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Preface

The purpose of this note . . . is to
sort out my own thoughts . . .
and to solicit ideas from others.

Lloyd N. Trefethen
Three mysteries of Gaussian elimination

Nobody reads prefaces. Therefore my preference would have been to write a
short one that nobody will read rather than a long one that nobody will read.
However, I ought to explain, as briefly as possible, the main motivation for
writing the book and to thank – as fully and sincerely as possible – many
people who have contributed to this writing in a variety of ways.

My motivation has selfish and unselfish components. The unselfish part is
to present the elements of computational methods and nanoscale simulation
to researchers, scientists and engineers who are not necessarily experts in
computer simulation. I am hopeful, though, that parts of the book will also be
of interest to experts, as further discussed in the Introduction and Conclusion.

The selfish part of my motivation is articulated in L. N. Trefethen’s quote
above. Whether or not I have succeeded in “sorting out my own thoughts”
is not quite clear at the moment, but I would definitely welcome “ideas from
others,” as well as comments and constructive criticism.

* * *

I owe an enormous debt of gratitude to my parents for their incredible
kindness and selflessness, and to my wife for her equally incredible tolerance of
my character quirks and for her unwavering support under all circumstances.
My son (who is a business major at The Ohio State University) proofread
parts of the book, replaced commas with semicolons, single quotes with double
quotes, and fixed my other egregious abuses of the English language.
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Overall, my work on the book would have been an utterly pleasant ex-
perience had it not been interrupted by the sudden and heartbreaking death
of my mother in the summer of 2006. I do wish to dedicate this book to her
memory.

Acknowledgment and Thanks

Collaboration with Gary Friedman and his group, especially during my
sabbatical in 2002–2003 at Drexel University, has influenced my research and
the material of this book greatly. Gary’s energy, enthusiasm and innovative
ideas are always very stimulating.

During the same sabbatical year, I was fortunate to visit several research
groups working on the simulation of colloids, polyelectrolytes, macro- and
biomolecules. I am very grateful to all of them for their hospitality. I would
particularly like to mention Christian Holm, Markus Deserno and Vladimir
Lobaskin at the Max-Planck-Institut für Polymerforschung in Mainz, Ger-
many; Rebecca Wade at the European Molecular Biology Laboratory in Hei-
delberg, and Thomas Simonson at the Laboratoire de Biologie Structurale in
Strasbourg, France.

Alexei Sokolov’s advanced techniques and experiments in optical sensors
and microscopy with molecular-scale resolution had a strong impact on my
students’ and my work over the last several years. I thank Alexei for providing
a great opportunity for collaborative work with his group at the Department
of Polymer Science, the University of Akron.

In the course of the last two decades, I have benefited enormously from my
communication with Alain Bossavit (Électricité de France and Laboratoire de
Genie Electrique de Paris), from his very deep knowledge of all aspects of
computational electromagnetism, and from his very detailed and thoughtful
analysis of any difficult subject that would come up.

Isaak Mayergoyz of the University of Maryland at College Park has on
many occasions shared his valuable insights with me. His knowledge of many
areas of electromagnetism, physics and mathematics is very profound and
often unmatched.

My communication with Jon Webb (McGill University, Montréal) has al-
ways been thought-provoking and informative. His astute observations and
comments make complicated matters look clear and simple. I was very pleased
that Professor Webb devoted part of his sabbatical leave to our joint research
on Flexible Local Approximation MEthods (FLAME, Chapter 4).

Yuri Kizimovich (Plassotech Corp., California) and I have worked jointly
on a variety of projects over the last 25 years. His original thinking and elegant
solutions of practical problems have always been a great asset. Yury’s help
and long-term collaboration are greatly appreciated.

Even though over 20 years have already passed since the untimely death
of my thesis advisor, Yu.V. Rakitskii, his students still remember very warmly
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his relentless strive for excellence and quixotic attitude to scientific research.
Rakitskii’s main contribution was to numerical methods for stiff systems of dif-
ferential equations. He was guided by the idea of incorporating, to the extent
possible, analytical approximations into numerical methods. This approach is
manifest in FLAME that I believe Rakitskii would have liked.

My sincere thanks go to

• Dmitry Golovaty (The University of Akron), for his help on many occasions
and for interesting discussions.

• Viacheslav Dombrovski, a scientist of incomparable erudition, for many
pearls of wisdom.

• Elena Ivanova and Sergey Voskoboynikov (Technical University of St.
Petersburg, Russia), for their very, very diligent work on FLAME.

• Benjamin Yellen (Duke University), for many discussions, innovative ideas,
and for his great contribution to the NSF-NIRT project on magnetic as-
sembly of particles.

• Mark Stockman (Georgia State University), for sharing his very deep and
broad knowledge and expertise in many areas of plasmonics and nano-
photonics.

• J. Douglas Lavers (the University of Toronto), for his help, cooperation
and continuing support over many years.

• Fritz Keilmann (the Max-Planck-Institut für Biochemie in Martinsried,
Germany), for providing an excellent opportunity for collaboration on
problems in infrared microscopy.

• Boris Shoykhet (Rockwell Automation), an excellent engineer, mathemati-
cian and finite element analyst, for many valuable discussions.

• Nicolae-Alexandru Nicorovici (University of Technology, Sydney, Aus-
tralia), for his deep and detailed comments on “cloaking,” metamaterials,
and properties of photonic structures.

• H. Neal Bertram (UCSD – the University of California, San Diego), for his
support. I have always admired Neal’s remarkable optimism and enthusi-
asm that make communication with him so stimulating.

• Adalbert Konrad (the University of Toronto) and Nathan Ida (the Uni-
versity of Akron) for their help and support.

• Pierre Asselin (Seagate, Pittsburgh) for very interesting insights, particu-
larly in connection with a priori error estimates in finite element analysis.

• Sheldon Schultz (UCSD) and David Smith (UCSD and Duke) for famil-
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I appreciate the help, support and opportunities provided by the Interna-
tional Compumag Society through a series of the International Compumag
Conferences and through personal communication with its Board and mem-
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B́ıró, J.-P. Bastos, R.C. Mesquita, and others.

A substantial portion of the book forms a basis of the graduate course
“Simulation of Nanoscale Systems” that I developed and taught at the
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University of Akron, Ohio. I thank my colleagues at the Department of Elec-
trical & Computer Engineering and two Department Chairs, Alexis De Abreu
Garcia and Nathan Ida, for their support and encouragement.
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tion and carried out, with a great deal of intelligence and ingenuity, a variety
of simulations in nano-photonics and nano-optics.

I gratefully acknowledge financial support by the National Science Foun-
dation and the NSF-NIRT program, Rockwell Automation, 3ga Corporation
and Baker Hughes Corporation.

NEC Europe (Sankt Augustin, Germany) provided not only financial sup-
port but also an excellent opportunity to work with Achim Basermann, an
expert in high performance computing, on parallel implementation of the
Generalized FEM. I thank Guy Lonsdale, Achim Basermann and Fabienne
Cortial-Goutaudier for hosting me at the NEC on several occasions.
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1 Electrostatic Interactions and Biophysics, April–May 2004, Theoretical Physics
Institute.

Future Challenges in Multiscale Modeling and Simulation, November 2004;
New Paradigms in Computation, March 2005; Effective Theories for Materials
and Macromolecules, June 2005; New Directions Short Course: Quantum Com-
putation, August 2005; Negative Index Materials, October 2006; Classical and
Quantum Approaches in Molecular Modeling, July 2007 – all at the Institute for
Mathematics and Its Applications, http://www.ima.umn.edu/

2 Serge Prudhomme is with the Institute for Computational Engineering and Sci-
ences (ICES), formerly known as TICAM, at the University of Texas at Austin.
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1

Introduction

Some years ago, a colleague of mine explained to me that a good presentation
should address three key questions: 1) Why? (i.e. Why do it?) 2) How? (i.e.
How do we do it?) and 3) So What?

The following sections answer these questions, and a few more.

1.1 Why Deal with the Nanoscale?

May you live in interesting times.

Eric Frank Russell, “U-Turn”
(1950).

The complexity and variety of applications on the nanoscale are as great, or ar-
guably greater, than on the macroscale. While a detailed account of nanoscale
problems in a single book is impossible, one can make a general observation
on the importance of the nanoscale: the properties of materials are strongly
affected by their nanoscale structure. Over the last two decades, mankind has
been gradually inventing and acquiring means to characterize and manipulate
that structure. Many remarkable effects, physical phenomena, materials and
devices have already been discovered or developed: nanocomposites, carbon
nanotubes, nanowires and nanodots, nanoparticles of different types, photonic
crystals, and so on.

On a more fundamental level, research in nanoscale physics may provide
clues to the most profound mysteries of nature.

“Where is the frontier of physics?”, asks L.S. Schulman in the Preface
to his book [Sch97]. “Some would say 10−33 cm, some 10−15 cm and
some 10+28 cm. My vote is for 10−6 cm. Two of the greatest puzzles of
our age have their origins at the interface between the macroscopic and
microscopic worlds. The older mystery is the thermodynamic arrow of
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time, the way that (mostly) time-symmetric microscopic laws acquire
a manifest asymmetry at larger scales. And then there’s the superpo-
sition principle of quantum mechanics, a profound revolution of the
twentieth century. When this principle is extrapolated to macroscopic
scales, its predictions seem widely at odds with ordinary experience.”

The second “puzzle” that Professor Schulman refers to is the apparent con-
tradiction between the quantum-mechanical representation of micro-objects
in a superposition of quantum states and a single unambiguous state that all
of us really observe for macro-objects. Where and how exactly is this tran-
sition from the quantum world to the macro-world effected? The boundary
between particle- or atomic-size quantum objects and macro-objects is on
the nanoscale; that is where the “collapse of the quantum-mechanical wave-
function” from a superposition of states to one well-defined state would have
to occur. Recent remarkable double-slit experiments by M. Arndt’s Quantum
Nanophysics group at the University of Vienna show no evidence of “collapse”
of the wavefunction and prove the wave nature of large molecules with the
mass of up to 1,632 units and size up to 2 nm (tetraphenylporphyrin C44H30N4

and the fluorinated buckyball C60F48).1 If further experiments with nanoscale
objects are carried out, they will most likely confirm that the “collapse” of
the wavefunction is not a fundamental physical law but only a metaphorical
tool for describing the transition to the macroworld; still, such experiments
will undoubtedly be captivating.

Getting back to more practical aspects of nanoscale research, I illustrate its
promise with one example from Chapter 7 of this book. It is well known that
visible light is electromagnetic waves with the wavelengths from approximately
400 nm (violet light) to ∼700 nm (red light); green light is in the middle of
this range. Thus there are approximately 2,000 wavelengths of green light
per millimeter (or about 50,000 per inch). Propagation of light through a
material is governed not only by the atomic-level properties but also, in many
interesting and important ways, by the nanoscale/subwavelength structure of
the material (i.e. the scale from 5–10 nm to a few hundred nanometers).

Consider ocean waves as an analogy. A wave will easily pass around a
relatively small object, such as a buoy. However, if the wave hits a long line
of buoys, interesting things will start to happen: an interference pattern may
emerge behind the line. Furthermore, if the buoys are arranged in a two-
dimensional array, possible wave patterns are richer still.

Substituting an electromagnetic wave of light (say, with wavelength λ =
500 nm) for the ocean wave and a lattice of dielectric cylindrical rods (say,
200 nm in diameter) for the two-dimensional array of buoys, we get what
is known as a photonic crystal.2 It is clear that the subwavelength structure

1 M. Arndt et al., Wave-particle duality of C60 molecules, Nature 401, 1999,
pp. 680–682; http://physicsweb.org/articles/world/18/3/5.

2 The analogy with electromagnetic waves would be closer mathematically but less
intuitive if acoustic waves in the ocean were considered instead of surface waves.
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of the crystal may bring about very interesting and unusual behavior of the
wave.

Even more fascinating is the possibility of controlling the propagation
of light in the material by a clever design of the subwavelength structure.
“Cloaking” – making objects invisible by wrapping them in a carefully de-
signed metamaterial – has become an area of serious research (J.B. Pendry
et al. [PSS06]) and has already been demonstrated experimentally in the mi-
crowave region (D. Schurig et al. [SMJ+06]). Guided by such material, the
rays of light would bend and pass around the object as if it were not there
(G. Gbur [Gbu03], J.B. Pendry et al. [PSS06], U. Leonhardt [Leo06]). A note
to the reader who wishes to hide behind this cloak: if you are invisible to
the outside world, the outside world is invisible to you. This follows from the
reciprocity principle in electromagnetism.3

Countless other equally fascinating nanoscale applications in numerous
other areas could be given. Like it or not, we live in interesting times.

1.2 Why Special Models for the Nanoscale?

A good model can advance
fashion by ten years.

Yves Saint Laurent

First, a general observation. A simulation model consists of a physical
and mathematical formulation of the problem at hand and a computational
method. The formulation tells us what to solve and the computational method
tells us how to solve it. Frequently more than one formulation is possible, and
almost always several computational techniques are available; hence there
potentially are numerous combinations of formulations and methods. Ideally,
one strives to find the best such combination(s) in terms of efficiency, accuracy,
robustness, algorithmic simplicity, and so on.

It is not surprising that the formulations of nanoscale problems are indeed
special. The scale is often too small for continuous-level macroscopic laws to
be fully applicable; yet it is too large for a first-principles atomic simulation to
be feasible. Computational compromises are reached in several different ways.
In some cases, continuous parameters can be used with some caution and with
suitable adjustments. One example is light scattering by small particles and
the related “plasmonic” effects (Chapter 7), where the dielectric constant of
metals or dielectrics can be adjusted to account for the size of the scatterers.
In other situations, multiscale modeling is used, where a hierarchy of problems

3 Perfect invisibility is impossible even theoretically, however. With some imper-
fection, the effect can theoretically be achieved only in a narrow range of wave-
lengths. The reason is that the special metamaterials must have dispersion – i.e.
their electromagnetic properties must be frequency-dependent.



4 1 Introduction

are solved and the information obtained on a finer level is passed on to the
coarser ones and back. Multiscale often goes hand-in-hand with multiphysics:
for example, molecular dynamics on the finest scale is combined with con-
tinuum mechanics on the macroscale. The Society for Industrial and Applied
Mathematics (SIAM) now publishes a journal devoted entirely to this subject:
Multiscale Modeling and Simulation, inaugurated in 2003.

The applications and problems in this book have some multiscale features
but can still be dealt with on a single scale4 – primarily the nanoscale. As
an example: in colloidal simulation (Chapter 6) the molecular-scale degrees
of freedom corresponding to microions in the solvent are “integrated out,”
the result being the Poisson–Boltzmann equation that applies on the scale of
colloidal particles (approximately from 10 to 1000 nm). Still, simulation of
optical tips (Section 7.12, p. 433) does have salient multiscale features.

Let us now discuss the computational side of nanoscale models. Compu-
tational analysis is a mature discipline combining science, engineering and
elements of art. It includes general and powerful techniques such as finite dif-
ference, finite element, spectral or pseudospectral, integral equation and other
methods; it has been applied to every physical problem and device imaginable.

Are these existing methods good enough for nanoscale problems? The
answer can be anything from “yes” to “maybe” to “no,” depending on the
problem.

• When continuum models are still applicable, traditional methods work
well. A relevant example is the simulation of light scattering by plasmon
nanoparticles and of plasmon-enhanced components for ultra-sensitive op-
tical sensors and near-field microscopes (Chapter 7). Despite the nanoscale
features of the problem, equivalent material parameters (dielectric permit-
tivity and magnetic permeability) can still be used, possibly with some
adjustments. Consequently, commercial finite-element software is suitable
for this type of modeling.

• When the system size is even smaller, as in macromolecular simulation, the
use of equivalent material parameters is more questionable. In electrostatic
models of protein molecules in solvents – an area of extensive and intensive
research due to its enormous implications for biology and medicine – two
main approaches coexist. In implicit models, the solvent is characterized
by equivalent continuum parameters (dielectric permittivity and the Debye
length). In the layer of the solvent immediately adjacent to the surface of
the molecule, these equivalent parameters are dramatically different from
their values in the bulk (A. Rubinstein & S. Sherman [RS04]). In contrast,
explicit models directly include molecular dynamics of the solvent. This
approach is in principle more accurate, as no approximation of the solvent
by an equivalent medium is made, but the computational cost is extremely

4 The Flexible Local Approximation MEthod (FLAME) of Chapter 4 can, however,
be viewed as a two-scale method: the difference scheme is formed on a relatively
coarse grid but incorporates information about the solution on a finer scale.
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high due to a very large number of degrees of freedom corresponding to
the molecules of the solvent. For more information on protein simulation,
see T. Schlick’s book [Sch02] and T. Simonson’s review paper [Sim03] as
a starting point.

• When the problem reduces to a system of ordinary differential equations,
the computational analysis is on very solid ground – this is one of the most
mature areas of numerical mathematics (Chapter 2). It is highly desirable
to use numerical schemes that preserve the essential physical properties of
the system. In Molecular Dynamics, such fundamental properties are the
conservation of energy and momentum, and – more generally – symplectic-
ness of the underlying Hamiltonian system (Section 2.5). Time-stepping
schemes with analogous conservation properties are available and their
advantages are now widely recognized (J.M. Sanz-Serna & M.P. Calvo
[SSC94], Yu.B. Suris [Sur87, Sur96], R.D. Skeel et al. [RDS97]).

• Quantum mechanical effects require special computational treatment. The
models are substantially different from those of continuum media for
which the traditional methods (such as finite elements or finite differences)
were originally designed and used. Nevertheless these traditional methods
can be very effective at certain stages of quantum mechanical analysis.
For example, classical finite-difference schemes (in particular, the Collatz
“Mehrstellen” schemes, Chapter 2), have been successfully applied to the
Kohn–Sham equation – the central procedure in Density Functional The-
ory. (This is the Schrödinger equation, with the potential expressed as a
function of electron density.) For a detailed description, see E.L. Briggs et
al. [BSB96] and T.L. Beck [Bec00]. Moreover, difference schemes can also
be used to find the electrostatic potential from the Poisson equation with
the electron density in the right hand side.

• Colloidal simulation considered in Chapter 6 is an interesting and spe-
cial computational case. As explained in that chapter, classical methods
of computation are not particularly well suited for this problem. Finite
element meshes become too complex and impractical to generate even for
a moderate number of particles in the model; standard finite-difference
schemes require unreasonably fine grids to represent the boundaries of the
particles accurately; the Fast Multipole Method does not work too well
for inhomogeneous and/or nonlinear problems. A new finite-difference cal-
culus of Flexible Local Approximation MEthods (FLAME) is a promising
alternative (Chapter 4).

This list could easily be extended to include other examples, but the main
point is clear: a vast assortment of computational methods, both traditional
and new, are very helpful for the efficient simulation of nanoscale systems.
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1.3 How To Hone the Computational Tools

A computer makes as many
mistakes in two seconds as 20
men working 20 years make.

Murphy’s Laws of Computing

Computer simulation is not an exact science. If it were, one would simply set
a desired level of accuracy ε of the numerical solution and prove that a certain
method achieves that level with the minimal number of operations Θ = Θ(ε).
The reality is of course much more intricate. First, there are many possible
measures of accuracy and many possible measures of the cost (keeping in mind
that human time needed for the development of algorithms and software may
be more valuable than the CPU time). Accuracy and cost both depend on the
class and subclass of problems being solved. For example, numerical solution
becomes substantially more complicated if discontinuities and edge or corner
singularities of the field need to be represented accurately.

Second, it is usually close to impossible to guarantee, at the mathematical
level of rigor, that the numerical solution obtained has a certain prescribed ac-
curacy.5 Third, in practice it is never possible to prove that any given method
minimizes the number of arithmetic operations.

Fourth, there are modeling errors – approximations made in the formu-
lation of the physical problem; these errors are a particular concern on the
nanoscale, where direct and accurate experimental verification of the assump-
tions made is very difficult. Fifth, a host of other issues – from the algorithmic
implementation of the chosen method to roundoff errors – are quite difficult
to take into account. Parallelization of the algorithm and the computer code
is another complicated matter.

With all this in mind, computer simulation turns out to be partially an
art. There is always more than one way to solve a given problem numerically
and, with enough time and resources, any reasonable approach is likely to
produce a result eventually.

Still, it is obvious that not all approaches are equal. Although the accu-
racy and computational cost cannot be determined exactly, some qualitative
measures are certainly available and are commonly used. The main charac-
teristic is the asymptotic behavior of the number of operations and memory
required for a given method as a function of some accuracy-related parameter.
In mesh-based methods (finite elements, finite differences, Ewald summation,

5 There is a notable exception in variational methods: rigorous pointwise error
bounds can, for some classes of problems, be established using dual formulations
(see p. 153 for more information). However, this requires numerical solution of
a separate auxiliary problem for Green’s function at each point where the error
bound is sought.
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etc.) the mesh size h or the number of nodes n usually act as such a parame-
ter. The “big-oh” notation is standard; for example, the number of arithmetic
operations θ being O(nγ) as n →∞ means that c1n

γ ≤ θ ≤ c2n
γ , where c1,2

and γ are some positive constants independent of n. Computational methods
with the operation count and memory O(n) are considered as asymptotically
optimal; the doubling of the number of nodes (or some other such parameter)
leads, roughly, to the doubling of the number of operations and memory size.
For several classes of problems, there exist divide-and-conquer or hierarchical
strategies with either optimal O(n) or slightly suboptimal O(n log n) com-
plexity. The most notable examples are Fast Fourier Transforms (FFT), Fast
Multipole Methods, multigrid methods, and FFT-based Ewald summation.

Clearly, the numerical factors c1,2 also affect the performance of the
method. For real-life problems, they can be determined experimentally and
their magnitude is not usually a serious concern. A notable exception is the
Fast Multipole Method for multiparticle interactions; its operation count is
close to optimal, O(np log np), where np is the number of particles, but the
numerical prefactors are very large, so the method outperforms the brute-
force approach (O(n2

p) pairwise particle interactions) only for a large number
of particles, tens of thousands and beyond.

Given that the choice of a suitable method is partially an art, what is
one to do? As a practical matter, the availability of good public domain and
commercial software in many cases simplifies the decision. Examples of such
software are

• Molecular Dynamics packages AMBER (Assisted Model Building with
Energy Refinement, amber.scripps.edu); CHARMM/CHARMm (Chem-
istry at HARvard Macromolecular Mechanics, yuri.harvard.edu, accelrys.
com/products/dstudio/index.html), NAMD (www.ks.uiuc.edu/Research/
namd), GROMACS (gromacs.org), TINKER (dasher.wustl.edu/tinker),
DL POLY (www.cse.scitech.ac.uk/ccg/software/DL POLY/index.shtml).

• A finite difference Poisson-Boltzman solver DelPhi (honiglab.cpmc.colum-
bia.edu).

• Finite Element software developed by ANSYS (ansys.com – comprehensive
FE modeling, with multiphysics); by ANSOFT (ansoft.com – state-of-the-
art FE package for electromagnetic design); by Comsol (comsol.com or
femlab.com – the Comsol MultiphysicsTMpackage, also known as FEM-
LAB); and others.

• A software suite from Rsoft Group (rsoftdesign.com) for design of photon-
ics components and optical networks.

• Electromagnetic time-domain simulation software from CST (Computer
Simulation Technology, cst.com).

This list is certainly not exhaustive and, among other things, does not include
software for ab initio electronic structure calculation, as this subject matter
lies beyond the scope of the book.
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The obvious drawback of using somebody else’s software is that the user
cannot extend its capabilities and apply it to problems for which it was not
designed. Some tricks are occasionally possible (for example, equations in
cylindrical coordinates can be converted to the Cartesian system by a mathe-
matically equivalent transformation of material parameters), but by and large
the user is out of luck if the code is proprietary and does not handle a given
problem. For open-source software, users may in principle add their own mod-
ules to accomplish a required task, but, unless the revisions are superficial,
this requires detailed knowledge of the code.

Whether the reader of this book is an intelligent user of existing software
or a developer of his own algorithms and codes, the book will hopefully help
him/her to understand how the underlying numerical methods work.

1.4 So What?

Avoid clichés like the plague!

William Safire’s Rules for
Writers

Multisyllabic clichés are probably the worst type, but I feel compelled to use
one: nanoscale science and technology are interdisciplinary. The book is in-
tended to be a bridge between two broad fields: computational methods, both
traditional and new, on the one hand, and several nanoscale or molecular-
scale applications on the other. It is my hope that the reader who has a
background in physics, physical chemistry, electrical engineering or related
subjects, and who is curious about the inner workings of computational meth-
ods, will find this book helpful for crossing the bridge between the disciplines.
Likewise, experts in computational methods may be interested in browsing
the application-related chapters.

At the same time, readers who wish to stay on their side of the “bridge”
may also find some topics in the book to be of interest. An example of such
a topic for numerical analysts is the FLAME schemes of Chapter 4; a novel
feature of this approach is the systematic use of local approximation spaces
in the FD context, with basis functions not limited to Taylor polynomials.
Similarly, in the chapter on Finite Element analysis (Chapter 3), the theory of
shape-related approximation errors is nonstandard and yields some interesting
error estimates.

Since the prospective reader will not necessarily be an expert in any given
subject of the book, I have tried, to the extent possible, to make the text ac-
cessible to researchers, graduate and even senior-level undergraduate students
with a good general background in physics and mathematics. While part of
the material is related to mathematical physics, the style of the book can be
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characterized as physical mathematics6 – “physical” explanation of the un-
derlying mathematical concepts. I hope that this style will be tolerable to the
mathematicians and beneficial to the reader with a background in physical
sciences and engineering.

Sometimes, however, a more technical presentation is necessary. This is
the case in the analysis of consistency errors and convergence of difference
schemes in Chapter 2, Ewald summation in Chapter 5, and the derivation of
FLAME basis functions for particle problems in Chapter 6. In many other
instances, references to a rigorous mathematical treatment of the subject are
provided.

I cannot stress enough that this book is very far from being a comprehen-
sive treatise on nanoscale problems and applications. The selection of subjects
is strongly influenced by my research interests and experience. Topics where
I felt I could contribute some new ideas, methods and results were favored.
Subjects that are covered nicely and thoroughly in the existing literature were
not included. For example, material on Molecular Dynamics was, for the most
part, left out because of the abundance of good literature on this subject.7

However, one of the most challenging parts of Molecular Dynamics – the
computation of long-range forces in a homogeneous medium – appears as a
separate chapter in the book (Chapter 5). The novel features of this analysis
are a rigorous treatment of “charge allocation” to grid and the application of
finite-difference schemes, with the potential splitting, in real space.

Chapter 2 gives the necessary background on Finite Difference (FD)
schemes; familiarity with numerical methods is helpful but not required for
reading and understanding this chapter. In addition to the standard mater-
ial on classical methods, their consistency and convergence, this chapter in-
cludes introduction to flexible approximation schemes, Collatz “Mehrstellen”
schemes, and schemes for Hamiltonian systems.

Chapter 3 is a concise self-contained description of the Finite Element
Method (FEM). No special prior knowledge of computational methods is re-
quired to read most of this chapter. Variational principles and their role are
explained first, followed by a tutorial-style exposition of FEM in the simplest
1D case. Two- and three-dimensional scalar problems are considered in the
subsequent sections of the chapter. A more advanced subject is edge elements
that are crucial for vector field problems in electromagnetic analysis. Readers
already familiar with FEM may be interested in the new treatment of ap-
proximation accuracy as a function of element shape; this is a special topic in
Chapter 3.

6 Not exactly the same as “engineering mathematics,” a more utilitarian, user-
oriented approach.

7 J.M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley-
Interscience, 1997; D. Frenkel & B. Smit, Understanding Molecular Simulation,
Academic Press, 2001; D.C. Rapaport, The Art of Molecular Dynamics Simula-
tion, Cambridge University Press, 2004; T. Schlik [Sch02], and others.
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Chapter 4 introduces the Finite Difference (FD) calculus of Flexible Local
Approximation MEthods (FLAME). Local analytical solutions are incorpo-
rated into the schemes, which often leads to much higher accuracy than would
be possible in classical FD. A large assortment of examples illustrating the
usage of the method are presented.

Chapter 6 can be viewed as an extension of Chapter 5 to multiparticle
problems in heterogeneous media. The simulation of such systems, due to its
complexity, has received relatively little attention, and good methods are still
lacking. Yet the applications are very broad – from colloidal suspensions to
polymers and polyelectrolytes; in all of these cases, the media are inhomoge-
neous because the dielectric permittivities of the solute and solvent are usually
quite different. Ewald methods can only be used if the solvent is modeled ex-
plicitly, by including polarization on the molecular level; this requires a very
large number of degrees of freedom in the simulation. An alternative is to
model the solvent implicitly by continuum parameters and use the FLAME
schemes of Chapter 4. Application of these schemes to the computation of
the electrostatic potential, field and forces in colloidal systems is described in
Chapter 6.

Chapter 7 deals with applications in nano-photonics and nano-optics. It
reviews the mathematical theory of Bloch modes, in connection with the prop-
agation of electromagnetic waves in periodic structures; describes plane wave
expansion, FEM and FLAME for photonic bandgap computation; provides
a theoretical background for plasmon resonances and considers various nu-
merical methods for plasmon-enhanced systems. Such systems include optical
sensors with very high sensitivity, as well as scanning near-field optical mi-
croscopes with molecular-scale resolution, unprecedented in optics. Chapter 7
also touches upon negative refraction and nanolensing – areas of very inten-
sive research and debate – and includes new material on the inhomogeneity
of backward wave media.



2

Finite-Difference Schemes

2.1 Introduction

Due to its relative simplicity, Finite Difference (FD) analysis was historically
the first numerical technique for boundary value problems in mathematical
physics. The excellent review paper by V. Thomée [Tho01] traces the origin of
FD to a 1928 paper by R. Courant, K. Friedrichs and H. Lewy, and to a 1930
paper by S. Gerschgorin. However, the Finite Element Method (FEM) that
emerged in the 1960s proved to be substantially more powerful and flexible
than FD. The modern techniques of hp-adaption, parallel multilevel precon-
ditioning, domain decomposition have made FEM ever more powerful (Chap-
ter 3). Nevertheless, FD remains a very valuable tool, especially for problems
with relatively simple geometry.

This chapter starts with a gentle introduction to FD schemes and proceeds
to a more detailed review. Sections 2.2–2.4 are addressed to readers with little
or no background in finite-difference methods. Section 2.3, however, introduces
a nontraditional perspective and may be of interest to more advanced readers
as well. By approximating the solution of the problem rather than a generic
smooth function, one can achieve much higher accuracy. This nontraditional
perspective will be further developed in Chapter 4.

Section 2.4 gives an overview of classical FD schemes for Ordinary Differ-
ential Equations (ODE) and systems of ODE; Section 2.5 – an overview of
Hamiltonian systems that are particularly important in molecular dynamics.

Sections 2.6–2.8 describe FD schemes for boundary value problems in one,
two and three dimensions. Some ideas of this analysis, such as minimization
of the consistency error for a constrained set of functions, are nonstandard.

Finally, Section 2.9 summarizes the most important results on consistency
and convergence of FD schemes.

In addition to providing a general background on FD methods, this chap-
ter is intended to set the stage for the generalized FD analysis with “Flexi-
ble Local Approximation” described in Chapter 4. The scope of the present
chapter is limited, and for a more comprehensive treatment and analysis of
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FD methods – in particular, elaborate time-stepping schemes for ordinary
differential equations, schemes for gas and fluid dynamics, Finite-Difference
Time-Domain (FDTD) methods in electromagnetics, etc. – I defer to many
excellent more specialized monographs. Highly recommended are books by
C.W. Gear [Gea71] (ODE, including stiff systems), U.M. Ascher & L.R. Pet-
zold [AP98], K.E. Brenan et al. [KB96] (ODE, especially the treatment of
differential-algebraic equations), S.K. Godunov & V.S. Ryabenkii [GR87a]
(general theory of difference schemes and hyperbolic equations), J. Butcher
[But87, But03] (time-stepping schemes and especially Runge–Kutta methods),
T.J. Chung [Chu02] and S.V. Patankar [Pat80] (schemes for computational
fluid dynamics), A. Taflove & S.C. Hagness [TH05] (FDTD).

2.2 A Primer on Time-Stepping Schemes

1 The following example is the simplest possible illustration of key principles
of finite-difference analysis. Suppose we wish to solve the ordinary differential
equation

du

dt
= λu on [0, tmax], u(0) = u0, Re λ < 0 (2.1)

numerically. The exact solution of this equation

uexact = u0 exp(λt) (2.2)

obviously has infinitely many values at infinitely many points within the in-
terval. In contrast, numerical algorithms have to operate with finite (dis-
crete) sets of data. We therefore introduce a set of points (grid) t0 =
0, t1, . . . , tn−1, tn = tmax over the given interval. For simplicity, let us as-
sume that the grid size ∆t is the same for all pairs of neighboring points:
tk+1 − tk = ∆t, so that tk = k∆t.

We now consider equation (2.1) at a moment of time t = tk:

du

dt
(tk) = λu(tk) (2.3)

The first derivative du/dx can be approximated on the grid in several
different ways:

du

dt
(tk) =

u(tk+1)− u(tk)
∆t

+ O(∆t)

du

dt
(tk) =

u(tk)− u(tk−1)
∆t

+ O(∆t)

du

dt
(tk) =

u(tk+1)− u(tk−1)
2∆t

+ O((∆t)2)

1 I am grateful to Serge Prudhomme for very helpful suggestions and comments on
the material of this section.
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These equalities – each of which can be easily justified by Taylor expansion –
lead to the algorithms known as forward Euler, backward Euler and central
difference schemes, respectively:

uk+1 − uk

λ∆t
− uk = 0 (2.4)

or, equivalently,

uk+1 − (1 + λ∆t)uk = 0 (forward Euler) (2.5)

uk − uk−1

λ∆t
= uk (2.6)

or
(1− λ∆t)uk − uk−1 = 0 (backward Euler) (2.7)

uk+1 − uk−1

2λ∆t
= uk (2.8)

or
uk+1 − 2λ∆tuk − uk−1 = 0 (central difference) (2.9)

where uk−1, uk and uk+1 are approximations to u(t) at discrete times tk−1,
tk and tk+1, respectively. For convenience of analysis, the schemes above are
written in the form that makes the dimensionless product λ∆t explicit.

The (discrete) solution for the forward Euler scheme (2.4) can be easily
found by time-stepping : start with the given initial value u(0) = u0 and use
the scheme to find the value of the solution at each subsequent step:

uk+1 = (1 + λ∆t)uk (2.10)

This difference scheme was obtained by approximating the original differential
equation, and it is therefore natural to expect that the solution of the original
equation will approximately satisfy the difference equation. This can be easily
verified because in this simple example the exact solution is known. Let us
substitute the exact solution (2.2) into the left hand side of the difference
equation (2.4):

εc = u0

[
exp (λ(k + 1)∆t)− exp (kλ∆t)

λ∆t
− exp (kλ∆t)

]

= u0 exp(kλ∆t)
[
exp(λ∆t)− 1

λ∆t
− 1

]
= u0 exp(kλ∆t)

λ∆t

2
+ h.o.t. (2.11)

where the very last equality was obtained via the Taylor expansion for ∆t → 0,
and “h.o.t.” are higher order terms with respect to the time step ∆t. Note
that the exponential factor exp(kλ∆t) goes to unity if ∆t → 0 and the other
parameters are fixed; however, if the moment of time t = tk is fixed, then this
exponential is proportional to the value of the exact solution
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Symbol εc stands for consistency error that is, by definition, obtained by
substituting the exact solution into the difference scheme. The consistency
error (2.11) is indeed “small” – it tends to zero as ∆t tends to zero. More pre-
cisely, the error is of order one with respect to ∆t. In general, the consistency
error εc is said to be of order p with respect to ∆t if

c1∆tp ≤ |εc| ≤ c2∆tp (2.12)

where c1,2 are some positive constants independent of ∆t. (In the case under
consideration, p = 1.) A very common equivalent form of this statement is
the “big-oh” notation:

|εc| = O((∆t)p)

(see also Introduction, p. 7). While consistency error is a convenient and
very important intermediate quantity, the ultimate measure of accuracy is
the solution error, i.e. the deviation of the numerical solution from the exact
one:

εk = uk − uexact(tk) (2.13)

The connection between consistency and solution errors will be discussed in
Section 2.9.

In our current example, we can evaluate the numerical error directly. The
repeated “time-stepping” by the forward Euler scheme (2.10) yields the fol-
lowing numerical solution:

uk = (1 + λ∆t)ku0 ≡ (1− ξ)ku0 (2.14)

where ξ = −λ∆t. (Note that Re ξ > 0, as Re λ is assumed negative.) The
k-th time step corresponds to the time instant tk = k∆t, and so in terms of
time the numerical solution can then be rewritten as

uk = [(1− ξ)1/ξ]−λtk u0 (2.15)

From basic calculus, the expression in the square brackets tends to e−1 as
ξ → 0, and hence uk tends to the exact solution (2.2) u0 exp(λtk) as ∆t → 0.
Thus in the limit of small time steps the forward Euler scheme works as
expected.

However, in practice, when equations and systems much more complex
than our example are solved, very small step sizes may lead to prohibitively
high computational costs due to a large number of time steps involved. It is
therefore important to examine the behavior of the numerical solution for any
given positive value of the time step rather than only in the limit ∆t → 0.
Three qualitatively different cases emerge from (2.14):⎧⎨
⎩
|1 + λ∆t| < 1 ⇔ ∆t < ∆tmin, numerical solution decays (as it should);
|1 + λ∆t| > 1 ⇔ ∆t > ∆tmin, numerical solution diverges;
|1 + λ∆t| = 1 ⇔ ∆t = ∆tmin, numerical solution oscillates.
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where
∆tmin = − 2Re λ

|λ|2 , Re λ < 0 (2.16)

∆tmin =
2
|λ| , λ < 0 (λ real) (2.17)

For the purposes of this introduction, we shall call a difference scheme stable
if, for a given initial condition, the numerical solution remains bounded for all
time steps; otherwise the scheme is unstable.2 It is clear that in the second and
third case above the numerical solution is qualitatively incorrect. The forward
Euler scheme is stable only for sufficiently small time steps – namely, for

∆t < ∆tmin (stability condition for the forward Euler scheme) (2.18)

Schemes that are stable only for a certain range of values of the time step are
called conditionally stable. Schemes that are stable for any positive time step
are called unconditionally stable.

It is not an uncommon misconception to attribute the numerical instability
to round-off errors. While round-off errors can exacerbate the situation, it is
clear from (2.14) the instability will manifest itself even in exact arithmetic if
the time step is not sufficiently small.

The backward Euler difference scheme (2.6) is substantially different in
this regard. The numerical solution for that scheme is easily found to be

uk = (1− λ∆t)−ku0 (2.19)

In contrast with the forward Euler method, for negative Re λ this solution is
bounded (and decaying in time) regardless of the step size ∆t. That is, the
backward Euler scheme is unconditionally stable. However, there is a price
to pay for this advantage: the scheme is an equation with respect to uk+1.
In the current example, solution of this equation is trivial (just divide by
1 − λ∆t), but for nonlinear differential equations, and especially for (linear
and nonlinear) systems of differential equations the computational cost of
computing the solution at each time step may be high.

Difference schemes that require solution of a system of equations to find
uk+1 are called implicit ; otherwise the scheme is explicit. The forward Euler
scheme is explicit, and the backward Euler scheme is implicit. The derivation
of the consistency error for the backward Euler scheme is completely analogous
to that of the forward Euler scheme, and the result is essentially the same,
except for a sign difference:

εc = − u0 exp(kλ∆t)
λ∆t

2
+ h.o.t. (2.20)

2 More specialized definitions of stability can be given for various classes of schemes;
see e.g. C.W. Gear [Gea71], J.C. Butcher [But03], E. Hairer et al. [HrW93] as well
as the following sections of this chapter.
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As in the forward Euler case, the exponential factor tends to unity as the time
step goes to zero, but only if k and λ are fixed.

The very popular Crank–Nicolson scheme3 can be viewed as an approxi-
mation of the original differential equation at time tk+1/2 ≡ tk + ∆t/2:

uk+1 − uk

λ∆t
− uk + uk+1

2
= 0, k = 0, 1, . . . (2.21)

Indeed, the left hand side of this equation is the central-difference approxi-
mation (completely analogous to (2.8), but with a twice smaller time step),
while the right hand side approximates the value of u(tk+1/2).

The time-stepping procedure for the Crank–Nicolson scheme is(
1− λ∆t

2

)
uk+1 =

(
1 +

λ∆t

2

)
uk, k = 0, 1, . . . (2.22)

and the numerical solution of the model problem is

uk =
(

1 + λ∆t/2
1− λ∆t/2

)k

u0 (2.23)

Since the absolute value of the fraction here is less than one for all positive
(even very large) time steps, the Crank–Nicolson scheme is unconditionally
stable. Its consistency error is again found by substituting the exact solution
(2.2) into the scheme (2.21). The result is

εc = − u0 exp(kλ∆t)
(λ∆t)2

12
+ h.o.t. (2.24)

The consistency error is seen to be of second order – as such, it is (for suffi-
ciently small time steps) much smaller than the error of both Euler schemes.

2.3 Exact Schemes

As we have seen, the consistency error can be made smaller if one switches
from Euler methods to the Crank–Nicolson scheme. Can the consistency error
be reduced even further? One may try to “mix” the forward and backward
3 Often misspelled as Crank-Nicholson. After John Crank (born 1916), British

mathematical physicist, and Phyllis Nicolson (1917–1968), British physicist.
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Nicolson.html
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Crank.html The
original paper is: J. Crank and P. Nicolson, A practical method for numerical
evaluation of solutions of partial differential equations of the heat-conduction
type, Proc. Cambridge Philos. Soc., vol. 43, pp. 50–67, 1947. [Re-published
in: John Crank 80th birthday special issue of Adv. Comput. Math., vol. 6, pp.
207–226, 1997.]
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Euler schemes in a way similar to the Crank–Nicolson scheme, but by as-
signing some other weights θ and (1 − θ), instead of 1

2 , to uk and uk+1 in
(2.21). However, it would soon transpire that the Crank–Nicolson scheme in
fact has the smallest consistency error in this family of schemes, so nothing
substantially new is gained by introducing the alternative weighting factors.

Nevertheless one can easily construct schemes whose consistency error can-
not be beaten. Indeed, here is an example of such a scheme:

uk

uexact(tk)
− uk+1

uexact(tk+1)
= 0 (2.25)

More specifically for the equation under consideration

uk

exp(−λtk)
− uk+1

exp(−λtk+1)
= 0 (2.26)

Equivalently,
uk − uk+1 exp(λ∆t) = 0 (2.27)

Obviously, by construction of the scheme, the analytical solution satisfies the
difference equation exactly – that is, the consistency error of the scheme is
zero. One cannot do any better than that!

The first reaction may be to dismiss this construction as cheating: the
scheme makes use of the exact solution that in fact needs to be found. If the
exact solution is known, the problem has been solved and no difference scheme
is needed. If the solution is not known, the coefficients of this “exact” scheme
are not available.

Yet the idea of “exact” schemes like (2.25) proves very useful. Even though
the exact solution is usually not known, excellent approximations for it can
frequently be found and used to construct a difference scheme. One key ob-
servation is that such approximations need not be global (i.e. valid through-
out the computational domain). Since difference schemes are local, all that is
needed is a good local approximation of the solution. Local approximations
are much more easily obtainable than global ones. In fact, the Taylor series
expansion that was implicitly used to construct the Euler and Crank–Nicolson
schemes, and that will be more explicitly used in the following subsection, is
just an example of a local approximation.

The construction of “exact” schemes represents a shift in perspective. The
objective of Taylor-based schemes is to approximate the differential operator
– for example, d/dt – with a suitable finite difference, and consequently the
differential equation with the respective FD scheme. The objective of the
“exact” schemes is to approximáte the solution.

Approximation of the differential operator is a very powerful tool, but
it carries substantial redundancy: it is applicable to all sufficiently smooth
functions to which the differential operator could be applied. By focusing on
the solution only, rather than on a wide class of smooth functions, one can
reduce or even eliminate this redundancy. As a result, the accuracy of the
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numerical solution can be improved dramatically. This set of ideas will be
explored in Chapter 4.

The following figures illustrate the accuracy of different one-step schemes
for our simple model problem with parameter λ = −10. Fig. 2.1 shows the
analytical and numerical solutions for time step ∆t = 0.05. It is evident that
the Crank–Nicolson scheme is substantially more accurate than the Euler
schemes. The numerical errors are quantified in Fig. 2.2. As expected, the
exact scheme gives the true solution up to the round-off error.

Fig. 2.1. Numerical solution for different one-step schemes. Time step ∆t = 0.05.
λ = −10.

For a larger time step ∆t = 0.25, the forward Euler scheme exhibits in-
stability (Fig. 2.3). The exact scheme still yields the analytical solution to
machine precision. The backward Euler and Crank–Nicolson schemes are sta-
ble, but the numerical errors are higher than for the smaller time step.

R.E. Mickens [Mic94] derives “exact” schemes from a different perspective
and extends them to a family of “nonstandard” schemes defined by a set of
heuristic rules. We shall see in Chapter 4 that the “exact” schemes are a very
natural particular case of a new finite-difference calculus – “Flexible Local
Approximation MEthods” (FLAME).

2.4 Some Classic Schemes for Initial Value Problems

For completeness, this section presents a brief overview of a few popular time-
stepping schemes for Ordinary Differential Equations (ODE).
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Fig. 2.2. Numerical errors for different one-step schemes. Time step ∆t = 0.05.
λ = −10.

Fig. 2.3. Numerical solution for the forward Euler scheme. Time step ∆t = 0.25.
λ = −10.
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Fig. 2.4. Numerical solution for different one-step schemes. Time step ∆t = 0.25.
λ = −10.

2.4.1 The Runge–Kutta Methods

This introduction to Runge–Kutta (R-K) methods follows the elegant expo-
sition by E. Hairer et al. [HrW93]. The main idea dates back to C. Runge’s
original paper of 1895.

The goal is to construct high order difference schemes for the ODE

y′(t) = f(t, y), y(t0) = y0 (2.28)

Our starting point is a simpler problem, with the right hand side independent
of y:

y′(t) = f(t), y(t0) = y0 (2.29)

This problem not only has an analytical solution

y(t) = y0 +
∫ t

t0

f(τ)dτ (2.30)

but also admits accurate approximations via numerical quadratures. For ex-
ample, the midpoint rule gives

y1 ≡ y(t1) ≈ y0 + ∆t0f

(
t0 +

∆t0
2

)

y2 ≡ y(t2) ≈ y1 + ∆t1f

(
t1 +

∆t1
2

)
and so on. Here t0, t1, etc., are a discrete set of points in time, and the
time steps ∆t0 = t1 − t0, ∆t1 = t2 − t1, etc., do not have to be equal.
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It is straightforward to verify that this numerical quadrature (that doubles
as a time-stepping scheme) has second order accuracy with respect to the
maximum time step.

An analogous formula for taking the numerical solution of the original
equation (2.28) from a generic point t in time to t + ∆t would be

y(t + ∆t) ≈ y(t) + ∆tf

(
t +

∆t

2
, y

(
t +

∆t

2

))
(2.31)

The obstacle is that the value of y at the midpoint t + ∆t
2 is not directly

available. However, this value may be found approximately via the forward
Euler scheme with the time step ∆t/2:

y

(
t +

∆t

2

)
≈ y(t) +

∆t

2
f (t, y(t)) (2.32)

A valid difference scheme can now be produced by inserting this midpoint
value into the numerical quadrature (2.31). The customary way of writing the
overall procedure is as the following sequence:

k1 = f(t, y) (2.33)

k2 = f

(
t +

∆t

2
, y(t) +

∆t

2
k1

)
(2.34)

y(t + ∆t) = y(t) + ∆t k2 (2.35)

This is the simplest R-K method with two stages (k1 is computed at the
first stage and k2 at the second). The generic form of an s-stage explicit R-K
method is as follows [HrW93]:

k1 = f(t0, y0)
k2 = f (t0 + c2∆t, y0 + ∆ta21k1)

k3 = f (t0 + c3∆t, y0 + ∆t (a31k1 + a32k2))
. . .

ks = f (t0 + cs∆t, y0 + ∆t (as1k1 + · · ·+ as,s−1ks−1))
y(t + h) = y0 + ∆t(b1k1 + b2k2 + · · ·+ bsks)

The procedure is indeed explicit, as the computation at each subsequent stage
depends only on the values computed at the previous stages. The “input data”
for the R-K method at any given time step consists only of one value y0 at the
beginning of this step and does not include any other previously computed val-
ues. Thus the R-K time step sizes can be chosen independently, which is very
useful for adaptive algorithms. The multi-stage method should not be con-
fused with multi-step schemes (such as e.g. the Adams methods, Section 2.4.2
below) where the input data at each discrete time point contains the values
of y at several previous steps. Changing the time step in multistep methods
may be cumbersome and may require “re-initialization” of the algorithm.
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To write R-K schemes in a compact form, it is standard to collect all the
coefficients a, b and c in J. Butcher’s tableau:

0
c2 a21

c3 a31 a32

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
cs as1 as2 . . . . . . . . . as,s−1

b1 b2 . . . . . . . . . bs

One further intuitive observation is that the k parameters in the R-K
method are values of function f at some intermediate points. As a rule, one
wants these intermediate points to be close to the actual solution y(t) of (2.28).
Then, according to (2.28), the ks also approximate the time derivative of y over
the current time step. Thus at the i-th stage of the procedure function f is eval-
uated, roughly speaking, at point (t0 + ci∆t, y0 +(ai1 + · · ·+ai,s−1)y′(t0)∆t).
From these considerations, condition

ci = ai1 + · · ·+ ai,s−1, i = 2, 3 . . . s

emerges as natural (although not, strictly speaking, necessary).
The number of stages is in general different from the order of the method

(i.e. from the asymptotic order of the consistency error with respect to the
time step), and one wishes to find the free parameters a, b and c that would
maximize the order. For s ≥ 5, no explicit s-stage R-K method of order s
exists (E. Hairer et al. [HrW93], J.C. Butcher [But03]). However, a family of
four-stage explicit R-K methods of fourth order are available [HrW93, But03].
The most popular of these methods are

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

and

0
1/3 1/3
2/3 −1/3 1
1 1 −1 1

1/8 3/8 3/8 1/8
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Stability conditions for explicit Runge–Kutta schemes can be obtained
along the following lines. For the model scalar equation (2.1)

dy

dt
= λy on [0, tmax], u(0) = u0 (2.36)

the exact solution changes by the factor of exp(λh) over one time step. If the
R-K method is of order p, the respective factor in the growth of the numerical
solution is the Taylor approximation

T (ξ) =
p∑

k=0

ξk

k!
, ξ ≡ λ∆t

to this exponential factor. Stability regions then correspond to |T (ξ)| < 1 in
the complex plane ξ ≡ λ∆t (Fig. 2.5).

Fig. 2.5. Stability regions in the λ∆t-plane for explicit Runge–Kutta methods of
orders one through four.

Further analysis of R-K methods can be found in monographs by J. Butcher
[But03], E. Hairer et al. [HrW93], and C.W. Gear [Gea71].
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2.4.2 The Adams Methods

Adams methods are a popular class of multistep schemes, where the solution
values from several previous time steps are utilized to find the numerical solu-
tion at the subsequent step. This is accomplished by polynomial interpolation.
The following brief summary is due primarily to E. Hairer et al. [HrW93].

Consider again the general ODE (2.28) (reproduced here for easy refer-
ence):

y′(t) = f(t, y), y(t0) = y0 (2.37)

Let the grid be uniform, ti = t0 + i∆t, and integrate the differential equation
over one time step:

y(tn+1) = y(tn) +
∫ tn+1

tn

f(t, y(t)) dt (2.38)

The integrand is a function of the unknown solution and obviously is not di-
rectly available; however, it can be approximated by a polynomial p(t) passing
through k previous numerical solution values (ti, f(yi)). The numerical solu-
tion at time step n + 1 is then found as

yn+1 = yn +
∫ tn+1

tn

p(t) dt (2.39)

Coefficients of p(t) can be found explicitly (e.g. via backward differences), and
the scheme is then obtained after inserting the expression for p into (2.39).
This explicit calculation appears in all texts on numerical methods for ODE
and is not included here.

Adams methods can also be used in the Nordsieck form, where instead
of the values of function f at the previous time steps approximate Taylor
coefficients for the solution are stored. These approximate coefficients form
the Nordsieck vector (yn, ∆ty′

n, ∆t2

2 y′′
n, . . . , ∆tk

k! y
(k)
n ). This form makes it

easier to change the time step size as needed.

2.4.3 Stability of Linear Multistep Schemes

It is clear from the introduction in Section 2.2 that stability characteristics
of the difference scheme are of critical importance for the numerical solution.
Stability depends on the intrinsic properties of the underlying differential
equation (or a system of ODE), as well as on the difference scheme itself
and the mesh size. This section highlights the key points in the stability
analysis of linear multistep schemes; the results and conclusions will be used,
in particular, in the next section (stiff systems).

Stability of linear multistep schemes is covered in all texts on FD schemes
for ODE (e.g. C.W. Gear [Gea71], J. Butcher [But03], E. Hairer et al. [HrW93],
U.M. Ascher & L.R. Petzold [AP98]). A comprehensive classification of types
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of stability is given in the book by J.D. Lambert [Lam91]. This section, for
the most part, follows Lambert’s presentation.

Consider the test system of equations

y′ = Ay, y ∈ R
n (2.40)

where all eigenvalues of matrix A are for simplicity assumed to be distinct
and to have strictly negative real parts, so that the system is stable. Further,
let a linear k-step method be

k∑
j=0

αjy+j = ∆t
k∑

j=0

βjf+j (2.41)

where f is the right hand side of the system, h is (as usual) the mesh size,
and index +j indicates values at the j-th time step (the “current” step corre-
sponding to j = 0). In our case, the right hand side f = Ay, and the multistep
scheme becomes

k∑
j=0

(αjI − ∆tβjA) y+j = 0 (2.42)

Since A is assumed to have distinct eigenvalues, it is diagonalizable, i.e.

Q−1AQ = Λ ≡ diag(λ1, . . . , λn) (2.43)

where Q is a nonsingular matrix. The same transformation can then be ap-
plied to the whole scheme (2.42) by multiplying it with Q−1 on the left and
introducing a variable change y = Qz. It is easy to see that, since the system
matrix becomes diagonal upon this transformation, the system splits up into
completely decoupled equations for each zi, i = 1, 2, . . . , n. With some abuse
of notation now, dropping the index i for zi and the respective eigenvalue λi,
we get the scalar version of the scheme

k∑
j=0

(αj − ∆tβjλ)z+j = 0 (2.44)

From the theory of difference equations it is well known that stability is gov-
erned by the roots4 rs (s = 1,2, . . . , k) of the characteristic equation

k∑
j=0

(αj − ∆tλβj) rj = 0 (2.45)

Clearly, stability depends on the (dimensionless) parameter hλ.
The multistep method is said to be absolutely stable for given λ∆t if all

the roots rs of the characteristic polynomial for this value of λ∆t lie strictly
inside the unit circle in the complex plane.
4 Lambert’s notation is used here.
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The set of points λ∆t in the λ∆t-plane for which the scheme is absolutely
stable is called the region of absolute stability. For illustration, let us recall
the simplest case – one-step schemes for the scalar equation y′ = λy:

y+1 − y0

∆t
= λ (θy0 + (1− θ)y+1) (2.46)

For θ = 0 and 1, this is the implicit/explicit Euler method, respectively; for
θ = 0.5 it is the Crank–Nicolson (trapezoidal) scheme. The characteristic
equation is obtained in a standard way, by formally substituting r1 for y+1

and r0 = 1 for y0:
r − 1
∆t

= λ (θ + (1− θ)r) (2.47)

The root is
r =

1 + λθ∆t

1− λ(1− θ)∆t
(2.48)

For the explicit Euler scheme (θ = 1)

rexpl.Euler = 1 + λ∆t (2.49)

and so the region of absolute stability in the λ∆t-plane is the unit circle
centered at −1 (Fig. 2.6).

Fig. 2.6. Stability region of the explicit Euler method is the unit circle (shaded).

For the implicit Euler scheme (θ = 0)

rimpl.Euler =
1

1− λ∆t
(2.50)
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Fig. 2.7. Stability region of the implicit Euler method is the shaded area outside
the unit circle.

the region of absolute stability is outside the unit circle centered at 1 (Fig. 2.7).
This stability region includes all negative values of λ∆t – that is, for a

negative λ, the scheme is stable for any (positive) time step. In addition,
curiously enough, the scheme is stable in a vast area with positive λ∆t – i.e.
the numerical solution may decay exponentially when the exact one grows
exponentially. This latter feature is somewhat undesirable but is typically
of little significance, as in most cases the underlying differential equations
describe stable systems with decaying solutions.

What about the Crank–Nicolson scheme? For θ = 0.5 we have

rCrank−Nicolson =
1 + λ∆t/2
1− λ∆t/2

(2.51)

and it is then straightforward to verify that the stability region is the half-
plane λ∆t < 0 (Fig. 2.8).

The region of stability is clearly a key consideration for choosing a suitable
class of schemes and the mesh size such that hλ lies inside the region of
stability.

2.4.4 Methods for Stiff Systems

One can identify two principal constraints on the choice of the time step in
a numerical scheme for ODE. The first constraint has to do with the desired
approximation accuracy (i.e. consistency error): if the solution varies smoothly
and slowly in time, it can be approximated with sufficient accuracy even if
the time step is large.
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Fig. 2.8. Stability region of the Crank–Nicolson scheme is the left half-plane.

The second constraint is imposed by stability of the scheme. Let us recall,
for example, that the stability condition for the simplest one-step scheme –
the forward Euler method – is ∆t < 2/|λ| (2.18), (2.17) for real negative λ,
in reference to the test equation (2.1)

dy

dt
= λy on [0, tmax], u(0) = u0 (2.52)

More advanced explicit methods may have broader stability regions: see e.g.
Fig. 2.5 for Runge–Kutta methods in Section 2.4.1. However, the improvement
is not dramatic; for example, for the four-stage fourth-order Runge–Kutta
method, the step size cannot exceed ∼ 2.785/|λ|.

For a single scalar equation (2.52) with λ < 0 and a decaying exponen-
tial solution, the accuracy and stability restrictions on the time step size are
commensurate. Indeed, accuracy calls for the step size on the order of the
relaxation time 1/λ or less, which is well within the stability limit even for
the simplest forward Euler scheme.

However, for systems of equations the stability constraint on the step size
can be much more severe than the accuracy limit. Consider the following
example:

dy1

dt
= λ1y1; λ1 = −1 (2.53)

dy2

dt
= λ2y2; λ2 = −1000 (2.54)

The second component (y2) dies out when t 
 1/|λ2| = 10−3 and can then
be neglected; beyond that point, the approximation accuracy would suggest
the time step commensurate with the relaxation time of the first component,
1/|λ1| = 1. However, the stability condition ∆t ≤ c/|λ| (where c depends
on the method but is not much greater than 2–3 for most practical explicit
schemes) has to hold for both λ and limits the time step to approximately
1/|λ2| = 10−3.

In other words, the time step that would provide good approximation
accuracy exceeds the stability limit by a factor of about 1000. A brute force
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approach is to use a very small time step and accept the high computational
cost as well as the tremendous redundancy in the numerical solution that will
remain virtually unchanged over one time step.

An obvious possibility for a system with decoupled components is to solve
the problem separately for each component. In the example above, one could
time-step y1 with ∆t1 ∼ 0.1 for about 50 steps (after which y1 will die out)
and y2 with ∆t2 ∼ 10−4 also for about 50 steps. However, decoupled systems
are a luxury that one seldom has in practical problems. For example, the
system of ODEs

z′(t) = Az; z(t) ∈ R
2; A =

(
500.5 −499.5
−499.5 500.5

)
(2.55)

poses the same stability problem for explicit schemes as the previous example
– simply because matrix A is obtained from the diagonal matrix D = diag(1,
1000) of the previous example by an orthogonal transformation A = Q′DQ,
with

Q =
(

1 1
−1 1

)
The “fast” and “slow” components, with their respective time scales, are now
mixed up, but this is no longer immediately obvious. Recovering the two
components is equivalent to solving a full eigenvalue-eigenvector problem for
the system matrix, which can be done for small systems but is inefficient or
even impossible for large ones. The situation is even more complicated for
nonlinear problems and systems with time-varying coefficients.

A practical alternative lies in switching to implicit difference schemes. In
return for excellent stability properties, one pays the price of having to solve
for the unknown value of the numerical solution yn+1 at the next time step.
This is in general a nonlinear equation (for a scalar ODE) or a nonlinear
system of algebraic equations (for a system of ODEs, y being in that case a
Euclidean vector).

Recall that for the ODE

y′(t) = f(t, y) (2.56)

the simplest implicit scheme – the backward Euler method – is

yn+1 − yn = ∆t f(tn+1, yn+1) (2.57)

A set of schemes that generalize the backward Euler algorithm to higher
orders is due to C.W. Gear [Gea67, Gea71, HrW93] and is called “Backward
Differentiation Formulae” (BDF). For illustration, let us derive the second
order BDF scheme, the derivation of higher order schemes being analogous.

The second order scheme involves three grid points: t−1 = t0 −∆t, t0 and
t+1 = t0 + ∆t; quantities related to the “current” time step t0 will be labeled
with index 0, quantities related to the previous and the next step will be
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labeled with −1 and +1, respectively. The starting point is almost the same
as for explicit Adams methods: an interpolation polynomial p(t) (quadratic
for the second order scheme) that passes through three points (t−1, y−1),
(t0, y0) and (t+1, y+1). The values y0 and y−1 of the solution at the current
and previous steps are known. The value y+1 at the next step is an unknown
parameter, and a suitable condition is needed to evaluate it.

Fig. 2.9. Second-order BDF involves quadratic polynomial interpolation over three
points: (t−1, y−1), (t0, y0) and (t+1, y+1).

In BDF, the following condition is imposed: the interpolating polynomial
p(t) must satisfy the underlying differential equation at time t+1, i.e.

p′(t+1) = f(t+1, y+1) (2.58)

To find this interpolation polynomial and then the BDF scheme itself, let us
for convenience move the origin of the coordinate system to the midpoint of
the stencil and set t0 = 0. Lagrange interpolation through the three points
then gives

p(t) = y−1
t(t−∆t)

(−∆t) · (−2∆t)
+ y0

(t + ∆t)(t−∆t)
∆t · (−∆t)

+ y+1
(t + ∆t)t
2∆t ·∆t

= y−1
t(t−∆t)

2∆t2
− y0

(t + ∆t)(t−∆t)
∆t2

+ y+1
(t + ∆t)t

2∆t2
(2.59)

The derivative of p (needed to impose condition (2.58) at the next step) is
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p′(t) =
y−1

2∆t2
(2t−∆t) − y0

∆t2
2t +

y+1

2∆t2
(2t + ∆t) (2.60)

Condition (2.58) is obtained by substituting t = t+1:

p′(t+1) =
y−1

2∆t
− 2y0

∆t
+

3y+1

2∆t
= f(t+1, y+1) (2.61)

or equivalently

3
2

y+1 − 2y0 +
1
2

y−1 = ∆t f(t+1, y+1) (2.62)

This is Gear’s second order method. The scheme is implicit – it constitutes a
(generally nonlinear) equation with respect to y+1 or, in the case of a vector
problem (y ∈ R

n), a system of equations. In practice, iterative linearization
by the Newton–Raphson method is used and suitable linear system solvers
are applied in the Newton–Raphson loop.

For reference, here is a list of BDF of orders k from one through six
[HrW93]. The first order BDF scheme coincides with the implicit Euler
method. BDF schemes of orders higher than six are unstable.

y+1 − y0 = ∆t f+1

3
2

y+1 − 2y0 +
1
2

y−1 = ∆t f+1

11
6

y+1 − 3y0 +
3
2

y−1 − 1
3

y−2 = ∆t f+1

25
12

y+1 − 4y0 + 3 y−1 − 4
3

y−2 +
1
4

y−3 = ∆t f+1

137
60

y+1 − 5y0 + 5 y−1 − 10
3

y−2 +
5
4

y−3 − 1
5

y−4 = ∆t f+1

147
60

y+1 − 6y0 +
15
2

y−1 − 20
3

y−2 +
15
4

y−3 − 6
5

y−4 +
1
6

y−5 = ∆t f+1

Since stability considerations are of paramount importance in the choice
of difference schemes for stiff problems, an elaborate classification of schemes
based on their stability properties – or more precisely, on their regions of ab-
solute stability (see Section 2.4.3) – has been developed. The relevant material
can be found in C.W. Gear’s monograph [Gea71] and, in a more complete
form, in J.D. Lambert’s book [Lam91]. What follows is a brief summary of
this stability classification.

A hierarchy of definitions of stability classes with progressively wider re-
gions of stability are (Lambert’s definitions are adopted):
A0-stability ⇐= A(0)-stability ⇐= A(α)-stability ⇐= stiff-stability ⇐= A-
stability ⇐= L-stability

Definition 1. A method is said to be A0-stable if its region of absolute stability
includes the (strictly) negative real semiaxis.
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Definition 2. [Gea71], [Lam91] A method is said to be A(α)-stable, 0 <
α < π/2, if its region of absolute stability includes the “angular” domain
| arg(λ∆t) − π| ≤ α in the λ∆t-plane (Fig. 2.10). A method is said to be
A(0)-stable if it is A(α)-stable for some 0 < α < π/2.

Fig. 2.10. A(α)-stability region.

Definition 3. [Gea71], [Lam91] A method is said to be A-stable if its region
of absolute stability includes the half-plane Re (λ∆t) < 0.

Definition 4. A method is said to be stiffly-stable if its region of absolute
stability includes the union of two domains (Fig. 2.11): (i) Re (λ∆t) < −a,
and (ii) −a ≤ Re (λ∆t) < 0, |Im(λ∆t)| < c, where a, c are positive real
numbers.

Thus stiff stability differs from A-stability in that slowly decaying but highly
oscillatory solutions are irrelevant for stiff stability. The rationale is that for
such solutions the time step is governed by accuracy requirements for the
oscillatory components as much, or perhaps even more, than it is governed by
stability requirements – hence this is not truly a stiff case.

Definition 5. [Gea71, Lam91] A method is said to be L-stable if it is A-stable
and, in addition, when applied to the scalar test equation y′ = λy, Re λ < 0,
it yields yn+1 = R(λ∆t) yn, with |R(λ∆t)| → 0 as Re λ∆t → −∞.

The notion of L-stability is motivated by the following test case. Consider one
more time the Crank–Nicolson scheme applied to the model scalar equation
y′ = λy:
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Fig. 2.11. Stiff-stability region.

yn+1 − yn

h
= λ

yn+1 + yn

2
(2.63)

The numerical solution is easily found to be

yn = y0

(
1 + λ∆t/2
1− λ∆t/2

)n

(2.64)

As already noted, the Crank–Nicolson scheme is absolutely stable for any
λ∆t with a negative real part. The solution above reflects this fact, as the
expression in parentheses has the absolute value less than one for Re λ∆t < 0.
Still, the numerical solution exhibits some undesirable behavior for “highly
negative” values of λ, i.e. for λ < 0, |λ|∆t 
 1. Indeed, in this case the
actual solution decays very rapidly in time as exp(λt), whereas the numerical
solution decays very slowly but is highly oscillatory because the expression in
parentheses in (2.64) is close to −1.

This is a case where the numerical solution disagrees with the exact one
not just quantitatively but qualitatively. The problem is in fact much broader.
If the difference scheme is not chosen judiciously, the character of the solution
may be qualitatively incorrect (such as an oscillatory numerical solution vs.
a rapidly decaying exact one). Further, important physical invariants (most
notably energy or momentum) may not be conserved in the numerical solution,
which may render the computated results nonphysical. This is important,
in particular, in Molecular Dynamics, where energy conservation and, more
generally, “symplecticness” of the underlying Hamiltonian system (Section
2.5) should be preserved.

With regard to stiff systems, an alternative solution strategy that does
not involve difference schemes can sometimes be effective. The solution of a
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linear system of ODE can be analytically expressed via matrix exponential
exp(At) (see Appendix 2.10). Computing this exponential is by no means easy
(many caveats are discussed in the excellent papers by C. Moler & C. Van Loan
[ML78, ML03]); nevertheless the recursion relation exp(At) = (exp(At/n))n is
helpful. The idea is that for n sufficiently large matrix At/n is “small enough”
for its exponential to be computed relatively easily with sufficient accuracy;
n is usually chosen as an integer power of two, so that the n-th power of the
matrix can be computed by repeated squaring.

Two interesting motifs of this and the following section can now be noted:

• difference methods that ensure a qualitative/physical agreement between
the numerical solutions and the exact ones;

• methods blending numerical and analytical approximations.

Many years ago, my advisor Iu.V. Rakitskii [Rak72, RUC79, RSY+85] was an
active proponent of both themes. Nowadays, the qualitative similarity between
discrete and continuous models is an important trend in mathematical studies
and their applications. Undoubtedly, Rakitskii would have been happy to see
the contribution of Yu.B. Suris, his former student, to the development of
numerical methods preserving the physical invariants of Hamiltonian systems
[Sur87]–[Sur96], as well as to discrete differential geometry (A.I. Bobenko &
Yu.B. Suris [BSve]). Another “Rakitskii-style” development is the generalized
finite-difference calculus of Flexible Local Approximation MEthods (FLAME,
Chapter 4) that seamlessly incorporates local analytical approximations into
difference schemes.

2.5 Schemes for Hamiltonian Systems

2.5.1 Introduction to Hamiltonian Dynamics

Note: no prior knowledge of Hamiltonian systems is necessary for reading this
section.

As a starting example, consider a (classical) harmonic oscillator, such as
a mass on a spring, described by the ODE

mq̈ = − kq (2.65)

(mass times acceleration equals force), where mass m and the spring constant
k are known parameters and q is a coordinate. The general solution to this
equation is

q(t) = q0 cos(ω0t + φ); ω2
0 =

k

m
(2.66)

for some parameters q0 and φ.
Even though the above expression in principle contains all the informa-

tion about the solution, recasting the differential equation in a different form
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brings a deeper perspective. The new insights are even more profound for
multiparticle problems with multiple degrees of freedom.

The Hamiltonian of the oscillator – the energy function H expressed in
terms of q and q̇ – comprises the kinetic and potential terms:5

H =
1
2

mq̇2 +
1
2

kq2 (2.67)

We shall view H as a function of two variables: coordinate q and momentum
p = mq̇; in terms of these variables,

H(q, p) =
p2

2m
+

kq2

2
(2.68)

The original second-order differential equation splits up into two first-order
equations ⎧⎨

⎩
q̇ = m−1p

ṗ = − kq
(2.69)

or in matrix-vector form

ẇ = Aw, w =
(

q
p

)
; A =

(
0 m−1p
−k 0

)
(2.70)

The right hand side of differential equations (2.69) is in fact directly related
to the partial derivatives of H(q, p):

∂H(q, p)
∂p

=
p

m
(2.71)

∂H(q, p)
∂q

= kq (2.72)

We thus arrive at the equations of Hamiltonian dynamics, with their elegant
symmetry: ⎧⎪⎨

⎪⎩
∂H(q,p)

∂p = q̇

∂H(q,p)
∂q = − ṗ

(2.73)

Energy conservation follows directly from these Hamiltonian equations by
chain-rule differentiation:

∂H

∂t
=

∂H

∂p
ṗ +

∂H

∂q
q̇ = q̇ ṗ − ṗ q̇ = 0

In the phase plane (q, p), constant energy levels correspond to ellipses
5 More generally in mechanics, the Hamiltonian can be defined by its relationship

with the Lagrangian of the system, and is indeed equal to the energy of the system
if expressions for the generalized coordinates do not depend on time.
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H(q, p) =
p2

2m
+

kq2

2
= const (2.74)

For the Hamiltonian system, any particular solution (q(t), p(t)), viewed as a
(moving) point in the phase plane, moves along the ellipse corresponding to
the energy of the oscillator.

Further insight is gained by following the evolution of the w = (q, p) points
corresponding to a collection of oscillators (or the same oscillator observed
repeatedly under different conditions). The initial coordinates and momenta
of a family of oscillators are represented by a set of points in the phase plane.
One may imagine that these points fill a certain geometric domain Ω(0) at t =
0 (shaded area in Fig. 2.12). With time, each of the points will follow its own
elliptic trajectory, so that at any given moment of time t the initial domain
Ω(0) will be transformed into some other domain Ω(t).

Fig. 2.12. The motion of a harmonic oscillator is represented in the (q, p) phase
plane by a point moving around an ellipse. Domain Ω(0) contains a collection of
such points (corresponding to an ensemble of oscillators or, equivalently, to a set of
different initial conditions for one oscillator) at time t = 0. Domain Ω(t) contains
the points corresponding to the same oscillators at some arbitrary moment of time
t. The area of Ω(t) turns out not to depend on time.

By definition, it is the solutions of the Hamiltonian system that effect the
mapping from Ω(0) to Ω(t). These solutions are given by matrix exponentials
(see Appendix 2.10):

w(t) =
(

q(t)
p(t)

)
= exp(At)

(
q(0)
p(0)

)
(2.75)
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The Jacobian of this mapping is the determinant of exp(At); as known
from linear algebra, this determinant is equal to the product of eigenvalues
λ1,2(exp(At)):

det (exp(At)) = λ1 (exp(At)) λ2 (exp(At)) = exp (λ1(At)) exp (λ2(At))

= exp (λ1(At) + λ2(At)) = exp (Tr(At)) = 1
(2.76)

(The eigenvalues of exp(At) are equal to the exponents of the eigenvalues of
At; if this looks unfamiliar, see Appendix 2.10, p. 65).

Since the determinant of the transformation is unity, the evolution oper-
ator preserves the oriented area of Ω(t), in addition to energy conservation
that was demonstrated earlier.

This result generalizes to higher-dimensional phase spaces in multiparticle
systems. Such phase spaces comprise the generalized coordinates qi and mo-
menta pi of N particles. If particle motion is three-dimensional, there are three
degrees of freedom per particle6 and hence i = 1, 2, . . . , 3N ; the dimension of
the phase space is thus 6N . The most direct analogy with area conservation is
that the 6N -dimensional phase volume is conserved under the evolution map
[Arn89, HrW93, SSC94]. However, there is more. For any two-dimensional sur-
face in the phase space, take its projections onto the individual phase planes
(pi, qi) and sum up the oriented areas of these projections; this sum is con-
served during the Hamiltonian evolution of the surface. Transformations that
have this conservation property for the sum of the areas are called symplectic.

There is a very deep and elaborate mathematical theory of Hamiltonian
phase flows on symplectic manifolds. A symplectic manifold is an even-
dimensional differentiable manifold endowed with a closed nondegenerate dif-
ferential 2-form; these notions, however, are not covered in this book. Further
mathematical details are described in the monographs by V.I. Arnol’d [Arn89]
and J.M. Sanz-Serna & M.P. Calvo [SSC94].

2.5.2 Symplectic Schemes for Hamiltonian Systems

This subsection gives a brief summary of FD schemes that preserve the sym-
plectic property of Hamiltonian systems. The material comes from the paper
by R.D. Skeel et al. [RDS97], from the results on Runge–Kutta schemes due
to Yu.B. Suris [Sur87]–[Sur90] and J.M. Sanz-Serna [SSC94], and from the
compendium of symplectic symmetric Runge–Kutta methods by W. Oevel &
M. Sofroniou [OS97].

The governing system of ODEs in Newtonian mechanics and, in particular,
molecular dynamics is

r̈ = f(r), r ∈ R
n (2.77)

6 Disregarding the internal structure of particles and any degrees of freedom that
may be associated with that.
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where r is the position vector for a collection of n interacting particles and f
is the normalized force vector (vector of forces divided by particle masses). It
is assumed that the forces do not explicitly depend on time.

The simplest, and yet effective, difference scheme for this problem is known
as the Störmer–Verlet method:7

rn+1 − 2rn + rn−1

∆t2
= f(rn) (2.78)

The left hand side of the Störmer scheme is a second-order (with respect to
the time step ∆t) approximation of r̈; this approximation is very common.

The velocity vector can be computed from the position vector by central
differencing:

vn =
rn+1 − rn−1

2∆t
(2.79)

Time-stepping for both vectors r and v simultaneously can be arranged in a
“leapfrog” manner:

vn+1/2 = vn−1/2 + ∆t f(rn) (2.80)

rn+1 = rn + ∆t v(n + 1/2) (2.81)

The leapfrog scheme (2.80), (2.81) is theoretically equivalent to the Störmer
scheme (2.78), (2.79). The advantage of these schemes is that they are sym-
plectic and at the same time explicit: no systems of equations need to be
solved in the process of time-stepping. Several other symplectic integrators
are considered by R.D. Skeel et al. [RDS97], but they are all implicit.

With regard to the Runge–Kutta methods, the Suris–Sanz-Serna condition
of symplecticness is

biaij + bjaji − bibj = 0, i, j = 1, 2, . . . s (2.82)

where bi, aij are the coefficients of an s-stage Runge–Kutta method defined
on p. 21, except that here the scheme is no longer explicit – i.e. aij can be
nonzero for any pair of indexes i, j.

W. Oevel & M. Sofroniou [OS97] give the following summary of symplectic
Runge–Kutta schemes.

There is a unique one-stage symplectic method with the Butcher tableau

1
2

1
2

1

It represents the implicit scheme

rn+1 = rn + ∆t f

(
tn +

∆t

2
,

1
2
(rn + rn+1)

)
(2.83)

7 Skeel et al. [RDS97] cite S. Toxvaerd’s statement [Tox94] that “the first known
published appearance [of this method] is due to Joseph Delambre (1791)”.
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The following two-stage method is also symplectic:

1
2 ± 1

2
√

3
1
4

1
4 ± 1

2
√

3
1
2 ∓ 1

2
√

3
1
4 ∓ 1

2
√

3
1
4
1
2

1
2

W. Oevel & M. Sofroniou [OS97] list a number of other methods, up to
six-stage ones; these methods were derived using symbolic algebra.

2.6 Schemes for One-Dimensional Boundary Value
Problems

2.6.1 The Taylor Derivation

After a brief review of time-stepping schemes, we turn our attention to FD
schemes for boundary value problems. Such schemes can be applied to var-
ious physical fields and potentials in one-dimension (this section), two and
three dimensions (the following sections). The most common and straightfor-
ward way of generating FD schemes is by Taylor expansion. As the simplest
example, consider the Poisson equation in 1D:

−d2u

dx2
= f(x) (2.84)

where f(x) is a given function that in physical problems represents the dis-
tribution of sources. The minus sign in the right hand side is conventional in
many physical problems (electrostatics, heat transfer, etc.).

Let us introduce a grid, for simplicity with a uniform spacing h, and con-
sider a three-point stencil xk−1, xk, xk+1, where xk±1 = xk ±h. We shall look
for the difference scheme in the form

s−1uk−1 + s0uk + s+1uk+1 = f(xk) (2.85)

where the coefficients s (mnemonic for “scheme”) are to be determined. These
coefficients are chosen to approximate, with the highest possible order in terms
of the grid size h, the Poisson equation (2.84). More specifically, let u∗ be the
exact solution of this equation, and let us write out the Taylor expansions of
the values of u∗ at the stencil nodes:

u∗
k−1 = u∗

k − hu∗′
k +

1
2
h2u∗′′

k + h.o.t.

u∗
k = u∗

k

u∗
k+1 = u∗

k + hu∗′
k +

1
2
h2u∗′′

k + h.o.t.
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where the primes denote derivatives at the midpoint of the stencil, x = xk, and
“h.o.t.” as before stands for “higher order terms”. Substituting these Taylor
expansions into the difference scheme (2.85) and collecting the powers of h,
one obtains

(s−1+s0+s+1)u∗
k + (−s−1+s+1)u∗′

kh +
1
2
(s−1+s+1)u∗′′

kh2 + h.o.t. = −u′′
k

(2.86)
where in the right hand side we took note of the fact that f(xk) = −u′′

k . The
consistency error of the scheme is, by definition,

εc = (s−1 + s0 + s+1)u∗
k + (−s−1 + s+1)u∗′

kh

+
1
2

(
s−1 + s+1 +

2
h2

)
u∗′′

kh2 + h.o.t. (2.87)

The consistency error tends to zero as h → 0 if and only if

s−1 + s0 + s+1 = 0

−s−1 + s+1 = 0

s−1 + s+1 + 2/h2 = 0

from which the coefficients of the scheme are immediately found to be

s−1 = s+1 = − 1/h2; s0 = 2/h2 (2.88)

and the difference equation thus reads

−uk−1 + 2uk − uk+1

h2
= f(xk) (2.89)

It is easy to verify that this scheme is of second order with respect to h, i.e.
its consistency error εc = O(h2). The Taylor analysis leading to this scheme is
general, however, and can be extended to generate higher-order schemes, pro-
vided that the grid stencil is extended as well. As an exercise, the reader may
verify that on a 5-point stencil of a uniform grid the scheme with coefficients
[1,−16, 30,−16, 1]/(12h2) is of order four.

Practical implementation of FD schemes involves forming a system of equa-
tions for the nodal values of function u, imposing the boundary conditions,
solving this system and processing the results. The implementation is de-
scribed in Section 2.6.4.

2.6.2 Using Constraints to Derive Difference Schemes

In this subsection, a slightly different way of deriving difference schemes is
presented. The idea is most easily illustrated in 1D but will prove to be fruitful
in 2D and 3D, particularly for the development of the so-called “Mehrstellen”
schemes (see Sections 2.7.4, 2.8.5).
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For the 1D Poisson equation, we are looking for a three-point FD scheme
of the form

s−1uk−1 + s0uk + s+1uk+1 = sf (2.90)

Parameter sf in the right hand side is not specified a priori and will be
determined, along with s±1 and s0, as a result of a formal procedure described
below.

Let us again expand the exact solution u into the Taylor series around the
midpoint xk of the stencil:

u(x) = c0 + c1(x−xk) + c2(x−xk)2 + c3(x−xk)3 + c4(x−xk)4 + h.o.t.
(2.91)

The coefficients cα are of course directly related to the derivatives of u at xk

but will initially be treated as undetermined parameters; later on, information
available about them will be taken into account.

Consistency error of scheme (2.90) can be evaluated by substituting the
Taylor expansion (2.91) into the scheme. Upon collecting similar terms for all
coefficients cα, we get

εc = − sf + (s−1 + s0 + s+1)c0 + (−s−1 + s+1)hc1 + (s−1 + s+1)h2c2

+ (−s−1 + s+1)h3c3 + (s−1 + s+1)h4c4 + h.o.t. (2.92)

If no information about the coefficients cα were available, the best one could
do to minimize the consistency error would be to set sf = 0, s−1 + s0 + s+1

= 0, and −s−1 + s+1 = 0, which yields uk−1 − 2uk + uk+1 = 0.
Not surprisingly, this scheme is not suitable for the Poisson equation with

a nonzero right hand side: we have not yet made use of the fact that u satisfies
this equation – that is, that the Taylor coefficients cα are not arbitrary. In
particular,

u′′(xk) = 2c2 = − f(xk) (2.93)

This condition can be taken into account by using an idea that is, in a sense,
dual to the method of Lagrange multipliers in constrained optimization. (Here
we are in fact dealing with a special optimization problem – namely, minimiza-
tion of the consistency error in the asymptotic sense.) In typical constrained
optimization, restrictions are imposed on the optimization parameters being
sought; in our case, these parameters are the coefficients s of the difference
scheme. Note that constraints on optimization parameters, generally speaking,
inhibit optimization.

In contrast, in our case the constraint applies to the parameters of the
function being minimized. This narrows down the set of target functions and
facilitates optimization. To incorporate the constraint on c2 (2.93) into the
minimization problem, one can introduce an analog of the Lagrange multiplier
λ:

εc = − sf + (s−1 + s0 + s+1)c0 + (−s−1 + s+1)hc1 + (s−1 + s+1)h2c2
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+ (−s−1 + s+1)h3c3 + (s−1 + s+1)h4c4 + h.o.t. − λ[2c2 + f(xk)]

or equivalently

εc = (−sf − λf(xk)) + (s−1 + s0 + s+1)c0 + (−s−1 + s+1)hc1

+ (s−1h
2 + s+1h

2− 2λ)c2 + (−s−1 + s+1)h3c3 + (s−1 + s+1)h4c4 + h.o.t.
(2.94)

where λ is an arbitrary parameter that one is free to choose in addition to
the coefficients of the scheme. As Sections 2.7.4 and 2.8.5 show, in 2D and 3D
there are several such constraints and therefore several extra free parameters
at our disposal.

Maximization of the order of the consistency error (2.94) yields the fol-
lowing conditions:

−sf − λf(xk) = 0

s−1 + s0 + s+1 = 0

−s−1 + s+1 = 0

s−1h
2 + s+1h

2 − 2λ = 0

This gives, up to an arbitrary factor, λ = 1, s±1 = h−2, s0 = −2h−2, sf =
−f(xk), and the resultant difference scheme is

−uk−1 + 2uk − uk+1

h2
= f(xk) (2.95)

This new “Lagrange-like” derivation produces a well-known scheme in one
dimension, but in 2D/3D the idea will prove to be more fruitful and will lead
to “Mehrstellen” schemes introduced by L. Collatz [Col66].

2.6.3 Flux-Balance Schemes

The previous analysis was implicitly based on the assumption that the ex-
act solution was sufficiently smooth to admit the Taylor approximation to a
desired order. However, Taylor expansion typically breaks down in a num-
ber of important practical cases – particularly so in the vicinity of material
interfaces. In 1D, this is exemplified by the following problem:

− d

dx

(
λ(x)

du

dx

)
= f(x) on Ω ≡ [a, b], u(a) = ua, u(b) = ub (2.96)

where the boundary values ua, ub are given. In this equation, λ is the material
parameter whose physical meaning varies depending on the problem: it is
thermal conductivity in heat transfer, dielectric permittivity in electrostatics,
magnetic permeability in magnetostatics (if the magnetic scalar potential is
used), and so on. This parameter is usually discontinuous across interfaces of
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different materials. In such cases, the solution satisfies the interface boundary
conditions that in the 1D case are

u(x−
0 ) = u(x+

0 ); λ(x−
0 )

du(x−
0 )

dx
= λ(x+

0 )
du(x+

0 )
dx

(2.97)

where x0 is the discontinuity point for λ(x), and the− and + labels correspond
to the values immediately to the left and to the right of x0, respectively.

The quantities −λ(x)du/dx typically have the physical meaning of fluxes:
for example, the heat flux (i.e. energy passed through point x per unit time)
in heat transfer problems or the flux of charges (that is, electric current)
in electric conduction, etc. The fundamental physical principle of energy or
flux conservation can be employed to construct a difference scheme. For any
chosen subdomain (often called “control volume” – in 1D, a segment), the
outgoing energy flow (e.g. heat flux) is equal to the total capacity of sources
(e.g. heat sources) within that subdomain. In electro- or magnetostatics, with
the electric or magnetic scalar potential formulation, a similar principle of flux
balance is used instead of energy balance.

For equation (2.96) energy or flux balance can mathematically be derived
by integration. Indeed, let ω = [α, β] ⊂ Ω.8 Integrating the underlying equa-
tion (2.96) over ω, we obtain

λ(α)
du

dx
(α) − λ(β)

du

dx
(β) =

∫ β

α

f(x) dx (2.98)

which from the physical point of view is exactly the flux balance equation
(outgoing flux from ω is equal to the total capacity of sources inside ω).

Fig. 2.13 illustrates the construction of the flux-balance scheme; α and β
are chosen as the midpoints of intervals [xk−1, xk] and [xk, xk+1], respectively.
The fluxes in the left hand side of the balance equation (2.98) are approxi-
mated by finite differences to yield

h−1

(
λ(α)

uk − uk−1

h
− λ(β)

uk+1 − uk

h

)
= h−1

∫ β

α

f(x) dx (2.99)

If the central point xk of the stencil is placed at the material discontinuity (as
shown in Fig. 2.13), λ(α) ≡ λ− and λ(β) ≡ λ+. The factor h−1 is introduced
to normalize the right hand side of this scheme to O(1) with respect to the
mesh size (i.e. to keep the magnitude of the right hand side approximately
constant as the mesh size decreases). The integral in the right hand side can
be computed either analytically, if f(x) admits that, or by some numerical
quadrature – the simplest one being just f(xk)(β − α). This flux-balance
scheme has a solid foundation as a discrete energy conservation condition.
From the mathematical viewpoint, this translates into favorable properties of
the algebraic system of equations (to be considered in Section 2.6.4): matrix
symmetry and, as a consequence, the discrete reciprocity principle.
8 While symbol Ω refers to the whole computational domain, ω denotes its subdo-

main (typically “small” in some sense).
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Fig. 2.13. A three-point flux balance scheme near a material interface in one di-
mension.

If the middle node of the stencil is not located exactly at the material
boundary, the flux-balance scheme (2.99) is still usable, with λ(α) and λ(β)
being the values of λ in the material where the respective point α or β happens
to lie. However, numerical accuracy deteriorates significantly. This can be
shown analytically by substituting the exact solution into the flux-balance
scheme and evaluating the consistency error.

Rather than performing this algebraic exercise, we simply consider a nu-
merical illustration. Problem (2.96) is solved in the interval [0, 1]. The material
boundary point is chosen to be an irrational number a = 1/

√
2, so that in the

course of the numerical experiment it does not coincide with a grid node of
any uniform grid. There are no sources (i.e. f = 0) and the Dirichlet condi-
tions are u(0) = 0, u(1) = 1. The exact solution and the numerical solution
with 10 grid nodes are shown in Fig. 2.14. The log-log plot of the relative
error norm of the numerical solution vs. the number of grid nodes is given in
Fig. 2.15. The dashed line in the figure is drawn for reference to identify the
O(h) slope.

Comparison with this reference line reveals that the convergence rate is
only O(h). Were the discontinuity point to coincide with a grid node, the
scheme could easily be shown to be exact – in practice, the numerical solu-
tion would be obtained with machine precision. The farther the discontinuity
point is from the nearest grid node (relative to the grid size), the higher the
numerical error tends to be. This relative distance to the nearest node is plot-
ted in Fig. 2.16 and does indeed correlate clearly with the numerical error in
Fig. 2.15.

As in the case of Taylor-based schemes of the previous section, the flux-
balance schemes prove to be a very natural particular case of “Trefftz–
FLAME” schemes considered in Chapter 4; see in particular Section 4.4.2.
Moreover, in contrast with standard schemes, in FLAME the location of ma-
terial discontinuities relative to the grid nodes is almost irrelevant.
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Fig. 2.14. Solution of the 1D problem with material discontinuity. λ− = 1, λ+ = 10.

Fig. 2.15. Flux-balance scheme: errors vs. the number of grid points for the 1D
problem with material discontinuity. λ− = 1, λ+ = 10.
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Fig. 2.16. Relative distance (as a fraction of the grid size) between the discontinuity
point and the nearest grid node.

2.6.4 Implementation of 1D Schemes for Boundary Value
Problems

Difference schemes like (2.89) or (2.99) constitute a local relationship between
the values at the neighboring nodes of a particular stencil. Putting these local
relationships together, one obtains a global system of equations.

With the grid nodes numbered consecutively from 1 to n,9 the n×n matrix
of this system is tridiagonal. Indeed, row k of this matrix corresponds to the
difference equation – in our case, either (2.89) or (2.99) – that connects the
unknown values of u at nodes k − 1, k and k + 1.

For example, the flux-balance scheme (2.99) leads to a matrix L with di-
agonal entries Lkk = (λ+ +λ−)/h and the off-diagonal ones Lk−1,k = −λ−/h,
Lk,k+1 = −λ+/h, where as before λ− and λ+ are the values of material para-
meter λ at the midpoints of intervals [xk−1, xk] and [xk, xk+1], respectively.

These entries are modified at the end points of the interval to reflect the
Dirichlet boundary conditions.10 At the boundary nodes, the Dirichlet con-
dition can be conveniently enforced by setting the corresponding diagonal
9 Numbering from 0 to n−1 is often more convenient, and is the default in languages

like C/C++. However, I have adopted the default numbering of Matlab and of
the classic versions of FORTRAN.

10 The implementation of Neumann and other boundary conditions is covered in all
textbooks on FD schemes: L. Collatz [Col66], A.A. Samarskii [Sam01], J.C. Strik-
werda [Str04], W.E. Milne [Mil70], and many others.
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matrix entry to one, the other entries in its row to zero, and the respective
entry in the right hand side to the given Dirichlet value of the solution.

In addition, if j is a Dirichlet boundary node and i is its neighbor, the
Lijuj term in the i-th difference equation is known and therefore gets moved
(with the opposite sign) to the right hand side, while the (i, j) matrix entry
is simultaneously set to zero. The same procedure is valid in two and three
dimensions, except that in these cases a boundary node can have several
neighbors.11

The system matrix L corresponding to this three-point scheme is tridiag-
onal, and the system can be easily solved by Gaussian elimination (A. George
& J.W-H. Liu [GL81]) or its modifications (S.K. Godunov & V.S. Ryabenkii
[GR87a]).

2.7 Schemes for Two-Dimensional Boundary Value
Problems

2.7.1 Schemes Based on the Taylor Expansion

For illustration, let us again turn to the Poisson equation – this time in two
dimensions:

−
(

∂2u

∂x2
+

∂2u

∂y2

)
= f(x, y) (2.100)

We introduce a Cartesian grid with grid sizes hx, hy and the number of grid
subdivisions Nx, Ny in the x- and y-directions, respectively. To keep the nota-
tion simple, we consider the grid to be uniform along each axis; more generally,
hx could vary along the x-axis and hy could vary along the y-axis, but the
essence of the analysis would remain the same. Each node of the grid can be
characterized in a natural way by two integer indices nx and ny corresponding
to the x- and y-directions; 1 ≤ nx ≤ Nx + 1, 1 ≤ ny ≤ Ny + 1.

To generate a Taylor-based difference scheme for the Poisson equation
(2.100), it is natural to approximate the x- and y- partial derivatives separately
in exactly the same way as done in 1D. The resulting scheme for grid nodes
not adjacent to the domain boundary is

−unx−1,ny
+ 2unx,ny

− unx+1,ny

h2
x

+
−unx,ny−1 + 2unx,ny

− unx,ny+1

h2
y

= f(xn, yn) (2.101)

where xn, yn are the coordinates of the grid node (nx, ny). Note that difference
scheme (2.101) involves the values of u on a 5-point grid stencil (three points
in each coordinate direction, with the middle node shared, Fig. 2.17). As in
11 The same is true in 1D for higher order schemes with more than three stencil

nodes in the interior of the domain (more than two nodes in boundary stencils).
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Fig. 2.17. A 5-point stencil for difference scheme (2.101) in 2D.

1D, scheme (2.101) is of second order, i.e. its consistency error is O(h2), where
h = max(hx, hy). By expanding the stencil, it is possible – again by complete
analogy with the 1D case – to increase the order of the scheme. For example,
on the stencil with nine nodes (five in each coordinate direction, with the
middle node shared) a fourth order scheme can be obtained by combining two
fourth order schemes in the x- and y-directions on their respective 5-point
stencils. Other stencils can be used to construct higher-order schemes, and
other ideas can be applied to this construction (see for example the Collatz
“Mehrstellen” schemes on a 3× 3 stencil in Section 2.7.4).

2.7.2 Flux-Balance Schemes

Let us now turn our attention to a more general 2D problem with a varying
material parameter ε

−∇ · (ε(x, y)∇u) = f(x, y) (2.102)

where ε may depend on coordinates but not – in the linear case under con-
sideration – on the solution u. Moreover, ε will be assumed piecewise smooth,
with possible discontinuities only at material boundaries.12

At any material interface boundary, the following conditions hold:

ε−
∂u−

∂n
= ε+

∂u+

∂n
(2.103)

where “−” and “+” refer to the values on the two sides of the interface
boundary and n is the normal to the boundary in a prescribed direction.

The integral form of the differential equation (2.102) is, by Gauss’s Theo-
rem,

12 Throughout the book, “smoothness” is not characterized in a mathematically
precise way. Rather, it is tacitly assumed that the level of smoothness is sufficient
to justify all mathematical operations and analysis.
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−
∫

γ

ε(x, y)
∂u

∂n
dγ =

∫
ω

f(x, y) dω (2.104)

where ω is a subdomain of the computational domain Ω, γ is the boundary
of ω, and n is the outward normal to that boundary.

The physical meaning of this integral equation is either energy conservation
or flux balance, depending on the application. For example, in heat transfer
this equation expresses the fact that the net flow of heat through the surface of
volume ω is equal to the total amount of heat generated inside the volume by
sources f . In electrostatics, (2.104) is an expression of Gauss’s Law (the flux
of the displacement vector D is equal to the total charge inside the volume).

The integral conservation principle (2.104) is valid for any subdomain ω.
Flux-balance difference schemes are generated by applying this principle to a
discrete set of subdomains (“control volumes”) such as the shaded rectangle
shown in Fig. 2.18. The grid nodes involved in the construction of the scheme
are the same as in Fig. 2.17 and are not labeled to avoid overloading the
picture. For this rectangular control volume, the surface flux integral in the

Fig. 2.18. Construction of the flux-balance scheme. The net flux out of the shaded
control volume is equal to the total capacity of sources inside that volume.

balance equation (2.104) splits up into four fluxes through the edges of the
rectangle. Each of these fluxes can be approximated by a finite difference; for
example,

Flux1 ≈ ε1hy

unx,ny
− unx+1,ny

hx
(2.105)

where ε1 is the value of the material parameter at the edge midpoint marked
with an asterisk in Fig. 2.18; the hy factor is the length of the right edge of
the shaded rectangle. (If the grid were not uniform, this edge length would be
the average value of the two consecutive grid sizes.)

The complete difference scheme is obtained by summing up all four edge
fluxes:
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ε1hy

unx,ny
− unx+1,ny

hx
+ ε2hx

unx,ny
− unx,ny+1

hy

+ ε3hy

unx,ny
− unx−1,ny

hx
+ ε4hx

unx,ny
− unx,ny−1

hy
= f(xn, yn)hxhy

The approximation of fluxes by finite differences hinges on the assumption
of smoothness of the solution. At material interfaces, this assumption is vio-
lated, and accuracy deteriorates. The reason is that the Taylor expansion fails
when the solution or its derivatives are discontinuous across boundaries. One
can try to remedy that by generalizing the Taylor expansion and accounting
for derivative jumps (A. Wiegmann & K.P. Bube [WB00]); however, this ap-
proach leads to unwieldy expressions. Another alternative is to replace the
Taylor expansion with a linear combination of suitable basis functions that
satisfy the discontinuous boundary conditions and therefore approximate the
solution much more accurately. This idea is taken full advantage of in FLAME
(Chapter 4).

2.7.3 Implementation of 2D Schemes

By applying a difference scheme on all suitable grid stencils, one obtains a
system of equations relating the nodal values of the solution on the grid. To
write this system in matrix form, one needs a global numbering of nodes from
1 to N , where N = (Nx + 1)(Ny + 1). The numbering scheme is in principle
arbitrary, but the most natural order is either row-wise or column-wise along
the grid. In particular, for row-wise numbering, node (nx, ny) has the global
number

n = (Nx + 1)(ny − 1) + nx − 1, 1 ≤ n ≤ N (2.106)

With this numbering scheme, the global node numbers of the two neighbors
of node n = (nx, ny) in the same row are n − 1 and n + 1, while the two
neighbors in the same column have global numbers n + (Nx + 1) and n −
(Nx + 1), respectively. For nodes adjacent to the domain boundary, fictitious
“neighbors” with node numbers that are nonpositive or greater than N are
ignored.

It is then easy to observe that the 5-point stencil of the difference scheme
leads to a five-diagonal system matrix, two of the subdiagonals corresponding
to node–node connections in the same row, and the other two to connections
in the same column. All other matrix entries are zero.

The Dirichlet boundary conditions are handled in a way similar to the
1D case. Namely, for a boundary node, the corresponding diagonal entry of
the system matrix can be set to one (the other entries in the same row being
zero), and the entry of the right hand side set to the required Dirichlet value.
Moreover, if j is a boundary node and i is its non-boundary neighbor, the
term Lijuj in the difference scheme is known and is therefore moved to the
right hand side (with the respective matrix entry (i, j) reset to zero).
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There is a rich selection of computational methods for solving such lin-
ear systems of equations with large sparse matrices. Broadly speaking, these
methods can be subdivided into direct and iterative solvers. Direct solvers are
typically based on variants of Gaussian or Cholesky decomposition, with node
renumbering and possibly block partitioning; see A. George & J.W-H. Liu
[GL81, GLe] and Section 3.11 on p. 129. The second one is iterative methods
– variants of conjugate gradient or more general Krylov-subspace iterations
with preconditioners (R.S. Varga [Var00], Y. Saad [Saa03], D.K. Faddeev &
V.N. Faddeeva [FF63], H.A. van der Vorst [vdV03a]) or, alternatively, do-
main decomposition and multigrid techniques (W. Hackbusch [Hac85], J. Xu
[Xu92], A. Quarteroni & A. Valli [QV99]); see also Section 3.13.4.

2.7.4 The Collatz “Mehrstellen” Schemes in 2D

For the Poisson equation in 2D

−∇2u = f (2.107)

consider now a 9-point grid stencil of 3 × 3 neighboring nodes. The node
numbering is shown in Fig. 2.19.

Fig. 2.19. The 9-point stencil with the local numbering of nodes as shown. The
central node is numbered first, followed by the remaining nodes of the standard
5-point stencil, and then by the four corner nodes.

We set out to find a scheme∑9

α=1
sαuα =

∑9

α=1
wαfα (2.108)

with coefficients {sα}, {wα} (α = 1,2, . . . , 9) such that the consistency error
has the highest order with respect to the mesh size. For simplicity, we shall
now consider schemes with only one nonzero coefficient w corresponding to
the central node (node #1) of the stencil. It is clear that w1 in this case can
be set to unity without any loss of generality, as the coefficients s still remain
undetermined; thus
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α=1
sαuα = f1 (2.109)

The consistency error of this scheme is, by definition,

εc =
∑9

α=1
sαu∗

α − f1 =
∑9

α=1
sαu∗

α + ∇2u∗
1 (2.110)

where u∗ is the exact solution of the Poisson equation and u∗
α is its value at

node α. The goal is to minimize the consistency error in the asymptotic sense
– i.e. to maximize its order with respect to h – by the optimal choice of the
coefficients sα of the difference scheme.

