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To the memory of my mother,
to my father,
and to the miracle of M.



Preface

The purpose of this note ... is to
sort out my own thoughts ...
and to solicit ideas from others.

Lloyd N. Trefethen
Three mysteries of Gaussian elimination

Nobody reads prefaces. Therefore my preference would have been to write a
short one that nobody will read rather than a long one that nobody will read.
However, I ought to explain, as briefly as possible, the main motivation for
writing the book and to thank — as fully and sincerely as possible — many
people who have contributed to this writing in a variety of ways.

My motivation has selfish and unselfish components. The unselfish part is
to present the elements of computational methods and nanoscale simulation
to researchers, scientists and engineers who are not necessarily experts in
computer simulation. I am hopeful, though, that parts of the book will also be
of interest to experts, as further discussed in the Introduction and Conclusion.

The selfish part of my motivation is articulated in L. N. Trefethen’s quote
above. Whether or not I have succeeded in “sorting out my own thoughts”
is not quite clear at the moment, but I would definitely welcome “ideas from
others,” as well as comments and constructive criticism.

* * *

I owe an enormous debt of gratitude to my parents for their incredible
kindness and selflessness, and to my wife for her equally incredible tolerance of
my character quirks and for her unwavering support under all circumstances.
My son (who is a business major at The Ohio State University) proofread
parts of the book, replaced commas with semicolons, single quotes with double
quotes, and fixed my other egregious abuses of the English language.
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Overall, my work on the book would have been an utterly pleasant ex-
perience had it not been interrupted by the sudden and heartbreaking death
of my mother in the summer of 2006. I do wish to dedicate this book to her
memory.

ACKNOWLEDGMENT AND THANKS

Collaboration with Gary Friedman and his group, especially during my
sabbatical in 2002-2003 at Drexel University, has influenced my research and
the material of this book greatly. Gary’s energy, enthusiasm and innovative
ideas are always very stimulating.

During the same sabbatical year, I was fortunate to visit several research
groups working on the simulation of colloids, polyelectrolytes, macro- and
biomolecules. I am very grateful to all of them for their hospitality. I would
particularly like to mention Christian Holm, Markus Deserno and Vladimir
Lobaskin at the Max-Planck-Institut fiir Polymerforschung in Mainz, Ger-
many; Rebecca Wade at the European Molecular Biology Laboratory in Hei-
delberg, and Thomas Simonson at the Laboratoire de Biologie Structurale in
Strasbourg, France.

Alexei Sokolov’s advanced techniques and experiments in optical sensors
and microscopy with molecular-scale resolution had a strong impact on my
students’ and my work over the last several years. I thank Alexei for providing
a great opportunity for collaborative work with his group at the Department
of Polymer Science, the University of Akron.

In the course of the last two decades, I have benefited enormously from my
communication with Alain Bossavit (Electricité de France and Laboratoire de
Genie Electrique de Paris), from his very deep knowledge of all aspects of
computational electromagnetism, and from his very detailed and thoughtful
analysis of any difficult subject that would come up.

Isaak Mayergoyz of the University of Maryland at College Park has on
many occasions shared his valuable insights with me. His knowledge of many
areas of electromagnetism, physics and mathematics is very profound and
often unmatched.

My communication with Jon Webb (McGill University, Montréal) has al-
ways been thought-provoking and informative. His astute observations and
comments make complicated matters look clear and simple. I was very pleased
that Professor Webb devoted part of his sabbatical leave to our joint research
on Flexible Local Approximation MEthods (FLAME, Chapter 4).

Yuri Kizimovich (Plassotech Corp., California) and I have worked jointly
on a variety of projects over the last 25 years. His original thinking and elegant
solutions of practical problems have always been a great asset. Yury’s help
and long-term collaboration are greatly appreciated.

Even though over 20 years have already passed since the untimely death
of my thesis advisor, Yu.V. Rakitskii, his students still remember very warmly
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his relentless strive for excellence and quixotic attitude to scientific research.
Rakitskii’s main contribution was to numerical methods for stiff systems of dif-
ferential equations. He was guided by the idea of incorporating, to the extent
possible, analytical approximations into numerical methods. This approach is
manifest in FLAME that I believe Rakitskii would have liked.

My sincere thanks go to

e Dmitry Golovaty (The University of Akron), for his help on many occasions
and for interesting discussions.

e Viacheslav Dombrovski, a scientist of incomparable erudition, for many
pearls of wisdom.

e Elena Ivanova and Sergey Voskoboynikov (Technical University of St.
Petersburg, Russia), for their very, very diligent work on FLAME.

e Benjamin Yellen (Duke University), for many discussions, innovative ideas,
and for his great contribution to the NSF-NIRT project on magnetic as-
sembly of particles.

e Mark Stockman (Georgia State University), for sharing his very deep and
broad knowledge and expertise in many areas of plasmonics and nano-
photonics.

e J. Douglas Lavers (the University of Toronto), for his help, cooperation
and continuing support over many years.

e Fritz Keilmann (the Max-Planck-Institut fiir Biochemie in Martinsried,
Germany), for providing an excellent opportunity for collaboration on
problems in infrared microscopy.

e Boris Shoykhet (Rockwell Automation), an excellent engineer, mathemati-
cian and finite element analyst, for many valuable discussions.

e Nicolae-Alexandru Nicorovici (University of Technology, Sydney, Aus-
tralia), for his deep and detailed comments on “cloaking,” metamaterials,
and properties of photonic structures.

e H. Neal Bertram (UCSD — the University of California, San Diego), for his
support. I have always admired Neal’s remarkable optimism and enthusi-
asm that make communication with him so stimulating.

e Adalbert Konrad (the University of Toronto) and Nathan Ida (the Uni-
versity of Akron) for their help and support.

e Pierre Asselin (Seagate, Pittsburgh) for very interesting insights, particu-
larly in connection with a priori error estimates in finite element analysis.

e Sheldon Schultz (UCSD) and David Smith (UCSD and Duke) for famil-
iarizing me with plasmonic effects a decade ago.

I appreciate the help, support and opportunities provided by the Interna-
tional Compumag Society through a series of the International Compumag
Conferences and through personal communication with its Board and mem-
bers: Jan K Sykulski, Arnulf Kost, Kay Hameyer, Francois Henrotte, Oszkar
Bir6, J.-P. Bastos, R.C. Mesquita, and others.

A substantial portion of the book forms a basis of the graduate course
“Simulation of Nanoscale Systems” that I developed and taught at the
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University of Akron, Ohio. I thank my colleagues at the Department of Elec-
trical & Computer Engineering and two Department Chairs, Alexis De Abreu
Garcia and Nathan Ida, for their support and encouragement.

My Ph.D. students have contributed immensely to the research, and their
work is frequently referred to throughout the book. Alexander Plaks worked
on adaptive multigrid methods and generalized finite element methods for
electromagnetic applications. Leonid Proekt was instrumental in the develop-
ment of generalized FEM, especially for the vectorial case, and of absorbing
boundary conditions. Jianhua Dai has worked on generalized finite-difference
methods. Frantisek Cajko developed schemes with flexible local approxima-
tion and carried out, with a great deal of intelligence and ingenuity, a variety
of simulations in nano-photonics and nano-optics.

I gratefully acknowledge financial support by the National Science Foun-
dation and the NSF-NIRT program, Rockwell Automation, 3ga Corporation
and Baker Hughes Corporation.

NEC Europe (Sankt Augustin, Germany) provided not only financial sup-
port but also an excellent opportunity to work with Achim Basermann, an
expert in high performance computing, on parallel implementation of the
Generalized FEM. I thank Guy Lonsdale, Achim Basermann and Fabienne
Cortial-Goutaudier for hosting me at the NEC on several occasions.

A number of workshops and tutorials at the University of Minnesota in
Minneapolis! have been exceptionally interesting and educational for me. I
sincerely thank the organizers: Douglas Arnold, Debra Lewis, Cheri Shakiban,
Boris Shklovskii, Alexander Grosberg and others.

I am very grateful to Serge Prudhomme, the reviewer of this book, for many
insightful comments, numerous corrections and suggestions, and especially for
his careful and meticulous analysis of the chapters on finite difference and
finite element methods.? The reviewer did not wish to remain anonymous,
which greatly facilitated our communication and helped to improve the text.
Further comments, suggestions and critique from the readers is very welcome
and can be communicated to me directly or through the publisher.

Finally, I thank Springer’s editors for their help, cooperation and patience.

L Electrostatic Interactions and Biophysics, April-May 2004, Theoretical Physics
Institute.

Future Challenges in Multiscale Modeling and Simulation, November 2004;
New Paradigms in Computation, March 2005; Effective Theories for Materials
and Macromolecules, June 2005; New Directions Short Course: Quantum Com-
putation, August 2005; Negative Index Materials, October 2006; Classical and
Quantum Approaches in Molecular Modeling, July 2007 — all at the Institute for
Mathematics and Its Applications, http://www.ima.umn.edu/

2 Serge Prudhomme is with the Institute for Computational Engineering and Sci-
ences (ICES), formerly known as TICAM, at the University of Texas at Austin.
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1

Introduction

Some years ago, a colleague of mine explained to me that a good presentation
should address three key questions: 1) Why? (i.e. Why do it?) 2) How? (i.e.
How do we do it?) and 3) So What?

The following sections answer these questions, and a few more.

1.1 Why Deal with the Nanoscale?

May you live in interesting times.

Eric Frank Russell, “U-Turn”
(1950).

The complexity and variety of applications on the nanoscale are as great, or ar-
guably greater, than on the macroscale. While a detailed account of nanoscale
problems in a single book is impossible, one can make a general observation
on the importance of the nanoscale: the properties of materials are strongly
affected by their nanoscale structure. Over the last two decades, mankind has
been gradually inventing and acquiring means to characterize and manipulate
that structure. Many remarkable effects, physical phenomena, materials and
devices have already been discovered or developed: nanocomposites, carbon
nanotubes, nanowires and nanodots, nanoparticles of different types, photonic
crystals, and so on.

On a more fundamental level, research in nanoscale physics may provide
clues to the most profound mysteries of nature.

“Where is the frontier of physics?”, asks L.S. Schulman in the Preface
to his book [Sch97]. “Some would say 10732 c¢m, some 1071° ¢cm and
some 10728 cm. My vote is for 1076 cm. Two of the greatest puzzles of
our age have their origins at the interface between the macroscopic and
microscopic worlds. The older mystery is the thermodynamic arrow of
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time, the way that (mostly) time-symmetric microscopic laws acquire
a manifest asymmetry at larger scales. And then there’s the superpo-
sition principle of quantum mechanics, a profound revolution of the
twentieth century. When this principle is extrapolated to macroscopic
scales, its predictions seem widely at odds with ordinary experience.”

The second “puzzle” that Professor Schulman refers to is the apparent con-
tradiction between the quantum-mechanical representation of micro-objects
in a superposition of quantum states and a single unambiguous state that all
of us really observe for macro-objects. Where and how exactly is this tran-
sition from the quantum world to the macro-world effected? The boundary
between particle- or atomic-size quantum objects and macro-objects is on
the nanoscale; that is where the “collapse of the quantum-mechanical wave-
function” from a superposition of states to one well-defined state would have
to occur. Recent remarkable double-slit experiments by M. Arndt’s Quantum
Nanophysics group at the University of Vienna show no evidence of “collapse”
of the wavefunction and prove the wave nature of large molecules with the
mass of up to 1,632 units and size up to 2 nm (tetraphenylporphyrin C44H3oNy
and the fluorinated buckyball CgoF4g).! If further experiments with nanoscale
objects are carried out, they will most likely confirm that the “collapse” of
the wavefunction is not a fundamental physical law but only a metaphorical
tool for describing the transition to the macroworld; still, such experiments
will undoubtedly be captivating.

Getting back to more practical aspects of nanoscale research, I illustrate its
promise with one example from Chapter 7 of this book. It is well known that
visible light is electromagnetic waves with the wavelengths from approximately
400 nm (violet light) to ~700 nm (red light); green light is in the middle of
this range. Thus there are approximately 2,000 wavelengths of green light
per millimeter (or about 50,000 per inch). Propagation of light through a
material is governed not only by the atomic-level properties but also, in many
interesting and important ways, by the nanoscale/subwavelength structure of
the material (i.e. the scale from 5-10 nm to a few hundred nanometers).

Consider ocean waves as an analogy. A wave will easily pass around a
relatively small object, such as a buoy. However, if the wave hits a long line
of buoys, interesting things will start to happen: an interference pattern may
emerge behind the line. Furthermore, if the buoys are arranged in a two-
dimensional array, possible wave patterns are richer still.

Substituting an electromagnetic wave of light (say, with wavelength A\ =
500 nm) for the ocean wave and a lattice of dielectric cylindrical rods (say,
200 nm in diameter) for the two-dimensional array of buoys, we get what
is known as a photonic crystal.? It is clear that the subwavelength structure

L' M. Arndt et al., Wave-particle duality of C60 molecules, Nature 401, 1999,
pp. 680-682; http://physicsweb.org/articles/world/18/3/5.

2 The analogy with electromagnetic waves would be closer mathematically but less
intuitive if acoustic waves in the ocean were considered instead of surface waves.
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of the crystal may bring about very interesting and unusual behavior of the
wave.

Even more fascinating is the possibility of controlling the propagation
of light in the material by a clever design of the subwavelength structure.
“Cloaking” — making objects invisible by wrapping them in a carefully de-
signed metamaterial — has become an area of serious research (J.B. Pendry
et al. [PSS06]) and has already been demonstrated experimentally in the mi-
crowave region (D. Schurig et al. [SMJT06]). Guided by such material, the
rays of light would bend and pass around the object as if it were not there
(G. Gbur [Gbu03], J.B. Pendry et al. [PSS06], U. Leonhardt [Leo06]). A note
to the reader who wishes to hide behind this cloak: if you are invisible to
the outside world, the outside world is invisible to you. This follows from the
reciprocity principle in electromagnetism.?

Countless other equally fascinating nanoscale applications in numerous
other areas could be given. Like it or not, we live in interesting times.

1.2 Why Special Models for the Nanoscale?

A good model can advance
fashion by ten years.

Yves Saint Laurent

First, a general observation. A simulation model consists of a physical
and mathematical formulation of the problem at hand and a computational
method. The formulation tells us what to solve and the computational method
tells us how to solve it. Frequently more than one formulation is possible, and
almost always several computational techniques are available; hence there
potentially are numerous combinations of formulations and methods. Ideally,
one strives to find the best such combination(s) in terms of efficiency, accuracy,
robustness, algorithmic simplicity, and so on.

It is not surprising that the formulations of nanoscale problems are indeed
special. The scale is often too small for continuous-level macroscopic laws to
be fully applicable; yet it is too large for a first-principles atomic simulation to
be feasible. Computational compromises are reached in several different ways.
In some cases, continuous parameters can be used with some caution and with
suitable adjustments. One example is light scattering by small particles and
the related “plasmonic” effects (Chapter 7), where the dielectric constant of
metals or dielectrics can be adjusted to account for the size of the scatterers.
In other situations, multiscale modeling is used, where a hierarchy of problems

3 Perfect invisibility is impossible even theoretically, however. With some imper-
fection, the effect can theoretically be achieved only in a narrow range of wave-
lengths. The reason is that the special metamaterials must have dispersion — i.e.
their electromagnetic properties must be frequency-dependent.
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are solved and the information obtained on a finer level is passed on to the
coarser ones and back. Multiscale often goes hand-in-hand with multiphysics:
for example, molecular dynamics on the finest scale is combined with con-
tinuum mechanics on the macroscale. The Society for Industrial and Applied
Mathematics (STAM) now publishes a journal devoted entirely to this subject:
Multiscale Modeling and Simulation, inaugurated in 2003.

The applications and problems in this book have some multiscale features
but can still be dealt with on a single scale* — primarily the nanoscale. As
an example: in colloidal simulation (Chapter 6) the molecular-scale degrees
of freedom corresponding to microions in the solvent are “integrated out,”
the result being the Poisson—Boltzmann equation that applies on the scale of
colloidal particles (approximately from 10 to 1000 nm). Still, simulation of
optical tips (Section 7.12, p. 433) does have salient multiscale features.

Let us now discuss the computational side of nanoscale models. Compu-
tational analysis is a mature discipline combining science, engineering and
elements of art. It includes general and powerful techniques such as finite dif-
ference, finite element, spectral or pseudospectral, integral equation and other
methods; it has been applied to every physical problem and device imaginable.

Are these existing methods good enough for nanoscale problems? The
answer can be anything from “yes” to “maybe” to “no,” depending on the
problem.

e When continuum models are still applicable, traditional methods work
well. A relevant example is the simulation of light scattering by plasmon
nanoparticles and of plasmon-enhanced components for ultra-sensitive op-
tical sensors and near-field microscopes (Chapter 7). Despite the nanoscale
features of the problem, equivalent material parameters (dielectric permit-
tivity and magnetic permeability) can still be used, possibly with some
adjustments. Consequently, commercial finite-element software is suitable
for this type of modeling.

e When the system size is even smaller, as in macromolecular simulation, the
use of equivalent material parameters is more questionable. In electrostatic
models of protein molecules in solvents — an area of extensive and intensive
research due to its enormous implications for biology and medicine — two
main approaches coexist. In implicit models, the solvent is characterized
by equivalent continuum parameters (dielectric permittivity and the Debye
length). In the layer of the solvent immediately adjacent to the surface of
the molecule, these equivalent parameters are dramatically different from
their values in the bulk (A. Rubinstein & S. Sherman [RS04]). In contrast,
explicit models directly include molecular dynamics of the solvent. This
approach is in principle more accurate, as no approximation of the solvent
by an equivalent medium is made, but the computational cost is extremely

4 The Flexible Local Approximation MEthod (FLAME) of Chapter 4 can, however,
be viewed as a two-scale method: the difference scheme is formed on a relatively
coarse grid but incorporates information about the solution on a finer scale.
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high due to a very large number of degrees of freedom corresponding to
the molecules of the solvent. For more information on protein simulation,
see T. Schlick’s book [Sch02] and T. Simonson’s review paper [Sim03] as
a starting point.

o When the problem reduces to a system of ordinary differential equations,
the computational analysis is on very solid ground — this is one of the most
mature areas of numerical mathematics (Chapter 2). It is highly desirable
to use numerical schemes that preserve the essential physical properties of
the system. In Molecular Dynamics, such fundamental properties are the
conservation of energy and momentum, and — more generally — symplectic-
ness of the underlying Hamiltonian system (Section 2.5). Time-stepping
schemes with analogous conservation properties are available and their
advantages are now widely recognized (J.M. Sanz-Serna & M.P. Calvo
[SSC94], Yu.B. Suris [Sur87, Sur96], R.D. Skeel et al. [RDS97]).

e Quantum mechanical effects require special computational treatment. The
models are substantially different from those of continuum media for
which the traditional methods (such as finite elements or finite differences)
were originally designed and used. Nevertheless these traditional methods
can be very effective at certain stages of quantum mechanical analysis.
For example, classical finite-difference schemes (in particular, the Collatz
“Mehrstellen” schemes, Chapter 2), have been successfully applied to the
Kohn—-Sham equation — the central procedure in Density Functional The-
ory. (This is the Schrodinger equation, with the potential expressed as a
function of electron density.) For a detailed description, see E.L. Briggs et
al. [BSB96] and T.L. Beck [Bec00]. Moreover, difference schemes can also
be used to find the electrostatic potential from the Poisson equation with
the electron density in the right hand side.

e Colloidal simulation considered in Chapter 6 is an interesting and spe-
cial computational case. As explained in that chapter, classical methods
of computation are not particularly well suited for this problem. Finite
element meshes become too complex and impractical to generate even for
a moderate number of particles in the model; standard finite-difference
schemes require unreasonably fine grids to represent the boundaries of the
particles accurately; the Fast Multipole Method does not work too well
for inhomogeneous and/or nonlinear problems. A new finite-difference cal-
culus of Flexible Local Approximation MEthods (FLAME) is a promising
alternative (Chapter 4).

This list could easily be extended to include other examples, but the main
point is clear: a vast assortment of computational methods, both traditional
and new, are very helpful for the efficient simulation of nanoscale systems.
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1.3 How To Hone the Computational Tools

A computer makes as many
mistakes in two seconds as 20
men working 20 years make.

Murphy’s Laws of Computing

Computer simulation is not an exact science. If it were, one would simply set
a desired level of accuracy e of the numerical solution and prove that a certain
method achieves that level with the minimal number of operations © = ©(e).
The reality is of course much more intricate. First, there are many possible
measures of accuracy and many possible measures of the cost (keeping in mind
that human time needed for the development of algorithms and software may
be more valuable than the CPU time). Accuracy and cost both depend on the
class and subclass of problems being solved. For example, numerical solution
becomes substantially more complicated if discontinuities and edge or corner
singularities of the field need to be represented accurately.

Second, it is usually close to impossible to guarantee, at the mathematical
level of rigor, that the numerical solution obtained has a certain prescribed ac-
curacy.” Third, in practice it is never possible to prove that any given method
minimizes the number of arithmetic operations.

Fourth, there are modeling errors — approximations made in the formu-
lation of the physical problem; these errors are a particular concern on the
nanoscale, where direct and accurate experimental verification of the assump-
tions made is very difficult. Fifth, a host of other issues — from the algorithmic
implementation of the chosen method to roundoff errors — are quite difficult
to take into account. Parallelization of the algorithm and the computer code
is another complicated matter.

With all this in mind, computer simulation turns out to be partially an
art. There is always more than one way to solve a given problem numerically
and, with enough time and resources, any reasonable approach is likely to
produce a result eventually.

Still, it is obvious that not all approaches are equal. Although the accu-
racy and computational cost cannot be determined exactly, some qualitative
measures are certainly available and are commonly used. The main charac-
teristic is the asymptotic behavior of the number of operations and memory
required for a given method as a function of some accuracy-related parameter.
In mesh-based methods (finite elements, finite differences, Ewald summation,

5 There is a notable exception in variational methods: rigorous pointwise error
bounds can, for some classes of problems, be established using dual formulations
(see p. 153 for more information). However, this requires numerical solution of
a separate auxiliary problem for Green’s function at each point where the error
bound is sought.
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etc.) the mesh size h or the number of nodes n usually act as such a parame-
ter. The “big-oh” notation is standard; for example, the number of arithmetic
operations 6 being O(n") as n — co means that ¢;n” < 6 < con?, where ¢; 2
and ~y are some positive constants independent of n. Computational methods
with the operation count and memory O(n) are considered as asymptotically
optimal; the doubling of the number of nodes (or some other such parameter)
leads, roughly, to the doubling of the number of operations and memory size.
For several classes of problems, there exist divide-and-conquer or hierarchical
strategies with either optimal O(n) or slightly suboptimal O(nlogn) com-
plexity. The most notable examples are Fast Fourier Transforms (FFT), Fast
Multipole Methods, multigrid methods, and FFT-based Ewald summation.

Clearly, the numerical factors c; o also affect the performance of the
method. For real-life problems, they can be determined experimentally and
their magnitude is not usually a serious concern. A notable exception is the
Fast Multipole Method for multiparticle interactions; its operation count is
close to optimal, O(n,logn,), where n, is the number of particles, but the
numerical prefactors are very large, so the method outperforms the brute-
force approach (O(n}%) pairwise particle interactions) only for a large number
of particles, tens of thousands and beyond.

Given that the choice of a suitable method is partially an art, what is
one to do? As a practical matter, the availability of good public domain and
commercial software in many cases simplifies the decision. Examples of such
software are

e Molecular Dynamics packages AMBER (Assisted Model Building with
Energy Refinement, amber.scripps.edu); CHARMM/CHARMm (Chem-
istry at HARvard Macromolecular Mechanics, yuri.harvard.edu, accelrys.
com/products/dstudio/index.html), NAMD (www.ks.uiuc.edu/Research/
namd), GROMACS (gromacs.org), TINKER (dasher.wustl.edu/tinker),
DL POLY (www.cse.scitech.ac.uk/ccg/software/DL_POLY /index.shtml).

e A finite difference Poisson-Boltzman solver DelPhi (honiglab.cpmec.colum-
bia.edu).

e Finite Element software developed by ANSYS (ansys.com — comprehensive
FE modeling, with multiphysics); by ANSOFT (ansoft.com — state-of-the-
art FE package for electromagnetic design); by Comsol (comsol.com or
femlab.com — the Comsol MultiphysicsT™ package, also known as FEM-
LAB); and others.

e A software suite from Rsoft Group (rsoftdesign.com) for design of photon-
ics components and optical networks.

e Electromagnetic time-domain simulation software from CST (Computer
Simulation Technology, cst.com).

This list is certainly not exhaustive and, among other things, does not include
software for ab initio electronic structure calculation, as this subject matter
lies beyond the scope of the book.
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The obvious drawback of using somebody else’s software is that the user
cannot extend its capabilities and apply it to problems for which it was not
designed. Some tricks are occasionally possible (for example, equations in
cylindrical coordinates can be converted to the Cartesian system by a mathe-
matically equivalent transformation of material parameters), but by and large
the user is out of luck if the code is proprietary and does not handle a given
problem. For open-source software, users may in principle add their own mod-
ules to accomplish a required task, but, unless the revisions are superficial,
this requires detailed knowledge of the code.

Whether the reader of this book is an intelligent user of existing software
or a developer of his own algorithms and codes, the book will hopefully help
him/her to understand how the underlying numerical methods work.

1.4 So What?

Avoid clichés like the plague!

William Safire’s Rules for
Writers

Multisyllabic clichés are probably the worst type, but I feel compelled to use
one: nanoscale science and technology are interdisciplinary. The book is in-
tended to be a bridge between two broad fields: computational methods, both
traditional and new, on the one hand, and several nanoscale or molecular-
scale applications on the other. It is my hope that the reader who has a
background in physics, physical chemistry, electrical engineering or related
subjects, and who is curious about the inner workings of computational meth-
ods, will find this book helpful for crossing the bridge between the disciplines.
Likewise, experts in computational methods may be interested in browsing
the application-related chapters.

At the same time, readers who wish to stay on their side of the “bridge”
may also find some topics in the book to be of interest. An example of such
a topic for numerical analysts is the FLAME schemes of Chapter 4; a novel
feature of this approach is the systematic use of local approximation spaces
in the FD context, with basis functions not limited to Taylor polynomials.
Similarly, in the chapter on Finite Element analysis (Chapter 3), the theory of
shape-related approximation errors is nonstandard and yields some interesting
error estimates.

Since the prospective reader will not necessarily be an expert in any given
subject of the book, I have tried, to the extent possible, to make the text ac-
cessible to researchers, graduate and even senior-level undergraduate students
with a good general background in physics and mathematics. While part of
the material is related to mathematical physics, the style of the book can be
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characterized as physical mathematics® — “physical” explanation of the un-
derlying mathematical concepts. I hope that this style will be tolerable to the
mathematicians and beneficial to the reader with a background in physical
sciences and engineering.

Sometimes, however, a more technical presentation is necessary. This is
the case in the analysis of consistency errors and convergence of difference
schemes in Chapter 2, Ewald summation in Chapter 5, and the derivation of
FLAME basis functions for particle problems in Chapter 6. In many other
instances, references to a rigorous mathematical treatment of the subject are
provided.

I cannot stress enough that this book is very far from being a comprehen-
sive treatise on nanoscale problems and applications. The selection of subjects
is strongly influenced by my research interests and experience. Topics where
I felt I could contribute some new ideas, methods and results were favored.
Subjects that are covered nicely and thoroughly in the existing literature were
not included. For example, material on Molecular Dynamics was, for the most
part, left out because of the abundance of good literature on this subject.”
However, one of the most challenging parts of Molecular Dynamics — the
computation of long-range forces in a homogeneous medium — appears as a
separate chapter in the book (Chapter 5). The novel features of this analysis
are a rigorous treatment of “charge allocation” to grid and the application of
finite-difference schemes, with the potential splitting, in real space.

Chapter 2 gives the necessary background on Finite Difference (FD)
schemes; familiarity with numerical methods is helpful but not required for
reading and understanding this chapter. In addition to the standard mater-
ial on classical methods, their consistency and convergence, this chapter in-
cludes introduction to flexible approximation schemes, Collatz “Mehrstellen”
schemes, and schemes for Hamiltonian systems.

Chapter 3 is a concise self-contained description of the Finite Element
Method (FEM). No special prior knowledge of computational methods is re-
quired to read most of this chapter. Variational principles and their role are
explained first, followed by a tutorial-style exposition of FEM in the simplest
1D case. Two- and three-dimensional scalar problems are considered in the
subsequent sections of the chapter. A more advanced subject is edge elements
that are crucial for vector field problems in electromagnetic analysis. Readers
already familiar with FEM may be interested in the new treatment of ap-
proximation accuracy as a function of element shape; this is a special topic in
Chapter 3.

5 Not exactly the same as “engineering mathematics,” a more utilitarian, user-
oriented approach.

" JM. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley-
Interscience, 1997; D. Frenkel & B. Smit, Understanding Molecular Simulation,
Academic Press, 2001; D.C. Rapaport, The Art of Molecular Dynamics Simula-
tion, Cambridge University Press, 2004; T. Schlik [Sch02], and others.
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Chapter 4 introduces the Finite Difference (FD) calculus of Flexible Local
Approximation MEthods (FLAME). Local analytical solutions are incorpo-
rated into the schemes, which often leads to much higher accuracy than would
be possible in classical FD. A large assortment of examples illustrating the
usage of the method are presented.

Chapter 6 can be viewed as an extension of Chapter 5 to multiparticle
problems in heterogeneous media. The simulation of such systems, due to its
complexity, has received relatively little attention, and good methods are still
lacking. Yet the applications are very broad — from colloidal suspensions to
polymers and polyelectrolytes; in all of these cases, the media are inhomoge-
neous because the dielectric permittivities of the solute and solvent are usually
quite different. Ewald methods can only be used if the solvent is modeled ex-
plicitly, by including polarization on the molecular level; this requires a very
large number of degrees of freedom in the simulation. An alternative is to
model the solvent implicitly by continuum parameters and use the FLAME
schemes of Chapter 4. Application of these schemes to the computation of
the electrostatic potential, field and forces in colloidal systems is described in
Chapter 6.

Chapter 7 deals with applications in nano-photonics and nano-optics. It
reviews the mathematical theory of Bloch modes, in connection with the prop-
agation of electromagnetic waves in periodic structures; describes plane wave
expansion, FEM and FLAME for photonic bandgap computation; provides
a theoretical background for plasmon resonances and considers various nu-
merical methods for plasmon-enhanced systems. Such systems include optical
sensors with very high sensitivity, as well as scanning near-field optical mi-
croscopes with molecular-scale resolution, unprecedented in optics. Chapter 7
also touches upon negative refraction and nanolensing — areas of very inten-
sive research and debate — and includes new material on the inhomogeneity
of backward wave media.
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Finite-Difference Schemes

2.1 Introduction

Due to its relative simplicity, Finite Difference (FD) analysis was historically
the first numerical technique for boundary value problems in mathematical
physics. The excellent review paper by V. Thomée [Tho01] traces the origin of
FD to a 1928 paper by R. Courant, K. Friedrichs and H. Lewy, and to a 1930
paper by S. Gerschgorin. However, the Finite Element Method (FEM) that
emerged in the 1960s proved to be substantially more powerful and flexible
than FD. The modern techniques of hp-adaption, parallel multilevel precon-
ditioning, domain decomposition have made FEM ever more powerful (Chap-
ter 3). Nevertheless, FD remains a very valuable tool, especially for problems
with relatively simple geometry.

This chapter starts with a gentle introduction to FD schemes and proceeds
to a more detailed review. Sections 2.2-2.4 are addressed to readers with little
or no background in finite-difference methods. Section 2.3, however, introduces
a nontraditional perspective and may be of interest to more advanced readers
as well. By approximating the solution of the problem rather than a generic
smooth function, one can achieve much higher accuracy. This nontraditional
perspective will be further developed in Chapter 4.

Section 2.4 gives an overview of classical FD schemes for Ordinary Differ-
ential Equations (ODE) and systems of ODE; Section 2.5 — an overview of
Hamiltonian systems that are particularly important in molecular dynamics.

Sections 2.6-2.8 describe FD schemes for boundary value problems in one,
two and three dimensions. Some ideas of this analysis, such as minimization
of the consistency error for a constrained set of functions, are nonstandard.

Finally, Section 2.9 summarizes the most important results on consistency
and convergence of FD schemes.

In addition to providing a general background on FD methods, this chap-
ter is intended to set the stage for the generalized FD analysis with “Flexi-
ble Local Approximation” described in Chapter 4. The scope of the present
chapter is limited, and for a more comprehensive treatment and analysis of
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FD methods — in particular, elaborate time-stepping schemes for ordinary
differential equations, schemes for gas and fluid dynamics, Finite-Difference
Time-Domain (FDTD) methods in electromagnetics, etc. — I defer to many
excellent more specialized monographs. Highly recommended are books by
C.W. Gear [Gea71] (ODE, including stiff systems), U.M. Ascher & L.R. Pet-
zold [AP98]|, K.E. Brenan et al. [KB96] (ODE, especially the treatment of
differential-algebraic equations), S.K. Godunov & V.S. Ryabenkii [GR87a]
(general theory of difference schemes and hyperbolic equations), J. Butcher
[But87, But03] (time-stepping schemes and especially Runge-Kutta methods),
T.J. Chung [Chu02] and S.V. Patankar [Pat80] (schemes for computational
fluid dynamics), A. Taflove & S.C. Hagness [THO5] (FDTD).

2.2 A Primer on Time-Stepping Schemes

I The following example is the simplest possible illustration of key principles
of finite-difference analysis. Suppose we wish to solve the ordinary differential
equation

i A oon [0, tmax], u(0) =ug, ReA <0 (2.1)

numerically. The exact solution of this equation
Uexact = UQ eXp()\t) (2'2)

obviously has infinitely many values at infinitely many points within the in-
terval. In contrast, numerical algorithms have to operate with finite (dis-
crete) sets of data. We therefore introduce a set of points (grid) to =
0,t1,...,th—1,tn = tmax Over the given interval. For simplicity, let us as-
sume that the grid size At is the same for all pairs of neighboring points:
tk+1 - tk = At, so that tk = kAt.

We now consider equation (2.1) at a moment of time t = tj:

du

—(tx) = Au(t 2.3
dt( k) u(tk) (2.3)
The first derivative du/dx can be approximated on the grid in several

different ways:

‘C%‘(tk) — —”(t’““it_ uh) L o
%(tk) ) — ulten) _A?(tk’l) + O(At)
My = ) =) - o(any)

! T am grateful to Serge Prudhomme for very helpful suggestions and comments on
the material of this section.
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These equalities — each of which can be easily justified by Taylor expansion —
lead to the algorithms known as forward Euler, backward Euler and central
difference schemes, respectively:

Uk+1 — Uk
_ = 2.4
AAE ug =0 (24)
or, equivalently,
Ugt1 — (L+AAYu, = 0 (forward Euler) (2.5)
Up — Uk—1
- — 2.
AL uy, (2.6)
or
(1 =AAt)up, — ux—1 = 0 (backward Euler) (2.7)
Uk+1 — Uk—1
= 2.
2AAL b (28)
or
Ugr1 — 2AAtur — ugp—1 = 0  (central difference) (2.9)

where ug_1, up and up41 are approximations to u(t) at discrete times t_1,
tr, and tpy1, respectively. For convenience of analysis, the schemes above are
written in the form that makes the dimensionless product M\At explicit.

The (discrete) solution for the forward Fuler scheme (2.4) can be easily
found by time-stepping: start with the given initial value u(0) = ug and use
the scheme to find the value of the solution at each subsequent step:

werr = (14 AAE) u (2.10)

This difference scheme was obtained by approximating the original differential
equation, and it is therefore natural to expect that the solution of the original
equation will approrimately satisfy the difference equation. This can be easily
verified because in this simple example the exact solution is known. Let us
substitute the exact solution (2.2) into the left hand side of the difference
equation (2.4):

€ = u [exp (A(k 4+ 1)At) — exp (kAAY)

A7 — exp (kAAL)

% 1] = ugexp(kAA?) %At + hot. (2.11)
where the very last equality was obtained via the Taylor expansion for At — 0,
and “h.o.t.” are higher order terms with respect to the time step At. Note
that the exponential factor exp(kAAt) goes to unity if At — 0 and the other
parameters are fixed; however, if the moment of time ¢ = ¢, is fixed, then this
exponential is proportional to the value of the exact solution

= ug exp(kAAL) [
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Symbol e, stands for consistency error that is, by definition, obtained by
substituting the exact solution into the difference scheme. The consistency
error (2.11) is indeed “small” — it tends to zero as At tends to zero. More pre-
cisely, the error is of order one with respect to At. In general, the consistency
error €. is said to be of order p with respect to At if

alAt? < e| < AP (2.12)

where ¢ 2 are some positive constants independent of At. (In the case under
consideration, p = 1.) A very common equivalent form of this statement is
the “big-oh” notation:

lec] = O((At)?)

(see also Introduction, p. 7). While consistency error is a convenient and
very important intermediate quantity, the ultimate measure of accuracy is
the solution error, i.e. the deviation of the numerical solution from the exact
one:

€k = Uk — Uexact(tk) (2.13)

The connection between consistency and solution errors will be discussed in
Section 2.9.

In our current example, we can evaluate the numerical error directly. The
repeated “time-stepping” by the forward Euler scheme (2.10) yields the fol-
lowing numerical solution:

up = (1+XADFuy = (1—8&)Fuyg (2.14)

where £ = —AA¢t. (Note that Re & > 0, as Re A is assumed negative.) The
k-th time step corresponds to the time instant ¢ = kAt, and so in terms of
time the numerical solution can then be rewritten as

up = [(1=&YEMrug (2.15)
From basic calculus, the expression in the square brackets tends to e™! as
& — 0, and hence uy, tends to the exact solution (2.2) ug exp(Aity) as At — 0.
Thus in the limit of small time steps the forward Euler scheme works as
expected.

However, in practice, when equations and systems much more complex
than our example are solved, very small step sizes may lead to prohibitively
high computational costs due to a large number of time steps involved. It is
therefore important to examine the behavior of the numerical solution for any
given positive value of the time step rather than only in the limit At — O.
Three qualitatively different cases emerge from (2.14):

|1+ AAt <1 < At < Atmin, numerical solution decays (as it should);
|14+ AAt| > 1 & At > Atpin, numerical solution diverges;
|1+ AAt| =1 & At = Atpin, numerical solution oscillates.
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where SRe )
e
Atpin = — =22 A 2.1
BE ReA <0 (2.16)
2
Atmin = o A <0 (Areal) (2.17)

For the purposes of this introduction, we shall call a difference scheme stable
if, for a given initial condition, the numerical solution remains bounded for all
time steps; otherwise the scheme is unstable.? It is clear that in the second and
third case above the numerical solution is qualitatively incorrect. The forward
Euler scheme is stable only for sufficiently small time steps — namely, for

At < Atyin  (stability condition for the forward Euler scheme)  (2.18)

Schemes that are stable only for a certain range of values of the time step are
called conditionally stable. Schemes that are stable for any positive time step
are called unconditionally stable.

It is not an uncommon misconception to attribute the numerical instability
to round-off errors. While round-off errors can exacerbate the situation, it is
clear from (2.14) the instability will manifest itself even in exact arithmetic if
the time step is not sufficiently small.

The backward Euler difference scheme (2.6) is substantially different in
this regard. The numerical solution for that scheme is easily found to be

up = (1 — AAt) Ry (2.19)

In contrast with the forward Euler method, for negative Re A this solution is
bounded (and decaying in time) regardless of the step size At. That is, the
backward Euler scheme is unconditionally stable. However, there is a price
to pay for this advantage: the scheme is an equation with respect to wug1.
In the current example, solution of this equation is trivial (just divide by
1 — AAt), but for nonlinear differential equations, and especially for (linear
and nonlinear) systems of differential equations the computational cost of
computing the solution at each time step may be high.

Difference schemes that require solution of a system of equations to find
ug41 are called implicit; otherwise the scheme is explicit. The forward Euler
scheme is explicit, and the backward Euler scheme is implicit. The derivation
of the consistency error for the backward Euler scheme is completely analogous
to that of the forward Euler scheme, and the result is essentially the same,
except for a sign difference:

€ = —uUp exp(k)\At))\TAt + h.o.t. (2.20)

2 More specialized definitions of stability can be given for various classes of schemes;
see e.g. C.W. Gear [Gea71], J.C. Butcher [But03], E. Hairer et al. [HrW93] as well
as the following sections of this chapter.
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As in the forward Euler case, the exponential factor tends to unity as the time
step goes to zero, but only if k£ and A are fixed.

The very popular Crank-Nicolson scheme® can be viewed as an approxi-
mation of the original differential equation at time tj,/o = t) + At/2:

Uk+1 — Uk U + Uk+1
— = k=0,1,... 2.21
AAL 2 0, 0.1, ( )

Indeed, the left hand side of this equation is the central-difference approxi-
mation (completely analogous to (2.8), but with a twice smaller time step),
while the right hand side approximates the value of u(tj41/2).

The time-stepping procedure for the Crank—Nicolson scheme is

(1 — >\2At) Uk4+1 = (]— + )\;At> U, k= 07 ]-7 e (222)

and the numerical solution of the model problem is

(1 2A2)\F

Since the absolute value of the fraction here is less than one for all positive
(even very large) time steps, the Crank—Nicolson scheme is unconditionally
stable. Its consistency error is again found by substituting the exact solution
(2.2) into the scheme (2.21). The result is

(AA)?
12

€. = —upexp(kAAL) + h.o.t. (2.24)
The consistency error is seen to be of second order — as such, it is (for suffi-
ciently small time steps) much smaller than the error of both Euler schemes.

2.3 Exact Schemes

As we have seen, the consistency error can be made smaller if one switches
from Euler methods to the Crank—Nicolson scheme. Can the consistency error
be reduced even further? One may try to “mix” the forward and backward

3 Often misspelled as Crank-Nicholson. After John Crank (born 1916), British
mathematical physicist, and Phyllis Nicolson (1917-1968), British physicist.
http://www-groups.dcs.st-and.ac.uk/  history/Mathematicians/Nicolson.html
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Crank.html The
original paper is: J. Crank and P. Nicolson, A practical method for numerical
evaluation of solutions of partial differential equations of the heat-conduction
type, Proc. Cambridge Philos. Soc., vol. 43, pp. 50-67, 1947. [Re-published
in: John Crank 80th birthday special issue of Adv. Comput. Math., vol. 6, pp.
207-226, 1997.]
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Euler schemes in a way similar to the Crank—Nicolson scheme, but by as-
signing some other weights 6 and (1 — 0), instead of %, to ur and wgqq in
(2.21). However, it would soon transpire that the Crank—Nicolson scheme in
fact has the smallest consistency error in this family of schemes, so nothing
substantially new is gained by introducing the alternative weighting factors.

Nevertheless one can easily construct schemes whose consistency error can-
not be beaten. Indeed, here is an example of such a scheme:

Uk Uk+1

— =0 2.25
Uexact (tk ) Uexact (tk+l ) ( )

More specifically for the equation under consideration

Uk Uk+1
— =0 2.26
exp(—Atk) exp(—Atgt1) (2:26)

Equivalently,
up — up+1exp(AAt) = 0 (2.27)

Obviously, by construction of the scheme, the analytical solution satisfies the
difference equation ezactly — that is, the consistency error of the scheme is
zero. One cannot do any better than that!

The first reaction may be to dismiss this construction as cheating: the
scheme makes use of the exact solution that in fact needs to be found. If the
exact solution is known, the problem has been solved and no difference scheme
is needed. If the solution is not known, the coefficients of this “exact” scheme
are not available.

Yet the idea of “exact” schemes like (2.25) proves very useful. Even though
the exact solution is usually not known, excellent approximations for it can
frequently be found and used to construct a difference scheme. One key ob-
servation is that such approximations need not be global (i.e. valid through-
out the computational domain). Since difference schemes are local, all that is
needed is a good local approximation of the solution. Local approximations
are much more easily obtainable than global ones. In fact, the Taylor series
expansion that was implicitly used to construct the Euler and Crank—Nicolson
schemes, and that will be more explicitly used in the following subsection, is
just an example of a local approximation.

The construction of “exact” schemes represents a shift in perspective. The
objective of Taylor-based schemes is to approximate the differential operator
— for example, d/dt — with a suitable finite difference, and consequently the
differential equation with the respective FD scheme. The objective of the
“exact” schemes is to approximate the solution.

Approximation of the differential operator is a very powerful tool, but
it carries substantial redundancy: it is applicable to all sufficiently smooth
functions to which the differential operator could be applied. By focusing on
the solution only, rather than on a wide class of smooth functions, one can
reduce or even eliminate this redundancy. As a result, the accuracy of the
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numerical solution can be improved dramatically. This set of ideas will be
explored in Chapter 4.

The following figures illustrate the accuracy of different one-step schemes
for our simple model problem with parameter A\ = —10. Fig. 2.1 shows the
analytical and numerical solutions for time step At = 0.05. It is evident that
the Crank-Nicolson scheme is substantially more accurate than the Euler
schemes. The numerical errors are quantified in Fig. 2.2. As expected, the
exact scheme gives the true solution up to the round-off error.

1 1i

09 T

0.8 +-

0.7 \, & Forward Euler
6 06 \‘ —e—- Backward Euler
3 0.5 -\\. ©  Crank-Nicholson
& 04 ' n —— Theoretical solution

03 = Exact scheme

0.2

0.1

0
0

time

Fig. 2.1. Numerical solution for different one-step schemes. Time step At = 0.05.
A= —10.

For a larger time step At = 0.25, the forward Euler scheme exhibits in-
stability (Fig. 2.3). The exact scheme still yields the analytical solution to
machine precision. The backward Euler and Crank—Nicolson schemes are sta-
ble, but the numerical errors are higher than for the smaller time step.

R.E. Mickens [Mic94] derives “exact” schemes from a different perspective
and extends them to a family of “nonstandard” schemes defined by a set of
heuristic rules. We shall see in Chapter 4 that the “exact” schemes are a very
natural particular case of a new finite-difference calculus — “Flexible Local
Approximation MEthods” (FLAME).

2.4 Some Classic Schemes for Initial Value Problems

For completeness, this section presents a brief overview of a few popular time-
stepping schemes for Ordinary Differential Equations (ODE).
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Fig. 2.2. Numerical errors for different one-step schemes. Time step At = 0.05.
A= —10.

solution

time

Fig. 2.3. Numerical solution for the forward Euler scheme. Time step At = 0.25.
A= —10.
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Fig. 2.4. Numerical solution for different one-step schemes. Time step At = 0.25.
A= —10.

2.4.1 The Runge—Kutta Methods

This introduction to Runge-Kutta (R-K) methods follows the elegant expo-
sition by E. Hairer et al. [HrW93]. The main idea dates back to C. Runge’s
original paper of 1895.

The goal is to construct high order difference schemes for the ODE

yl(t) = f(t7y)7 y(to) = Y (228)

Our starting point is a simpler problem, with the right hand side independent
of y:
y'(t) = f(t), ylto) = wo (2.29)

This problem not only has an analytical solution

u(t) = o + / f(r)dr (2.30)

but also admits accurate approximations via numerical quadratures. For ex-
ample, the midpoint rule gives

At
y1 = y(t) = yo + Atof (t0+20>

Aty

y2 = y(ta) =y + Aty f (t1+2>

and so on. Here tg, t1, etc., are a discrete set of points in time, and the
time steps Atg = t1 — tg, Aty = to — t1, etc., do not have to be equal.
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It is straightforward to verify that this numerical quadrature (that doubles
as a time-stepping scheme) has second order accuracy with respect to the
maximum time step.

An analogous formula for taking the numerical solution of the original
equation (2.28) from a generic point ¢ in time to ¢ + At would be

y(t+ At) ~ y(t) + ALf <t+A2t,y<t+A2t)> (2.31)

The obstacle is that the value of y at the midpoint ¢ + % is not directly
available. However, this value may be found approximately via the forward

Euler scheme with the time step At/2:

At At
v(1+5) = v + 5 (2.52)
A wvalid difference scheme can now be produced by inserting this midpoint
value into the numerical quadrature (2.31). The customary way of writing the
overall procedure is as the following sequence:

ko= f(t,y) (2.33)
ke = f <t+ %, y(t) + A2tk1> (2.34)
y(t+ At) = y(t) + Atks (2.35)

This is the simplest R-K method with two stages (ki is computed at the
first stage and ko at the second). The generic form of an s-stage explicit R-K
method is as follows [HrW93]:

ki = f(to,vo)
ko = f (to =+ CgAt, Yo + Ataglkil)
ks = f(to+ c3At, yo + At (az1ky + azzkz))

ke = f(to—FCsAt, yo+At(a$1k’1—|—"'+as7s_1k’s_1))
y(t+h) = yo + At(brks + boka + -+ + bsks)

The procedure is indeed explicit, as the computation at each subsequent stage
depends only on the values computed at the previous stages. The “input data”
for the R-K method at any given time step consists only of one value gy, at the
beginning of this step and does not include any other previously computed val-
ues. Thus the R-K time step sizes can be chosen independently, which is very
useful for adaptive algorithms. The multi-stage method should not be con-
fused with multi-step schemes (such as e.g. the Adams methods, Section 2.4.2
below) where the input data at each discrete time point contains the values
of y at several previous steps. Changing the time step in multistep methods
may be cumbersome and may require “re-initialization” of the algorithm.
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To write R-K schemes in a compact form, it is standard to collect all the
coefficients a, b and ¢ in J. Butcher’s tableau:

0
C2 | Q21
C3 | a3l as32

Cg Qg1 Ag2 « v vvv oo As,s—1

One further intuitive observation is that the k parameters in the R-K
method are values of function f at some intermediate points. As a rule, one
wants these intermediate points to be close to the actual solution y(t) of (2.28).
Then, according to (2.28), the ks also approximate the time derivative of y over
the current time step. Thus at the i-th stage of the procedure function f is eval-
uated, roughly speaking, at point (to + ¢; At, yo + (a1 +- -+ ai,s—1)y (to) At).
From these considerations, condition

¢ = Qi1+ -+ 551, 1=2,3...58

emerges as natural (although not, strictly speaking, necessary).

The number of stages is in general different from the order of the method
(i.e. from the asymptotic order of the consistency error with respect to the
time step), and one wishes to find the free parameters a, b and ¢ that would
maximize the order. For s > 5, no explicit s-stage R-K method of order s
exists (E. Hairer et al. [HrW93], J.C. Butcher [But03]). However, a family of
four-stage explicit R-K methods of fourth order are available [HrW93, But03].
The most popular of these methods are

0
1/2 ] 1/2
/2] 0 1/2

1|0 o0 1
|1/6 2/6 2/6 1/6

and

0

1/311/3
2/31-1/3 1

1|1 -1 1
| 1/8 3/8 3/8 1/8
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Stability conditions for explicit Runge—Kutta schemes can be obtained
along the following lines. For the model scalar equation (2.1)

— = Ay on [0,tmax], ©(0) =ug (2.36)

the exact solution changes by the factor of exp(Ah) over one time step. If the
R-K method is of order p, the respective factor in the growth of the numerical
solution is the Taylor approximation

p
T() = Zj, & = Mt

to this exponential factor. Stability regions then correspond to |T'(§)| < 1 in
the complex plane £ = AAt (Fig. 2.5).

p=4
p=73

[

i
[ ]
[
—
L
=

Fig. 2.5. Stability regions in the AAt-plane for explicit Runge-Kutta methods of
orders one through four.

Further analysis of R-K methods can be found in monographs by J. Butcher
[But03], E. Hairer et al. [HrW93], and C.W. Gear [GeaT1].



24 2 Finite-Difference Schemes
2.4.2 The Adams Methods

Adams methods are a popular class of multistep schemes, where the solution
values from several previous time steps are utilized to find the numerical solu-
tion at the subsequent step. This is accomplished by polynomial interpolation.
The following brief summary is due primarily to E. Hairer et al. [HrW93].

Consider again the general ODE (2.28) (reproduced here for easy refer-
ence):

y'(t) = f(t,y), ylto) = %o (2.37)

Let the grid be uniform, t; = tg + iAt, and integrate the differential equation
over one time step:

Y(tnsr) = yltn) + / " py ) dt (2.38)

20

The integrand is a function of the unknown solution and obviously is not di-
rectly available; however, it can be approximated by a polynomial p(t) passing
through k previous numerical solution values (¢;, f(y;)). The numerical solu-
tion at time step n + 1 is then found as

tnit
st = yn + / (1) dt (2.39)
t

n

Coefficients of p(t) can be found explicitly (e.g. via backward differences), and
the scheme is then obtained after inserting the expression for p into (2.39).
This explicit calculation appears in all texts on numerical methods for ODE
and is not included here.

Adams methods can also be used in the Nordsieck form, where instead
of the values of function f at the previous time steps approximate Taylor
coefficients for the solution are stored. These approximate coefficients form
the Nordsieck vector (yn, Aty,, Athy;{, RN Ak—t,kyy(,k)) This form makes it
easier to change the time step size as needed.

2.4.3 Stability of Linear Multistep Schemes

It is clear from the introduction in Section 2.2 that stability characteristics
of the difference scheme are of critical importance for the numerical solution.
Stability depends on the intrinsic properties of the underlying differential
equation (or a system of ODE), as well as on the difference scheme itself
and the mesh size. This section highlights the key points in the stability
analysis of linear multistep schemes; the results and conclusions will be used,
in particular, in the next section (stiff systems).

Stability of linear multistep schemes is covered in all texts on FD schemes
for ODE (e.g. C.W. Gear [Gea71], J. Butcher [But03], E. Hairer et al. [HrW93],
U.M. Ascher & L.R. Petzold [AP98]). A comprehensive classification of types
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of stability is given in the book by J.D. Lambert [Lam91]. This section, for
the most part, follows Lambert’s presentation.
Consider the test system of equations

y = Ay, yeR” (2.40)

where all eigenvalues of matrix A are for simplicity assumed to be distinct
and to have strictly negative real parts, so that the system is stable. Further,
let a linear k-step method be

k k
Doy = Aty Bif (2.41)
j=0 =0

where f is the right hand side of the system, h is (as usual) the mesh size,
and index +j indicates values at the j-th time step (the “current” step corre-
sponding to j = 0). In our case, the right hand side f = Ay, and the multistep
scheme becomes

k
(Olj] — Atﬁ]A) y+j =0 (242)
j=0

J
Since A is assumed to have distinct eigenvalues, it is diagonalizable, i.e.

Q7'AQ = A = diag(\y,...,\n) (2.43)

where () is a nonsingular matrix. The same transformation can then be ap-
plied to the whole scheme (2.42) by multiplying it with @' on the left and
introducing a variable change y = @Qz. It is easy to see that, since the system
matrix becomes diagonal upon this transformation, the system splits up into
completely decoupled equations for each z;, i = 1,2,...,n. With some abuse
of notation now, dropping the index i for z; and the respective eigenvalue \;,
we get the scalar version of the scheme

k
(O[j — AtﬂjA)Z_;,_j =0 (244)
§=0
From the theory of difference equations it is well known that stability is gov-
erned by the roots* 7, (s = 1,2, ..., k) of the characteristic equation
k
(aj — AtAB))r? =0 (2.45)
j=0

Clearly, stability depends on the (dimensionless) parameter hA.

The multistep method is said to be absolutely stable for given AAt if all
the roots 75 of the characteristic polynomial for this value of AAt lie strictly
inside the unit circle in the complex plane.

4 Lambert’s notation is used here.
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The set of points AAt in the AAt¢-plane for which the scheme is absolutely
stable is called the region of absolute stability. For illustration, let us recall
the simplest case — one-step schemes for the scalar equation y' = A\y:

Y+1 — Yo
At

For 6 = 0 and 1, this is the implicit/explicit Euler method, respectively; for
6 = 0.5 it is the Crank-Nicolson (trapezoidal) scheme. The characteristic
equation is obtained in a standard way, by formally substituting ! for y;
and 70 =1 for yo:

= A(Oyo + (1 = O)y41) (2.46)

r—1
A A@+(1—-0)r) (2.47)
The root is |+ AL
- - 2.4
T T I - 0)At (248)

For the explicit Euler scheme (6 = 1)
Texpl.Euler = 1+ MAt (249)

and so the region of absolute stability in the AAt-plane is the unit circle
centered at —1 (Fig. 2.6).

I

Fig. 2.6. Stability region of the explicit Euler method is the unit circle (shaded).

For the implicit Euler scheme (6 = 0)

1
Timpl.Euler = m (250)
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hin

Fig. 2.7. Stability region of the implicit Euler method is the shaded area outside
the unit circle.

the region of absolute stability is outside the unit circle centered at 1 (Fig. 2.7).

