coefficient. The following assumptions are
made:

– The width of the laser pulse is much shorter than the time required for
acoustic transients to appear.

– The gradient of the energy deposited by the laser pulse is not modified
by either heat or electron diffusion while the acoustic fields are being
created.

– The size of the laser spot is much greater than the distance over which
the acoustic fields propagate. The problem can then be treated as one-
dimensional, in the direction normal to the absorbing medium.

– The medium is isotropic.

The energy W (z, t) dt deposited in the sample by absorption of the laser
pulse is given by

W (z, t) =
κν(1 − R)Q

S
e−κνzΓ (t) , (1)

where Q is the energy of one laser pulse, S is the cross-sectional area of the
laser beam at the focal point, and R is the reflectance of the film. To simplify
the problem, the intensity of the laser spot is assumed to be uniform over
the area S. Finally, Γ (t) is the Heaviside step function. This energy deposit
induces a temperature rise in the layer given by

∆T (z, t) =
W (z, t)
ρCP

, (2)

where CP is the specific heat capacity of the film and ρ its density. A thermal
stress

σth
ij (z, t) = −

∑
kl

Cijklβkl∆T (z, t) = −β∆T (z, t)
∑
kl

Cijklδkl (3)

is produced by this temperature rise, where Cijkl is the elasticity tensor and β
the thermal expansion coefficient. We consider only the z dependence of the
temperature gradient. In this direction, the component σ33 of the stress tensor
is given by

σth
33(z, t) = σth(z, t) = −β∆T (z, t)(C11 + 2C12) = −3βB∆T (z, t)

= −3βBκν(1 − R)Q
ρCP S

e−κνzΓ (t) = −ρv2
s η0e−κνzΓ (t) , (4)
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Fig. 1. Semi-infinite, opaque metallic film

where we have introduced the dimensionless parameter

η0 =
3βBκν(1 − R)Q

ρ2v2
s CP S

, (5)

which determines the amplitude of the strain induced by the laser pulse.
Apart from this, vs is the speed of longitudinal sound waves in the film and
B = (C11 + 2C12)/3 is the incompressibility modulus. The speed of sound
is related to the elastic constant C11 by ρv2

s = C11. Table 1 gives the values
of η0 for various metals, produced by a pulse of 1 nJ focused on a spot of
radius 30 µm. The total stress σ, summing over all thermal stresses σth and
mechanical stresses C11∂u/∂z, is given by

σ(z, t) = ρv2
s

∂u

∂z
− ρv2

s η0e−κνzΓ (t) , (6)

where u(z, t) is the displacement of the sample surface induced by the acoustic
field at time t and at distance z. The equation of propagation for the dis-
placement is thus given by

∂2u

∂z2
− 1

v2
s

∂2u

∂t2
= −η0κνe−κνzΓ (t) , (7)

whilst the equation of propagation for the strain η(z, t) = ∂u/∂z is

∂2η

∂z2
− 1

v2
s

∂2η

∂t2
= η0κ

2
νe−κνzΓ (t) . (8)

The boundary conditions are:

– the sample surface is stress free,
– the film is assumed to be infinitely thick and the acoustic wave thus

propagates in the positive z direction.

The solution to this equation is then

η(z, t) =
η0

2

[
(2 − e−κνvst)e−κνz − sgn(z − vst)e−κν |z−vst|

]
, (9)

and the spatial evolution of the acoustic signal is shown in Fig. 2.
In this expression, there appears a time τac = (κνvs)−1 which characterises

the scale of acoustic transients and which corresponds to the time taken by
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Fig. 2. Strain η(z, t) as a function of z for two values of t

a sound wave to travel the optical penetration length κν . As soon as t � τac,
the first term in the expression for η(z, t) depends only on z and represents
the static expansion induced in the sample by the temperature gradient (since
heat diffusion has been neglected). The second term represents an acoustic
pulse of width τac propagating in the opaque layer. These acoustic pulses
with very high frequency content (several hundred GHz) can only propagate
a few hundred nanometers in polycrystalline films at room temperature and
over distances of a few hundred µm in extremely pure crystals at very low
temperatures, without being attenuated. In these circumstances, the pulses
can give rise to one or more acoustic echoes at the surface of the film, after
reflecting on interfaces. Translating the time origin so that t = 0 corresponds
to the arrival of the middle of the acoustic echo at the surface, the strain
associated with the first acoustic echo can be written in the form

η(z, t) =
η0rac

2

[
exp(−κν |z − vst|)sgn(z − vst)

+ exp(−κν |z + vst|)sgn(z + vst)
]
, (10)

where rac is the acoustic reflection coefficient for the interface causing the
echo. This echo gives rise to a surface displacement given by

u(0, t) =
∫ 0

∞
dzη(z, t) = −η0rac

κν
exp(−κνvs|t|) , (11)

as shown in Fig. 3.
According to this simple model in which the effects of electron and heat

diffusion are neglected, the temporal width of the echoes, directly related to
τac = 1/κνvs, would be a few picoseconds for many metals, and their spatial
extent would be a few tens of nanometers since the speed of sound vs is usually
a few nm/ps and the optical penetration depth κ−1

ν in the range 10–30 nm.
These acoustic pulses thus have a very high axial resolution (in the direction
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Fig. 3. Surface displacement due to the arrival of an acoustic echo

of propagation) and they give rise to a new field of investigation, viz., picosec-
ond acoustics [1–4]. Apart from its relevance to fundamental research [5–8],
this nanoscale SONAR technique has been used for non-destructive assess-
ment of deposited thin films in the semiconductor industry [9–11].

Acoustic phenomena are present whenever a system is heated. They occur
in films and bulk samples in the first few picoseconds when a pulse leaves the
surface, then in the form of echoes when these pulses return to the surface
after a few tens of picoseconds, or a few nanoseconds. For ultrathin films or
nanosystems such as nanoparticles, these acoustic phenomena excite resonant
modes. Acoustic fields affect the optical properties of systems in two ways:
first by altering the geometry of the sample, e.g., strain and displacement of
the surface of thin films, or changing the diameter and shape of nanoparticles;
and second by perturbing the dielectric properties through a photoelastic
coefficient. As an example, the surface displacement induced by the static,
non-diffusive expansion and by the acoustic pulse moving away within the
film is given by

u(0, t) =
∫ 0

∞
dzη(z, t) = − η0

κν

(
1 − e−κνvst

)
. (12)

1.2 Taking Heat Diffusion into Account

Opaque Film

Temperature Gradient in the Film

In this section, finite heat conduction is taken into account in the opaque
film. For the time domain considered here (from a few picoseconds to a few
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Table 1. Predicted surface displacement and strain amplitudes and temperature
rise induced by absorption of a laser pulse of energy 1 nJ at wavelength 750 nm,
focused on a spot of radius 32 µm. Diffusion has been neglected

η0 × 106 µ0 ∆T
(pm) (K)

Ag 9.5 0.12 0.2
Al 100 0.69 2.0
Au 9.5 0.12 0.3
Co 36 0.46 1.8
Cr 25 0.34 2.5
Cu 9.2 0.12 0.3
Fe 46 0.77 2.2

η0 × 106 µ0 ∆T
(pm) (K)

Hg 1 960 19.5 3.6
Mg 59 3.51 1.9
Mo 29 0.50 3.1
Ni 42 0.59 1.8
Pt 54 0.68 2.6
Ti 54 0.99 3.2
W 22 0.48 2.8

nanoseconds), the effects of radial diffusion can be neglected and the problem
treated as one-dimensional. The temperature field under the surface of the
thin film obeys the diffusion equation

∂T

∂t
= α

∂2T

∂z2
+

(1 − R)κνQ

ρCP S
δ(t)e−κνz , (13)

with a source term expressing absorption of the laser pulse. In this equation,
α = k/ρCP is the diffusivity of the film, with k the thermal conductivity of
the film, and δ(t) the Dirac distribution. The boundary conditions are:

– zero heat flux at the surface, i.e., ∂T/∂z|z=0 = 0,
– zero flux from the lower region of the sample.

The Laplace transformed solution T̃ (p) for this equation is thus given by

T̃ (p) =
∆T
√

p

√
pe−κνz − κν

√
αe−z

√
p/α

p − κ2
να

, (14)

where

∆T =
(1 − R)Qκν

ρCP S
.

The temperature rises ∆T induced by a pump pulse of 1 nJ focused on a spot
of radius 30 µm are shown in Table 1 for the main metals. By inverting the
Laplace transform, we retrieve the standard solution to this problem, viz.,

T (z, t) =
∆T√
4παt

∫ +∞

−∞
dz′e−(z−z′)2/4αte−κν |z′| , (15)

with surface temperature

T (0, t) = ∆T eκ2
ναterfc

(√
κ2

ναt
)

. (16)
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The characteristic time τth in this problem is defined by τth = 1/κ2
να, equal to

several tens of picoseconds in metals. At long times t � τth, T (0, t) ∼ 1/
√

αt,
as expected for 1D diffusion.