Suppose first that no additional information about u∗ – other than it is
a smooth function – is taken into consideration while evaluating consistency
error (2.110). Then, expanding u∗ into the Taylor series around the central
point of the 9-point stencil, after straightforward algebra one concludes that
only a second order scheme can be obtained – that is, asymptotically the same
accuracy level as for the five-point stencil.

However, a scheme with higher accuracy can be constructed if additional
information about u∗ is taken into account. To fix ideas, let us consider the
Laplace (rather than the Poisson) equation

∇2u∗ = 0 (2.111)

Differentiation of the Laplace equation with respect to x and y yields a few
additional pieces of information:

∂3u∗

∂x3
+

∂3u∗

∂x2∂y
= 0 (2.112)

∂3u∗

∂x∂y2
+

∂3u∗

∂y3
= 0 (2.113)

Another three equations of the same kind can be obtained by taking second
derivatives of the Laplace equation, with respect to xx, xy, and yy. As the
way these equations are produced is obvious, they are not explicitly written
here to save space.

All these additional conditions on u∗ impose constraints on the Taylor
expansion of u∗. It is quite reasonable to seek a more accurate difference
scheme if only one function (namely, u∗) is targeted, rather than a whole
class of sufficiently smooth functions.

More specifically, let

u∗(x, y) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + c5y

+ c6xy + c7x
2y + c8x

3y + c9y
2 + c10xy2

+ c11x
2y2 + c12y

3 + c13xy3 + c14y
4 + h.o.t. (2.114)

where cα (α = 1, 2, . . . , 14) are some coefficients (directly related, of course,
to the partial derivatives of u∗). For convenience, the origin of the coordinate
system has been moved to the midpoint of the 9-point stencil.
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To evaluate and minimize the consistency error (2.110) of the difference
scheme, we need the nodal values of the exact solution u∗. To this end, let us
first rewrite expansion (2.114) in a more compact matrix-vector form:

u∗(x, y) = pT c (2.115)

where pT is a row vector of 15 polynomials in x, y in the order of their appear-
ance in expansion (2.114): pT = [1, x, x2, . . . , xy3, y4] ; c ∈ R

15 is a column
vector of expansion coefficients. The vector of nodal values of u∗ on the stencil
will be denoted with Nu∗ and is equal to

Nu∗ = Nc + h.o.t. (2.116)

The 9 × 15 matrix N comprises the 9 nodal values of the 15 polynomials on
the stencil, i.e.

Nαβ = pβ(xα, yα) (2.117)

Such matrices of nodal values will play a central role in the “Flexible Local
Approximation MEthod” (FLAME) of Chapter 4.

Consistency error (2.110) for the Laplace equation then becomes

εLaplace
c = sT Nc + h.o.t. (2.118)

where s ∈ R
9 is a Euclidean vector of coefficients. If no information about

the expansion coefficients c (i.e. about the partial derivatives of the solution)
were available, the consistency error would have to be minimized for all vectors
c ∈ R

15. In fact, however, u∗ satisfies the Laplace equation, which imposes
constraints on its second-order and higher-order derivatives. Therefore the
target space for optimization is actually narrower than the full R

15. If more
constraints on the c coefficients are taken into account, higher accuracy of the
difference scheme can be expected.

A “Lagrange-like” procedure (Section 2.6.2) for incorporating the con-
straints on u∗ is in some sense dual to the standard technique of Lagrange
multipliers: these multipliers are applied not to the optimization parameters
but rather to the parameters of the target function u∗. Thus, we introduce
five Lagrange-like multipliers λ1−5 to take into account five constraints on the
c coefficients:

εLaplace
c = sT Nc − λ1(c2 + c9) − λ2(3c3 + c10) − λ3(c7 + 3c12)
− λ4(6c4 + c11) − λ5(6c14 + c11) − λ6(6c8 + c13) + h.o.t. (2.119)

For example, the constraint represented by λ1 is just the Laplace equation
itself (since c2 = 1

2
∂2u∗
∂x2 , c9 = 1

2
∂2u∗
∂y2 ); the constraint represented by λ2 is the

derivative of the Laplace equation with respect to x (see (2.112)), and so on.
In matrix form, equation (2.119) becomes

εLaplace
c = sT Nc − λT Qc + h.o.t. (2.120)
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where matrix Q corresponds to the λ-terms in (2.119). The same relationship
can be rewritten in the block-matrix form

εc =
(
sT λT

)(
N
−Q

)
c + h.o.t. (2.121)

As in the regular technique of Lagrange multipliers, the problem is now treated
as unconstrained. The consistency error is reduced just to the higher order
terms if (

s
λ

)
∈ Null

(
NT ;−QT

)
(2.122)

assuming that this null space is nonempty.
The computation of matrices N and Q, as well as the null space above,

is straightforward by symbolic algebra. As a result, the following coefficients
are obtained for a stencil with mesh sizes hx = qxh, hy = qyh in the x- and
y-directions, respectively:

s1 = 20h−2

s2,3 = − 2h−2(5q2
x − q2

y)/(q2
y + q2

x)

s4,5 = − 2h−2(5q2
y − q2

x)/(q2
y + q2

x)

s6−9 = − h−2

.
If qx = qy (i.e. hx = hy), the scheme simplifies:

s = h−2[20,−4,−4,−4,−4,−1,−1,−1,−1]

(20 corresponds to the central node, the −4’s – to the mid-edge nodes, and
the −1’s – to the corner nodes).

This scheme was derived, from different considerations, by L. Collatz in
the 1950’s [Col66] and called a “Mehrstellenverfahren” scheme.13 (See also
A.A. Samarskii [Sam01] for yet another derivation.) It can be verified that
this scheme is of order four in general but of order 6 in the special case of
hx = hy. It will become clear in Sections 4.4.4 and 4.4.5 (pp. 209, 210) that
the “Mehrstellen” schemes are a natural particular case of Flexible Local
Approximation MEthods (FLAME) considered in Chapter 4.

More details about the “Mehrstellen” schemes and their application to
the Poisson equation in 2D and 3D can be found in the same monographs
by Collatz and Samarskii. The 3D case is also considered in Section 2.8.5, as
it has important applications to long-range electrostatic forces in molecular
dynamics (e.g. C. Sagui & T. Darden [SD99]) and in electronic structure
calculation (E.L. Briggs et al. [BSB96]).

13 In the English translation of the Collatz book, these methods are called “Her-
mitian”.
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2.8 Schemes for Three-Dimensional Problems

2.8.1 An Overview

The structure and subject matter of this section are very similar to those of
the previous section on 2D schemes. To avoid unnecessary repetition, issues
that are completely analogous in 2D and 3D will be reviewed briefly, but the
differences between the 3D and 2D cases will be highlighted.

We again start with low-order Taylor-based schemes and then proceed to
higher-order schemes, control volume/flux-balance schemes, and “Mehrstellen”
schemes.

2.8.2 Schemes Based on the Taylor Expansion in 3D

The Poisson equation in 3D has the form

−
(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= f(x, y, z) (2.123)

Finite difference schemes can again be constructed on a Cartesian grid with
the grid sizes hx, hy, hz and the number of grid subdivisions Nx, Ny, Nz in the
x-, y- and z−directions, respectively. Each node of the grid is characterized
by three integer indices nx ny, nz: 1 ≤ nx ≤ Nx + 1, 1 ≤ ny ≤ Ny + 1,
1 ≤ nz ≤ Nz + 1.

The simplest Taylor-based difference scheme for the Poisson equation is
constructed by combining the approximations of the x-, y- and z− partial
derivatives:

−unx−1,ny,nz
+ 2unx,ny,nz

− unx+1,ny,nz

h2
x

)

+
−unx,ny−1,nz

+ 2unx,ny,nz
− unx,ny+1,nz

h2
y

+
−unx,ny,nz−1 + 2unx,ny,nz

− unx,ny,nz+1

h2
z

= f(xn, yn, zn) (2.124)

where xn, yn, zn are the coordinates of the grid node (nx, ny, nz). This dif-
ference scheme involves a 7-point grid stencil (three points in each coordinate
direction, with the middle node shared between them).

As in 1D and 2D, scheme (2.124) is of second order, i.e. its consistency error
is O(h2), where h = max(hx, hy, hz). Higher-order schemes can be constructed
in a natural way by combining the approximations of each partial derivative on
its extended 1D stencil; for example, a 3D stencil with 13 nodes is obtained by
combining three 5-point stencils in each coordinate direction, with the middle
node shared. The resultant scheme is of fourth order. Another alternative is
Collatz “Mehrstellen” schemes, in particular the fourth order scheme on a
19-point stencil considered in Section 2.8.5.
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2.8.3 Flux-Balance Schemes in 3D

Consider now a 3D problem with a coordinate-dependent material parameter:

−∇ · (ε(x, y, z)∇u) = f(x, y, z) (2.125)

As before, ε will be assumed piecewise-smooth, with possible discontinuities
only at material boundaries. The potential is continuous everywhere. The flux
continuity conditions at material interfaces have the same form as in 2D:

ε−
∂u−

∂n
= ε+

∂u+

∂n
(2.126)

where “−” and “+” again refer to the values on the two sides of the interface
boundary.

The integral form of the differential equation (2.125) is, by Gauss’s Theo-
rem

−
∫

S

ε(x, y, z)
∂u

∂n
dS =

∫
ω

f(x, y, z) dω (2.127)

where ω is a subdomain of the computational domain Ω, S is the boundary
surface of ω, and n is the normal to that boundary. As in 2D, the physical
meaning of this integral condition is energy or flux balance, depending on the
application.

A “control volume” ω to which the flux balance condition can be applied is
(2.104) is shown in Fig. 2.20. The flux-balance scheme is completely analogous

Fig. 2.20. Construction of the flux-balance scheme in three dimensions. The net
flux out of the shaded control volume is equal to the total capacity of sources inside
that volume. The grid nodes are shown as circles. For flux computation, the material
parameters are taken at the midpoints of the faces.
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to its 2D counterpart (see (2.106)):

ε1hyhz

unx,ny,nz
− unx+1,ny,nz

hx
+ ε2hxhz

unx,ny,nz
− unx,ny+1,nz

hy

+ ε3hyhz

unx,ny,nz
− unx−1,ny,nz

hx
+ ε4hxhz

unx,ny,nz
− unx,ny−1,nz

hy

+ ε5hxhy

unx,ny,nz
− unx,ny,nz+1

hz
+ ε6hxhy

unx,ny,nz
− unx,ny,nz−1

hz

= f(xn, yn, zn)hxhyhz (2.128)

As in 2D, the accuracy of this scheme deteriorates in the vicinity of mate-
rial interfaces, as the derivatives of the solution are discontinuous. Suitable
basis functions satisfying the discontinuous boundary conditions are used in
FLAME schemes (Chapter 4), which dramatically reduces the consistency
error.

2.8.4 Implementation of 3D Schemes

Assuming for simplicity that the computational domain is a rectangular par-
allelepiped, one introduces a Cartesian grid with Nx, Ny and Nz subdivisions
in the respective coordinate directions. The total number of nodes Nm in the
mesh (including the boundary nodes) is Nm = (Nx + 1)(Ny + 1)(Nz + 1).
A natural node numbering is generated by letting, say, nx change first, ny

second and nz third, which assigns the global number

n = (Nx + 1)(Ny + 1)(nz − 1) + (Nx + 1)(ny − 1) + nx − 1, 1 ≤ n ≤ N
(2.129)

to node (nx, ny, nz). When, say, a 7-point scheme is applied on all grid sten-
cils, a 7-diagonal system matrix results. Two subdiagonals correspond to the
connections of the central node (nx, ny, nz) of the stencil to the neighboring
nodes (nx±1, ny, nz), another two subdiagonals to neighbors (nx, ny ±1, nz),
and the remaining two subdiagonals to nodes (nx, ny, nz ± 1). Boundary con-
ditions are handled in a way completely analogous to the 2D case.

The selection of solvers for the resulting linear system of equations is in
principle the same as in 2D, with direct and iterative methods being avail-
able. However, there is a practical difference. In two dimensions, thousands
or tens of thousands of grid nodes are typically needed to achieve reasonable
engineering accuracy; such problems can be easily solved with direct meth-
ods that are often more straightforward and robust than iterative algorithms.
In 3D, the number of unknowns can easily reach hundreds of thousands or
millions, in which case iterative methods may be the only option.14

14 Even for the same number of unknowns in a 2D and a 3D problem, in the 3D
case the number of nonzero entries in the system matrix is greater, the sparsity
pattern of the matrix is different, and the 3D solver requires more memory and
CPU time.
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2.8.5 The Collatz “Mehrstellen” Schemes in 3D

The derivation and construction of the “Mehrstellen” schemes in 3D are based
on the same ideas as in the 2D case, Section 2.7.4. For the Laplace equation,
the “Mehrstellen” scheme can also be obtained as a direct and natural par-
ticular case of FLAME schemes in Chapter 4.

The 19-point stencil for a fourth order “Mehrstellen” scheme is obtained
by discarding the eight corner nodes of a 3×3×3 node cluster. The coefficients
of the scheme for the Laplace equation on a uniform grid with hx = hy = hz

are visualized in Fig. 2.21.

Fig. 2.21. For the Laplace equation, this fourth order “Mehrstellen”-Collatz scheme
on the 19-point stencil is a direct particular case of Trefftz–FLAME. The grid sizes
are equal in all three directions. For visual clarity, the stencil is shown as three slices
along the y axis. (Reprinted by permission from [Tsu06] c©2006 Elsevier.)

In the more general case of unequal mesh sizes in the x-, y- and z−directions,
the “Mehrstellen” scheme is derived in the monographs by L. Collatz and
A.A. Samarskii. E.L. Briggs et al. [BSB96] list the coefficients of the scheme in
a concise table form. The end result is as follows.

The coefficient corresponding to the central node of the stencil is 4/3
∑

αh
−2
α

(where α = x, y, z). The coefficients corresponding to the two immediate
neighbors of the central node in the α direction are −5/6h−2

α + 1/6
∑

β h−2
β

(β = x, y or z). Finally, the coefficients corresponding to the nodes displaced
by hα and hβ in both α- and β-coordinate directions relative to the central
node are −1/12h−2

α −1/12h−2
β .
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If the Poisson equation (2.123) rather than the Laplace equation is solved,
with f = f(x, y, z) a smooth function of coordinates, the right hand side of
the 19-point Mehrstellen scheme is fh = 1

2f0 + 1
12

∑6
α=1 fα, where f0 is the

value of f at the middle node of the stencil and fα are the values of f at the
six immediate neighbors of that middle node. Thus the computation of the
right hand side involves the same 7-point stencil as for the standard second-
order scheme for the Laplace equation, not the whole 19-point stencil. HODIE
schemes by R.E. Lynch & J.R. Rice [LR80] generalize the Mehrstellen schemes
and include additional points in the computation of the right hand side.

2.9 Consistency and Convergence of Difference Schemes

This section presents elements of convergence and accuracy theory of FD
schemes. A more comprehensive and rigorous treatment is available in many
monographs (e.g. L. Collatz [Col66], A.A. Samarskii [Sam01], J.C. Strikwerda
[Str04], W.E. Milne [Mil70]).

Consider a differential equation in 1D, 2D or 3D

Lu = f (2.130)

that we wish to approximate by a difference scheme

L
(i)
h u

(i)
h = fhi (2.131)

on stencil (i) containing a given set of grid nodes. Here u
(i)
h is the Euclidean

vector of the nodal values of the numerical solution on the stencil. Merging
the difference schemes on all stencils into a global system of equations, one
obtains

Lhuh = f
h

(2.132)

where uh and f
h

are the numerical solution and the right hand side, respec-
tively, viewed as Euclidean vectors of nodal values on the whole grid.

Exactly in what sense does (2.132) approximate the original differential
equation (2.130)? A natural requirement is that the exact solution u∗ of the
differential equation should approximately satisfy the difference equation.

To write this condition rigorously, we need to substitute u∗ into the differ-
ence scheme (2.132). Since this scheme operates on the nodal values of u∗, a
notation for these nodal values is in order. We shall use the calligraphic letter
N for this purpose: Nu∗ will mean the Euclidean vector of nodal values of u∗

on the whole grid. Similarly, N (i)u∗ is the Euclidean vector of nodal values of
u∗ on a given stencil (i).

The consistency error vector εc ≡ {εci}n
i=1 of scheme (2.132) is the residual

obtained when the exact solution is substituted into the difference equation;
that is,

LhNu∗ = f
h

+ εc (2.133)
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where as before the underscored symbols are Euclidean vectors. The consis-
tency error (a number) is defined as a norm of the error vector:

consistency error ≡ εc(h) = ‖εc‖k =
∥∥∥LhNu∗ − f

h

∥∥∥
k

(2.134)

where k is usually 1, 2, or∞ (see Appendix 2.10 for definitions of these norms).
There is, however, one caveat. According to definition (2.134), the meaning-
less scheme h100ui = 0 has consistency error of order 100 for any differential
equation with a bounded solution. It is natural to interpret such high-order
consistency just as an artifact of scaling and to apply a normalization condi-
tion across the board for all schemes. Specifically, we shall assume that the
difference schemes are scaled in such a way that

c1f(r) ≤ f
hi

≤ c2f(r), ∀r ∈ Ω(i) (2.135)

where c1,2 do not depend on i and h.
We shall call a scheme consistent if, with scaling (2.135), the consistency

error tends to zero as h → 0:

εc =
∥∥∥L

(i)
h

(
N (i)u∗ − uhi

)∥∥∥
k

→ 0 as h → 0 (2.136)

Consistency is usually relatively easy to establish. For example, the Taylor
expansions in Section 2.6.1 show that the consistency error of the three-point
scheme for the Poisson equation in 1D is O(h2); see (2.87)–(2.89). This scheme
is therefore consistent.

Unfortunately, consistency by itself does not guarantee convergence. To
see why, let us compare the difference equations satisfied by the numerical
solution and the exact solution, respectively:

LhNu∗ = f
h

+ εc (2.137)

Lhuh = f
h

(2.138)

These are equations (2.132) and (2.133) written together for convenience.
Clearly, systems of equations for the exact solution u∗ (more precisely, its
nodal values Nu∗) and for the numerical solution uh have slightly different
right hand sides. Consistency error εc is a measure of the residual of the
difference equation, which is different from the accuracy of the numerical
solution of this equation.

Does the small difference εc in the right hand sides of (2.137) and (2.138)
translate into a comparably small difference in the solutions themselves? If
yes, the scheme is called stable. A formal definition of stability is as follows:

εh ≡ ‖εh‖k ≡ ‖uh − Nu∗‖k ≤ C‖εc‖k (2.139)

where the factor C may depend on the exact solution u∗ but not on the mesh
size h.
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Stability constant C is linked to the properties of the inverse operator
L−1

h . Indeed, subtracting (2.137) from (2.138), one obtains an expression for
the error vector:

εh ≡ uh − Nu∗ = L−1
h εc (2.140)

(assuming that Lh is nonsingular). Hence the numerical error can be estimated
as

εh ≡ ‖εh‖k ≡ ‖uh − Nu∗‖k ≤ ‖L−1
h ‖k ‖εc‖k (2.141)

where the matrix norm for Lh is induced by the vector norm, i.e., for a generic
square matrix A,

‖A‖k = max
x�=0

‖Ax‖k

‖x‖k

(see Appendix 2.10).
In summary, convergence of the scheme follows from consistency and sta-

bility. This result is known as the Lax–Richtmyer Equivalence Theorem (see
e.g. J.C. Strikwerda [Str04]).

To find the consistency error of a scheme, one needs to substitute the
exact solution into it and evaluate the residual (e.g. using Taylor expansions).
This is a relatively straightforward procedure. In contrast, stability (and, by
implication, convergence) are in general much more difficult to establish.

For conventional difference schemes and the Poisson equation, conver-
gence is proved in standard texts (e.g. W.E. Milne [Mil70] or J.C. Strikwerda
[Str04]). This convergence result in fact applies to a more general class of
monotone schemes.

Definition 6. A difference operator Lh (and the respective Nm×Nm matrix)
is called monotone if Lhx ≥ 0 for vector x ∈ R

Nm implies x ≥ 0, where vector
inequalities are understood entry-wise.

In other words, if Lh is monotone and Lhx has all nonnegative entries, vector
x must have all nonnegative entries as well. Algebraic conditions related to
monotonicity are reviewed at the end of this subsection.

To analyze convergence of monotone schemes, the following Lemma will
be needed.

Lemma 1. If the scheme is scaled according to (2.135) and the consistency
condition (2.134) holds, there exists a reference nodal vector u1h such that

u1h ≤ U1 and Lhu1h ≥ σ1 > 0, (2.142)

with numbers U1 and σ1 independent of h. (All vector inequalities are under-
stood entry-wise.)

Remark 1. (Notation.) Subscript 1 is meant to show that, as seen from the
proof below, the auxiliary potential u1h may be related to the solution of the
differential equation with the unit right hand side.
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Proof. The reference potential u1h can be found explicitly by considering the
auxiliary problem

Lu1 = 1 (2.143)

with the same boundary conditions as the original problem. Condition (2.136)
applied to the nodal values of u1 implies that for sufficiently small h the
consistency error will fall below 1

2 c1, where c1 is the parameter in (2.135):∣∣∣s(i)TN (i)u1 − fhi

∣∣∣ ≤ 1
2

c1

Therefore, since f = 1 in (2.135),

|s(i)TN (i)u1| ≥ |fhi| −
∣∣∣fhi − s(i)TN (i)u1

∣∣∣ ≥ c1 −
1
2

c1 =
1
2

c1 (2.144)

(the vector inequality is understood entry-wise). Thus one can set u1h =
LhNu1, with σ1 = 1

2 c1 and U1 = ‖u1‖∞. ��

Theorem 1. Let the following conditions hold for difference scheme (2.132):

1. Consistency in the sense of (2.136), (2.135).
2.

Monotonicity : if Lhx ≥ 0, then x ≥ 0 (2.145)

Then the numerical solution converges in the nodal norm, and

‖uh −Nu∗‖∞ ≤ εc U1/σ1 (2.146)

where σ1 is the parameter in (2.142).

Proof. Let εh = uh − Nu∗. By consistency,

Lh εh ≤ εc ≤ εc Lh u1h/σ1 = Lh(εc u1h/σ1)

where (2.142) was used. Hence due to monotonicity

εh ≤ εc u1h/σ1 (2.147)

It then also follows that
εh ≥ − εc u1h/σ1 (2.148)

Indeed, if that were not true, one would have (−εh) ≤ εc u1h/σ1, which
would contradict the error estimate (2.147) for the system with (−f) instead
of f in the right hand side. ��

We now summarize sufficient and/or necessary algebraic conditions for mono-
tonicity. Of particular interest is the relationship of monotonicity to diagonal
dominance, as the latter is trivial to check for any given scheme.

The summary is based on the monograph of R.S. Varga [Var00] and the
reference book of V. Voevodin & Yu.A. Kuznetsov [VK84]. The mathematical
facts are cited without proof.
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Proposition 1. A square matrix A is monotone if and only if it is nonsin-
gular and A−1 ≥ 0.

[As a reminder, all matrix and vector inequalities in this section are under-
stood entry-wise.]

Definition 7. A square matrix A is called an M-matrix if it is nonsingular
aij ≤ 0 for all i �= j and A−1 ≥ 0.

Thus an M-matrix, in addition to being monotone, has nonpositive off-
diagonal entries.

Proposition 2. All diagonal elements of an M-matrix are positive.

Proposition 3. Let a square matrix A have nonpositive off-diagonal entries.
Then the following conditions are equivalent:

1. A is an M-matrix.
2. There exists a positive vector w such that A−1w is also positive.
3. Re λ > 0 for any eigenvalue λ of A.

(See [VK84] §36.15 for additional equivalent statements.)
Notably, the second condition above allows one to demonstrate monotonic-

ity by exhibiting just one special vector satisfying this condition, which is sim-
pler than verifying this condition for all vectors as stipulated in the definition
of monotonicity.

Even more practical is the connection with diagonal dominance [VK84].

Proposition 4. Let a square matrix A have nonpositive off-diagonal entries.
If this matrix has strong diagonal dominance, it is an M-matrix.

Proposition 5. Let an irreducible square matrix A have nonpositive off-
diagonal entries. If this matrix has weak diagonal dominance, it is an M-
matrix. Moreover, all entries of A−1 are then (strictly) positive.

A matrix is called irreducible if it cannot be transformed to a block-triangular
form by permuting its rows and columns. The definition of weak diagonal
dominance for a matrix A is

|Aii| ≥
∑

j
|Aij | (2.149)

in each row i. The condition of strong diagonal dominance is obtained by
changing the inequality sign to strict.

Thus diagonal dominance of matrix Lh of the difference scheme is a suffi-
cient condition for monotonicity if the off-diagonal entries of Lh are nonpos-
itive. As a measure of the relative magnitude of the diagonal elements, one
can use

q =
mini |Lh, ii|∑

j |Lh,ij |
(2.150)

with matrix Lh being weakly diagonally dominant for q = 0.5 and diagonal
for q = 1. Diagonal dominance is a strong condition that unfortunately does
not hold in general.
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2.10 Summary and Further Reading

This chapter is an introduction to the theory and practical usage of finite dif-
ference schemes. Classical FD schemes are constructed by the Taylor expan-
sion over grid stencils; this was illustrated in Sections 2.1–2.2 and parts of Sec-
tions 2.6–2.8. The chapter also touched upon classical schemes (Runge–Kutta,
Adams and others) for ordinary differential equations and special schemes that
preserve physical invariants of Hamiltonian systems.

Somewhat more special are the Collatz “Mehrstellen” schemes for the Pois-
son equation. These schemes (9-point in 2D and 19-point in 3D) are described
in Sections 2.7.4 and 2.8.5. Higher approximation accuracy is achieved, in
essence, by approximating the solution of the Poisson equation rather than
a generic smooth function. We shall return to this idea in Chapter 4 and
will observe that the Mehrstellen schemes are, at least for the Laplace equa-
tion, a natural particular case of “Flexible Local Approximation MEthods”
(FLAME) considered in that chapter. In fact, in FLAME the classic FD
schemes and the Collatz Mehrstellen schemes stem from one single princi-
ple and one single definition of the scheme.

Very important are the schemes based on flux or energy balance for a con-
trol volume; see Sections 2.6.3, 2.7.2, and 2.8.3. Such schemes are known to
be quite robust, which is particularly important for problems with inhomoge-
neous media and material interfaces. The robustness can be attributed to the
underlying solid physical principles (conservation laws).

For further general reading on FD schemes, the interested reader may
consider the monographs by L. Collatz [Col66], J.C. Strikwerda [Str04],
A.A. Samarskii [Sam01].

A comprehensive source of information not just on FD schemes but also on
numerical methods for ordinary and partial differential equations in general
is the book by A. Iserles [Ise96]. It covers one-step and multistep schemes
for ODE, Runge–Kutta methods, schemes for stiff systems, FD schemes for
the Poisson equation, the Finite Element Method, algebraic system solvers,
multigrid and other fast solution methods, diffusion and hyperbolic equations.

For readers interested in schemes for fluid dynamics, S.V. Patankar’s text
[Pat80] may serve as an introduction. A more advanced book by T.J. Chung
[Chu02] covers not only finite-difference, but also finite-volume and finite ele-
ment methods for fluid flow. Also well-known and highly recommended are two
monographs by R.J. LeVeque: one on schemes for advection-diffusion equa-
tions, with the emphasis on conservation laws [LeV96], and another one with
a comprehensive treatment of hyperbolic problems [LeV02a]. The book by
H.-G. Roos et al. [HGR96], while focusing (as the title suggests) on the math-
ematical treatment of singularly perturbed convection-diffusion problems, is
also an excellent source of information on finite-difference schemes in general.

For theoretical analysis and computational methods for fluid dynamics on
the microscale, see books by G. Karniadakis et al. [KBA01] and by J.A. Pelesko
& D.H. Bernstein [PB02].
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Several monographs and review papers are devoted to schemes for elec-
tromagnetic applications. The literature on Finite-Difference Time-Domain
(FDTD) schemes for electromagnetic wave propagation is especially exten-
sive; see http://www.fdtd.org. The most well-known FDTD monograph is by
A. Taflove & S.C. Hagness [TH05]. The book by A.F. Peterson et al. [PRM98]
covers, in addition to FD schemes in both time and frequency domain, inte-
gral equation techniques and the Finite Element Method for computational
electromagnetics.

Appendix: Frequently Used Vector and Matrix Norms

The following vector and matrix norms are used most frequently.

‖x‖1 =
∑n

i=1
|xi| (2.151)

‖A‖1 = max
1≤j≤n

∑n

i=1
|Aij | (2.152)

‖x‖2 =
(∑n

i=1
|xi|2

) 1
2

(2.153)

‖A‖2 = max
1≤i≤n

λ
1
2
i (A∗A) (2.154)

where A∗ is the Hermitian conjugate (= the conjugate transpose) of matrix
A, and λi are the eigenvalues.

‖x‖∞ = max
1≤i≤n

|xi| (2.155)

‖A‖∞ = max
1≤i≤n

∑n

j=1
|Aij | (2.156)

See linear algebra textbooks, e.g. Y. Saad [Saa03], R.A. Horn & C.R. Johnson
[HJ90], F.R. Gantmakher [Gan59, Gan88] for further analysis and proofs.

Appendix: Matrix Exponential

It is not uncommon for an operation over some given class of objects to be
defined in two (or more) different ways that for this class are equivalent. Yet
one of these ways could have a broader range of applicability and can hence
be used to generalize the definition of the operation.

This is exactly the case for the exponential operation. One way to define
exp x is via simple arithmetic operations – first for x integer via repeated
multiplications, then for x rational via roots, and then for all real x.15 While
15 The rigorous mathematical theory – based on either Dedekind’s cuts or Cauchy

sequences – is, however, quite involved; see e.g. W. Rudin [Rud76].
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this definition works well for real numbers, its direct generalization to, say,
complex numbers is not straightforward (because of the ambiguity of roots),
and generalization to more complicated objects like matrices is even less clear.

At the same time, the exponential function admits an alternative definition
via the Taylor series

exp x =
∞∑

n=0

xn

n!
(2.157)

that converges absolutely for all x. This definition is directly applicable not
only to complex numbers but to matrices and operators. Matrix exponential
can be defined as

exp A =
∞∑

n=0

An

n!
(2.158)

where A is an arbitrary square matrix (real or complex). This infinite series
converges for any matrix, and exp(A) defined this way can be shown to have
many of the usual properties of the exponential function – most notably,

exp((α + β)A) = exp(αA) + exp(βA), ∀α ∈ C, ∀β ∈ C (2.159)

If A and B are two commuting square matrices of the same size, AB = BA,
then

exp(A + B) = expA exp B, if AB = BA (2.160)

Unfortunately, for non-commuting matrices this property is not generally true.
For a system of ordinary differential equations written in matrix-vector

form as
dy(t)
dt

= Ay, y ∈ R
n (2.161)

the solution can be expressed via matrix exponential in a very simple way:

y(t) = exp(At) y0 (2.162)

Note that if matrices A and Ã are related via a similarity transform

A = S−1ÃS (2.163)

then
A2 = S−1ÃSS−1ÃS = S−1Ã2S

and A3 = S−1Ã3S, etc. – i.e. powers of A and Ã are related via the same
similarity transform. Substituting this into the Taylor series (2.158) for matrix
exponential, one obtains

exp A = S−1 exp Ã S (2.164)

This is particularly useful if matrix A is diagonalizable; then Ã can be made
diagonal and contains the eigenvalues of A, and exp(Ã) is a diagonal matrix
containing the exponents of these eigenvalues.16

16 Matrices with distinct eigenvalues are diagonalizable; so are symmetric matrices.
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Since matrix exponential is intimately connected with such difficult prob-
lems as full eigenvalue analysis and solution of general ODE systems, it is not
surprising that the computation of exp(A) is itself highly complex in general.
The curious reader may find it interesting to see the “nineteen dubious ways
to compute the exponential of a matrix” (C. Moler & C. Van Loan, [ML78],
[ML03]; see also W.A. Harris et al. [WAHFS01].
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The Finite Element Method

3.1 Everything is Variational

The Finite Element Method (FEM) belongs to the broad class of variational
methods, and so it is natural to start this chapter with an introduction and
overview of such methods. This section emphasizes the importance of the
variational approach to computation: it can be claimed – with only a small
bit of exaggeration – that all numerical methods are variational.

To understand why, let us consider the Poisson equation in one, two or
three dimensions as a model problem:

Lu ≡ −∇2u = ρ in Ω (3.1)

This equation describes, for example, the distribution of the electrostatic po-
tential u corresponding to volume charge density ρ if the dielectric permittivity
is normalized to unity.

Solution u is sought in a functional space V (Ω) containing functions with
a certain level of smoothness and satisfying some prescribed conditions on the
boundary of domain Ω; let us assume zero Dirichlet conditions for definiteness.
For purposes of this introduction, the precise mathematical details about the
level of smoothness of the right hand side ρ and the boundary of the 2D or 3D
domain Ω are not critical, and I mention them only as a footnote.1 It is im-
portant to appreciate that solution u has infinitely many “degrees of freedom”
– in mathematical terms, it lies in an infinite-dimensional functional space. In

1 The domain is usually assumed to have a Lipschitz-continuous boundary; f ∈
L2(Ω), u ∈ H2(Ω), where L2 and H2 are the Lebesgue and Sobolev spaces stan-
dard in mathematical analysis. The requirements on the smoothness of u are
relaxed in the weak formulation of the problem considered later in this chap-
ter. Henri Léon Lebesgue (1875–1941) – a French mathematician who developed
measure and integration theory. Sergei L’vovich Sobolev (1908–1989) – a Russian
mathematician, renowned for his work in mathematical analysis (Sobolev spaces,
weak solutions and generalized functions).
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contrast, any numerical solution can only have a finite number of parameters.
A general and natural form of such a solution is a linear combination of a
finite number n of linearly independent approximating functions ψα ∈ V (Ω):

unum =
n∑

α=1

cαψα (3.2)

where cα are some coefficients (in the example, real; for other problems, these
coefficients could be complex). We may have in mind a set of polynomial func-
tions as a possible example of ψα (ψ1 = 1, ψ2 = x, ψ3 = y, ψ4 = xy, ψ5 = x2,
etc., in 2D). One important constraint, however, is that these functions must
satisfy the Dirichlet boundary conditions, and so only a subset of polynomials
will qualify. One of the distinguishing features of finite element analysis is a
special procedure for defining piecewise-polynomial approximating functions.
This procedure will be discussed in more detail in subsequent sections.

The key question now is: what are the “best” parameters cα that would
produce the most accurate numerical solution (3.2)? Obviously, we first need
to define “best”. It would be ideal to have a zero residual

R ≡ Lunum − ρ (3.3)

in which case the numerical solution would in fact be exact. That being in
general impossible, the constraints on R need to be relaxed. While R may not
be identically zero, let us require that there be a set of “measures of fitness”
of the solution – numbers fβ(R) – that are zero:

fβ(R) = 0, β = 1, 2, . . . , n (3.4)

It is natural to have the number of these measures, i.e. the number of condi-
tions (3.4), equal to the number of undetermined coefficients cα in expansion
(3.2).

In mathematical terms, the numbers fβ are functionals: each of them acts
on a function (in this case, R) and produces a number fβ(R). The functionals
can be real or complex, depending on the problem.

To summarize: the numerical solution is sought as a linear combination of
n approximating functions, with n unknown coefficients; to determine these
coefficients, one imposes n conditions (3.4). As it is difficult to deal with
nonlinear constraints, the functionals fβ are almost invariably chosen as linear.

Example 1. Consider the 1D Poisson equation with the right hand side ρ(x) =
cos x over the interval [−π/2, π/2]:

−d2u

dx2
= cos x, u

(
−π

2

)
= u

(π

2

)
= 0 (3.5)

The obvious exact solution is u∗(x) = cos x. Let us find a numerical solution
using the ideas outlined above.
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Let the approximating functions ψα be polynomials in x. To keep the
calculation as simple as possible, the number of approximating functions in
this example will be limited to two only. Linear polynomials (except for the one
identically equal to zero) do not satisfy the zero Dirichlet boundary conditions
and hence are not included in the approximating set. As the solution must
be an even function of x, a sensible (but certainly not unique) choice of the
approximating functions is

ψ1 =
(
x− π

2

)(
x +

π

2

)
, ψ2 =

(
x− π

2

)2 (
x +

π

2

)2

(3.6)

The numerical solution is thus

unum = u1ψ1 + u2ψ2 (3.7)

Here u is a Euclidean coefficient vector in R
2 with components u1,2. Euclidean

vectors are underlined to distinguish them from functions of spatial variables.
The residual (3.3) then is

R = − u1ψ
′′
1 − u2ψ

′′
2 − cos x (3.8)

As a possible example of “fitness measures” of the solution, consider two
functionals that are defined as the values of R at points x = 0 and x = π/4:2

f1(R) = R(0); f2(R) = R
(π

4

)
(3.9)

With this choice of the test functionals, residual R, while not zero everywhere
(which would be ideal but ordinarily not achievable), is forced by conditions
(3.4) to be zero at least at points x = 0 and x = π/4. Furthermore, due to
the symmetry of the problem, R will automatically be zero at x = −π/4 as
well; this extra point comes as a bonus in this example. Finally, the residual
is zero at the boundary points because both exact and numerical solutions
satisfy the same Dirichlet boundary condition by construction.

The reader may recognize functionals (3.9) as Dirac delta functions δ(x)
and δ(x − π/4), respectively. The use of Dirac deltas as test functionals in
variational methods is known as collocation; the value of the residual is forced
to be zero at a certain number of “collocation points” – in this example, two:
x = 0 and x = π/4.

The two functionals (3.9), applied to residual (3.8), produce a system of
two equations with two unknowns u1,2:

−u1ψ
′′
1 (0) − u2ψ

′′
2 (0) − cos 0 = 0

2 It is clear that these functionals are linear. Indeed, to any linear combination of
two different Rs there corresponds a similar linear combination of their pointwise
values.
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−u1ψ
′′
1

(π

4

)
− u2ψ

′′
2

(π

4

)
− cos

π

4
= 0

In matrix-vector form, this system is

Lu = ρ, L = −
(

ψ′′
1 (0) ψ′′

2 (0)
ψ′′

1 (π
4 ) ψ′′

2 (π
4 )

)
; ρ =

(
cos 0
cos π

4

)
=

(
1√
2

2

)
(3.10)

It is not difficult to see that for an arbitrary set of approximating functions ψ
and test functionals f the entry Lαβ of this matrix is fα(ψβ). In the present
example, with the approximating functions chosen as (3.6), matrix L is easily
calculated to be

L ≈
(
−2 9.869604
−2 2.467401

)
with seven digits of accuracy. The vector of expansion coefficients then is

u ≈
(
−0.3047378
0.03956838

)

With these values of the coefficients, and with the approximating functions of
(3.6), the numerical solution becomes

unum ≈ − 0.3047378
(
x− π

2

)(
x +

π

2

)
+ 0.03956838

(
x− π

2

)2 (
x +

π

2

)2

(3.11)
The numerical error is shown in Fig. 3.2 and its absolute value is in the range
of (3÷ 8)× 10−3. The energy norm of this error is ∼ 0.0198. (Energy norm is
defined as

‖w‖E =

[∫ π
2

−π
2

(
dw

dx

)2

dx

] 1
2

(3.12)

for any differentiable function w(x) satisfying the Dirichlet boundary condi-
tions.)3 Given that the numerical solution involves only two approximating
functions with only two free parameters, the result certainly appears to be
remarkably accurate.4

This example, with its more than satisfactory end result, is a good first
illustration of variational techniques. Nevertheless the approach described
above is difficult to turn into a systematic and robust methodology, for the
following reasons:

1. The approximating functions and test functionals (more specifically, the
collocation points) have been chosen in an ad hoc way; no systematic
strategy is apparent from the example.

3 In a more rigorous mathematical context, w would be treated as a function in
the Sobolev space H1

0 [−π
2
, π

2
], but for the purposes of this introduction this is of

little consequence.
4 Still, an even better numerical solution will be obtained in the following example

(Example 2 on p. 73).
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Fig. 3.1. Solution by collocation (3.11) in Example 1 (solid line) is almost indis-
tinguishable from the exact solution u∗ = cos x (markers). See also error plot in
Fig. 3.2.

2. It is difficult to establish convergence of the numerical solution as the
number of approximating functions increases, even if a reasonable way of
choosing the approximating functions and collocation points is found.

3. As evident from (3.10), the approximating functions must be twice differ-
entiable. This may be too strong a constraint. It will become apparent in
the subsequent sections of this chapter that the smoothness requirements
should be, from both theoretical and practical point of view, as weak as
possible.

The following example (Example 2) addresses the convergence issue and pro-
duces an even better numerical solution for the 1D Poisson equation con-
sidered above. The Finite Element Method covered in the remainder of this
chapter provides an elegant framework for resolving all three matters on the
list.

Example 2. Let us consider the same Poisson equation as in the previous ex-
ample and the same approximating functions ψ1,2 (3.6). However, the test
functionals f1,2 are now chosen in a different way:

fα(R) =
∫ π

2

−π
2

R(x)ψα(x) dx (3.13)
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Fig. 3.2. Error of solution by collocation (3.11) in Example 1. (Note the 10−3

scaling factor.)

In contrast with collocation, these functionals “measure” weighted averages
rather than point-wise values of R.5 Note that the weights are taken to be
exactly the same as the approximating functions ψ; this choice signifies the
Galerkin method.

Substituting R(x) (3.8) into Galerkin equations (3.13), we obtain a linear
system

Lu = ρ, Lαβ = −
∫ π

2

−π
2

ψ′′
β(x)ψα(x) dx; ρ

α
=

∫ π
2

−π
2

ρ(x)ψα(x) dx (3.14)

Notably, the expression for matrix entries Lβα can be made more elegant using
integration by parts and taking into account zero boundary conditions:

Lαβ =
∫ π

2

−π
2

ψ′
α(x)ψ′

β(x) dx (3.15)

This reveals the symmetry of the system matrix. The symmetry is due to
two factors: (i) the operator L of the problem – in this case, Laplacian in the
space of functions with zero Dirichlet conditions – is self-adjoint; this allowed

5 Loosely speaking, collocation can be viewed as a limiting case of weighted aver-
aging, with the weight concentrated at one point as the Dirac delta.
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the transformation of the integrand to the symmetric form; (ii) the Galerkin
method was used.

The Galerkin integrals in the expressions for the system matrix (3.15) and
the right hand side (3.14) can be calculated explicitly:6

L =
π3

105

(
35 − 7π2

−7π2 − 2π4

)
; ρ =

(
−4

48− 4π2

)
(3.16)

Naturally, this matrix is different from the matrix in the collocation method
of the previous example (albeit denoted with the same symbol). In particular,
the Galerkin matrix is symmetric, while the collocation matrix is not.

The expansion coefficients in the Galerkin method are

u = L−1ρ =
1
π7

(
−60π2 (3π2 − 28)
−840 (π2 − 10)

)
≈

(
−0.3154333
0.03626545

)

The numerical values of these coefficients differ slightly from the ones obtained
by collocation in the previous example. The Galerkin solution is

unum ≈ − 0.3154333
(
x− π

2

)(
x +

π

2

)
+ 0.03626545

(
x− π

2

)2 (
x +

π

2

)2

(3.17)
The error of solution (3.17) is plotted in Fig. 3.3; it is seen to be substantially
smaller than the error for collocation. Indeed, the energy norm of this error
is ∼ 0.004916, which is almost exactly four times less than the same error
measure for collocation.

The higher accuracy of the Galerkin solution (at least in the energy norm)
is not an accident. The following section shows that the Galerkin solution in
fact minimizes the energy norm of the error; in that sense, it is the “best”
of all possible numerical solutions representable as a linear combination of a
given set of approximating functions ψ.

3.2 The Weak Formulation and the Galerkin Method

In this section, the variational approach outlined above is cast in a more
general and precise form; however, it does make sense to keep the last example
(Example 2) in mind for concreteness. Let us consider a generic problem of
the form

Lu = ρ, u ∈ V = V (Ω) (3.18)

of which the Poisson equation (3.1) on p. 69 is a simple particular case. Here
operator L is assumed to be self-adjoint with respect to a given inner product
(· , ·) in the functional space V under consideration:

6 In more complicated cases, numerical quadratures may be needed.
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Fig. 3.3. Error of the Galerkin solution (3.7) in Example 2. (Note the 10−3 scaling
factor.)

(Lu, v) = (u,Lv), ∀u, v ∈ V (3.19)

The reader unfamiliar with the notion of inner product may view it just as a
shorthand notation for integration:

(w, v) ≡
∫

Ω

wv dΩ

This definition is not general7 but sufficient in the context of this section.
Note that operators defined in different functional spaces (or, more gen-

erally, in different domains) are mathematically different, even if they can
be described by the same expression. For example, the Laplace operator in a
functional space with zero boundary conditions is not the same as the Laplace
operator in a space without such conditions. One manifestation of this differ-
ence is that the Laplace operator is self-adjoint in the first case but not so in
the second.

Applying to the operator equation (3.18) inner product with an arbitrary
function v ∈ V (in the typical case, multiplying both sides with v and inte-
grating), we obtain

(Lu, v) = (ρ, v), ∀v ∈ V (3.20)

7 Generally, inner product is a bilinear (sesquilinear in the complex case)
(conjugate-)symmetric positive definite form.
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Clearly, this inner-product equation follows from the original one (3.18). At
the same time, because v is arbitrary, it can be shown under fairly general
mathematical assumptions that the converse is true as well: original equation
(3.18) follows from (3.20); that is, these two formulations are equivalent (see
also p. 84).

The left hand side of (3.20) is a bilinear form in u, v; in addition, if L
is self-adjoint, this form is symmetric. This bilinear form will be denoted as
L(u, v) (making symbol L slightly overloaded):

L(u, v) ≡ (Lu, v), ∀v ∈ V (3.21)

To illustrate this definition: in Examples 1, 2 this bilinear form is

L(u, v) ≡ −
∫ π

2

π
2

u′′ v dx =
∫ π

2

π
2

u′ v′ dx (3.22)

The last integration-by-parts transformation appears innocuous but has pro-
found consequences. It replaces the second derivative of u with the first deriv-
ative, thereby relaxing the required level of smoothness of the solution.

The following illustration is simple but instructive. Let u be a function
with a “sharp corner” – something like |x| in Fig. 3.4: it has a discontinuous
first derivative and no second derivative (in the sense of regular calculus) at
x = 0. However, this function can be approximated, with an arbitrary degree
of accuracy, by a smooth one – it is enough just to “round off” the corner.

Fig. 3.4. Rounding off the corner provides a smooth approximation.

“Accuracy” here is understood in the energy-norm sense: if the smoothed
function is denoted with ũ, then the approximation error is

‖ũ− u‖E ≡
[∫

Ω

(
dũ

dx
− du

dx

)2

dx

] 1
2

(3.23)

where the precise specification of domain (segment) Ω is unimportant.
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For the smooth function ũ, both expressions for the bilinear form (3.21)
are valid and equal. For u, the first definition, containing u′′ in the integrand,
is not valid, but the second one, with u′, is. It is quite natural to extend the
definition of the bilinear form to functions that, while not necessarily smooth
enough themselves, can be approximated arbitrarily well – in the energy norm
sense – by smooth functions:

L(u, v) ≡
∫

Ω

du

dx

dv

dx
dΩ, u , v ∈ H1

0 (Ω) (3.24)

Such functions form the Sobolev space H1(Ω). The subspace H1
0 (Ω) ⊂ H1(Ω)

contains functions with zero Dirichlet conditions at the boundary of domain
Ω.8

Similarly, for the electrostatic equation (with the dielectric permittivity
normalized to unity)

Lu ≡ −∇ · ε∇u = ρ (3.25)

in a two- or three-dimensional domain Ω with zero Dirichlet boundary condi-
tions,9 the weak formulation is

L(u, v) ≡ (ε∇u,∇v) = (ρ , v) u , v ∈ H1
0 (Ω) (3.26)

where the parentheses denote the inner product of vector functions

(v,w) ≡
∫

Ω

v ·w dΩ, v ,w ∈ L3
2(Ω) (3.27)

The analysis leading to the weak formulation (3.26) is analogous to the 1D
case: the differential equation is inner-multiplied (i.e. multiplied and inte-
grated) with a “test” function v; then integration by parts moves one of the
∇ operators over from u to v, so that the formulation can be extended to
a broader class of admissible functions, with the smoothness requirements
relaxed.

The weak formulation (3.20) (of which (3.26) is a typical example) provides
a very natural way of approximating the problem. All that needs to be done
is to restrict both the unknown function u and the test function v in (3.20)
to a finite-dimensional subspace Vh ⊂ V :

L(uh, vh) = (ρ, vh), ∀vh ∈ Vh(Ω) (3.28)

In Examples 1 and 2 space Vh had just two dimensions; in engineering practice,
the dimension of this space can be on the order of hundreds of thousands and
8 The rigorous mathematical characterization of “boundary values” (more precisely,

traces) of functions in Sobolev spaces is quite involved. See R.A. Adams [AF03]
or K. Rektorys [Rek80].

9 Neumann conditions on the domain boundary and interface boundary conditions
between different media will be considered later.
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even millions. Also in practice, construction of Vh typically involves a mesh
(this was not the case in Examples 1 and 2, but will be the case in the
subsequent sections in this chapter); then subscript “h” indicates the mesh
size. If a mesh is not used, h can be understood as some small parameter; in
fact, one usually has in mind a family of spaces Vh that can approximate the
solution of the problem with arbitrarily high accuracy as h → 0.

Let us assume that an approximating space Vh of dimension n has been
chosen and that ψα (α = 1, . . . , n) is a known basis set in this space. Then
the approximate solution is a linear combination of the basis functions:

uh =
n∑

α=1

uαψα (3.29)

Here u is a Euclidean vector of coefficients in R
n (or, in the case of problems

with complex solutions, in C
n).

This expansion establishes an intimate relationship between the functional
space Vh to which uh belongs and the Euclidean space of coefficient vectors u.
If functions ψα are linearly independent, there is a one-to-one correspondence
between uh and u. Moreover, the bilinear form L(uh, uh) induces an equivalent
bilinear form over Euclidean vectors:

(Lu, v) = L(uh, vh) (3.30)

for any two functions uh, vh ∈ Vh and their corresponding Euclidean vectors
u, v ∈ R

n. The left hand side of (3.30) is the usual Euclidean inner product of
vectors, and L is a square matrix. From basic linear algebra, each entry Lαβ

of this matrix is equal to (Leα, eβ), where eα is column #α of the identity
matrix (the only nonzero entry #α is equal to one); similarly for eβ . At the
same time, (Leα, eβ) is, by definition of L, equal to the bilinear form involving
ψα, ψβ ; hence

Lαβ = (Leα, eβ) = L(ψα, ψβ) (3.31)

The equivalence of bilinear forms (3.30) is central in Galerkin methods in gen-
eral and FEM in particular; it can also be viewed as an operational definition
of matrix L. Explicitly the entries of L are defined by the right hand side of
(3.31). Example 3 below should clarify this matter further.

The Galerkin formulation (3.28) is just a restriction of the weak continu-
ous formulation to a finite-dimensional subspace, and therefore the numerical
bilinear form inherits the algebraic properties of the continuous one. In par-
ticular, if the bilinear form L is elliptic, i.e. if

L(u, u) ≥ c (u, u), ∀u ∈ V (c > 0) (3.32)

where c is a constant, then matrix L is strictly positive definite and, moreover,

(Lu, u) ≥ c (Mu, u), ∀u ∈ R
n (3.33)



80 3 The Finite Element Method

Matrix M is such that the Euclidean form (Mu, v) corresponds to the L2

inner product of the respective functions:

(Mu, v) = (uh, vh) (3.34)

so that the entries are
Mαβ = (ψα, ψβ) (3.35)

These expressions for matrix M are analogous to expressions (3.30) and (3.31)
for matrix L. In FEM, M is often called the mass matrix and L – the stiffness
matrix, due to the roles they play in problems of structural mechanics where
FEM originated.

Example 3. To illustrate the connection between Euclidean inner products
and the respective bilinear forms of functions, let us return to Example 2 on
p. 73 and choose the two coefficients arbitrarily as u1 = 2, u2 = −1. The
corresponding function is

uh = u1ψ1 + u2ψ2 = 2
(
x− π

2

)(
x +

π

2

)
−

(
x− π

2

)2 (
x +

π

2

)2

(3.36)

This function of course lies in the two-dimensional space Vh spanned by ψ1,2.
Similarly, let v1 = 4, v2 = −3 (also as an arbitrary example); then

vh = v1ψ1 + v2ψ2 = 4
(
x− π

2

)(
x +

π

2

)
− 3

(
x− π

2

)2 (
x +

π

2

)2

(3.37)

In the left hand side of (3.30), matrix L was calculated to be (3.16), and the
Euclidean inner product is

(Lu, v) =
(

π3

105

(
35 − 7π2

−7π2 − 2π4

) (
2
−1

)
,

(
4
−3

))
=

8π3

3
+

2π5

3
+

2π7

35
(3.38)

The right hand side of (3.30) is

∫ π
2

π
2

u′
h v′

h dx

where functions uh, vh are given by their expansions (3.36), (3.37). Substi-
tution of these expansions into the integrand above yields exactly the same
result as the right hand side of (3.38), namely

8π3

3
+

2π5

3
+

2π7

35

This illustrates that the Euclidean inner product of vectors u, v in (3.30) (of
which the left hand side of (3.38) is a particular case) is equivalent to the
bilinear form L(u, v) of functions u, v (of which the right hand side of (3.38)
is a particular case).
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By setting vh consecutively to ψ1, ψ2, . . ., ψn in (3.28), one arrives at the
following matrix-vector form of the variational formulation (3.28):

Lu = ρ (3.39)

with
Lαβ = L(ψα, ψβ); ρ

α
= (ρ, ψα) (3.40)

This is a direct generalization of system (3.14) on p. 74.

3.3 Variational Methods and Minimization

3.3.1 The Galerkin Solution Minimizes the Error

The analysis in this section is restricted to operator L that is self-adjoint
in a given functional space V , and the corresponding symmetric (conjugate-
symmetric in the complex case) form L(u, v). In addition, if

L(u, u) ≥ c(u, u), ∀u ∈ V (3.41)

for some positive constant c, the form is called elliptic (or, synonymously,
coercive).

The weak continuous problem is

L(u, v) = (ρ, v), u ∈ V ; ∀v ∈ V (3.42)

We shall assume that this problem has a unique solution u∗ ∈ V and shall
refer to u∗ as the exact solution (as opposed to a numerical one). Mathematical
conditions for the existence and uniqueness are cited in Section 3.5.

The numerical Galerkin problem is obtained by restricting this formulation
to a finite-dimensional subspace Vh ⊂ V :

L(uh, vh) = (ρ, vh), uh ∈ Vh; ∀vh ∈ Vh (3.43)

where uh is the numerical solution. Keep in mind that uh solves the Galerkin
problem in the finite-dimensional subspace Vh only; in the full space V there
is, in general, a nonzero residual

R(uh, v) ≡ (ρ, v) − L(uh, v) = , v ∈ V (3.44)

In matrix-vector form, this problem is

Lu = ρ (3.45)

with matrix L and the right hand side ρ defined in (3.40). If matrix L is
nonsingular, a unique numerical solution exists. For an elliptic form L – a
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particularly important case in theory and practice – matrix L is positive
definite and hence nonsingular.

The numerical error is
εh = uh − u (3.46)

A remarkable property of the Galerkin solution for a symmetric form L is that
it minimizes the error functional

E(uh) ≡ L(εh, εh) ≡ L(uh − u, uh − u) (3.47)

In other words, of all functions in the finite-dimensional space Vh, the Galerkin
solution uhG is the best approximation of the exact solution in the sense of
measure (3.47). For coercive forms L, this measure usually has the physical
meaning of energy.

To prove this minimization property, let us analyze the behavior of func-
tional (3.47) in the vicinity of some uh – that is, examine E(uh + λvh), where
vh ∈ Vh is an increment and λ is an adjustable numerical factor introduced
for mathematical convenience. (This factor could be absorbed into vh but, as
will soon become clear, it makes sense not to do so. Also, λ can be intuitively
understood as “small” but this has no bearing on the formal analysis.) Then,
assuming a real form for simplicity,

E(uh+λvh) = L(εh+λvh, εh+λvh) = L(εh, εh) + 2λL(εh, vh) + λ2L(vh, vh)
(3.48)

At a stationary point of E – and in particular at a maximum or minimum –
the term linear in λ must vanish:

L(εh, vh) = 0, ∀vh ∈ Vh

This condition is nothing other than

L(uh, vh) = L(u, vh) = (f, vh)

(The last equality follows from the fact that u is the solution of the weak
problem.) This is precisely the Galerkin equation.

Thus the Galerkin solution is a stationary point of functional (3.47). If
the bilinear form L is elliptic, expression (3.48) for the variation of the energy
functional then indicates that this stationary point is in fact a minimum: the
term linear in λ vanishes and the quadratic term is positive for a nonzero vh.

3.3.2 The Galerkin Solution and the Energy Functional

Error minimization (in the energy norm sense) is a significant strength of
the Galerkin method. A practical limitation of the error functional (3.47),
however, is that it cannot be computed explicitly: this functional depends on
the exact solution that is unknown. At the same time, for self-adjoint problems
there is another – and computable – functional for which both the exact
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solution (in the original functional space V ) and the numerical solution (in
the chosen finite-dimensional space Vh) are stationary points. This functional
is

Fu = (ρ, u) − 1
2
L(u, u), u ∈ V (3.49)

Indeed, for an increment λv, where λ is an arbitrary number and v ∈ V , we
have

∆F ≡ F(u+λv) − Fu = (ρ, λv) − 1
2
L(λv, u) − 1

2
L(u, λv) − 1

2
L(λv, λv)

which for a symmetric real form L is

∆F = λ[(ρ, v) − L(u, v)] − 1
2

λ2L(v, v)

The zero linear term in λ thus corresponds precisely to the weak formulation of
the problem. By a very similar argument, the Galerkin solution is a stationary
point of F in Vh. Furthermore, if the bilinear form L is elliptic, the quadratic
term λ2L(v, v) is nonnegative, and the stationary point is a maximum.

In electrostatics, magnetostatics and other physical applications functional
F is often interpreted as energy. It is indeed equal to field energy if u is the
exact solution of the underlying differential equation (or, almost equivalently,
of the weak problem). Other values of u are not physically realizable, and
hence F in general lacks physical significance as energy and should rather be
interpreted as “action” (an integrated Lagrangian). It is not therefore para-
doxical that the solution maximizes – not minimizes – the functional.10 This
matter is taken up again in Section 6.11 on p. 328 and in Appendix 6.14 on
p. 338 in the context of electrostatic simulation.

Functional F (3.49) is part of a broader picture of complementary varia-
tional principles; see the book by A.M. Arthurs [Art80] (in particular, exam-
ples in Section 1.4 of his book11).

3.4 Essential and Natural Boundary Conditions

So far, for brevity of exposition, only Dirichlet conditions on the exterior
boundary of the domain were considered. Now let us turn our attention to
10 One could reverse the sign of F , in which case the stationary point would be a

minimum. However, this functional would no longer have the meaning of field
energy, as its value at the exact solution u would be negative, which is thermody-
namically impossible for electromagnetic energy (see L.D. Landau & E.M. Lifshitz
[LL84].

11 A note for the reader interested in the Arthurs book and examples therein. In
the electrostatic case, the quantities in these examples are interpreted as follows:
U ≡ D (the electrostatic displacement field), v ≡ ε (the permittivity), Φ = u
(potential), q ≡ ρ (charge density).
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quite interesting, and in practice very helpful, circumstances that arise if con-
ditions on part of the boundary are left unspecified in the weak formulation.

We shall use the standard electrostatic equation in 1D, 2D or 3D as a
model:

−∇ · ε∇u = ρ in Ω; u = 0 on ∂ΩD ⊂ ∂Ω (3.50)

At first, the dielectric permittivity ε will be assumed a smooth function of
coordinates; later, we shall consider the case of piecewise-smooth ε (e.g. di-
electric bodies in a host medium). Note that u satisfies the zero Dirichlet
condition only on part of the domain boundary; the condition on the remain-
ing part is left unspecified for now, so the boundary value problem is not yet
fully defined.

The weak formulation is

(ε∇u,∇v) = (ρ, v), u, ∀v ∈ H1
0 (Ω, ∂ΩD) (3.51)

H1
0 (Ω, ∂ΩD) is the Sobolev space of functions that have a generalized deriva-

tive and satisfy the zero Dirichlet condition on ∂ΩD.12

Let us now examine, a little more carefully than we did before, the re-
lationship between the weak problem (3.51) and the differential formulation
(3.50). To convert the weak problem into a strong one, one integrates the left
hand side of (3.51) by parts:∫

∂Ω−∂ΩD

v ε
∂u

∂n
dS − (∇ · ε∇u, v) = (ρ, v) (3.52)

It is tacitly assumed that u is such that the differential operator ∇·ε∇u makes
sense. Note that the surface integral is taken over the non-Dirichlet part of
the boundary only, as the “test” function v vanishes on the Dirichlet part by
definition.

The key observation is that v is arbitrary. First, as a particular choice, let
us consider test functions v vanishing on the domain boundary. In this case,
the surface integral in (3.52) disappears, and we have

(∇ · ε∇u + ρ, v) ≡
∫

Ω

v(∇ · ε∇u + ρ) dΩ = 0 (3.53)

This may hold true for arbitrary v only if the integrand

I ≡ ∇ · ε∇u + ρ (3.54)

in (3.53) is identically zero. The proof, at least for continuous I, is simple.
Indeed, if I were strictly positive at some point r0 inside the domain, it would,
12 These are functions that are either smooth themselves or can be approximated by

smooth functions, in the H1-norm sense, with any degree of accuracy. Boundary
values, strictly speaking, should be considered in the sense of traces (R.A. Adams
& J.J.F. Fournier [AF03], K. Rektorys [Rek80]).



3.4 Essential and Natural Boundary Conditions 85

by continuity, have to be positive in some neighborhood of that point. By
choosing the test function that is positive in the same neighborhood and zero
elsewhere (imagine a sharp but smooth peak centered at r0 as such a test
function), one arrives at a contradiction, as the integral in (3.53) is positive
rather than zero.

This argument shows that the Poisson equation must be satisfied for the
solution u of the weak problem. Further observation can be made if we now
consider a test function that is nonzero on the non-Dirichlet part of the bound-
ary. In the integrated-by-parts weak formulation (3.52), the volume integrals,
as we now know, must vanish if u is the solution, because the Poisson equation
is satisfied. Then we have ∫

∂Ω−∂ΩD

v ε
∂u

∂n
dS = 0 (3.55)

Since v is arbitrary, the integrand must be identically zero – the proof is
essentially the same as for the volume integrand I in (3.54). We come to the
conclusion that solution u must satisfy the Neumann boundary condition

∂u

∂n
= 0 (3.56)

on the non-Dirichlet part of the domain boundary (for ε �= 0).
This is really a notable result. In the weak formulation, if no boundary

condition is explicitly imposed on part of the boundary, then the solution will
satisfy the Neumann condition. Such “automatic” boundary conditions that
follow from the weak formulation are called natural. In contrast, conditions
that have to be imposed explicitly are called essential. Dirichlet conditions
are essential.

For cases other than the model electrostatic problem, a similar analysis
is needed to identify natural boundary conditions. As a rule of thumb, con-
ditions containing the normal derivative at the boundary are natural. For
example, Robin boundary conditions (a combination of values of u and its
normal derivative) are natural.

Importantly, the continuity of flux ε ∂u/∂n across material interfaces is also
a natural condition. The analysis is similar to that of the Neumann condition.
Indeed, let Γ be the boundary between materials #1,2 with their respective
parameters ε1,2. Separately within each material, ε varies smoothly, but a
jump may occur across Γ .

With the weak problem (3.51) taken as a starting point, integration by
parts yields∫

∂Ω−∂ΩD

[. . .] +
∫

Γ

v

[(
ε

∂u

∂n

)
1

−
(

ε
∂u

∂n

)
2

]
dS − (∇ · ε∇u, v) = (ρ, v)

(3.57)
Subscripts 1 and 2 indicate that the respective electric flux density ε ∂u/∂n is
taken in materials 1, 2; n is the unit normal to Γ , directed into material #2
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(this choice of direction is arbitrary). The integrand on the exterior boundary
is omitted for brevity, as it is the same as considered previously and leads, as
we already know, to the Neumann boundary condition on Ω− ∂ΩD.

Consider first the volume integrals (inner products) in (3.57). Using the
fact that v is arbitrary, one can show in exactly the same way as before that
the electrostatic differential equation must be satisfied throughout the domain,
except possibly for the interface boundary where the differential operator may
not be valid in the sense of ordinary calculus. Turning then to the surface
integral over Γ and again noting that v is arbitrary on that surface, one
observes that the integrand – i.e. the flux jump – across the surface must be
zero if u is the solution of the weak problem.

This is a great practical advantage because no special treatment of mater-
ial interfaces is needed. For the model electrostatic problem, the finite element
algorithm for heterogeneous media is essentially the same as for the homoge-
neous case. However, for more complicated problems interface conditions may
need special treatment and may result in additional surface integrals.13

It is in principle possible to impose natural conditions explicitly – that
is, incorporate them into the definition of the functional space and choose
the approximating and test functions accordingly. However, this is usually
inconvenient and redundant, and therefore is hardly ever done in practice.

3.5 Mathematical Notes: Convergence, Lax–Milgram
and Céa’s Theorems

This section summarizes some essential facts about weak formulations and
convergence of Galerkin solutions. The mathematical details and proofs are
omitted, one exception being a short and elegant proof of Céa’s theorem. There
are many excellent books on the mathematical theory: an elaborate exposition
of variational methods by K. Rektorys [Rek80] and by S.G. Mikhlin [Mik64,
Mik65], as well as the well-known text by R. Weinstock [Wei74]; classical
monographs on FEM by P.G. Ciarlet [Cia80], by B. Szabó & I. Babuška
[SB91], and a more recent book by S.C. Brenner & L.R. Scott [BS02], among
others.

Those readers who are not interested in the mathematical details may
skip this section – a digest of the underlying mathematical theory – without
substantial harm to their understanding of the rest of the chapter.

Theorem 2. (Lax–Milgram.) [BS02, Rek80]
13 One interesting example is a hybrid formulation of eddy current problems, with

the magnetic vector potential inside a conducting body and the magnetic scalar
potential outside. The weak formulation contains a surface integral on the bound-
ary of the conductor. The interested reader may see C.R.I. Emson & J. Simkin
[ES83], D. Rodger [Rod83] for the formulation and [Tsu90] for a mathematical
analysis.
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Given a Hilbert space V , a continuous and elliptic bilinear form L(· , ·)
and a continuous linear functional f ∈ V ′, there exists a unique u ∈ V such
that

L(u, v) = f(v), ∀v ∈ V (3.58)

As a reminder, a bilinear form is elliptic if

L(u, u) ≥ c1(u, u), ∀u ∈ V

and continuous if

L(u, v) ≤ c2‖u‖ ‖v‖, ∀u, v ∈ V

for some positive constants c1,2. Here the norm is induced by the inner prod-
uct:

‖v‖ ≡ (v, v)
1
2 (3.59)

Finally in the formulation of the Lax–Milgram theorem, V ′ is the space of
continuous linear functionals over V . A linear functional is continuous if
f(v) ≤ c‖v‖, where c is some constant.

The reason why the Lax–Milgram theorem is important is that its condi-
tions correspond to the weak formulations of many problems of mathematical
physics, including the model electrostatic problem of the previous section. The
Lax–Milgram theorem establishes uniqueness and existence of the (exact) so-
lution of such problems. Under the Lax–Milgram conditions, it is clear that
uniqueness and existence also hold in any subspace of V – in particular, for
the approximate Galerkin solution.

The Lax–Milgram theorem can be proved easily for symmetric forms. In-
deed, if L is symmetric (in addition to its continuity and ellipticity required
by the conditions of the theorem), this form represents an inner product in V :
[u, v] ≡ L(u, v). Then f(v), being a linear continuous functional, can be by the
Riesz Representation Theorem (one of the basic properties of Hilbert spaces)
expressed via this new inner product as f(v) = [u, v] ≡ L(u, v), which is pre-
cisely what the Lax–Milgram theorem states. The more complicated proof for
nonsymmetric forms is omitted.

Theorem 3. (Céa) [BS02, Rek80]
Let V be a subspace of a Hilbert space H and L(· , ·) be a continuous

elliptic (but not necessarily symmetric) bilinear form on V . Let u ∈ V be the
solution of equation (3.58) from the Lax–Milgram theorem. Further, let uh be
the solution of the Galerkin problem

L(uh, vh) = f(vh), ∀vh ∈ Vh (3.60)

in some finite-dimensional subspace Vh ⊂ V . Then

‖u− uh‖ ≤ c2

c1
min
v∈Vh

‖u− v‖ (3.61)

where c1 and c2 are the ellipticity and continuity constants of the bilinear form
L.
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Céa’s theorem is a principal result, as it relates the error of the Galerkin so-
lution to the approximation error. The latter is much more easily amenable
to analysis: good approximation can be produced by various forms of inter-
polation, while the Galerkin solution emerges from solving a large system of
algebraic equations. For a symmetric form L and for the norm induced by L,
constants c1,2 = 1 and the Galerkin solution is best in the energy-norm sense,
as we already know.

Proof. The error of the Galerkin solution is

εh ≡ uh − u, uh ∈ Vh (3.62)

where u is the (exact) solution of the weak problem (3.58) and uh is the solu-
tion of the Galerkin problem (3.60). This error itself satisfies a weak problem
obtained simply by subtracting the Galerkin equation from the exact one:

L(εh, vh) = 0, ∀vh ∈ Vh (3.63)

This can be interpreted as a generalized orthogonality relationship: the error
is “L-orthogonal” to Vh. (If L is not symmetric, it does not induce an inner
product, so the standard definition of orthogonality does not apply.) Such an
interpretation has a clear geometric meaning: the Galerkin solution is a pro-
jection (in a proper sense) of the exact solution onto the chosen approximation
space.

Then we have

L(εh, εh) ≡ L(εh, uh − u) = L(εh, uh−vh − u), ≡ L(εh, wh − u); vh ∈ Vh

The first identity is trivial, as it reiterates the definition of the error. The
second equality is crucial and is due to the generalized orthogonality (3.63).
The last identity is just a variable change, wh = uh − vh.

Using now the ellipticity and continuity of the bilinear form, we get

c1‖εh‖2
2 = c1(εh, εh) ≤ L(εh, εh) = L(εh, wh − u) ≤ c2‖εh‖ ‖wh − u‖

which, after dividing through by ‖εh‖, yields precisely the result of Céa’s
theorem:

c2‖εh‖ ≤ c1‖wh − u‖
��
Céa’s theorem simplifies error analysis greatly: it is in general extremely

difficult to evaluate the Galerkin error directly because the Galerkin solution
emerges as a result of solving a (usually large) system of equations; it is much
easier to deal with some good approximation wh of the exact solution (e.g.
via an interpolation procedure). Céa’s theorem relates the Galerkin solution
error to the approximation error via the stability and continuity constants of
the bilinear form.
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From a practical point of view, Céa’s theorem is the source of robustness of
the Galerkin method. In fact, the Galerkin method proves to be surprisingly
reliable even for non-elliptic forms: although Céa’s theorem is silent about that
case, a more general result known as the Ladyzhenskaya–Babuška–Brezzi (or
just LBB) condition14 is available (O.A. Ladyzhenskaya [Lad69], I. Babuška,
[Bab58], F. Brezzi [Bre74]; see also B. Szabó & I. Babuška [SB91], I. Babuška
& T. Strouboulis [BS01] and Appendix 3.10).

3.6 Local Approximation in the Finite Element Method

Remember the shortcomings of collocation – the first variational technique
to be introduced in this chapter? The Galerkin method happily resolves (at
least for elliptic problems) two of the three issues listed on p. 72. Indeed, the
way to choose the test functions is straightforward (they are the same as the
approximating functions), and Céa’s theorem provides an error bound for the
Galerkin solution.

The only missing ingredient is a procedure for choosing “good” approxi-
mating functions. The Finite Element Method does provide such a procedure,
and the following sections explain how it works in one, two and three dimen-
sions.

The guiding principle is local approximation of the solution. This usually
makes perfect physical sense. It is true that in a limited number of cases
a global approximation over the whole computational domain is effective –
these cases usually involve homogeneous media with a smooth distribution of
sources or no sources at all, with the field approximated by a Fourier series or
a polynomial expansion. However, in practical problems, local geometric and
physical features of systems and devices, with the corresponding local behavior
of fields and potentials, is typical. Discontinuities at material interfaces, peaks,
boundary layers, complex behavior at edges and corners, and many other
features make it all but impossible to approximate the solution globally.15

Local approximation in FEM is closely associated with a mesh: the com-
putational domain is subdivided into small subdomains – elements. A large
assortment of geometric shapes of elements can be used: triangular or quadri-
lateral are most common in 2D, tetrahedral and hexahedral – in 3D. Note
that the term “element” is overloaded: depending on the context, it may mean
just the geometric figure or, in addition to that, the relevant approximating
space and degrees of freedom (more about that later). For example, linear and

14 Occasionally used with some permutations of the names.
15 Analytical approximations over homogeneous subdomains, with proper matching

conditions at the interfaces of these subdomains, can be a viable alternative but
is less general than FEM. One example is the Multiple Multipole Method popu-
lar in some areas of high frequency electromagnetic analysis and optics; see e.g.
T. Wriedt (ed.), [Wri99].
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quadratic approximations over a triangle give rise to different finite elements
in the sense of FEM, even though the geometric figure is the same.

For illustration, Fig. 3.5 – Fig. 3.7 present FE meshes for a few particles of
arbitrary shapes – the first two of these figures in 2D, and the third one in 3D.
The mesh in the second figure (Fig. 3.6) was obtained by global refinement
of the mesh in the first figure: each triangular element was subdivided into
four. Mesh refinement can be expected to produce a more accurate numerical
solution, albeit at a higher computational cost. Global refinement is not the
most effective procedure: a smarter way is to make an effort to identify the
areas where the numerical solution is least accurate and refine the mesh there.
This idea leads to local adaptive mesh refinement (Section 3.13).

Fig. 3.5. An illustrative example of a finite element mesh in 2D.

Each approximating function in FEM is nonzero only over a small number
of adjacent elements and is thus responsible for local approximation without
affecting the approximation elsewhere. The following sections explain how this
is done.
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Fig. 3.6. Global refinement of the mesh of Fig. 3.5, with each triangular element
subdivided into four by connecting the midpoints of the edges.

3.7 The Finite Element Method in One Dimension

3.7.1 First-Order Elements

In one dimension, the computational domain is a segment [a, b], the mesh is a
set of nodes x0 = a, x1, . . ., xn = b, and the elements (in the narrow geometric
sense) are the segments [xi−1, xi], i = 1,2, . . ., n. The simplest approximating
function is shown in Fig. 3.8 and is commonly called a “hat function” or, much
less frequently, a “tent function”.16 The hat functions form a convenient basis
of the simplest finite element vector space, as discussed in more detail below.

For notational convenience only, we shall often assume that the grid is
uniform, i.e. the grid size h = xi − xi−1 is the same for all nodes i. For
nonuniform grids, there are no conceptual changes and only trivial differences
in the algebraic expressions. A formal expression for ψi on a uniform grid is

ψi(x) =

⎧⎨
⎩

h−1 (x− xi−1), xi−1 ≤ x ≤ xi

h−1 (xi+1 − x), xi ≤ x ≤ xi+1

0 otherwise
(3.64)

16 About 50 times less, according to Google. “Hut function” also makes some intu-
itive sense but is used very infrequently.
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Fig. 3.7. An example of a finite element mesh in 3D.

Fig. 3.8. The “hat” function for first order 1D elements.
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The hat function ψi straddles two adjacent elements (segments) and satisfies
the obvious Kronecker-delta property on the grid: it is equal to one at xi and
zero at all other nodes. This property is not critical in theoretical analysis
but is very helpful in practice. In particular, for any smooth function u(x),
piecewise-linear interpolation on the grid can be written simply as the linear
combination

uinterp(x) =
n∑

i=1

u(xi)ψi

Indeed, the fact that the nodal values of u and uinterp are the same follows
directly from the Kronecker-delta property of the ψs.

We now have all the prerequisites for solving an example problem.

Example 4.

−d2u

dx2
= sin x, Ω = [0, π], u(0) = u(π) = 0 (3.65)

The obvious theoretical solution u(x) = sin x is available for evaluating the
accuracy of the finite element result.

Let us use a uniform grid x0 = 0, x1 = h, . . ., xn = π with the grid size
h = π/n. In numerical experiments, the number of nodes will vary, and we
can expect higher accuracy (at higher computational cost) for larger values of
n.

The weak formulation of the problem is∫ π

0

du

dx

dv

dx
dx =

∫ π

0

sin x v(x) dx, u,∀v ∈ H1
0 ([0, π]) (3.66)

The FE-Galerkin formulation is simply a restriction of the weak problem to
the subspace P0h([0, π]) of piecewise-linear functions satisfying zero Dirich-
let conditions; this is precisely the subspace spanned by the hat functions
ψ1, . . . , ψn−1:17∫ π

0

duh

dx

dvh

dx
dx =

∫ π

0

vh(x) sin x dx, uh,∀vh ∈ P0h([0, π]) (3.67)

As we know, this formulation can be cast in matrix-vector form by substituting
the expansion

∑n−1
i=1 uhiψi for uh and by setting vh, sequentially, to ψ1, . . .,

ψn−1 to obtain (n− 1) equations for (n− 1) unknown nodal values uhi:

Lu = f, u, f ∈ R
n−1 (3.68)

where, as we also know, the entries of matrix L and the right hand side f are

17 Functions ψ0 and ψn are not included, as they do not satisfy the Dirichlet con-
ditions. Implementation of boundary conditions will be discussed in more detail
later.
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Lij =
∫ π

0

dψi

dx

dψj

dx
dx; f

i
=

∫ π

0

ψi(x) sin x dx (3.69)

As already noted, the discrete problem, being just a restriction of the contin-
uous one to the finite-dimensional FE space, inherits the algebraic properties
of the continuous formulation. This implies that the global stiffness matrix L
is positive definite in this example (and in all cases where the biliniear form
of the problem is elliptic).

Equally important is the sparsity of the stiffness matrix: most of its entries
are zero. Indeed, the Galerkin integrals for Lij in (3.69) are nonzero only if ψi

and ψj are simultaneously nonzero over a certain finite element. This implies
that either i = j or nodes i and j are immediate neighbors. In 1D, the global
matrix is therefore tridiagonal. In 2D and 3D, the sparsity pattern of the FE
matrix depends on the topology of the mesh and on the node numbering (see
Sections 3.8 and 3.8).

Algorithmically, it is convenient to compute these integrals on an element-
by-element basis, gradually accumulating the contributions to the integrals as
the loop over all elements progresses. Clearly, for each element the nonzero
contributions will come only from functions ψi and ψj that are both nonzero
over this element. For element #i – that is, for segment [xi−1, xi] – there are
four such nonzero contributions altogether:

Lelem i
i−1,i−1 =

∫ xi

xi−1

dψi−1

dx

dψi−1

dx
dx =

∫ xi

xi−1

1
h

1
h

dx =
1
h

Lelem i
i−1,i =

∫ xi

xi−1

dψi−1

dx

dψi

dx
dx =

∫ xi

xi−1

1
h

−1
h

dx = − 1
h

Lelem i
i,i−1 = Lelem i

i−1,i by symmetry

Lelem i
i,i =

1
h

(same as Lelem i
i−1,i−1)

f
i−1

=
∫ xi

xi−1

ψi−1(x) sin x dx =
sin xi − xi cos xi + xi−1 cos xi − sin xi−1

h

f
i

=
∫ xi

xi−1

ψi(x) sin x dx = − sin xi − xi cos xi−1 + xi cos xi − sin xi−1

h

These results can be conveniently arranged into a 2× 2 matrix

Lelem i =
1
h

(
1 − 1
−1 1

)
(3.70)

called, for historical reasons, the element stiffness matrix, and the element
contribution to the right hand side is a vector

f elem i =
1
h

(
sin xi − xi cos xi + xi−1 cos xi − sin xi−1

− sin xi + xi cos xi−1 − xi−1 cos xi−1 + sin xi−1

)
(3.71)
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Remark 2. A word of caution: in the engineering literature, it is not uncommon
to introduce “element equations” of the form

Lelem i uelem i = f elem i (!!??)

Such equations are devoid of mathematical meaning. The actual Galerkin
equation involves a test function that spans a group of adjacent elements
(two in 1D), and so there is no valid equation for a single element. Incidentally,
triangular meshes have approximately two times more elements than nodes;
so, if “element equations” were taken seriously, there would be about twice as
many equations as unknowns!

A sample Matlab code at the end of this subsection (p. 100) gives a “no-
frills” implementation of the FE algorithm for the 1D model problem. To
keep the code as simple as possible, much of the formulation is hard-coded,
including the specific interval Ω, expressions for the right hand side and (for
verification and error analysis) the exact solution. The only free parameter is
the number of elements n. In actual computational practice, such hard-coding
should of course be avoided. Commercial FE codes strive to provide maximum
flexibility in setting up geometrical and physical parameters of the problem,
with convenient user interface.

Some numerical results are shown in the following figures. Fig. 3.9 provides
a visual comparison of the FE solutions for 6 and 12 finite elements with
the exact solution. Not surprisingly, the solution with 12 elements is more
accurate.

Fig. 3.10 displays several precise measures of the error:

• The relative nodal error defined as

εnodal =
‖u−Nu∗‖
‖Nu∗‖

where u ∈ R
n−1 is the Euclidean vector of nodal values of the FE solution,

u∗(x) is the exact solution, and Nu∗ denotes the vector of nodal values of
u∗ on the grid.

• The L2 norm of the error

εL2 = ‖uh − u∗‖

This error measures the discrepancy between the numerical and exact solu-
tions as functions over [0, π] rather than Euclidean vectors of nodal values.

• The L2 norm of the derivative

εH1 =
∥∥∥∥d(uh − u∗)

dx

∥∥∥∥
Due to the zero Dirichlet boundary conditions, this norm differs by no
more than a constant factor from the H1-norm; hence the notation.
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Fig. 3.9. FE solutions with 6 elements (circles) and 12 elements (squares) vs. the
exact solution sin x (solid line).

Due to the simplicity of this example and of the exact solution, these mea-
sures can be computed up to the roundoff error. For more realistic problems,
particularly in 2D and 3D, the errors can only be estimated.

In Fig. 3.10 the three error measures are plotted vs. the number of ele-
ments. The linearity of the plots on the log-log scale implies that the errors
are proportional to hγ , and the slopes of the lines correspond to γ = 2 for the
nodal and L2 errors and γ = 1 for the H1 error. The derivative of the solu-
tion is computed less accurately than the solution itself. This certainly makes
intuitive sense and also agrees with theoretical results quoted in Section 3.10.

Example 5. How will the numerical procedure change if the boundary condi-
tions are different?

First consider inhomogeneous Dirichlet conditions. Let us assume that in
the previous example the boundary values are u(0) = 1, u(π) = −1, so that
the exact solution is now u∗(x) = cos x. In the hat-function expansion of the
(piecewise-linear) FE solution

uh(x) =
n∑

i=0

uhiψi(x)

the summation now includes boundary nodes in addition to the interior ones.
However, the coefficients uh0 and uhn at these nodes are the known Dirichlet
values, and hence no Galerkin equations with test functions ψ0 and ψn are
necessary. In the Galerkin equation corresponding to the test function ψ1,
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Fig. 3.10. Several measures of error vs. the number of elements for the 1D model
problem: relative nodal error (circles), L2-error (squares), H1-error (triangles). Note
the log–log scale.

(ψ′
0, ψ′

1)uh0 + (ψ′
1, ψ′

1)uh1 = (f, ψ1)

the first term is known and gets moved to the right hand side:

(ψ′
1, ψ′

1)uh1 = (f, ψ1) − (ψ′
0, ψ′

1)uh0 (3.72)

As usual, parentheses in these expressions are L2 inner products and imply
integration over the computational domain.

The necessary algorithmic adjustments should now be clear. There is no
change in the computation of element matrices. However, whenever an entry
of the element matrix corresponding to a Dirichlet node is encountered,18

this entry is not added to the global system matrix. Instead, the right hand
side is adjusted as prescribed by (3.72). A similar adjustment is made for the
other boundary node (xn = π) as well. In 2D and 3D problems, there may be
many Dirichlet nodes, and all of them are handled in a similar manner. The
appropriate changes in the Matlab code are left as an exercise for the interested
reader. The FE solution for a small number of elements is compared with the

18 Clearly, this may happen only for elements adjacent to the boundary.
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exact solution (cos x) in Fig. 3.11, and the error measures are shown as a
function of the number of elements in Fig. 3.12.

Fig. 3.11. FE solution with 8 elements (markers) vs. the exact solution cos x (solid
line).

Neumann conditions in the Galerkin formulation are natural19 and there-
fore do not require any algorithmic treatment: elements adjacent to the Neu-
mann boundary are treated exactly the same as interior elements.

Despite its simplicity, the one-dimensional example above contains the key
ingredients of general FE algorithms:

1. Mesh generation and the choice of FE approximating functions.
In the 1D example, “mesh generation” is trivial, but it becomes compli-
cated in 2D and even more so in 3D. Only piecewise-linear approximating
functions have been used here so far; higher-order functions are considered
in the subsequent sections.

2. Local and global node numbering. For the computation of element
matrices (see below), it is convenient to use local numbering (e.g. nodes 1,
2 for a segment in 1D, nodes 1, 2, 3 for a triangular element in 2D, etc.) At

19 We showed that Neumann conditions are natural – i.e. automatically satisfied –
by the solution of the continuous weak problem. The FE solution does not, as
a rule, satisfy the Neumann conditions exactly but should do so in the limit of
h → 0, although this requires a separate proof.
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Fig. 3.12. The relative nodal error (circles) and the H1-error (triangles) for the
model Dirichlet problem. Note the log–log scale.

the same time, some global numbering of all mesh nodes from 1 to n is also
needed. This global numbering is produced by a mesh generator that also
puts local node numbers for each element in correspondence with their
global numbers. In the 1D example, mesh generation is trivial, and so is
the local-to-global association of node numbers: for element (segment) #i,
(i = 1,2, . . . , n), local node 1 (the left node) corresponds to global node
i−1, and local node 2 corresponds to global node i. The 2D and 3D cases
are considered in Section 3.8 and Section 3.9.

3. Computation of element matrices and of element-wise contri-
butions to the right hand side. In the 1D example, these quantities
were computed analytically; in more complicated cases, when analytical
expressions are unavailable (this is frequently the case for curved or high
order elements in 2D and 3D), Gaussian quadratures are used.

4. Assembly of the global matrix and of the right hand side. In a
loop over all elements, the element contributions are added to the global
matrix and to the right hand side; in the FE langauge, the matrix and
the right hand side are “assembled” from element-wise contributions. The
entries of each element matrix are added to the respective entries of the
global matrix and right hand side. See Section 3.8 for more details in the
2D case.

5. The treatment of boundary conditions. The Neumann conditions in
1D, 2D or 3D do not require any special treatment – in other words, the
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FE algorithm may simply “ignore” these conditions and the solution will,
in the limit, satisfy them automatically. The Robin condition containing a
combination of the potential and its normal derivative is also natural but
results in an additional boundary integral that will not be considered here.
Finally, the Dirichlet conditions have to be taken into account explicitly.
The following algorithmic adjustment is made in the loop over all elements.
If Lij is an entry of the element matrix and j is a Dirichlet node but i
isn’t, then Lij is not added to the global stiffness matrix. Instead, the
quantity Lijuj , where uj is the known Dirichlet value of the solution at
node j, is subtracted from the right hand side entry f

i
, as prescribed by

equation (3.72). If both i and j are Dirichlet nodes, Lij is set to zero.
6. Solution of the FE system of equations. System solvers are reviewed

in Section 3.11.
7. Postprocessing of the results. This may involve differentiation of the

solution (to compute fields from potentials), integration over surfaces (to
find field fluxes, etc.), and various contour, line or surface plots. Modern
commercial FE packages have elaborate postprocessing capabilities and
sophisticated graphical user interface; this subject is largely beyond the
scope of this book, but some illustrations can be found in Chapter 7.

At the same time, there are several more advanced features of FE analysis
that are not evident from the 1D example and will be considered (at a varying
level of detail) in the subsequent sections of this chapter:

• Curved elements – used in 2D and 3D for more accurate approximation of
curved boundaries.

• Adaptive mesh refinement (Section 3.13). The mesh is refined locally, in
the subregions where the numerical error is estimated to be highest. (In
addition, the mesh may be un-refined in subregions with lower errors.)
The problem is then solved again on the new grid. The key to the success
of this strategy is a sensible error indicator that is computed a posteriori,
i.e. after the FE solution is found.

• Vector finite elements (Section 3.12). The most straightforward way of
dealing with vector fields in FE analysis is to approximate each Cartesian
component separately by scalar functions. While this approach is adequate
in some cases, it turns out not to be the most solid one in general. One
deficiency is fairly obvious from the outset: some field components are dis-
continuous at material interfaces, which is not a natural condition for scalar
finite elements and requires special constraints. This is, however, only one
manifestation of a deeper mathematical structure: fundamentally, electro-
magnetic fields are better understood as differential forms (Section 3.12).

A Sample Matlab Code for the 1D Model Problem

function FEM_1D_example1 = FEM_1D_example1 (n)

% Finite element solution of the Poisson equation
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% -u’’ = sin x on [0, pi]; u(0) = u(pi) = 0

% Input:

% n -- number of elements

domain_length = pi; % hard-coded for simplicity of this sample code

h = domain_length / n; % mesh size (uniform mesh assumed)

% Initialization:

system_matrix = sparse(zeros(n-1, n-1));

rhs = sparse(zeros(n-1, 1));

% Loop over all elements (segments)

for elem_number = 1 : n

node1 = elem_number - 1;

node2 = elem_number;

% Coordinates of nodes:

x1 = h*node1;

x2 = x1 + h;

% Element stiffness matrix:

elem_matrix = 1/h * [1 -1; -1 1];

elem_rhs = 1/h * [sin(x2) - x2 * cos(x2) + x1 * cos(x2) - sin(x1);

... -(sin(x2) - x2 * cos(x1) + x1 * cos(x1) - sin(x1))];

% Add element contribution to the global matrix

if node1 ~= 0 % contribution for nonzero Dirichlet condition only

system_matrix(node1, node1) = system_matrix(node1, node1) ...

+ elem_matrix(1, 1);

rhs(node1) = rhs(node1) + elem_rhs(1);

end

if (node1 ~= 0) & (node2 ~= n) % contribution for nonzero

% Dirichlet condition only

system_matrix(node1, node2) = system_matrix(node1, node2) ...

+ elem_matrix(1, 2);

system_matrix(node2, node1) = system_matrix(node2, node1) ...

+ elem_matrix(2, 1);

end

if node2 ~= n % contribution for nonzero Dirichlet condition only

system_matrix(node2, node2) = system_matrix(node2, node2) ...

+ elem_matrix(2, 2);

rhs(node2) = rhs(node2) + elem_rhs(2);

end

end % end element cycle

u_FEM = system_matrix \ rhs; % refrain from using

% matrix inversion inv()!
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FEM_1D_example1.a = 0;

FEM_1D_example1.b = pi;

FEM_1D_example1.n = n;

FEM_1D_example1.u_FEM = u_FEM;

return;

3.7.2 Higher-Order Elements

There are two distinct ways to improve the numerical accuracy in FEM. One
is to reduce the size h of (some or all) the elements; this approach is known
as (local or global) h-refinement.

Remark 3. It is very common to refer to a single parameter h as the “mesh
size,” even if finite elements in the mesh have different sizes (and possibly even
different shapes). With this terminology, it is tacitly assumed that the ratio
of maximum/minimum element sizes is bounded and not too large; then the
difference between the minimum, maximum or some average size is relatively
unimportant. However, several recursive steps of local mesh refinement may
result in a large disparity of the element sizes; in such cases, reference to a
single mesh size would be misleading.

The other way to improve the accuracy is to increase the polynomial order
p of approximation within (some or all) elements; this is (local or global)
p-refinement.

Let us start with second-order elements in one dimension. Consider a geo-
metric element – in 1D, a segment of length h. We are about to introduce
quadratic polynomials over this element; since these polynomials have three
free parameters, it makes sense to deal with their values at three nodes and
to place these nodes at x = 0, h/2, h relative to a local coordinate system.

The canonical approximating functions satisfy the Kronecker-delta condi-
tions at the nodes. The first function is thus equal to one at node #1 and zero
at the other two nodes; this function is easily found to be

ψ1 =
2
h2

(
x− h

2

)
(x− h) (3.73)

(The factors in the parentheses are due to the roots at h/2 and h; the scaling
coefficient 2/h2 normalizes the function to ψ1(0) = 1.)

Similarly, the remaining two functions are

ψ2 =
4
h2

x(h− x) (3.74)

ψ3 =
2
h2

x

(
x− h

2

)
(3.75)
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Fig. 3.13. Three quadratic basis functions over one 1D element. h = 0.1 as an
example.

Fig. 3.13 displays all three quadratic approximating functions over a single 1D
element. While the “bubble” ψ2 is nonzero within one element only, functions
ψ1,3 actually span two adjacent elements, as shown in Fig. 3.14.

The entries of the element stiffness matrix L and mass matrix M (that is,
the Gram matrix of the ψs) are

Lij =
∫ h

0

ψ′
iψ

′
j dx

where the prime sign denotes the derivative, and

Mij =
∫ h

0

ψiψj dx

These matrices can be computed by straightforward integration:

L =
1
3h

⎛
⎝ 7 − 8 1
−8 16 − 8
1 − 8 7

⎞
⎠ (3.76)

M =
h

30

⎛
⎝ 4 2 − 1

2 16 2
−1 2 4

⎞
⎠ (3.77)



104 3 The Finite Element Method

Fig. 3.14. Quadratic basis function over two adjacent 1D elements. h = 0.1 as an
example.

Naturally, both matrices are symmetric.
The matrix assembly procedure for second-order elements in 1D is concep-

tually the same as for first-order elements. There are some minor differences:

• For second-order elements, the number of nodes is about double the num-
ber of elements.

• Consequently, the correspondence between the local node numbers (1, 2,
3) in an element and their respective global numbers in the grid is a little
less simple than for first-order elements.

• The element matrix is 3 × 3 for second order elements vs. 2 × 2 for first
order ones; the global matrices are five- and three-diagonal, respectively.

Elements of order higher than two can be introduced in a similar manner. The
element of order n is, in 1D, a segment of length h with n + 1 nodes x0, x1,
. . ., xn = x0 +h. The approximating functions are polynomials of order n. As
with first- and second-order elements, it is most convenient if polynomial #i
has the Kronecker-delta property: equal to one at the node xi and zero at the
remaining n nodes. This is the Lagrange interpolating polynomial

Λi(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
(3.78)
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Indeed, the roots of this polynomial are x0, x1, . . ., xi−1, xi+1, . . ., xn, which
immediately leads to the expression in the numerator. The denominator is the
normalization factor needed to make Λi(x) equal to one at x = xi.

The focus of this chapter is on the main ideas of finite element analysis
rather than on technical details. With regard to the computation of element
matrices, assembly procedures and other implementation issues for high order
elements, I defer to more comprehensive FE texts cited at the end of this
chapter.

3.8 The Finite Element Method in Two Dimensions

3.8.1 First-Order Elements

In two dimensions, most common element shapes are triangular (by far) and
quadrilateral. Fig. 3.15 gives an example of a triangular mesh, with the global
node numbers displayed. Element numbering is not shown to avoid congestion
in the figure.

This section deals with first-order triangular elements. The approximating
functions are linear over each triangle and continuous in the whole domain.
Each approximating function spans a cluster of elements (Fig. 3.16) and is
zero outside that cluster.

Expressions for element-wise basis functions can be derived in a straight-
forward way. Let the element nodes be numbered 1, 2, 320 in the counter-
clockwise direction21 and let the coordinates of node i (i = 1,2,3) be xi, yi.
As in the 1D case, it is natural to look for the basis functions satisfying the
Kronecker-delta condition.

More specifically, the basis function ψ1 = a1x + b1y + c1, where a1, b1 and
c1 are coefficients to be determined, is equal to one at node #1 and zero at
the other two nodes:

a1x1 + b1y1 + c1 = 1
a1x2 + b1y2 + c1 = 0
a1x3 + b1y3 + c1 = 0

(3.79)

or equivalently in matrix-vector form

Xd1 = e1, X =

⎛
⎝x1 y1 1

x2 y2 1
x3 y3 1

⎞
⎠ ; d1 =

⎛
⎝a1

b1

c1

⎞
⎠ ; e1 =

⎛
⎝1

0
0

⎞
⎠ (3.80)

Similar relationships hold for the other two basis functions, ψ2 and ψ3, the
only difference being the right hand side of system (3.80). It immediately

20 These are local numbers that have their corresponding global numbers in the
mesh; for example, in the shaded element of Fig. 3.15 (bottom) global nodes 179,
284 and 285 could be numbered as 1, 2, 3, respectively.

21 The significance of this choice of direction will become clear later.
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Fig. 3.15. An example of a triangular mesh with node numbering (top) and a
fragment of the same mesh (bottom).
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Fig. 3.16. A piecewise-linear basis function in 2D over a cluster of triangular ele-
ments. Circles indicate mesh nodes. The basis function is represented by the surface
of the pyramid.

follows from (3.80) that the coefficients a, b, c for all three basis functions can
be collected together in a compact way:

XD = I, D =

⎛
⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎠ (3.81)

where I is the 3×3 identity matrix. Hence the coefficients of the basis functions
can be expressed succinctly as

D = X−1 (3.82)

From analytical geometry, the determinant of X is equal to 2S∆, where S∆

is the area of the triangle. (That is where the counter-clockwise numbering
of nodes becomes important; for clockwise numbering, the determinant would
be equal to minus 2S∆.) This leads to simple explicit expressions for the basis
functions:

ψ1 =
(y2 − y3)x + (x3 − x2)y + (x2y3 − x3y2)

2S∆
(3.83)

with the other two functions obtained by cyclic permutation of the indexes.
Since the basis functions are linear, their gradients are just constants:

∇ψ1 =
y2 − y3

2S∆
x̂ +

x3 − x2

2S∆
ŷ (3.84)
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with the formulas for ψ2,3 again obtained by cyclic permutation. These ex-
pressions are central in the FE-Galerkin formulation.

It would be straightforward to verify from (3.83), (3.84) that

ψ1 + ψ2 + ψ3 = 1 (3.85)

∇ψ1 +∇ψ2 +∇ψ3 = 0 (3.86)

However, these results can be obtained without any algebraic manipulation.
Indeed, due to the Kronecker delta property of the basis, any function u(x, y)
linear over the triangle can be expressed via its nodal values u1,2,3 as

u(x, y) = u1ψ1 + u2ψ2 + u3ψ3

Equation (3.85) follows from this simply for u(x, y) ≡ 1.
Functions ψ1,2,3 are also known as barycentric coordinates and have an

interesting geometric interpretation (Fig. 3.17). For any point x, y in the plane,
ψ1(x, y) is the ratio of the shaded area to the area of the whole triangle:
ψ1(x, y) = S1(x, y)/S∆. Similar expressions are of course valid for the other
two basis functions.

Fig. 3.17. Geometric interpretation of the linear basis functions: ψ1(x, y) =
S1(x, y)/S∆, where S1 is the shaded area and S∆ is the area of the whole trian-
gle. (Similar for ψ2,3.)

Indeed, the fact that S1/S∆ is equal to one at node #1 and zero at the
other two nodes is geometrically obvious. Moreover, it is a linear function of
coordinates because S1 is proportional to height l of the shaded triangle (the
“elevation” of point x, y over the “base” segment 2–3), and l can be obtained
by a linear transformation of coordinates (x, y).

The three barycentric coordinates are commonly denoted with λ1,2,3, so
the linear FE basis functions are just ψi ≡ λi (i = 1,2,3). Higher-order FE
bases can also be conveniently expressed in terms of λ (Section 3.8.2).
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The element stiffness matrix for first order elements is easy to compute
because the gradients (3.84) of the basis functions are constant:

(∇λi,∇λj) ≡
∫

∆

∇λi · ∇λj dS = ∇λi · ∇λj S∆, i, j = 1, 2, 3 (3.87)

where the integration is over a triangular element and S∆ is the area of this
element. Expressions for the gradients are available (3.84) and can be easily
substituted into (3.87) if an explicit formula for the stiffness matrix in terms
of the nodal coordinates is desired.

Computation of the element mass matrix (the Gram matrix of the basis
functions) is less simple but the result is quite elegant. The integral of, say,
the product λ1λ2 over the triangular element can be found using an affine
transformation of this element to the “master” triangle with nodes 1, 2, 3 at
(1, 0), (0, 1) and (0, 0), respectively. Since the area of the master triangle is
1/2, the Jacobian of this transformation is equal to 2S∆ and we have22

(λ1, λ2) ≡
∫

∆

λ1λ2 dS = 2S∆

∫ 1

0

xdx

∫ 1−x

0

ydy =
S∆

12

Similarly,

(λ1, λ1) = 2
S∆

12
and the complete element mass matrix is

M =

⎛
⎝2 1 1

1 2 1
1 1 2

⎞
⎠ S∆

12
(3.88)

The expressions for the inner products of the barycentric coordinates are a
particular case of a more general formula that appears in many texts on FE
analysis and is quoted here without proof:∫

∆

λi
1λ

j
2λ

k
3 dS =

i! j! k!
(i + j + k + 2)!

2S∆ (3.89)

for any nonnegative integers i, j, k. M11 of (3.88) corresponds to i = 2,
j = k = 0; M12 corresponds to i = j = 1, k = 0; etc.

Remark 4. The notion of “master element” (or “reference element”) is use-
ful and long-established in finite element analysis. Properties of FE matrices
and FE approximations are usually examined via affine transformations of
elements to the “master” ones. In that sense, analysis of finite element inter-
polation errors in Section 3.14.2 below (p. 160) is less typical.