This stability region includes all negative values of AAt — that is, for a
negative A, the scheme is stable for any (positive) time step. In addition,
curiously enough, the scheme is stable in a vast area with positive AAt — i.e.
the numerical solution may decay exponentially when the exact one grows
exponentially. This latter feature is somewhat undesirable but is typically
of little significance, as in most cases the underlying differential equations
describe stable systems with decaying solutions.

What about the Crank—Nicolson scheme? For § = 0.5 we have

1+ \At/2

rank—Nicolson = T\ A s /o 2.51
! Crank—Nicol 1— A\AL/2 (2:51)

and it is then straightforward to verify that the stability region is the half-
plane AA¢ < 0 (Fig. 2.8).

The region of stability is clearly a key consideration for choosing a suitable
class of schemes and the mesh size such that hA lies inside the region of
stability.

2.4.4 Methods for Stiff Systems

One can identify two principal constraints on the choice of the time step in
a numerical scheme for ODE. The first constraint has to do with the desired
approzimation accuracy (i.e. consistency error): if the solution varies smoothly
and slowly in time, it can be approximated with sufficient accuracy even if
the time step is large.
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Ik

Fig. 2.8. Stability region of the Crank—Nicolson scheme is the left half-plane.

The second constraint is imposed by stability of the scheme. Let us recall,
for example, that the stability condition for the simplest one-step scheme —
the forward Euler method — is At < 2/|\| (2.18), (2.17) for real negative A,
in reference to the test equation (2.1)

i Ay on [0, tmax], ©(0) = ug (2.52)
More advanced explicit methods may have broader stability regions: see e.g.
Fig. 2.5 for Runge-Kutta methods in Section 2.4.1. However, the improvement
is not dramatic; for example, for the four-stage fourth-order Runge-Kutta
method, the step size cannot exceed ~ 2.785/|A|.

For a single scalar equation (2.52) with A < 0 and a decaying exponen-
tial solution, the accuracy and stability restrictions on the time step size are
commensurate. Indeed, accuracy calls for the step size on the order of the
relaxation time 1/\ or less, which is well within the stability limit even for
the simplest forward Euler scheme.

However, for systems of equations the stability constraint on the step size
can be much more severe than the accuracy limit. Consider the following
example:

dyr _ My; A =1 2.53
dt
% — Doya; Ao = —1000 (2.54)

The second component (y2) dies out when ¢ > 1/|\2] = 1073 and can then
be neglected; beyond that point, the approximation accuracy would suggest
the time step commensurate with the relaxation time of the first component,
1/|A\1] = 1. However, the stability condition At < ¢/|A| (where ¢ depends
on the method but is not much greater than 2-3 for most practical explicit
schemes) has to hold for both A and limits the time step to approximately
1/[Xa] = 1073.

In other words, the time step that would provide good approximation
accuracy exceeds the stability limit by a factor of about 1000. A brute force
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approach is to use a very small time step and accept the high computational
cost as well as the tremendous redundancy in the numerical solution that will
remain virtually unchanged over one time step.

An obvious possibility for a system with decoupled components is to solve
the problem separately for each component. In the example above, one could
time-step y; with Aty ~ 0.1 for about 50 steps (after which y; will die out)
and yy with Aty ~ 10™% also for about 50 steps. However, decoupled systems
are a luxury that one seldom has in practical problems. For example, the
system of ODEs

(2.55)

J() = Az z(t) €R% A = (500.5 499.5)

—499.5 500.5

poses the same stability problem for explicit schemes as the previous example
— simply because matrix A is obtained from the diagonal matrix D = diag(1,
1000) of the previous example by an orthogonal transformation A = Q'DQ,

with L
o= (4 )

The “fast” and “slow” components, with their respective time scales, are now
mixed up, but this is no longer immediately obvious. Recovering the two
components is equivalent to solving a full eigenvalue-eigenvector problem for
the system matrix, which can be done for small systems but is inefficient or
even impossible for large ones. The situation is even more complicated for
nonlinear problems and systems with time-varying coefficients.

A practical alternative lies in switching to implicit difference schemes. In
return for excellent stability properties, one pays the price of having to solve
for the unknown value of the numerical solution y,+1 at the next time step.
This is in general a nonlinear equation (for a scalar ODE) or a nonlinear
system of algebraic equations (for a system of ODEs, y being in that case a
Euclidean vector).

Recall that for the ODE

y'(t) = f(ty) (2.56)

the simplest implicit scheme — the backward Euler method — is

Yn+1 — Yn = At f(tns1,Ynt1) (2.57)

A set of schemes that generalize the backward Euler algorithm to higher
orders is due to C.W. Gear [Gea67, Gea7l, HrW93| and is called “Backward
Differentiation Formulae” (BDF). For illustration, let us derive the second
order BDF scheme, the derivation of higher order schemes being analogous.
The second order scheme involves three grid points: t_1 = tg — At, tg and
ty1 = to + At; quantities related to the “current” time step ¢y will be labeled
with index 0, quantities related to the previous and the next step will be
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labeled with —1 and +1, respectively. The starting point is almost the same
as for explicit Adams methods: an interpolation polynomial p(t) (quadratic
for the second order scheme) that passes through three points (t_1,y-1),
(to,yo) and (t4+1,y+1). The values yo and y_; of the solution at the current
and previous steps are known. The value y;1 at the next step is an unknown
parameter, and a suitable condition is needed to evaluate it.

P (t) = fits1. y41)

kcccaas==

i
—
-~
o
.
b=
~

Fig. 2.9. Second-order BDF involves quadratic polynomial interpolation over three
points: (t—1,y-1), (to,yo) and (t4+1,y+1).

In BDF, the following condition is imposed: the interpolating polynomial
p(t) must satisfy the underlying differential equation at time ¢, i.e.

p(ter) = fltyr,y41) (2.58)

To find this interpolation polynomial and then the BDF scheme itself, let us
for convenience move the origin of the coordinate system to the midpoint of
the stencil and set {5 = 0. Lagrange interpolation through the three points
then gives

B t(t — At) (t + At)(t — At) (t+ At)t
p(t) = yu CAD- (2080 - P TTAr (Cany T Y AT A
= Y1 t(t2;z§t) AL AtA)z(ez =2 4 (t;T?;)t (259

The derivative of p (needed to impose condition (2.58) at the next step) is
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’ Y-1 Yo Y+1
= 2t — At) — =2 2 A 2.
Pt) = gag (20— A — 252 + S (20 + Al (2.60)

Condition (2.58) is obtained by substituting t = ¢:

Y1 2% |, 3y+1

/ — _ = 2.61
P (t41) 9AL Ar T OoAr (41, 941) (2.61)
or equivalently
3 1
S~ 2yo + SY-1 = At f(t41,y+1) (2.62)

This is Gear’s second order method. The scheme is implicit — it constitutes a
(generally nonlinear) equation with respect to y11 or, in the case of a vector
problem (y € R™), a system of equations. In practice, iterative linearization
by the Newton-Raphson method is used and suitable linear system solvers
are applied in the Newton-Raphson loop.

For reference, here is a list of BDF of orders k from one through six
[HrW93]. The first order BDF scheme coincides with the implicit Euler
method. BDF schemes of orders higher than six are unstable.

Yr1— Yo = At fiq

3 1
5 U+ —2y0+§y_1 = At fiq
11 3 1
— e - Sy -y = At
G Y+ 3y0+2y1 3 U2 fr1
25 4 1
AL dyg + 3y_1 — 3Y-2 + V-3 = At fiq
137 10 5 1
— -5 Sy_1 — —y_ —y_3 — —y_4 = At
60y+1 Yo + 9Y-1 3y2+4y3 5y4 f+
147 6o + 15 20 n 15 6 n 1 Ny
60 Y+1 Yo g5 Y-1 3 Y2 4 Y3 5y74 6y75 = +1

Since stability considerations are of paramount importance in the choice
of difference schemes for stiff problems, an elaborate classification of schemes
based on their stability properties — or more precisely, on their regions of ab-
solute stability (see Section 2.4.3) — has been developed. The relevant material
can be found in C.W. Gear’s monograph [Gea7l] and, in a more complete
form, in J.D. Lambert’s book [Lam91]. What follows is a brief summary of
this stability classification.

A hierarchy of definitions of stability classes with progressively wider re-
gions of stability are (Lambert’s definitions are adopted):

Ap-stability <= A(0)-stability <= A(«)-stability <= stiff-stability <— A-
stability <= L-stability

Definition 1. A method is said to be Ag-stable if its region of absolute stability
includes the (strictly) negative real semiazis.
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Definition 2. [Gea71], [Lam91] A method is said to be A(a)-stable, 0 <
a < w/2, if its region of absolute stability includes the “angular” domain
|arg(AAt) — 7| < « in the AAt-plane (Fig. 2.10). A method is said to be
A(0)-stable if it is A(a)-stable for some 0 < o < /2.

ik

(J’.(

Fig. 2.10. A(a)-stability region.

Definition 3. [Gea71], [Lam91] A method is said to be A-stable if its region
of absolute stability includes the half-plane Re (AAt) < 0.

Definition 4. A method is said to be stiffly-stable if its region of absolute
stability includes the union of two domains (Fig. 2.11): (i) Re (AAt) < —a,
and (ii) —a < Re (AAt) < 0, [Im(AAt)| < ¢, where a, ¢ are positive real
numbers.

Thus stiff stability differs from A-stability in that slowly decaying but highly
oscillatory solutions are irrelevant for stiff stability. The rationale is that for
such solutions the time step is governed by accuracy requirements for the
oscillatory components as much, or perhaps even more, than it is governed by
stability requirements — hence this is not truly a stiff case.

Definition 5. [Gea71, Lam91] A method is said to be L-stable if it is A-stable
and, in addition, when applied to the scalar test equation y' = \y, Re A < 0,
it yields yn+1 = R(ANAL) yp, with |[R(AAL)| — 0 as Re AAt — —o0.

The notion of L-stability is motivated by the following test case. Consider one
more time the Crank—Nicolson scheme applied to the model scalar equation

Y =My
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179
C
—a 0
—p
Fig. 2.11. Stiff-stability region.
Yn+1 — Yn Yn+1 + Yn
=\ 2.63
h 2 ( )
The numerical solution is easily found to be
1+ AAL/2\"
= —TAsy 2 2.64
Y Yo (1 “OAL/2 ( )

As already noted, the Crank—Nicolson scheme is absolutely stable for any
AAt with a negative real part. The solution above reflects this fact, as the
expression in parentheses has the absolute value less than one for Re AAt < 0.
Still, the numerical solution exhibits some undesirable behavior for “highly
negative” values of A, i.e. for A < 0, |[AJ]At > 1. Indeed, in this case the
actual solution decays very rapidly in time as exp(At), whereas the numerical
solution decays very slowly but is highly oscillatory because the expression in
parentheses in (2.64) is close to —1.

This is a case where the numerical solution disagrees with the exact one
not just quantitatively but qualitatively. The problem is in fact much broader.
If the difference scheme is not chosen judiciously, the character of the solution
may be qualitatively incorrect (such as an oscillatory numerical solution vs.
a rapidly decaying exact one). Further, important physical invariants (most
notably energy or momentum) may not be conserved in the numerical solution,
which may render the computated results nonphysical. This is important,
in particular, in Molecular Dynamics, where energy conservation and, more
generally, “symplecticness” of the underlying Hamiltonian system (Section
2.5) should be preserved.

With regard to stiff systems, an alternative solution strategy that does
not involve difference schemes can sometimes be effective. The solution of a
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linear system of ODE can be analytically expressed via matrix exponential
exp(At) (see Appendix 2.10). Computing this exponential is by no means easy
(many caveats are discussed in the excellent papers by C. Moler & C. Van Loan
[ML78, MLO03]); nevertheless the recursion relation exp(At) = (exp(At/n))" is
helpful. The idea is that for n sufficiently large matrix At¢/n is “small enough”
for its exponential to be computed relatively easily with sufficient accuracy;
n is usually chosen as an integer power of two, so that the n-th power of the
matrix can be computed by repeated squaring.

Two interesting motifs of this and the following section can now be noted:

e difference methods that ensure a qualitative/physical agreement between
the numerical solutions and the exact ones;
e methods blending numerical and analytical approximations.

Many years ago, my advisor Iu.V. Rakitskii [Rak72, RUC79, RSY*85] was an
active proponent of both themes. Nowadays, the qualitative similarity between
discrete and continuous models is an important trend in mathematical studies
and their applications. Undoubtedly, Rakitskii would have been happy to see
the contribution of Yu.B. Suris, his former student, to the development of
numerical methods preserving the physical invariants of Hamiltonian systems
[Sur87]-[Sur96], as well as to discrete differential geometry (A.I. Bobenko &
Yu.B. Suris [BSve]). Another “Rakitskii-style” development is the generalized
finite-difference calculus of Flexible Local Approximation MEthods (FLAME,
Chapter 4) that seamlessly incorporates local analytical approximations into
difference schemes.

2.5 Schemes for Hamiltonian Systems

2.5.1 Introduction to Hamiltonian Dynamics

Note: no prior knowledge of Hamiltonian systems is necessary for reading this
section.

As a starting example, consider a (classical) harmonic oscillator, such as
a mass on a spring, described by the ODE

mG = —kq (2.65)

(mass times acceleration equals force), where mass m and the spring constant
k are known parameters and ¢ is a coordinate. The general solution to this
equation is

q(t) = qocos(wot +¢); w§ = (2.66)

m
for some parameters gy and ¢.
Even though the above expression in principle contains all the informa-

tion about the solution, recasting the differential equation in a different form
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brings a deeper perspective. The new insights are even more profound for
multiparticle problems with multiple degrees of freedom.

The Hamiltonian of the oscillator — the energy function H expressed in
terms of ¢ and ¢ — comprises the kinetic and potential terms:®

1 1

H = —m¢*> + = k¢ (2.67)
2 2

We shall view H as a function of two variables: coordinate ¢ and momentum

p = mg; in terms of these variables,

k¢
H(g,p) = 5— + = (2.68)
The original second-order differential equation splits up into two first-order
equations
g =m'p
(2.69)
p = —kq

or in matrix-vector form

-1
W = Aw, w — (;1)); A = (_Ok " p) (2.70)

The right hand side of differential equations (2.69) is in fact directly related
to the partial derivatives of H(g,p):

OH(g,p) _ p

3 = m (2.71)
0H(q,p)
b0 " kq (2.72)

We thus arrive at the equations of Hamiltonian dynamics, with their elegant

symmetry: I
p)
op
(2.73)
0H(q,p)

dq = 725
Energy conservation follows directly from these Hamiltonian equations by
chain-rule differentiation:

OH 0H | OH

od _ oH OH o s s = 0
ot op D+ g q ap — pq
In the phase plane (q,p), constant energy levels correspond to ellipses

5 More generally in mechanics, the Hamiltonian can be defined by its relationship
with the Lagrangian of the system, and is indeed equal to the energy of the system
if expressions for the generalized coordinates do not depend on time.
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2 k2
ro, ke

E = 3 2.74
o 5 const (2.74)

H(q,p) =
For the Hamiltonian system, any particular solution (q(t),p(t)), viewed as a
(moving) point in the phase plane, moves along the ellipse corresponding to
the energy of the oscillator.

Further insight is gained by following the evolution of the w = (g, p) points
corresponding to a collection of oscillators (or the same oscillator observed
repeatedly under different conditions). The initial coordinates and momenta
of a family of oscillators are represented by a set of points in the phase plane.
One may imagine that these points fill a certain geometric domain Q(0) at ¢t =
0 (shaded area in Fig. 2.12). With time, each of the points will follow its own
elliptic trajectory, so that at any given moment of time ¢ the initial domain
Q(0) will be transformed into some other domain ().

Q)

q

Fig. 2.12. The motion of a harmonic oscillator is represented in the (g, p) phase
plane by a point moving around an ellipse. Domain ©(0) contains a collection of
such points (corresponding to an ensemble of oscillators or, equivalently, to a set of
different initial conditions for one oscillator) at time ¢ = 0. Domain Q(¢) contains
the points corresponding to the same oscillators at some arbitrary moment of time
t. The area of Q(t) turns out not to depend on time.

By definition, it is the solutions of the Hamiltonian system that effect the
mapping from ©(0) to Q(t). These solutions are given by matrix exponentials
(see Appendix 2.10):

w(t) = (‘J(i;) = exp(At) (ﬁ%) (2.75)
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The Jacobian of this mapping is the determinant of exp(At); as known
from linear algebra, this determinant is equal to the product of eigenvalues
A1,2(exp(At)):

det (exp(At)) = A1 (exp(At)) A2 (exp(At)) = exp (A1(At)) exp (A2(At))

= exp (A1(At) + A2(At)) = exp (Tr(A4At)) =1
(2.76)
(The eigenvalues of exp(At) are equal to the exponents of the eigenvalues of
At; if this looks unfamiliar, see Appendix 2.10, p. 65).

Since the determinant of the transformation is unity, the evolution oper-
ator preserves the oriented area of Q(t), in addition to energy conservation
that was demonstrated earlier.

This result generalizes to higher-dimensional phase spaces in multiparticle
systems. Such phase spaces comprise the generalized coordinates ¢; and mo-
menta p; of NV particles. If particle motion is three-dimensional, there are three
degrees of freedom per particle® and hence i = 1, 2, ..., 3N; the dimension of
the phase space is thus 6 N. The most direct analogy with area conservation is
that the 6 N-dimensional phase volume is conserved under the evolution map
[Arn89, HrW93, SSC94]. However, there is more. For any two-dimensional sur-
face in the phase space, take its projections onto the individual phase planes
(pi,q;) and sum up the oriented areas of these projections; this sum is con-
served during the Hamiltonian evolution of the surface. Transformations that
have this conservation property for the sum of the areas are called symplectic.

There is a very deep and elaborate mathematical theory of Hamiltonian
phase flows on symplectic manifolds. A symplectic manifold is an even-
dimensional differentiable manifold endowed with a closed nondegenerate dif-
ferential 2-form; these notions, however, are not covered in this book. Further
mathematical details are described in the monographs by V.I. Arnol’d [Arn89]
and J.M. Sanz-Serna & M.P. Calvo [SSC94].

2.5.2 Symplectic Schemes for Hamiltonian Systems

This subsection gives a brief summary of FD schemes that preserve the sym-
plectic property of Hamiltonian systems. The material comes from the paper
by R.D. Skeel et al. [RDS97], from the results on Runge-Kutta schemes due
to Yu.B. Suris [Sur87]-[Sur90] and J.M. Sanz-Serna [SSC94], and from the
compendium of symplectic symmetric Runge-Kutta methods by W. Oevel &
M. Sofroniou [0S97].

The governing system of ODEs in Newtonian mechanics and, in particular,
molecular dynamics is

i = f(r), reR"” (2.77)

6 Disregarding the internal structure of particles and any degrees of freedom that
may be associated with that.
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where r is the position vector for a collection of n interacting particles and f
is the normalized force vector (vector of forces divided by particle masses). It
is assumed that the forces do not explicitly depend on time.

The simplest, and yet effective, difference scheme for this problem is known
as the Stérmer—Verlet method:”

Tn41 — 2rn + rp-1 _
Az = f(rn) (2.78)

The left hand side of the Stérmer scheme is a second-order (with respect to
the time step At) approximation of #; this approximation is very common.
The velocity vector can be computed from the position vector by central
differencing:
Tn+l — Thn—1
Up = SAL (2.79)
Time-stepping for both vectors r and v simultaneously can be arranged in a

“leapfrog” manner:
Un+1/2 = /Un—l/Q + Atf(’l’n) (280)

Tne1 = Tn + Atv(n+1/2) (2.81)

The leapfrog scheme (2.80), (2.81) is theoretically equivalent to the Stérmer
scheme (2.78), (2.79). The advantage of these schemes is that they are sym-
plectic and at the same time explicit: no systems of equations need to be
solved in the process of time-stepping. Several other symplectic integrators
are considered by R.D. Skeel et al. [RDS97], but they are all implicit.

With regard to the Runge-Kutta methods, the Suris—Sanz-Serna condition
of symplecticness is

biaij + bjaji — bibj = 0, 1,5 = 1,2,...5 (2.82)

where b;, a;; are the coefficients of an s-stage Runge-Kutta method defined
on p. 21, except that here the scheme is no longer explicit — i.e. a;; can be
nonzero for any pair of indexes i, j.

W. Oevel & M. Sofroniou [0S97] give the following summary of symplectic
Runge-Kutta schemes.

There is a unique one-stage symplectic method with the Butcher tableau

11
1

It represents the implicit scheme

At 1
Tp+l = Th + Atf(tn“‘27 2(Tn+rn+1)> (2'83)

7 Skeel et al. [RDS97] cite S. Toxvaerd’s statement [Tox94] that “the first known
published appearance [of this method] is due to Joseph Delambre (1791)”.
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The following two-stage method is also symplectic:

‘H

+

=

1
7l
T3

N|—
B

2

‘ -

A
5

=

j:
1
§:F

W. Oevel & M. Sofroniou [0S97] list a number of other methods, up to
six-stage ones; these methods were derived using symbolic algebra.

1
2

2.6 Schemes for One-Dimensional Boundary Value
Problems

2.6.1 The Taylor Derivation

After a brief review of time-stepping schemes, we turn our attention to FD
schemes for boundary value problems. Such schemes can be applied to var-
ious physical fields and potentials in one-dimension (this section), two and
three dimensions (the following sections). The most common and straightfor-
ward way of generating FD schemes is by Taylor expansion. As the simplest
example, consider the Poisson equation in 1D:
d*u
~Th = f@) (2:84)
where f(x) is a given function that in physical problems represents the dis-
tribution of sources. The minus sign in the right hand side is conventional in
many physical problems (electrostatics, heat transfer, etc.).
Let us introduce a grid, for simplicity with a uniform spacing h, and con-
sider a three-point stencil xy_1, Tk, Tgr1, where x4 = x = h. We shall look
for the difference scheme in the form

S_quk—1 + Sour + Stiugr1 = f(xzk) (2.85)

where the coefficients s (mnemonic for “scheme”) are to be determined. These
coefficients are chosen to approximate, with the highest possible order in terms
of the grid size h, the Poisson equation (2.84). More specifically, let u* be the
exact solution of this equation, and let us write out the Taylor expansions of
the values of u* at the stencil nodes:

1
uj_, = uf — hu*j + §h2u*g + h.o.t.
up = uj

"

1
up, = up + hu'y, + §h2 u*, + h.o.t.
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where the primes denote derivatives at the midpoint of the stencil, x = x}, and
“h.o.t.” as before stands for “higher order terms”. Substituting these Taylor
expansions into the difference scheme (2.85) and collecting the powers of h,
one obtains

(s_1+s0+si1)uf + (—=s_14+s41)u*Lh + %(s,l—i-sﬂ)u*ghQ + hot. = —u}

(2.86)
where in the right hand side we took note of the fact that f(xy) = —u}. The
consistency error of the scheme is, by definition,

€ = (5_14+s0+sp1)uf + (—s_1+s.1)u"Lh

2 h

The consistency error tends to zero as h — 0 if and only if

1 2
+ = <31 + 541+ 2) u k% + h.o.t. (2.87)

S_1+s0+s41 =0

—s_1+s+1 =0
S,1+8+1+2/h2 =0

from which the coefficients of the scheme are immediately found to be
5.1 = 541 = —1/h? s =2/h* (2.88)
and the difference equation thus reads

—Up—1 + 2up — Ugy1
2

It is easy to verify that this scheme is of second order with respect to h, i.e.
its consistency error €. = O(h?). The Taylor analysis leading to this scheme is
general, however, and can be extended to generate higher-order schemes, pro-
vided that the grid stencil is extended as well. As an exercise, the reader may
verify that on a 5-point stencil of a uniform grid the scheme with coefficients
[1,—16,30,—16,1]/(12h?) is of order four.

Practical implementation of FD schemes involves forming a system of equa-
tions for the nodal values of function w, imposing the boundary conditions,
solving this system and processing the results. The implementation is de-
scribed in Section 2.6.4.

= f(zx) (2.89)

2.6.2 Using Constraints to Derive Difference Schemes

In this subsection, a slightly different way of deriving difference schemes is
presented. The idea is most easily illustrated in 1D but will prove to be fruitful
in 2D and 3D, particularly for the development of the so-called “Mehrstellen”
schemes (see Sections 2.7.4, 2.8.5).
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For the 1D Poisson equation, we are looking for a three-point FD scheme
of the form
S_qug—1 + Sour + Sp1Upt1 = Sy (2.90)

Parameter s; in the right hand side is not specified a priori and will be
determined, along with s+; and sg, as a result of a formal procedure described
below.

Let us again expand the exact solution u into the Taylor series around the
midpoint xj of the stencil:

uw(x) = co + ci(z—x1) + colw—xp)? + es(z—2)® + ca(z—x)* + hoot.
(2.91)
The coefficients ¢, are of course directly related to the derivatives of u at xy,
but will initially be treated as undetermined parameters; later on, information
available about them will be taken into account.
Consistency error of scheme (2.90) can be evaluated by substituting the
Taylor expansion (2.91) into the scheme. Upon collecting similar terms for all
coefficients c,, we get

€c = — 85 + (sc1+so+sy1)co + (—s—1+s41)her + (s,l—i—sﬂ)hzcg

+ (=s_14+s41)h%cs + (s_1+s41)h*cs + hout. (2.92)

If no information about the coefficients ¢, were available, the best one could
do to minimize the consistency error would be to set sy = 0, s_1 + sg + 541
=0, and —s_; + s41 = 0, which yields ug_; — 2up + ug4+1 = 0.

Not surprisingly, this scheme is not suitable for the Poisson equation with
a nonzero right hand side: we have not yet made use of the fact that u satisfies
this equation — that is, that the Taylor coefficients ¢, are not arbitrary. In
particular,

u'(xg) = 2¢0 = — f(zr) (2.93)

This condition can be taken into account by using an idea that is, in a sense,
dual to the method of Lagrange multipliers in constrained optimization. (Here
we are in fact dealing with a special optimization problem — namely, minimiza-
tion of the consistency error in the asymptotic sense.) In typical constrained
optimization, restrictions are imposed on the optimization parameters being
sought; in our case, these parameters are the coefficients s of the difference
scheme. Note that constraints on optimization parameters, generally speaking,
inhibit optimization.

In contrast, in our case the constraint applies to the parameters of the
function being minimized. This narrows down the set of target functions and
facilitates optimization. To incorporate the constraint on cp (2.93) into the
minimization problem, one can introduce an analog of the Lagrange multiplier

A

€c = — S5 + (sc1+so+s41)co + (—s—1+s41)her + (s-1+ s11)h?co
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+ (=s_1+s41)h%cs + (s_1 4 s41)h*cs + hot. — A2co + f(ap)]

or equivalently
€c = (—sy = Af(zx)) + (s—1+ 50+ 541)co + (—s—1+s41)her

+ (s_1h®> +541h%> =2\ + (—s_1+541)h3cs + (s_14+s41)h*cs + hoot.

(2.94)

where A is an arbitrary parameter that one is free to choose in addition to

the coefficients of the scheme. As Sections 2.7.4 and 2.8.5 show, in 2D and 3D

there are several such constraints and therefore several extra free parameters

at our disposal.

Maximization of the order of the consistency error (2.94) yields the fol-

lowing conditions:

—sp—=AMf(zx) = 0
S_1+s0+s41 =0
—s5_1+s41 =0
s_1h* +s,1h? =2\ = 0

This gives, up to an arbitrary factor, A = 1, s41 = h™2, sg = —2h2, sp =
—f(xr), and the resultant difference scheme is

—Ug—1 + 2Up — Ugy1
5 = = () (2.95)

This new “Lagrange-like” derivation produces a well-known scheme in one
dimension, but in 2D /3D the idea will prove to be more fruitful and will lead
to “Mehrstellen” schemes introduced by L. Collatz [Col66].

2.6.3 Flux-Balance Schemes

The previous analysis was implicitly based on the assumption that the ex-
act solution was sufficiently smooth to admit the Taylor approximation to a
desired order. However, Taylor expansion typically breaks down in a num-
ber of important practical cases — particularly so in the vicinity of material
interfaces. In 1D, this is exemplified by the following problem:

_% ()\(m) Z;ﬁ) = f(z) on Q=[a, b, ula) = ug, ud) = up (2.96)

where the boundary values u,, up are given. In this equation, A is the material
parameter whose physical meaning varies depending on the problem: it is
thermal conductivity in heat transfer, dielectric permittivity in electrostatics,
magnetic permeability in magnetostatics (if the magnetic scalar potential is
used), and so on. This parameter is usually discontinuous across interfaces of
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different materials. In such cases, the solution satisfies the interface boundary
conditions that in the 1D case are

u(z, u(xd
uleg) = uleg) Alag) 2400 dulag)

where 1z is the discontinuity point for A(z), and the — and + labels correspond
to the values immediately to the left and to the right of zq, respectively.

The quantities —\(x)du/dz typically have the physical meaning of fluzes:
for example, the heat flux (i.e. energy passed through point x per unit time)
in heat transfer problems or the flux of charges (that is, electric current)
in electric conduction, etc. The fundamental physical principle of energy or
flux conservation can be employed to construct a difference scheme. For any
chosen subdomain (often called “control volume” — in 1D, a segment), the
outgoing energy flow (e.g. heat flux) is equal to the total capacity of sources
(e.g. heat sources) within that subdomain. In electro- or magnetostatics, with
the electric or magnetic scalar potential formulation, a similar principle of fluz
balance is used instead of energy balance.

For equation (2.96) energy or flux balance can mathematically be derived
by integration. Indeed, let w = [, ] C Q.8 Integrating the underlying equa-
tion (2.96) over w, we obtain

= Axg)

(2.97)

U u s
A@ @) = M) PO = [ fa)de (299)

which from the physical point of view is exactly the flux balance equation
(outgoing flux from w is equal to the total capacity of sources inside w).

Fig. 2.13 illustrates the construction of the flux-balance scheme; o and
are chosen as the midpoints of intervals [z_1, ] and [z, zx11], respectively.
The fluxes in the left hand side of the balance equation (2.98) are approxi-
mated by finite differences to yield

B
(MBS A M) et [ (2o
h h o
If the central point xj, of the stencil is placed at the material discontinuity (as
shown in Fig. 2.13), A(a) = A_ and A\(3) = A,. The factor ! is introduced
to normalize the right hand side of this scheme to O(1) with respect to the
mesh size (i.e. to keep the magnitude of the right hand side approximately
constant as the mesh size decreases). The integral in the right hand side can
be computed either analytically, if f(z) admits that, or by some numerical
quadrature — the simplest one being just f(xy)(8 — «). This flux-balance
scheme has a solid foundation as a discrete energy conservation condition.
From the mathematical viewpoint, this translates into favorable properties of
the algebraic system of equations (to be considered in Section 2.6.4): matrix

symmetry and, as a consequence, the discrete reciprocity principle.

8 While symbol Q refers to the whole computational domain, w denotes its subdo-
main (typically “small” in some sense).
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Xi1 v X Xt

Fig. 2.13. A three-point flux balance scheme near a material interface in one di-
mension.

If the middle node of the stencil is not located exactly at the material
boundary, the flux-balance scheme (2.99) is still usable, with A(«) and A\(3)
being the values of A in the material where the respective point « or 8 happens
to lie. However, numerical accuracy deteriorates significantly. This can be
shown analytically by substituting the exact solution into the flux-balance
scheme and evaluating the consistency error.

Rather than performing this algebraic exercise, we simply consider a nu-
merical illustration. Problem (2.96) is solved in the interval [0, 1]. The material
boundary point is chosen to be an irrational number a = 1/ V2, so that in the
course of the numerical experiment it does not coincide with a grid node of
any uniform grid. There are no sources (i.e. f = 0) and the Dirichlet condi-
tions are u(0) = 0, u(1) = 1. The exact solution and the numerical solution
with 10 grid nodes are shown in Fig. 2.14. The log-log plot of the relative
error norm of the numerical solution vs. the number of grid nodes is given in
Fig. 2.15. The dashed line in the figure is drawn for reference to identify the
O(h) slope.

Comparison with this reference line reveals that the convergence rate is
only O(h). Were the discontinuity point to coincide with a grid node, the
scheme could easily be shown to be exact — in practice, the numerical solu-
tion would be obtained with machine precision. The farther the discontinuity
point is from the nearest grid node (relative to the grid size), the higher the
numerical error tends to be. This relative distance to the nearest node is plot-
ted in Fig. 2.16 and does indeed correlate clearly with the numerical error in
Fig. 2.15.

As in the case of Taylor-based schemes of the previous section, the flux-
balance schemes prove to be a very natural particular case of “Trefftz—
FLAME” schemes considered in Chapter 4; see in particular Section 4.4.2.
Moreover, in contrast with standard schemes, in FLAME the location of ma-
terial discontinuities relative to the grid nodes is almost irrelevant.
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Fig. 2.16. Relative distance (as a fraction of the grid size) between the discontinuity
point and the nearest grid node.

2.6.4 Implementation of 1D Schemes for Boundary Value
Problems

Difference schemes like (2.89) or (2.99) constitute a local relationship between
the values at the neighboring nodes of a particular stencil. Putting these local
relationships together, one obtains a global system of equations.

With the grid nodes numbered consecutively from 1 to n,? the nxn matrix
of this system is tridiagonal. Indeed, row k of this matrix corresponds to the
difference equation — in our case, either (2.89) or (2.99) — that connects the
unknown values of u at nodes k — 1, k and k + 1.

For example, the flux-balance scheme (2.99) leads to a matrix L with di-
agonal entries Ly, = (AT + A7) /h and the off-diagonal ones Lj_; , = —A\~ /A,
Ly k+1 = —A1/h, where as before A\~ and A are the values of material para-
meter \ at the midpoints of intervals [zx_1,zx] and [zk, k1], respectively.

These entries are modified at the end points of the interval to reflect the
Dirichlet boundary conditions.'® At the boundary nodes, the Dirichlet con-
dition can be conveniently enforced by setting the corresponding diagonal

9 Numbering from 0 to n—1 is often more convenient, and is the default in languages
like C/C++. However, I have adopted the default numbering of Matlab and of
the classic versions of FORTRAN.

10 The implementation of Neumann and other boundary conditions is covered in all
textbooks on FD schemes: L. Collatz [Col66], A.A. Samarskii [Sam01], J.C. Strik-
werda [Str04], W.E. Milne [Mil70], and many others.
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matrix entry to one, the other entries in its row to zero, and the respective
entry in the right hand side to the given Dirichlet value of the solution.

In addition, if j is a Dirichlet boundary node and ¢ is its neighbor, the
L;ju; term in the ¢-th difference equation is known and therefore gets moved
(with the opposite sign) to the right hand side, while the (¢, 7) matrix entry
is simultaneously set to zero. The same procedure is valid in two and three
dimensions, except that in these cases a boundary node can have several
neighbors.!!

The system matrix L corresponding to this three-point scheme is tridiag-
onal, and the system can be easily solved by Gaussian elimination (A. George
& JW-H. Liu [GL81]) or its modifications (S.K. Godunov & V.S. Ryabenkii
[GR8Tal).

2.7 Schemes for Two-Dimensional Boundary Value
Problems

2.7.1 Schemes Based on the Taylor Expansion
For illustration, let us again turn to the Poisson equation — this time in two

dimensions:
<82u 0%u

We introduce a Cartesian grid with grid sizes h,, hy, and the number of grid
subdivisions N, N, in the z- and y-directions, respectively. To keep the nota-
tion simple, we consider the grid to be uniform along each axis; more generally,
h could vary along the z-axis and h, could vary along the y-axis, but the
essence of the analysis would remain the same. Each node of the grid can be
characterized in a natural way by two integer indices n, and n, corresponding
to the z- and y-directions; 1 <n; < Ny +1,1<n, <N, + 1.

To generate a Taylor-based difference scheme for the Poisson equation
(2.100), it is natural to approximate the z- and y- partial derivatives separately
in exactly the same way as done in 1D. The resulting scheme for grid nodes
not adjacent to the domain boundary is

—Un,—1,n, + 2unz,ny = Un,+1,n,
h?
—Un, m,—1 + 2Un,n, — Un,
+ Mg, Ny 1 h7;1_,ny ﬂz”ﬂy*f’l — f(In,yn) (2101)
Yy

where x,,, y,, are the coordinates of the grid node (n, ny) Note that difference
scheme (2.101) involves the values of w on a 5-point grid stencil (three points
in each coordinate direction, with the middle node shared, Fig. 2.17). As in

1 The same is true in 1D for higher order schemes with more than three stencil
nodes in the interior of the domain (more than two nodes in boundary stencils).
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Fig. 2.17. A 5-point stencil for difference scheme (2.101) in 2D.

1D, scheme (2.101) is of second order, i.e. its consistency error is O(h?), where
h = max(hy, hy). By expanding the stencil, it is possible — again by complete
analogy with the 1D case — to increase the order of the scheme. For example,
on the stencil with nine nodes (five in each coordinate direction, with the
middle node shared) a fourth order scheme can be obtained by combining two
fourth order schemes in the z- and y-directions on their respective 5-point
stencils. Other stencils can be used to construct higher-order schemes, and
other ideas can be applied to this construction (see for example the Collatz
“Mehrstellen” schemes on a 3 x 3 stencil in Section 2.7.4).

2.7.2 Flux-Balance Schemes

Let us now turn our attention to a more general 2D problem with a varying
material parameter e

-V (6(1’, y)vu) = f(x,y) (2102)

where € may depend on coordinates but not — in the linear case under con-
sideration — on the solution u. Moreover, € will be assumed piecewise smooth,
with possible discontinuities only at material boundaries.'?

At any material interface boundary, the following conditions hold:

_ou~ L outT

where “—” and “+” refer to the values on the two sides of the interface
boundary and n is the normal to the boundary in a prescribed direction.

The integral form of the differential equation (2.102) is, by Gauss’s Theo-
rem,

12 Throughout the book, “smoothness” is not characterized in a mathematically
precise way. Rather, it is tacitly assumed that the level of smoothness is sufficient
to justify all mathematical operations and analysis.
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L e(z,y) fdv = /fa:y (2.104)

where w is a subdomain of the computational domain €2, « is the boundary
of w, and n is the outward normal to that boundary.

The physical meaning of this integral equation is either energy conservation
or flux balance, depending on the application. For example, in heat transfer
this equation expresses the fact that the net flow of heat through the surface of
volume w is equal to the total amount of heat generated inside the volume by
sources f. In electrostatics, (2.104) is an expression of Gauss’s Law (the flux
of the displacement vector D is equal to the total charge inside the volume).

The integral conservation principle (2.104) is valid for any subdomain w.
Flux-balance difference schemes are generated by applying this principle to a
discrete set of subdomains (“control volumes”) such as the shaded rectangle
shown in Fig. 2.18. The grid nodes involved in the construction of the scheme
are the same as in Fig. 2.17 and are not labeled to avoid overloading the
picture. For this rectangular control volume, the surface flux integral in the

Flux-

Fluxs &3 Flux,

Flux,

Fig. 2.18. Construction of the flux-balance scheme. The net flux out of the shaded
control volume is equal to the total capacity of sources inside that volume.

balance equation (2.104) splits up into four fluxes through the edges of the
rectangle. Each of these fluxes can be approximated by a finite difference; for
example,

unm My T unerl.,ny
hy

where €; is the value of the material parameter at the edge midpoint marked
with an asterisk in Fig. 2.18; the h, factor is the length of the right edge of
the shaded rectangle. (If the grid were not uniform, this edge length would be
the average value of the two consecutive grid sizes.)

The complete difference scheme is obtained by summing up all four edge
fluxes:

Flux; ~ eih, (2.105)
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unm,ny - Unz+1,ny unz,ny - unz,nerl
€1hy A + 62}?% h
s Y
Un,,m, — Un,—1n, Ungy,m, — Ung n,—1
+ 63hy — = — + €4hm e v = f(xnayn) hzhy

hy hy

The approximation of fluxes by finite differences hinges on the assumption
of smoothness of the solution. At material interfaces, this assumption is vio-
lated, and accuracy deteriorates. The reason is that the Taylor expansion fails
when the solution or its derivatives are discontinuous across boundaries. One
can try to remedy that by generalizing the Taylor expansion and accounting
for derivative jumps (A. Wiegmann & K.P. Bube [WB00)]); however, this ap-
proach leads to unwieldy expressions. Another alternative is to replace the
Taylor expansion with a linear combination of suitable basis functions that
satisfy the discontinuous boundary conditions and therefore approximate the
solution much more accurately. This idea is taken full advantage of in FLAME
(Chapter 4).

2.7.3 Implementation of 2D Schemes

By applying a difference scheme on all suitable grid stencils, one obtains a
system of equations relating the nodal values of the solution on the grid. To
write this system in matrix form, one needs a global numbering of nodes from
1 to N, where N = (N, + 1)(N, + 1). The numbering scheme is in principle
arbitrary, but the most natural order is either row-wise or column-wise along
the grid. In particular, for row-wise numbering, node (n.,n,) has the global
number

n = (Ny+1)(ny—1) + ny, — 1, 1<n<N (2.106)

With this numbering scheme, the global node numbers of the two neighbors
of node n = (nz,ny) in the same row are n — 1 and n + 1, while the two
neighbors in the same column have global numbers n + (N, + 1) and n —
(N, + 1), respectively. For nodes adjacent to the domain boundary, fictitious
“neighbors” with node numbers that are nonpositive or greater than N are
ignored.

It is then easy to observe that the 5-point stencil of the difference scheme
leads to a five-diagonal system matrix, two of the subdiagonals corresponding
to node—node connections in the same row, and the other two to connections
in the same column. All other matrix entries are zero.

The Dirichlet boundary conditions are handled in a way similar to the
1D case. Namely, for a boundary node, the corresponding diagonal entry of
the system matrix can be set to one (the other entries in the same row being
zero), and the entry of the right hand side set to the required Dirichlet value.
Moreover, if j is a boundary node and i is its non-boundary neighbor, the
term L;;ju; in the difference scheme is known and is therefore moved to the
right hand side (with the respective matrix entry (i, j) reset to zero).
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There is a rich selection of computational methods for solving such lin-
ear systems of equations with large sparse matrices. Broadly speaking, these
methods can be subdivided into direct and iterative solvers. Direct solvers are
typically based on variants of Gaussian or Cholesky decomposition, with node
renumbering and possibly block partitioning; see A. George & J.W-H. Liu
[GL81, GLe] and Section 3.11 on p. 129. The second one is iterative methods
— variants of conjugate gradient or more general Krylov-subspace iterations
with preconditioners (R.S. Varga [Var00], Y. Saad [Saa03], D.K. Faddeev &
V.N. Faddeeva [FF63], H.A. van der Vorst [vdV03a]) or, alternatively, do-
main decomposition and multigrid techniques (W. Hackbusch [Hac85], J. Xu
[Xu92], A. Quarteroni & A. Valli [QV99)]); see also Section 3.13.4.

2.7.4 The Collatz “Mehrstellen” Schemes in 2D
For the Poisson equation in 2D
~Vu = f (2.107)

consider now a 9-point grid stencil of 3 x 3 neighboring nodes. The node
numbering is shown in Fig. 2.19.

® ] @
#8  #5 #9
® ® ®
#2 #1 #3
@ @ L
#6  #4  #]

Fig. 2.19. The 9-point stencil with the local numbering of nodes as shown. The
central node is numbered first, followed by the remaining nodes of the standard
5-point stencil, and then by the four corner nodes.

We set out to find a scheme
9

D, Satla = Z; Wa fa (2.108)

with coefficients {sq}, {wa} (@ = 1,2, ..., 9) such that the consistency error
has the highest order with respect to the mesh size. For simplicity, we shall
now consider schemes with only one nonzero coefficient w corresponding to
the central node (node #1) of the stencil. It is clear that w; in this case can
be set to unity without any loss of generality, as the coefficients s still remain
undetermined; thus
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9
E Salle = f1 (2.109)
a=1
The consistency error of this scheme is, by definition,
9 9
_ * — * 2, %
€ = E ey Sl fi E ooy S0lla Vo (2.110)

where u* is the exact solution of the Poisson equation and v}, is its value at
node «. The goal is to minimize the consistency error in the asymptotic sense
— i.e. to maximize its order with respect to h — by the optimal choice of the
coefficients s, of the difference scheme.

Suppose first that no additional information about u* — other than it is
a smooth function — is taken into consideration while evaluating consistency
error (2.110). Then, expanding u* into the Taylor series around the central
point of the 9-point stencil, after straightforward algebra one concludes that
only a second order scheme can be obtained — that is, asymptotically the same
accuracy level as for the five-point stencil.

However, a scheme with higher accuracy can be constructed if additional
information about u* is taken into account. To fix ideas, let us consider the
Laplace (rather than the Poisson) equation

Viu* = 0 (2.111)

Differentiation of the Laplace equation with respect to x and y yields a few
additional pieces of information:

A3u* 3u*

—_— = 11
55 gy~ ° (2.112)
A3u* A3u*
—_— — = 2.11
OxOy> + oy? 0 (2.113)

Another three equations of the same kind can be obtained by taking second
derivatives of the Laplace equation, with respect to xzx, zy, and yy. As the
way these equations are produced is obvious, they are not explicitly written
here to save space.

All these additional conditions on u* impose constraints on the Taylor
expansion of u*. It is quite reasonable to seek a more accurate difference
scheme if only one function (namely, u*) is targeted, rather than a whole
class of sufficiently smooth functions.

More specifically, let

34 641‘4 + ¢y

u*(z,y) = co + az + cpx? + cax

+ cory + o’y + cs3’y + coy’ + crory’

+ enz®y? + ey’ + ciszy® 4+ cuyt + hodt. (2.114)
where ¢, (o = 1,2,...,14) are some coefficients (directly related, of course,
to the partial derivatives of u*). For convenience, the origin of the coordinate
system has been moved to the midpoint of the 9-point stencil.
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To evaluate and minimize the consistency error (2.110) of the difference
scheme, we need the nodal values of the exact solution u*. To this end, let us
first rewrite expansion (2.114) in a more compact matrix-vector form:

u*(z,y) = plc (2.115)

where pT is a row vector of 15 polynomials in , v in the order of their appear-
ance in expansion (2.114): p” = [1,2,22,..., 2¢%,y%]; ¢ € R'® is a column
vector of expansion coefficients. The vector of nodal values of u* on the stencil
will be denoted with N'u* and is equal to

Nu* = Nc¢ + ho.t. (2.116)

The 9 x 15 matrix N comprises the 9 nodal values of the 15 polynomials on
the stencil, i.e.

Nog = p3(%a, Ya) (2.117)

Such matrices of nodal values will play a central role in the “Flexible Local
Approximation MEthod” (FLAME) of Chapter 4.
Consistency error (2.110) for the Laplace equation then becomes

ebavlace — §TN¢ 4 h.o.t. (2.118)

where s € R? is a Euclidean vector of coefficients. If no information about
the expansion coefficients ¢ (i.e. about the partial derivatives of the solution)
were available, the consistency error would have to be minimized for all vectors
¢ € R'5. In fact, however, u* satisfies the Laplace equation, which imposes
constraints on its second-order and higher-order derivatives. Therefore the
target space for optimization is actually narrower than the full R'®. If more
constraints on the ¢ coefficients are taken into account, higher accuracy of the
difference scheme can be expected.

A “Lagrange-like” procedure (Section 2.6.2) for incorporating the con-
straints on u* is in some sense dual to the standard technique of Lagrange
multipliers: these multipliers are applied not to the optimization parameters
but rather to the parameters of the target function w*. Thus, we introduce
five Lagrange-like multipliers A\;_5 to take into account five constraints on the
c coefficients:

6Ic_lza»place — §TNQ _ )\1(62+Cg) _ )\2(303+C10) — )\3(07"‘3012)
_ )\4(6C4+011) _ A5(6814+811) — >\6(6C8+Cl3) =+ hot(2119)

For example, the constraint represented by A; is just the Laplace equation

itself (since ¢p = %%, cg = %%Q—E); the constraint represented by As is the

derivative of the Laplace equation with respect to x (see (2.112)), and so on.
In matrix form, equation (2.119) becomes

e = s"Ne — ATQc + hot. (2.120)
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where matrix @ corresponds to the A-terms in (2.119). The same relationship
can be rewritten in the block-matrix form

N
€. = (§T AT) (Q> ¢ + h.o.t. (2.121)
As in the regular technique of Lagrange multipliers, the problem is now treated
as unconstrained. The consistency error is reduced just to the higher order

terms if
s

(A) € Null (N7;-QT) (2.122)

assuming that this null space is nonempty.

The computation of matrices N and @, as well as the null space above,
is straightforward by symbolic algebra. As a result, the following coefficients
are obtained for a stencil with mesh sizes h, = q.h, hy = gyh in the z- and
y-directions, respectively:

51 = 20h2
s23 = —2h7%(5¢3 — q)/(q; + 43)
sa5 = —2h2(5q; —q2)/(q) + 42)
S6_g = —h 2

If ¢, = gy (i.e. hy = hy), the scheme simplifies:
s = h72[20,—4,—4,—4,—-4,-1,—-1,-1,—1]

(20 corresponds to the central node, the —4’s — to the mid-edge nodes, and
the —1’s — to the corner nodes).

This scheme was derived, from different considerations, by L. Collatz in
the 1950’s [Col66] and called a “Mehrstellenverfahren” scheme.!® (See also
A.A. Samarskii [Sam01] for yet another derivation.) It can be verified that
this scheme is of order four in general but of order 6 in the special case of
hg = hy. It will become clear in Sections 4.4.4 and 4.4.5 (pp. 209, 210) that
the “Mehrstellen” schemes are a natural particular case of Flexible Local
Approximation MEthods (FLAME) considered in Chapter 4.

More details about the “Mehrstellen” schemes and their application to
the Poisson equation in 2D and 3D can be found in the same monographs
by Collatz and Samarskii. The 3D case is also considered in Section 2.8.5, as
it has important applications to long-range electrostatic forces in molecular
dynamics (e.g. C. Sagui & T. Darden [SD99]) and in electronic structure
calculation (E.L. Briggs et al. [BSB96]).

13 In the English translation of the Collatz book, these methods are called “Her-
mitian”.
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2.8 Schemes for Three-Dimensional Problems

2.8.1 An Overview

The structure and subject matter of this section are very similar to those of
the previous section on 2D schemes. To avoid unnecessary repetition, issues
that are completely analogous in 2D and 3D will be reviewed briefly, but the
differences between the 3D and 2D cases will be highlighted.

We again start with low-order Taylor-based schemes and then proceed to
higher-order schemes, control volume/flux-balance schemes, and “Mehrstellen”
schemes.

2.8.2 Schemes Based on the Taylor Expansion in 3D

The Poisson equation in 3D has the form

2u 2u 2u

- (g%2 + 27112 + 222> = flz,y,2) (2.123)
Finite difference schemes can again be constructed on a Cartesian grid with
the grid sizes hg, hy, h, and the number of grid subdivisions N, Ny, N, in the
x-, y- and z—directions, respectively. Each node of the grid is characterized
by three integer indices ng ny, n,: 1 < ny < Ny +1, 1 < ny < Ny + 1,
1<n, <N,+1.

The simplest Taylor-based difference scheme for the Poisson equation is
constructed by combining the approximations of the x-, y- and z— partial
derivatives:

g Py, = Uiy
2
hz
“Ungny—1,n. + 2unz,ny,nz = Ung,ny+1n,
2
hy
_Unw,ny,nzfl + 2un$,ny,nz - unmny,anrl
+ h2 = f(znayﬂn Zﬂ) (2124)
z

where z,, yn, 2, are the coordinates of the grid node (ng,n,,n.). This dif-
ference scheme involves a 7-point grid stencil (three points in each coordinate
direction, with the middle node shared between them).

Asin 1D and 2D, scheme (2.124) is of second order, i.e. its consistency error
is O(h?), where h = max(hy, hy, h.). Higher-order schemes can be constructed
in a natural way by combining the approximations of each partial derivative on
its extended 1D stencil; for example, a 3D stencil with 13 nodes is obtained by
combining three 5-point stencils in each coordinate direction, with the middle
node shared. The resultant scheme is of fourth order. Another alternative is
Collatz “Mehrstellen” schemes, in particular the fourth order scheme on a
19-point stencil considered in Section 2.8.5.
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2.8.3 Flux-Balance Schemes in 3D

Consider now a 3D problem with a coordinate-dependent material parameter:
=V (e(z,y,2)Vu) = f(z,y,2) (2.125)

As before, € will be assumed piecewise-smooth, with possible discontinuities
only at material boundaries. The potential is continuous everywhere. The flux
continuity conditions at material interfaces have the same form as in 2D:

ou~ Ou™
o = et (2.126)
on on
where “—” and “+” again refer to the values on the two sides of the interface

boundary.
The integral form of the differential equation (2.125) is, by Gauss’s Theo-
rem

—/Se(x,y,z)gzids = /wf(x,y,z)dw (2.127)

where w is a subdomain of the computational domain €2, S is the boundary
surface of w, and n is the normal to that boundary. As in 2D, the physical
meaning of this integral condition is energy or flux balance, depending on the
application.

A “control volume” w to which the flux balance condition can be applied is
(2.104) is shown in Fig. 2.20. The flux-balance scheme is completely analogous

Flux,

Fluxs

Fluxz Flux;

Fluxs Fluxy
Fig. 2.20. Construction of the flux-balance scheme in three dimensions. The net
flux out of the shaded control volume is equal to the total capacity of sources inside
that volume. The grid nodes are shown as circles. For flux computation, the material
parameters are taken at the midpoints of the faces.
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to its 2D counterpart (see (2.106)):

Ung my,n: = Ung+1,ny,n Ungnym, — Ung,n,+1,n
elhyhz z,My,MNz - @ AL 62hwhz z, My, Mz - @ Ny z
z Yy
Ung,ny,n. — Ung—1,n,,n Ung,nyn. — Ung.n,—1,n
+ €3hyhz @by, Tlz h x yollz + €4hxh/z x 3 Thy T2 h Ty 3Tz
z Yy
unm,ny,nz - unw,ny,nz+1 unx,ny,nz - unw,nymzfl
=+ €5hxhy A + Gﬁhﬂhy 5
z z
= f(@n,Yn; 2n) hahyh (2.128)

As in 2D, the accuracy of this scheme deteriorates in the vicinity of mate-
rial interfaces, as the derivatives of the solution are discontinuous. Suitable
basis functions satisfying the discontinuous boundary conditions are used in
FLAME schemes (Chapter 4), which dramatically reduces the consistency
error.

2.8.4 Implementation of 3D Schemes

Assuming for simplicity that the computational domain is a rectangular par-
allelepiped, one introduces a Cartesian grid with N,, IV, and NN, subdivisions
in the respective coordinate directions. The total number of nodes V,, in the
mesh (including the boundary nodes) is N, = (N, + 1)(N, + 1)(N, + 1).
A natural node numbering is generated by letting, say, n, change first, n,
second and n, third, which assigns the global number

n = (Na+1)(Ny,+1)(n.—1) + (Na+1)(ny—1) + nx -1, 1<n<N

(2.129)
to node (nz,ny,n,). When, say, a 7-point scheme is applied on all grid sten-
cils, a 7-diagonal system matrix results. Two subdiagonals correspond to the
connections of the central node (ny,n,,n;) of the stencil to the neighboring
nodes (ng £1,n,,n,), another two subdiagonals to neighbors (n,,n, +1,n,),
and the remaining two subdiagonals to nodes (ng,n,,n, £+ 1). Boundary con-
ditions are handled in a way completely analogous to the 2D case.

The selection of solvers for the resulting linear system of equations is in
principle the same as in 2D, with direct and iterative methods being avail-
able. However, there is a practical difference. In two dimensions, thousands
or tens of thousands of grid nodes are typically needed to achieve reasonable
engineering accuracy; such problems can be easily solved with direct meth-
ods that are often more straightforward and robust than iterative algorithms.
In 3D, the number of unknowns can easily reach hundreds of thousands or
millions, in which case iterative methods may be the only option.'4

1 Even for the same number of unknowns in a 2D and a 3D problem, in the 3D
case the number of nonzero entries in the system matrix is greater, the sparsity
pattern of the matrix is different, and the 3D solver requires more memory and
CPU time.
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2.8.5 The Collatz “Mehrstellen” Schemes in 3D

The derivation and construction of the “Mehrstellen” schemes in 3D are based
on the same ideas as in the 2D case, Section 2.7.4. For the Laplace equation,
the “Mehrstellen” scheme can also be obtained as a direct and natural par-
ticular case of FLAME schemes in Chapter 4.