Surface Displacement

As in the last section, this temperature gradient gives rise to an elastic dis-
placement described by

ρ
∂2u

∂t2
=

∂σ

∂z
= ρv2

s

∂2u

∂z2
− 3βB

∂T

∂z
. (17)

The Laplace transform ũ(p, z) of the displacement must therefore satisfy

p2ũ = v2
s

∂2u

∂z2
+ κνv2

s η0
e−κνz − e−z

√
p/α

p − κ2
να

, (18)

with the same boundary conditions as above (zero stress on the surface and
the acoustic wave only propagates in the positive z direction). To keep things
simple, we shall only give the expression for the surface displacement:

ũ0(p) =
η0vs

p − κ2
να

(√
α

p

κν√
p + vs/

√
α
− 1

p + κνvs

)
. (19)

By inverse Laplace transform, this leads to the solution

u0(t) = − η0

κν

[
1 − e−t/τac

ξ + 1
− ξet/τth

1 − ξ2
erfc

(√
t

τth

)

+
ξ2eτtht/τ2

ac

1 − ξ2
erfc

(√
τpht

τ2
ac

)]
, (20)

where

ξ =
τac

τth
=

κνα

vs
.

The behaviour at long times is given by

u0(t) ∼ − η0

κν

(
1 −

√
τth

πt

)
.

The dynamical evolution of the surface displacement is shown in Fig. 4 when
heat diffusion is taken into account and compared with the case where it is
not.

The same treatment could be used to calculate the strain associated with
the acoustic pulse that propagates in the opaque film. Taking into account
heat diffusion [2,12], the acoustic pulse is broadened in a way that is no longer
antisymmetric. The surface displacement due to echoes is also extended and
is no longer symmetric.
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Fig. 4. Surface displacement without diffusion (continuous curve) and with (dotted
curve) for a semi-infinite medium (no acoustic echo)

Experimental Difficulties to Determine the Diffusivity
of an Opaque Thin Film

The long-time behaviour going as 1/
√

αt makes it difficult to obtain an accu-
rate determination of the thermal diffusivity because the constant of propor-
tionality 1/

√
α must be multiplied by a prefactor which depends critically on

a great many experimental parameters that are hard to control, e.g., geome-
try of the pump and probe beams, optical absorption coefficient, photo- and
acousto-optical parameters, gain of the detection chain, and so on.

The Problem of Electron Diffusion

This example constitutes one of the simplest problems of heat diffusion that
can be studied on short time scales by optical techniques. However, this type
of study is only useful for materials with a short absorption length, and hence
especially for metals. In these systems, electron diffusion can greatly modify
the energy gradient deposited by the pump laser, particularly in the noble
metals (gold, silver, copper, etc.) where the mean free path of conduction
electrons can be much greater than the optical absorption length. To give a
rigorous treatment of this problem in metals, one must take into account the
thermalisation of both the electron gas and the phonon gas. The temperatures
of these two systems satisfy the system of coupled equations

ρce
∂Te

∂t
= k

∂2Te

∂z2
− g(Te − Tl) +

(1 − R)κνQδ(t)
S

e−κνz , (21)

ρcp
∂Tl

∂t
= g(Te − Tl) , (22)

where ce is the specific heat of the electron gas, k the thermal conductivity,
g the electron–phonon coupling coefficient, and Te and Tl the temperatures of
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the electron and phonon gases, respectively. Since the thermal conductivity
of the lattice is small in metals, compared with that of the electrons, k will be
assumed equal to the macroscopic thermal conductivity. This investigation
will not be discussed here but can be found in [13–15].

Opaque Thin Film on a Substrate with Interface Resistance

To extend the range of application of these optical methods to the case of
transparent materials, the system under investigation can be coated with a
thin metal film which serves both to heat the underlying material and to de-
tect the cooling. Moreover, since the electrons of the metal are confined within
the metal film, the problems of electron diffusion are more easily controlled.

In this section, we shall therefore consider a metal film with thickness d
subjected at time t = 0 to uniform heating ∆T by absorption of a laser
pulse. We examine the subsequent decrease of Tf(t), which characterises the
initial temperature difference of this film, by heat diffusion through a thermal
resistance Rth into the underlying substrate, assuming that the film is a
perfect heat conductor with specific heat cf and density ρf . The substrate
has thermal diffusivity αs = ks/ρscs, where ks is the thermal conductivity of
the substrate. The increase in the temperature Ts of the substrate satisfies
the diffusion equation

∂2Ts

∂z2
=

1
αs

∂Ts

∂t
. (23)

The Laplace transform T̃s(p) is thus given by

T̃s(p, z) = T̃s(0)e−z
√

p/αs . (24)

The cooling ρfcfdS∂Tf/∂t is equal to the heat flux in the substrate at z = 0,
viz.,

ρfcfdS
∂Tf

∂t
= Sκs

∂Ts

∂z

∣∣∣∣
z=0

, (25)

which leads to the relation between Laplace transforms

pT̃f − ∆T = − κs

dρfcf

√
p

αs
T̃s(0) , (26)

where cf and ρf are the specific heat and density of the metal film, respec-
tively. The thermal resistance at the film–substrate interface induces a dis-
continuity in the temperature given by

Tf − Ts = −κsRth
∂Ts

∂z

∣∣∣∣
z=0

, (27)
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whereupon

T̃f − T̃s(0) = κsRth

√
p

αs
T̃s(0) . (28)

Hence,

T̃s(0) =
1

κsRth

√
p

αs
+ 1

T̃f =
∆T − pT̃f

κs

dρfCf

√
p

αs

, (29)

and

T̃f = T̃f =
τth√
pτth

χ
√

pτth + Bi

Bi +
√

pτth

(
χ
√

pτth + Bi

)∆T , (30)

where χ = ρscs/ρfcf . The thermal relaxation time is

τth =
d2

αsχ2
=

d2ρ2
f c

2
f

αsρ2
sc

2
s

,

and

Bi =
d

ksRth

can be identified as the Biot number characterising exchange between the
thin layer and the substrate. By inverting the Laplace transform, we obtain
finally

Tf(t) =
1

2iπ

∫ γ+i∞

γ−i∞
dpT̃fept =

2∆T
√

τth

π

∫ +∞

0

du
e−u2t

(1 − τRu2)2 + τthu2
,

(31)

integrating around a contour that avoids the negative real axis, and defining
the resistive relaxation time

τR =
τthχ

Bi
= dρfcfRth .

For a very large Biot number (low interface resistance or low thermal con-
ductivity in the substrate), the relaxation time for diffusion in the substrate
dominates and we retrieve the well known result

Tf(t) = ∆T exp
(

t

τth

)
erfc

(√
t

τth

)
. (32)

When the thermal conductivity of the substrate becomes very large (τth → 0),
the resistive time predominates and the decay becomes exponential, viz.,

Tf(t) = ∆T exp
(
− t

τR

)
. (33)
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Table 2. Physical quantities used for the simulation in Fig. 5

ks ρscs Rth τth τR Bi

(W ·m−1 ·K−1) (J ·m−3 ·K−1) (W · m−2 ·K−1) (ps) (ns)

Silicon 150 1.65 × 106 10−8 240 2.43 0.066
Diamond 2 000 1.76 × 106 2 × 10−8 16.8 4.86 0.002 5

Two examples of the behaviour of Tf(T ) are shown in Fig. 5 for silicon and
diamond. The heating metallic film is assumed to be aluminium and to have
a thickness of 100 nm. The physical quantities used in this simulation are
provided in Table 2.

When the values of τth and τR do not differ too greatly, it is in principle
possible to determine both the diffusivity of the investigated substrate and the
thermal resistance of the interface. The pump–probe technique has been used
with a source of femtosecond laser pulses to measure the Kapitza resistance
between a film and its substrate [16–19], the thermal conductivity of thin
films as a function of the temperature or composition [20–24], and the thermal
conductivity of semiconducting superlattices [25].