22 The Jacobian is positive for the counter-clockwise node numbering convention.
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Example 6. Let us find the basis functions and the FE matrices for a right
triangle with node #1 at the origin, node #2 on the x-axis at (hx, 0), and
node #3 on the y-axis at (0, hy) (mesh sizes hx, hy are positive numbers).
The coordinate matrix is

X =

⎛
⎝ 0 0 1

hx 0 1
0 hy 1

⎞
⎠

which yields the coefficient matrix

D = X−1 =

⎛
⎝−h−1

x h−1
x 0

−h−1
y 0 h−1

y

1 0 0

⎞
⎠

Each column of this matrix is a set of three coefficients for the respective basis
function; thus the three columns translate into

ψ1 = 1− h−1
x x− h−1

y y
ψ2 = h−1

x x
ψ3 = h−1

y y

The sum of these functions is identically equal to one as it should be according
to (3.85). Functions ψ2 and ψ3 in this case are particularly easy to visualize:
ψ2 is a linear function of x equal to one at node #2 and zero at the other two
nodes; ψ3 is similar. The gradients are

∇ψ1 = − h−1
x x̂− h−1

y ŷ
∇ψ2 = h−1

x x̂
∇ψ3 = h−1

y ŷ

Computing the entries of the element stiffness matrix is easy because the
gradients of λs are (vector) constants. For example,

(∇λ1,∇λ1) =
∫

∆

∇λ1 · ∇λ1 dS = (h−2
x + h−2

y )S∆

Since S∆ = hxhy/2, the complete stiffness matrix is

L =

⎛
⎝h−2

x + h−2
y − h−2

x − h−2
y

−h−2
x h−2

x 0
−h−2

y 0 h−2
y

⎞
⎠ hxhy

2
(3.90)

This expression becomes particularly simple if hx = hy = h:

L =
1
2

⎛
⎝ 2 − 1 − 1
−1 1 0
−1 0 1

⎞
⎠ (3.91)
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The mass matrix is, according to the general expression (3.88),

M =
S∆

12

⎛
⎝2 1 1

1 2 1
1 1 2

⎞
⎠ =

hxhy

24

⎛
⎝2 1 1

1 2 1
1 1 2

⎞
⎠ (3.92)

An example of Matlab implementation of FEM for a triangular mesh is given
at the end of this section; see p. 114 for the description and listing of the code.
As an illustrative example, consider a dielectric particle with some nontrivial
shape – say, T-shaped – in a uniform external field. The geometric setup is
clear from Figs. 3.18 and 3.19.

Fig. 3.18. A finite element mesh for the electrostatic problem: a T-shaped particle
in an external field. The mesh has 422 nodes and 782 triangular elements.

The potential of the applied external field is assumed to be u = x and
is imposed as the Dirichlet condition on the boundary of the computational
domain. Since the particle disturbs the field, this condition is not exact but
becomes more accurate if the domain boundary is moved farther away from
the particle; this, however, increases the number of nodes and consequently
the computational cost of the simulation. Domain truncation is an intrinsic
difficulty of electromagnetic FE analysis (unlike, say, analysis of stresses and
strains confined to a finite mechanical part). Various ways of reducing the
domain truncation error are known: radiation boundary conditions and Per-
fectly Matched Layers (PML) for wave problems (e.g. Z.S. Sacks [SKLL93], Jo-
Yu Wu et al. [WKLL97]), hybrid finite element/boundary element methods,
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Fig. 3.19. The potential distribution for the electrostatic example: a T-shaped
particle in an external field.

infinite elements, “ballooning,” spatial mappings (A. Plaks et al. [PTPT00])
and various other techniques (see Q. Chen & A. Konrad [CK97] for a review).
Since domain truncation is only tangentially related to the material of this
section, it is not considered here further but will reappear in Chapter 7.

For inhomogeneous Dirichlet conditions, the weak formulation of the prob-
lem has to be modified, with the corresponding minor adjustments to the FE
algorithm. The underlying mathematical reason for this modification is that
functions satisfying a given inhomogeneous Dirichlet condition form an affine
space rather than a linear space (e.g. the sum of two such functions has a
different value at the boundary). The remedy is to split the original unknown
function u up as

u = u0 + u �=0 (3.93)

where u �=0 is some sufficiently smooth function satisfying the given inhomo-
geneous boundary condition, while the remaining part u0 satisfies the homo-
geneous one. The weak formulation is

L(u0, v0) = (f, v0) − L(u �=0, v0), u0 ∈ H1
0 (Ω), ∀v0 ∈ H1

0 (Ω) (3.94)

In practice, the implementation of this procedure is more straightforward
than it may appear from this expression. The inhomogeneous part u �=0 is
spanned by the FE basis functions corresponding to the Dirichlet nodes; the
homogeneous part of the solution is spanned by the basis functions for all
other nodes. If j is a Dirichlet boundary node, the solution value uj at this
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node is given, and hence the term Lijuj in the global system of FE equations
is known as well. It is therefore moved (with the opposite sign of course) to
the right hand side.

In the T-shaped particle example, the mesh has 422 nodes and 782 trian-
gular elements, and the stiffness matrix has 2446 nonzero entries. The sparsity
structure of this matrix (also called the adjacency structure) – the set of index
pairs (i, j) for which Lij �= 0 – is exhibited in Fig. 3.20. The distribution of
nonzero entries in the matrix is quasi-random, which has implications for the
solution procedures if direct solvers are employed. Such solvers are almost in-
variably based on some form of Gaussian elimination; for symmetric positive
definite matrices, it is Cholesky decomposition UT U , where U is an upper
triangular matrix.23 While Gaussian elimination is a very reliable24 and rela-
tively simple procedure, for sparse matrices it unfortunately produces “fill-in”:
zero entries become nonzero in the process of elimination (or Cholesky de-
composition), which substantially degrades the computational efficiency and
memory usage.

In the present example, Cholesky decomposition applied to the original
stiffness matrix with 2446 nonzero entries25 produces the Cholesky factor
with 24,969 nonzeros and hence requires about 20 times more memory (if
symmetry is taken advantage of); compare Figs. 3.20 and 3.21. For more
realistic practical cases, where matrix sizes are much greater, the effect of
fill-in is even more dramatic.

It is worth noting – in passing, since this is not the main theme of this
section – that several techniques are available for reducing the amount of fill-in
in Cholesky factorization. The main ideas behind these techniques are clever
permutations of rows and columns (equivalent to renumbering of nodes in the
FE mesh), block algorithms (including divide-and-conquer type recursion),
and combinations thereof. A. George & J.W.H. Liu give a detailed and lucid
exposition of this subject [GL81]. In the current example, the so-called reverse
Cuthill–McKee ordering reduces the number of nonzero entries in the Cholesky
factor to 7230, which is more than three times better than for the original
numbering of nodes (Figs. 3.22 and 3.23).

The “minimum degree” ordering [GL81] is better by another factor of
∼ 2: the number of nonzeros in the Cholesky triangular matrix is equal to
3717 (Figs. 3.24 and 3.25). These permutation algorithms will be revisited in
the solver section (p. 129).

23 Cholesky decomposition is usually written in the equivalent form of LLT , where
L is a lower triangular matrix, but symbol L in this chapter is already used for
the FE stiffness matrix.

24 It is known to be stable for symmetric positive definite matrices but may require
pivoting in general.

25 Of which only a little more than one half need to be stored due to matrix sym-
metry.
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Fig. 3.20. The sparsity (adjacency) structure of the global FE matrix in the T-
shaped particle example.

Fig. 3.21. The sparsity structure of the Cholesky factor of the global FE matrix in
the T-shaped particle example.

Appendix: Sample Matlab Code for FEM with First-Order
Triangular Elements

The Matlab code below is intended to be the simplest possible illustration
of the finite element procedure. As such, it uses first order elements and is
optimized for algorithmic simplicity rather than performance. For example,
there is some duplication of variables for the sake of clarity, and symmetry of
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Fig. 3.22. The sparsity structure of the global FE matrix after the reverse Cuthill–
McKee reordering of nodes.

Fig. 3.23. The sparsity structure of the upper-triangular Cholesky factor of the
global FE matrix after the reverse Cuthill–McKee reordering of nodes.
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Fig. 3.24. The sparsity structure of the global FE matrix after the minimum degree
reordering of nodes.

Fig. 3.25. The sparsity structure of the upper-triangular Cholesky factor of the
global FE matrix after the minimum degree reordering of nodes.
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the FE stiffness matrix is not taken advantage of. Improvements become fairly
straightforward to make once the essence of the algorithm is understood.

The starting point for the code is a triangular mesh generated by
FEMLABTM, a commercial finite element package26 integrated with Matlab.
The input data structure fem generated by FEMLAB in general contains
the geometric, physical and FE mesh data relevant to the simulation. For
the purposes of this section, only mesh data (the field fem.mesh) is needed.
Second-order elements are the default in FEMLAB, and it is assumed that
this default has been changed to produce first-order elements for the sample
Matlab code.

The fem.mesh structure (or simply mesh for brevity) contains several fields:

• mesh.p is a 2 × n matrix, where n is the number of nodes in the mesh.
The i-th column of this matrix contains the (x, y) coordinates of node #i.

• mesh.e is a 7×nbe matrix, where nbe is the number of element edges on all
boundaries: the exterior boundary of the domain and material interfaces.
The first and second rows contain the node numbers of the starting and
end points of the respective edge. The sixth and seventh row contain the
region (subdomain) numbers on the two sides of the edge. Each region is
a geometric entity that usually corresponds to a particular medium, e.g.
a dielectric particle or air. Each region is assigned a unique number. By
convention, the region outside the computational domain is labeled as zero,
which is used in the Matlab code below to identify the exterior boundary
edges and nodes in mesh.e. The remaining rows of this matrix will not be
relevant to us here.

• mesh.t is a 4 × nelems matrix, where nelems is the number of elements in
the mesh. The first three rows contain node numbers of each element in
counter-clockwise order. The fourth row is the region number identifying
the medium where the element resides.

The second input parameter of the Matlab code, in addition to the fem struc-
ture, is an array of dielectric permittivities by region number. In the T-shaped
particle example, region #1 is air, and the particle includes regions #2–#4,
all with the same dielectric permittivity. The following sequence of commands
could be used to call the FE solver:

% Set parameters:
epsilon_air = 1; epsilon_particle = 10;

epsilon_array = [epsilon_air epsilon_particle*ones(1, 5)];

% Solve the FE problem
FEM_solve = FEM_triangles (fem, epsilon_array)

The operation of the Matlab function FEM triangles below should be
clear from the comments in the code and from Section 3.8.1.
26 www.comsol.com
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function FEM_triangles = FEM_triangles (fem, epsilon_array)

% Input parameters:

% fem -- structure generated by FEMLAB.

% (See comments in the code and text.)

% epsilon_array -- material parameters by region number.

mesh = fem.mesh; % duplication for simplicity

n_nodes = length(mesh.p); % array p has dimension 2 x n_nodes;

% contains x- and y-coordinates of the nodes.

n_elems = length(mesh.t); % array t has dimension 4 x n_elements.

% First three rows contain node numbers

% for each element.

% The fourth row contains region number

% for each element.

% Initialization

rhs = zeros(n_nodes, 1);

global_stiffness_matrix = sparse(n_nodes, n_nodes);

dirichlet = zeros(1, n_nodes); % flags Dirichlet conditions

% for the nodes (=1 for Dirichlet

% nodes, 0 otherwise)

% Use FEMLAB data on boundary edges to determine Dirichlet nodes:

boundary_edge_data = mesh.e; % mesh.e contains FEMLAB data

% on element edges at the domain boundary

number_of_boundary_edges = size(boundary_edge_data, 2); for

boundary_edge = 1 : number_of_boundary_edges

% Rows 6 and 7 in the array are region numbers

% on the two sides of the edge

region1 = boundary_edge_data(6, boundary_edge);

region2 = boundary_edge_data(7, boundary_edge);

% If one of these region numbers is zero, the edge is at the

% boundary, and the respective nodes are Dirichlet nodes:

if (region1 == 0) | (region2 == 0) % boundary edge

node1 = boundary_edge_data(1, boundary_edge);

node2 = boundary_edge_data(2, boundary_edge);

dirichlet(node1) = 1;

dirichlet(node2) = 1;

end

end

% Set arrays of nodal coordinates:

for elem = 1 : n_elems % loop over all elements

elem_nodes = mesh.t(1:3, elem); % node numbers for the element

for node_loc = 1 : 3

node = elem_nodes(node_loc);

x_nodes(node) = mesh.p(1, node);
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y_nodes(node) = mesh.p(2, node);

end

end

% Matrix assembly -- loop over all elements:

for elem = 1 : n_elems

elem_nodes = mesh.t(1:3, elem);

region_number = mesh.t(4, elem);

for node_loc = 1 : 3

node = elem_nodes(node_loc);

x_nodes_loc(node_loc) = x_nodes(node);

y_nodes_loc(node_loc) = y_nodes(node);

end

% Get element matrices:

[stiff_mat, mass_mat] = elem_matrices_2D(x_nodes_loc, y_nodes_loc);

for node_loc1 = 1 : 3

node1 = elem_nodes(node_loc1);

if dirichlet(node1) ~= 0

continue;

end

for node_loc2 = 1 : 3

% symmetry not taken advantage of, to simplify code

node2 = elem_nodes(node_loc2);

if dirichlet(node2) == 0 % non-Dirichlet node

global_stiffness_matrix(node1, node2) = ...

global_stiffness_matrix(node1, node2) ...

+ epsilon_array(region_number) ...

* stiff_mat(node_loc1, node_loc2);

else % Dirichlet node; update rhs

rhs(node1) = rhs(node1) - ...

stiff_mat(node_loc1, node_loc2) * ...

dirichlet_value(x_nodes(node2), y_nodes(node2));

end

end

end

end

% Equations for Dirichlet nodes are trivial:

for node = 1 : n_nodes

if dirichlet(node) ~= 0 % a Dirichlet node

global_stiffness_matrix(node, node) = 1;

rhs(node) = dirichlet_value(x_nodes(node), y_nodes(node));

end

end

solution = global_stiffness_matrix \ rhs;

% Output fields:

FEM_triangles.fem = fem; % record the fem structure
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FEM_triangles.epsilon_array = epsilon_array; % material parameters

% by region number

FEM_triangles.n_nodes = n_nodes; % number of nodes in the mesh

FEM_triangles.x_nodes = x_nodes; % array of x-coordinates of the nodes

FEM_triangles.y_nodes = y_nodes; % array of y-coordinates of the nodes

FEM_triangles.dirichlet = dirichlet; % flags for the Dirichlet nodes

FEM_triangles.global_stiffness_matrix = global_stiffness_matrix;

% save matrix for testing

FEM_triangles.rhs = rhs; % right hand side for testing

FEM_triangles.solution = solution; % nodal values of the potential

return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [stiff_mat, mass_mat] = elem_matrices_2D(x_nodes, y_nodes)

% Compute element matrices for a triangle.

% Input parameters:

% x_nodes -- x-coordinates of the three nodes,

% in counter-clockwise order

% y_nodes -- the corresponding y-coordinates

coord_mat = [x_nodes’ y_nodes’ ones(3, 1)];

% matrix of nodal coordinates, with an extra column of ones

coeffs = inv(coord_mat); % coefficients of the linear basis functions

grads = coeffs(1:2, :); % gradients of the linear basis functions

area = 1/2 * abs(det(coord_mat)); % area of the element

stiff_mat = area * grads’ * grads; % the FE stiffness matrix

mass_mat = area / 12 * (eye(3) + ones(3, 3));

% the FE mass matrix

return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dirichlet_value = dirichlet_value (x, y)

% Set the Dirichlet boundary condition

dirichlet_value = x; % as a simple example

return;

3.8.2 Higher-Order Triangular Elements

The discussion in Section 3.8.1 suggests that in a triangular element the
barycentric variables λ (p. 108) form a natural set of coordinates (albeit not
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independent, as their sum is equal to unity). For first order elements, the
barycentric coordinates themselves double as the basis functions. They can
also be used to generate FE bases for higher order triangular elements.

A second order element has three corner nodes #1–#3 and three mid-
point nodes (Fig. 3.26). All six nodes can be labeled with triplets of indexes
(k1, k2, k3); each index ki increases from 0 to 1 to 2 along the edges toward
node i (i = 1, 2, 3).

Fig. 3.26. Second order triangular element. The six nodes can be labeled with
triplets of indexes (k1, k2, k3), ki = 0, 1, 2. Each node has the corresponding basis
function Λk1

k1
(λ1)Λ

k2
k2

(λ2)Λ
k3
k3

(λ3).

To each node, there corresponds an FE basis function that is a second
order polynomial in λ with the Kronecker-delta property. The explicit ex-
pression for this polynomial is Λk1

k1
(λ1)Λk2

k2
(λ2)Λk3

k3
(λ3). For example, the basis

function corresponding to node (0, 1, 1) – the midpoint node at the bottom
– is Λ1(λ2)Λ1(λ3). Indeed, it is the Lagrange polynomial Λ1 that is equal to
one at the midpoint and to zero at the corner nodes of a given edge, and it is
the barycentric coordinates λ2,3 that vary (linearly) along the bottom edge.

This construction can be generalized to elements of order p. Each side of
the triangle is subdivided into p segments; the nodes of the resulting triangular
grid are again labeled with triplets of indexes, and the corresponding basis
functions are defined in the same way as above. Details can be found in the
FE monographs cited at the end of the chapter.
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3.9 The Finite Element Method in Three Dimensions

Tetrahedral elements, by analogy with triangular ones in 2D, afford the great-
est flexibility in representing geometric shapes and are therefore the most
common type in many applications. Hexahedral elements are also frequently
used. This section describes the main features of tetrahedral elements; further
information about elements of other types can be found in specialized FE
books (Section 3.16).

Due to a direct analogy between tetrahedral and triangular elements (Sec-
tion 3.8), results for tetrahedra are presented below without further ado. Let
the coordinates of the four nodes be xi, yi, zi (i = 1,2,3,4). A typical linear
basis function – say, ψ1 – is

ψ1 = a1x + b1y + c1z + d1

with some coefficients a1, b1, c1, d1. The Kronecker-delta property is desired:

a1x1 + b1y1 + c1z1 + d1 = 1
a1x2 + b1y2 + c1z2 + d2 = 0
a1x3 + b1y3 + c1z3 + d3 = 0
a1x4 + b1y4 + c1z4 + d4 = 0

(3.95)

Equivalently in matrix-vector form

Xf1 = e1, X =

⎛
⎜⎜⎝

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

⎞
⎟⎟⎠ ; f1 =

⎛
⎜⎜⎝

a1

b1

c1

d1

⎞
⎟⎟⎠ ; e1 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ (3.96)

with similar relationships for the other three basis functions. In compact no-
tation,

XF = I, F =

⎛
⎜⎜⎝

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

⎞
⎟⎟⎠ (3.97)

where I is the 4 × 4 identity matrix. The coefficients of the basis functions
thus are

F = X−1 (3.98)

The determinant of X is equal to 6V , where V is the volume of the tetrahedron
(assuming that the nodes are numbered in a way that produces a positive
determinant). The basis functions can be found from (3.98), say, by Cramer’s
rule. Since the basis functions are linear, their gradients are constants.

The sum of the basis functions is unity, for the same reason as for triangular
elements:

ψ1 + ψ2 + ψ3 + ψ4 = 1 (3.99)
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The sum of the gradients is zero:

∇ψ1 +∇ψ2 +∇ψ3 +∇ψ4 = 0 (3.100)

Functions ψ1,2,3,4 are identical with the barycentric coordinates λ1,2,3,4 of the
tetrahedron. They have a geometric interpretation as ratios of tetrahedral
volumes – an obvious analog of the similar property for triangles (Fig. 3.17
on p. 108).

The element stiffness matrix for first order elements is (noting that the
gradients are constant)

(∇λi,∇λj) ≡
∫

∆

∇λi · ∇λj dV = ∇λi · ∇λjV, i, j = 1, 2, 3, 4 (3.101)

where the integration is over the tetrahedron and V is its volume. The element
mass matrix (the Gram matrix of the basis functions) turns out to be

M =

⎛
⎜⎜⎝

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎞
⎟⎟⎠ V

20
(3.102)

which follows from the formula∫
∆

λi
1λ

j
2λ

k
3λl

4 dV =
i! j! k! l!

(i + j + k + l + 3)!
6V (3.103)

for any nonnegative integers i, j, k, l.
Higher-order tetrahedral elements are constructed in direct analogy with

the triangular ones (Section 3.8.2). The second-order tetrahedron has ten
nodes (four main vertices and six edge midpoints); the cubic tetrahedral ele-
ment has 20 nodes (two additional nodes per edge subdividing it into three
equal segments, and four nodes at the barycenters of the faces). Detailed de-
scriptions of tetrahedral elements, as well as first- and high-order elements of
other shapes (hexahedra, triangular prisms, and others) are easy to find in
FE monographs (Section 3.16).

3.10 Approximation Accuracy in FEM

Theoretical considerations summarized in Section 3.5 show that the accuracy
of the finite element solution is directly linked, and primarily depends on,
the approximation accuracy. In particular, for symmetric elliptic forms L, the
Galerkin solution is actually the best approximation of the exact solution in
the sense of the L-norm (usually interpreted as an energy norm). In the case of
a continuous elliptic, but not necessarily symmetric, form, the solution error
depends also on the ellipticity and continuity constants, according to Céa’s
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theorem; however, the approximation error is still key. The same is true in the
general case of continuous but not necessarily symmetric or elliptic forms; then
the so-called Ladyzhenskaya–Babuška–Brezzi (LBB) condition relates the so-
lution error to the approximation error via the inf-sup constant (Section 3.10,
p. 126).

In all cases, the central role of FE approximation is clear. The main theo-
retical results on approximation accuracy in FEM are summarized below. But
first, let us consider a simple intuitive 1D picture. The exact solution (solid
line in Fig. 3.27) is approximated on a FE grid of size h; several finite ele-
ments (e) are shown in the figure. The most natural and easy to analyze form
of approximation is interpolation, with the exact and approximating functions
sharing the same nodal values on the grid.

Fig. 3.27. Piecewise-linear FE interpolation of the exact solution.

The FE solution of a boundary value problem in general will not inter-
polate the exact one, although there is a peculiar case where it does (see the
Appendix on p. 127). However, due to Céa’s theorem (or Galerkin error min-
imization or the LBB condition, whichever may be applicable), the smallness
of the interpolation error guarantees the smallness of the solution error.

It is intuitively clear from Fig. 3.27 that the interpolation error decreases as
the mesh size becomes smaller. The error will also decrease if higher-order in-
terpolation – say, piecewise-quadratic – is used. (Higher-order nodal elements
have additional nodes that are not shown in the figure.) If the derivative of
the exact solution is only piecewise-smooth, the approximation will not suffer
as long as the points of discontinuity – typically, material interfaces – coincide
with some of the grid nodes. The accuracy will degrade significantly if a ma-
terial interface boundary passes through a finite element. For this reason, FE
meshes in any number of dimensions are generated in such a way that each
element lies entirely within one medium. For curved material boundaries, this
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is strictly speaking possible only if the elements themselves are curved; never-
theless, approximation of curved boundaries by piecewise-planar element FE
surfaces is often adequate in practice.

P.G. Ciarlet & P.A. Raviart gave the following general and powerful math-
ematical characterization of interpolation accuracy [CR72]. Let Σ be a finite
set in R

n and let polynomial Iu interpolate a given function u, in the La-
grange or Hermite sense, over a given set of points in Σ. Notably, the only
significant assumption in the Ciarlet–Raviart theory is uniqueness of such a
polynomial. Then

sup{‖Dmu(x)−DmIu(x)‖ ; x ∈ K} ≤ CMp+1
hp+1

ρm
, 0 ≤ m ≤ p (3.104)

Here
K is the closed convex hull of Σ;
h – diameter of K;
p – maximum order of the interpolating polynomial;
Mp+1 = sup{‖Dp+1u(x)‖; x ∈ K};
ρ – supremum of the diameters of spheres inscribed in K.
C – a constant.

While the result is applicable to abstract sets, in the FE context K is a finite
element (as a geometric figure).

Let us examine the factors that the error depends upon. Mp+1, being the
magnitude of the (p+1)st derivative of u, characterizes the level of smoothness
of u; naturally, the polynomial approximation is better for smoother functions.
The geometric factor can be split up into the shape and size components:

hp+1

ρm
=

(
h

ρ

)m

hp+1−m

h/ρ is dimensionless and depends only on the shape of K; we shall return to
the dependence of FE errors on element shape in Section 3.14. The following
observations about the second factor, hp+1−m, can be made:

• Example: the maximum interpolation error by linear polynomials is O(h2)
(p = 1, m = 0). The error in the first derivative is asymptotically higher,
O(h) (p = 1, m = 1).

• The interpolation error behaves as a power function of element size h but
depends exponentially on the interpolation order p, provided that the exact
solution has at least p + 1 derivatives.

• The interpolation accuracy is lower for higher-order derivatives (parameter
m).

Most of these observations make clear intuitive sense. A related result is cited
in Section 4.4.4 on p. 209.
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Appendix: The Ladyzhenskaya–Babuška–Brezzi Condition

For elliptic forms, the Lax–Milgram theorem guarantees well-posedness of the
weak problem and Céa’s theorem relates the error of the Galerkin solution
to the approximation error (Section 3.5 on p. 86). For non-elliptic forms, the
Ladyzhenskaya–Babuška–Brezzi (LBB) condition plays a role similar to the
Lax–Milgram–Céa results, although analysis is substantially more involved.
Conditions for the well-posedness of the weak problem were derived indepen-
dently by O.A. Ladyzhenskaya, I. Babuška & F. Brezzi [Lad69, BA72, Bre74].
In addition, the Babuška and Brezzi theories provide error estimates for the
numerical solution.

Unfortunately, the LBB condition is in many practical cases not easy to
verify. As a result, less rigorous criteria are common in engineering practice;
for example, the “patch test” that is not considered in this book but is easy to
find in the FE literature (e.g. O.C. Zienkiewicz et al. [ZTZ05]). Non-rigorous
conditions should be used with caution; I. Babuška & R. Narasimhan [BN97]
give an example of a finite element formulation that satisfies the patch test
but not the LBB condition. They also show, however, that convergence can
still be established in that case, provided that the input data (and hence the
solution) are sufficiently smooth.

A mathematical summary of the LBB condition is given below for refer-
ence. It is taken from the paper by J. Xu & L. Zikatanov [XZ03].

Let U and V be two Hilbert spaces, with inner products (·, ·)U and
(·, ·)V , respectively. Let B(·, ·): U × V �→ R be a continuous bilinear
form

B(u, v) ≤ ‖B‖ ‖u‖U ‖v‖V (3.105)

Consider the following variational problem: Find u ∈ U such that

B(u, v) = 〈f, v〉, ∀v ∈ V (3.106)

where f ∈ V ∗ (the space of continuous linear functionals on V and
〈·, ·〉 is the usual pairing between V ∗ and V .
. . . problem (3.106) is well posed if and only if the following conditions
hold . . .:

inf
u∈U

sup
v∈V

B(u, v)
‖u‖U ‖v‖V

> 0 (3.107)

Furthermore, if (3.107) hold, then

inf
u∈U

sup
v∈V

B(u, v)
‖u‖U ‖v‖V

= inf
v∈V

sup
u∈U

B(u, v)
‖u‖U ‖v‖V

≡ α > 0 (3.108)

and the unique solution of (3.106) satisfies

‖u‖U ≤ ‖f‖V ∗

α
(3.109)
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. . . Let Uh ⊂ U and Vh ⊂ V be two nontrivial subspaces of U and
V , respectively. We consider the following variational problem: Find
uh ∈ Uh such that

B(uh, vh) = 〈f, vh〉, ∀vh ∈ Vh (3.110)

. . . problem (3.110) is uniquely solvable if and only if the following
conditions hold:

inf
uh∈Uh

sup
vh∈Vh

B(uh, vh)
‖uh‖Uh

‖v‖Vh

= inf
vh∈Vh

sup
uh∈Uh

B(uh, vh)
‖uh‖Uh

‖v‖Vh

≡ αh > 0

(3.111)

(End of quote from J. Xu & L. Zikatanov [XZ03].)
The LBB result, slightly strengthened by Xu & Zikatanov, for the Galerkin

approximation is

Theorem 4. Let (3.105), (3.107) and (3.111) hold. Then

‖u− uh‖U ≤ ‖B‖
αh

inf
wh∈Vh

‖u− wh‖U (3.112)

Appendix: A Peculiar Case of Finite Element Approximation

The curious special case considered in this Appendix is well known to the
expert mathematicians but much less so to applied scientists and engineers.
I am grateful to B.A. Shoykhet for drawing my attention to this case many
years ago and to D.N. Arnold for insightful comments and for providing a
precise reference, the 1974 paper by J. Douglas & T. Dupont [DD74], p. 101.

Consider the 1D Poisson equation

−d2u

dx2
= f(x), Ω = [a, b]; u(a) = u(b) = 0 (3.113)

where the zero Dirichlet conditions are imposed for simplicity only. Let us ex-
amine the finite element solution uh of this equation using first-order elements.
The Galerkin problem for uh on a chosen mesh is

(u′
h, v′

h) = (f, vh), uh,∀vh ∈ P0h (3.114)

where the primes denote derivatives and P0h is the space of continuous func-
tions that are linear within each element (segment) of the chosen grid and
satisfy the zero Dirichlet conditions. The inner products are those of L2.

We know from Section 3.3.1 that the Galerkin solution is the best approx-
imation (in P0h) of the exact solution u∗, in the sense of minimum “energy”
(uh − u∗, uh − u∗). Geometrically, it is the best (in the same energy sense)
representation of the curve u∗(x) by a broken line compatible with a given
mesh.
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Surprisingly, in the case under consideration the best approximation ac-
tually interpolates the exact solution; in other words, the nodal values of the
exact and numerical solutions are the same. In reference to Fig. 3.27 on p. 124,
approximation of the exact solution (solid line) by the the piecewise-linear in-
terpolant (dotted line) on a fixed grid cannot be improved by shifting the
dotted line up or down a bit.

Proof. Let us treat vh in the Galerkin problem (3.114) for uh as a generalized
function (distribution; see Appendix 6.15 on p. 343).27 Then

−〈uh, v′′
h〉 = (f, vh), uh,∀vh ∈ P0h

where the angle brackets denote a linear functional acting on uh and v′′
h is the

second distributional derivative of vh. This transformation of the left hand
side is simply due to the definition of distributional derivative.

The right hand side is transformed in a similar way, after noting that
f = −u′′, where u is the exact solution of the Poisson equation. We obtain

〈uh, v′′
h〉 = (u, v′′

h)

or
〈uh − u, v′′

h〉 = 0, ∀vh ∈ P0h (3.115)

It remains to be noted that v′
h is a piecewise-constant function28 and hence

v′′
h is a set of Dirac delta-functions residing at the grid nodes. This makes it

obvious that (3.115) is satisfied if and only if uh indeed interpolates the exact
solution at the nodes of the grid. ��

Exactness of the FE solution at the grid nodes is an extreme particular
case of the more general phenomenon of superconvergence: the accuracy of
the FE solution at certain points (e.g. element nodes or barycenters) is as-
ymptotically higher than the average accuracy. The large body of research on
superconvergence includes books, conference proceedings and many journal
publications.29

27 The reviewer of this book noted that in a purely mathematical text the use of
distributional derivatives would not be appropriate without presenting a rigorous
theory first. However, distributions (Dirac delta-functions in particular) make
our analysis here much more elegant and simple. I rely on the familiarity of
applied scientists and engineers – the intended audience of this book – with delta-
functions, even if the usage is not backed up by full mathematical rigor.

28 With zero mean due to the Dirichlet boundary conditions for vh, but otherwise
arbitrary.

29 M. Křižek, P. Neittaanmaki & R. Stenberg, eds. Finite Element Methods:
Superconvergence, Post-Processing, and a Posteriori Estimates, Lecture Notes
in Pure and Applied Mathematics, vol. 196, Marcel Dekker: New York,
1998. L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods,
Berlin; New York: Springer-Verlag, 1995. M. Kř́ıžek, Superconvergence phe-
nomena on three-dimensional meshes, Int. J. of Num. Analysis and Model-
ing, vol. 2, pp. 43–56, 2005. L. Chen has assembled a reference database at
http://math.ucsd.edu/c̃long/Paper/html/Superconvergence.html .
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3.11 An Overview of System Solvers

The finite element method leads to systems of equations with large matrices –
in practice, the dimension of the system can range from thousands to millions.
When the method is applied to differential equations, the matrices are sparse
because each basis function is local and spans only a few neighboring elements;
nonzero entries in the FE matrices correspond to the overlapping supports
of the neighboring basis functions. (The situation is different when FEM is
applied to integral equations. The integral operator is nonlocal and typically
all unknowns in the system of equations are coupled; the matrix is full. Integral
equations are considered in this book only in passing.)

The sparsity (adjacency) structure of a matrix is conveniently described
as a graph. For an n × n matrix, the graph has n nodes.30 To each nonzero
entry aij of the matrix there corresponds the graph edge i−j. If the structure
of the matrix is not symmetric, it is natural to deal with a directed graph and
distinguish between edges i → j and j → i (each of them may or may not be
present in the graph, independently of the other one). Symmetric structures
can be described by undirected graphs.

As an example, the directed graph corresponding to the matrix⎛
⎜⎜⎝

2 0 3 1
1 1 0 0
0 0 4 0
−1 0 0 3

⎞
⎟⎟⎠ (3.116)

is shown in Fig. 3.28. For simplicity, the diagonal entries of the matrix are
always tacitly assumed to be nonzero and are not explicitly represented in the
graph.

An important question in finite difference and finite element analysis is
how to solve such large sparse systems effectively. One familiar approach is
Gaussian elimination of the unknowns one by one. As the simplest possible
illustration, consider a system of two equations of the form(

a11 a12

a21 a22

) (
x1

x2

)
=

(
f1

f2

)
(3.117)

For the natural order of elimination of the unknowns (x1 eliminated from the
first equation and substituted into the others, etc.) and for a nonzero a11, we
obtain x1 = (f1 − a12x2)/a11 and

(a22 − a21a
−1
11 a12)x2 = f2 − a−1

11 f1 (3.118)

This simple result looks innocuous at first glance but in fact foreshadows a
problem with the elimination process. Suppose that in the original system
30 For matrices arising in finite difference or finite element methods, the nodes of

the graph typically correspond to mesh nodes; otherwise graph nodes are abstract
mathematical entities.
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Fig. 3.28. Matrix sparsity structure as a graph: an example.

(3.117) the diagonal entry a22 is zero. In the transformed system (3.118) this
is no longer so: the entry corresponding to x2 (the only entry in the remaining
1 × 1 matrix) is a22 − a21a

−1
11 a12. Such transformation of zero matrix entries

into nonzeros is called “fill-in”. For the simplistic example under consideration,
this fill-in is of no practical consequence. However, for large sparse matrices,
fill-in tends to accumulate in the process of Gaussian elimination and becomes
a serious complication.

In our 2 × 2 example with a22 = 0, the fill-in disappears if the order of
equations (or equivalently the sequence of elimination steps) is changed:(

a21 0
a11 a12

) (
x1

x2

)
=

(
f1

f2

)

Obviously, x1 is now found immediately from the first equation, and x2 is
computed from the second one, with no additional nonzero entries created
in the process. In general, permutations of rows and columns of a sparse
matrix may have a dramatic effect on the amount of fill-in, and hence on the
computational cost and memory requirements, in Gaussian elimination.

Gaussian elimination is directly linked to matrix factorization into lower-
and upper-triangular terms. More specifically, the first factorization step can
be represented in the following form:⎛

⎜⎜⎝
a11 a12 . . . a1n

a21

. . . A1

an1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

l11 0 . . . 0
l21
. . . L1

ln1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u11 u12 . . . u1n

0
. . . U1

0

⎞
⎟⎟⎠ (3.119)

The fact that this factorization is possible (and even not unique) can be
verified by direct multiplication of the factors in the right hand side. This
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yields, for the first diagonal element, first column and first row, respectively,
the following conditions:

l11u11 = a11

l21u11 = a21, l31u11 = a31, . . . , ln1u11 = an1

l11u12 = a12, l11u13 = a13, . . . , l11u1n = a1n

where n is the dimension of matrix A. Fixing l11 by, say, setting it equal
to one defines the column vector l1 = (l11, l21, . . . , ln1)T and the row vector
uT

1 = (u11, u12, . . . , u1n) unambiguously:

l11 = 1; u11 = a11 (3.120)

l21 = u−1
11 a21, l31 = u−1

11 a31, . . . , ln1 = u−1
11 an1 (3.121)

u12 = a12, u13 = a13, . . . , u1n = a1n (3.122)

Further, the condition for matrix blocks L1 and U1 follows directly from fac-
torization (3.119):

L1U1 + l1u
T
1 = A1

or equivalently
L1U1 = Ã1

where
Ã1 ≡ A1 − l1u

T
1

The updated matrix Ã1 is a particular case of the Schur complement (R.A. Horn
& C.R. Johnson [HJ90], Y. Saad [Saa03]). Explicitly the entries of Ã1 can be
written as

ã1,ij = aij − li1u1j = aij − ai1a
−1
11 a1j (3.123)

Thus the first step of Gaussian factorization A = LU is accomplished by
computing the first column of L (3.120), (3.121), the first row of U (3.120),
(3.122) and the updated block Ã1 (3.123). The factorization step is then re-
peated for Ã1, etc., until (at the n-th stage) the trivial case of a 1× 1 matrix
results. Theoretically, it can be shown that this algorithm succeeds as long as
all leading minors of the original matrix are nonzero. In practical computa-
tion, however, care should be taken to ensure computational stability of the
process (see below).

Once the matrix is factorized, solution of the original system of equations
reduces to forward elimination and backward substitution, i.e. to solving sys-
tems with the triangular matrices L and U , which is straightforward. An
important advantage of Gaussian elimination is that, once matrix factoriza-
tion has been performed, equations with the same matrix but multiple right
hand sides can be solved at the very little cost of forward elimination and
backward substitution only.

Let us review a few computational aspects of Gaussian elimination.
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1. Fill-in. The matrix update formula (3.123) clearly shows that a zero
matrix entry aij can become nonzero in the process of LU -factorization.
The 2× 2 example considered above is the simplest possible case of such
fill-in. A quick look at the matrix update equation (3.123) shows how
the fill-in is reflected in the directed sparsity graph. If at some step of
the process node k is being eliminated, any two edges i → k and k → j
produce a new edge i → j (corresponding to a new nonzero matrix entry
ij). This is reminiscent of the usual “head-to-tail” rule of vector addition.
Fig. 3.29 may serve as an illustration. Similar considerations apply for
symmetric sparsity structures represented by undirected graphs. Methods
to reduce fill-in are discussed below.

2. The computational cost. For full matrices, the number of arithmetic
operations (multiplications and additions) in LU -factorization is approxi-
mately 2n3/3. For sparse matrices, the cost depends very strongly on the
adjacency structure and can be reduced dramatically by clever permuta-
tions of rows and columns of the matrix and other techniques reviewed
later in this section. 31

3. Stability. Detailed analysis of LU factorization (J.H. Wilkinson [Wil94],
G.H. Golub & C.F. Van Loan [GL96], G.E. Forsythe & C.B. Moler [FM67],
N.J. Higham [Hig02]) shows that numerical errors (due to roundoff) can
accumulate if the entries of L and U grow. Such growth can, in turn, be
traced back to small diagonal elements arising in the factorization process.
To rectify the problem, the leading diagonal element at each step of factor-
ization is maximized either via complete pivoting – reshuffling of rows and
columns of the remaining matrix block – or via partial pivoting – reshuf-
fling of rows only. The existing theoretical error estimates for both types of
pivoting are much more pessimistic than practical experience indicates.32

31 Incidentally, the O(n3) operation count is not asymptotically optimal for solving
large systems with full matrices of size n × n. In 1969, V. Strassen discovered
a trick for computing the product of two 2 × 2 block matrices with seven block
multiplications instead of eight that would normally be needed [Str69]. When
applied recursively, this idea leads to O(nγ) operations, with γ = log2 7 ≈ 2.807.
Theoretically, algorithms with γ as low as 2.375 now exist, but they are com-
putationally unstable and have very large numerical prefactors that make such
algorithms impractical. I. Kaporin has developed practical (i.e. stable and faster
than straightforward multiplication for matrices of moderate size) algorithms with
the asymptotic operation count O(N2.7760) [Kap04]. Note that solution of alge-
braic systems with full matrices can be reduced to matrix multiplication (V. Pan
[Pan84]). See also S. Robinson [Rob05] and H. Cohn et al. [CKSU05].

32 J.H. Wilkinson [Wil61] showed that for complete pivoting the growth factor for
the numerical error does not exceed

n1/2(21 × 31/2 × 41/3 × . . . × n1/(n−1))1/2 ∼ Cn0.25 log n

(which is ∼ 3500 for n = 100 and ∼ 8.6×106 for n = 1000). In practice, however,
there are no known matrices with this growth factor higher than n. For partial
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In fact, partial pivoting works so well in practice that it is used almost ex-
clusively: higher stability of complete pivoting is mostly theoretical but its
higher computational cost is real. Likewise, orthogonal factorizations such
as QR, while theoretically more stable than LU -factorization, are hardly
ever used as system solvers because their computational cost is approxi-
mately twice that of LU .33 L.N. Trefethen [Tre85] gives very interesting
comments on this and related matters.

Remarkably, the modern use of Gaussian elimination can be traced back to
a single 1948 paper by A.M. Turing34 [Tur48, Bri92]. N.J. Higham writes
([Hig02], pp. 184–185):

“ [Turing] formulated the . . . LDU factorization of a matrix, proving
[that the factorization exists and is unique if all leading minors of the
matrix are nonzero] and showing that Gaussian elimination computes
an LDU factorization. He introduced the term “condition number” . . .
He used the word “preconditioning” to mean improving the condition
of a system of linear equations (a term that did not come into pop-
ular use until the 1970s). He described iterative refinement for linear
systems. He exploited backward error ideas. . . . he analyzed Gaussian
elimination with partial pivoting for general matrices and obtained
[an error bound]. ”

The case of sparse symmetric positive definite (SPD) systems has been
studied particularly well, for two main reasons. First, such systems are very
common and important in both theory and practice. Second, it can be shown
that the factorization process for SPD matrices is always numerically sta-
ble (A. George & J.W.H. Liu [GL81], G.H. Golub & C.F. Van Loan [GL96],
G.E. Forsythe & C.B. Moler [FM67]). Therefore one need not be concerned
with pivoting (permutations of rows and columns in the process of factoriza-
tion) and can concentrate fully on minimizing the fill-in.

The general case of nonsymmetric and/or non-positive definite matrices
will not be reviewed here but is considered in several monographs: books by
O. Østerby & Z. Zlatev [sZZ83] and by I.S. Duff et al. [DER89], as well as a
much more recent book by T.A. Davis [Dav06].

The remainder of this section deals exclusively with the SPD case and is,
in a sense, a digest of the excellent treatise by A. George & J.W.H. Liu [GL81].
For SPD matrices, it is easy to show that in the LU factorization U can be

pivoting, the bound is 2n−1, and this bound can in fact be reached in some
exceptional cases.

33 QR algorithms are central in eigenvalue solvers; see Appendix 7.15 on p. 478.
34 Alan Mathison Turing (1912–1954), the legendary inventor of the Turing machine

and the Bombe device that broke (with an improvement by Gordon Welchman)
the German Enigma codes during World War II. Also well known is the Turing test
that defines a “sentient” machine. Overall, Turing lay the foundation of modern
computer science. See http://www.turing.org.uk/turing
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Fig. 3.29. Block arrows indicate fill-in created in a matrix after elimination of
unknown #1.

taken as LT , leading to Cholesky factorization LLT already mentioned on
p. 113. Cholesky decomposition has a small overhead of computing the square
roots of the diagonal entries of the matrix; this overhead can be avoided by
using the LDLT factorization instead (where D is a diagonal matrix).

Methods for reducing fill-in are based on reordering of rows and columns
of the matrix, possibly in combination with block partitioning. Let us start
with the permutation algorithms.

The simplest case where the sparsity structure can be exploited is that
of banded matrices. The band implies part of the matrix between two sub-
diagonals parallel to the main diagonal or, more precisely, the set of entries
with indexes i, j such that −k1 ≤ i − j ≤ k2, where k1,2 are nonnegative
integers. A matrix is banded if its entries are all zero outside a certain band
(in practice, usually k1 = k2 = k). The importance of this notion for Gaussian
(or Cholesky) elimination lies in the easily verifiable fact that the band struc-
ture is preserved during factorization, i.e. no additional fill is created outside
the band. Cholesky decomposition for a band matrix requires approximately
k(k + 3)n/2 multiplicative operations, which for k � n is much smaller than
the number of operations needed for the decomposition of a full matrix n×n.

A very useful generalization is to allow the width of the band to vary row-
by-row: k = k(i). Such a variable-width band is called an envelope. Figs. 3.22
(p. 115) and 3.23 may serve as a helpful illustration. Again, no fill is created
outside the envelope. Since the minimal envelope is obviously a subset of the
minimal band, the computational cost of the envelope algorithm is generally
lower than that of the band method.35 The operation count for the envelope

35 I disregard the small overhead related to storage and retrieval of matrix entries
in the band and envelope.
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method can be found in George & Liu’s book [GL81], along with a detailed
description and implementation of the Reverse Cuthill–McKee ordering algo-
rithm that reduces the envelope size.

There is no known algorithm that would minimize the computational cost
and/or memory requirements for a matrix with any given sparsity structure,
even if pivoting is not involved, and whether or not the matrix is SPD.
D.J. Rose & R.E. Tarjan [RT75] state (but do not include the proof) that
this problem for a non-SPD matrix is NP-complete and conjecture that the
same is true in the SPD case.

However, powerful heuristic algorithms are available, and the underlying
ideas are clear from adjacency graph considerations. Fig. 3.30 shows a small
fragment of the adjacency graph; thick lines in Fig. 3.31 represent the corre-
sponding fill-in if node #1 is eliminated first. These figures are very similar
to Figs. 3.28 and 3.29, except that the graph for a symmetric structure is
unordered.

Fig. 3.30. Symmetric sparsity structure as a graph: an example.

Elimination of a node couples all the nodes to which it is connected. If
nodes 2, 3 and 4 were to be eliminated prior to node 1, there would be no fill-
in in this fragment of the graph. This simple example has several ramifications.

First, a useful heuristic is to start the elimination with the graph vertices
that have the fewest number of neighbors, i.e. the minimum degree. (Degree
of a vertex is the number of edges incident to it.) The minimum degree al-
gorithm, first introduced by W.F. Tinney & J.W. Walker [TW67], is quite
useful and effective in practice, although there is of course no guarantee that
local minimization of fill-in at each step of factorization will lead to global op-
timization of the whole process. George & Liu [GL81] describe the Quotient
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Fig. 3.31. Fill-in (block arrows) created in a matrix with symmetric sparsity struc-
ture after elimination of unknown #1.

Minimum Degree (QMD) method, an efficient algorithmic implementation of
MD in the SPARSPAK package that they developed.

Second, it is obvious from Fig. 3.31 that elimination of the root of a tree
in a graph is disastrous for the fill-in. The opposite is true if one starts with
the leaves of the tree. This observation may not seem practical at first glance,
as adjacency graphs in FEM are very far from being trees.36 What makes the
idea useful is block factorization and partitioning.

Suppose that graph G (or, almost equivalently, the finite element mesh)
is split into two parts G1 and G2 by a separator S, so that G = G1

⋃
G2

⋃
S

and G1

⋂
G2 = ∅; this corresponds to block partitioning of the system matrix.

The partitioning has a tree structure, with the separator as the root and G1,2

as the leaves. The system matrix has the following block form:

L =

⎛
⎝ LG1 0 LG1,S

0 LG2 LG2,S

LT
G1,S LT

G2,S LS

⎞
⎠ (3.124)

Elimination of block LG1 leaves the zero blocks unchanged, i.e. does not – on
the block level – generate any fill in the matrix. For comparison, if the “root”
block LS were eliminated first (quite unwisely), zero blocks would be filled.

George & Liu [GL81, GL89] describe two main partitioning strategies:
One-Way Dissection (1WD) and Nested Dissection (ND). In 1WD, the graph
is partitioned by several dissecting lines that are, if viewed as geometric objects
36 For first order elements in FEM, the mesh itself can be viewed as the sparsity

graph of the system matrix, element nodes corresponding to graph vertices and
element edges to graph edges. For a 2D triangular mesh with n nodes, the number
of edges is approximately 2n, whereas for a tree it is n − 1.
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on the FE mesh, approximately “parallel”.37 Taken together, the separators
form the root of a tree structure for the block matrix; the remaining disjoint
blocks are the leaves of the tree. Elimination of the leaves generates fill-in in
the root block, which is acceptable as long as the size of this block is moderate.
To get an idea about the computational savings of 1WD as compared to the
envelope method, one may consider an m× l rectangular grid (m < l) in 2D38

and optimize the number of operations or, alternatively, memory requirements
with respect to the chosen number of separators, each separator being a grid
line with m nodes. The end result is that the memory in 1WD can be ∼

√
6/m

times smaller than for the envelope method [GL81]. For example, if m = 100,
the savings are by about a factor of four (

√
6/100 ≈ 0.25).

A typical ND separator in 2D can geometrically be pictured as two lines,
horizontal and vertical, that split the graph into four approximately equal
parts. The procedure is then applied recursively to each of the disjoint sub-
graphs. For a regular m×m grid in 2D, one can write a recursive relationship
for the amount of computer memory MND(m) needed for ND; this ultimately
yields [GL81]

MND(m) =
31
4

m2 log2 m + O(m2)

Hence for 2D problems ND is asymptotically almost optimal in terms of its
memory requirements: the memory is proportional to the number of nodes
times a relatively mild logarithmic factor. However, the computational cost is
not optimal even for 2D meshes: the number of multiplicative operations is
approximately

829
84

m3 + O(m2 log2 m)

That is, the computational cost grows as the number of nodes n to the power
of 1.5.

Performance of direct solvers further deteriorates in three dimensions. For
example, the computational cost and memory for ND scale as O(n2) and
O(n4/3), respectively, when the number of nodes n is large. Some improve-
ment has been achieved by combining the ideas of 1WD, ND and QMD, with
a recursive application of multisection partitioning of the graph. These algo-
rithms are implemented in the SPOOLES software package39 developed by
C. Ashcraft, R. Grimes, J. Liu and others [AL98, AG99]. For illustration,
Fig. 3.32 shows the number of nonzero entries in the Cholesky factor for sev-
eral ordering algorithms as a function of the number of nodes in the finite
element mesh. This data is for the scalar electrostatic equation in a cubic
37 The separators need not be straight lines, as their construction is topological

(based on the sparsity graph) rather than geometric. The word “parallel” therefore
should not be taken literally.

38 A similar estimate can also be easily obtained for 3D problems, but in that case
1WD is not very efficient.

39 SParse Object Oriented Linear Equations Solver, netlib.org/linalg/spooles-
/spooles.2.2.html
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domain; Nested Dissection and one of the versions of Multistage Minimum
Degree from the SPOOLES package perform better than other methods in
this case.40

Fig. 3.32. Comparison of memory requirements (number of nonzero entries in
the Cholesky factor) as a function of the number of finite element nodes for the
scalar electrostatic equation in a cubic domain. Algorithms: Quotient Minimum De-
gree, Nested Dissection and two versions of Multistage Minimum Degree from the
SPOOLES package.

The limitations of direct solvers for 3D finite element problems are appar-
ent, the main bottleneck being memory requirements due to the fill in the
Cholesky factor (or the LU factors in the nonsymmetric case): tens of mil-
lions of nonzero entries for meshes of fairly moderate size, tens of thousands
of nodes. The difficulties are exacerbated in vector problems, in particular the
ones that arise in electromagnetic analysis in 3D.

Therefore for many 3D problems, and for some large 2D problems, iterative
solvers are indispensable, their key advantage being a very limited amount of
extra memory required.41 In comparison with direct solvers, iterative ones
are arguably more diverse, more dependent on the algebraic properties of
matrices, and would require a more wide-ranging review and explanation. To
avoid sidetracking the main line of our discussion in this chapter, I refer the
reader to the excellent monographs and review papers on iterative solvers by

40 I thank Cleve Ashcraft for his detailed replies to my questions on the usage of
SPOOLES 2.2 when I ran this and other tests in the Spring of 2000.

41 Typically several auxiliary vectors in Krylov subspaces and sparse preconditioners
need to be stored; see references below.
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Y. Saad & H.A. van der Vorst [Saa03, vdV03b, SvdV00], L.A. Hageman &
D.M. Young [You03, HY04], and O. Axelsson [Axe96].

3.12 Electromagnetic Problems and Edge Elements

3.12.1 Why Edge Elements?

In electromagnetic analysis and a number of other areas of physics and en-
gineering, the unknown functions are often vector rather than scalar fields.
A straightforward finite element model would involve approximation of the
Cartesian components of the fields. This approach was historically the first to
be used and is still in use today. However, it has several flaws – some of them
obvious and some hidden.

An obvious drawback is that nodal element discretization of the Cartesian
components of a field leads to a continuous approximation throughout the
computational domain. This is inconsistent with the discontinuity of some
field components – in particular, the normal components of E and H – at
material boundaries. The treatment of such conditions by nodal elements is
possible but rather awkward: the interface nodes are “doubled,” and each
of the two coinciding nodes carries the field value on one side of the inter-
face boundary. Constraints then need to be imposed to couple the Cartesian
components of the field at the double nodes; the algorithm becomes inelegant.

Although this difficulty is more of a nuisance than a serious obstacle for
implementing the component-wise formulation, it is also an indication that
something may be “wrong” with this formulation on a more fundamental
level (more about that below).

So-called “spurious modes” – the hidden flaw of the component-wise treat-
ment – were noted in the late 1970s and provide further evidence of some fun-
damental limitations of Cartesian approximation. These modes are frequently
branded as “notorious,” and indeed hundreds of papers have been published
on this subject.42

As a representative example, consider the computation of the eigenfre-
quencies ω and the corresponding electromagnetic field modes in a cavity
resonator. The resonator is modeled as a simply connected domain Ω with
perfectly conducting walls ∂Ω. The governing equation for the electric field is

∇× µ−1∇×E − ω2εE = 0 in Ω; n×E = 0 on ∂Ω (3.125)

where the standard notation for the electromagnetic material parameters µ, ε
and for the exterior normal n to the domain boundary ∂Ω is used. The ideally

42 320 ISI database references at the end of 2006 for the term “spurious modes”. This
does not include alternative relevant terminology such as spectral convergence,
spurious-free approximation, “vector parasites,” etc., so the actual number of
papers is much higher.
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conducting walls cause the tangential component of the electric field to vanish
on the boundary.

Mathematically, the proper functional space for this problem is H0(curl,Ω)
– the space of square-integrable vector functions with a square-integrable curl
and a vanishing tangential component at the boundary:

H0(curl,Ω) ≡ {E : E ∈ L2(Ω), ∇×E ∈ L2(Ω), n×E = 0 on ∂Ω} (3.126)

The weak formulation is obtained by inner-multiplying the eigenvalue equation
by an arbitrary test function E′ ∈ H0(curl,Ω):

(∇× µ−1∇×E, E′) − ω2(εE,E′) = 0, ∀E′ ∈ H0(curl,Ω) (3.127)

where the inner product is that of L2(Ω), i.e.

(X,Y) ≡
∫

Ω

X ·Y dΩ

for vector fields X and Y in H0(curl,Ω).
Using the vector calculus identity

∇ · (X×Y) = Y · ∇ ×X − X · ∇ ×Y (3.128)

with X = µ−1∇×E, Y = E′, equation (3.127) can be integrated by parts to
yield

(µ−1∇×E,∇×E′) − ω2(εE,E′) = 0, ∀E′ ∈ H0(curl,Ω) (3.129)

(It is straightforward to verify that the surface integral resulting from to the
left hand side of (3.128) vanishes, due to the fact that n×E′ = 0 on the wall.)

The discrete problem is obtained by restricting E and E′ to a finite element
subspace of H0(curl,Ω); a “good” way of constructing such a subspace is the
main theme of this section. The mathematical theory of convergence for the
eigenvalue problem (3.129) is quite involved and well beyond the scope of
this book;43 however, some uncomplicated but instructive observations can
be made.

The continuous eigenproblem in its strong form (3.125) guarantees, for
nonzero frequencies, zero divergence of the D vector (D = εE). This im-
mediately follows by applying the divergence operator to the equation. For
the weak formulation (3.129), the zero-divergence condition is satisfied in the
generalized form (see Appendix 3.17 on p. 186):

(εE, ∇φ′) = 0 (3.130)

This follows by using, as a particular case, an arbitrary curl-free test function
E′ = ∇φ′ in (3.129).44

43 References: the book by P. Monk [Mon03], papers by P. Monk & L. Demkowicz
[MD01], D. Boffi et al. [BFea99, Bof01] and S. Caorsi et al. [CFR00].

44 The equivalence between curl-free fields and gradients holds true for simply con-
nected domains.
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It is now intuitively clear that the divergence-free condition will be cor-
rectly imposed in the discrete (finite element) formulation if the FE space
contains a “sufficiently dense”45 population of gradients E′ = ∇φ′. This ar-
gument was articulated for the first time (to the best of my knowledge) by
A. Bossavit in 1990 [Bos90].

From this viewpoint, a critical deficiency of component-wise nodal ap-
proximation is that the corresponding FE space does not ordinarily contain
“enough” gradients. The reason for that can be inferred from Fig. 3.33 (2D
illustration for simplicity). Suppose that there exists a function φ vanishing
outside a small cluster of elements and such that its gradient is in P3

1 – i.e.
continuous throughout the computational domain and linear within each ele-
ment. It is clear that φ must be a piecewise-quadratic function of coordinates.
Furthermore, since ∇φ vanishes on the outer side of edge 23, due to the con-
tinuity of the gradient along that edge φ can only vary in proportion to n2

23

within element 123, where n23 is the normal to edge 23. Similarly, φ must be
proportional to n2

34 in element 134. However, these two quadratic functions
are incompatible along the common edge 13 of these two elements, unless the
normals n23 and n34 are parallel.

Fig. 3.33. A fragment of a 2D finite element mesh. A piecewise-quadratic function
φ vanishes outside a cluster of elements. For ∇φ to be continuous, φ must be pro-
portional to n2

23 within element 123 and to n2
34 within element 134. However, these

quadratic functions are incompatible on the common edge 13, unless the normals
n23 and n34 are parallel.

This observation illustrates very severe constraints on the construction of
irrotational continuous vector fields that would be piecewise-linear on a given
FE mesh. As a result, the FE space does not contain a representative set of
45 The quotation marks are used as a reminder that this analysis does not have full

mathematical rigor.
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gradients for the divergence-free condition to be enforced even in weak form.
Detailed mathematical analysis and practical experience indicate that this
failure to impose the zero divergence condition on the D vector usually leads
to nonphysical solutions.

The argument presented above is insightful but from a rigorous mathemat-
ical perspective incomplete. A detailed analysis can be found in the literature
cited in footnote 43 on p. 140. For our purposes, the important conclusion is
that the lack of spectral convergence (i.e. the appearance of “spurious modes”)
is inherent in component-wise finite element approximation of vector fields.
Attempts to rectify the situation by imposing additional constraints on the
divergence, penalty terms, etc., have had only limited success.

A radical improvement can be achieved by using edge elements described
in Section 3.12.2 below. As we shall see, the approximation provided by these
elements is, in a sense, more “physical” that the component-wise representa-
tion of vector fields; the corresponding mathematical structures also prove to
be quite elegant.

3.12.2 The Definition and Properties of Whitney-Nédélec
Elements

As became apparent in Section 3.8.1 on p. 108 and in Section 3.9 on p. 123, a
natural coordinate system for triangular and tetrahedral elements is formed by
the barycentric coordinates λα (α = 1, 2, 3 for triangles and α = 1, 2, 3, 4 for
tetrahedra). Each function λ is linear and equal to one at one of the nodes and
zero at all other nodes. Since the barycentric coordinates play a prominent role
in the finite element approximation of scalar fields, it is sensible to explore
how they can be used to approximate vector fields as well, and not in the
component-wise sense.

Remark 5. The most mathematically sound framework for the material of this
section is provided by the differential-geometric treatment of physical fields
as differential forms rather than vector fields. A large body of material – well
written and educational – can be found on A. Bossavit’s website.46 (Bossavit is
an authority in this subject area and one of the key developers and proponents
of edge element analysis.) Other references are cited in Section 3.12.4 on p. 146
and in Section 3.16 on p. 184. While differential geometry is a standard tool
for mathematicians and theoretical physicists, it is not so for many engineers
and applied scientists. For this reason, only regular vector calculus is used in
this section and in the book in general; this is sufficient for our purposes.

Natural “vector offspring” of the barycentric coordinates are the gradients
∇λα. These, however, are constant within each element and can therefore
represent only piecewise-constant and – even more importantly – only irro-
tational vector fields. Next, we may consider products ψ6−12

αβ = λα∇λβ ; it

46 http://www.lgep.supelec.fr/mocosem/perso/ab/bossavit.html
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is sufficient to restrict them to α �= β because the gradients are linearly de-
pendent,

∑∇λα = 0. Superscript “6-12” indicates that there are six such
functions for a triangle and 12 for a tetrahedron. A little later, we shall con-
sider a two times smaller set ψ3−6

αβ .
It almost immediately transpires that these new vector functions have

one of the desired properties: their tangential components are continuous
across element facets (edges for triangles and faces for tetrahedra), while their
normal components are in general discontinuous. The most elegant way to
demonstrate the tangential continuity is by noting that the generalized curl
∇ × ψ6−12

αβ = ∇ × (λα∇λβ) = ∇λα × ∇λβ is a regular function, not only
a distribution, because the λs are continuous.47 (A jump in the tangential
component would result in a Dirac-delta term in the curl; see Appendix 3.17
on p. 186 and formula (3.215) in particular.)

The tangential components can also be examined more explicitly. The
circulation of ψ6−12

αβ over the corresponding edge αβ is

∫
edge αβ

ψ6−12
αβ · τ̂αβ dτ =

∫
edge αβ

λα∇λβ · τ̂αβ dτ

= ∇λβ · τ̂αβ

∫
edge αβ

λα dτ =
1

lαβ

1
2

lαβ =
1
2

(3.131)

where τ̂αβ is the unit edge vector pointing from node α to node β, and lαβ

is the edge length. In the course of the transformations above, it was taken
into account that (i) ∇λβ is a (vector) constant, (ii) λα is a function varying
from zero to one linearly along the edge, so that the component of its gradient
along the edge is 1/lαβ and the mean value of λα over the edge αβ is 1/2.

Thus the circulation of each function ψ6−12
αβ is equal to 1/2 over its respec-

tive edge αβ and (as is easy to see) zero over all other edges.
One type of edge element is defined by introducing (i) the functional space

spanned by the ψ6−12
αβ basis, and (ii) a set of degrees of freedom, two per edge:

the tangential components Eαβ of the field (say, electric field E) at each node
α along each edge αβ emanating from that node. The number of degrees of
freedom and the dimension of the functional space are six for triangles and 12
for tetrahedra. It is not difficult to verify that the space in fact coincides with
the space of linear vector functions within the element. A major difference,
however, is that the basis functions for edge elements are only tangentially
continuous, in contrast with fully continuous component-wise approximation
by nodal elements. The FE representation of the field within the edge element
is

Eh =
∑
α�=β

Eαβψ6−12
αβ

47 Here each barycentric coordinate is viewed as a function defined in the whole do-
main, continuous everywhere but nonzero only over a cluster of elements sharing
the same node.
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An interesting alternative is obtained by observing that each pair of functions
ψ6−12

αβ , ψ6−12
βα have similar properties: their circulations along the respective

edge (but taken in the opposite directions) are the same, and their curls are
opposite. It makes sense to combine each pair into one new function as

ψ3−6
αβ ≡ ψ6−12

αβ − ψ6−12
βα = λα∇λβ − λβ∇λα (3.132)

It immediately follows from the properties of ψ6−12
αβ that the circulation of

ψ3−6
αβ is one along its respective edge (in the direction from node α to node β)

and zero along all other edges.
The FE representation of the field is almost the same as before

Eh =
∑
α�=β

cαβψ3−6
αβ

except that summation is now over a twice smaller set of basis functions, one
per edge: three for triangles and six for tetrahedra; cαβ are the circulations of
the field along the edges.

Fig. 3.34 helps to visualize two such functions for a triangular element; for
tetrahedra, the nature of these functions is similar. Their rotational character
is obvious from the figure, the curls being equal to

∇× ψ3−6
αβ = 2∇λα ×∇λβ

Fig. 3.34. Two basis functions ψ3−6 visualized for a triangular element: ψ3−6
23 (left)

and ψ3−6
12 (right).

The (generalized) divergence of these vector basis functions (see Appen-
dix 3.17, p. 186) is also of interest:

∇ · ψ3−6
αβ = λα∇2λβ − λβ∇2λα
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When viewed as regular functions within each element, the Laplacians in the
right hand side are zero because the barycentric coordinates are linear func-
tions. However, these Laplacians are nonzero in the sense of distributions and
contain Dirac-delta terms on the interelement boundaries due to the jumps
of the normal component of the gradients of λ. Disregard of the distribu-
tional term has in the past been the source of two misconceptions about edge
elements:

1. The basis set ψ3−6 presumably cannot be used to approximate fields with
nonzero divergence. However, if this were true, linear elements, by similar
considerations, could not be used to solve the Poisson equation with a
nonzero right hand side because the Laplacian of the linear basis functions
is zero within each element.

2. Since the basis functions have zero divergence, spurious modes are elimi-
nated. While the conclusion is correct, the justification would only be valid
if divergence were zero in the distributional sense. Furthermore, there are
families of edge elements that are not divergence-free and yet do not pro-
duce spurious modes. Rigorous mathematical analysis of spectral conver-
gence is quite involved (see footnote 43 on p. 140).

3.12.3 Implementation Issues

As already noted on p. 140, the finite element formulation of the cavity reso-
nance problem (3.129) is obtained by restricting E and E′ to a finite element
subspace Wh ⊂ H0(curl,Ω)

(µ−1∇×Eh,∇×Eh
′) − ω2(εEh,Eh

′) = 0, ∀E′ ∈ Wh (3.133)

Subspace Wh can be spanned by either of the two basis sets introduced in the
previous section for tetrahedral elements (one or two degrees of freedom per
edge) or, alternatively, by higher order tetrahedral bases or bases on hexahe-
dral elements (Section 3.12.4).

In the algorithmic implementation of the procedure, the role of the edges
is analogous to the role of the nodes for nodal elements. In particular, the ma-
trix sparsity structure is determined by the edge-to-edge adjacency: for any
two edges that do not belong to the same element, the corresponding matrix
entry is zero. An excellent source of information on adjacency structures and
related algorithms (albeit not directly in connection with edge elements) is
S. Pissanetzky’s monograph [Pis84]. A new algorithmic issue, with no analogs
in node elements, is the orientation of the edges, as the sign of field circula-
tions depends on it. To make orientations consistent between several elements
sharing the same edge, it is convenient to use global node numbers in the mesh.
One suitable convention is to define the direction from the smaller global node
number to the greater one as positive.
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3.12.4 Historical Notes on Edge Elements

In 1980 and 1986, J.-C. Nédélec proposed two families of tetrahedral and
hexahedral edge elements [N8́0, N8́6]. For tetrahedral elements, Nédélec’s six-
and twelve-dimensional approximation spaces are spanned by the vector ba-
sis functions λα∇λβ − λβ∇λα and λα∇λβ , respectively, as discussed in the
previous section.

Nédélec’s exposition is formally mathematical and rooted heavily in the
calculus of differential forms. As a result, there was for some time a discon-
nect between the outstanding mathematical development and its use in the
engineering community.

To applied scientists and engineers, finite element analysis starts with the
basis functions. This makes practical sense because one cannot actually solve
an FE problem without specifying a basis. Many practitioners would be sur-
prised to hear that a basis is not part of the standard mathematical definition
of a finite element. In the mathematical literature, a finite element is defined,
in addition to its geometric shape, by a (finite-dimensional) approximation
space and a set of degrees of freedom – linear functionals over that approxi-
mation space (see e.g. the classical book by P.G. Ciarlet [Cia80]). Nodal values
are the most typical such functionals, but there certainly are other possibili-
ties as well. As we already know, in Nédélec’s elements the linear functionals
are circulations of the field along the edges. Nédélec built upon related ideas
of P.-A. Raviart & J.M. Thomas who developed special finite elements on
triangles in the late 1970s [RT77].

It took almost a decade to transform edge elements from a mathemati-
cal theory into a practical tool. A. Bossavit’s contribution in that regard is
exceptional. He presented, in a very lucid way, the fundamental rationale for
edge elements [Bos88b, Bos88a] and developed their applications to eddy cur-
rent problems [BV82, BV83], scattering [BM89], cavity resonances [Bos90],
force computation [Bos92] and other areas. Stimulated by prior work of
P.R. Kotiuga48 and the mathematical papers of J. Dodziuk [Dod76], W. Müller
[M7̈8] and J. Komorowski [Kom75], Bossavit discovered a link between the
tetrahedral edge elements with six degrees of freedom and differential forms
in the 1957 theory of H. Whitney [Whi57].

Nédélec’s original papers did not explicitly specify any bases for the FE
spaces. Since practical computation does rely on the bases, the engineering
and computational electromagnetics communities in the late 1980s and in the
1990s devoted much effort to more explicit characterization of edge element
spaces. A detailed description of various types of elements would lead us too
far astray, as this book is not a treatise on electromagnetic finite element
analysis. However, to give the reader a flavor of some developments in this
area, and to provide a reference point for the experts, succinct definitions of
48 Kotiuga was apparently the first to note, in his 1985 Ph.D. thesis, the connection

of finite element analysis in electromagnetics with the fundamental branches of
mathematics: differential geometry and algebraic topology.
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several common edge element spaces are compiled in Appendix 3.12.5 (see also
[Tsu03]). Further information can be found in the monographs by P. Monk
[Mon03], J. Jin [Jin02] and J.L. Volakis et al. [VCK98]. Comparative analysis
of edge element spaces by symbolic algebra can be found in [Tsu03]. Families
of hierarchical and adaptive elements developed independently by J.P. Webb
[WF93, Web99, Web02] and by L. Vardapetyan & L. Demkowicz [VD99] de-
serve to be mentioned separately. In hierarchical refinement, increasingly accu-
rate FE approximations are obtained by adding new functions to the existing
basis set. This can be done both in the context of h-refinement (reducing the
element size and adding functions supported by smaller elements to the ex-
isting functions on larger elements) and p-refinement (adding, say, quadratic
functions to the existing linear ones). Hierarchical and adaptive refinement
are further discussed in Section 3.13 for the scalar case. The vectorial case
is much more complex, and I defer to the papers cited above for additional
information. One more paper by Webb [Web93] gives a concise but very clear
exposition of edge elements and their advantages.

3.12.5 Appendix: Several Common Families of Tetrahedral Edge
Elements

Several representative families of elements, with the corresponding bases, are
listed below. The list is definitely not exhaustive; for example, Demkowicz–
Vardapetyan elements with hp-refinement and R. Hiptmair’s general perspec-
tive on high order edge elements are not included.

As before, λi is the barycentric coordinate corresponding to node i (i =
1,2,3,4) of a tetrahedral element.

1. The Ahagon–Kashimoto basis (20 functions) [AK95].
{12 “edge” functions (4λi − 1)(λi∇λj − λj∇λi), i �= j} ⋃ {4λ1(λ2∇λ3 −
λ3∇λ2), 4λ2(λ3∇λ1−λ1∇λ3), 4λ1(λ3∇λ4−λ4∇λ3), 4λ4(λ1∇λ3−λ3∇λ1),
4λ1(λ2∇λ4 − λ4∇λ2), 4λ2(λ1∇λ4 − λ4∇λ1), 4λ2(λ3∇λ4 − λ4∇λ3),
4λ4(λ2∇λ3 − λ3∇λ2)}.

2. The Lee–Sun–Cendes basis (20 functions) [LSC91]. {12 edge-based
functions λi∇λj , i �= j} ⋃ { λ1λ2∇λ3, λ1λ3∇λ2, λ2λ3∇λ4, λ2λ4∇λ3,
λ3λ4∇λ1, λ3λ1∇λ4, λ4λ1∇λ2, λ4λ2∇λ1}.

3. The Kameari basis (24 functions) [Kam99]. {the Lee basis}⋃ { ∇(λ2λ3λ4),
∇(λ1λ3λ4), ∇(λ1λ2λ4), ∇(λ1λ2λ3) }.

4. The Ren–Ida basis (20 functions) [RI00]. {12 edge-based functions λi∇λj ,
i �= j}

⋃
{ λ1λ2∇λ3 − λ2λ3∇λ1, λ1λ3∇λ2 − λ2λ3∇λ1, λ1λ2∇λ4 −

λ4λ2∇λ1, λ1λ4∇λ2−λ4λ2∇λ1, λ1λ3∇λ4−λ4λ3∇λ1, λ1λ4∇λ3−λ3λ4∇λ1,
λ2λ3∇λ4 − λ4λ3∇λ2, λ2λ4∇λ3 − λ3λ2∇λ4}.

5. The Savage–Peterson basis [SP96]. {12 edge-based functions λi∇λj , i �= j}⋃ { λiλj∇λk − λiλk∇λj , λiλj∇λk − λjλk∇λi, 1 ≤ i < j < k ≤ 4}.
6. The Yioultsis–Tsiboukis basis (20 functions) [YT97]. {(8λi2− 4λi)∇λj +

(−8λiλj + 2λj)∇λi, i �= j}
⋃

{16λ1λ2∇λ3 − 8λ2λ3∇λ1 − 8λ3λ1∇λ2;
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16λ1λ3∇λ2−8λ3λ2∇λ1−8λ2λ1∇λ3; 16λ4λ1∇λ2−8λ1λ2∇λ4−8λ2λ4∇λ1;
16λ4λ2∇λ1−8λ2λ1∇λ4−8λ1λ4∇λ2; 16λ2λ3∇λ4−8λ3λ4∇λ2−8λ4λ2∇λ3;
16λ2λ4∇λ3−8λ4λ3∇λ2−8λ3λ2∇λ4; 16λ3λ1∇λ4−8λ1λ4∇λ3−8λ4λ3∇λ1;
16λ3λ4∇λ1 − 8λ4λ1∇λ3 − 8λ1λ3∇λ4}.

7. The Webb–Forghani basis (20 functions) [WF93]. {6 edge-based functions
λi∇λj − λj∇λi, i �= j}

⋃
{6 edge-based functions ∇(λiλj), i �= j}

⋃
{

λ1λ2∇λ3, λ1λ3∇λ2, λ2λ3∇λ4, λ2λ4∇λ3, λ3λ4∇λ1, λ3λ1∇λ4, λ4λ1∇λ2,
λ4λ2∇λ1}.

8. The Graglia–Wilton–Peterson basis (20 functions) [GWP97]. { (3λi −
1)(λi∇λj − λj∇λi), i �= j} ⋃

9/2 × {λ2(λ3∇λ4 − λ4∇λ3), λ3(λ4∇λ2 −
λ2∇λ4), λ3(λ4∇λ1 − λ1∇λ4), λ4(λ1∇λ3 − λ3∇λ1), λ4(λ1∇λ2 − λ2∇λ1),
λ1(λ4∇λ2 − λ2∇λ4), λ1(λ2∇λ3 − λ3∇λ2), λ2(λ1∇λ3 − λ3∇λ1)}.

3.13 Adaptive Mesh Refinement and Multigrid Methods

3.13.1 Introduction

One of the most powerful ideas that has shaped the development of Finite El-
ement Analysis since the 1980s is adaptive refinement. Once an FE problem
has been solved on a given initial mesh, special a posteriori error estimates
or indicators49 are used to identify the subregions with relatively high error.
The mesh is then refined in these areas, and the problem is re-solved. It is
also possible to “unrefine” the mesh in the regions where the error is per-
ceived to be small. The procedure is then repeated recursively and is typically
integrated with efficient system solvers such as multigrid cycles or multilevel
preconditioners (Section 3.13.4).

There are two main versions of mesh refinement. In h-refinement, the mesh
size h is reduced in selected regions to improve the accuracy. In p-refinement,
the element-wise order p of local approximating polynomials is increased. The
two versions can be combined in an hp-refinement procedure. There are nu-
merous ways of error estimation (Section 3.13.3 on p. 151) and numerous
algorithms for effecting the refinement.

To summarize, adaptive techniques are aimed at generating a quasi-
optimal mesh adjusted to the local behavior of the solution, while maintaining
a high convergence rate of the iterative solver. Three different but related is-
sues arise:

1. Implementation of local refinement without violating the geometric con-
formity of the mesh.

2. Efficient multilevel iterative solvers.
3. Local a posteriori error estimates.

49 Estimates provide an approximate numerical value of the actual error. Indicators
show whether the error is relatively high or low, without necessarily predicting
its numerical value.
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Fig. 3.35 shows nonconforming (“slave”) nodes appearing on a common
boundary between two finite elements e1 and e2 if one of these elements (say,
e1) is refined and the other one (e2) is not. The presence of such nodes is a de-
viation from the standard set of requirements on a FE mesh. If no restrictions
are imposed, the continuity of the solution at slave nodes will generally be
violated. One remedy is a transitory (so-called “green”) refinement of element
e2 (W.F. Mitchell [Mit89, Mit92], F. Bornemann et al. [BEK93]) as shown
in Fig. 3.35, right. However, green refinement generally results in non-nested
meshes, which may affect the performance of iterative solvers.

Fig. 3.35. Local mesh refinement (2D illustration for simplicity). Left: continuity
of the solution at “slave” nodes must be maintained. Right: “green refinement”.
(Reprinted by permission from [TP99a] c©1999 IEEE.)

3.13.2 Hierarchical Bases and Local Refinement

Alternatively, nonconforming nodes may be retained if proper continuity con-
ditions are imposed. This can be accomplished in a natural way in the hier-
archical basis (H. Yserentant [Yse86], W.F. Mitchell [Mit89, Mit92], U. Rüde
[R9̈3]). A simple 1D example (Fig. 3.36) illustrates the hierarchical basis rep-
resentation of a function.

In the nodal basis a piecewise-linear function has a vector of nodal values
u(N) = (u1, u2, u3, u4, u5, u6)T . Nodes 5 and 6 are generated by refining the
coarse level elements 1-2 and 2-3. In the hierarchical basis, the degrees of
freedom at nodes 5, 6 correspond to the difference between the values on the
fine level and the interpolated value from the coarse level. Thus the vector in
the hierarchical basis is

u(H) = (u1, u2, u3, u4, u5 −
1
2
(u1 + u2), u6 −

1
2
(u2 + u3))T (3.134)

This formula effects the transformation from nodal to hierarchical values of
the same piecewise-linear function.

More generally, let a few levels of nested FE meshes (in one, two or three
dimensions) be generated by recursively subdividing some or all elements on
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Fig. 3.36. A fragment of a two-level 1D mesh. (Reprinted by permission from
[TP99a] c©1999 IEEE.)

a coarser level into several smaller elements. For simplicity, only first order
nodal elements will be considered and it will be assumed that new nodes are
added at the midpoints of the existing element edges. (The ideas are quite
general, however, and can be carried over to high order elements and edge
elements; see e.g. P.T.S. Liu & J.P. Webb [LW95], J.P. Webb & B. Forghani
[WF93].)

The hierarchical representation of a piecewise-linear function can be ob-
tained from its nodal representation by a recursive application of elementary
transforms similar to (3.134). Precise theory and implementation are detailed
by H. Yserentant [Yse86].

An advantage of the hierarchical basis is the natural treatment of slave
nodes (Fig. 3.35, left). The continuity of the solution is ensured by simply
setting the hierarchical basis value at these nodes to zero.

Remark 6. In the nonconforming refinement of Fig. 3.35 (left), element shapes
do not deteriorate. However, this advantage is illusory. Indeed, the FE space
for the “green refinement” of Fig. 3.35 (right) obviously contains the FE space
of Fig. 3.35 (left), and therefore the FE solution with slave nodes cannot be
more accurate than for green refinement. Thus the effective “mesh quality,”
unfortunately, is not preserved with slave nodes.

For tetrahedral meshes, subdividing an element into smaller ones when
the mesh is refined is not trivial; careless subdivision may lead to degenerate
elements. S.Y. Zhang [Zha95] proposed two schemes: “labeled edge subdivi-
sion” and “short-edge subdivision” guaranteeing that tetrahedral elements do
not degenerate in the refinement process. The initial stage of both methods
is the same: the edge midpoints of the tetrahedron are connected, producing
four corner tetrahedra and a central octahedron. The octahedron can be fur-
ther subdivided into four tetrahedra in three different ways [Zha95] by using
one additional edge. The difference between Zhang’s two refinement schemes
is in the way this additional edge is chosen. The “labeled edge subdivision”
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algorithm relies on a numbering convention for nodes being generated (see
[Zha95] for details). In the “short edge subdivision” algorithm the shortest
of the three possible interior edges is selected. For tetrahedra without obtuse
planar angles between edges both refinement schemes are equivalent, provided
that the initial refinement is the same – i.e. for a certain numbering of nodes
of the initial element [Zha95].

Zhang points out that “in general, it is not simple to find the measure of
degeneracy for a given tetrahedron” [Zha95] and uses as such a measure the ra-
tio of the maximum edge length to the radius of the inscribed sphere. A. Plaks
and I used a more precise criterion – the minimum singular value condition
(Section 3.14) to compare the two refinement schemes. Short-edge subdivision
in general proves to be better than labeled edge subdivision [TP99b].

3.13.3 A Posteriori Error Estimates

Adaptive hp-refinement requires some information about the distribution of
numerical errors in the computational domain. The FE mesh is refined in the
regions where the error is perceived to be higher and left unchanged, or even
unrefined, in regions with lower errors. Numerous approaches have been de-
veloped for estimating the errors a posteriori – i.e. after the FE solution has
been found. Some of these approaches are briefly reviewed below; for compre-
hensive treatment, see monographs by M. Ainsworth & J.T. Oden [AO00],
I. Babuška & T. Strouboulis [BS01], R. Verfürth [Ver96], and W. Bangerth &
R. Rannacher [BR03].

Much information and many references for this section were provided by
S. Prudhomme, the reviewer of this book; his help is greatly appreciated. The
overview below follows the book chapter by Prudhomme & Oden [PO02] as
well as W.F. Mitchell’s paper [Mit89].

Recovery-based error estimators

These methods were proposed by O.C. Zienkiewicz & J.Z. Zhu; as of May
2007, their 1987 and 1992 papers [ZZ87, ZZ92a, ZZ92b] were cited 768, 531
and 268 times, respectively. The essence of the method, in a nutshell, is in
field averaging. The computed field within an element is compared with the
value obtained by double interpolation: element-to-node first and then node-
to-element. The intuitive observation behind this idea is that the field typically
has jumps across element boundaries; these jumps are a numerical artifact
that can serve as an error indicator. The averaging procedure captures the
magnitudes of the jumps. Some versions of the Zienkiewicz–Zhu method rely
on superconvergence properties of the FE solution at special points in the
elements.

For numerical examples and validation of gradient-recovery estimators,
see e.g. I. Babuška et al. [BSU+94]. The method is easy to implement and in
my experience (albeit limited mostly to magnetostatic problems) works well
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[TP99a].50 One difficulty is in handling nodes at material interfaces, where the
field jump can be a valid physical property rather than a numerical artifact.
In our implementation [TP99a] of the Zienkiewicz–Zhu scheme, the field val-
ues were averaged at the interface nodes separately for each of the materials
involved.

Ainsworth & Oden [AO00] note some drawbacks of recovery-based estima-
tors and even present a 1D example where the recovery-based error estimate
is zero, while the actual error can be arbitrarily large. Specifically, they con-
sider a 1D Poisson equation with a rapidly oscillating sinusoidal solution. It
can be shown (see Appendix 3.10, p. 127) that the FE-Galerkin solution with
first-order elements actually interpolates the exact solution at the FE mesh
nodes. Hence, if these nodes happen to be located at the zeros of the oscillat-
ing exact solution, the FE solution, as well as all the gradients derived from
it, are identically zero!

Prudhomme & Oden also point out that for problems with shock waves
gradient recovery methods tend to indicate mesh refinement around the shock
rather than at the shock itself.

Residual-based methods

While the solution error is not directly available, residual – the difference
between the right and left hand sides of the equation – is. For a problem of
the form

Lu = ρ (3.135)

and the corresponding weak formulation

L(u, v) = (ρ, v) (3.136)

the residual is
Ruh ≡ ρ − Luh (3.137)

or in the weak form

R(uh, v) ≡ (ρ, v) − L(uh, v) (3.138)

Symbols L and R here are overloaded (with little possibility of confusion) as
operators and the corresponding bilinear forms.

The numerical solution uh satisfies the Galerkin equation in the finite-
dimensional subspace Vh. In the full space V residuals (3.137) or (3.138) are,
in general, nonzero and can serve as a measure of accuracy. In principle, the
error, and hence the exact solution, can be found by solving the problem
with the residual in the right hand side. However, doing so is no less difficult
than solving the original problem in the first place. Instead, one looks for

50 Joint work with A. Plaks.
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computationally inexpensive ways of extracting useful information about the
magnitude of the error from the magnitude of the residual.

One of the simplest element-wise error estimators of this kind combines,
with proper weights, two residual-related terms: (Lu−ρ)2 integrated over the
volume (area) of the element and the jump of the normal component of flux
density, squared and integrated over the facets of the element (R.E. Bank &
A.H. Sherman [BS79]). P. Morin et al. [MNS02] develop convergence theory
for adaptive methods with this estimator and emphasize the importance of the
volume-residual term that characterizes possible oscillations of the solution.

A different type of method, proposed by I. Babuška & W.C. Rheinboldt in
the late 1970s, makes use of auxiliary problems over small clusters (“patches”)
of adjacent elements [BR78b, BR78a, BR79]. To gain any additional nontriv-
ial information about the error, the auxiliary local problem must be solved
with higher accuracy than the original global problem, i.e. the FE space has
to be locally enriched (usually using h- or p-refinement). An alternative in-
terpretation (W.F. Mitchell [Mit89]) is that such an estimator measures how
strongly the FE solution would change if the mesh were to be refined locally.

Yet another possibility is to solve the problem with the residual glob-
ally but approximately, using only a few iterations of the conjugate gradient
method (Prudhomme & Oden [PO02]).

Goal-oriented error estimation

In practice, FE solution is often aimed at finding specific quantities of interest
– for example, field, temperature, stress, etc. at a certain point (or points),
equivalent parameters (e.g. capacitance or resistance between electrodes), and
so on. Naturally, the effort should then be concentrated on obtaining these
quantities of interest, rather than the overall solution, with maximum accu-
racy.

Pointwise estimates have a long history dating back at least to the the
1940s–1950s (H.J. Greenberg [Gre48], C.B. Maple, [Map50]; K. Washizu
[Was53]). The key idea can be briefly summarized as follows. One can ex-
press the value of solution u at a point r0 using the Dirac delta functional
as

u(r0) = 〈u, δ(r − r0)〉 (3.139)

(Appendix 6.15 on p. 343 gives an introduction to generalized functions (dis-
tributions), with the Dirac delta among them.) Further progress can be made
by using Green’s function g of the L operator:51 Lg(r, r0) = δ(r − r0). Then

u(r0) = (u, Lg(r, r0)) = (L∗u, g(r, r0)) = L∗(u, g(r, r0)) (3.140)

where symbol L∗ is the adjoint operator and (again with overloading) the
corresponding bilinear form L∗(u, v) ≡ L(v, u). The role of Green’s function in
51 The functional space where this operator is defined, and hence the boundary

conditions, remain fixed in the analysis.
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this analysis is to convert the delta functional (3.139) that is hard to evaluate
directly into an L-form that is closely associated with the problem at hand.

The right hand side of (3.140) typically has the physical meaning of the
mutual energy of two fields. For example, if L is the Laplace operator (self-
adjoint if the boundary conditions are homogeneous), then the right hand side
is (∇u, ∇g) – the inner product (mutual energy) of fields −∇u (the solution)
and −∇g (field of a point source). Importantly, due to the variational nature
of the problem, lower and upper bounds can be established for u(r0) of (3.140)
(A.M. Arthurs [Art80]). Moreover, bounds can be established for the pointwise
error as well. In the finite element context (1D), this was done in 1984 by
E.C. Gartland [EG84]. Also in 1984, in a series of papers [BM84a, BM84b,
BM84c], I. Babuška & A.D. Miller applied the duality ideas to a posteriori
error estimates and generalized the method to quantities of physical interest.
In Babuška & Miller’s example of an elasticity problem of beam deformation,
such quantities include the average displacement of the beam, the shear force,
the bending moment, etc.

For a contemporary review of the subject, including both the duality tech-
niques and goal-oriented estimates with adaptive procedures, see R. Becker &
R. Rannacher [BR01] and J.T. Oden & S. Prudhomme [OP01]. For electro-
magnetic applications, methods of this kind were developed by R. Albanese,
R. Fresa & G. Rubinacci [AF98, AFR00], by J.P. Webb [Web05] and by
P. Ingelstrom & A. Bondeson [IB].

Fully Adaptive Multigrid

In this approach, developed by W.F. Mitchell [Mit89, Mit92] and U. Rüde
[R9̈3]), solution values in the hierarchical basis (Section 3.13.2, p. 149) char-
acterize the difference between numerical solutions at two subsequent levels
of refinement and can therefore serve as error estimators.

3.13.4 Multigrid Algorithms

The presentation of multigrid methods in this book faces a dilemma. These
methods are first and foremost iterative system solvers – the subject matter
not in general covered in the book. On the other hand, multigrid methods,
in conjunction with adaptive mesh refinement, have become a truly state-of-
the-art technique in modern FE analysis and an integral part of commercial
FE packages; therefore the chapter would be incomplete without mentioning
this subject.

Fortunately, several excellent books exist, the most readable of them be-
ing the one by W.L. Briggs et al. [BHM00], with a clear explanation of key
ideas and elements of the theory. For a comprehensive exposition of the math-
ematical theory, the monographs by W. Hackbusch [Hac85], S.F. McCormick
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[McC89], P. Wesseling [Wes91] and J.H. Bramble [Bra93], as well as the semi-
nal paper by A. Brandt [Bra77], are highly recommended; see also the review
paper by C.C. Douglas [Dou96].

On a historical note, the original development of multilevel algorithms is
attributed to the work of the Russian mathematicians R.P. Fedorenko [Fed61,
Fed64] and N.S. Bakhvalov [Bak66] in the early 1960s. There was an explosion
of activity after A. Brandt further developed the ideas and put them into
practice [Bra77].

As a guide for the reader unfamiliar with the essence of multigrid methods,
this section gives a narrative description of the key ideas, with “hand-waving”
arguments only.

Consider the simplest possible model 1D equation

Lu ≡ −d2u

dx2
= f on Ω = [0, a]; u(0) = u(a) = 0 (3.141)

where f is a given function of x. FE-Galerkin discretization of this problem
leads to a system of equations

Lu = f (3.142)

where u and f are Euclidean vectors and L is a square matrix; u represents
the nodal values of the FE solution. For first order elements, matrix L is
three-diagonal, with 2 on the main diagonal and −1 on the adjacent ones.
(The modification of the matrix due to boundary conditions, as described in
Section 3.7.1, will not be critical in this general overview.)

Operator L has a discrete set of spatial eigenfrequencies and eigenmodes,
akin to the modes of a guitar string. As Fig. 3.37 illustrates, the discrete
operator L of (3.142) inherits the oscillating behavior of the eigenmodes but
has only a finite number of those. There is the Nyquist limit for the highest
spatial frequency that can be adequately represented on a grid of size h.
Fig. 3.37 exhibits the eigenmodes with lowest and highest frequency on a
uniform grid with 16 elements.

Any iterative solution process for equation (3.142) – including multigrid
solvers – involves an approximation v to the exact solution vector u. The error
vector

e ≡ u − v (3.143)

is of course generally unknown in practice; however, the residual r = f − Lv
is computable. It is easy to see that the residual is equal to Le :

r = f − Lv = Lu − Lv = Le (3.144)

The following sequence of observations leads to the multigrid methodology.

1. High-frequency components of the error – or, equivalently, of the residual –
(similar to the bottom part of Fig. 3.37) can be easily and rapidly reduced
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Fig. 3.37. Eigenvectors with lowest (top) and highest (bottom) spatial frequency.
Laplace operator discretized on a uniform grid with 16 elements.

by applying basic iterative algorithms such as Jacobi or Gauss–Seidel. In
contrast, low-frequency components of the error decay very slowly. See
[BHM00, Tre97, GL96] for details.

2. Once highly oscillatory components of the error have been reduced and the
error and the residual have thus become sufficiently smooth, the problem
can be effectively transferred to a coarser grid (typically, twice coarser).
The procedure for information transfer between the grids is outlined be-
low. The spatial frequency of the eigenmodes relative to the coarser grid
is higher than on the finer grid, and the components of the error that are
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oscillatory relative to the coarse grid can be again eliminated with basic
iterative solvers. This is effective not only because the relative frequency
is higher, but also because the system size on the coarser grid is smaller.

3. It remains to see how the information transfer between finer and coarser
grids is realized. Residuals are transferred from finer to coarser grids.
Correction vectors obtained after smoothing iterations on coarser grids
are transferred to finer grids. There is more than one way of defining the
transfer operators. Vectors from a coarse grid can be moved to a fine one
by some form of interpolation of the nodal values. The simplest fine-to-
coarse transfer is injection: the values at the nodes of the coarse grids are
taken to be the same as the values at the corresponding nodes of the fine
grid.
However, it is often desirable that the coarse-to-fine and fine-to-coarse
transfer operators be adjoint to one another,52 especially for symmetric
problems, to preserve the symmetry. In that case the fine-to-coarse trans-
fer is different from injection.

Multigrid utilizes these ideas recursively, on a sequence of nested grids. There
are several ways of navigating these grids. V-cycle starts on the finest grid
and descends gradually to the coarsest one; then moves back to the finest
level. W-cycle also starts by traversing all fine-to-coarse levels; then, using
the coarsest level as a base, it goes back-and forth in rounds spanning an
increasing number of levels. Finally, full multigrid cycle starts at the coarsest
level and moves back-and-forth, involving progressively more and more finer
levels. A precise description and pictorial illustrations of these algorithms can
be found in any of the multigrid books.

Convergence of multigrid methods depends on the nature of the underlying
problem: primarily, in mathematical terms, on whether or not the problem is
elliptic and on the level of regularity of the solution, on the particular type of
the multigrid algorithm employed, and to a lesser extent on other details (the
norms in which the error is measured, smoothing algorithms, etc.) For elliptic
problems, convergence can be close to optimal – i.e. proportional to the size
of the problem, possibly with a mild logarithmic factor that in practice is not
very critical.

Furthermore, multigrid methods can be used as preconditioners in con-
jugate gradient and similar solvers; particularly powerful are the Bramble–
Pasciak–Xu (BPX) preconditioners developed in J. Xu’s Ph.D. thesis [Xu89]
and in [BPX90]. Since BPX preconditioners are expressed as double sums
over all basis functions and over all levels, they are relatively easy to par-
allelize. A broad mathematical framework for multilevel preconditioners and
for the analysis of convergence of multigrid methods in general is established

52 There is an interesting parallel with Ewald methods of Chapter 5, where charge-
to-grid and grid-to-charge interpolation operators must be adjoint for conser-
vation of momentum in a system of charged particles to hold numerically; see
p. 262.
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in Xu’s papers [Xu92, Xu97]. Results of numerical experiments with BPX for
several electromagnetic applications are reported by A. Plaks and myself in
[Tsu94, TPB98, PTPT00].

Another very interesting development is algebraic multigrid (AMG) sche-
mes, where multigrid ideas are applied in an abstract form (K. Stüben et
al. [Stü83, SL86, Stü00]). The underlying problem may or may not involve any
actual geometric grids; for example, there are applications to electric circuits
and to coupled field-circuit problems (D. Lahaye et al. [LVH04]). In AMG,
a hierarchical structure typical of multigrid methods is created artificially,
by examining the strength of the coupling between the unknowns. The main
advantage of AMG is that it can be used as a “black box” solver. For further
information, the interested reader is referred to the books cited above and to
the tutorials posted on the MGNet website.53

3.14 Special Topic: Element Shape and Approximation
Accuracy

The material of this section was inspired by my extensive discussions with
Alain Bossavit and Pierre Asselin in 1996–1999. (By extending the analysis
of J.L. Synge [Syn57], Asselin independently obtained a result similar to the
minimum singular value condition on p. 170.) Numerical experiments were
performed jointly with Alexander Plaks. I also thank Ivo Babuška and Ran-
dolph Bank for informative conversations in 1998–2000.

3.14.1 Introduction

Common sense, backed up by rigorous error estimates (Section 3.10, p. 125)
tells us that the accuracy of the finite element approximation depends on the
element size and on the order of polynomial interpolation. More subtle is the
dependence of the error on element shape. Anyone who has ever used FEM
knows that a triangular element similar to the one depicted on the left side of
Fig. 3.38 is “good” for approximation, while the element shown on the right
is “bad”. The flatness of the second element should presumably lead to poor
accuracy of the numerical solution.

But how flat are flat elements? How can element shape in FEM be char-
acterized precisely and how can the “source” of the approximation error be
identified? Some of the answers to these questions are classical but some are
not yet well known, particularly the connection between approximation accu-
racy and FE matrices (Section 3.14.2), as well as the minimum singular value
criterion for the “edge shape matrix” (Sections 3.14.2 and 3.14.3).

The reader need not be an expert in FE analysis to understand the first
part of this section; the second part is more advanced. Overall, the section is
53 http://www.mgnet.org/mgnet-tuts.html
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based on my papers [Tsu98b, Tsu98a, Tsu98c, TP98, TP99b, Tsu99] (joint
work with A. Plaks).

Fig. 3.38. “Good” and “bad” element shape (details in the text).

For triangular elements, one intuitively obvious consideration is that small
angles should be avoided. The mathematical basis for that is given by Zlámal’s
minimum angle condition [Zl8]: if the minimum angle of elements is bounded
away from zero, φmin ≥ φ0 > 0, then the FE interpolation error tends to zero
for the family of meshes with decreasing mesh sizes. Geometrically equivalent
to Zlámal’s condition is the boundedness of the ratio of the element diameter
(maximum element edge lmax) to the radius ρ of the inscribed circle.

Zlámal’s condition implies that small angles should be avoided. But must
they? In mathematical terms, one may wonder if Zlámal’s condition is not
only sufficient but in some sense necessary for accurate approximation.

If Zlámal’s condition were necessary, a right triangle with a small acute
angle would be unsuitable. However, on a regular mesh with right triangles,
first-order FE discretization of the Laplace equation is easily shown to be iden-
tical with the standard 5-point finite difference scheme. But the FD scheme
does not have any shape related approximation problems. (The accuracy is
limited by the maximum mesh size but not by the aspect ratio.) This obser-
vation suggests that Zlámal’s condition could be too stringent.

Indeed, a less restrictive shape condition for triangular elements exists. It
is sufficient to require that the maximum angle of an element be bounded
away from π. In particular, according to this condition, right triangles, even
with very small acute angles, are acceptable (what matters is the maximum
angle that remains equal to π/2). The maximum angle condition appeared in
J.L. Synge’s monograph [Syn57] (pp. 209–213) in 1957, before the finite ele-
ment era. (Synge considered piecewise-linear interpolation on triangles with-
out calling them finite elements.) In 1976, I. Babuška & A.K. Aziz [BA76]
published a more detailed analysis of FE interpolation on triangles and showed
that the maximum angle condition was not only sufficient, but in a sense essen-
tial for the convergence of FEM. In addition, they proved the corresponding
W 1

p -norm estimate. In 1992, M. Křižek [K9̌2] generalized the maximum angle
condition to tetrahedral elements: the maximum angle for all triangular faces
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and the maximum dihedral angle should be bounded away from π. Other
estimates for tetrahedra (and, more generally, simplices in R

d) were given
by Yu.N. Subbotin [Sub90] and S. Waldron [Wal98a]. P. Jamet’s condition
[Jam76] is closest to the result of this section but is more difficult to formu-
late and apply.

On a more general theoretical level, the study of piecewise-polynomial
interpolation in Sobolev spaces, with applications to spline interpolation and
FEM, has a long history dating back to the fundamental works of J. Deny &
J.L. Lions, J.H. Bramble & S.R. Hilbert [BH70], I. Babuška [Bab71], and the
already cited Ciarlet & Raviart paper.

Two general approaches systematically developed by Ciarlet & Raviart
have now become classical. The first one is based on the multipoint Taylor
formula (P.G. Ciarlet & C. Wagschal [CW71]); the second approach (e.g.
Ciarlet [Cia80]) relies on the Deny-Lions and Bramble–Hilbert lemmas. In
both cases, under remarkably few assumptions, error estimates for Lagrange
and Hermite interpolation on a set of points in R

n are obtained.
For tetrahedra, the “shape part” of Ciarlet & Raviart’s powerful result

(p. 125) translates into the ratio of the element diameter (i.e. the maximum
edge) to the radius of the inscribed sphere. Boundedness of this ratio ensures
convergence of FE interpolation on a family of tetrahedral meshes with de-
creasing mesh sizes. However, as in the 2D case, such a condition is a little too
restrictive. For example, “right tetrahedra” (having three mutually orthogo-
nal edges) are rejected, even though it is intuitively felt, by analogy with right
triangles, that there is in fact nothing wrong with them.

A precise characterization of the shape of tetrahedral elements is one of
the particular results of the general analysis that follows. An algebraic, rather
than geometric, source of interpolation errors for arbitrary finite elements
is identified and its geometric interpretation for triangular and tetrahedral
elements is given.

3.14.2 Algebraic Sources of Shape-Dependent Errors: Eigenvalue
and Singular Value Conditions

First, we establish a direct connection between interpolation errors and the
maximum eigenvalue (or the trace) of the appropriate FE stiffness matrices.
This is different from the more standard consideration of matrices of the affine
transformation to/from a reference element (as done e.g. by N. Al Shenk
[She94]).