The 19-point stencil for a fourth order “Mehrstellen” scheme is obtained
by discarding the eight corner nodes of a 3 x 3 x 3 node cluster. The coefficients
of the scheme for the Laplace equation on a uniform grid with h; = hy = h.
are visualized in Fig. 2.21.
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Fig. 2.21. For the Laplace equation, this fourth order “Mehrstellen”-Collatz scheme
on the 19-point stencil is a direct particular case of Trefftz—FLAME. The grid sizes
are equal in all three directions. For visual clarity, the stencil is shown as three slices
along the y axis. (Reprinted by permission from [Tsu06] (©2006 Elsevier.)

In the more general case of unequal mesh sizes in the z-, y- and z—directions,
the “Mehrstellen” scheme is derived in the monographs by L. Collatz and
A.A. Samarskii. E.L. Briggs et al. [BSB96] list the coefficients of the scheme in
a concise table form. The end result is as follows.

The coefficient corresponding to the central node of the stencil is 4/3% " h,?
(where v = z, y, z). The coefficients corresponding to the two immediate
neighbors of the central node in the a direction are —5/6h, + 1/63_ h[f
(6 =z, y or z). Finally, the coefficients corresponding to the nodes displaced
by h, and hg in both a- and S-coordinate directions relative to the central
node are —1/12h2 71/12h52.



2.9 Consistency and Convergence of Difference Schemes 59

If the Poisson equation (2.123) rather than the Laplace equation is solved,
with f = f(z,y,2) a smooth function of coordinates, the right hand side of
the 19-point Mehrstellen scheme is fj, = %fo + % 22:1 fa, where fy is the
value of f at the middle node of the stencil and f, are the values of f at the
six immediate neighbors of that middle node. Thus the computation of the
right hand side involves the same 7-point stencil as for the standard second-
order scheme for the Laplace equation, not the whole 19-point stencil. HODIE
schemes by R.E. Lynch & J.R. Rice [LR80] generalize the Mehrstellen schemes
and include additional points in the computation of the right hand side.

2.9 Consistency and Convergence of Difference Schemes

This section presents elements of convergence and accuracy theory of FD
schemes. A more comprehensive and rigorous treatment is available in many
monographs (e.g. L. Collatz [Col66], A.A. Samarskii [Sam01], J.C. Strikwerda
[Str04], W.E. Milne [Mil70]).

Consider a differential equation in 1D, 2D or 3D

Lu = f (2.130)

that we wish to approximate by a difference scheme
L = (2.131)
on stencil (i) containing a given set of grid nodes. Here gﬁf) is the Euclidean
vector of the nodal values of the numerical solution on the stencil. Merging
the difference schemes on all stencils into a global system of equations, one

obtains
Ly, = ih (2.132)

where u;, and f , are the numerical solution and the right hand side, respec-
tively, viewed as Euclidean vectors of nodal values on the whole grid.

Exactly in what sense does (2.132) approximate the original differential
equation (2.130)7 A natural requirement is that the exact solution u* of the
differential equation should approximately satisfy the difference equation.

To write this condition rigorously, we need to substitute u* into the differ-
ence scheme (2.132). Since this scheme operates on the nodal values of u*, a
notation for these nodal values is in order. We shall use the calligraphic letter
N for this purpose: Nu* will mean the Euclidean vector of nodal values of u*
on the whole grid. Similarly, N®u* is the Euclidean vector of nodal values of
u* on a given stencil (7).

The consistency error vector ¢, = {e.; }1, of scheme (2.132) is the residual
obtained when the exact solution is substituted into the difference equation;
that is,

LpNu* = I (2.133)
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where as before the underscored symbols are Euclidean vectors. The consis-
tency error (a number) is defined as a norm of the error vector:

consistency error = e.(h) = |lellx = HLhNu* — ith (2.134)

where k is usually 1, 2, or oo (see Appendix 2.10 for definitions of these norms).
There is, however, one caveat. According to definition (2.134), the meaning-
less scheme h'%%u; = 0 has consistency error of order 100 for any differential
equation with a bounded solution. It is natural to interpret such high-order
consistency just as an artifact of scaling and to apply a normalization condi-
tion across the board for all schemes. Specifically, we shall assume that the
difference schemes are scaled in such a way that

af(r) < f,, < cf(r), ¥rel (2.135)

where c1 2 do not depend on ¢ and h.
We shall call a scheme consistent if, with scaling (2.135), the consistency
error tends to zero as h — O:

€ = HLS) (./\/(i)u* - th)”k — 0 ash—0 (2.136)

Consistency is usually relatively easy to establish. For example, the Taylor
expansions in Section 2.6.1 show that the consistency error of the three-point
scheme for the Poisson equation in 1D is O(h?); see (2.87)—(2.89). This scheme
is therefore consistent.

Unfortunately, consistency by itself does not guarantee convergence. To
see why, let us compare the difference equations satisfied by the numerical
solution and the exact solution, respectively:

LpNu* = f, + e (2.137)

Lyu, = f, (2.138)

These are equations (2.132) and (2.133) written together for convenience.
Clearly, systems of equations for the exact solution u* (more precisely, its
nodal values Nu*) and for the numerical solution u, have slightly different
right hand sides. Consistency error €. is a measure of the residual of the
difference equation, which is different from the accuracy of the numerical
solution of this equation.

Does the small difference ¢, in the right hand sides of (2.137) and (2.138)
translate into a comparably small difference in the solutions themselves? If
yes, the scheme is called stable. A formal definition of stability is as follows:

en = lenlls = llun — Nu'lly < Cllellr (2.139)

where the factor C' may depend on the exact solution u* but not on the mesh
size h.
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Stability constant C' is linked to the properties of the inverse operator

L; . Indeed, subtracting (2.137) from (2.138), one obtains an expression for
the error vector:

e = u, — Nu* = Lle (2.140)

—=C

(assuming that Ly, is nonsingular). Hence the numerical error can be estimated
as
en = llenlle = llun — Nulle < 1L e llec e (2.141)

where the matrix norm for Lj, is induced by the vector norm, i.e., for a generic
square matrix A,
[ Az|lk

ma
w0 ||z

Al =

(see Appendix 2.10).

In summary, convergence of the scheme follows from consistency and sta-
bility. This result is known as the Laz—Richtmyer Equivalence Theorem (see
e.g. J.C. Strikwerda [Str04]).

To find the consistency error of a scheme, one needs to substitute the
exact solution into it and evaluate the residual (e.g. using Taylor expansions).
This is a relatively straightforward procedure. In contrast, stability (and, by
implication, convergence) are in general much more difficult to establish.

For conventional difference schemes and the Poisson equation, conver-
gence is proved in standard texts (e.g. W.E. Milne [Mil70] or J.C. Strikwerda
[Str04]). This convergence result in fact applies to a more general class of
monotone schemes.

Definition 6. A difference operator Ly, (and the respective N, X N, matriz)
1s called monotone if Lyx > 0 for vector x € RN» implies x > 0, where vector
inequalities are understood entry-wise.

In other words, if L is monotone and Lz has all nonnegative entries, vector
x must have all nonnegative entries as well. Algebraic conditions related to
monotonicity are reviewed at the end of this subsection.

To analyze convergence of monotone schemes, the following Lemma will
be needed.

Lemma 1. If the scheme is scaled according to (2.135) and the consistency
condition (2.134) holds, there exists a reference nodal vector uy;, such that

uy, < Uy and Lpuy, > 01 >0, (2.142)

with numbers Uy and o1 independent of h. (All vector inequalities are under-
stood entry-wise.)

Remark 1. (Notation.) Subscript 1 is meant to show that, as seen from the
proof below, the auxiliary potential uy; may be related to the solution of the
differential equation with the unit right hand side.
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Proof. The reference potential w1, can be found explicitly by considering the
auxiliary problem
Lu; =1 (2.143)

with the same boundary conditions as the original problem. Condition (2.136)

applied to the nodal values of w; implies that for sufficiently small h the

consistency error will fall below %cl, where ¢ is the parameter in (2.135):

) ) 1
sSOTNDuy — fri| < ke
Therefore, since f = 1 in (2.135),
. : . . 1 1
SOTN @Dy | > [ frl — ’fm _ §(1)TN(1)U1‘ > - ga =g (2.144)

(the vector inequality is understood entry-wise). Thus one can set wu;, =
LyNuq, with o = %cl and Uy = ||u1]]co- O

Theorem 1. Let the following conditions hold for difference scheme (2.132):

1. Consistency in the sense of (2.136), (2.135).
2.
Monotonicity : if Lpz > 0, thenz > 0 (2.145)

Then the numerical solution converges in the nodal norm, and
llu, = Nu*|loo < €. Ur/on (2.146)
where o1 is the parameter in (2.142).
Proof. Let €5, = u;, — Nu*. By consistency,
Lne, < e < ecLpuy,/o1 = Lp(ecuyy,/o1)
where (2.142) was used. Hence due to monotonicity
en < €cuy,/o1 (2.147)

It then also follows that
€n > — €Uy /o1 (2.148)

Indeed, if that were not true, one would have (—ep) < €e.uy,/01, which
would contradict the error estimate (2.147) for the system with (—f) instead
of f in the right hand side. a

We now summarize sufficient and/or necessary algebraic conditions for mono-
tonicity. Of particular interest is the relationship of monotonicity to diagonal
dominance, as the latter is trivial to check for any given scheme.

The summary is based on the monograph of R.S. Varga [Var00] and the
reference book of V. Voevodin & Yu.A. Kuznetsov [VK84]. The mathematical
facts are cited without proof.
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Proposition 1. A square matrixz A is monotone if and only if it is nonsin-
gular and A~1 > 0.

[As a reminder, all matrix and vector inequalities in this section are under-
stood entry-wise.]

Definition 7. A square matriz A is called an M-matriz if it is nonsingular
ai; < 0 for alli# j and A=t > 0.

Thus an M-matrix, in addition to being monotone, has nonpositive off-
diagonal entries.

Proposition 2. All diagonal elements of an M-matriz are positive.

Proposition 3. Let a square matriz A have nonpositive off-diagonal entries.
Then the following conditions are equivalent:

1. A is an M-matrix.
2. There exists a positive vector w such that A~ w is also positive.
3. Re A > 0 for any eigenvalue X\ of A.

(See [VK84] §36.15 for additional equivalent statements.)

Notably, the second condition above allows one to demonstrate monotonic-
ity by exhibiting just one special vector satisfying this condition, which is sim-
pler than verifying this condition for all vectors as stipulated in the definition
of monotonicity.

Even more practical is the connection with diagonal dominance [VK84].

Proposition 4. Let a square matriz A have nonpositive off-diagonal entries.
If this matrixz has strong diagonal dominance, it is an M-matriz.

Proposition 5. Let an irreducible square matric A have nonpositive off-
diagonal entries. If this matriz has weak diagonal dominance, it is an M-
matriz. Moreover, all entries of A= are then (strictly) positive.

A matrix is called irreducible if it cannot be transformed to a block-triangular
form by permuting its rows and columns. The definition of weak diagonal
dominance for a matrix A is

|Asi| > Zj |A;] (2.149)

in each row ¢. The condition of strong diagonal dominance is obtained by
changing the inequality sign to strict.

Thus diagonal dominance of matrix Lj of the difference scheme is a suffi-
cient condition for monotonicity if the off-diagonal entries of L; are nonpos-
itive. As a measure of the relative magnitude of the diagonal elements, one
can use ]

g = muini [Ln,ii] (2.150)
2 | Lngjl
with matrix Ly being weakly diagonally dominant for ¢ = 0.5 and diagonal
for ¢ = 1. Diagonal dominance is a strong condition that unfortunately does
not hold in general.
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2.10 Summary and Further Reading

This chapter is an introduction to the theory and practical usage of finite dif-
ference schemes. Classical FD schemes are constructed by the Taylor expan-
sion over grid stencils; this was illustrated in Sections 2.1-2.2 and parts of Sec-
tions 2.6-2.8. The chapter also touched upon classical schemes (Runge-Kutta,
Adams and others) for ordinary differential equations and special schemes that
preserve physical invariants of Hamiltonian systems.

Somewhat more special are the Collatz “Mehrstellen” schemes for the Pois-
son equation. These schemes (9-point in 2D and 19-point in 3D) are described
in Sections 2.7.4 and 2.8.5. Higher approximation accuracy is achieved, in
essence, by approximating the solution of the Poisson equation rather than
a generic smooth function. We shall return to this idea in Chapter 4 and
will observe that the Mehrstellen schemes are, at least for the Laplace equa-
tion, a natural particular case of “Flexible Local Approximation MEthods”
(FLAME) considered in that chapter. In fact, in FLAME the classic FD
schemes and the Collatz Mehrstellen schemes stem from one single princi-
ple and one single definition of the scheme.

Very important are the schemes based on flux or energy balance for a con-
trol volume; see Sections 2.6.3, 2.7.2, and 2.8.3. Such schemes are known to
be quite robust, which is particularly important for problems with inhomoge-
neous media and material interfaces. The robustness can be attributed to the
underlying solid physical principles (conservation laws).

For further general reading on FD schemes, the interested reader may
consider the monographs by L. Collatz [Col66], J.C. Strikwerda [Str04],
A.A. Samarskii [Sam01].

A comprehensive source of information not just on FD schemes but also on
numerical methods for ordinary and partial differential equations in general
is the book by A. Iserles [Ise96]. It covers one-step and multistep schemes
for ODE, Runge—Kutta methods, schemes for stiff systems, FD schemes for
the Poisson equation, the Finite Element Method, algebraic system solvers,
multigrid and other fast solution methods, diffusion and hyperbolic equations.

For readers interested in schemes for fluid dynamics, S.V. Patankar’s text
[Pat80] may serve as an introduction. A more advanced book by T.J. Chung
[Chu02] covers not only finite-difference, but also finite-volume and finite ele-
ment methods for fluid flow. Also well-known and highly recommended are two
monographs by R.J. LeVeque: one on schemes for advection-diffusion equa-
tions, with the emphasis on conservation laws [LeV96], and another one with
a comprehensive treatment of hyperbolic problems [LeV02a]. The book by
H.-G. Roos et al. [HGRY6], while focusing (as the title suggests) on the math-
ematical treatment of singularly perturbed convection-diffusion problems, is
also an excellent source of information on finite-difference schemes in general.

For theoretical analysis and computational methods for fluid dynamics on
the microscale, see books by G. Karniadakis et al. [KBAO1] and by J.A. Pelesko
& D.H. Bernstein [PB02].
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Several monographs and review papers are devoted to schemes for elec-
tromagnetic applications. The literature on Finite-Difference Time-Domain
(FDTD) schemes for electromagnetic wave propagation is especially exten-
sive; see http://www.fdtd.org. The most well-known FDTD monograph is by
A. Taflove & S.C. Hagness [THO05]. The book by A.F. Peterson et al. [PRM98]
covers, in addition to FD schemes in both time and frequency domain, inte-
gral equation techniques and the Finite Element Method for computational
electromagnetics.

Appendix: Frequently Used Vector and Matrix Norms
The following vector and matrix norms are used most frequently.

el = . lail (2.151)

n
14l = max > 14l (2.152)

1
_ " 12\ 2
lollz = (327 lil?) (2.153)
1
— 2 *
4]l = max Af(4"4) (2.154)

where A* is the Hermitian conjugate (= the conjugate transpose) of matrix
A, and \; are the eigenvalues.

lzlloe = max || (2.155)
|Allco = fg%xn jzl\Aij\ (2.156)

See linear algebra textbooks, e.g. Y. Saad [Saa03], R.A. Horn & C.R. Johnson
[HJ90], F.R. Gantmakher [Gan59, Gan88] for further analysis and proofs.

Appendix: Matrix Exponential

It is not uncommon for an operation over some given class of objects to be
defined in two (or more) different ways that for this class are equivalent. Yet
one of these ways could have a broader range of applicability and can hence
be used to generalize the definition of the operation.

This is exactly the case for the exponential operation. One way to define
expx is via simple arithmetic operations — first for x integer via repeated
multiplications, then for 2 rational via roots, and then for all real x.1> While

15 The rigorous mathematical theory — based on either Dedekind’s cuts or Cauchy
sequences — is, however, quite involved; see e.g. W. Rudin [Rud76].



66 2 Finite-Difference Schemes

this definition works well for real numbers, its direct generalization to, say,
complex numbers is not straightforward (because of the ambiguity of roots),
and generalization to more complicated objects like matrices is even less clear.

At the same time, the exponential function admits an alternative definition

via the Taylor series
& n

x
expr = Y — (2.157)
n=0
that converges absolutely for all . This definition is directly applicable not
only to complex numbers but to matrices and operators. Matrix exponential
can be defined as
o0 A”
expA = Y — (2.158)
n=0
where A is an arbitrary square matrix (real or complex). This infinite series
converges for any matrix, and exp(A) defined this way can be shown to have
many of the usual properties of the exponential function — most notably,

exp((a+ B)A) = exp(ad) + exp(BA4), VaeC, V3eC  (2.159)

If A and B are two commuting square matrices of the same size, AB = BA,
then
exp(A+ B) = expAexpB, if AB = BA (2.160)

Unfortunately, for non-commuting matrices this property is not generally true.
For a system of ordinary differential equations written in matrix-vector
form as
dy(t)

4 R™ 2.161
= Yy, ye ( )

the solution can be expressed via matrix exponential in a very simple way:
y(t) = exp(At)yo (2.162)
Note that if matrices A and A are related via a similarity transform
A = S71AS (2.163)
then R R R
A? = ST1ASST'AS = S71A%S
and A3 = S~ 1438, etc. — i.e. powers of A and A are related via the same

similarity transform. Substituting this into the Taylor series (2.158) for matrix
exponential, one obtains

expA = SlexpAS (2.164)

This is particularly useful if matrix A is diagonalizable; then A can be made

diagonal and contains the eigenvalues of A, and exp(A) is a diagonal matrix
containing the exponents of these eigenvalues.'6

16 Matrices with distinct eigenvalues are diagonalizable; so are symmetric matrices.
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Since matrix exponential is intimately connected with such difficult prob-
lems as full eigenvalue analysis and solution of general ODE systems, it is not
surprising that the computation of exp(A) is itself highly complex in general.
The curious reader may find it interesting to see the “nineteen dubious ways
to compute the exponential of a matrix” (C. Moler & C. Van Loan, [ML7§],
[MLO3]; see also W.A. Harris et al. [WAHFSO01].
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The Finite Element Method

3.1 Everything is Variational

The Finite Element Method (FEM) belongs to the broad class of variational
methods, and so it is natural to start this chapter with an introduction and
overview of such methods. This section emphasizes the importance of the
variational approach to computation: it can be claimed — with only a small
bit of exaggeration — that all numerical methods are variational.

To understand why, let us consider the Poisson equation in one, two or
three dimensions as a model problem:

Lu=-V*u =p inQ (3.1)

This equation describes, for example, the distribution of the electrostatic po-
tential u corresponding to volume charge density p if the dielectric permittivity
is normalized to unity.

Solution w is sought in a functional space V(£2) containing functions with
a certain level of smoothness and satisfying some prescribed conditions on the
boundary of domain €2; let us assume zero Dirichlet conditions for definiteness.
For purposes of this introduction, the precise mathematical details about the
level of smoothness of the right hand side p and the boundary of the 2D or 3D
domain  are not critical, and I mention them only as a footnote.! It is im-
portant to appreciate that solution u has infinitely many “degrees of freedom”
— in mathematical terms, it lies in an infinite-dimensional functional space. In

! The domain is usually assumed to have a Lipschitz-continuous boundary; f €
L2(Q), u € H*(Q), where L and H? are the Lebesgue and Sobolev spaces stan-
dard in mathematical analysis. The requirements on the smoothness of u are
relaxed in the weak formulation of the problem considered later in this chap-
ter. Henri Léon Lebesgue (1875-1941) — a French mathematician who developed
measure and integration theory. Sergei L’vovich Sobolev (1908-1989) — a Russian
mathematician, renowned for his work in mathematical analysis (Sobolev spaces,
weak solutions and generalized functions).



70 3 The Finite Element Method

contrast, any numerical solution can only have a finite number of parameters.
A general and natural form of such a solution is a linear combination of a
finite number n of linearly independent approximating functions ¢, € V(Q):

Upum = i:co/(/)a (32)
a=1

where ¢, are some coefficients (in the example, real; for other problems, these
coefficients could be complex). We may have in mind a set of polynomial func-
tions as a possible example of ¥, (V1 = 1, ¥ = 1, Y3 = y, Vg = 1Y, V5 = 22,
etc., in 2D). One important constraint, however, is that these functions must
satisfy the Dirichlet boundary conditions, and so only a subset of polynomials
will qualify. One of the distinguishing features of finite element analysis is a
special procedure for defining piecewise-polynomial approximating functions.
This procedure will be discussed in more detail in subsequent sections.

The key question now is: what are the “best” parameters ¢, that would
produce the most accurate numerical solution (3.2)? Obviously, we first need
to define “best”. It would be ideal to have a zero residual

R = Lupym — p (3.3)

in which case the numerical solution would in fact be exact. That being in
general impossible, the constraints on R need to be relaxed. While R may not
be identically zero, let us require that there be a set of “measures of fitness”
of the solution — numbers f3(R) — that are zero:

fs(R) =0, B=1,2,....n (3.4)

It is natural to have the number of these measures, i.e. the number of condi-
tions (3.4), equal to the number of undetermined coefficients ¢, in expansion
(3.2).

In mathematical terms, the numbers fg are functionals: each of them acts
on a function (in this case, R) and produces a number fg(R). The functionals
can be real or complex, depending on the problem.

To summarize: the numerical solution is sought as a linear combination of
n approximating functions, with n unknown coefficients; to determine these
coefficients, one imposes n conditions (3.4). As it is difficult to deal with
nonlinear constraints, the functionals fg are almost invariably chosen as linear.

Ezample 1. Consider the 1D Poisson equation with the right hand side p(z) =
cos z over the interval [—m/2,7/2]:

du T T

7z = cosx, u (—5) =u (5) =0 (3.5)

The obvious exact solution is u*(x) = cosz. Let us find a numerical solution
using the ideas outlined above.
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Let the approximating functions 1, be polynomials in z. To keep the
calculation as simple as possible, the number of approximating functions in
this example will be limited to two only. Linear polynomials (except for the one
identically equal to zero) do not satisfy the zero Dirichlet boundary conditions
and hence are not included in the approximating set. As the solution must
be an even function of xz, a sensible (but certainly not unique) choice of the
approximating functions is

O B O (R

The numerical solution is thus

Upnum — lel + 227/}2 (37)

Here u is a Euclidean coefficient vector in R?* with components u, ,. Euclidean
vectors are underlined to distinguish them from functions of spatial variables.
The residual (3.3) then is

R = —u ¢ — uyy) — cosx (3.8)

As a possible example of “fitness measures” of the solution, consider two
functionals that are defined as the values of R at points z = 0 and z = 7 /4:?

h(R) = RO:  fa(R) = R() (3.9)
With this choice of the test functionals, residual R, while not zero everywhere
(which would be ideal but ordinarily not achievable), is forced by conditions
(3.4) to be zero at least at points x = 0 and z = n/4. Furthermore, due to
the symmetry of the problem, R will automatically be zero at x = —w/4 as
well; this extra point comes as a bonus in this example. Finally, the residual
is zero at the boundary points because both exact and numerical solutions
satisfy the same Dirichlet boundary condition by construction.

The reader may recognize functionals (3.9) as Dirac delta functions d(x)
and d(z — 7/4), respectively. The use of Dirac deltas as test functionals in
variational methods is known as collocation; the value of the residual is forced
to be zero at a certain number of “collocation points” — in this example, two:
x=0and z =7/4.

The two functionals (3.9), applied to residual (3.8), produce a system of
two equations with two unknowns u, ,:

—uy Y (0) — up5(0) — cosO = 0

2 Tt is clear that these functionals are linear. Indeed, to any linear combination of
two different Rs there corresponds a similar linear combination of their pointwise
values.
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—u (7) - wf () — s =0

In matrix-vector form, this system is
cos 0 1
) 2= ()= (g) om

1 (O) " (0)
Ly = p, L=— < ! 2
1(3) v5(%)
It is not difficult to see that for an arbitrary set of approximating functions
and test functionals f the entry L,g of this matrix is f,(¢g). In the present
example, with the approximating functions chosen as (3.6), matrix L is easily

calculated to be
I~ <—2 9.869604)

—2 2.467401

with seven digits of accuracy. The vector of expansion coefficients then is

_(—0.3047378
L= 0.03956838

With these values of the coefficients, and with the approximating functions of
(3.6), the numerical solution becomes

& 03047378 (v 2) (w4 2) + 003956838 (= - gf (a+ g)Z

(3.11)
The numerical error is shown in Fig. 3.2 and its absolute value is in the range
of (3+8) x 1073. The energy norm of this error is ~ 0.0198. (Energy norm is

defined as
3 fdw)\?
lolls = V (dx) da

for any differentiable function w(x) satisfying the Dirichlet boundary condi-
tions.)® Given that the numerical solution involves only two approximating
functions with only two free parameters, the result certainly appears to be
remarkably accurate.*

This example, with its more than satisfactory end result, is a good first
illustration of variational techniques. Nevertheless the approach described
above is difficult to turn into a systematic and robust methodology, for the
following reasons:

1
2

(3.12)

1. The approximating functions and test functionals (more specifically, the
collocation points) have been chosen in an ad hoc way; no systematic
strategy is apparent from the example.

3 In a more rigorous mathematical context, w would be treated as a function in
the Sobolev space Hé[,% 71, but for the purposes of this introduction this is of
little consequence.

4 Still, an even better numerical solution will be obtained in the following example
(Example 2 on p. 73).
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Numerical solution (solid line) and exact solution (markers)

T T T T T T T

1 1 L L 1 1 1

-1.5 -1 -05 0 05 1 1.5
X

Fig. 3.1. Solution by collocation (3.11) in Example 1 (solid line) is almost indis-
tinguishable from the exact solution u* = cosz (markers). See also error plot in
Fig. 3.2.

2. It is difficult to establish convergence of the numerical solution as the
number of approximating functions increases, even if a reasonable way of
choosing the approximating functions and collocation points is found.

3. As evident from (3.10), the approximating functions must be twice differ-
entiable. This may be too strong a constraint. It will become apparent in
the subsequent sections of this chapter that the smoothness requirements
should be, from both theoretical and practical point of view, as weak as
possible.

The following example (Example 2) addresses the convergence issue and pro-
duces an even better numerical solution for the 1D Poisson equation con-
sidered above. The Finite Element Method covered in the remainder of this
chapter provides an elegant framework for resolving all three matters on the
list.

FExample 2. Let us consider the same Poisson equation as in the previous ex-
ample and the same approximating functions 1 2 (3.6). However, the test
functionals fi > are now chosen in a different way:

[NE]

ful®) = [ Bla)vao)do (3.13)

us
2
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X 11;[3 Difference hetween numerical and exact solution

-35¢

Fig. 3.2. Error of solution by collocation (3.11) in Example 1. (Note the 1073
scaling factor.)

In contrast with collocation, these functionals “measure” weighted averages
rather than point-wise values of R.% Note that the weights are taken to be
exactly the same as the approximating functions v; this choice signifies the
Galerkin method.

Substituting R(x) (3.8) into Galerkin equations (3.13), we obtain a linear
system

=g Loy =~ [ W@ va@)ds p, = [ p@)val@)ds (319)

[NE)

jus
2

Notably, the expression for matrix entries Lg, can be made more elegant using
integration by parts and taking into account zero boundary conditions:

Las = [ 9(@)¥)(x) da (3.15)

I
2

This reveals the symmetry of the system matrix. The symmetry is due to
two factors: (i) the operator £ of the problem — in this case, Laplacian in the
space of functions with zero Dirichlet conditions — is self-adjoint; this allowed

5 Loosely speaking, collocation can be viewed as a limiting case of weighted aver-
aging, with the weight concentrated at one point as the Dirac delta.
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the transformation of the integrand to the symmetric form; (ii) the Galerkin
method was used.

The Galerkin integrals in the expressions for the system matrix (3.15) and
the right hand side (3.14) can be calculated explicitly:©

(35—’ —4
L= (—77r2 —27r4)’ £= (48—47T2) (8.16)

Naturally, this matrix is different from the matrix in the collocation method
of the previous example (albeit denoted with the same symbol). In particular,
the Galerkin matrix is symmetric, while the collocation matrix is not.

The expansion coefficients in the Galerkin method are

_ o1, _ L (—607 (372 —28)) _ (03154333
=2 2T —sa0(x2—10) ) T\ 0.03626545

The numerical values of these coefficients differ slightly from the ones obtained
by collocation in the previous example. The Galerkin solution is

2 2
U A~ — 03154333 (x . %) (x n g) + 0.03626545 (m _ g) (x n g)

(3.17)
The error of solution (3.17) is plotted in Fig. 3.3; it is seen to be substantially
smaller than the error for collocation. Indeed, the energy norm of this error
is ~ 0.004916, which is almost exactly four times less than the same error
measure for collocation.

The higher accuracy of the Galerkin solution (at least in the energy norm)
is not an accident. The following section shows that the Galerkin solution in
fact minimizes the energy norm of the error; in that sense, it is the “best”
of all possible numerical solutions representable as a linear combination of a
given set of approximating functions .

3.2 The Weak Formulation and the Galerkin Method

In this section, the variational approach outlined above is cast in a more
general and precise form; however, it does make sense to keep the last example
(Example 2) in mind for concreteness. Let us consider a generic problem of
the form

Lu = p, weV =V(Q) (3.18)

of which the Poisson equation (3.1) on p. 69 is a simple particular case. Here
operator L is assumed to be self-adjoint with respect to a given inner product
(-, -) in the functional space V under consideration:

6 In more complicated cases, numerical quadratures may be needed.
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” 10'3 Error of the Galerkin solution

08
0.6
04
0.2
ot
-0.2

Fig. 3.3. Error of the Galerkin solution (3.7) in Example 2. (Note the 1072 scaling
factor.)

(Lu,v) = (u,Lv), Yu,veV (3.19)

The reader unfamiliar with the notion of inner product may view it just as a
shorthand notation for integration:

(w,v) = /Qwde

This definition is not general” but sufficient in the context of this section.

Note that operators defined in different functional spaces (or, more gen-
erally, in different domains) are mathematically different, even if they can
be described by the same expression. For example, the Laplace operator in a
functional space with zero boundary conditions is not the same as the Laplace
operator in a space without such conditions. One manifestation of this differ-
ence is that the Laplace operator is self-adjoint in the first case but not so in
the second.

Applying to the operator equation (3.18) inner product with an arbitrary
function v € V (in the typical case, multiplying both sides with v and inte-

grating), we obtain
(Lu,v) = (p,v), YveV (3.20)

" Generally, inner product is a bilinear (sesquilinear in the complex case)
(conjugate-)symmetric positive definite form.
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Clearly, this inner-product equation follows from the original one (3.18). At
the same time, because v is arbitrary, it can be shown under fairly general
mathematical assumptions that the converse is true as well: original equation
(3.18) follows from (3.20); that is, these two formulations are equivalent (see
also p. 84).

The left hand side of (3.20) is a bilinear form in u, v; in addition, if £
is self-adjoint, this form is symmetric. This bilinear form will be denoted as
L(u,v) (making symbol L slightly overloaded):

L(u,v) = (Lu,v), YweV (3.21)

To illustrate this definition: in Examples 1, 2 this bilinear form is

L(u,v) = 7/2u”vdaz = /2u"u/dx (3.22)

2 2

The last integration-by-parts transformation appears innocuous but has pro-
found consequences. It replaces the second derivative of u with the first deriv-
ative, thereby relaxing the required level of smoothness of the solution.

The following illustration is simple but instructive. Let u be a function
with a “sharp corner” — something like |z| in Fig. 3.4: it has a discontinuous
first derivative and no second derivative (in the sense of regular calculus) at
x = 0. However, this function can be approximated, with an arbitrary degree
of accuracy, by a smooth one — it is enough just to “round off” the corner.

Fig. 3.4. Rounding off the corner provides a smooth approximation.

“Accuracy” here is understood in the energy-norm sense: if the smoothed
function is denoted with #, then the approximation error is

e = [ (Y] 2

where the precise specification of domain (segment) € is unimportant.
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For the smooth function @, both expressions for the bilinear form (3.21)
are valid and equal. For u, the first definition, containing u” in the integrand,
is not valid, but the second one, with v/, is. It is quite natural to extend the
definition of the bilinear form to functions that, while not necessarily smooth
enough themselves, can be approximated arbitrarily well — in the energy norm
sense — by smooth functions:

L(u,v) = A ;l—z Z—; dQ, w,ve Hy(Q) (3.24)

Such functions form the Sobolev space H!(Q). The subspace Hg(Q2) C HY(Q)
contains functions with zero Dirichlet conditions at the boundary of domain
0.8

Similarly, for the electrostatic equation (with the dielectric permittivity
normalized to unity)

Lu = —V-eVu = p (3.25)

in a two- or three-dimensional domain §2 with zero Dirichlet boundary condi-
tions,” the weak formulation is

L(u,v) = (eVu, Vo) = (p,v) u,ve HYRQ) (3.26)

where the parentheses denote the inner product of vector functions
(v,w) = / v-wd, v,wcL3Q) (3.27)
Q

The analysis leading to the weak formulation (3.26) is analogous to the 1D
case: the differential equation is inner-multiplied (i.e. multiplied and inte-
grated) with a “test” function v; then integration by parts moves one of the
V operators over from u to v, so that the formulation can be extended to
a broader class of admissible functions, with the smoothness requirements
relaxed.

The weak formulation (3.20) (of which (3.26) is a typical example) provides
a very natural way of approximating the problem. All that needs to be done
is to restrict both the unknown function u and the test function v in (3.20)
to a finite-dimensional subspace V;, C V:

£(uh7vh) = (p, ’l}h)7 Yoy, € Vh(Q) (328)

In Examples 1 and 2 space V}, had just two dimensions; in engineering practice,
the dimension of this space can be on the order of hundreds of thousands and

8 The rigorous mathematical characterization of “boundary values” (more precisely,
traces) of functions in Sobolev spaces is quite involved. See R.A. Adams [AF03]
or K. Rektorys [Rek80].

9 Neumann conditions on the domain boundary and interface boundary conditions
between different media will be considered later.
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even millions. Also in practice, construction of V}, typically involves a mesh
(this was not the case in Examples 1 and 2, but will be the case in the
subsequent sections in this chapter); then subscript “h” indicates the mesh
size. If a mesh is not used, h can be understood as some small parameter; in
fact, one usually has in mind a family of spaces V}, that can approximate the
solution of the problem with arbitrarily high accuracy as h — 0.

Let us assume that an approximating space V}, of dimension n has been
chosen and that ¥, (o« = 1,...,n) is a known basis set in this space. Then
the approximate solution is a linear combination of the basis functions:

up = Z Uy Vo (3.29)
a=1

Here u is a Euclidean vector of coefficients in R™ (or, in the case of problems
with complex solutions, in C").

This expansion establishes an intimate relationship between the functional
space V}, to which uj, belongs and the Euclidean space of coefficient vectors w.
If functions v, are linearly independent, there is a one-to-one correspondence
between uy, and u. Moreover, the bilinear form £(uy,, uy) induces an equivalent
bilinear form over Euclidean vectors:

(Lu,v) = L(up,vn) (3.30)

for any two functions up, v, € V}, and their corresponding Euclidean vectors
u, v € R™. The left hand side of (3.30) is the usual Euclidean inner product of
vectors, and L is a square matrix. From basic linear algebra, each entry Lqg
of this matrix is equal to (Leq,eg), where e, is column #a of the identity
matrix (the only nonzero entry #a is equal to one); similarly for eg. At the
same time, (Le,, eg) is, by definition of L, equal to the bilinear form involving
Yo, Vg; hence

Lap = (Leasep) = L(a,1p) (3.31)

The equivalence of bilinear forms (3.30) is central in Galerkin methods in gen-
eral and FEM in particular; it can also be viewed as an operational definition
of matrix L. Explicitly the entries of L are defined by the right hand side of
(3.31). Example 3 below should clarify this matter further.

The Galerkin formulation (3.28) is just a restriction of the weak continu-
ous formulation to a finite-dimensional subspace, and therefore the numerical
bilinear form inherits the algebraic properties of the continuous one. In par-
ticular, if the bilinear form L is elliptic, i.e. if

L(u,u) > c(u,u), YueV (¢c>0) (3.32)
where c is a constant, then matrix L is strictly positive definite and, moreover,

(Lu,u) > ¢(Mu,u), VYueR" (3.33)
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Matrix M is such that the Euclidean form (Mu,v) corresponds to the Lo
inner product of the respective functions:

(Mu,v) = (un,vn) (3.34)

so that the entries are
Mag = (Yas¥p) (3.35)

These expressions for matrix M are analogous to expressions (3.30) and (3.31)
for matrix L. In FEM, M is often called the mass matriz and L — the stiffness
matriz, due to the roles they play in problems of structural mechanics where
FEM originated.

Ezample 3. To illustrate the connection between Euclidean inner products
and the respective bilinear forms of functions, let us return to Example 2 on
p. 73 and choose the two coefficients arbitrarily as u; = 2, u, = —1. The
corresponding function is

= wen +uge = 2 (2= 2) (04 7) - (z—g)z(x+g)2 (3.36)

This function of course lies in the two-dimensional space V}, spanned by  ».

Similarly, let v; = 4, v, = —3 (also as an arbitrary example); then
T T T 2 2
o= v togn =4 (a-3) (243) =3 (2-3) (s+3) (337

In the left hand side of (3.30), matrix L was calculated to be (3.16), and the
Euclidean inner product is

73 35  —7x? 2 4 83 27 277
o= (7 (3 TE) () () - 5%
(3.38)

The right hand side of (3.30) is
up, Uy, dz

2

where functions wuy, v, are given by their expansions (3.36), (3.37). Substi-
tution of these expansions into the integrand above yields exactly the same
result as the right hand side of (3.38), namely

873 n 270 n 277

3 3 35
This illustrates that the Euclidean inner product of vectors u, v in (3.30) (of
which the left hand side of (3.38) is a particular case) is equivalent to the

bilinear form L(u,v) of functions u, v (of which the right hand side of (3.38)
is a particular case).
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By setting v, consecutively to 1, 9o, ..., 1, in (3.28), one arrives at the
following matrix-vector form of the variational formulation (3.28):

Lu = p (3.39)

with
Log = L(Wa,¥s);  p, = (p,%a) (3.40)
This is a direct generalization of system (3.14) on p. 74.

3.3 Variational Methods and Minimization

3.3.1 The Galerkin Solution Minimizes the Error

The analysis in this section is restricted to operator £ that is self-adjoint
in a given functional space V', and the corresponding symmetric (conjugate-
symmetric in the complex case) form £(u,v). In addition, if

L(u,u) > c(u,u), YueV (3.41)

for some positive constant ¢, the form is called elliptic (or, synonymously,
coercive).
The weak continuous problem is

L(u,v) = (p,v), weV; YveV (3.42)

We shall assume that this problem has a unique solution u* € V and shall
refer to u* as the exact solution (as opposed to a numerical one). Mathematical
conditions for the existence and uniqueness are cited in Section 3.5.

The numerical Galerkin problem is obtained by restricting this formulation
to a finite-dimensional subspace V;, C V:

,C(’LL}“Uh) = (p7 ’Uh), up € Vh; Yo, € Vi, (343)

where uy, is the numerical solution. Keep in mind that u; solves the Galerkin
problem in the finite-dimensional subspace V}, only; in the full space V there
is, in general, a nonzero residual

R(up,v) = (p,v) — L(up,v) =, veEV (3.44)
In matrix-vector form, this problem is

Lu = p (3.45)

with matrix L and the right hand side p defined in (3.40). If matrix L is
nonsingular, a unique numerical solution exists. For an elliptic form £ — a
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particularly important case in theory and practice — matrix L is positive
definite and hence nonsingular.
The numerical error is
€n = up — U (3.46)

A remarkable property of the Galerkin solution for a symmetric form £ is that
it minimizes the error functional

E(up) = Llen, en) = Llup —u, up — u) (3.47)

In other words, of all functions in the finite-dimensional space V},, the Galerkin
solution upg is the best approximation of the exact solution in the sense of
measure (3.47). For coercive forms £, this measure usually has the physical
meaning of energy.

To prove this minimization property, let us analyze the behavior of func-
tional (3.47) in the vicinity of some wy, — that is, examine £ (up, + Avy,), where
vp, € Vp is an increment and A is an adjustable numerical factor introduced
for mathematical convenience. (This factor could be absorbed into vy, but, as
will soon become clear, it makes sense not to do so. Also, A can be intuitively
understood as “small” but this has no bearing on the formal analysis.) Then,
assuming a real form for simplicity,

5(uh—|—)\vh) = ,C(Eh-l-)\’vh,Gh-f—)\Uh) = ,C(Gh,eh) + 2)\£(Eh,vh) + )\2,6(1)]—“’0]1)

(3.48)
At a stationary point of £ — and in particular at a maximum or minimum —
the term linear in A must vanish:

L’(eh,vh) = 0, Yo, € Vi,
This condition is nothing other than
E(Uh,vh) = E(’U,7’Uh) = <f7 ’Uh)

(The last equality follows from the fact that w is the solution of the weak
problem.) This is precisely the Galerkin equation.

Thus the Galerkin solution is a stationary point of functional (3.47). If
the bilinear form £ is elliptic, expression (3.48) for the variation of the energy
functional then indicates that this stationary point is in fact a minimum: the
term linear in A vanishes and the quadratic term is positive for a nonzero vy,.

3.3.2 The Galerkin Solution and the Energy Functional

Error minimization (in the energy norm sense) is a significant strength of
the Galerkin method. A practical limitation of the error functional (3.47),
however, is that it cannot be computed explicitly: this functional depends on
the exact solution that is unknown. At the same time, for self-adjoint problems
there is another — and computable — functional for which both the exact
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solution (in the original functional space V') and the numerical solution (in
the chosen finite-dimensional space V},) are stationary points. This functional
is

Fu = (p,u) — %E(u,u), ueV (3.49)

Indeed, for an increment Av, where A is an arbitrary number and v € V| we
have

1 1 1
AF = Flut+dv) — Fu = (p, ) — §£(Av,u) — §£(u,)\v) — §£(AU,AU)
which for a symmetric real form L is
1
AF = A(p,v) — L(u,v)] — 5)‘2‘6(%1})

The zero linear term in A thus corresponds precisely to the weak formulation of
the problem. By a very similar argument, the Galerkin solution is a stationary
point of F in V. Furthermore, if the bilinear form L is elliptic, the quadratic
term A\2L(v,v) is nonnegative, and the stationary point is @ mazimum.

In electrostatics, magnetostatics and other physical applications functional
F is often interpreted as energy. It is indeed equal to field energy if u is the
exact solution of the underlying differential equation (or, almost equivalently,
of the weak problem). Other values of u are not physically realizable, and
hence F in general lacks physical significance as energy and should rather be
interpreted as “action” (an integrated Lagrangian). It is not therefore para-
doxical that the solution mazimizes — not minimizes — the functional.!® This
matter is taken up again in Section 6.11 on p. 328 and in Appendix 6.14 on
p- 338 in the context of electrostatic simulation.

Functional F (3.49) is part of a broader picture of complementary varia-
tional principles; see the book by A.M. Arthurs [Art80] (in particular, exam-
ples in Section 1.4 of his book!!).

3.4 Essential and Natural Boundary Conditions

So far, for brevity of exposition, only Dirichlet conditions on the exterior
boundary of the domain were considered. Now let us turn our attention to

10 One could reverse the sign of F, in which case the stationary point would be a
minimum. However, this functional would no longer have the meaning of field
energy, as its value at the exact solution u would be negative, which is thermody-
namically impossible for electromagnetic energy (see L.D. Landau & E.M. Lifshitz
[LL84].

11 A note for the reader interested in the Arthurs book and examples therein. In
the electrostatic case, the quantities in these examples are interpreted as follows:
U = D (the electrostatic displacement field), v = € (the permittivity), & = u
(potential), ¢ = p (charge density).
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quite interesting, and in practice very helpful, circumstances that arise if con-
ditions on part of the boundary are left unspecified in the weak formulation.
We shall use the standard electrostatic equation in 1D, 2D or 3D as a

model:
—V-eVu = p inQ; wu=0ond0p CIN (3.50)

At first, the dielectric permittivity € will be assumed a smooth function of
coordinates; later, we shall consider the case of piecewise-smooth € (e.g. di-
electric bodies in a host medium). Note that u satisfies the zero Dirichlet
condition only on part of the domain boundary; the condition on the remain-
ing part is left unspecified for now, so the boundary value problem is not yet
fully defined.

The weak formulation is

(eVu, Vo) = (p,v), u, Yo € Hy(Q,00p) (3.51)

H(Q,00p) is the Sobolev space of functions that have a generalized deriva-
tive and satisfy the zero Dirichlet condition on 9Qp.'2

Let us now examine, a little more carefully than we did before, the re-
lationship between the weak problem (3.51) and the differential formulation
(3.50). To convert the weak problem into a strong one, one integrates the left
hand side of (3.51) by parts:

/ ve%dS — (V-eVu,v) = (p,v) (3.52)
0N—00p on

It is tacitly assumed that w is such that the differential operator V-eVu makes
sense. Note that the surface integral is taken over the non-Dirichlet part of
the boundary only, as the “test” function v vanishes on the Dirichlet part by
definition.

The key observation is that v is arbitrary. First, as a particular choice, let
us consider test functions v vanishing on the domain boundary. In this case,
the surface integral in (3.52) disappears, and we have

(V-eVu + p, v) = / v(V-eVu + p)dQ = 0 (3.53)
Q

This may hold true for arbitrary v only if the integrand
I =V-eVu+p (3.54)

in (3.53) is identically zero. The proof, at least for continuous I, is simple.
Indeed, if I were strictly positive at some point r( inside the domain, it would,

12 These are functions that are either smooth themselves or can be approximated by
smooth functions, in the H'-norm sense, with any degree of accuracy. Boundary
values, strictly speaking, should be considered in the sense of traces (R.A. Adams
& J.J.F. Fournier [AF03], K. Rektorys [Rek80]).
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by continuity, have to be positive in some neighborhood of that point. By
choosing the test function that is positive in the same neighborhood and zero
elsewhere (imagine a sharp but smooth peak centered at rg as such a test
function), one arrives at a contradiction, as the integral in (3.53) is positive
rather than zero.

This argument shows that the Poisson equation must be satisfied for the
solution u of the weak problem. Further observation can be made if we now
consider a test function that is nonzero on the non-Dirichlet part of the bound-
ary. In the integrated-by-parts weak formulation (3.52), the volume integrals,
as we now know, must vanish if « is the solution, because the Poisson equation
is satisfied. Then we have

/ vea—uds =0 (3.55)
90—90Qp on

Since v is arbitrary, the integrand must be identically zero — the proof is
essentially the same as for the volume integrand I in (3.54). We come to the
conclusion that solution w must satisfy the Neumann boundary condition

ou
o 0 (3.56)
on the non-Dirichlet part of the domain boundary (for € # 0).

This is really a notable result. In the weak formulation, if no boundary
condition is explicitly imposed on part of the boundary, then the solution will
satisfy the Neumann condition. Such “automatic” boundary conditions that
follow from the weak formulation are called natural. In contrast, conditions
that have to be imposed explicitly are called essential. Dirichlet conditions
are essential.

For cases other than the model electrostatic problem, a similar analysis
is needed to identify natural boundary conditions. As a rule of thumb, con-
ditions containing the normal derivative at the boundary are natural. For
example, Robin boundary conditions (a combination of values of u and its
normal derivative) are natural.

Importantly, the continuity of flux e du/dn across material interfaces is also
a natural condition. The analysis is similar to that of the Neumann condition.
Indeed, let I' be the boundary between materials #1,2 with their respective
parameters €; 2. Separately within each material, € varies smoothly, but a
jump may occur across I .

With the weak problem (3.51) taken as a starting point, integration by
parts yields

/GQBQD[--J + /Fv Ke?ﬁ)l(egzu dS — (V-eVu,v) = (p,v)

(3.57)
Subscripts 1 and 2 indicate that the respective electric flux density € du/dn is
taken in materials 1, 2; n is the unit normal to I', directed into material #2
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(this choice of direction is arbitrary). The integrand on the exterior boundary
is omitted for brevity, as it is the same as considered previously and leads, as
we already know, to the Neumann boundary condition on Q — 0€p.

Consider first the volume integrals (inner products) in (3.57). Using the
fact that v is arbitrary, one can show in exactly the same way as before that
the electrostatic differential equation must be satisfied throughout the domain,
except possibly for the interface boundary where the differential operator may
not be valid in the sense of ordinary calculus. Turning then to the surface
integral over I' and again noting that v is arbitrary on that surface, one
observes that the integrand — i.e. the flux jump — across the surface must be
zero if u is the solution of the weak problem.

This is a great practical advantage because no special treatment of mater-
ial interfaces is needed. For the model electrostatic problem, the finite element
algorithm for heterogeneous media is essentially the same as for the homoge-
neous case. However, for more complicated problems interface conditions may
need special treatment and may result in additional surface integrals.'?

It is in principle possible to impose natural conditions explicitly — that
is, incorporate them into the definition of the functional space and choose
the approximating and test functions accordingly. However, this is usually
inconvenient and redundant, and therefore is hardly ever done in practice.

3.5 Mathematical Notes: Convergence, Lax—Milgram
and Céa’s Theorems

This section summarizes some essential facts about weak formulations and
convergence of Galerkin solutions. The mathematical details and proofs are
omitted, one exception being a short and elegant proof of Céa’s theorem. There
are many excellent books on the mathematical theory: an elaborate exposition
of variational methods by K. Rektorys [Rek80] and by S.G. Mikhlin [Mik64,
Mik65], as well as the well-known text by R. Weinstock [Wei74]; classical
monographs on FEM by P.G. Ciarlet [Cia80], by B. Szabé & I. Babuska
[SB91], and a more recent book by S.C. Brenner & L.R. Scott [BS02], among
others.

Those readers who are not interested in the mathematical details may
skip this section — a digest of the underlying mathematical theory — without
substantial harm to their understanding of the rest of the chapter.

Theorem 2. (Lax—Milgram.) [BS02, Rek80]

13 One interesting example is a hybrid formulation of eddy current problems, with
the magnetic vector potential inside a conducting body and the magnetic scalar
potential outside. The weak formulation contains a surface integral on the bound-
ary of the conductor. The interested reader may see C.R.I. Emson & J. Simkin
[ES83], D. Rodger [Rod83] for the formulation and [Tsu90] for a mathematical
analysis.
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Given a Hilbert space V, a continuous and elliptic bilinear form L(-, -)
and a continuous linear functional f € V', there exists a unique u € V such
that

L(u,v) = f(v), YoeV (3.58)

As a reminder, a bilinear form is elliptic if
L(u,u) > ci(u,u), YueV

and continuous if

Lu,v) < eollu|ljv]], Yu,veV

for some positive constants c; . Here the norm is induced by the inner prod-
uct: .
[oll = (v,v)? (3.59)

Finally in the formulation of the Lax—Milgram theorem, V' is the space of
continuous linear functionals over V. A linear functional is continuous if
f() < ¢c||v||, where ¢ is some constant.

The reason why the Lax—Milgram theorem is important is that its condi-
tions correspond to the weak formulations of many problems of mathematical
physics, including the model electrostatic problem of the previous section. The
Lax—Milgram theorem establishes uniqueness and existence of the (exact) so-
lution of such problems. Under the Lax—Milgram conditions, it is clear that
uniqueness and existence also hold in any subspace of V' — in particular, for
the approximate Galerkin solution.

The Lax—Milgram theorem can be proved easily for symmetric forms. In-
deed, if £ is symmetric (in addition to its continuity and ellipticity required
by the conditions of the theorem), this form represents an inner product in V:
[u,v] = L(u,v). Then f(v), being a linear continuous functional, can be by the
Riesz Representation Theorem (one of the basic properties of Hilbert spaces)
expressed via this new inner product as f(v) = [u,v] = L(u,v), which is pre-
cisely what the Lax—Milgram theorem states. The more complicated proof for
nonsymmetric forms is omitted.

Theorem 3. (Céa) [BS02, Rek80]

Let V' be a subspace of a Hilbert space H and L(-, ) be a continuous
elliptic (but not necessarily symmetric) bilinear form on V. Let u € V be the
solution of equation (3.58) from the Lax—Milgram theorem. Further, let up be
the solution of the Galerkin problem

E(uh,vh) = f(?)h), Yo, € Vi (3.60)
in some finite-dimensional subspace Vi, C V. Then

lu—un]) < — min [lu—v] (3.61)

where ¢1 and ¢y are the ellipticity and continuity constants of the bilinear form

L.
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Céa’s theorem is a principal result, as it relates the error of the Galerkin so-
lution to the approximation error. The latter is much more easily amenable
to analysis: good approximation can be produced by various forms of inter-
polation, while the Galerkin solution emerges from solving a large system of
algebraic equations. For a symmetric form £ and for the norm induced by L,
constants ¢; 2 = 1 and the Galerkin solution is best in the energy-norm sense,
as we already know.

Proof. The error of the Galerkin solution is
€ = up —u, up €V (3.62)

where u is the (exact) solution of the weak problem (3.58) and wy, is the solu-
tion of the Galerkin problem (3.60). This error itself satisfies a weak problem
obtained simply by subtracting the Galerkin equation from the exact one:

ﬁ(eh,vh) = 0, Yop € Vi, (3.63)

This can be interpreted as a generalized orthogonality relationship: the error
is “L-orthogonal” to Vj,. (If £ is not symmetric, it does not induce an inner
product, so the standard definition of orthogonality does not apply.) Such an
interpretation has a clear geometric meaning: the Galerkin solution is a pro-
jection (in a proper sense) of the exact solution onto the chosen approximation
space.

Then we have

Len,en) = Lep,up —u) = Llep,up—vp —u), = L(ep,wp, —u); vy € V)

The first identity is trivial, as it reiterates the definition of the error. The
second equality is crucial and is due to the generalized orthogonality (3.63).
The last identity is just a variable change, wy, = up — vp.

Using now the ellipticity and continuity of the bilinear form, we get

allenll3 = cilensen) < Llen,en) = Llen,wn — u) < collenl| wn — ul|

which, after dividing through by |le]||, yields precisely the result of Céa’s
theorem:
eollenll < exllwn — ul
O

Céa’s theorem simplifies error analysis greatly: it is in general extremely
difficult to evaluate the Galerkin error directly because the Galerkin solution
emerges as a result of solving a (usually large) system of equations; it is much
easier to deal with some good approximation wy, of the exact solution (e.g.
via an interpolation procedure). Céa’s theorem relates the Galerkin solution
error to the approximation error via the stability and continuity constants of
the bilinear form.
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From a practical point of view, Céa’s theorem is the source of robustness of
the Galerkin method. In fact, the Galerkin method proves to be surprisingly
reliable even for non-elliptic forms: although Céa’s theorem is silent about that
case, a more general result known as the Ladyzhenskaya-Babuska-Brezzi (or
just LBB) condition'# is available (O.A. Ladyzhenskaya [Lad69], I. Babuska,
[Bab58], F. Brezzi [Bre74]; see also B. Szabé & I. Babuska [SB91], I. Babuska
& T. Strouboulis [BS01] and Appendix 3.10).

3.6 Local Approximation in the Finite Element Method

Remember the shortcomings of collocation — the first variational technique
to be introduced in this chapter? The Galerkin method happily resolves (at
least for elliptic problems) two of the three issues listed on p. 72. Indeed, the
way to choose the test functions is straightforward (they are the same as the
approximating functions), and Céa’s theorem provides an error bound for the
Galerkin solution.

The only missing ingredient is a procedure for choosing “good” approxi-
mating functions. The Finite Element Method does provide such a procedure,
and the following sections explain how it works in one, two and three dimen-
sions.