Metallic Particle

As in the last example, we consider the cooling of a metallic nanoparticle
in contact with its environment (a liquid or transparent solid matrix) via
an interfacial thermal resistance Rth. This problem is very close to the one
considered in the last section. The nanoparticle, assumed to be spherical
with radius a, is subjected at time t = 0 to uniform heating ∆T due to
the absorption of a laser pulse. We study the subsequent decrease in the
temperature Tp(t) of this sphere by heat diffusion into the liquid or matrix
through the thermal resistance Rth, assuming that the particle is a perfect
heat conductor with specific heat cp and density ρp. The surroundings have
thermal diffusivity αs = ks/ρscs, where ks is the thermal conductivity of the
solution or matrix. The increase in the temperature Ts of the solution satisfies
the diffusion equation, given in spherical coordinates by

∂2(rTs)
∂r2

=
1
αs

∂(rTs)
∂t

. (34)

The Laplace transform T̃s(p) is thus given by

T̃s(p, r) = T̃s(a)
ae−w(r/a−1)

r
, (35)

where w = a
√

p/αs. The cooling

4
3
πa3ρpcp

∂Tp

∂t
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Fig. 5. Simulation of cooling in a metallic film deposited on silicon (top) and on
diamond (bottom)

is equal to the heat flux in the solution at r = a, i.e.,

4
3
πa3ρpcp

∂Tp

∂t
= 4πa2ks

∂Ts

∂r

∣∣∣∣
r=a

, (36)

leading to the following relation between Laplace transforms:

pT̃p − ∆T = −χαs
w + 1

a2
T̃s(a) , (37)

where

χ =
3ρscs

ρpcp
.
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At the particle–solution interface, the thermal resistance induces a disconti-
nuity in the temperature given by

Tp − Ts = −ksRth
∂Ts

∂r

∣∣∣∣
r=a

, (38)

whence,

T̃p − T̃s(a) =
w + 1

Bi
T̃s(a) , (39)

where Bi = a/ksRth is the Biot number. Hence,

T̃s(a) =
Bi

aw + Bi + 1
T̃p , (40)

and

T̃p =
a2∆T

αs

aw + Bi + 1
w2(w + Bi + 1) + χBi(w + 1)

. (41)

Inverting the Laplace transform, we obtain

Tp(t) =
1

2iπ

∫ γ+i∞

γ−i∞
dpT̃pept

=
2χB2

i ∆T

π

∫ ∞

0

u2e−u2t/τc du[
(Bi + 1)u2 − χBi

]2 + u2(u2 − χBi)2
, (42)

where τc = a2/αs. The same asymptotic behaviour is obtained as in the last
case for small and large Biot numbers. After long times, the diffusion goes as
1/t

√
t, as expected for a 3D diffusion law, and the thermal relaxation time

is τth = τc/
3
√

4χ2. As an indication, characteristic cooling times τth for gold
nanoparticles of diameter 10 nm are 37 ps in an aqueous solution, 80 ps in
glycerol, and 10 ps in a silica matrix.

2 Optical Detection
of Thermal and Acoustic Transients

Thermal and acoustic effects affect the optical response of a system in two
ways:

– The dielectric constant, and hence the refractive index, of the material
is modified by a temperature rise or an elastic strain. The reflection and
transmission coefficients, or the scattering cross-section thus depend on
the temperature and the strain.
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– The geometry of the object also changes. The surface of a film is curved
and moves when an acoustic echo reaches the surface. The diameter and
shape of a nanoparticle vary under the effect of a resonant vibration.
These perturbations are likely to modify the amplitude, direction of prop-
agation, phase, and polarisation of a reflected, transmitted or scattered
beam. They can also modify the frequency of this electromagnetic wave,
but the spectral shifts remain much smaller than the spectral width of
the probe pulse.

The various characteristics of a probe beam can thus be used for the pur-
poses of detection. The simplest technique is to measure the intensity of the
probe beam and thus to carry out transient reflectance or transmittance mea-
surements. Deflection measurements have also been proposed to study ther-
mal [26] and acoustic transients [27]. Interferometric detection can be used
for simultaneous measurement of the amplitude and phase of the electromag-
netic field of the probe beam [28] and it is has been proposed to determine
acoustic effects [4, 7, 29, 30].

Although the optical penetration length is small in metals, to be rigorous,
one ought to take into account the gradient of the refractive index induced
by a temperature or strain gradient to be sure to determine the thermal
and acoustic transients correctly. We shall discuss a simple case, namely, the
change in reflectance of an opaque thin film.

Change in Reflectance of an Opaque Thin Film

At any point of the sample, the presence of a thermal or acoustic gradient
induces a gradient in the dielectric constant

ε(z, t) = ε + ∆ε(z, t) =
[
n + ∆n(z, t)

]2
, ∆n(z, t) =

∂n

∂X
X(z, t) ,

where X represents the temperature or the strain, n is the complex refractive
index of the medium, and ∂n/∂X is a complex thermo-optical or acousto-
optical constant. We must then solve the equation of propagation of the
electromagnetic field E, viz.,

∂2E

∂z2
=

[
ε + ∆ε(z, t)

]∂2E

∂t2
. (43)

The solution to this equation is

Et(z, t) = t01

∫ +∞

−∞
dΩEi(Ω)ei(Ωt−nk0z) ,

when there is no gradient, where Ω is the angular frequency of the electro-
magnetic field, k0 is the wave vector in vacuum, and t01 = 2/(1 + n) is the
transmission coefficient of the air–sample interface. Since the frequency of
the light wave is much greater than the spectrum of ∆ε(z, t), the equation
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Fig. 6. Scattering of an electromagnetic field by an acoustic perturbation localised
at z

of propagation can be solved for a Fourier component of the electromagnetic
field, thus treating the perturbation induced by the gradient as quasi-static.

Assume to begin with that only a slice of the material of thickness dz has
its refractive index n modified by an amount ∆n at a distance z from the
surface (see Fig. 6). We seek an expression for the reflection coefficient of the
material in the presence of this perturbed layer.

Using a transfer matrix technique, the amplitudes of the incident, reflected
and transmitted fields can be related by

(
a0

b0

)
=

1
t01t12t21

(
1 r01

r01 1

) (
e−ink0z 0

0 eink0z

) (
1 r12

r12 1

)

×
(

e−i(n+∆n)k0 dz 0
0 ei(n+∆n)k0 dz

)(
1 r21

r21 1

) (
as

0

)
, (44)

where

r01 =
1

1 + n
, r21 =

∆n

2n + ∆n
, ∆n =

∆ε

2n
.

The reflection coefficient r(z, t) can then be deduced from a truncated ex-
pansion in powers of ∆n and dz :

r(z, t) =
b0

a0
= r01 + ik0(1 − r2

01)e
2ik0nz∆n(z, t) dz (45)

and

∆r

r
=

r(z, t) − r01

r01
= ik0

1 − r2
01

r01
e2ik0nz∆n(z, t) dz . (46)

To obtain the total contribution of the gradient to the change in reflectance,
one must integrate over the whole thickness of the material. Hence,

∆r(t)
r

∣∣∣∣
grad

= ik0
∂n

∂X

4n

1 − n2

∫ +∞

0

dzX(z, t)e2ik0nz . (47)
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Fig. 7. Time dependence of the reflectance of a bulk tungsten layer. Continuous
curve: Surface temperature. Dashed curve: Experimental curve. Dotted curve: Sim-
ulation taking into account detection over the optical penetration depth. It has
been assumed that �(∂n/∂T ) = 0

The surface displacement u0 also contributes to the imaginary part of ∆r/r,
viz.,

∆r(t)
r

∣∣∣∣
geom

= 2ik0u0(t) . (48)

The total contribution from acoustic and thermal effects is therefore

∆r(t)
r

= ik0

{
2u0(t) +

4n

1 − n2

×
∫ +∞

0

dz

[
∂n

∂T
∆T (z, t) +

∂n

∂η
∆η(z, t)

]
e2ik0nz

}
. (49)

Thermal and acoustic effects contribute simultaneously to ∆r/r in the first
few picoseconds after absorption of the pump laser pulse and there is no hope
of using the first few picoseconds of a pump–probe experiment to measure the
thermal diffusivity of a film without taking into account the acoustic pulse
that leaves the surface. The second consequence of (49) is that the thermal
gradient beneath the surface must also be taken into account in order to
give an adequate treatment of the first few moments of diffusion. After the
time required for the heat to diffuse beyond the optical penetration length
(τth = 1/κ2

να ∼ 10 ps), one can justifiably consider that only the temperature
at z = 0 is probed [31]. The consequences for the change in reflectance of
taking into account the thermal gradient are illustrated in Fig. 7.

One of the difficulties raised by using (49) relates to the fact that the co-
efficients ∂n/∂X are not well known, or not known at all. As far as the coeffi-
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cients ∂n/∂T are concerned, there are differential measurement techniques for
determining them over a broad spectral range [32,33]. The coefficients ∂n/∂X
can be determined by simultaneous analysis of the two forms of acoustic echo
seen in the real and imaginary parts of ∆r/r. Fitting these signals is realistic
enough, since a significant part of the contribution to the imaginary part of
∆r/r comes from the surface displacement, which can therefore be used to
calibrate [4, 12, 30]. As for the photothermal coefficients, the photoelastic co-
efficients also exhibit a great sensitivity to the optical wavelength [34]. This
is particularly true for nanoparticles when the probe frequency is close to the
plasmon resonance [35, 36].