As shown below, the maximum eigenvalue of the stiffness matrix has a
simple geometric meaning for first and higher order triangles and tetrahedra.
Even without a geometric interpretation, the eigenvalue/trace condition is
useful in practical FE computation, as the matrix trace is available at virtu-
ally no additional cost. Moreover, the stiffness matrix automatically reflects
the chosen energy norm, possibly for inhomogeneous and/or anisotropic pa-
rameters.
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For the energy-seminorm approximation on first order tetrahedral nodal
elements, or equivalently, for L2-approximation of conservative fields on tetra-
hedral edge elements (Section 3.12), the maximum eigenvalue analysis leads
to a new criterion in terms of the minimum singular value of the “edge shape
matrix”. The columns of this matrix are the Cartesian representations of the
unit edge vectors of the tetrahedron.

The new singular value estimate has a clear algebraic and geometric mean-
ing and proves to be not only sufficient, but in some strong sense necessary for
the convergence of FE interpolation on a sequence of meshes. The minimum
singular value criterion is a direct generalization of the Synge–Babuška–Aziz
maximum angle condition to three (and more) dimensions.

Even though the approach presented here is general, let us start with first
order triangular elements to fix ideas. Let Ω ⊂ R

2 be a convex polygonal
domain. Following the standard definition, we shall call a set M of triangular
elements Ki, M = {K1,K2, . . . , Kn}, a triangulation of the domain if
(a)

⋃n
i=1 Ki = Ω;

(b) any two triangles either have no common points, or have exactly one
common node, or exactly one common edge.

Let hi = diamKi; then the mesh size h is the maximum of hi for all
elements in M (i.e. the maximum edge length of all triangles). Let N be the
geometric set of nodes {ri} (i = 1, 2, . . . , n, ri ∈ Ω̄) of all triangles in M ,
and let P 1(M) be the space of functions that are continuous in Ω and linear
within each of the triangular elements Ki.54 Let P 1(Ki) be the restriction of
P 1(M) to a specific element Ki. Thus P 1(Ki) is just the (three-dimensional)
space of linear functions over the element.

Considering interpolation of functions in C2(Ω̄) for simplicity, one can
define the interpolation operator Π : C2(Ω̄) → P 1(M) by

(Πu)(ri) = u(ri), ∀ri ∈ N , ∀u ∈ C2(Ω̄) (3.145)

We are interested in evaluating the interpolation error Πu−u in the energy
norm ‖ · ‖E induced by an inner product (· , ·)E (“E” for “energy,” not to be
confused with Euclidean spaces).55

Remark 7. In FE applications, u is normally the solution of a certain boundary
value problem in Ω. The error bounds for interpolation and for the Galerkin
or Ritz projection are closely related (e.g. by Céa’s lemma or the LBB condi-
tion, Section 3.5). Although this provides an important motivation to study
interpolation errors, here u need not be associated with any boundary value
problem.

54 Elsewhere in the book, symbol N denotes the nodal values of a function. The
usage of this symbol for the set of nodes is limited to this section only and should
not cause confusion.

55 The analysis is also applicable to seminorms instead of norms if the definition of
energy inner product is relaxed to allow (u, u)E = 0 for a nonzero u.
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Consider a representative example where the inner product and the energy
seminorm in C2(Ω̄) are introduced as

(u, v)E,Ω =
∫

Ω

∇u · ∇v dΩ (3.146)

|u|E = (u, u)
1
2
E (3.147)

(If Dirichlet boundary conditions on a nontrivial part of the boundary are
incorporated in the definition of the functional space, the seminorm is in fact
a norm.)

The element stiffness matrix A(Ki) for a given basis {ψ1, ψ2, ψ3} of P 1(Ki)
corresponds to the energy inner product (3.146) viewed as a bilinear form on
P 1(Ki)× P 1(Ki):

(u, v)E,Ki
= (A(Ki)u(Ki), v(Ki)), ∀u, v ∈ P 1(Ki) (3.148)

where vectors of nodal values of a given function are underscored. u(Ki) is an
E3 vector of node values on a given element and u is an En vector of node
values on the whole mesh. The standard E3 inner product is implied in the
right hand side of (3.148). Explicitly the entries of the element stiffness matrix
are given by

A(Ki)jl = (ψj , ψl)E,Ki
=

∫
Ki

∇ψj · ∇ψl dΩ, j, l = 1, 2, 3 (3.149)

To obtain an error estimate over a particular element Ki, we shall use, as
an auxiliary function, the first order Taylor approximation T u of u ∈ C2(Ω̄)
around an arbitrary point r0 within that element:

(T u)(r0, r) = u(r0) + ∇u(r0) · (r − r0)

Fig. 3.39 illustrates this in 1D. The difference between the nodal values of
the Taylor approximation T u and the exact function u (or its FE interpolant
Πu) is “small” (on the order of O(h2) for linear approximation) and shape-
independent in 2D and 3D. At the same time, the difference between T u
and Πu in the energy norm is generally much greater: not only is the order
of approximation lower, but also the error can be adversely affected by the
element shape. Obviously, somewhere in the transition from the nodal values
to the energy norm the precision is lost. Since the energy norm in the FE
space is governed by the FE stiffness matrix, the large error in the energy
norm indicates the presence of a large eigenvalue of the matrix.

For a more precise analysis, let us write the function u as its Taylor ap-
proximation plus a (small) residual term R(r0, r):

u(r) = (T u)(r0, r) + R(r0, r), r ∈ Ki,

where R(r0, r) can be expressed via the second derivatives of u at an interior
point of the segment [r, r0]:
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Fig. 3.39. Taylor approximation vs. FE interpolation. Function u (solid line) is
approximated by its piecewise-linear node interpolant Πu (dashed line) and by
element-wise Taylor approximations T u (dotted lines). The energy norm difference
between Πu and T u is generally much greater than the difference in their node
values.

R(r0, r) =
∑
|α|=2

Dαu(r0 + θ(r − r0))
α!

(r − r0)α, 0 ≤ θ < 1 (3.150)

with the standard shorthand notation for the multi-index α = (α1, α2, . . . , αd)
(in the current example d = 2), |α| = α1 + α2 + . . . + αd, α! = α1!α2! . . . , αd!,
and partial derivatives

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

It follows from (3.150) that the residual term is indeed small, in the sense that

|R(r0, r)| = |(T u)(r0, r)− u(r)| ≤ ‖u‖2,∞,Ki
|r − r0|2 (3.151)

|∇R(r0, r)| = |∇(T u)(r0, r)−∇u(r)| ≤ ‖u‖2,∞,Ki
|r − r0| (3.152)

where
‖u‖m,∞,K =

∑
|α|=m

|Dαu|L∞(K) (3.153)

The key observations leading to the maximum eigenvalue condition can be
informally summarized as follows:

1. The Taylor approximation is uniformly accurate within the element due
to (3.151), (3.152) and is completely independent of the element geometry.
Therefore, for the purpose of evaluating the dependence of the interpola-
tion error on shape, T u can be used in lieu of u, i.e. one can consider the
difference Πu− T u instead of Πu− u.
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2. The energy norm of the difference Πu−T u is generally much higher than
the nodal values of Πu−T u: the nodal values are of the order O(h2) and
independent of element shape due to (3.151), while the energy norm is
O(h) and depends on the shape.

3. The above observations imply that in the transition from node values to
the energy norm the accuracy is lost. Since within the element Ki both u
and T u lie in the FE space P 1(Ki), and since in this space the energy norm
is induced by the element stiffness matrix A(Ki), a large energy norm can
be attributed to the presence of a large eigenvalue in that stiffness matrix.

The first of these statements can be made precise by writing

‖Πu− u‖E,Ki
≤ ‖Πu− T u‖E,Ki

+ ‖T u− u‖E,Ki

≤ ‖Πu− T u‖E,Ki
+ chiV

1
2

i ‖u‖2,∞,Ki
(3.154)

where the second inequality follows from estimate (3.152) of the Taylor resid-
ual, Vi = meas(Ki), and c is an absolute constant independent of the element
shape and of u.

We now focus on the term ‖Πu−T u‖E,Ki
in (3.154). Restrictions of both

u and T u to Ki lie in the FE space P 1(Ki), and therefore

‖Πu− T u‖E,Ki
= (A(Ki)(u(Ki)− T u(Ki)), u(Ki)− T u(Ki))

1
2 (3.155)

The standard Euclidean inner product in E3 is implied in the right hand side
of (3.155), and we recall that the underscore denotes Euclidean vectors of
nodal values.

It follows immediately from (3.155) that

‖Πu− T u‖E,Ki
≤ max

x�=0,x∈R3

(
(A(Ki)x, x)

(x, x)

) 1
2

‖u(Ki)− T u(Ki)‖E3

(3.156)
that is,

‖Πu− T u‖E,Ki
≤ λ

1
2
max(A(Ki)) ‖u(Ki)− T u(Ki)‖E3 (3.157)

In the right hand side of (3.157), λmax is the maximum eigenvalue of the
element stiffness matrix (3.148), (3.149). The difference u(Ki) − T u(Ki) is
the error vector for the Taylor expansion at element nodes, and due to the
uniformity (3.151), (3.152) of the Taylor approximation, we have

‖u(Ki)− T u(Ki)‖E3 ≤ ch2
i |u|2,∞,Ki

(3.158)

(the generic constant c is not necessarily the same in all occurrences). Com-
bining (3.157) and (3.158), we obtain the element-wise estimate

‖Πu− T u‖E,Ki
≤ ch2

i λ
1
2
max(A(Ki))|u|2,∞,Ki

(3.159)
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or, taking into account the triangle inequality (3.154),

‖Πu− u‖E,Ki
≤ c

(
h2

i λ
1
2
max(A(Ki)) + hiV

1
2

i

)
|u|2,∞,Ki

(3.160)

The corresponding global estimate is

‖Πu− u‖E,Ω ≤ c|u|2,∞,Ω

[ ∑
Ki∈M

(
h4

i λmax(A(Ki)) + h2
i Vi

)] 1
2

(3.161)

This result can be simplified by noting that λmax(A(Ki)) ≤ trA(Ki),∑
Ki

trA(Ki) = trA,
∑

Ki
Vi = V , where A is the global stiffness matrix

and V = meas(Ω):

‖Πu− u‖E,Ω ≤ c|u|2,∞,Ω

[
h2(tr

1
2 A + hV

1
2 )

]
(3.162)

Alternatively, one can factor out the element area Vi in (3.160) to obtain

‖Πu− u‖E,Ki
≤ cV

1
2

i |u|2,∞,Ki

(
h2

i (λ
1
2
max(Â(Ki)) + hi

)
(3.163)

where the hat denotes the scaled element stiffness matrix Â(Ki) = A(Ki)/Vi.
Then the global error estimate simplifies to

‖Πu− u‖E,Ω ≤ cV
1
2 max

Ki∈M

[(
h2

i λ
1
2
max(Â(Ki)) + hi

)
|u|2,∞,Ki

]
(3.164)

The maximum eigenvalue can again be replaced with the (easily computable)
matrix trace.

Remark 8. The trace- and max-terms in estimates (3.162), (3.164) are not of
the order O(h2) as it might appear, butO(h), since both trA and λmax(Â(Ki))
are O(h−2).

The analysis above can be generalized, without any substantial changes,
to elements of any geometric shape and order:

Theorem 5. Let M be a finite element mesh in a bounded domain Ω ∈ R
d

(d ≥ 1) and let the following assumptions hold for any (scalar or vector)
function u ∈ (Cm+1)s(Ω̄): Ω → R

s, with some nonnegative integers m and s.
(A.1) A given energy (semi)norm is bounded as

|u|2E,Ki
≤

ν∑
j=0

c2
j |u|2j,∞,Ki

, cν > 0, Vi = meas(Ki) (3.165)

for any element Ki, with constants cj independent of the element.
(A.2) The FE approximation space over Ki contains all polynomials of degree
≤ m.
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(A.3) The FE degrees of freedom – linear functionals ψj over the FE space –
are bounded as

|ψj(Ki)u| ≤
µ∑

l=0

c̃2
l |u|l,∞,Ki

, c̃µ > 0 (3.166)

for a certain µ ≥ 0, with some absolute constants c̃l. Then

‖Πu− u‖E,Ω ≤ c|u|m+1,∞,Ω

(
hκ tr

1
2 A + hτ V

1
2

)
(3.167)

where V = meas(Ω), κ = m + 1− µ, τ = m + 1− ν, and the global stiffness
matrix A is given by (3.148), (3.149). Alternatively,

‖Πu− u‖E,Ω ≤ c|u|m+1,∞,Ω V
1
2 max

Ki

(
hκ

i λ
1
2
max(Â(Ki)) + hτ

)
(3.168)

where Â(Ki) = A(Ki)/Vi.

The meaning of the parameters in the theorem is as follows: m characterizes
the level of smoothness of the function that is being approximated; s = 1 for
scalar functions and s > 1 for vector functions with s components, approxi-
mated component-wise; ν is the highest derivative “contained” in the energy
(semi)norm; µ is the highest derivative in the degrees of freedom.

Example 7. First order tetrahedral node elements satisfy assumptions (A.1–
A.3). Indeed, for the energy norm (3.147), condition (3.165) holds with ν = 1,
c0 = 0, c1 = 1. (A.2) is satisfied with m = 1, and (A.3) is valid because of
the uniformity (3.151) of the Taylor approximation within a sufficiently small
circle.

More generally, (A.3) is satisfied if FE degrees of freedom are represented
by a linear combination of values of the function and its derivatives at some
specified points of the finite element.

Example 8. First order triangular nodal elements.
Let the seminorm be (3.147), (3.146). Then the trace of the scaled element

stiffness matrix has a simple geometric interpretation. The diagonal elements
of the matrix are equal to d−2

j (j = 1, 2, 3), where the djs are the altitudes
of the triangle (Fig. 3.40). Therefore, denoting interior angles of the triangle
with φj and its sides with lj , and assuming hi = diam(Ki) = l1 ≥ l2 ≥ l3,
one obtains

λmax(Â(Ki)) ≤ Tr Â(Ki) =
3∑

j=1

d−2
j = h−2

i

3∑
j=1

(
l1
dj

)2

< h−2
i

[(
l2 + l3

d1

)2

+
(

l1
d2

)2

+
(

l1
d3

)2
]

≤ 3h−2
i (sin−2 φ2 + sin−2 φ3)

(3.169)
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which leads to Zlámal’s minimum angle condition. This result is reasonable
but not optimal, which shows that the maximum eigenvalue criterion does not
generally guarantee the sharpest estimates. Nevertheless the optimal condition
for first order elements – the maximum angle condition – will be obtained
below by applying the maximum eigenvalue criterion to the Nédélec–Whitney–
Bossavit edge elements.

Fig. 3.40. Geometric parameters of a triangular element Ki.

Example 9. For first order tetrahedral elements, the trace of the scaled nodal
stiffness matrix can also be interpreted geometrically. A simple transformation
similar to (3.169) [Tsu98b] yields the minimum–maximum angle condition for
angles φjl between edges j and faces l: φjl are to be bounded away from both
zero and π to ensure that the interpolation error tends to zero as the element
size decreases.

For higher order scalar elements on triangles and tetrahedra, the matrix
trace is evaluated in an analogous but lengthier way, and the estimate is simi-
lar, except for an additional factor that depends on the order of the element.56

Example 10. L2-approximation of scalar functions on tetrahedral or triangu-
lar node elements. Suppose that Ω is a two- or three-dimensional polygonal
(polyhedral) domain and that continuous and discrete spaces are taken as
L2(Ω) and P 1(M), respectively, for a given triangular/tetrahedral mesh. As-
sume that the energy inner product and norm are the standard L2 ones. This
energy norm in the FE space is induced by the “mass matrix”

A(Ki)jl =
∫

Ki

φiφl dΩ; Â(Ki)jl = V −1
i

∫
Ki

φiφl dΩ (3.170)

56 Here we are discussing shape dependence only, as the factor related to the depen-
dence of the approximation error on the element size is obvious.
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For first order tetrahedral elements, this matrix is given by (3.102) on p. 123,
repeated here for convenience:

Â(Ki) =
1
20

⎛
⎜⎜⎝

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎞
⎟⎟⎠ (3.171)

The maximum eigenvalue of Â is equal to 1/4 and does not depend on the
element shape. Assumptions (A.1–A.3) of Theorem 5 hold with m = 1, µ =
ν = 0, c0 = c̃0 = 1, and therefore approximation of the potential is shape-
independent due to (3.168). This known result is obtained here directly from
the maximum eigenvalue condition.

Analysis for first order triangular elements is completely similar, and the
conclusion is the same.

Example 11. (L2)3-approximation of conservative vector fields on tetrahedral
or triangular meshes. In lieu of the piecewise-linear approximation of u on
a triangular or tetrahedral mesh, one may consider the equivalent piecewise-
constant approximation of ∇u on the same mesh. Despite the equivalence of
the two approximations, the corresponding error estimates are not necessarily
the same, since the maximum eigenvalue criterion is not guaranteed to give
optimal results in all cases.

It therefore makes sense to apply the maximum eigenvalue condition to
interpolation errors in L3

2(Ω) for a conservative field q = ∇u on a tetrahedral
mesh. To this end, a version of the first order edge element on a tetrahedron
K may be defined by the Whitney–Nédélec–Bossavit space (see Section 3.12,
p. 139) spanned by functions wjl, 1 ≤ j < k ≤ 4

wjk = ljk(λj∇λk − λk∇λj) (3.172)

where the λs are the barycentric coordinates of the tetrahedron. (They also
are the nodal basis functions of the first order scalar element.) The scaling
factor ljk, introduced for convenience of further analysis, is the length of edge
jk.

As a reminder, the dimension of the Whitney–Nédélec–Bossavit space over
one element is equal to the number of element edges, i.e. three for triangles
and six for tetrahedra. There is the corresponding global FE space W (M) (W
for “Whitney”) over the whole mesh M . It is a subspace of H(curl,Ω) = {q :
q ∈ L3

2(Ω),∇× q ∈ L3
2(Ω)}.

The “exactness property” (see A. Bossavit [Bos88b, Bos88a]) of this space
is critical for the analysis of this section: if the computational domain is simply
connected, a vector field in W (M) is conservative if and only if it is the
gradient of a continuous piecewise-linear scalar field u ∈ P 1(Ω) on the same
mesh. The exactness property remains valid if the definitions of functional
spaces are amended in a natural way to include Dirichlet conditions for the
tangential components of the field on part of the domain boundary.
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The degrees of freedom are defined as the average values of the tangential
components of the field along the edges:

ψjk(q) = l−1
jk

∫
edge jk

q · dτ (3.173)

The maximum eigenvalue estimate could now be directly applied to interpo-
lation in W (M). However, a more accurate result is obtained by taking the
maximum in the right hand side of the generic expression (3.157) in a sub-
space of R

6. This subspace corresponds to R
6-vectors q of edge d.o.f.’s for

vector fields q ∈ ∇P 1(K). Within a given element, such vector fields are in
fact constant and can therefore be treated as vectors in R

3. The subspace
maximization of (3.157) yields

max
q∈R3

(A(Ki) q, q)E6

‖q‖2
E6

= max
q∈R3

∫
Ki
|q|2 dΩ

‖q‖2
E6

= meas(Ki) max
q∈R3

|q|2
‖q‖2

E6

(3.174)

To evaluate the ratio in the right hand side, note that the R
6-vector q of

the edge projections of q is related to the column vector of the Cartesian
components q

C
= (qx, qy, qz)T of q as

q = ET (Ki) q
C

(3.175)

Here ET (Ki) is the 3 × 6 “edge shape matrix” whose columns are the unit
vectors eα (1 ≤ α ≤ 6) directed along the tetrahedral edges (in either of the
two directions):

E(K) = [e1 | e2 | e3 | e4 | e5 | e6] (3.176)

The element index i has been dropped for simplicity of notation. Singular
value decomposition (G.H. Golub & C.F. Van Loan [GL96]) of this matrix is
the key to further analysis:

E(K) = LΣQT (3.177)

where L is a 3× 3 orthogonal matrix, Q is a 6× 6 orthogonal matrix, and

Σ =

⎛
⎝σ1 0 0 0 0 0

0 σ2 0 0 0 0
0 0 σ3 0 0 0

⎞
⎠ (3.178)

is the matrix containing the singular values σ1 ≥ σ2 ≥ σ3 ≥ 0 of the edge
shape matrix E. Hence

‖q‖2
E6 = (ET (K)q

C
, ET (K)q

C
) = (E(K)ET (K)q

C
, q

C
) (3.179)

and the last maximum in (3.174) is

max
q∈R3

|q|2
‖q‖2

E6

= max
qC∈R3

(qC , qC)
(E(K)ET (K)qC , qC)
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= λ−1
min(E(K)ET (K)) = σ−2

min(E(K)) (3.180)

where λmin is the minimum eigenvalue, and σmin is the minimum singular
value (if q = 0, σmin = 0 is implied in (3.180)). The last equality of (3.180) is
based on the well known fact (G.H. Golub & C.F. Van Loan [GL96]) that

σ2
j (E(K)) = λj(E(K)ET (K)) = λj(ET (K)E(K)) (3.181)

where for ET E only the nonzero eigenvalues are considered.
The minimum singular value σmin(E(K)) is zero if and only if there exists

a vector q orthogonal to all six edge vectors ej (so that q = 0), that is, if
and only if all edges are coplanar (and the tetrahedron is thus degenerate). In
general, the minimum singular value characterizes the “level of degeneracy,”
or “flatness” of a tetrahedron.

In the maximum eigenvalue condition, parameters now have the following
values:
m = 0 (the pertinent Taylor approximation is just a vector constant);
ν = 0 (L2-norm);
µ = 0 (the d.o.f.’s are the tangential field components along the edges, with
no derivatives involved).

Hence κ = τ = 1 in (3.167), (3.168), and, with (3.174), (3.180) in mind,
one has

‖Πu− u‖E,Ω ≤ c

[ ∑
Ki∈M

h2
i

(
σ−2

min(E(Ki)) + 1
)

Vi |u|2,∞,Ki

] 1
2

(3.182)

This is a global error estimate, but each individual term in the sum represents
a (squared) element-wise error.

It is not hard to establish an upper bound for σmin(E(Ki)). Indeed,

σmin(E) ≤ 1
3

3∑
j=1

σ2
j (E) =

1
3

tr(ET E) = 2 (3.183)

so (3.182) can be simplified:

‖Πu− u‖E,Ω ≤ c

[ ∑
Ki∈M

h2
i σ−2

min(E(Ki))Vi |u|2,∞,Ki

] 1
2

(3.184)

Analysis for triangular elements is quite similar, and the final result is the
same. In addition, for triangular elements the following proposition holds:

Proposition 6. The minimum singular value criterion for the 2 × 3 edge
shape matrix of a first order triangular element is equivalent to the Synge–
Babuška–Aziz maximum angle condition.
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Proof. The minimum singular value can be explicitly evaluated in this case.
Letting the x-axis run along one of the edges of the element (Fig. 3.41), one
has the edge shape matrix in the form

E =
(

1 cos φ1 − cos φ2

0 cos φ1 − cos φ2

)
(3.185)

Fig. 3.41. Three unit edge vectors for a triangular element.

The trace of (EET )−1 is found to be (with some help of symbolic algebra)

Tr(EET )−1 =
3

sin2 φ1 + sin2 φ2 + sin2 φ3

(3.186)

Since tr(EET )−1 = λ1(EET )−1 + λ2(EET )−1 = λ−1
1 (EET ) + λ−1

2 (EET ) =
σ−2

1 (E) + σ−2
2 (E), one has

1
3

(sin2 φ1 + sin2 φ2 + sin2 φ3) ≤ σ2
min(E) ≤ 2

3
(sin2 φ1 + sin2 φ2 + sin2 φ3)

(3.187)
It can immediately be seen from these inequalities that the minimum singu-
lar value can be arbitrarily close to zero if and only if the maximum angle
approaches π (and the other two angles approach zero).

3.14.3 Geometric Implications of the Singular Value Condition

The Minimum Singular Value vs. the Inscribed Sphere Criterion

The most common geometric characteristic of a tetrahedral finite element K
is the ratio of radius r of the inscribed sphere to the maximum edge lmax. The
following inequality shows that the singular value criterion is less stringent
than the r/lmax ratio.
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Proposition 7. [Tsu98a]

σmin(E) ≥ r

lmax
(3.188)

Proof. We appeal to a geometric interpretation of the minimum singular value.
For vector q ∈ R

6 of edge projections of an arbitrary nonzero Cartesian vector
qC ∈ R

3, we have

σmin(E) ≤
‖q‖E6

‖q
C
‖E3

(3.189)

where the exact equality is achieved when (and only when) qC is an eigenvector
corresponding to the minimum eigenvalue of EET . Thus

σmin(E) = min
‖q

C
‖E3=1

‖q‖E6 (3.190)

We can assume without loss of generality that the first node of the tetrahe-
dron is placed at the origin and that the tetrahedron is scaled to lmax = 1 and
rotated to have the unit eigenvector v corresponding to the minimum eigen-
value of EET run along the z-axis. Let zβ (β = 1, 2, 3, 4) be the z-coordinates
of the nodes. According to (3.190),

σ2
min(E) = ‖v‖E6 =

∑
1≤α<β≤4

(v · eαβ)2 ≥
∑

2≤α<β≤4

(v · e1β)2

=
∑

2≤α<β≤4

(
zβ

l1β

)2

≥
∑

2≤α<β≤4

z2
β (3.191)

where each edge is now labeled by its two end nodes; l1β is the length of the
edge connecting nodes 1 and β, l1β ≤ lmax = 1. The first summation in (3.191)
is over all six edges αβ, while the subsequent summations are over three nodes
β = 2, 3, 4 and the corresponding edges 1β.

It immediately follows from (3.191) that for all nodes |zβ | ≤ σmin. The
scaled tetrahedron therefore lies entirely between the planes z = ±σmin; hence
r ≤ σmin ��

Remark 9. The converse statement that σmin(E) ≤ cr/lmax is not true. Con-
sider a sequence of tetrahedra with three mutually orthogonal edges, two of
these edges being of unit length and the third one tending to zero. Then the
radius of the inscribed sphere tends to zero, while the minimum singular value
remains equal to one [TP98].

Jamet’s Condition

P. Jamet [Jam76] obtained accurate interpolation error estimates under quite
general assumptions. For tetrahedral elements, the governing factor in Jamet’s
estimate is cos θ, where θ is defined as
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θ = max
ξ

min
i

θi, i = 1, . . . , 6 (3.192)

Here θi is the angle between an arbitrary unit vector ξ ∈ R
3 and the unit edge

vector ei; the minimum is taken over all edges, and the maximum is taken
over all unit vectors ξ. (Jamet’s angle characterizes, geometrically, how far
the edges are from being perpendicular to a certain vector ξ.) It turns out
that Jamet’s measure is very closely related to the minimum singular value
criterion. Indeed, one can rewrite (3.192) as

cos θ = min
ξ

max
i

cos θi = min
ξ
‖ET ξ‖∞,E6 (3.193)

versus
σmin(E) = min

ξ
‖ET ξ‖2,E6

That is, the only theoretical difference between Jamet’s cos θ and the minimum
singular value of the edge shape matrix is in the matrix norm employed. This
adds further credence to the analysis and results that involve eigenvalues and
singular values of FE matrices.

Jamet’s condition is more general than the present formulation of the
minimum singular value estimate (in particular, Jamet’s analysis applies to
any Sobolev norms in Wm

p ). On the other hand, computational algorithms
(SVD) for the minimum singular value, unlike for Jamet’s angle, are well
established and readily available.

The Minimum Singular Value vs. Angle Conditions

The minimum singular value of the edge shape matrix can be computed and
used as an a priori algebraic measure of the interpolation error; alternatively,
σ−2

min can be replaced with tr (EET )−1. At the same time, given that σmin

characterizes the level of linear independence of the element edges and the
overall “flatness” of the element, geometric implications of the minimum sin-
gular value condition are worth investigating. The following proposition shows
that asymptotically the singular value criterion is equally or less restrictive
than criteria based on solid angles.

Proposition 8. Let {Ki}∞i=1 be a sequence of tetrahedra with their diameters
hi tending to zero, and let Ei be the edge shape matrix (3.176) of Ki. Then,
if the minimum singular value condition is violated, i.e. if σmin(Ei) → 0 as
i →∞, then there exists a subsequence of {Ki} for which all solid (trihedral)
angles tend to either zero or 2π.

Proof. As before, without loss of generality, each tetrahedron Ki can be as-
sumed to have one of its nodes at the origin of a Cartesian system and to be
rotated to have the minimum eigenvector of EET run along the z axis.

Let S be the unit sphere in R
3. To each tetrahedron Ki in the sequence

there corresponds a point Pi ≡ (e(i)
1 , . . . , e

(i)
6 ) ∈ S6 representing the six unit
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edge vectors e
(i)
l of Ki. Since S6 is compact, one can select a subsequence of

{Ki}, again denoted {Ki}, with the respective points Pi converging to a point
P∞ ≡ (e(∞)

1 , . . . , e
(∞)
6 ) ∈ S6. Since

σmin(Ei) =
∑

1≤l≤6

(
e
(i)
l · ẑ

)2

, (3.194)

all six unit vectors e
(∞)
l must lie in the xy-plane, and consequently the tri-

hedral angle formed by any three of these vectors is zero or 2π. Since the
trihedral angles depend continuously on Pi, the proposition follows.

Remark 10. If a solid angle tends to zero, it does not necessarily imply that
the minimum singular value does, too. A counterexample is the same as in
Remark 9.

A valid asymptotic condition is for the maximum solid angle to be bounded
away from 2π. Indeed, if this condition were violated, the three edges forming
the largest trihedral angle would tend to three distinct coplanar vectors. Hence
all six edges would in the limit be coplanar, which corresponds to a zero
singular value.

M. Križek [K9̌2] introduced a sufficient convergence condition requiring
that all dihedral angles, as well as all face angles, be bounded away from π.
The Proposition below shows that the minimum singular value criterion is
equally or less restrictive than the Kř́ıžek condition.

Proposition 9. Let γdj (j = 1, 2, . . ., 6) be the dihedral angles of a tetra-
hedron K and γβ

fl (l = 1, 2, 3; 1 ≤ β ≤ 4) be the angles of each triangular
face β. Let γd0 be the angle with the maximum sine of all dihedral angles:
sin γd0 = max(sin γdj). Similarly, for each face β, let sin γβ

f0 be the maximum
of all sin γβ

fl for face β. Finally, let sin γf0 be the minimum of sin γβ
f0 over all

faces β; i.e.
sin γf0 = min

1≤β≤4
max
1≤l≤3

sin γβ
fl

Then

σmin(E(K)) ≥
(

2
3

) 1
2

sin
γd0

2
sin γf0 (3.195)

Proof. Consider the two faces forming the dihedral angle γd0 with the max-
imum sine of all sin γdj . Let one of these faces lie in the xz-plane and let
their common edge be on the z axis, with one node at the origin as shown in
Fig. 3.42.

Further, consider an arbitrary unit vector

v = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ

in R
3, and let v1 and v2 be its projections on faces (1) and (2), respectively

(Fig. 3.42). Then
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Fig. 3.42. Tetrahedral nodes and critical angles. 1, 2, 3 are the nodes of face (1);
1, 4, 2 are the nodes of face (2).

v2
1 = sin2 θ cos2 φ + cos2 θ, v2

2 = sin2 θ cos2(φ− γd0) + cos2 θ

Further projecting v1 and v2 on each of the three edges of the respective faces
(1) and (2) and using expression (3.187) for the minimum singular value of
the edge shape matrix of a triangle, one obtains:

2
∑

1≤j≤5

v2
ej ≥ (sin2 θ cos2 φ + cos2 θ)

1
3
(sin2 γ

(1)
f1 + sin2 γ

(1)
f2 + sin2 γ

(1)
f3 )

+ (sin2 θ cos2(φ− γd0) + cos2 θ)
1
3
(sin2 γ

(2)
f1 + sin2 γ

(2)
f2 + sin2 γ

(2)
f3 )

≥ (sin2 θ cos2 φ + cos2 θ)
1
3

sin2 γ
(1)
f0 + (sin2 θ cos2(φ−γd0) + cos2 θ)

1
3

sin2 γ
(2)
f0

≥
[
sin2 θ(cos2 φ + cos2(φ− γd0)) + 2 cos2 θ

] 1
3

sin2 γf0

≥
[
sin2 θ · 2 sin2 γd0

2
+ 2 cos2 θ

] 1
3

sin2 γf0 ≥ 2
3

sin2 γd0

2
sin2 γf0

(The factor of two in the left hand side is due to the fact that the projection
on edge 1-2 is counted twice in the right hand side. Summation over 1 ≤ j ≤ 5
excludes edge 3-4.) ��
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Conversely, let the Kř́ıžek condition be violated for some sequence of tetra-
hedra. Suppose first that a dihedral angle tends to π in that sequence. Then all
six edges tend to positions in one fixed plane (after a possible rotation of each
tetrahedron in the sequence). The edge projections of a unit vector perpendic-
ular to that plane will tend to zero, and so will the minimum singular value of
the edge shape matrix. Similarly, if one of the face angles tends to π, then all
the edges of that face tend to positions on one straight line, and consequently
all six edges again tend to positions in one plane, and σmin(E(Ki)) → 0.

It follows that the minimum singular value and Kř́ıžek conditions are
equivalent as asymptotic criteria of convergence of piecewise-linear interpola-
tion on a family of tetrahedral meshes.

The Minimum Singular Value vs. Trihedral Volume

Consider first three unit edge vectors corresponding to a common tetrahedral
node. There is a 3× 3 submatrix E3 of E associated in the obvious way with
these three edges. The volume of the parallelepiped based on the three unit
vectors is

V3 = |detE3| (3.196)

Both σmin(E3) and V3 characterize the level of linear independence of the three
unit vectors, suggesting a connection between these two measures. Since the
product of the eigenvalues is equal to the determinant, and the sum of the
eigenvalues is equal to the trace, one has

[σ1(E3)σ2(E3)σ3(E3)]
2 = λ1(ET

3 E3)λ2(ET
3 E3)λ3(ET

3 E3)

= det(ET
3 E3) = det2(E3) = V 2

3

that is,
σ1(E3)σ2(E3)σ3(E3) = V3 (3.197)

Similarly,

σ2
1(E3) + σ2

2(E3) + σ2
3(E3) = λ1(ET

3 E3) + λ2(ET
3 E3) + λ3(ET

3 E3)

= trET
3 E3 = 1 + 1 + 1 = 3 (3.198)

From (3.198), one immediately obtains

1 ≤ σ2
max(E3) ≤ 3

and therefore it follows from (3.197), with the convention σmax = σ1 ≥ σ2 ≥
σ3 = σmin, that

σ4
min(E3) ≤ σ2

1(E3)σ2
2(E3) ≤ σ2

1(E3)σ2
2(E3)σ2

3(E3) = V 2
3 ≤ 9σ2

min(E3)

Hence
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V3

3
≤ σmin(E3) ≤ V

1
2

3 (3.199)

The right inequality indicates that σmin and V3 could be of different “orders
of magnitude”. Examples given in [TP98] demonstrate that the inequalities
in (3.199) cannot be asymptotically improved.

The maximum “trihedral volume” V3 based on three unit edge vectors57

may serve as a sufficient convergence condition for FE interpolation. However,
due to a “nonlinear” relationship (3.199) between V3 and σmin, volume V3 is
expected to be a less accurate a priori error measure than σmin.

Necessity of the minimum singular value condition

There are several, and not equivalent, definitions of a shape condition being
“essential” for the convergence of FE approximation. These definitions can be
subdivided into the following broad categories:

(a): if a shape condition is violated, the interpolation error may fail to tend
to zero for some families {Ki} of elements (of a given type) with hi =
diam(Ki) → 0 and for some admissible functions;

(b): if a shape condition is violated for any family of elements {Ki} of a
given type, the interpolation error will not tend to zero for some admissible
functions;

(c),(d): same as (a) and (b), respectively, but for the error of the numerical
solution (the Galerkin projection) instead of the interpolation error.

Clearly, (b) is stronger than (a). Categories (c)–(d) are much more difficult
to establish than (a)–(b). For first order triangular elements the minimum and
the maximum angle conditions are both “essential” in the sense of (a), but
only the maximum angle condition (equivalent in this case to the minimum
singular value criterion) is “essential” in the sense of (b). M. Kř́ıžek [K9̌2]
proved that his condition is essential in the (a)-sense. Babuka and Aziz [BA76]
showed that the maximum angle condition for triangles is essential in the (c)
sense.

It is easy to demonstrate that the minimum singular value condition is
essential in the (a) sense; in fact, either of the two examples given by Kř́ıžek
[K9̌2] suffices for this (the minimum singular value condition is violated, and
there is no convergence). Establishing the necessity of the minimum singu-
lar value condition in a stronger (b) sense is more difficult. To this end, we
need a definition that allows for freedom of solid rotation and translation of
tetrahedral elements.

57 Strictly speaking, the maximum should be taken over all triples of edges, not
necessarily having a common node.



178 3 The Finite Element Method

Definition 8. For a given tetrahedron K, the equivalence class of tetrahedra
obtained from K by rigid rotations and/or translations is denoted with K̂.
Any energy norm ‖u‖E,K on K is extended to the equivalence class K̂ by

‖u‖E,K̂,Ω = sup{‖u‖E,K , K ∈ K̂, K ⊂ Ω} (3.200)

The necessity of the minimum singular value condition in the (b)-sense can
then be stated as follows.

Proposition 10. Let {Ki}∞i=1 be an arbitrary sequence of tetrahedral elements
such that hi ≡ diam(Ki) → 0 and σmin(E(Ki)) → 0 as i → ∞. In addition,
assume that the ratio of the maximum edge hi ≡ lmax(Ki) to the minimum
edge lmin(Ki) is uniformly bounded on {Ki}∞i=1. Then there exists a function
u ∈ C2(Ω̄) for which the H1-error of linear interpolation tends to infinity:

‖Π1(Ki)u − u‖H1,K̂i,Ω
→ ∞ (3.201)

Proof. The starting point is exactly as in the proofs of Proposition 7 and
Proposition 8. Since arbitrary translations and rotations are allowed by Defi-
nition 8 in the norm used in (3.200), the minimum eigenvector of EET may
be assumed to run along the z-axis. Then, for the elements in the sequence,
all edges will tend to the xy-plane.

Hence one can select a subsequence of elements, again denoted as {Ki},
with their nodes r

(i)
1 , r

(i)
2 , r

(i)
3 , r

(i)
4 converging to four points r1−4 in the

xy-plane, with r
(i)
1 = r1 = 0 for all i. Due to the assumed boundedness of

lmax/lmin, the four points r1−4 must be distinct.
Consider first the case when no three of the points rj ≡ (xj , yj) (j = 1,

2, 3, 4) lie on a straight line. Introduce a Cartesian system with point r1 at
the origin, point r2 on the x axis at (x2, 0), point r3 at (x3, y3), point r4 at
(x4, y4), and points r

(i)
j ≡ (x(i)

j , y
(i)
j , z

(i)
j ). Since by assumption points r1, r2,

r3 do not lie on the same line,

y3 �= 0 (3.202)

For each Ki, there exists a quadratic function of x, y

u
(i)
quadr(a

(i);x, y) =
1
2

a
(i)
1 x2 + a

(i)
2 xy + a

(i)
3 y2 (3.203)

with a coefficient vector a(i) = (a(i)
1 , a

(i)
2 , a

(i)
3 )T such that

u
(i)
quadr(a

(i);x, y) =
z(i)

‖z(i)‖2
(3.204)

Indeed, the suitable a(i) is given by

a(i) =
1

‖z(i)‖2
(Q(i))−1z(i) (3.205)
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where the matrix

Q(i) =

⎛
⎜⎝

1
2 x

(i)2
2 x

(i)
2 y

(i)
2

1
2 y

(i)2
2

1
2 x

(i)2
3 x

(i)
3 y

(i)
3

1
2 y

(i)2
3

1
2 x

(i)2
4 x

(i)
4 y

(i)
4

1
2 y

(i)2
4

⎞
⎟⎠

can easily be verified to be nonsingular if no three points r1−4 lie on
one straight line. Moreover, since Q(i) is a continuous function of coordi-
nates x

(i)
j , (Q(i))−1 exists and is uniformly bounded for the sequence58 and

limi→∞(Q(i))−1 = Q−1 exists. Therefore the sequence of coefficient vectors
a(i) defined by (3.205) is bounded, and one can select a converging subsequence
a(i) → a(∞), with the corresponding function u

(∞)
quadr = uquadr(a(∞);x, y).

According to (3.204), the coefficients of u
(i)
quadr are chosen in such a way

that its linear interpolant over Ki is simply

u
(i)
lin ≡ Π1(Ki)u

(i)
quadr =

z(i)

‖z(i)‖2

Therefore the z-derivative of the interpolation error

∂z(u
(i)
lin − u

(i)
quadr) =

1
‖z(i)‖2

→ ∞

because ‖z(i)‖2 → 0 as σmin(E(Ki)) → 0. This implies that the interpola-
tion error for the limiting function u

(∞)
quadr also tends to infinity, despite the

boundedness of the seminorm |uquadr|2,∞,Ki
= ‖a(∞)‖1.

If three of the points r1−4 lie on one straight line, the corresponding face
is degenerate, and the proof can be essentially repeated in two dimensions in
the plane of this face.

3.14.4 Condition Number and Approximation

Practical experience has shown (see e.g. F.-X. Zgainski et al. [ZMC+97]) that
the condition number of the FE stiffness matrix is a useful measure of mesh
quality. Since the condition number strongly affects the performance of iter-
ative systems solvers, it is not surprising that slow convergence of the solvers
and poor accuracy of the solution (due to poor quality of the FE mesh) typi-
cally go hand in hand.

Based on the results of this section, it can be argued that poor approxima-
tion and poor conditioning of the system are related to each other indirectly :
both of these quantities stem from the maximum eigenvalue of the global stiff-
ness matrix. This connection is schematically illustrated in Fig. 3.43. (The

58 With a possible exception of a finite set of indices.
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minimum eigenvalue has no bearing on interpolation accuracy and can typi-
cally be viewed as a fixed parameter associated with the size of the computa-
tional domain.59)

Fig. 3.43. A large eigenvalue of the FE stiffness matrix is a common source of both
ill-conditioning of the FE system and poor accuracy of the solution.

3.14.5 Discussion of Algebraic and Geometric a priori Estimates

We have explored the dual algebraic/geometric nature of finite element in-
terpolation errors. From the algebraic perspective, the error was shown to
be governed by the maximum eigenvalue of the FE stiffness matrix. When
the maximum eigenvalue estimate is applied to triangular and tetrahedral el-
ements, several known geometric conditions and several nonstandard results
are obtained. For triangular elements in particular, Zlámal’s minimum angle
condition and the Synge–Babuška–Aziz maximum angle condition are recov-
ered.

For tetrahedral elements, the maximum eigenvalue estimate leads to an
interesting result. The shape of tetrahedral elements turns out to be accu-
rately represented, in the FE context, by the minimum singular value of the
“edge shape matrix”. This singular value characterizes, on the one hand, the
“flatness” of the element and, on the other hand, the accuracy of the FE
interpolation.

There are several links between the minimum singular value and some
geometric parameters of the tetrahedron, but the minimum singular value
is, in some well-defined sense, one of the most precise measures. (Jamet’s
condition is another one.)

Due to its generality, the maximum eigenvalue condition can be applied in
cases where no other shape criteria are immediately available. For example,
59 Strictly speaking, the ratio of maximum/minimum eigenvalues is in general a

suitable measure of conditioning for symmetric positive definite matrices only.
This case is implicitly assumed, to avoid further complications.
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anisotropy of material parameters should result, intuitively, in some “scaling”
of the coordinate axes before any geometric accuracy criteria can be consid-
ered. In contrast, the maximum eigenvalue criterion accommodates anisotropy
automatically, since material parameters are built into the stiffness matrix.

This criterion can be applied to elements of any shape and order but is
not without limitations. First, it provides a priori estimates only; it remains
to be seen whether similar ideas can be used to enhance a posteriori estimates
critical for adaptive mesh refinement (Section 3.13).

Second, the maximum eigenvalue criterion is a sufficient but not generally a
necessary condition; it does not guarantee the best error estimate. This is well
illustrated by two cases considered in this section: (a) for conservative fields on
Whitney edge elements, the result (expressed via the minimum singular value
of the edge shape matrix) is optimal; (b) at the same time, for triangular node
elements the maximum eigenvalue criterion leads to Zlámal’s minimum angle
condition rather than to the more accurate Synge–Babuška–Aziz maximum
angle condition.

The theoretical results provide general and easy-to-implement a priori cri-
teria of FE accuracy. The computational overhead in the overall FE procedure
is negligible. For tetrahedral elements in particular, the precise characteriza-
tion of shape via the minimum singular value of the element “edge shape
matrix” can be recommended for engineering practice. Experimental results
reported by M. Dorica & D.D. Giannacopoulos [DG05] and by A. Plaks &
myself [TP98] support this conclusion.

3.15 Special Topic: Generalized FEM

3.15.1 Description of the Method

A detailed explanation and analysis of Generalized FEM proposed origi-
nally by I. Babuška & J.M. Melenk [MB96, BM97] is widely available (e.g.
T. Strouboulis et al. [SBC00]). Of all interesting features of GFEM, the most
salient one is its ability to employ a variety of special non-polynomial ap-
proximating functions. In particular, jumps of the normal derivatives of the
potential at interface boundaries can be represented by special basis functions.
Strouboulis et al. [SBC00] present an extensive set of application examples
with special functions for material inclusions in stress analysis. Babuška et
al. [BCO94] applied Generalized FEM (before the method was referred to
as such) to problems with “rough” coefficients – discontinuities at material
interfaces. A. Plaks et al. [PTFY03] implemented GFEM for problems with
magnetized particles.

In GFEM the computational domain Ω is covered with overlapping sub-
domains (“patches”) Ω(i), and different local approximations are merged by
Partition of Unity (PU) {Ωi}npatches

i=1 on this system of patches. More precisely,
a set of PU functions {ϕ(i)}, 1 ≤ i ≤ npatches is constructed to satisfy
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npatches∑
i=1

ϕ(i) ≡ 1 in Ω, suppϕ(i) = Ω(i) (3.206)

That is, each function ϕ(i) is associated with the respective patch Ω(i) and
vanishes outside that patch.

Then the global solution u can be decomposed into its “patch components”
u(i)

u = u

npatches∑
i=1

ϕ(i) =
npatches∑

i=1

uϕ(i) =
npatches∑

i=1

u(i), with u(i) ≡ uϕ(i) (3.207)

Fig. 3.44 gives a simple 1D illustration of the PU principle, with just two
overlapping patches. A seamless transition from the solution in the first patch
to the solution in the second patch is achieved by multiplying these individual
solutions by the weighting functions ϕ(1) and ϕ(2), respectively. As a refer-
ence point moves from left to right, the weight of the first solution gradually
decreases, while simultaneously the weight of the second solution increases.

Fig. 3.44. The idea of partition of unity illustrated in 1D: weighting functions ϕ(1)

and ϕ(2) are used to merge two solutions in the overlapping subdomains. The sum of
the weighting functions is unity everywhere. (Reprinted by permission from [Tsu06]
c©2006 Elsevier.)

Decomposition (3.207) is valid for the exact solution but can equally well
be used for assembling a global approximate solution from the local ones.
Suppose that locally, within each patch Ω(i), the exact solution u can be
approximated by a linear combination u

(i)
h of some approximating functions

g
(i)
α :

u
(i)
h =

∑
α

c(i)
α g(i)

α (3.208)
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c
(i)
α being some (real- or complex-valued) coefficients. The final system of

approximating functions ψ
(i)
α is built with ϕ(i) as weight functions:

ψ(i)
α = g(i)

α ϕ(i) (3.209)

The global approximation error is guaranteed to be bounded by the local
(patch-wise) errors [BM97], [SBC00], [BBO03], with rigorously provable esti-
mates of the global error in terms of local errors and the norms of the PU
functions φ.

3.15.2 Trade-offs

The multiplication by ϕ(i) in (3.209) guarantees seamless merging of patch-
wise approximations, with rigorously provable estimates of the global error in
terms of local errors and the norms of the PU functions ϕ [BM97]. On the
negative side, however, this multiplication complicates the set of approximat-
ing functions and tends to make it more ill-conditioned (in some cases even
linearly dependent, see [BM97]). For positive definite problems, the linear
dependence can be tolerated because the resultant algebraic system remains
consistent and positive-semidefinite and can be handled by clever linear alge-
bra algorithms (see T. Strouboulis et al. [SBC00] for further information).

The “no free lunch” cliché applies fully to GFEM. While the rigid re-
quirements on mesh structure and the approximating functions are greatly
relaxed, the computational burden is shifted toward numerical quadratures
that need to be computed in the Galerkin method over the intersections of
overlapping patches. This complex task can be accomplished in general only
by adaptive numerical integration. The efficiency of this integration is critical
for the overall performance of the algorithm.

In addition, GFEM-PU may lead to a combinatorial increase in the number
of degrees of freedom. For illustration, consider a regular hexahedral mesh
where a “patch” is defined as a set of eight hexahedra around a common
node. In the presence of material boundaries, it is sensible to replace the
usual eight trilinear basis functions with eight special functions satisfying the
derivative jump condition at the interface (see also Chapter 4). In GFEM-
PU, each of these special functions gets multiplied by the “shape function”
ϕ of the patch. As each hexahedral element of the mesh is an intersection of
eight patches (centered at its eight respective nodes) and each of these patches
contributes eight approximating functions, the stiffness matrix for elements
close to material interfaces is 64 × 64 instead of the usual 8 × 8. For all of
the above reasons, alternative approaches may be worth exploring. One such
approach that generalizes finite difference, rather than finite element, analysis
is discussed in Chapter 4.
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3.16 Summary and Further Reading

The Finite Element Method is arguably the most powerful computational tool
ever invented. Its solid variational foundation makes the method remarkably
robust – often beyond the areas where a complete mathematical analysis is
available.

FEM is well established in traditional branches of engineering such as stress
analysis, heat transfer, electromagnetic fields in machines and microwave cir-
cuits, etc. However, FEM has not yet been taken full advantage of in some
areas of nanoscale simulation. Examples include nano-photonics and nano-
optics – more specifically, plasmonic field enhancement by particle clusters,
scattering of light by optical tips in near-field microscopy, and wave propaga-
tion in photonic crystal devices. These and other cases presented in Chapter 7
will hopefully stimulate further applications of FEM in nanoscale science and
technology.

The present chapter explains the fundamentals of FEM (the underlying
variational principles, finite elements and spaces, FE matrices, algorithmic
implementation) and provides an overview of state-of-the-art techniques of
FE analysis (adaptive mesh refinement and multigrid algorithms). The chap-
ter also covers more advanced topics: edge elements, a priori estimates of
numerical accuracy as a function of element shape, and Generalized FEM.

Adaptive hp-refinement aims at the most effective use of the computational
resources by constructing quasi-optimal meshes: the density of elements is
higher in regions where the solution is less smooth and changes more rapidly;
the density is lower in regions of smooth variation of the solution. Adaptive
techniques are now an integral part of the commercial FE packages. The same
is true for edge elements in electromagnetic applications: the gap between the
elegant mathematical theory and practical utility was bridged in the 1990s,
especially after it became clear that many families of edge elements, in contrast
with the nodal ones, do not produce nonphysical eigensolutions known as
“spurious modes”.

Generalized FEM occupies a niche in practical applications. This will most
likely continue to be the case, although the niche may grow to some extent.
The power of GFEM lies in its ability to use a wide selection of approxima-
tions not limited to element-wise polynomials as in the standard FEM. This
could be a great advantage in many cases where particular features of the
physical field or potential, such as singularities, boundary layers, dipole-like
behavior, etc., are known a priori and can therefore be accurately represented
by special approximating functions. However, there is a substantial price to
be paid for this advantage: complex numerical quadratures, increased num-
ber of unknowns, and possible ill-conditioning or in some cases even linear
dependence of the system of approximating functions.

The special section on a priori error estimates in this chapter examines
the links between algebraic and geometric accuracy measures. While it is
well known that “flat” elements provide poor numerical approximation of the
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solution, it is argued in Section 3.14 that the “true source” of the error is of
algebraic nature. This source can be traced to the maximum eigenvalue of the
FE stiffness matrix and, in the case of triangular and tetrahedral elements,
to the minimum singular value of the “edge shape matrix”. It is shown that
the latter measure is, in some sense, a precise one, and its connection with
various geometric parameters is examined.

The reader who would like to learn more about Finite Element analysis is
in an enviable position. There are many excellent books and papers on all as-
pects of FEM, written from the engineering, mathematical and computational
perspectives. Researchers and developers of engineering applications cannot
go wrong with the books by O.C. Zienkiewicz et al. [ZTZ05, ZT05]. In engi-
neering electromagnetics, P.P. Silvester’s group was the first to apply finite
elements; his book with R.L. Ferrari [SF90] is still valuable. J. Jin’s more
recent monograph [Jin02] is a very good source of information on FEM in
electromagnetics and includes, in addition to standard subjects, chapters on
vector finite elements, absorbing boundary conditions, finite element – bound-
ary integral methods and on time-domain analysis. The book by J.L. Volakis
et al. [VCK98] also covers vector elements, as well as applications to radiation
and scattering and hybrid finite element – boundary integral methods. Several
books are focused on the applications of FEM to low-frequency electromag-
netic fields in electric machines and devices: J.P. A. Bastos & N. Sadowski
[aPABS03], S. Salon & M. V.K. Chari [SC99], G. Meunier (ed.) [Meu07].

On the mathematical side, there are several magnificent books as well. The
works by G. Strang & G.J. Fix [SF73] and I. Babuška, A.K. Aziz & B. Szabó
[BA72, SB91] are classical. The main reference on the mathematical treatment
of FEM in electromagnetism is P. Monk’s monograph [Mon03].

The monograph by L. Demkowicz [Dem06] bridges mathematical the-
ory and applications, with the emphasis on hp-adaptivity. The book deals
with elliptic and wave problems and includes 1D and 2D codes developed by
Demkowicz & co-workers.

Finally, A. Bossavit’s book [Bos98] is in a category of its own due to its
unconventional approach and style. The focus of this book is on the mathe-
matical principles and structures underlying FE methods in electromagnetism
– in particular, concepts of variational analysis, differential geometry and al-
gebraic topology. While the content is mostly mathematical, Bossavit’s style
of writing makes the material accessible to non-experts (still, the reader will
need enough patience and perseverance to understand the book).

In the coming years, I look forward to seeing further applications of FEM in
the simulation of micro- and nanoscale systems. Electromagnetic field analysis
in optics and photonics seems particularly interesting, as it may well lead to
the development of new devices and materials with completely unconventional
properties and behavior (Chapter 7).
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3.17 Appendix: Generalized Curl and Divergence

This section is an extension of Appendix 6.15 (p. 343) on generalized functions
(distributions) and their derivatives.

The conventional representation of the divergence and curl operators –
say, in Cartesian coordinates – requires differentiability:

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
; (∇×A)x =

∂Az

∂y
− ∂Ay

∂z
; etc.

However, derivatives in these expressions can be treated in the generalized
sense of distributions (see Appendix 6.15), thereby extending the notion of
divergence and curl to functions that are not differentiable in the standard
sense of differential calculus.

Example 12. The A field with a step-like x-component, Ax = 0 for x < 0 and
Ax = 1 for x ≥ 0, and zero y- and z-components, has generalized divergence
∇·A = δ(x). For the electric field, this Dirac-delta divergence corresponds to
a surface charge.

Example 13. The A field with a step-like z-component, Az = 0 for y < 0
and Az = 1 for y ≥ 0, and zero x- and y-components, has generalized curl
∇×A = δ(y)x̂. For the magnetic field, this Dirac-delta curl corresponds to a
surface current.

Instead of appealing to the Cartesian representation of divergence and curl
with generalized derivatives, one can give an equivalent but coordinate-free
definition via integration-by-parts identities. For divergence,

(∇ ·A, φ) = − (A, ∇φ) (3.210)

where the inner product is that of L2. This identity, in the regular calculus
sense, follows from the calculus formula

∇ · (Aφ) = φ∇ ·A + A · ∇φ

if fields A, φ are continuously differentiable and φ has a compact support. (The
latter requirement ensures that the surface integral term in the integration
by parts vanishes). One can then extend the notion of divergence to non-
differentiable fields and define generalized divergence as the linear functional

〈∇ ·A, φ〉 ≡ − (A, ∇φ) (3.211)

over smooth scalar functions φ with a compact support. Equation (3.210)
ensures that the extended definition is consistent with the regular calculus
version of divergence as long as the vector field is smooth.

For a vector field that has a jump of its normal component across a surface
S, but is otherwise smooth, the generalized divergence is
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〈∇ ·A, φ〉 ≡ − (A, ∇φ) =
∫

S

[An]φ dS + ({∇ ·A}, φ)

where integration by parts was applied. Here [An] = An+−An− is the jump of
the normal component of the vector field across S (n+ referring to the region
into which the normal to S is pointing). Thus

∇ ·A = [An] δS + {∇ ·A} (3.212)

where generalized divergence is implied in the left hand side and divergence
in its regular calculus sense is specified by the curly brackets in the right hand
side. This is V.S. Vladimirov’s notation; see Appendix 6.15 on p. 343 and also
footnote 18 on p. 320 and 44 on p. 347.

The curl operator is generalized in a similar fashion:

(∇×A, B) = (A, ∇×B) (3.213)

where the inner product is again that of L2. This identity, in the regular cal-
culus sense, follows from (3.128) if fields A, B are continuously differentiable
and B has a compact support. Generalized curl is defined as

〈∇ ×A,B〉 ≡ (A,∇×B) (3.214)

over smooth vector functions B with a compact support. For vector fields
with a discontinuous tangential component across a surface S, but smooth
otherwise, the generalized curl is

∇×A = [A× n̂] δS + {∇ ×A} (3.215)

This formula is analogous, and obtained in a similar way, to expression (3.212)
for generalized divergence. A key observation in the context of edge elements is
that a jump of the tangential component of a vector field across a surface leads
to the Dirac-delta term for the generalized curl on this surface; Example 13
on p. 186 is a simple but representative illustration of this property that
is not difficult to verify in general. The tangential component is continuous
if and only if the generalized curl exists as a regular function, not only a
distribution.



4

Flexible Local Approximation MEthods
(FLAME)

This chapter is based to a large extent upon my papers [Tsu05a, Tsu05b,
Tsu06].

4.1 A Preview

Although the Finite Element Method (FEM) described in Chapter 3 is one
of the most powerful and general analysis techniques, in some cases the com-
plicated FE meshes, data structures and solvers can become computationally
expensive or even impractical.

Finite Difference (FD) algorithms (Chapter 2), on the other hand, operate
on geometrically simple grids and the data structures associated with them
are much simpler than those of FEM. The system solvers also tend to be more
efficient. The downside, in comparison with FEM, is relatively poor numerical
accuracy at material interfaces not conforming to the simple FD grid.

This leads to a legitimate question: given a regular grid not geometrically
conforming to material interfaces, what is – in some sense – “the best” one
can do? The answer, in general, is not the classical FD schemes. This chapter
argues in favor of a new FD calculus referred to by the acronym “FLAME”:
Flexible Local Approximation MEthods. The word “Flexible” implies that
any desired approximation of the solution (exponentials, spherical harmonics,
plane waves, generic or special polynomials, etc.) can be incorporated directly
into the FD scheme. This is in contrast with Taylor polynomial expansions
that form the basis of standard FD.

In FLAME, approximation is always treated as local, with the intention to
represent local features of the solution that in many cases may qualitatively
be known a priori (for example, the behavior of the potential near a material
interface; see also Section 4.5 on p. 219).

As a preview, consider a simple 2D test problem: a cylindrical magnetic
particle, with relative permeability µp = 100, immersed in a uniform external
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field. A contour plot and a grayscale plot of the magnetic scalar potential u
(the magnetic field H = −∇u) are shown in Fig. 4.1 for illustration.1

Fig. 4.1. A contour plot and a grayscale plot of the magnetostatic potential for a
cylindrical particle in a uniform external field.

Fig. 4.2 compares two meshes that give about the same level of numerical
accuracy for this problem. The Finite Element mesh has 31,537 nodes, 62,592
second order triangular elements and 125,665 degrees of freedom (d.o.f.); the
relative error in the potential at the nodes is 2.07× 10−8. The FLAME grid
has 900 d.o.f. (30× 30), and the relative error in the potential at the nodes is
2.77× 10−8 if 9-point (3× 3) stencils are used. The high accuracy of FLAME
schemes is due to the approximating functions employed in FLAME. For the
particle problem, these functions are cylindrical harmonics that represent the
behavior of the potential in the vicinity of the particle much better than the
Taylor polynomials do in standard FD. This chapter explains how FLAME
schemes are constructed.

First, Section 4.2 provides an introduction to FLAME and highlights the
main ideas behind it. Some of these ideas, such as Trefftz basis functions
in the finite-difference context, multivalued approximation, trade-off between
conformity and flexibility of approximation, are nonstandard.

As a preliminary example, FLAME is developed for the (trivial) case of
the 1D Laplace equation in Section 4.2.6 to fix ideas. General construction
of Trefftz–FLAME is presented in Section 4.3, where case studies in 1D, 2D
and 3D are provided. In Trefftz–FLAME, the approximating functions are
chosen as local solutions of the underlying differential equation. In a number
of practically interesting cases, the local solutions are not difficult to derive
analytically; in addition to this chapter, computational examples are given
1 The electrostatic problem for a dielectric particle is completely analogous.



4.2 Perspectives on Generalized FD Schemes 191

Fig. 4.2. Two meshes yielding about the same level of accuracy for the particle
problem. The FE mesh has 31,537 nodes, 62,592 second order triangular elements
and 125,665 degrees of freedom. The FLAME grid has 900 degrees of freedom.
(Reprinted by permission from [Tsu06] c©2006 Elsevier.)

in Chapter 6 (electrostatic interactions of colloidal particles) and Chapter 7
(electromagnetic field enhancement by plasmonic particles and waves in pho-
tonic crystals).

Section 4.5 reviews existing classes of methods with nontraditional approx-
imation: Generalized FEM (GFEM), variational homogenization, pseudospec-
tral methods, and others. FLAME borrows some features of these methods
(most notably, flexible approximation from Generalized FEM) but is not a
particular case of any of them. Some existing methods turn out to be partic-
ular cases of FLAME: the exact schemes by R.E. Mickens [Mic94, Mic00]; the
Hadley schemes for electromagnetic wave propagation [Had02a]; the “Mea-
sured Equation of Invariance” [MPC+94] by K.K. Mei et al.

The chapter concludes with a discussion (Section 4.6) and appendices on
the variaitonal version of FLAME, the 9-point 2D FLAME for the wave equa-
tion, and the Fréchet derivative.

4.2 Perspectives on Generalized FD Schemes

4.2.1 Perspective #1: Basis Functions Not Limited to Polynomials

Taylor polynomials are generic and may be the best option when no a priori
information about the solution is available. When the local behavior of the
solution is known, more effective approximations can usually be generated.

For example, if the solution exhibits boundary layers, wave-like behav-
ior, dipole components, etc., in certain regions, as schematically shown in
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Fig. 4.3, then it may be appropriate to use exponentials, sinusoids, dipole
harmonics, and so on, as approximating functions in the respective regions.
The subsequent sections of this chapter show how this can be accomplished
in a generalized finite-difference framework.

Fig. 4.3. Physical fields or potentials often have salient local features: boundary
layers, wave-like behavior, peaks (left picture), dipole components (right picture),
etc. Numerical accuracy can be improved significantly if such local behavior is taken
into account.

4.2.2 Perspective #2: Approximating the Solution, Not the
Equation

In classic Taylor-based FD schemes, one approximates the underlying differ-
ential equation – i.e. the operator and the right hand side. For instance, on
a three-point stencil in 1D one can expect a second order approximation of
the Poisson equation. There is, however, substantial redundancy built into
this approach. Indeed, the scheme covers all sufficiently smooth functions for
which the Taylor approximation is valid. Yet it is only the solution of the
problem that is of direct interest; it is, in a sense, wasteful to approximate
other functions.

To highlight this point, imagine for a moment that the exact solution u∗ is
known. It is then trivial to find a three-point scheme that is itself exact, e.g.:

uk−1

u∗
k−1

− 2
uk

u∗
k

+
uk+1

u∗
k+1

= 0 (4.1)

It is easy to dismiss this example as frivolous, as it requires knowledge of the
exact solution. The message, however, is that as more information about the
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solution is utilized, higher accuracy can be achieved; equation (4.1) is just an
extreme example of this principle.

One practical illustration is the use of harmonic polynomials to approxi-
mate harmonic functions (Sections 4.4.4, 4.4.5). More generally, the “Trefftz”
version of FLAME calculus employs basis functions that satisfy the differential
equation being solved. No effort is wasted on trying to approximate functions
that do not satisfy the equation. This “Trefftz” approximation is purely local
and therefore relatively easy to construct.

4.2.3 Perspective #3: Multivalued Approximation

In FD analysis, interpolation between the nodes is usually viewed just as a
postprocessing tool not inherent in the FD method itself. However, approx-
imation between the nodes is in fact an integral part of the derivation of
classical FD schemes. Indeed, this approximation involves Taylor expansions
around grid nodes (Fig. 4.4). Each of these expansions “lives” in a neigh-
borhood of its node. The disparate Taylor expansions coexist in the overlap
region of two or more such neighborhoods. This is precisely the viewpoint

Fig. 4.4. Taylor approximations around two grid nodes coexist in the overlap area.

taken in FLAME, except that any desirable approximating functions are al-
lowed rather than just the Taylor polynomials. Each of these approximations
is purely local and valid in the vicinity of a given grid stencil; as in classic
FD, two or more such approximations may coexist at any given point. The
discrepancies between these approximations are expected to tend to zero if the
method converges as the grid is refined. At the same time, these discrepancies
may prove useful as an a posteriori error indicator in practical computation
(J. Dai & I. Tsukerman [DT07]).

4.2.4 Perspective #4: Conformity vs. Flexibility

The following schematic chart (Fig. 4.5) puts various methods into a “flexibility
vs. conformity” perspective. “Conformity” is a common jargon term for
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(loosely speaking) a sufficient level of smoothness of the solution. More
formally, in “fully conforming” methods the numerical solution belongs to the
appropriate Sobolev space over the whole computational domain.2 Various
methods shown in the chart are reviewed in Section 4.5 (p. 219).

Fig. 4.5. A schematic “conformity vs. flexibility” view of various numerical meth-
ods. One can gain flexibility of approximation by giving up conformity. This general
trend is indicated by the dashed arrow. GFEM outperforms this trend, at a high
computational and algorithmic cost. Classic FD schemes underperform. FLAME
schemes fill the existing void. (Reprinted by permission from [Tsu06] c©2006 Else-
vier.)

The dashed arrow in the figure shows the general trend: flexibility of ap-
proximation can be gained by giving up some conformity of the method. Two
methods stand out of that trend: Generalized FEM (Section 3.15, p. 181) and
classic FD (Chapter 2).

GFEM outperforms the trend: it is fully conforming (i.e. operating in
a globally defined subspace of the relevant Sobolev space) and yet allows
any desirable approximating functions to be used. However, this advantage is
achieved at a high computational and algorithmic cost. Classic FD schemes

2 In vector field problems, divergence-conforming and especially curl-conforming
spaces H(div; Ω) and H(curl; Ω) are widely used; see A. Bossavit’s & P. Monk’s
monographs [Bos98, Mon03].
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underperform relative to the general trend: they are fully nonconforming and
yet make use only of local polynomial (i.e. Taylor) expansions.

FLAME schemes fill the existing void in the upper-left corner of the chart:
they are fully nonconforming and admit arbitrary approximations.

Clearly, it would be somewhat simplistic to ask which side of this chart
is “better”. No one would question the wonderful success of conventional
FE analysis lying at the “conformal” end. However, the conformity re-
quirements do impose significant limitations in a number of practical cases.
This was understood early on in the development of FEM – hence the no-
tion of “variational crimes” (G. Strang [Str72]), the Crouzeix–Raviart ele-
ments (M. Crouzeix & P.A. Raviart [CR73]), etc. The advantages of the
nonconforming end of the spectrum are clear for problems with multiple
moving particles, where finite element mesh generation may be inefficient or
impractical.

4.2.5 Why Flexible Approximation?

As already noted, in many physical problems some salient features of the so-
lution are qualitatively known a priori. Such features include singularities at
point sources, edge and corners; boundary layers; derivative jumps at material
interfaces; strong dipole field components near polarized spherical particles;
cusps of electronic wavefunctions at the nuclei; electrostatic double layers
around colloidal particles – and countless other examples. Such “special” be-
havior of physical fields is arguably a rule rather than an exception. Clearly,
taking this behavior into account in numerical simulation will tend to produce
more accurate and physically meaningful results.

The special features of the field are typically local, and in numerical mod-
eling it is therefore desirable to employ various local approximations of the
field. The focus of this chapter is precisely on “Flexible Local Approxima-
tion” and on methods capable of providing it – that is, employing a variety
of approximating functions not limited to polynomials.

One motivation for developing this class of methods is to minimize the no-
torious “staircase” effect at curved and slanted interface boundaries on regular
Cartesian grids. In the spirit of “Flexible Local Approximation,” the behavior
of the solution at the interfaces is represented algebraically, by suitable basis
functions on simple grids, rather than geometrically on conforming meshes.
More specifically, fields around spherical particles can be approximated by
several spherical harmonics; fields scattered from cylinders by Bessel func-
tions, and so on. Such analytical approximations are incorporated directly
into the difference scheme.

This approach can be contrasted with very well known, and very power-
ful, Finite Element (FE) methodology, where the geometric features of the
problem are represented on complex conforming meshes. The flexibility of ap-
proximation in FEM is achieved through adaptive mesh refinement: changing
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the mesh size (h-refinement) or the order of approximation (p-refinement).
Still, approximation remains piecewise-polynomial.

FEM is indispensable in many problems where the geometries are complex
and material parameters vary. In addition to mechanical, thermal and electro-
magnetic modeling of traditional devices and machines, FEM has recently pen-
etrated new areas of macromolecular simulation. Molecular interface surfaces
can be viewed as intersections of hundreds or thousands of spheres and con-
sequently are geometrically extremely complex. These interfaces separate the
interior of the molecule, that can be approximated by an equivalent relative di-
electric constant on the order of 1 to 4, from the solvent that in “implicit” mod-
els is considered as a continuum with equivalent dielectric and Debye para-
meters ([BSS+01, GPN01, HN95, CF97, FEVM01, RAH01, Sim03, DTRS07],
references therein, and Chapter 6). The computational cost of finite element
macromolecular simulation can be enormous. N.A. Baker et al. [BSS+01] used
a massively parallel supercomputer with 1152 processors to simulate cell struc-
tures with 88,000 to 1.25 million atoms; the Poisson–Boltzmann model was
used (see Chapter 6).

The computational overhead of mesh generation and matrix assembly in
FEM is significant, and for geometrically simple problems FEM may not be
competitive with Finite Difference (FD) schemes and other methods operat-
ing on simple Cartesian grids. One extreme example of geometric simplicity
comes from molecular dynamics simulations, where charges or dipoles are typ-
ically considered in a cubic box with periodic boundary conditions. The Ewald
algorithm (taking advantage of Fast Fourier Transforms) is then usually the
method of choice (Chapter 5).

Problems with multiple moving particles also call for development and
application of new techniques. Generation of geometrically conforming FE
meshes is obviously quite complicated or impractical when the particles move
and their number is large (say, on the order of a hundred or more). Parallel
adaptive Generalized FEM has been developed [GS00, GS02a, GS02b], but
the procedure is quite complicated both algorithmically and computationally.
Standard FD schemes would require unreasonably fine meshes to resolve the
shapes of all particles. An alternative approach is to use two types of grid:
spherical meshes around the particles and a global Cartesian grid [Fus92,
DHM+04]. The electrostatic potential then has to be interpolated back and
forth between the grids, which reduces the numerical accuracy.

The celebrated Fast Multipole Method (FMM) has clear advantages for
systems with a large number of known charges or dipoles in free space (or a
homogeneous medium). For inhomogeneous media (e.g. a dielectric substrate,
or finite size particles with dielectric or magnetic parameters different for those
of free space) FMM can still be used as a fast matrix-vector multiplication
algorithm embedded in an iterative process for the unknown distribution of
volume sources. However, the benefits of FMM in this case are much less clear.
An even stronger case in favor of difference schemes (as compared to FMM)
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can be made if the problem is nonlinear (for example, the Poisson–Boltzmann
equation). FMM will remain outside the scope of this chapter.

The proposed new FLAME schemes provide a practical alternative that is
both uncomplicated and accurate (Section 4.3). In addition to multiparticle
simulations, FLAME techniques can be applied to a variety of other problems.
As a peculiar example, super high-order 3-point schemes are derived for the
1D Schrödinger equation in Sections 4.4.6, 4.4.7 and for a 1D singular equa-
tion in Section 4.4.8. With the 20th-order 3-point scheme as an illustration,
the solution of the harmonic oscillator problem is found almost to machine
precision with 10–20 grid nodes. The system matrix remains tridiagonal.

4.2.6 A Preliminary Example: the 1D Laplace Equation

The 1D Laplace equation is trivial and is used here only to provide the simplest
possible example of the Trefftz–FLAME schemes. For convenience, consider a
uniform grid with size h, choose a 3-point stencil and place the origin at the
middle node of the stencil.

The key step in Trefftz–FLAME schemes is to approximate the solution –
locally, over the stencil – by a linear combination of basis functions satisfying
the underlying differential equation. The 1D Laplace equation is so simple
that the two independent local solutions

ψ1 = 1; ψ2 = x

also happen to be global solutions of the equation (disregarding the boundary
conditions), but this circumstance is irrelevant for FLAME. The numerical
solution over the stencil is

uh = c1ψ1 + c2ψ2 (4.2)

In general, all the variables in this equation may be different for different grid
stencils, although for the 1D Laplace equation c1,2 happen to be the same
throughout the domain. In the future, if there is any possibility of confusion,
the stencil number will be indicated with a superscript, but for now it is
omitted for simplicity.

We are looking for a difference scheme with some coefficient vector s ≡
(s1, s2, s3)T ∈ R

3 (s – mnemonic for “scheme”) that would relate the nodal
values uh1,2,3 of the numerical solution on the stencil:

s1uh1 + s2uh2 + s3uh3 = 0 (4.3)

Since uh (4.2) contains only two independent parameters (c1,2), it is clear that
the three nodal values must be linearly related and thus (4.3) must hold for
some s. Finding a suitable coefficient vector s is easy, and we shall do so in a
way that will be straightforward to generalize.

The nodal values that figure in (4.3) are
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uh1 ≡ uh(x1) = c1ψ1(x1) + c2ψ2(x1)
uh2 ≡ uh(x2) = c1ψ1(x2) + c2ψ2(x2)
uh3 ≡ uh(x3) = c1ψ1(x3) + c2ψ2(x3)

(4.4)

The matrix-vector form of equations (4.3) and (4.4) is

sT uh = 0 (4.5)

and
uh = Nc (4.6)

where uh = (uh1, uh2, uh3)T is the R
3-vector of nodal values, c = (c1, c2)T is

the R
2-vector of coefficients, and n is the 3× 2 matrix of nodal values of the

basis functions:

N =

⎛
⎝ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)
ψ1(x3) ψ2(x3)

⎞
⎠ (4.7)

Combining (4.5) and (4.6), one obtains

sT Nc = 0 (4.8)

For this identity to be valid for any c, we must have, from basic linear algebra,

s ∈ Null NT (4.9)

Let us spell this out for the 1D Laplace equation. With ψ1 = 1, ψ2 = x and
the coordinates of the nodes (−h, 0, h), the (transposed) nodal matrix (4.7) is

NT =
(

1 1 1
−h 0 h

)

The Trefftz–FLAME difference scheme then is

s = NullNT = (1,−2, 1)T (times an arbitrary coefficient)

which coincides with the standard 3-point scheme for the Laplace equation.
In the remainder of this chapter, we shall see that the definition (4.9) of

the scheme has a great deal of generality and is applicable to a variety of
equations (Section 4.3). First, however, we need to discuss a general setup for
local, finite-difference-like, approximation.

4.3 Trefftz Schemes with Flexible Local Approximation

4.3.1 Overlapping Patches

An important element of the setup, to be used in the remainder of this chapter,
is a set of overlapping patches Ω(i) covering the computational domain Ω =
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∪Ω(i), i = 1, 2, . . . n. This cover of the domain is the same as in Generalized
FEM (see Sections 3.15, p. 181, and 4.5.2, p. 221); however, FLAME differs
from GFEM in many critical respects as we shall see.

The domain cover is needed to define a local, patch-wise, approximation
of the solution. More precisely, within each patch Ω(i) we introduce a local
approximation space

Ψ(i) = span{ψ(i)
α , α = 1, 2, . . . , m(i)} (4.10)

Note that no global approximation space will be considered. Instead, the fol-
lowing notion of multivalued approximation is introduced:

For a given domain cover {∪Ω(i)} with corresponding local spaces Ψ(i), a
multivalued approximation uh{∪Ω(i)} of a given potential u is just a collection
of patch-wise approximations:

uh{∪Ω(i)} ≡ {u(i)
h ∈ Ψ(i)} (4.11)

In regions where two or more patches overlap (Fig. 4.6), several local approx-
imations coexist and do not have to be the same. This situation in fact is
inherent in the FD methodology but is almost never stated explicitly.3

The second ingredient of FLAME is a set of n nodes (the number of nodes
is equal to the number of patches). Although a meshless setup is possible,
we shall for maximum simplicity assume a regular grid with a mesh size h.
The i-th stencil is defined as a set of m(i) nodes within Ω(i): stencil #i ≡
{nodes ∈ Ω(i)}. For any continuous potential u, Nu will denote the set of
its values at all grid nodes (viewed as a Euclidean vector in R

n), and N (i)u
– the set of nodal values on stencil #i. Although the FLAME solution may
be multivalued between the nodes, its values at the nodes are required to be
unique.

Within each patch, the approximate solution u
(i)
h is sought as a linear

combination of m(i) basis functions {ψ(i)
α }:

u
(i)
h =

∑m(i)

α=1
c(i)
α ψ(i)

α (4.12)

Here we are following the same line of reasoning as in the preliminary
example of Section 4.2.6 on p. 197, but in a more general setting. We need
to relate the coefficient vector c(i) ≡ {c(i)

α } ∈ R
m of expansion (4.12) to the

vector u(i)∈R
M of the nodal values of u

(i)
h on stencil #i. (Both M and m

can be different for different patches (i); this is understood but not explicitly
indicated for simplicity of notation.) The relevant transformation matrix N (i),

3 One might argue that in FD methods approximation between the grid nodes is not
multivalued but simply undefined. This point of view is not incorrect but ignores
the fact that the very derivation of FD schemes typically relies upon disparate
Taylor expansions in the neighborhoods of each grid point.
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Fig. 4.6. Overlapping patches with 5-point stencils. (Reprinted by permission from
[Tsu04b] c©2004 IEEE.)

u(i) = N (i)c(i) (4.13)

contains the nodal values of the basis functions on the stencil; if rk is the
position vector of node k, then

N (i) =

⎛
⎜⎜⎜⎝

ψ
(i)
1 (r1) ψ

(i)
2 (r1) . . . ψ

(i)
m (r1)

ψ
(i)
1 (r2) ψ

(i)
2 (r2) . . . ψ

(i)
m (r2)

. . . . . . . . . . . .

ψ
(i)
1 (rM ) ψ

(i)
2 (rM ) . . . ψ

(i)
m (rM )

⎞
⎟⎟⎟⎠ (4.14)

4.3.2 Construction of the Schemes

In the remainder, except for Appendix 4.7.3, the focus will be on the Trefftz
version of FLAME, where the approximating functions ψ(i) satisfy the under-
lying differential equation (4.15) exactly. Trefftz methods are well known in
the variational context (I. Herrera [Her00]); in contrast, here a purely finite-
difference approach is taken and will prove to be attractive in a variety of
cases.4 Trefftz–FLAME is simpler and at the same time usually more ef-
fective than the more general variational version of FLAME considered in
Appendix 4.7.3 on p. 232.

Since the basis functions by construction already satisfy the underlying
differential equation, so does the approximate solution u

(i)
h , automatically.

As we shall see, there will typically be fewer approximating functions than
4 The starting point for this development of Trefftz–FLAME schemes was Gary

Friedman’s non-variational version of FLAME for unbounded problems [Fri05],
[HFT04].
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nodes within the patch – most frequently, m functions for M = m + 1 stencil
nodes. The nodal matrix N (i) is thus in general rectangular.5 The number of
approximating functions may be different for different patches, but for brevity
of notation this is not explicitly indicated.

Let us initially assume that the underlying differential equation within a
patch Ω(i) has a zero right hand side:

Lu = 0 in Ω(i) (4.15)

where L is a differential operator (one may want to have in mind, say, the
Laplace operator as one of the simplest examples).

Within each patch, the approximate solution u
(i)
h is sought as a linear

combination (4.12) of m(i) basis functions {ψ(i)
α }. Identity (4.13) relates the

vector of coefficients c(i) to the nodal values:

N (i)c(i) = u(i) (4.16)

In the simplest 1D example, with m = 2 basis functions ψ1,2 at three grid
points xi−1, xi, xi+1, matrix N (i) (4.14) is

N (i) =

⎛
⎝ψ1(xi−1) ψ2(xi−1)

ψ1(xi) ψ2(xi)
ψ1(xi+1) ψ2(xi+1)

⎞
⎠ (4.17)

We have already seen this for the 1D Laplace equation and the three-point
stencil in Section 4.2.6. More generally for an M -point stencil, a vector of
coefficients s(i) ∈ R

M of the difference scheme is sought to yield

s(i)T u(i) = 0 (4.18)

for the nodal values u(i) of any function u
(i)
h of form (4.12). Due to (4.13) and

(4.18),
s(i)T N (i)c(i) = 0 (4.19)

For this to hold for any set of coefficients c(i), the null-space condition already
familiar to us must hold:

s(i) ∈ Null N (i)T (4.20)

If the null space is of dimension one, s(i) represents the desired scheme (up
to an arbitrary factor), and (4.20) is the principal expression of this Trefftz–
FLAME scheme. The meaning of (4.20) is simple: each equation in the system
N (i)T s(i) = 0 implies that the respective basis function satisfies the difference
equation with coefficients s(i). There is thus an elegant duality feature between
the continuous and discrete problems: any linear combination of the basis

5 However, in the variational-difference formulation (Appendix 4.7.3), the number
of basis functions is typically equal to the number of nodes.
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functions satisfies both the differential equation (due to the choice of the
“Trefftz” basis) and the difference equation with coefficients s(i).

An alternative interpretation of (4.20) is that s(i) is orthogonal to the
image of N (i) due to (4.19), hence s(i) is in the null space of N (i)T . In the
complex case, though, orthogonality should not be understood in terms of the
standard complex inner product which, unlike (4.19), includes conjugates.

While there is no obvious way to determine the dimension of the null
space a priori, for several classes of problems considered later the dimension
is indeed one. If the null space is empty, the construction of the Trefftz–
FLAME scheme fails, and one may want to either increase the size of the
stencil or reduce the basis set. If the dimension of the null space is greater
than one, there are two general options. First, the stencil and/or the basis
can be changed. Second, one may use the additional freedom in the choice of
the coefficients s(i) to seek an “optimal” (in some sense) scheme as a linear
combination of the independent null space vectors. For example, it may be
desirable to find a diagonally dominant scheme.

Once the basis and the stencil are chosen, the Trefftz–FLAME scheme is
generated in a very simple way:

• Form matrix N (i) of the nodal values of the basis functions.
• Find the null space of N (i)T .

Proposition 11. The Trefftz–FLAME scheme defined by (4.20) is invariant
with respect to the choice of the basis in the local space Ψ(i) ≡ span{ψ(i)

α }.

Proof. A linear transformation of the ψ-basis replaces NT with QNT , where
Q is a nonsingular matrix, which does not affect the null space. ��

The algorithm can be sketched as a “machine” for generating Trefftz–
FLAME schemes (Fig. 4.7).

It should be stressed that the algorithm is heuristic and no blanket claim
of convergence can be made. The schemes need to be considered on a case-
by-case basis, which is done for a variety of problems in Section 4.3. However,
consistency can be proven (Section 4.3.5) in general, and convergence then fol-
lows for the subclass of schemes with a monotone difference operator [Tsu05a].

As we shall see in Section 4.4, definition (4.20), despite its simplicity, is
surprisingly rich. For different choices of basis functions and stencils it gives
rise to a variety of difference schemes.

4.3.3 The Treatment of Boundary Conditions

Note that in the FLAME framework approximations over different stencils are
completely independent from one another. Therefore, if the domain boundary
conditions are of standard types and no special behavior of the solution at
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Fig. 4.7. A “machine” for Trefftz–FLAME schemes. (Reprinted by permission from
[Tsu05a] c©2005 IEEE.)

the boundaries is manifest, one can simply employ any standard FD scheme
at the boundary.6

If the solution is known to exhibit some special features at the boundary,
it may be possible to incorporate these features into FLAME. One example
– Perfectly Matched Layers (PML) for electromagnetic and acoustic wave
propagation – is considered briefly in Section 4.4.11 and in [Tsu05a].

4.3.4 Trefftz–FLAME Schemes for Inhomogeneous and Nonlinear
Equations

So far we considered Trefftz–FLAME schemes only for homogeneous equations
(i.e. with the zero right hand side within a given patch). For inhomogeneous
equations of the form

Lu = f in Ω(i) (4.21)

a natural approach is to split the solution up into a particular solution u
(i)
f

of the inhomogeneous equation and the remainder u
(i)
0 satisfying the homo-

geneous one:
u = u

(i)
0 + u

(i)
f (4.22)

Lu
(i)
0 = 0; Lu

(i)
f = f (4.23)

Superscript (i) emphasizes that the splitting is local, i.e. needs to be introduced
only within its respective patch Ω(i) containing the grid stencil around node
6 Since most Taylor-based schemes are particular cases of FLAME (with polynomial

basis functions), it would be technically correct to say that the whole set of
difference equations, including the treatment of boundary conditions, is based on
FLAME.
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i. Since u
(i)
f is local (and in particular need not satisfy any exterior boundary

conditions), it is usually relatively easy to construct.
Let a Trefftz–FLAME scheme s(i) be generated for a given set of basis

functions and assume that the consistency error ε for this scheme tends to
zero as h → 0; that is,

s(i)TN (i)u
(i)
0 = ε ≡ ε

(
h, u

(i)
0

)
→ 0 as grid size h → 0 (4.24)

where N (i), as before, denotes the nodal values of a function on stencil (i).
Then clearly

s(i)TN (i)u = s(i)TN (i)u0 + s(i)TN (i)uf = s(i)TN (i)uf + ε

This immediately implies that the consistency error of the difference scheme

s(i)T uh = s(i)TN (i)uf (4.25)

is ε, i.e. exactly the same as for the homogeneous case. (The Euclidean vector
uh of nodal values does not need the superscript because the nodal values are
unique and do not depend on the patch.) Note that there are absolutely no
constraints on the smoothness of u

(i)
f , provided that it has valid nodal values.

The particular solution u
(i)
f can even be singular as long as the singularity

point does not coincide with a grid node. In [Tsu04a] difference schemes of
this kind were constructed for the Coulomb potential of point charges. An
electrostatic problem with a line charge source is solved in a similar way in
[Tsu05a].

For nonlinear problems, the Newton–Raphson method is traditionally used
for the discrete system of equations. In connection with FLAME schemes,
Newton–Raphson–Kantorovich iterations are applied to the original continu-
ous problem rather than the discrete one. Let the equation be

Lu = f (4.26)

where L is a differentiable operator. The (k+1)-th approximation uk+1 to the
exact solution is obtained from the k-th approximation uk by linearization in
the following way. If u = uk + δu,

Lu = L(uk + δu) = Luk + L′(uk)δu + o(‖δu‖) (4.27)

where L′ is the Fréchet derivative of L (Appendix 4.9). Ignoring higher-order
terms, one gets an approximation δuk for δu by solving the linear system

L′(uk) δuk = f − Luk (4.28)

and then updates the solution:

uk+1 = uk + δuk (4.29)
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Equivalently,
uk+1 = uk + (L′(uk))−1(f − Luk) (4.30)

Along with an initial guess u0, iterative process (4.28), (4.29) – or just (4.30) –
defines theNewton–Raphson–Kantorovich algorithm.Trefftz–FLAMEschemes
can then be applied to L′ (which of course is a linear operator by definition),
provided that a suitable set of local approximating functions can be found.

Further analysis of the N–R–K iterations for FLAME schemes in colloidal
simulation (the Poisson–Boltzmann equation) can be found in Section 6.8 on
p. 319.

4.3.5 Consistency and Convergence of the Schemes

Let us rewrite the patch-wise difference equation (4.25) in matrix form as a
global system of difference equations for the underlying differential equation
Lu = f :

Lhuh = f
h
, with f

hi
= s(i)TN (i)u

(i)
f (4.31)

(if the differential equation is homogeneous within the patch, then u
(i)
f = 0).

Note that the i-th row of matrix Lh contains the coefficients of scheme s(i)T

and, in addition, a (large) number of zero entries.7 We shall assume that the
equations can be scaled in such a way that

c1f(r) ≤ f
hi

≤ c2f(r), ∀r ∈ Ω(i), c1,2 > 0 (4.32)

where c1,2 do not depend on i and h. This scaling is important because other-
wise e.g. the meaningless scheme h100ui = 0 would technically be consistent
(as defined below) for any differential equation.

The consistency error of scheme (4.31) is, by definition, obtained by sub-
stituting the nodal values of the exact solution u∗ into the difference equation.
We shall call this scheme consistent if, with scaling (4.32), the following con-
dition holds:

consistency error ≡ εc(h) = max
i

∣∣∣s(i)TN (i)u∗ − f
hi

∣∣∣
= max

i

∣∣∣s(i)T (N (i)u∗ − uhi)
∣∣∣ → 0 as h → 0 (4.33)

For FLAME schemes, consistency follows directly from the approximation
properties of the basis set as long as (4.32) holds. Indeed, let εa(h) be the
approximation error of the “homogeneous part” u

(i)
0 of the exact solution u∗

in a patch Ω(i):
7 Our notation would perhaps be more consistent if the matrix were denoted with

Lh and the scheme with l(i) or, alternatively, if the scheme were s(i) and the
matrix were Sh. However, throughout the book the usual symbol L is adopted
for differential and difference operators, and s is used as a mnemonic symbol for
“scheme”.
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εa(h) = min
c(i)∈Rm

∥∥∥u∗ − u
(i)
f −

∑m

α=1
c(i)
α ψ(i)

α

∥∥∥
∞

(4.34)

Equivalently, there exists a coefficient vector c(i) ∈ R
m such that

u∗ = u
(i)
f +

∑m

α=1
c(i)
α ψ(i)

α + η, ‖η‖∞ = εa(h) (4.35)

For the nodal values, one then has due to (4.16)

N (i)u∗ = N (i)u
(i)
f + N (i)c(i) + η (4.36)

where η = N (i)η is the vector of nodal values of η on stencil i and N (i) is (as
always) the matrix of nodal values of the basis functions. Due to (4.35),

‖η‖∞ ≤ εa(h)

and due to (4.36), the consistency error for scheme (4.31) with coefficients
(4.20) is

|εc(h)| = max
i

∣∣∣s(i)TN (i)u∗ − s(i)TN (i)u
(i)
f

∣∣∣ = max
i

∣∣∣s(i)T (N (i)c(i) + η)
∣∣∣

= max
i

∣∣∣s(i)T N (i)c(i) + s(i)T η
∣∣∣ = max

i

∣∣∣s(i)T η
∣∣∣ ≤ Mεa(h) (4.37)

which shows that the consistency error is bounded by the approximation error.
Theoretical results relevant to the convergence of the schemes were sum-

marized in Chapter 2. Estimate (2.148) (p. 62) of the solution error is the ratio
of approximation and stability parameters. The approximation accuracy εa is
key. In fact, the “Trefftz” bases are effective not just because they (by defini-
tion) satisfy the underlying differential equation, but because they happen to
have superior approximation properties in many cases (see e.g. Sections 4.4.4,
4.4.5).

4.4 Trefftz–FLAME Schemes: Case Studies

4.4.1 1D Laplace, Helmholtz and Convection-Diffusion Equations

The 1D Laplace equation was already considered as a preliminary example in
Section 4.2.6 of this chapter (p. 197). A less trivial case is the 1D Helmholtz
equation

d2u

dx2
− κ2u = 0

with any complex κ. Two basis functions satisfying the Helmholtz equation
are

ψ1 = exp(κx); ψ2 = exp(−κx)
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For a three-point stencil with the coordinates of the nodes (−h, 0, h) (the
middle node is placed at the origin for simplicity), the matrix of nodal values
(4.14) is

NT =
(

exp(−κh) 1 exp(κh)
exp(κh) 1 exp(−κh)

)
and the resultant difference scheme is

s = NullNT = (1, − 2 cosh(κh), 1)T (4.38)

Since the theoretical solution in this 1D case is exactly representable as a
linear combination of the chosen basis functions, the difference scheme yields
the exact solution (in practice, up to the round-off error). This scheme is
known and has been derived in a different way by R.E. Mickens [Mic94]; see
also C. Farhat et al. [FHF01] and I. Harari & E. Turkel [HT95].

Quite similarly, for the 1D convection-diffusion equation

D
d2u

dx2
− b

du

dx
= 0, D > 0

with constant coefficients D and b, one has two Trefftz basis functions:

ψ1 = 1; ψ2 = exp(qx), q = b/D

For the 3-point stencil (−h, 0, h), the (transposed) matrix of nodal values
(4.14) is

NT =
(

1 1 1
exp(−qh) 1 exp(qh)

)
and the Trefftz–FLAME difference scheme is

s = NullNT =
[

exp(qh)
exp(qh)− 1

, − exp(qh) + 1
exp(qh)− 1

,
1

exp(qh)− 1

]
(4.39)

(up to an arbitrary factor). This coincides (in the case of the homogeneous
convection-diffusion equation with constant coefficients) with the well-known
exponentially fitted scheme (see e.g. D.B. Spalding [Spa72], G.D. Raithby &
K.E. Torrance [RT74], S.V. Patankar [Pat80]).

4.4.2 The 1D Heat Equation with Variable Material Parameter

Consider the 1D homogeneous heat conduction equation:

d

dx

(
λ(x)

du

dx

)
= 0 (4.40)

where λ(x) is the material parameter. Two approximating functions for the
FLAME-Trefftz scheme can be chosen as linearly independent solutions of this
equation on the interval [xk−1, xk+1]:
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ψ1 = 1, ψ2 =
∫ x

xk

λ−1(ξ)dξ

With this basis, the transposed nodal matrix (4.14) for the stencil (xk−1, xk,
xk+1) is

NT =
(

1 1 1
−Σk−1 0 Σk+1

)

where Σk−1 =
∫ xk

xk−1
λ−1(ξ) dξ, Σk+1 =

∫ xk+1

xk
λ−1(ξ) dξ have the physi-

cal meaning of thermal resistances of the respective segments. The difference
scheme is, up to an arbitrary factor,

s = NullNT = (−Σ−1
k−1, Σ−1

k−1 + Σ−1
k+1, − Σ−1

k+1)
T (4.41)

which has a clear interpretation as a flux balance equation:

Σ−1
k−1(uk − uk−1) + Σ−1

k+1(uk − uk+1) = 0

Such schemes are indeed typically derived from flux balance considerations
(see e.g. the “homogeneous schemes” in [Sam01]) but, as we can now see,
emerge as a natural particular case of Trefftz–FLAME.

If the integrals in the expressions for thermal resistances Σ can be cal-
culated exactly, the scheme is itself exact, i.e. the consistency error is zero
(the theoretical solution satisfies the FD equation). This holds even if the
material parameter λ is discontinuous. A very similar analysis applies to the
1D linear electrostatic equation with a variable (and possibly discontinuous)
permittivity ε.

4.4.3 The 2D and 3D Laplace Equation

Consider a regular rectangular grid, for simplicity with spacing h the same in
both directions, and the standard 5-point stencil. The origin of the coordinate
system is placed for convenience at the central node of the stencil. With four
basis functions [1, x, y, x2 − y2] satisfying the Laplace equation, the nodal
matrix (4.14) becomes

NT =

⎛
⎜⎜⎝

1 1 1 1 1
0 − h 0 h 0
h 0 0 0 − h

−h2 h2 0 h2 − h2

⎞
⎟⎟⎠

The difference scheme is then Null NT = (−1,−1, 4,−1,−1)T (times an ar-
bitrary constant), which coincides with the standard 5-point scheme for the
Laplace equation. A more general case with different mesh sizes in the x- and
y- directions is handled similarly.

The 3D case is also fully analogous. With six basis functions {1, x, y, z,
x2 − y2, x2 − z2} and the standard 7-point stencil on a uniform grid, one
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arrives, after computing the null space of the respective 6× 7 matrix NT , at
the standard 7-point scheme with the coefficients (−1,−1,−1, 6,−1,−1,−1)T .
As in 2D, the case of different mesh sizes in the x-, y- and z-directions does
not present any difficulty.

4.4.4 The Fourth Order 9-point Mehrstellen Scheme for the
Laplace Equation in 2D

The solution is, by definition, a harmonic function. Harmonic polynomials are
known to provide an excellent (in some sense, even optimal [BM97]) approx-
imation of harmonic functions [And87, BM97, Ber66, Mel99]. Indeed, for a
fixed polynomial order p, the FEM and harmonic approximation errors are
similar [BM97]; however, the FEM approximation is realized in a much wider
space containing all polynomials up to order p, not just the harmonic ones.
For solving the Laplace equation, the standard FE basis set can thus be viewed
as having substantial redundancy that is eliminated by using the harmonic
basis. The following result is cited in [BM97]:

Theorem 6. (Szegö). Let Ω ⊂ R
2 be a simply connected bounded Lipschitz

domain. Let Ω̃ ⊃⊃ Ω and assume that u ∈ L2(Ω̃) is harmonic on Ω̃. Then
there is a sequence (up)

∞
p=0 of harmonic polynomials of degree p such that

‖u− up‖L∞(Ω) ≤ c exp(−γp) ‖u‖L2(Ω̃)

‖∇(u− up)‖L∞(Ω) ≤ c exp(−γp) ‖u‖L2(Ω̃) (4.42)

where γ, c > 0 depend only on Ω, Ω̃.

For comparison, the H1-norm error estimate in the standard FEM is

Theorem 7. (P.G. Ciarlet & P.A. Raviart, I. Babuska & M. Suri [CR72],
[Cia80], [BS94]). For a family of quasiuniform meshes with elements of order
p and maximum diameter h, the approximation error in the corresponding
finite element space V n is

inf
v∈V n

‖u− v‖H1(Ω) = Chµ−1p−(k−1) ‖u‖Hk(Ω)

where µ = min(p + 1, k) and c is a constant independent of h, p, and u.

For a fixed polynomial order p, the FEM and harmonic polynomial esti-
mates are similar (factor O(hp) vs. O([exp(−γ)]p) if the solution is sufficiently
smooth. However, the FEM approximation is realized in a much wider space
containing all polynomials up to order p, not just the harmonic ones. For
solving the Laplace equation, the standard FE basis set can thus be viewed
as having substantial redundancy that is eliminated by using the harmonic
basis.
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With these observations in mind, one may choose the basis functions as
harmonic polynomials in x, y up to order 4, namely, {1, x, y, xy, x2−y2, x(x2−
3y2), y(3x2 − y2), (x2 − y2)xy, (x2 − 2xy − y2)(x2 + 2xy − y2)}. Then for a
3× 3 stencil of adjacent nodes of a uniform Cartesian grid, the computation
of the nodal matrix (4.14) (transposed) and its null space is simple with any
symbolic algebra package. If the mesh size is equal in both x- and y- directions,
the resultant scheme has order 6. Its coefficients are 20 for the central node,
−4 for the four mid-edge nodes, and −1 for the four corner nodes of the
stencil. In the standard texts (L. Collatz [Col66], A.A. Samarskii [Sam01]),
this scheme is derived by manipulating the Taylor expansions for the solution
and its derivatives.

4.4.5 The Fourth Order 19-point Mehrstellen Scheme for the
Laplace Equation in 3D

Construction of the scheme is analogous to the 2D case. The 19-point stencil
is obtained by considering a 3 × 3 × 3 cluster of adjacent nodes and then
discarding the eight corner nodes. The basis functions are chosen as the 25
independent harmonic polynomials in x, y, z up to order 4. Computation of
the matrix of nodal values (4.14) and of the null space of its transpose is
straightforward by symbolic algebra.

The result is the 19-point fourth-order “Mehrstellen” scheme by L. Collatz
[Col66] (see also A.A. Samarskii [Sam01]) already discussed in Chapter 2
(Section 2.8.5, p. 58). In that chapter, as well as in the Collatz and Samarskii
books, the scheme is derived from completely different considerations.8 We
can now see, however, that in the Trefftz–FLAME framework Mehrstellen
schemes and classic Taylor-based schemes for the Laplace equation stem from
the same root – namely, the nullspace equation (4.20). The scheme is defined
by the chosen stencil and a harmonic polynomial basis.

As a side note, the 19-point Mehrstellen scheme, due to its geometri-
cally compact stencil, reduces processor communication in parallel solvers
and therefore has gained popularity in computationally intensive applications
of physical chemistry and quantum chemistry: electrostatic fields of multiple
charges, the Poisson–Boltzmann equation in colloidal and protein simulation,
and the Kohn–Sham equation of Density Functional Theory (E.L. Briggs et
al. [BSB96]).