The guiding principle is local approximation of the solution. This usually
makes perfect physical sense. It is true that in a limited number of cases
a global approximation over the whole computational domain is effective —
these cases usually involve homogeneous media with a smooth distribution of
sources or no sources at all, with the field approximated by a Fourier series or
a polynomial expansion. However, in practical problems, local geometric and
physical features of systems and devices, with the corresponding local behavior
of fields and potentials, is typical. Discontinuities at material interfaces, peaks,
boundary layers, complex behavior at edges and corners, and many other
features make it all but impossible to approximate the solution globally.!®

Local approximation in FEM is closely associated with a mesh: the com-
putational domain is subdivided into small subdomains — elements. A large
assortment of geometric shapes of elements can be used: triangular or quadri-
lateral are most common in 2D, tetrahedral and hexahedral — in 3D. Note
that the term “element” is overloaded: depending on the context, it may mean
just the geometric figure or, in addition to that, the relevant approximating
space and degrees of freedom (more about that later). For example, linear and

14 Occasionally used with some permutations of the names.

15 Analytical approximations over homogeneous subdomains, with proper matching
conditions at the interfaces of these subdomains, can be a viable alternative but
is less general than FEM. One example is the Multiple Multipole Method popu-
lar in some areas of high frequency electromagnetic analysis and optics; see e.g.
T. Wriedt (ed.), [Wri99].
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quadratic approximations over a triangle give rise to different finite elements
in the sense of FEM, even though the geometric figure is the same.

For illustration, Fig. 3.5 — Fig. 3.7 present FE meshes for a few particles of
arbitrary shapes — the first two of these figures in 2D, and the third one in 3D.
The mesh in the second figure (Fig. 3.6) was obtained by global refinement
of the mesh in the first figure: each triangular element was subdivided into
four. Mesh refinement can be expected to produce a more accurate numerical
solution, albeit at a higher computational cost. Global refinement is not the
most effective procedure: a smarter way is to make an effort to identify the
areas where the numerical solution is least accurate and refine the mesh there.
This idea leads to local adaptive mesh refinement (Section 3.13).

KIS ATHA A K K]
IS Ta ! 3,/'/ VS Ay TAVAY o

Fig. 3.5. An illustrative example of a finite element mesh in 2D.

Each approximating function in FEM is nonzero only over a small number
of adjacent elements and is thus responsible for local approximation without
affecting the approximation elsewhere. The following sections explain how this
is done.
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Fig. 3.6. Global refinement of the mesh of Fig. 3.5, with each triangular element
subdivided into four by connecting the midpoints of the edges.

3.7 The Finite Element Method in One Dimension

3.7.1 First-Order Elements

In one dimension, the computational domain is a segment [a, b], the mesh is a
set of nodes xg = a, 21, . .., x, = b, and the elements (in the narrow geometric
sense) are the segments [z;_1,x;], i = 1,2, ..., n. The simplest approximating
function is shown in Fig. 3.8 and is commonly called a “hat function” or, much
less frequently, a “tent function”.'® The hat functions form a convenient basis
of the simplest finite element vector space, as discussed in more detail below.
For notational convenience only, we shall often assume that the grid is
uniform, i.e. the grid size h = x; — x;_1 is the same for all nodes i. For
nonuniform grids, there are no conceptual changes and only trivial differences
in the algebraic expressions. A formal expression for ¢; on a uniform grid is

Rt (x—xic1), i1 <z<uay
’(ﬁl(.’lﬁ) = ht (zi—&-l — 1‘), T < < Tigq (364)
0 otherwise

16 About 50 times less, according to Google. “Hut function” also makes some intu-
itive sense but is used very infrequently.
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Fig. 3.8. The “hat” function for first order 1D elements.
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The hat function v; straddles two adjacent elements (segments) and satisfies
the obvious Kronecker-delta property on the grid: it is equal to one at x; and
zero at all other nodes. This property is not critical in theoretical analysis
but is very helpful in practice. In particular, for any smooth function u(z),
piecewise-linear interpolation on the grid can be written simply as the linear

combination
n

uinterp(w) = Zu(xz) 1/}1
i=1
Indeed, the fact that the nodal values of u and uinterp are the same follows
directly from the Kronecker-delta property of the s.
We now have all the prerequisites for solving an example problem.

Example 4.

d?u

7z = sinz, Q=1[0,7], w0)=u(r)=0 (3.65)

The obvious theoretical solution u(z) = sinz is available for evaluating the
accuracy of the finite element result.

Let us use a uniform grid 9y = 0, 1 = h, ..., x, = 7 with the grid size
h = 7/n. In numerical experiments, the number of nodes will vary, and we
can expect higher accuracy (at higher computational cost) for larger values of
n.

The weak formulation of the problem is

; % ﬁdm = /0 sinzo(z)dr, wu,Vv e Hy([0,n]) (3.66)
The FE-Galerkin formulation is simply a restriction of the weak problem to
the subspace Pon([0,7]) of piecewise-linear functions satisfying zero Dirich-
let conditions; this is precisely the subspace spanned by the hat functions

¢17 v aqbnflzl7

/0 %%dm = /0 vp(x) sinzdx, up,Yor € Pon([0, 7)) (3.67)

As we know, this formulation can be cast in matrix-vector form by substituting
the expansion Z?;ll upi; for up and by setting vy, sequentially, to 1, ...,

n—1 to obtain (n — 1) equations for (n — 1) unknown nodal values wup;:

Lu = f, wu,feR™! (3.68)
where, as we also know, the entries of matrix L and the right hand side f are
17 Functions 1o and ¢, are not included, as they do not satisfy the Dirichlet con-

ditions. Implementation of boundary conditions will be discussed in more detail
later.
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Ty diy /
L;; = /0 1r da dz; Y;(x) sinz dx (3.69)

As already noted, the discrete problem, being just a restriction of the contin-
uous one to the finite-dimensional FE space, inherits the algebraic properties
of the continuous formulation. This implies that the global stiffness matrix L
is positive definite in this example (and in all cases where the biliniear form
of the problem is elliptic).

Equally important is the sparsity of the stiffness matrix: most of its entries
are zero. Indeed, the Galerkin integrals for L;; in (3.69) are nonzero only if 1;
and 1; are simultaneously nonzero over a certain finite element. This implies
that either ¢ = j or nodes ¢ and j are immediate neighbors. In 1D, the global
matrix is therefore tridiagonal. In 2D and 3D, the sparsity pattern of the FE
matrix depends on the topology of the mesh and on the node numbering (see
Sections 3.8 and 3.8).

Algorithmically, it is convenient to compute these integrals on an element-
by-element basis, gradually accumulating the contributions to the integrals as
the loop over all elements progresses. Clearly, for each element the nonzero
contributions will come only from functions v; and v, that are both nonzero
over this element. For element #i — that is, for segment [x;_1,x;] — there are
four such nonzero contributions altogether:

T dipioy dipiog /“’ 11 1
Lelem i — d _ i, _ 1
i—1,0—1 /mi_l dx dr X o nh X h
o d’l/)l 1 dd)z /zl 1 -1 1
Lclcm T _ =ty _ 1
i—1,3 /mi_l A dr dx o nh xX 3
Lflzeinf = Lflei’"ll by symmetry
Lgem 't = 7 (same as Lflc?/ )

sinx; —x;cosx; + x;_1 cosx; —sSinx;_1
h

/ Yi—1(x) sinzdr =

/ i) singdz = sinx; — x; COST;_1 + x; COSxT; — Sinx;_1
; - _
h

These results can be conveniently arranged into a 2 x 2 matrix

: 1 1 —1
elem 14

called, for historical reasons, the element stiffness matriz, and the element
contribution to the right hand side is a vector

pelem i _ }1L ( sinx; — x; cosx; + o1 cos x; — sinx;_y ) (3.71)

—sin XTi+ X;COST;_1 — T;—1COST;_1+ sin Ti—1
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Remark 2. A word of caution: in the engineering literature, it is not uncommon
to introduce “element equations” of the form

Lelem iuelem i felern i (”77)

Such equations are devoid of mathematical meaning. The actual Galerkin
equation involves a test function that spans a group of adjacent elements
(two in 1D), and so there is no valid equation for a single element. Incidentally,
triangular meshes have approximately two times more elements than nodes;
so, if “element equations” were taken seriously, there would be about twice as
many equations as unknowns!

A sample Matlab code at the end of this subsection (p. 100) gives a “no-
frills” implementation of the FE algorithm for the 1D model problem. To
keep the code as simple as possible, much of the formulation is hard-coded,
including the specific interval €, expressions for the right hand side and (for
verification and error analysis) the exact solution. The only free parameter is
the number of elements n. In actual computational practice, such hard-coding
should of course be avoided. Commercial FE codes strive to provide maximum
flexibility in setting up geometrical and physical parameters of the problem,
with convenient user interface.

Some numerical results are shown in the following figures. Fig. 3.9 provides
a visual comparison of the FE solutions for 6 and 12 finite elements with
the exact solution. Not surprisingly, the solution with 12 elements is more
accurate.

Fig. 3.10 displays several precise measures of the error:

e The relative nodal error defined as

_ lu =N

€nodal = W

where u € R" ! is the Euclidean vector of nodal values of the FE solution,
u*(x) is the exact solution, and N'u* denotes the vector of nodal values of
u* on the grid.

e The Ly norm of the error

er2 = [un —u”|

This error measures the discrepancy between the numerical and exact solu-
tions as functions over [0, 7] rather than Euclidean vectors of nodal values.
e The Ly norm of the derivative

Due to the zero Dirichlet boundary conditions, this norm differs by no
more than a constant factor from the Hi-norm; hence the notation.

d(up — u™)
dx

€1 = H
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Fig. 3.9. FE solutions with 6 elements (circles) and 12 elements (squares) vs. the
exact solution sin x (solid line).

Due to the simplicity of this example and of the exact solution, these mea-
sures can be computed up to the roundoff error. For more realistic problems,
particularly in 2D and 3D, the errors can only be estimated.

In Fig. 3.10 the three error measures are plotted vs. the number of ele-
ments. The linearity of the plots on the log-log scale implies that the errors
are proportional to A7, and the slopes of the lines correspond to v = 2 for the
nodal and Ls errors and v = 1 for the H;y error. The derivative of the solu-
tion is computed less accurately than the solution itself. This certainly makes
intuitive sense and also agrees with theoretical results quoted in Section 3.10.

Ezample 5. How will the numerical procedure change if the boundary condi-
tions are different?

First consider inhomogeneous Dirichlet conditions. Let us assume that in
the previous example the boundary values are u(0) = 1, u(7) = —1, so that
the exact solution is now u*(x) = cosz. In the hat-function expansion of the
(piecewise-linear) FE solution

un(z) = > uniti(z)
1=0

the summation now includes boundary nodes in addition to the interior ones.
However, the coefficients upg and up,, at these nodes are the known Dirichlet
values, and hence no Galerkin equations with test functions vy and ), are
necessary. In the Galerkin equation corresponding to the test function )1,
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Fig. 3.10. Several measures of error vs. the number of elements for the 1D model
problem: relative nodal error (circles), Lo-error (squares), Hi-error (triangles). Note
the log-log scale.

(Yo, Y1) uno + (1, V) unr = (f, ¥1)

the first term is known and gets moved to the right hand side:

(W1, ¥ un = (f, ¥1) — (%o, ¥1) uno (3.72)

As usual, parentheses in these expressions are Lo inner products and imply
integration over the computational domain.

The necessary algorithmic adjustments should now be clear. There is no
change in the computation of element matrices. However, whenever an entry
of the element matrix corresponding to a Dirichlet node is encountered,'®
this entry is not added to the global system matrix. Instead, the right hand
side is adjusted as prescribed by (3.72). A similar adjustment is made for the
other boundary node (z,, = 7) as well. In 2D and 3D problems, there may be
many Dirichlet nodes, and all of them are handled in a similar manner. The
appropriate changes in the Matlab code are left as an exercise for the interested
reader. The FE solution for a small number of elements is compared with the

18 Clearly, this may happen only for elements adjacent to the boundary.
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exact solution (cosz) in Fig. 3.11, and the error measures are shown as a
function of the number of elements in Fig. 3.12.

038
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B FE solution (8 elements)

041 exact solution (cos x)
-0.6+
-0.8+
-1 L | .
0 05 1 15 2 25 3

Fig. 3.11. FE solution with 8 elements (markers) vs. the exact solution cos z (solid
line).

Neumann conditions in the Galerkin formulation are natural'® and there-
fore do not require any algorithmic treatment: elements adjacent to the Neu-
mann boundary are treated exactly the same as interior elements.

Despite its simplicity, the one-dimensional example above contains the key
ingredients of general FE algorithms:

1. Mesh generation and the choice of FE approximating functions.
In the 1D example, “mesh generation” is trivial, but it becomes compli-
cated in 2D and even more so in 3D. Only piecewise-linear approximating
functions have been used here so far; higher-order functions are considered
in the subsequent sections.

2. Local and global node numbering. For the computation of element
matrices (see below), it is convenient to use local numbering (e.g. nodes 1,
2 for a segment in 1D, nodes 1, 2, 3 for a triangular element in 2D, etc.) At

19 We showed that Neumann conditions are natural — i.e. automatically satisfied —
by the solution of the continuous weak problem. The FE solution does not, as
a rule, satisfy the Neumann conditions exactly but should do so in the limit of
h — 0, although this requires a separate proof.
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Fig. 3.12. The relative nodal error (circles) and the Hi-error (triangles) for the
model Dirichlet problem. Note the log—log scale.

the same time, some global numbering of all mesh nodes from 1 to n is also
needed. This global numbering is produced by a mesh generator that also
puts local node numbers for each element in correspondence with their
global numbers. In the 1D example, mesh generation is trivial, and so is
the local-to-global association of node numbers: for element (segment) #,
(i =1,2,...,n), local node 1 (the left node) corresponds to global node
1— 1, and local node 2 corresponds to global node . The 2D and 3D cases
are considered in Section 3.8 and Section 3.9.

3. Computation of element matrices and of element-wise contri-
butions to the right hand side. In the 1D example, these quantities
were computed analytically; in more complicated cases, when analytical
expressions are unavailable (this is frequently the case for curved or high
order elements in 2D and 3D), Gaussian quadratures are used.

4. Assembly of the global matrix and of the right hand side. In a
loop over all elements, the element contributions are added to the global
matrix and to the right hand side; in the FE langauge, the matrix and
the right hand side are “assembled” from element-wise contributions. The
entries of each element matrix are added to the respective entries of the
global matrix and right hand side. See Section 3.8 for more details in the
2D case.

5. The treatment of boundary conditions. The Neumann conditions in
1D, 2D or 3D do not require any special treatment — in other words, the
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FE algorithm may simply “ignore” these conditions and the solution will,
in the limit, satisfy them automatically. The Robin condition containing a
combination of the potential and its normal derivative is also natural but
results in an additional boundary integral that will not be considered here.
Finally, the Dirichlet conditions have to be taken into account explicitly.
The following algorithmic adjustment is made in the loop over all elements.
If L;; is an entry of the element matrix and j is a Dirichlet node but i
isn’t, then L;; is not added to the global stiffness matrix. Instead, the
quantity L;;u;, where u; is the known Dirichlet value of the solution at
node j, is subtracted from the right hand side entry L, as prescribed by
equation (3.72). If both i and j are Dirichlet nodes, L;; is set to zero.
Solution of the FE system of equations. System solvers are reviewed
in Section 3.11.

Postprocessing of the results. This may involve differentiation of the
solution (to compute fields from potentials), integration over surfaces (to
find field fluxes, etc.), and various contour, line or surface plots. Modern
commercial FE packages have elaborate postprocessing capabilities and
sophisticated graphical user interface; this subject is largely beyond the
scope of this book, but some illustrations can be found in Chapter 7.

the same time, there are several more advanced features of FE analysis

that are not evident from the 1D example and will be considered (at a varying
level of detail) in the subsequent sections of this chapter:

Curved elements — used in 2D and 3D for more accurate approximation of
curved boundaries.

Adaptive mesh refinement (Section 3.13). The mesh is refined locally, in
the subregions where the numerical error is estimated to be highest. (In
addition, the mesh may be un-refined in subregions with lower errors.)
The problem is then solved again on the new grid. The key to the success
of this strategy is a sensible error indicator that is computed a posteriori,
i.e. after the FE solution is found.

Vector finite elements (Section 3.12). The most straightforward way of
dealing with vector fields in FE analysis is to approximate each Cartesian
component separately by scalar functions. While this approach is adequate
in some cases, it turns out not to be the most solid one in general. One
deficiency is fairly obvious from the outset: some field components are dis-
continuous at material interfaces, which is not a natural condition for scalar
finite elements and requires special constraints. This is, however, only one
manifestation of a deeper mathematical structure: fundamentally, electro-
magnetic fields are better understood as differential forms (Section 3.12).

A Sample Matlab Code for the 1D Model Problem

function FEM_1D_examplel = FEM_1D_examplel (n)
% Finite element solution of the Poisson equation
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% -u’’ = sin x on [0, pil; u(0) = u(pi) =0
% Input:
% n -- number of elements

domain_length = pi; % hard-coded for simplicity of this sample code
h = domain_length / n; 7 mesh size (uniform mesh assumed)

% Initialization:
system_matrix = sparse(zeros(n-1, n-1));

rhs = sparse(zeros(n-1, 1));

% Loop over all elements (segments)
for elem_number =1 : n

nodel = elem_number - 1;
node2 = elem_number;

% Coordinates of nodes:
x1 = h*nodel;
x2 = x1 + h;

% Element stiffness matrix:

elem_matrix = 1/h * [1 -1; -1 1];

elem_rhs = 1/h * [sin(x2) - x2 * cos(x2) + x1 * cos(x2) - sin(xl);
-(sin(x2) - x2 * cos(xl) + x1 * cos(xl) - sin(x1))];

% Add element contribution to the global matrix
if nodel "= 0 % contribution for nonzero Dirichlet condition only
system_matrix(nodel, nodel) = system_matrix(nodel, nodel)
+ elem_matrix(1, 1);
rhs(nodel) = rhs(nodel) + elem_rhs(1);

end
if (nodel "= 0) & (node2 ~= n) J contribution for nonzero
% Dirichlet condition only
system_matrix(nodel, node2) = system_matrix(nodel, node2)
+ elem_matrix(1, 2);
system_matrix(node2, nodel) = system_matrix(node2, nodel)
+ elem_matrix(2, 1);
end
if node2 "= n % contribution for nonzero Dirichlet condition only

system_matrix(node2, node2) = system_matrix(node2, node2)
+ elem_matrix(2, 2);
rhs(node2) = rhs(node2) + elem_rhs(2);
end
end 7 end element cycle

u_FEM = system_matrix \ rhs; J refrain from using
% matrix inversion inv()!
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FEM_1D_examplel.a = 0O;
FEM_1D_examplel.b = pi;
FEM_1D_examplel.n = n;
FEM_1D_examplel.u_FEM = u_FEM;

return;

3.7.2 Higher-Order Elements

There are two distinct ways to improve the numerical accuracy in FEM. One
is to reduce the size h of (some or all) the elements; this approach is known
as (local or global) h-refinement.

Remark 3. It is very common to refer to a single parameter h as the “mesh
size,” even if finite elements in the mesh have different sizes (and possibly even
different shapes). With this terminology, it is tacitly assumed that the ratio
of maximum/minimum element sizes is bounded and not too large; then the
difference between the minimum, maximum or some average size is relatively
unimportant. However, several recursive steps of local mesh refinement may
result in a large disparity of the element sizes; in such cases, reference to a
single mesh size would be misleading.

The other way to improve the accuracy is to increase the polynomial order
p of approximation within (some or all) elements; this is (local or global)
p-refinement.

Let us start with second-order elements in one dimension. Consider a geo-
metric element — in 1D, a segment of length h. We are about to introduce
quadratic polynomials over this element; since these polynomials have three
free parameters, it makes sense to deal with their values at three nodes and
to place these nodes at x = 0, h/2, h relative to a local coordinate system.

The canonical approximating functions satisfy the Kronecker-delta condi-
tions at the nodes. The first function is thus equal to one at node #1 and zero
at the other two nodes; this function is easily found to be

Y1 = % <x — ;‘) (x — h) (3.73)

(The factors in the parentheses are due to the roots at h/2 and h; the scaling
coefficient 2/h? normalizes the function to 11 (0) = 1.)
Similarly, the remaining two functions are

4

Y2 = pa(h—a) (3.74)

Y3 = % T (:c - Z) (3.75)
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Quadratic basis functions over one 1D element

0 001 002 003 004 005 006 007 008 009 04
X

Fig. 3.13. Three quadratic basis functions over one 1D element. h = 0.1 as an
example.

Fig. 3.13 displays all three quadratic approximating functions over a single 1D
element. While the “bubble” 15 is nonzero within one element only, functions
11,3 actually span two adjacent elements, as shown in Fig. 3.14.

The entries of the element stiffness matrix L and mass matrix M (that is,
the Gram matrix of the s) are

h
Ly = / Vi) dae
0
where the prime sign denotes the derivative, and
h
M;; = /0 Vi dx

These matrices can be computed by straightforward integration:

A I
L= |8 16 -8 (3.76)
1 -8 7
L[4 2 -1
M=—|2 16 2 3.77
20 (3.77)
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Quadratic basis function over two adjacent elements
T T T

08} UL DU A5 K, S YOS WU N S

08—t R b f

0 e /
(1] S : S S

0.2 b ]
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Fig. 3.14. Quadratic basis function over two adjacent 1D elements. h = 0.1 as an
example.

Naturally, both matrices are symmetric.
The matrix assembly procedure for second-order elements in 1D is concep-
tually the same as for first-order elements. There are some minor differences:

e For second-order elements, the number of nodes is about double the num-
ber of elements.

e Consequently, the correspondence between the local node numbers (1, 2,
3) in an element and their respective global numbers in the grid is a little
less simple than for first-order elements.

e The element matrix is 3 x 3 for second order elements vs. 2 x 2 for first
order ones; the global matrices are five- and three-diagonal, respectively.

Elements of order higher than two can be introduced in a similar manner. The
element of order n is, in 1D, a segment of length h with n + 1 nodes xg, x1,

..y Ty, = To + h. The approximating functions are polynomials of order n. As
with first- and second-order elements, it is most convenient if polynomial #i
has the Kronecker-delta property: equal to one at the node x; and zero at the
remaining n nodes. This is the Lagrange interpolating polynomial

Al(m) — (x — $0)(l’ — ml) . (33 — xi_l)(l‘ — xi_H) . (x — xn)

(zi —wo)(@i — 1) .. (2 — @im1) (@i — Tig1) - (Ti — Tn) (3.78)



3.8 The Finite Element Method in Two Dimensions 105

Indeed, the roots of this polynomial are xq, 21, ..., T;—1, Zi+1, - .., Ty, Which
immediately leads to the expression in the numerator. The denominator is the
normalization factor needed to make A;(x) equal to one at x = x;.

The focus of this chapter is on the main ideas of finite element analysis
rather than on technical details. With regard to the computation of element
matrices, assembly procedures and other implementation issues for high order
elements, I defer to more comprehensive FE texts cited at the end of this
chapter.

3.8 The Finite Element Method in Two Dimensions

3.8.1 First-Order Elements

In two dimensions, most common element shapes are triangular (by far) and
quadrilateral. Fig. 3.15 gives an example of a triangular mesh, with the global
node numbers displayed. Element numbering is not shown to avoid congestion
in the figure.

This section deals with first-order triangular elements. The approximating
functions are linear over each triangle and continuous in the whole domain.
Each approximating function spans a cluster of elements (Fig. 3.16) and is
zero outside that cluster.

Expressions for element-wise basis functions can be derived in a straight-
forward way. Let the element nodes be numbered 1,2,3%° in the counter-
clockwise direction?! and let the coordinates of node i (i = 1,2,3) be x;, v;.
As in the 1D case, it is natural to look for the basis functions satisfying the
Kronecker-delta condition.

More specifically, the basis function vy = a1 + b1y + ¢1, where aq, by and
c1 are coeflicients to be determined, is equal to one at node #1 and zero at
the other two nodes:

arry +biyr e = 1
a1x3 +b1ys +¢c1 = 0 (3.79)
ajr3+byz+cp = 0

or equivalently in matrix-vector form

r1 N 1 ay 1
Xd1 = €1, X = T2 Y2 1 ; d1 = b1 ] e = 0 (380)
r3 yz 1 c1 0

Similar relationships hold for the other two basis functions, ¥s and 3, the
only difference being the right hand side of system (3.80). It immediately

20 These are local numbers that have their corresponding global numbers in the
mesh; for example, in the shaded element of Fig. 3.15 (bottom) global nodes 179,
284 and 285 could be numbered as 1, 2, 3, respectively.

21 The significance of this choice of direction will become clear later.
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Fig. 3.15. An example of a triangular mesh with node numbering (top) and a
fragment of the same mesh (bottom).
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Fig. 3.16. A piecewise-linear basis function in 2D over a cluster of triangular ele-
ments. Circles indicate mesh nodes. The basis function is represented by the surface
of the pyramid.

follows from (3.80) that the coefficients a, b, ¢ for all three basis functions can
be collected together in a compact way:

a; ag as
XD =1, D= [b b b3 (3.81)
C1 (&) C3

where [ is the 3 x 3 identity matrix. Hence the coefficients of the basis functions
can be expressed succinctly as

D = X! (3.82)

From analytical geometry, the determinant of X is equal to 25a, where Sa
is the area of the triangle. (That is where the counter-clockwise numbering
of nodes becomes important; for clockwise numbering, the determinant would
be equal to minus 25.) This leads to simple explicit expressions for the basis
functions:

(y2 —y3)x + (3 — z2)y + (z2y3s — x3Y2)
254

P = (3.83)
with the other two functions obtained by cyclic permutation of the indexes.
Since the basis functions are linear, their gradients are just constants:

Tr3 — T2

Y2 —Ys . "
Vi, = 2+ .84
V1 25a 25A Y (3:84)
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with the formulas for ¢, 3 again obtained by cyclic permutation. These ex-
pressions are central in the FE-Galerkin formulation.
It would be straightforward to verify from (3.83), (3.84) that

Y1+t =1 (3.85)
Vi + Vs +Vipg = 0 (3.86)

However, these results can be obtained without any algebraic manipulation.
Indeed, due to the Kronecker delta property of the basis, any function u(zx,y)
linear over the triangle can be expressed via its nodal values u 23 as

u(z,y) = wiyr + uaths + uss

Equation (3.85) follows from this simply for u(x,y) = 1.

Functions 1 23 are also known as barycentric coordinates and have an
interesting geometric interpretation (Fig. 3.17). For any point x, y in the plane,
¥1(x,y) is the ratio of the shaded area to the area of the whole triangle:
Y1(z,y) = S1(z,y)/Sa. Similar expressions are of course valid for the other
two basis functions.

Fig. 3.17. Geometric interpretation of the linear basis functions: 1 (z,y) =
S1(z,y)/Sa, where Si is the shaded area and Sa is the area of the whole trian-
gle. (Similar for 2 3.)

Indeed, the fact that S;/Sa is equal to one at node #1 and zero at the
other two nodes is geometrically obvious. Moreover, it is a linear function of
coordinates because S; is proportional to height [ of the shaded triangle (the
“elevation” of point z,y over the “base” segment 2-3), and ! can be obtained
by a linear transformation of coordinates (z, y).

The three barycentric coordinates are commonly denoted with A; 23, so
the linear FE basis functions are just ¢; = \; (i = 1,2,3). Higher-order FE
bases can also be conveniently expressed in terms of A (Section 3.8.2).
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The element stiffness matrix for first order elements is easy to compute
because the gradients (3.84) of the basis functions are constant:

(V)\L,V)\J) = / V/\L : V/\J ds = V)\l : V/\J SA, i,j = 1,2,3 (387)
A

where the integration is over a triangular element and S, is the area of this
element. Expressions for the gradients are available (3.84) and can be easily
substituted into (3.87) if an explicit formula for the stiffness matrix in terms
of the nodal coordinates is desired.

Computation of the element mass matrix (the Gram matrix of the basis
functions) is less simple but the result is quite elegant. The integral of, say,
the product A;A; over the triangular element can be found using an affine
transformation of this element to the “master” triangle with nodes 1, 2, 3 at
(1, 0), (0, 1) and (0, 0), respectively. Since the area of the master triangle is
1/2, the Jacobian of this transformation is equal to 25 and we have??

1 11—z
()\1,A2) = /)\1)\2ds = QSA/ xdx/ ydy = SA
A 0 0

12
Similarly,
(A = 292
1, N1 - 192

and the complete element mass matrix is

2 1 1

S
M= (121 1—3 (3.88)
1 1 2

The expressions for the inner products of the barycentric coordinates are a
particular case of a more general formula that appears in many texts on FE
analysis and is quoted here without proof:

/AiAjAkds _ R o (3.89)
AT Gkt R '
for any nonnegative integers i, j, k. Mj; of (3.88) corresponds to i = 2,

j =k =0; My5 corresponds to ¢+ = j =1, k = 0; etc.

Remark 4. The notion of “master element” (or “reference element”) is use-
ful and long-established in finite element analysis. Properties of FE matrices
and FE approximations are usually examined via affine transformations of
elements to the “master” ones. In that sense, analysis of finite element inter-
polation errors in Section 3.14.2 below (p. 160) is less typical.

22 The Jacobian is positive for the counter-clockwise node numbering convention.
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Example 6. Let us find the basis functions and the FE matrices for a right
triangle with node #1 at the origin, node #2 on the z-axis at (h;,0), and
node #3 on the y-axis at (0, h,) (mesh sizes hy, h, are positive numbers).
The coordinate matrix is

0 0 1
X = [hs 0 1
0 hy 1
which yields the coefficient matrix
—h;' h;t 0
1 — _
D =X" = [-h Lo hy1
1 0 0

Each column of this matrix is a set of three coefficients for the respective basis
function; thus the three columns translate into

b= 1=hila—hyly
1[)2 = h;lfb
Y3 = hi'ly

The sum of these functions is identically equal to one as it should be according
to (3.85). Functions v and 13 in this case are particularly easy to visualize:
1 is a linear function of = equal to one at node #2 and zero at the other two
nodes; 13 is similar. The gradients are

V’§/11 = —h;l
Vipy =
Vi3 =

Computing the entries of the element stiffness matrix is easy because the
gradients of As are (vector) constants. For example,

(VA1, V) = /V)\1~V)\1 dS = (h;*+hy;?)Sa
A

Since Sa = hghy /2, the complete stiffness matrix is

hy?+h;? —h;? —h,?
L = —h;? h,? 0 h”“éhy (3.90)
—2 -2
—h, 0 hy,
This expression becomes particularly simple if h, = h, = h:
1 2 -1 -1
L = 3 -1 1 0 (3.91)

-1 0 1
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The mass matrix is, according to the general expression (3.88),

2 11 2 11
h.h
M:%121 :Ty121 (3.92)
11 2 11 2

An example of Matlab implementation of FEM for a triangular mesh is given
at the end of this section; see p. 114 for the description and listing of the code.
As an illustrative example, consider a dielectric particle with some nontrivial
shape — say, T-shaped — in a uniform external field. The geometric setup is
clear from Figs. 3.18 and 3.19.

Fig. 3.18. A finite element mesh for the electrostatic problem: a T-shaped particle
in an external field. The mesh has 422 nodes and 782 triangular elements.

The potential of the applied external field is assumed to be u = z and
is imposed as the Dirichlet condition on the boundary of the computational
domain. Since the particle disturbs the field, this condition is not exact but
becomes more accurate if the domain boundary is moved farther away from
the particle; this, however, increases the number of nodes and consequently
the computational cost of the simulation. Domain truncation is an intrinsic
difficulty of electromagnetic FE analysis (unlike, say, analysis of stresses and
strains confined to a finite mechanical part). Various ways of reducing the
domain truncation error are known: radiation boundary conditions and Per-
fectly Matched Layers (PML) for wave problems (e.g. Z.S. Sacks [SKLL93], Jo-
Yu Wu et al. [WKLL97]), hybrid finite element/boundary element methods,
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Fig. 3.19. The potential distribution for the electrostatic example: a T-shaped
particle in an external field.

infinite elements, “ballooning,” spatial mappings (A. Plaks et al. [PTPT00])
and various other techniques (see Q. Chen & A. Konrad [CK97] for a review).
Since domain truncation is only tangentially related to the material of this
section, it is not considered here further but will reappear in Chapter 7.

For inhomogeneous Dirichlet conditions, the weak formulation of the prob-
lem has to be modified, with the corresponding minor adjustments to the FE
algorithm. The underlying mathematical reason for this modification is that
functions satisfying a given inhomogeneous Dirichlet condition form an affine
space rather than a linear space (e.g. the sum of two such functions has a
different value at the boundary). The remedy is to split the original unknown
function u up as

u = ug + Uz (3.93)

where uo is some sufficiently smooth function satisfying the given inhomo-
geneous boundary condition, while the remaining part ug satisfies the homo-
geneous one. The weak formulation is

ﬁ(UQ,Uo) = (f,’l)()) — ,C(U;éo,vo), U EH&(Q), VUO GH&(Q) (394)

In practice, the implementation of this procedure is more straightforward
than it may appear from this expression. The inhomogeneous part u-g is
spanned by the FE basis functions corresponding to the Dirichlet nodes; the
homogeneous part of the solution is spanned by the basis functions for all
other nodes. If j is a Dirichlet boundary node, the solution value u; at this
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node is given, and hence the term L;;u; in the global system of FE equations
is known as well. It is therefore moved (with the opposite sign of course) to
the right hand side.

In the T-shaped particle example, the mesh has 422 nodes and 782 trian-
gular elements, and the stiffness matrix has 2446 nonzero entries. The sparsity
structure of this matrix (also called the adjacency structure) — the set of index
pairs (¢,7) for which L;; # 0 — is exhibited in Fig. 3.20. The distribution of
nonzero entries in the matrix is quasi-random, which has implications for the
solution procedures if direct solvers are employed. Such solvers are almost in-
variably based on some form of Gaussian elimination; for symmetric positive
definite matrices, it is Cholesky decomposition UTU, where U is an upper
triangular matrix.?3> While Gaussian elimination is a very reliable?* and rela-
tively simple procedure, for sparse matrices it unfortunately produces “fill-in”:
zero entries become nonzero in the process of elimination (or Cholesky de-
composition), which substantially degrades the computational efficiency and
memory usage.

In the present example, Cholesky decomposition applied to the original
stiffness matrix with 2446 nonzero entries?®> produces the Cholesky factor
with 24,969 nonzeros and hence requires about 20 times more memory (if
symmetry is taken advantage of); compare Figs. 3.20 and 3.21. For more
realistic practical cases, where matrix sizes are much greater, the effect of
fill-in is even more dramatic.

It is worth noting — in passing, since this is not the main theme of this
section — that several techniques are available for reducing the amount of fill-in
in Cholesky factorization. The main ideas behind these techniques are clever
permutations of rows and columns (equivalent to renumbering of nodes in the
FE mesh), block algorithms (including divide-and-conquer type recursion),
and combinations thereof. A. George & J.W.H. Liu give a detailed and lucid
exposition of this subject [GL81]. In the current example, the so-called reverse
Cuthill-McKee ordering reduces the number of nonzero entries in the Cholesky
factor to 7230, which is more than three times better than for the original
numbering of nodes (Figs. 3.22 and 3.23).

The “minimum degree” ordering [GL81] is better by another factor of
~ 2: the number of nonzeros in the Cholesky triangular matrix is equal to
3717 (Figs. 3.24 and 3.25). These permutation algorithms will be revisited in
the solver section (p. 129).

23 Cholesky decomposition is usually written in the equivalent form of LLT, where
L is a lower triangular matrix, but symbol L in this chapter is already used for
the FE stiffness matrix.

24 Tt is known to be stable for symmetric positive definite matrices but may require
pivoting in general.

25 Of which only a little more than one half need to be stored due to matrix sym-
metry.
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Fig. 3.20. The sparsity (adjacency) structure of the global FE matrix in the T-
shaped particle example.
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Fig. 3.21. The sparsity structure of the Cholesky factor of the global FE matrix in
the T-shaped particle example.

Appendix: Sample Matlab Code for FEM with First-Order
Triangular Elements

The Matlab code below is intended to be the simplest possible illustration
of the finite element procedure. As such, it uses first order elements and is
optimized for algorithmic simplicity rather than performance. For example,
there is some duplication of variables for the sake of clarity, and symmetry of
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Fig. 3.22. The sparsity structure of the global FE matrix after the reverse Cuthill—
McKee reordering of nodes.
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Fig. 3.23. The sparsity structure of the upper-triangular Cholesky factor of the
global FE matrix after the reverse Cuthill-McKee reordering of nodes.
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Fig. 3.24. The sparsity structure of the global FE matrix after the minimum degree
reordering of nodes.
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Fig. 3.25. The sparsity structure of the upper-triangular Cholesky factor of the
global FE matrix after the minimum degree reordering of nodes.
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the FE stiffness matrix is not taken advantage of. Improvements become fairly
straightforward to make once the essence of the algorithm is understood.

The starting point for the code is a triangular mesh generated by
FEMLAB™ | a commercial finite element package?® integrated with Matlab.
The input data structure fem generated by FEMLAB in general contains
the geometric, physical and FE mesh data relevant to the simulation. For
the purposes of this section, only mesh data (the field fem.mesh) is needed.
Second-order elements are the default in FEMLAB, and it is assumed that
this default has been changed to produce first-order elements for the sample
Matlab code.

The fem.mesh structure (or simply mesh for brevity) contains several fields:

e mesh.p is a 2 X n matrix, where n is the number of nodes in the mesh.
The i-th column of this matrix contains the (z,y) coordinates of node #i.

e mesh.e is a 7 Xnpe matrix, where nyp is the number of element edges on all
boundaries: the exterior boundary of the domain and material interfaces.
The first and second rows contain the node numbers of the starting and
end points of the respective edge. The sixth and seventh row contain the
region (subdomain) numbers on the two sides of the edge. Each region is
a geometric entity that usually corresponds to a particular medium, e.g.
a dielectric particle or air. Each region is assigned a unique number. By
convention, the region outside the computational domain is labeled as zero,
which is used in the Matlab code below to identify the exterior boundary
edges and nodes in mesh.e. The remaining rows of this matrix will not be
relevant to us here.

e mesh.t is a 4 X Nelems Matrix, where ngems 18 the number of elements in
the mesh. The first three rows contain node numbers of each element in
counter-clockwise order. The fourth row is the region number identifying
the medium where the element resides.

The second input parameter of the Matlab code, in addition to the fem struc-
ture, is an array of dielectric permittivities by region number. In the T-shaped
particle example, region #1 is air, and the particle includes regions #2—#4,
all with the same dielectric permittivity. The following sequence of commands
could be used to call the FE solver:

% Set parameters:
epsilon_air = 1; epsilon_particle = 10;

epsilon_array = [epsilon_air epsilon_particle*ones(l, 5)];

% Solve the FE problem
FEM_solve = FEM_triangles (fem, epsilon_array)

The operation of the Matlab function FEM_triangles below should be
clear from the comments in the code and from Section 3.8.1.

26 www.comsol.com
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function FEM_triangles = FEM_triangles (fem, epsilon_array)
% Input parameters:

% fem -- structure generated by FEMLAB.

% (See comments in the code and text.)

% epsilon_array -- material parameters by region number.

mesh = fem.mesh; % duplication for simplicity
n_nodes = length(mesh.p); % array p has dimension 2 x n_nodes;
% contains x- and y-coordinates of the nodes.
n_elems = length(mesh.t); % array t has dimension 4 x n_elements.
% First three rows contain node numbers
% for each element.
% The fourth row contains region number
% for each element.

% Initialization
rhs = zeros(n_nodes, 1);

global_stiffness_matrix = sparse(n_nodes, n_nodes);

dirichlet = zeros(l, n_nodes); % flags Dirichlet conditions
% for the nodes (=1 for Dirichlet
% nodes, O otherwise)

% Use FEMLAB data on boundary edges to determine Dirichlet nodes:

mesh.e; % mesh.e contains FEMLAB data
% on element edges at the domain boundary

boundary_edge_data

number_of_boundary_edges = size(boundary_edge_data, 2); for
boundary_edge = 1 : number_of_boundary_edges
% Rows 6 and 7 in the array are region numbers
% on the two sides of the edge
regionl = boundary_edge_data(6, boundary_edge);
region2 = boundary_edge_data(7, boundary_edge);
% If one of these region numbers is zero, the edge is at the
% boundary, and the respective nodes are Dirichlet nodes:
if (regionl == 0) | (region2 == 0) 7% boundary edge
nodel = boundary_edge_data(l, boundary_edge);
node2 = boundary_edge_data(2, boundary_edge);
dirichlet(nodel) = 1;
dirichlet (node2) = 1;
end
end

% Set arrays of nodal coordinates:
for elem = 1 : n_elems ¥ loop over all elements
elem_nodes = mesh.t(1:3, elem); Y% node numbers for the element
for node_loc =1 : 3
node = elem_nodes(node_loc);
x_nodes(node) = mesh.p(1l, node);
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y_nodes(node) = mesh.p(2, node);

end
end

% Matrix assembly -
for elem = 1 : n_el
elem_nodes = me
region_number =
for node_loc =

- loop over all elements:
ems

sh.t(1:3, elem);
mesh.t(4, elem);

1:3

node = elem_nodes(node_loc);

x_nodes_loc
y_nodes_loc
end

(node_loc) = x_nodes(node);
(node_loc) = y_nodes(node);

% Get element matrices:

[stiff_mat, mas
for node_locl =

119

s_mat] = elem_matrices_2D(x_nodes_loc, y_nodes_loc);

1:3

nodel = elem_nodes(node_locl);
if dirichlet(nodel) “= 0
continue;

end

for node_loc2 =1 : 3
% symmetry not taken advantage of, to simplify code

node2 =

elem_nodes(node_loc2);

if dirichlet(node2) == 0 Y non-Dirichlet node
global_stiffness_matrix(nodel, node2) = ...

else
rhs

global_stiffness_matrix(nodel, node2)
+ epsilon_array(region_number)
* stiff_mat(node_locl, node_loc2);

% Dirichlet node; update rhs

(nodel) = rhs(nodel) - ...

stiff_mat(node_locl, node_loc2) * ...
dirichlet_value(x_nodes(node2), y_nodes(node2));

end
end
end
end

% Equations for Dirichlet nodes are trivial:
for node = 1 : n_nodes
if dirichlet(node) "= 0 ¥% a Dirichlet node
global_stiffness_matrix(node, node) = 1;

rhs(node) = dirichlet_value(x_nodes(node), y_nodes(node));

end
end

solution = global_stiffness_matrix \ rhs;

% Output fields:
FEM_triangles.fem =

fem; Y record the fem structure
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FEM_triangles.epsilon_array = epsilon_array; 7% material parameters
% by region number

FEM_triangles.n_nodes = n_nodes; % number of nodes in the mesh
FEM_triangles.x_nodes = x_nodes; % array of x-coordinates of the nodes
FEM_triangles.y_nodes = y_nodes; /% array of y-coordinates of the nodes
FEM_triangles.dirichlet = dirichlet; % flags for the Dirichlet nodes
FEM_triangles.global_stiffness_matrix = global_stiffness_matrix;

% save matrix for testing
FEM_triangles.rhs = rhs; J right hand side for testing
FEM_triangles.solution = solution; % nodal values of the potential

return;
Tl to o To T To s To o To o To o T To T o fo T fo T o o To o T o Fo o Fo o Fo o Fo o o o Yo o o o o oo oo Voo Vo o Fo Fo o o Vo o Vo o oo o
function [stiff_mat, mass_mat] = elem_matrices_2D(x_nodes, y_nodes)

% Compute element matrices for a triangle.
% Input parameters:

% x_nodes -- x-coordinates of the three nodes,
% in counter-clockwise order
% y_nodes -- the corresponding y-coordinates

coord_mat = [x_nodes’ y_nodes’ ones(3, 1)];

% matrix of nodal coordinates, with an extra column of ones
coeffs = inv(coord_mat); % coefficients of the linear basis functions
grads = coeffs(1:2, :); % gradients of the linear basis functions

area = 1/2 * abs(det(coord_mat)); % area of the element
stiff_mat = area * grads’ * grads; 7 the FE stiffness matrix
mass_mat = area / 12 * (eye(3) + ones(3, 3));

% the FE mass matrix
return;

Tl Tl loloToToToToToToToToToToToToTo o foToToToToTo oo oo oo to oo oo To o to o o 1o 1o 1o

function dirichlet_value = dirichlet_value (x, y)
% Set the Dirichlet boundary condition

dirichlet_value = x; % as a simple example

return;

3.8.2 Higher-Order Triangular Elements

The discussion in Section 3.8.1 suggests that in a triangular element the
barycentric variables A (p. 108) form a natural set of coordinates (albeit not
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independent, as their sum is equal to unity). For first order elements, the
barycentric coordinates themselves double as the basis functions. They can
also be used to generate FE bases for higher order triangular elements.

A second order element has three corner nodes #1-#3 and three mid-
point nodes (Fig. 3.26). All six nodes can be labeled with triplets of indexes
(K1, k2, k3); each index k; increases from 0 to 1 to 2 along the edges toward
node i (i =1, 2, 3).

(2.0.0)

0]

imncereases

ky
mncere aStV'

. = ’<_3
Increases mereases

(0.2.0) (0.0, 2)

g S
2 .‘"l'l {“. .l. ].) !\'_'; 3

imncreases inereases

Fig. 3.26. Second order triangular element. The six nodes can be labeled with
triplets of indexes (k1, k2, ks), ki = 0, 1, 2. Each node has the corresponding basis
function AR (A1)AR2 (A2)AR2 (As).

To each node, there corresponds an FE basis function that is a second
order polynomial in A with the Kronecker-delta property. The explicit ex-
pression for this polynomial is Allx (Al)Aﬁz ()\Q)A;Z (A3). For example, the basis
function corresponding to node (0, 1, 1) — the midpoint node at the bottom
—is A1 (A2)A1(A3). Indeed, it is the Lagrange polynomial A; that is equal to
one at the midpoint and to zero at the corner nodes of a given edge, and it is
the barycentric coordinates A 3 that vary (linearly) along the bottom edge.

This construction can be generalized to elements of order p. Each side of
the triangle is subdivided into p segments; the nodes of the resulting triangular
grid are again labeled with triplets of indexes, and the corresponding basis
functions are defined in the same way as above. Details can be found in the
FE monographs cited at the end of the chapter.
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3.9 The Finite Element Method in Three Dimensions

Tetrahedral elements, by analogy with triangular ones in 2D, afford the great-
est flexibility in representing geometric shapes and are therefore the most
common type in many applications. Hexahedral elements are also frequently
used. This section describes the main features of tetrahedral elements; further
information about elements of other types can be found in specialized FE
books (Section 3.16).

Due to a direct analogy between tetrahedral and triangular elements (Sec-
tion 3.8), results for tetrahedra are presented below without further ado. Let
the coordinates of the four nodes be x;, y;, z; (i = 1,2,3,4). A typical linear
basis function — say, ¥ — is

1/)1 =a1$+b1y+012+d1

with some coefficients a1, b1, ¢1, di. The Kronecker-delta property is desired:

a1x1 + blyl + C121 + d1 = 1
a1x2 +b1ys +c1za +dy = 0 (3.95)
a1w3 +biyz +ciz3+dz = 0 ’
174 +b1ys +c1z4+dy = 0
Equivalently in matrix-vector form

1 Y1 2 1 ay 1

Xfi—e, X = [Ty 2 Lo phfo 1056

’ r3 ys 23 1]’ c ]’ 0

T4 Ya 21 1 dq 0

with similar relationships for the other three basis functions. In compact no-
tation,
ay az a3 aq

XF =1, F = b bz by b (3.97)
C1 Cy C3 Cy
dy dy dz dy

where [ is the 4 x 4 identity matrix. The coefficients of the basis functions
thus are
F=Xx" (3.98)

The determinant of X is equal to 6V, where V' is the volume of the tetrahedron
(assuming that the nodes are numbered in a way that produces a positive
determinant). The basis functions can be found from (3.98), say, by Cramer’s
rule. Since the basis functions are linear, their gradients are constants.

The sum of the basis functions is unity, for the same reason as for triangular
elements:

Y1 +v2t+s+s =1 (3.99)
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The sum of the gradients is zero:
Vi1 + Vipy + Vips + Vipy = 0 (3.100)

Functions 1)1 2,34 are identical with the barycentric coordinates Aq 2 3.4 of the
tetrahedron. They have a geometric interpretation as ratios of tetrahedral
volumes — an obvious analog of the similar property for triangles (Fig. 3.17
on p. 108).

The element stiffness matrix for first order elements is (noting that the
gradients are constant)

(VA, V) = /AV)WV)\jdV = VAV, 0,5 =1,2,3,4 (3.101)

where the integration is over the tetrahedron and V is its volume. The element
mass matrix (the Gram matrix of the basis functions) turns out to be

2 1 1 1
1 2 1 1 \%4
M= 117513 (3.102)
1 1 1 2
which follows from the formula
. ANIRAN
NN gV = vJ 6V 3.103
/A 1727874 (i+j+k+1+3) ( )

for any nonnegative integers i, j, k, [.

Higher-order tetrahedral elements are constructed in direct analogy with
the triangular ones (Section 3.8.2). The second-order tetrahedron has ten
nodes (four main vertices and six edge midpoints); the cubic tetrahedral ele-
ment has 20 nodes (two additional nodes per edge subdividing it into three
equal segments, and four nodes at the barycenters of the faces). Detailed de-
scriptions of tetrahedral elements, as well as first- and high-order elements of
other shapes (hexahedra, triangular prisms, and others) are easy to find in
FE monographs (Section 3.16).

3.10 Approximation Accuracy in FEM

Theoretical considerations summarized in Section 3.5 show that the accuracy
of the finite element solution is directly linked, and primarily depends on,
the approximation accuracy. In particular, for symmetric elliptic forms £, the
Galerkin solution is actually the best approximation of the exact solution in
the sense of the £L-norm (usually interpreted as an energy norm). In the case of
a continuous elliptic, but not necessarily symmetric, form, the solution error
depends also on the ellipticity and continuity constants, according to Céa’s
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theorem; however, the approximation error is still key. The same is true in the
general case of continuous but not necessarily symmetric or elliptic forms; then
the so-called Ladyzhenskaya—Babuska—Brezzi (LBB) condition relates the so-
lution error to the approximation error via the inf-sup constant (Section 3.10,
p. 126).

In all cases, the central role of FE approximation is clear. The main theo-
retical results on approximation accuracy in FEM are summarized below. But
first, let us consider a simple intuitive 1D picture. The exact solution (solid
line in Fig. 3.27) is approximated on a FE grid of size h; several finite ele-
ments (e) are shown in the figure. The most natural and easy to analyze form
of approximation is interpolation, with the exact and approximating functions
sharing the same nodal values on the grid.

u exact
solution piecewise-linear

\ /— interpolant

..-------------
.,_--..---.---._--._--..-
.......... iR e
..-----------.__ b,

(e) (e) (e)
Fig. 3.27. Piecewise-linear FE interpolation of the exact solution.

The FE solution of a boundary value problem in general will not inter-
polate the exact one, although there is a peculiar case where it does (see the
Appendix on p. 127). However, due to Céa’s theorem (or Galerkin error min-
imization or the LBB condition, whichever may be applicable), the smallness
of the interpolation error guarantees the smallness of the solution error.

It is intuitively clear from Fig. 3.27 that the interpolation error decreases as
the mesh size becomes smaller. The error will also decrease if higher-order in-
terpolation — say, piecewise-quadratic — is used. (Higher-order nodal elements
have additional nodes that are not shown in the figure.) If the derivative of
the exact solution is only piecewise-smooth, the approximation will not suffer
as long as the points of discontinuity — typically, material interfaces — coincide
with some of the grid nodes. The accuracy will degrade significantly if a ma-
terial interface boundary passes through a finite element. For this reason, FE
meshes in any number of dimensions are generated in such a way that each
element lies entirely within one medium. For curved material boundaries, this
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is strictly speaking possible only if the elements themselves are curved; never-
theless, approximation of curved boundaries by piecewise-planar element FE
surfaces is often adequate in practice.

P.G. Ciarlet & P.A. Raviart gave the following general and powerful math-
ematical characterization of interpolation accuracy [CR72]. Let ¥ be a finite
set in R™ and let polynomial Zu interpolate a given function u, in the La-
grange or Hermite sense, over a given set of points in Y. Notably, the only
significant assumption in the Ciarlet—Raviart theory is uniqueness of such a
polynomial. Then

p+1
sup{||D™u(z) — D"Zu(z)||; v € K} < CMP“hpT’ 0<m<p (3.104)
Here

K is the closed convex hull of X;

h — diameter of K;

p — maximum order of the interpolating polynomial;

Myi1 = sup{ | Dpiau(@)l; o € K};

p — supremum of the diameters of spheres inscribed in K.

C — a constant.

While the result is applicable to abstract sets, in the FE context K is a finite
element (as a geometric figure).

Let us examine the factors that the error depends upon. M, being the
magnitude of the (p+1)st derivative of u, characterizes the level of smoothness
of u; naturally, the polynomial approximation is better for smoother functions.
The geometric factor can be split up into the shape and size components:

hPt1 _ (h)m hp+1_m
pm p

h/p is dimensionless and depends only on the shape of K; we shall return to
the dependence of FE errors on element shape in Section 3.14. The following
observations about the second factor, h?T1~™ can be made:

e Example: the maximum interpolation error by linear polynomials is O(h?)
(p =1, m = 0). The error in the first derivative is asymptotically higher,
Oh) (p=1,m=1).

e The interpolation error behaves as a power function of element size h but
depends exponentially on the interpolation order p, provided that the exact
solution has at least p + 1 derivatives.

e The interpolation accuracy is lower for higher-order derivatives (parameter

Most of these observations make clear intuitive sense. A related result is cited
in Section 4.4.4 on p. 209.
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Appendix: The Ladyzhenskaya—Babuska—Brezzi Condition

For elliptic forms, the Lax—Milgram theorem guarantees well-posedness of the
weak problem and Céa’s theorem relates the error of the Galerkin solution
to the approximation error (Section 3.5 on p. 86). For non-elliptic forms, the
Ladyzhenskaya—Babuska—Brezzi (LBB) condition plays a role similar to the
Lax—Milgram—Céa results, although analysis is substantially more involved.
Conditions for the well-posedness of the weak problem were derived indepen-
dently by O.A. Ladyzhenskaya, I. Babuska & F. Brezzi [Lad69, BA72, Bre74].
In addition, the Babuska and Brezzi theories provide error estimates for the
numerical solution.

Unfortunately, the LBB condition is in many practical cases not easy to
verify. As a result, less rigorous criteria are common in engineering practice;
for example, the “patch test” that is not considered in this book but is easy to
find in the FE literature (e.g. O.C. Zienkiewicz et al. [ZTZ05]). Non-rigorous
conditions should be used with caution; I. Babuska & R. Narasimhan [BN97]
give an example of a finite element formulation that satisfies the patch test
but not the LBB condition. They also show, however, that convergence can
still be established in that case, provided that the input data (and hence the
solution) are sufficiently smooth.

A mathematical summary of the LBB condition is given below for refer-
ence. It is taken from the paper by J. Xu & L. Zikatanov [XZ03].

Let U and V' be two Hilbert spaces, with inner products (-, )y and
(+,-)v, respectively. Let B(-,-): U x V +— R be a continuous bilinear
form

B(u,v) < [|B] [lullv [[v]lv (3.105)

Consider the following variational problem: Find u € U such that
B(u,v) = (f,v), YoeV (3.106)

where f € V* (the space of continuous linear functionals on V' and
(+,-) is the usual pairing between V* and V.
... problem (3.106) is well posed if and only if the following conditions

hold .. .: B
inf sup 2 g (3.107)
welUev ||ullu [Jv]lv

Furthermore, if (3.107) hold, then
B(u,v)

B
inf sup ————— = inf sup _Bluv) =a >0 (3.108)
weUpey |lullu vy veVuer |ullo [[ollv

and the unique solution of (3.106) satisfies

[ f]lv-
«

Jullv < (3.109)
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... Let Uy, € U and V}, C V be two nontrivial subspaces of U and
V', respectively. We consider the following variational problem: Find
up, € Uy, such that

B(un, vi) = (f, vn), Yon € Vj, (3.110)

... problem (3.110) is uniquely solvable if and only if the following
conditions hold:

inf sup 78(1”“1%) = inf sup B(un, vn)

un€UR vy €V, ||uh||Uh ||U||Vh VR E€Vh uy, €U, ||uh||Uh ||U||Vh

(End of quote from J. Xu & L. Zikatanov [XZ03].)
The LBB result, slightly strengthened by Xu & Zikatanov, for the Galerkin
approximation is

Theorem 4. Let (3.105), (3.107) and (3.111) hold. Then

lu —uplly < % inf ||u—wnllv (3.112)

wp€Vh

Appendix: A Peculiar Case of Finite Element Approximation

The curious special case considered in this Appendix is well known to the

expert mathematicians but much less so to applied scientists and engineers.