3 Experimental Setups

In this section, we shall describe a standard coupled pump–probe setup, either
with transient transmittance/reflectance detection, or with interferometric
detection. As mentioned in the introduction, titanium:sapphire oscillators
are the most commonly used today, delivering laser pulses with width less
than 100 fs in the wavelength range 700–1000 nm, with a repeat rate close to
100 MHz and power output around 1 W. The energy per pulse is thus around
10 nJ.

As shown in Fig. 8, as soon as it leaves the oscillator, the beam is split
into two: a pump beam which serves to heat the system and a probe beam
which measures the subsequent cooling. There are various ways to carry out
this separation of the beam: a beam splitting plate or cube, a polarising
cube, or a frequency-doubling crystal. The most effective way to discriminate
between the pump and probe in the detector is to use a frequency-doubling
crystal together with dichroic plates or filters, since the pump and probe
beams have different colours in this configuration, which is said to be non-
degenerate. For a degenerate configuration, where the pump and probe have
the same wavelength, a polarising cube can be used to obtain orthogonal
polarisations in the pump and probe, whereupon they may once again be
discriminated at the detector.

One of the two beams is then delayed (or advanced) with respect to the
other. If the detection scheme is complicated, it may be preferable to advance
the pump. For delays exceeding a few nanoseconds (1 ns corresponds to a
change of 30 cm in the optical path), one must take into account the spread
of the laser beam because, at the point where the pump and probe beams
overlap, the diameter of the focal spot of the retarded (or advanced) beam
can vary significantly. Furthermore, it is difficult to maintain a perfect overlap
of the two beams during the delay. A correcting device has been proposed
by Capinski [37]. The beam is injected into an optical fibre at the output of
the delay line. When it emerges from the fibre, the diameter and direction
of the beam are then independent of the pump–probe delay. The intensity
may vary but a servo system can be used to hold it constant, or the intensity
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Fig. 8. Experimental setups. Detection by (a) reflectance, (b) Mach–Zender inter-
ferometry, (c) Sagnac interferometry. The three forms of detection are interchange-
able. Beam splitting cubes can be non-polarising (NPBS) or polarising (PBS)

can be measured and the signal normalised at the output of the synchronous
detector. This correction would appear to be necessary if one is to maintain an
acceptable dynamic measurement range. The disadvantage in using a fibre
is a deterioration in the pulse width and spectrum, although this may be
compensated at the outset, and the possible appearance of nonlinear effects
in the fibre.

Reflectance variations expected as a result of thermal effects are typically
in the range 10−6–10−4. Since intensity fluctuations at the oscillator output
are of the order of 1%, synchronous detection must be used. The pump beam
is modulated with an angular frequency Ω that is then sought in the signal
emerging from the detectors. Several types of modulator can be used:
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– Mechanical choppers up to a few tens of kHz. The advantage here is that
they do not broaden the laser pulses.

– Acousto-optical or electro-optical modulators which can modulate up to
a few MHz, but which significantly broaden the laser pulses.

After interaction with the system under investigation, the reflected, trans-
mitted or scattered probe beam is detected using a simple photodiode whose
output is amplified by the synchronous detector. It is not generally necessary
to use ultrasensitive or ultrafast detectors, because the average power of the
probe beam is of the order of the mW and the modulation frequency does
not exceed a few MHz. The sensitivity expected for this type of device is
around 10−7.

3.1 Interferometric Detection

It is sometimes useful to carry out a simultaneous measurement of the real
and imaginary parts of the change in reflectance (or transmittance) induced
by the pump beam. When measuring the reflectance of an opaque film, the
surface displacement contributes to the imaginary part of this coefficient. We
set

∆̂r

r
= a + iφ . (50)

Since this quantity is very small, a can be considered as the change in am-
plitude of the reflected probe beam and φ as the change in phase. In any
interferometer, the beam carrying the measurement (a + iφ), with intensity
Is = E2

s , is made to interfere on a detector with a reference beam of intensity
Ir = E2

r . The detected intensity is thus

I(θ) =
∣∣Es(1 + a + iφ) + Ereiθ

∣∣2

= E2
s (1 + 2a) + E2

r + 2EsEr

[
(1 + a) cos θ + φ sin θ

]
, (51)

where θ is the optical path difference between probe and reference. By choos-
ing an operating point for the interferometer such that θ = ±π/2, we obtain
the intensity variation

∆I

I0

(
±π

2

)
=

2Is

I0
(a ± ξφ) , where ξ =

√
Ir

Is
.

Therefore, using a single detector and two experiments carried out succes-
sively for θ = +π/2 and θ = −π/2, the quantities a and φ can be obtained
independently. Moreover, in most interferometric detection devices, two de-
tectors can be used simultaneously to detect complementary signals I(θ) and
I(θ+π), so that a and φ can be obtained in a single measurement by addition
and subtraction, i.e., I(θ)±I(θ+π). Two types of interferometer are depicted
in Figs. 8b and c.
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Sagnac Interferometer. Differential Detection

The Sagnac interferometer is particularly useful when pulsed lasers are
used [4, 7]. In this type of setup, the probe beam travels around a loop
in two opposite directions and the sample is placed at a non-symmetrical
position on this loop. One can then compare two probe beams that have
been reflected (or transmitted) by the same point of the sample at two dif-
ferent times t and t + τs relative to the pump pulse. In addition, a half-wave
plate is inserted to rotate the polarisation of the probe through 90◦ along
its path. A quarter-wave plate is also introduced and oriented in such a way
that the two polarisations are out of phase by ±π/2. In this way, the two
beams propagating in opposite directions cross the quarter-wave plate po-
larised in different directions and are retarded or advanced by π/2 relative
to one another. Assuming to simplify that the beam splitting cubes (whether
polarising or not) are perfect (splitting into two exact halves), it is easy to
show that the photodiodes A and B detect signals given by

SA =
[
a(t) + a(t + τs)

]
±

[
φ(t + τs) − φ(t)

]
,

SB =
[
a(t) + a(t + τs)

]
∓

[
φ(t + τs) − φ(t)

]
. (52)

By adding and subtracting the signals from the two diodes, a(t+τs)+a(t) and
φ(t+τs)−φ(t) can thus be measured simultaneously. This device thus provides
a natural way of subtracting, in the imaginary part φ of ∆r/r, the stationary
signal arising from cumulative effects due to the train of pump pulses to be
described in the next section. The other great advantage with the Sagnac
interferometer is its high mechanical stability, since any vibrations will affect
both arms in the same way. However, for slowly decaying phenomena, the
deconvolution of effects arising at times t and t+τs is sometimes problematic.

Sensitivity of Interferometric Measurements

The sensitivity of an interferometric measurement is equivalent to the sensi-
tivity of a reflectance measurement (10−7). If it is assumed that the change
in phase φ is only due to a surface displacement, this sensitivity leads to a
displacement 4πu/λ = 10−7, which gives, for a wavelength of 750 nm, a reso-
lution of 6 fm in the measurement of the surface displacement induced by the
pump pulse. Moreover, for weakly reflecting systems, this kind of setup allows
the possibility of heterodyning the reflected beam with a more intense refer-
ence beam (except in the Sagnac interferometer, where probe and reference
are reflected from the same point of the sample).

3.2 Cumulative Effects Due to the Pump Pulse Train

The repeat period of the most commonly used titanium:sapphire oscillators
is around ten nanoseconds, and thermal effects induced by a first pump pulse
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may not have time to fully relax before the next pulse arrives to heat the sam-
ple [25, 37]. Moreover, in order to obtain a suitable dynamic detection range,
the pump pulse train must be modulated and variations in the probe beam
recorded (whether it is reflected, scattered or transmitted) using synchro-
nous detection. The modulation frequency can be anywhere between a few
kHz and a few MHz. Three time scales are thus relevant in this pump–probe
experiment:

– the laser pulse width (100 fs),
– the time interval between two consecutive pump or probe pulses (10 ns),
– the modulation period (from 1 ms to 1 µs).