4.4.6 The 1D Schrödinger Equation. FLAME Schemes by
Variation of Parameters

This test problem is borrowed from the comparison study by R. Chen et
al. [CXS93] of several FD schemes for the boundary value (rather than eigen-
value) problem for the 1D Schrödinger equation over a given interval [a, b]:
8 A generalization of the Mehrstellen schemes, known as the HODIE schemes by

R.E. Lynch & J.R. Rice [LR80], will not be considered here.
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−u′′ + (V (x)− E)u = 0, u(a) = ua, u(b) = ub (4.43)

The specific numerical example is the 5th energy level of the harmonic oscil-
lator, with V (x) = x2 and E = 11 (= 2× 5 + 1). For testing and verification,
boundary conditions are taken from the analytical solution, and as in [CXS93]
the interval [a, b] is [−2, 2]. The exact solution is

uexact = (15x− 20x3 + 4x5) exp(−x2/2) (4.44)

To construct a Trefftz–FLAME scheme for (4.43) on a stencil [xi−1, xi, xi+1]
(where xi±1 = xi±h), one would need to take two independent local solutions
of the Schrödinger equation as the FLAME basis functions. The exact solution
in our example is reserved exclusively for verification and error analysis. We
shall construct Trefftz–FLAME scheme pretending that the theoretical solu-
tion is not known, as would be the case in general for an arbitrary potential
V (x).

Thus in lieu of the exact solutions the basis set will contain their ap-
proximations. There are at least two ways to construct such approximations.
This subsection uses a perturbation technique that produces a fourth-order
scheme. The next subsection employs the Taylor expansion that leads to 3-
point schemes of arbitrarily high order.

At an arbitrary point x0 let

V (x) = κ2 + δV, where κ2 ≡ V (x0) (4.45)

u(x) = u0(x) + δu(x) (4.46)

u0(x) = c+ exp(κx) + c− exp(−κx), with arbitrary c+, c− (4.47)

Substituting these expressions into the Schrödinger equation and ignoring the
higher order term, one gets the perturbation equation

δu′′ − κ2δu = δV u0 (4.48)

Solving this equation by variation of parameters, one obtains after some al-
gebra

u(x) = u0(x) + δu(x) = u0(x) +
1
2

exp(κx)
∫ x

x0

u0(ξ) exp(−κξ)δV (ξ)dξ

−1
2

exp(−κx)
∫ x

x0

u0(ξ) exp(κξ)δV (ξ)dξ (4.49)

Two independent sets of values for c+, c− then yield two basis functions for
FLAME.

Fig. 4.8 compares convergence of several schemes: the well-known Numerov
scheme, the “Numerov–Mickens scheme” [CXS93], Trefftz–FLAME, and the
Mickens scheme [Mic94, CXS93]. The first three schemes are all of order four,
but the FLAME errors are much smaller. In the following section, the FLAME
error is further reduced, in many cases to machine precision.
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Fig. 4.8. Convergence of the variation of parameters – FLAME scheme for the
Schrödinger equation. Comparison with other schemes described in [CXS93] is
very favorable (note the logarithmic scale). As the Numerov and Numerov-Mickens
schemes, the FLAME scheme is of fourth order but its error is much smaller. The
Taylor version of FLAME (see below) performs much better still. (Reprinted by
permission from [Tsu06] c©2006 Elsevier.)

4.4.7 Super-high-order FLAME Schemes for the 1D Schrödinger
Equation

For sufficiently smooth potentials V (x), as in our example of the harmonic
oscillator, one can expand the potential and the solution into a Taylor series
around the central stencil node xi to obtain two local independent solutions
with any desired order of accuracy. Consequently, the order of the FLAME
scheme can also be arbitrarily high, even though the stencil still has only three
points.

For the 20th-order scheme as an example, the roundoff level of the numer-
ical error is reached for the uniform grid with just 10–15 nodes (Table 4.4.7).
For a fixed grid size and varying order of the scheme, the error falls off very
rapidly as the order is increased and quickly saturates at the roundoff level
(Fig. 4.9).

Table 4.1. Errors for the 3-point FLAME scheme of order 20

Number of nodes Mean absolute error

7 2.14E-10
11 2.06E-14
15 1.75E-15
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Fig. 4.9. Error vs. order of the Trefftz–FLAME scheme for the model Schrödinger
equation. (Reprinted by permission from [Tsu06] c©2006 Elsevier.)

4.4.8 A Singular Equation

G.W. Reddien & L.L. Schumaker [RS76] (RS) proposed a spline-based collo-
cation method for 1D singular boundary value problems and use the following
example:9

(x0.5u′)′ − x0.5u = 0, 0 < x < 1, u(0) = 1, u(1) = 0 (4.50)

Here we apply the non-variational FLAME method to the same example and
compare the results. A 3-point stencil on a uniform grid is used for FLAME.
The two basis functions for FLAME are constructed separately for stencil
points in the vicinity of the singularity point x = 0 and away from zero.

1) Let the midpoint xi of the i-th stencil be sufficiently far away from zero
(the singularity point of the differential equation): xi > δ, where δ is a chosen
threshold. Expanding u over the i-th stencil into the Taylor series with respect
to ξ = x− xi,

u =
∑∞

k=0
ckξk (4.51)

one obtains, by straightforward calculation, the following recursion:

ck+2 =
ckxi + ck−1 − ck+1(k + 1)(k + 1

2 )
xi(k + 1)(k + 2)

, k = 0, 1, . . . (4.52)

where the coefficients with negative indices are understood to be zero. Two
basis functions are obtained by choosing two independent sets of starting
values for c0,1 for the recursion and by retaining a finite number of terms,
k = K, in series (4.51).
9 This example is as a result of my short communication with Larry L. Schumaker

and Douglas N. Arnold.
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2) For xi < δ, the approach is similar but the series expansion is different:

u =
∑∞

k=0
bkxk/2 (4.53)

Straightforward algebra again yields

∀b0, b1; b2 = b3 = 0

bk+2 =
4bk−2

(k + 1)(k + 2)
, k = 0, 1, . . . (4.54)

Two independent basis functions are then obtained in the same manner as
above, with terms k ≤ 2K retained in (4.53).

Numerical values of the solution at x = 0.5 are given in [RS76, CR72]
and serve as a basis for accuracy comparison. As Tables 4.2 and 4.3 show,
Trefftz–FLAME gives orders of magnitude higher accuracy than the methods
of [RS76, CR72]. The price for this accuracy gain is the analytical work needed
for “preprocessing,” i.e. for deriving the FLAME basis functions.

This example is intended to serve as an illustration of the capabilities
of FLAME and its possible applications; it does not imply that FLAME is
necessarily better than all methods designed for singular equations. Many
other effective techniques have been developed (e.g. M. Kumar [Kum03]).

n FLAME, K = 6 FLAME, K = 12 RS [RS76] Jamet [Jam70]

8 0.25204513942296 0.252041978171219 0.25305 0.29038

16 0.252044597187729 0.252041977565477 0.25223 0.27826

8192 0.252042091673094 0.252041976551393 0.25310

Table 4.2. Numerical values of the solution at x = 0.5: FLAME vs. other methods.
The number of grid subdivisions and the order of the scheme in FLAME varied.

n FLAME, K = 6 FLAME, K = 12 RS [RS76] Jamet [Jam70]

8 3.16E-06 1.68E-09 1.01E-03 3.83E-02

16 2.62E-06 1.07E-09 1.88E-04 2.62E-02

8192 1.15E-07 5.80E-11 1.06E-03

Table 4.3. Numerical errors of the solution at x = 0.5: FLAME vs. other methods.
The result for the FLAME scheme of order 40 with 8192 grid subdivisions was
treated as “exact” for the purposes of error evaluation.
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4.4.9 A Polarized Elliptic Particle

This subsection gives an example of FLAME in two dimensions. A dielectric
cylinder, with an elliptic cross-section, is immersed in a uniform external field.
An analytical solution using complex variables is developed, for example, by
W.B. Smythe [Smy89].

If lx > ly are the two semiaxes of the ellipse and the applied external field
is in the x-direction, then the solution in the first quadrant of the plane can be
described by the following sequence of expressions [Smy89], with z = x + iy:

α2 = l2x − l2y

z1 =
α

z −
√

z2 − α2

A′′ =
(lx + ly)(lx − εly)
(lx − ly)(lx + εly)

B′′ =
lx + ly
lx + εly

Potential outside the ellipse:

u = Re
[
α

2

(
z1 +

A′′

z1

)]

Potential inside the ellipse:

u = Re
[
α

2
B′′

(
z1 +

1
z1

)]

Similar expressions hold in other quadrants and for the y-direction of the
applied field.

In the numerical example below, the computational domain Ω is taken to
be the unit square [0, 1]× [0, 1]. To eliminate the numerical errors associated
with the finite size of this domain, the analytical solution (for the x-direction
of the external field) is imposed, for testing and verification purposes, as the
Dirichlet condition on the exterior boundary of Ω.

For the usual 5-point stencil in 2D, four basis functions would normally
be needed to yield the null space of dimension one in Trefftz–FLAME. The
choice of three basis functions is clear: ψ1 = 1, and ψ2,3 are the theoretical
solutions for two perpendicular directions of the applied external field (along
each axis of the ellipse). Deriving a fourth Trefftz function is not worth the
effort. Instead, Trefftz–FLAME is applied with the three basis functions. This
yields a two-dimensional null space, with two independent 5-point difference
schemes s1,2 ∈ R

5. It then turns out to be possible to find a linear combination
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of these two schemes with a dominant diagonal entry, so that the convergence
conditions of Section 4.3.5 are satisfied.10

The particular results below are for the material parameter εin = 10 within
the ellipse, for εout = 1 outside the ellipse, and for the main axis of the ellipse
aligned with the external field. The semiaxes are lx = 0.22 and ly = 0.12. The
FLAME basis functions ψ1,2,3 are introduced for all stencils having at least one
node inside the ellipse and, in addition in some experiments, in several layers
around the ellipse. These additional layers are such that ξmidpoint < ξcutoff ,
where ξ = (x/lx)2 + (y/ly)2 − 1 (with x, y measured from the center of the
ellipse), ξmidpoint is the value of ξ for the midpoint of the stencil, and ξcutoff is
an adjustable threshold. For ξcutoff = 0 no additional layers with the special
basis are introduced. For ξcutoff 
 1 the special bases are used throughout
the domain, which yields the solution with machine precision.11 Outside the
cutoff, the standard 5-point scheme for the Laplace equation is applied, which
asymptotically produces an O(h2) bottleneck for the convergence rate.

Fig. 4.4.9 compares the relative errors in the potential (nodal 2-norm)
for the standard flux balance scheme and the FLAME scheme. The errors
are plotted vs. grid size h. For ξcutoff = 0, no additional layers with special
bases are introduced in FLAME around the elliptic particle; for ξcutoff = 3,
three such layers are introduced. It is evident that Trefftz–FLAME exhibits
much more rapid convergence than the standard flux-balance scheme. The
rate of convergence for FLAME is formally O(h2), but only due to the above-
mentioned bottleneck of the standard 5-point scheme away from the ellipse.

4.4.10 A Line Charge Near a Slanted Boundary

This problem was chosen in [Tsu05a] to illustrate how FLAME schemes can
rectify the notorious “staircase” effect that occurs when slanted or curved
boundaries are rendered on Cartesian grids. The electrostatic field is generated
by a line charge located near a slanted material interface boundary between
air (relative dielectric constant ε = 1) and water (ε = 80). This can be viewed
as a drastically simplified 2D version of electrostatic problems in macro- and
biomolecular simulation [Sim03, RAH01, GPN01].

Four basis functions on a 5-point stencil at the interface boundary were
obtained by matching polynomial approximations in the two media via the
boundary conditions. As demonstrated in [Tsu05a], the Trefftz–FLAME result
is substantially more accurate than solutions obtained with the standard flux-
balance scheme.

10 Diagonal dominance has been monitored and verified in numerical simulations
but has not been shown analytically. Therefore, convergence of the scheme is not
proven rigorously, but the numerical evidence for it is very strong.

11 Because in this example the exact solution happens to lie in the FLAME space.
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Fig. 4.10. The 5-point Trefftz–FLAME scheme yields much faster convergence
than the standard 5-point flux-balance scheme. The numerical error in FLAME is
reduced if special bases are introduced in several additional layers of nodes outside
the particle. (Reprinted by permission from [Tsu05a] c©2005 IEEE.)

4.4.11 Scattering from a Dielectric Cylinder

In this classic example, a monochromatic plane wave impinges on a dielec-
tric circular cylinder and gets scattered. The analytical solution is available
via cylindrical harmonics (R.F. Harrington [Har01]) and can be used for ver-
ification and error analysis. The basis functions in FLAME are cylindrical
harmonics in the vicinity of the cylinder and plane waves away from the
cylinder. The 9-point (3× 3) stencil is used throughout the domain (with the
obvious truncation to 6 and 4 nodes at the edges and corners, respectively).
A Perfectly Matched Layer is introduced in some test cases [Tsu05a] using
FLAME. Very rapid 6th-order convergence of the nodal values of the field was
experimentally observed when the Dirichlet conditions were imposed on the
exterior boundary of the computational domain. It would be quite difficult to
construct a conventional difference scheme with comparable accuracy in the
presence of such material interfaces.

In this section and the following one, we consider the E-mode (one-
component E field and a TM field) governed by the standard 2D equation

∇ · (µ−1∇E) + ω2εE = 0 (4.55)

with some radiation boundary conditions for the scattered field. The analytical
solution is available via cylindrical harmonics [Har01] and can be used for
verification and error analysis.
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We consider Trefftz–FLAME schemes on a 9-point (3 × 3) stencil. It is
natural to choose the basis functions as cylindrical harmonics in the vicinity
of each particle and as plane waves away from the particles. “Vicinity” is
defined by an adjustable threshold: r ≤ rcutoff , where r is the distance from
the midpoint of the stencil to the center of the nearest particle, and the
threshold rcutoff is typically chosen as the radius of the particle plus a few
grid layers.

Away from the cylinder, eight basis functions are chosen as plane waves
propagating toward the central node of the 9-point stencil from each of the
other eight nodes. As usual in FLAME, the 9 × 8 nodal matrix N (4.14)
of FLAME comprises the values of the chosen basis functions at the stencil
nodes. The Trefftz–FLAME scheme (4.20) is s = NullNT . Straightforward
symbolic algebra computation shows that this null space is indeed of dimension
one, so that a single valid Trefftz–FLAME scheme exists. Expressions for
the coefficients s are given in Appendix 4.8, and the scheme turns out to
be of order six with respect to the grid size. The scheme is used in several
nanophptonics applications in Chapter 7.

Obviously, nodes at the domain boundary are treated differently. At the
edges of the domain, the stencil is truncated in a natural way to six points:
“ghost” nodes outside the domain are eliminated, and the respective incoming
plane waves associated with them are likewise eliminated from the basis set.
The basis thus consists of five plane waves: three strictly outgoing and two
sliding along the edge.

A similar procedure is applied at the corner nodes: a four-node stencil is
obtained, and only three plane wave remain in the basis. The elimination of
incoming waves from the basis thus leads, in a very natural way, to a FLAME-
style Perfectly Matched Layer (PML).

In the vicinity of the cylinder, the basis functions are chosen as cylindrical
harmonics:

ψ(i)
α = anJn(kcylr) exp(inφ), r ≤ r0

ψ(i)
α = [bnJn(kairr) + H(2)

n (kairr)] exp(inφ), r > r0

where Jn is the Bessel function, H
(2)
n is the Hankel function of the second kind

[Har01], and an, bn are coefficients to be determined. These coefficients are
found via the standard conditions on the boundary of the cylinder; the actual
expressions for these coefficients are too lengthy to be worth reproducing here
but are easily usable in computer codes.

Eight basis functions are obtained by retaining the monopole harmonic
(n = 0), two harmonics of orders n = 1, 2, 3 (i.e. dipole, quadrupole and
octupole), and one of harmonics of order n = 4. Numerical experiments for
scattering from a single cylinder, where the analytical solution is available for
comparison and verification, show convergence (not just consistency error!) of
order six for this scheme [Tsu05a].

Fig. 4.11 shows the relative nodal error in the electric field as a function
of the mesh size. Without the PML, convergence of the scheme is of 6th
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order; no standard method has comparable performance. The test problem

Fig. 4.11. Relative error norms for the electric field. Scattering from a dielectric
cylinder. FLAME, 9-point scheme. (Reprinted by permission from [Tsu05a] c©2005
IEEE.)

has the following parameters: the radius of the cylindrical rod is normalized
to unity; its index of refraction is 4; the wavenumbers in air and the rod
are 1 and 4, respectively. Simulations without the PML were run with the
exact analytical value of the electric field on the outer boundary imposed as
a Dirichlet condition. The field error with the PML is of course higher than
with this ideal Dirichlet condition12 but still only on the order of 10−3 even
when the PML is close to the scatterer (1 – 1.5 wavelengths). For the exact
boundary conditions (and no PML), very high accuracy is achievable.

4.5 Existing Methods Featuring Flexible or Nonstandard
Approximation

FLAME schemes are conceptually related to many other methods:

1. Generalized FEM by Partition of Unity [MB96, BM97, DBO00, SBC00,
BBO03, PTFY03, PT02, BT05] and “hp-cloud” methods [DO96].

2. Homogenization schemes based on variational principles [MDH+99].
3. Spectral and pseudospectral methods [Boy01, DECB98, Ors80, PR04]

(and references therein).
12 It goes without saying that the exact field condition can only be imposed in test

problems with known analytical solutions.
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4. Meshless methods [BLG94, BKO+96, CM96, DB01, KB98, LJZ95, BBO03,
Liu02], and especially the “Meshless Local Petrov–Galerkin” version [AZ98,
AS02].

5. Heuristic homogenization schemes, particularly in Finite Difference Time
Domain methods [DM99, TH05, YM01].

6. DiscontinuousGalerkin(DG)methods[ABCM02,BMS02,CBPS00,CKS00,
OBB98].

7. Finite Integration Techniques (FIT) with extensions and enhancements
[CW02, SW04].

8. Special FD schemes such as “exact” and “nonstandard” schemes by Mick-
ens and others [Mic94, Mic00]; the Harari–Turkel [HT95] and Singer–
Turkel schemes [ST98] for the Helmholtz equation; the Hadley schemes
[Had02a, Had02b] for waveguide analysis; Cole schemes for wave prop-
agation [Col97, Col04]; the Lambe–Luczak–Nehrbass schemes for the
Helmholtz equation [LLN03].

9. Special finite elements, for example elements with holes [SL00] or inclu-
sions [MZ95].

10. The “Measured Equation of Invariance” (MEI) [MPC+94]).
11. The “immersed surface” methodology [WB00] that modifies the Taylor

expansions to account for derivative jumps at material boundaries but
leads to rather unwieldy expressions.

This selection of related methods is to some extent subjective and definitely
not exhaustive. Most methods and references above are included because they
influenced my own research in a significant way.

Even though the methods listed above share some level of “flexible ap-
proximation” as one of their features, the term “Flexible Local Approxima-
tion MEthods” (FLAME) will refer exclusively to the approach developed in
Sections 4.3 and 4.7. The new FLAME schemes are not intended to absorb
or supplant any of the methods 1–11. These other methods, while related to
FLAME, are not, generally speaking, its particular cases; nor is FLAME a
particular case of any of these methods.

Consider, for example, a connection between FLAME on the one hand and
variational homogenization (item 2 on the list above) and GFEM (item 1) on
the other. The development of FLAME schemes was motivated to a large
extent by the need to reduce the computational and algorithmic complexity
of Generalized FEM and variational homogenization (especially the volume
quadratures inherent in these methods). However, FLAME is emphatically
not a version of GFEM or variational homogenization of [MDH+99]. Indeed,
GFEM is a Galerkin method in the functional space constructed by partition
of unity; the variational homogenization is, as argued in [Tsu04c], a Galerkin
method in broken Sobolev spaces. In contrast, FLAME is in most cases a
non-Galerkin, purely finite-difference method.

The variational version of FLAME is described in [Tsu04b] in a con-
densed manner; see also Appendix 4.7.3 on p. 232. The crux of this chapter,
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however, is the non-variational “Trefftz” version of FLAME (Section 4.3)
[Tsu05a, Tsu06]. In this version, the basis functions satisfy the underlying
differential equation and the variational testing is therefore redundant. Nu-
merical quadratures – the main bottleneck of Generalized FEM, variational
homogenization, meshless and other methods – are completely absent. De-
spite their relative simplicity, the Trefftz–FLAME schemes are in many cases
more accurate than their variational counterparts. This chapter, following
[Tsu05a, Tsu06], presents a variety of examples for Trefftz–FLAME, includ-
ing the 1D Schrödinger equation, a singular 1D equation, 2D and 3D Collatz
“Mehrstellen” schemes, and others. Applications to heterogeneous electrosta-
tic problems for colloidal systems are considered in Chapter 6, and to problems
in photonics in Chapter 7.

4.5.1 The Treatment of Singularities in Standard FEM

The treatment of singularities was historically one of the first cases where
special approximating functions were used in the FE context. In their 1973
paper [FGW73], G.J. Fix et al. considered 2D problems with singularities
rγ sin βφ, where r, φ are the polar coordinates with respect to the singularity
point, and β, γ, are known parameters (γ < 0). The standard FEM bases
were enriched with functions of the form p(r) rγ sin βφ, where the piecewise-
polynomial cutoff function p(r) is unity within a disk 0 ≤ r ≤ r0, gradually
decays to zero in the ring r0 ≤ r ≤ r1 and is zero outside that ring (r0 and
r1 are adjustable parameters). The cutoff function is needed to maintain the
sparsity of the stiffness matrix.

There is clearly a tradeoff between the computational cost and accuracy: if
the cutoff radius r1 is too small, the singular component of the solution is not
adequately represented; but if it is too large, the support of the additional basis
function overlaps with a large number of elements and the matrix becomes
less sparse.

The Generalized FEM (GFEM) briefly described in the following subsec-
tion preserves, at least in principle, both accuracy and sparsity. Unfortunately,
this major advantage is tainted by additional algorithmic and computational
complexity.

4.5.2 Generalized FEM by Partition of Unity

In the Generalized FEM computational domain Ω is covered by overlapping
subdomains (“patches”) Ω(i). The solution is approximated locally over each
patch. These individual local approximations are independent from one an-
other and are seamlessly merged by Partition of Unity (PU). Details of the
method are widely available (see J.M. Melenk & I. Babuška [MB96, BM97],
C.A. Duarte et al. [DBO00], T. Strouboulis et al. [SBC00], I. Babuška et
al. [BBO03]), and additional information can also be found in the chapter on
FEM (Section 3.15 on p. 181).
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The main advantage of GFEM is that the approximating functions can
in principle be arbitrary and are not limited to polynomials. Thus GFEM
definitely qualifies as a method with the kind of flexible local approximation
we seek.

On the negative side, however, multiplication by the partition of unity
functions makes the system of approximating functions more complicated, and
possibly ill-conditioned or even linearly dependent [BM97]. The computation
of gradients and implementation of the Dirichlet conditions also get more
complicated. In addition, GFEM-PU may lead to a combinatorial increase in
the number of degrees of freedom [PTFY03, Tsu04c]. An even greater difficulty
in GFEM-PU is the high cost of the Galerkin quadratures that need to be
computed numerically in geometrically complex 3D regions (intersections of
overlapping patches).

In summary, there is a high algorithmic and computational price to be
paid for all the flexibility that GFEM provides.

4.5.3 Homogenization Schemes Based on Variational Principles

S. Moskow et al. [MDH+99] improve the approximation of the electrostatic
potential near slanted boundaries and narrow sheets on regular Cartesian
grids by employing special approximating functions constructed by a coordi-
nate mapping [BCO94]. Within each grid cell, Moskow et al. seek a tensor
representation of the material parameter such that the discrete and continu-
ous energy inner products are the same over the chosen discrete space. The
overall construction in [MDH+99] relies on a special partitioning of the grid
(“red-black” numbering, or the “Lebedev grid”) and on a specific, central dif-
ference, representation of the gradient. As shown in [Tsu04c], this variational
homogenization can be interpreted as a Galerkin method in a broken Sobolev
space.

The variational method described in Section 4.7 can be viewed as an exten-
sion of the variational-difference approach of [MDH+99] – the special “Lebe-
dev” grids and the specific approximation of gradients by central differences
adopted in [MDH+99] turn out not to be really essential for the algorithm.

4.5.4 Discontinuous Galerkin Methods

The idea to relax the interelement continuity requirements of the standard
FEM and to use nonconforming elements was put forward at the early stages
of FE research. For example, in the Crouzeix–Raviart elements [CR73] the
continuity of piecewise-linear functions is imposed only at midpoints of the
edges.

Over recent years, a substantial amount of work has been devoted to Dis-
continuous Galerkin Methods (DGM) [BMS02, CBPS00, CKS00, OBB98]; a
consolidated view with an extensive bibliography is presented in [ABCM02].
Many of the approaches start with the “mixed” formulation that includes
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additional unknown functions for the fluxes on element edges (2D) or faces
(3D). However, these additional unknowns can be replaced with their numer-
ical approximations, thereby producing a “primal” variational formulation in
terms of the scalar potential alone. In DGM, the interelement continuity is
ensured, at least in the weak sense, by retaining the surface integrals of the
jumps, generally leading to saddle-point problems even if the original equation
is elliptic.

In electromagnetic field computation, DGM was applied by P. Alotto et
al. to moving meshes in the air gap of machines [ABPS02].

4.5.5 Homogenization Schemes in FDTD

In applied electromagnetics, Finite Difference Time Domain (FDTD) methods
(A. Taflove & S.C. Hagness [TH05]) and Finite Integration Techniques (FIT,
T. Weiland, M. Clemens & R. Schuhmann [CW02, SW04]) typically require
very extensive computational work due to a large number of time steps for
numerical wave propagation and large meshes. Therefore simple Cartesian
grids are strongly preferred and the need to avoid “staircase” approximations
of curved or slanted boundaries is quite acute. Due to the wave nature of the
problem, any local numerical error, including the errors due to the staircase
effect, tend to propagate in space and time and pollute the solution overall.

A great variety of approaches to reduce or eliminate the staircase effect
in FDTD have been proposed [DM99, TH05, YM01, ZSW03]. Each case is
a trade-off between the simplicity of the original Yee scheme on staggered
grids (K.S. Yee [Yee66]) and the ability to represent the interface boundary
conditions accurately. On one side of this spectrum lie various adjustments to
the Yee scheme: changes in the time-stepping formulas for the magnetic field
or heuristic homogenization of material parameters based on volume or edge
length ratios [DM99, TH05, YM01]. A similar homogenization approach (al-
beit not for time domain simulation) was applied by R.D. Meade and cowork-
ers to compute the bandgap structure of photonic crystals13 [MRB+93]. In
some cases, the second order of the FDTD scheme is maintained by includ-
ing additional geometric parameters or by using partially filled cells, as done
by I.A. Zagorodnov et al. [ZSW03] in the framework of “Finite Integration
Techniques”.

On the other side of the spectrum are Finite Volume–Time Domain meth-
ods (FVTD) [PRM98, TH05, YC97] with their historic origin in computa-
tional fluid mechanics, and the Finite Element Method (FEM). Tetrahedral
meshes are typically used, and material interfaces are represented much more
accurately than on Cartesian grids. However, adaptive Cartesian grids have
also been advocated, with cell refinement at the boundaries [WPL02]. The
greater geometric flexibility of these methods is achieved at the expense of

13 For more information on photonic bandgaps, see Chapter 7.
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simplicity of the algorithm. An additional difficulty arises in FEM for time-
domain problems: the “mass” matrix (containing the inner products of the
basis functions) appears in the time derivative term and makes the time-
stepping procedure implicit, unless “mass-lumping” techniques are used.

4.5.6 Meshless Methods

The abundance of meshless methods, as well as many variations in the ter-
minology adopted in the literature, make a thorough review unfeasible here –
see [BLG94, BKO+96, CM96, DB01, KB98, LJZ95, BBO03] instead. Let me
highlight only the main ideas and features.

The prevailing technique is the Moving Least Squares (MLS) approxima-
tion. Consider a “meshless” set of nodes (that is, nodes selected at arbitrary
locations ri, i = 1, 2, . . . n) in the computational domain. For each node i, a
smooth weighting function Wi(r) with a compact support is introduced; this
function would typically be normalized to one at node i (i.e. at r = ri) and
decay to zero away from that node. Intuitively, the support of the weighting
function defines the “zone of influence” for each node.

Let u be a smooth function that we wish to approximate by MLS. For
any given point r0, one considers a linear combination of a given set of m
basis functions ψα(r) (almost always polynomials in the MLS framework):
u

(i)
h =

∑m
α=1 cα(r0)ψα(r). Note that the coefficients c depend on r0. They are

chosen to approximate the nodal values of u, i.e. the Euclidean vector {u(ri)},
in the least-squares sense with respect to the weighted norm with the weights
Wi(r0). This least-squares problem can be solved in a standard fashion; note
that it involves only nodes containing r0 within their respective “zones of
influence” – in other words, only nodes i for which Wi(r0) �= 0.

C.A. Duarte & J.T. Oden [DO96] showed that this procedure can be recast
as a partition of unity method, where the PU functions are defined by the
weighting functions W as well as the (polynomial) basis set {ψ}. This leads
to more general adaptive “hp-cloud” methods.

One version of meshless methods – “Meshless Local Petrov-Galerkin”
(MLPG) method developed by S.N. Atluri et al. [AZ98, AS02, Liu02] – is
particularly close to the variational version of FLAME described in [Tsu04b]
and in Section 4.7 below. Our emphasis, however, is not on the “meshless”
setup (even though it is conceivable for FLAME) but on the framework of
multivalued approximation (that is not explicitly introduced in MLPG) and
on the new non-variational version of FLAME (Section 4.3).

The trade-off for avoiding complex mesh generation in mesh-free methods
is the increased computational and algorithmic complexity. The expressions
for the approximating functions obtained by least squares are rather com-
plicated [BKO+96, DB01, KB98, LJZ95, BBO03]. The derivatives of these
functions are even more involved. These derivatives are part of the integrand
in the Galerkin inner product, and the computation of numerical quadratures
is a bottleneck in meshless methods. Other difficulties include the treatment
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of Dirichlet conditions and interface conditions across material boundaries
[CM96, DB01, KB98, LJZ95].

4.5.7 Special Finite Element Methods

There is also quite a number of special finite elements, and related methods,
that incorporate specific features of the solution. In problems of solid mechan-
ics, J. Jirousek and his coworkers in the 1970s [JL77, Jir78] proposed “Trefftz”
elements, with basis functions satisfying the underlying differential equation
exactly. This not only improves the numerical accuracy substantially, but also
reduces the Galerkin volume integrals in the computation of stiffness matri-
ces to surface integrals (via integration by parts). Since then, Trefftz elements
have been developed quite extensively; see a detailed study by I. Herrera
[Her00] and a review paper by J. Jirousek & A.P. Zielinski [JZ97].

Also in solid mechanics, A.K. Soh & Z.F. Long [SL00] proposed two 2D
elements with circular holes, while S.A. Meguid & Z.H. Zhu [MZ95] developed
special elements for the treatment of inclusions.

Enrichment of FE bases with special functions is well established in com-
putational mechanics. The variational multiscale method by T.J.R. Hughes
[Hug95] provides a general framework for adding fine-scale functions inside
the elements to the usual coarse-scale FE basis. The additional amount of
computational work is small if the fine scale bases are local, i.e. confined to
the support of a single element. However, in this case the global effects of the
fine scale are lost.

In the method of Residual-Free Bubbles by F. Brezzi et al. [BFR98], the
standard element space is enriched with functions satisfying the underlying
differential equation exactly. There is a similarity with the Trefftz–FLAME
schemes described in Section 4.3. However, FLAME is a finite-difference
technique rather than a Galerkin finite element method. The conformity in
Residual-Free Bubbles is maintained by having the “bubbles” vanish at the
interelement boundaries. Similar “bubbles” are common in hierarchical finite
element algorithms (see e.g. Yserentant [Yse86]); still, traditional FE methods
– hierarchical or not – are built exclusively on piecewise-polynomial bases.

C. Farhat et al. [FHF01] relax the conformity conditions and get a higher
flexibility of approximation in return. As in the case of residual-free bubbles,
functions satisfying the differential equation are added to the FE basis. How-
ever, the continuity at interelement boundaries is only weakly enforced via
Lagrange multipliers.

The following observation by J.M. Melenk [Mel99] in reference to special
finite elements is highly relevant to our discussion:

“The theory of homogenization for problems with (periodic) mi-
crostructure, asymptotic expansions for boundary layers, and Kon-
drat’ev’s corner expansions are a few examples of mathematical tech-
niques yielding knowledge about the local properties of the solution.
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This knowledge may be used to construct local approximation spaces
which can capture the behavior of the solution much more accurately
than the standard polynomials for a given number of degrees of free-
dom. Exploiting such information may therefore be much more effi-
cient than the standard methods . . . ”

In electromagnetic analysis, Treffz expansions were used by M. Gyimesi et
al. in unbounded domains [GLOP96, GWO01].

4.5.8 Domain Decomposition

Although the setup of FLAME may suggest its interpretation as a Domain
Decomposition technique, there are perhaps more differences than similari-
ties between the two classes of methods. In FLAME, the domain cover con-
sists of “micro” (stencil-size) subdomains. In contrast, Domain Decomposition
methods usually operate with “macro” subdomains that are relatively large
compared to the mesh size. Consequently, the notions and ideas of Domain
Decomposition (e.g. Schwartz methods, mortar methods, Chimera grids, and
so on) will not be directly used in our development. With regard to Domain
Decomposition, the book by A. Toselli & O. Widlund [TW05] is recommended.

4.5.9 Pseudospectral Methods

In pseudospectral methods (PSM) [Boy01, DECB98, Ors80, PR04], numerical
solution is sought as a series expansion in terms of Fourier harmonics, Cheby-
shev polynomials, etc. The expansion coefficients are found by collocating the
differential equation on a chosen set of grid nodes.

Typically the series is treated as global – over the whole domain or large
subdomains. There is, however, a great variety of versions of pseudospectral
methods, some of which (“spectral elements”) deal with more localized ap-
proximations and in fact overlap with the hp-version of FEM (J.M. Melenk
et al. [MGS01]).

The key advantage of PSM is their exponential convergence, provided that
the solution is quite smooth over the whole domain.

One major difficulty is the treatment of complex geometries. In relatively
simple cases this can be accomplished by a global mapping to a reference shape
(square in 2D or cube in 3D) but in general may not be possible. Another alter-
native is to subdivide the domain and use spectral elements (with “spectral”
approximation within the elements but lower order smoothness across their
boundaries); however, convergence is then algebraic, not exponential, with
respect to the parameter of that subdivision.

The presence of material interfaces is an even more serious problem, as the
solution then is no longer smooth enough to yield the exponential convergence
of the global series expansion.
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An additional disadvantage of PSM is that the resultant systems of equa-
tions tend to have much higher condition numbers than the respective FD or
FE systems (E.H. Mund [Mun00]). This is due to the very uneven spacing
of the Chebyshev or Legendre collocation nodes typically used in PSM. Ill-
conditioning may lead to accuracy loss in general and to stability problems in
time-stepping procedures.

PSM have been very extensively studied over the last 30 years, and quite a
number of approaches alleviating the above disadvantages have been proposed
[DECB98, MGS01, Mun00], [Ors80]. Nevertheless it would be fair to say that
these disadvantages are inherent in the method and impede its application to
problems with complex geometries and material interfaces.

4.5.10 Special FD Schemes

Many difference schemes rely on special approximation techniques to improve
the numerical accuracy. These special techniques are too numerous to list, and
only the ones that are closely related to the ideas of this chapter are briefly
reviewed below.

For some 1D equations, R.E. Mickens [Mic94] constructed “exact” FD
schemes – that is, schemes with zero consistency error. He then developed a
wider class of “nonstandard” schemes by modifying finite difference approxi-
mations of derivatives. These modified approximations are asymptotically (as
the mesh size tends to zero) equivalent to the standard ones but for finite
mesh sizes may yield higher accuracy. Similar ideas were used by I. Harari
& E. Turkel [HT95] and by I. Singer & E. Turkel [ST98] to construct exact
and high-order schemes for the Helmholtz equation. J.B. Cole [Col97, Col04]
applied nonstandard methods to electromagnetic wave propagation problems
(high-order schemes) in 2D and 3D.

The “immersed surface” methodology (A. Wiegmann and K.P. Bube
[WB00]) generalizes the Taylor expansions to account for derivative jumps
at material boundaries but leads to rather unwieldy expressions.

J.W. Nehrbass [Neh96] and L.A. Lambe et al. [LLN03] modified the central
coefficient of the standard FD scheme for the Helmholtz equation to minimize,
in some sense, the average consistency error over plane waves propagating in
all possible directions. There is some similarity between the Nehrbass schemes
and FLAME. However, the derivation of the Nehrbass schemes requires very
elaborate symbolic algebra coding, as the averaging over all directions of prop-
agation leads to integrals that are quite involved. In contrast, FLAME schemes
are inexpensive and easy to construct.

Very closely related to the material of this chapter are the special difference
schemes developed by G.R. Hadley [Had02a, Had02b, Web07] for electromag-
netic wave propagation. In fact, these schemes are direct particular cases of
FLAME, with Bessel functions forming a Trefftz–FLAME basis (although
Hadley derives them from different considerations).
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For unbounded domains, an artificial truncating boundary has to be in-
troduced in FD and FE methods. The exact conditions at this boundary are
nonlocal; however, local approximations are desirable to maintain the sparsity
of the system matrix. One such approximation that gained popularity in the
1990s is the so called “Measured Equation of Invariance” (MEI) by K.K. Mei
et al. [MPC+94, GRSP95, HR98a]. As it happens, MEI can be viewed as a
particular case of Trefftz–FLAME, with the basis functions taken as potentials
due to some test distributions of sources.

4.6 Discussion

The “Flexible Approximation” approach combines analytical and numerical
tools: it integrates local analytical approximations of the solution into nu-
merical schemes in a simple way. Existing applications and special cases of
FLAME are listed in the following table (see Chapters 6 and 7 for applica-
tions of FLAME to electrostatics of colloidal systems and in nano-photonics).
The cases in the table fall under two categories. The first one contains stan-
dard difference schemes revealed as direct particular cases of Trefftz–FLAME.
The second category contains FLAME schemes that are substantially differ-
ent from, and are more accurate than, their conventional counterparts, often
with a higher rate of convergence for identical stencils. Practical implemen-
tation of Trefftz–FLAME schemes is substantially simpler than FEM matrix
assembly and comparable with the implementation of conventional schemes
(e.g. flux-balance schemes).

It is worth noting that FLAME schemes do not have any hidden parame-
ters to contrive better performance. The schemes are completely defined by
the choice of the basis set and stencil; it is the approximating properties of
the basis that have the greatest bearing on the numerical accuracy.

The collection of examples in Table 4.4 inspires further analysis and ap-
plications of FLAME. The table is in no way exhaustive – for example,
boundary layers in eddy current problems and in semiconductor simulation
(the Scharfetter–Gummel approximation, S. Selberherr [Sel84, Fri05]), vary-
ing material parameters in some protein models, J.A. Grant et al. [GPN01],
T. Washio [Was03], etc., could be added to this list.

Two broad application areas for FLAME – one at zero frequency (electro-
statics of colloids and macromolecules in solvents) and another one at very
high frequencies (photonics) – are considered in Chapters 6 and 7, respectively.

The method is most powerful when good local analytical approximations
of the solution are available. For example, the advantage of the special field
approximation in FLAME for a photonic crystal problem is crystal clear in
[Tsu05a]; see Chapter 7. Similarly, problems with magnetizable or polarizable
particles admit an accurate representation of the field around the particles in
terms of spherical harmonics, and the resultant FLAME schemes are substan-
tially more accurate than the standard control volume method.
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Application Basis functions
used in FLAME

Stencil
used in
FLAME

Accuracy
of
FLAME
schemes

Comparison with
standard
finite-difference
schemes

Standard schemes for
the 3D Laplace
equation

Local harmonic
polynomials

Depends
on the
order

2nd order
for the
7-point
stencil

Standard schemes are
a simple particular
case of FLAME

Mehrstellen scheme
for the 3D Laplace
equation

Harmonic
polynomials in
x, y, z up to
order 4

19-point 4th order The
“Mehrstellen”-Collatz
scheme revealed as a
natural particular
case of FLAME

1D Schrödinger
equation

High-order
Taylor
approximations
to the solution

3-point Any
desired
order

The Numerov scheme
is 4th order. 3-point
schemes of order
higher than 4 not
available.

1D heat conduction
with variable
material parameter

Independent
local solutions
of the heat
equation

3-point Exact
(machine
precision
in
practice)

So-called
“homogeneous”
schemes [Sam01] are a
particular case of
FLAME.

Time-domain scalar
wave equation (one
spatial dimension)

Traveling waves
(polynomials
times sinusoids)

5-point 2nd order
in the
generic
case

In the generic case,
equivalent to central
differences. Much
higher accuracy if a
dominant frequency is
present.

Slanted material
interface boundary

Local polyno-
mials satisfying
interface match-
ing conditions

7-point
in 3D,
5-point
in 2D

2nd order Standard schemes,
unlike FLAME, suffer
“staircase” effects

Unbounded problems Multipole harmo-
nicsoutsidethe
computational
domain

7-point
in 3D

See
[HFT04]

Standard
finite-difference
schemes not
applicable to
unbounded problems.

Charged colloidal
particles, no salt

Spherical
harmonics (up
to quadrupole)

7-point 2nd order Much higher accuracy
than the standard
flux-balance scheme.

Charged colloidal par-
ticles,monovalent salt
(Poisson–Boltzmann)

Spherical Bessel
harmonics (up
to quadrupole)

7-point 2nd order Much higher accuracy
than the standard
scheme.

Scattering from a
dielectric cylinder
(frequency domain)

Plane waves in
air and cylindri-
cal harmonics
near scatterer

9-point 6th order Much higher accuracy
than the standard
scheme.

Table 4.4. Examples and applications of FLAME.
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Perfectly Matched
Layer (frequency
domain)

Outgoing plane
waves

9-point Under
investiga-
tion

Waves, eigenmodes
and band structure
in photonic crystals
[PWT07, Tv07]

Cylindrical
harmonics

9-point 6th order Much higher accuracy
than the standard
scheme and FEM
with 2nd order
triangular elements.

Coupled plasmonic
particles

Plane waves in
air and
cylindrical
harmonics near
particles

9-point 6th order Much higher accuracy
than the standard
scheme.

Table 4.5. Examples and applications of FLAME (continued).

Trefftz–FLAME schemes are not variational, which makes their construc-
tion quite simple and sidesteps the notorious bottleneck of computing numer-
ical quadratures. At the same time, given that this method is non-variational
and especially non-Galerkin, one cannot rely on the well-established conver-
gence theory so powerful, for example, in Finite Element analysis. For the
time being, FLAME needs to be considered on a case-by-case basis, with the
existing convergence results (Section 4.3.5) and experimental evidence (Sec-
tion 4.4) in mind. Furthermore, again because the method is non-Galerkin,
the system matrix is in general not symmetric, even if the underlying contin-
uous operator is self-adjoint. In many – but not all – cases, this shortcoming
is well compensated for by the superior accuracy and rate of convergence
(Section 4.4).

FLAME schemes use nodal values as the primary degrees of freedom
(d.o.f.). Other d.o.f. could certainly be used, for example edge circulations
of the field. The matrix of edge circulations would then be introduced instead
of the matrix of nodal values in the algorithm, and the notion of the sten-
cil would be modified accordingly. In the FE context (edge elements), this
choice of d.o.f. is known to have clear mathematical and physical advantages
in various applications (A. Bossavit [Bos98], R. Hiptmair [Hip01], C. Mattiussi
[Mat97], E. Tonti [Ton02]) and is therefore worth exploring in the FLAME
framework as well.

It is hoped that the ideas presented in this chapter will prove useful for
further development of difference schemes in various areas. Such schemes can
be eventually incorporated into existing FD software packages for use by many
researchers and practitioners.

In the foreseeable future, FEM, due to its unrivaled generality and ro-
bustness, will remain king of simulation. However, FLAME schemes may suc-
cessfully occupy the niches where the geometric and physical layout is too
complicated to be handled on conforming FE meshes, while the standard
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finite-difference approximation is too crude. One example is the simulation of
electrostatic multiparticle interactions in colloidal systems, where FEM is im-
practical and Fast Multipole methods may not be suitable due to nonlinearity
and inhomogeneities (Chapter 6).14

Another example, albeit more complicated, is the simulation of macromole-
cules, including proteins and polyelectrolytes [DTRS07]. In such problems,
electrostatic interactions of atoms in the presence of the solvent are extremely
important but are still only part of an enormously complicated physical pic-
ture. Yet another example of a “niche application” where FLAME can work
very well is wave analysis in photonic crystals (Chapter 7) [PWT07, Tv07].

The possible applications of FLAME could be significantly expanded if
accurate local numerical approximations rather than analytical ones are used
to generate a FLAME basis. This approach involves solution of local problems
around grid stencils. Such “mini-problems” can be handled by finite element
or integral equation techniques much more cheaply than the global problem.
FLAME schemes in this case may continue to operate on simple and relatively
coarse Cartesian grids that do not necessarily have to resolve all geometric
features [DT06]. Applications of this methodology to problems of electromag-
netic interference in high density VLSI modules are currently being explored.

Finally, any modern algorithm has to be adaptive. The possibility of adap-
tion and a numerical example are considered in Section 6.2.3 on p. 300.

In addition to practical usage and to the potential of generating new dif-
ference schemes in various applications, there is also some intellectual merit
in having a unified perspective on different families of FD techniques such
as low- and high-order Taylor-based schemes, the Mehrstellen schemes, the
“exact” schemes, some special schemes for electromagnetic wave propagation,
the “measured equation of invariance,” and more. This unified perspective is
achieved through systematic use of local approximation spaces in the finite
difference context.

4.7 Appendix: Variational FLAME

4.7.1 References

The variational version of FLAME was described in [Tsu04b, Tsu04c]; this
section follows [Tsu04b]. Variational FLAME is very close to the “Meshless
Local Petrov-Galerkin” (MLPG) method developed by S.N. Atluri and col-
laborators [AZ98, AS02]15 (see also G.R. Liu’s book [Liu02]).

The variational version is now to a large extend superseded by a non-
variational one – the “Trefftz–FLAME” schemes introduced in [Tsu05a,

14 Software for large-scale Trefftz–FLAME simulations of electrostatic interactions
in colloidal suspensions was developed by E. Ivanova and S. Voskoboynikov.

15 I thank Jon Webb for bringing this to my attention [Web07].
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Tsu06] and described in this chapter. The general setup – multivalued ap-
proximation over a domain cover by overlapping parches and a set of nodes –
is common for all versions of FLAME.

4.7.2 The Model Problem

Although the potential application areas of FLAME are broad, for illustrative
purposes we shall have in mind the model static Dirichlet boundary-value
problem

Lu ≡ −∇ · ε∇u = f in Ω ⊂ R
n, (n = 2, 3); u|∂Ω = 0 (4.56)

Here ε is a material parameter (conductivity, permittivity, permeability,
etc.) that can be discontinuous across material boundaries and can depend
on coordinates but not, in the linear case under consideration, on the poten-
tial u. The computational domain Ω is either two- or three-dimensional, with
the usual mathematical assumption of a Lipschitz-continuous boundary. To
simplify the exposition, precise mathematical definitions of the relevant func-
tional spaces will not be given, and instead we shall assume that the solution
has the degree of smoothness necessary to justify the analysis.

At any material interface boundary Γ , the usual conditions hold:

u1 = u2 on Γ (4.57)

ε1
∂u1

∂n
= ε2

∂u2

∂n
on Γ (4.58)

where the subscripts refer to the two subdomains Ω1 and Ω2 sharing the
material boundary Γ , and n is the normal direction to Γ .

4.7.3 Construction of Variational FLAME

The basic setup for the variational version of FLAME is the same as for
Trefftz–FLAME (Section 4.3.1, p. 198). The computational domain is covered
by a set of overlapping patches: Ω = ∪Ω(i), i = 1, 2, . . . n. There is a local
approximation space Ψ(i) within each patch Ω(i)

Ψ(i) = span{ψ(i)
α , α = 1, 2, . . . , m(i)}

and a multivalued approximation – i.e. a collection of patch-wise approxima-
tions {∪u

(i)
h }. Convergence in this framework (for h → 0) is understood either

in the nodal norm as ‖uh −Nu‖En → 0 or, alternatively, in the Sobolev norm

as (
∑

i

∥∥∥u
(i)
h − u

∥∥∥2

H1(Ω(i))
)1/2 → 0. As elsewhere in the chapter, the underscore

signs denote column vectors.
The next ingredient in the variational formulation is a set of linear test

functionals that will be denoted with primes:
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{ψ(i)′}, ω(i) ≡ supp(ψ(i)′) ⊂ Ω(i), i = 1, 2, . . . n (4.59)

Simply put, this means that ψ(i)′(f) for any (sufficiently smooth) function f is
completely unaffected by the values of f outside Ω(i), including the boundary
of Ω(i). (The italicized portion of this statement is due to the fact that support
supp(ψ(i)′) is, by its mathematical definition, a closed set, whereas domain
Ω(i) is open.) Thus a possible discontinuity of the local approximation u

(i)
h at

the patch boundary is unimportant. The local solution within the i-th patch
is a linear combination of the chosen basis functions:

u
(i)
h =

m(i)∑
α=1

c(i)
α ψ(i)

α = c(i)T ψ(i) ∈ Ψ(i) (4.60)

where c(i), ψ(i) are viewed as column vectors, with their individual entries
marked with subscript α. In the variational formulation, the discrete system
of equations is obtained by applying the chosen linear test functionals to the
differential equation:

[u(i)
h , ψ(i)′ ] = 〈f, ψ(i)′〉 (4.61)

or equivalently
[c(i)T ψ(i), ψ(i)′ ] = 〈f, ψ(i)′〉 (4.62)

where [u, ψ(i)′ ] and 〈f, ψ(i)′〉 are alternative notations for ψ(i)′(Lu) and
ψ(i)′(f), respectively.16

This equation is in terms of the expansion coefficients c of (4.12), (4.60).
To obtain the actual difference scheme in terms of the nodal values, one needs
to relate the coefficient vector c(i) ≡ {c(i)

α } ∈ R
m of expansion (4.60) to the

vector u(i)∈rM of the nodal values of u
(i)
h on stencil #i. (The superscript (i)

for M and m has been dropped for simplicity of notation.) The transformation
matrix N (i), with M rows and m columns, was defined above.

If M = m and N (i) is nonsingular,

c(i) = (N (i))−1u(i) (4.63)

and equation (4.62) becomes

[u(i)T (N (i))−T ψ, ψ(i)′ ] = 〈f, ψ(i)′〉 (4.64)

(It is implied that the functional [· , ·] in the left hand side is applied to the
column vector {ψ(i)} entry-wise.) Then (4.62) or (4.64) can equally well be
written as

u(i)T (N (i))−T [ψ(i), ψ(i)′ ] = 〈f, ψ(i)′〉 (4.65)

16 [u, ψ(i)′ ] should not be construed as an inner product of two functions because

ψ(i)′ is a linear functional rather than a function in the same space as u. I thank
S. Prudhomme for taking a note of this.



234 4 Flexible Local Approximation MEthods (FLAME)

Equivalently, one may note that matrix N governs the transformation from the
original basis {ψ(i)

α } in Ψ(i) to the nodal basis {ψ(i)

nodal
} such that ψ

(i)
αβ,nodal(rβ)

= δαβ . Indeed, two equivalent representations of u
(i)
h in the original and nodal

bases
u

(i)
h = u(i)T ψ(i)

nodal
= c(i)T ψ(i) (4.66)

yield, together with (4.63),

ψ(i)

nodal
= (N (i))−T ψ(i) (4.67)

which reveals that (4.62) is in fact

u(i)T [ψ(i)

nodal
, ψ(i)′ ] = 〈f, ψ(i)′〉 (4.68)

Expressions (4.64) and (4.68) are equivalent but suggest two different algorith-
mic implementations of the difference scheme. According to (4.64), one can
first compute the Euclidean vector of inner products ζ(i) = [ψ(i), ψ(i)′ ] and
the difference scheme then is (N (i))−T ζ(i). Alternatively, according to (4.68),
one first computes the nodal basis (4.67) and then the products [ψ(i)

nodal
, ψ(i)′ ].

The algorithm for generating variational-difference schemes for an equation
Lu = f can be summarized as follows (for M = m and nonsingular N (i)):

1. For a given node, choose a stencil, a set of local approximating functions
{ψ}, and a test functional ψ′.

2. Calculate the values of the ψ’s at the nodes and combine these values into
the N matrix (4.14).

3. Solve the system with matrix NT and the r.h.s. ψ to get the nodal basis.
4. Compute the coefficients of the difference scheme as

[ψnodal, ψ′] ≡ (Lψnodal, ψ′)

Alternatively, stages 3) and 4) can be switched:
3′. Compute the values [ψ, ψ′] ≡ (Lψ, ψ′).
4′. Solve the system with matrix NT and the r.h.s. [ψ,ψ′] to obtain the coef-
ficients of the difference scheme.

Note that the r.h.s. of the system of equations involves functions {ψ
nodal

}
in the first version of the algorithm and numbers [ψ, ψ′] in the second version.
While working with numbers is easier, the nodal functions can be useful and
may be reused for different test functionals.

Variational-difference schemes (4.64) and (4.68) are consistent essentially
by construction [Tsu04b] (see also Section 4.3.5 for related proofs).

Graphically, the procedure can be viewed as a “machine” for generating
variational-difference FLAME schemes (Fig. 4.12).

Remark 11. With this generic setup, no blanket claim of convergence of the
variational scheme can be made. The difference scheme is consistent by con-
struction [Tsu04b] but its stability needs to be examined in each particular
case.
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Fig. 4.12. A “machine” for variational-difference FLAME schemes. (Reprinted by
permission from [Tsu04b] c©2004 IEEE.)

Remark 12. Implementation of (4.64) or (4.68) implies solving a small system
of linear equations whose dimension is equal to the stencil size.

Volume integration in (4.64) is avoided if the test functional is taken to be
either the Dirac delta or, alternatively, the characteristic (“window”) function
Π(ω(i)) of some domain ω(i) ⊂ Ω(i): that is, Π(ω(i)) = 1 inside ω(i) and zero
outside. With the “window” function, one arrives at a control volume (flux
balance) scheme with surface integration. (Typically, ω(i) is the same size as
a grid cell but centered at a node.) The computational cost is asymptoti-
cally proportional to the number of grid nodes but depends on the numerical
quadratures used to compute the surface fluxes.

4.7.4 Summary of the Variational-Difference Setup

The setup of variational FLAME schemes can be summarized as follows:

• A system of overlapping patches is introduced.
• Desired approximating functions are used within each patch, indepen-

dently of other patches.
• Simple regular grids can be used.
• When patches overlap, the approximation is generally multivalued (as is

also the case in standard FD analysis).
• The nodal solution on the grid is single-valued and provides the necessary

“information transfer” between the overlapping patches.
• Since a unique globally continuous interpolant is not defined, the Galerkin

method in H1(Ω) is generally not applicable. However, within each patch
there is a sufficiently smooth local approximation (4.12), and a general
moment (weighted residual) method can be applied, provided that the
support of the test function is contained entirely within the patch.
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In particular, by introducing the standard “control volume” box centered at
a given node of the grid and setting the test function equal to one within
that control volume and zero elsewhere, one arrives at a flux balance scheme.
This is a generalization of the standard “control volume” technique to any
set of suitably defined local approximating functions. Only surface integrals,
rather than volume quadratures, are needed, which greatly reduces the com-
putational overhead.

Application examples of the variational-difference version of FLAME are
given in [Tsu04b]. We now turn to the non-variational version that in many
respects is more appealing.

4.8 Appendix: Coefficients of the 9-Point
Trefftz–FLAME Scheme for the Wave Equation in Free
Space

The mesh size h is for simplicity assumed to be the same in both x- and y-
directions. A 3× 3 stencil is used. The eight Trefftz–FLAME basis functions
are taken as plane waves in eight directions of propagation (toward the central
node of the stencil from each of the other nodes).

ψα = exp(ik r̂α · r), α = 1, 2, . . . , 8, k2 = ω2µ0ε0 (4.69)

The origin of the coordinate system in this case is placed at the midpoint of
the stencil and r̂α is the unit vector in the direction toward the respective
node of the stencil, i.e.

r̂α = x̂ cos
απ

4
+ ŷ sin

απ

4
, α = 1, 2, . . . , 8 (4.70)

The 9× 8 nodal matrix (4.14) of FLAME comprises the values of the chosen
basis functions at the stencil nodes, i.e.

Nβα = ψα(rβ) = exp(ik r̂α · rβ) α = 1, 2, . . . , 8; β = 1, 2, . . . , 9 (4.71)

The coefficients of the Trefftz–FLAME scheme (4.20) are obtained by symbolic
algebra as the null vector of NT . As noted by F. Čajko [vT07], care should
be exercised to avoid cancelation errors when the coefficients are computed
numerically, as their accuracy should be commensurate with the high order
of the scheme. The algebraic expressions for the coefficients are as follows.

For the central node:

s1 =
(e 1

2
+ 1)(e 1

2
e1 + 2e 1

2
e0 − 4e− 1

2
e1 + e 1

2
− 4e− 1

2
+ e1 + 2e0 + 1)

(e0 − 1)2(e− 1
2
− 1)4

For the four mid-edge nodes:



4.9 Appendix: the Fréchet Derivative 237

s2−5 = −
e 3

2
e0 − 2e 1

2
e1 + 2e 1

2
e0 − 2e 1

2
+ e0

(e0 − 1)2(e− 1
2
− 1)4

For the four corner nodes:

s6−9 =
e− 1

2
(2e 1

2
e0 − e− 1

2
e1 − 2e− 1

2
e0 − e− 1

2
+ 2e0)

(e0 − 1)2(e− 1
2
− 1)4

where eγ = exp(2γihk), γ = − 1
2 , 0, 1

2 , 1, 3
2 .

4.9 Appendix: the Fréchet Derivative

In regular calculus, derivatives are used to linearize functions of real or com-
plex variables locally: f(x + ∆x)− f(x) ≈ f ′(x)∆x. More precisely,

f(x + ∆x) − f(x) = f ′(x)∆x + δ(x,∆x) (4.72)

where the residual term δ is small, in the sense that

lim
|∆x|→0

|δ(x,∆x)|
|∆x| = 0 (4.73)

In functional analysis, this definition is generalized substantially to give a
local approximation of a nonlinear operator with a linear one. This leads to
the notion of the Fréchet derivative in normed linear spaces; the absolute
values in (4.73) are replaced with norms.

A formal account of this local linearization procedure in its general form,
with rigorous definitions and proofs, can be found in any text on mathemat-
ical analysis. This Appendix gives a semi-formal illustration of the Fréchet
derivative for the case that will be of most interest in Chapter 6 – the Poisson–
Boltzmann operator. In a slightly simplified form, this operator is

Lu ≡ ε∇2u − a sinh(bu) (4.74)

where u, by its physical meaning, is the electrostatic potential in an electrolyte
with dielectric permittivity ε; a and b are known physical constants.

Let us give u a small increment ∆u (for brevity of notation, dependence
of the potential and its increment on coordinates is not explicitly indicated)
and examine the respective increment of Lu:

∆(Lu) ≡ L(u + ∆u) − Lu = ε∇2∆u − a[sinh(b(u + ∆u))− sinh(bu)]

Linearizing the hyperbolic sine, one obtains

∆(Lu) = ε∇2∆u − ab cosh(bu)∆u + δ(u, ∆u)

Hence, up to first order terms in ∆u,
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∆(Lu) ≈ L′(u)∆u

where the Fréchet derivative L′ is the linear operator

L′(u) = ε∇2 − ab cosh(bu)·



5

Long-Range Interactions in Free Space

5.1 Long-Range Particle Interactions in a Homogeneous
Medium

Computation of long-range forces between multiple charged, polarized and/or
magnetized particles is critical in a variety of molecular and nanoscale applica-
tions: analysis of macromolecules and nanoparticles, ferrofluids, ionic crystals;
in micromagnetics and magnetic recording, etc.

There is a substantial difference between problems with known and un-
known values of charges or dipoles. For example, charges of ions in an ionic
crystal and charges of colloidal particles can often be assumed known and
fixed. On the other hand, the dipole moments of polarizable particles depend
on the external field and therefore are in general unknown a priori.

Furthermore, the particles (charges or dipoles) may interact in a homoge-
neous or in an inhomogeneous medium. The inhomogeneous (and especially
nonlinear) case is substantially more complicated and will be discussed in
Chapter 6.

This chapter is concerned exclusively with problems where the charges or
dipoles are known and the medium is linear homogeneous (free space being
the obvious particular case). Even though this case is simpler than problems
with unknown polarization of particles and with inhomogeneous media, the
computational challenges are still formidable.

Any macroscopic volume contains an astronomical number of particles
(Avogadro’s number is ∼ 6.022 × 1023 particles per mole of any substance).
“Brute force” modeling of such enormous systems is obviously not feasible
in any foreseeable future. Therefore one cannot help but restrict the simula-
tion to a computational cell containing a relatively small number of particles
(typically from hundreds to tens of thousands), with the assumption that the
results are representative of the behavior of a larger volume of the material.

A new question immediately arises, however, once the simulation has been
limited to a finite cell. To find the electrostatic (or in some cases magnetosta-
tic) field within the cell, one needs to set boundary conditions on its surface.
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Clearly, the actual boundary values of the field or potential are not known,
as they depend on the distribution of all sources, including those outside the
computational cell. The most common approximation is to impose periodic
conditions by replicating the cell in all three directions. The whole space is
then filled with identical cells, as schematically illustrated in Fig. 5.1.

Fig. 5.1. A schematic illustration of the electrostatic problem with periodic condi-
tions.

The obvious geometric restriction is that the cell has to have a space-
filling shape such as a parallelepiped (rectangular, monoclinic or triclinic) or
a truncated octahedron.1 The latter is indeed used in some molecular dynam-
ics simulations, as its shape is closer to spherical symmetry than that of a
parallelepiped. For simplicity, however, we shall limit our discussion to the
rectangular parallelepiped, keeping in mind that most computational meth-
ods considered in this chapter can be generalized to more complex shapes of
the cell. Furthermore, we shall consider only charges, not dipoles; for dipole
interactions, see e.g. S.W. de Leeuw et al. [dLPS86] and Z. Wang & C. Holm
[WH01].

With infinitely many cells filling the whole space and infinitely many par-
ticles, it is clearly impossible to compute energy and forces by straightforward
numerical summation. Even if the number of particles N were finite but large,
direct summation of all pairwise energies, while theoretically possible, would

1 See e.g. Eric W. Weisstein. “Truncated Octahedron.” From MathWorld – A Wol-
fram Web Resource. http://mathworld.wolfram.com/TruncatedOctahedron.html



5.1 Long-Range Particle Interactions in a Homogeneous Medium 241

not be computationally efficient, as the number of operations θ is asymptoti-
cally proportional to N2. Special techniques are therefore required.

The main features of the problem that will be considered in this chapter
can be summarized as follows:

1. Charges qi (i = 1, 2, . . . , N) are given. Their locations ri = (xi, yi, zi)
within a rectangular parallelepiped with dimensions Lx×Ly×Lz are also
known.

2. The system of charges is electrically neutral, i.e.
∑N

i=1 qi = 0.
3. The medium is homogeneous (free space is a particular case).
4. The boundary conditions are set as periodic: each charge at ri = (xi, yi, zi)

has infinitely many identical images at (xi + nxLx, yi + nyLy, zi + nzLz),
where nx,y,z are integers.

Violation of the neutrality condition – that is, a nonzero value of the total (or,
equivalently, the average) charge in the computational cell – would lead, due
to the periodic boundary conditions, to the nonzero average charge density
throughout the infinite space, which does not give rise to mathematically or
physically meaningful fields.

The goal is to compute energy and forces acting on the particles, at as low
computational cost as possible. In the asymptotic sense at least, the number
of operations θ growing as ∼ CN2, with some numerical factor C, is as a rule
not acceptable, and one is looking for ways to reduce it as close as possible
to the optimal θ ∼ CN level. Of course, in the comparison of methods with
the same asymptotic behavior, the magnitude of the C prefactor becomes
important.

When the focus of the analysis is on the asymptotic behavior and not on
the prefactor, the “big-oh” notation is very common and useful:

θ = O(Nγ) ⇐⇒ C1N
γ ≤ θ ≤ C2N

γ (5.1)

where C1,2 are positive constants independent of N and γ is a parameter. (See
also Introduction, p. 7.)

At least two classes of methods with close to optimal asymptotic number
of arithmetic operations per particle are known. The first one – the summation
method introduced in 1921 by P. Ewald [Ewa21] – is the main subject of this
chapter.

The second alternative is Fast Multipole methods (FMM) by L. Greengard
& V. Rokhlin [GR87b, CGR99]. The key idea to speed up multiparticle field
computation by clustering the particles hierarchically can be traced back to
the tree codes developed in the 1980s by J. Barnes & P. Hut [BH86] and
to the algorithm by A.W. Appel [App85]. For 2D, FMM was developed by
Greengard & Rokhlin [GR87b] and independently by L.L. van Dommelen &
E.A. Rundensteiner [vDR89]. The 2D case is simplified by the availability of
tools of complex analysis; 3D algorithms are much more involved and were
perfected in the 1990s by Greengard & Rokhlin [GR97, CGR99, BG].
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In FMM, the particles are clustered hierarchically; interactions between re-
mote clusters can be computed with any desired level of accuracy via multipole
expansions (truncated to a finite number of terms); this idea, when applied
recursively, reduces the computational cost dramatically – from O(N2) to the
asymptotically optimal value O(N).

Many versions, modifications and implementations of the Greengard-
Rokhlin FMM now exist. A very helpful and concise tutorial by R. Beatson
& L. Greengard is available online [BG]. Notably, the operation count for the
“classic” version of FMM in 3D is, according to [BG], approximately 150Np2,
where p is the highest order of multipole moments retained in the expansion.
(The numerical error decreases exponentially as p increases.) An improved
version of FMM reduces the operation count to ∼ 270Np3/2 + 2Np2. Finally,
a new algorithm combining multipole expansions with plane wave expansions2

requires about 200Np + 3.5Np2 operations [BG]. The multipole/exponential
expansion is described by T. Hrycak & V. Rokhlin [HR98b] for 2D and by
Greengard & Rokhlin for 3D.

Implementation of FMM for periodic boundary conditions requires ad-
ditional care. This case is discussed in Greengard & Rokhlin’s 1987 paper
[GR87b] (Section 4.1), in Greengard’s dissertation [Gre87], and for 3D in more
detail by K.E. Schmidt & M.A. Lee [SL91]. For more recent developments,
see F. Figueirido et al. [FLZB97] and Z.H. Duan & R. Krasny [DK00, DK01].

The FMM works best, and has almost optimal operation count, if (i) the
domain is unbounded; (ii) material characteristics are linear and homoge-
neous; (iii) the dipole moments (or charges) are known a priori ; (iv) the
number of particles is very large (on the order of 104 or higher). If these con-
ditions are not fully satisfied, the FMM is less efficient. However, even when
the situation is ideal for FMM, its algorithmic implementation is quite in-
volved, and the large numerical prefactor in the operation count reduces the
computational efficiency. In addition, in Molecular Dynamics (MD) simula-
tions a fairly large number of terms (eight or more) have to be retained in
the multipole expansion to avoid appreciable numerical violation of energy
conservation laws [BSS97]. Due to this combination of circumstances, Ewald
summation algorithms are still more popular in MD than FMM.

5.2 Real and Reciprocal Lattices

It is standard in solid state physics to characterize the computational cell
geometrically by its three axis vectors L1 = L1 l̂1 , L2 = L2 l̂2, L3= L3 l̂3, where
l̂1−3 are unit vectors. These vectors are not necessarily orthogonal, although
2 The plane wave expansion of the (static!) Coulomb potential is counterintuitive

but nevertheless efficient, due to the simple translation properties of plane waves.
In 2D, the exponential representation comes from the obvious integration formula
(z − z0)

−1 =
∫ ∞
0

exp(−x(z − z0)) dx for any complex z, z0 with Re(z − z0) > 0
[HR98b]. The integral is then approximated by numerical quadratures.
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in subsequent sections for simplicity we assume that they are. In the case of
ionic crystals, the computational box may correspond to the Wigner–Seitz
cell.

The real lattice L is defined as a set of vectors (or equivalently, points)
R = n1L1 + n2L2 + n3L3 for all integers n1, n2, n3.

It is also standard in solid state physics and crystallography to define the
reciprocal lattice K of vectors k such that

exp(iR · k) = 1 (5.2)

The reciprocal lattice K is spanned by three vectors

k1 = 2π
L2 × L3

L1 · L2 × L3
(5.3)

k2 = 2π
L3 × L1

L1 · L2 × L3
(5.4)

k3 = 2π
L1 × L2

L1 · L2 × L3
(5.5)

so that any reciprocal lattice vector k = m1k1 + m2k2 + m3k3 for some
integers m1, m2, m3.

Transformations between real and reciprocal (i.e. Fourier) spaces are key
in the analysis. The Fourier series representation of a function f(r) is

f(r) =
∑
k∈K

f̂(k) exp(ik · r) (5.6)

with
f̂(k) =

1
V

∫
cell

f(r) exp(−ik · r) dV (5.7)

In the remainder, the lattices vectors will be assumed orthogonal and directed
along the Cartesian axes; therefore subscripts x, y, z will be used instead of
1, 2, 3 to denote these lattices vectors.

Further details can be found in textbooks on solid state physics, for ex-
ample N.W. Ashcroft & N.D. Mermin [AM76].

5.3 Introduction to Ewald Summation

Developed early in the 20th century [Ewa21] as an analytical method for
computing electrostatic energy and forces in ionic crystals, the Ewald method
became, after the introduction of “Particle–Mesh” methods by R.W. Hockney
& J.W. Eastwood in [HE88], a computational algorithm of choice for periodic
charge and dipole distributions. Nowadays many versions of Ewald summation
exist (see e.g. excellent reviews by C. Sagui & T.A. Darden [SD99] and by
M. Deserno & C. Holm [DH98a]).
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The main features of the problem were already summarized in the previous
section; we now turn to a more rigorous formulation.

An electrically neutral collection of charges {qi}N
i=1 is considered in a rec-

tangular box Lx × Ly × Lz.3 The charges and their locations ri = (xi, yi, zi)
are known.4 Due to the periodic conditions assumed, each charge has infi-
nitely many images at ri + n. ∗ L, where vector L = (nxLx, nyLy, nzLz),
n ∈ Z

3 is a 3D index, and nx, ny, nz are arbitrary integers. (n = 0 corre-
sponds to the charge itself.) Here, and occasionally elsewhere in this chap-
ter, I adopt Matlab-style notation for entry-wise multiplication of vectors:
n. ∗ L ≡ (nxLx, nyLy, nzLz).5

One would think that the electrostatic potential can easily be written out
as a superposition of Coulomb potentials of all charges (including images):

u(r) =
1

4πε

∑
n∈Z3

N∑
i=1

qi

|r− ri + n. ∗ L| (to be clarified) (5.8)

where the SI system of units has been adopted. Similarly, at first glance the
expression for electrostatic energy E is

E =
1

4πε

1
2

∗∑
n∈Z3

∑
1≤i,j≤N

qiqj

|ri − rj + n. ∗ L| (to be clarified) (5.9)

Subscripts i, j refer to two charges in the simulation box. By convention, the
asterisk (or in some publications the prime) on top of the summation sign
indicates that the singular term with i = j and n = 0 is omitted.

Since both potential and energy are expressed via infinite series, the ques-
tion of convergence (or lack thereof) is critical. The net charge of the compu-
tational cell is, by definition of the problem, zero; let the total dipole moment
of the cell be p =

∑
qi∈cell qiri. Convergence of the series is governed by the

asymptotic behavior of its terms as index n → ∞. The contribution of the
n-th image of the cell to the potential in the cell is, asymptotically,

u(r,n) ∼ p

|n. ∗ L|2
∼ p

n2
(5.10)

At the same time, the number of periodic images corresponding to the same
n is asymptotically proportional to n2 (to see that, assume for simplicity that
all three dimensions of the cell are scaled to unity and picture the n-th layer
of images of the cell as approximately a spherical shell of volume 4πn2). This

3 For simplicity, we shall not consider more complex box shapes such as triclinic or
truncated octahedral, even though their treatment in Ewald algorithms is similar.

4 In Molecular Dynamics, at each time step particles assume different positions and
the Ewald method is then applied to update the energy and forces at that step.

5 In mathematics, such entry-wise multiplication is known as Hadamard product;
see R.A. Horn & C.R. Johnson [HJ94].
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means that the n-th layer of images contributes on the order of n2 terms, each
of which by the absolute value is on the order of n−2. Consequently, the series
for the electrostatic potential does not converge absolutely.6

If the dipole moment of the cell happens to be zero (which in practice can
only be assured under special symmetry conditions), the rate of decay of the
terms in the series will be dictated by the next surviving multipole moment
(e.g. quadrupole, if it is nonzero). Then the series will converge absolutely due
to the faster rate of decay of its terms. Absolute convergence substantially
simplifies the analysis and, among other things, makes it legal to change the
order of summation in the infinite series.

In the general, and most interesting, case of a nonzero dipole moment, the
sum of the series for both potential and energy depends on the order of sum-
mation of its terms. That is, expressions (5.8), (5.9) are not even rigorously
defined until the order of summation is specified. The value of the potential
thus depends on which charge contributes to the total field “first,” which one
contributes “second,” etc. This is unacceptable on physical grounds and, in
addition, quite bizarre mathematically due to the Riemann rearrangement
theorem. This theorem states that the terms of any conditionally convergent
series can be rearranged to obtain any preassigned sum from −∞ to ∞ (in-
clusive) – that is, any value of potential and energy could be obtained by
summing up the contributions in a certain order.

The cause of this nonphysical result is the artificial infinite and perfectly
periodic structure that has been assumed. In contrast, the potential of a finite
system of charges is well defined. An infinite system is nonphysical at least
in some respects, so it is not a complete surprise that paradoxes do arise.
A mathematically rigorous way to define and analyze the infinite periodic
system is to start with a finite one and then let its size tend to infinity.
The conditional convergence then manifests itself in a clear way: the total
potential, and thus the field, depend on the overall geometric shape of the
body [Smi81, dLPS80a, dLPS80b, SD99, DH98a] and on the conditions on its
boundary. This shape dependence does not disappear even if the boundary is
moved far away.

An accurate mathematical analysis along these lines was carried out by
E.R. Smith [Smi81] (see also de Leeuw et al. [dLPS80a, dLPS80b, dLPS86]).
Smith considered a finite-size collection of particles (e.g. a finite ionic crystal)
as built of a number of layers of cells around a “master” cell and computed
the electrostatic energy (per unit cell) for the progressively increasing number
of such layers, with the shape of the body remaining fixed. This problem is
mathematically valid and well-posed, and Smith’s final result does contain a
term depending on the shape of the body and also on the dielectric constant
of the surrounding medium.

6 Recall that a series is called absolutely convergent if the series of absolute values
converges. Otherwise a convergent series is called conditionally convergent.
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A physical explanation of this shape dependence is not complicated. In-
deed, a body containing a large number of cells carrying a dipole moment p
can be considered as having average polarization (i.e. dipole moment per unit
volume) of approximately P = p/V , with volume V = LxLyLz. It is well
known from electrostatics that the corresponding equivalent charge density
on the surface of the body is ρS = P · n̂, where n̂ is the outward unit normal
to the surface. This surface charge creates an additional field and contributes
to the energy of the system; this contribution does not diminish even if the
size of the surface tends to infinity.7

In the following section, we view the computation of the electrostatic po-
tential as a boundary value problem. This treatment is instructive and, gen-
erally speaking, standard in electrostatics; yet it is uncommon in the studies
of Ewald methods.

5.3.1 A Boundary Value Problem for Charge Interactions

Let the computational cell be a rectangular parallelepiped Ω = [0, Lx] ×
[0, Ly]× [0, Lz]. The governing electrostatic equation for the electrostatic po-
tential is

Lu ≡ −∇2u =
ρδ

ε
in Ω = [0, Lx]× [0, Ly]× [0, Lz] (5.11)

where the density of point charges ρδ can be written via Dirac δ-functions:

ρδ =
N∑

i=1

qiδ(r− ri) (5.12)

Periodic boundary conditions are assumed:

u(0, y, z) = u(Lx, y, z);
∂u(0, y, z)

∂x
=

∂u(Lx, y, z)
∂x

(5.13)

and similar conditions on the other two pairs of faces. In addition, to eliminate
an additive constant in the potential, the zero mean is imposed:∫

Ω

u dΩ = 0 (5.14)

It is not difficult to prove that the solution of this boundary value problem
is unique. Indeed, if there are two solutions of (5.11)–(5.14), u1 and u2, then
their difference v ≡ u1 − u2 satisfies the Laplace equation in Ω as well as the
periodic boundary conditions. The Fourier series expansion of v is

7 In addition, if the surrounding medium outside the body is a dielectric, it will
also be polarized and will in general affect the equivalent surface charge density
and the overall field and energy.
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v(r) =
∑
k∈K

ṽ(k) exp(ik · r) (5.15)

and the periodic boundary conditions ensure that the second derivative of
v exists as a regular periodic function, not just a distribution, in the whole
space. (See Appendix 6.15, p. 343, for information on distributions.) Then
the Laplace operator in the Fourier space amounts just to multiplication with
−k2, so the fact that v satisfies the Laplace equation implies k2ṽ(k) = 0.
Hence all Fourier coefficients ṽ(k) for k �= 0 are zero; but ṽ(0) = 0 as well due
to the zero mean condition for v. Since all Fourier coefficients of v are zero,
v = 0 and u1 = u2.

Further, not only is the solution unique but also problem (5.11) – (5.14)
is well-posed. This can be stated more precisely in several different ways. Let
us, for example, examine the minimum eigenvalue of the problem

Lu = λu (5.16)

(with periodic boundary conditions and the zero-mean constraint in place). If
u is an eigenfunction of this problem, then

(Lu, u) = λ(u, u) (5.17)

where (· , ·) is the standard complex L2 inner product, i.e.

(u, v) ≡
∫

Ω

uv∗ dΩ (5.18)

where v∗ is the complex conjugate of v. Using Parseval’s identity, one can
equally well compute the inner products in Fourier space and rewrite (5.17)
as ∑

k∈K;k �=0
k2|ũ(k)|2 = λ

∑
k∈K;k �=0

|ũ(k)|2 (5.19)

where ũ(k) are the Fourier coefficients of u.
Since k ≥ 1, it is clear from the expression above that

λ ≥ k2
min =

(
2π

Lx

)2

+
(

2π

Ly

)2

+
(

2π

Lz

)2

(5.20)

This boundedness of the minimum eigenvalue shows that the problem is indeed
well-posed.

The Fourier Transform of the point charge density will be needed very
frequently:

F{ρδ}(k) =
1
V

ρ̃(k) =
1
V

N∑
i=1

qi exp(−ik · ri) (5.21)

In solid state physics and crystallography, coefficients ρ̃(k) are known as struc-
ture factors and are often denoted with S(k). I shall, however, continue to use
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the ρ̃ notation because it underscores the connection with charge density ρ in
real space.

With the dot product written out explicitly, the structure factor is

ρ̃(k) =
N∑

i=1

qi exp (−i (kxxi + kyyi + kzzi)) (5.22)

The treatment of Coulomb interactions as a boundary value problem ac-
complishes several goals:

Well-posedness. The ambiguity related to the shape-dependent term has
been removed; the problem is well-posed.

Finite domain. The problem is limited to one finite computational cell – no
need to consider infinite sets of images and infinite sums.

Wider selection of methods. Not only FT-based techniques but other
methods well established for boundary value problems (e.g. finite differ-
ences) become available.

The reader may note an apparent contradiction between the well-posedness of
the boundary value problem and the inherent ambiguity of summation of the
conditionally convergent infinite series. The following section considers this
question in more detail and presents the solution of the Poisson equation via
the Ewald series.

5.3.2 A Re-formulation with “Clouds” of Charge

As discussed in Section 5.3, the infinite series (5.8) for the electrostatic poten-
tial of the periodic array of cells does not converge absolutely and therefore
cannot directly be used for theoretical analysis or practical computation.

As already noted, the rigorous analysis by E.R. Smith [Smi81] involves a
finite series for the potential and energy of a finite-size body, and passing to
the limit as the size of the body increases but its shape is kept the same.
The end result can be written as a sum of two absolutely convergent Ewald
series (considered in detail below), plus a shape-dependent term. Fixing the
shape of the body can be interpreted as specifying the order of summation
in the infinite series: the summation is carried out layer-by-layer. Changing
the shape leads to a rearrangement of terms in the original conditionally
convergent series (5.8) and in general to a different result.

The shape-dependent term is attributable to the field of charges on the
surface of the body (e.g. a crystal) due to the polarization of that body.
From this physical perspective, it is clear that the periodic conditions (5.13)
in the boundary value problem correspond to the case where Smith’s shape-
dependent term is absent. Thus the periodic conditions represent only a par-
ticular case of a more general physical situation; however, the general case
can always be recovered by adding the shape-dependent term. It can also
be argued [DTP97] that in a real physical system of finite size the surface
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charges will tend to rearrange themselves to minimize their contribution to
free energy.

In the remainder, we shall therefore disregard the shape-dependent term
and focus on the boundary value problem described by the Poisson equation
(5.11) with the periodic boundary conditions (5.13) and the zero-mean con-
straint (5.14). This problem, as noted in the previous section, is well-posed.

The following idea allows one to write the solution via rapidly convergent
sums. Intuitively, this idea can be interpreted as splitting up the potential
of each point charge into two parts, by adding and subtracting an auxiliary
“cloud” of charge (Fig. 5.2), usually with a Gaussian distribution of charge
density. In the first subproblem (point charges with clouds), the interactions
are short-range due to the screening effect of the clouds; these interactions can
therefore be computed directly. The second subproblem (clouds only) does not
contain singularities and can be solved, especially for periodic boundary con-
ditions, using Fourier Transforms (FT). A radical improvement is achieved

Fig. 5.2. The point charge problem split into two parts. (Reprinted by permission
from [Tsu04a] c©2004 IEEE.)

by employing Fast FT on a finite grid, with appropriate charge-to-grid as-
signment schemes. Fourier Transform (“reciprocal space”) methods are so
standard that even the conventional terminology reflects it. For example, the
notion of reciprocal energy and forces refers to the way these quantities are
computed (by FT) rather than to what they physically are (interactions due
to Gaussian clouds).

As a preliminary step in the derivation of Ewald summation methods, let
us work out expressions for the field distribution due to a Gaussian cloud of
charge.

5.3.3 The Potential of a Gaussian Cloud of Charge

Let the charge density be defined (in the spherical system) as a Gaussian
distribution centered (for convenience) at the origin:

ρcloud = ρ0 exp(−β2r2) (5.23)
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where ρ0 and β are parameters (in Ewald methods, β is called the Ewald
parameter). Note that this form of charge density is taken for computational
convenience, as it is relatively easy to deal analytically with Gaussians.

We first consider a “stand-alone” cloud, with no periodicity, and then turn
to the problem with periodic images. The total charge of a single cloud is

q =
∫

R3
ρ dV = ρ0

∫ ∞

0

exp(−β2r2) 4πr2dr = ρ0
π3/2

β3
(5.24)

Hence

ρ0 = q
β3

π3/2
(5.25)

The field of the cloud can then be found using Gauss’s Law of electrostatics:
the flux of the D vector through any closed surface is equal to the total charge
inside that surface.

For the Gaussian cloud in a homogeneous dielectric with permittivity ε,
this yields, in the metric system of units,8

4πr2εE = ρ0

∫ r

0

exp(−β2r2) 4πr2 dr = erf(βr) − 2
β√
π

r exp(−β2r2)

This immediately gives the E field and then the potential of the Gaussian
cloud of charge:

ucloud(r) =
∫ ∞

r

E(r) dr =
erf(βr)
4πεr

(5.26)

As a reminder, the error function is defined as

erf(r) ≡ 2√
π

∫ r

0

exp(−r2) dr (5.27)

and the complementary error function

erfc(r) ≡ 1 − erf(r) (5.28)

The Taylor expansion of erf around zero is known to be

erf(r) =
2√
π

(
r − 1

3
r3 + h.o.t.

)
, r � 1 (5.29)

where “h.o.t.” stands for “higher order terms” in r. The cloud potential (5.26)
at r = 0 then is

ucloud(0) =
β

2π3/2ε
(5.30)

8 The usage of the same symbol (in this case, r) as both the dummy integration
variable and the integration limit helps to avoid superfluous notation and should
not cause any confusion.



5.3 Introduction to Ewald Summation 251

Note that the error function tends very rapidly to one when its argument goes
to infinity (and simultaneously erfc tends to zero). For example, erfc(4) ≈
1.54 ·10−8, erfc(6) ≈ 2.16 ·10−17. Consequently, potential (5.26) of a Gaussian
cloud decays as ∼ 1/r, but the potential of a point charge with a screening
cloud of the opposite sign decays extremely quickly with increasing r – as
erfc(r)/r).

Next, we shall need the Fourier Transform of the Gaussian charge density
and potential. (The main rationale for using FT is that differentiation turns
into multiplication by ikx,y,z in the Fourier domain.) We have to be prepared to
deal with multiple charges and the corresponding clouds centered at different
locations, so the (slight) simplification that the charge is located at the origin
must now be dropped.

The FT of a Gaussian is known to be also a Gaussian. Let us start with
1D for simplicity and consider a Gaussian function centered at xi:

ρ(i)(x) = ρ
(i)
0x exp(−β2(x− xi)2) (5.31)

For the time being, ρ0x is just an arbitrary factor; however, we anticipate that
in 3D, when combined with similar factors ρ

(i)
0y , ρ

(i)
0z , it will yield the proper

normalization constant ρ0 of (5.25).
The Fourier transform of this Gaussian is

F{ρ(i)}(kx) ≡ ρ
(i)
0x

∫ ∞

−∞
exp(−β2(x− xi)2) exp(−ikxx) dx

= ρ
(i)
0x

√
π

β
exp

(
− k2

x

4β2

)
exp(−ikxxi) (5.32)

where k is a Fourier (= reciprocal space) variable and subscript “x” is used
in anticipation of y- and z-components of k to be needed later.

5.3.4 The Field of a Periodic System of Clouds

The FT above is for a stand-alone Gaussian in the whole space. However, we
need to deal with a periodic system of Gaussians; what is the FT in this case?
More precisely, we define the “periodized” charge density as

PER{ρ(i)}(r) ≡
∑
n∈Z3

ρ(i)(r− n. ∗ L) (5.33)

where again n. ∗L is Matlab-style notation for Hadamard-product, i.e. entry-
wise multiplication of Euclidean vectors or matrices (see footnote 5 on p. 244).

This charge density is periodic by construction, and hence its Fourier trans-
form is actually a Fourier series, so that

PER{ρ(i)}(r) =
∑
k∈K

ρ̃
(i)
PER(k) exp(ik · r) (5.34)
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where ρ̃
(i)
PER are the coefficients of the Fourier series.

We can now take advantage of a simple relationship between the discrete
FT of a periodic array of clouds and the continuous FT of a single cloud:

F{PER{ρ(i)}} ≡ ρ̃
(i)
PER(k) =

1
V

ρ̃(i)(k), k ∈ K (5.35)

where V = LxLyLz is the volume of the computational cell. This relationship
(for 1D, well known in Signal Analysis) is derived in Appendix 5.6.

An explicit expression for this spectrum is obtained by substituting the FT
of the stand-alone Gaussian (5.32) into (5.35), for each of the three coordinates
x, y, z:

F
{

PER{ρ(i)
cloud}

}
(k) = ρ

(i)
0

1
V

(√
π

β

)3

exp
(
− k2

4β2

)
exp(−ik · ri)

=
qi

V
exp

(
− k2

4β2

)
exp(−ik · ri) (5.36)

where vector k = (k0xmx, k0ymy, k0zmz), k0x = 2π/Lx and similarly for the
other two coordinates; k2 = k2

x + k2
y + k2

z ; ρ
(i)
0 was defined in (5.25).

Hence the FT of the charge density of all clouds is

F{ρclouds}(k) ≡ 1
V

ρ̃clouds(k) =
1
V

N∑
i=1

qi exp(−ik·ri) exp
(
− k2

4β2

)
(5.37)

where subscript “clouds” (in plural) implies the collective contribution of all
clouds of charge (including their periodic images).

5.3.5 The Ewald Formulas

With the Fourier Transform of the sources now at hand, we can solve the
Poisson equation and derive the Ewald summation formulas. The Poisson
equation (5.11) in the Fourier domain is extremely simple:

k2ũclouds(k) =
ρ̃clouds

ε
(5.38)

Hence the electrostatic potential in the Fourier domain is

ũclouds(k) =
ρ̃clouds

k2εV
=

1
εV

N∑
i=1

qi exp(−ik · ri)
1
k2

exp
(
− k2

4β2

)
, k �= 0

(5.39)
for k = 0, due to the zero-mean constraint for charges and potentials

ũcloud(0) = 0 (5.40)
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The inverse FT of ũclouds will now yield the cloud potential in real space. We
are thus in a position to derive Ewald formulas for the electrostatic energy.
The starting point is the usual expression for the energy in terms of charge
and potential:

E =
1
2

∑N

i=1
qi

i
u(ri) (5.41)

where the “top-i” in
i
u indicates that the self-potential is eliminated, i.e. the

potential
i
u(ri) is due to all charges but qi.9

As intended, we now add and subtract the potential of all clouds:

E =
1
2

∑N

i=1
qi

(
i
u(ri) +

i
uclouds(ri)

)
− 1

2

∑N

i=1
qi

i
uclouds(ri) (5.42)

The first summation term in the expression above is the energy of pairwise
interactions of charges with the neighboring “charge+cloud” systems; since
the field of such a system is short-range, these pairwise interactions can be
computed directly at the computational cost proportional to the number of
charges.10 This “direct” energy is then

Edir =
1
2

∑N

i=1
qi

(
i
u(ri) +

i
uclouds(ri)

)

=
1

4πε

1
2

∗∑
n∈Z3

N∑
i,j=1

qiqj erfc(β |ri − rj + n. ∗ L|)
|ri − rj + n. ∗ L| (5.43)

In practice, summation over all n is hardly ever necessary because the error
function becomes negligible at separation distances much smaller than the
size of the computational box.

The very fast decay of the complementary error function with distance
makes the direct-sum interactions effectively short-range. In practice, a cutoff
radius rcutoff is chosen in such a way that erfc(βrcutoff) is negligible (more
about that in the following section), and the respective terms in the sum are
ignored:

9 This rather inelegant adjustment of the potential is needed to eliminate the non-

physical infinite self-energy of point charges. A rigorous definition of
i
u, however,

is not completely trivial. If charge qi is excluded, the remaining system of charges
is not electrically neutral, and the boundary value problem with periodic condi-

tions is not well-posed. One can simply define
i
u as u − u

(i)
self , where u

(i)
self is just

the Coulomb potential of charge qi in empty space. The fact that u
(i)
self and

i
u do

not satisfy periodic boundary conditions is unimportant because the only role of
these quantities is to regularize expressions for energy by removing the singularity
in an arbitrarily small neighborhood of the point charge.

10 It is convenient to assume that the volume density of particles is fixed and the
number of particles grows as the volume of the computational box grows.
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Edir ≈ 1
4πε

1
2

N∑
i,j=1,|ri−rj |<rcutoff

qiqj erfc(β |ri − rj |)
|ri − rj |

(5.44)

We now turn to the second sum in (5.42). Each term of this sum contains its

own modified potential
i
u (with the contribution of its respective cloud elim-

inated); this is inconvenient, as it is much more straightforward to compute
the potential of all clouds without exception. We therefore rewrite this second
sum and the expression for the energy as

E = Edir − 1
2

∑N

i=1
qiuclouds(ri) +

1
2

∑N

i=1
qiu

(i)
cloud(ri) (5.45)

where Edir is given by (5.43). The first sum in the right hand side of this
equation is easily interpreted as the energy of point charges in the field created
by the clouds. It has been our intention from the beginning to compute this
term in the Fourier domain by the Plancherel–Parseval theorem; this is indeed
sensible, as the charge distribution of the clouds is smooth enough for the
high-order Fourier harmonics to be sufficiently small.

Erec =
1
2

∫
Ω

ρδ uclouds dΩ =
1
2

∑
k∈K

ρ̃δ(k)u∗
clouds(k)

=
1
2

∑
k∈K

N∑
i=1

qi exp(−ik · ri) ũ∗
clouds(k) (5.46)

The potential of clouds in the Fourier domain has already been found in (5.39).
The following expression for the reciprocal energy ensues:

Erec =
1

4πε

1
2V

∑
k �=0

exp(−π2k2/β2)
k2

|ρ̃δ(k)|2 (5.47)

Finally, the i-th term of the last summation in the energy decomposition (5.45)
has an immediate interpretation as the energy of the i-th point charge in the
field of its respective cloud (loosely speaking, “self-energy”). The potential at
the center of the cloud is given by (5.30), and thus the self-energy term is

Eself = − 1
4πε

β√
π

N∑
j=1

q2
j (5.48)

The Ewald formulas for the electrostatic energy are summarized in the
overview Section 5.5.

5.3.6 The Role of Parameters

There are two main adjustable parameters in Ewald methods: β and the cutoff
radius rcutoff . The latter limits the direct computation of pairwise interactions
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only to charges within the cutoff distance from one another. The potential of
a charge surrounded by the screening Gaussian cloud decays as erfc(βr). Since
erfc(4.5) ≈ 2× 10−10, one may want to choose, say,

rcutoff ≥ 4.5/β (5.49)

We shall assume that the cutoff radius is taken to be sufficiently large, so that
the error due to cutoff is substantially smaller than all other numerical errors
and can therefore be neglected.

Remark 13. Early on in the development of molecular dynamics, “cutoff” had
a different meaning: electrostatic interactions were simply ignored beyond the
cutoff. This approach results in an abrupt change of the potential and (the-
oretically) infinite fields and forces at the cutoff radius, violation of energy
conservation, etc. More accurate and sophisticated methods for electrosta-
tic interactions were developed to eliminate such computational artifacts. In
Ewald methods, the “cutoff” is applied to the erfc terms, which is orders of
magnitude more accurate than a cutoff in Coulomb terms.

In addition to the cutoff radius and β, grid-based Ewald algorithms (discussed
in the subsequent sections) have other adjustable parameters, in particular,
the grid size and the order of the charge interpolation scheme. Moreover, not
just the parameters, but the approaches for grid-based computation vary.

The trade-offs for β are not difficult to see. If this parameter increases, the
effective size of the cloud decreases, and the cutoff radius can be taken smaller
in accordance with (5.49). This reduces the number of pairwise interactions
that are computed directly in the Ewald sum. However, the charge density
in the cloud decays more rapidly for higher β, and therefore more spatial
harmonics have to be retained in the spatial FT to achieve the same level of
accuracy.

For illustration, consider two extreme choices of β. Suppose that the vol-
ume density of charges remains constant but the number of charges and con-
sequently the volume of the computational box grow.

Let us first keep β, and therefore the cutoff radius (5.49), constant. Then
for each charge the number of its neighbors within the cutoff remains the same
as well. In the direct sum (for Edir) the computational cost per charge is then
independent of the number of charges.

For a given level of accuracy, the infinite series for Erec can be truncated
at some maximum k proportional to β and hence constant in the case under
consideration. But this implies that the computational cost for the reciprocal
sum grows with the number of charges N as O(N2). Indeed, the number
of spatial harmonics that need to be retained is proportional to the volume
of the box and hence to N , because mx = kxLx/(2π), etc. The growing
number of charges is accompanied by the same growth in the number of spatial
harmonics, leading to the very poor O(N2) scaling of the cost.

The opposite effect, but with the same unfavorable outcome, occurs if the
cutoff radius is chosen to be proportional to the growing size of the box. Then
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β can be reduced accordingly, making the reciprocal sum easier to compute.
However, as the cutoff radius expands, a greater number of direct pairwise
interactions have to be computed. The end result is the same asymptotic
computational cost of O(N2).

It is clear from these considerations that the β parameter controls the
trade-off between the complexity of direct and reciprocal sums. One might
guess that there must be the best choice of β that minimizes the overall
cost. Indeed, this cost is known to be O(N3/2) [SD99, TB96], which is still
suboptimal. A drastic improvement can be achieved by taking advantage of
the Fast Fourier Transform (FFT) on an auxiliary grid.

5.4 Grid-based Ewald Methods with FFT

5.4.1 The Computational Work

In the Ewald expression for total energy, the cost of computing the individual
terms is unequal. The number of operations required to compute the self-
energy term is obviously optimal, i.e. proportional to the number of charges.
For direct energy, the computational cost becomes optimal if a cutoff radius
(beyond which the potential and field of the charge+cloud system becomes
negligible) is introduced. In this case, each charge interacts only with its neigh-
bors within the cutoff distance. For a fixed volume density of particles and
a fixed cutoff distance the computational cost for the direct sum is again
optimal.

However, reciprocal energy, if calculated in a straightforward way, becomes
a bottleneck due to the computation of structure factors

ρ̃(m) =
1
V

∑N

i=1
qi exp

(
−i2π

(
mx

xi

Lx
+ my

yi

Ly
+ mz

zi

Lz

))
(5.50)

This is expression (5.21) with a slight change of notation: m is used instead of
k for the reciprocal vector as a mnemonic reminder that mesh-based methods
are under consideration. The total number of these factors is equal to the size
of the reciprocal grid M = Mx × My × Mz, and the computation of each of
these factors involves summation over all N particles; hence the total number
of operations for the reciprocal sum is too high – asymptotically proportional
to NM .

The structure factors are the Fourier Transform of the point charge density,
and it is natural to consider Fast FT as a way to achieve a substantial efficiency
improvement. But how exactly can this be done?

FFT operates with expressions of the form (5.50) but over a discrete set of
values of the coordinates – that is, on a grid. More precisely, the 1D discrete
FT of a sequence {w(n)}N

n=1 is
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w̃(m) ≡ F{w}(m) =
∑Nx

n=1
w(n) exp

(
−i

2πmn

Nx

)
, m = 1, 2, . . . , Nx

(5.51)
where Nx is the number of grid points along the x-coordinate (not to be
confused with the number of charges N). The inverse transform is

w(n) ≡ F−1{w̃}(n) =
1

Nx

∑N

m=1
w̃(m) exp

(
i
2πnm

Nx

)
(5.52)

In addition to the factor 1/Nx, the inverse transform differs from the forward
one in the sign of the exponential, implying that

F−1 =
1

Nx
F∗ (5.53)

or equivalently
F∗F = FF∗ = Nx (5.54)

Indeed, if the FT is written in matrix-vector form, the mn-th matrix entry
for the forward transform is exp(−i2πmn/Nx), while for the inverse it is

1
Nx

exp
(

i
2πmn

Nx

)
=

1
Nx

[
exp

(
−i

2πmn

Nx

)]∗

Note that if in its definition the forward FT is rescaled to include the factor
of 1/

√
Nx, then the same square-root factor will replace 1/Nx in the inverse

transform and the FT will become unitary – i.e. its inverse will be equal to its
complex conjugate. Despite some mathematical advantages of such rescaling,
we shall adhere to the more common definition (5.51) with no scaling factors
for the forward transform and no square roots.

An immediate consequence of the above connection between the inverse
and conjugate Fourier operators is the Plancherel and Parseval relationship
between the inner products and energies in the real and Fourier spaces:

(w̃, ṽ) ≡ (Fw,Fv) = (w,F∗Fv) = Nx (w, v) (5.55)

(Plancherel) and for w = v

(w̃, w̃) = Nx (w,w) (5.56)

(Parseval).
Discrete FT on three-dimensional grids consists in three consecutive ap-

plications of 1D transforms:

w̃(m) =
Nx∑

nx=1

Ny∑
ny=1

Nz∑
nz=1

w(nx, ny, nz) exp
(
−i2π

(
mxnx

Nx
+

myny

Ny
+

mznz

Nz

))
(5.57)
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where w is now a function defined on a real-space grid and its transform w̃ is
defined on a 3D reciprocal grid. The mesh in real space has Nm = Nx×Ny×Nz

nodes11 and the reciprocal one has M = Mx ×My ×Mz nodes.
With the basic definitions established, we can now return to the compu-

tation of the FT of the point charge density. This computation reduces to
the discrete FT on the grid if, as comparison of expressions (5.50) and (5.22)
shows, coordinates xi, yi, zi take on a discrete set of values: xi = nxLx/Nx,
yi = nyLy/Ny, zi = nzLz/Nz for some integer numbers nx, ny, nz.

As coordinates of the particles do in fact vary continuously, in order to ap-
ply the (discrete) FFT one needs to find coefficients w(nx, ny, nz) that would
approximáte the continuous-parameter exponentials as a linear combination
of the discrete-parameter ones:

exp (−i2π(mxxi/Lx + myyi/Ly + mzzi/Lz))

≈
∑

nx,ny,nz

bi(nx, ny, nz) exp (−i2π(mxnx/Nx + myny/Ny + mznz/Nz))

(5.58)
where summation is, in principle, over the whole grid, but in practice is over
a small subset of nodes around the location (xi, yi, zi) of the i-th charge; b’s
are coefficients to be specified.

Obviously, if the particles were located at grid nodes (nx, ny, nz), the values
of w would simply be equal to the values of the charges at the respective nodes
of the grid (and w = 0 at grid nodes where no charges are present).

Remark 14. If the charges are located between grid nodes, the assignment
of the w values can be intuitively understood as “charge allocation” to grid
nodes. Despite this very common and intuitively natural interpretation, math-
ematically this assignment has to do with the representation of the exponential
factors by linear combinations of discrete-parameter exponentials in (5.58).

In general we need a suitable mapping of the set of charge values {qi}N
i=1

to a set of grid-based coefficients w(nx, ny, nz). Naturally, this mapping is
sought as a linear one and can be written in matrix form as

w = Iq→m q (5.59)

Here w ∈ R
Nm is the Euclidean vector of values of w at the mesh nodes;

q ∈ R
N is the Euclidean vector comprising the charges. Iq→m is an Nm ×N

matrix that maps charges (“q”) to mesh (“m”) coefficients.
Fig. 5.3 gives an illustrative example of this mapping – for simplicity, in

2D. A charge qi is shown in a grid cell with node numbers12 7, 8, 40, 41,
11 Subscript “m” (for “mesh”) is used instead of “g” (for grid) to avoid possible

confusion between subscripts “g” and “q” (especially in handwriting) and with
the usage of g and G for Green’s functions.