I am grateful to B.A. Shoykhet for drawing my attention to this case many

years ago and to D.N. Arnold for insightful comments and for providing a

precise reference, the 1974 paper by J. Douglas & T. Dupont [DD74], p. 101.
Consider the 1D Poisson equation

=i fl@), Q=]a,b]; u(a)=u(b)=0 (3.113)
where the zero Dirichlet conditions are imposed for simplicity only. Let us ex-
amine the finite element solution uy, of this equation using first-order elements.
The Galerkin problem for uj on a chosen mesh is

(uhs vp) = (fs vn),  un,Yon € Pop (3.114)

where the primes denote derivatives and Py, is the space of continuous func-
tions that are linear within each element (segment) of the chosen grid and
satisfy the zero Dirichlet conditions. The inner products are those of Ls.

We know from Section 3.3.1 that the Galerkin solution is the best approx-
imation (in Pyy) of the exact solution u*, in the sense of minimum “energy”
(up, — u*,up — u*). Geometrically, it is the best (in the same energy sense)
representation of the curve u*(z) by a broken line compatible with a given
mesh.
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Surprisingly, in the case under consideration the best approximation ac-
tually interpolates the exact solution; in other words, the nodal values of the
exact and numerical solutions are the same. In reference to Fig. 3.27 on p. 124,
approximation of the exact solution (solid line) by the the piecewise-linear in-
terpolant (dotted line) on a fixed grid cannot be improved by shifting the
dotted line up or down a bit.

Proof. Let us treat vy, in the Galerkin problem (3.114) for u, as a generalized
function (distribution; see Appendix 6.15 on p. 343).2” Then

7<uh? IU;L/> = (fa vh)a Uh,vvh € POh

where the angle brackets denote a linear functional acting on uy and vj, is the
second distributional derivative of v,. This transformation of the left hand
side is simply due to the definition of distributional derivative.

The right hand side is transformed in a similar way, after noting that

f = —u”, where u is the exact solution of the Poisson equation. We obtain
<uh7 U;{> = (ua v;z/)
or
(up, —u, vy) = 0, Vv, € Pop (3.115)

It remains to be noted that v, is a piecewise-constant function®® and hence
v} is a set of Dirac delta-functions residing at the grid nodes. This makes it
obvious that (3.115) is satisfied if and only if uj, indeed interpolates the exact
solution at the nodes of the grid. O

Exactness of the FE solution at the grid nodes is an extreme particular
case of the more general phenomenon of superconvergence: the accuracy of
the FE solution at certain points (e.g. element nodes or barycenters) is as-
ymptotically higher than the average accuracy. The large body of research on
superconvergence includes books, conference proceedings and many journal
publications.??

2T The reviewer of this book noted that in a purely mathematical text the use of
distributional derivatives would not be appropriate without presenting a rigorous
theory first. However, distributions (Dirac delta-functions in particular) make
our analysis here much more elegant and simple. I rely on the familiarity of
applied scientists and engineers — the intended audience of this book — with delta-
functions, even if the usage is not backed up by full mathematical rigor.

With zero mean due to the Dirichlet boundary conditions for vy, but otherwise

arbitrary.

29 M. Kfizek, P. Neittaanmaki & R. Stenberg, eds. Finite Element Methods:
Superconvergence, Post-Processing, and a Posteriori Estimates, Lecture Notes
in Pure and Applied Mathematics, vol. 196, Marcel Dekker: New York,
1998. L.B. Wahlbin, Superconvergence in Galerkin Finite FElement Methods,
Berlin; New York: Springer-Verlag, 1995. M. Kfizek, Superconvergence phe-
nomena on three-dimensional meshes, Int. J. of Num. Analysis and Model-
ing, vol. 2, pp. 43-56, 2005. L. Chen has assembled a reference database at
http://math.ucsd.edu/¢long/Paper /html/Superconvergence.html .

28
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3.11 An Overview of System Solvers

The finite element method leads to systems of equations with large matrices —
in practice, the dimension of the system can range from thousands to millions.
When the method is applied to differential equations, the matrices are sparse
because each basis function is local and spans only a few neighboring elements;
nonzero entries in the FE matrices correspond to the overlapping supports
of the neighboring basis functions. (The situation is different when FEM is
applied to integral equations. The integral operator is nonlocal and typically
all unknowns in the system of equations are coupled; the matrix is full. Integral
equations are considered in this book only in passing.)

The sparsity (adjacency) structure of a matrix is conveniently described
as a graph. For an n x n matrix, the graph has n nodes.?® To each nonzero
entry a;; of the matrix there corresponds the graph edge i — j. If the structure
of the matrix is not symmetric, it is natural to deal with a directed graph and
distinguish between edges i« — j and j — 4 (each of them may or may not be
present in the graph, independently of the other one). Symmetric structures
can be described by undirected graphs.

As an example, the directed graph corresponding to the matrix

2 0 3 1
1 100
0 040 (3.116)
-100 3

is shown in Fig. 3.28. For simplicity, the diagonal entries of the matrix are
always tacitly assumed to be nonzero and are not explicitly represented in the
graph.

An important question in finite difference and finite element analysis is
how to solve such large sparse systems effectively. One familiar approach is
Gaussian elimination of the unknowns one by one. As the simplest possible
illustration, consider a system of two equations of the form

a1l ai2 Mo _ f1
(021 a22) (m) B (fz) (3:-117)

For the natural order of elimination of the unknowns (z; eliminated from the
first equation and substituted into the others, etc.) and for a nonzero aq1, we
obtain 1 = (f1 — a1222)/a11 and

(a22 —aglafllalg)scg = f2 — afllfl (3.118)

This simple result looks innocuous at first glance but in fact foreshadows a
problem with the elimination process. Suppose that in the original system

309 For matrices arising in finite difference or finite element methods, the nodes of
the graph typically correspond to mesh nodes; otherwise graph nodes are abstract
mathematical entities.
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2

Fig. 3.28. Matrix sparsity structure as a graph: an example.

(3.117) the diagonal entry ass is zero. In the transformed system (3.118) this
is no longer so: the entry corresponding to zo (the only entry in the remaining
1 x 1 matrix) is agy — aglal_llalg. Such transformation of zero matrix entries
into nonzeros is called “fill-in”. For the simplistic example under consideration,
this fill-in is of no practical consequence. However, for large sparse matrices,
fill-in tends to accumulate in the process of Gaussian elimination and becomes
a serious complication.

In our 2 x 2 example with azs = 0, the fill-in disappears if the order of
equations (or equivalently the sequence of elimination steps) is changed:

(5 2) () - ()
a1l @12 T2 N fa

Obviously, z;1 is now found immediately from the first equation, and x5 is
computed from the second one, with no additional nonzero entries created
in the process. In general, permutations of rows and columns of a sparse
matrix may have a dramatic effect on the amount of fill-in, and hence on the
computational cost and memory requirements, in Gaussian elimination.

Gaussian elimination is directly linked to matrix factorization into lower-
and upper-triangular terms. More specifically, the first factorization step can
be represented in the following form:

aj; ai2 ... Qip l11 0 e 0 U1 U2 ... Uin
a1 I S 0
anl lnl 0

The fact that this factorization is possible (and even not unique) can be
verified by direct multiplication of the factors in the right hand side. This
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yields, for the first diagonal element, first column and first row, respectively,
the following conditions:

liiur = an
lorurr = a2, Ilsiuin = az1, ..., lpiunn = ap
1wz = a2, vz = a1z, ..., v, = ain

where n is the dimension of matrix A. Fixing l;; by, say, setting it equal

to one defines the column vector l1 = (I11,l21,-..,l,1)T and the row vector
ul = (uy1,u12, ..., u1,) unambiguously:

111 = 1; U1 = aii (3120)

lQl = U1_11a21, 131 = ul_llagl,..., lnl = ul_llanl (3121)

U2 = G12, U13 = G13,-.., Ulp = Qln (3.122)

Further, the condition for matrix blocks L; and U; follows directly from fac-
torization (3.119):
L1U1 + llu? = A1

or equivalently R
L1 U1 = A1

where :
A1 = A1 — llu?

The updated matrix A, is a particular case of the Schur complement (R.A. Horn
& C.R. Johnson [HJ90], Y. Saad [Saa03]). Explicitly the entries of A; can be
written as

C~L171‘j = Q45 — li1u1j = Q5 — aﬂal_llalj (3123)

Thus the first step of Gaussian factorization A = LU is accomplished by
computing the first column of L (3.120), (3.121), the first row of U (3.120),
(3.122) and the updated block A; (3.123). The factorization step is then re-
peated for Ay, etc., until (at the n-th stage) the trivial case of a 1 x 1 matrix
results. Theoretically, it can be shown that this algorithm succeeds as long as
all leading minors of the original matrix are nonzero. In practical computa-
tion, however, care should be taken to ensure computational stability of the
process (see below).

Once the matrix is factorized, solution of the original system of equations
reduces to forward elimination and backward substitution, i.e. to solving sys-
tems with the triangular matrices L and U, which is straightforward. An
important advantage of Gaussian elimination is that, once matrix factoriza-
tion has been performed, equations with the same matrix but multiple right
hand sides can be solved at the very little cost of forward elimination and
backward substitution only.

Let us review a few computational aspects of Gaussian elimination.
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1. Fill-in. The matrix update formula (3.123) clearly shows that a zero

31

32

matrix entry a;; can become nonzero in the process of LU-factorization.
The 2 x 2 example considered above is the simplest possible case of such
fill-in. A quick look at the matrix update equation (3.123) shows how
the fill-in is reflected in the directed sparsity graph. If at some step of
the process node k is being eliminated, any two edges ¢ — k and k — j
produce a new edge i — j (corresponding to a new nonzero matrix entry
ij). This is reminiscent of the usual “head-to-tail” rule of vector addition.
Fig. 3.29 may serve as an illustration. Similar considerations apply for
symmetric sparsity structures represented by undirected graphs. Methods
to reduce fill-in are discussed below.

. The computational cost. For full matrices, the number of arithmetic

operations (multiplications and additions) in LU-factorization is approxi-
mately 2n3/3. For sparse matrices, the cost depends very strongly on the
adjacency structure and can be reduced dramatically by clever permuta-
tions of rows and columns of the matrix and other techniques reviewed
later in this section. 3!

Stability. Detailed analysis of LU factorization (J.H. Wilkinson [Wil94],
G.H. Golub & C.F. Van Loan [GL96], G.E. Forsythe & C.B. Moler [FM67],
N.J. Higham [Hig02]) shows that numerical errors (due to roundoff) can
accumulate if the entries of L and U grow. Such growth can, in turn, be
traced back to small diagonal elements arising in the factorization process.
To rectify the problem, the leading diagonal element at each step of factor-
ization is maximized either via complete pivoting — reshuffling of rows and
columns of the remaining matrix block — or via partial pivoting — reshuf-
fling of rows only. The existing theoretical error estimates for both types of
pivoting are much more pessimistic than practical experience indicates.3?

Incidentally, the O(n3) operation count is not asymptotically optimal for solving

large systems with full matrices of size n x n. In 1969, V. Strassen discovered
a trick for computing the product of two 2 X 2 block matrices with seven block
multiplications instead of eight that would normally be needed [Str69]. When
applied recursively, this idea leads to O(n”) operations, with v = log, 7 ~ 2.807.
Theoretically, algorithms with v as low as 2.375 now exist, but they are com-
putationally unstable and have very large numerical prefactors that make such
algorithms impractical. I. Kaporin has developed practical (i.e. stable and faster
than straightforward multiplication for matrices of moderate size) algorithms with
the asymptotic operation count O(N?77%%) [Kap04]. Note that solution of alge-
braic systems with full matrices can be reduced to matrix multiplication (V. Pan
[Pan84]). See also S. Robinson [Rob05] and H. Cohn et al. [CKSUO05].

J.H. Wilkinson [Wil61] showed that for complete pivoting the growth factor for
the numerical error does not exceed

n1/2(21 W« 3V2 5 g3 nl/(n—l))l/2 ~ COp0-251087n

(which is ~ 3500 for n = 100 and ~ 8.6 x 10° for n = 1000). In practice, however,
there are no known matrices with this growth factor higher than n. For partial
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In fact, partial pivoting works so well in practice that it is used almost ex-
clusively: higher stability of complete pivoting is mostly theoretical but its
higher computational cost is real. Likewise, orthogonal factorizations such
as @R, while theoretically more stable than LU-factorization, are hardly
ever used as system solvers because their computational cost is approxi-
mately twice that of LU.?3 L.N. Trefethen [Tre85] gives very interesting
comments on this and related matters.

Remarkably, the modern use of Gaussian elimination can be traced back to
a single 1948 paper by A.M. Turing®® [Tur48, Bri92]. N.J. Higham writes
([Hig02], pp. 184-185):

“ [Turing] formulated the ... LDU factorization of a matrix, proving
[that the factorization exists and is unique if all leading minors of the
matrix are nonzero] and showing that Gaussian elimination computes
an LDU factorization. He introduced the term “condition number” ...
He used the word “preconditioning” to mean improving the condition
of a system of linear equations (a term that did not come into pop-
ular use until the 1970s). He described iterative refinement for linear
systems. He exploited backward error ideas. ... he analyzed Gaussian
elimination with partial pivoting for general matrices and obtained
[an error bound]. ”

The case of sparse symmetric positive definite (SPD) systems has been
studied particularly well, for two main reasons. First, such systems are very
common and important in both theory and practice. Second, it can be shown
that the factorization process for SPD matrices is always numerically sta-
ble (A. George & J.W.H. Liu [GL81], G.H. Golub & C.F. Van Loan [GL96],
G.E. Forsythe & C.B. Moler [FM67]). Therefore one need not be concerned
with pivoting (permutations of rows and columns in the process of factoriza-
tion) and can concentrate fully on minimizing the fill-in.

The general case of nonsymmetric and/or non-positive definite matrices
will not be reviewed here but is considered in several monographs: books by
O. Osterby & Z. Zlatev [sZZ83] and by I.S. Duff et al. [DER89], as well as a
much more recent book by T.A. Davis [Dav06].

The remainder of this section deals exclusively with the SPD case and is,
in a sense, a digest of the excellent treatise by A. George & J.W.H. Liu [GL81].
For SPD matrices, it is easy to show that in the LU factorization U can be

pivoting, the bound is 2"~ !, and this bound can in fact be reached in some
exceptional cases.

33 QR algorithms are central in eigenvalue solvers; see Appendix 7.15 on p. 478.

34 Alan Mathison Turing (1912-1954), the legendary inventor of the Turing machine
and the Bombe device that broke (with an improvement by Gordon Welchman)
the German Enigma codes during World War I1. Also well known is the Turing test
that defines a “sentient” machine. Overall, Turing lay the foundation of modern
computer science. See http://www.turing.org.uk/turing
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2

Fig. 3.29. Block arrows indicate fill-in created in a matrix after elimination of
unknown #1.

taken as LT, leading to Cholesky factorization LL” already mentioned on
p- 113. Cholesky decomposition has a small overhead of computing the square
roots of the diagonal entries of the matrix; this overhead can be avoided by
using the LDLT factorization instead (where D is a diagonal matrix).

Methods for reducing fill-in are based on reordering of rows and columns
of the matrix, possibly in combination with block partitioning. Let us start
with the permutation algorithms.

The simplest case where the sparsity structure can be exploited is that
of banded matrices. The band implies part of the matrix between two sub-
diagonals parallel to the main diagonal or, more precisely, the set of entries
with indexes 4, j such that —k; < i —j < ko, where k; » are nonnegative
integers. A matrix is banded if its entries are all zero outside a certain band
(in practice, usually k1 = ko = k). The importance of this notion for Gaussian
(or Cholesky) elimination lies in the easily verifiable fact that the band struc-
ture is preserved during factorization, i.e. no additional fill is created outside
the band. Cholesky decomposition for a band matrix requires approximately
k(k + 3)n/2 multiplicative operations, which for k£ < n is much smaller than
the number of operations needed for the decomposition of a full matrix n x n.

A very useful generalization is to allow the width of the band to vary row-
by-row: k = k(7). Such a variable-width band is called an envelope. Figs. 3.22
(p. 115) and 3.23 may serve as a helpful illustration. Again, no fill is created
outside the envelope. Since the minimal envelope is obviously a subset of the
minimal band, the computational cost of the envelope algorithm is generally
lower than that of the band method.?® The operation count for the envelope

35 I disregard the small overhead related to storage and retrieval of matrix entries
in the band and envelope.
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method can be found in George & Liu’s book [GL81], along with a detailed
description and implementation of the Reverse Cuthill-McKee ordering algo-
rithm that reduces the envelope size.

There is no known algorithm that would minimize the computational cost
and/or memory requirements for a matrix with any given sparsity structure,
even if pivoting is not involved, and whether or not the matrix is SPD.
D.J. Rose & R.E. Tarjan [RT75] state (but do not include the proof) that
this problem for a non-SPD matrix is NP-complete and conjecture that the
same is true in the SPD case.

However, powerful heuristic algorithms are available, and the underlying
ideas are clear from adjacency graph considerations. Fig. 3.30 shows a small
fragment of the adjacency graph; thick lines in Fig. 3.31 represent the corre-
sponding fill-in if node #1 is eliminated first. These figures are very similar
to Figs. 3.28 and 3.29, except that the graph for a symmetric structure is
unordered.

4

Fig. 3.30. Symmetric sparsity structure as a graph: an example.

Elimination of a node couples all the nodes to which it is connected. If
nodes 2, 3 and 4 were to be eliminated prior to node 1, there would be no fill-
in in this fragment of the graph. This simple example has several ramifications.

First, a useful heuristic is to start the elimination with the graph vertices
that have the fewest number of neighbors, i.e. the minimum degree. (Degree
of a vertex is the number of edges incident to it.) The minimum degree al-
gorithm, first introduced by W.F. Tinney & J.W. Walker [TW67], is quite
useful and effective in practice, although there is of course no guarantee that
local minimization of fill-in at each step of factorization will lead to global op-
timization of the whole process. George & Liu [GL81] describe the Quotient
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Fig. 3.31. Fill-in (block arrows) created in a matrix with symmetric sparsity struc-
ture after elimination of unknown #1.

Minimum Degree (QMD) method, an efficient algorithmic implementation of
MD in the SPARSPAK package that they developed.

Second, it is obvious from Fig. 3.31 that elimination of the root of a tree
in a graph is disastrous for the fill-in. The opposite is true if one starts with
the leaves of the tree. This observation may not seem practical at first glance,
as adjacency graphs in FEM are very far from being trees.? What makes the
idea useful is block factorization and partitioning.

Suppose that graph G (or, almost equivalently, the finite element mesh)
is split into two parts G and G5 by a separator S, so that G = G1 |UG2U S
and G4 (G2 = 0; this corresponds to block partitioning of the system matrix.
The partitioning has a tree structure, with the separator as the root and G 2
as the leaves. The system matrix has the following block form:

Lgy 0 Lcis
L = 0  Lg2 Leos (3.124)
Lgl,S ng,s Ls

Elimination of block L leaves the zero blocks unchanged, i.e. does not — on
the block level — generate any fill in the matrix. For comparison, if the “root”
block Lg were eliminated first (quite unwisely), zero blocks would be filled.
George & Liu [GL81, GL89] describe two main partitioning strategies:
One-Way Dissection (1WD) and Nested Dissection (ND). In IWD, the graph
is partitioned by several dissecting lines that are, if viewed as geometric objects

36 For first order elements in FEM, the mesh itself can be viewed as the sparsity
graph of the system matrix, element nodes corresponding to graph vertices and
element edges to graph edges. For a 2D triangular mesh with n nodes, the number
of edges is approximately 2n, whereas for a tree it is n — 1.
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on the FE mesh, approximately “parallel”.3” Taken together, the separators
form the root of a tree structure for the block matrix; the remaining disjoint
blocks are the leaves of the tree. Elimination of the leaves generates fill-in in
the root block, which is acceptable as long as the size of this block is moderate.
To get an idea about the computational savings of 1WD as compared to the
envelope method, one may consider an m x [ rectangular grid (m < ) in 2D38
and optimize the number of operations or, alternatively, memory requirements
with respect to the chosen number of separators, each separator being a grid
line with m nodes. The end result is that the memory in IWD can be ~ /6/m
times smaller than for the envelope method [GL81]. For example, if m = 100,
the savings are by about a factor of four (1/6/100 =~ 0.25).

A typical ND separator in 2D can geometrically be pictured as two lines,
horizontal and vertical, that split the graph into four approximately equal
parts. The procedure is then applied recursively to each of the disjoint sub-
graphs. For a regular m x m grid in 2D, one can write a recursive relationship
for the amount of computer memory Myp(m) needed for NDj; this ultimately
yields [GL81]

31
Myp(m) = Zm210g2m + O(m?)

Hence for 2D problems ND is asymptotically almost optimal in terms of its
memory requirements: the memory is proportional to the number of nodes
times a relatively mild logarithmic factor. However, the computational cost is
not optimal even for 2D meshes: the number of multiplicative operations is

approximately
829

84
That is, the computational cost grows as the number of nodes n to the power
of 1.5.

Performance of direct solvers further deteriorates in three dimensions. For
example, the computational cost and memory for ND scale as O(n?) and
O(n*/3), respectively, when the number of nodes n is large. Some improve-
ment has been achieved by combining the ideas of 1IWD, ND and QMD, with
a recursive application of multisection partitioning of the graph. These algo-
rithms are implemented in the SPOOLES software package®® developed by
C. Ashcraft, R. Grimes, J. Liu and others [AL98, AG99]. For illustration,
Fig. 3.32 shows the number of nonzero entries in the Cholesky factor for sev-
eral ordering algorithms as a function of the number of nodes in the finite
element mesh. This data is for the scalar electrostatic equation in a cubic

m?® + O(m?logym)

37 The separators need not be straight lines, as their construction is topological
(based on the sparsity graph) rather than geometric. The word “parallel” therefore
should not be taken literally.

38 A similar estimate can also be easily obtained for 3D problems, but in that case
1WD is not very efficient.

39 SParse Object Oriented Linear Equations Solver, netlib.org/linalg/spooles-
/spooles.2.2. html
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domain; Nested Dissection and one of the versions of Multistage Minimum
Degree from the SPOOLES package perform better than other methods in
this case.*?

2 5E+07
w
2 2
£ 2.0E+07 —=—QMD
o / -
§ 1.56+07 + ND
c -
g / -+ -MSMD
w 1.0E+07 s
g S —~ MSMD_DSTree_MS2
E 5.0E+06 i ;e"/ stages
1.0E+04 wo¥=_ : : .

0 10000 20000 30000 40000

number of nodes

Fig. 3.32. Comparison of memory requirements (number of nonzero entries in
the Cholesky factor) as a function of the number of finite element nodes for the
scalar electrostatic equation in a cubic domain. Algorithms: Quotient Minimum De-
gree, Nested Dissection and two versions of Multistage Minimum Degree from the
SPOOLES package.

The limitations of direct solvers for 3D finite element problems are appar-
ent, the main bottleneck being memory requirements due to the fill in the
Cholesky factor (or the LU factors in the nonsymmetric case): tens of mil-
lions of nonzero entries for meshes of fairly moderate size, tens of thousands
of nodes. The difficulties are exacerbated in vector problems, in particular the
ones that arise in electromagnetic analysis in 3D.

Therefore for many 3D problems, and for some large 2D problems, iterative
solvers are indispensable, their key advantage being a very limited amount of
extra memory required.*! In comparison with direct solvers, iterative ones
are arguably more diverse, more dependent on the algebraic properties of
matrices, and would require a more wide-ranging review and explanation. To
avoid sidetracking the main line of our discussion in this chapter, I refer the
reader to the excellent monographs and review papers on iterative solvers by

40T thank Cleve Ashcraft for his detailed replies to my questions on the usage of
SPOOLES 2.2 when I ran this and other tests in the Spring of 2000.

41 Typically several auxiliary vectors in Krylov subspaces and sparse preconditioners
need to be stored; see references below.
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Y. Saad & H.A. van der Vorst [Saa03, vdV03b, SvdV00], L.A. Hageman &
D.M. Young [You03, HY04], and O. Axelsson [Axe96].

3.12 Electromagnetic Problems and Edge Elements

3.12.1 Why Edge Elements?

In electromagnetic analysis and a number of other areas of physics and en-
gineering, the unknown functions are often vector rather than scalar fields.
A straightforward finite element model would involve approximation of the
Cartesian components of the fields. This approach was historically the first to
be used and is still in use today. However, it has several flaws — some of them
obvious and some hidden.

An obvious drawback is that nodal element discretization of the Cartesian
components of a field leads to a continuous approximation throughout the
computational domain. This is inconsistent with the discontinuity of some
field components — in particular, the normal components of E and H — at
material boundaries. The treatment of such conditions by nodal elements is
possible but rather awkward: the interface nodes are “doubled,” and each
of the two coinciding nodes carries the field value on one side of the inter-
face boundary. Constraints then need to be imposed to couple the Cartesian
components of the field at the double nodes; the algorithm becomes inelegant.

Although this difficulty is more of a nuisance than a serious obstacle for
implementing the component-wise formulation, it is also an indication that
something may be “wrong” with this formulation on a more fundamental
level (more about that below).

So-called “spurious modes” — the hidden flaw of the component-wise treat-
ment — were noted in the late 1970s and provide further evidence of some fun-
damental limitations of Cartesian approximation. These modes are frequently
branded as “notorious,” and indeed hundreds of papers have been published
on this subject.*?

As a representative example, consider the computation of the eigenfre-
quencies w and the corresponding electromagnetic field modes in a cavity
resonator. The resonator is modeled as a simply connected domain 2 with
perfectly conducting walls 092. The governing equation for the electric field is

Vxu 'VxE — w?E =0 inQ nxE=0 ondQ (3.125)

where the standard notation for the electromagnetic material parameters pu, €
and for the exterior normal n to the domain boundary 02 is used. The ideally

42 320 ISI database references at the end of 2006 for the term “spurious modes”. This
does not include alternative relevant terminology such as spectral convergence,
spurious-free approximation, “vector parasites,” etc., so the actual number of
papers is much higher.
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conducting walls cause the tangential component of the electric field to vanish
on the boundary.

Mathematically, the proper functional space for this problem is Hy(curl, §2)
— the space of square-integrable vector functions with a square-integrable curl
and a vanishing tangential component at the boundary:

Ho(curl, ) = {E: E € Ly(Q), VXE € Ly(Q2), nxE =0 on 9Q} (3.126)

The weak formulation is obtained by inner-multiplying the eigenvalue equation
by an arbitrary test function E' € Hy(curl, Q):

(Vxu 'VxE E) — w2(eE,E’) = 0, VE' € Hp(cur,Q)  (3.127)

/XYdQ

for vector fields X and Y in Ho(curl, 2).
Using the vector calculus identity

V- XxY) =Y VxX - X-VxY (3.128)

where the inner product is that of Ly (2

with X =y~ 'V x E, Y = E/, equation (3.127) can be integrated by parts to
yield

(W 'VXEVxE) — W(E,E) = 0, VE € Hp(curl,Q)  (3.129)

(It is straightforward to verify that the surface integral resulting from to the
left hand side of (3.128) vanishes, due to the fact that n x E/ = 0 on the wall.)

The discrete problem is obtained by restricting E and E’ to a finite element
subspace of Hy(curl, Q); a “good” way of constructing such a subspace is the
main theme of this section. The mathematical theory of convergence for the
eigenvalue problem (3.129) is quite involved and well beyond the scope of
this book;*? however, some uncomplicated but instructive observations can
be made.

The continuous eigenproblem in its strong form (3.125) guarantees, for
nonzero frequencies, zero divergence of the D vector (D = €E). This im-
mediately follows by applying the divergence operator to the equation. For
the weak formulation (3.129), the zero-divergence condition is satisfied in the
generalized form (see Appendix 3.17 on p. 186):

(eE, V¢') = 0 (3.130)
This follows by using, as a particular case, an arbitrary curl-free test function
E' = V¢ in (3.129).44

43 References: the book by P. Monk [Mon03], papers by P. Monk & L. Demkowicz
[MDO1], D. Boffi et al. [BFea99, Bof01] and S. Caorsi et al. [CFRO0].

4 The equivalence between curl-free fields and gradients holds true for simply con-
nected domains.
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It is now intuitively clear that the divergence-free condition will be cor-
rectly imposed in the discrete (finite element) formulation if the FE space
contains a “sufficiently dense”*® population of gradients E' = V¢'. This ar-
gument was articulated for the first time (to the best of my knowledge) by
A. Bossavit in 1990 [Bos90].

From this viewpoint, a critical deficiency of component-wise nodal ap-
proximation is that the corresponding FE space does not ordinarily contain
“enough” gradients. The reason for that can be inferred from Fig. 3.33 (2D
illustration for simplicity). Suppose that there exists a function ¢ vanishing
outside a small cluster of elements and such that its gradient is in P§ — i.e.
continuous throughout the computational domain and linear within each ele-
ment. It is clear that ¢ must be a piecewise-quadratic function of coordinates.
Furthermore, since V¢ vanishes on the outer side of edge 23, due to the con-
tinuity of the gradient along that edge ¢ can only vary in proportion to n3,
within element 123, where nog is the normal to edge 23. Similarly, ¢ must be
proportional to n%, in element 134. However, these two quadratic functions
are incompatible along the common edge 13 of these two elements, unless the
normals ns3 and ng4 are parallel.

(N

¢=0

(]

Fig. 3.33. A fragment of a 2D finite element mesh. A piecewise-quadratic function
¢ vanishes outside a cluster of elements. For V¢ to be continuous, ¢ must be pro-
portional to n3; within element 123 and to n%, within element 134. However, these
quadratic functions are incompatible on the common edge 13, unless the normals
n23 and ng4 are parallel.

This observation illustrates very severe constraints on the construction of
irrotational continuous vector fields that would be piecewise-linear on a given
FE mesh. As a result, the FE space does not contain a representative set of

45 The quotation marks are used as a reminder that this analysis does not have full
mathematical rigor.



142 3 The Finite Element Method

gradients for the divergence-free condition to be enforced even in weak form.
Detailed mathematical analysis and practical experience indicate that this
failure to impose the zero divergence condition on the D vector usually leads
to nonphysical solutions.

The argument presented above is insightful but from a rigorous mathemat-
ical perspective incomplete. A detailed analysis can be found in the literature
cited in footnote 43 on p. 140. For our purposes, the important conclusion is
that the lack of spectral convergence (i.e. the appearance of “spurious modes”)
is inherent in component-wise finite element approximation of vector fields.
Attempts to rectify the situation by imposing additional constraints on the
divergence, penalty terms, etc., have had only limited success.

A radical improvement can be achieved by using edge elements described
in Section 3.12.2 below. As we shall see, the approximation provided by these
elements is, in a sense, more “physical” that the component-wise representa-
tion of vector fields; the corresponding mathematical structures also prove to
be quite elegant.

3.12.2 The Definition and Properties of Whitney-Nédélec
Elements

As became apparent in Section 3.8.1 on p. 108 and in Section 3.9 on p. 123, a
natural coordinate system for triangular and tetrahedral elements is formed by
the barycentric coordinates A, (a = 1,2,3 for triangles and o = 1,2,3,4 for
tetrahedra). Each function ) is linear and equal to one at one of the nodes and
zero at all other nodes. Since the barycentric coordinates play a prominent role
in the finite element approximation of scalar fields, it is sensible to explore
how they can be used to approximate wvector fields as well, and not in the
component-wise sense.

Remark 5. The most mathematically sound framework for the material of this
section is provided by the differential-geometric treatment of physical fields
as differential forms rather than vector fields. A large body of material — well
written and educational — can be found on A. Bossavit’s website.* (Bossavit is
an authority in this subject area and one of the key developers and proponents
of edge element analysis.) Other references are cited in Section 3.12.4 on p. 146
and in Section 3.16 on p. 184. While differential geometry is a standard tool
for mathematicians and theoretical physicists, it is not so for many engineers
and applied scientists. For this reason, only regular vector calculus is used in
this section and in the book in general; this is sufficient for our purposes.

Natural “vector offspring” of the barycentric coordinates are the gradients
VA«. These, however, are constant within each element and can therefore
represent only piecewise-constant and — even more importantly — only irro-
tational vector fields. Next, we may consider products 2512 = A Vg; it

46 http://www.lgep.supelec.fr/mocosem/perso/ab/bossavit.html
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is sufficient to restrict them to a # (3 because the gradients are linearly de-
pendent, > VA, = 0. Superscript “6-12” indicates that there are six such
functions for a triangle and 12 for a tetrahedron. A little later, we shall con-
sider a two times smaller set 1/)256.

It almost immediately transpires that these new vector functions have
one of the desired properties: their tangential components are continuous
across element facets (edges for triangles and faces for tetrahedra), while their
normal components are in general discontinuous. The most elegant way to
demonstrate the tangential continuity is by noting that the generalized curl
V x 95517 = V x (AaVAg) = Vs X Vg is a regular function, not only
a distribution, because the s are continuous.*” (A jump in the tangential
component would result in a Dirac-delta term in the curl; see Appendix 3.17
on p. 186 and formula (3.215) in particular.)

The tangential components can also be examined more explicitly. The

circulation of wggm over the corresponding edge o is

/ og FapdT = / AoV Ag - Tap dT
edge af edge af

11 1
edge af apB

where 7,3 is the unit edge vector pointing from node a to node 3, and log
is the edge length. In the course of the transformations above, it was taken
into account that (i) Vg is a (vector) constant, (ii) A, is a function varying
from zero to one linearly along the edge, so that the component of its gradient
along the edge is 1/l,3 and the mean value of A\, over the edge a3 is 1/2.

Thus the circulation of each function wggu is equal to 1/2 over its respec-
tive edge a8 and (as is easy to see) zero over all other edges.

One type of edge element is defined by introducing (i) the functional space
spanned by the wglgm basis, and (ii) a set of degrees of freedom, two per edge:
the tangential components E, g of the field (say, electric field E) at each node
« along each edge o emanating from that node. The number of degrees of
freedom and the dimension of the functional space are six for triangles and 12
for tetrahedra. It is not difficult to verify that the space in fact coincides with
the space of linear vector functions within the element. A major difference,
however, is that the basis functions for edge elements are only tangentially
continuous, in contrast with fully continuous component-wise approximation
by nodal elements. The FE representation of the field within the edge element

is
By = > Baptis"
a#f

47 Here each barycentric coordinate is viewed as a function defined in the whole do-
main, continuous everywhere but nonzero only over a cluster of elements sharing
the same node.
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An interesting alternative is obtained by observing that each pair of functions
1/)25127 wg;n have similar properties: their circulations along the respective
edge (but taken in the opposite directions) are the same, and their curls are
opposite. It makes sense to combine each pair into one new function as

Yis0 = 0l = 0B = AaVAs = AV (3.132)

It immediately follows from the properties of 1/)2512 that the circulation of
356 is one along its respective edge (in the direction from node « to node 3)
and zero along all other edges.

The FE representation of the field is almost the same as before

By = ) captis’
a#f3

except that summation is now over a twice smaller set of basis functions, one
per edge: three for triangles and six for tetrahedra; c,g are the circulations of
the field along the edges.

Fig. 3.34 helps to visualize two such functions for a triangular element; for
tetrahedra, the nature of these functions is similar. Their rotational character
is obvious from the figure, the curls being equal to

Vx 30 = 2VAq X Vg

Fig. 3.34. Two basis functions ¢3¢ visualized for a triangular element: ¢33 ¢ (left)
and 135 % (right).

The (generalized) divergence of these vector basis functions (see Appen-
dix 3.17, p. 186) is also of interest:

V-ds® = AV — AsV3A,
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When viewed as regular functions within each element, the Laplacians in the
right hand side are zero because the barycentric coordinates are linear func-
tions. However, these Laplacians are nonzero in the sense of distributions and
contain Dirac-delta terms on the interelement boundaries due to the jumps
of the normal component of the gradients of A. Disregard of the distribu-
tional term has in the past been the source of two misconceptions about edge
elements:

1. The basis set ¢>~% presumably cannot be used to approximate fields with
nonzero divergence. However, if this were true, linear elements, by similar
considerations, could not be used to solve the Poisson equation with a
nonzero right hand side because the Laplacian of the linear basis functions
is zero within each element.

2. Since the basis functions have zero divergence, spurious modes are elimi-
nated. While the conclusion is correct, the justification would only be valid
if divergence were zero in the distributional sense. Furthermore, there are
families of edge elements that are not divergence-free and yet do not pro-
duce spurious modes. Rigorous mathematical analysis of spectral conver-
gence is quite involved (see footnote 43 on p. 140).

3.12.3 Implementation Issues

As already noted on p. 140, the finite element formulation of the cavity reso-
nance problem (3.129) is obtained by restricting E and E’ to a finite element
subspace Wj, C Hy(curl, )

(1 'V x Ep, VX E) — W (En,Ey)) = 0, VE €W, (3.133)

Subspace W), can be spanned by either of the two basis sets introduced in the
previous section for tetrahedral elements (one or two degrees of freedom per
edge) or, alternatively, by higher order tetrahedral bases or bases on hexahe-
dral elements (Section 3.12.4).

In the algorithmic implementation of the procedure, the role of the edges
is analogous to the role of the nodes for nodal elements. In particular, the ma-
trix sparsity structure is determined by the edge-to-edge adjacency: for any
two edges that do not belong to the same element, the corresponding matrix
entry is zero. An excellent source of information on adjacency structures and
related algorithms (albeit not directly in connection with edge elements) is
S. Pissanetzky’s monograph [Pis84]. A new algorithmic issue, with no analogs
in node elements, is the orientation of the edges, as the sign of field circula-
tions depends on it. To make orientations consistent between several elements
sharing the same edge, it is convenient to use global node numbers in the mesh.
One suitable convention is to define the direction from the smaller global node
number to the greater one as positive.
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3.12.4 Historical Notes on Edge Elements

In 1980 and 1986, J.-C. Nédélec proposed two families of tetrahedral and
hexahedral edge elements [N80, N&6]. For tetrahedral elements, Nédélec’s six-
and twelve-dimensional approximation spaces are spanned by the vector ba-
sis functions Ao VAg — AgV A, and A,V g, respectively, as discussed in the
previous section.

Nédélec’s exposition is formally mathematical and rooted heavily in the
calculus of differential forms. As a result, there was for some time a discon-
nect between the outstanding mathematical development and its use in the
engineering community.

To applied scientists and engineers, finite element analysis starts with the
basis functions. This makes practical sense because one cannot actually solve
an FE problem without specifying a basis. Many practitioners would be sur-
prised to hear that a basis is not part of the standard mathematical definition
of a finite element. In the mathematical literature, a finite element is defined,
in addition to its geometric shape, by a (finite-dimensional) approximation
space and a set of degrees of freedom — linear functionals over that approxi-
mation space (see e.g. the classical book by P.G. Ciarlet [Cia80]). Nodal values
are the most typical such functionals, but there certainly are other possibili-
ties as well. As we already know, in Nédélec’s elements the linear functionals
are circulations of the field along the edges. Nédélec built upon related ideas
of P-A. Raviart & J.M. Thomas who developed special finite elements on
triangles in the late 1970s [RT77].

It took almost a decade to transform edge elements from a mathemati-
cal theory into a practical tool. A. Bossavit’s contribution in that regard is
exceptional. He presented, in a very lucid way, the fundamental rationale for
edge elements [Bos88b, Bos88a] and developed their applications to eddy cur-
rent problems [BV82, BV83], scattering [BM89], cavity resonances [Bos90],
force computation [Bos92] and other areas. Stimulated by prior work of
P.R. Kotiuga®® and the mathematical papers of J. Dodziuk [Dod76], W. Miiller
[M78] and J. Komorowski [Kom75], Bossavit discovered a link between the
tetrahedral edge elements with six degrees of freedom and differential forms
in the 1957 theory of H. Whitney [Whi57].

Nédélec’s original papers did not explicitly specify any bases for the FE
spaces. Since practical computation does rely on the bases, the engineering
and computational electromagnetics communities in the late 1980s and in the
1990s devoted much effort to more explicit characterization of edge element
spaces. A detailed description of various types of elements would lead us too
far astray, as this book is not a treatise on electromagnetic finite element
analysis. However, to give the reader a flavor of some developments in this
area, and to provide a reference point for the experts, succinct definitions of

48 Kotiuga was apparently the first to note, in his 1985 Ph.D. thesis, the connection
of finite element analysis in electromagnetics with the fundamental branches of
mathematics: differential geometry and algebraic topology.
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several common edge element spaces are compiled in Appendix 3.12.5 (see also
[Tsu03]). Further information can be found in the monographs by P. Monk
[Mon03], J. Jin [Jin02] and J.L. Volakis et al. [VCK98]. Comparative analysis
of edge element spaces by symbolic algebra can be found in [Tsu03]. Families
of hierarchical and adaptive elements developed independently by J.P. Webb
[WF93, Web99, Web02] and by L. Vardapetyan & L. Demkowicz [VD99] de-
serve to be mentioned separately. In hierarchical refinement, increasingly accu-
rate FE approximations are obtained by adding new functions to the ezisting
basis set. This can be done both in the context of h-refinement (reducing the
element size and adding functions supported by smaller elements to the ex-
isting functions on larger elements) and p-refinement (adding, say, quadratic
functions to the existing linear ones). Hierarchical and adaptive refinement
are further discussed in Section 3.13 for the scalar case. The vectorial case
is much more complex, and I defer to the papers cited above for additional
information. One more paper by Webb [Web93] gives a concise but very clear
exposition of edge elements and their advantages.

3.12.5 Appendix: Several Common Families of Tetrahedral Edge
Elements

Several representative families of elements, with the corresponding bases, are
listed below. The list is definitely not exhaustive; for example, Demkowicz—
Vardapetyan elements with hp-refinement and R. Hiptmair’s general perspec-
tive on high order edge elements are not included.

As before, \; is the barycentric coordinate corresponding to node i (i =
1,2,3,4) of a tetrahedral element.

1. The Ahagon—Kashimoto basis (20 functions) [AK95].

{12 “edge” functions (4)\z — 1)()\1‘V)\j - )\JV)\l), ) 75 j} U {4)\1()\2V>\3 -
A3V A2), X2 (AsV A1 = A1V A3), 41 (A3 VA=AV A3), 4A (A1 VA3 — A3V A1),
AN (A2VAr — AV Ag), Aa(MiVAL — AV, 4ha(AsVA — A V),
AAg(AaV Az — A3V A2)

2. The Lee-Sun—Cendes basis (20 functions) [LSC91]. {12 edge-based
functions )\iV)\j, ) 7é ]} U { )\1)\2V/\37 )\1>\3V)\2, )\2)\3V)\4, )\2)\4V/\37
AsAaV AL, AsA1 VAL, AA Vg, A VA

3. The Kameari basis (24 functions) [Kam99]. {the Lee basis} [J { V(A2Az\4),
V(A1 AsA), V(A1 A2A\y), V(A1 A2)3) }.

4. The Ren-Ida basis (20 functions) [RI00]. {12 edge-based functions \;VJ;,
i # 7} U { MA2VA3 — A2AsVAr, MAsVAg — XaAsVaAL, A AV, —
)\4)\2V)\1, )\1)\4V)\2—)\4)\2V)\1, )\1)\3V)\4—)\4)\3V)\17 )\1)\4V)\3—)\3)\4V)\1,
A2AsV s — A A3V g, AgAa Vg — AgAa Vgl

5. The Savage-Peterson basis [SP96]. {12 edge-based functions A\;VA;, i # j}

6. The Yioultsis-Tsiboukis basis (20 functions) [YT97]. {(8X;2 —4X;)VA; +
(=8AA; + 2X)V A, i # j} U {16A1A2V A3 — 8AaA3V AL — 8A3A 1V Ay,
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16)\1)\3V)\2—8)\3)\2V)\1—8>\2)\1V)\3; 16)\4)\1V)\2—8)\1)\2V)\4—8)\2)\4V)\1;
16)\4)\2V)\1—8)\2)\1V>\4—8)\1>\4V)\2; 16/\2)\3V>\4—8)\3>\4V)\2—8)\4)\2V)\3;
16)\2)\4V)\3—8)\4)\3V)\2—8)\3)\QV)\4; 16)\3)\1V)\4—8)\1>\4V)\3—8)\4)\3V)\1;
16A3A4 VA1 — 8A A1V A5 — 8A1 A3V AL}

7. The Webb—Forghani basis (20 functions) [WF93]. {6 edge-based functions
AiVA; — A VA, i # 51 U {6 edge-based functions V(A A;), ¢ # j} U {
MAaV s, MA3VA2, A2z Vs, AV s, As VAL, AsAi Vg, Al Vo,
AsAa VAL ).

8. The Graglia—Wilton—Peterson basis (20 functions) [GWPI7]. { (3\; —
1)(>\iV/\j — /\jV/\i), ) 75 j} U 9/2 X {/\2(/\3V>\4 — )\4V/\3)7 /\3(/\4V>\2 —
A2V A1), As(AaVAL — A VL), As(A1VAs — AsVAL), As(A1V A — AV A,
A (AaVA2 — AaVAL), AL (A2VAs — AsVA2), Aa(AVAz — AsVAL) ).

3.13 Adaptive Mesh Refinement and Multigrid Methods

3.13.1 Introduction

One of the most powerful ideas that has shaped the development of Finite El-
ement Analysis since the 1980s is adaptive refinement. Once an FE problem
has been solved on a given initial mesh, special a posteriori error estimates
or indicators®® are used to identify the subregions with relatively high error.
The mesh is then refined in these areas, and the problem is re-solved. It is
also possible to “unrefine” the mesh in the regions where the error is per-
ceived to be small. The procedure is then repeated recursively and is typically
integrated with efficient system solvers such as multigrid cycles or multilevel
preconditioners (Section 3.13.4).

There are two main versions of mesh refinement. In A-refinement, the mesh
size h is reduced in selected regions to improve the accuracy. In p-refinement,
the element-wise order p of local approximating polynomials is increased. The
two versions can be combined in an hp-refinement procedure. There are nu-
merous ways of error estimation (Section 3.13.3 on p. 151) and numerous
algorithms for effecting the refinement.

To summarize, adaptive techniques are aimed at generating a quasi-
optimal mesh adjusted to the local behavior of the solution, while maintaining
a high convergence rate of the iterative solver. Three different but related is-
sues arise:

1. Implementation of local refinement without violating the geometric con-
formity of the mesh.

2. Efficient multilevel iterative solvers.

3. Local a posteriori error estimates.

49 Estimates provide an approximate numerical value of the actual error. Indicators
show whether the error is relatively high or low, without necessarily predicting
its numerical value.
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Fig. 3.35 shows nonconforming (“slave”) nodes appearing on a common
boundary between two finite elements e; and es if one of these elements (say,
e1) is refined and the other one (e3) is not. The presence of such nodes is a de-
viation from the standard set of requirements on a FE mesh. If no restrictions
are imposed, the continuity of the solution at slave nodes will generally be
violated. One remedy is a transitory (so-called “green”) refinement of element
ez (W.F. Mitchell [Mit89, Mit92], F. Bornemann et al. [BEK93]) as shown
in Fig. 3.35, right. However, green refinement generally results in non-nested
meshes, which may affect the performance of iterative solvers.

€1 —a €1 —a

€2 €2

Fig. 3.35. Local mesh refinement (2D illustration for simplicity). Left: continuity
of the solution at “slave” nodes must be maintained. Right: “green refinement”.
(Reprinted by permission from [TP99a] ©1999 IEEE.)

3.13.2 Hierarchical Bases and Local Refinement

Alternatively, nonconforming nodes may be retained if proper continuity con-
ditions are imposed. This can be accomplished in a natural way in the hier-
archical basis (H. Yserentant [Yse86], W.F. Mitchell [Mit89, Mit92], U. Riide
[R93]). A simple 1D example (Fig. 3.36) illustrates the hierarchical basis rep-
resentation of a function.

In the nodal basis a piecewise-linear function has a vector of nodal values
u™N) = (uy, ug, us, ug, us, ug)”. Nodes 5 and 6 are generated by refining the
coarse level elements 1-2 and 2-3. In the hierarchical basis, the degrees of
freedom at nodes 5, 6 correspond to the difference between the values on the
fine level and the interpolated value from the coarse level. Thus the vector in
the hierarchical basis is

1 1
w) = (g, ug, Uz, Ug, us — §(u1 + ug),ug — §(u2 +U3))T (3.134)

This formula effects the transformation from nodal to hierarchical values of
the same piecewise-linear function.

More generally, let a few levels of nested FE meshes (in one, two or three
dimensions) be generated by recursively subdividing some or all elements on
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Fig. 3.36. A fragment of a two-level 1D mesh. (Reprinted by permission from
[TP99a] ©1999 IEEE.)

a coarser level into several smaller elements. For simplicity, only first order
nodal elements will be considered and it will be assumed that new nodes are
added at the midpoints of the existing element edges. (The ideas are quite
general, however, and can be carried over to high order elements and edge
elements; see e.g. P.T.S. Liu & J.P. Webb [LW95], J.P. Webb & B. Forghani
[WF93].)

The hierarchical representation of a piecewise-linear function can be ob-
tained from its nodal representation by a recursive application of elementary
transforms similar to (3.134). Precise theory and implementation are detailed
by H. Yserentant [Yse86].

An advantage of the hierarchical basis is the natural treatment of slave
nodes (Fig. 3.35, left). The continuity of the solution is ensured by simply
setting the hierarchical basis value at these nodes to zero.

Remark 6. In the nonconforming refinement of Fig. 3.35 (left), element shapes
do not deteriorate. However, this advantage is illusory. Indeed, the FE space
for the “green refinement” of Fig. 3.35 (right) obviously contains the FE space
of Fig. 3.35 (left), and therefore the FE solution with slave nodes cannot be
more accurate than for green refinement. Thus the effective “mesh quality,”
unfortunately, is not preserved with slave nodes.

For tetrahedral meshes, subdividing an element into smaller ones when
the mesh is refined is not trivial; careless subdivision may lead to degenerate
elements. S.Y. Zhang [Zha95] proposed two schemes: “labeled edge subdivi-
sion” and “short-edge subdivision” guaranteeing that tetrahedral elements do
not degenerate in the refinement process. The initial stage of both methods
is the same: the edge midpoints of the tetrahedron are connected, producing
four corner tetrahedra and a central octahedron. The octahedron can be fur-
ther subdivided into four tetrahedra in three different ways [Zha95] by using
one additional edge. The difference between Zhang’s two refinement schemes
is in the way this additional edge is chosen. The “labeled edge subdivision”
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algorithm relies on a numbering convention for nodes being generated (see
[Zha95] for details). In the “short edge subdivision” algorithm the shortest
of the three possible interior edges is selected. For tetrahedra without obtuse
planar angles between edges both refinement schemes are equivalent, provided
that the initial refinement is the same — i.e. for a certain numbering of nodes
of the initial element [Zha95].

Zhang points out that “in general, it is not simple to find the measure of
degeneracy for a given tetrahedron” [Zha95] and uses as such a measure the ra-
tio of the maximum edge length to the radius of the inscribed sphere. A. Plaks
and I used a more precise criterion — the minimum singular value condition
(Section 3.14) to compare the two refinement schemes. Short-edge subdivision
in general proves to be better than labeled edge subdivision [TP99b].

3.13.3 A Posteriori Error Estimates

Adaptive hp-refinement requires some information about the distribution of
numerical errors in the computational domain. The FE mesh is refined in the
regions where the error is perceived to be higher and left unchanged, or even
unrefined, in regions with lower errors. Numerous approaches have been de-
veloped for estimating the errors a posteriori — i.e. after the FE solution has
been found. Some of these approaches are briefly reviewed below; for compre-
hensive treatment, see monographs by M. Ainsworth & J.T. Oden [AOO00],
I. Babuska & T. Strouboulis [BS01], R. Verfiirth [Ver96], and W. Bangerth &
R. Rannacher [BR03].

Much information and many references for this section were provided by
S. Prudhomme, the reviewer of this book; his help is greatly appreciated. The
overview below follows the book chapter by Prudhomme & Oden [PO02] as
well as W.F. Mitchell’s paper [Mit89].

Recovery-based error estimators

These methods were proposed by O.C. Zienkiewicz & J.Z. Zhu; as of May
2007, their 1987 and 1992 papers [ZZ87, Z792a, ZZ92b] were cited 768, 531
and 268 times, respectively. The essence of the method, in a nutshell, is in
field averaging. The computed field within an element is compared with the
value obtained by double interpolation: element-to-node first and then node-
to-element. The intuitive observation behind this idea is that the field typically
has jumps across element boundaries; these jumps are a numerical artifact
that can serve as an error indicator. The averaging procedure captures the
magnitudes of the jumps. Some versions of the Zienkiewicz—Zhu method rely
on superconvergence properties of the FE solution at special points in the
elements.

For numerical examples and validation of gradient-recovery estimators,
see e.g. I. Babugka et al. [BSUT94]. The method is easy to implement and in
my experience (albeit limited mostly to magnetostatic problems) works well
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[TP99a].5° One difficulty is in handling nodes at material interfaces, where the
field jump can be a valid physical property rather than a numerical artifact.
In our implementation [TP99a] of the Zienkiewicz—Zhu scheme, the field val-
ues were averaged at the interface nodes separately for each of the materials
involved.

Ainsworth & Oden [AO00] note some drawbacks of recovery-based estima-
tors and even present a 1D example where the recovery-based error estimate
is zero, while the actual error can be arbitrarily large. Specifically, they con-
sider a 1D Poisson equation with a rapidly oscillating sinusoidal solution. It
can be shown (see Appendix 3.10, p. 127) that the FE-Galerkin solution with
first-order elements actually interpolates the exact solution at the FE mesh
nodes. Hence, if these nodes happen to be located at the zeros of the oscillat-
ing exact solution, the FE solution, as well as all the gradients derived from
it, are identically zero!

Prudhomme & Oden also point out that for problems with shock waves
gradient recovery methods tend to indicate mesh refinement around the shock
rather than at the shock itself.

Residual-based methods

While the solution error is not directly available, residual — the difference
between the right and left hand sides of the equation — is. For a problem of
the form

Lu=p (3.135)

and the corresponding weak formulation

L(u,v) = (p,v) (3.136)
the residual is
Rup =p — Luy, (3.137)
or in the weak form
Rup,v) = (p,v) — L(up,v) (3.138)

Symbols £ and R here are overloaded (with little possibility of confusion) as
operators and the corresponding bilinear forms.

The numerical solution uj satisfies the Galerkin equation in the finite-
dimensional subspace V4. In the full space V residuals (3.137) or (3.138) are,
in general, nonzero and can serve as a measure of accuracy. In principle, the
error, and hence the exact solution, can be found by solving the problem
with the residual in the right hand side. However, doing so is no less difficult
than solving the original problem in the first place. Instead, one looks for

50 Joint work with A. Plaks.
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computationally inexpensive ways of extracting useful information about the
magnitude of the error from the magnitude of the residual.

One of the simplest element-wise error estimators of this kind combines,
with proper weights, two residual-related terms: (Lu — p)? integrated over the
volume (area) of the element and the jump of the normal component of flux
density, squared and integrated over the facets of the element (R.E. Bank &
A H. Sherman [BS79]). P. Morin et al. [MNS02] develop convergence theory
for adaptive methods with this estimator and emphasize the importance of the
volume-residual term that characterizes possible oscillations of the solution.

A different type of method, proposed by I. Babuska & W.C. Rheinboldt in
the late 1970s, makes use of auxiliary problems over small clusters (“patches”)
of adjacent elements [BR78b, BR78a, BR79]. To gain any additional nontriv-
ial information about the error, the auxiliary local problem must be solved
with higher accuracy than the original global problem, i.e. the FE space has
to be locally enriched (usually using h- or p-refinement). An alternative in-
terpretation (W.F. Mitchell [Mit89]) is that such an estimator measures how
strongly the FE solution would change if the mesh were to be refined locally.

Yet another possibility is to solve the problem with the residual glob-
ally but approximately, using only a few iterations of the conjugate gradient
method (Prudhomme & Oden [PO02]).

Goal-oriented error estimation

In practice, FE solution is often aimed at finding specific quantities of interest
— for example, field, temperature, stress, etc. at a certain point (or points),
equivalent parameters (e.g. capacitance or resistance between electrodes), and
so on. Naturally, the effort should then be concentrated on obtaining these
quantities of interest, rather than the overall solution, with maximum accu-
racy.