Since the laser pulses are very short compared with the duration of the ther-
mal phenomena under investigation, the pump and probe pulse train can be
expressed in the form of Dirac combs:

IP(t) = IP

m=+∞∑
m=−∞

M(mT )δ(t − mŤ ) ,

IS(t) = IS

n=+∞∑
n=−∞

δ(t − τps − nŤ ) , (53)

where M(t) represents the modulation of the pump beam, Ť the repeat pe-
riod, τps the delay of the probe with respect to the pump, and IP and IS

the intensities of the pump and probe beams, respectively. The change in
reflectance (or transmittance) induced by the pump pulse train can thus be
written

∆r(t) = IP

n=+∞∑
n=−∞

M(mŤ )∆̂r(t − mT ) , (54)

where ∆̂r(t) is the change induced by a single pulse. The signal detected at
the photodiode is therefore

S(t) ∝ IS(t)∆r(t) = S0

∑
m,n

M(mŤ )∆̂r(t − mŤ )δ(t − τps − nŤ ) . (55)

The Fourier transform S(ω) of S(t) is given by

S(ω) =
∫ +∞

−∞
dtS(t)e−iωt

= S0

∑
m,n

M(mŤ )∆̂r(τps + nŤ − mŤ )e−iω(τps+nŤ )

= S0

∑
m,p

M(mŤ )∆̂r(τps + pŤ )e−iω[τps+(m+p)Ť ] . (56)
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The modulation function can be expanded in a Fourier series

M(mŤ ) =
∞∑

k=0

MkeimkΩŤ ,

where Ω/2π is the modulation frequency. Hence,

S(ω) = S0

∑
m,p,k

Mk∆̂r(τps + pŤ )eimŤ (Ωk−ω)e−iω(τps+pŤ )

=
2πS0

Ť

∑
p,r,k

Mk∆̂r(τps + pŤ )e−iω(τps+pŤ )δ(Ωk − ω) . (57)

Assuming that the synchronous detection gives access to the line k = 1 in
the spectrum of S(ω), the signal output from this detection is

SΩ(τps) = S

+∞∑
p=0

∆̂r(τps + pŤ )e−iΩ(τps+pŤ ) , (58)

where only the positive values of p are taken into account, given the causal-
ity of the response ∆̂r(t). We also assume that the reference phase of the
synchronous detector is defined so that the prefactor S is real. Note that

SΩ(Ť ) = S

+∞∑
p=1

∆̂r(pŤ )e−ipΩŤ

and that the discontinuity at τps = 0 is given by

SΩ(0) − SΩ(Ť ) = S∆̂r(0) .

To assess the difference between the behaviour of SΩ(τps) and ∆̂r(τps), it is
best to consider a concrete example that is not too difficult to calculate, e.g.,
∆̂r(t) = e−t/τc . We then have

SΩ(τps) = S
e−τps/τce−iΩτps

1 − e−Ť /τce−iΩŤ
. (59)

Several conclusions can be drawn from this relation:

– The time τc is generally shorter than Ť and much shorter than 2π/Ω
(otherwise one could not justify using short pulses). For values Ť /τc = 2
and ΩŤ = 0.15,

SΩ(τps) ≈ 1.15Se−τps/τc .

Only the ‘in phase’ output of the synchronous detector [the real part of
SΩ(τps)] contains a significant contribution. The dependencies of SΩ(τps)
and ∆̂r(τps) are roughly the same but the prefactor is increased by 15%.
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– At long times, new thermal diffusion phenomena occur: lateral diffusion
from the initial laser spot, diffusion into the underlying substrate, etc.
Consequently, SΩ(τps) always contains a ‘continuous’ component that
can be defined by

SΩ = S

+∞∑
p=0

∆̂r(pŤ )eiΩpŤ ≈ S

Ť

∫ ∞

0

∆̂r(t)eiΩt .

The short-time dependence can thus be neglected and the ‘continuous’
component SΩ represents the photothermal response of the material
heated periodically by the pump beam at the modulation frequency
2π/Ω. The impulsive aspect of the pump and probe beams disappears
totally in the analysis of this stationary contribution, whose component
in quadrature is no longer negligible. A phase and amplitude analysis
of the kind ordinarily carried out in photothermal experiments is then
preferable. This stationary contribution, whose amplitude falls off with
the modulation frequency, can be much greater than the time-dependent
part SΩ(τps) − SΩ. To reduce it, one can either increase the modulation
frequency or reduce the modulation width. A Sagnac interferometer can
also eliminate this continuous component in the detection of the imagi-
nary part �(∆̂r(τps)). To quantify this continuous component, we may
once again assume an exponential decrease for ∆̂r, but with a much
longer characteristic time τl than considered previously (τl � τc) and
longer than the modulation period Ť . This gives

SΩ = S
τl

Ť

1 − iΩτl

1 + (Ωτl)2
.

For long enough times τl (or high enough modulation frequencies), the
imaginary part (in phase quadrature) of the continuous component SΩ

is no longer negligible compared with the real part (in phase). Moreover,
the amplitude of this component falls off as Ω increases.

The conclusions from this calculation do not really contain any surprises:
at short times, the time dependence ∆̂r only appears in the real part of
the synchronous detector, provided that the reference phase of the detector
has been suitably adjusted. The in-phase signal is proportional to the real
part of the reflectance but an accumulation effect due to successive pump
pulses must nevertheless be taken into acount when analysing the absolute
amplitude of the signal. This time dependence comes along with a continuous
background component which appears in both the output in phase and the
output in quadrature from the synchronous detection. The amplitude of the
continuous component tends to zero at high modulation frequencies. The
pulse-like aspect of the pump beam does not have to be taken into account
to analyse this stationary signal.
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4 Conclusion

Femtosecond laser sources can thus be used with a pump–probe setup to in-
vestigate the thermal properties of thin films, multilayers, and nano-objects,
and also to determine contact resistances. They provide the very high tempo-
ral resolution required to study small spatial dimensions, and a good dynamic
range, combined with the fact that they can be implemented without alter-
ation of the subject under investigation. Several problems have been raised
here:

– Thermal effects on short time scales (< 100 ps) are always associated
with acoustic phenomena which must be correctly understood if the de-
termination of thermal properties is to remain unbiased.

– Behaviour on very short time scales cannot be described without taking
into account the electron gas.

– A measurement of transient reflectance does not detect the surface tem-
perature in the first few picoseconds but is sensitive to the thermal gra-
dient over the whole optical penetration depth.

– Since the asymptotic behaviour on long time scales (> 10 ns) goes as
t−D/2, where D is the size of the relevant system, it serves little purpose
in the determination of the thermal diffusivity.

One must therefore work in the time domain from 50 ps to 10 ns. A configura-
tion involving a perfectly conducting medium (a film deposited on a substrate
or nanoparticle) in contact with its surroundings would seem to be the most
favourable both for measuring the diffusivity of the substrate or matrix, and
for determining the interfacial thermal resistance. It is easy enough to mea-
sure the transient reflectance (or transmittance), even if certain precautions
must be taken for long optical delays.
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Index

absorption
coefficient, 334
length, 340

acoustic echo, 336, 337, 346, 349
width, 336

acoustic generation, 334, 337
acoustic pulse, 336, 348
acoustic strain, 335–338

gradient, 346
acoustic transient, 334, 335

optical detection, 345, 349
acoustic wave

longitudinal, 335
acousto-optical modulator, 351

Biot number, 342, 345
boundary conditions, 335, 338, 339

chopper, 351

dielectric constant, 337, 345
gradient, 346

diffusion equation, 338, 341, 343

elasticity tensor, 334
electro-optical modulator, 351
electron

conduction, 340
diffusion, 340, 341
gas, 340, 356
mean free path, 340

electron–phonon interaction, 340

femtosecond laser, 333, 334, 343
femtosecond pump–probe method, 333,

356
Fourier transform, 353

gold
nanoparticle, 345

heat flux, 344
in opaque film, 338

incompressibility modulus, 335
interferometry, 346, 350–352

differential detection, 352
sensitivity, 352

Kapitza resistance, 343

Laplace transform, 338, 339, 341, 344
light sources, 349

Mach–Zender interferometer, 350
mean free path

electron, 340
mechanical stress, 335
modulation function, 354

nanoparticle, 337, 346, 349
cooling, 333, 343, 345
gold, 345
metallic, 343, 345

nanoscale SONAR, 337
noble metals, 340
non-destructive evaluation, 337

opaque film, 333–335, 337, 343
reflectance, 346, 349, 351
surface displacement, 339
temperature gradient, 337, 339

optical fibre, 349
optical penetration length, 333, 336,

346, 348, 356

phonon
gas, 340

photoelastic coefficient, 337, 346, 349
photothermal

coefficient, 346, 349
methods, 333, 355

picosecond acoustics, 337
probe beam, 333, 349, 355

characteristics, 346
pump beam, 333, 338, 349, 355

modulation, 350
pump pulse train, 352, 355
pump–probe delay, 333, 349

reflectance, 334, 347, 356
detection, 350
opaque film, 346, 349
relative variation, 348, 350, 351, 353
time dependence, 348