12 Here the nodes are referred to by their global numbers from 1 to N rather than
the triple-index (nx, ny, nz).
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with their respective weights of 0.3, 0.4, 0.1, 0.2 (as an example). This means
that e.g. w(7) = 0.3qi. It is important to point out from the outset that in
general the nonzero coefficients of mapping Iq→m are not limited to the nodes
adjacent to the charge. These coefficients can (and in practice do, as will be
discussed later) involve several layers of nodes and, at least in principle, even
the whole grid, although the latter would not be efficient computationally.

Fig. 5.3. An example of charge mapping Iq→m onto a grid.

In this example, the i-th column of matrix Iq→m contains the coefficients
0.3, 0.4, 0.1, 0.2 in their respective rows 7, 8, 40, 41; the other entries of this
column are zero. The other columns of this matrix correspond to other charges
and have a similar form.

Approximate values of Fourier coefficients for the point charge density (i.e.
approximate structure factors) are then obtained by the discrete FT (5.57);
we shall now write this transformation in matrix form as

ρ̃
δ

=
1
V
Fw =

1
V
FIq→m q (5.60)

where ρ̃
δ
∈ R

M is the Euclidean vector of structure factors on the reciprocal
grid and F is the matrix of the discrete FT.

The potential in Fourier space is found, according to (5.39), by multiplying
the structure factors with the Gaussian exponentials exp

(
−k2 / (4β2)

)
and

dividing by k2 (i.e. solving the Poisson equation in Fourier space). Since these
operations apply to each component of ρ̃

δ
separately, in matrix notation they

are represented by a diagonal matrix:
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ũ = Dρ̃
δ

= DFρ
δ

=
1
V

DFIq→m q (5.61)

where the entries of the diagonal matrix D are exp
(
−k2 /(4β2)

)
/k2 for k �=

0.13 For k = 0, the respective entry of D is irrelevant, as the mean value of
the charge and potential is zero; this entry can be conveniently set to zero.
Note that D is purely real:

D∗ = D (5.62)

By Parseval’s theorem, reciprocal energy can be computed in the Fourier
space:

Erec =
1
2

(ρδ, u) =
1

2V
(ρ̃δ, ũ) ≈ 1

2V
(ρ̃

δ
, ũ) =

1
2V

(DFρ
δ
, Fρ

δ
) Iq→m q

(5.63)
To compute the field E = −∇u (and consequently the forces acting on the
point charges) one needs to differentiate the electrostatic potential. This can
be done either analytically in the Fourier domain or numerically, by finite
differences on the grid.

We shall start with the analytical differentiation in Fourier space, which
corresponds simply to multiplication with ik. Therefore components of the
field Eα = −(∇u)α (α = x, y or z) in Fourier space can be expressed in
Euclidean vector form as

Ẽα =
1
V

GαFIq→m q, α = x, y, z, Ẽα ∈ R
M (5.64)

where each entry of the diagonal matrix Gα is obtained by multiplying the
respective entry of D with −ikα. As D is purely real, G is a purely imaginary
diagonal matrix:

G∗ = −G (5.65)

The actual (real-space) field at the grid nodes is obtained by the inverse FT:

Eα =
1
V
F−1GαFIq→m q, α = x, y, z (5.66)

Finally, to find the field values at the actual locations of the particles, one
needs to interpolate the field from grid nodes to these locations. The interpo-
lation procedure is defined by a suitably chosen N × Nm matrix Im→q that
is conceptually analogous to the Nm ×N matrix Iq→m described earlier. The
α-component of the field (α = x, y, z) at the particles can then be written as
a Euclidean vector Eq,α ∈ R

N :

Eq,α =
1
V
Im→qF−1GαFIq→m q, α = x, y, z (5.67)

13 The order in which these values appear on the diagonal of D depends on the
global numbering of nodes of the reciprocal grid.
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Finally, the Euclidean vector Fα ∈ R
N of the force components acting on the

particles is

Fα = q. ∗ Eq,α =
1
V

q. ∗ Im→qF−1GαFIq→m q (5.68)

where the Matlab-style notation “.*” is again used for entry-wise multiplica-
tion of vectors; i.e. a. ∗ b ≡ [a1b1, a2b2, . . . , aNbN ] for two arbitrary vectors a,
b in R

N (see footnote 5 on p. 244).
The force values computed this way are obviously only approximations of

the true values, numerical errors coming from grid interpolation procedures
and from the truncation of the Fourier transform to a finite number of terms.
These approximate values may not in general obey Newton’s Third Law and,
consequently, the physically important conservation of momentum; however,
it is prudent to require that they do and to find suitable restrictions on the
interpolation procedures guaranteeing that Newton’s Third Law holds.

Equivalently, one wants the following reciprocity condition to be true. Let
a unit charge at point ri create a field Ei→j at point rj . Reciprocally, let a
unit charge at point rj create a field Ej→i at point ri. Newton’s Third Law
condition is Ei→j = −Ej→i.

Let us examine what this requirement translates to in matrix form. Accord-
ing to the expression for the field values at the particles, any field component
at location rj due to the unit charge at ri is

Eq,α(rj) =
1
V
Im→q(rj)F−1GαF Iq→m(ri) (5.69)

It is important in this expression to show the dependence of the interpolation
matrices on the location of the charge and the observation point – dependence
that for the sake of brevity was not explicitly indicated previously. Despite the
abundance of symbols, this expression has a clear and direct interpretation:
first, assign charge to grid14 (Iq→m), then Fourier-transform it (F), solve
the Poisson equation and analytically differentiate the potential in Fourier
space (Gα), inverse-transform the result back to real space (F−1), and finally
interpolate the field from mesh to the location of the charge (Im→q).

In the reciprocal case – a unit charge at rj creating a field at ri – the field
value is

Eq,α(ri) =
1
V
Im→q(ri)F−1GαF Iq→m(rj) (5.70)

To check the reciprocity, field Eq,α(ri) can be linked to the complex conjugate
of Eq,α(rj):

E∗
q,α(rj) =

1
V
IT

q→m(ri)F∗G∗
αF−∗IT

m→q(rj)

Recalling that G∗
α = −Gα (5.65) and that F∗ = NmF−1 (5.53), we have

14 See Remark 14 on p. 258.
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E∗
q,α(rj) = − 1

V
IT

q→m(ri)F−1GαFIT
m→q(rj) (5.71)

Since the electric field of the unit charge is real, the asterisk in the left hand
side can be dropped. Then, by comparing the fields Eq,α(rj) and Eq,α(ri), we
observe that the reciprocity principle (and hence Newton’s Third Law and
the conservation of momentum) will hold numerically, i.e.

Eq,α(rj) = − Eq,α(ri) (5.72)

provided that the charge-to-grid and grid-to-charge interpolation operators
are adjoint:

IT
q→m = Im→q (5.73)

This condition was obtained by R.W. Hockney & J.W. Eastwood [HE88] in
a different manner. Note that by setting rj = −ri in the field reciprocity
condition (5.72) one also verifies the absence of self-force.15

The general field approximation procedure can now be specialized – in
particular, by choosing different grid interpolation operators. Two distinct
possibilities are Lagrangian interpolation (Section 5.4.3) and spline interpo-
lation (Section 5.4.4). A somewhat different approach, the “Particle–Particle
Particle–Mesh Ewald” (P3M) method by Hockney & Eastwood is reviewed in
Section 5.4.5.

5.4.2 On Numerical Differentiation

We previously computed fields and forces by differentiating the potential an-
alytically, i.e. by multiplying it with ik in Fourier space. However, this proce-
dure requires three inverse Fourier transforms (one for each component of the
field/force). Another possibility is to compute the potential using one inverse
transform and then differentiate the potential numerically.

Let ∆α be a difference operator approximating the partial derivative in the
α-direction (α = x, y, z). This operator maps a function defined on the grid
to its “discrete derivative” defined on the same grid. Well known examples of
such difference operators in 1D are backward difference

(∆b.d.u)i ≡ ui − ui−1

hx
(5.74)

(forward difference is completely analogous) and central difference

(∆c.d.u)i ≡ ui+1 − ui−1

2hx
(5.75)

where u is a function defined on the grid and hx is the grid size in the x-
direction. Due to periodic conditions in Ewald methods, index shifts such as
15 There is no singularity in the self-field, as the solution has been implicitly regu-

larized by removing the k = 0 term in Fourier space.
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i + 1 should be understood modulo Nx. Difference operators are discussed in
more detail in Chapter 2.

The Fourier transform ∆̃ ≡ F{∆} of a difference operator ∆ is defined to
make the action of ∆̃ in Fourier space correspond to the action of ∆ in real
space; formally,

∆̃(Fu) ≡ F{∆}(u) = F{∆u} (5.76)

or in a more symbolic and concise way,

∆̃F = F∆ (5.77)

The Fourier transforms of backward and central difference operators can
easily be found:

∆̃b.d. ≡ F{(∆b.d.u)} =
1− exp(−ikxhx)

hx
(5.78)

∆̃c.d. ≡ F{(∆c.d.u)} =
exp(ikxhx)− exp(−ikxhx)

2hx
(5.79)

In the limit hx → 0, both difference operators tend to the analytical derivative
ikx.

With analytical differentiation of the potential, we previously had expres-
sion (5.66) (reproduced below for easy reference) for fields at the nodes:

Eα =
1
V
F−1GαFIq→m q, α = x, y, z (5.80)

Analytical differentiation (that is, the factor ik) was incorporated into the
Gα matrix. If one uses numerical rather than analytical differentiation, the
following expression ensues:

Eα =
1
V

∆αF−1DFIq→m q, α = x, y, z (5.81)

Note that matrix D, rather than Gα = ikαD, appears in this last expression.
Numerical differentiation is performed in real space (∆α), but for theoretical
analysis it is convenient to convert this operation to reciprocal space using
the FT of ∆α and the identity ∆αF−1 = F−1∆̃α (5.77):

Eα =
1
V
F−1∆̃α(k)D(k)FIq→m q, α = x, y, z (5.82)

Thus numerical and analytical differentiation yield algebraically quite similar
expressions; the only difference is that matrix Gα is replaced with ∆̃αD in
the numerical formula. (Both ∆̃α and D are diagonal matrices.) In the pre-
vious section, the reciprocity principle for the field was shown to be a direct
consequence of matrix Gα being skew-Hermitian. If the same condition holds
for ∆̃αD, reciprocity (and hence Newton’s Third Law) will hold for numerical



264 5 Long-Range Interactions in Free Space

differentiation as well. This is equivalent to ∆̃α being purely imaginary, as D
is purely real.

The FT examples for backward and central difference operators can be
easily generalized to show that for the transform ∆̃α to be purely imagi-
nary, operator ∆α must be central-difference-like (i.e. defined on a symmetric
stencil, with antisymmetric coefficients). This condition was established, in a
somewhat different way, by R.W. Hockney & J.W. Eastwood [HE88].

5.4.3 Particle–Mesh Ewald

As noted in Section 5.4.1, different versions of Ewald summation can be ob-
tained by choosing different charge-to-grid interpolation operators. Lagrange
interpolation leads to the so-called Particle–Mesh Ewald (PME) method
(T. Darden et al. [DYP93], H.G. Petersen [Pet95]).

Let us first recall how Lagrange interpolation is defined on a given set of
knots (points) {xi}Nx

i=1 in 1D. In general, the spacing between the neighboring
knots does not have to be uniform; however, we shall deal with uniform grids
only, as Fast Fourier Transforms in grid-based Ewald methods require that.

For any given knot xα (α = 1,2, . . . , Nx) the Lagrange interpolation
polynomial

ψα(x) =
∏

1≤j≤Nknots; j �=α

x− xj

xα − xj
(5.83)

has the Kronecker-delta property of being equal to one at point xα and zero
at all other knots. Note that Nknots is equal to the order pL of the Lagrange
polynomial plus one.

The sum of the Lagrange polynomials corresponding to all nodes is obvi-
ously itself a polynomial of order ≤ pL; due to the Kronecker-delta property,
this sum is equal to one at all Nknots = pL + 1 knots. Hence the sum must be
equal to one for all x:

Nknots∑
α=1

ψα(x) ≡ 1 (5.84)

We are now in a position to define the charge-to-mesh interpolation operator
Iq→m. A “portion” of charge i at a point xi allocated to each grid node xα is
ψα(xi); formally then,

Iq→m,αi = ψα(xi), α = 1, 2, . . . Nx, , i = 1, 2, . . . , Nknots (5.85)

Let us illustrate this in the simplest possible case: interpolation by Lagrange
polynomials of order pL = 1, based on Nknots = 2 points x1,2. From (5.83)

ψ1(x) =
x− x2

x1 − x2
; ψ2(x) =

x− x1

x2 − x1
(5.86)

Clearly, ψ1+ψ2 ≡ 1 as it should be. For a charge located at point xq ∈ [x1, x2],
its fraction ψ1(xq) = (xq−x2)/(x1−x2) gets assigned to node 1 and fraction
ψ2(xq) = (xq − x1)/(x2 − x1) gets assigned to node 2.
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Let us now consider a numerical illustration of the accuracy of Lagrange
interpolation for some realistic cases. It will be convenient to normalize the
grid to unit spacing – in particular, for easy comparison with Smooth PME
[EPB+95] where this normalization is also natural. We shall examine the
accuracy of representing complex exponentials exp(i2πmxxq/Nx) as a linear
combination of grid-based exponentials exp(i2πmxxα/Nx) with Lagrangian
weights wα; that is,

exp(i2πmxxq/Nx) ≈
Nknots∑
α=1

wα exp(i2πmxxα/Nx); with wα = ψα(xq)

(5.87)
Let the order of the Lagrange interpolation pL and consequently a number
of Lagrange interpolation knots Nknots vary. However, the number of knots
will always be assumed even, to maintain a symmetric arrangement of nodes
around the charge and for consistency with Smooth PME where the same
assumption is made. The leftmost and rightmost knots are then at xmin =
floor(xqNx) −NL/2 + 1, and xmax = floor(xqNx)+ NL/2, respectively, where
“floor” denotes the nearest integer not greater than the given number. Mul-
tiplication of the xq coordinate by Nx reflects the scaling to the unit spacing
between the knots.

As a practical example, consider a 1D grid with Nx = 32 nodes along
the x-axis. Suppose we wish to approximate, using Lagrange interpolation,
the fourth Fourier harmonic exp(i2πmxxq/Nx), mx = 4 by the grid-based
exponentials exp(i2πmxxα/Nx).

The real part of this fourth harmonic, along with its first-order Lagrange
approximation, is plotted in Fig. 5.4 as a function of the (unscaled) charge
location xq, 0 ≤ xq ≤ 1. We can see that even first-order approximation
provides a reasonable level of accuracy. For higher orders of interpolation, the
approximation would be visually indistinguishable from the exact exponential.
Let us then turn to error plots in Fig. 5.5. Three distinct error “bands” happen
to correspond to three different orders of Lagrange interpolation: errors in the
range of ∼ 10−2 – 10−1 for pL = 1, in the range of ∼ 10−3 – 10−2 for pL = 3,
and in the range of ∼ 10−4 – 10−3 for pL = 5. As we shall see in the following
section, the approximation accuracy can be significantly increased by using
spline (rather than Lagrange) interpolation.

In 3D, the interpolation (=“charge assignment”) operator can be defined
in a natural way as a product of the respective 1D operators. That is, grid
node (xα, yα, zα) is assigned the fraction ψα(xα − xq)ψα(yα − yq)ψα(zα − zq)
of a charge located at (xq, yq, zq).

For further details on the Particle–Mesh Ewald method that employs La-
grange interpolation see T. Darden et al. [DYP93], H.G. Petersen [Pet95], and
M. Deserno & C. Holm [DH98a], [DH98b].
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Fig. 5.4. The real part of the fourth Fourier harmonic (solid line) and its first-order
Lagrange interpolation (symbols).

Fig. 5.5. Lagrange interpolation errors for the fourth Fourier harmonic; 32 grid
nodes. Varying order of interpolation.
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5.4.4 Smooth Particle–Mesh Ewald Methods

An alternative to the Lagrange approximation of exponentials is Euler spline
interpolation employed in the “Smooth PME” method by U. Essmann et al.
[EPB+95].

Let us first recall the basic definitions related to spline interpolation. Con-
sider a set of nodes (knots) x0 < x1 < . . . < xn on the x-axis, with the cor-
responding values yi (i = 1,2, . . . , n) of some function y = f(x). A spline is
a piecewise-polynomial curve that (a) passes through all given points (xi, yi);
(b) has at least p−1 continuous derivatives on [x0, xn]; and (c) is a polynomial
of order ≤ p within each subinterval [xi, xi+1].

B-splines defined and analyzed in detail by C. De Boor [Boo01] and
I.J. Schoenberg [Sch73] form a basis in the space of all splines of a given
order over a given set of knots. For our purposes, cardinal B-splines – for
which the knots are a set of consecutive integers – are needed.

Several different but equivalent definitions of cardinal B-splines M̂n(x) are
available. The hat sign is introduced here to distinguish this spline from its
slightly different version used later in this section. The “hat” notation should
not be confused with the Fourier Transform that I normally denote with a
tilde.

Perhaps the most natural definition of these splines is via Fourier Trans-
forms:

F{M̂n}(k) =
(

sin(k/2)
k/2

)n+1

(5.88)

where k is, as usual, the Fourier variable. For n = 0, Fourier transform (5.88)
is the usual sinc function that corresponds to a rectangular pulse in real space:

M̂0(x) =
{

1, − 1
2 ≤ x ≤ 1

2
0, otherwise (5.89)

Since multiplication in Fourier space corresponds to convolution in real space,
it follows that

M̂n = M̂0 ∗ M̂0 ∗ . . . ∗ M̂0 (5.90)

where the convolution operations involve (n + 1) instances of M̂0. As a side
note, in probability theory convolution of probability density functions (pdf)
of independent random variables is the pdf of the sum of these variables; hence
cardinal B-spline M̂n (5.90) is the pdf of the sum of n independent random
variables uniformly distributed over the interval [− 1

2 , 1
2 ].

This definition via convolution is not convenient or effective computation-
ally. An alternative definition by Schoenberg [Sch73] via recursion relations
in real space lends itself easily to computation. The following brief summary
of Schoenberg’s definition is due primarily to Essmann et al. [EPB+95]).

First, the backward difference of any function f is

∆f(u) ≡ f(u) − f(u− 1) (5.91)
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and higher-order backward differences for n ≥ 2

∆nf(u) ≡ ∆(∆n−1f(u)) (5.92)

It can be shown by induction that

∆nf(u) =
∑n

m=0
(−1)m n!

m! (n−m)!
f(u−m) (5.93)

The cardinal B-spline Mnu of order n is defined via the n-th backward differ-
ence of (u+)n−1, where u+ ≡ max(u, 0):

Mnu ≡ 1
(n− 1)!

∆n (u+)n−1 =
1

(n− 1)!

n∑
m=0

(−1)m n!
m! (n−m)!

(u−m)n−1
+

(5.94)
Note that the difference between M̂n (with the “hat”) and Mn are in the
index and argument shift: Mn(x) = M̂n−1(x − n/2). Shown in Fig. 5.6 are
plots of the first few splines Mn(x).

Fig. 5.6. Cardinal B-splines Mn of orders from 2 to 5.

With the B-splines now introduced, we return to the interpolation problem
for complex exponentials on the grid.

Since the above definition of B-splines involves a set of integer knots
0, 1, . . . , n, let us rescale the coordinates to turn the grid into a lattice of
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integers: u = Nxx/Lx. Smooth PME takes advantage of the Euler spline in-
terpolation formula

exp(2πimxuq) ≈ bx(mx)
∞∑

l=−∞
Mn(uqNx − l) exp

(
2πi

mx

Nx
l

)
(5.95)

where the b coefficients are

bx(mx) = exp
(

2πi(n− 1)
mx

Nx

)/
n−2∑
l=0

Mn(l + 1) exp
(

2πi
mx

Nx
l

)
(5.96)

The fact that these coefficients do not depend on x is crucial. Indeed, compare
the Euler approximation with the trivial exact representation of the complex
exponential:

exp(2πimxxq) = b̂ exp(2πimxxα),

with b̂ ≡ b̂(mx, xq) = exp(2πimx(xq − xα))

where xα is a mesh node. Despite its exactness, this representation is not
practically useful, as the number of arithmetic operations needed to compute
all of the b̂(m,xq) factors is proportional to the number of charges times the
number of Fourier harmonics, which is quite unattractive. In contrast, the
Euler b coefficients are computed as functions of m only.

Since these coefficients depend only on the Fourier variable but not on the
spatial variable, they can be incorporated into the G(k) term in expressions
like (5.67), which can be interpreted as a modification of Green’s function on
the grid. This perspective is chosen e.g. by Deserno & Holm [DH98a], although
their terminology and overall approach are somewhat different from mine.
Alternatively, one can continue to view the b factors as part of interpolation
operators I rather than part of the mesh Green’s function.

Fig. 5.7 may serve as a gauge of Euler spline interpolation errors. Para-
meters are the same as for the Lagrange interpolation in the previous section
(see Fig. 5.5 on p. 266): the Ewald grid has Nx = 32 nodes and the fourth
Fourier harmonic (mx = 4) is being approximated. For a fair comparison with
Lagrange interpolation, one needs to keep in mind that cardinal spline Mn is
composed of polynomials of order n − 1; for example, M2 is piecewise-linear
(see Fig. 5.6). Comparing Fig. 5.7 and Fig. 5.5, one observes that the cardi-
nal spline algorithm provides higher accuracy of approximating the complex
exponential than Lagrange interpolation. The relative advantage of splines
increases with the growing order of interpolation.

5.4.5 Particle–Particle Particle–Mesh Ewald Methods

In the previous sections, we considered two most common alternatives for
the charge-to-grid assignment operator (and consequently for its adjoint –
grid-to-charge interpolation): namely, Lagrange and spline interpolation. The
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Fig. 5.7. Spline interpolation errors for the fourth Fourier harmonic; 32 grid nodes.
Varying spline order.

G term in expressions for the forces (5.67) and in other similar expressions
corresponded to the solution of the Poisson equation in Fourier space. (I ignore
the possible adjustment of G mentioned for Smooth PME in the previous
section, as it produces an algebraically equivalent result.)

There is, however, a substantially different approach. For a given inter-
polation procedure, one may relinquish the direct connection of G with the
solution of the Poisson equation, allow G to float and then try to minimize
the numerical error in the forces. By definition, this approach – if successful
– is the most accurate one, at least with respect to the minimization criterion
chosen.

R.W. Hockney & J.W. Eastwood [HE88] did in fact develop such an opti-
mized algorithm and called it the “Particle–Particle Particle–Mesh” (or P3M)
Ewald method. Although the P3M and Smooth PME interpolation procedures
appear to have been developed independently, both employ B-splines and are
essentially the same (apart from unimportant node index shifts). Since the
interpolation (charge assignment) operators are the same but the G matrix in
P3M minimizes (in a certain sense) the numerical error in force values, P3M
is at least in principle more accurate than Smooth PME. A detailed theoret-
ical and numerical investigation by M. Deserno & C. Holm [DH98a, DH98b]
confirms that. However, the two algorithms are very close, and by borrowing
the optimization idea from P3M, T. Darden et al. [DTP97] modified Smooth
PME to make the accuracy of the two methods almost identical.
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The technical details of P3M optimization and fine-tuning of its parameters
are quite involved and will not be reported here. Interested readers are referred
to the monograph and papers already cited [HE88, DH98a, DH98b].

5.4.6 The York–Yang Method

While P3M and PME (including Smooth PME) algorithms are now well es-
tablished and widely used in both public domain and commercial software for
molecular dynamics, other ideas have also been put forward and are worth at
least a brief review.

In 1994, D.M. York & W. Yang [YY94] rewrote the Ewald sum in a form
that has some advantages. In standard Ewald methods, energy is calculated
as (see p. 254, (5.45))

E =
1
2

∑N

i=1
qi

(
i
u(ri) +

i
uclouds(ri)

)
− 1

2

∑N

i=1
qiuclouds(ri)

+
1
2

∑N

i=1
qiu

(i)
cloud(ri) (5.97)

The immediate goal is to rewrite the reciprocal energy formula, to the extent
possible, in terms of cloud-cloud (rather than charge-cloud) interactions. To
that end, the cloud-cloud interaction term is added and subtracted, yielding

E =
1
2

∑N

i=1
qi

(
i
u(ri) +

i
uclouds(ri)

)
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qiu
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ρcloudsuclouds dΩ +
1
2

∫
Ω

ρcloudsuclouds dΩ

(5.98)
Combining now terms with common factors, we get

E =
1
2

∑N

i=1
qi

(
i
u(ri) + uclouds(ri)

)
− 1

2

∫
Ω

(ρδ + ρclouds)uclouds dΩ

+
1
2

∫
Ω

ρcloudsuclouds dΩ (5.99)

The key observation now is that the first two terms (i.e. the first line in the
expression above) represent short-range interactions and can therefore be com-
puted directly. The last term (the second line) – the cloud-cloud interaction –
is long-range but can be efficiently computed via FT, as in Ewald methods, or,
alternatively, by numerical volume integration based on the values of charge
density and potential at grid nodes. The final result is

4πε E =
1
2

∑
i�=j;rij<rcutoff

qiqj
erfc(βrij/

√
2)

rij
− β√

2π

∑N

i=1
q2
i



272 5 Long-Range Interactions in Free Space

+
1
2

∫
Ω

ρcloudsuclouds dΩ (5.100)

See also the original paper [YY94] but note that the final expression there has
a typographical error (

√
2 omitted in the self-energy term).

The “reciprocal” energy is now represented by the volume integral in
(5.100) Since the cloud charge density is sufficiently smooth, the computa-
tion of this integral is numerically a relatively simple matter. It can be done
not only in the Fourier space (as the word “reciprocal” would suggest and as
done in the original paper by York & Yang) but also in real space.

Let us consider the latter alternative in some more detail.

5.4.7 Methods Without Fourier Transforms

As an alternative to reciprocal space methods, C. Sagui & T. Darden [SD01]
apply finite-difference methods, with mutligrid solvers, to find the cloud poten-
tial efficiently in the context of the York–Yang algorithm. Once the potential
is found, the “cloud” integral in (5.100) can be evaluated by a quadrature
formula on the real-space grid.

FD schemes are discussed in detail in Chapters 2 and 4. To make this
section self-consistent, I include a quick summary of the facts and features
that are essential in the context of the York–Yang–Sagui–Darden method.

The Poisson equation for cloud potential is

∇2uclouds = − ρclouds

ε
(5.101)

subject to periodic boundary conditions. The charge density is itself spatially
periodic (as it includes all clouds and their spatial images), even though for
simplicity the explicit “PER” notation used previously has now been dropped.

Suitable difference schemes for this equation include classical Taylor-based
methods of different order on different stencils and “Mehrstellen” schemes (see
Chapters 2 and 4). The latter are advocated by C. Sagui, T. Darden and oth-
ers [BSB96] due to the relatively compact stencil that reduces interprocessor
communication in parallel computing. Since the charge density is smooth, the
right hand side of the difference scheme is typically obtained simply by sam-
pling the charge density at stencil nodes and taking a weighted average of
these sampled values.

However, as noted in [Tsu04a] and explained in Chapters 2 and 4, the nu-
merical accuracy of the FD solution can be substantially improved by splitting
the solution up into homogeneous and inhomogeneous parts

u
(i)
clouds = u

(i)
0 + u(i)

ρ , ∇2u
(i)
0 = 0; ∇2u(i)

ρ = − ρclouds (5.102)

Here superscript (i) emphasizes the local nature of this splitting: it is valid over
a small domain containing a given grid stencil around node i (see Chapter 4
for a more complete and rigorous description of this framework). Note that no



5.4 Grid-based Ewald Methods with FFT 273

global inhomogeneous solution uρ is needed to construct the difference scheme,
as the scheme itself is purely local and depends only on the local properties
of the potential.

Let now L
(i)
h be any suitable difference approximation of the Laplace op-

erator, and let N (i)u denote the set of nodal values of potential u on grid
stencil i. Since the homogeneous component u

(i)
0 of the solution by construc-

tion satisfies the Laplace equation, the difference operator can be applied to
it to yield

L
(i)
h N (i)u

(i)
0 = εc (5.103)

Since L
(i)
h approximates the Laplace operator and since u

(i)
0 satisfies the

Laplace equation, the consistency error εc can be expected, under reasonable
mathematical assumptions, to tend to zero as the mesh is refined. (See Chap-
ter 2 for a detailed discussion of this matter.) Substituting now the “difference
potential” u

(i)
0 = uclouds − u

(i)
ρ , we have

L
(i)
h N (i)uclouds = L

(i)
h N (i)u(i)

ρ + εc (5.104)

It follows immediately that the difference scheme for the (approximate) grid-
based potential uh

L
(i)
h uh = L

(i)
h N (i)u(i)

ρ (5.105)

has the consistency error of εc, i.e. precisely the same as for the Laplace
equation. This implies that the solution accuracy does not depend on the
sources of the field at all – in particular, the accuracy will not deteriorate even
if the charge clouds are very sharp (large values of the Ewald β parameter).
In fact, the accuracy will be the same even if scheme (5.105) is applied to
point sources (= “infinitely sharp” clouds), as long as these sources do not
coincide with grid points, so that the right hand side of scheme (5.105) remains
mathematically valid.

The independence of consistency error from the Ewald β (however large)
is a definite advantage of this approach. In contrast, the accuracy of classical
schemes deteriorates for sharper clouds (i.e. larger values of β).

There is nothing paradoxical about the superior performance of the scheme
with potential splitting: this scheme in essence operates on the (locally de-
fined) difference potential satisfying the Laplace equation; the influence of the
sources is confined to the inhomogeneous part u

(i)
ρ of the total potential.

Since the cloud potential (for Gaussian charge density) is known – see
(5.26) – u

(i)
ρ can be computed analytically as a sum of contributions from

clouds located in the vicinity of grid stencil i. “Vicinity” is defined by an
adjustable radius r0 (clouds centered at a distance ≤ r0 from stencil i con-
tribute to u

(i)
ρ ; the others do not).16 For a fixed r0 and a fixed volume density

16 This setup must not be confused with the cutoff that is sometimes introduced to
artificially truncate the range of particle interactions. Here, r0 is not a “cutoff”
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of particles, the operation count for the computation of u
(i)
ρ and hence of the

right hand side is optimal (proportional to the number of clouds).
The use of difference schemes with potential splitting as an alternative

to Fourier-based methods is still largely unexplored. A test example with 99
charges (33 TIP3P water molecules) was considered in [Tsu04a] as a first
step in this direction. The fourth order Mehrstellen scheme with the potential
splitting was applied. For reference, the quasi-exact energy was computed
by an “overkill” Ewald summation with terms retained up to round-off. As
Table 5.1 shows, the accuracy gain in the proposed approach is appreciable,
especially for finer meshes.

Table 5.1. Relative energy errors for different n×n×n meshes. Unit cube; β = 32;
r0 = rcutoff FFP = 0.225. [Tsu04a]

n FD with potential splitting FFP York–Yang

30 6.70 × 10−4 1.11 × 10−3

40 1.34 × 10−5 1.99 × 10−5

50 8.74 × 10−8 5.74 × 10−7

60 2.39 × 10−8 4.96 × 10−7

5.5 Summary and Further Reading

The problem of computing electrostatic energy and Coulomb forces on a pe-
riodic 3D lattice of charged particles in free space is not as simple as it might
seem at first glance. Energy and forces can be formally expressed via infinite
series of Coulomb terms, but these series are only conditionally convergent.
This implies that the result depends on the order of summation and – even
worse – by Riemann’s series rearrangement theorem could be made to con-
verge to any given value or diverge to ±∞.

P. Ewald [Ewa21] worked out alternative, unconditionally (and quickly)
convergent series expressions for energy and forces of crystal lattices, and
E.R. Smith [Smi81] gave a rigorous mathematical justification for Ewald sum-
mation. In Smith’s approach, the shape of the crystal is fixed and expressions
for energy and forces are examined as the dimensions of the body grow. In
addition to the Ewald series, Smith’s expressions contain a shape-dependent
term that can physically be attributed to the presence of equivalent charges
on the surface of the body. This term does not vanish as the size of the crys-
tal increases and can be expected to contribute to the energy per unit cell
in the crystal. It can be argued, however [DTP97], that in real crystals the

radius in this sense. The contributions of particles located beyond r0 are not
neglected; they simply contribute to the “homogeneous” part u

(i)
0 of the solution.

More details and examples in Chapter 4 should clarify this point further.
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actual arrangement of surface charges will tend to minimize total free energy,
thereby diminishing or eliminating the additional shape-dependent term. In
this chapter, this term for simplicity was not included in the expressions; it
does not present any computational difficulty and can be restored at any time
if necessary.

There are several ways to interpret the Ewald transformation of the origi-
nal Coulomb series. Arguably, the most physically transparent interpretation
is the addition and subsequent subtraction of auxiliary “clouds” of charge,
usually with a Gaussian distribution of charge density. A charge with its sur-
rounding screening cloud creates, by Gauss’s Law, only a short-range field,
which is easy to handle computationally. The subproblem with the clouds
alone features a relatively smooth charge density distribution and its poten-
tial and field can therefore be found semi-analytically via Fourier transforms.

As a result, Ewald expressions include three main series. The first one is
a “direct” term summing all pairwise interactions of particle–cloud systems
that are sufficiently close to one another. The second term accounts for the
interaction of point charges with clouds. The usual reference to this term as
“reciprocal” does not have physical significance but rather reflects the most
common way of computing this term in Fourier (i.e. “reciprocal”) space. Fi-
nally, the third term is the necessary correction for the interaction energy of
each charge with its own cloud and is easily computable.

Efficient Ewald methods can be obtained by applying Fast Fourier Trans-
forms. Since these transforms are discrete, a grid has to be introduced and
complex exponentials that in Ewald sums are evaluated at particle locations
have to be approximated by similar exponentials evaluated at grid nodes.
This procedure is commonly referred to as “charge assignment” to grid nodes,
which, while not perfectly accurate mathematically, has intuitive appeal.

The general structure of grid-based Ewald methods is as follows:

1. “Charge assignment” to grid.
2. FFT of the grid-based charge density.
3. Solution of the Poisson equation in Fourier space (which amounts to simple

division by k2ε, for k �= 0).
4. Energy computation in Fourier space.
5. Inverse FFTs yielding potential and field in real space.
6. Grid-to-charge interpolation of the field yielding electrostatic forces that

act on the charges.

Mathematically, this procedure can be written in the following general form:

Eq,α =
1
V
Im→q F−1GαF Iq→m q, α = x, y, z (5.106)

where interpolation operators I, operator G and discrete Fourier transforms F
were formally defined in the main text of this section; q ∈ R

N is the Euclidean
vector of charge values; V is the volume of the computational domain. It
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was also shown that if “particle-to-grid” and “grid-to-particle” interpolation
operators are adjoint, Newton’s Third Law holds numerically.

The field, and therefore the force, can be computed either by analytical dif-
ferentiation of the potential in Fourier space (i.e. by multiplication with ik) or,
alternatively, by numerical differentiation, as done for example in the original
work by R.W. Hockney and J.W. Eastwood [HE88]. Unfortunately, differen-
tiation does reduce the accuracy of force calculation (as a rule of thumb, by
about an order of magnitude in practice), as compared to the accuracy of
energy calculation.

The Ewald sums for energy can be expressed as

4πε Edir =
1
2

∗∑
n∈Z3

N∑
i,j=1

qiqj erfc(β |ri − rj + n. ∗ L|)
|ri − rj + n. ∗ L| (5.107)

4πε Erec =
1

2V

∑
k �=0

exp
(
−π2k2/β2

)
k2

|ρ̃(k)|2 (5.108)

4πε Eself = − β√
π

N∑
j=1

q2
j (5.109)

E = Edir + Erec + Eself (5.110)

Here Matlab-style notation “.*” is again used for entry-wise multiplication of
vectors (see footnote 5 on p. 244). ρ̃(k) is the FT of point charges:

ρ̃(k) =
∑N

i=1
qi exp (−i(kxxi + kyyi + kzzi)) (5.111)

The k vectors form a discrete set: kx = 2πmx/Lx, etc.; mx ∈ Z. Lx, Ly, Lz

are the dimensions of the computational box.
The formulas for electrostatic forces are (see e.g. A.Y. Toukmaji & J. Board

[TB96]):

4πεFdir,α(i) = qi
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(5.112)
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(5.113)

Ftotal,α(i) = Fdir,α(i) + Frec,α(i) (5.114)

where α = x, y, z and rij,n = r− ri + n. ∗ L. (There is no self-force.)
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Pressure can be computed by differentiating the energy with respect to the
dimension of the computational box [TB96, DH98a, DH98b, DYP93, DTP97,
SD99].

In some problems involving particle distributions near surfaces, periodic
boundary conditions apply only in two directions along the surface, with par-
ticles distributed in a slab of finite thickness. The absence of periodicity in
the direction perpendicular to the surface makes this problem more difficult
computationally than its 3D-periodic counterpart considered in this chapter.
A good starting point for the reader interested in this problem is A. Arnold’s
PhD thesis [Arn04] and a paper by M. Mazars [Maz05], with references therein.

5.6 Appendix: The Fourier Transform of “Periodized”
Functions

Using the FT of a single Gaussian cloud as a starting point, we would like to
find the FT (in fact, the Fourier series) of a periodic system of such Gaussians
shifted by integer multiples of Lx, Ly, Lz in the three directions.

The 1D version of this task is well known in Signal Analysis and, in par-
ticular, is closely related to the Sampling Theorem. Adopting the language of
Signal Analysis for convenience, let f(t) be a signal with the continuous-time
FT

f̃(ω) ≡ F{f} =
∫ ∞

t=−∞
f(t) exp(−iωt) dt (5.115)

The inverse transform is

f(t) ≡ F−1{F} =
1
2π

∫ ∞

ω=−∞
f̃(ω) exp(iωt) dω (5.116)

Consider now a “periodized” version of f , i.e. a superposition of f with
all its time-shifted images

PER{f} ≡
∞∑

n=−∞
f(t− nT ) (5.117)

where T is the basic shift.17 It is clear that PER{f} is a periodic function
with period T and can be expanded into a Fourier series:

PER{f} =
∞∑

n=−∞
f̂(n) exp(iω0nT ), with ω0 =

2π

T
(5.118)

Our goal can now be stated precisely: relate the Fourier series coefficients f̂(n)
of PER{f} to the continuous-time transform of f . To do so, we formally apply
17 We treat T as a fixed parameter and therefore write simply PER{f} rather than

PERT {f} or PER{f, T}.
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continuous-time FT to PER{f} and manipulate (at the “engineering” level
of rigor) the infinite sums and Dirac delta-functions that emerge as a result:

F{PER{f}} =
∫ ∞

t=−∞
PER{f} exp(−iωt)dt

=
∫ ∞

t=−∞

∞∑
n=−∞

f(t− nT ) exp(−iωt)dt

Using the fact that the FT of time-shifted signals differ only by an exponential
phase factor, we obtain

F{PER{f}} = f̃(ω)
∞∑

n=−∞
exp(−iωnT ) = f̃(ω)

∞∑
n=−∞

exp
(
−i2πn

ω

ω0

)
(5.119)

As shown in the following Appendix, the infinite sum of exponentials above
is ∞∑

n=−∞
exp

(
−i2πn

ω

ω0

)
= ω0

∞∑
n=−∞

δ(ω − nω0)

Hence

F{PER{f}} = ω0

∞∑
n=−∞

δ(ω − nω0) (5.120)

We can now write PER{f} via the inverse transform

PER{f} =
1
2π

∫ ∞

ω=−∞
ω0

∞∑
n=−∞

δ(ω − nω0) exp(iωt) (5.121)

Comparing this with the generic Fourier series (5.118), we obtain the desired
relationship between the Fourier coefficients of the “periodized” signal and
the FT of the original one:

f̂(n) =
ω0

2π
f̃(nω0) =

1
T

f̃(nω0) (5.122)

5.7 Appendix: An Infinite Sum of Complex Exponentials

The result in this Appendix is well known in Signal Analysis and is closely
related to the Poisson summation formula (see e.g. S. Mallat [Mal99]). For the
expressions to look more familiar, it is convenient to switch to the language
of signals in the time domain. Infinite series and delta-functions are handled
at the “engineering” level of rigor.

Consider a pulse train of Dirac delta functions:

f(t) =
∑∞

n=−∞ δ(t− t0 − nT ) (5.123)
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where t0 is a given time shift and T is the period. Its formal expansion into
the Fourier series reads

f(t) =
∑∞

n=−∞ cn exp(inω0t), ω0 =
2π

T
(5.124)

with the Fourier coefficients

cn =
1
T

∫
[t,t+T ]
t0

f(t) exp(−inω0t) dt (5.125)

As f(t) in the case under consideration is comprised of δ-functions, the inte-
gration above is bogus and reduces to

cn =
1
T

exp(−inω0t0) (5.126)

Substituting coefficients cn into the Fourier series, we obtain

∑∞
n=−∞ δ(t− t0 − nT ) =

1
T

∑∞
n=−∞ exp(inω0(t− t0)) (5.127)

Thus the infinite sum of complex exponentials can be expressed via the delta
functions as∑∞

n=−∞ exp(inω0(t− t0)) = T
∑∞

n=−∞ δ(t− t0 − nT ) (5.128)



6

Long-Range Interactions in Heterogeneous
Systems

6.1 Introduction

This book is motivated by problems where nanoscale phenomena and appli-
cations meet significant computational challenges and interesting numerical
techniques. One case in point is long-range electro- or magnetostatic multi-
particle interactions in homogeneous media, with applications in molecular
dynamics, polymer and biomolecular simulation. Ewald summation and re-
lated algorithms (Chapter 5) are very effective for this type of problem and
exemplify the blending of numerical techniques with applications.

This chapter considers a substantial generalization of this problem: long-
range interactions in inhomogeneous media. The inhomogeneity implies spatial
variation and in some cases nonlinearity of material characteristics. One class
of nano- and molecular-scale problems where the inhomogeneity is crucial
involves particles or macromolecules in solvents, as shown very schematically
in Fig. 6.1. The precise interpretation of this figure may depend on a particular
application: for example, colloidal particles with the dielectric constant εp in
a solvent with the dielectric constant εs; mesoscale “beads” (connected by
“springs,” not shown in the picture) in a solvent for polymer models; polymer
globules; macromolecules (composed of individual atoms), etc. There may of
course be additional heterogeneities due to the presence of a substrate or other
dielectrics.

The effective dielectric constant of protein molecules is relatively low, 2–
4 (T. Simonson [Sim03]), and the same is true for colloidal particles and
other bio- and macromolecules. In contrast, aqueous solutions around these
molecules or particles have a much higher value of the permittivity, ∼80.
From the physical perspective, the dielectric contrast of the media, with the
commensurate changes in polarization P, produce polarization charges equal
to −∇ ·P.

Remark 15. If divergence is understood in the generalized (distributional)
sense, −∇ · P incorporates both volume charges (for smooth variations of
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Fig. 6.1. A schematic view of heterogeneous problems involving particles (of any
nature) in a solvent.

polarization) and surface charges (for abrupt changes). See Appendix 6.15 for
information on distributions.

In addition, electrostatic fields in solvents are screened by electrolytes (due
to the redistribution of microions, as discussed in detail later in this chapter).
The polarization charge and the re-distributed microions obviously affect the
electrostatic potential and field.

Ewald methods are directly applicable to explicit models of heterogeneous
systems: the ionic and polarization effects are taken into account by explic-
itly including all microcharges in the model. This leads to a very large total
number of charges or particles that need to be kept track of in the model.
Moreover, the polarization charges are a priori unknown, as they depend on
the field, and the computation of their values by necessity involves an itera-
tive process wrapped around Ewald algorithms. All of that results not only
in a high computational cost, but also in substantial complexity of the overall
procedure.

An alternative to Ewald techniques, the Fast Multipole Method (FMM)
due to L. Greengard & V. Rokhlin [GR87b, CGR99, BG] (see also Section 5.1
on p. 239), has similar limitations in heterogeneous problems. This method is
designed for multiparticle interactions in free space and therefore also requires
explicit treatment of all microcharges, with an iterative process for the values
of these charges if they are not given. A simpler alternative is available near
flat dielectric surfaces (e.g. substrates), where equivalent “image” charges rep-
resenting the influence of the dielectric can be introduced. This approach is
quite common and useful for theoretical analysis and intuitive insights. How-
ever, in the computational model the images further increase the number of
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degrees of freedom (variables).1 Even more importantly, the computation of
image charges is quite involved even for spherical dielectric boundaries; for
more complex shapes this approach becomes completely impractical. To get
a flavor of this, see R. Messina’s paper [Mes02].

A practical proposition is to treat field computation in heterogeneous me-
dia as a boundary value problem. While this approach is widely accepted and
preferred in many areas of applied science and engineering, its use in macro-
molecular and nanoscale simulation so far have been limited (more about this
below). Two very general techniques for boundary value problems are the Fi-
nite Element Method (FEM) and Finite Difference (FD) schemes. Another
general methodology, integral equations, is well suited for linear piecewise-
homogeneous media with geometrically compact boundaries;2 it is not a good
option for the multiparticle problems considered in this chapter.

FEM, described in Chapter 3, is arguably the most powerful simulation
methodology for boundary value problems. In FEM, the computational do-
main is partitioned into small subdomains (elements) – in 3D, most frequently
tetrahedra.3 In many engineering applications, this partitioning is a great
strength, as it results in a geometrically very accurate representation of the
physical structure. However, for multiparticle simulations, with a large num-
ber of particles at arbitrary locations, mesh generation may be impractical,
and the resultant system of equations may be too computationally expensive
to solve. FEM can still be used effectively for a small number of particles; an
example is given in Section 6.12.

FD schemes are attractive because of their relative simplicity: regular
Cartesian grids can be used, and the discretization procedure is not difficult.
The obvious downside, compared to FEM, is that curved or slanted boundaries
cannot be rendered accurately on a regular grid. As a simple 2D illustration,

1 In many instances, I use the term “degrees of freedom” in its physical sense of
“free variables” or “free parameters” of a physical system. However, this term has
a more distinctive mathematical meaning in the Finite Element context, where
“degrees of freedom” are linear functionals on the finite element space (Chapter 3).

2 For piecewise-homogeneous media, the unknown functions in the integral equa-
tion method are some equivalent sources on material interfaces. These equivalent
sources create the same field in the host medium as the actual sources do. The 3D
problem thus consists in finding a 2D distribution of sources on surfaces. Although
the dimensionality of the problem is reduced from 3D to 2D, the computational
cost in general may well be higher than for FEM or FD. This is because the
system matrices for integral equations are, unlike FEM or FD matrices, dense.
FMM and wavelet transforms improve the efficiency of integral equation meth-
ods and make them competitive with, and in some cases preferable to, methods
based on differential equations; see W.C. Chew et al. [CJMS01] and J.S. Zhao &
W.C. Chew [ZC00].

3 Hexahedral elements are also common, and many other types of ele-
ments are used as well, especially in commercial codes. For example, the
ANSYSTM (www.ansys.com) element library contains over 150 different ele-
ments.
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a circular boundary on a Cartesian grid is represented by the shaded area
in Fig. 6.2. The material parameter (e.g. the dielectric constant) is usually
evaluated, in classical FD schemes, at the midpoints of grid edges (marked by
the asterisks in the figure).

Fig. 6.2. The shaded area approximates a circular boundary on a Cartesian grid.
The material parameter is typically evaluated at edge midpoints (asterisks). Small
circles indicate an example of a grid stencil.

The obvious geometric nature of the “staircase” approximation of the
boundary would be central in image processing and similar applications. For
the solution of boundary value problems, this geometric effect is relevant only
insofar as it affects the numerical accuracy. It is the algebraic approximation
of the solution, rather than the geometric layout itself, that is critical. In clas-
sic FD, the algebraic approximation of the potential near material interfaces
is poor, due to the discontinuity of the field, and that is a major source of
numerical error. Standard FD relies on smooth Taylor polynomials that can-
not represent the jump conditions on the boundary very well. The remedy is
to switch from the Taylor polynomials to other approximating functions that
can more closely mimic the behavior of the actual solution.

In Trefftz–FLAME schemes (Chapter 4), such approximating functions are
taken as local analytical solutions of the underlying continuous problem. To
give an example, a way of constructing these functions for spherical colloidal
particles can be outlined as follows (see Section 6.7 and [Tsu05a, Tsu06] for
details).
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Inside any particle, the potential is governed by the Laplace equation and
can therefore be expanded into spherical harmonics. Outside the particle, the
potential satisfies, to a certain level of approximation, the Poisson–Boltzmann
Equation (PBE). Once linearized, the PBE becomes the Helmholtz equation,
and its solution can be expanded into harmonics involving spherical Bessel
functions. Each basis function of FLAME is obtained by matching, via the
boundary conditions, spherical harmonics inside and outside the particle. This
produces Trefftz–FLAME basis functions satisfying the underlying equation
(in this case, Laplace/linearized PBE) and the boundary conditions. This is
sensible from both the mathematical and physical viewpoint.

To illustrate the usage of FLAME for particle problems, I start with two-
dimensional examples of circular and elliptic particles in a dielectric host
medium with no solvent (Sections 6.2 and 4.4.9) and then consider a simi-
lar problem for a spherical dielectric particle (Section 6.3). An introduction
to the Poisson–Boltzmann equation (the classical Gouy–Chapman problem)
is given in Section 6.4. Physical limitations of the Poisson–Boltzmann model
are briefly described in Section 6.5. I explain the construction of FLAME
schemes for colloidal particles in a solvent in Sections 6.6–6.7 and consider
the treatment of nonlinearity of the PBE in Section 6.8. Illustrative numeri-
cal examples are presented in Section 6.12. Sections 6.9–6.11 deal with related
and important topics: the DLVO theory, dispersion forces and thermodynamic
potentials.

6.2 FLAME Schemes for Static Fields of Polarized
Particles in 2D

A simple but compelling illustration of the efficiency of Trefftz–FLAME for
particle problems was already given in Section 4.1. Fig. 4.2 (p. 191) compares
two meshes that provide about the same level of accuracy for the field of a
cylindrical particle in a uniform external field. The FLAME grid has more
than two orders of magnitude fewer degrees of freedom (d.o.f.) than the FE
mesh: 900 (= 30× 30) vs. 125,665.

In this section, FLAME schemes for electrostatic multiparticle problems
are considered in more detail. The medium outside the particles is either a
simple dielectric or an electrolyte. In the first case, the problem is analogous to
the magnetostatic one, with magnetized particles in a medium with constant
permeability.

For a simple dielectric with no electrolyte present, the electrostatic poten-
tial is governed by the Laplace equation both inside and outside the particles,
with the standard conditions on the boundary of each particle

uin(rp) = uout(rp) (6.1)

εin
∂uin

∂r
= εout

∂uout

∂r
, r = rp (6.2)
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where εp and εout are the relative permittivities of the particles and the outside
medium, respectively. The assumption of equal dielectric permittivities of all
particles is not essential and is taken only to avoid additional indexes in the
notation.

Let us construct a Trefftz–FLAME basis in the vicinity of a cylindrical
particle. In 3D, FLAME bases for spherical particles are generated in a very
similar way (Sections 6.3, 6.7). Local approximating functions are chosen to
satisfy the underlying differential equations and the interface boundary condi-
tions. Since the potential is governed by the Laplace equation both inside and
outside the particle, the basis functions are sought as cylindrical harmonics
(Fig. 6.3)

ψ2n(r, φ) =
{

rn cos nφ, r ≤ rp

(anrn + bnr−n) cos nφ, r ≥ rp
, n = 0, 1, . . . (6.3)

ψ2n−1(r, φ) =
{

rn sin nφ, r ≤ rp

(anrn + bnr−n) sin nφ, r ≥ rp
, n = 1, 2, . . . (6.4)

In these expressions,4 (r, φ) is the polar coordinate system with its origin at
the center of the particle; rp is the radius of the particle. Coefficients an and
bn are to be determined via the boundary conditions and are easily shown to
be the same for both “sine” and “cosine” subsets of the basis; this is already
reflected in the expressions.5

At first glance, one would expect only one term, with the negative power
of r, to appear in the formula for ψ outside the particle. This would cer-
tainly be the case if the basis function were considered in the whole plane:
only the negative power of r decays at infinity. However, FLAME approx-
imations are always purely local; conceptually, the basis is introduced in a
small “patch” (subdomain) containing the grid stencil (see Chapter 4). For
illustration, Fig. 6.3 shows a 5-point stencil in a patch Ω(i). Superscript (i) is,
for simplicity of notation, dropped for the ψ functions and other variables.

The only axisymmetric basis function is ψ0 ≡ 1. The Coulombic potential
of a charged particle – increasing as log r outside the particle and constant in-
side – does not appear in the basis, as it does not satisfy the homogeneous con-
ditions on the particle boundary. If the particle is charged, the corresponding
inhomogeneous equation is treated in FLAME, as explained in Section 4.3.4,
by local potential splitting.

To finalize the definition of the basis, one finds, in a straightforward fash-
ion, the two unknown coefficients an, bn from the two boundary conditions
(6.1), (6.2). The result is

an =
εin + εout

2εout
, bn =

εout − εin
2εout

r2n
p (6.5)

4 The “greater or equal” signs are used in both subcases of (6.3) and (6.4) inten-
tionally, to emphasize the continuity of the basis functions at r = rp.

5 It is often more convenient to use complex exponentials, rather than trigonometric
functions of φ, but here all functions are kept real.
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Fig. 6.3. FLAME basis functions near a cylindrical particle are defined as cylindrical
harmonics inside and outside the particle, matched via the boundary conditions.
Some stencil nodes in FLAME may lie inside the particle and some outside. The
consistency error of the FLAME scheme is low in all cases.

These values of the coefficients complete the definition of the approximating
functions in FLAME (6.3), (6.4). The number of functions to be included in
the basis depends on the chosen stencil. For the 5-point stencil, four basis
functions are needed. The selection of three of them is clear: ψ0 ≡ 1 and
ψ1,2 (the dipole terms). The forth basis function could be taken as any linear
combination of the two quadrupole ψ functions, for n = 2; for example, it
can simply be chosen as ψ3 of (6.4). The following numerical example clarifies
this construction of the FLAME basis and the computation of the FLAME
scheme.

Example 14. Suppose, in reference to Fig. 6.3, that the radius of the particle
is rp = 1, the particle is centered at the origin, the midpoint of the stencil is
located at x1 = 0.9, y1 = 0.8, the dielectric constants are εin = 10, εout = 1,
the mesh size is h = 0.75 in both directions, and the five stencil nodes are
numbered as shown in the figure. The (transposed) nodal matrix in FLAME
is
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NT =

⎛
⎜⎜⎝

ψ0(r1, φ1) ψ0(r2, φ2) . . . ψ0(r5, φ5)
ψ1(r1, φ1) ψ1(r2, φ2) . . . ψ1(r5, φ5)
ψ2(r1, φ1) ψ2(r2, φ2) . . . ψ2(r5, φ5)
ψ3(r1, φ1) ψ3(r2, φ2) . . . ψ3(r5, φ5)

⎞
⎟⎟⎠ (6.6)

Since ψ0 ≡ 1, all entries in the first row of the matrix are simply equal to
one. The remaining entries depend on the cylindrical coordinates of all stencil
nodes:

Stencil node x y r φ
1 0.9 0.8 1.20416 0.72664
2 0.15 0.8 0.81394 1.38545
3 1.65 0.8 1.83371 0.45145
4 0.9 0.05 0.90139 0.055498
5 0.9 1.55 1.79234 1.04473

Let us compute, say, the third row of the (transposed) nodal matrix. As
(6.6) shows, this row contains the values of the basis function ψ2 at the five
stencil nodes. Expression (6.3) is, in the case of ψ2 and with coefficients an,
bn shown explicitly,

ψ2(r, φ) =
{

r cos φ = x, r ≤ rp

(2εout)−1
(
(εin + εout)r + (εout − εin) r2

pr−1
)
cos φ, r ≥ rp

(6.7)
Substituting the coordinates of all nodes, we find that the third row of the
matrix is approximately (2.15689, 0.15, 6.86682, 0.9, 3.6893). Repeating such
a straightforward calculation for the remaining rows, we obtain the complete
nodal matrix:

NT
example ≈

⎛
⎜⎜⎝

1 1 1 1 1
1.91724 0.8 3.32937 0.05 6.35379
2.15689 0.15 6.86682 0.9 3.6893
4.83795 0.24 13.4693 0.09 14.1284

⎞
⎟⎟⎠ (6.8)

The null space of this matrix is one-dimensional, and the FLAME differ-
ence scheme is

s ∈ Null NT
example ≈ (1, 0.15706, −0.05774, −0.81446, −0.28485)T (6.9)

(up to an arbitrary factor). The first coefficient, corresponding to the central
node of the stencil, has been normalized to one for convenience.

Example 15. As an extension of the previous example, let us now assume
that the cylindrical surface of the particle is uniformly charged, with surface
charge density ρS or, equivalently, with charge density per unit axial length
ρl = 2πrpρS . How does this affect the FLAME scheme?

As explained in Section 4.3.4 on p. 203, the FLAME matrix remains the
same as for the homogeneous equation – i.e. is specified by (6.8) in this exam-
ple. The right hand side of the system has a nonzero entry defined in FLAME
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via potential splitting. The general procedure is described in Section 4.3.4; in
the example under consideration, the splitting is

u = u0 + uf , uf =
{

0, r ≤ rp

−ρSrpε−1
out log r

rp
r ≥ rp

(6.10)

Indeed, it is straightforward to verify that uf satisfies the Laplace equation
both inside and outside the particle, as well as the inhomogeneous boundary
condition – the jump of the radial component of the D vector does correspond
to the surface charge.

Once the coordinates of each stencil node are substituted into this expres-
sion for uf , the vector of nodal values of uf is found to be

N (i)uf = (−0.18578, 0,−0.60634, 0,−0.58352)T (6.11)

where operator N (i) indicates the nodal values on a given stencil i; see Sec-
tion 4.3.4. The entry corresponding to this stencil in the right hand side of
the FLAME system is, from (6.9) and (6.11),

sTN (i)uf ≈ 0.01545

The FLAME scheme on this stencil can now be explicitly written as (with
about five digits of accuracy)

u1 + 0.15706u2 − 0.05774u3 − 0.81446u4 − 0.28485u5 = 0.01545

This completes the numerical example.

6.2.1 Computation of Fields and Forces for Cylindrical Particles

Solution of the FLAME system yields potential values at the grid nodes. A
typical goal of the simulation, however, is to compute forces. The electrostatic
force6 acting on a given particle can be found, as known from electromagnetic
theory, by integrating the Maxwell Stress Tensor (MST) over a closed surface
containing this particle and no other particles.7

The electrostatic part
←→
T el of the MST is defined as (see e.g. J.D. Jackson

[Jac99], J.A. Stratton [Str41] or W.K.H. Panofsky & M. Phillips [PP62]):

←→
T el = ε

⎛
⎝E2

x − 1
2E2 ExEy ExEz

EyEx E2
y − 1

2E2 EyEz

EzEx EzEy E2
z − 1

2E2

⎞
⎠ (6.12)

6 Similar considerations apply to magnetostatic forces in magnetic fields.
7 For particles in electrolytes, there is also an osmotic pressure force due to un-

even concentration of microions around the particle. This type of force will be
considered in Section 6.11.
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where ε is the dielectric constant of the medium in which the particles are
immersed, E is the amplitude of the electric field and Ex,y,z are its Cartesian
components.

The electrostatic force is

F =
∫

S

←→
T el · dS = ε

∫
S

[
(E · n̂)E − 1

2
E2n̂

]
dS (6.13)

Here S is an arbitrary closed surface containing one, and only one, particle;
n̂ is the exterior unit normal vector to S. For cylindrical particles, forces
are computed per unit axial length and the surface integral reduces to a line
integral; however, with the 3D case in mind, I shall still call it “surface”
integration.

For numerical integration, the field E = −∇u needs to be computed at
arbitrary points on surface S, and hence an interpolation procedure is called
for. Although various forms of interpolation could be considered, the most
natural one employs the local approximating functions used to construct the
FLAME scheme. The local FLAME approximation over stencil number i is

u
(i)
h =

∑
α

c(i)
α ψ(i)

α + u
(i)
f (6.14)

The expansion coefficients cα and the values of the numerical potential uh at
the stencil nodes are linearly related:

u(i) = N (i)c(i) + N (i)u
(i)
f (6.15)

where N (i) is the matrix of nodal values of basis functions ψ
(i)
α on the stencil.

Once the FLAME system of equations has been solved and the numerical
solution – the nodal values on the grid – has been found, one may view (6.15)
as a system of equations with respect to the expansion coefficients c(i):

N (i)c(i) = u(i) − N (i)u
(i)
f (6.16)

This system is typically overdetermined: the number of rows in N (i) (equal to
the number of stencil nodes – e.g. five) is usually greater than the number of
columns (= the number of FLAME basis functions – e.g. four). However, if the
null space of N (i)T is one-dimensional,8 the system is consistent. That is, the
right hand side of the system belongs to the image of N (i) – or, equivalently,
is orthogonal to the null space of N (i)T . This follows from the very definition
of the FLAME scheme for inhomogeneous equations:

s(i)T u(i) = s(i)TN (i)u
(i)
f (6.17)

Since the coefficient vector s(i), according to the FLAME procedure, is in the
null space of N (i)T , and since this null space is by assumption one-dimensional,
8 Recall that this null space defines the FLAME difference scheme.
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equation (6.17) states that the right hand side of (6.16) is indeed orthogonal
to the null space of N (i)T .

Hence the vector of expansion coefficients for the FLAME solution u
(i)
h

over stencil i can be found from the consistent system9 (6.16). Coefficients
c(i) then define, via (6.14), the FLAME interpolation u

(i)
h in the vicinity of

stencil i (technically, in the “patch” Ω(i) containing the stencil). The electric
field is

E(i)
h = −

∑
α

c(i)
α ∇ψ(i)

α − ∇u
(i)
f (6.18)

The electrostatic force is found by numerical integration of the MST (6.13).

Remark 16. Theoretically, the value of the force does not depend on the choice
of the integration surface, but numerically it does. Numerical results for rec-
tangular and circular integration paths are compared in the example below.

Remark 17. As argued in Chapter 4, in FD methods (FLAME included) ap-
proximation between the nodes is inherently multivalued. The solution is de-
fined locally, over subdomains (“patches”) Ω(i). At any point in space, two or
more of these patches can overlap, and two or more respective values of the
field E(i)

h can coexist. The field value in the MST integration (6.13) can be de-
fined as some weighted average of the values from the nearby “patches”. The
simplest choice is just the field value corresponding to the nearest patch – i.e.
to the nearest (in some sense) stencil. As the grid is refined, multiple values
from different patches are expected to converge, as the numerical experiments
in the following section illustrate. Moreover, the discrepancy between these
values may serve as an error indicator for adaptive procedures; an example is
given in Section 6.2.3.

6.2.2 A Numerical Example: Well-Separated Particles

Numerical experiments in this subsection were performed by Jianhua Dai.
A test problem with ten cylindrical particles is considered in this section as

an example of FLAME. Locations of the particles in the rectangular compu-
tational domain [−8, 8]× [−8, 8] are shown in Fig. 6.4, where the equipotential
lines are also displayed to visualize the field distribution.

All particles are taken to be identical, with the radius rp = 1 and the rela-
tive dielectric permittivity εp = 10; the dielectric constant of the surrounding
medium is one. The particles have zero net charge but are polarized by an
external electric field applied in the negative x-direction; the magnitude of
this field is normalized to unity, and its potential far away from the particles
is simply uext = x.

9 In practice, due to numerical errors inherent in the computation of u by linear
system solvers, especially iterative ones, the system is “almost,” but not exactly,
consistent. This does not normally cause any problems.



292 6 Long-Range Interactions in Heterogeneous Systems

Fig. 6.4. Credit: Jianhua Dai. A test problem with ten particles, with the coor-
dinates of particle centers indicated. The field distribution is characterized by the
equipotential lines.

The problem has an analytical solution via the multipole-multicenter ex-
pansion. With 20 cylindrical harmonics per particle retained in the expansion,
the error turns out to be on the order of 10−10, and for practical purposes this
solution is treated as “exact”. To eliminate the effects of domain truncation
in the testing and verification of FLAME, this “exact” multipole-multicenter
solution is imposed as the Dirichlet condition on the exterior boundary of the
computational domain.

In this example, the particles are well separated in the sense that no
“patch” Ω(i) (containing grid stencil i) intersects with two or more parti-
cles. Consequently, the FLAME basis in each patch can be supplied by the
closest particle. The more complicated case of a grid stencil with nodes in two
nearby particles is considered in Section 6.2.3.

We first examine convergence of the nodal potential as a function of grid
size for the 5-point and 9-point FLAME schemes. The relative rms error is
defined as

eu =
‖uh −Nuexact‖2

‖Nuexact‖2
(6.19)

where uexact is the “exact” (multipole-multicenter) potential as explained
above. Fig. 6.5 shows the relative error in the potential vs. mesh size h on
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a log-log scale. The error decays approximately as O(h1.3) for the 5-point
scheme (see dashed line as a visual aid) and approximately as O(h3.5) for the
9-point scheme.10

Fig. 6.5. Relative RMS error in the potential for 5-point and 9-point FLAME
schemes. (Simulation by Jianhua Dai.)

A similar definition of the relative rms error is used to evaluate the ac-
curacy of the electric field at 100 points chosen randomly in the computa-
tional domain. The numerical result is again compared with the multipole-
multicenter expansion. Surprisingly, the rate of convergence for the field is
not much worse than for the potential: the field error decays approximately as
O(h1.1) for the 5-point scheme and asO(h3.5) for the 9-point scheme (Fig. 6.6).
In general, differentiation of the potential (to compute the field) almost un-
avoidably degrades the numerical accuracy. This degradation in the example
under consideration turns out to be very moderate.

Finally, force values are computed by numerical integration of the MST
over rectangular or circular paths. The edge length of the rectangular path is
10% greater than the diameter of the particle, and the number of integration
knots is 100. For verification purposes, the quasi-exact force is calculated using
a 40,000-knot numerical quadrature of the “exact” field computed with 40
multipole-multicenter harmonics. The trapezoidal rule is used for numerical
integration.
10 For the 9-point scheme, the slope of the line corresponds to ∼ O(h3.8) if all data

points are taken into account and to ∼ O(h3.27) if the initial sharp decay between
the first and second data point is excluded.
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Fig. 6.6. Relative rms error in the electric field for 5-point and 9-point FLAME
schemes vs. grid size. (Simulation by Jianhua Dai.)

The radius of the circular integration path is also chosen to be 10% greater
than the particle radius. The numerical quadrature for the FLAME force
and the “overkill” integration are implemented in the same way as for the
rectangular path. The asymptotic behavior of errors in the force is ∼ O(h1.45)
for the 5-point scheme and ∼ O(h3.46) for the 9-point scheme (Fig. 6.7).

6.2.3 A Numerical Example: Small Separations

Numerical experiments in this subsection were performed by Jianhua Dai.
Ideally, Trefftz–FLAME incorporates local analytical solution of the gov-

erning equation into the difference scheme. However, when analytical approx-
imations are too complicated or unavailable, numerical ones can be used in-
stead. In multiparticle problems, this is the case when several particles are in
close proximity to one another or when particles have complex shapes.

J. Dai [DT06] uses local numerical and semi-analytical solutions as FLAME
basis functions in multiparticle simulations. More specifically, the FLAME
basis is constructed either by solving small local finite element problems or,
alternatively, by a local multipole-multicenter expansion.

The formulation of the problem is the same as before: the Laplace equation
both inside and outside the particles, with standard boundary conditions (6.1)
and (6.2). If an external field with potential u0(r) is applied, the Dirichlet
boundary condition at infinity is

u(r) → u0(r) as r →∞ (6.20)
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Fig. 6.7. Relative rms error in the electrostatic forces acting on the particles for
two FLAME schemes and two MST integration paths vs. grid size. (Simulation by
Jianhua Dai.)

In Section 6.2, FLAME bases in the vicinity of a given particle were obtained
analytically, by matching harmonic expansions inside and outside the particle.
The area of applicability of this approach has limitations, however. If the
shape of particles (or other dielectric objects) is not cylindrical or spherical,
it is substantially more difficult to construct local analytical approximations of
the potential. Furthermore, if two or more particles are separated by distances
comparable or smaller than the grid size, the nodes of a stencil may “belong”
to different particles (Fig. 6.8), and efficient ways of constructing a Trefftz–
FLAME basis in such cases need to be found.

Let us consider a pair of spherical particles of the same radius and exam-
ine the dependence of numerical errors on the separation distance between
the particles. A uniform external field along the x-coordinate is applied. The
relative rms error (rRMSE) in the potential is measured by its average value
over more than 1000 random sampling points.

Suppose that the FLAME bases are computed analytically (Section 6.2)
by taking into account only one particle closest to the midpoint of the grid
stencil. This works well as long as the particles are well separated, i.e. the
gap between them is substantially greater than the mesh size. For example,
with the gap between a pair of particles equal to 3rp (where rp is the radius
of each particle), and with the mesh size equal to one-quarter of the particle
radius in each of the three directions, the relative rms error for the potential
over the sampling points is about 0.6%. However, when the gap diminishes to
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0.1rp (with the same mesh size), the error increases by more than an order of
magnitude, to about 6.7%. In this latter situation, the particles are too close
to one another for the solution based on just one of them to be physically
meaningful.

To rectify the situation, two approaches for generating FLAME bases are
explored. The first one – local multipole-multicenter expansions – is applicable
to cylindrical or spherical particles and yields an analytical solution even if the
particles are in close proximity to one another. Since the relevant techniques
and mathematical formulas are very well known, especially in the context
of Fast Multipole Methods (see e.g. H. Cheng et al. [CGR99]), they are not
described here but are used in numerical experiments. Note that only local ex-
pansions, involving a small number of nearby particles, are needed to generate
the FLAME basis.

Fig. 6.8. Patch Ω(i) (dashed line) intersects two nearby particles, which complicates
the analytical approximation within this patch.

Another way of constructing the bases is quite useful in cases where local
analytical approximations are unavailable. This approach relies on an accurate
numerical, rather than analytical, solution of a local field problem in patches
Ω(i). While any numerical technique can in principle be applied for this pur-
pose, the Finite Element Method (FEM) is the most general and powerful
tool. Note that the local problem does not require construction of globally
conforming FE meshes and is in all respects much simpler than the global
problem would be.

This is further illustrated by the following test examples with four dielec-
tric particles in free space. The particles in air have the relative dielectric
constant of εp = 10. A uniform external field is applied. As before, an ana-
lytical solution is available via the (global) multipole-multicenter expansion
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– in practice, truncated at the terms with the magnitude below 10−11. As in
previous tests, this quasi-exact solution is applied on the domain boundary
as a Dirichlet condition, to eliminate the numerical error associated with the
approximation of boundary conditions. The layout is shown in Fig. 6.9. The

(-2, 2) (0.1, 2)

(-2, -2)
(2, -1)

sε

pε

Fig. 6.9. A 2D model problem with four particles. (Credit: J. Dai.)

radii of all particles are rp = 1, and there is a pair of particles with a gap of
only 0.1 between them. Two kinds of FLAME bases are used: one from the
local multipole-multicenter expansion and the other one, purely numerical,
from FE analysis.

The overall accuracy of FLAME with numerical (finite-element) basis func-
tions depends on two main factors. One source of error is the finite-difference
discretization by FLAME itself; this error depends primarily on the mesh size
of the global Cartesian grid in FLAME. The other source of error is the accu-
racy of the numerical bases – this error is governed by the usual FE parameters
such as the FE mesh size, the order of finite elements, and the geometric shape
of the elements.

Fig. 6.10 shows the FLAME simulation results for bases constructed by
local multipole-multicenter expansions. The accuracy of FLAME is easily seen
to be much higher than that of the standard FD (sFD)–flux balance schemes.
When the mesh size is greater than the smallest gap between the particles,
sFD provides a very crude approximation at best. Only after the grid size falls
below the smallest gap does the accuracy of sFD begin to improve.

For the 5-point FLAME scheme with multipole-multicenter bases, the ac-
curacy improves as the mesh is refined, provided that sufficiently many (in this
example, 40) harmonics are used to generate the FLAME basis. For a smaller
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Fig. 6.10. Errors in the potential for standard FD and for FLAME with analytical
bases by multipole-multicenter expansion. A 2D example. (Simulation by J. Dai.)

number of harmonics (10), the FLAME error decays only to some saturation
level commensurate with the accuracy of the basis functions themselves. Sim-
ilar observations are valid for the 9-point FLAME scheme (compare the error
plots in Fig. 6.10 for 20 and 40 harmonics in the construction of the basis).

The accuracy of the 9-point scheme is obviously much higher than that
of the 5-point scheme. From the numerical data, the asymptotic behavior of
the error in the potential is approximately O(h1.6) for the 5-point scheme and
O(h3.7) for the 9-point scheme.

Two FLAME basis functions computed by FEMLABTM (COMSOL Mul-
tiphysics) are plotted in Fig. 6.11. The functions correspond to the two par-
ticles with a small gap (0.1) between them.

Fig. 6.12 shows the FLAME simulation results with this kind of a basis.
The number of FE degrees of freedom (d.o.f.) is a simulation parameter that
affects the accuracy of the FE solution for the numerical FLAME basis. For
the 5-point scheme, 5401 and 59,371 d.o.f. yield similar accuracy, which shows
that the numerical error in this case is primarily due to the finite-difference
(FLAME), rather than the finite-element, discretization.

The error plot for the 9-point scheme with 59,371 d.o.f. exhibits an anom-
aly. When the FLAME mesh size falls below 0.025, the accuracy deteriorates.
This is because, due to the limited accuracy of the FE solution for the FLAME
bases, the null space of matrix NT (see Chapter 4) has dimension greater than
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Fig. 6.11. Examples of FLAME basis functions, plotted vs. coordinates x, y. The
functions are generated by FEM for a pair of nearby cylindrical particles. Left: basis
function corresponding to an external applied field with potential uext = y. Right:
uext = x2 − y2.
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Fig. 6.12. Errors in the potential for standard FD and for FLAME with numerical
(finite-element) bases. A 2D example. (Simulation by J. Dai.)
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one in some patches. Fortunately, the dimension of the null space is easy to
monitor; if it becomes greater than one, the accuracy of the local FE solution
needs to be increased (via h- or p-refinement).

An interesting alternative for obtaining the local solutions could be the
boundary element method. Although the matrices in this case are full, they
can easily be handled due to their small size for each local problem. The
advantage is that the local meshes are needed only on the interface boundaries.
Possible applications of this type of technique are currently being explored.

Adaptive Refinement

The simulation results in this section are due to Jianhua Dai.
FLAME approximates the solution “patch”-wise (Chapter 4). In the areas

where different patches overlap, the discrepancy between the corresponding
values of the numerical solution may serve as a natural error indicator. Addi-
tional nodes can then be introduced in the regions where the error indicator
is highest. This approach in FLAME is only beginning to be explored [DT07],
but some computational examples in 2D can already be given.

A few cylindrical dielectric particles at randomly chosen locations in free
space are immersed in a uniform external field. A quasi-analytical solution is
obtained by the multipole-multicenter expansion and used for verification of
the FLAME results.

Figs. 6.13 and 6.14 illustrate the geometric setup and the FLAME nodes
after a step of adaptive refinement for two typical problems of this kind. The
relative permittivity of all particles is 10. Note that the FLAME grid does not
have to be regular Cartesian.

For 5-point FLAME schemes, the respective errors in the potential are
given in Tables 6.1 and 6.2. It is encouraging that the adaptive refinement
occurred at the “right” places – in the smaller gaps between the particles
where the actual numerical error should definitely be expected to be higher.
Results for 9-point schemes are qualitatively similar.

The discrepancy between the potential values at edge midpoints is used as
an error indicator. For each midpoint, there are two such values from the two
patches corresponding to the nodes of that edge. Further, the error indicator
for each grid cell is taken to be the average of the indicators for its four
edges. Although several grid sizes are seen in the figures, the actual refinement
occurred in one step: grid cells with the highest error indicator are subdivided
into 8×8 subcells, while their neighboring cells are subdivided into 4×4, and
the next layer of neighbors into 2 × 2. Allowing more abrupt changes in the
grid size would lead, as numerical experiments have shown, to much higher
numerical errors.

Further results on adaptive FLAME for electrostatic problems and for
electromagnetic wave scattering from multiple dielectric particles are reported
by J. Dai & myself in [DT07].
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Fig. 6.13. FLAME nodes after refinement. (Credit: J. Dai.)

Table 6.1. Relative error in the potential before and after refinement, for the prob-
lem of Fig. 6.13. (Credit: J. Dai.)

Before refinement After refinement

Number of nodes 169 684

Relative rms error 7.01 × 10−2 4.97 × 10−4

Table 6.2. Relative error in the potential before and after refinement for the prob-
lem of Fig. 6.14. (Credit: J. Dai.)

Before refinement After refinement

Number of nodes 169 1123

Relative rms error 0.0882 2.8 × 10−4
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Fig. 6.14. FLAME nodes after refinement. (Credit: J. Dai.)

Summary

For electrostatic or magnetostatic problems with spherical particles, construc-
tion of analytical basis functions for FLAME is straightforward via spherical
harmonics (Section 6.3.1; [Tsu05a, Tsu06]), provided that the particles are
well separated. For particles in close proximity to one another, there are at
least two ways of computing the basis functions. The first approach employs
local multipole-multicenter expansions. The second way is purely numerical:
the local FLAME bases are generated by the Finite Element Method. Note
that solving a number of local FE problems is much less expensive compu-
tationally than solving the global problem, as no complicated meshes and no
large FE systems of equations are involved.

Numerical examples demonstrate the high rate of convergence of five- and
9-point FLAME schemes in 2D and 7- and 19-point schemes in 3D. With
the same mesh, the accuracy of FLAME is much higher than that of the
standard FD–flux balance scheme. This may pave the way for solving problems
with a large number of particles on relatively coarse grids, with mesh sizes
comparable to or even greater than the radii of the particles and than the
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separation distances between them. Thus numerical bases can be successfully
used in FLAME when analytical ones are not available.

In FLAME, discrepancies between the numerical values of the potential
in two overlapping “patches” may serve as a natural error indicator for grid
refinement. In the numerical examples (p. 300), this indicator is effective:
narrow gaps between particles are selected for refinement and the accuracy is
increased by orders of magnitude as a result.

6.3 Static Fields of Spherical Particles in a
Homogeneous Dielectric

6.3.1 FLAME Basis and the Scheme

Problems involving dielectric particles in an external dielectric medium arise,
in particular, in the simulation of colloidal systems (J. Dobnikar et al.
[DHM+04], M. Deserno et al. [DHM00]). Colloidal particles usually carry a
surface electric charge that produces an electrostatic field. In some cases, par-
ticles can also be magnetic; controlling them by external magnetic fields may
have interesting applications in some emerging areas of nanoscale technology
(B. Yellen et al. [YF04, YFB04], A. Plaks et al. [PTFY03]). The material
properties of the particles are usually quite different from those of the sol-
vent. Computationally the problem is quite challenging due to many-body
interactions and the heterogeneities.

In this section, 3D FLAME schemes are derived for particles in free space
or a homogeneous dielectric. This is analogous to the 2D case considered
previously. Solvent effects are dealt with in the following section.

For particles in a homogeneous dielectric, the electrostatic potential is
again governed by the Laplace equation both inside and outside the particles,
with the standard conditions at particle boundaries:

uin(rp) = uout(rp) (6.21)

εin
∂uin

∂r
= εout

∂uout

∂r
+ ρS , r = rp (6.22)

These equations are almost the same as for cylindrical particles, (6.1), (6.2),
except for the obvious differences in the geometric meaning of the the radial
coordinate in the 2D and 3D cases.

The Trefftz–FLAME basis functions in the vicinity of a particle are ob-
tained via spherical harmonics that satisfy the Laplace equation both inside
and outside the particle:

ψ(i)
α (r, θ, φ) = rnPm

n (cos θ) exp(imφ) (6.23)

inside the particle, and
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ψ(i)
α (r, θ, φ) = (fmnrn + gmnr−n−1)Pm

n (cos θ) exp(imφ) (6.24)

outside the particle. Here index α is a single number corresponding to the
(n,m) index pair; for example, α can be defined as α = n(n + 1) + m, n =
0, 1, . . . ; m = −n, . . . , n; α = 0, 1, . . . , n2 − 1. The rn term is retained outside
the particle because the harmonic expansion is considered locally, in a finite
(and small) patch Ω(i).

Remark 18. One may note a lack of symmetry between the inside and outside
regions in this definition of the basis set. If the particle radius is much greater
than the mesh size, it may indeed be desirable to restore the symmetry and
add the harmonics with negative powers of r to the FLAME basis near the
boundary, as the respective “patch” where the FLAME approximation is in-
troduced in this case is away from r = 0. Another asymmetry is the lack
of coefficients similar to fmn inside the particles; this is just a convenient
normalization of the basis functions.

In the above expressions for the basis functions, the standard notation for the
associated Legendre polynomials Pm

n is used:

Pm
n (x) = (−1)m(1− x2)m/2 dmPn(x)

dxm
, − 1 ≤ x ≤ 1 (6.25)

The (regular) Legendre polynomials can be expressed, say, by the Rodrigues
formula:

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n, − 1 ≤ x ≤ 1 (6.26)

For reference, the first few of these polynomials are

P0(x) = 1; P1(x) = x; P2(x) =
1
2

(3x2 − 1); P3(x) =
1
2

(5x3 − 3x)

P 0
0 (x) = 1; P 0

1 (x) = x; P 1
1 (x) = −(1− x2)1/2;

P 0
2 (x) =

1
2

(3x2 − 1); P 1
2 (x) = −3x(1− x2)1/2; P 2

2 (x) = 3(1− x2)

The coefficients of the FLAME scheme are derived for the homogeneous
equation11 – in the physical problem under consideration, for uncharged parti-
cles. The conditions at the particle boundary are satisfied for a suitable choice
of coefficients fmn and gmn. Straightforward computation yields the first six
basis functions of Table 6.3 [Tsu05a]. The coefficients in the table are

c1 =
εin + εout

3εout
; c2 = −r3

p

εin − εout

3εout
; b1 =

2εin + 3εout

5εout
; b2 = −2r5

p

εin − εout

5εout

11 i.e. equation with a zero right hand side – not to be confused with a homogeneous
medium.
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Table 6.3. Trefftz–FLAME basis functions for a spherical particle. (The Poisson
equation.)

Basis functions Inside the particle Outside the particle Harmonic

ψ1 1 1

ψ2 x xr−1(c1r + c2r
−2) dipole

ψ3 y yr−1(c1r + c2r
−2) dipole

ψ4 z zr−1(c1r + c2r
−2) dipole

ψ5 z2 − x2 (z2 − x2)r−2(b1r
2 + b2r

−3) quadrupole

ψ6 z2 − y2 (z2 − y2)r−2(b1r
2 + b2r

−3) quadrupole

For practical convenience, expressions for the basis functions were con-
verted from spherical to Cartesian coordinates. For example, basis functions
ψ5 and ψ6 are easily seen to be linear combinations of the following two spher-
ical harmonics:

P 0
2 (cos θ) =

1
2

(3 cos2 θ − 1) =
1
2

r−2 (3 z2 − (x2 + y2 + z2))

= r−2 (z2 − 1
2

x2 − 1
2

y2)

and

P 2
2 (cos θ) cos 2φ = 3 sin2 θ cos 2φ = 3 sin2 θ(2 cos2 φ− 1)

= 3r−2
(
2x2 − (x2 + y2)

)
= 3r−2 (x2 − y2)

To construct a FLAME scheme, assume for definiteness that the standard 7-
point stencil is used and that the set of six basis functions is chosen as specified
in Table 6.3. The Trefftz–FLAME scheme s(i) ∈ R

7 is then computed as the
null space of the matrix of nodal values of these basis functions on a given
stencil.

Remark 19. The choice of two quadrupole functions, ψ5,6 of Table 6.3, out of
possible five, is arbitrary. Numerical experience has shown that the particular
choice of functions is not critical. Alternatively, one may drop the quadrupole
functions altogether and keep only four functions ψ1−4 in the FLAME basis
set. The null space of the nodal matrix is then three-dimensional, i.e. there
are potentially three independent FLAME schemes available. One may be
tempted to look for a linear combination of these schemes that would in some
sense be optimal – for instance, would produce maximum diagonal dominance.
However, this complicates the algorithm and does not lead, in my experience,
to higher numerical accuracy of the solution.
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If the particles are charged, the coefficients of the FLAME scheme (and
hence the system matrix overall) remain unchanged, but the right hand side
becomes nonzero. The difference equation in FLAME has the form (see e.g.
(6.17) on p. 290):

s(i)T u(i) = s(i)TN (i)u
(i)
f (6.27)

This is completely analogous to the construction of FLAME schemes for
charged cylindrical particles – see Example 15 on p. 288. The particular solu-
tion u

(i)
f is just the Coulomb potential

u
(i)
f =

{
q (4πεoutrp)−1, r ≤ rp

q (4πεoutr)−1, r ≥ rp
(6.28)

where q is the charge of the particle and r is the distance from the center of
the particle. More generally, u

(i)
f could be a superposition of potentials (6.28)

for several particles in the vicinity of the “patch” Ω(i) containing stencil i. If
a charged particle intersects with Ω(i), the Coulomb potential of that particle
must be included in u

(i)
f – otherwise the field generated by that particle would

not be accounted for. If a particle is near the stencil but does not intersect
with its respective “patch,” including the potential of that particle into u

(i)
f

is optional and in general constitutes a trade-off between accuracy and the
computational cost.

The actual computation of the right hand side (6.27) is analogous to the
numerical example for cylindrical particles (Example 15 on p. 288).

6.3.2 A Basic Example: Spherical Particle in Uniform Field

In this classical example, an uncharged polarizable spherical particle is im-
mersed in a uniform external field. A simple analytical solution is readily
available, and so the numerical errors of Trefftz–FLAME and its convergence
can be easily analyzed. To eliminate the effects of domain truncation, the exact
analytical solution is imposed as a Dirichlet condition in the Trefftz–FLAME
system.

In the numerical example below, the computational domain is a unit cube
and the radius of the particle is rp = 0.07. The relative dielectric constants of
the particle and surrounding dielectric are one and 80, respectively.

If the FLAME scheme is used everywhere in the computational domain,
the numerical solution is exact (up to the roundoff error). Indeed, the exact
solution contains only the dipole harmonic which lies in the functional space
spanned by the FLAME basis functions; consistency error of the FLAME
scheme is therefore zero. In practice for multiparticle problems, FLAME
schemes are used in the vicinity of each particle, and any standard schemes for
the Laplace equation can be used away from the particles. To make the one-
particle example consistent with the multiparticle case, the FLAME scheme
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is applied only within a certain threshold distance from the center of the
particle.

In the numerical experiments, the standard 7-point stencil is used through-
out the computational domain. If the midpoint of the stencil is within the
threshold distance from the center of the particle, then the FLAME scheme
is applied; otherwise the standard 7-point scheme for the Laplace equation is
used. The standard scheme limits the overall convergence of the solution to
O(h2) asymptotically.

The relative numerical error in the potential is defined as in equation
(6.19). Fig. 6.15 shows this error as a function of mesh size. The observed con-
vergence rate is O(h2) – as noted above, this asymptotic behavior is due to the
bottleneck imposed by the standard difference scheme away from the particle.
For comparison, convergence of the conventional flux-balance scheme is also
shown; the FLAME solution is clearly superior. The figure also demonstrates
that the field computed inside the particle exhibits very rapid convergence
due to the exact representation of the potential in and near the particle by
spherical harmonics.

Fig. 6.15. Superior performance of FLAME for the test problem with a polarized
spherical particle. The error in the potential in FLAME (diamonds) is much lower
than for the standard flux-balance scheme (circles). Convergence of the field inside
the particle (squares) is remarkably rapid. (Reprinted by permission from [Tsu05a]
c©2005 IEEE.)

A 3D Test with Several Particles

The application of FLAME schemes to 3D multiparticle problems in homo-
geneous dielectrics is conceptually analogous to the 2D case (Sections 6.2.2,
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6.2.3 on pp. 291, 294). A 3D example includes four particles with the same
radius rp = 1 and the dielectric constant εp = 2. The particles are immersed
in a host medium with εs = 80. This resembles the typical case of colloidal
particles in water, with no salt.

Two of the particles are in close proximity to one another, with a gap of
0.1459 between them. A uniform external field is applied. For comparison and
verification, the analytical solution is obtained via the multipole-multicenter
expansion (truncated at the terms with the magnitude below 10−8). To elimi-
nate the effects of domain truncation, the exact Dirichlet condition is applied
at the exterior boundary.

Fig. 6.16 shows the simulation result for FLAME with the bases con-
structed by the multipole-multicenter expansion with 20 harmonics. The ac-
curacy of FLAME is seen to be much higher than that of standard FD.
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Fig. 6.16. Error in the potential for FLAME with multipole-multicenter basis func-
tions in 3D.

The 19-point scheme12 yields much higher accuracy than the 7-point
scheme if the FLAME bases are computed with sufficient precision. Then
the asymptotic error in the potential is ∼ O(h1.5) for the 7-point scheme and
∼ O(h3.5) for the 19-point scheme.

The remainder of this chapter focuses on a somewhat different, and ar-
guably more interesting and complicated, problem: multiparticle interactions
in solvents. The microions (e.g. salt ions) in the solvent redistribute them-
selves in the presence of any external field, which produces a screening effect.

12 The 19-point stencil is a 3×3×3 cluster of nodes without the corner nodes – the
same as for the “Mehrstellen” schemes in Section 4.4.5.
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The electrostatic potential can then be described, at least for monovalent ions,
by the Poisson–Boltzmann Equation (PBE).

6.4 Introduction to the Poisson–Boltzmann Model

This section reviews a classic problem dating back to the works of G. Gouy
[Gou10] in 1910 and D. Chapman [Cha13] in 1913: a charged flat electrode
immersed in a solvent.

There are two analogous but somewhat different cases. In the first one, the
microions in the solvent are counterions dissolved from the electrode; for ex-
ample, the electrode gives off protons H+ or other positively charged chemical
groups and acquires a negative surface charge ρS per unit area (Fig. 6.17).
The whole system (electrode + solvent) is electrically neutral. In the second

Fig. 6.17. A diffuse layer of cations in solvent near a flat electrode: the Gouy–
Chapman problem.

case, the microions in the solvent are due to the presence of an electrolyte –
they are salt ions. The solvent itself is electrically neutral as a whole.

In the first case (electrode with counterions), I follow very closely the pre-
sentation by A.Yu. Grosberg et al. [GNS02]. By assumption, the only counte-
rions in the system are those dissociated from the surface. Since the electrode
is large, the problem of the counterion distribution near the surface is treated
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as one-dimensional. The electrostatic potential u(x) satisfies the Poisson equa-
tion13

−∇2u =
ρ

εs
(6.29)

where ρ is the volume charge density of the cations, and εs is the dielectric
constant of the solvent (εs ≈ 80ε0 for water under static conditions). The key
observation is that charge density, in return, depends on the potential, as the
counterions are mobile and their concentration n(x) is affected by the field.
The Boltzmann distribution for the counterion concentration is assumed:

n(x) = nS exp
(
−eZ

u(x)− uS

kBT

)
(6.30)

where subscript “S” refers to the surface of the electrode, Ze is the charge
of each counterion (e being the proton charge), and kB ≈ 1.38065 × 10−23

m2 × kg ×s−2 ×K−1 is the Boltzmann constant.
Given this charge distribution, the Poisson equation becomes

u′′(x) = − nSeZ

εS
exp

(
−eZ

u(x)− uS

kBT

)
(6.31)

where the primes denote x-derivatives. This 1D Poisson–Boltzmann equation
is manifestly nonlinear (the unknown function u appears in the exponential).
Luckily, this equation has an analytical solution that can be obtained in (at
least) two different ways. A somewhat more systematic way is to multiply the
equation by 2u′, after which both sides turn into full derivatives – the left
hand side becoming equal to (u′2)′ – and the equation can be integrated.

A shortcut is to guess the form of the solution as

u(x) = a log(x + λ) + b (6.32)

substitute it into the equation and find parameters a, λ, b for which the
equation and the boundary conditions are satisfied.

The boundary condition at x = 0 follows from the fact that the field
vanishes inside the electrode:

u′(x) = − ρS

εs
at x = 0 (6.33)

The second condition is that of global electroneutrality: the integral of con-
centration n(x) per unit area must be normalized to ρS/(Ze) ions. With all
this in mind, ion concentration is found to be

n(x) =
2εkBT

(eZ)2
(x + λ)−2 (6.34)

13 The more conventional notation φ for the potential could be confused in this
chapter with the angular coordinate in the spherical or cylindrical system.
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The relevant physical parameters are the Gouy–Chapman length

λ =
2εs kBT

ρS eZ
(6.35)

and the Bjerrum length

lB =
e2

4πεs kBT
(6.36)

The Bjerrum length is the distance at which the energy of electrostatic inter-
action of two elementary charges is equal to thermal energy kBT (lB ≈ 0.7 nm
in water at room temperature).14

Let us now consider a three-dimensional problem for an electrolyte, with
positive and negative salt ions carrying equal and opposite charges. In general,
there may be several species of ions, and consequently the Poisson–Boltzmann
equation in general may contain several exponentials:

εs∇2u = −
∑
α

nαqα exp
(
− qαu

kBT

)
(6.37)

where summation is over all species of ions present in the solvent, nα is volume
concentration of species α in the bulk, qα = Zαe is the charge of species α;
other parameters have the same meaning as before. The right hand side of
(6.37) reflects the Boltzmann distribution of microions in the mean field with
potential u. (More details are given in Section 6.11 and Appendix 6.14.)

For a 1:1 electrolyte, when all ions appear in pairs of opposite but equal-
magnitude charges, the exponentials in the PBE can be paired up accordingly
to produce the hyperbolic sine functions:

εs∇2u = 2
∑

β

nβqβ sinh
(

qβu

kBT

)
(6.38)

where summation is now over all pairs of ions, and the summation index has
been changed to β as a cue. This form of the Poisson–Boltzmann equation is
slightly less general than (6.37).

If the electrostatic energy qαu is (much) smaller than thermal energy kBT ,
PBE can be approximately linearized around u = 0 to yield15

εs∇2u = −
∑
α

nαqα +
∑
α

nαqα
qαu

kBT
(6.39)

The first sum vanishes due to the global electroneutrality of the solution;
hence

14 The Bjerrum length is often defined without the factor of 4π in the denominator.
15 For a detailed and systematic account of “optimal” linearization procedures, see

M. Deserno et al. [DvG02], M. Bathe et al. [BGTR04] and references therein.
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εs∇2u =
∑
α

nαqα
qαu

kBT
(6.40)

or, in more compact form,

∇2u − κ2u = 0 (6.41)

with

κ = (εskBT )−
1
2

(∑
α

nαq2
α

) 1
2

(6.42)

κ is called the Debye–Hückel parameter.
It is useful to estimate the order of magnitude of the potential for which

linearization is acceptable. Equating electrostatic energy qu of monovalent
ions (q = e) to thermal energy kBT , one obtains the threshold ukT = kBT/e
≈ 25 mV at room temperature.

Equation (6.41) is known as the Debye–Hückel approximation. The poten-
tial satisfying this equation will typically exhibit an exponential decay with
the characteristic length (the Debye–Hückel length) equal to the inverse of κ.

Example 16. Solution of the linearized PBE for an isolated charged ball in a
solvent.

Due to spherical symmetry, it is natural to write the linearized PBE (6.40)
in the solvent in the spherical coordinate system:

1
r2

(
r2u′)′ = κ2u (6.43)

where the prime stands for the radial derivative. Anticipating the exponential
decay, we write the unknown potential as

u(r) = ũ(r) exp(−κr) (6.44)

where ũ is a yet unknown function. Substituting this into equation (6.43) and
simplifying, we find that

ũ(r) = c/r (6.45)

where c is a constant to be determined. Thus

u(r) =
c

r
exp(−κr) (6.46)

The constant can be found from Gauss’s law on the surface of the ball:

−4πr2εsu
′(r) = q at r = r0 (6.47)

where q is the total charge of the ball and r0 is its radius. The derivative of
(6.44) is

u′(r) = − cr−2 exp(−κr) − cκr−1 exp(−κr)

which yields
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c =
q exp(κr0)

4πεs(1 + κr0)
(6.48)

The result is thus the Yukawa potential16

u(r) =
q exp(−κ(r − rp))

4πεsr(κrp + 1)
(6.49)

6.5 Limitations of the PBE Model

This section follows the excellent exposition by T.T. Nguyen, A.Yu. Grosberg
and B.I. Shklovskii [NGS00].

The main physical assumption behind the PBE is that each mobile charge
is effectively in the mean field of all other charges, and has the Boltzmann
probability of acquiring any given energy. This probability is assumed to be
unconditional, i.e. not depending on possible redistribution of other ions in
response to the motion of a given ion. In other words, mean field theory
disregards any correlations between the positions and movement of the ions.

The following physical considerations illustrate that such correlations may
in fact exist [NGS00]. A very simple arrangement of charges shown in Fig. 6.18

Fig. 6.18. (After T.T. Nguyen et al. [NGS00] c©2000 by the American Physical
Society, with permission.) This simple system of charges may remain stable (at
sufficiently low temperatures) even if the total charge is positive.

may remain stable even if the total charge of the two positive counterions
exceeds the absolute value of the charge of the macroion (2Ze > |Q|). Indeed,
the energy of each counterion Ze “attached” to the macroion −Q is (omitting
the 4πε factors for brevity)

(Ze)2

2(rQ + rZ)
− QZe

rQ + rZ
=

(Ze)2 − 2QZe

2(rQ + rZ)

which remains negative as long as Ze < 2Q. That is, the charge of each
counterion could be close to 2Q , with the total charge of the system being
16 Hideki Yukawa (1907–1981), winner of the Nobel Prize in physics (1949) for the

theoretical prediction in 1934 of mesons – carriers of the nuclear force.
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close to 2Q + 2Q − Q = +3Q , and the system could still remain stable at
sufficiently low temperatures.

Counterintuitively, the amount of charge condensed on a macroion can
exceed, in some cases substantially, the charge of the macroion itself, leading
to a possible “inversion” of charge. This is one of the effects that are not
possible in the mean field theory – PBE framework.

However, there is now a consensus that at least for monovalent ions the
correlations are weak enough for the PB model to be valid. In the remainder
of this chapter, PBE is indeed assumed as the governing equation for the
electrostatic potential in the solvent.

6.6 Numerical Methods for 3D Electrostatic Fields of
Colloidal Particles

The typical sources of the electrostatic field in colloidal suspensions are sur-
face charges on the particles. The boundary condition on the surface of each
particle is

us = up; − εs
∂us

∂r
+ εp

∂up

∂r
= ρS at r = rp (6.50)

where the surface charge density ρS is assumed to be known, r is the radial
coordinate with respect to the center of the particle, and rp is the radius of
the particle.

Another boundary condition is u = 0 at infinity. In practice, this Dirichlet
condition is imposed on the domain boundary taken sufficiently far away from
the particles. Alternative boundary conditions (e.g. periodic or a superposition
of Yukawa potentials) are possible but are not considered here.

In principle, several routes are available for the numerical simulation.

• First, if particle sizes are neglected and the governing Poisson–Boltzmann
equation is linearized, the solution is simply the sum of the Yukawa po-
tentials of all particles (Section 6.4). If the characteristic length of the
exponential field decay (the Debye length) is small, the electrostatic inter-
actions are effectively short-range and therefore inexpensive to compute.
For weak ionic screening (long Debye lengths) Ewald-type methods can be
used (G. Salin & J.-M. Caillol [SC00]).

• The Fast Multipole Method (FMM) is applicable under the same assump-
tions as above: the Yukawa potential of particles of negligible size. The
FMM for this case is described in detail by L.F. Greengard & J. Huang
[GH02].

• The Finite Element Method (FEM, Chapter 3) and the Generalized Finite
Element Method (GFEM) (A. Plaks et al. [PTFY03], Section 4.5.2).

• A two-grid approach from computational fluid mechanics adapted to col-
loidal simulation (M. Fushiki [Fus92], J. Dobnikar et al. [DHM+04]): a
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spherical mesh around each particle and a common Cartesian background
grid.

• The Flexible Local Approximation MEthod (FLAME, Chapter 4, Sec-
tion 6.7; [Tsu05a, Tsu06]).

The focus of this section is on algorithms that would be applicable to finite-
size particles and extendable to nonlinear problems. Ewald-type methods and
FMM are not effective in such cases. FEM requires very complex meshing and
re-meshing even for a modest number of moving particles (say, on the order
of a hundred) and quickly becomes impractical when the number of particles
grows. In addition, re-meshing is known to introduce a spurious numerical
component in force calculation (see e.g. [Tsu95] and references therein).

GFEM relaxes the restrictions of geometric conformity in FEM by al-
lowing suitable non-polynomial approximating functions to be included in
the approximating set. This has been extensively discussed in the literature
(M. Griebel & M.A. Schweitzer [GS00, GS02a], T. Strouboulis et al. [SBC00],
I. Babuška & J.M. Melenk [BM97], I. Babuška et al. [BBO03], L. Proekt &
I. Tsukerman [PT02], A. Plaks et al. [PTFY03], A. Basermann & I. Tsuk-
erman [BT05]). Unfortunately, GFEM has a substantial overhead due to nu-
merical quadratures in geometrically complex domains (such as intersections
of spheres and hexahedra) as well as to a higher number of degrees of freedom
in generalized finite elements around the particles (A. Plaks et al. [PTFY03]).

This leaves two main contenders: the two-grid approach and FLAME. For
the former, the potential has to be interpolated back and forth between the
local mesh of each particle and the common Cartesian grid; the numerical
loss of accuracy in this process is unavoidable. FLAME has only one global
Cartesian grid but produces an accurate difference scheme by incorporating
local approximations of the potential near each particle into the scheme. The
Cartesian grid can remain relatively coarse – on the order of the particle
radius or even coarser. In contrast, classical FD schemes need the grid size
much smaller than the particle radius to avoid the spurious “staircase” effects.