Pointwise estimates have a long history dating back at least to the the
1940s-1950s (H.J. Greenberg [Gre48], C.B. Maple, [Map50]; K. Washizu
[Was53]). The key idea can be briefly summarized as follows. One can ex-
press the value of solution w at a point ry using the Dirac delta functional
as

u(ro) = (u, 8(r — o)) (3.139)

(Appendix 6.15 on p. 343 gives an introduction to generalized functions (dis-
tributions), with the Dirac delta among them.) Further progress can be made
by using Green’s function g of the £ operator:>! Lg(r,r) = 6(r — rg). Then

u(ro) = (u, Lg(r,r0)) = (L7, g(r,r0)) = L(u, g(r,r0))  (3.140)

where symbol £* is the adjoint operator and (again with overloading) the
corresponding bilinear form £*(u,v) = L(v, u). The role of Green’s function in

51 The functional space where this operator is defined, and hence the boundary
conditions, remain fixed in the analysis.
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this analysis is to convert the delta functional (3.139) that is hard to evaluate
directly into an L-form that is closely associated with the problem at hand.

The right hand side of (3.140) typically has the physical meaning of the
mutual energy of two fields. For example, if £ is the Laplace operator (self-
adjoint if the boundary conditions are homogeneous), then the right hand side
is (Vu, Vg) — the inner product (mutual energy) of fields —Vu (the solution)
and —Vyg (field of a point source). Importantly, due to the variational nature
of the problem, lower and upper bounds can be established for u(rg) of (3.140)
(A.M. Arthurs [Art80]). Moreover, bounds can be established for the pointwise
error as well. In the finite element context (1D), this was done in 1984 by
E.C. Gartland [EG84]. Also in 1984, in a series of papers [BM84a, BM84b,
BM84c|, 1. Babuska & A.D. Miller applied the duality ideas to a posteriori
error estimates and generalized the method to quantities of physical interest.
In Babuska & Miller’s example of an elasticity problem of beam deformation,
such quantities include the average displacement of the beam, the shear force,
the bending moment, etc.

For a contemporary review of the subject, including both the duality tech-
niques and goal-oriented estimates with adaptive procedures, see R. Becker &
R. Rannacher [BRO1] and J.T. Oden & S. Prudhomme [OP01]. For electro-
magnetic applications, methods of this kind were developed by R. Albanese,
R. Fresa & G. Rubinacci [AF98, AFR00], by J.P. Webb [Web05] and by
P. Ingelstrom & A. Bondeson [IB].

Fully Adaptive Multigrid

In this approach, developed by W.F. Mitchell [Mit89, Mit92] and U. Riide
[R93]), solution values in the hierarchical basis (Section 3.13.2, p. 149) char-
acterize the difference between numerical solutions at two subsequent levels
of refinement and can therefore serve as error estimators.

3.13.4 Multigrid Algorithms

The presentation of multigrid methods in this book faces a dilemma. These
methods are first and foremost iterative system solvers — the subject matter
not in general covered in the book. On the other hand, multigrid methods,
in conjunction with adaptive mesh refinement, have become a truly state-of-
the-art technique in modern FE analysis and an integral part of commercial
FE packages; therefore the chapter would be incomplete without mentioning
this subject.

Fortunately, several excellent books exist, the most readable of them be-
ing the one by W.L. Briggs et al. [BHMO00], with a clear explanation of key
ideas and elements of the theory. For a comprehensive exposition of the math-
ematical theory, the monographs by W. Hackbusch [Hac85], S.F. McCormick
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[McC89], P. Wesseling [Wes91] and J.H. Bramble [Bra93], as well as the semi-
nal paper by A. Brandt [Bra77], are highly recommended; see also the review
paper by C.C. Douglas [Dou96].

On a historical note, the original development of multilevel algorithms is
attributed to the work of the Russian mathematicians R.P. Fedorenko [Fed61,
Fed64] and N.S. Bakhvalov [Bak66] in the early 1960s. There was an explosion
of activity after A. Brandt further developed the ideas and put them into
practice [Bra77].

As a guide for the reader unfamiliar with the essence of multigrid methods,
this section gives a narrative description of the key ideas, with “hand-waving”
arguments only.

Consider the simplest possible model 1D equation

Ly =—— = f onQ=[0,a; u(0)=u(a)=0 (3.141)

where f is a given function of x. FE-Galerkin discretization of this problem
leads to a system of equations

Lu = f (3.142)

where v and f are Euclidean vectors and L is a square matrix; u represents
the nodal values of the FE solution. For first order elements, matrix L is
three-diagonal, with 2 on the main diagonal and —1 on the adjacent ones.
(The modification of the matrix due to boundary conditions, as described in
Section 3.7.1, will not be critical in this general overview.)

Operator £ has a discrete set of spatial eigenfrequencies and eigenmodes,
akin to the modes of a guitar string. As Fig. 3.37 illustrates, the discrete
operator L of (3.142) inherits the oscillating behavior of the eigenmodes but
has only a finite number of those. There is the Nyquist limit for the highest
spatial frequency that can be adequately represented on a grid of size h.
Fig. 3.37 exhibits the eigenmodes with lowest and highest frequency on a
uniform grid with 16 elements.

Any iterative solution process for equation (3.142) — including multigrid
solvers — involves an approximation v to the exact solution vector u. The error
vector

e =u — v (3.143)

is of course generally unknown in practice; however, the residual r = f — Lv
1s computable. It is easy to see that the residual is equal to Le :

r=f—-Lv=Lu—-Lv = Le (3.144)

The following sequence of observations leads to the multigrid methodology.

1. High-frequency components of the error — or, equivalently, of the residual —
(similar to the bottom part of Fig. 3.37) can be easily and rapidly reduced
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Eigenvector with lowest spatial frequency: 16 elements
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Fig. 3.37. Eigenvectors with lowest (top) and highest (bottom) spatial frequency.
Laplace operator discretized on a uniform grid with 16 elements.

by applying basic iterative algorithms such as Jacobi or Gauss—Seidel. In
contrast, low-frequency components of the error decay very slowly. See
[BHMOO0, Tre97, GL9I6] for details.

2. Once highly oscillatory components of the error have been reduced and the
error and the residual have thus become sufficiently smooth, the problem
can be effectively transferred to a coarser grid (typically, twice coarser).
The procedure for information transfer between the grids is outlined be-
low. The spatial frequency of the eigenmodes relative to the coarser grid
is higher than on the finer grid, and the components of the error that are
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oscillatory relative to the coarse grid can be again eliminated with basic
iterative solvers. This is effective not only because the relative frequency
is higher, but also because the system size on the coarser grid is smaller.
3. It remains to see how the information transfer between finer and coarser
grids is realized. Residuals are transferred from finer to coarser grids.
Correction vectors obtained after smoothing iterations on coarser grids
are transferred to finer grids. There is more than one way of defining the
transfer operators. Vectors from a coarse grid can be moved to a fine one
by some form of interpolation of the nodal values. The simplest fine-to-
coarse transfer is injection: the values at the nodes of the coarse grids are
taken to be the same as the values at the corresponding nodes of the fine
grid.
However, it is often desirable that the coarse-to-fine and fine-to-coarse
transfer operators be adjoint to one another,%? especially for symmetric
problems, to preserve the symmetry. In that case the fine-to-coarse trans-
fer is different from injection.

Multigrid utilizes these ideas recursively, on a sequence of nested grids. There
are several ways of navigating these grids. V-cycle starts on the finest grid
and descends gradually to the coarsest one; then moves back to the finest
level. W-cycle also starts by traversing all fine-to-coarse levels; then, using
the coarsest level as a base, it goes back-and forth in rounds spanning an
increasing number of levels. Finally, full multigrid cycle starts at the coarsest
level and moves back-and-forth, involving progressively more and more finer
levels. A precise description and pictorial illustrations of these algorithms can
be found in any of the multigrid books.

Convergence of multigrid methods depends on the nature of the underlying
problem: primarily, in mathematical terms, on whether or not the problem is
elliptic and on the level of regularity of the solution, on the particular type of
the multigrid algorithm employed, and to a lesser extent on other details (the
norms in which the error is measured, smoothing algorithms, etc.) For elliptic
problems, convergence can be close to optimal — i.e. proportional to the size
of the problem, possibly with a mild logarithmic factor that in practice is not
very critical.

Furthermore, multigrid methods can be used as preconditioners in con-
jugate gradient and similar solvers; particularly powerful are the Bramble—
Pasciak—Xu (BPX) preconditioners developed in J. Xu’s Ph.D. thesis [Xu89]
and in [BPX90]. Since BPX preconditioners are expressed as double sums
over all basis functions and over all levels, they are relatively easy to par-
allelize. A broad mathematical framework for multilevel preconditioners and
for the analysis of convergence of multigrid methods in general is established

52 There is an interesting parallel with Ewald methods of Chapter 5, where charge-
to-grid and grid-to-charge interpolation operators must be adjoint for conser-
vation of momentum in a system of charged particles to hold numerically; see
p. 262.
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in Xu’s papers [Xu92, Xu97]. Results of numerical experiments with BPX for
several electromagnetic applications are reported by A. Plaks and myself in
[Tsu94, TPBI8, PTPTO00].

Another very interesting development is algebraic multigrid (AMG) sche-
mes, where multigrid ideas are applied in an abstract form (K. Stiiben et
al. [Sti83, SL86, St1i00]). The underlying problem may or may not involve any
actual geometric grids; for example, there are applications to electric circuits
and to coupled field-circuit problems (D. Lahaye et al. [LVHO4]). In AMG,
a hierarchical structure typical of multigrid methods is created artificially,
by examining the strength of the coupling between the unknowns. The main
advantage of AMG is that it can be used as a “black box” solver. For further
information, the interested reader is referred to the books cited above and to
the tutorials posted on the MGNet website.?3

3.14 Special Topic: Element Shape and Approximation
Accuracy

The material of this section was inspired by my extensive discussions with
Alain Bossavit and Pierre Asselin in 1996-1999. (By extending the analysis
of J.L. Synge [Syn57], Asselin independently obtained a result similar to the
minimum singular value condition on p. 170.) Numerical experiments were
performed jointly with Alexander Plaks. I also thank Ivo Babuska and Ran-
dolph Bank for informative conversations in 1998-2000.

3.14.1 Introduction

Common sense, backed up by rigorous error estimates (Section 3.10, p. 125)
tells us that the accuracy of the finite element approximation depends on the
element size and on the order of polynomial interpolation. More subtle is the
dependence of the error on element shape. Anyone who has ever used FEM
knows that a triangular element similar to the one depicted on the left side of
Fig. 3.38 is “good” for approximation, while the element shown on the right
is “bad”. The flatness of the second element should presumably lead to poor
accuracy of the numerical solution.

But how flat are flat elements? How can element shape in FEM be char-
acterized precisely and how can the “source” of the approximation error be
identified? Some of the answers to these questions are classical but some are
not yet well known, particularly the connection between approximation accu-
racy and FE matrices (Section 3.14.2), as well as the minimum singular value
criterion for the “edge shape matrix” (Sections 3.14.2 and 3.14.3).

The reader need not be an expert in FE analysis to understand the first
part of this section; the second part is more advanced. Overall, the section is

53 http://www.mgnet.org/mgnet-tuts.html
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based on my papers [Tsu98b, Tsu98a, Tsu98c, TP9I8, TPI9b, Tsu99] (joint
work with A. Plaks).

o/.\o

Fig. 3.38. “Good” and “bad” element shape (details in the text).

For triangular elements, one intuitively obvious consideration is that small
angles should be avoided. The mathematical basis for that is given by Zlamal’s
minimum angle condition [Z18]: if the minimum angle of elements is bounded
away from zero, ¢y, > ¢g > 0, then the FE interpolation error tends to zero
for the family of meshes with decreasing mesh sizes. Geometrically equivalent
to Zlamal’s condition is the boundedness of the ratio of the element diameter
(maximum element edge I« ) to the radius p of the inscribed circle.

Zlamal’s condition implies that small angles should be avoided. But must
they? In mathematical terms, one may wonder if Zldmal’s condition is not
only sufficient but in some sense necessary for accurate approximation.

If Zlamal’s condition were necessary, a right triangle with a small acute
angle would be unsuitable. However, on a regular mesh with right triangles,
first-order FE discretization of the Laplace equation is easily shown to be iden-
tical with the standard 5-point finite difference scheme. But the FD scheme
does not have any shape related approximation problems. (The accuracy is
limited by the maximum mesh size but not by the aspect ratio.) This obser-
vation suggests that Zlamal’s condition could be too stringent.

Indeed, a less restrictive shape condition for triangular elements exists. It
is sufficient to require that the mazimum angle of an element be bounded
away from m. In particular, according to this condition, right triangles, even
with very small acute angles, are acceptable (what matters is the maximum
angle that remains equal to 7/2). The maximum angle condition appeared in
J.L. Synge’s monograph [Syn57] (pp. 209-213) in 1957, before the finite ele-
ment era. (Synge considered piecewise-linear interpolation on triangles with-
out calling them finite elements.) In 1976, I. Babuska & A.K. Aziz [BA76]
published a more detailed analysis of FE interpolation on triangles and showed
that the maximum angle condition was not only sufficient, but in a sense essen-
tial for the convergence of FEM. In addition, they proved the corresponding
W -norm estimate. In 1992, M. Kfizek [K92] generalized the maximum angle
condition to tetrahedral elements: the maximum angle for all triangular faces
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and the maximum dihedral angle should be bounded away from 7. Other
estimates for tetrahedra (and, more generally, simplices in RY) were given
by Yu.N. Subbotin [Sub90] and S. Waldron [Wal98a]. P. Jamet’s condition
[Jam76] is closest to the result of this section but is more difficult to formu-
late and apply.

On a more general theoretical level, the study of piecewise-polynomial
interpolation in Sobolev spaces, with applications to spline interpolation and
FEM, has a long history dating back to the fundamental works of J. Deny &
J.L. Lions, J.H. Bramble & S.R. Hilbert [BH70], I. Babuska [Bab71], and the
already cited Ciarlet & Raviart paper.

Two general approaches systematically developed by Ciarlet & Raviart
have now become classical. The first one is based on the multipoint Taylor
formula (P.G. Ciarlet & C. Wagschal [CWT1]); the second approach (e.g.
Ciarlet [Cia80]) relies on the Deny-Lions and Bramble-Hilbert lemmas. In
both cases, under remarkably few assumptions, error estimates for Lagrange
and Hermite interpolation on a set of points in R™ are obtained.

For tetrahedra, the “shape part” of Ciarlet & Raviart’s powerful result
(p. 125) translates into the ratio of the element diameter (i.e. the maximum
edge) to the radius of the inscribed sphere. Boundedness of this ratio ensures
convergence of FE interpolation on a family of tetrahedral meshes with de-
creasing mesh sizes. However, as in the 2D case, such a condition is a little too
restrictive. For example, “right tetrahedra” (having three mutually orthogo-
nal edges) are rejected, even though it is intuitively felt, by analogy with right
triangles, that there is in fact nothing wrong with them.

A precise characterization of the shape of tetrahedral elements is one of
the particular results of the general analysis that follows. An algebraic, rather
than geometric, source of interpolation errors for arbitrary finite elements
is identified and its geometric interpretation for triangular and tetrahedral
elements is given.

3.14.2 Algebraic Sources of Shape-Dependent Errors: Eigenvalue
and Singular Value Conditions

First, we establish a direct connection between interpolation errors and the
maximum eigenvalue (or the trace) of the appropriate FE stiffness matrices.
This is different from the more standard consideration of matrices of the affine
transformation to/from a reference element (as done e.g. by N. Al Shenk
[She94]).

As shown below, the maximum eigenvalue of the stiffness matrix has a
simple geometric meaning for first and higher order triangles and tetrahedra.
Even without a geometric interpretation, the eigenvalue/trace condition is
useful in practical FE computation, as the matrix trace is available at virtu-
ally no additional cost. Moreover, the stiffness matrix automatically reflects
the chosen energy norm, possibly for inhomogeneous and/or anisotropic pa-
rameters.
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For the energy-seminorm approximation on first order tetrahedral nodal
elements, or equivalently, for Lo-approximation of conservative fields on tetra-
hedral edge elements (Section 3.12), the maximum eigenvalue analysis leads
to a new criterion in terms of the minimum singular value of the “edge shape
matrix”. The columns of this matrix are the Cartesian representations of the
unit edge vectors of the tetrahedron.

The new singular value estimate has a clear algebraic and geometric mean-
ing and proves to be not only sufficient, but in some strong sense necessary for
the convergence of FE interpolation on a sequence of meshes. The minimum
singular value criterion is a direct generalization of the Synge-Babuska—Aziz
maximum angle condition to three (and more) dimensions.

Even though the approach presented here is general, let us start with first
order triangular elements to fix ideas. Let @ C R? be a convex polygonal
domain. Following the standard definition, we shall call a set M of triangular
elements K;, M = {K1, Ko, ..., K,}, a triangulation of the domain if
(a) Ui, Ki =
(b) any two triangles either have no common points, or have exactly one
common node, or exactly one common edge.

Let h; = diam K;; then the mesh size h is the maximum of h; for all
elements in M (i.e. the maximum edge length of all triangles). Let A be the
geometric set of nodes {r;} (i = 1,2,...,n, r; € Q) of all triangles in M,
and let P1(M) be the space of functions that are continuous in © and linear
within each of the triangular elements K;.* Let P!(K;) be the restriction of
PL(M) to a specific element K;. Thus P!(Kj;) is just the (three-dimensional)
space of linear functions over the element.

Considering interpolation of functions in C?(2) for simplicity, one can
define the interpolation operator IT : C%(Q) — PY(M) by

(ITu)(r;) = u(ry), Vri €N, Yue C*Q) (3.145)

We are interested in evaluating the interpolation error I7u—w in the energy
norm || - ||g induced by an inner product (-, -)g (“E” for “energy,” not to be
confused with Euclidean spaces).5?

Remark 7. In FE applications, u is normally the solution of a certain boundary
value problem in 2. The error bounds for interpolation and for the Galerkin
or Ritz projection are closely related (e.g. by Céa’s lemma or the LBB condi-
tion, Section 3.5). Although this provides an important motivation to study
interpolation errors, here u need not be associated with any boundary value
problem.

54 Elsewhere in the book, symbol A/ denotes the nodal values of a function. The
usage of this symbol for the set of nodes is limited to this section only and should
not cause confusion.

55 The analysis is also applicable to seminorms instead of norms if the definition of
energy inner product is relaxed to allow (u,u)r = 0 for a nonzero u.
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Consider a representative example where the inner product and the energy
seminorm in C?({2) are introduced as

(u,v)EQ = /Vu-VudQ (3.146)
Q

lulg = (u,u)} (3.147)

(If Dirichlet boundary conditions on a nontrivial part of the boundary are
incorporated in the definition of the functional space, the seminorm is in fact
a norm.)

The element stiffness matrix A(K;) for a given basis {11, ¥2, 13} of P1(K;)
corresponds to the energy inner product (3.146) viewed as a bilinear form on
Pl(Kl) X Pl(Kz)

(u,v)px; = (AK)u(K;), v(K;)), Yu,ve PYK;) (3.148)

where vectors of nodal values of a given function are underscored. u(K;) is an
E? vector of node values on a given element and u is an E™ vector of node
values on the whole mesh. The standard E? inner product is implied in the
right hand side of (3.148). Explicitly the entries of the element stiffness matrix
are given by

A = (pen, = [ Vo Vida, Gl=123  (3109)
To obtain an error estimate over a particular element K;, we shall use, as
an auxiliary function, the first order Taylor approximation 7u of u € C?(Q)
around an arbitrary point rg within that element:

(Tu)(ro,m) = ulrg) + Vu(ry) - (r—ro)

Fig. 3.39 illustrates this in 1D. The difference between the nodal values of
the Taylor approximation 7u and the exact function u (or its FE interpolant
ITu) is “small” (on the order of O(h?) for linear approximation) and shape-
independent in 2D and 3D. At the same time, the difference between 7u
and ITu in the energy norm is generally much greater: not only is the order
of approximation lower, but also the error can be adversely affected by the
element shape. Obviously, somewhere in the transition from the nodal values
to the energy norm the precision is lost. Since the energy norm in the FE
space is governed by the FE stiffness matrix, the large error in the energy
norm indicates the presence of a large eigenvalue of the matrix.

For a more precise analysis, let us write the function u as its Taylor ap-
proximation plus a (small) residual term R(rg,r):

u(r) = (Tuw)(ro,7) + R(ro,7), 1€ K,

where R(rg,r) can be expressed via the second derivatives of u at an interior
point of the segment [r,rq]:
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Fig. 3.39. Taylor approximation vs. FE interpolation. Function w (solid line) is
approximated by its piecewise-linear node interpolant ITu (dashed line) and by
element-wise Taylor approximations 7 u (dotted lines). The energy norm difference
between ITu and 7u is generally much greater than the difference in their node
values.

R(ro,r) = Y. Dfulro+00r=10)) (. ye g<g<1 (3150

a!
|a|=2
with the standard shorthand notation for the multi-index o = (a1, ag, . . ., g)
(in the current example d = 2), |o| = a1 +ag + ... + g4, al = aqlas! ... aq!,

and partial derivatives

dlely,

D%y =
[e5] a2 (e %'}
0x ' 0x5” ... 0z,

It follows from (3.150) that the residual term is indeed small, in the sense that
[R(ro,r)| = |(Tu)(ro,r) —u(r)] < [[ull2,00,x,Ir 7ol (3.151)

IVR(ro, )| = |V(Tu)(ro,r) = Vu(r)| < [lul

200,57 — 70| (3.152)

where
[ullmooc =D D%l (k) (3.153)

la]=m

The key observations leading to the maximum eigenvalue condition can be
informally summarized as follows:

1. The Taylor approximation is uniformly accurate within the element due
to (3.151), (3.152) and is completely independent of the element geometry.
Therefore, for the purpose of evaluating the dependence of the interpola-
tion error on shape, 7u can be used in lieu of u, i.e. one can consider the
difference ITu — 7w instead of ITu — u.
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2. The energy norm of the difference ITu — 7 u is generally much higher than
the nodal values of ITu — 7 u: the nodal values are of the order O(h?) and
independent of element shape due to (3.151), while the energy norm is
O(h) and depends on the shape.

3. The above observations imply that in the transition from node values to
the energy norm the accuracy is lost. Since within the element K; both u
and 7 u lie in the FE space P!(K;), and since in this space the energy norm
is induced by the element stiffness matrix A(K;), a large energy norm can
be attributed to the presence of a large eigenvalue in that stiffness matrix.

The first of these statements can be made precise by writing

[HTu—ulpr, < [Hu—Tullpg, + [[Tu—ulgg,

1
< M =Tullg g, + chiVi? [[ull2,00.x; (3.154)

where the second inequality follows from estimate (3.152) of the Taylor resid-
ual, V; = meas(K;), and c is an absolute constant independent of the element
shape and of u.

We now focus on the term || [Iu — Tu| g k, in (3.154). Restrictions of both
u and 7u to K; lie in the FE space P'(K;), and therefore

=

Hlu = Tullg g, = (AK) () = Tu(K)), u(K;) - Tu(k;))? (3.155)
The standard Euclidean inner product in E? is implied in the right hand side
of (3.155), and we recall that the underscore denotes Euclidean vectors of
nodal values.

It follows immediately from (3.155) that

(A(K:)z, 2)\ *
_ < MR =) ) — . 5
T nhmx£%4 T ) - Tu(k) g
(3.156)
that is,
|Tu—Tullpw, < Max(AK)) lu(K) - Tu(K)ll (3.157)

In the right hand side of (3.157), Amax is the maximum eigenvalue of the
element stiffness matrix (3.148), (3.149). The difference u(K;) — Tu(K;) is
the error vector for the Taylor expansion at element nodes, and due to the
uniformity (3.151), (3.152) of the Taylor approximation, we have

lu(FK:) = Tu(Ki) | ga < chilu

2,00,K; (3.158)

(the generic constant ¢ is not necessarily the same in all occurrences). Com-
bining (3.157) and (3.158), we obtain the element-wise estimate

|Tu—Tullpx, < ch? Naax(A(K))ulo,0o., (3.159)
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or, taking into account the triangle inequality (3.154),
1 1
1w —ulgr, < c(PREAhax(ACKD) +hiVi? ) Julooie, (3.160)

The corresponding global estimate is

2

17w~ ullpe < clulym0 [ 3 (B Amax (A(KD)) + h2V7) (3.161)

K,eM

This result can be simplified by noting that Apmax(A(K;)) < trA(K;),
Dok, tTA(KG) = trA, > 5 Vi = V, where A is the global stiffness matrix
and V' = meas(Q):

1w —ullgq < clulsme [h?(tr%A + hv%)} (3.162)
Alternatively, one can factor out the element area V; in (3.160) to obtain
Tu = ull g e, < Vi fulg ook, (h M (A(K)) + hi) (3.163)

where the hat denotes the scaled element stiffness matrix A(K;) = A(K;)/V;.
Then the global error estimate simplifies to

1w =l g < cV2]£ngx [(h A (A( i))+hi) |u|2,OO)KJ (3.164)

The maximum eigenvalue can again be replaced with the (easily computable)
matrix trace.

Remark 8. The trace- and max-terms in estimates (3.162), (3.164) are not of
the order O(h?) as it might appear, but O(h), since both trA and Apax (A(K;))
are O(h™2).

The analysis above can be generalized, without any substantial changes,
to elements of any geometric shape and order:

Theorem 5. Let M be a finite element mesh in a bounded domain € R?
(d > 1) and let the following assumptions hold for any (scalar or wvector)
function u € (C™F1)3(Q): Q — R®, with some nonnegative integers m and s.
(A.1) A given energy (semi)norm is bounded as

ZCQ |u|j oK G >0, Vi =meas(K;) (3.165)

for any element K;, with constants c; independent of the element.
(A.2) The FE approximation space over K; contains all polynomials of degree
<m.
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(A.3) The FE degrees of freedom — linear functionals v; over the FE space —
are bounded as

1
W (Kiul < Y & |ulicok,, & >0 (3.166)
=0

for a certain p > 0, with some absolute constants ¢;. Then
1T —ullgq < cllmitcon (h“ tr¥A + BT V%) (3.167)

where V.= meas(Q), k =m+1—p, 7=m+1—v, and the global stiffness
matriz A is given by (3.148), (3.149). Alternatively,

1 1 ~
[Tu = ullpg < clulmisoco V' max (h;‘“Aélax(A(Ki)) + hT) (3.168)

where A(K;) = A(K;)/V;.

The meaning of the parameters in the theorem is as follows: m characterizes
the level of smoothness of the function that is being approximated; s = 1 for
scalar functions and s > 1 for vector functions with s components, approxi-
mated component-wise; v is the highest derivative “contained” in the energy
(semi)norm; p is the highest derivative in the degrees of freedom.

Ezample 7. First order tetrahedral node elements satisfy assumptions (A.1-
A.3). Indeed, for the energy norm (3.147), condition (3.165) holds with v = 1,
co =0, c; = 1. (A.2) is satisfied with m = 1, and (A.3) is valid because of
the uniformity (3.151) of the Taylor approximation within a sufficiently small
circle.

More generally, (A.3) is satisfied if FE degrees of freedom are represented
by a linear combination of values of the function and its derivatives at some
specified points of the finite element.

Ezample 8. First order triangular nodal elements.

Let the seminorm be (3.147), (3.146). Then the trace of the scaled element
stiffness matrix has a simple geometric interpretation. The diagonal elements
of the matrix are equal to dj_2 ( = 1,2,3), where the d;s are the altitudes
of the triangle (Fig. 3.40). Therefore, denoting interior angles of the triangle
with ¢; and its sides with [;, and assuming h; = diam(kK;) = 1; > Iy > I3,
one obtains

3 3 2
Amax(A(K)) < TrA(K;) = > d? = hﬁZ(él)
j=1 j=1 \%

lo + 13 2 I 2 l1 2 9, . _9 . _9o
o1 o < 5
( a ) + <d2> + a < 3h;“(sin™* ¢g +sin™“ ¢3)
(3.169)

< h;?

(3
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which leads to Zlamal’s minimum angle condition. This result is reasonable
but not optimal, which shows that the maximum eigenvalue criterion does not
generally guarantee the sharpest estimates. Nevertheless the optimal condition
for first order elements — the maximum angle condition — will be obtained
below by applying the maximum eigenvalue criterion to the Nédélec—Whitney—
Bossavit edge elements.

Fig. 3.40. Geometric parameters of a triangular element K;.

Ezxample 9. For first order tetrahedral elements, the trace of the scaled nodal
stiffness matrix can also be interpreted geometrically. A simple transformation
similar to (3.169) [Tsu98b| yields the minimum-maximum angle condition for
angles ¢;; between edges j and faces I: ¢;; are to be bounded away from both
zero and 7 to ensure that the interpolation error tends to zero as the element
size decreases.

For higher order scalar elements on triangles and tetrahedra, the matrix
trace is evaluated in an analogous but lengthier way, and the estimate is simi-
lar, except for an additional factor that depends on the order of the element.?®

Example 10. Lo-approximation of scalar functions on tetrahedral or triangu-
lar node elements. Suppose that € is a two- or three-dimensional polygonal
(polyhedral) domain and that continuous and discrete spaces are taken as
Ly () and PY(M), respectively, for a given triangular/tetrahedral mesh. As-
sume that the energy inner product and norm are the standard Ly ones. This
energy norm in the FE space is induced by the “mass matrix”

A(Ki)j = /K Gin dQ;  A(K)j = Vit /K bipr A2 (3.170)

56 Here we are discussing shape dependence only, as the factor related to the depen-
dence of the approximation error on the element size is obvious.
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For first order tetrahedral elements, this matrix is given by (3.102) on p. 123,
repeated here for convenience:

A 1

Ak = 5 (3.171)

== =N
— =N
N = =

1
1
2
1

The maximum eigenvalue of Ais equal to 1/4 and does not depend on the
element shape. Assumptions (A.1-A.3) of Theorem 5 hold with m =1, u =
v =0, ¢g = ¢ = 1, and therefore approximation of the potential is shape-
independent due to (3.168). This known result is obtained here directly from
the maximum eigenvalue condition.

Analysis for first order triangular elements is completely similar, and the
conclusion is the same.

Example 11. (Ly)3-approximation of conservative vector fields on tetrahedral
or triangular meshes. In lieu of the piecewise-linear approximation of u on
a triangular or tetrahedral mesh, one may consider the equivalent piecewise-
constant approximation of Vu on the same mesh. Despite the equivalence of
the two approximations, the corresponding error estimates are not necessarily
the same, since the maximum eigenvalue criterion is not guaranteed to give
optimal results in all cases.

It therefore makes sense to apply the maximum eigenvalue condition to
interpolation errors in L3 () for a conservative field @ = Vu on a tetrahedral
mesh. To this end, a version of the first order edge element on a tetrahedron
K may be defined by the Whitney—Nédélec—Bossavit space (see Section 3.12,
p. 139) spanned by functions wj;, 1 < j <k <4

wir = Ls(\VAk — AVA;) (3.172)

where the As are the barycentric coordinates of the tetrahedron. (They also
are the nodal basis functions of the first order scalar element.) The scaling
factor I, introduced for convenience of further analysis, is the length of edge
jk.

As a reminder, the dimension of the Whitney—Nédélec—Bossavit space over
one element is equal to the number of element edges, i.e. three for triangles
and six for tetrahedra. There is the corresponding global FE space W (M) (W
for “Whitney”) over the whole mesh M. It is a subspace of H(curl, ) = {q:
q € L3(Q),V x q € L3(Q)}.

The “exactness property” (see A. Bossavit [Bos88b, Bos88a]) of this space
is critical for the analysis of this section: if the computational domain is simply
connected, a vector field in W (M) is conservative if and only if it is the
gradient of a continuous piecewise-linear scalar field u € P(£2) on the same
mesh. The exactness property remains valid if the definitions of functional
spaces are amended in a natural way to include Dirichlet conditions for the
tangential components of the field on part of the domain boundary.



3.14 Special Topic: Element Shape and Approximation Accuracy 169

The degrees of freedom are defined as the average values of the tangential
components of the field along the edges:

Yin(a) = I / q-dr (3.173)
edge jk

The maximum eigenvalue estimate could now be directly applied to interpo-
lation in W (M). However, a more accurate result is obtained by taking the
maximum in the right hand side of the generic expression (3.157) in a sub-
space of RS. This subspace corresponds to Ré-vectors ¢ of edge d.o.f.’s for
vector fields q € VP(K). Within a given element, such vector fields are in
fact constant and can therefore be treated as vectors in R3. The subspace
maximization of (3.157) yields

(A(K;) q,9) s S, lal? a2
max TS E— = max EEETENTE E—
ack®  |lqllEe aek®  ||qllEe

= meas(K;) max |q|22 (
ack? ||g]| o

To evaluate the ratio in the right hand side, note that the RS-vector q of
the edge projections of q is related to the column vector of the Cartesian
components ¢, = (qzy Gy, q:)T of q as

g = E"(Ki)g

q a, (3.175)

Here ET(K;) is the 3 x 6 “edge shape matrix” whose columns are the unit
vectors e, (1 < a < 6) directed along the tetrahedral edges (in either of the
two directions):

E(K) = [61 |62‘€3|€4|65‘66] (3176)
The element index ¢ has been dropped for simplicity of notation. Singular
value decomposition (G.H. Golub & C.F. Van Loan [GL96]) of this matrix is
the key to further analysis:

E(K) = LYQ" (3.177)
where L is a 3 x 3 orthogonal matrix, @) is a 6 x 6 orthogonal matrix, and

o1 0 0000
S = (000000 (3.178)
00035000

is the matrix containing the singular values o1 > g9 > 03 > 0 of the edge
shape matrix F. Hence

lalEs = (B"(K)a.. E'(K)a,) = (B(K)E"(K)q,,q,)  (3.179)

and the last maximum in (3.174) is
S (g, 9c)

ack® [lgllze  acer (B(K) ET(K)qce, gc)
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= An(B(E) ET(K)) = o2 (B(K)) (3.180)
where Apin is the minimum eigenvalue, and o, is the minimum singular
value (if ¢ = 0, omin = 0 is implied in (3.180)). The last equality of (3.180) is
based on the well known fact (G.H. Golub & C.F. Van Loan [GL96]) that

SE(K)) = \(E(K)ET(K)) = \(ET(K)E(K)) (3.181)

where for ETE only the nonzero eigenvalues are considered.

The minimum singular value oy, (E(K)) is zero if and only if there exists
a vector q orthogonal to all six edge vectors e; (so that ¢ = 0), that is, if
and only if all edges are coplanar (and the tetrahedron is thus degenerate). In
general, the minimum singular value characterizes the “level of degeneracy,”
or “flatness” of a tetrahedron.

In the maximum eigenvalue condition, parameters now have the following
values:
m = 0 (the pertinent Taylor approximation is just a vector constant);
v =0 (Lg-norm);
1 =0 (the d.o.f.’s are the tangential field components along the edges, with
no derivatives involved).

Hence k = 7 = 1 in (3.167), (3.168), and, with (3.174), (3.180) in mind,
one has

[Tu—ulgao < c| Y hi (opin(BE(K))+1) Vilul2.cox, (3.182)

min
K,eM

This is a global error estimate, but each individual term in the sum represents
a (squared) element-wise error.
It is not hard to establish an upper bound for o, (F(K;)). Indeed,

3
1 2 1 T
omin(E) < 3 j;aj(E) = 3tr(ETE) = 2 (3.183)
so0 (3.182) can be simplified:
1
2
Tu—ullpa < c| Y hiopm(B(K:))Vilul2.cox, (3.184)
K;eM

Analysis for triangular elements is quite similar, and the final result is the
same. In addition, for triangular elements the following proposition holds:

Proposition 6. The minimum singular value criterion for the 2 x 3 edge
shape matriz of a first order triangular element is equivalent to the Synge—
Babuska—Aziz maximum angle condition.



3.14 Special Topic: Element Shape and Approximation Accuracy 171

Proof. The minimum singular value can be explicitly evaluated in this case.
Letting the z-axis run along one of the edges of the element (Fig. 3.41), one
has the edge shape matrix in the form

o (1 cos ¢ —cosqSQ) (3.185)

0 cos¢p; —cosoq

Fig. 3.41. Three unit edge vectors for a triangular element.

The trace of (EET)~! is found to be (with some help of symbolic algebra)

3
sin? ¢ + sin? ¢o + sin? ¢

Tr(EET)™! = (3.186)

Since tr(EET)™t = \{(EET)™! + \y(EET)"' = \{Y(EET) + \;Y(EET) =

o7 %(E) + 05 %(E), one has

1 ) ) ) 2 2 ) .2 )

3 (sin” g1 + sin” ¢g +sin” ¢3) < o (E) < 3 (sin” ¢1 + sin” g2 + sin” ¢3)
(3.187)

It can immediately be seen from these inequalities that the minimum singu-

lar value can be arbitrarily close to zero if and only if the maximum angle
approaches 7 (and the other two angles approach zero).

3.14.3 Geometric Implications of the Singular Value Condition
The Minimum Singular Value vs. the Inscribed Sphere Criterion

The most common geometric characteristic of a tetrahedral finite element K
is the ratio of radius r of the inscribed sphere to the maximum edge ;- The
following inequality shows that the singular value criterion is less stringent
than the r/lax ratio.
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Proposition 7. [Tsu98a/

r

Umin(E) Z (3188)

lmax
Proof. We appeal to a geometric interpretation of the minimum singular value.
For vector q € R of edge projections of an arbitrary nonzero Cartesian vector
gc € R3, we have

gl o
Umin(E) S —
gl

(3.189)

where the exact equality is achieved when (and only when) g¢ is an eigenvector
corresponding to the minimum eigenvalue of EET. Thus

Omin(E) =  min ||q||gs (3.190)

lagllpa=1

We can assume without loss of generality that the first node of the tetrahe-
dron is placed at the origin and that the tetrahedron is scaled to l;,2x = 1 and
rotated to have the unit eigenvector v corresponding to the minimum eigen-
value of EET run along the z-axis. Let 25 (3 =1, 2, 3, 4) be the 2-coordinates
of the nodes. According to (3.190),

ohin(E) = lullee = Y (veeas)® = DY (voew)

1<a<p<4 2<a<p<4
P 2
_ Z zB > Z z% (3.191)
I
2<a<f<4 2<a<p<4

where each edge is now labeled by its two end nodes; l;5 is the length of the
edge connecting nodes 1 and 3, l13 < lymax = 1. The first summation in (3.191)
is over all six edges a3, while the subsequent summations are over three nodes
6 =2, 3, 4 and the corresponding edges 1.

It immediately follows from (3.191) that for all nodes |z5| < omin. The
scaled tetrahedron therefore lies entirely between the planes z = +o,;,; hence
r < Omin U

Remark 9. The converse statement that opyin(E) < ¢r/lmax is not true. Con-
sider a sequence of tetrahedra with three mutually orthogonal edges, two of
these edges being of unit length and the third one tending to zero. Then the
radius of the inscribed sphere tends to zero, while the minimum singular value
remains equal to one [TP98].

Jamet’s Condition

P. Jamet [Jam?76] obtained accurate interpolation error estimates under quite
general assumptions. For tetrahedral elements, the governing factor in Jamet’s
estimate is cos 6, where 6 is defined as



3.14 Special Topic: Element Shape and Approximation Accuracy 173

0 = mgaxmjn@i, i=1,...,6 (3.192)

Here 6; is the angle between an arbitrary unit vector & € R? and the unit edge
vector e;; the minimum is taken over all edges, and the maximum is taken
over all unit vectors £. (Jamet’s angle characterizes, geometrically, how far
the edges are from being perpendicular to a certain vector £.) It turns out
that Jamet’s measure is very closely related to the minimum singular value
criterion. Indeed, one can rewrite (3.192) as

cosf = minmaxcosf; = InginHETfHoo,EG (3.193)

Versus
Omin(E) = mgH | ET€|2,m6

That is, the only theoretical difference between Jamet’s cos # and the minimum
singular value of the edge shape matrix is in the matrix norm employed. This
adds further credence to the analysis and results that involve eigenvalues and
singular values of FE matrices.

Jamet’s condition is more general than the present formulation of the
minimum singular value estimate (in particular, Jamet’s analysis applies to
any Sobolev norms in W[f”) On the other hand, computational algorithms
(SVD) for the minimum singular value, unlike for Jamet’s angle, are well
established and readily available.

The Minimum Singular Value vs. Angle Conditions

The minimum singular value of the edge shape matrix can be computed and
used as an a priori algebraic measure of the interpolation error; alternatively,
ar;ign can be replaced with tr (EET)~!. At the same time, given that oy,
characterizes the level of linear independence of the element edges and the
overall “flatness” of the element, geometric implications of the minimum sin-
gular value condition are worth investigating. The following proposition shows
that asymptotically the singular value criterion is equally or less restrictive

than criteria based on solid angles.

Proposition 8. Let {K;}2, be a sequence of tetrahedra with their diameters
h; tending to zero, and let E; be the edge shape matriz (3.176) of K;. Then,
if the minimum singular value condition is violated, i.e. if omin(E;) — 0 as
i — 00, then there exists a subsequence of {K;} for which all solid (trihedral)
angles tend to either zero or 2m.

Proof. As before, without loss of generality, each tetrahedron K; can be as-
sumed to have one of its nodes at the origin of a Cartesian system and to be
rotated to have the minimum eigenvector of EET run along the z axis.

Let S be the unit sphere in R3. To each tetrahedron K; in the sequence

there corresponds a point P; = (e(li), ey eg)) € S° representing the six unit
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edge vectors el(i) of K;. Since S% is compact, one can select a subsequence of
{K;}, again denoted {K;}, with the respective points P; converging to a point
P = (e, el™)) € 5. Since

, 2
owin(B) = Y (ef?-2), (3.194)
1<I<6
all six unit vectors el(oo) must lie in the zy-plane, and consequently the tri-
hedral angle formed by any three of these vectors is zero or 2m. Since the
trihedral angles depend continuously on P;, the proposition follows.

Remark 10. If a solid angle tends to zero, it does not necessarily imply that
the minimum singular value does, too. A counterexample is the same as in
Remark 9.

A valid asymptotic condition is for the maximum solid angle to be bounded
away from 27. Indeed, if this condition were violated, the three edges forming
the largest trihedral angle would tend to three distinct coplanar vectors. Hence
all six edges would in the limit be coplanar, which corresponds to a zero
singular value.

M. Krizek [K92] introduced a sufficient convergence condition requiring
that all dihedral angles, as well as all face angles, be bounded away from 7.
The Proposition below shows that the minimum singular value criterion is
equally or less restrictive than the Ktizek condition.

Proposition 9. Let vq; (j = 1, 2, ..., 6) be the dihedral angles of a tetra-
hedron K and 'y?l A =1,2 3 1< 8 <4) be the angles of each triangular
face B. Let v409 be the angle with the maximum sine of all dihedral angles:
sinyqo = max(sin~yg;). Similarly, for each face 3, let sin 7?0 be the maximum
of all sin 7?1 for face 3. Finally, let sinygo be the minimum of sin '7?0 over all
faces B; i.e.

. B : .3
sinyro = min max sinyy
Then )
9\ 2
omin(E(K)) > (3) sin % sin o (3.195)

Proof. Consider the two faces forming the dihedral angle 749 with the max-
imum sine of all sinyg. Let one of these faces lie in the xz-plane and let
their common edge be on the z axis, with one node at the origin as shown in
Fig. 3.42.

Further, consider an arbitrary unit vector

v = Zsinfcos¢ + ¢sinfsing + Zcosd

in R?, and let v; and vy be its projections on faces (1) and (2), respectively
(Fig. 3.42). Then
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vl
x

Fig. 3.42. Tetrahedral nodes and critical angles. 1, 2, 3 are the nodes of face (1);
1, 4, 2 are the nodes of face (2).

v = sin?fcos’ ¢ + cos?d, w2 = sin®fcos?(¢ — v40) + cos?
Further projecting v1 and ve on each of the three edges of the respective faces
(1) and (2) and using expression (3.187) for the minimum singular value of
the edge shape matrix of a triangle, one obtains:

2 Z vl > (sin®fcos® ¢ + cos’6) - (bln 7§¢1)+51n 7}2)+s1n27}3))
1<5<5

+ (sin” O cos? (¢ — yao) + cos?8) = (Sln 7}1) + sin 7](02) + sin” ’7}23))

> (sin® 6 cos? ¢ + cos 9)5 sin 7}0) + (sin? @ cos®(¢—40) + cos? 6) 3sm 71(%)
> [sin®0(cos® ¢ + cos®*(¢ — vao)) + 2cos 9] = sin® 49

2
> {sin20-2sin2 % + 2cos 9} = sin? Yro = gsm2 % sin? Yo
(The factor of two in the left hand side is due to the fact that the projection
on edge 1-2 is counted twice in the right hand side. Summation over 1 < j <5

excludes edge 3-4.) O
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Conversely, let the Kfizek condition be violated for some sequence of tetra-
hedra. Suppose first that a dihedral angle tends to 7 in that sequence. Then all
six edges tend to positions in one fixed plane (after a possible rotation of each
tetrahedron in the sequence). The edge projections of a unit vector perpendic-
ular to that plane will tend to zero, and so will the minimum singular value of
the edge shape matrix. Similarly, if one of the face angles tends to 7, then all
the edges of that face tend to positions on one straight line, and consequently
all six edges again tend to positions in one plane, and oy (E(K;)) — 0.

It follows that the minimum singular value and Kiizek conditions are
equivalent as asymptotic criteria of convergence of piecewise-linear interpola-
tion on a family of tetrahedral meshes.

The Minimum Singular Value vs. Trihedral Volume

Consider first three unit edge vectors corresponding to a common tetrahedral
node. There is a 3 x 3 submatrix E3 of E associated in the obvious way with
these three edges. The volume of the parallelepiped based on the three unit
vectors is

Vs = |detFs| (3.196)

Both omin(E3) and Vs characterize the level of linear independence of the three
unit vectors, suggesting a connection between these two measures. Since the
product of the eigenvalues is equal to the determinant, and the sum of the
eigenvalues is equal to the trace, one has

(01 (E3) 02(E3) 03(E3)]? = M\ (E3 E3) Aa(Ef Es) As(E3 Es)

= det(EY E3) = det?(E3) = Vi

that is,
01(E3) 02(E3) 03(E3) = V3 (3.197)

Similarly,
01 (Es) + 03(Es) + 03(Es) = M(Ej E3) + Aa(E3 Es) + A3(E3 Es)
= trFiFy = 1+14+1 =3 (3.198)
From (3.198), one immediately obtains

1 < o2

— max

(E3) < 3

and therefore it follows from (3.197), with the convention oyax = 01 > 09 >
03 = Omin, that
Omin(E3) < 07(E3)05(Es) < 07(E3)03(Es)03(Es) = Vi < 907;,(Fs)

min

Hence
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V3 1

3 < Omin(E3) < V32 (3.199)
The right inequality indicates that o, and V3 could be of different “orders
of magnitude”. Examples given in [TP98] demonstrate that the inequalities
in (3.199) cannot be asymptotically improved.

The maximum “trihedral volume” V3 based on three unit edge vectors®”
may serve as a sufficient convergence condition for FE interpolation. However,
due to a “nonlinear” relationship (3.199) between V3 and opin, volume V3 is
expected to be a less accurate a priori error measure than opiy,.

Necessity of the minimum singular value condition

There are several, and not equivalent, definitions of a shape condition being
“essential” for the convergence of FE approximation. These definitions can be
subdivided into the following broad categories:

(a): if a shape condition is violated, the interpolation error may fail to tend
to zero for some families {K;} of elements (of a given type) with h; =
diam(K;) — 0 and for some admissible functions;

(b): if a shape condition is violated for any family of elements {K;} of a
given type, the interpolation error will not tend to zero for some admissible
functions;

(c),(d): same as (a) and (b), respectively, but for the error of the numerical
solution (the Galerkin projection) instead of the interpolation error.

Clearly, (b) is stronger than (a). Categories (c¢)—(d) are much more difficult
to establish than (a)—(b). For first order triangular elements the minimum and
the maximum angle conditions are both “essential” in the sense of (a), but
only the maximum angle condition (equivalent in this case to the minimum
singular value criterion) is “essential” in the sense of (b). M. Kifzek [K92]
proved that his condition is essential in the (a)-sense. Babuka and Aziz [BA76]
showed that the maximum angle condition for triangles is essential in the (c)
sense.

It is easy to demonstrate that the minimum singular value condition is
essential in the (a) sense; in fact, either of the two examples given by Krizek
[K92] suffices for this (the minimum singular value condition is violated, and
there is no convergence). Establishing the necessity of the minimum singu-
lar value condition in a stronger (b) sense is more difficult. To this end, we
need a definition that allows for freedom of solid rotation and translation of
tetrahedral elements.

5T Strictly speaking, the maximum should be taken over all triples of edges, not
necessarily having a common node.
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Definition 8. For a given tetrahedron K, the equivalence class of tetrahedra
obtained from K by rigid rotations and/or translations is denoted with K.
Any energy norm ||u||g x on K is extended to the equivalence class K by

lullpgo = suwflulex, KeK, KcQ} (3.200)

The necessity of the minimum singular value condition in the (b)-sense can
then be stated as follows.

Proposition 10. Let {K;}$2, be an arbitrary sequence of tetrahedral elements
such that h; = diam(K;) — 0 and omin(E(K;)) — 0 as i — oco. In addition,
assume that the ratio of the maximum edge h; = lphax(K;) to the minimum
edge lmin(K;) is uniformly bounded on {K;}2,. Then there exists a function
u € C?(Q) for which the H'-error of linear interpolation tends to infinity:

[T (Ki)u — ullgr g, q — 0 (3.201)

Proof. The starting point is exactly as in the proofs of Proposition 7 and
Proposition 8. Since arbitrary translations and rotations are allowed by Defi-
nition 8 in the norm used in (3.200), the minimum eigenvector of EET may
be assumed to run along the z-axis. Then, for the elements in the sequence,
all edges will tend to the xy-plane.

Hence one can select a subsequence of elements, again denoted as {K;},

with their nodes r%i), réi), r:(,f), n(f) converging to four points r1_4 in the

zy-plane, with ry) = r; = 0 for all . Due to the assumed boundedness of
Imax/lmin, the four points r;_4 must be distinct.

Consider first the case when no three of the points r; = (z;,y;) (j = 1,
2, 3, 4) lie on a straight line. Introduce a Cartesian system with point r; at
the origin, point 73 on the z axis at (x2,0), point r3 at (z3,ys3), point ry at
(24,%4), and points TJ@ = (a:y),yj(»l),z(»l)

J ). Since by assumption points ry, 79,
r3 do not lie on the same line,

y3 # 0 (3.202)

For each K, there exists a quadratic function of z, y

i ; 1 @ i i
(@i 2y) = Sai"a” + ey + o)y (3.203)

with a coefficient vector a(?) = (agi), agi), ag))T such that

()

(1) i). o
uqluadr(a( s, y) = M (3.204)
Indeed, the suitable a® is given by
, 1 ) )
a” QW21 (3.205)

B ERIP
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where the matrix

N
o= 1 b
% .T4Z SL’4Z y4z % y4z

can easily be verified to be nonsingular if no three points r;_4 lie on
one straight line. Moreover, since Q" is a continuous function of coordi-

58

nates xg-i), (Q(i))_1 exists and is uniformly bounded for the sequence’® and

lim; 0o (QW) ™1 = Q! exists. Therefore the sequence of coefficient vectors
a® defined by (3.205) is bounded, and one can select a converging subsequence

a™ — a(>)_ with the corresponding function ué?;)dr = uquadr(a(o"); z,9).

According to (3.204), the coefficients of u?

quadr aT€ chosen in such a way
that its linear interpolant over K is simply

) ) (%)
) 7 z
ul(ll’)l = 1L (KZ) Uézadr = Hz(i)H2

Therefore the z-derivative of the interpolation error

i _ @) 1
8Z(ul(i117uquadr) = Hz(i)H? Y

because |2z — 0 as omin(E(K;)) — 0. This implies that the interpola-
(o0)

quadr 2180 tends to infinity, despite the

tion error for the limiting function w
boundedness of the seminorm |tquadr|2.00.x; = || |1

If three of the points r;_4 lie on one straight line, the corresponding face
is degenerate, and the proof can be essentially repeated in two dimensions in
the plane of this face.

3.14.4 Condition Number and Approximation

Practical experience has shown (see e.g. F.-X. Zgainski et al. [ZMCT97]) that
the condition number of the FE stiffness matrix is a useful measure of mesh
quality. Since the condition number strongly affects the performance of iter-
ative systems solvers, it is not surprising that slow convergence of the solvers
and poor accuracy of the solution (due to poor quality of the FE mesh) typi-
cally go hand in hand.

Based on the results of this section, it can be argued that poor approxima-
tion and poor conditioning of the system are related to each other indirectly:
both of these quantities stem from the maximum eigenvalue of the global stiff-
ness matrix. This connection is schematically illustrated in Fig. 3.43. (The

8 With a possible exception of a finite set of indices.
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minimum eigenvalue has no bearing on interpolation accuracy and can typi-
cally be viewed as a fixed parameter associated with the size of the computa-

tional domain.??)
Maximum eigenvalue
of the stiffness matrix
Condition number Approximation

accuracy

Fig. 3.43. A large eigenvalue of the FE stiffness matrix is a common source of both
ill-conditioning of the FE system and poor accuracy of the solution.

3.14.5 Discussion of Algebraic and Geometric a priori Estimates

We have explored the dual algebraic/geometric nature of finite element in-
terpolation errors. From the algebraic perspective, the error was shown to
be governed by the maximum eigenvalue of the FE stiffness matrix. When
the maximum eigenvalue estimate is applied to triangular and tetrahedral el-
ements, several known geometric conditions and several nonstandard results
are obtained. For triangular elements in particular, Zlamal’s minimum angle
condition and the Synge-Babuska—Aziz maximum angle condition are recov-
ered.

For tetrahedral elements, the maximum eigenvalue estimate leads to an
interesting result. The shape of tetrahedral elements turns out to be accu-
rately represented, in the FE context, by the minimum singular value of the
“edge shape matrix”. This singular value characterizes, on the one hand, the
“flatness” of the element and, on the other hand, the accuracy of the FE
interpolation.

There are several links between the minimum singular value and some
geometric parameters of the tetrahedron, but the minimum singular value
is, in some well-defined sense, one of the most precise measures. (Jamet’s
condition is another one.)

Due to its generality, the maximum eigenvalue condition can be applied in
cases where no other shape criteria are immediately available. For example,

59 Strictly speaking, the ratio of maximum/minimum eigenvalues is in general a
suitable measure of conditioning for symmetric positive definite matrices only.
This case is implicitly assumed, to avoid further complications.
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anisotropy of material parameters should result, intuitively, in some “scaling”
of the coordinate axes before any geometric accuracy criteria can be consid-
ered. In contrast, the maximum eigenvalue criterion accommodates anisotropy
automatically, since material parameters are built into the stiffness matrix.

This criterion can be applied to elements of any shape and order but is
not without limitations. First, it provides a priori estimates only; it remains
to be seen whether similar ideas can be used to enhance a posteriori estimates
critical for adaptive mesh refinement (Section 3.13).

Second, the maximum eigenvalue criterion is a sufficient but not generally a
necessary condition; it does not guarantee the best error estimate. This is well
illustrated by two cases considered in this section: (a) for conservative fields on
Whitney edge elements, the result (expressed via the minimum singular value
of the edge shape matrix) is optimal; (b) at the same time, for triangular node
elements the maximum eigenvalue criterion leads to Zldmal’s minimum angle
condition rather than to the more accurate Synge-Babuska—Aziz maximum
angle condition.

The theoretical results provide general and easy-to-implement a priori cri-
teria of FE accuracy. The computational overhead in the overall FE procedure
is negligible. For tetrahedral elements in particular, the precise characteriza-
tion of shape via the minimum singular value of the element “edge shape
matrix” can be recommended for engineering practice. Experimental results
reported by M. Dorica & D.D. Giannacopoulos [DGO05] and by A. Plaks &
myself [TP98] support this conclusion.

3.15 Special Topic: Generalized FEM

3.15.1 Description of the Method

A detailed explanation and analysis of Generalized FEM proposed origi-
nally by I. Babuska & J.M. Melenk [MB96, BM97] is widely available (e.g.
T. Strouboulis et al. [SBC00]). Of all interesting features of GFEM, the most
salient one is its ability to employ a variety of special non-polynomial ap-
proximating functions. In particular, jumps of the normal derivatives of the
potential at interface boundaries can be represented by special basis functions.
Strouboulis et al. [SBCO00] present an extensive set of application examples
with special functions for material inclusions in stress analysis. Babuska et
al. [BCOY94] applied Generalized FEM (before the method was referred to
as such) to problems with “rough” coeflicients — discontinuities at material
interfaces. A. Plaks et al. [PTFYO03] implemented GFEM for problems with
magnetized particles.