reflection coefficient, 347



Investigation of Short-Time Heat Transfer Effects 359

acoustic, 336
refractive index, 345, 347

complex, 346
gradient, 346

relaxation time
resistive, 342
thermal, 345

resistive relaxation time, 342

Sagnac interferometer, 350, 352, 355
stability, 352

semiconducting superlattice, 343
specific heat capacity

opaque film, 334
stress tensor, 334
surface displacement, 337, 338

due to echo, 336, 337
equation of propagation, 335
opaque film, 339, 351

surface plasmon, 349

temperature
field, 338

gradient, 334, 336, 337, 339, 346, 356
thermal

conductivity, 341, 343

diffusivity, 338, 341, 343, 348, 356
relaxation time, 345

resistance, 333, 341, 343, 356
stress, 334, 335
transient, 345, 349

thin film, 337
cooling, 344
non-destructive evaluation, 337

opaque, 337, 343, 346, 349, 351
thermal conductivity, 343

transmittance, 351, 353, 356
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ab initio calculation, 163, 164
absorptance, 9
absorption, 56

coefficient, 250, 338
cross-section, 73
length, 57, 61, 73, 344

acoustic echo, 340, 341, 350, 353
width, 340

acoustic generation, 338, 341
acoustic microscopy, 291
acoustic modes, 50, 151, 315

in nanoparticle, 311
acoustic pulse, 340, 341, 352
acoustic strain, 339–342

gradient, 350
potential, 322, 325

acoustic transient, 338, 339
optical detection, 349, 353

acoustic wave, 245, 251, 260
longitudinal, 339

acousto-optical modulator, 251, 355
active sample, 255
ADI method, 87
AFAM, 196
albedo, 57, 73
AlN ceramic, 273, 274
antenna, 72, 131
arc lamp, 251
artifacts in thermal images, 220, 221
atomic force microscope, 188, 191, 194,

301
adhesive forces, 193
cantilever, 188, 192
contact forces, 193
contact mode, 192
DMT model, 193
heat detection, 201, 204
JKR model, 193

Maugis model, 193

non-contact mode, 192

operating principle, 192

tapping mode, 192

atomic force microscopy, 303

attenuation, 11

Au–Pd thermocouple, 206

Au–Pt thermocouple, 205

ballistic transport, 5, 7, 27, 28, 30, 33,
42, 46, 47, 60, 65, 67, 200, 217

in gas, 142, 149

in insulating crystal, 149, 153

band gap, 46, 250

temperature dependence, 253

band-to-band recombination, 250

Beer–Lambert law, 11, 57, 69, 146, 247

Bessel function, 248, 260

bimetallic tip, 207

biological imaging, 195, 269

Biot number, 224, 346, 349

black body, 8, 82, 125, 127, 251, 290,
298

Bloch state, 41–44

Boltzmann constant, 18

Boltzmann equation, 3, 5, 19, 20, 43,
45, 52, 60, 77, 321, 324, 326, 327

dimensionless, 21

electron gas, 311

linear response, 24

perturbation theory, 24

Boltzmann law, 215

Bose–Einstein distribution, 8, 52, 77,
79, 149, 151, 316

boundary conditions, 39, 81, 87, 90,
165, 247, 293, 294, 339, 342, 343

free surface, 172
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periodic, 39, 165, 166, 168, 172, 177,
247

Bravais lattice, 41
Brenner interaction potential, 171
Brillouin zone, 41–43, 45, 151, 152, 167,

177, 312, 315
L point, 313

bulk wave, 260

canonical quantisation, 49
canonical system, 159
carbon nanotube, 171
CASM, 229
CCD camera, 257, 258, 269, 276

frame rate, 258
readout noise, 258
well depth, 258

chemical potential, 46
gradient, 199

chopper, 251, 355
cloud, 11, 57
cluster, 316, 317, 326, 330

collective excitation, 332
size, 328, 332

coherence length, 10, 70, 78
coherent detection, 261

broad band, 263
collective oscillation, 126, 318
collision time, 22, 26
collisional regime, 22, 25, 30, 42, 45, 46,

217
collisions, 19

binary, 143
phonon, 80, 81, 149, 152, 176
probability distribution, 146, 147

compression wave, 195
computation time, 142, 162, 163, 172
conductance

electrical, 66
quantised, 46
quantum, 47
Sharvin, 47

conduction
characteristic length, 2
characteristic time, 2
electrical, 41
electron, 311, 312
harmonic regime, 4
in dielectric materials, 175

in fluids, 5, 7
in solids, 1, 5
in thin film, 153

conduction band, 38
isotropic parabolic, 313, 314, 319–321
noble metals, 312, 313
Rosei model, 320

conductive flux, 17, 25, 217
in ballistic regime, 27, 28

contact potential, 202
continuity equation, 41
continuum model, 143
convection, 5, 7, 29, 214

characteristic time, 6
convective transfer, 29, 225
converging thermal wave method, 246
copper, 312
current density, 42, 71, 109, 114
cylindrical geometry, 248, 292, 297

data storage, 303, 304
de Broglie, L., 186
Debye frequency, 151
Debye model, 77, 80, 81, 315, 323, 325
Debye temperature, 80, 324
defect, 159, 189

detection, 276–278
subsurface, 197

density of states
electromagnetic, 126
electron, 39, 41, 319
phonon, 50, 151

diamond scheme, 94, 101
diamond tip, 205
dielectric constant, 9, 110, 118, 120,

126, 311, 317, 320, 341, 349
gradient, 350
imaginary part, 317
noble metals, 317
real part, 317, 320, 327

diffraction limit, 184, 251
diffusion approximation, 63, 66
diffusion coefficient, 60, 64, 67, 68, 158
diffusion equation, 1, 60, 185, 342, 345,

347
P1 approximation, 61, 64
semiconductor, 250
short-time limit, 3

diffusion length, 296, 297
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diffusive
flux, 17
medium, 11
transport, 5, 30, 60, 63, 65–67, 82,

104, 217, 243, 245
dipole

approximation, 118
electric, 9, 72, 114
moment, 50, 117
radiation, 114, 116

dipole–dipole interaction, 120
discrete ordinate method, 78, 88, 102

cylindrical coordinates, 96, 97
quadrature, 89, 90, 93

dispersion forces, 164
dispersion relation, 39, 45, 126, 127,

168, 176–178
conduction electrons, 313
phonon, 48, 151, 315, 316, 323
sinusoidal, 323

distribution function, 15, 16, 26
dynamical equation, 19, 32
equilibrium, 18, 31

Drude model, 253, 317, 318
dynamic cantilever, 207

Earth’s crust, 329
Ehrenfest theorem, 43, 44
Einstein model, 324
elasticity tensor, 338
electro-optical modulator, 355
electromagnetic potential, 113, 114
electron, 38, 47

as point particle, 43
Bragg reflection, 45
conduction, 344
density of states, 39, 41, 319
diffusion, 344, 345
diffusivity, 250
distribution, 311, 314
dynamics, 43, 45
effective mass, 44, 313
energy spectrum, 38
gas, 47, 242, 311, 325, 344, 360
in periodic potential, 41
localised, 40
mean free path, 344
non-interacting, 38, 40
probability density, 41

semi-classical description, 43, 45
specific heat capacity, 324
spin, 38
temperature, 311, 313, 324
thermalisation, 311, 321, 324, 325,

327
wave function, 38, 186

electron beam lithography, 206
electron–hole pair, 250
electron–lattice interaction, 321, 328
electron–phonon interaction, 253, 311,

332, 344
in bulk, 322, 324
in nanoparticle, 326, 328

electron–surface collisions, 318
electronic band structure, 312, 314

in bulk metal, 312, 313
in nanoparticle, 314

electronic speckle pattern interferome-
try, 271, 273

emissivity, 8, 127–129
energy conservation, 62, 112, 137, 139,

146, 174
energy density, 112, 113, 121, 124, 125
equilibrium molecular dynamics, 169,

171, 172
evanescent wave, 124, 126, 127, 130,

185, 194, 245, 298, 299
exciton, 314
extinction, 57

coefficient, 57
cross-section, 73
length, 57, 73

extrapolation distance, 67

Fabry–Perot cavity, 261
femtosecond laser, 311, 337, 338, 347

excitation, 318
probe, 320

femtosecond pump–probe method, 318,
321, 337, 360

time resolution, 318
Fermi fluid, 314
Fermi level, 46, 47, 191, 253, 313, 314,

317, 319, 320
Fermi surface, 312, 313
Fermi–Dirac distribution, 38, 42, 45–47,

314
fermion, 38
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Fick’s law, 63
field-effect transistor, 202, 213, 214,