6.7 3D FLAME Schemes for Particles in Solvent

In the presence of an electrolyte, a Trefftz–FLAME basis can also be generated
by matching spherical harmonic expansions inside and outside the particle.
This is done by analogy with Section 6.3. (See also Remark 19 on p. 305.)
The difference is that the FLAME basis in the electrolyte involves spherical
Bessel functions rather than the powers of r as in a simple dielectric. Namely,
expressions for the FLAME basis functions are

ψα(r, θ, φ) =
{

rnYnm(θ, φ), r ≤ rp

(fnmjn(iκr) + gnmnn(iκr))Ynm(θ, φ), r ≥ rp
(6.51)

where Ynm are the spherical harmonics and rp is the radius of the particle.
The spherical Bessel functions jn(iκr) and nn(iκr) in (6.51) are expressible in
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terms of hyperbolic sines/cosines and hence relatively easy to work with. As
in Section 6.3.1, index α is a single number corresponding to the index pair
(n,m).

The coefficients fnm, gnm can be determined from the boundary conditions
(6.50), by analogy with a similar calculation in Section 6.3.1. Expressions for
coefficients fnm, gnm are summarized in Table 6.4 [Tsu05a].

Table 6.4. Trefftz–FLAME basis functions for a spherical particle. (The Poisson–
Boltzmann equation.)

Basis Inside Outside the particle Harmonic
functions the particle

ψ1 1 w−1[w0 cosh(w − w0) + sinh(w − w0)]

ψ2 x x(rw2)−1[c1(w cosh w − sinh w)
−c2(w sinh w − cosh w)] dipole

ψ3 y y(rw2)−1[c1(w cosh w − sinh w)
−c2(w sinh w − cosh w)] dipole

ψ4 z z(rw2)−1[c1(w cosh w − sinh w) dipole
−c2(w sinh w − cosh w)] dipole

ψ5 z2 − x2 (z2 −x2)(r2w3)−1[−b1((3 + w2) sinh w−
3w cosh w)

+ b2((3 + w2) cosh w − 3w sinh w)] quadrupole

ψ6 z2 − y2 (z2 − y2)(r2w3)−1[−b1((3 + w2) sinh w−
3w cosh w)

+ b2((3 + w2) cosh w − 3w sinh w)] quadrupole

In the Table, w = κr, w0 = κrp. The coefficients b, c are as follows [Tsu05a]:
c1 = (εsw

2
0 cosh w0 + εp cosh w0 + 2εs cosh w0 − w0εp sinh w0 − 2w0εs sinh w0)/(εsκ);

c2 = (εp sinh w0 − εpw0 cosh w0 + εsw
2
0 sinh w0 + 2εs sinh w0 − 2εsw0 cosh w0)/(εsκ);

b1 = (6εpw0 sinh w0 − 4εsw
2
0 cosh w0 − 2εpw2

0 cosh w0 − 6εp cosh w0 − 9εs cosh w0 +
εsw

3
0 sinh w0 + 9εsw0 sinh w0)/(εsκ

2); b2 = (6εpw0 cosh w0 − 4εsw
2
0 sinh w0 −

2εpw2
0 sinh w0 − 6εp sinh w0 − 9εs sinh w0 + εsw

3
0 cosh w0 + 9εsw0 cosh w0)/(εsκ

2)

For the 7-point stencil, one gets a valid FLAME scheme by adopting six
basis functions: one “monopole” term (n = 0), three dipole terms (n = 1) and
any two quadrupole harmonics (n = 2). Away from the particles, the classical
7-point scheme for the Helmholtz equation is used, even though a Trefftz–
FLAME scheme can also be obtained using six local exponentially decaying
solutions of the linearized PBE as the FLAME basis.

As explained in Chapter 4 (see p. 203), for inhomogeneous equations of
the form

Lu = f in Ω(i) (6.52)
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the FLAME scheme is constructed by splitting the potential up into a par-
ticular solution u

(i)
f of the inhomogeneous equation and the remainder u

(i)
0

satisfying the homogeneous one:

u = u
(i)
0 + u

(i)
f ; Lu

(i)
0 = 0; Lu

(i)
f = f (6.53)

Superscript (i) indicates that the splitting is local, i.e. it needs to be introduced
only within its respective subdomain Ω(i) containing the grid stencil around
node i. The difference scheme for the inhomogeneous equation is (Chapter 4)

L
(i)
h uh = L

(i)
h N (i)uf (6.54)

where N (i) denotes the vector of nodal values of a continuous function on
stencil i. For the linearized PBE, uf can be taken as the Yukawa potential

uf =
{

q [4πεsrp(κrp + 1)]−1
r ≤ rp

q exp(−κ(r − rp)) [4πεsr(κrp + 1)]−1
r ≥ rp

(6.55)

Indeed, it is straightforward to verify that this potential satisfies the PBE in
the solvent, the Laplace equation (in a trivial way as a constant) inside the
particle, and the boundary conditions.

To summarize, the FLAME scheme in the vicinity of charged particles is
constructed as follows:

1. Compute the FLAME coefficients for the homogeneous equation. For each
grid stencil, this gives the nonzero entries of the corresponding row of the
global system matrix.

2. Apply the scheme to the Yukawa potential to get the entry in the right
hand side, as prescribed by (4.25) on p. 204.

Away from the particle (in practice, 2–3 grid layers from its surface), splitting
(6.53) does not have to be introduced. If it isn’t, it does not mean that the
source field of the particle is somehow ignored; this field is just not explicitly
built into the scheme. The following simple 1D example may help to clarify
the matter.

Example 17. Consider the following one-dimensional analog of the Poisson–
Boltzmann problem:

u′′(x) = 0, x ≤ a
u′′(x) − κ2u = 0, a ≤ x ≤ L

u′(a+) − u′(a−) = − ρ
u′(0) = 0; u(L) = 0

(6.56)

The computational domain is [0, L]; potential u is governed by the Laplace
equation inside the “particle” [0, a] and by the Helmholtz equation in the rest
of the domain. The derivative jump condition at x = a is analogous to the
boundary condition on the surface of a charged particle.
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Let the FLAME scheme be constructed on the standard three-point stencil
of a uniform grid with size h. The coefficient vector s ∈ R

3 of the scheme is
(see equation (4.38) in Section 4.4.1, p. 207)

s = (1, − 2 cosh κh, 1)T (6.57)

Hence the FLAME difference equation away from the “particle,” and with no
potential splitting, is

ui−1 − 2 cosh(κh)ui + ui+1 = 0 (6.58)

for three stencil points i− 1, i, and i + 1.
Let us now introduce, over stencil i, the splitting

u = u
(i)
0 + u

(i)
f (6.59)

where the inhomogeneous part

u
(i)
f = u1D

Yukawa ≡
{

ρκ−1, x ≤ a
ρκ−1 exp(−κ(x− a)), x ≥ a

(6.60)

The FLAME scheme with the potential splitting is

ui−1 − 2 cosh(κh)ui + ui+1 = uf (xi−1) − 2 cosh(κh)uf (xi) + uf (xi+1)
(6.61)

where superscript (i) has been dropped, as uf in this example is taken the
same for all stencils.

Now compare the schemes with and without the potential splitting. Scheme
(6.58) – without the splitting – is valid only for the homogeneous equation,
i.e. for stencils away from the “particle”. Scheme (6.61) is valid everywhere.

If the stencil is completely outside the particle, both schemes (6.58), (6.61)
are consistent and either one of them can be used – in fact, in this 1D example
these two schemes happen to be identical because the right hand side of (6.61)
is zero. This can be verified directly by substituting uf (6.60) into (6.61), but
the fundamental reason for the zero right hand side is that uf in this case lies
in the functional space spanned by the FLAME basis functions exp(±κx).

This accidental feature of the 1D example should be brushed aside, as
the goal is to illustrate the idea of potential splitting. In 3D problems, the
space of (local) solutions of the homogeneous equation is infinite-dimensional,
and therefore uf in source-free regions cannot be expected to lie in the finite-
dimensional FLAME space. The right hand side of the scheme analogous
to (6.61) is then in general nonzero, and the schemes with and without the
potential splitting are different. Both schemes are consistent in source-free
regions; the scheme with the potential splitting is consistent everywhere.
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6.8 The Numerical Treatment of Nonlinearity

In this section, the general Newton–Raphson–Kantorovich procedure for non-
linear FLAME schemes (see Section 4.3.4, p. 203) is specialized to the Poisson–
Boltzmann equation. It will still be convenient, up to a point, to use the generic
operator notation

Lu = f (6.62)

It is helpful to treat u and f as generalized functions (distributions, Appen-
dix 6.15) to account for surface charges; this eliminates the need to consider
surface boundary conditions as separate equations. The P–B operator, in its
hyperbolic sine version, is (see (6.38))

Lu = εs∇2u − 2
∑

β

nβqβ sinh
(

qβu

kBT

)
(6.63)

and the right hand side is
f = − ρSδS (6.64)

Here n is the exterior normal to the surface; δS is the Dirac-type surface
δ-function defined formally as the linear functional

〈δS , ψ〉 =
∫

S

ψ dS (6.65)

for any smooth “test” function ψ (see Appendix 6.15).
The scene is now set for the N–R–K iterations. Given approximation um

of the exact solution at iteration m, one constructs the subsequent approxi-
mation um+1 = um + δum using the linearization

L(um + δum) ≈ Lum + L′(um) δum (6.66)

where L′ is the Fréchet derivative (see Appendix 4.9). Equating the right hand
side of (6.66) to f , one finds the approximate increment δum by solving

L′(um) δum = Rm ≡ f − Lum (6.67)

Residual Rm characterizes the accuracy of the m-th approximation to the
solution.

In the colloidal problem, the equation within the particles is linear, which
simplifies the implementation of the N–R–K procedure. To elaborate, let us
write out a natural splitting of the P–B operator into its linear and nonlinear
parts:

Lu ≡ Llinu + Lnonlinu (6.68)

where
Llinu ≡ ∇ · εs∇u (6.69)
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Lnonlinu ≡ − 2
∑

β

nβqβ sinh
(

qβu

kBT

)
(6.70)

Importantly, the nonlinear part vanishes inside each particle:

Lnonlinu(r) = 0, r ∈ Ω(k)
p , for each particle k (6.71)

Inside the particles, where the operator is linear, the N–R–K residual gets
annihilated after the first iteration. Indeed, for m ≥ 0,

Rm+1 = f −Lum+1 = f −L(um+δum) = Rm −Lδum = 0 in Ω(k)
p (6.72)

This chain of equalities relies on the linearity of L inside the particles. In
particular, the very last equality is due to the definition (6.67) of δum and
due to the fact that the Fréchet derivative of a linear operator is that operator
itself, so L′ = L inside the particles.

The N–R–K residual is thus nonzero only strictly within the solvent, due
to the nonlinearity of the P–B operator there. Notably, the residual does not
contain the Dirac-delta term on the particle surface.17 This implies that the
increment δum satisfies the homogeneous condition on the surface; that is,
δum does not “see” the surface charge. The right hand side of (6.67) thus
contains only regular derivatives and no δ-functions:

Rm =
{
−{Lum}, in the solvent

0, inside the particles , m = 1, 2, . . . (6.73)

where the curly brackets stand for the classical (nondistributional) deriva-
tive.18

Thus each N–R–K iteration involves a linearized PBE with equivalent
“sources” Rm (6.73) in the solvent only.19 To apply FLAME to this equation,
one splits the unknown function δum up into a homogeneous part δu

(0)
m that

can be approximated by the FLAME basis functions and a particular solution
δu

(p)
m that satisfies the inhomogeneous equation:20

δum = δu(0)
m + δu(p)

m (6.74)

where
17 The very first N–R–K iteration may be an exception, if the initial approximation

u0 does not satisfy the boundary condition for the jump of the normal derivative
on the surface.

18 This notation is due to V.S. Vladimirov [Vla84]. See Appendix 6.15.
19 This linearization is purely local.
20 FLAME schemes are always constructed “patch-wise,” and the potential splitting

is considered within a single patch containing a given node stencil. This is implic-
itly understood but not explicitly indicated for brevity. The local nature of the
potential splitting also implies that this splitting is unaffected by the conditions
on the exterior boundary of the domain.
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L′(um) δu(0)
m = 0, L′(um) δu(p)

m = − {Lum} (6.75)

The particular solution can be defined by a Yukawa-like expression

δu(p)
m = q exp(−κ(r − rp)) [4πεsr(κrp + 1)]−1 (6.76)

In contrast with the usual Yukawa potential, parameter κ may now be differ-
ent for different “patches” (which, however, is not explicitly indicated in the
expression, to keep the notation simple).

Thus um is a combination of the Yukawa-like potential and FLAME basis
functions. Because of that, and due to the nonlinearity of operator L, the
actual expression for the residual {Lum} is complicated. Although the exact
analytical representation for δu

(p)
m can in principle be found with any degree

of accuracy by, say, local expansion into spherical harmonics, let us retain
only the zero-order term in {Lum} for practical simplicity:

L(um) = ∇ · εs∇um − 2
∑

β

nβqβ sinh
(

qβum

kBT

)
≈ Lm0 = const (6.77)

This zero-order (i.e. constant) approximation can be found by evaluating
L(um) at any given point in the solvent within the patch (e.g. at the cen-
tral node of the stencil if it happens to lie in the solvent).

The derivative L′ has the form (Appendix 4.9, p. 237)

L′(um) = ∇ · εs∇ − κ2 (6.78)

where

κ2 =
1

kBT

∑
β

nβq2
β cosh

(
qβum

kBT

)

Parameter κ depends on the potential and hence on coordinates. With the
approximation limited to zero order, κ ≈ κ0 = const within the given patch;
then the particular solution is also a constant and is equal to, due to the
continuity of the solution across the particle boundary,

δu(p)
m ≈ Lm0κ

−2
0 everywhere within a given patch (6.79)

With the particular solution so defined, construction of the FLAME scheme
at each N–R–K iteration follows the guidelines of Chapter 4, Section 4.3.4
(p. 203).

6.9 The DLVO Expression for Electrostatic Energy and
Forces

The classical Derjaguin–Landau–Verwey–Overbeek (DLVO) [DL41, VO48]
theory describes colloidal interactions and stability of colloidal systems. DLVO
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has been used widely and successfully for many years. This section outlines
the treatment of electrostatic interactions in the DLVO model. Short-range
attractive forces are briefly commented on in the following subsection. In Sec-
tion 6.9, the analytical formulas for the electrostatic potential and forces be-
tween colloidal particles (E.J.W. Verwey & J.Th.G. Overbeek [VO48], Chap-
ter X) are used for comparison and validation of the FLAME results. The
following physical assumptions are made in the DLVO analysis:

• The electrolyte is a simple dielectric with a given constant permittivity.
• The Boltzmann distribution applies to the microions in the electrostatic

field. Hence the potential is governed by the Poisson–Boltzmann equation.
Furthermore, the potential is sufficiently small so that the PBE can be
linearized.

• The potential is constant over the surface of each particle.

The linearity assumption is essential for any analytical study, because a closed-
form solution for the nonlinear PBE is only available for the simplest geome-
try: an infinite plane electrode (Section 6.4). A semi-analytical solution exists
for a charged rod (M. Deserno et al. [DHM00]). J.E. Sader [Sad97] derived an
approximate analytical solution for a charged sphere in an electrolyte.

While the assumption of constant surface potential simplifies the prob-
lem, the analytically more complicated case of constant surface charge can
also be handled: potential in the solvent is sought as a superposition of two
multipole expansions centered at the first and the second particle, respec-
tively. For the Laplace equation (i.e. no electrolyte) this procedure is relatively
straightforward. For the linearized Poisson–Boltzmann equation outside the
particles and the Laplace equation inside, the spherical harmonics are more
complicated (spherical Bessel functions of the radial coordinate within the
solvent), and the relevant translation formulas for the harmonic expansion
from one center to another are quite involved (M. Danos & L.C. Maximon
[DM65], L.F. Greengard & J. Huang21 [GH02], N. Gumerov & R. Duraiswami
[GD03]). An analytical solution without the full formalism of multipole trans-
lations, both for constant surface charge and constant surface potential, was
worked out by H. Ohshima [Ohs94a, Ohs94b, Ohs95].

Verwey & Overbeek [VO48] argue that in practice the difference between
the constant potential and constant surface charge cases is small. They derive
the (now classical) analytical result for energy and forces between two colloidal
particles under the assumption of constant surface potential. Then, since the
potential is governed by the Laplace equation inside the particles, it must
be constant within each particle. In the solvent, the potential is assumed
to satisfy the linearized Poisson–Boltzmann equation with known Dirichlet
boundary conditions on particle surfaces.

Let the z axis pass through the centers of the two particles. Since the
potential distribution is axially symmetric, each multipole (MP) expansion

21 I am grateful to Jingfang Huang for his very helpful comments.
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has the form

u
(α)
MP =

∞∑
n=0

c(α)
n Pn(cos θα) kn(κrα), α = 1, 2 (6.80)

where rα, θα are the spherical coordinates with respect to the center of particle
α (α = 1,2); c

(α)
n are some coefficients; Pn is the Legendre polynomial and

kn(z) =
(

2
πz

) 1
2

Kn+ 1
2
(z)

is the modified spherical Bessel function.22 The first three of these functions
(n = 0, 1, 2) are

k0(z) =
1
z

exp(−z)

k1(z) =
z + 1
z2

exp(−z)

k2(z) =
z2 + 3z + 3

z3
exp(−z)

The two-center multipole approximation of the (total) potential in the solvent
is simply

uMP = u
(1)
MP + u

(2)
MP (6.81)

If the two particles are identical, the coefficients c
(1)
n and c

(2)
n are equal for

all n and superscript (α) can therefore be dropped. These coefficients must
be such that the Dirichlet conditions on the particle boundaries are satisfied.
The Galerkin method can be applied to find the coefficients:∫

S

uMPPn(cos θα) dS = uS

∫
S

Pn(cos θα) dS, n = 0, 1, . . . (6.82)

where uS is the known potential on the surface S of either of the particles.
In the Galerkin method, by definition, the test functions are the same as
the basis functions – in this case, the Legendre polynomials. The multipole
potential uMP (6.81) includes contributions from both particles and contains
all unknown coefficients cn.23 Integration of spherical harmonics associated
with one of the particles over this particle’s surface is very simple. Integration
of harmonics associated with the other particle is more technical. Today such
computation is routine in Fast Multipole Methods (see e.g. H. Cheng et al.
[CGR99]); Verwey & Overbeek derived their result directly.
22 See G. Arfken [Arf85] or Eric W. Weisstein. “Modified Spherical Bessel Func-

tion of the Second Kind.” From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheSecond-
Kind.html

23 Verwey & Overbeek [VO48] denote these coefficients with λ.
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The system of Galerkin equations (6.82) is infinite, and a practical ap-
proximation is obtained in DLVO by truncating the expansion to three terms
(n = 0, 1, 2). Once the algebraic details are worked out, the DLVO expression
for the energy of electrostatic interaction of two colloidal particles is found to
be ([VO48], pp. 149–159)

W (r̃) ≈ ψ2
0 εsrp

exp(−κrp(r̃ − 2))
4πr̃

β, r̃ ≡ r

rp
(6.83)

Here, as before, rp is the radius of each particle, ψ0 is the surface potential of
each particle (with its variation over the surface neglected), κ is the Debye–
Hückel parameter (6.42), εs is the (absolute) dielectric permittivity of the
solvent, and β is a coefficient (not to be confused with 1/kBT ). The factor of
4π is present in (6.83) but not in [VO48] due to a difference in the system of
units.

Unfortunately, both ψ0 and β depend on the spherical-harmonic coeffi-
cients cn. These coefficients are obtained by solving the Galerkin system and
are not described by simple analytical formulas. Parameter β, tabulated in
[VO48], always lies in the range 0.6 ≤ β ≤ 1, being close to unity for large
separations between the particles and approaching 0.6 for small separations.
If, as a practical approximation, this factor is dropped, the interaction energy
is overestimated by a coefficient not much greater than one. If further sim-
plification is made by replacing ψ0 with the Yukawa potential on the surface
of a single particle (thereby neglecting the contribution of the other particle),
the energy is underestimated by a similar factor. Taken together, the two
simplifications produce a very useful and accurate expression for the energy
of electrostatic interaction:

W (r) ≈ exp(2κrp)
(1 + κrp)2

q2

4πεsr
exp(−κrp), q = eZ (6.84)

where q and Z are the charge of each particle in absolute units and in the units
of the elementary charge, respectively. The electrostatic force is obtained by
differentiating this expression with respect to r:

F (r) ≈ exp(2κrp)
1 + κrp

q2

4πεsr2
exp(−κrp) (6.85)

6.10 Notes on Other Types of Force

Although the focus of this chapter is on electrostatic interactions, other types
of force need to be mentioned for completeness. First, in particle dynamics
dissipative and stochastic forces of Brownian motion play a major role; see
H.C. Ottinger [Ott96], M. Fushiki [Fus92] and J. Dobnikar et al. [DHM+04].

Second, for small separations between the particles van der Waals forces
may become important. These are attractive forces caused by dipole (or, more
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generally, multipole) interactions between molecules. The dipole moments are
inherently nonzero in polar molecules; in nonpolar ones, there are fluctuat-
ing dipole moments due to, in the classical picture, the orbital motion of
electrons. The fluctuating moments of one molecule induce reaction moments
in the neighboring ones, the end result being attractive forces (called Lon-
don24 dispersion forces). At very small separation, the electron clouds of two
molecules overlap, which leads to a strong repulsion force that outweighs the
attractive effects. In practice, both attraction and repulsion are frequently
approximated by the Lennard–Jones potential

VLJ(r) = C

[(σ

r

)12

−
(σ

r

)6
]

σ being a parameter. Theory of molecular forces is presented in a very lucid
way by J. Israelachvili [Isr92]. Dispersion forces are studied very thoroughly
by J. Mahanty & B.W. Ninham [MN76].25 V.A. Parsegian has written a com-
prehensive monograph on van der Waals forces [Par06].

From the computational perspective, van der Waals forces between parti-
cles are inexpensive to evaluate if some analytical approximation (such as e.g.
the Lennard–Jones potential) is adopted. The reason for this computational
efficiency is that these forces are short-range and effectively involve no more
than just a few neighbors of each particle.

Although simplified analytical approximations are adequate for many prac-
tical purposes, a more precise and rigorous computation of van der Waals
forces between particles of different shapes and with different material para-
meters is a very interesting and challenging computational problem in its own
right. The fundamental theory of finding dispersion forces from first prin-
ciples of classical electrodynamics (with elements of a quantum-mechanical
treatment) was laid out in the early 1950s by S.M. Rytov26 [Ryt53]. In his
seminal paper of 1955, E.M. Lifshitz27 successfully carried out the Rytov the-
ory calculation for the force between two semi-infinite slabs [Lif56]. Later,
M.L. Levin & S.M. Rytov, in their book [LR67] that received less attention
than I believe it deserves (there is apparently no English translation), stream-
lined the Rytov–Lifshitz calculation by taking advantage of the reciprocity
principle. A brief account of these developments follows.

In the Rytov theory, phenomenological stochastic terms are introduced in
the right hand side of Maxwell’s equations, to reflect the fluctuating currents
24 Fritz Wolfgang London (1900–1954), a German–American physicist.
25 For the related subject of Casimir forces, see the review papers by M. Bordag

et al. [BMM01], S.K. Lamoreaux [Lam99], and the monograph by P.W. Milonni
[Mil94].

26 Sergei Mikhailovich Rytov (1908–1997) – an outstanding physicist and radio-
physicist.

27 Evgenii Mikhailovich Lifshitz (1915–1985) – one of the most versatile physicists of
all time and a co-author (with Lev Landau) of the famous comprehensive Course
of Theoretical Physics.
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in the media. As an exception to the use of the SI system of units throughout
this book, the Rytov formulas are written here in the Gaussian system for
consistency with the original work of Rytov, Lifshitz and others.

The Maxwell equations with stochastic sources are considered in the fre-
quency domain. (The use of Fourier transforms for random processes is non-
trivial and is justified heuristically by S.M. Rytov [Ryt53] and in a mathe-
matically rigorous way by A.M. Iaglom [Iag62].)

∇×E = − i
ω

c
H (6.86)

∇×H = i
ω

c
(εE + (ε− 1)K) (6.87)

The stochastic current K is characterized by the correlation function that,
according to Rytov’s analysis, can be written as28

Kαβ(r′, r′′) ≡ 〈Kα(r′)K∗
β(r′′)〉 = C δαβ δ(r′ − r′′), α, β = x, y, z (6.88)

where r′, r′′ are two points in space, the angle brackets denote the ensemble
average, δαβ is the Kronecker delta, and C is a constant equal to

C =
4�

Im ε

(
1
2

+
1

exp �ω
T − 1

)
(6.89)

(� is the modified Planck constant and T is the temperature). The Kronecker
delta indicates that different Cartesian components of the stochastic sources
are uncorrelated. The “1/2” term in the big brackets corresponds to zero-point
energy, i.e. the lowest energy level of the sources allowed by the uncertainty
principle of quantum mechanics.

For two bodies in proximity to one another, the electromagnetic field pro-
duced by the fluctuating sources K in one of them leads to a force exerted on
the other body. The van der Waals force in the Rytov–Lifshitz theory is noth-
ing other than the statistical average of this electromagnetic force; it can be
computed using the Maxwell Stress Tensor (MST, also statistically averaged).

The MST contains products of electric and magnetic field components;
their correlation functions are

〈Eα(r1)Eβ(r2)〉 =
〈(∫

Kγ(r′) gγα(r′, r1) dr′
)(∫

Kγ(r”) gγβ(r”, r2) dr”
)〉

(6.90)
where gγα are components of the dyadic Green’s function ←→g . Integration is
carried out over the stochastic sources in the first body. Expressions for the
magnetic field are completely similar.

28 Lifshitz uses a slightly different definition of K and, accordingly, a somewhat
different correlation function.
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Converting the product of integrals into a double integral, noting that the
only quantities subject to statistical averaging are the stochastic sources K,
and applying the correlation function (6.88), one obtains

〈Eα(r1)Eβ(r2)〉 = C

3∑
γ=1

∫
body #1

Kγ(r′) gγα(r′, r1) gγβ(r′, r2) dr′ (6.91)

The quantity 〈Eα(r)Eβ(r)〉 that enters the MST (and similar averages for the
magnetic field) can be obtained from the above expression simply by setting
r1 = r2 = r. A straightforward numerical implementation of this approach
would involve setting up a set of integration knots in body #1 and performing
the respective set of field computations with point sources at each of the knots
to find Green’s functions.

The procedure can be made much more efficient by taking advantage of the
reciprocity – Hermitian symmetry of Green’s dyadic. Its entries in (6.91) can
be found by placing an elementary source at point r and a receiver at point r′;
alternatively, the source and the receiver can be swapped. Although the results
are equivalent theoretically, there is a great difference computationally.29 The
reason is that “sources” and “receivers” do not appear on an equal footing in
computation: finding the field for one source yields its values everywhere, i.e.
for all possible “receivers”.

Instead of computing the field at some point r due to distributed sources,
it is easier to compute the field distribution due to a single point-like source
at r. For any given point r, this replaces a large set of field computations for
sources at variable locations r′ with just one field computation for the source
at r.

If the MST is used, then the above procedure can be embedded into surface
integration over points r on a surface enclosing body #2. An outline of the
numerical algorithm for computing dispersion forces is hence as follows:

1. For two given bodies, choose an MST integration surface enclosing body
#2 and a set of knots for a numerical quadrature over this surface.

2. Compute Green’s functions for electric and magnetic fields at each inte-
gration knot on the surface. (This requires solution of six separate field
problems for oscillating electric/magnetic dipole sources in three different
directions.)

3. Compute the correlation 〈Eα(r)Eβ(r)〉 by integrating the product of two
fields over body #1. Compute a similar correlation for the magnetic field.

4. Carry out numerical integration over the MST surface to obtain the con-
tribution to the dispersion force at frequency ω.

5. Carry out numerical integration over all frequencies to find the total dis-
persion force acting on body #2.

29 Computation here is understood in a broad sense and includes both analytical and
numerical methods. (Levin & Rytov had only analytical computation in mind.)
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To my knowledge, this proposal has not yet been implemented numerically,
and clearly there are very serious computational challenges. The procedure
relies on extremely accurate computation of the electromagnetic field due to
elementary dipole sources on the MST surface, so that the integration of the
MST can also be done accurately. Further, precise numerical integration with
respect to frequency, especially in the vicinity of absorption lines of the media,
is required, and the (phenomenological) complex dielectric permittivity has
to be accurately represented over a wide frequency range. If these obstacles
are overcome, the “numerical Rytov–Lifshitz” algorithm could lead to inter-
esting results for forces between particles and molecular structures of different
materials and shapes.

6.11 Thermodynamic Potential, Free Energy and Forces

Very helpful comments and discussion with Alain Bossavit and Markus De-
serno on the material of this section are gratefully acknowledged.

Once the electrostatic potential has been found, derivative quantities, most
notably forces on colloidal particles, need to be determined. This matter is
taken up in the present section.

To the electrostatic equation

−∇ · ε∇u = ρ in Ω (6.92)

there corresponds the Lagrangian

L{u} = ρu− 1
2

(ε∇u) · ∇u (6.93)

such that the action

G(u, ρ) =
∫

Ω

L{u} dΩ ≡
∫

Ω

[
ρu− 1

2
(ε∇u) · ∇u

]
dΩ (6.94)

has a stationary point at the solution u∗ of the electrostatic equation (6.92).
This can be verified by computing the variation of G with respect to potential
u. Indeed, G(u + δu, ρ), where u is not required to be the solution of the
electrostatic equation, is

G(u + δu, ρ) = G(u) +
∫

Ω

[
ρδu− (ε∇u) · ∇δu +

1
2
(ε∇δu) · ∇δu

]
dΩ

Integrating the second term by parts and noting that the component linear in
δu must vanish at the stationary point, one indeed obtains the electrostatic
equation.

The stationary point of the action is in fact a maximum, which can be
rigorously shown by computing the second variation of G but is also suggested
by the fact that the stationary point is unique and G(u∗, ρ) > G(0, ρ) = 0
(see equation (6.95) below).
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Remark 20. G can be viewed as a mathematical function of different sets of
independent variables. In (6.94), the variables are u and ρ; however, when
u = u∗ ≡ u∗(ρ), G(ρ) ≡ G(u∗(ρ), ρ) can be considered as a function of ρ only.
Furthermore, in the computation of forces via virtual work, we shall need to
introduce the displacement of the body on which the electrostatic force is
acting; then, clearly, G also depends on that displacement. Mathematically,
these cases correspond to different functions, defined in different mathematical
domains. Nevertheless for simplicity, but with some abuse of notation, the
same symbol G will be used for all such functions, the distinguishing feature
being the set of arguments.30

It is well known that for u = u∗ the expression for G(u, ρ) simplifies because∫
Ω

ρu∗ dΩ =
∫

Ω

(ε∇u∗) · ∇u∗ dΩ

(To prove this, integrate the right hand side by parts and take into account
the electrostatic equation for u∗ and the boundary conditions.)

Hence, for u = u∗, action is in fact equal to the energy of the electrostatic
field:

G(ρ) ≡ G(u∗(ρ), ρ) =
1
2

∫
Ω

(ε∇u∗) · ∇u∗ dΩ (6.95)

Remark 21. It is for this reason that G is often considered in the physical liter-
ature to be the free energy functional for the field; see K.A. Sharp & B. Honig
[SH90], E.S. Reiner & C.J. Radke [RR90], M.K. Gilson et al. [GDLM93]. (In
these papers, an additional term corresponding to microions in the electrolyte
is included, as explained below.) However, the unqualified identification of
G with energy is misleading, for the following reasons. First, G is mathe-
matically defined for arbitrary u but its physical meaning for potentials not
satisfying the electrostatic equation is unclear. (What is the physical meaning
of a quantity that cannot physically exist?) Second, as already noted, G is
maximized, not minimized, by u = u∗, which is rather strange if G is free
energy.31 F. Fogolari & J.M. Briggs [FB97] make very similar observations.

“Action” is a term from theoretical mechanics; in thermodynamics, G is
commonly referred to as thermodynamic potential. An accurate physical inter-
pretation and treatment of potential G is essential for computing electrostatic
forces via virtual work, as forces are directly related to free energy rather than
to the more abstract Lagrangian. More precisely, if a (possibly charged) body,

30 In modern programming languages, such overloading of “functions” or “methods”
is the norm.

31 One could reverse the sign of F , in which case the stationary point would be
a minimum; however, this functional would no longer have the meaning of field
energy, as its value at the exact solution u would be negative. See the same
comment in footnote 10 on p. 83.
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such as a colloidal particle, is subject to a (“virtual”) displacement dξ, the
electrostatic force F acting on the body satisfies

F · dξ = − dG∗(ξ) ≡ − dG(ξ, u∗(ρ(ξ)), ρ(ξ)) (6.96)

where G∗, the thermodynamic potential evaluated at u = u∗, is the energy of
the field according to (6.95). The definition of G is overloaded (see Remark 20):
it now includes an additional parameter ξ, the displacement of the body.32

Importantly, the notation for G in (6.96) makes it explicit that solution u∗ is
a function of charge density ρ, which in turn depends on the position of the
body. Then

dG(ξ, u∗(ρ(ξ)), ρ(ξ)) =
(

∂G

∂ξ
+

∂G(u∗)
∂u

∂u∗

∂ρ

∂ρ

∂ξ
+

∂G

∂ρ

∂ρ

∂ξ

)
· dξ

where
∂u

∂ξ
≡

(
∂u

∂ξx
,

∂u

∂ξy
,

∂u

∂ξz

)

Since u∗ is a stationary point of the thermodynamic potential, ∂G(u∗)/∂u = 0,
the second term in the right hand side vanishes and the differential becomes

dG(ξ, u∗(ρ(ξ)), ρ(ξ)) =
(

∂G

∂ξ
+

∂G

∂ρ

∂ρ

∂ξ

)
· dξ (6.97)

Let us now consider an alternative interpretation of G, where u is not, from
the outset, constrained to be u∗. In this case,

dG(ξ, u, ρ(ξ)) =
(

∂G

∂ξ
+

∂G

∂ρ

∂ρ

∂ξ

)
· dξ (6.98)

In this interpretation, u is an independent variable in function G, and hence
its partial derivative with respect to the displacement does not appear. Eval-
uation of this version of dG at u = u∗ thus yields the same result as in the
previous case (6.97), where u was constrained to be u∗ from the beginning.

In summary, one can compute the electrostatic energy first, by fixing u =
u∗ in the thermodynamic potential or by any other standard means, and then
apply the virtual work principle for forces. Alternatively, it is possible to apply
virtual work directly to the thermodynamic potential (even though it is not
energy for an arbitrary u) and then set u = u∗; the end result is the same.

Potential GPB(u, ρ) for the PBE includes, in addition to (6.94), an en-
tropic term related to the distribution of microions in the solvent. Theoret-
ical analysis and derivation of GPB goes back to the classical DLVO theory

32 For a deformable structure, there exists a deeper and more general mathematical
description of motion as a diffeomorphism ξt : Ω → Ω, parameterized by time t;
see e.g. A. Bossavit [Bos92]. For the purposes of this section, a simpler definition
will suffice.
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and the subsequent work of G.M. Bell & S. Levine [BL58] (1958). A sys-
tematic analysis is given by M. Deserno & C. Holm [DH01] and M. Deserno
& H.-H. von Grünberg [DvG02] (2001–2002). In the context of macromole-
cular simulation, thermodynamic functionals, free energy, electrostatic and
osmotic forces were studied by K.A. Sharp & B. Honig [SH90] (1990) and by
M.K. Gilson et al. [GDLM93] (1993). These developments are considered in
more detail below. A much more advanced treatment that goes beyond mean
field theory, and beyond the scope of this book, is due to R.D. Coalson &
A. Duncan [CD92], R.R. Netz & H. Orland [NO99, NO00], Y. Levin [Lev02b],
A. Yu. Grosberg et al. [GNS02], T.T. Nguyen et al. [NGS00].

There are several equivalent representations of the thermodynamic poten-
tial. The following expression for the canonical ensemble (fixed total number
of ions N , volume V and temperature T ) is essentially the same as given by
Deserno & von Grünberg [DvG02] and by Dobnikar et al. [DHM+04]:

GPB(u, ρ) =
∫

R3

(
1
2
ρu + kBT

∑
α

nα log
(
nαλ3

T

))
dV (6.99)

where nα is the (position-dependent) volume concentration of species α of
the microions and ρ is the total charge density equal to the sum of charge
densities ρf of macroions (“fixed” ions) and ρm of microions (mobile ions).
The normalization factor λT – the thermal de Broglie wavelength – renders the
argument of the logarithmic function dimensionless and makes the classical
and quantum mechanical expressions compatible:

λT =
√

2π

mkBT
�

For the canonical ensemble, this factor adds a non-essential constant to the
entropy.

If u = u∗ is the solution of the Poisson equation33 with charge density
ρ, then GPB(u∗, ρ) is equal to the Helmholtz free energy of the system. In-
deed, the right hand side of (6.99) has in this case a natural interpretation
as electrostatic energy minus temperature times the entropy of the microions.
Details are given in Appendix 6.14.

Solution uPB of the Poisson–Boltzmann equation is in fact a stationary
point of GPB, under two constraints: (i) u is the electrostatic potential cor-
responding to ρ (that is, u satisfies the Poisson equation with ρ as a source),
and (ii) electroneutrality of the solvent. This is verified in Appendix 6.14 by
computing the variation of GPB with respect to u.

The osmotic pressure force is given by the following expression [GDLM93,
DHM+04] (Appendix 6.14)

33 Equivalent to the solution of the Poisson–Boltzmann equation if, and only if, ρm

obeys the Boltzmann distribution.
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Fosm = − kBT

∮
S

∑
α

nα dS (6.100)

This is not surprising: since correlations are ignored, the microions behave as
an ideal gas with pressure nαkBT for each species. Naturally, gas pressure de-
pends on the density, and a nonuniform distribution of the microions around
a colloidal particle in general produces a net force on it. In the numerical im-
plementation, surface integral (6.100) is a simple amendment to the Maxwell
Stress Tensor integral over a surface enclosing the particle under consideration
(M. Fushiki [Fus92], J. Dobnikar [DHM+04]).

6.12 Comparison of FLAME and DLVO Results

In this numerical example of two charged colloidal particles in a solvent, the
following parameters are used: particle radius normalized to unity; the sol-
vent and solute dielectric constants are 80 and 2, respectively; the size of the
computational domain is 10× 10× 10; charges of the two particles are equal
and normalized to unity. The linearized PBE, with the Debye length of 0.5,
is applied in the solvent.

For comparison and verification, the problem is solved both with FEM
and FLAME. In addition, an approximate analytical solution is available as
a superposition of two Yukawa potentials.34

Finite Element simulations were run using FEMLABTM (COMSOL Multi-
physics), a commercial finite element package.35 Two FE meshes with second-
order tetrahedra are generated: a coarser one with 4,993 nodes, 25,195 el-
ements, 36,696 degrees of freedom, and a finer one (Fig. 6.19) with 18,996
nodes, 97,333 elements, 138,053 degrees of freedom.

Two FLAME grids are used: 32× 32× 32 and 64× 64× 64. The FLAME
scheme is applied on 7-point stencils in the vicinity of each particle – more
precisely, if the midpoint of the stencil is within the distance rp + h from the
center of the particle with radius rp (as usual, h is the mesh size). Otherwise
the standard 7-point scheme is used.

Fig. 6.20 shows the potential distribution along the line connecting the
centers of the two particles. The FEM and FLAME results, as well as the
approximate analytical solution, are all in good agreement.

As in the 2D case of Section 6.2.1, electrostatic forces can be computed
via the Maxwell Stress Tensor (MST). The 3D analysis in this section also
includes osmotic pressure forces due to the “gas” of microions.

The electrostatic energy for linear dielectric materials is (J.D. Jackson
[Jac99], W.K.H. Panofsky & M. Phillips [PP62])

34 The Yukawa potential is the exact solution for a single particle in a homogeneous
solvent, not perturbed by the presence of any other particles.

35 http://www.comsol.com
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Fig. 6.19. A sample FE mesh for two particles.

Fig. 6.20. Electrostatic potential along the line going through the centers of two
particles. FLAME and FEM results are almost indistinguishable.
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W el =
1
2

∫
R3

E ·D dV (6.101)

where, as usual, E and D are the electric field and displacement vectors,
respectively. Noting that E = −∇u, ∇ ·D = ρ (where ρ is the total electric
charge density, including that of colloids and microions), and integrating by
parts, one obtains another well known expression for the total energy:

W el =
1
2

∫
R3

ρu dV (6.102)

The electrostatic part
←→
T el of the MST is defined as (see (6.12) on p. 289;

J.D. Jackson [Jac99], J.A. Stratton [Str41] or W. K.H. Panofsky & M. Phillips
[PP62])

←→
T el = ε

⎛
⎝E2

x − 1
2E2 ExEy ExEz

EyEx E2
y − 1

2E2 EyEz

EzEx EzEy E2
z − 1

2E2

⎞
⎠ (6.103)

where ε is the dielectric constant of the medium in which the particles are
immersed, E is the amplitude of the electric field and Ex,y,z are its Cartesian
components.

The electrostatic force acting on a particle is

Fel =
∮

S

←→
T el · dS = ε

∮
S

[
(E · n̂)E − 1

2
E2n̂

]
dS (6.104)

where S is any surface enclosing one, and only one, particle. Theoretically, the
value of the force does not depend on the choice of the integration surface,
but for the numerical results this is not exactly true.

In the FLAME experiments, the integration surface is usually chosen as
spherical and is slightly larger than the particle. Adaptive numerical quadra-
tures in the ϕ–θ plane are used for the integration. Obviously, the integration
knots in general differ from the nodes of the FLAME grid, and therefore in-
terpolation is needed. This involves a linear combination of the FLAME basis
functions (six functions in the case of a 7-point scheme), plus the particular so-
lution of the inhomogeneous equation in the vicinity of a charged particle. The
interpolation procedure is completely analogous to the 2D one (Section 6.2.1).

It is interesting to compare FLAME results for the electrostatic force
between two particles with the DLVO values from (6.85) on p. 324.36 For
this comparison, the main quantities are rendered dimensionless by scaling:
r̃ = r/rp, F̃ = rpF/kT . FLAME is applied to the linearized PBE, with peri-
odic boundary conditions. Typical surface plots of the potential distribution
are shown in Fig. 6.21 and Fig. 6.22 for illustration.

FLAME vs. DLVO forces are plotted in Fig. 6.23 and Fig. 6.24. The first
of these figures corresponds to the Debye length equal to the diameter of the

36 FLAME simulations were performed by E. Ivanova and S. Voskoboynikov.
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Fig. 6.21. An example of potential distribution (in arbitrary units) near two col-
loidal particles. The potential is plotted in the symmetry plane between the particles.
(Simulation by E. Ivanova and S. Voskoboynikov.)

Fig. 6.22. An example of potential distribution (in arbitrary units) around eight
colloidal particles. In the plane of the plot, only four of the particles produce a visible
effect. (Simulation by E. Ivanova and S. Voskoboynikov.)
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particle (or κrp = 0.5). In the second figure, the Debye length is five times
greater (κrp = 0.1), so that the electrostatic interactions decay more slowly.
Other parameters are listed in the figure captions.

Both the DLVO and FLAME results are approximations, and some dis-
crepancy between them is to be expected. For small separations, the difference
between the results can be attributed primarily to the approximations taken
in the DLVO formula (6.85) for the ψ0 and β parameters (p. 324). For inter-
mediate distances between the particles, the agreement between DLVO and
FLAME is excellent. For large separations comparable with the size of the
computational box, FLAME suffers from the artifacts of periodic boundary
conditions: the field and forces are affected by the periodic images of the par-
ticles.37 For example, when the distance between a pair of particles A and
B is half the size of the computational cell, the forces on A due to B and
due to the periodic image of B on the opposite side of A cancel out. (More
remote images have a similar but weaker effect, due to the Debye screening.)
Obviously, this undesirable effect can be reduced by increasing the size of the
box or by imposing approximate boundary conditions as a superposition of
the Yukawa potentials.

Fig. 6.23. Comparison of FLAME and DLVO forces between two particles. Para-

meters: Z = 4, e2

εskBT
/rp = 0.012, εp = 1, εs = 80, κrp = 0.5, domain size 20.

(Simulations by E. Ivanova and S. Voskoboynikov.)

37 As we know from Chapter 5, a similar “periodic imaging” phenomenon is central
in Ewald methods.



6.13 Summary and Further Reading 337

Fig. 6.24. Comparison of FLAME and DLVO forces between two particles. Para-
meters: same as in Fig. 6.23, except for κrp = 0.1. (Simulations by E. Ivanova and
S. Voskoboynikov.)

6.13 Summary and Further Reading

Heterogeneous electrostatic models on the micro- and nanoscale, particularly
in the presence of electrolytes, are of critical importance in a broad range of
physical and biophysical applications: colloidal suspensions, polyelectrolytes,
polymer- and biomolecules, etc. Due to the enormous complexity of these
problems, any substantial improvement in the computational methodology is
welcome.

Ewald methods that are commonly used in current computational prac-
tice (Chapter 5) work very well for homogeneous media. While in colloidal
simulation the dielectric contrast between the solvent and solute can be ne-
glected with an acceptable degree of accuracy, in macromolecular simulation
this contrast cannot be ignored. From this perspective, the Flexible Local Ap-
proximation MEthods (FLAME) appear to be a step in the right direction. In
FLAME, the numerical accuracy is improved – in many cases significantly – by
incorporating accurate local approximations of the solution into the difference
scheme.

The literature on colloidal, polyelectrolyte and molecular systems is vast.
The following brief, and certainly incomplete, list includes only publica-
tions that are closely related to the material of this chapter: H.C. Ottinger
[Ott96], M.O. Robbins et al. [RKG88], M. Fushiki [Fus92], J. Dobnikar et
al. [DHM+04], M. Deserno et al. [DHM00, DH01], B. Honig & A. Nicholls
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[HN95], W. Rocchia et al. [RAH01], N.A. Baker et al. [BSS+01], T. Simonson
[Sim03], D.A. Case et al. [CCD+05].

6.14 Appendix: Thermodynamic Potential for
Electrostatics in Solvents

In this Appendix, thermodynamic potential (6.99) (p. 331, repeated here for
convenience)

GPB(u, ρ) =
∫

R3

(
1
2

ρu + kBT
∑
α

nα(log(nαλ3
T )− 1)

)
dV (6.105)

is considered in more detail. The total charge density ρ = ρf + ρm is the sum
of charge densities of macro- and microions, and λT is the thermal de Broglie
wavelength

λT =
h√

2πmkBT
(6.106)

Although the integral in (6.105) is formally written over the whole space, in
reality the integration can of course be limited just to the finite volume of the
solvent. Alternative forms of the thermodynamic functional (M. Deserno &
C. Holm [DH01], M. Deserno & H.-H. von Grünberg [DvG02], K.A. Sharp &
B. Honig [SH90], M.K. Gilson et al. [GDLM93], J. Dobnikar et al. [DHM+04])
are considered later in this Appendix.

If u = u∗ is the solution of the Poisson equation with the total charge
density ρ as the source, then the first term

∫
R3

1
2 ρu∗ dV is, as is well known

from electromagnetic theory, equal to the energy of the electrostatic field. Free
energy – the amount of energy available for reversible work – is different from
the electrostatic energy due to heat transfer between the microions and the
“heat bath” of the solvent. The Helmholtz free energy is

F = 〈E〉 − TS

where the angle brackets indicate statistical averaging. This coincides with
expression (6.105) for GPB(u∗, ρ) because the entropy of the “gas” of microions
is

S = kB

∫
R3

∑
α

nα(log(nαλ3
T )− 1) dV

Let us now show that the solution uPB of the Poisson–Boltzmann equation
is a stationary point of the thermodynamic potential GPB(u∗, ρ), subject to
two constraints. The first one is electroneutrality:

∫
R3

(∑
α

qαnα − ρf

)
dV = 0 (6.107)



6.14 Appendix: Thermodynamic Potential for Electrostatics in Solvents 339

The second constraint (or more precisely, a set of constraints – one for each
species of the microions) in the canonical ensemble is a fixed total number Nα

of ions of species α: ∫
R3

nα dV = Nα (6.108)

To handle the constraints, terms with a set of Lagrange multipliers λ and λα

are included in the functional:

GPB(u∗, ρ, λ, λα) =
∫

R3

(
1
2

ρu∗ − λ

(∑
α

qα nα − ρf

)

+ kBT
∑
α

nα(log(nαλ3
T )− 1)

)
dV −

∑
α

λα

(∫
R3

nα dV − Nα

)
(6.109)

Note that the functional is evaluated at u = u∗, the solution of the Poisson
equation; clearly, u∗ is the only electrostatic potential that can physically exist
for a given charge density ρ.

The stationary point of this functional is found by computing the variation
δGPB. The integration-by-parts identity∫

R3
δρ u∗ dV =

∫
R3

ρ δu∗ dV

helps to simplify the electrostatic part of δGPB:

δGPB(u∗, ρ, λ, λα) =
∫

R3

[∑
α

u∗qα δnα − λ
∑
α

qα δnα −
∑
α

λαδnα

+ kBT
∑
α

log(nαλ3
T ) δnα

]
dV

(The obvious relationship ρα = qαnα between charge density and concentra-
tion has been taken into account.) Since the variations δnα are arbitrary, the
following conditions emerge:

u∗qα + kBT (log(nαλ3
T ) + 1) − λqα − λα = 0

This immediately yields the Boltzmann distribution for the ion density:

nα = nα0 exp
(
−qαu∗

kBT

)
(6.110)

Thus the Poisson–Boltzmann distribution of the microions is indeed the sta-
tionary point of the thermodynamic potential, under the constraints of elec-
troneutrality and a fixed number of ions.

It was already argued, on physical grounds, that the thermodynamic func-
tional (6.105), evaluated at u = uPB – the solution of the Poisson–Boltzmann
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equation – yields the free energy of the colloidal system. Since this result
is fundamental and has important implications (in particular, for the com-
putation of forces as derivatives of free energy with respect to [virtual] dis-
placement), it is desirable to derive it in a systematic and rigorous way. The
classical work on this subject goes back to the 1940s and 1950s (E.J.W. Ver-
wey & J. Th. G. Overbeek [VO48], G.M. Bell & S. Levine [BL58]). Here I
review more recent contributions that are most relevant to the material of the
present chapter: K.A. Sharp & B. Honig [SH90], E.S. Reiner & C.J. Radke
[RR90], M.K. Gilson et al. [GDLM93], and M. Deserno & C. Holm [DH01].

Sharp & B. Honig [SH90] note that a thermodynamic potential similar to
GPB above is minimized by the solution of the Poisson–Boltzmann equation.
Therefore, they argue, this potential represents the free energy of the system.
While the conclusion itself is correct, the argument leading to it lacks rigor.
First, it is not difficult to verify that the functional is actually maximized, not
minimized, by the PB solution. More importantly, there are infinitely many
different functionals that are stationary at uPB. This was already noted in
Remark 21 on p. 329.

Reiner & Radke [RR90] address this latter point by postulating that free
energy must be a function F of the action functional and that F must have
additive properties with respect to the volume and surfaces of the system.
They then proceed to show that F may alter GPB only by an unimportant
additive term and a scaling factor – in other words, GPB is essentially a unique
representation of free energy. However, the initial postulate is not justified:
the fact that two functionals share the same stationary point does not imply
that one of them can be expressed as a function of the other. For example, all
functionals of the form

Um =
∫

R3
|u|m dV, m = 1, 2, . . .

have the same obvious minimization point u = 0. Yet it is impossible to
express, say, U100 as a function of just U1 – much more information about the
underlying function u is needed.38

Deserno & Holm’s derivation [DH01] is based on the principles of statistical
mechanics and combines rigor with relative simplicity. Their analysis starts
with the system Hamiltonian for N microions (only one species for brevity)
treated as point charges:

H(r,p) =
N∑

i=1

p2
i

2m
+

∑
1≤i<j≤N

q2

4πε |ri − rj |
+

∫
R3

N∑
i=1

qρf (r)
4πε |ri − r| dV

(6.111)

38 In case the reader is unconvinced, here is a simple 1D illustration. Let a family
of rectangular pulses uε be defined as equal to ε−1 on [0, ε] (ε > 0) and zero
otherwise. These pulses have the same U1 but very different U100. It is therefore
impossible to determine U100 based on U1 alone.
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where q and m are the charge and mass of each microion; ri and pi are the
position and momentum vectors of the i-th microion. Mutual interactions of
fixed charges are not included in the Hamiltonian, as that would only add an
inessential constant.

The Hamiltonian can be rewritten using potentials um and uf of the mi-
croions and fixed ions, respectively:

H(r,p) =
N∑

i=1

p2
i

2m
+ q

N∑
i=1

(
1
2

um(ri; r) + uf (ri)
)

(6.112)

Remark 22. In this last form, the Hamiltonian includes self-energies of the
microions, and so the expression should strictly speaking be adjusted (as done
in Chapter 5) to eliminate the singularities. However, anticipating that the
micro-charges will eventually be smeared and treated as a continuum, we turn
a blind eye to this complication and opt for simpler notation.

Remark 23. The microion potential um(ri; r), is “measured” at point ri but
depends on the 3N -vector r of coordinates of all charges. This coupling of all
coordinates makes precise statistical analysis extremely difficult. In the mean
field approximation, the situation is simplified dramatically by averaging out
the contribution to um(ri) of all charges other than i.

As is well known from thermodynamics, the partition function Z is ob-
tained, in the classical limit, by integrating the exponentiated Hamiltonian:39

Z =
1

N !h3N

∫
exp(−βH) dr dp, β ≡ 1

kBT
(6.113)

where the integral is over the whole 6N -dimensional phase space. Z serves as
a normalization factor for the probability density of finding the system near
a given energy value H:

f(r1, . . . , rN ,p1, . . . ,pN ) = Z−1 exp(−βH) (6.114)

The Helmholtz free energy is, as is also well known,

F = − kBT log Z (6.115)

The momentum part of Z gets integrated out of (6.113) quite easily and yields

Fp = kBT log(N !λ3N
T ) ≈ N

[
log(Nλ3

T ) − 1)
]

(6.116)

where the Stirling formula for the factorial has been used.
39 Partition function is arguably a misnomer: it is in fact the result of integration

or summation, which is the opposite of partitioning. “Sum over states” (a direct
translation from the original German Zustandssumme) is a more appropriate but
less frequently used term.
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The position part of Z, unlike the momentum part, is impossible to evalu-
ate exactly, due to the pairwise coupling of the coordinates of all microions via
the |ri−rj | terms in the Hamiltonian. The mean field approximation decouples
these coordinates (see Remark 23), thereby splitting the system Hamiltonian
into a sum of the individual Hamiltonians of all microions. Consequently, the
joint probability density (6.114) becomes a product of the individual proba-
bility densities of the ions, implying that the correlations between the ions are
neglected. The limitations of this assumption are summarized in Section 6.5
on p. 313.

Once the coordinates are (approximately) decoupled, the N -fold integra-
tion of exp(−βH) in Z (6.113) yields the following expression for thermody-
namic potential (M. Deserno & C. Holm [DH01]):

G̃PB =
∫

R3

(
qn(r)

(
1
2
um(r) + uf (r)

)
+ kBTn(r)

(
log(n(r)λ3

T )− 1
))

dV

(6.117)
where both the momentum part (6.116) and the mean-field coordinate part
are included. In addition, the continuum limit has been taken, so that the
microions are now represented by the equivalent volume density n(r). The
tilde sign in G̃PB is used to recognize that the electrostatic energy part in this
functional is different from a more natural expression∫

R3

1
2

ρu dV

appearing in (6.105). However, the difference is not essential. Indeed, splitting
the total charge density ρ and the total electrostatic potential u up into the
microion and fixed-charge parts, we get∫

R3

1
2

ρu dV =
1
2

∫
R3

(ρmum + ρmuf + ρfum + ρfuf ) dV

=
∫

R3

(
1
2

ρmum + ρmuf +
1
2
ρfuf

)
dV

where the reciprocity principle (or, mathematically, integration by parts) was
used to reveal two equal terms. The last term, involving only the fixed charges,
is constant and can therefore safely be dropped from the potential. This im-
mediately makes the expression equivalent to the electrostatic part of GPB

(6.105).
Alternative forms of the thermodynamic functional can be obtained under

an additional constraint: potential u satisfies the electrostatic equation for the
Boltzmann distribution of the microions (6.110). An equivalent expression for
the Boltzmann distribution is

log nα = − qαu

kBT
+ const
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Hence the entropic term in the functional – for the Boltzmann distribution of
the ion density – can be rewritten as∫

R3
kBT

∑
α

nα(log(nαλ3
T )− 1) dV = −

∫
R3

∑
α

nαqαu dV + const

= −
∫

R3
ρmu dV + const (6.118)

6.15 Appendix: Generalized Functions (Distributions)

The first part of this Appendix is an elementary introduction to general-
ized functions, or distributions. The second part outlines their applications to
boundary value problems and to the treatment of interface boundary condi-
tions.

The history of mathematics is full of examples where the existing notions
and objects work well for a while but then turn out to be insufficient and
need to be extended to make further progress. That is, for example, how
one proceeds from natural numbers to integers and then to rational, real and
complex numbers. In each case, there are desirable operations (such as e.g.
division of integers) that cannot be performed within the existing class, which
calls for an extension of this class.

A different example that involves an extension of the exponential function
from numbers to matrices and operators is outlined in Appendix 2.10 on p. 65.

Why would functions in standard calculus need to be generalized? What
features are they lacking? One notable problem is differentiation. As an ex-
ample, the Heaviside unit step function40 H(x), equal to one for x ≥ 0 and
zero otherwise, in regular calculus does not not have a derivative at zero. In
an attempt to generalize the notion of derivative and make it applicable to
the step function, one may consider an approximation Hε to H(x) (Fig. 6.15).

The derivative of Hε(x) is a rectangular pulse equal to 1/ε for |x| < ε/2
and zero for |x| > ε/2. (In standard calculus, this derivative is undefined for
x = ±ε/2.) As ε → 0, Hε tends to the step function, but the limit of the
derivative H ′

ε(x) in the usual sense is not meaningful. Indeed, this pointwise
limit H ′

ε→0(x) is equal to infinity at x = 0 and zero everywhere else. In contrast
with the usual integration/differentiation operations that are inverses of one
another, in this irregular case the original unit step H(x) cannot be recovered
from H ′

ε→0(x). Indeed, although the existence of the step can be inferred from
H ′

ε→0(x), the information about the magnitude of the step is lost.

40 Oliver Heaviside (1850–1925) is a British physicist and mathematician, the inven-
tor of operational calculus, whose work profoundly influenced electromagnetic the-
ory and analysis of transmission lines. The modern vector form of Maxwell’s equa-
tions was derived by Heaviside (Maxwell had 20 equations with 20 unknowns).
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Fig. 6.25. A steep ramp (top) approximates the Heaviside step function. The deriva-
tive of this ramp function is a sharp pulse (bottom). However, as ε → 0, the pointwise
limit of this derivative is not meaningful.

A critical observation in regard to the sequence of narrow and tall pulses
with ε → 0 is that the precise pointwise values of these pulses are unimportant;
what matters is the “action” of such pulses on some system to which they
may be applied. A mathematically meaningful definition of this action is the
integral ∫

R

H ′
ε(x)ψ(x) dx (6.119)

where ψ(x) is any smooth function that can be viewed as a “test” function to
which H ′

ε(x) is applied.41

It is easy to see that for ε → 0 the integral in (6.119), unlike H ′
ε itself, has

a simple limit:

∫
R

H ′
ε(x)ψ(x) dx =

∫ ε/2

−ε/2

ε−1ψ(x) dx → ψ(0)

41 For technical reasons, in the usual definition of generalized functions it is assumed
that ψ(x) is differentiable infinitely many times and has a compact support. For
the mathematical details, see the monographs cited at the end of this Appendix.
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Thus the “action” of H ′
ε(x) on any smooth function ψ(x) is just ψ(0). The

proper mathematical term for this action is a linear functional : it takes a
smooth function ψ and maps it to a number, in this particular case to ψ(0).

This insight ultimately leads to the far-reaching notion of generalized func-
tions, or distributions: linear functionals defined on smooth “test” functions.

Example 18. The above functional that maps any smooth funciton ψ to its
value at zero is the famous Dirac delta:

〈δ, ψ〉 = ψ(0) (6.120)

where the angle brackets denote a linear functional. For instance, 〈δ, exp(x)〉 =
exp(0) = 1, 〈δ, x2 + 3〉 = 3, etc.42

There is an inconsistency between the proper mathematical treatment of
the Dirac delta (and other distributions) as a linear functional and the popular
informal notation δ(x) (implying that the Dirac delta is a function of x) and∫

δ(x)ψ(x)dx. The integral sign, strictly speaking, should be understood only
as a shorthand notation for a linear functional.

Example 19. Any regular function f(x) can be viewed also as a distribution
by associating it with the linear functional

〈f, ψ〉 =
∫

R

f(x)ψ(x) dx (6.121)

It can be shown that the distributions corresponding to different integrable
functions are indeed different, and so this definition is a valid one. For exam-
ple, the sinusoidal function sinx is associated with the generalized function∫

R
sin x ψ(x) dx.

Example 20. While any regular function can be identified with a distribution,
the opposite is not true. The Dirac delta is one example of a generalized
function that does not correspond to any regular one. Another such example
is the Cauchy principal value distribution

〈p.v.

(
1
x

)
, ψ〉 = lim

ε→0+

∫
|x|>ε

ψ(x)
x

dx (6.122)

This distribution cannot be identified, in the sense of (6.121), just with the
function 1/x, as the integral ∫

R

1
x

ψ(x) dx

does not in general exist if ψ(0) �= 0.

42 Strictly speaking, since exp(x) and x2 + 3 do not have a compact support, these
expressions are not valid without additional elaboration.
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Generalized functions have very vast applications to differential equations:
suffice it to say that Green’s functions are, by definition, solutions of the
equation with the right hand side equal to the Dirac delta. The remainder of
this Appendix covers the most essential features and notation relevant to the
content of Chapter 6.

While functions in classic calculus are not always differentiable, generalized
functions are. To see how the notion of derivative can be generalized, start
with a differentiable (in the calculus sense) function f(x) and consider the
“action” of its derivative on any smooth test function ψ(x):∫

R

f ′(x)ψ(x) dx = −
∫

R

f(x)ψ′(x) dx (6.123)

This is an integration-by-parts identity, where the term outside the integral
vanishes because the test function ψ, by definition, has a compact support and
therefore must vanish at ±∞. Since differentiation has been removed from f ,
the right hand side of (6.123) has a wider range of applicability and can now
be taken as a definition of the generalized derivative of f even if f is not
differentiable in the calculus sense. Namely, the generalized derivative of f is
defined as the linear functional

〈f ′, ψ〉 = −
∫

R

f(x)ψ′(x) dx (6.124)

Example 21. Applying this definition to the Heaviside step function H, we
have

〈H ′, ψ〉 = −
∫

R

H(x)ψ′(x) dx = −
∫ ∞

0

ψ′(x) dx = ψ(0) = 〈δ, ψ〉 (6.125)

In more compact notation, this is a well-known identity

H ′ = δ

The derivative of the unit step function (in the sense of distributions) is the
delta function.

Example 22. As a straightforward but practically very useful generalization
of the previous example, consider a function f(x) that is smooth everywhere
except for a few discrete points xi, i = 1, . . . , n, where it may have jumps
[f ]i ≡ f(xi+)− f(xi−). Then the distributional derivative of f is

f ′ = {f ′} +
n∑

i=1

[f ]i δ(x− xi) (6.126)

where δ(x− xi) is, by definition, the functional43

43 There is an inconsistency between the popular notation δ(x−xi), suggesting that
δ is a function of x, and the mathematical meaning of δ as a linear functional.
More proper notation would be δ(xi, ψ).
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〈δ(x− xi), ψ〉 = ψ(xi)

In (6.126), the braces denote regular derivatives44 viewed as generalized func-
tions. The generalized derivative of f is thus equal to the regular one, plus a
set of Dirac deltas corresponding to the jumps of f . The derivation of (6.126)
is a straightforward extension of that of (6.125).

Example 23. For f(x) = H(x) cos x, where H(x) is the Heaviside step func-
tion, f ′(x) = {f ′(x)}+ δ(x), with {f ′(x)} = −H(x) sin x.

Example 24. We now make the leap over to three dimensions. In 3D, distrib-
utions are also defined as linear functionals acting on smooth “test” functions
with a compact support. For instance, the Dirac delta in 3D is

〈δ, ψ〉 = ψ(0) (6.127)

which is formally the same definition as in 1D, except that now ψ is a function
of three coordinates and zero in the right hand side means the origin x = y =
z = 0. Generalized partial derivatives are defined by analogy with the 1D
case; for example,

〈∂f

∂x
, ψ〉 = −

∫
R3

f(x)
∂ψ

∂x
dx (6.128)

Of particular interest in Chapter 6 is generalized divergence. The divergence
equation ∇·D = ρ is valid for volume charge density ρ; however, if divergence
is understood in the sense of distributions, this equation becomes applicable
to surface charges as well. If D is a smooth field, then for any “test” function
ψ integration by parts yields45∫

R3
ψ∇ ·D dV = −

∫
R3

D · ∇ψ dV (6.129)

The extra term outside the integral vanishes because ψ has a compact sup-
port and is therefore zero at infinity. The above identity suggests, by analogy
with generalized derivative, a definition of generalized divergence as a linear
functional

〈∇ ·D, ψ〉 = −
∫

R3
D · ∇ψ dV (6.130)

Consider now the generalized derivative for the case where the normal com-
ponent of D may have a jump across a surface S enclosing a domain Ω. (In
electrostatic problems, Ω may be a body with a dielectric permittivity dif-
ferent from that of the outside medium, and S may carry a surface charge.)
Then the generalized derivative is transformed, by splitting the integral into
regions inside and outside Ω and again using integration by parts, to

44 This is V.S. Vladimirov’s notation [Vla84].
45 Test functions are smooth by definition.
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〈∇·D, ψ〉 = −
∫

R3
D·∇ψ dV =

∫
Ω

ψ∇·D dV +
∫

R3−Ω

∇·Dψ dV +
∫

S

ψ[Dn] dS

(6.131)
where [Dn] is the jump of the normal component of [D] across the surface:

[Dn] = (Dout −Din) · n

and n is the outward normal to the surface of Ω. In more compact form,
generalized divergence (6.131) can be written as

∇ ·D = {∇ ·D} + [Dn] δS (6.132)

where the curly brackets again denote “calculus-style” divergence in the vol-
ume and δS is the surface-delta defined formally as the functional

〈δS , ψ〉 =
∫

S

ψ dS

The physical meaning of expression (6.132) is transparent: generalized di-
vergence is equal to regular divergence (that can be defined via the usual
derivatives everywhere except for the surface), plus the surface-delta term
corresponding to the jump. This result is analogous to the 1D expression for
generalized derivative (6.126) in the presence of jumps.

The last example shows, as a consequence of (6.132), that Maxwell’s di-
vergence equation ∇ ·D = ρ is valid for both volume and surface charges (or
any combination thereof) if divergence is understood in the generalized sense.
This point of view is very convenient, as it allows one to treat interface bound-
ary conditions as a natural part of the differential equations rather than as
some extraneous constraints. In particular, zero generalized divergence of the
D field in electrostatics implies zero volume charges and zero surface charges
– the continuity of the normal component of D across the surface.

Further reading

The original book by L. Schwartz [Sch66] is a very good introduction to the
theory of distributions, at the mathematical level accessible to engineers and
physicists. V.S. Vladimirov’s book [Vla84] focuses on applications of distrib-
utions in mathematical physics and is highly relevant to the content of this
chapter. A simpler introduction, with the emphasis on electromagnetic prob-
lems, is given by D.G. Dudley [Dud94]. There is also a vast body of advanced
mathematical literature on the theory of distributions, but that is well beyond
the scope of this book.
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Applications in Nano-Photonics

7.1 Introduction

Visible light is electromagnetic waves with submicron wavelengths – between
∼400 nm (blue light) and ∼700–750 nm (red light) in free space. Therefore
propagation of light through materials is affected greatly by their submicron
features and structures. Moreover, the ability to create and control such small
features has led to amazing new physical effects, technologies and devices, as
discussed later in this chapter.

Truly nanoscale features, much smaller than the wavelength, can also be
crucial. In particular, one of the recent exciting directions in photonics involves
nanoscale (5–50 nm) “plasmon” particles and structures that exhibit very
peculiar resonance behavior in the optical frequency range (Section 7.11).

This chapter is not a comprehensive review of nano-photonics; rather,
it covers selected intriguing applications and related methods of computer
simulation. For a broader view, see P.N. Prasad’s monographs [Pra03, Pra04].
References on more specific subjects (photonic crystals, plasmonics, nano-
optics, etc.) are given in the respective sections of this chapter.

The indispensable starting point in a discussion of photonics is Maxwell’s
equations that describe electromagnetic fields in general and propagating
electromagnetic waves in particular. After a brief review of Maxwell’s equa-
tions, the chapter gives an introduction to band structure and the Photonic
BandGap (PBG) phenomenon in photonic crystals, plasmonic particles and
plasmon-enhanced Scanning Near-field Optical Microscopy (SNOM), back-
ward waves, negative refraction and nanofocusing, with related simulation
examples.

7.2 Maxwell’s Equations

The system of Maxwell’s equations contains the “curl part”
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∇×E = − ∂tB (7.1)

∇×H = ∂tD + J (7.2)

and the “divergence part”
∇ ·D = ρ (7.3)

∇ ·B = 0 (7.4)

In these equations, E and H are the electric and magnetic field, respectively;
D and B are the electric and magnetic flux densities, respectively; ρ is the
electric charge density, and J is the electric current density. For physical
definitions of these vector quantities and a detailed physical discussion see
well-known textbooks by L.D. Landau & E.M. Lifshitz [LL84], J.A. Stratton
[Str41], R.P. Feynman et al. [FLS89], W.K.H. Panofsky & M. Phillips [PP62],
R. Harrington [Har01].

The physical meaning of Maxwell’s equations becomes more transparent
if they are rewritten in integral form using the standard vector calculus iden-
tities. The first two equations become∮

∂S

E · dl = − d

dt

∫
S

B · dS (7.5)

∮
∂Ω

H · dl =
d

dt

∫
Ω

D · dS +
∫

Ω

J · dS (7.6)

These relationships are valid for any open surface S with its closed-contour
boundary ∂S oriented in the standard way. Equation (7.5) – known as Fara-
day’s Law – means that the electromotive force (emf) over a closed contour
is induced by the changing magnetic flux passing through that contour. (The
emf is defined as the line integral of the electric field.)1 Unlike the emf equation
(7.5), equation (7.6) for the magnetomotive force (mmf, the contour integral
of the magnetic field) contains two terms in the right hand side. The mmf is
due to the changing electric flux and to the electric current passing through
the closed contour.

The lack of complete symmetry between the emf and mmf equations (7.5)
and (7.6) is due to the apparent absence of magnetic charges (monopoles).2

1 An alternative approach, where – loosely speaking – the emf is taken as a primary
quantity and the field is defined via the emf, is arguably more fundamental but
requires the notions of differential geometry and differential forms that are beyond
the standard engineering curriculum. See monographs by P. Monk [Mon03] and
A. Bossavit [Bos98] as well as the section on edge elements (Section 3.12, p. 139).

2 On February 14, 1982 a monopole-related event may have been registered in the
laboratory of Blas Cabrera (B. Cabrera, First results from a superconductive
detector for moving magnetic monopoles, Phys. Rev. Lett., vol. 48, pp. 1378–
1381, 1982). An abrupt change in the magnetic flux through a superconducting
loop was recorded (the magnetic flux is known to be quantized). A magnetic
monopole passing through the loop would cause a similar flux jump. However,
nobody has been able to reproduce this result.
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If monopoles are ever discovered, presumably the Faraday Law will have to
be amended, as magnetic currents would contribute to the emf over a closed
contour.

Next, the integral form of the divergence equations (7.3) and (7.4) is, for
any 3D domain Ω bounded by a closed surface ∂Ω,∮

∂Ω

D · dS = Q, Q =
∫

Ω

ρ dΩ (7.7)

∮
∂Ω

B · dS = 0 (7.8)

The first of these equations, known as Gauss’s Law, relates the flux of the
D vector through any closed surface to the total electric charge inside that
surface. The second equation, for the flux of the B field, is analogous, except
that there is no magnetic charge (see footnote 2).

As it stands, the system of four Maxwell’s equations is still underdeter-
mined. Generally speaking, a vector field in the whole space (and vanishing at
infinity) is uniquely defined by both its curl and divergence, whereas Maxwell’s
equations specify the curl of E and the divergence of D, not E. The same is
true for the pair of magnetic fields H and B. To close the system of equations,
one needs to specify the relationships, known as constitutive laws, between E,
D, H and B. In linear isotropic materials,

D = εE, ε = ε(x, y, z) (7.9)

B = µH, µ = µ(x, y, z) (7.10)

In other types of media, however, relationships between the fields can be
substantially more complicated – they can be nonlinear and can include the
time history of the electromagnetic process. The dependence on the history is
called hysteresis (I.D. Mayergoyz [May03]). Moreover, the magnetic and elec-
tric fields can be coupled (e.g. symmetrized Condon or Drude–Born–Fedorov
relations for chiral media; see J. Lekner [Lek96]). Our discussion and exam-
ples, however, will be limited to the linear isotropic case (7.9), (7.10).

There is a connection between the curl and divergence equations. Indeed,
since divergence of curl is zero, by applying the divergence operator to both
sides of the curl equations (7.1) and (7.2) one obtains

∂t∇ ·B = 0 (7.11)

and
∇ · (∂tD + J) = 0 (7.12)

The first equation implies the zero-divergence condition (7.4) for B if, in addi-
tion, zero divergence is imposed as the initial condition at any given moment
of time. Alternatively, zero divergence can be easily deduced from Faraday’s
Law if the fields are time-harmonic (i.e. sinusoidal in time – more about this
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case below). Without such additional assumptions, zero divergence does not
in general follow from Faraday’s Law.

Similar considerations show a close connection, but not complete equiv-
alence, between the divergence equation (7.12) and conservation of charge.
Substituting ∇ ·D = ρ (7.3) into (7.12) gives

∇ · J = − ∂tρ (7.13)

which is a mathematical expression of charge conservation.3

This logic cannot be completely reversed to produce the divergence equa-
tion for D from charge conservation and the curl equation for H. Indeed,
substituting conservation of charge (7.13) into (7.12), one obtains

∂t(∇ ·D − ρ) = 0 (7.14)

which makes the divergence equation ∇ ·D = ρ true at all moments of time,
provided that it holds at any given moment of time.

Time-harmonic fields can be described by complex phasors. It will always
be clear from the context whether a time function or a phasor is being consid-
ered, and I shall therefore for simplicity of notation denote phasors with the
same symbols as the corresponding time dependent fields (H, D, etc.), with
little danger of confusion.

At the same time, we are facing a dilemma with regard to notational con-
ventions on complex phasors themselves. Physicists usually assume that the
actual E-field can be obtained from its phasor as Re{E exp(−iωt)}, and sim-
ilarly for other fields. Electrical engineers take the plus sign, exp(+iωt), in
the complex exponential. This notational difference is equivalent to replacing
all phasors with their complex conjugates. Unfortunately, material parame-
ters also get replaced with their conjugates, and confusion may arise, say, if
engineers take the dielectric permittivity from the physical data measured in
the “wrong” quadrant. In addition, physicists and mathematicians typically
use symbol i for the imaginary unit, while engineers prefer j.

All these conventions are of course equally valid, but a notational mismatch
could easily lead to sign errors. A little trick may prove helpful. Throughout
the book, symbol i is used for the imaginary unit. The reader accustomed
to the electrical engineering convention for phasors, exp(+iωt), should simply
assume that i ≡ j; the physicist should set i ≡ −i.

Electrical engineers : i ≡ j

Physicists : i = −i

3 Charge conservation is more easily noted if this equation is put into integral form,∮
∂Ω

J · dS = −dtQ. The current flowing out of a closed volume is equal to the
rate of depletion of electric charge inside that volume.
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With these reservations in mind, Maxwell’s equations for the phasors of
time-harmonic fields are

∇×E = − iωB (7.15)

∇×H = iωD + J (7.16)

Maxwell’s “divergence equations” (7.3), (7.4) do not involve time derivatives
and are therefore unchanged in the frequency domain.

For time-harmonic fields, zero divergence for B follows directly and imme-
diately from (7.15), and conservation of charge follows from (7.16).

7.3 One-Dimensional Problems of Wave Propagation

7.3.1 The Wave Equation and Plane Waves

The simplest, and yet important and instructive, case for electromagnetic
analysis involves fields that are independent of two Cartesian coordinates (say,
y and z) and may depend only on the third one (x); the medium is assumed to
be source-free (ρ = 0, J = 0), isotropic and homogeneous, with parameters ε
and µ independent of the spatial coordinates and time. Divergence equations
(7.3) and (7.4) in this case yield

∂Dx

∂x
= 0,

∂Bx

∂x
= 0 (7.17)

and hence Dx and Bx must be constant. These trivial uniform electro- and
magnetostatic fields are completely disassociated from the rest of the analysis
and will hereafter be ignored.

In the absence of the x-component of the fields, the curl equations (7.1)
and (7.2) become

∂Ey

∂x
= − µ

∂Hz

∂t
;

∂Ez

∂x
= µ

∂Hy

∂t
(7.18)

∂Hy

∂x
= ε

∂Ez

∂t
; − ∂Hz

∂x
= ε

∂Ey

∂t
(7.19)

It is not hard to see that the equations have decoupled into two pairs:

∂Ey

∂x
= − µ

∂Hz

∂t
; − ∂Hz

∂x
= ε

∂Ey

∂t
(7.20)

∂Ez

∂x
= µ

∂Hy

∂t
;

∂Hy

∂x
= ε

∂Ez

∂t
(7.21)

These pairs of equations correspond to two separate waves: one with the
(Ey,Hz) components of the fields and the other one with the (Ez,Hy) compo-
nents. In optics and electromagnetics, it is customary to talk about different
polarizations of the wave; by convention, it is the direction of the electric field
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that defines polarization. Thus the wave of (7.20) is said to be polarized in
the y-direction, while the wave of (7.21) is polarized in the z-direction.

We can now focus on one of the waves – say, on the (Ey,Hz) wave (7.20)
– because the other one is completely similar. The magnetic field can be
eliminated by differentiating the first equation in (7.20) with respect to x, the
second one with respect to time and then adding these equations to remove
the mixed derivative of the H-field. This leads to the wave equation

∂2Ey

∂x2
− µε

∂2Ey

∂t2
= 0 (7.22)

It is straightforward to verify, using the chain rule of differentiation, that any
field of the form

Ey(x, t) = g(vpt± x) (7.23)

satisfies the governing equation (7.22) if g is an arbitrary twice-differentiable
function and vp is

vp =
1√
µε

(7.24)

For example, Ey(x, t) = (vpt− x)2 and Ey(x, t) = cos k(vpt− x), where k is a
given parameter, are valid waves satisfying the electromagnetic equations.

Physically, (7.23) represents a waveform that propagates in space without
changing its shape (the shape is specified by the g function). Let us trace the
motion of any point with a fixed value of Ey on the waveform. The fixed value
of the field implies zero full differential

dEy =
∂Ey

∂t
dt +

∂Ey

∂x
dx = g′vpdt ± g′dx = 0 (7.25)

and hence (for a nonzero derivative g′)

dx

dt
= − ∂Ey

∂t
/

∂Ey

∂x
= ∓ vp (7.26)

Thus any point on the wave form moves with velocity vp; it can also be said
that the waveform as a whole propagates with this velocity. Note that for
vp > 0 the g(x − vpt) wave moves in the +x-direction, while the g(x + vpt)
wave moves in the −x-direction. In the very common particular case where
the waveform g is sinusoidal, the point of constant value of the field is also
the point of constant phase. For this reason, vp is known as phase velocity.

To solve the wave equation (7.22), let us apply the Fourier transform.
The transforms will sometimes be marked by the hat symbol; in many cases,
however, for the sake of simplicity no special notation will be used and complex
phasors will be identified from the context and/or by the argument ω. In this
section, let us also drop the y subscript, as the field has only one component.
Then the wave equation becomes

E′′(x) + ω2µεE(x) = 0 (7.27)
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where the prime indicates the x-derivative. This is the Helmholtz equa-
tion whose general solution E(x) is a superposition of two plane waves
E± exp(±kx), so called because their surfaces of equal phase are planes.

E(x) = E+ exp(ikx) + E− exp(−ikx) (7.28)

where E± are some amplitudes and

k = ω
√

µε (7.29)

is the wavenumber. Since k enters the solution (7.28) with both plus and minus
signs, it is at this point unimportant which branch of the square root is chosen
to define k in (7.29). This issue will become nontrivial later, in the context of
backward waves and negative refraction.

7.3.2 Signal Velocity and Group Velocity

Plane waves cannot be used as “signals”; they do not transfer energy or in-
formation because, by definition, they exist forever and everywhere. Thus,
unavoidably, information transfer must involve more than one frequency.

Now, the standard textbook argument goes like this: consider a superposi-
tion of two waves, for simplicity of the same amplitude, with slightly different
frequencies ω ±∆ω (∆ω � ω). Simple algebra gives

exp [i ((ω + ∆ω)t− (k + ∆k)x)] + exp [i ((ω −∆ω)t− (k −∆k)x)]

= 2 exp [i(ωt− kx)] cos (∆ωt−∆kx)

The cosine term can be viewed as a low-frequency (∆ω) “signal” and the
complex exponential as a high-frequency (ω) carrier wave. The “signal”
cos(∆ωt−∆kz) manifests itself as beats on the carrier wave and propagates
with the group velocity vg = ∆ω/∆k (the “group” consisting of just two waves
in this idealized case). The ∆ω → 0 limit

vg =
∂ω

∂k
(7.30)

is then declared to be “signal velocity” – different from the phase velocity
vp = ω/k.

However, if a single monochromatic wave contains zero information, one
may wonder how it may be possible for two such waves – or any finite number
of plane waves for that matter – to carry a nonzero amount of information.4

Indeed, the train of beats is no less predictable than a single plane wave and
also is present, theoretically, everywhere and forever. It cannot therefore be
used as a signal any more than a single plane wave can.

4 This is why the word “signal” was put in quotes in the previous paragraph.
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A completely rigorous analysis must rely on precise definitions of “infor-
mation” and “signal” – a territory into which I will not attempt to venture
here and which would take us too far from the main subjects of this chapter.
Instead, following the books by L. Brillouin [Bri60] and P.W. Milonni [Mil04],
let us note that an observer can receive a nonzero amount of information only
if the future behavior of the wave cannot be determined from its values in the
past. This implies, in particular, that an information-carrying wave has to be,
in the mathematical sense, non-analytic.

As a characteristic example, consider a pointwise source capable of gener-
ating an arbitrary (not necessarily analytic!) field at x = 0. Let us use this
source to produce amplitude modulation

E(0, t) = E(0, t) exp(iω0t) (7.31)

where E(t) is a low-frequency waveform that can be used to carry (useful)
information and ω0 is the carrier frequency. To find the field at any x >
0, we Fourier-transform the wave equation and assume only outgoing waves
E(0, ω) exp(iωt − k(ω)x). The Fourier transform E(0, ω) is found from the
given field at x = 0:

E(0, ω) =
∫ ∞

−∞
E(0, t) exp(iω0t) exp(−iωt)dt = Ê(ω − ω0)

That is, the modulation shifts the spectrum of E by ω0, as is well known in
signal analysis. The complex field phasor at an arbitrary x > 0 then is

E(x, ω) = Ê(0, ω − ω0) exp(−ik(ω)x) (7.32)

If there is no dispersion, i.e. the velocity of the wave is frequency-independent,
k(ω) = ω/vp and

E(x, ω) = Ê(0, ω − ω0) exp
(
−iω

x

vp

)
(no dispersion)

the inverse Fourier transform of which is

E(x, t) = E
(

t− x

vp

)
(no dispersion)

The wave arrives at the observation point x unmolested, only with a time
delay x/vp.

We are, however, interested in the general case with dispersion. The time-
dependent field can be found from its Fourier transform (7.32) as

E(x, t) =
∫ ∞

−∞
Ê(0, ω − ω0) exp(−ik(ω)x) exp(iωt) dω (7.33)

which gives the low-frequency “signal” E(x, t)
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E(x, t) = E(x, t) exp(−iω0t) =
∫ ∞

−∞
Ê(0, ω′) exp(−ik(ω′)x) exp(iω′t) dω′

(7.34)
where

ω′ ≡ ω − ω0

The velocity of this signal can be found from the condition of zero differential
dE(x, t) in full analogy with equations (7.25) and (7.26); this velocity is the
ratio of partial differentials of E(x, t) with respect to t and x. These partial
derivatives are

∂E
∂x

= i
∫ ∞

−∞
k(ω′) E(ω′) exp(ik(ω′)x) exp(−iω′t) dω′ (7.35)

and
∂E
∂t

= − i
∫ ∞

−∞
ω′ E(ω′) exp(ik(ω′)x) exp(−iω′t) dω′ (7.36)

So far the expressions have been exact; now an approximation is needed to
find a relationship between the two partial derivatives. Since E(t) is a low-
frequency function, the main contribution to the Fourier transforms comes
from the small values of ω′ = ω − ω0. Hence, expressing ω′ with first-order
accuracy with respect to small k as

ω′ ≈ k
∂ω′

∂k
(0) (small k)

one has
∂E
∂t

≈ − i
∂ω′

∂k
(0)

∫ ∞

−∞
kE(ω′) exp(ikx) exp(−iω′t)dt

Therefore the velocity of the signal is

vsignal ≈ ∂E
∂t

/
∂E
∂x

=
∂ω

∂k
≡ vg (7.37)

Thus group velocity ∂ω/∂k, contrary to what some textbooks may lead one
to believe, is only an approximation of signal velocity (P.W. Milonni elabo-
rates on this in [Mil04]). As the derivation above shows, the accuracy of this
approximation depends on the deviation of the dispersion curve ω(k) from a
straight line within the frequency range [ω0−ωE , ω0 +ωE ], where [−ωE , ωE ] is
the characteristic frequency band for the signal E (beyond which its amplitude
spectrum is zero or can be neglected); it is assumed that ωE � ω0.

One may not be satisfied with these approximations and may wish to de-
fine signal velocity exactly. However, the precise definition is elusive. Indeed,
consider a broadband signal such as a sharp pulse. Its high frequency compo-
nents can, at least in principle, be used to convey information. But at high
frequencies the material parameters tend to their free space values ε0 and µ0,
and hence group velocity tends to the speed of light. Thus – as a matter of
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principle and disregarding all types of noise – information can be transferred
with the velocity of light in any medium.

An equivalent and instructive physical interpretation is given by A. Som-
merfeld ([Bri60], p. 19), with attribution to W. Voigt:

“We will show here that the wave front velocity is always identical with
the velocity of light in vacuum, c, irrespective of whether the material
is normally or anomalously dispersive, whether it is transparent or
opaque, or whether it is simply or doubly refractive. The proof is
based on the theory of dispersion of light, which explains the various
optical properties of materials on the basis of the forced oscillations
of the particles of the material, either electrons or ions. . . . According
to our present knowledge . . ., there exists only one isotropic medium
for electrodynamic phenomena, the vacuum, and the deviations from
vacuum properties can be traced back to the forced oscillations of
charges. When the wave front of our signal makes its way through the
optical medium, it finds the particles which are capable of oscillating
originally at rest . . ., (except for their thermal motion which has no
effect on propagation, due to its randomness). Originally, therefore,
the medium seems optically empty; only after the particles are set
into motion, can they influence the phase and form of the light waves.
The propagation of the wavefront, however, proceeds undisturbed with
the velocity of light in vacuum, independently of the character of the
dispersing ions.”

7.3.3 Group Velocity and Energy Velocity

The relationship between group velocity and the Poynting vector has substan-
tial physical significance in its own right but even more so in connection with
backward waves and negative refraction, to be discussed later in this chapter
(Section 7.13). Let us consider a homogeneous source-free isotropic material
with frequency-dependent parameters ε(ω) and µ(ω). Losses at a given oper-
ating frequency (but not necessarily at other frequencies) will be neglected,
so that both ε and µ are real.

A y-polarized plane wave propagating in the x-direction is governed by
the equation

E′′(x) + k2E(x) = 0, k2 ≡ ω2ε(ω)µ(ω) (7.38)

where E = Ey, and has the form

E(x) = E0 exp(−ikx) (7.39)

The magnetic field H = Hz is

H(x) = H0 exp(−ikx); H0 =
k

ωµ
E0 =

(
ε

µ

) 1
2

E0 (7.40)
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Power flux is characterized by the time-averaged Poynting vector with the
x-component only:

〈P 〉 ≡ 〈P 〉x =
1
2

Re(EH∗) =
1
2
|E0|2 Re

(
ε

µ

) 1
2

(7.41)

If one is interested in the wave with power flow in the +x direction, then
the real part of k is positive and the square root in (7.41) is the one with a
positive real part.

Since group velocity and the Poynting vector are related to the propagation
of signals and energy, respectively, there is a connection between them. For
the group velocity, we have

v−1
g =

∂k

∂ω
=

(
2εµ + ωµ

∂ε

∂ω
+ ωε

∂µ

∂ω

)
1
2

(εµ)−
1
2 (7.42)

The amount of field energy transferred through a surface element dS = dy dz
over the time interval dt is equal to w dS dx = w dS vEdt, where w is the
volume energy density and vE is energy velocity. On the other hand, the same
transferred energy is equal to P dS dt; hence

w dS vEdt = PdSdt

or simply
w vE = P (7.43)

If one assumes that energy, like signals, propagates with group velocity (under
the approximation assumptions considered above), i.e. vE = vg, then the
volume energy density can be obtained from (7.43) and (7.42). After some
algebra,

w = Pv−1
g =

1
4

(
∂(ωε)
∂ω

|E|2 +
∂(ωµ)

∂ω
|H|2

)
(7.44)

where the relationship between the electric and magnetic field amplitudes, as
specified in (7.40), has been worked into this expression to make it symmetric
with respect to both fields.

This result for dispersive media is well established in the physics literature
(L.D. Landau & E.M. Lifshitz [LL84], L. Brillouin [Bri60]) and is notably
different from the classical formula for static fields

wstatic =
1
2

(
ε |E|2 + µ |H|2

)
The difference between the numerical factors in the “static” and “dynamic”
expressions for the energy density is natural, as the additional 1/2 in (7.44)
reflects the usual “effective value” of sinusoidally oscillating quantities. More
interesting is the dependence of energy in a dispersive medium on the ω-
derivatives of ε and µ. The physical nature of these additional terms is ex-
plained by Brillouin ([Bri60], pp.88–93):
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“The energy . . . at the time when E passes through zero is quite dif-
ferent from the zero energy that the dielectric has after being isolated
from an electric field for a long time. In order to explain the fact that
the permittivity ε of the dielectric is different from that of the vac-
uum, ε0, one must admit that the medium contains mobile charges,
electrons or ions in motion or electric dipoles capable of orientation;
then, one takes as the zero energy of the system the condition that all
the charged particles are at rest in their equilibrium positions. . . . all
the charged particles may pass by their equilibrium positions at the
time t = 0 when the field vanishes, but they pass them with nonzero
velocity. [The additional term] represents the kinetic energy of all the
charged particles contained in the dielectric.”

7.4 Analysis of Periodic Structures in 1D

Much of research in nano-photonics is related to electromagnetic wave prop-
agation in periodic structures with a characteristic size comparable with, but
smaller than, the wavelength. The mathematical side of the analysis is cen-
tered at differential equations with periodic coefficients. We therefore start
with a summary of the relevant mathematical theory, first for ordinary differ-
ential equations, and then generalizations to two and three dimensions.

This section will focus on key ideas and results important from the physical
perspective; further mathematical details can be found in the monographs
by M.S.P. Eastham [Eas73] and by W. Magnus & S. Winkler [MW79]. In
a condensed form, the theory is given in W. Walter’s book [Wal98b]. For
applications in optics and photonics, books by P. Yeh [Yeh05] and K. Sakoda
[Sak05] are recommended.

Very useful insights can be gained from one-dimensional analysis. In me-
dia with one-dimensional periodicity along the x-axis, the source-free one-
component field satisfies equations (7.134) or (7.136), which are particular
cases of Hill’s equation

dx (P (x) dxu) + Q(x)u = 0 (7.45)

Here u is the single Cartesian component of either the electric or magnetic
field; dx denotes the x-derivative. P (x), Q(x) are known functions (possibly
complex-valued), periodic in x with a period x0:

P (x + x0) = P (x), Q(x + x0) = Q(x), ∀x ∈ R (7.46)

Although much of the analysis below can be generalized to arbitrary second
order equations with periodic coefficients and to higher order equations, it is
Hill’s equation that is most relevant to 1D problems in nano-photonics.

For theoretical analysis of Hill’s equation, it is convenient to rewrite this
second-order equation as a system of two first-order equations with a vector
of unknowns (u, v)T , where v ≡ P (x)dxu:
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dxu = P−1(x) v (7.47)
dxv = −Q(x)u (7.48)

or in matrix-vector form

dxw = Aw, w ≡
(

u
v

)
, A ≡

(
0 P−1(x)

−Q(x) 0

)
(7.49)

Under quite general assumptions on the smoothness of P (x), Q(x), solutions
of this system exist and form a two-dimensional space. If two solutions ψ1(x)
and ψ2(x) are a basis in this space (i.e. are linearly independent), it is helpful
to combine them into a 2 × 2 matrix Ψ(x) with columns ψ1(x) and ψ2(x).
Clearly, this matrix itself satisfies the differential equation (7.49), i.e.

dxΨ(x) = AΨ(x) (7.50)

because this equation holds true column-wise. Further, let ψ1(x) and ψ2(x)
be a special pair of basis functions that correspond to the initial conditions

Ψ(0) = I (7.51)

Matrix Ψ(x) is then called the fundamental matrix of the system.
Any solution ψ̃(x) can be expressed as a linear combination of basis func-

tions ψ1(x), ψ2(x)
ψ̃(x) = Ψ(x) c (7.52)

where c is some constant column vector in C
2. Consequently, any solution

Ψ̃(x) of matrix equation (7.50) is linearly related to the fundamental matrix
Ψ(x):

Ψ̃(x) = Ψ(x)C (7.53)

where C is some time-independent 2× 2 matrix.
Let us now take into account the periodicity of the coefficients. It is clear

that translation of any solution by the spatial period x0 is also a solution.
In particular, Ψ̃(x) ≡ Ψ(x + x0) is a solution. As such, it must be linearly
related to the fundamental matrix by (7.53), i.e.

Ψ(x + x0) = Ψ(x)C (7.54)

Here (with a slight abuse of notation) matrix C is a particular instance of the
generic matrix C in (7.53). Setting x = 0 in (7.54) yields C = Ψ̃(0), because
Ψ(0) = I by the definition of the fundamental matrix. With this in mind, the
translated solution can now be expressed as

Ψ̃(x) ≡ Ψ(x + x0) = Ψ(x)Ψ(x0) (7.55)

At first glance, since the coefficients of the underlying equation are periodic,
one may want to look for two linearly independent solutions that would also
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be periodic with period x0. This quickly turns out to be a false trail. In fact,
even a single periodic solution in general does not exist. A trivial example is
the equation with constant coefficients y′′ − y = 0 that has only non-periodic
exponential solutions.

The “right” idea is to weaken the periodicity condition and look for
“scaled-periodic” solutions:

u(x + x0) = λu(x), ∀x ∈ R (7.56)

where λ is a yet undetermined parameter – possibly complex, even if the
equation itself is real. (Caution: “scaled-periodic” is not a standard term.
However, it is descriptive and intuitive enough to be adopted here.)

This condition can be written in an equivalent form if the solution is
“unscaled” by introducing

uPER(x) = λ−x/x0u(x) (7.57)

where subscript “PER” connotes periodicity (that will become obvious very
soon). In terms of uPER(x), condition (7.56) simplifies just to

uPER(x + x0) = uPER(x) ∀x ∈ R (7.58)

That is, function uPER(x) is periodic with the period x0. Returning to the
original function u(x), one obtains

u(x) = λx/x0 uPER(x), with uPER(x + x0) = uPER(x) ∀x ∈ R (7.59)

This result can be rewritten in a more conventional form by introducing a
new parameter KB such that λ = exp(−iKBx0):

u(x) = exp(−iKBx)uPER(x), with uPER(x + x0) = uPER(x) ∀x ∈ R

(7.60)
Subscript “B” is introduced in honor of Felix Bloch5 but will occasionally be
dropped if there is no possibility of confusion with other possible interpreta-
tions of symbol K.

The motivation for introducing the new parameter KB is that the most
interesting practical case occurs when |λ| = 1 and consequently KB is purely
real (see below). Then the complex exponential has a clear physical meaning
as a phase factor. In particular, exp(−iKBx0) is the phase shift over one lattice
cell.

Equation (7.60) represents a “scaled-periodic” solution u(x) as a product
of a periodic function and – for real KB – a traveling Bloch wave. Such waves
play a central role in the analysis of periodic structures. Note that in general
the wavelength 2π/KB corresponding to the exp(−iKBx) factor is different

5 Felix Bloch (1905–1983), Swiss-American physicist, 1952 Nobel Prize winner in
Physics; http://nobelprize.org/physics/laureates/1952/bloch-bio.html
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from the spatial period x0. Determining the connection between the two is
one of the objectives of the analysis.

To find the “scaled-periodic” function u(x), we first note that, as any solu-
tion, it can be expressed as a linear combination of the fundamental solutions
of the differential equation:

u(x) = Ψ(x) c (7.61)

with some coefficient vector c. The condition of scaled periodicity then is

Ψ(x + x0) c = λΨ(x) c (7.62)

or, with (7.55) in mind,

Ψ(x)Ψ(x0) c = λΨ(x) c (7.63)

The fundamental matrix Ψ(x) is nonsingular, and hence

Ψ(x0) c = λc (7.64)

Thus λ and c are an eigenvalue and a corresponding eigenvector of Ψ(x0).
The analysis is reversible and scaled-periodicity (7.56) can be deduced from
the eigenvalue condition (7.64).

While the eigenvalue problem of type (7.64) is general for linear ODE with
periodic coefficients, one feature of matrix Ψ(x0) is special for Hill’s equation:

det Ψ(x) = 1, ∀x ∈ R (7.65)

This result follows from the Abel–Liouville–Jacobi–Ostrogradskii identity for
the Wronskian; see e.g. E. Hairer et al. [HrW93], W. Walter [Wal98b]:

det W (x) = det W (0) exp
∫ x

0

Tr A(ξ) dξ (7.66)

This identity is valid for any linear system dxw = A(x)w; the columns of
matrix W (x) form a set of linearly independent solutions of this system; as a
reminder, the determinant of W is called the Wronskian.6

For Hill’s equation, matrix A is defined in (7.49) and has a zero diagonal;
hence Tr A = 0 and the Abel–Liouville–Jacobi–Ostrogradskii identity yields

det W (x) = det W (0)
6 Josef Hoëné de Wronski (1778–1853) proposed theories of everything in the

Universe based on properties of numbers, designed caterpillar-like vehicles in-
tended to replace railroad transportation, tried to square the circle, and at-
tempted to build both a perpetual motion machine and a device to predict the
future. He also studied infinite series whose coefficients are the determinants
now known as the Wronskians. http://en.wikipedia.org/wiki/Josef Wronski;
http://www.angelfire.com/scifi2/rsolecki/jozef maria hoene wronski.html
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In particular, for the fundamental matrix Ψ(x), since Ψ(0) = I by definition,
the determinant is equal to one for all x, as stipulated in (7.65).

It immediately follows that, for Hill’s equation, the characteristic polyno-
mial for Ψ(x0) is

λ2 − Tr Ψ(x0)λ + 1 = 0 (7.67)

and consequently
λ1λ2 = 1 (7.68)

where λ1,2 are the eigenvalues (or possibly one eigenvalue of multiplicity two)
of (7.64).

If the coefficients of the differential system, i.e. functions P (x) and Q(x),
are real, then matrix Ψ(x0) is real as well, and the eigenvalues of (7.67) can
either be real and reciprocal or, alternatively, complex conjugate and lying on
the unit circle.

The characteristic equation has solutions

λ1,2 =
1
2

(
Tr Ψ(x0) ±

√
Tr2 Ψ(x0) − 4

)
(7.69)

and hence the type of λ will depend on whether |Tr Ψ(x0)| is greater or less
than two, |Tr Ψ(x0)| = 2 being the borderline case.

If |Tr Ψ(x0)| > 2, the eigenvalues are real and the corresponding Bloch
parameter KB in (7.60) is purely imaginary. Equation (7.60) then shows a
trend of exponential increase of the solution for x →∞ or x → −∞ (depend-
ing on the sign of λ). If the differential equation describes the field behavior
in an infinite medium (the main subject of this chapter), such exponentially
growing solutions are deemed nonphysical.

In contrast, for |Tr Ψ(x0)| < 2 the eigenvalues are complex conjugate and
lie on the unit circle. This physically corresponds to solutions with a phase
change, but no amplitude change, over x0. Such solutions are called Bloch–
Floquet (or simply Bloch) waves and are central in the electromagnetic analy-
sis of periodic structures not only in 1D, but also in 2D and 3D (see subsequent
sections).

For the borderline case |Tr Ψ(x0)| = 2, with its subcases, the eigenproblem
is analyzed in detail by M.S.P. Eastham [Eas73]. The presentation below is
different from, but ultimately equivalent to, Eastham’s analysis. Instead of
the individual eigenmodes of (7.56), let us consider a pair of fundamental
solutions, with matrix Ψ(x) satisfying the “scaled-periodicity” relation (7.55):

Ψ(x + x0) = Ψ(x)Ψ(x0) (7.70)

where the scaling is effected by matrix Ψ(x0) rather than by parameter λ as in
the scalar case. This equation can now be “unscaled” by the matrix variable
change

ΨPER(x) = Ψ(x) [Ψ(x0)]
−x/x0 (7.71)
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This is conceptually similar to (7.57) and upon substitution into (7.70) shows
that ΨPER(x) is indeed periodic (as its subscript “PER” suggests):

ΨPER(x + x0) = ΨPER(x) (7.72)

Hence the matrix solution of Hill’s equation must have the form

Ψ(x) = ΨPER(x) [Ψ(x0)]
x/x0 (7.73)

where ΨPER(x) is x0-periodic.
Non-integer powers of matrices used in the expressions above need an

accurate definition. The best source of information on matrix functions (and
on matrix theory in general) is the monograph by F.R. Gantmakher [Gan59,
Gan88]. For the purposes of this section, we only need a few facts about matrix
functions.