In GFEM the computational domain €2 is covered with overlapping sub-
domains (“patches”) Q) and different local approximations are merged by
Partition of Unity (PU) {€2;}:25""* on this system of patches. More precisely,
a set of PU functions {p®}, 1 <4 < Tpatches 18 constructed to satisfy
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Mpatches

Z eW=1 inQ, suppe® =00 (3.206)
i=1

That is, each function ¢ is associated with the respective patch Q) and
vanishes outside that patch.
Then the global solution u can be decomposed into its “patch components”
(@)
u

Mpatches Mpatches Mpatches

U= u Z o) = Z up® = Z u®, with u® = up® (3.207)
i=1 i=1 i=1

Fig. 3.44 gives a simple 1D illustration of the PU principle, with just two
overlapping patches. A seamless transition from the solution in the first patch
to the solution in the second patch is achieved by multiplying these individual
solutions by the weighting functions 1) and ¢(?), respectively. As a refer-
ence point moves from left to right, the weight of the first solution gradually
decreases, while simultaneously the weight of the second solution increases.

o® e

m
2 Q)

Fig. 3.44. The idea of partition of unity illustrated in 1D: weighting functions ¢
and g0(2> are used to merge two solutions in the overlapping subdomains. The sum of
the weighting functions is unity everywhere. (Reprinted by permission from [Tsu06]
(©2006 Elsevier.)

Decomposition (3.207) is valid for the exact solution but can equally well
be used for assembling a global approximate solution from the local ones.
Suppose that locally, within each patch ("), the exact solution u can be

approximated by a linear combination ugf) of some approximating functions

o
uy) = 3 gld (3.208)

[e%
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cg) being some (real- or complex-valued) coefficients. The final system of

approximating functions w&i ) is built with ¢ as weight functions:
P = g™ (3.209)

The global approximation error is guaranteed to be bounded by the local
(patch-wise) errors [BM97], [SBCO00], [BBOO03], with rigorously provable esti-
mates of the global error in terms of local errors and the norms of the PU
functions ¢.

3.15.2 Trade-offs

The multiplication by ¢(*) in (3.209) guarantees seamless merging of patch-
wise approximations, with rigorously provable estimates of the global error in
terms of local errors and the norms of the PU functions ¢ [BM97]. On the
negative side, however, this multiplication complicates the set of approximat-
ing functions and tends to make it more ill-conditioned (in some cases even
linearly dependent, see [BM97]). For positive definite problems, the linear
dependence can be tolerated because the resultant algebraic system remains
consistent and positive-semidefinite and can be handled by clever linear alge-
bra algorithms (see T. Strouboulis et al. [SBCO00] for further information).

The “no free lunch” cliché applies fully to GFEM. While the rigid re-
quirements on mesh structure and the approximating functions are greatly
relaxed, the computational burden is shifted toward numerical quadratures
that need to be computed in the Galerkin method over the intersections of
overlapping patches. This complex task can be accomplished in general only
by adaptive numerical integration. The efficiency of this integration is critical
for the overall performance of the algorithm.

In addition, GFEM-PU may lead to a combinatorial increase in the number
of degrees of freedom. For illustration, consider a regular hexahedral mesh
where a “patch” is defined as a set of eight hexahedra around a common
node. In the presence of material boundaries, it is sensible to replace the
usual eight trilinear basis functions with eight special functions satisfying the
derivative jump condition at the interface (see also Chapter 4). In GFEM-
PU, each of these special functions gets multiplied by the “shape function”
@ of the patch. As each hexahedral element of the mesh is an intersection of
eight patches (centered at its eight respective nodes) and each of these patches
contributes eight approximating functions, the stiffness matrix for elements
close to material interfaces is 64 x 64 instead of the usual 8 x 8. For all of
the above reasons, alternative approaches may be worth exploring. One such
approach that generalizes finite difference, rather than finite element, analysis
is discussed in Chapter 4.
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3.16 Summary and Further Reading

The Finite Element Method is arguably the most powerful computational tool
ever invented. Its solid variational foundation makes the method remarkably
robust — often beyond the areas where a complete mathematical analysis is
available.

FEM is well established in traditional branches of engineering such as stress
analysis, heat transfer, electromagnetic fields in machines and microwave cir-
cuits, etc. However, FEM has not yet been taken full advantage of in some
areas of nanoscale simulation. Examples include nano-photonics and nano-
optics — more specifically, plasmonic field enhancement by particle clusters,
scattering of light by optical tips in near-field microscopy, and wave propaga-
tion in photonic crystal devices. These and other cases presented in Chapter 7
will hopefully stimulate further applications of FEM in nanoscale science and
technology.

The present chapter explains the fundamentals of FEM (the underlying
variational principles, finite elements and spaces, FE matrices, algorithmic
implementation) and provides an overview of state-of-the-art techniques of
FE analysis (adaptive mesh refinement and multigrid algorithms). The chap-
ter also covers more advanced topics: edge elements, a priori estimates of
numerical accuracy as a function of element shape, and Generalized FEM.

Adaptive hp-refinement aims at the most effective use of the computational
resources by constructing quasi-optimal meshes: the density of elements is
higher in regions where the solution is less smooth and changes more rapidly;
the density is lower in regions of smooth variation of the solution. Adaptive
techniques are now an integral part of the commercial FE packages. The same
is true for edge elements in electromagnetic applications: the gap between the
elegant mathematical theory and practical utility was bridged in the 1990s,
especially after it became clear that many families of edge elements, in contrast
with the nodal ones, do not produce nonphysical eigensolutions known as
“spurious modes”.

Generalized FEM occupies a niche in practical applications. This will most
likely continue to be the case, although the niche may grow to some extent.
The power of GFEM lies in its ability to use a wide selection of approxima-
tions not limited to element-wise polynomials as in the standard FEM. This
could be a great advantage in many cases where particular features of the
physical field or potential, such as singularities, boundary layers, dipole-like
behavior, etc., are known a priori and can therefore be accurately represented
by special approximating functions. However, there is a substantial price to
be paid for this advantage: complex numerical quadratures, increased num-
ber of unknowns, and possible ill-conditioning or in some cases even linear
dependence of the system of approximating functions.

The special section on a priori error estimates in this chapter examines
the links between algebraic and geometric accuracy measures. While it is
well known that “flat” elements provide poor numerical approximation of the
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solution, it is argued in Section 3.14 that the “true source” of the error is of
algebraic nature. This source can be traced to the maximum eigenvalue of the
FE stiffness matrix and, in the case of triangular and tetrahedral elements,
to the minimum singular value of the “edge shape matrix”. It is shown that
the latter measure is, in some sense, a precise one, and its connection with
various geometric parameters is examined.

The reader who would like to learn more about Finite Element analysis is
in an enviable position. There are many excellent books and papers on all as-
pects of FEM, written from the engineering, mathematical and computational
perspectives. Researchers and developers of engineering applications cannot
go wrong with the books by O.C. Zienkiewicz et al. [ZTZ05, ZT05]. In engi-
neering electromagnetics, P.P. Silvester’s group was the first to apply finite
elements; his book with R.L. Ferrari [SF90] is still valuable. J. Jin’s more
recent monograph [Jin02] is a very good source of information on FEM in
electromagnetics and includes, in addition to standard subjects, chapters on
vector finite elements, absorbing boundary conditions, finite element — bound-
ary integral methods and on time-domain analysis. The book by J.L. Volakis
et al. [VCK98] also covers vector elements, as well as applications to radiation
and scattering and hybrid finite element — boundary integral methods. Several
books are focused on the applications of FEM to low-frequency electromag-
netic fields in electric machines and devices: J.P. A. Bastos & N. Sadowski
[aPABSO03], S. Salon & M. V.K. Chari [SC99], G. Meunier (ed.) [Meu07].

On the mathematical side, there are several magnificent books as well. The
works by G. Strang & G.J. Fix [SF73] and 1. Babuska, A.K. Aziz & B. Szabd
[BA72, SBI1] are classical. The main reference on the mathematical treatment
of FEM in electromagnetism is P. Monk’s monograph [Mon03].

The monograph by L. Demkowicz [Dem06] bridges mathematical the-
ory and applications, with the emphasis on hp-adaptivity. The book deals
with elliptic and wave problems and includes 1D and 2D codes developed by
Demkowicz & co-workers.

Finally, A. Bossavit’s book [Bos98] is in a category of its own due to its
unconventional approach and style. The focus of this book is on the mathe-
matical principles and structures underlying FE methods in electromagnetism
— in particular, concepts of variational analysis, differential geometry and al-
gebraic topology. While the content is mostly mathematical, Bossavit’s style
of writing makes the material accessible to non-experts (still, the reader will
need enough patience and perseverance to understand the book).

In the coming years, I look forward to seeing further applications of FEM in
the simulation of micro- and nanoscale systems. Electromagnetic field analysis
in optics and photonics seems particularly interesting, as it may well lead to
the development of new devices and materials with completely unconventional
properties and behavior (Chapter 7).
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3.17 Appendix: Generalized Curl and Divergence

This section is an extension of Appendix 6.15 (p. 343) on generalized functions
(distributions) and their derivatives.
The conventional representation of the divergence and curl operators —
say, in Cartesian coordinates — requires differentiability:
0A, 0A, 0A, _0A., 04,

VA= ox + Jy + 9z (VXA = oy 0z’

etc.

However, derivatives in these expressions can be treated in the generalized
sense of distributions (see Appendix 6.15), thereby extending the notion of
divergence and curl to functions that are not differentiable in the standard
sense of differential calculus.

Ezample 12. The A field with a step-like x-component, A, = 0 for x < 0 and
A, =1 for z > 0, and zero y- and z-components, has generalized divergence
V- A = §(z). For the electric field, this Dirac-delta divergence corresponds to
a surface charge.

Ezxample 13. The A field with a step-like z-component, A, = 0 for y < 0
and A, = 1 for y > 0, and zero z- and y-components, has generalized curl
V x A = §(y)z. For the magnetic field, this Dirac-delta curl corresponds to a
surface current.

Instead of appealing to the Cartesian representation of divergence and curl
with generalized derivatives, one can give an equivalent but coordinate-free
definition via integration-by-parts identities. For divergence,

(V-A,¢) = —(A,V9) (3.210)

where the inner product is that of Ls. This identity, in the regular calculus
sense, follows from the calculus formula

V. (Ad) = ¢V-A + A Vo

if fields A, ¢ are continuously differentiable and ¢ has a compact support. (The
latter requirement ensures that the surface integral term in the integration
by parts vanishes). One can then extend the notion of divergence to non-
differentiable fields and define generalized divergence as the linear functional

(V-A, ¢) = (A, Vo) (3.211)

over smooth scalar functions ¢ with a compact support. Equation (3.210)
ensures that the extended definition is consistent with the regular calculus
version of divergence as long as the vector field is smooth.

For a vector field that has a jump of its normal component across a surface
S, but is otherwise smooth, the generalized divergence is
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(VA0 = ~(A V) = [[4]0dS + (-A}0)

where integration by parts was applied. Here [A,] = A, — A, _ is the jump of
the normal component of the vector field across S (n+ referring to the region
into which the normal to S is pointing). Thus

VA = [A]6s + {V-A} (3.212)

where generalized divergence is implied in the left hand side and divergence
in its regular calculus sense is specified by the curly brackets in the right hand
side. This is V.S. Vladimirov’s notation; see Appendix 6.15 on p. 343 and also
footnote 18 on p. 320 and 44 on p. 347.

The curl operator is generalized in a similar fashion:

(VxA, B) = (A, VxB) (3.213)

where the inner product is again that of Lo. This identity, in the regular cal-
culus sense, follows from (3.128) if fields A, B are continuously differentiable
and B has a compact support. Generalized curl is defined as

(VxAB) = (A, VxB) (3.214)

over smooth vector functions B with a compact support. For vector fields
with a discontinuous tangential component across a surface S, but smooth
otherwise, the generalized curl is

VxA = [Axnlds + {VxA} (3.215)

This formula is analogous, and obtained in a similar way, to expression (3.212)
for generalized divergence. A key observation in the context of edge elements is
that a jump of the tangential component of a vector field across a surface leads
to the Dirac-delta term for the generalized curl on this surface; Example 13
on p. 186 is a simple but representative illustration of this property that
is not difficult to verify in general. The tangential component is continuous
if and only if the generalized curl exists as a regular function, not only a
distribution.
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Flexible Local Approximation MEthods
(FLAME)

This chapter is based to a large extent upon my papers [Tsu0Oba, Tsu05b,
Tsu06].

4.1 A Preview

Although the Finite Element Method (FEM) described in Chapter 3 is one
of the most powerful and general analysis techniques, in some cases the com-
plicated FE meshes, data structures and solvers can become computationally
expensive or even impractical.

Finite Difference (FD) algorithms (Chapter 2), on the other hand, operate
on geometrically simple grids and the data structures associated with them
are much simpler than those of FEM. The system solvers also tend to be more
efficient. The downside, in comparison with FEM, is relatively poor numerical
accuracy at material interfaces not conforming to the simple FD grid.

This leads to a legitimate question: given a regular grid not geometrically
conforming to material interfaces, what is — in some sense — “the best” one
can do? The answer, in general, is not the classical FD schemes. This chapter
argues in favor of a new FD calculus referred to by the acronym “FLAME”:
Flexible Local Approximation MEthods. The word “Flexible” implies that
any desired approximation of the solution (exponentials, spherical harmonics,
plane waves, generic or special polynomials, etc.) can be incorporated directly
into the FD scheme. This is in contrast with Taylor polynomial expansions
that form the basis of standard FD.

In FLAME, approximation is always treated as local, with the intention to
represent local features of the solution that in many cases may qualitatively
be known a priori (for example, the behavior of the potential near a material
interface; see also Section 4.5 on p. 219).

As a preview, consider a simple 2D test problem: a cylindrical magnetic
particle, with relative permeability y, = 100, immersed in a uniform external
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field. A contour plot and a grayscale plot of the magnetic scalar potential u
(the magnetic field H = —Vu) are shown in Fig. 4.1 for illustration.!

Fig. 4.1. A contour plot and a grayscale plot of the magnetostatic potential for a
cylindrical particle in a uniform external field.

Fig. 4.2 compares two meshes that give about the same level of numerical
accuracy for this problem. The Finite Element mesh has 31,537 nodes, 62,592
second order triangular elements and 125,665 degrees of freedom (d.o.f.); the
relative error in the potential at the nodes is 2.07 x 10~8. The FLAME grid
has 900 d.o.f. (30 x 30), and the relative error in the potential at the nodes is
2.77 x 1078 if 9-point (3 x 3) stencils are used. The high accuracy of FLAME
schemes is due to the approximating functions employed in FLAME. For the
particle problem, these functions are cylindrical harmonics that represent the
behavior of the potential in the vicinity of the particle much better than the
Taylor polynomials do in standard FD. This chapter explains how FLAME
schemes are constructed.

First, Section 4.2 provides an introduction to FLAME and highlights the
main ideas behind it. Some of these ideas, such as Trefftz basis functions
in the finite-difference context, multivalued approximation, trade-off between
conformity and flexibility of approximation, are nonstandard.

As a preliminary example, FLAME is developed for the (trivial) case of
the 1D Laplace equation in Section 4.2.6 to fix ideas. General construction
of Trefftz—FLAME is presented in Section 4.3, where case studies in 1D, 2D
and 3D are provided. In Trefftz—FLAME, the approximating functions are
chosen as local solutions of the underlying differential equation. In a number
of practically interesting cases, the local solutions are not difficult to derive
analytically; in addition to this chapter, computational examples are given

! The electrostatic problem for a dielectric particle is completely analogous.
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Fig. 4.2. Two meshes yielding about the same level of accuracy for the particle
problem. The FE mesh has 31,537 nodes, 62,592 second order triangular elements
and 125,665 degrees of freedom. The FLAME grid has 900 degrees of freedom.
(Reprinted by permission from [Tsu06] ©2006 Elsevier.)

in Chapter 6 (electrostatic interactions of colloidal particles) and Chapter 7
(electromagnetic field enhancement by plasmonic particles and waves in pho-
tonic crystals).

Section 4.5 reviews existing classes of methods with nontraditional approx-
imation: Generalized FEM (GFEM), variational homogenization, pseudospec-
tral methods, and others. FLAME borrows some features of these methods
(most notably, flexible approximation from Generalized FEM) but is not a
particular case of any of them. Some existing methods turn out to be partic-
ular cases of FLAME: the exact schemes by R.E. Mickens [Mic94, Mic00]; the
Hadley schemes for electromagnetic wave propagation [Had02a]; the “Mea-
sured Equation of Invariance” [MPC194] by K.K. Mei et al.

The chapter concludes with a discussion (Section 4.6) and appendices on
the variaitonal version of FLAME, the 9-point 2D FLAME for the wave equa-
tion, and the Fréchet derivative.

4.2 Perspectives on Generalized FD Schemes

4.2.1 Perspective #1: Basis Functions Not Limited to Polynomials

Taylor polynomials are generic and may be the best option when no a priori
information about the solution is available. When the local behavior of the
solution is known, more effective approximations can usually be generated.
For example, if the solution exhibits boundary layers, wave-like behav-
ior, dipole components, etc., in certain regions, as schematically shown in
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Fig. 4.3, then it may be appropriate to use exponentials, sinusoids, dipole
harmonics, and so on, as approximating functions in the respective regions.
The subsequent sections of this chapter show how this can be accomplished
in a generalized finite-difference framework.

Fig. 4.3. Physical fields or potentials often have salient local features: boundary
layers, wave-like behavior, peaks (left picture), dipole components (right picture),
etc. Numerical accuracy can be improved significantly if such local behavior is taken
into account.

4.2.2 Perspective #2: Approximating the Solution, Not the
Equation

In classic Taylor-based FD schemes, one approximates the underlying differ-
ential equation — i.e. the operator and the right hand side. For instance, on
a three-point stencil in 1D one can expect a second order approximation of
the Poisson equation. There is, however, substantial redundancy built into
this approach. Indeed, the scheme covers all sufficiently smooth functions for
which the Taylor approximation is valid. Yet it is only the solution of the
problem that is of direct interest; it is, in a sense, wasteful to approximate
other functions.
To highlight this point, imagine for a moment that the exact solution u* is
known. It is then trivial to find a three-point scheme that is itself ezact, e.g.:
met oyt e
Up—1 Uy, Ukt1

=0 (4.1)

It is easy to dismiss this example as frivolous, as it requires knowledge of the
exact solution. The message, however, is that as more information about the
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solution is utilized, higher accuracy can be achieved; equation (4.1) is just an
extreme example of this principle.

One practical illustration is the use of harmonic polynomials to approxi-
mate harmonic functions (Sections 4.4.4, 4.4.5). More generally, the “Trefftz”
version of FLAME calculus employs basis functions that satisfy the differential
equation being solved. No effort is wasted on trying to approximate functions
that do not satisfy the equation. This “Trefftz” approximation is purely local
and therefore relatively easy to construct.

4.2.3 Perspective #3: Multivalued Approximation

In FD analysis, interpolation between the nodes is usually viewed just as a
postprocessing tool not inherent in the FD method itself. However, approx-
imation between the nodes is in fact an integral part of the derivation of
classical FD schemes. Indeed, this approximation involves Taylor expansions
around grid nodes (Fig. 4.4). Each of these expansions “lives” in a neigh-
borhood of its node. The disparate Taylor expansions coezist in the overlap
region of two or more such neighborhoods. This is precisely the viewpoint

Fig. 4.4. Taylor approximations around two grid nodes coexist in the overlap area.

taken in FLAME, except that any desirable approximating functions are al-
lowed rather than just the Taylor polynomials. Each of these approximations
is purely local and valid in the vicinity of a given grid stencil; as in classic
FD, two or more such approximations may coexist at any given point. The
discrepancies between these approximations are expected to tend to zero if the
method converges as the grid is refined. At the same time, these discrepancies

may prove useful as an a posteriori error indicator in practical computation
(J. Dai & 1. Tsukerman [DTO07]).

4.2.4 Perspective #4: Conformity vs. Flexibility

The following schematic chart (Fig. 4.5) puts various methods into a “flexibility
vs. conformity” perspective. “Conformity” is a common jargon term for
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(loosely speaking) a sufficient level of smoothness of the solution. More
formally, in “fully conforming” methods the numerical solution belongs to the
appropriate Sobolev space over the whole computational domain.? Various
methods shown in the chart are reviewed in Section 4.5 (p. 219).

flexibility of

approximation
t e -
FLAME Var1411_0na1 < Generalized
homogenization FEM
~
~ A
‘ Discontinuous Variational
bp(;Clal Galerkin multiscale, iip-
kD Discontinuous adaptive FEM,
enrichment, ... meshless, ...
~
~
( Classic ) Classic L,
FD FEM ol of
——— lev e} of
conformity
—_ Trend line: in general, greater flexibility

can be achieved by giving up conformity.

Fig. 4.5. A schematic “conformity vs. flexibility” view of various numerical meth-
ods. One can gain flexibility of approximation by giving up conformity. This general
trend is indicated by the dashed arrow. GFEM outperforms this trend, at a high
computational and algorithmic cost. Classic FD schemes underperform. FLAME
schemes fill the existing void. (Reprinted by permission from [Tsu06] ©2006 Else-
vier.)

The dashed arrow in the figure shows the general trend: flexibility of ap-
proximation can be gained by giving up some conformity of the method. Two
methods stand out of that trend: Generalized FEM (Section 3.15, p. 181) and
classic FD (Chapter 2).

GFEM outperforms the trend: it is fully conforming (i.e. operating in
a globally defined subspace of the relevant Sobolev space) and yet allows
any desirable approximating functions to be used. However, this advantage is
achieved at a high computational and algorithmic cost. Classic FD schemes

2 In vector field problems, divergence-conforming and especially curl-conforming
spaces H(div; ) and H(curl; Q) are widely used; see A. Bossavit’s & P. Monk’s
monographs [Bos98, Mon03].
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underperform relative to the general trend: they are fully nonconforming and
yet make use only of local polynomial (i.e. Taylor) expansions.

FLAME schemes fill the existing void in the upper-left corner of the chart:
they are fully nonconforming and admit arbitrary approximations.

Clearly, it would be somewhat simplistic to ask which side of this chart
is “better”. No one would question the wonderful success of conventional
FE analysis lying at the “conformal” end. However, the conformity re-
quirements do impose significant limitations in a number of practical cases.
This was understood early on in the development of FEM — hence the no-
tion of “variational crimes” (G. Strang [Str72]), the Crouzeix—Raviart ele-
ments (M. Crouzeix & P.A. Raviart [CR73]), etc. The advantages of the
nonconforming end of the spectrum are clear for problems with multiple
moving particles, where finite element mesh generation may be inefficient or
impractical.

4.2.5 Why Flexible Approximation?

As already noted, in many physical problems some salient features of the so-
lution are qualitatively known a priori. Such features include singularities at
point sources, edge and corners; boundary layers; derivative jumps at material
interfaces; strong dipole field components near polarized spherical particles;
cusps of electronic wavefunctions at the nuclei; electrostatic double layers
around colloidal particles — and countless other examples. Such “special” be-
havior of physical fields is arguably a rule rather than an exception. Clearly,
taking this behavior into account in numerical simulation will tend to produce
more accurate and physically meaningful results.

The special features of the field are typically local, and in numerical mod-
eling it is therefore desirable to employ various local approximations of the
field. The focus of this chapter is precisely on “Flexible Local Approxima-
tion” and on methods capable of providing it — that is, employing a variety
of approximating functions not limited to polynomials.

One motivation for developing this class of methods is to minimize the no-
torious “staircase” effect at curved and slanted interface boundaries on regular
Cartesian grids. In the spirit of “Flexible Local Approximation,” the behavior
of the solution at the interfaces is represented algebraically, by suitable basis
functions on simple grids, rather than geometrically on conforming meshes.
More specifically, fields around spherical particles can be approximated by
several spherical harmonics; fields scattered from cylinders by Bessel func-
tions, and so on. Such analytical approximations are incorporated directly
into the difference scheme.

This approach can be contrasted with very well known, and very power-
ful, Finite Element (FE) methodology, where the geometric features of the
problem are represented on complex conforming meshes. The flexibility of ap-
proximation in FEM is achieved through adaptive mesh refinement: changing
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the mesh size (h-refinement) or the order of approximation (p-refinement).
Still, approximation remains piecewise-polynomial.

FEM is indispensable in many problems where the geometries are complex
and material parameters vary. In addition to mechanical, thermal and electro-
magnetic modeling of traditional devices and machines, FEM has recently pen-
etrated new areas of macromolecular simulation. Molecular interface surfaces
can be viewed as intersections of hundreds or thousands of spheres and con-
sequently are geometrically extremely complex. These interfaces separate the
interior of the molecule, that can be approximated by an equivalent relative di-
electric constant on the order of 1 to 4, from the solvent that in “implicit” mod-
els is considered as a continuum with equivalent dielectric and Debye para-
meters ([BSST01, GPNO1, HN95, CF97, FEVMO01, RAHO1, Sim03, DTRS07],
references therein, and Chapter 6). The computational cost of finite element
macromolecular simulation can be enormous. N.A. Baker et al. [BSST01] used
a massively parallel supercomputer with 1152 processors to simulate cell struc-
tures with 88,000 to 1.25 million atoms; the Poisson-Boltzmann model was
used (see Chapter 6).

The computational overhead of mesh generation and matrix assembly in
FEM is significant, and for geometrically simple problems FEM may not be
competitive with Finite Difference (FD) schemes and other methods operat-
ing on simple Cartesian grids. One extreme example of geometric simplicity
comes from molecular dynamics simulations, where charges or dipoles are typ-
ically considered in a cubic box with periodic boundary conditions. The Ewald
algorithm (taking advantage of Fast Fourier Transforms) is then usually the
method of choice (Chapter 5).

Problems with multiple moving particles also call for development and
application of new techniques. Generation of geometrically conforming FE
meshes is obviously quite complicated or impractical when the particles move
and their number is large (say, on the order of a hundred or more). Parallel
adaptive Generalized FEM has been developed [GS00, GS02a, GS02b], but
the procedure is quite complicated both algorithmically and computationally.
Standard FD schemes would require unreasonably fine meshes to resolve the
shapes of all particles. An alternative approach is to use two types of grid:
spherical meshes around the particles and a global Cartesian grid [Fus92,
DHMT™04]. The electrostatic potential then has to be interpolated back and
forth between the grids, which reduces the numerical accuracy.

The celebrated Fast Multipole Method (FMM) has clear advantages for
systems with a large number of known charges or dipoles in free space (or a
homogeneous medium). For inhomogeneous media (e.g. a dielectric substrate,
or finite size particles with dielectric or magnetic parameters different for those
of free space) FMM can still be used as a fast matrix-vector multiplication
algorithm embedded in an iterative process for the unknown distribution of
volume sources. However, the benefits of FMM in this case are much less clear.
An even stronger case in favor of difference schemes (as compared to FMM)
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can be made if the problem is nonlinear (for example, the Poisson—Boltzmann
equation). FMM will remain outside the scope of this chapter.

The proposed new FLAME schemes provide a practical alternative that is
both uncomplicated and accurate (Section 4.3). In addition to multiparticle
simulations, FLAME techniques can be applied to a variety of other problems.
As a peculiar example, super high-order 3-point schemes are derived for the
1D Schrédinger equation in Sections 4.4.6, 4.4.7 and for a 1D singular equa-
tion in Section 4.4.8. With the 20*"-order 3-point scheme as an illustration,
the solution of the harmonic oscillator problem is found almost to machine
precision with 10-20 grid nodes. The system matrix remains tridiagonal.

4.2.6 A Preliminary Example: the 1D Laplace Equation

The 1D Laplace equation is trivial and is used here only to provide the simplest
possible example of the Trefftz—FLAME schemes. For convenience, consider a
uniform grid with size h, choose a 3-point stencil and place the origin at the
middle node of the stencil.

The key step in Trefftz—FLAME schemes is to approximate the solution —
locally, over the stencil — by a linear combination of basis functions satisfying
the underlying differential equation. The 1D Laplace equation is so simple
that the two independent local solutions

PY1r=1 Y2 ==

also happen to be global solutions of the equation (disregarding the boundary
conditions), but this circumstance is irrelevant for FLAME. The numerical
solution over the stencil is

up = c1¥1 + cotho (4.2)

In general, all the variables in this equation may be different for different grid
stencils, although for the 1D Laplace equation c¢; > happen to be the same
throughout the domain. In the future, if there is any possibility of confusion,
the stencil number will be indicated with a superscript, but for now it is
omitted for simplicity.

We are looking for a difference scheme with some coeflicient vector s =
(s1,582,53)7 € R? (s — mnemonic for “scheme”) that would relate the nodal
values up1,2,3 of the numerical solution on the stencil:

S1UR1 + S2Up2 + S3uUpz = 0 (4.3)

Since uy, (4.2) contains only two independent parameters (c1 2), it is clear that
the three nodal values must be linearly related and thus (4.3) must hold for
some s. Finding a suitable coefficient vector s is easy, and we shall do so in a
way that will be straightforward to generalize.

The nodal values that figure in (4.3) are
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upr = up(z1) = ai(xr) + caha(xr)
upe = up(r2) = c1vi(wa) + catpa(w2) (4.4)
ups = up(r3) = c1b1(w3) + cavpa(ws)

sTu, =0 (4.5)

and

u, = Nc (4.6)
where u;, = (up1,un2,un3)’ is the R3-vector of nodal values, ¢ = (c1,c2)T is
the R2-vector of coefficients, and n is the 3 x 2 matrix of nodal values of the

basis functions:
1/)1(%) () (331)
N = wl (1‘2) 1/12(1‘2) (47)
P1(xs)  a(x3)

Combining (4.5) and (4.6), one obtains
sTNe = 0 (4.8)
For this identity to be valid for any ¢, we must have, from basic linear algebra,

s € Null N7 (4.9)

Let us spell this out for the 1D Laplace equation. With ¢; = 1, 12 = = and
the coordinates of the nodes (—h,0, h), the (transposed) nodal matrix (4.7) is

T 1 11
N = <—h 0 h
The Trefftz—FLAME difference scheme then is

s = NullNT = (1,-2,1)7 (times an arbitrary coefficient)

which coincides with the standard 3-point scheme for the Laplace equation.

In the remainder of this chapter, we shall see that the definition (4.9) of
the scheme has a great deal of generality and is applicable to a variety of
equations (Section 4.3). First, however, we need to discuss a general setup for
local, finite-difference-like, approximation.

4.3 Trefftz Schemes with Flexible Local Approximation

4.3.1 Overlapping Patches

An important element of the setup, to be used in the remainder of this chapter,
is a set of overlapping patches Q(*) covering the computational domain Q =
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U@, i =1,2,...n. This cover of the domain is the same as in Generalized
FEM (see Sections 3.15, p. 181, and 4.5.2, p. 221); however, FLAME differs
from GFEM in many critical respects as we shall see.

The domain cover is needed to define a local, patch-wise, approximation
of the solution. More precisely, within each patch Q) we introduce a local
approximation space

U0 = span{p®, a=1,2,...,m(i)} (4.10)

Note that no global approximation space will be considered. Instead, the fol-
lowing notion of multivalued approximation is introduced:

For a given domain cover {UQ(} with corresponding local spaces ¥, a
multivalued approximation uj, {UQ("} of a given potential u is just a collection
of patch-wise approximations:

un{UQD} = {0 € T} (4.11)

In regions where two or more patches overlap (Fig. 4.6), several local approx-
imations coexist and do not have to be the same. This situation in fact is
inherent in the FD methodology but is almost never stated explicitly.?

The second ingredient of FLAME is a set of n nodes (the number of nodes
is equal to the number of patches). Although a meshless setup is possible,
we shall for maximum simplicity assume a regular grid with a mesh size h.
The i-th stencil is defined as a set of m(i) nodes within Q(): stencil #i =
{nodes € Q(i)}. For any continuous potential u, AMu will denote the set of
its values at all grid nodes (viewed as a Euclidean vector in R"), and N«
— the set of nodal values on stencil #i. Although the FLAME solution may
be multivalued between the nodes, its values at the nodes are required to be
unique.

(4)
h

Within each patch, the approximate solution w;’ is sought as a linear

combination of m(7) basis functions {UJS)}:

) = 3 ) (4.12)

Here we are following the same line of reasoning as in the preliminary
example of Section 4.2.6 on p. 197, but in a more general setting. We need
to relate the coefficient vector ¢ = {cg)} € R™ of expansion (4.12) to the
vector u€RM of the nodal values of ugf) on stencil #i. (Both M and m
can be different for different patches (4); this is understood but not explicitly
indicated for simplicity of notation.) The relevant transformation matrix N,

3 One might argue that in FD methods approximation between the grid nodes is not
multivalued but simply undefined. This point of view is not incorrect but ignores
the fact that the very derivation of FD schemes typically relies upon disparate
Taylor expansions in the neighborhoods of each grid point.
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Fig. 4.6. Overlapping patches with 5-point stencils. (Reprinted by permission from
[Tsu04b] ©2004 IEEE.)

W@ = N (4.13)

contains the nodal values of the basis functions on the stencil; if r; is the
position vector of node k, then

() () L ()
o = | e i) e (414)
D) 0 ar) - O ()

4.3.2 Construction of the Schemes

In the remainder, except for Appendix 4.7.3, the focus will be on the Trefftz
version of FLAME, where the approximating functions ¥(9) satisfy the under-
lying differential equation (4.15) exactly. Trefftz methods are well known in
the variational context (I. Herrera [Her00]); in contrast, here a purely finite-
difference approach is taken and will prove to be attractive in a variety of
cases.? Trefftz—FLAME is simpler and at the same time usually more ef-
fective than the more general variational version of FLAME considered in
Appendix 4.7.3 on p. 232.

Since the basis functions by construction already satisfy the underlying
differential equation, so does the approximate solution ug), automatically.
As we shall see, there will typically be fewer approximating functions than

4 The starting point for this development of Trefftz— FLAME schemes was Gary
Friedman’s non-variational version of FLAME for unbounded problems [Fri05],
[HFT04].
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nodes within the patch — most frequently, m functions for M = m + 1 stencil
nodes. The nodal matrix N is thus in general rectangular.® The number of
approximating functions may be different for different patches, but for brevity
of notation this is not explicitly indicated.

Let us initially assume that the underlying differential equation within a
patch Q) has a zero right hand side:

Lu=0 in QW (4.15)

where L is a differential operator (one may want to have in mind, say, the
Laplace operator as one of the simplest examples).
Within each patch, the approximate solution ugf) is sought as a linear
combination (4.12) of m(i) basis functions {w,(li)}. Identity (4.13) relates the
vector of coefficients ¢(® to the nodal values:
NOM = 3@ (4.16)

In the simplest 1D example, with m = 2 basis functions 1; o at three grid
points x;_1, @, Ti41, matrix N (4.14) is

, Vi(Tio1)  Y2(wio1)
NO = () a(w) (4.17)
Vi(@it1)  Ya(zip1)

We have already seen this for the 1D Laplace equation and the three-point
stencil in Section 4.2.6. More generally for an M-point stencil, a vector of
coefficients s() € RM of the difference scheme is sought to yield

sy =0 (4.18)

for the nodal values u(*) of any function ugf) of form (4.12). Due to (4.13) and
(4.18),
SOT N0 — (4.19)

For this to hold for any set of coefficients ¢(*), the null-space condition already
familiar to us must hold: ‘ A
s e Nul NOT (4.20)

If the null space is of dimension one, s*) represents the desired scheme (up
to an arbitrary factor), and (4.20) is the principal expression of this Trefftz—
FLAME scheme. The meaning of (4.20) is simple: each equation in the system
NOT () = 0 implies that the respective basis function satisfies the difference
equation with coefficients s(¥). There is thus an elegant duality feature between
the continuous and discrete problems: any linear combination of the basis

® However, in the variational-difference formulation (Appendix 4.7.3), the number
of basis functions is typically equal to the number of nodes.
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functions satisfies both the differential equation (due to the choice of the
“Trefftz” basis) and the difference equation with coefficients s(*).

An alternative interpretation of (4.20) is that s(*) is orthogonal to the
image of N due to (4.19), hence s is in the null space of N7, In the
complex case, though, orthogonality should not be understood in terms of the
standard complex inner product which, unlike (4.19), includes conjugates.

While there is no obvious way to determine the dimension of the null
space a priori, for several classes of problems considered later the dimension
is indeed one. If the null space is empty, the construction of the Trefftz—
FLAME scheme fails, and one may want to either increase the size of the
stencil or reduce the basis set. If the dimension of the null space is greater
than one, there are two general options. First, the stencil and/or the basis
can be changed. Second, one may use the additional freedom in the choice of
the coefficients s() to seek an “optimal” (in some sense) scheme as a linear
combination of the independent null space vectors. For example, it may be
desirable to find a diagonally dominant scheme.

Once the basis and the stencil are chosen, the Trefftz—FLAME scheme is
generated in a very simple way:

e Form matrix N of the nodal values of the basis functions.
e Find the null space of N7,

Proposition 11. The Trefftz—FLAME scheme defined by (4.20) is invariant
with respect to the choice of the basis in the local space W) = span{z/)((f)}.

Proof. A linear transformation of the i-basis replaces N7 with QNT, where
@ is a nonsingular matrix, which does not affect the null space. a

The algorithm can be sketched as a “machine” for generating Trefftz—
FLAME schemes (Fig. 4.7).

It should be stressed that the algorithm is heuristic and no blanket claim
of convergence can be made. The schemes need to be considered on a case-
by-case basis, which is done for a variety of problems in Section 4.3. However,
consistency can be proven (Section 4.3.5) in general, and convergence then fol-
lows for the subclass of schemes with a monotone difference operator [Tsu05al.

As we shall see in Section 4.4, definition (4.20), despite its simplicity, is
surprisingly rich. For different choices of basis functions and stencils it gives
rise to a variety of difference schemes.

4.3.3 The Treatment of Boundary Conditions

Note that in the FLAME framework approximations over different stencils are
completely independent from one another. Therefore, if the domain boundary
conditions are of standard types and no special behavior of the solution at
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» 1 nodes i=12

s Cover: Q =0QW T

= ‘Trefftz’ basis functions {\,”} satisfying
the differential equation

n
Input

Compute N — the matrix of nodal values
of \ on the stencil

Coefficients of the difference scheme:

- QOutput
the null space of N’

Fig. 4.7. A “machine” for Trefftz—FLAME schemes. (Reprinted by permission from
[Tsu0b5a] (©2005 IEEE.)

the boundaries is manifest, one can simply employ any standard FD scheme
at the boundary.%

If the solution is known to exhibit some special features at the boundary,
it may be possible to incorporate these features into FLAME. One example
— Perfectly Matched Layers (PML) for electromagnetic and acoustic wave
propagation — is considered briefly in Section 4.4.11 and in [Tsu05a].

4.3.4 Trefftz—FLAME Schemes for Inhomogeneous and Nonlinear
Equations

So far we considered Trefftz—FLAME schemes only for homogeneous equations
(i.e. with the zero right hand side within a given patch). For inhomogeneous

equations of the form _
Lu = [ in QW (4.21)

a natural approach is to split the solution up into a particular solution
of the inhomogeneous equation and the remainder u((f) satisfying the homo-

geneous one:

(1)
f

u=ul’ +u) (4.22)
Lul’ =0;  Lul) = f (4.23)

Superscript (¢) emphasizes that the splitting is local, i.e. needs to be introduced
only within its respective patch Q®) containing the grid stencil around node

6 Since most Taylor-based schemes are particular cases of FLAME (with polynomial
basis functions), it would be technically correct to say that the whole set of
difference equations, including the treatment of boundary conditions, is based on
FLAME.
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i. Since v\ is local (and in particular need not satisfy any exterior boundary
conditions), it is usually relatively easy to construct.

Let a Trefftz— FLAME scheme s be generated for a given set of basis
functions and assume that the consistency error e for this scheme tends to
zero as h — 0; that is,

sSOTNDLD = ¢ = ¢ (h, ugi)) — 0 as grid size h — 0 (4.24)

where N, as before, denotes the nodal values of a function on stencil (3).
Then clearly

sOTN @y = DT Ay 4 §(i)T/\/’(i)uf — §(i)TN‘(i)uf + €
This immediately implies that the consistency error of the difference scheme

0Ty, = sOTN Oy, (4.25)
is €, i.e. exactly the same as for the homogeneous case. (The Euclidean vector
u;, of nodal values does not need the superscript because the nodal values are
unique and do not depend on the patch.) Note that there are absolutely no

constraints on the smoothness of ugf), provided that it has valid nodal values.

The particular solution u'? can even be singular as long as the singularity
point does not coincide with a grid node. In [Tsu04a] difference schemes of
this kind were constructed for the Coulomb potential of point charges. An
electrostatic problem with a line charge source is solved in a similar way in
[Tsu0bal.

For nonlinear problems, the Newton—-Raphson method is traditionally used
for the discrete system of equations. In connection with FLAME schemes,
Newton-Raphson—Kantorovich iterations are applied to the original continu-
ous problem rather than the discrete one. Let the equation be

Lu = f (4.26)

where L is a differentiable operator. The (k+1)-th approximation w41 to the
exact solution is obtained from the k-th approximation uy by linearization in
the following way. If u = uy + du,

Lu = L(ug+0u) = Lux + L'(ug)du+ o(||dul) (4.27)

where L’ is the Fréchet derivative of L (Appendix 4.9). Ignoring higher-order
terms, one gets an approximation duy for du by solving the linear system

L'(uk) 5uk = f - Luk (428)
and then updates the solution:

U1 = U + oug (429)
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Equivalently,
Ukl = Uk + (L’(uk))_l(f — Luy) (4.30)

Along with an initial guess ug, iterative process (4.28), (4.29) — or just (4.30) —
defines the Newton—Raphson—Kantorovich algorithm. Trefftz—FLAME schemes
can then be applied to L’ (which of course is a linear operator by definition),
provided that a suitable set of local approximating functions can be found.

Further analysis of the N-R-K iterations for FLAME schemes in colloidal
simulation (the Poisson-Boltzmann equation) can be found in Section 6.8 on
p- 319.

4.3.5 Consistency and Convergence of the Schemes

Let us rewrite the patch-wise difference equation (4.25) in matrix form as a
global system of difference equations for the underlying differential equation
Lu = f:

Lyw, = f,, with f, = sOTN@y) (4.31)

(if the differential equation is homogeneous within the patch, then ugj) =0).

Note that the i-th row of matrix L, contains the coefficients of scheme s
and, in addition, a (large) number of zero entries.” We shall assume that the
equations can be scaled in such a way that

af(r) < f,, < cf(r), Vre QW c9>0 (4.32)

where ¢; 2 do not depend on ¢ and h. This scaling is important because other-
wise e.g. the meaningless scheme h'%°u; = 0 would technically be consistent
(as defined below) for any differential equation.

The consistency error of scheme (4.31) is, by definition, obtained by sub-
stituting the nodal values of the exact solution u* into the difference equation.
We shall call this scheme consistent if, with scaling (4.32), the following con-
dition holds:

consistency error = e.(h) = max‘§(i)TN(i)u* —
5 I

= max [sOTN@Oy* — th)’ — 0 ash—0 (4.33)

For FLAME schemes, consistency follows directly from the approximation
properties of the basis set as long as (4.32) holds. Indeed, let ¢,(h) be the
approximation error of the “homogeneous part” ugl) of the exact solution u*
in a patch Q®):

7 Our notation would perhaps be more consistent if the matrix were denoted with
L, and the scheme with [ or, alternatively, if the scheme were 5™ and the
matrix were Sp,. However, throughout the book the usual symbol L is adopted
for differential and difference operators, and s is used as a mnemonic symbol for
“scheme”.
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u* — ugf) - Za:l cg)d)g) (4.34)

€o(h) = min
c(i) gRm

Equivalently, there exists a coefficient vector D e R™ such that
w o= ) S D +n, Il = ealh) (4.35)

For the nodal values, one then has due to (4.16)

NGOy = J\/(i)u?) + NOD (4.36)

where 7 = Ny is the vector of nodal values of 7 on stencil i and N is (as

always) the matrix of nodal values of the basis functions. Due to (4.35),

Hﬂ”oo < Ea(h)

and due to (4.36), the consistency error for scheme (4.31) with coefficients
(4.20) is

|€c(h)| = max ‘§(1)TN(1)U* o §(i)TN(i)u§ci)

max ‘§(1>T( NOLD 4 )

= Imax
i

§(i)Tﬂ’ < Meg(h)  (4.37)

which shows that the consistency error is bounded by the approximation error.

Theoretical results relevant to the convergence of the schemes were sum-
marized in Chapter 2. Estimate (2.148) (p. 62) of the solution error is the ratio
of approximation and stability parameters. The approximation accuracy €, is
key. In fact, the “Trefftz” bases are effective not just because they (by defini-
tion) satisfy the underlying differential equation, but because they happen to
have superior approximation properties in many cases (see e.g. Sections 4.4.4,
4.4.5).

4.4 Trefftz—FLAME Schemes: Case Studies

4.4.1 1D Laplace, Helmholtz and Convection-Diffusion Equations

The 1D Laplace equation was already considered as a preliminary example in
Section 4.2.6 of this chapter (p. 197). A less trivial case is the 1D Helmholtz
equation

with any complex k. Two basis functions satisfying the Helmholtz equation
are

1 = exp(kx); 2 = exp(—kx)
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For a three-point stencil with the coordinates of the nodes (—h,0,k) (the
middle node is placed at the origin for simplicity), the matrix of nodal values
(4.14) is
NT — (exp(nh) 1 exp(kh) )
exp(kh) 1 exp(—kh)

and the resultant difference scheme is
s = NullNT = (1, —2cosh(xh), 1)T (4.38)

Since the theoretical solution in this 1D case is exactly representable as a
linear combination of the chosen basis functions, the difference scheme yields
the exact solution (in practice, up to the round-off error). This scheme is
known and has been derived in a different way by R.E. Mickens [Mic94]; see
also C. Farhat et ol. [FHF01] and I. Harari & E. Turkel [HT95].
Quite similarly, for the 1D convection-diffusion equation
d*u du
— —b— =0, D>0
dx? dx
with constant coefficients D and b, one has two Trefftz basis functions:

Y1 = 1; o = exp(qr), q = b/D

For the 3-point stencil (—h,0,h), the (transposed) matrix of nodal values

(4.14) is 1 o
N = (eXp(—qh) 1 exp(qh))

and the Trefftz—FLAME difference scheme is

exp(qh) _ exp(gh) +1 1
exp(gh) — 1’ exp(gh) — 17 exp(gh) — 1

s = NullN" = { } (4.39)
(up to an arbitrary factor). This coincides (in the case of the homogeneous
convection-diffusion equation with constant coeflicients) with the well-known
exponentially fitted scheme (see e.g. D.B. Spalding [Spa72], G.D. Raithby &
K.E. Torrance [RT74], S.V. Patankar [Pat80]).

4.4.2 The 1D Heat Equation with Variable Material Parameter

Consider the 1D homogeneous heat conduction equation:
d du
— | AMx)— ) =0 4.40
& (%) (1.40)
where A(x) is the material parameter. Two approximating functions for the

FLAME-Trefftz scheme can be chosen as linearly independent solutions of this
equation on the interval [zp_1, Tgi1]:
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Y1 =1, o :/ ATH(©)de

k

With this basis, the transposed nodal matrix (4.14) for the stencil (zx_1, 2k,

Tpy1) 1S
1 1 1
NT =
(Ek—1 0 Ek+1>

where Xy g = [ ATHE)dE, T = [;ATH(E) dE have the physi-
cal meaning of thermal resistances of the respective segments. The difference
scheme is, up to an arbitrary factor,

s = NullNT = (_El:—lp E/;—11+EI;-11-17 —El;-sl-l)T (4.41)

which has a clear interpretation as a flux balance equation:
Sty (ue —up—1) + St (ug — ugg1) = 0

Such schemes are indeed typically derived from flux balance considerations
(see e.g. the “homogeneous schemes” in [Sam01]) but, as we can now see,
emerge as a natural particular case of Trefftz—FLAME.

If the integrals in the expressions for thermal resistances ¥ can be cal-
culated exactly, the scheme is itself exact, i.e. the consistency error is zero
(the theoretical solution satisfies the FD equation). This holds even if the
material parameter \ is discontinuous. A very similar analysis applies to the
1D linear electrostatic equation with a variable (and possibly discontinuous)
permittivity e.

4.4.3 The 2D and 3D Laplace Equation

Consider a regular rectangular grid, for simplicity with spacing h the same in
both directions, and the standard 5-point stencil. The origin of the coordinate
system is placed for convenience at the central node of the stencil. With four
basis functions [1,x,y,2? — y?] satisfying the Laplace equation, the nodal
matrix (4.14) becomes

11 11 1
o —noan o
NM=14un 0o 00 —n

REORE 0 R B2

The difference scheme is then Null N7 = (-1, 1,4, -1, —1)7 (times an ar-
bitrary constant), which coincides with the standard 5-point scheme for the
Laplace equation. A more general case with different mesh sizes in the z- and
y- directions is handled similarly.

The 3D case is also fully analogous. With six basis functions {1, z,y, z,
22 — 92, 2% — 2%} and the standard 7-point stencil on a uniform grid, one
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arrives, after computing the null space of the respective 6 x 7 matrix N7, at
the standard 7-point scheme with the coefficients (-1, —1,—1,6, -1, -1, —1)7.
As in 2D, the case of different mesh sizes in the z-, y- and z-directions does
not present any difficulty.

4.4.4 The Fourth Order 9-point Mehrstellen Scheme for the
Laplace Equation in 2D

The solution is, by definition, a harmonic function. Harmonic polynomials are
known to provide an excellent (in some sense, even optimal [BM97]) approx-
imation of harmonic functions [And87, BM97, Ber66, Mel99]. Indeed, for a
fixed polynomial order p, the FEM and harmonic approximation errors are
similar [BM97]; however, the FEM approximation is realized in a much wider
space containing all polynomials up to order p, not just the harmonic ones.
For solving the Laplace equation, the standard FE basis set can thus be viewed
as having substantial redundancy that is eliminated by using the harmonic
basis. The following result is cited in [BM97]:

Theorem 6. (Szego) Let Q C R? be a simply connected bounded Lipschitz
domain. Let Q@ D> Q and assume that u € L*(Q) is harmonic on Q. Then
there is a sequence (up)p:O of harmonic polynomials of degree p such that

o= upll ooy < € exp(=p) lull 12

[V(u—up)llre(@) < cexp(=p)[lullp2(e (4.42)
where v, ¢ > 0 depend only on €2, Q.
For comparison, the H'-norm error estimate in the standard FEM is

Theorem 7. (P.G. Ciarlet & P.A. Raviart, I. Babuska & M. Suri [CR72],
[Cia80], [BS94]). For a family of quasiuniform meshes with elements of order
p and maximum diameter h, the approrimation error in the corresponding
finite element space V'™ is

Uienvfn lu— vl = CH*'p~ = flul| e gy

where p = min(p + 1, k) and ¢ is a constant independent of h, p, and u.

For a fixed polynomial order p, the FEM and harmonic polynomial esti-
mates are similar (factor O(hP) vs. O([exp(—~)]P) if the solution is sufficiently
smooth. However, the FEM approximation is realized in a much wider space
containing all polynomials up to order p, not just the harmonic ones. For
solving the Laplace equation, the standard FE basis set can thus be viewed
as having substantial redundancy that is eliminated by using the harmonic
basis.



210 4 Flexible Local Approximation MEthods (FLAME)

With these observations in mind, one may choose the basis functions as
harmonic polynomials in x, y up to order 4, namely, {1, z,y, vy, x> —y?, x(2*—
3y2), y(3z2 — y?), (22 — y?)wy, (22 — 22y — y?)(22 + 22y — y?)}. Then for a
3 x 3 stencil of adjacent nodes of a uniform Cartesian grid, the computation
of the nodal matrix (4.14) (transposed) and its null space is simple with any
symbolic algebra package. If the mesh size is equal in both x- and y- directions,
the resultant scheme has order 6. Its coefficients are 20 for the central node,
—4 for the four mid-edge nodes, and —1 for the four corner nodes of the
stencil. In the standard texts (L. Collatz [Col66], A.A. Samarskii [Sam01]),
this scheme is derived by manipulating the Taylor expansions for the solution
and its derivatives.

4.4.5 The Fourth Order 19-point Mehrstellen Scheme for the
Laplace Equation in 3D

Construction of the scheme is analogous to the 2D case. The 19-point stencil
is obtained by considering a 3 x 3 x 3 cluster of adjacent nodes and then
discarding the eight corner nodes. The basis functions are chosen as the 25
independent harmonic polynomials in z, y, z up to order 4. Computation of
the matrix of nodal values (4.14) and of the null space of its transpose is
straightforward by symbolic algebra.

The result is the 19-point fourth-order “Mehrstellen” scheme by L. Collatz
[Col66] (see also A.A. Samarskii [Sam01]) already discussed in Chapter 2
(Section 2.8.5, p. 58). In that chapter, as well as in the Collatz and Samarskii
books, the scheme is derived from completely different considerations.® We
can now see, however, that in the Trefftz—FLAME framework Mehrstellen
schemes and classic Taylor-based schemes for the Laplace equation stem from
the same root — namely, the nullspace equation (4.20). The scheme is defined
by the chosen stencil and a harmonic polynomial basis.

As a side note, the 19-point Mehrstellen scheme, due to its geometri-
cally compact stencil, reduces processor communication in parallel solvers
and therefore has gained popularity in computationally intensive applications
of physical chemistry and quantum chemistry: electrostatic fields of multiple
charges, the Poisson—Boltzmann equation in colloidal and protein simulation,
and the Kohn-Sham equation of Density Functional Theory (E.L. Briggs et
al. [BSB96)).

4.4.6 The 1D Schrédinger Equation. FLAME Schemes by
Variation of Parameters

This test problem is borrowed from the comparison study by R. Chen et
al. [CXS93] of several FD schemes for the boundary value (rather than eigen-
value) problem for the 1D Schrédinger equation over a given interval [a, b]:

8 A generalization of the Mehrstellen schemes, known as the HODIE schemes by
R.E. Lynch & J.R. Rice [LR80], will not be considered here.
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—u"+(V(z)— E)u = 0, wu(a)=1ua ulb)=nu (4.43)

The specific numerical example is the 5" energy level of the harmonic oscil-
lator, with V(z) = 2% and E = 11 (= 2 x 5+ 1). For testing and verification,
boundary conditions are taken from the analytical solution, and as in [CXS93]
the interval [a, b] is [—2, 2]. The exact solution is

Uexact = (152 — 2023 + 42°) exp(—2?/2) (4.44)

To construct a Trefftz—FLAME scheme for (4.43) on a stencil [z;_1, ®;, it1]
(where x;41 = x; +h), one would need to take two independent local solutions
of the Schrédinger equation as the FLAME basis functions. The exact solution
in our example is reserved exclusively for verification and error analysis. We
shall construct Trefftz—FLAME scheme pretending that the theoretical solu-
tion is not known, as would be the case in general for an arbitrary potential
V(x).

Thus in lieu of the exact solutions the basis set will contain their ap-
proximations. There are at least two ways to construct such approximations.
This subsection uses a perturbation technique that produces a fourth-order
scheme. The next subsection employs the Taylor expansion that leads to 3-
point schemes of arbitrarily high order.

At an arbitrary point xg let

V(z) = &% 4+ 6V, where k? = V(o) (4.45)
u(z) = wo(z) + du(x) (4.46)
ug(x) = cqpexp(kr) + c_exp(—kzx), with arbitrary ¢y, c_ (4.47)

Substituting these expressions into the Schrédinger equation and ignoring the
higher order term, one gets the perturbation equation

su’ — k*u = Vg (4.48)

Solving this equation by variation of parameters, one obtains after some al-
gebra

ue) = (o) + Gula) = wofe) + 5 explne) [ uol€) exp(—nEV (©)de

Zo

_% exp(—kx) /m uo (&) exp(k€)OV (£)d¢ (4.49)

0
Two independent sets of values for c;, c_ then yield two basis functions for
FLAME.

Fig. 4.8 compares convergence of several schemes: the well-known Numerov
scheme, the “Numerov—Mickens scheme” [CXS93], Trefftz—FLAME, and the
Mickens scheme [Mic94, CXS93]. The first three schemes are all of order four,
but the FLAME errors are much smaller. In the following section, the FLAME
error is further reduced, in many cases to machine precision.
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Fig. 4.8. Convergence of the variation of parameters — FLAME scheme for the
Schrédinger equation. Comparison with other schemes described in [CXS93] is
very favorable (note the logarithmic scale). As the Numerov and Numerov-Mickens
schemes, the FLAME scheme is of fourth order but its error is much smaller. The
Taylor version of FLAME (see below) performs much better still. (Reprinted by
permission from [Tsu06] ©2006 Elsevier.)