230, 231
flash method, 246
fluctuation–dissipation theorem, 70, 71,

117, 119, 122, 131, 171
fluorescence imaging, 195
force modulation microscope, 196

resolution, 196
Fourier law, 1, 3, 4, 22, 24, 25, 30, 60,

63, 66, 153, 247
for phonons, 82
modified, 3, 5, 105

Fourier number, 2, 4
Fourier transform, 43, 48, 71, 110, 111,

118, 177, 357
free particles, 19
Fresnel

reflection factor, 10, 125, 129, 131
transmission factor, 123

gas laser, 251
Gauss–Seidel method, 87
Gaussian thermostat, 175
Gear algorithm, 161, 162
geometric optics, 7, 9, 187
gold, 312

dielectric constant, 327
nanoparticle, 349
reflectance variation, 326

goniometry, 268
grain boundary, 210, 230

thermal resistance, 274
grand canonical system, 159
Green function, 72, 119, 121–123, 128
Green–Kubo relation, 171
grey medium, 86, 104
group velocity, 40, 41, 44, 51, 150, 151,

176–178
guarded hot plate, 172

Hankel transformation, 248, 293, 294
harmonic oscillator, 49, 138, 168, 178
heat equation, 1, 60, 242, 247, 248, 293

hyperbolic, 103–105
heat flux, 17, 137, 143, 145, 150,

171–175, 194, 198, 243, 244, 348
detection, 197
in opaque film, 342

in SThM, 203, 214, 215
Monte Carlo simulation, 139, 142
tip–surface, 147, 149, 215

heat pulse, 244
spread, 245

Heisenberg uncertainty principle, 184
Helmholtz equation, 4, 86, 87, 111
Henyey–Greenstein phase function, 73
Hertz contact theory, 193, 300
HNEMD, 170, 174, 175
hot spot, 197, 202, 213, 216, 274, 326

detection, 230, 276, 280
hybrid microscopy, 188, 193, 289, 304

detection methods, 292
resolution, 295

hydrodynamic velocity, 17

impact parameter, 146
impulse response, 144, 145
incompressibility modulus, 339
induction forces, 164
integrated circuit, 230, 241, 255, 257,

275, 276
diffused resistance, 275
interconnects, 280, 281
SThEM image, 303
thermophysical properties, 281, 283

integration algorithm, 162
interaction time, 152
interband transition, 317, 318

threshold, 313, 320
interconnects, 254, 280, 281
interferometric signal, 252, 268
interferometry, 252, 260, 273, 291, 292,

296, 297, 350, 354–356
calibration, 268
detector array, 269, 273
differential detection, 268, 356
heterodyne, 261, 263
homodyne, 264, 266
intermediate frequency, 261
phase imaging, 269, 273
sensitivity, 356
single detector, 267, 268
speckle, 271, 273

internal energy, 17, 26, 86
phonon gas, 79

intraband transition, 317–319, 321, 322
investigation depth, 219, 220, 295
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isobaric–isothermal system, 159
isothermal cell technique, 150

Johnson noise, 199
Joule heating, 212, 214, 215, 225, 241,

242, 275, 276, 279, 298, 301

Kapitza resistance, 347
kinetic theory of gases, 15, 176
Kirchhoff’s law, 9
Knudsen number, 21, 22, 64, 143

Lamb wave, 260
Laplace transform, 342, 343, 345, 348
laser diode, 251, 255

imaging, 277, 278
lattice parameter, 43, 44, 313
Legendre polynomials, 61, 63, 73, 83,

84
Lennard–Jones potential, 177, 178
light sources, 250, 251, 353

modulated, 250
light–matter interaction, 316
Liouville theorem, 45
local equilibrium distribution, 20
local thermodynamic equilibrium, 23,

25, 52, 58, 150, 170
longitudinal acoustic wave, 185
Lorentz force law, 110
LPCVD, 206

M-SThAM, 298, 301
Mach–Zender interferometer, 262, 354
Marschak model, 87, 88
matrix temperature, 327
Matthiessen rule, 152
Maxwell equations, 70, 72, 109, 110

plane waves, 112
Maxwell–Boltzmann distribution, 18,

31, 45, 140, 166, 167, 170
mean free path, 7, 19, 22, 26, 60

electron, 344
molecular, 139, 143, 147, 148, 200
phonon, 5, 52, 80, 150

mechanical stress, 339
MEMS, 278, 279

temperature map, 280
Michelson interferometer, 264, 266

active stabilisation, 265

imaging, 269
instrumental profile, 266

microcanonical system, 159, 171
microelectronics, 303
microphone detection, 289, 292
microthermocouple, 289, 292
Mie phase function, 73
Mie theory, 318
Millipede, 304
mirage effect, 290, 292
mode-locked laser, 251
modulation function, 358
molecular dynamics simulation, 135,

149, 157, 178
energy distribution, 167, 168
initial state, 165
physical units, 159, 160

molecular flux, 143–145
momentum conservation, 139, 146
Monte Carlo method, 101, 135, 154

carrier trajectory, 139
energy carrier, 139

Moore’s law, 303, 304
multigrid algorithm, 87
multiple scattering regime, 60, 61, 65,
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nanofabrication, 303, 304
nanoindenter, 189
nanometrology, 303
nanoparticle, 10, 72, 311, 341, 350, 353

breathing mode, 329–332
cooling, 337, 347, 349
electron–phonon interaction, 326, 328
electronic band structure, 314
glass, 120, 121
gold, 349
metallic, 311, 314, 317, 318, 347, 349
optical response, 317, 318
polarisation, 318
semiconductor, 314
size dispersion, 331
thermal emission, 117, 120
vibrational modes, 316, 328, 332

nanoscale SONAR, 341
nanowire, 208
Navier–Stokes equation, 22, 142, 329
near-field microscopy, 183, 196

hybrid, 289, 304
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optical, 194, 195
resolution, 183, 188, 195

NFOT, 297
NHNEMD, 169, 172, 174
noble metals, 312, 314, 344

band structure, 313
conduction band, 312, 313
dielectric constant, 317
interband transition threshold, 313
lattice structure, 312
optical response, 316, 317
unit cell, 315
valence bands, 312

non-destructive evaluation, 297, 341
non-radiative recombination, 250
non-radiative transfer, 10
normal variables, 48
Nusselt number, 6

Ohm’s law, 42, 63, 66
opaque film, 337–339, 341, 347

reflectance, 350, 353, 355
surface displacement, 343
temperature gradient, 341, 343

optical ammeter, 275, 276
optical excitation, 241, 246, 251

semiconductor, 250
optical fibre, 291, 297, 299, 353
optical modes, 50, 151
optical penetration length, 337, 340,

350, 352, 360
optical rectification, 201
optical stethoscope, 194
optical transitions, 316
optoelectronics, 187, 230

P1 method, 78, 83, 88, 102, 103
passivation layer, 253, 282
passive sample, 255
Pauli exclusion principle, 317
Peltier effect, 242, 275–277
Peltier module, 255
permeability, 110
permittivity, 251

temperature dependence, 252
wavelength dependence, 253

phase function, 58, 62, 72, 74
angular dependence, 72
constant, 73

Henyey–Greenstein, 73
Mie, 73
normalisation, 58
Rayleigh, 73

phase transformation, 159
phonon, 11, 47, 53, 60, 77, 78, 167, 168,

250, 253
acoustic, 50, 151, 315, 322
as plane wave, 177
collisions, 80, 81, 149, 152, 176
decay, 52
definition, 49
density of states, 50, 151
diffusive transport, 82
dispersion relation, 48, 151, 315, 316,

323
energy, 50
flux, 138, 149
gas, 344
heat transfer, 175, 177
intensity, 79
mean free path, 5, 52, 80, 150
number, 169
optical, 50, 126, 151
radiative transfer equation, 80, 83,

102
random walk, 150, 153
reflection, 82, 87
relaxation time, 5
thermal conductivity, 176

phonon–defect interaction, 176
photoelastic coefficient, 341, 350, 353
photolithography, 195, 206
photoluminescence, 251
photon noise, 257, 258, 269
photothermal

absorption spectroscopy, 199
coefficient, 350, 353
detection, 299
effect, 290
excitation model, 293, 297
methods, 241, 246, 337, 359
microscopy, 297

photothermoelastic microscopy, 297,
303

picosecond acoustics, 341
Planck distribution, 58, 167, 168, 176
plane wave expansion, 111, 112
Pockels cell, 251
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point particle mechanics, 139
Poisson ratio, 193, 294
polar crystal, 11
polarimetry, 267, 268
polarisability, 117–119
polymer blend, 229
potential barrier, 191
potential energy, 158, 163, 165

cutoff, 166
two-body, 163

power spectral density, 71
Poynting vector, 56, 112, 113, 126, 128
probability distribution, 139, 140, 145

collisions, 146, 147
uniform, 140

probe beam, 256, 257, 261, 262, 264,
274, 291, 311, 318, 337, 353, 359

characteristics, 350
frequency, 320
grazing incidence, 290

profilometry, 268
PSTM, 194
pump beam, 241, 247, 256, 274, 311,

318, 322, 324, 337, 342, 353, 359
modulation, 354

pump pulse train, 356, 359
pump–probe delay, 311, 318, 328, 337,

353
pyroelectric sensor, 289, 292

Q-switch laser, 250
quantum confinement effects, 314
quantum well, 195

radiation, 7, 11
characteristic length, 9
characteristic time, 9
dipole, 10
thermal, 11

radiative energy balance, 59
radiative flux, 8, 60, 86, 89, 121,

126–128, 130
vector, 56, 62, 63

radiative transfer
between two nanoparticles, 118, 120
between two planes, 128, 131
coefficient, 130, 131
near-field, 10, 11, 72, 109, 131, 216
tip–sample, 215, 216

radiative transfer equation, 55, 60, 78,
136

phonon, 80, 83, 102
radiometric detection, 290, 292
Raman spectroscopy, 251, 331
random walk, 139, 141, 144–146

phonon, 150, 153
rarefied gas regime, 7, 22, 27
ray effect, 92, 101
Rayleigh criterion, 184, 186, 295
Rayleigh number, 29
Rayleigh phase function, 73
Rayleigh wave, 245, 260
reciprocal lattice, 312
reciprocal space, 40, 42–44, 50, 110, 167
reciprocity theorem, 9
recombination lifetime, 250
reference beam, 262, 264
reflectance, 128, 129, 252, 268, 299,