4.4.7 Super-high-order FLAME Schemes for the 1D Schrédinger
Equation

For sufficiently smooth potentials V' (z), as in our example of the harmonic
oscillator, one can expand the potential and the solution into a Taylor series
around the central stencil node x; to obtain two local independent solutions
with any desired order of accuracy. Consequently, the order of the FLAME
scheme can also be arbitrarily high, even though the stencil still has only three
points.

For the 20*"-order scheme as an example, the roundoff level of the numer-
ical error is reached for the uniform grid with just 10-15 nodes (Table 4.4.7).
For a fixed grid size and varying order of the scheme, the error falls off very
rapidly as the order is increased and quickly saturates at the roundoff level
(Fig. 4.9).

Table 4.1. Errors for the 3-point FLAME scheme of order 20

Number of nodes‘Mean absolute error
7 2.14E-10
11 2.06E-14
15 1.75E-15
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Fig. 4.9. Error vs. order of the Trefftz—FLAME scheme for the model Schrédinger
equation. (Reprinted by permission from [Tsu06] (©2006 Elsevier.)

4.4.8 A Singular Equation

G.W. Reddien & L.L. Schumaker [RS76] (RS) proposed a spline-based collo-
cation method for 1D singular boundary value problems and use the following
example:?

(%) — 2%y =0, O0<x<l, uw0)=1, u(l)=0 (4.50)

Here we apply the non-variational FLAME method to the same example and
compare the results. A 3-point stencil on a uniform grid is used for FLAME.
The two basis functions for FLAME are constructed separately for stencil
points in the vicinity of the singularity point x = 0 and away from zero.

1) Let the midpoint z; of the i-th stencil be sufficiently far away from zero
(the singularity point of the differential equation): ; > ¢, where ¢ is a chosen
threshold. Expanding u over the i-th stencil into the Taylor series with respect
toé =z —x,

— o k
u = Zk:o cré (4.51)
one obtains, by straightforward calculation, the following recursion:

ki + cp—1 — cpr1(k+ 1) (k + %)
zi(k+1)(k+2) ’

Chta = k=0,1,... (4.52)
where the coefficients with negative indices are understood to be zero. Two
basis functions are obtained by choosing two independent sets of starting
values for ¢ for the recursion and by retaining a finite number of terms,

k = K, in series (4.51).

% This example is as a result of my short communication with Larry L. Schumaker
and Douglas N. Arnold.
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2) For x; < §, the approach is similar but the series expansion is different:

_ > k/2
u = Zk:o b (4.53)
Straightforward algebra again yields
Vbo,b1; b2 =b3=0
4by,_
bpys = b2 =0,1,... (4.54)

(k+1)(k+2)’
Two independent basis functions are then obtained in the same manner as
above, with terms k < 2K retained in (4.53).

Numerical values of the solution at = 0.5 are given in [RS76, CR72]
and serve as a basis for accuracy comparison. As Tables 4.2 and 4.3 show,
Trefftz—-FLAME gives orders of magnitude higher accuracy than the methods
of [RS76, CR72]. The price for this accuracy gain is the analytical work needed
for “preprocessing,” i.e. for deriving the FLAME basis functions.

This example is intended to serve as an illustration of the capabilities
of FLAME and its possible applications; it does not imply that FLAME is
necessarily better than all methods designed for singular equations. Many
other effective techniques have been developed (e.g. M. Kumar [Kum03]).

n FLAME, K =6 | FLAME, K = 12 | RS [RS76] | Jamet [Jam70]

8 | 0.25204513942296 | 0.252041978171219 | 0.25305 0.29038

16 | 0.252044597187729 | 0.252041977565477 | 0.25223 0.27826
8192 | 0.252042091673094 | 0.252041976551393 0.25310

Table 4.2. Numerical values of the solution at z = 0.5: FLAME vs. other methods.
The number of grid subdivisions and the order of the scheme in FLAME varied.

n | FLAME, K =6 | FLAME, K = 12 | RS [RS76] | Jamet [Jam70]

8 3.16E-06 1.68E-09 1.01E-03 3.83E-02

16 2.62E-06 1.07E-09 1.88E-04 2.62E-02
8192 1.15E-07 5.80E-11 1.06B-03

Table 4.3. Numerical errors of the solution at x = 0.5: FLAME vs. other methods.
The result for the FLAME scheme of order 40 with 8192 grid subdivisions was
treated as “exact” for the purposes of error evaluation.
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4.4.9 A Polarized Elliptic Particle

This subsection gives an example of FLAME in two dimensions. A dielectric
cylinder, with an elliptic cross-section, is immersed in a uniform external field.
An analytical solution using complex variables is developed, for example, by
W.B. Smythe [Smy89].

If I, > l, are the two semiaxes of the ellipse and the applied external field
is in the z-direction, then the solution in the first quadrant of the plane can be
described by the following sequence of expressions [Smy89], with z = z + iy:

o = lz -2
B «
= z— V2% —a?
A — (lm’ + ly)(lz — dy)
(le — ly)(lo: + Gly)
g~ latly
lp +ely

Potential outside the ellipse:

"
- nfs o)
2 Z1

Potential inside the ellipse:

1
u = Re [QB” <21 + >]
2 z1

Similar expressions hold in other quadrants and for the y-direction of the
applied field.

In the numerical example below, the computational domain € is taken to
be the unit square [0, 1] x [0, 1]. To eliminate the numerical errors associated
with the finite size of this domain, the analytical solution (for the z-direction
of the external field) is imposed, for testing and verification purposes, as the
Dirichlet condition on the exterior boundary of ).

For the usual 5-point stencil in 2D, four basis functions would normally
be needed to yield the null space of dimension one in Trefftz—FLAME. The
choice of three basis functions is clear: 1; = 1, and 13 3 are the theoretical
solutions for two perpendicular directions of the applied external field (along
each axis of the ellipse). Deriving a fourth Trefftz function is not worth the
effort. Instead, Trefftz—FLAME is applied with the three basis functions. This
yields a two-dimensional null space, with two independent 5-point difference
schemes s, 5 € R®. It then turns out to be possible to find a linear combination
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of these two schemes with a dominant diagonal entry, so that the convergence
conditions of Section 4.3.5 are satisfied.!?

The particular results below are for the material parameter €;,, = 10 within
the ellipse, for €54t = 1 outside the ellipse, and for the main axis of the ellipse
aligned with the external field. The semiaxes are [, = 0.22 and [, = 0.12. The
FLAME basis functions 11 2 3 are introduced for all stencils having at least one
node inside the ellipse and, in addition in some experiments, in several layers
around the ellipse. These additional layers are such that {midpoint < Ecutofr,
where & = (z/1;)% + (y/l,)? — 1 (with z, y measured from the center of the
ellipse), {midpoint 18 the value of £ for the midpoint of the stencil, and &qyior 1S
an adjustable threshold. For & .10 = 0 no additional layers with the special
basis are introduced. For &.utof > 1 the special bases are used throughout
the domain, which yields the solution with machine precision.!! Outside the
cutoff, the standard 5-point scheme for the Laplace equation is applied, which
asymptotically produces an O(h?) bottleneck for the convergence rate.

Fig. 4.4.9 compares the relative errors in the potential (nodal 2-norm)
for the standard flux balance scheme and the FLAME scheme. The errors
are plotted vs. grid size h. For &quto = 0, no additional layers with special
bases are introduced in FLAME around the elliptic particle; for {eutor = 3,
three such layers are introduced. It is evident that Trefftz—FLAME exhibits
much more rapid convergence than the standard flux-balance scheme. The
rate of convergence for FLAME is formally O(h?), but only due to the above-
mentioned bottleneck of the standard 5-point scheme away from the ellipse.

4.4.10 A Line Charge Near a Slanted Boundary

This problem was chosen in [Tsu05a] to illustrate how FLAME schemes can
rectify the notorious “staircase” effect that occurs when slanted or curved
boundaries are rendered on Cartesian grids. The electrostatic field is generated
by a line charge located near a slanted material interface boundary between
air (relative dielectric constant e = 1) and water (¢ = 80). This can be viewed
as a drastically simplified 2D version of electrostatic problems in macro- and
biomolecular simulation [Sim03, RAHO01, GPNO1].

Four basis functions on a 5-point stencil at the interface boundary were
obtained by matching polynomial approximations in the two media via the
boundary conditions. As demonstrated in [Tsu05a], the Trefftz—FLAME result
is substantially more accurate than solutions obtained with the standard flux-
balance scheme.

10 Diagonal dominance has been monitored and verified in numerical simulations
but has not been shown analytically. Therefore, convergence of the scheme is not
proven rigorously, but the numerical evidence for it is very strong.

11 Because in this example the exact solution happens to lie in the FLAME space.
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Fig. 4.10. The 5-point Trefftz—FLAME scheme yields much faster convergence
than the standard 5-point flux-balance scheme. The numerical error in FLAME is
reduced if special bases are introduced in several additional layers of nodes outside
the particle. (Reprinted by permission from [Tsu05a] ©2005 IEEE.)

4.4.11 Scattering from a Dielectric Cylinder

In this classic example, a monochromatic plane wave impinges on a dielec-
tric circular cylinder and gets scattered. The analytical solution is available
via cylindrical harmonics (R.F. Harrington [Har01]) and can be used for ver-
ification and error analysis. The basis functions in FLAME are cylindrical
harmonics in the vicinity of the cylinder and plane waves away from the
cylinder. The 9-point (3 x 3) stencil is used throughout the domain (with the
obvious truncation to 6 and 4 nodes at the edges and corners, respectively).
A Perfectly Matched Layer is introduced in some test cases [Tsu05a] using
FLAME. Very rapid 6*"-order convergence of the nodal values of the field was
experimentally observed when the Dirichlet conditions were imposed on the
exterior boundary of the computational domain. It would be quite difficult to
construct a conventional difference scheme with comparable accuracy in the
presence of such material interfaces.

In this section and the following one, we consider the F-mode (one-
component FE field and a TM field) governed by the standard 2D equation

V. (up7'VE) + w?E = 0 (4.55)

with some radiation boundary conditions for the scattered field. The analytical
solution is available via cylindrical harmonics [Har01l] and can be used for
verification and error analysis.
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We consider Trefftz—FLAME schemes on a 9-point (3 x 3) stencil. It is
natural to choose the basis functions as cylindrical harmonics in the vicinity
of each particle and as plane waves away from the particles. “Vicinity” is
defined by an adjustable threshold: r < reutofr, where 7 is the distance from
the midpoint of the stencil to the center of the nearest particle, and the
threshold rcutof is typically chosen as the radius of the particle plus a few
grid layers.

Away from the cylinder, eight basis functions are chosen as plane waves
propagating toward the central node of the 9-point stencil from each of the
other eight nodes. As usual in FLAME, the 9 x 8 nodal matrix N (4.14)
of FLAME comprises the values of the chosen basis functions at the stencil
nodes. The Trefftz— FLAME scheme (4.20) is s = Null N7 Straightforward
symbolic algebra computation shows that this null space is indeed of dimension
one, so that a single valid Trefftz—FLAME scheme exists. Expressions for
the coefficients s are given in Appendix 4.8, and the scheme turns out to
be of order six with respect to the grid size. The scheme is used in several
nanophptonics applications in Chapter 7.

Obviously, nodes at the domain boundary are treated differently. At the
edges of the domain, the stencil is truncated in a natural way to six points:
“ghost” nodes outside the domain are eliminated, and the respective incoming
plane waves associated with them are likewise eliminated from the basis set.
The basis thus consists of five plane waves: three strictly outgoing and two
sliding along the edge.

A similar procedure is applied at the corner nodes: a four-node stencil is
obtained, and only three plane wave remain in the basis. The elimination of
incoming waves from the basis thus leads, in a very natural way, to a FLAME-
style Perfectly Matched Layer (PML).

In the vicinity of the cylinder, the basis functions are chosen as cylindrical
harmonics:

z/JS) = anJy(keyir) exp(ing), r <rg
VD = [bpdn(kanr) + HP (kaier)] exp(ing), > ro

where J,, is the Bessel function, Hr(f) is the Hankel function of the second kind
[Har01], and a,, b, are coefficients to be determined. These coefficients are
found via the standard conditions on the boundary of the cylinder; the actual
expressions for these coefficients are too lengthy to be worth reproducing here
but are easily usable in computer codes.

Eight basis functions are obtained by retaining the monopole harmonic
(n = 0), two harmonics of orders n = 1, 2, 3 (i.e. dipole, quadrupole and
octupole), and one of harmonics of order n = 4. Numerical experiments for
scattering from a single cylinder, where the analytical solution is available for
comparison and verification, show convergence (not just consistency error!) of
order six for this scheme [Tsu0bal.

Fig. 4.11 shows the relative nodal error in the electric field as a function
of the mesh size. Without the PML, convergence of the scheme is of 6"
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order; no standard method has comparable performance. The test problem

Relative error norms for the field.
Scattering from cylinder.
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Fig. 4.11. Relative error norms for the electric field. Scattering from a dielectric
cylinder. FLAME, 9-point scheme. (Reprinted by permission from [Tsu05a] ©2005
IEEE.)

has the following parameters: the radius of the cylindrical rod is normalized
to unity; its index of refraction is 4; the wavenumbers in air and the rod
are 1 and 4, respectively. Simulations without the PML were run with the
exact analytical value of the electric field on the outer boundary imposed as
a Dirichlet condition. The field error with the PML is of course higher than
with this ideal Dirichlet condition'? but still only on the order of 10~2 even
when the PML is close to the scatterer (1 — 1.5 wavelengths). For the exact
boundary conditions (and no PML), very high accuracy is achievable.

4.5 Existing Methods Featuring Flexible or Nonstandard
Approximation

FLAME schemes are conceptually related to many other methods:

1. Generalized FEM by Partition of Unity [MB96, BM97, DBO00, SBC00,
BBO03, PTFY03, PT02, BT05] and “Ap-cloud” methods [DOY6].

2. Homogenization schemes based on variational principles [MDH"99].

3. Spectral and pseudospectral methods [Boy0l, DECB98, Ors80, PR04]
(and references therein).

12 1t goes without saying that the exact field condition can only be imposed in test
problems with known analytical solutions.
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4. Meshless methods [BLG94, BKO196, CM96, DB01, KB98, LJZ95, BBO03,
Liu02], and especially the “Meshless Local Petrov—Galerkin” version [AZ98,
AS02).

5. Heuristic homogenization schemes, particularly in Finite Difference Time
Domain methods [DM99, THO05, YMO1].

6. Discontinuous Galerkin (DG) methods [ABCM02, BMS02, CBPS00, CKS00,
OBBYg|.

7. Finite Integration Techniques (FIT) with extensions and enhancements
[CWO02, SW04].

8. Special FD schemes such as “exact” and “nonstandard” schemes by Mick-
ens and others [Mic94, Mic00]; the Harari-Turkel [HT95] and Singer—
Turkel schemes [ST98] for the Helmholtz equation; the Hadley schemes
[Had02a, Had02b] for waveguide analysis; Cole schemes for wave prop-
agation [Col97, Col04]; the Lambe-Luczak—Nehrbass schemes for the
Helmholtz equation [LLNO03].

9. Special finite elements, for example elements with holes [SLO00] or inclu-
sions [MZ95].

10. The “Measured Equation of Invariance” (MEI) [MPC194]).

11. The “immersed surface” methodology [WB00] that modifies the Taylor
expansions to account for derivative jumps at material boundaries but
leads to rather unwieldy expressions.

This selection of related methods is to some extent subjective and definitely
not exhaustive. Most methods and references above are included because they
influenced my own research in a significant way.

Even though the methods listed above share some level of “flexible ap-
proximation” as one of their features, the term “Flexible Local Approxima-
tion MEthods” (FLAME) will refer exclusively to the approach developed in
Sections 4.3 and 4.7. The new FLAME schemes are not intended to absorb
or supplant any of the methods 1-11. These other methods, while related to
FLAME, are not, generally speaking, its particular cases; nor is FLAME a
particular case of any of these methods.

Consider, for example, a connection between FLAME on the one hand and
variational homogenization (item 2 on the list above) and GFEM (item 1) on
the other. The development of FLAME schemes was motivated to a large
extent by the need to reduce the computational and algorithmic complexity
of Generalized FEM and variational homogenization (especially the volume
quadratures inherent in these methods). However, FLAME is emphatically
not a version of GFEM or variational homogenization of [MDH"99]. Indeed,
GFEM is a Galerkin method in the functional space constructed by partition
of unity; the variational homogenization is, as argued in [Tsu04c], a Galerkin
method in broken Sobolev spaces. In contrast, FLAME is in most cases a
non-Galerkin, purely finite-difference method.

The variational version of FLAME is described in [Tsu04b] in a con-
densed manner; see also Appendix 4.7.3 on p. 232. The crux of this chapter,
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however, is the non-variational “Trefftz” version of FLAME (Section 4.3)
[Tsu05a, Tsu06]. In this version, the basis functions satisfy the underlying
differential equation and the variational testing is therefore redundant. Nu-
merical quadratures — the main bottleneck of Generalized FEM, variational
homogenization, meshless and other methods — are completely absent. De-
spite their relative simplicity, the Trefftz—FLAME schemes are in many cases
more accurate than their variational counterparts. This chapter, following
[Tsu05a, Tsu06], presents a variety of examples for Trefftz—FLAME, includ-
ing the 1D Schrodinger equation, a singular 1D equation, 2D and 3D Collatz
“Mehrstellen” schemes, and others. Applications to heterogeneous electrosta-
tic problems for colloidal systems are considered in Chapter 6, and to problems
in photonics in Chapter 7.

4.5.1 The Treatment of Singularities in Standard FEM

The treatment of singularities was historically one of the first cases where
special approximating functions were used in the FE context. In their 1973
paper [FGWT3], G.J. Fix et al. considered 2D problems with singularities
77 sin B¢, where r, ¢ are the polar coordinates with respect to the singularity
point, and 3, v, are known parameters (v < 0). The standard FEM bases
were enriched with functions of the form p(r)r7 sin B¢, where the piecewise-
polynomial cutoff function p(r) is unity within a disk 0 < r < rg, gradually
decays to zero in the ring ro < r < r; and is zero outside that ring (rg and
r1 are adjustable parameters). The cutoff function is needed to maintain the
sparsity of the stiffness matrix.

There is clearly a tradeoff between the computational cost and accuracy: if
the cutoff radius 7 is too small, the singular component of the solution is not
adequately represented; but if it is too large, the support of the additional basis
function overlaps with a large number of elements and the matrix becomes
less sparse.

The Generalized FEM (GFEM) briefly described in the following subsec-
tion preserves, at least in principle, both accuracy and sparsity. Unfortunately,
this major advantage is tainted by additional algorithmic and computational
complexity.

4.5.2 Generalized FEM by Partition of Unity

In the Generalized FEM computational domain € is covered by overlapping
subdomains (“patches”) Q). The solution is approximated locally over each
patch. These individual local approximations are independent from one an-
other and are seamlessly merged by Partition of Unity (PU). Details of the
method are widely available (see J.M. Melenk & I. Babuska [MB96, BM97],
C.A. Duarte et al. [DBO00], T. Strouboulis et al. [SBCO00], I. Babuska et
al. [BBOO03]), and additional information can also be found in the chapter on
FEM (Section 3.15 on p. 181).
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The main advantage of GFEM is that the approximating functions can
in principle be arbitrary and are not limited to polynomials. Thus GFEM
definitely qualifies as a method with the kind of flexible local approximation
we seek.

On the negative side, however, multiplication by the partition of unity
functions makes the system of approximating functions more complicated, and
possibly ill-conditioned or even linearly dependent [BM97]. The computation
of gradients and implementation of the Dirichlet conditions also get more
complicated. In addition, GFEM-PU may lead to a combinatorial increase in
the number of degrees of freedom [PTFY03, Tsu04c]. An even greater difficulty
in GFEM-PU is the high cost of the Galerkin quadratures that need to be
computed numerically in geometrically complex 3D regions (intersections of
overlapping patches).

In summary, there is a high algorithmic and computational price to be
paid for all the flexibility that GFEM provides.

4.5.3 Homogenization Schemes Based on Variational Principles

S. Moskow et al. [MDH"99] improve the approximation of the electrostatic
potential near slanted boundaries and narrow sheets on regular Cartesian
grids by employing special approximating functions constructed by a coordi-
nate mapping [BCO94]. Within each grid cell, Moskow et al. seek a tensor
representation of the material parameter such that the discrete and continu-
ous energy inner products are the same over the chosen discrete space. The
overall construction in [MDH'99] relies on a special partitioning of the grid
(“red-black” numbering, or the “Lebedev grid”) and on a specific, central dif-
ference, representation of the gradient. As shown in [Tsu04c], this variational
homogenization can be interpreted as a Galerkin method in a broken Sobolev
space.

The variational method described in Section 4.7 can be viewed as an exten-
sion of the variational-difference approach of [MDH"99] — the special “Lebe-
dev” grids and the specific approximation of gradients by central differences
adopted in [MDH'99] turn out not to be really essential for the algorithm.

4.5.4 Discontinuous Galerkin Methods

The idea to relax the interelement continuity requirements of the standard
FEM and to use nonconforming elements was put forward at the early stages
of FE research. For example, in the Crouzeix-Raviart elements [CR73] the
continuity of piecewise-linear functions is imposed only at midpoints of the
edges.

Over recent years, a substantial amount of work has been devoted to Dis-
continuous Galerkin Methods (DGM) [BMS02, CBPS00, CKS00, OBB98]; a
consolidated view with an extensive bibliography is presented in [ABCMO02].
Many of the approaches start with the “mixed” formulation that includes
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additional unknown functions for the fluxes on element edges (2D) or faces
(3D). However, these additional unknowns can be replaced with their numer-
ical approximations, thereby producing a “primal” variational formulation in
terms of the scalar potential alone. In DGM, the interelement continuity is
ensured, at least in the weak sense, by retaining the surface integrals of the
jumps, generally leading to saddle-point problems even if the original equation
is elliptic.

In electromagnetic field computation, DGM was applied by P. Alotto et
al. to moving meshes in the air gap of machines [ABPS02].

4.5.5 Homogenization Schemes in FDTD

In applied electromagnetics, Finite Difference Time Domain (FDTD) methods
(A. Taflove & S.C. Hagness [THO05]) and Finite Integration Techniques (FIT,
T. Weiland, M. Clemens & R. Schuhmann [CW02, SW04]) typically require
very extensive computational work due to a large number of time steps for
numerical wave propagation and large meshes. Therefore simple Cartesian
grids are strongly preferred and the need to avoid “staircase” approximations
of curved or slanted boundaries is quite acute. Due to the wave nature of the
problem, any local numerical error, including the errors due to the staircase
effect, tend to propagate in space and time and pollute the solution overall.

A great variety of approaches to reduce or eliminate the staircase effect
in FDTD have been proposed [DM99, THO05, YMO01, ZSW03]. Each case is
a trade-off between the simplicity of the original Yee scheme on staggered
grids (K.S. Yee [Yee66]) and the ability to represent the interface boundary
conditions accurately. On one side of this spectrum lie various adjustments to
the Yee scheme: changes in the time-stepping formulas for the magnetic field
or heuristic homogenization of material parameters based on volume or edge
length ratios [DM99, THO05, YMO1]. A similar homogenization approach (al-
beit not for time domain simulation) was applied by R.D. Meade and cowork-
ers to compute the bandgap structure of photonic crystals'® [MRB*93]. In
some cases, the second order of the FDTD scheme is maintained by includ-
ing additional geometric parameters or by using partially filled cells, as done
by L.A. Zagorodnov et al. [ZSWO03] in the framework of “Finite Integration
Techniques”.

On the other side of the spectrum are Finite Volume-Time Domain meth-
ods (FVTD) [PRM98, TH05, YC97] with their historic origin in computa-
tional fluid mechanics, and the Finite Element Method (FEM). Tetrahedral
meshes are typically used, and material interfaces are represented much more
accurately than on Cartesian grids. However, adaptive Cartesian grids have
also been advocated, with cell refinement at the boundaries [WPLO02]. The
greater geometric flexibility of these methods is achieved at the expense of

13 For more information on photonic bandgaps, see Chapter 7.
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simplicity of the algorithm. An additional difficulty arises in FEM for time-
domain problems: the “mass” matrix (containing the inner products of the
basis functions) appears in the time derivative term and makes the time-
stepping procedure implicit, unless “mass-lumping” techniques are used.

4.5.6 Meshless Methods

The abundance of meshless methods, as well as many variations in the ter-
minology adopted in the literature, make a thorough review unfeasible here —
see [BLGY94, BKO196, CM96, DB01, KB98, LJZ95, BBOO03] instead. Let me
highlight only the main ideas and features.

The prevailing technique is the Moving Least Squares (MLS) approxima-
tion. Consider a “meshless” set of nodes (that is, nodes selected at arbitrary
locations r;, ¢ = 1,2,...n) in the computational domain. For each node i, a
smooth weighting function W;(r) with a compact support is introduced; this
function would typically be normalized to one at node i (i.e. at » = r;) and
decay to zero away from that node. Intuitively, the support of the weighting
function defines the “zone of influence” for each node.

Let u be a smooth function that we wish to approximate by MLS. For
any given point rg, one considers a linear combination of a given set of m
basis functions ¢4 (r) (almost always polynomials in the MLS framework):

ug:) = > 1", calro)va(r). Note that the coefficients ¢ depend on 7. They are
chosen to approximate the nodal values of u, i.e. the Euclidean vector {u(r;)},
in the least-squares sense with respect to the weighted norm with the weights
Wi(rp). This least-squares problem can be solved in a standard fashion; note
that it involves only nodes containing ry within their respective “zones of
influence” — in other words, only nodes ¢ for which W;(rg) # 0.

C.A. Duarte & J.T. Oden [DO96] showed that this procedure can be recast
as a partition of unity method, where the PU functions are defined by the
weighting functions W as well as the (polynomial) basis set {¢'}. This leads
to more general adaptive “hp-cloud” methods.

One version of meshless methods — “Meshless Local Petrov-Galerkin”
(MLPG) method developed by S.N. Atluri et al. [AZ98, AS02, Liu02] — is
particularly close to the variational version of FLAME described in [Tsu04b]
and in Section 4.7 below. Our emphasis, however, is not on the “meshless”
setup (even though it is conceivable for FLAME) but on the framework of
multivalued approximation (that is not explicitly introduced in MLPG) and
on the new non-variational version of FLAME (Section 4.3).

The trade-off for avoiding complex mesh generation in mesh-free methods
is the increased computational and algorithmic complexity. The expressions
for the approximating functions obtained by least squares are rather com-
plicated [BKO"96, DB01, KB98, LJZ95, BBO03]. The derivatives of these
functions are even more involved. These derivatives are part of the integrand
in the Galerkin inner product, and the computation of numerical quadratures
is a bottleneck in meshless methods. Other difficulties include the treatment
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of Dirichlet conditions and interface conditions across material boundaries
[CM96, DBO1, KB98, LJZ95].

4.5.7 Special Finite Element Methods

There is also quite a number of special finite elements, and related methods,
that incorporate specific features of the solution. In problems of solid mechan-
ics, J. Jirousek and his coworkers in the 1970s [JL77, Jir78] proposed “Trefftz”
elements, with basis functions satisfying the underlying differential equation
exactly. This not only improves the numerical accuracy substantially, but also
reduces the Galerkin volume integrals in the computation of stiffness matri-
ces to surface integrals (via integration by parts). Since then, Trefftz elements
have been developed quite extensively; see a detailed study by I. Herrera
[Her00] and a review paper by J. Jirousek & A.P. Zielinski [JZ97].

Also in solid mechanics, A.K. Soh & Z.F. Long [SL00] proposed two 2D
elements with circular holes, while S.A. Meguid & Z.H. Zhu [MZ95] developed
special elements for the treatment of inclusions.

Enrichment of FE bases with special functions is well established in com-
putational mechanics. The variational multiscale method by T.J.R. Hughes
[Hug95] provides a general framework for adding fine-scale functions inside
the elements to the usual coarse-scale FE basis. The additional amount of
computational work is small if the fine scale bases are local, i.e. confined to
the support of a single element. However, in this case the global effects of the
fine scale are lost.

In the method of Residual-Free Bubbles by F. Brezzi et al. [BFR98|, the
standard element space is enriched with functions satisfying the underlying
differential equation exactly. There is a similarity with the Trefftz—_FLAME
schemes described in Section 4.3. However, FLAME is a finite-difference
technique rather than a Galerkin finite element method. The conformity in
Residual-Free Bubbles is maintained by having the “bubbles” vanish at the
interelement boundaries. Similar “bubbles” are common in hierarchical finite
element algorithms (see e.g. Yserentant [Yse86)); still, traditional FE methods
— hierarchical or not — are built exclusively on piecewise-polynomial bases.

C. Farhat et al. [FHFO01] relax the conformity conditions and get a higher
flexibility of approximation in return. As in the case of residual-free bubbles,
functions satisfying the differential equation are added to the FE basis. How-
ever, the continuity at interelement boundaries is only weakly enforced via
Lagrange multipliers.

The following observation by J.M. Melenk [Mel99] in reference to special
finite elements is highly relevant to our discussion:

“The theory of homogenization for problems with (periodic) mi-
crostructure, asymptotic expansions for boundary layers, and Kon-
drat’ev’s corner expansions are a few examples of mathematical tech-
niques yielding knowledge about the local properties of the solution.
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This knowledge may be used to construct local approximation spaces
which can capture the behavior of the solution much more accurately
than the standard polynomials for a given number of degrees of free-
dom. Exploiting such information may therefore be much more effi-
cient than the standard methods ...”

In electromagnetic analysis, Treffz expansions were used by M. Gyimesi et
al. in unbounded domains [GLOP96, GWOO01].

4.5.8 Domain Decomposition

Although the setup of FLAME may suggest its interpretation as a Domain
Decomposition technique, there are perhaps more differences than similari-
ties between the two classes of methods. In FLAME, the domain cover con-
sists of “micro” (stencil-size) subdomains. In contrast, Domain Decomposition
methods usually operate with “macro” subdomains that are relatively large
compared to the mesh size. Consequently, the notions and ideas of Domain
Decomposition (e.g. Schwartz methods, mortar methods, Chimera grids, and
so on) will not be directly used in our development. With regard to Domain
Decomposition, the book by A. Toselli & O. Widlund [TW05] is recommended.

4.5.9 Pseudospectral Methods

In pseudospectral methods (PSM) [Boy01, DECB98, Ors80, PR04], numerical
solution is sought as a series expansion in terms of Fourier harmonics, Cheby-
shev polynomials, etc. The expansion coefficients are found by collocating the
differential equation on a chosen set of grid nodes.

Typically the series is treated as global — over the whole domain or large
subdomains. There is, however, a great variety of versions of pseudospectral
methods, some of which (“spectral elements”) deal with more localized ap-
proximations and in fact overlap with the hp-version of FEM (J.M. Melenk
et al. [MGSO01]).

The key advantage of PSM is their exponential convergence, provided that
the solution is quite smooth over the whole domain.

One major difficulty is the treatment of complex geometries. In relatively
simple cases this can be accomplished by a global mapping to a reference shape
(square in 2D or cube in 3D) but in general may not be possible. Another alter-
native is to subdivide the domain and use spectral elements (with “spectral”
approximation within the elements but lower order smoothness across their
boundaries); however, convergence is then algebraic, not exponential, with
respect to the parameter of that subdivision.

The presence of material interfaces is an even more serious problem, as the
solution then is no longer smooth enough to yield the exponential convergence
of the global series expansion.
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An additional disadvantage of PSM is that the resultant systems of equa-
tions tend to have much higher condition numbers than the respective FD or
FE systems (E.-H. Mund [Mun00]). This is due to the very uneven spacing
of the Chebyshev or Legendre collocation nodes typically used in PSM. IlI-
conditioning may lead to accuracy loss in general and to stability problems in
time-stepping procedures.

PSM have been very extensively studied over the last 30 years, and quite a
number of approaches alleviating the above disadvantages have been proposed
[DECB98, MGS01, Mun00], [Ors80]. Nevertheless it would be fair to say that
these disadvantages are inherent in the method and impede its application to
problems with complex geometries and material interfaces.

4.5.10 Special FD Schemes

Many difference schemes rely on special approximation techniques to improve
the numerical accuracy. These special techniques are too numerous to list, and
only the ones that are closely related to the ideas of this chapter are briefly
reviewed below.

For some 1D equations, R.E. Mickens [Mic94] constructed “exact” FD
schemes — that is, schemes with zero consistency error. He then developed a
wider class of “nonstandard” schemes by modifying finite difference approxi-
mations of derivatives. These modified approximations are asymptotically (as
the mesh size tends to zero) equivalent to the standard ones but for finite
mesh sizes may yield higher accuracy. Similar ideas were used by I. Harari
& E. Turkel [HT95] and by I. Singer & E. Turkel [ST98] to construct exact
and high-order schemes for the Helmholtz equation. J.B. Cole [Col97, Col04]
applied nonstandard methods to electromagnetic wave propagation problems
(high-order schemes) in 2D and 3D.

The “immersed surface” methodology (A. Wiegmann and K.P. Bube
[WBO00]) generalizes the Taylor expansions to account for derivative jumps
at material boundaries but leads to rather unwieldy expressions.

J.W. Nehrbass [Neh96] and L.A. Lambe et al. [LLN03] modified the central
coefficient of the standard FD scheme for the Helmholtz equation to minimize,
in some sense, the average consistency error over plane waves propagating in
all possible directions. There is some similarity between the Nehrbass schemes
and FLAME. However, the derivation of the Nehrbass schemes requires very
elaborate symbolic algebra coding, as the averaging over all directions of prop-
agation leads to integrals that are quite involved. In contrast, FLAME schemes
are inexpensive and easy to construct.

Very closely related to the material of this chapter are the special difference
schemes developed by G.R. Hadley [Had02a, Had02b, Web07] for electromag-
netic wave propagation. In fact, these schemes are direct particular cases of
FLAME, with Bessel functions forming a Trefftz—FLAME basis (although
Hadley derives them from different considerations).
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For unbounded domains, an artificial truncating boundary has to be in-
troduced in FD and FE methods. The exact conditions at this boundary are
nonlocal; however, local approximations are desirable to maintain the sparsity
of the system matrix. One such approximation that gained popularity in the
1990s is the so called “Measured Equation of Invariance” (MEI) by K.K. Mei
et al. [MPCT94, GRSP95, HR98a]. As it happens, MEI can be viewed as a
particular case of Trefftz—FLAME, with the basis functions taken as potentials
due to some test distributions of sources.

4.6 Discussion

The “Flexible Approximation” approach combines analytical and numerical
tools: it integrates local analytical approximations of the solution into nu-
merical schemes in a simple way. Existing applications and special cases of
FLAME are listed in the following table (see Chapters 6 and 7 for applica-
tions of FLAME to electrostatics of colloidal systems and in nano-photonics).
The cases in the table fall under two categories. The first one contains stan-
dard difference schemes revealed as direct particular cases of Trefftz—FLAME.
The second category contains FLAME schemes that are substantially differ-
ent from, and are more accurate than, their conventional counterparts, often
with a higher rate of convergence for identical stencils. Practical implemen-
tation of Trefftz—FLAME schemes is substantially simpler than FEM matrix
assembly and comparable with the implementation of conventional schemes
(e.g. flux-balance schemes).

It is worth noting that FLAME schemes do not have any hidden parame-
ters to contrive better performance. The schemes are completely defined by
the choice of the basis set and stencil; it is the approximating properties of
the basis that have the greatest bearing on the numerical accuracy.

The collection of examples in Table 4.4 inspires further analysis and ap-
plications of FLAME. The table is in no way exhaustive — for example,
boundary layers in eddy current problems and in semiconductor simulation
(the Scharfetter-Gummel approximation, S. Selberherr [Sel84, Fri05]), vary-
ing material parameters in some protein models, J.A. Grant et al. [GPNO1],
T. Washio [Was03], etc., could be added to this list.

Two broad application areas for FLAME — one at zero frequency (electro-
statics of colloids and macromolecules in solvents) and another one at very
high frequencies (photonics) — are considered in Chapters 6 and 7, respectively.

The method is most powerful when good local analytical approximations
of the solution are available. For example, the advantage of the special field
approximation in FLAME for a photonic crystal problem is crystal clear in
[Tsu0bal; see Chapter 7. Similarly, problems with magnetizable or polarizable
particles admit an accurate representation of the field around the particles in
terms of spherical harmonics, and the resultant FLAME schemes are substan-
tially more accurate than the standard control volume method.
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Application Basis functions |Stencil |Accuracy |Comparison with
used in FLAME |used in |of standard
FLAME|FLAME (finite-difference
schemes |schemes
Standard schemes for |Local harmonic |Depends|2nd order |Standard schemes are
the 3D Laplace polynomials on the |for the a simple particular
equation order 7-point  |case of FLAME
stencil
Mehrstellen scheme |Harmonic 19-point [4*" order [The
for the 3D Laplace |polynomials in “Mehrstellen”-Collatz
equation x, Yy, z up to scheme revealed as a
order 4 natural particular
case of FLAME
1D Schrodinger High-order 3-point |Any The Numerov scheme
equation Taylor desired is 4*" order. 3-point
approximations order schemes of order
to the solution higher than 4 not
available.
1D heat conduction |Independent 3-point |Exact So-called
with variable local solutions (machine | “homogeneous”
material parameter |of the heat precision [schemes [Sam01] are a
equation in particular case of
practice) |[FLAME.
Time-domain scalar |Traveling waves |5-point |2nd order |In the generic case,
wave equation (one |(polynomials in the equivalent to central
spatial dimension) times sinusoids) generic  |differences. Much
case higher accuracy if a
dominant frequency is
present.
Slanted material Local polyno- 7-point |2nd order |Standard schemes,
interface boundary |mials satisfying |in 3D, unlike FLAME, suffer
interface match- |5-point “staircase” effects
ing conditions |in 2D
Unbounded problems |[Multipole harmo{ 7-point |See Standard
nicsoutsidethe |in 3D  |[HFTO04] |finite-difference
computational schemes not
domain applicable to
unbounded problems.
Charged colloidal Spherical 7-point |2nd order |[Much higher accuracy
particles, no salt harmonics (up than the standard
to quadrupole) flux-balance scheme.
Charged colloidal par- |Spherical Bessel |7-point |2nd order |Much higher accuracy
ticles, monovalent salt [harmonics (up than the standard
(Poisson—Boltzmann) [to quadrupole) scheme.
Scattering from a Plane waves in|9-point [6th order |[Much higher accuracy

dielectric cylinder
(frequency domain)

air and cylindri-
cal harmonics
near scatterer

than the standard
scheme.

Table 4.4. Examples and applications of FLAME.
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Perfectly Matched Outgoing plane [9-point |Under

Layer (frequency waves investiga-

domain) tion

Waves, eigenmodes |Cylindrical 9-point |6th order |Much higher accuracy
and band structure |harmonics than the standard

in photonic crystals scheme and FEM
[PWTO07, Tv07] with 2nd order

triangular elements.
Coupled plasmonic |Plane waves in |9-point |6th order |Much higher accuracy

particles air and than the standard
cylindrical scheme.
harmonics near
particles

Table 4.5. Examples and applications of FLAME (continued).

Trefftz—FLAME schemes are not variational, which makes their construc-
tion quite simple and sidesteps the notorious bottleneck of computing numer-
ical quadratures. At the same time, given that this method is non-variational
and especially non-Galerkin, one cannot rely on the well-established conver-
gence theory so powerful, for example, in Finite Element analysis. For the
time being, FLAME needs to be considered on a case-by-case basis, with the
existing convergence results (Section 4.3.5) and experimental evidence (Sec-
tion 4.4) in mind. Furthermore, again because the method is non-Galerkin,
the system matrix is in general not symmetric, even if the underlying contin-
uous operator is self-adjoint. In many — but not all — cases, this shortcoming
is well compensated for by the superior accuracy and rate of convergence
(Section 4.4).

FLAME schemes use nodal values as the primary degrees of freedom
(d.o.f.). Other d.o.f. could certainly be used, for example edge circulations
of the field. The matrix of edge circulations would then be introduced instead
of the matrix of nodal values in the algorithm, and the notion of the sten-
cil would be modified accordingly. In the FE context (edge elements), this
choice of d.o.f. is known to have clear mathematical and physical advantages
in various applications (A. Bossavit [Bos98], R. Hiptmair [Hip01], C. Mattiussi
[Mat97], E. Tonti [Ton02]) and is therefore worth exploring in the FLAME
framework as well.

It is hoped that the ideas presented in this chapter will prove useful for
further development of difference schemes in various areas. Such schemes can
be eventually incorporated into existing FD software packages for use by many
researchers and practitioners.

In the foreseeable future, FEM, due to its unrivaled generality and ro-
bustness, will remain king of simulation. However, FLAME schemes may suc-
cessfully occupy the niches where the geometric and physical layout is too
complicated to be handled on conforming FE meshes, while the standard
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finite-difference approximation is too crude. One example is the simulation of
electrostatic multiparticle interactions in colloidal systems, where FEM is im-
practical and Fast Multipole methods may not be suitable due to nonlinearity
and inhomogeneities (Chapter 6).

Another example, albeit more complicated, is the simulation of macromole-
cules, including proteins and polyelectrolytes [DTRS07]. In such problems,
electrostatic interactions of atoms in the presence of the solvent are extremely
important but are still only part of an enormously complicated physical pic-
ture. Yet another example of a “niche application” where FLAME can work
very well is wave analysis in photonic crystals (Chapter 7) [PWTO07, Tv07].

The possible applications of FLAME could be significantly expanded if
accurate local numerical approximations rather than analytical ones are used
to generate a FLAME basis. This approach involves solution of local problems
around grid stencils. Such “mini-problems” can be handled by finite element
or integral equation techniques much more cheaply than the global problem.
FLAME schemes in this case may continue to operate on simple and relatively
coarse Cartesian grids that do not necessarily have to resolve all geometric
features [DTO06]. Applications of this methodology to problems of electromag-
netic interference in high density VLSI modules are currently being explored.

Finally, any modern algorithm has to be adaptive. The possibility of adap-
tion and a numerical example are considered in Section 6.2.3 on p. 300.

In addition to practical usage and to the potential of generating new dif-
ference schemes in various applications, there is also some intellectual merit
in having a unified perspective on different families of FD techniques such
as low- and high-order Taylor-based schemes, the Mehrstellen schemes, the
“exact” schemes, some special schemes for electromagnetic wave propagation,
the “measured equation of invariance,” and more. This unified perspective is
achieved through systematic use of local approximation spaces in the finite
difference context.

4.7 Appendix: Variational FLAME
4.7.1 References

The variational version of FLAME was described in [Tsu04b, TsuO4c]; this
section follows [Tsu04b]. Variational FLAME is very close to the “Meshless
Local Petrov-Galerkin” (MLPG) method developed by S.N. Atluri and col-
laborators [AZ98, AS02]'5 (see also G.R. Liu’s book [Liu02]).

The variational version is now to a large extend superseded by a non-
variational one — the “Trefftz—FLAME” schemes introduced in [Tsu05a,

14 Software for large-scale Trefftz-FLAME simulations of electrostatic interactions
in colloidal suspensions was developed by E. Ivanova and S. Voskoboynikov.
!5 1 thank Jon Webb for bringing this to my attention [Web07).
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Tsu06] and described in this chapter. The general setup — multivalued ap-
proximation over a domain cover by overlapping parches and a set of nodes —
is common for all versions of FLAME.

4.7.2 The Model Problem

Although the potential application areas of FLAME are broad, for illustrative
purposes we shall have in mind the model static Dirichlet boundary-value
problem

Lu = —V-eVu=f inQCR", (n=2,3); wupg=0 (4.56)

Here € is a material parameter (conductivity, permittivity, permeability,
etc.) that can be discontinuous across material boundaries and can depend
on coordinates but not, in the linear case under consideration, on the poten-
tial u. The computational domain {2 is either two- or three-dimensional, with
the usual mathematical assumption of a Lipschitz-continuous boundary. To
simplify the exposition, precise mathematical definitions of the relevant func-
tional spaces will not be given, and instead we shall assume that the solution
has the degree of smoothness necessary to justify the analysis.

At any material interface boundary I', the usual conditions hold:

up = ug on I’ (4.57)
ou ou
ela—nl = 628—; on I’ (4.58)

where the subscripts refer to the two subdomains ©; and s sharing the
material boundary I', and n is the normal direction to I.

4.7.3 Construction of Variational FLAME

The basic setup for the variational version of FLAME is the same as for
Trefftz—FLAME (Section 4.3.1, p. 198). The computational domain is covered
by a set of overlapping patches: @ = UQ®, i = 1,2,...n. There is a local
approximation space W(?) within each patch Q)

\I/(i) — SpaIl{’l/)g), a=1,2,... ,m(z)}

and a multivalued approximation — i.e. a collection of patch-wise approxima-
tions {Uus)}. Convergence in this framework (for h — 0) is understood either
in the nodal norm as ||up, — Nu||z. — 0 or, alternatively, in the Sobolev norm

2
as (O, u
(2 HHl(Q(i))
signs denote column vectors.

The next ingredient in the variational formulation is a set of linear test
functionals that will be denoted with primes:

ug) - )1/2 = 0. As elsewhere in the chapter, the underscore
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{w(i)'}, w® = supp(w(i),) cQW, i=1,2,...n (4.59)

Simply put, this means that ¢®’ (f) for any (sufficiently smooth) function f is
completely unaffected by the values of f outside Q)| including the boundary
of Q). (The italicized portion of this statement is due to the fact that support
supp(z/)(i),) is, by its mathematical definition, a closed set, whereas domain
QM ig open.) Thus a possible discontinuity of the local approximation ug) at
the patch boundary is unimportant. The local solution within the i-th patch
is a linear combination of the chosen basis functions:

m(1)
) = 3 @yl = Ty e gl (4.60)

a=1

where ¢(¥), w(i) are viewed as column vectors, with their individual entries
marked with subscript «. In the variational formulation, the discrete system
of equations is obtained by applying the chosen linear test functionals to the
differential equation:

oy, 0] = {Fw®) (4.61)
or equivalently _
[€OTY®, @) = (f, ) (4.62)

where [u, D] and (f, (') are alternative notations for @ (Lu) and
Y@ (f), respectively.6

This equation is in terms of the expansion coefficients ¢ of (4.12), (4.60).
To obtain the actual difference scheme in terms of the nodal values, one needs
to relate the coefficient vector ¢ = {cg)} € R™ of expansion (4.60) to the
vector u(¥erM of the nodal values of ugf) on stencil #i. (The superscript (4)
for M and m has been dropped for simplicity of notation.) The transformation
matrix N® with M rows and m columns, was defined above.

If M = m and N is nonsingular,

) = (N1 (4.63)
and equation (4.62) becomes

[WOT(NOY Ty, @] = (f, p@") (4.64)

(It is implied that the functional [-, -] in the left hand side is applied to the

column vector {4V} entry-wise.) Then (4.62) or (4.64) can equally well be
written as N
uOT (N @ O] = (f,p@) (4.65)
16 [w, w(i),} should not be construed as an inner product of two functions because
w(“/ is a linear functional rather than a function in the same space as u. I thank
S. Prudhomme for taking a note of this.
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Equivalently, one may note that matrix N governs the transformation from the
original basis {wa)} in U to the nodal basis {v., ) 1) such that wa,@ nodal(78)

= 0,8. Indeed, two equivalent representations of ug) in the original and nodal

bases

US) = Twnodal Q(i)Ty(i) (466)
yield, together with (4.63),
Vit = (V)79 (4.67)
which reveals that (4.62) is in fact
w0, w0 = (fe) (4.68)

Expressions (4.64) and (4.68) are equivalent but suggest two different algorith-
mic implementations of the difference scheme. According to (4.64), one can
first compute the Euclidean vector of inner products ¢ @) = @(1)7 w(i)/] and
the difference scheme then is (N(i))’Té(i). Alternatively, according to (4.68),

one first computes the nodal basis (4.67) and then the products @Sg dal’ Y],
The algorithm for generating variational-difference schemes for an equation
Lu = f can be summarized as follows (for M = m and nonsingular N®):

1. For a given node, choose a stencil, a set of local approximating functions
{9}, and a test functional 1)’.

2. Calculate the values of the ’s at the nodes and combine these values into
the N matrix (4.14).

3. Solve the system with matrix N7 and the r.h.s. ¢ to get the nodal basis.

4. Compute the coefficients of the difference scheme as

W}nodaly d)/] = (L"/)nodaly W)

Alternatively, stages 3) and 4) can be switched:
3. Compute the values [, ¥'] = (L, ¥').
4’. Solve the system with matrix N7 and the r.h.s. [1,%’] to obtain the coef-
ficients of the difference scheme.

Note that the r.h.s. of the system of equations involves functions {¢_ dal}
in the first version of the algorithm and numbers [3, '] in the second version.
While working with numbers is easier, the nodal functions can be useful and
may be reused for different test functionals.

Variational-difference schemes (4.64) and (4.68) are consistent essentially
by construction [Tsu04b] (see also Section 4.3.5 for related proofs).

Graphically, the procedure can be viewed as a “machine” for generating
variational-difference FLAME schemes (Fig. 4.12).

Remark 11. With this generic setup, no blanket claim of convergence of the
variational scheme can be made. The difference scheme is consistent by con-
struction [Tsu04b] but its stability needs to be examined in each particular
case.
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n nodes  i=12,..n
Cover: Q =uQ® _ Input
Basis functions {y,"}

Test functionals {y@'}. supp(y®) cc Q@

(ND) T [y® @]

Coefficients of the difference scheme

Output

Fig. 4.12. A “machine” for variational-difference FLAME schemes. (Reprinted by
permission from [Tsu04b] (©2004 IEEE.)

Remark 12. Implementation of (4.64) or (4.68) implies solving a small system
of linear equations whose dimension is equal to the stencil size.

Volume integration in (4.64) is avoided if the test functional is taken to be
either the Dirac delta or, alternatively, the characteristic (“window”) function
IT(w®) of some domain w® c Q®: that is, IT(w®) = 1 inside w® and zero
outside. With the “window” function, one arrives at a control volume (flux
balance) scheme with surface integration. (Typically, w is the same size as
a grid cell but centered at a node.) The computational cost is asymptoti-
cally proportional to the number of grid nodes but depends on the numerical
quadratures used to compute the surface fluxes.

4.7.4 Summary of the Variational-Difference Setup

The setup of variational FLAME schemes can be summarized as follows:

A system of overlapping patches is introduced.

Desired approximating functions are used within each patch, indepen-
dently of other patches.

Simple regular grids can be used.

When patches overlap, the approximation is generally multivalued (as is
also the case in standard FD analysis).

e The nodal solution on the grid is single-valued and provides the necessary
“information transfer” between the overlapping patches.

e Since a unique globally continuous interpolant is not defined, the Galerkin
method in H'(Q) is generally not applicable. However, within each patch
there is a sufficiently smooth local approximation (4.12), and a general
moment (weighted residual) method can be applied, provided that the
support of the test function is contained entirely within the patch.
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In particular, by introducing the standard “control volume” box centered at
a given node of the grid and setting the test function equal to one within
that control volume and zero elsewhere, one arrives at a flux balance scheme.
This is a generalization of the standard “control volume” technique to any
set of suitably defined local approximating functions. Only surface integrals,
rather than volume quadratures, are needed, which greatly reduces the com-
putational overhead.

Application examples of the variational-difference version of FLAME are
given in [Tsu04b]. We now turn to the non-variational version that in many
respects is more appealing.

4.8 Appendix: Coefficients of the 9-Point
Trefftz—FLAME Scheme for the Wave Equation in Free
Space

The mesh size h is for simplicity assumed to be the same in both z- and y-
directions. A 3 x 3 stencil is used. The eight Trefftz—FLAME basis functions
are taken as plane waves in eight directions of propagation (toward the central
node of the stencil from each of the other nodes).

Yo = exp(ikiy- 1), a=12,...,8 k> = w’ue (4.69)

The origin of the coordinate system in this case is placed at the midpoint of
the stencil and r, is the unit vector in the direction toward the respective
node of the stencil, i.e.

fo = i‘cos% n Qsinoil—ﬂ, a=1,2,...,8 (4.70)
The 9 x 8 nodal matrix (4.14) of FLAME comprises the values of the chosen
basis functions at the stencil nodes, i.e.

Ngo = Po(rg) = exp(ikty-rg) o=1,2,...,8 #=12,...,9 (4.71)

The coefficients of the Trefftz—-FLAME scheme (4.20) are obtained by symbolic

algebra as the null vector of N7. As noted by F. Cajko [vT07], care should

be exercised to avoid cancelation errors when the coefficients are computed

numerically, as their accuracy should be commensurate with the high order

of the scheme. The algebraic expressions for the coefficients are as follows.
For the central node:

_1 + e1 + 2e+1)

(ex +1)(erer + 2e1e0 — 4de_1er + €1 — de
(o = 2ey — 1

1
2

S1 =

1
2

For the four mid-edge nodes:
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eseo — 26%61 + 26%60 — 26%+60
(co — P(e_y — 1P

S2-5 = —

For the four corner nodes:

e 2e1eg — e_1e1 — 2e_1ey — e 2e,
_ e3(Zeyeo — eyer — 2e yeo — ey + 2¢0)

S6—9 = (eo — 1)2<e—% -

where e, = exp(27ihk), v = f%,(), , 1,

N|—
[SICY

4.9 Appendix: the Fréchet Derivative

In regular calculus, derivatives are used to linearize functions of real or com-
plex variables locally: f(xz + Ax) — f(z) = f'(x)Ax. More precisely,

flx+Az) — f(z) = f'(x)Az + §(z,Ax) (4.72)
where the residual term ¢ is small, in the sense that

|0(z, Az)|

=0 4.73
\Aalv\—>0 |Az| (4.73)

In functional analysis, this definition is generalized substantially to give a
local approximation of a nonlinear operator with a linear one. This leads to
the notion of the Fréchet derivative in normed linear spaces; the absolute
values in (4.73) are replaced with norms.

A formal account of this local linearization procedure in its general form,
with rigorous definitions and proofs, can be found in any text on mathemat-
ical analysis. This Appendix gives a semi-formal illustration of the Fréchet
derivative for the case that will be of most interest in Chapter 6 — the Poisson—
Boltzmann operator. In a slightly simplified form, this operator is

Lu = eV?u — asinh(bu) (4.74)

where u, by its physical meaning, is the electrostatic potential in an electrolyte
with dielectric permittivity €; a and b are known physical constants.

Let us give u a small increment Aw (for brevity of notation, dependence
of the potential and its increment on coordinates is not explicitly indicated)
and examine the respective increment of Lu:

A(Lu) = L(u+ Au) — Lu = eV?Au — afsinh(b(u + Au)) — sinh(bu)]
Linearizing the hyperbolic sine, one obtains
A(Lu) = eV*Au — abcosh(bu) Au + §(u, Au)

Hence, up to first order terms in Au,
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A(Lu) ~ L'(u)Au
where the Fréchet derivative L’ is the linear operator

L'(u) = eV? — abcosh(bu):



5

Long-Range Interactions in Free Space

5.1 Long-Range Particle Interactions in a Homogeneous
Medium

Computation of long-range forces between multiple charged, polarized and/or
magnetized particles is critical in a variety of molecular and nanoscale applica-
tions: analysis of macromolecules and nanoparticles, ferrofluids, ionic crystals;
in micromagnetics and magnetic recording, etc.

There is a substantial difference between problems with known and un-
known values of charges or dipoles. For example, charges of ions in an ionic
crystal and charges of colloidal particles can often be assumed known and
fixed. On the other hand, the dipole moments of polarizable particles depend
on the external field and therefore are in general unknown a priori.

Furthermore, the particles (charges or dipoles) may interact in a homoge-
neous or in an inhomogeneous medium. The inhomogeneous (and especially
nonlinear) case is substantially more complicated and will be discussed in
Chapter 6.

This chapter is concerned exclusively with problems where the charges or
dipoles are known and the medium is linear homogeneous (free space being
the obvious particular case). Even though this case is simpler than problems
with unknown polarization of particles and with inhomogeneous media, the
computational challenges are still formidable.

Any macroscopic volume contains an astronomical number of particles
(Avogadro’s number is ~ 6.022 x 10?3 particles per mole of any substance).
“Brute force” modeling of such enormous systems is obviously not feasible
in any foreseeable future. Therefore one cannot help but restrict the simula-
tion to a computational cell containing a relatively small number of particles
(typically from hundreds to tens of thousands), with the assumption that the
results are representative of the behavior of a larger vo