338, 351, 360
detection, 354
map, 279, 280
opaque film, 350, 353
relative variation, 257, 280, 290, 298,

326, 352, 354, 355, 357
time dependence, 352

reflection coefficient, 67, 68, 250, 251,
351

acoustic, 340
complex, 252, 268
relative variation, 268
temperature dependence, 252, 253,

290
wavelength dependence, 253

reflectometric signal, 252, 268
reflectometry, 252, 259

calibration, 253, 255, 281
detector array, 257, 259
single detector, 255, 257

refractive index, 11, 58, 110, 184, 349,
351

complex, 10, 251, 350
gradient, 350
grating, 251
variable, 290
wavelength dependence, 253

relaxation time, 176–179
resistive, 346
thermal, 349
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relaxation time model, 20, 46, 52, 77,
80

resistive relaxation time, 346
Rosei band structure, 320
Rosseland approximation, 65, 83

Sagnac interferometer, 354, 356, 359
stability, 356

scanning acoustic microscopy, 187, 188,
195, 196

scanning electron microscope, 185, 187
scanning thermal microscopy, 183, 232,

289, 297
AFM type, 202
prospects, 303
resolution, 206–208, 218, 220

scanning thermal profiler, 197
scanning thermoelastic microscope,

302, 303
scanning tunneling microscope, 188,

190, 191, 301, 302
heat detection, 197, 201

scattering, 57, 58
anisotropic, 58
cross-section, 22, 73, 118
differential cross-section, 20
electron–phonon, 322, 323
isotropic, 58
length, 57, 61, 73
power, 57
solid angle, 20

Schrödinger equation, 38, 41
SCPM, 199
semi-transparent medium, 10
semiconducting superlattice, 347
Shannon sampling theorem, 259
shear wave, 195
silicon nitride tip, 205, 207
silver, 312

acoustic phonons, 315
band structure, 312
dielectric constant, 327
nanosphere, 331

single-beam photothermal microscope,
256, 273

single-molecule detection, 195
SJEM, 207, 301
skin depth, 10, 185, 244
SLAM, 196

Slater determinant, 38
SMM, 196
smoke, 57
SN quadrature, 90
SNOM, 194, 289, 297

shear-force method, 298, 300
source–drain leakage, 277, 278
Sparrow criterion, 295
specific heat capacity, 185

electron, 324
lattice, 324
opaque film, 338

specific intensity, 8, 55, 56, 59, 63, 69,
109

ballistic, 69
equilibrium, 8, 58
isotropic, 56, 61

speckle interferometry, 271, 273
spectral correlation function, 71
spectroscopy, 195
statistical physics, 139, 158
Stefan law, 290
step scheme, 94, 101
stick-and-slip, 221
stochastic process, 139
STOM, 194, 195
stress tensor, 338
super-resolution, 289, 295–297
surface displacement, 251, 252, 260,

291, 294, 341, 342
amplitude, 263, 264
detection, 266
due to echo, 340, 341
equation of propagation, 339
field, 242, 245, 273, 276, 294
in-plane, 272
measurement, 260
opaque film, 343, 355
out-of-plane, 271, 294, 296, 297
transfer function, 245

surface photovoltage, 201
surface plasmon, 11, 126, 131, 318, 330,

353
surface reconstruction, 159
surface tension, 193
SWEAT, 280

telegraph equation, 64
temperature, 18
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autocorrelation function, 170, 171

decomposition, 247

field, 242, 245, 252, 273, 276, 280,
294–296, 342

gradient, 25, 170–172, 214, 224, 242,
301, 338, 340, 341, 343, 350, 360

lattice, 316, 325

local, 23, 26, 52, 58, 81, 170, 171

mapping, 278–280

matrix, 327

on short scales, 26

sensitivity, 199, 203–205, 207

step response, 244

transfer function, 244

thermal

barrier, 274

conductivity, 25, 52, 53, 68, 69, 154,
158, 169, 175, 176, 185, 199, 201,
208, 213, 223, 226, 228, 327, 345,
347

diffusion length, 186

diffusivity, 185, 199, 227, 228, 231,
256, 273, 274, 281, 295, 342, 345,
347, 352, 360

emission, 58, 70, 72, 117, 127

excitation, 241, 245

expansion, 200, 201, 207, 291, 301,
303

radiation, 11, 89, 125, 131

relaxation time, 349

resistance, 273, 274, 279, 337, 345,
347, 360

stress, 338, 339

transient, 349, 353

thermal probe, 202–204, 209

TopoMetrix, 210, 211

thermal wave, 241, 244, 246, 260, 289

detection, 251, 273

generation, 241, 251

surface, 245

thermoacoustic

method, 289, 291

wave, 299

thermocouple tip, 197, 199, 200,
202–204, 206, 215

thermodeformation, 291, 292, 301

thermodynamic equilibrium, 8, 17, 18,
125, 171

thermoelastic amplitude imaging, 296,
297

thermoelastic equations, 294
thermoelastic microscopy, 293, 297, 303

lateral resolution, 302
resolution, 295

thermoelastic wave, 245, 246
detection, 251, 273
generation, 241, 251
interference, 275, 276

thermoelasticity, 200, 289, 291
thermoelectric

excitation, 241, 242, 246
probe, 297, 301

thermomechanical
anisotropy, 297
method, 291, 302
read and write, 304

thermoplastic holography, 269, 271
thermoreflectance

coefficient, 252, 281, 282
imaging, 278, 279
measurement, 253, 255, 281

thermoreflectance microscope, 259
heterodyne operation, 259
homodyne operation, 258

thermoresistive tip, 203, 204, 207, 209,
210

thermoresistor, 203, 207
thin film, 210, 229, 283, 311, 341

cooling, 348
gold, 326, 327
non-destructive evaluation, 341
opaque, 341, 347, 350, 353, 355
silver, 327
thermal conductivity, 347

Thomson effect, 215, 242
time-resolved optical methods, 311,

330, 332
topographic imaging, 201, 206, 214
topography–temperature survey, 193,

198, 199, 203
TopoMetrix, 208, 209, 232

AC regime, 227, 228, 230
active modes, 212
constant current mode, 212, 214, 230,

232
constant temperature mode, 212,

214, 216, 222, 230
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contact transfer, 217, 218

DC regime, 222, 226, 230

error sources, 221

investigation depth, 219, 220

passive mode, 212

temperature contrast mode, 212

thermal conductivity contrast mode,
212

thermal image contrast, 213, 222

thermal measurements, 211, 213

thermal probe, 210, 211

thermal signal, 213, 215, 222

tip resolution, 218, 220

tip–sample heat transfer, 215, 218

transfer function, 144

surface displacement, 245

temperature, 244

transient thermal grating, 246

transmissivity, 66

transmittance, 355, 357, 360

transport length, 63, 66, 68

tungsten–nickel thermocouple, 197

tunnel

current, 191, 200

effect, 190, 195

junction, 190

resistance, 199

tunneling thermometer, 199

two-temperature model, 311, 324, 325,
327

UFM, 196
umklapp interaction, 152

van der Waals force, 10, 120, 183, 191,
192

van Hove singularity, 41
Verlet algorithm, 160
vibrational modes, 47, 48, 50, 167, 175,

177, 311, 315, 316
nanoparticle, 316
nanosphere, 328, 332
spheroidal, 329
torsional, 329

viscosity, 158

wave equation, 110, 248
1D, 184

wave packet, 40, 43, 44
wave–particle duality, 185
Wien law, 216
Wollaston wire, 203, 207, 210

as heat sink, 214, 224
work function, 202

Young’s modulus, 185, 193
Youngdahl stress functions, 294
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