Let matrix Ψ(x0) be represented in the Jordan form:

Ψ(x0) = SJS−1 (7.74)

where S is some transformation matrix. In general, J consists of blocks corre-
sponding to the eigenvalues of the matrix; for each eigenvalue λ of multiplicity
one, the corresponding “block” is just the diagonal element (1× 1-matrix) λ;
for each eigenvalue λ of multiplicity k, the corresponding k × k block con-
tains λ on the diagonal and ones on the upper subdiagonal,7 all other matrix
elements being zero.

For a 2 × 2-matrix like Ψ(x0) in Hill’s equation, the Jordan block is par-
ticularly simple. If the two eigenvalues are distinct, then

J = diag(λ1, λ2) (7.75)

For one eigenvalue λ of multiplicity two (and hence λ = ±1 due to (7.68))
the Jordan block can either still have the diagonal form (7.75) if two linearly
independent eigenvectors exist or, alternatively,

J =
(

λ 1
0 λ

)
, λ = ±1 (7.76)

Expression (7.73) for the fundamental matrix Ψ(x) includes the power
[Ψ(x0)]

x/x0 , which is

[Ψ(x0)]
x/x0 = SJx/x0S−1 (7.77)

where either
Jx/x0 = diag(λx/x0

1 , λ
x/x0
2 ) (7.78)

or
7 Or, alternatively, on the lower subdiagonal – it is a matter of convention.
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Jx/x0 =
(

λx/x0 x
x0

λx/x0−1

0 λx/x0

)
(7.79)

It is convenient to denote λ1,2 = exp(−iK1,2x0), where K is defined modulo
2π. In particular, K = 0 for λ = +1 and K = π/x0 for λ = −1. Upon
substitution into the main equation (7.73) for the fundamental matrix, one
obtains in the case of distinct eigenvalues λ1,2

Ψ(x)S = ΨPER(x)S diag (exp(−iK1x), exp(−iK2x)) (7.80)

and for λ of multiplicity two

Ψ(x)S = exp(−iKx)ΨPER(x)S

(
1 x

x0
exp(iKx0)

0 1

)
(7.81)

The columns of matrix Φ(x) ≡ Ψ(x)S, being linear combinations of the
columns of Ψ(x), form a pair of linearly independent solutions of Hill’s
equation. In the right hand sides of (7.80) and (7.81), matrix ΦPER(x) ≡
ΨPER(x)S is x0-periodic (since S is constant).

Thus we have found a matrix solution Φ(x) representable either as

Φ(x) = ΦPER(x)
(

exp(−iK1x) 0
0 exp(−iK2x)

)
(7.82)

or, alternatively, as

Φ(x) = exp(−iKx)ΦPER(x)
(

1 x
x0

exp(iKx0)
0 1

)
(7.83)

In the diagonal case (7.82), both columns of Φ(x) are seen to be products of
a periodic function and a complex exponential exp(−iK1,2x). For the Jordan
form (7.83), the first column is a completely analogous product, but the second
column is more complicated:

ψ2 = exp(−iKx)
(

φ1,PER +
x

x0
φ2,PER

)
, K = 0 or πx−1

0 (7.84)

This solution is periodic for K = 0 and antiperiodic for K = πx−1
0 . Eastham

derives this in a different way [Eas73].
We now consider two examples of second-order equations with periodic

coefficients: one illustrates a possible peculiar behavior of the solutions in
both real and Fourier spaces; and the second one is key to understanding
multilayered optical structures and photonic crystals, as discussed in Sections
7.5, 7.8.

Example 25. Equation

u′′(x) + exp(iκ0x)u(x) = 0; κ0 = 2πx−1
0 (7.85)
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is an interesting illustrative case. Although the periodic coefficient is complex,
much of the analysis above is still applicable.

Let us first assume that solution u(x) has a valid Fourier transform U(k) at
least in the sense of distributions (a discrete spectrum is viewed as a particular
case of a continuous spectrum – a set of Dirac delta-functions at some frequen-
cies; see Appendix 6.15, p. 343). Since multiplication by exp(iκ0x) amounts
simply to a spatial frequency shift in the Fourier domain, and the second
derivative translates into multiplication by −k2, equation (7.85) becomes

−k2U(k) + U(k − κ0) = 0 (7.86)

Viewing this as a recursion relation

U(k − κ0) = k2U(k) (7.87)

one observes that the sequence of values U(k − κ0), U(k − 2κ0), U(k − 3κ0),
. . . , will generally be unbounded, with rapidly growing magnitudes. There is
only one exception: this backward recursion gets terminated if k = nκ0 for
some positive integer n. Then U(−κ0) = U(−2κ0) = . . . = 0 due to (7.87).

In this exceptional case, the spectrum is discrete, with some values Un

at spatial frequencies kn = nκ0 (n = 0,1, . . .). Normalizing U0 to unity and
reversing recursion (7.87) to get

Un+1 =
Un

κ2
0 (n + 1)2

(7.88)

one obtains
Un =

1
(n!κn

0 )2
(7.89)

Hence one solution is expressed via the Fourier series

u(x) =
∞∑

n=0

1
(n!κn

0 )2
exp(inκ0x) (7.90)

Indeed, due to the presence of factorials in the denominators in (7.90), the
Fourier series and its derivatives are uniformly convergent, so it is legal to
differentiate the series and verify that its sum satisfies the original equation
(7.85).

This Fourier series solution is obviously periodic with the period x0. What
about a second linearly independent solution? From the Fourier analysis
above, it is clear that the second solution cannot have a valid Fourier trans-
form. More specifically, it has to have the form (7.84).

The following numerical results for x0 = 1 (κ0 = 2π) illustrate the behavior
of the solutions. The fundamental system ψ1,2 was computed by high-order
Runge–Kutta methods (see Section 2.4.1 on p. 20) for equation (7.85). (Matlab
function ode45 was used, with the relative and absolute tolerances of 10−10.)
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Fig. 7.1. The real part of the first fundamental solution for the example equation
with a complex periodic coefficient.

For ψ1, the initial conditions are ψ1(0) = 1, dtψ1(0) = 0; for ψ2, ψ2(0) = 0
and dtψ2(0) = 1. The real and imaginary parts of these functions are plotted
in Figs. 7.1–7.4 for reference. The governing matrix Ψ(x0) comprising the
values of these solutions at x0 = 1, is, with six digits of accuracy,

Ψ(x0) ≈
(

1− 0.165288i 1.051632
0.0259787 1 + 0.165288i

)
(7.91)

Matrix Ψ(x0) has a double eigenvalue of one, which numerically also holds
with six digits of accuracy.

The Fourier series solution (7.90) of the original equation (7.85) is a linear
combination of ψ1,2 with the coefficients 1.025491 and 0.161179i. One way of
finding this coefficient vector is to solve the linear system with matrix Ψ(x0)
and the right hand side vector containing the values of the Fourier series
solution and its derivative at x = x0 (=1). This right hand side is (1.025491,
0.161179i)T – not coincidentally, identical with the coefficient vector above, as
both of them are nothing other than the eigenvector of Ψ(x0) corresponding
to the unit eigenvalue.

Example 26. We now turn to a case that is directly applicable to 1D-periodic
multilayered structures in photonics. Consider a layered structure with
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Fig. 7.2. The imaginary part of the first fundamental solution for the example
equation with a complex periodic coefficient.

alternating electromagnetic material parameters ε1, µ1 and ε2, µ2 (Fig. 7.5).
Let us focus on normal incidence (direction of propagation k perpendicular
to the slabs); oblique incidence does not create any substantial difficulties. As
theory prescribes, we first find the fundamental solutions and compute the
transfer matrix Ψ(x0). However, since the coefficients of the underlying differ-
ential equation are now discontinuous, the equation should be treated in the
weak form or, equivalently, the proper boundary conditions at the material
interfaces should be imposed:

E1(d1) = E2(d1); µ−1
1 E′

1(d1) = µ−1
2 E′

2(d1) at the interface x = d1 (7.92)

where the origin (x = 0) is assumed to be at the left edge of the layer of
thickness d1. Similar conditions hold at x = d1 + d2 and all other interfaces.

The general solution of the differential equation within layer 1 is

E1(x) = E0 cos(k1x) + k−1
1 E′

0 sin(k1x), k1 = ω(µ1ε1)
1
2 (7.93)

where the prime denotes x-derivatives and the coefficients E0 and E′
0 are equal

to the values of E1 and its derivative, respectively, at x = 0.
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Fig. 7.3. The real part of the second fundamental solution for the example equation
with a complex periodic coefficient.

We shall now “propagate” this solution through layers 1 and 2, with the
final goal of obtaining the transfer matrix once the solution is evaluated over
the whole period x0 = d1 + d2.

First, we “follow” the solution to the interface between the layers, where
it becomes

E1(d1) = E0 cos(k1d1) + k−1
1 E′

0 sin(k1d1) (7.94)

and its derivative, one the side of layer 1, is

E′
1(d1) = − k1E0 sin(k1d1) + E′

0 cos(k1d1) (7.95)

Due to the interface boundary condition, the electric field and its derivative
at x = d1 in the second layer are

E2(d1) = E1(d1) = E0 cos(k1d1) + k−1
1 E′

0 sin(k1d1) (7.96)

E′
2(d1) =

µ2

µ1
E′

1(d1) = − k1
µ2

µ1
[E0 sin(k1d1) + E′

0 cos(k1d1)] (7.97)

Repeating this calculation for the second layer, with the “starting” values of
the field and its derivative defined by (7.96), (7.97), one obtains the general
solution just beyond the second layer at x = (d1 + d2)+0. (Subscript “+0”
indicates the limiting value from the right.)
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Fig. 7.4. The imaginary part of the second fundamental solution for the example
equation with a complex periodic coefficient.

Fig. 7.5. An electromagnetic wave traveling through a multilayered 1D structure
with normal incidence.
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The first fundamental solution is obtained by setting E0 = 1, E′
0 = 0 and

the second one by setting E0 = 0, E′
0 = 1. The transfer matrix Ψ(d1 +d2) has

these two solutions as its columns and is calculated to be

Ψ11(d1 + d2)+0 = cos(k1d1) cos(k2d2) −
k1µ2

k2µ1
sin(k1d1) sin(k2d2) (7.98)

Ψ12(d1 + d2)+0 =
sin(k1d1) cos(k2d2)

k1
+

µ2 cos(k1d1) sin(k2d2)
µ1k2

(7.99)

Ψ21(d1 + d2)+0 = − µ1k2

µ2
cos(k1d1) sin(k2d2) − k1 sin(k1d1) cos(k2d2)

(7.100)

Ψ22(d1 +d2)+0 = − µ1k2

µ2k1
sin(k1d1) sin(k2d2) + cos(k1d1) cos(k2d2) (7.101)

The theoretical analysis in this section has shown that the nature of “scaled-
periodic” solutions depends on the trace of Ψ(d1 + d2):

Tr Ψ(d1+d2) = 2 cos(k1d1) cos(k2d2) −
(

k1µ2

k2µ1
+

k2µ1

k1µ2

)
sin(k1d1) sin(k2d2)

(7.102)
This result is well known in optics – see e.g. J. Li et al. [LZCS03], I.V. Shadrivov
et al. [SSK05], P. Yeh [Yeh05]. In the literature, equation (7.102) is derived in
a somewhat different, but ultimately equivalent, way.

Numerical illustration. In the periodic structure of Fig. 7.5, assume
that the widths of the layers are equal and normalized to unity, d1 = d2 = 1;
materials are nonmagnetic (relative permeabilities µ1 = µ2 = 1); the relative
dielectric constants are chosen as ε1 = 1, ε2 = 5.

For any given frequency ω, we can then calculate the trace of the transfer
matrix by (7.102), with k1,2 = ωc−1(µ1,2ε1,2)1/2. This trace is plotted in
Fig. 7.6. (The speed of light in free space is for simplicity normalized to one by
a suitable choice of units.) As we have seen earlier in this section, propagating
waves cannot exist in the infinite structure if the absolute value of the matrix
trace exceeds two; the corresponding frequency gaps are shaded in Fig. 7.6.

The eigenvalues λ1,2 of the Floquet problem are related to the matrix
trace via (7.69). The absolute values of these roots are shown in Fig. 7.7. The
bandgaps correspond to the real values of the roots (one of which is greater
than one and the other one is less than one).

Within the pass bands, the roots lie on the unit circle:λ1,2 =exp(−iK1,2x0),
with the Bloch wavenumber K purely real (and defined modulo 2π). It is the
relationship between this wavenumber and frequency that characterizes the
bandgap structure. The plot of K vs. ω for our numerical example is shown
in Fig. 7.8. It is customary, however, to rotate this plot: the wavenumber is
displayed on the horizontal axis and frequency on the vertical one (Fig. 7.9).
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Fig. 7.6. The trace of the transfer matrix as a function of frequency. Periodic
structure with d1 = d2 = 1; µ1 = µ2; ε1 = 1, ε2 = 5. Shaded areas indicate photonic
bandgaps.

Fig. 7.7. Absolute values of the characteristic Floquet roots as a function of fre-
quency. Periodic structure with d1 = d2 = 1; µ1 = µ2 = 1; ε1 = 1, ε2 = 5. Ranges
with |λ1,2| �= 1 are photonic bandgaps.
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Fig. 7.8. The Bloch wavenumber as a function of frequency. Periodic structure with
d1 = d2 = 1; µ1 = µ2 = 1; ε1 = 1, ε2 = 5. Shaded areas indicate photonic bandgaps.

Fig. 7.9. The bandgap structure: frequency vs. Bloch wavenumber. Periodic struc-
ture with d1 = d2 = 1; µ1 = µ2 = 1; ε1 = 1, ε2 = 5. Shaded areas indicate photonic
bandgaps.
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7.5 Band Structure by Fourier Analysis (Plane Wave
Expansion) in 1D

The fundamental matrix that played a central role in Section 7.4 is more im-
portant for theoretical analysis than for practical computation, as it contains
analytical solutions that may be complicated or unavailable. In particular, the
approach cannot be extended to two and three dimensions, where infinitely
many independent solutions exist and are usually not available analytically.

Fourier analysis (Plane Wave Expansion, PWE) is the most common prac-
tical alternative for analyzing and computing the band structure in any num-
ber of dimensions. The 1D case is considered in this section, and 2D–3D
computation is taken up later in this chapter.

For simplicity of exposition, let us assume a lossless nonmagnetic periodic
medium, where the electric field E = Ey(x) is governed by the wave equation

E′′(x) + ω2µ0ε(x)E(x) = 0 (7.103)

Here ε is assumed to be a x0-periodic function. We are looking for a solution
in the form of the Bloch–Floquet wave

E(x) = EPER(x) exp(−iKBx) (7.104)

where EPER(x) is a x0-periodic function and KB is the Bloch wavenumber.
Both EPER(x) and KB are a priori unknown and need to be determined.

In Fourier space, EPER(x) is given by its Fourier series with coefficients
em (m = 0,±1,±2, . . .)

E(x) =
∞∑

m=−∞
em exp(imκ0x) exp(−iKBx), κ0 =

2π

x0
(7.105)

Similarly, ε is expressed via a Fourier series with coefficients εm:

ε(x) =
∞∑

m=−∞
εm exp(imκ0x) (7.106)

The Fourier coefficients em are given by the usual integral expressions

em = x−1
0

∫
x0

EPER(x) exp(−imκ0x) dx (7.107)

where the integration is over any period of length x0.
Now we are in a position to Fourier-transform the wave equation (7.103).

In Fourier space, multiplication ε(x)E(x) (i.e. multiplication of the Fourier
series (7.105) and (7.106)) turns into convolution and the problem becomes

K2e = ω2µ0 Ξe (7.108)
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Here e = (. . . , e−2, e−1, e0, e1, e2, . . .)T is the (infinite) column vector of
Fourier coefficients of the field; K is an infinite diagonal matrix with the
entries km = KB − κ0m, or equivalently

K = KBI − κ0N, (7.109)

where I is the identity matrix and

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . .

. . . − 2 . . . . . . . . . . . . . . .

. . . . . . − 1 . . . . . . . . . . . .

. . . . . . . . . 0 . . . . . . . . .

. . . . . . . . . . . . 1 . . . . . .

. . . . . . . . . . . . . . . 2 . . .

. . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.110)

Finally, matrix Ξ in (7.108) is composed of the Fourier coefficients of ε:

Ξml = εm−l (7.111)

for any row m and column l (−∞ < m, l < ∞).
The infinite-dimensional eigenproblem (7.108) must in practice be trun-

cated to a finite number of harmonics. The computational trade-off is clear: as
the number of harmonics grows, both computational complexity and accuracy
increase.

Example 27. Volume grating. This problem is briefly stated in L.I. Mandelsh-
tam’s paper [Man45] and will be of even greater interest to us in the context
of backward waves and negative refraction (Section 7.13). Consider a vol-
ume grating characterized by a sinusoidally changing permittivity of the form
ε(x) = ε1 + ε2 cos(2πx/x0), with some parameters ε1 > ε2 > 0, x0 > 0.

As a numerical example, let ε1 = 2, ε2 = 1, x0 = 1, so that the permittivity
and its Fourier decomposition are

ε(x) = 2 + cos 2πx = 2 +
1
2

exp(i2πx) +
1
2

exp(−i2πx)

Thus ε has only three nonzero Fourier coefficients: ε±1 = 1/2, ε0 = 2. (The
permittivity of free space is not used in this example, so there should be no
confusion with the Fourier coefficient ε0.)

The eigenvalue problem (7.108), with the magnetic permeability normal-
ized to unity for simplicity, is

K2e = ω2Ξ e (7.112)

The diagonal matrix K2 has entries

K2
m = (KB − 2πm)2, m = 0,±1,±2, . . .



7.5 Band Structure by Fourier Analysis (Plane Wave Expansion) in 1D 377

and matrix Ξ is tridiagonal, with the entries in the m-th row equal to

Ξm,m = ε0 = 2; Ξm±1,m = ε±1 =
1
2

For any given value of the Bloch parameter KB , numerical solution can be
obtained by truncating the infinite system to the algebraic eigenvalue problem
with 2M + 1 equations (m = −M,−M + 1, . . . M − 1,M).

The first four dispersion curves ω(KB) are shown in Fig. 7.10; there are two
frequency bandgaps in the figure, approximately [1.98, 2.55] and [4.40, 4.68],
and infinitely many more gaps beyond the range of the chart. The numerical
results are plotted for 41 equally spaced values of the normalized Bloch number
KBx0/π in [−1, 1]. There is no appreciable difference between the numerical
results for M = 5 (11 equations) and M = 20 (41 equations). The high
accuracy of the eigenfrequencies for a small number of plane waves in the
expansion is due to the smooth variation of the permittivity. Discontinuities
in ε would require a much higher number of harmonics (Section 7.9.3).

Fig. 7.10. The bandgap structure for the volume grating with ε(x) = 2+cos 2πx.
Solid line – M = 5 (2 × 5 + 1 = 11 plane waves); circles – M = 20 (2 × 20 + 1 = 41
plane waves).

In addition to the eigenvalues ω2 of (7.112), the eigenvectors e are also
of interest. As an example, let us set KBx0 = π/10. Stem plots of the four
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eigenvectors corresponding to the four smallest eigenvalues ω2 ≈ 0.049, 18.29,
23.12 and 77.83, are shown in Fig. 7.11. The first Bloch wave in Fig. 7.11(a)
is almost a plane wave; the amplitudes of all harmonics other than e0 are
very small (but not zero, as it might appear from the figure); for example,
e−1 ≈ 0.00057, e1 ≈ 0.00069.

(a) (b)

(d)(c)

Fig. 7.11. The amplitudes of the plane wave components of the first four Bloch
waves (a)–(d) for the volume grating with ε(x) = 2 + cos 2πx. Solution with 41
plane waves. KBx0 = π/10.

It is interesting to note that dispersion curves with positive and negative
slopes ∂ω/∂KB (i.e. positive and negative group velocity) alternate in the
diagram. Group velocity is positive for the lowest-frequency curve ω1(KB),
negative for ω2(KB), positive again for ω3(KB), etc. This interesting issue will
be further discussed in the context of backward waves and negative refraction
(p. 461).
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7.6 Characteristics of Bloch Waves

7.6.1 Fourier Harmonics of Bloch Waves

For analysis and physical interpretation of the properties of Bloch waves (7.60)
– in particular, energy flow and the meaning of phase velocity – it is convenient
to view these waves as a suite of (spatial) Fourier harmonics. The ideas are
most easily explained in the 1D case but will be extended to 2D and 3D in
subsequent sections. A very helpful reference is the paper by B. Lombardet et
al. [LDFH05].

Consider one more time the Bloch wave

E(x) = EPER(x) exp(−iKBx) (7.113)

As before, subscript “PER” indicates a spatially periodic function with a given
period x0. Expressing this periodic function via its Fourier series, one obtains

E(x) =
∞∑

m=−∞
em exp(imκ0x) exp(−iKBx), κ0 = 2πx−1

0 (7.114)

The Fourier decomposition (7.114) of E(x) has a clear physical interpre-
tation as a superposition of plane waves Em:

E(x) =
∞∑

m=−∞
Em(x), Em(x) ≡ em exp(−ikmx), km ≡ KB −mκ0

(7.115)
Let us assume µ = const, as the analysis in this important practical case
simplifies. At optical frequencies, one may assume µ = µ0 (L.D. Landau and
E.M. Lifshitz [LL84], §60).8 Then the above expression for E(x) leads, via
the Maxwell ∇×E equation, to a similar decomposition of the magnetic field
H ≡ Hz:

H(x) = − 1
iωµ

∂E

∂x
= − 1

iωµ

∞∑
m=−∞

(−ikm) em exp(−ikmx)

=
∞∑

m=−∞

km

ωµ
em exp(−ikmx) (7.116)

It is important to note from the outset, as Lombardet et al. do in [LDFH05],
that the individual plane-wave components of the electromagnetic Bloch wave
do not satisfy Maxwell’s equations in the periodic medium and therefore do
not represent physical fields. Only taken together do these Fourier harmonics
form a valid electromagnetic field.
8 Artificial magnetism can be created in periodic dielectric structures at optical

frequencies (Section 7.13, W. Cai et al. [CCY+07], S. Linden et al. [LED+06]).
The equivalent “mesoscopic” permeability may then be different from µ0, but the
intrinsic microscopic permeability of the materials involved is still µ0.
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7.6.2 Fourier Harmonics and the Poynting Vector

Consider now the Fourier decomposition of the time-averaged Poynting vector
(power flow) P = Re{E × H∗}/2. In the 1D case this vector has only one
component P = Px

P (x) =
1
2

Re{E(x)H∗(x)} (7.117)

In Fourier space, the product EH∗ turns into convolution-like summation. The
expression simplifies for lossless materials (ε real) because then the Poynting
vector must be constant and pointwise values P (x) are obviously equal to the
spatial average 〈P 〉. This average value over one period of the structure is
easy to find due to the orthogonality of Bloch harmonics ψm = exp(−ikmx)
(km = KB −mκ0):

(ψm, ψl) ≡
∫

x0

ψmψ∗
l dx =

∫
x0

exp(−ikmx) exp(iklx) dx

=
∫

x0

exp[i(l −m)κ0x] dx = 0

The last equality represents orthogonality of the standard Fourier harmon-
ics over one period. The Bloch harmonics have the same property because
the exp(−iKBx) factor in one term of the integrand is canceled by the
exp(+iKBx) factor in the other, complex conjugate, term. (This is true for
lossless media when the Bloch wavenumber KB is purely real.)

Parseval’s theorem then allows us to rewrite the Poynting vector of the
Bloch wave (7.117), in the lossless case, as the sum of the the Poynting vectors
of the individual plane waves:

P =
∞∑

m=−∞
Pm; Pm =

km

2ωµ
|em|2, m = 0,±1,±2, . . . (7.118)

In 2D and 3D, an analogous identity holds true for the time-space averaged
Poynting vector (B. Lombardet et al. [LDFH05]) – again, due to the orthog-
onality of the Fourier harmonics. In 1D, the Poynting vector is constant and
hence the spatial averaging is redundant.

7.6.3 Bloch Waves and Group Velocity

For the same reason as in homogeneous media (Section 7.3.3, p. 358), one may
anticipate a connection between the Poynting vector, group and energy veloc-
ities of Bloch waves. The Poynting vector and group velocity are associated
with energy flow and signal (information) transfer, respectively.

One can define group velocity in essentially the same way as for waves in
homogeneous media:

vg =
∂ω

∂KB
(7.119)
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KB being the Bloch wavenumber. Recall that KB generates a whole “comb”
of wavenumbers KB −mκ0, where m is an arbitrary integer and κ0 = 2π/x0.
Since any two numbers in the comb differ by a constant independent of KB ,
differentiation in (7.119) can in fact be performed with respect to any of the
comb values KB − mκ0. Loosely speaking, the group velocities of all plane
wave components of the Bloch wave are the same. (“Loosely” – because these
components do not exist separately as valid physical waves in the periodic
medium, and therefore their group velocities are mathematical but arguably
not physical quantities.)

To see that this definition of group velocity bears more than superficial
similarity to the same notion for homogeneous media, we need to demonstrate
that vg in (7.119) is in fact related to signal velocity. To this end, let us
follow the analysis in Section 7.3.2 on p. 355. We shall again consider, as a
characteristic case, a pointwise source that produces amplitude modulation
with a low-frequency waveform E(0, t) at x = 0 (7.31):

E(0, t) = E(0, t) exp(iω0t) (7.120)

In a homogeneous medium, each frequency component of this source gives rise
to a plane wave, which leads to expression (7.33) (p. 356) for the field at an
arbitrary location x > 0. In the periodic medium, plane waves are replaced
with Bloch waves, so that in lieu of (7.33) one has

E(x, t) =
∫ ∞

−∞
Ê(0, ω− ω0)EPER(x, ω) exp[−iKB(ω)x] exp(iωt) dω (7.121)

where EPER(x, ω) is the space-periodic factor in the Bloch wave normalized
for convenience to unity at x = 0. Of the two possible Bloch waves, equation
(7.121) contains the one with the Poynting vector (energy flow) in the +x-
direction. The respective low-frequency “signal” E(x, t) is

E(x, t) = E(x, t) exp(−iω0t) =
∫ ∞

−∞
Ê(0, ω′)EPER(x, ω′) exp[−iKB(ω′)x] dω′

(7.122)
with

ω′ ≡ ω − ω0

The velocity of this signal can again be found by setting the differential dE(x, t)
to zero. This velocity is the ratio of partial differentials of E(x, t) with respect
to t and x. For homogeneous media, these partial derivatives are given by ex-
pressions (7.35) and (7.36) on p. 357. For Bloch waves, due to the dependence
of EPER on x, the x-derivative acquires an additional (and unwanted) term∫ ∞

−∞
Ê(0, ω′)

∂EPER(x, ω′)
∂x

exp[−iKB(ω′)x] dω′

This field contains rapidly oscillating spatial components:
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∂EPER(x, ω′)
∂x

= iκ0

∞∑
m=−∞

emm exp(imκ0x)

A useful “macroscale” signal can be defined in a natural way as the average
of this field over the lattice cell. For the m-th spatial harmonic this average is

x−1
0

∫
x0

∂

∂x
[em exp(imκ0x)] exp(−iKBx) dx = emκ0

exp(−iKBx0)− 1
2π −KBx0/m

This term is small under the additional constraint KBx0 � 1 – that is, if
the Bloch wavelength 2π/KB is much greater than the lattice size x0. In that
case, the analysis on p. 357 remains essentially unchanged and leads to the
familiar expression for group velocity (7.119). Other reservations discussed on
p. 357 in connection with signal velocity (7.37) must also be borne in mind.

7.6.4 Energy Velocity for Bloch Waves

This section shows that group velocity, as defined in (7.119), is equal to en-
ergy velocity for lossless nonmagnetic periodic media without dispersion. An
alternative proof, but with a heavy dose of vector calculus, can be found in
P. Yeh’s paper [Yeh79] (1979).

This section builds up on the material of Section 7.5 (p. 375). The famil-
iar equation for the electric field E = Ey(x) in 1D is reproduced here for
convenience:

E′′(x) + ω2µ0ε(x)E(x) = 0 (7.123)

where ε is an x0-periodic function. If E(x) is a Bloch–Floquet wave, i.e.
it satisfies the scaled-periodic boundary conditions with the Bloch factor
exp(−iKBx0) over the spatial period, an essential energy identity can be ob-
tained from (7.123) by inner-multiplication with E and integration by parts:

1
ω2µ0

(E′, E′) = (εE, E)

The boundary terms in the integration by parts have canceled due to the
boundary conditions. Now, from Maxwell’s equations, H = E′/(−iωµ0), and
therefore

(µ0H, H) = (εE, E) (7.124)

That is, the spatial averages of quasi-static magnetic and electric energies
of the Bloch wave are equal. Note, however, that for dispersive media these
quasi-static values constitute only part of the full electromagnetic energy; see
equation (7.44) on p. 359.

In Fourier space, the eigenproblem given by (7.108)

K2e = ω2µ0Ξe
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forms a basis for the plane wave method. For notation and details, see Sec-
tion 7.5.

It will be convenient to rewrite the eigenvalue problem in the Galerkin
form by inner-multiplying the equation with an arbitrary vector9 e′:

(K2e, e′) = ω2µ0 (Ξe, e′) (7.125)

To find the group velocity, we write the variation of this Galerkin equation
for a small change δKB and the respective variation δω2. The eigenvector e
also depends on KB and ω and is also subject to the variation. However, the
variation of e is irrelevant for the analysis.

Indeed, in the eigenvalue problem one may scale the eigenvector arbitrarily.
A convenient normalization is (for KB �= 0)

(K2e, e) = 1

and concomitantly

(Ξe, e) =
1

ω2µ0
= const

This implies that the variation δe is K2- and Ξ-orthogonal to e:

(K2e, δe) = (Ξe, δe) = 0

This generalized orthogonality eliminates all (first-order) terms with δe in the
variation of the Galerkin equation (7.125). This variation, then, for e′ = e is

2κ0 δKB (Ne, e) = δω2 µ0 (Ξe, e) (7.126)

Now we can examine the expression for the group velocity:

vg =
∂ω

∂KB
=

∂ω2

2ω ∂KB
=

κ0 (Ne, e)
ωµ0 (Ξe, e)

(7.127)

What remains to be done is to link the numerator of this expression to the
Poynting vector and the denominator to the energy of the field. For the spatial
average of the Poynting vector we have

〈P 〉 =
1
2

Re x−1
0

∫
x0

EH∗dx =
1
2

Re x−1
0

∫
x0

E
1

iωµ0
E∗′dx

=
1
2

Re
1

iωµ0x0

∫
x0

EE∗′dx =
1
2

Re
1

ωµ0
(κ0Ne, e)

The last equality follows from Plancherel’s theorem; we also used the fact
that differentiation of the m-th harmonic translates into multiplication with
9 All vectors are infinite-dimensional, and it is tacitly assumed that their compo-

nents decay rapidly enough, so that all infinite algebraic sums make mathematical
sense.
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iκ0m in Fourier space. The Bloch exponentials have again canceled out in the
products of complex variables with their conjugates.

This connects the time-space averaged Poynting vector with the numerator
of (7.127). For the denominator, Plancherel’s Theorem gives

(Ξe, e) = x−1
0

∫
x0

ε|E|2 dx

which is proportional to the (quasi-static) energy of the electric field.
Putting the numerator and denominator together and noting that the

electric and magnetic energies in the non-dispersive case are equal due to
(7.124), one obtains the final result similar to the one for a dispersive but
homogeneous medium (7.43), p. 359:

vg =
〈P 〉
〈W 〉 ≡ vE (7.128)

where 〈W 〉 is the average electromagnetic energy of the Bloch wave in a lossless
medium without dispersion. The physical interpretation of this identity is that
energy is transferred through the periodic medium with group velocity.

7.7 Two-Dimensional Problems of Wave Propagation

Time-harmonic Maxwell’s equations simplify significantly if the fields do not
depend on one of the Cartesian coordinates – say, on z – and if there is no
coupling in the material parameters between that coordinate and the other
two (i.e. εxz = 0, etc.) Upon writing out field equations (7.15) and (7.16) in
Cartesian coordinates, one observes that they break up into two decoupled
systems. The first system involves Ez, Hx and Hy and for isotropic materials
(scalar ε = ε(x, y), µ = µ(x, y)) has the form

∂yEz = −iωµHx (7.129)
−∂xEz = −iωµHy (7.130)

∂xHy − ∂yHx = iωεEz (7.131)

It is well known that the magnetic field can be eliminated from this set of
equations, with the Helmholtz equation resulting for Ez. Indeed, multiplying
the first two equations by µ−1 and differentiating, we get

∂y(µ−1∂yEz) = −iω∂yHx (7.132)
−∂x(µ−1∂xEz) = −iω∂xHy (7.133)

The difference of these two equations, with (7.131) in mind, leads to

∇ · (µ−1∇Ez) + ω2εEz = 0 (7.134)
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In the special but important case of constant µ, this becomes

∇2Ez + k2Ez = 0, with k2 = ω2µε, µ = const (7.135)

The complementary equation for the triple Hz, Ex and Ey is, quite analo-
gously,

∇ · (ε−1∇Hz) + ω2µHz = 0 (7.136)

which for constant ε simplifies to

∇2Hz + k2Hz = 0, with k2 = ω2µε, ε = const (7.137)

The two decoupled solutions (Ez,Hx,Hy) and (Hz, Ex, Ey) are called TE and
TM modes, respectively. Or rather, TM and TE modes, respectively.

There is regrettable ambiguity in the terminology used by different engi-
neering and research communities. The “T” in “TE” and “TM” stands for
“transverse,” meaning, according to the dictionary definition, “in a crosswise
direction; at right angles to the long axis”. So, the electric field in a TE mode
and the magnetic field in a TM mode are transverse... to what? In waveguide
applications, they are transverse to the longitudinal axis of the guide; a TM
mode in the guide thus lacks the Hz component of the magnetic field and
is described by equation (7.135) for the E -field.10 However, for 2D-periodic
structures in photonics applications (photonic crystals), the same equation
(7.135) describes the electric field that is “transverse” to the cross-section of
the crystal and therefore some authors call it a TE mode. Others refer to the
same field as a TM mode by analogy with waveguides.

Thus the E-field equation may wind up identifying either a TE or TM
mode, depending on the application and one’s point of view. Table 7.1 illus-
trates the terminological differences.

Only one E-component
present

One E-component absent Only one H-component
present

I.V. Shadrivov et al.
[SSK05]; T. Fujisawa
& M. Koshiba [FK04];
A. Ishimaru et al. [ITJ05]

J.A. Stratton [Str41];
R.S. Elliott [Ell93];
R.F. Harrington [Har01];
A.F. Peterson, S.L. Ray &
R. Mittra [PRM98]

G. Shvets & Y.A. Urzhu-
mov [SU04]; S.G. John-
son & J.D. Joannopoulos
[JJ01]; S. Yamada et al.
[YWK+02]; R. Meisels et
al. [MGKH06]

Table 7.1. Definitions of the TE mode may differ.

10 In waveguides, even though some field components may be zero, the fields in
general depend on all three coordinates, and hence the Laplacian operator in
field equations should be interpreted as ∇2 = ∂2

x + ∂2
y + ∂2

z . If the field does
not depend on z, as in many 2D problems in photonics, the z-derivative in the
Laplacian disappears.



386 7 Applications in Nano-Photonics

Furthermore, in optics the waves with only one component of the electric
field (perpendicular to the plane of incidence) are referred to as s-waves (or
s-polarized); waves with only one H-component are p-waves.

From the computational (as well as analytical) perspective, fields with only
one Cartesian component are of particular interest, as equations for these
fields are scalar and thus much easier to deal with than the more general
vector equations. With this in mind, in the remainder of this chapter I shall
simply call waves with one E component E -waves (or E -modes); H -waves
have a similar definition. It is hoped that the reader will find this convention
straightforward and unambiguous.

7.8 Photonic Bandgap in Two Dimensions

In 2D and especially in 3D periodic structures, the bandgap phenomenon is
much richer, and more difficult to analyze, than in 1D (Section 7.4). The
Bloch wavenumber, scalar in 1D, becomes a wave vector in 2D and 3D, as
the Bloch–Floquet wave can travel in different directions. Moreover, electro-
magnetic wave propagation in general depends on polarization – i.e. on the
direction of the E vector in the wave; this adds one more degree of freedom
to the analysis.

For each direction of propagation and for each polarization, there may
exist a forbidden frequency range – a bandgap – where the corresponding
Bloch wavenumber KB is imaginary and hence no propagating modes exist.
If these bandgaps happen to overlap for all directions of propagation and
for both polarizations, so that no Bloch waves can travel in any direction, a
complete bandgap is said to exist.

Let us consider a photonic crystal example that is general enough to con-
tain many essential features of the two-dimensional problem. A square cell of
the crystal, of size a×a, contains a dielectric rod with radius rrod and the rel-
ative dielectric permittivity εrod (Fig. 7.12). The medium outside the rod has
permittivity εout. All media are nonmagnetic. The crystal lattice is obtained
by periodically replicating the cell infinitely many times in both coordinate
directions.

In the Fourier space of Bloch vectors K, the corresponding “master” cell
– called the first Brillouin zone11 – is [−π/a, π/a] × [−π/a, π/a] (Fig. 7.13).
This zone can also be periodically replicated infinitely many times in both Kx

and Ky directions to produce a reciprocal (i.e. Fourier space) lattice. However,
all possible Bloch waves EPER exp(−iK · r) are already accounted for in the
first Brillouin zone. Indeed, adding 2π/a to, say, Kx introduces just a periodic
factor exp(−i2πx/a), with period a, that can as well be “absorbed” into the
periodic Bloch component EPER(x, y).

Standard notation for some special points in the first Brillouin zone is
shown in Fig. 7.13. The Γ point is K = 0; the X point is K = [π/a, 0]; the M

11 Léon N. Brillouin, 1889–1969, an outstanding French and American physicist.
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Fig. 7.12. A square cell of a photonic crystal lattice. The (infinite) crystal is an
array of dielectric rods obtained by periodic replication of the cell in both coordinate
directions.

point is K = [π/a, π/a]; ∆ is a generic point on ΓX (i.e. with Ky = 0); and
Σ is a generic point on ΓM .

Fig. 7.13. The first Brillouin zone for the square photonic crystal lattice.

The problem can now be formulated as follows. First, the E-mode (one
component of the electric field E = Ez) is described by equation (7.135),
repeated here for easy reference:

∇2E + ω2µεE = 0, for µ = const (7.138)

where the E-field is sought as a Bloch wave with a (yet undetermined) wave
vector K:
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E(r) = EPER(r) exp(−iK · r); r ≡ (x, y), K = (Kx,Ky) (7.139)

There are two general options: solving for the full E-field of (7.138) or, alter-
natively, for the periodic factor EPER(x, y). In the first case, the governing
equation is fairly simple (Helmholtz) but the boundary conditions are non-
standard due to the Bloch exponential exp(−iK · r) (details below). In the
second case, with EPER as the unknown, standard periodic boundary condi-
tions apply, but the differential operator is more complicated.

More precisely, the problem for the full E-field includes the Helmholtz
equation (7.138) in the square [−a/2, a/2] × [−a/2, a/2] and the “scaled-
periodic” boundary condition

E
(a

2
, y

)
= exp(−iKxa)E

(
−a

2
, y

)
; − a

2
≤ y ≤ a

2
(7.140)

E
(
x,

a

2

)
= exp(−iKya)E

(
x, −a

2

)
; − a

2
≤ x ≤ a

2
(7.141)

In the alternative formulation, with EPER as the main unknown, the Helmholtz
equation takes on a different form because

∇ (EPER(r) exp(−iK · r)) = (∇EPER − iKEPER) exp(−iK · r) (7.142)

Formally, the ∇ operator acting on E is replaced with the ∇ − iK operator
acting on EPER. Similarly, applying the divergence operator to (7.142), one
obtains the Laplacian

∇2E = [(∇ − iK) · (∇ − iK)EPER] exp(−iK · r)

= [∇2EPER − 2iK · ∇EPER −K2EPER] exp(−iK · r) (7.143)

The Bloch–Floquet eigenvalue problem for EPER thus becomes (after cancel-
ing the common complex exponential in all terms)

−∇2EPER + 2iK · ∇EPER + K2EPER = ω2µεEPER (7.144)

with the periodic boundary conditions

EPER

(a

2
, y

)
= EPER

(
−a

2
, y

)
; − a

2
≤ y ≤ a

2
(7.145)

EPER

(
x,

a

2

)
= EPER

(
x, −a

2

)
; − a

2
≤ x ≤ a

2
(7.146)

The dielectric permittivity in (7.144) is a function of position. In principle,
the magnetic permeability may also depend on coordinates, but this is not
the case in our present example or at optical frequencies in general.

Both eigenvalue problems (in terms of E or, alternatively, EPER) are un-
usual, as they have three (and in the 3D case four) scalar eigenparameters:
frequency ω and the components Kx, Ky of the Bloch vector. Solving for
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all three parameters, and the respective eigenmodes, simultaneously is im-
practical. The usual approach is to fix the K vector and solve the resultant
eigenvalue problem for ω only; then repeat the computation for a set of values
of K.12 Of most interest are the values on the symmetry lines in the Brillouin
zone (Fig. 7.13) Γ → X → M → Γ ; eigenfrequencies ω corresponding to these
values are typically plotted in a single chart. For the lattice of cylindrical rods,
this bandgap structure is computed below.

It is quite interesting to analyze the behavior of Bloch waves in the limiting
case of a quasi-homogeneous material, when the lattice cell size tends to zero
relative to the wavelength in a vacuum. This will be discussed in Section 7.13.6,
in connection with backward waves and negative refraction in metamaterials.

In addition to the two ways of formulating the photonic bandgap problem,
there are several approaches to solving it. We shall consider two of them:
Finite Element analysis and plane wave expansion (i.e. Fourier transform).

7.9 Band Structure Computation: PWE, FEM and
FLAME

7.9.1 Solution by Plane Wave Expansion

As a periodic function of coordinates, factor EPER (7.145), (7.146) can be ex-
panded into a Fourier series with some (yet unknown) coefficients ẼPER(km),

EPER =
∑

m∈Z2

ẼPER(km) exp(ikm · r), km =
2π

a
m ≡ 2π

a
(mx,my)

(7.147)
with integers mx, my. The full field E is obtained by multiplying EPER with
the Bloch exponential:

E = EPER exp(−iK · r) =
∑

m∈Z2

ẼPER(m) exp (i(km −K) · r) (7.148)

The dielectric permittivity ε(x, y) is also a periodic function of coordinates and
can be expanded into a similar Fourier series. However, it is often advantageous
to deal with the inverse of ε, γ = ε−1. The reason is that, after multiplying the
governing equation (7.138) through by γ, one arrives at an eigenvalue problem
without any coordinate-dependent coefficients in the right hand side:

−γ(x, y)∇2E = ω2µE (µ = const) (7.149)

12 However, in Flexible Local Approximation MEthods (FLAME, Section 7.9.6) it is
ω that acts as an “independent variable” because the basis functions in FLAME
depend on it. The Bloch wave vector is computed as a function of frequency. Also,
for lossy materials K is complex, and it may make sense to fix ω and solve for K.
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This ultimately leads to a standard eigenvalue problem of the form Ax = λx
rather than a more complicated generalized problem Ax = λBx. (See also the
previous section on FEM, where a generalized eigenproblem arises due to the
presence of the FE “mass matrix”.) As before, E satisfies the scaled-periodic
boundary conditions with the complex exponential Bloch factor.

The downside of the multiplication by γ is that the operator in the
left hand side of the eigenvalue problem (7.149) is not self-adjoint. (The
coordinate-dependent factor γ(x, y) outside the divergence operator gets in
the way of the usual integration-by-parts argument for self-adjointness.) The
original formulation, −∇2E = ω2µ ε(x, y)E, has self-adjoint operators on
both sides if the medium is lossless (real ε). The choice thus is between a Her-
mitian but generalized eigenvalue problem and a regular but non-Hermitian
one.

For the Bloch–Floquet E-field (7.148), the negative of the Laplace operator
turns, in the Fourier domain, into multiplication by |km −K|2. Further, the
product −γ∇2E in the left hand side of (7.149) turns into convolution; the
m-th Fourier harmonic of this product is

Fm{−γ∇2E} =
∑
s∈Z2

|km −K|2 γ̃(m− s) Ẽs, km =
2π

a
m (7.150)

where γ̃ are the Fourier coefficients for γ = ε−1:

γ =
∑

m∈Z2

γ̃(m) exp(ikm · r), (7.151)

Putting together the left and right hand sides of equation (7.149) in the Fourier
domain, we obtain an eigenvalue problem for the Fourier coefficients:∑

s∈Z2

|km −K|2γ̃(m− s) Ẽ(s) = ω2µẼ(m); (7.152)

m = (mx,my); mx,my = 0,±1,±2, . . .

This is an infinite set of equations for the eigenfrequencies and eigenmodes.
For computational purposes, the system needs to be truncated to a finite size;
this size is an adjustable parameter in the computation.

Numerical results for a cylindrical rod lattice are presented in Sections
7.9.4 and 7.13.5 (p. 468).

7.9.2 The Role of Polarization

To avoid repetition, we have so far considered E-polarization only, with the
corresponding equation (7.149) for the one-component E field. The problem
for H-polarization is very similar:

−∇ · (γ(x, y)∇H) = ω2µH (7.153)
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but its algebraic properties are better. Namely, the operator in the left hand
side of (7.153), unlike the operator for the E-problem (7.149), is self-adjoint
and nonnegative definite (which is easy to show using integration by parts
and taking into account Remark 25 on boundary conditions, p. 394).

This unequal status of the E- and H-problems is due to the assumption
that all materials are nonmagnetic. If this is not the case and µ depends on
coordinates, the E- and H-problems are fully analogous.

7.9.3 Accuracy of the Fourier Expansion

The main factor limiting the accuracy of the plane wave solution is the Fourier
approximation of the dielectric permittivity ε(x, y) or, alternatively, its inverse
γ(x, y). Abrupt changes in the dielectric constant lead in its Fourier represen-
tation to the ringing effect (the “Gibbs phenomenon,” well known in Fourier
analysis).

For illustration, let us use the cylindrical rod example (Fig. 7.12 on p. 387).
The inverse dielectric constant in this case is

γ(x, y) =
{

γrod, r ≤ rrod

γout, r > rrod
, r ≡ (x2 + y2)

1
2 , (x, y) ∈ Ω (7.154)

The Fourier coefficients γ̃(m) (that is, the plane wave expansion coefficients)
for this function of coordinates are found by integration:

γ̃(m) =
∫

Ω

γ(r) exp(−ikm · r) dx dy (7.155)

This integration can be carried out analytically by switching to the polar
coordinate system and using the Bessel function expansion for the complex
exponential; see e.g. K. Sakoda [Sak05]. The end result is

γ̃(m) =
{

fγrod + (1− f)γout, m = 0
2(γrod − γout)(kmrrod)−1fJ1(kmrrod), m �= 0 (7.156)

Fig. 7.14 is a plot of γ(x, y) ≡ ε−1(x, y) along the straight line x = y, i.e.
at 45◦ to the axes of the computational cell. Parameters are the same as in
the FE example: cell size a = 1 in each direction; εrod = 9; rrod = 0.38. The
true plot of γ is of course a rectangular pulse that changes abruptly from
γrod = 1/9 to γout = 1 at x = rrod/

√
2 ≈ 0.2687.

Summation of a finite number of harmonics in the Fourier series produces
typical ringing around the points of abrupt changes of the material parameter.
When the number of Fourier harmonics retained in the series is increased, this
ringing becomes less pronounced but does not fully disappear – compare the
plots corresponding to 20 and 50 harmonics per component of the wavevector,
Fig. 7.14.

In practice, the number of plane waves in the expansion is limited by
the computational cost of the procedure (see Appendix 7.15), which in turn
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Fig. 7.14. An illustration of the Gibbs phenomenon for the Fourier series approxi-
mation of the inverse permittivity of a cylindrical rod in a square lattice cell. Cell size
a = 1 in each direction; εrod = 9; rrod = 0.38. Top: 20 Fourier harmonics retained
per coordinate direction; bottom: 50 harmonics.
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limits the numerical accuracy of plane wave expansion. Because of that, in
some cases the computational results initially reported in the literature had
to be revised later. A. Moroz [Mor02] (p. 115109-3) gives one such example –
the PBG of a diamond lattice of nonoverlapping dielectric spheres in air.

Remark 24. An alternative approach used by Moroz is the Korringa–Kohn–
Rostoker13 (KKR) method developed initially for the Schrödinger equation in
the band theory of solids [KR54] and later adapted and adopted in photonics.
KKR combines multipole expansions with transformations of lattice sums.
This book deals with lattice sums for the static cases only, in the context of
Ewald methods (Chapter 5). The wave case is substantially more involved,
and the interested reader is referred to Chapter 2 of [Yas06] (by L.C. Botten
et al.), to the work of R.C. McPhedran et al. [MNB05] and references therein.

To reduce the numerical errors associated with the Gibbs phenomenon in plane
wave expansion, homogenization can be used to smooth out the dielectric
permittivity at material interfaces; see R.D. Meade et al. [MRB+93] (with
the erratum [MRB+97]). In particular, this approach is implemented in the
MIT Photonic Bands eigenmode solver, a public-domain software package
developed by the research groups of S.G. Johnson & J. Joannopoulos [JJ01].

7.9.4 FEM for Photonic Bandgap Problems in 2D

The Finite Element Method (FEM, Chapter 3) can be applied to either of
the two formulations: for the full E field (7.138), (7.140), (7.141) or for the
spatial-periodic factor EPER (7.144), (7.145), (7.145). In 2D, both routes are
analogous, but we focus on the first one to highlight the treatment of the
special Bloch boundary conditions. (In 3D, FE analysis is more involved; see
Section 7.10.)

The FE formulation starts with the definition of appropriate functional
spaces (continuous and discrete) and with the weak form of the governing
equations. This setup is needed not only as a mathematical technicality, but
also for correct practical implementation of the algorithm – in particular, in
the case under consideration, for the proper treatment of boundary conditions.

A natural functional space B(Ω) ⊂ H1(Ω) (B for “Bloch”) in our 2D
example is the subspace of “scaled-periodic” functions in the Sobolev space
H1(Ω):

B(Ω) = {E : E ∈ H1(Ω); E satisfies boundary conditions (7.140), (7.141)}
(7.157)

The weak formulation of the problem is

Find E ∈ B(Ω) :
(
µ−1∇E, ∇E′) = ω2 (εE, E′) , ∀E′ ∈ B(Ω) (7.158)

or, for µ = const,

Find E ∈ B(Ω) : (∇E, ∇E′) = ω2µ (εE, E′) , ∀E′ ∈ B(Ω) (7.159)
13 Sometimes incorrectly spelled as “Rostocker”.
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Remark 25. The line integral (surface integral in 3D) that typically appears
in the transition from the strong to the weak formulation and back (see Chap-
ter 3) in this case vanishes:

Find E ∈ B(Ω) :
∫

Γ

∂E

∂n
E′∗dΓ = 0; ∀E,E′ ∈ B(Ω) (7.160)

where Γ is the boundary of the computational cell Ω and n is the outward
normal to this boundary. Indeed, the E field on the right edge of Ω has
an additional Bloch factor b = exp(−iKxa) as compared to the left edge;
similarly, the complex conjugate of the test function E′ has an additional
factor b∗. The integrals over the right and left edges then cancel out because
bb∗ = 1 (real K is assumed) and the directions of the outward normals on
these edges are opposite. The integrals over the lower and upper edges cancel
out for the same reason.

Next, assume that a finite element mesh (e.g. triangular or quadrilateral)
has been generated. One special feature of the mesh is needed for the most
natural implementation of the Bloch boundary conditions. The right and left
edges of the computational domain Ω (a square in our example) need to be
subdivided by the grid nodes in an identical fashion, so that the nodes on the
right and left edges come in pairs with the same y-coordinate. A completely
similar condition applies on the lower and upper edges.14

In each pair of boundary nodes, one node is designated as a “master” node
(M) and the other one as a “slave” node (S).15 The Bloch boundary condition
directly relates the field values at the slave nodes to the respective values at
their master nodes:

E(rS) = exp (−iK · (rS − rM )) E(rM ) (7.161)

where rS , rM are the position vectors of any given slave–master pair of nodes.

Remark 26. For edge elements (see Chapter 3), one would consider pairs of
master–slave edges rather than nodes.

We can now move on to the discrete FE formulation. Let Ph(Ω) be one of
the standard FE spaces of continuous piecewise-polynomial functions on the
chosen mesh; see Chapter 3. The simplest such space is that of continuous
piecewise-linear functions on a triangular grid. Any function Eh ∈ Ph can
be represented as a linear combination of standard nodal FE basis functions
ψα(x, y) (e.g. piecewise-linear “hat” functions, Chapter 3):

14 For definiteness, let us attribute the corner nodes to the lower/upper edge pairs
rather than to the left/right.

15 For each pair of nodes, this assignment of M-S labels is in principle arbitrary;
however, for consistency it is convenient to treat all nodes on, say, the left and
lower edges as “masters” and the nodes on the right and upper edges as the
respective “slaves”.
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Eh =
n∑

α=1

Eαψα, α = 1, 2, . . . , n (7.162)

where n is (for nodal elements) the number of nodes of the mesh. The nodal
values Eα of the field can be combined in one Euclidean vector E ∈ C

n.
The linear combination (7.162) establishes a one-to-one correspondence

between each FE function Eh and the respective vector of nodal values E.
Bilinear forms in Ph × Ph and C

n × C
n are also related directly:

(∇Eh,∇E′
h) = (LE,E′), ∀Eh ∈ Ph(Ω) (7.163)

(εEh, E′
h) = (ME,E′), ∀Eh ∈ Ph(Ω) (7.164)

In the left hand side of these two equations, the inner products are those of
(L2(Ω))2 and L2(Ω), i.e.

(∇Eh,∇E′
h) ≡

∫
Ω

∇Eh · ∇E′∗
h dΩ; (εEh, E′

h) ≡
∫

Ω

εEhE′∗
h dΩ (7.165)

In the right hand sides, the inner products are in C
n:

(E,E′) =
n∑

α=1

EαE′∗
α (7.166)

Matrices L of (7.163) and M of (7.164) are, in the FE terminology, the “stiff-
ness” matrix and the “mass” matrix, respectively (Chapter 3). Equations
(7.163), (7.164) can be taken as definitions of these matrices. The entries of
L and M can also be written out explicitly:

Lαβ = (∇ψα,∇ψβ) 1 ≤ α, β ≤ n (7.167)

Mαβ = (ε ψα, ψβ) 1 ≤ α, β ≤ n (7.168)

where the inner products are again those of L2(Ω) and the ψs are the FE
basis functions.

To complete the FE formulation of the Bloch–Floquet problem, we need
the subspace Bh ⊂ Ph of piecewise-polynomial functions that satisfy the Bloch
boundary condition (7.161) for each pair of master–slave nodes. (Practical
implementation will be discussed shortly.) The FE-Galerkin formulation is
nothing else but the weak form of the problem restricted to the FE space Bh:

Find E ∈ Bh(Ω), ω ∈ C : (∇E, ∇E′) = ω2µ (εE, E′) , ∀E′ ∈ Bh(Ω)
(7.169)

If there were no boundary constraints, this formulation in matrix-vector form
would be

Find E ∈ C
n, ω ∈ C :

(
LE,E′) = ω2µ

(
ME, E′) , ∀E′ ∈ C

n
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where L and M are the stiffness and mass matrices previously defined.
However, the Bloch boundary conditions must be honored. To accomplish

this algorithmically, let us separate out the slave nodes in the Euclidean vec-
tors:

E =
(

Enon−S

ES

)
; Enon−S ∈ C

n−nS ; ES ∈ C
nS (7.170)

where nS is the number of slave nodes. Vector ES includes the field values
associated with slave nodes; vector Enon−S is associated with “non-slaves,”
i.e. the non-boundary nodes and the master nodes.

Since the nodal values of slave nodes are completely defined by non-slaves,
the full vector E can be obtained from its non-slave part by a linear operation:

E = CEnon−S (7.171)

where C is a rectangular matrix

C =
(

I
Cnon−S→S

)
(7.172)

Each row of the matrix block Cnon−S→S corresponds to a slave node and
contains exactly one nonzero entry, the complex exponential Bloch factor of
(7.161), in the column corresponding to the respective master node. The prob-
lem now takes on the following Galerkin matrix-vector form:

Find Enon−S ∈ C
n−nS , ω ∈ C :(

LCEnon−S, CE′
non−S

)
= ω2µ

(
MCEnon−S, CE′

non−S

)
, ∀E′

non−S ∈ C
n−nS

(7.173)
This immediately translates into the eigenvalue problem

L̃Enon−S = ω2µM̃Enon−S (7.174)

where
L̃ = C∗LC; M̃ = C∗MC (7.175)

It is straightforward to show that both matrices L̃, M̃ are Hermitian; L̃ is
positive definite if the Bloch wavenumber K is nonzero; M̃ is always positive
definite.16

In practice, there is no need to multiply matrices in the formal way of
(7.175). Instead, the following procedure can be applied. Consider a stage
of the matrix assembly process where an entry (i, j) of the stiffness or mass
matrix is being formed. If i happens to be a slave node with its master M(i),
the matrix entry gets multiplied by the Bloch exponential factor b(i,M(i))

16 Indeed, by definition of the FE matrices, (L̃Enon−S, Enon−S) =
∫
Ω
|∇Eh|2dΩ,

∀Eh ∈ Bh. Since Eh for K �= 0 cannot be constant due to the Bloch boundary
condition, this energy integral is strictly positive. Similar considerations apply to
M̃ .
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(7.161) and attributed to row M(i) rather than row i. Likewise, if j is a
slave node with the corresponding master node M(j), the matrix entry gets
multiplied by b∗(j,M(j)) = exp(iK·(rj−rM(j))) (note the complex conjugate)
and the result gets attributed to column M(j) instead of column j.

In this procedure, the rows and columns corresponding to slave nodes
remain empty and in the end can be removed from the matrices. However,
it may be algorithmically simpler not to change the dimension and structure
of the matrices and simply fill the “slave” entries in the diagonals with some
dummy numbers – say, ones for matrix M and some large number X for
matrix L. This will produce extraneous modes “living” on the slave nodes
only and corresponding to eigenvalues ω2µ = X. These modes can be easily
recognized and filtered out in postprocessing.

A disadvantage of FEM for the bandgap structure calculation is that it
leads to a generalized eigenvalue problem, of the form Lx = λMx rather than
Lx = λx. This increases the computational complexity of the solver. Note,
however, that if the Cholesky decomposition17 of M (M = TT ∗, where T is
a lower triangular matrix) is not too expensive, the generalized problem can
be reduced to a regular one by substitution y = T ∗x:

Lx = λTT ∗x ⇒ T−1LT−∗y = λy (7.176)

If iterative eigensolvers are used, matrix inverses need not be computed di-
rectly; instead, systems of equations with upper or lower triangular matrices
are solved to find T−1LT−∗y for an arbitrary vector y. However, in the numer-
ical example below the matrices are of very moderate size and the Matlab QZ
algorithm (a direct solver for generalized eigenvalue problems) is employed.

7.9.5 A Numerical Example: Band Structure Using FEM

The numerical data was chosen the same as in the computational example of
K. Sakoda ([Sak05], pp. 28–29), where the bandgap structure was computed
using Fourier analysis (plane wave expansion). Our finite element results can
then be compared with those of [Sak05]. The general setup, with a cylindrical
dielectric rod in a square lattice cell, was already shown in Fig. 7.12 (p. 387).
The cell size is taken as a = 1 and the radius of the cylindrical rod is rrod =
0.38. The dielectric constant of the rod is εrod = 9; the medium outside the
rod is air, with εout = 1.

The FE mesh is generated by FEMLABTM (COMSOL MultiphysicsTM)
and exported to the Matlab environment; an FE matrix assembly for the
Bloch–Floquet problem is then performed in Matlab. As already noted, the
Matlab QZ solver is used. Postprocessing is again done in FEMLAB (COM-
SOL MultiphysicsTM).
17 André-Louis Cholesky (1875–1918), a French mathematician. It is customary to

write the Cholesky decomposition as LLT or LL∗, but in our case symbol L is
already taken, so T is used instead.
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The initial FE mesh is fairly coarse, with 404 nodes and 746 first-order
triangular elements (Fig. 7.15, left). The matrix assembly time is about half
a second and the eigenvalue solver time is ∼8.5 seconds on a 2.8 GHz PC.

Fig. 7.15. Two finite element meshes for one cell of a photonic crystal lattice with
cylindrical dielectric rods. The rod is shaded for visual clarity. Left: 404 nodes, 746
triangular elements. Right: 1553 nodes, 2984 triangular elements.

The main result of the FE simulation is the bandgap structure shown in
Fig. 7.16 for the E-mode (s-polarization, one-component E-field). The first
four normalized eigenfrequencies ω̃ = ωa/(2πc) (c being the speed of light
in free space) are plotted vs. the normalized Bloch wavenumber Ka/π over
the M → Γ → X → M loop in the Brillouin zone. The chart in Fig. 7.16 is
almost exactly the same as the one in [Sak05].

The bandgaps, where no (real) eigenfrequencies exist for any K, are shaded
in the figure. The normalized frequency ranges for the first two gaps are,
according to the FE calculation, [0.2462, 0.2688] and [0.4104, 0.4558].

To estimate the accuracy of this numerical result, the computation was
repeated on a finer mesh, with 1553 nodes and 2984 first-order triangular
elements (Fig. 7.15, right).18 On the finer mesh, the first two bandgaps are
calculated to be [0.2457, 0.2678] and [0.4081, 0.4527], which differs from the
results on the coarser mesh by 0.2–0.7%.

For comparison, the first two bandgap frequency ranges reported for the
same problem by K. Sakoda [SS97, Sak05] are [0.247, 0.277] and [0.415, 0.466].
This result was obtained by Fourier analysis, with expansion into 441 plane
waves; the estimated accuracy is about 1% according to Sakoda.

18 In modern FE analysis, much more elaborate hp-refinement procedures exist to
estimate and improve the numerical accuracy. See Chapter 3.
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Fig. 7.16. The photonic band structure (plots correspond to the first four eigen-
frequencies as a function of the wavevector) for a photonic crystal lattice; E-mode
(one-component E-field). Dielectric cylindrical rods in air; cell size a = 1, radius of
the cylinder rrod = 0.38; the relative dielectric permittivity εrod = 9.

Fig. 7.17. The E-field distribution for the first (left) and the second (right) Bloch
modes for K = ( π

2a
, 0). Same setup and parameters as in Fig. 7.16.
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The field distribution of two low order Bloch modes is illustrated by
Fig. 7.17 and Fig. 7.18. The first figure is for the Bloch vector K = ( π

2a , 0)
(a ∆-point exactly in the middle of ΓX), and the second one is for point
K = ( π

2a , π
4a ).

Fig. 7.18. The E-field distribution for the first (left) and the second (right) Bloch
modes for K = ( π

2a
, π

4a
). Same setup and parameters as in Fig. 7.16.

This relatively simple comparison example of FEM vs. Fourier expansion is
not a basis for far-reaching conclusions. Both methods have their strengths and
weaknesses. A clear advantage of FEM is its effective and accurate treatment
of geometrically complex structures, possibly with high dielectric contrasts.
Another advantage is the sparsity of the system matrices. Unfortunately, FEM
leads to a generalized eigenvalue problem, with the FE “mass” matrix in the
right hand side.19 A special FE technique known as “mass lumping” makes
the mass matrix diagonal, with applications to both eigenvalue and time-
dependent problems. Mass lumping is usually achieved by applying, in the FE
context, numerical quadratures with the integration knots chosen to coincide
with element nodes. For details, see papers by M.G. Armentano & R.G. Durán
[AD03]; A. Elmkies & P. Joly [EJ97a, EJ97b]; G. Cohen & P. Monk [CM98],
and references there. In addition, as already noted, the generalized problem
can be converted to a regular one by Cholesky decomposition.

19 The presence of the mass matrix is also a disadvantage in time-dependent prob-
lems, where this matrix is associated with the time derivative term and makes
explicit time-stepping schemes difficult to apply.



7.9 Band Structure Computation: PWE, FEM and FLAME 401

7.9.6 Flexible Local Approximation Schemes for Waves in
Photonic Crystals

As an alternative to plane wave expansion and to Finite Element analysis, the
Flexible Local Approximation MEthod (FLAME, Chapter 4) can be used for
wave simulation in photonic crystal devices.

FLAME incorporates accurate local approximations of the solution into a
difference scheme. Applications of FLAME to photonic crystals are attractive
because local analytical approximations for typical photonic crystal struc-
tures are indeed available and the corresponding FLAME basis functions can
we worked out once and for all. In particular, for crystals with cylindrical
rods the FLAME basis functions are obtained by matching, via the boundary
conditions on the rod, cylindrical harmonics inside and outside the rod. These
Bessel-based basis functions were already derived in Chapter 4 for the prob-
lem of electromagnetic scattering from a cylinder. In 3D, FLAME bases for
electromagnetic fields near dielectric spheres could be constructed by match-
ing the (vector) spherical harmonics inside and outside the sphere as in Mie
theory (J.A. Stratton [Str41] or R.F. Harrington [Har01]).

When the dielectric structures are not cylindrical or spherical, the field
can still be expanded into cylindrical/spherical harmonics, and the T- (“tran-
sition”) matrix provides the relevant relationships between the coefficients
of incoming and outgoing waves. A comprehensive treatment of T-matrix
methods and related electromagnetic theory can be found in the books and
articles by M.I. Mishchenko et al. [MTM96, MTL02, MTL06], with a large
reference database [MVB+04] and a public-domain FORTRAN code [MT98]
being available. In contrast with methods that analytically combine multipole
expansions and lattice sums (see Remark 24 on p. 393), the role of multipole
expansions in FLAME is to generate a difference scheme.

As an illustrative example, we consider a photonic crystal analyzed by
T. Fujisawa & M. Koshiba [FK04, Web07]. The waveguide with a bend is
obtained by eliminating a few dielectric cylindrical rods from a 2D array
(Fig. 7.19). Fujisawa & Koshiba used a Finite Element–Beam Propagation
method in the time domain to study fields in such a waveguide, with nonlin-
ear characteristics of the rods. The use of complex geometrically conforming
finite element meshes may well be justified in this 2D case. However, regu-
lar Cartesian grids have the obvious advantage of simplicity, especially with
extensions to 3D in mind. This is illustrated by numerical experiments below.

The problem is solved in the frequency domain and the material charac-
teristic of the cylindrical rods is assumed linear, with the index of refraction
n = 3. The radius of the cylinders and the wavenumber are normalized to
unity; the air gap between the neighboring rods is equal to their radius. The
field distribution is shown in Fig. 7.19.

For bandgap operation, the field is essentially confined to the guide, and
the boundary conditions do not play a critical role. To get numerical approx-
imation of these conditions out of the picture in this example, the field on
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Fig. 7.19. The imaginary part of the electric field in the photonic crystal waveguide
bend. The real part looks qualitatively similar. (Reprinted by permission from
[Tsu05a] c©2005 IEEE.)

the surface of the crystal was simply set equal to an externally applied plane
wave.

For comparison, FE simulations (FEMLAB – COMSOL MultiphysicsTM)
with three meshes were run: the initial mesh with 9702 nodes, 19,276 el-
ements, and 38,679 degrees of freedom (d.o.f.); a mesh obtained by global
refinement of the initial one (38,679 nodes, 77,104 elements, 154,461 d.o.f.);
and an adaptively refined mesh with 27,008 nodes, 53,589 elements, 107,604
d.o.f. The elements were second order triangles in all cases. The agreement
between FLAME and FEM results is excellent. This is evidenced, for example,
by Fig. 7.20, where almost indistinguishable FEM and FLAME plots of the
field distribution along the central line of the crystal are shown.

Yet, a closer look at the central peak of the field distribution (Fig. 7.21)
reveals that FLAME has essentially converged for the 50×50 grid, while FEM
solutions approach the FLAME result as the FE mesh is refined. FEM needs
well above 100,000 d.o.f. to achieve the level of accuracy comparable with the
FLAME solution with 2500 d.o.f. [Tsu05a]. Fig. 7.22 gives a visual comparison
of FEM and Trefftz–FLAME meshes that provide the same accuracy level.

Note that for the 50× 50 grid there are about 10.5 points per wavelength
(ppw) in the air but only 3.5 ppw in the rods, and yet the FLAME results
are very accurate because of the special approximation used. Any alternative
method, such as FE or FD, that employs a generic (piecewise-polynomial)
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Fig. 7.20. Field distribution in the Fujisawa–Koshiba photonic crystal along the
central line y = 0. FLAME vs. FE solutions. (Reprinted by permission from [Tsu05a]
c©2005 IEEE.)

Fig. 7.21. Convergence of the field near the center of the bend. Trefftz–FLAME
has essentially converged for the 50 × 50 grid (2500 d.o.f.); FEM results approach
the FLAME values as the FE mesh is refined. FEM needs well over 100,000 d.o.f. for
accuracy comparable with FLAME. (Reprinted by permission from [Tsu05a] c©2005
IEEE.)
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approximation would require a substantially higher number of ppw to achieve
the same accuracy.

Fig. 7.22. The 50×50 FLAME grid (2500 d.o.f.) provides the same level of accuracy
as the Finite Element mesh with 38,679 nodes, 77,104 elements and 154,461 d.o.f.
(Reprinted by permission from [Tsu05a] c©2005 IEEE.)
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Remark 27. As described in more detail in Section 7.9.7, the FLAME com-
putation of Bloch–Floquet modes proceeds in a different manner than in the
FE or plane wave methods. FLAME schemes rely on local analytical solutions
that can be evaluated numerically only for a given (known) frequency. Hence ω
becomes an “independent variable” in the simulation, and the Bloch–Floquet
wave vector (say, along any given symmetry line in the Brillouin zone) is a
parameter to be determined from a generalized eigenvalue problem.

FLAME eigenmode analysis has been performed by H. Pinheiro et al.
[PWT07] in application to photonic crystal waveguides. The crystal is again
formed by dielectric cylindrical rods. The waveguides “carved out” of the crys-
tal lattice have ports that carry energy in and out of the device. What follows
is a brief summary of the computational approach and results of [PWT07].

First, FLAME is used to compute Floquet-like modes that can propagate
through the crystal in the direction of the waveguide (the energy of these
modes is contained mostly within the guide). For this purpose, FLAME is ap-
plied to one layer of cylindrical rods, with the Bloch–Floquet boundary con-
dition imposed on two of its sides and the FLAME PML (Perfectly Matched
Layer) on the other two. This is a generalized eigenvalue problem that for
moderate matrix sizes can be quickly solved using the QZ algorithm. There is
normally no need to generate large matrices, as the convergence of FLAME
is extremely rapid (see the following section).

Second, the boundary conditions for the field at the ports can be expressed
via the dominant waveguide modes determined as described above. For the
excited port(s), the excitation is assumed known; for other ports, zero Dirichlet
conditions are used. FLAME is then applied again, this time for the whole
crystal, with the proper boundary conditions at the ports and PML conditions
on inactive surfaces.

The results of the first step of the analysis – computation of the propa-
gation constant – show very good agreement with the plane wave expansion
method when the FLAME grid has 6 × 6 nodes per lattice cell. Further,
FLAME is applied to a 90◦ waveguide bend; the results obtained with 7744
degrees of freedom for FLAME agree well with those calculated by the FETD
Beam Propagation Method using 158,607 d.o.f. (M. Koshiba et al. [KTH00]).
Equally favorable is the comparison of FLAME with FETD-BPM for pho-
tonic crystals with Y- and T-branches. For a T-branch, FLAME results with
25,536 d.o.f. are the same as FDTD results with 5,742,225 d.o.f. FLAME
solutions exhibit very fast convergence as the grid is refined. As an example,
Fig. 7.23 shows transmission and reflection coefficients of a directional coupler
(H. Pinheiro et al. [PWT07]).

7.9.7 Band Structure Computation Using FLAME

As an alternative to plane wave expansion (Section 7.9.1, p. 389) and FEM
(Section 7.9, p. 389), let us now consider FLAME for band structure
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Fig. 7.23. (Credit: H. Pinheiro et al. Reprinted by permission from [PWT07] c©2007
IEEE.) Transmission and reflection coefficients of a directional coupler. Markers:
FLAME results; lines: FETD-BPM results by M. Koshiba et al. [KTH00].

calculation.20 The familiar case with a dielectric cylindrical rod of radius rrod

and dielectric permittivity εrod in a square lattice cell will again serve as a
computational example.

In the vicinity of a cylindrical rod centered at the origin of a polar coor-
dinate system (r, φ), the FLAME basis ψ

(i)
α contains Bessel/Hankel functions

(see also Sections 4.4.11, 7.9.6, 7.11.5):

ψ(i)
α = anJn(kcylr) exp(inφ), r ≤ rrod

ψ(i)
α = [cnJn(kairr) + H(2)

n (kairr)] exp(inφ), r > rrod

where Jn is the Bessel function, H
(2)
n is the Hankel function of the second

kind [Har01], and the coefficients an, cn are found by matching the values of
ψ

(i)
α inside and outside the rod.

20 The material of this section appears in [Tv07].
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The 9-point (3× 3) stencil with a grid size h is used and 1 ≤ α ≤ 8. The
eight basis functions ψ are obtained by retaining the monopole harmonic (n =
0), two harmonics of orders n = 1, 2, 3 (i.e. dipole, quadrupole and octupole),
and one of harmonics of order n = 4. This set of basis functions produces
a 9-point scheme as the null vector of the respective matrix of nodal values
(Sections 4.4.11, 7.9.6, 7.11.5).

The Bloch wave satisfying the second order differential equation calls for
two boundary conditions – for the E field and for its derivative in the direction
of wave propagation (or, equivalently, for the H field). Consequently, there
are two discrete boundary conditions per Cartesian coordinate (compare this
with a similar treatment in [PWT07] (p. 405) where, however, the algorithm is
effectively one-dimensional). The implementation of these discrete conditions
is illustrated by Fig. 7.24. As an example, the square lattice cell is covered
with a 5 × 5 grid of “master” nodes (filled circles). In addition, there is a
border layer of “slave” nodes (empty circles).

Fig. 7.24. Implementation of the Bloch–Floquet boundary conditions in FLAME.
Empty circles – “slave” nodes, filled circles – “master” nodes. A few of the “slave–
master” links are indicated with arrows. The corner nodes are the “slaves of slaves”.

The FLAME scheme is generated for each of the master nodes (“M”).
At slave nodes (“S”), the field is constrained by the Bloch–Floquet condition
rather than by the difference scheme:

E(rS) = exp (−iKB · (rS − rM )) E(rM ) (7.177)
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Here rS , rM are the position vectors of any given slave–master pair of nodes.
Several such pairs are indicated in Fig. 7.24 by the arrows for illustration.
Note that the corner nodes are the “slaves of slaves”: for example, master
node M1 for slave S1 is itself a slave S2 of node M2. This is algebraically
equivalent to linking node S1 to M2; however, if the link S1 → M2 were
imposed directly rather than via S1 → M1 → M2, the corresponding factor
would be the product of two Bloch exponentials in the x- and y-direction,
leading to a complicated eigenvalue problem, bilinear with respect to the two
exponentials.

Example equations for the Bloch boundary conditions, in reference to
Fig. 7.24, are

ES1 = bxEM1; byES3 = EM3 (7.178)

where bx and by are the Bloch factors

bx = exp(iKxLx); by = exp(iKyLy) (7.179)

In matrix-vector form, the FLAME eigenvalue problem is

LE = (bxBx + byBy)E (7.180)

where E is the Euclidean vector of nodal values of the field. The rows of matrix
L corresponding to the master nodes contain the coefficients of the FLAME
scheme, and the respective rows of matrices Bx,y are zero. Each slave-node
row of matrices L and B contains only one nonzero entry – either 1 or bx,y,
as exemplified by (7.178). Matrices L and (especially) B are sparse; typical
sparsity patterns, for a 10× 10 grid, are shown in Fig. 7.25.

Problem (7.180) contains three key parameters: ω, on which the FLAME
scheme and hence the L matrix depend (for brevity, this dependence is not
explicitly indicated), and the Bloch exponentials bx,y. Finding three or even
two independent eigenparameters simultaneously is not feasible. First, one
chooses a value of ω and constructs the difference operator L for that value.
In principle, for any given value of either of the b parameters (say, bx) one could
solve for the other parameter and scan the (bx, by)-plane that way. Typically,
however, the focus is only on the symmetry lines Γ → X → M → Γ of the
first Brillouin zone. On ΓX, by = 1 and bx is the only unknown; on XM , the
only unknown is by; and on MΓ , the single unknown is b = bx = by.

For comparison purposes, in the numerical example the numerical data
was chosen the same as in the PWE computation of [Sak05], pp. 28–29. In
the lattice of cylindrical rods, the size of the computational square cell is a = 1,
and the radius of the cylindrical rod is rrod = 0.38. The dielectric constant of
the rod is εrod = 9; the medium outside the rod is air, with εout = 1. In our
FLAME simulation, due to very rapid convergence of the method, matrices
L and M need only be of very moderate size, in which case the Matlab QZ
algorithm (a direct solver for generalized eigenvalue problems) is very efficient.

Fig. 7.26 shows the same band diagram for the E-mode as Fig. 7.16, but
the focus now is on the accuracy of FLAME and its comparison with other
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Fig. 7.25. Sparsity structure of the FLAME matrices for a 10 × 10 grid: L (top)
and B = Bx + By (bottom).

methods. Plotted in the figure are the first four normalized eigenfrequencies
ω̃ = ωa/(2πc) (c being the speed of light in free space) vs. the normalized
Bloch wavenumber K̃ = Ka/π over the M → Γ → X → M loop in the
Brillouin zone. The bandgaps, where no (real) eigenfrequencies exist for any
KB , are shaded in the figure. The excellent agreement between PWE, FEM
and FLAME gives us full confidence in these results and allows us to proceed
to a more detailed assessment of the numerical errors.21

21 All numerical results were also checked for consistency on several meshes and for
an increasing number of PWE terms.
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Fig. 7.26. The photonic band structure (first four eigenfrequencies as a function of
the wavevector) for a photonic crystal lattice; E-mode. FEM (circles), PWE (solid
lines), FLAME, grid 5 × 5 (diamonds), FLAME, grid 20 × 20 (squares). Dielectric
cylindrical rods in air; cell size a = 1, radius of the cylinder rrod = 0.38; the relative
dielectric permittivities εrod = 9; εout = 1.

The accuracy of FLAME is much higher than that of PWE or FEM, with
negligible errors achieved already for a 10 × 10 grid. Indeed, inspecting the
computed Bloch–Floquet wavenumbers as the FLAME grid size decreases, we
observe that 6–8 digits in the result stabilize once the grid exceeds 10 × 10
and 8–10 digits stabilize once the grid exceeds 20×20. This clearly establishes
the 40× 40 results as an “overkill” solution that can be taken as quasi-exact
for the purpose of error analysis.

Errors in the Bloch wavenumber are plotted in Fig. 7.27. Very rapid con-
vergence of FLAME with respect to the number of grid nodes is obvious from
the figure. Further, the FLAME error for the Bloch number is about six orders
of magnitude lower than the FEM error for approximately the same number
of unknowns: 484 nodes (including “slaves”) in FLAME and 404 nodes in
FEM.

In the numerical example presented, FLAME provides 6–8 orders of mag-
nitude higher accuracy in the photonic band diagram than PWE or FEM with
the same number of degrees of freedom (∼400).

To apply FLAME to more general shapes of dielectric structures, one
needs accurate local approximations of the theoretical solution. This can be
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Fig. 7.27. Numerical errors in the Bloch wavenumber. Same parameters as in the
previous figure. FLAME grids: 5×5 (diamonds), 8×8 (squares), 10×10 (triangles),
20 × 20 (circles). FEM, 404 d.o.f. (empty squares).

achieved, for example, by approximating the air-dielectric boundaries with
arcs in a piecewise fashion and then using the Bessel-Hankel basis described
in the paper. Alternatively, basis functions can be obtained as accurate finite
element or boundary element solutions of local problems that are much smaller
than the global one [DT06]. Extensions of the methodology to 3D appear to
be possible, with FLAME basis functions derived either from Mie theory at
(piecewise-)spherical boundaries or, alternatively, by solving small-size local
problems with finite elements or boundary elements.

7.10 Photonic Bandgap Calculation in Three
Dimensions: Comparison with the 2D Case

This section reviews the main ideas of PBG analysis in three dimensions,
highlighting the most substantial differences with the 2D case and the com-
plications that arise.

7.10.1 Formulation of the Vector Problem

One of the most salient new features of the 3D formulation, as compared to
2D, is that it is no longer a scalar problem. Maxwell’s equations for time-
harmonic fields, with no external currents (J = 0), are

∇×E = − iωB (7.181)

∇×H = iωD (7.182)
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See Section 7.2 (p. 353) for more details on Maxwell’s equations, as well as
the notational conventions on complex phasors and symbol i.

We shall assume simple material relationships B = µH and D = εE,
where µ and ε can depend on coordinates (in photonics, however, materials
are usually nonmagnetic and then µ = µ0 = const).

Taking the curl of either one of the Maxwell equations and substituting
into the other one yields a single second-order equation for the field:

∇× µ−1∇×E − ω2εE = 0 (7.183)

or, alternatively,
∇× ε−1∇×H − ω2µH = 0 (7.184)

The two formulations are analogous but not computationally equivalent as we
shall see.

For simplicity of exposition, let us assume a cubic primary cell [−a/2, a/2]3

in real space; extensions to hexahedral and triclinic cells are straightforward
both in plane wave methods and in FE analysis. (The plane wave method is
currently used much more widely in PBG calculation than FEM.) As in 2D,
the E-field in formulation (7.183) is sought as a Bloch wave with some wave
vector K:

E(r) = EPER(r) exp(−iK · r); r ≡ (x, y, z) (7.185)

One can solve for the full E-field of (7.183) or, alternatively, for factor
EPER(x, y, z) that satisfies periodic conditions on the boundary of the com-
putational cell. As in 2D, the trade-off between these two formulations is in
the relative complexity of the boundary conditions vs. that of the differential
operator.

The “scaled-periodic” boundary condition for the full E-field is

E
(a

2
, y, z

)
= exp(−iKxa)E

(
−a

2
, y, z

)
; (7.186)

and analogous conditions for two other pairs of faces

In the formulation for EPER, the ∇× operator applied to E can be formally
replaced with (∇− iK)× applied to EPER, and the boundary conditions are
purely periodic. A detailed and mathematically rigorous exposition, with the
finite element (more specifically, edge element) solution is given by D.C. Dob-
son & J.E. Pasciak [DP01]; they use the EPER formulation.

We turn to the plane wave method first; the finite element solution will
be considered later in this section. As in 2D, the periodic factor EPER can
be expanded into a Fourier series with some coefficients ẼPER(km) to be
determined:

EPER(r) =
∑

m∈Z3

ẼPER(km) exp(ikm ·r), km =
2π

a
m ≡ 2π

a
(mx,my,mz)

(7.187)
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with integers mx, my, mz. The full field E is obtained by multiplying EPER

with the Bloch exponential:

E(r) = EPER(r) exp(−iK · r) =
∑

m∈Z3

ẼPER(m) exp (i(km −K) · r)

(7.188)
The dielectric permittivity ε = ε(x, y, z) or its inverse γ = ε−1 are also periodic
functions of coordinates and can be expanded into similar Fourier series. For
the E-problem (7.183), there is, as in 2D, a trade-off between a generalized
Hermitian problem and a regular non-Hermitian one. The latter is obtained if
the equation for the E-field is divided through by ε, so that the ω-term (= the
right hand side) of the eigenvalue problem does not contain any coordinate-
dependent functions:

γ∇× µ−1∇×E = ω2E (7.189)

For the E-field in the Bloch–Floquet form (7.188), the curl operator translates
in the Fourier domain into vector multiplication i(km − K)×. Materials are
assumed nonmagnetic, so the permeability µ is constant and equal to µ0.
Multiplication by γ turns into convolution. Overall, the Fourier transformation
of the differential equation is similar to the 2D case. The eigenvalue problem
for the Fourier coefficients is (see e.g. K. Sakoda [Sak05])

−
∑
s∈Z3

γ̃(m− s) (ks −K)× [(ks −K)× Ẽ(s)] = ω2µẼ(m); (7.190)

m = (mx,my,mz); mx,my,mz = 0,±1,±2, . . .

where the Fourier coefficients γ̃ are

γ̃(m) =
∫

Ω

γ(r) exp(−ikm · r) dx dy dz (7.191)

In practice, the infinite set of equations (7.190) is truncated and the resultant
eigenvalue problem for a finite set of coefficients is solved by direct or iterative
methods (Appendix 7.15). If M reciprocal (Fourier) vectors km are retained,
the system comprises M vector equations or equivalently 3M scalar ones;
consequently there are 3M Bloch–Floquet modes.

An undesirable feature of the E-formulation is the presence of static
eigenmodes (ω = 0) that for purposes of wave analysis in photonics can
be considered spurious. These static modes are gradients of scalar poten-
tials exp(i(km −K) · r). Indeed, these gradients satisfy (in a trivial way) the
curl–curl Maxwell equation (7.183) as well as the Bloch–Floquet boundary
conditions on the cell. The number of these static modes is M , out of the 3M
vector modes.

In the H-formulation (7.184), these electrostatic modes can be eliminated
from the outset by employing only transverse waves as a basis:

H =
∑

m∈Z3

H̃(km) exp(i(km −K) · r), H̃(km) · (km −K) = 0, (7.192)
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km =
2π

a
m ≡ 2π

a
(mx,my,mz)

The transversality condition H̃(km)⊥(km − K) eliminates the electrostatic
modes because those would be longitudinal (field in the direction of the wave
vector):

∇ exp(i(km −K) · r) = i(km −K) exp(i(km −K) · r)

No longitudinal H-modes exist because ∇ · H = 0. The absence of these
spurious static modes makes the H-field expansion substantially different from
that of the E-field. The dimension of the system is reduced from 3M to 2M :
each wave vector km has two associated plane waves, with two independent
directions of the H-field perpendicular to (km −K).

Another important advantage of the H-formulation in the lossless case
(real γ) is that its differential operator, ∇ × γ(x, y, z)∇× is Hermitian,22

unlike the operator γ(x, y, z)∇×∇× of the E-formulation. This is completely
analogous to the two-dimensional case and can be verified using integration by
parts. In Fourier space, the corresponding problem is also Hermitian. Real-
space operations in the differential equation are translated into reciprocal
space in the usual manner (∇× → i(km−K)×, multiplication → convolution),
and the eigenvalue equations for the H-formulation become

−
∑
s∈Z3

γ̃(m− s) (km −K)× [(ks −K)× H̃(s)] = ω2µH̃(m); (7.193)

m = (mx,my,mz); mx,my,mz = 0,±1,±2, . . .

A small but significant difference from the E-formulation is that the wave
vector in the first cross-product now corresponds to the equation index m
rather than the dummy summation index s; this reflects the interchanged
order of operations, ∇×γ× rather than γ∇×× and makes the system matrix
in the Fourier domain Hermitian.

Although the E and H fields appear in Maxwell’s equations in a perfectly
symmetric way (at least in the absence of given electric currents), the E-
and H-formulations for the photonic bandgap problem are not equivalent as
we have seen. The symmetry between the formulations is broken due to the
different behavior of the dielectric permittivity and magnetic permeability:
while µ at optical frequencies is essentially equal to µ0, ε is a function of
coordinates. This disparity works in favor of the formulation where ε appears
in the differential operator and the term with the eigenfrequency ω does not
contain coordinate-dependent factors.

22 All operators are considered in the space of functions satisfying the Bloch–Floquet
boundary conditions. The permittivity tensor is assumed to be symmetric.
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7.10.2 FEM for Photonic Bandgap Problems in 3D

As in 2D (Section 7.9.4), the Finite Element Method can be applied either
to the full E field (or, alternatively, H-field) or to the spatial-periodic factor
EPER (or HPER). In the first case, one deals with the usual differential opera-
tor but somewhat unusual for FEM boundary conditions (Bloch–Floquet); the
second case has standard periodic boundary conditions but an unusual opera-
tor. This second case is considered rigorously by D.C. Dobson & J.E. Pasciak
in a terse but mathematically comprehensive paper [DP01]. As an alternative,
and in parallel with Section 7.9.4, we now review the first formulation.

A natural functional space B(Ω) for this problem is the subspace of “scaled-
periodic” functions – not in the Sobolev space H1(Ω) as in 2D but rather in
H(curl,Ω):

B(curl,Ω) = {E : E ∈ H(curl,Ω);

E× n satisfies Bloch− Floquet boundary conditions with wave vector K}
(7.194)

H(curl,Ω) is the space of vector functions in (L2(Ω))3 whose curl is also in
(L2(Ω))3; the tangential component E × n of vector fields in this space is
mathematically well defined. The B space depends on the given value of K,
although for simplicity of notation this is not explicitly indicated. At this
book’s level of rigor, the technical details of this definition will not be re-
quired; for the interested reader, an excellent mathematical reference is the
monograph by P. Monk [Mon03] that is also very useful in connection with
edge element formulations.

The weak form of the H-field problem is

Find H ∈ B(curl,Ω) : (γ∇×H,∇×H′) = ω2µ (H, H′) , ∀H′ ∈ B(curl,Ω)
(7.195)

The surface integral in the derivation of the weak formulation vanishes for the
same reason as in 2D (Remark 25 on p. 394).

Since the early 1980’s, thanks to the work by J.C Nédélec [N8́0, N8́6],
A. Bossavit [BV82, BV83, Bos88b, Bos88a, Bos98], R. Kotiuga [Kot85],
D. Boffi [BFea99, Bof01], P. Monk [MD01, Mon03], and many others, the
mathematical and engineering research communities have come to realize that
the “right” FE discretization of electromagentic vector fields is via “edge el-
ements,” where the degrees of freedom are associated with the element edges
rather than nodes. For eigenvalue problems, the use of edge elements is par-
ticularly important, because they, in contrast with nodal elements, do not
produce spurious (nonphysical) modes; see Section 3.12.1, p. 139.

Further details and references on the edge element formulation are given in
Chapter 3. From the finite element perspective, the only nonstandard feature
of the problem at hand is the Bloch boundary condition. It is dealt with in
full analogy with the scalar case in 2D (Section 7.9.4), with “master–slave”
edge pairs instead of node pairs.
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7.10.3 Historical Notes on the Photonic Bandgap Problem

It is well known that the seminal papers by E. Yablonovitch [Yab87, YG89],
S. John [Joh87] and K.M. Ho et al. [HCS90] led to an explosion of interest in
photonic bandgap structures. An earlier body of work, dating back to at least
1972, is not, however, known nearly as widely. The 1972 and 1975 papers by
V.P. Bykov [Byk72, Byk75] (see also [Byk93]), originally published in Russian
behind the Iron Curtain, were perhaps ahead of their time. A. Moroz on
his website gives a condensed but informative review of the early history of
photonic bandgap research.23 The following excerpts from the website and the
original papers speak for themselves.

A. Moroz: “A study of wave propagation in periodic structures has a
long history, which stretches back to, at least, Lord Rayleigh classi-
cal article on the influence of obstacles arranged in rectangular order
upon the properties of a medium.24 . . . Later on, wave propagation in
periodic structures was a subject of the book [BP53] . . . by Brillouin
and Parodi. . . . Some of early history of acoustic and photonic crystals
can also be found in a review [Kor94] by Korringa.
A detailed investigation of the effect of a photonic band gap on the
spontaneous emission (SE) of embedded atoms and molecules has been
performed by V.P. Bykov [Byk72, Byk75]. For a toy one-dimensional
model, he obtained the energy and the decay law of the excited state
with transition frequency in the photonic band gap, and calculated
the spectrum which accompanies this decay. Bykov’s detailed ana-
lytic investigation revealed that the SE can be strongly suppressed in
volumes much greater than the wavelength.”

V.P. Bykov ([Byk75], “Discussion of Results,” p. 871): “The most
interesting qualitative conclusion is the possibility of influencing the
spontaneous emission and, particularly, suppressing it in large vol-
umes. . . . in a large volume we can use a periodic structure and thus
control the spontaneous emission.
Control of the spontaneous emission and particularly its suppression
may be important in lasers. For example, the active medium of a
laser may have a three-dimensional periodic structure. Let us assume
that this structure has such anisotropic properties that at the tran-
sition frequency of a molecule there is a narrow cone of directions in
which the propagation of electromagnetic waves is allowed, whereas
all the other directions are forbidden. Then, the laser threshold of this
medium (in the allowed direction) should be much lower than that of
a medium without a periodic structure . . . ”

23 http://www.wave-scattering.com/pbgheadlines.html and . . . /pbgprehistory.html
24 Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon

the properties of a medium, Philos. Mag. 34, 481-502 (1892).
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7.11 Negative Permittivity and Plasmonic Effects

The linear model of constitutive relationships between the electric field E,
the polarization P (= dipole moment per unit volume) and the displacement
vector D. Namely,

P = ε0χE (7.196)

D = ε0E + P = εE, ε = ε0(1 + χ) (7.197)

Normally, the dielectric susceptibility χ is nonnegative and the permittivity
ε ≥ ε0. This section, however, is concerned with a special but exceptionally
interesting case where the complex dielectric constant can have a negative real
part. How is that possible?

A well known phenomenological description of polarization is obtained
by applying Newton’s equation of motion to an individual electron in the
medium:

mr̈ + mΓṙ + mω2
0 ṙ = −eE(t) (7.198)

The mass of the electron is m and its charge is −e; r is the position vector;
Γ is a phenomenological damping constant that can physically be interpreted
as the rate of collisions – the reciprocal of the mean time between collisions.
For electrons bound to atoms, the third term in the left hand side represents
the restoring force with the “spring constant” mω2

0 ; if the electrons are not
bound (e.g. in metals), ω0 = 0.

For time-harmonic excitation E(t) = E0 exp(iωt), one solves Newton’s
equation (7.198) by switching to complex phasors:25

r = − eE0

m

1
ω2

0 − ω2 + iωΓ
(7.199)

where the same symbols are used for complex phasors as for time functions,
with little possibility of confusion.

By definition, polarization (dipole moment per unit volume) is P = −Neer,
where Ne is the volume concentration of the electrons,26 and hence

P =
Nee

2E0

m

1
ω2

0 − ω2 + iωΓ
(7.200)

The dielectric susceptibility is thus

χ =
ω2

p

ω2
0 − ω2 + iωΓ

, ω2
p =

Nee
2

ε0m
(7.201)

Parameter ωp is called the plasma frequency.

25 The exp(+iωt) pahsors are used. The exp(−iωt) convention would lead to the
opposite sign of the terms containing odd powers of ω. See also p. 352.

26 Averaging over r for all electrons is implied and for simplicity omitted in the
expressions.



418 7 Applications in Nano-Photonics

This phenomenological description of polarization is known as the Lorentz
model. Of most interest to us in this section is the Drude model, where ω0 = 0
(typical for metals) and the susceptibility becomes

χ =
ω2

p

−ω2 + iωΓ
(7.202)

The relative dielectric constant is

εr = 1 + χ =

(
1−

ω2
p

Γ2 + ω2

)
− iω2

p

Γ/ω

Γ2 + ω2
(7.203)

A peculiar feature of this result is the behavior of the real part of εr (expression
in the large brackets). For frequencies ω below the plasma frequency (more
precisely, for ω2 < ω2

p−Γ2) the real part of the dielectric constant is negative –
in stark contrast with the normal values greater than one for simple dielectrics.

The negative permittivity is, in the Drude model, ultimately due to the
fact that for ω0 = 0 (no restoring force on the electrons) and sufficiently
small damping forces, Newton’s law (7.199) puts acceleration – rather than
displacement – in sync with the applied electrostatic force. Acceleration, being
the second derivative of the displacement, is shifted by 180◦ relative to the
displacement. Therefore displacement, and hence polarization, are shifted by
approximately 180◦ with respect to the applied force, leading to negative
susceptibility. For frequencies below the plasma frequency, the real part of
susceptibility is even less than −1, which makes the real part of the dielectric
constant negative.

Why would anyone care about negative permittivity? As we shall see
shortly, it opens many interesting opportunities in subwalength optics, with
far-reaching practical implications: strong resonances, with very high local
enhancement of optical fields and signals; nano-focusing of light; propagation
of surface plasmon polaritons (charge density waves on metal–dielectric inter-
faces), anomalous transmission of light through arrays of holes, and so on. This
area of research and development – now one of the hottest in applied physics
– is known as plasmonics; see U. Kreibig & M. Vollmer [KV95], S.A. Maier
& H.A. Atwater [MA05], S.A. Maier [Mai07].27

Also associated with negative permittivity is the superlensing effect of metal
nanolayers (J.B. Pendry [Pen00], N. Fang et al. [FLSZ05], D.O.S. Melville &
R.J. Blaikie [MB05]). These subjects are discussed later in this chapter.
27 Mark Brongersma from Stanford University discovered what almost certainly

would be the first paper on the subject of plasmonics; it dates back to 1972.
Unfortunately for the physicists, the article is in fact devoted to communication
by fish (M.D. Moffler, Plasmonics: Communication by radio waves as found in
Elasmobranchii and Teleostii fishes, Hydrobiologia, vol. 40 (1), pp. 131–143, 1972,
http://www.springerlink.com/content/t103277051264440). Intriguingly, the au-
thor discovered “the phenomenon of fish communication, via hydronic radio
waves” that are “neither sonic nor electrical”.
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7.11.1 Electrostatic Resonances for Spherical Particles

Exhibit #1 for electrostatic resonances28 is the classic example of the elec-
trostatic field distribution around a dielectric spherical particle immersed in
a uniform external field. The electrostatic potential can easily be found via
spherical harmonics. In fact, since the uniform field (say, in the z-direction)
has only one dipole harmonic (u = −E0z = −E0r cos θ, in the usual nota-
tion), the solution also contains only the dipole harmonic. However, later on
in this section higher order harmonics will also be needed, and so for the sake
of generality let us recall the expansion of the potential into an infinite series
of harmonics.

The potential inside the particle is (e.g. W.K.H. Panofsky & M. Phillips
[PP62], R.F. Harrington [Har01] or W.B. Smythe [Smy89]) is

uin(r, θ, φ) =
∞∑

n=0

n∑
m=−n

anmrnPm
n (cos θ) exp(imφ) (7.204)

where the standard notation for the associated Legendre polynomials Pm
n and

the spherical angles θ, φ is used; anm are some coefficients. The potential
outside, in the presence of the applied field E0 in the z-direction, is

uout(r, θ, φ) = − E0z +
∞∑

n=0

n∑
m=−n

bnmr−n−1Pm
n (cos θ) exp(imφ) (7.205)

The coefficients anm and bnm for the field inside/outside are related via the
boundary conditions on the surface of the particle:

uin(rp, θ, φ) = uout(rp, θ, φ); εin
∂uin(rp, θ, φ)

∂r
= εout

∂uout(rp, θ, φ)
∂r

(7.206)
Substitution of harmonic expansions (7.204), (7.205) into these boundary con-
ditions yields a system of decoupled equations for each spherical harmonic.
For the special case n = 1, m = 0 (the dipole term), noting the contribution
of the applied field −E0r cos θ ≡ −E0rP1(cos θ), we obtain

a10rp = b10r
−2
p (7.207)

εina10 = −2εout(b10r
−3
p + E0) (7.208)

where εin, εout are the dielectric constants of the media inside and outside the
particle, respectively. The Legendre polynomials have disappeared because
they are the same in all terms. The coefficients a10, b10 are easily found from
this system:

a10 = − 3εout

2εout + εin
E0, b10 = − εout − εin

2εout + εin
r3
p E0 (7.209)

28 I thank Isaak Mayergoyz for introducing the term “electrostatic resonances” to
me; I believe he coined this term.
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This result is very well known [Har01, Smy89, PP62]. The dipole moment of
the particle is p = −b10ẑ, where ẑ is the unit vector in the z-direction, and
the polarizability (dipole moment per unit applied field) is

α =
εout − εin
2εout + εin

r3
p (7.210)

For simple dielectrics with the dielectric constant greater or equal that of a
vacuum, there is nothing unusual about this formula. However, if the permit-
tivity can be negative, as in the quasi-static regime for metals at frequencies
below the plasma frequency, the denominator of (7.210) can approach zero.
The obvious special case – the plasmon resonance condition – for a spherical
particle is

εin = − 2εout (7.211)

If the relative permittivity of the outside medium is unity (air or vacuum),
then the resonance occurs for the relative permittivity of the particle equal
to −2. Notably, this resonance condition does not depend on the size of the
particle – as long as this size remains sufficiently small for the electrostatic
approximation to be valid. This size independence turns out to be true for
any shapes, not necessarily spherical.

It is worth repeating that although plasmon resonance phenomena usually
manifest themselves at optical frequencies, they are to a large extent quasi-
static effects – the limiting case for particles much smaller than the wave-
length; see U. Kreibig & M. Vollmer [KV95] and D.R. Fredkin & I.D. Mayer-
goyz [FM03, MFZ05a].

However, while the electrostatic picture is relatively simple and qualita-
tively correct, full wave simulation is needed for higher accuracy (see Sec-
tion 7.12.3). From the analytical viewpoint, the field can be expanded into an
asymptotic series with respect to the small parameter – the size of the particle
relative to the wavelength [MFZ05a], the zeroth term of this expansion being
the electrostatic problem.

At the resonance, division by zero in the expression for polarizability
(7.210) and in similar expressions for the dipole moment and field indicates
a nonphysical situation. In reality, losses (represented in our model by the
imaginary part of the permittivity), nonlinearities and dephasing/retardation
will quench the singularity.

Under the electrostatic approximation, a source-free field can exist if losses
are neglected. In the case of a spherical particle, the boundary conditions for
any spherical harmonic n,m (not necessarily dipole) are

anmrn
p = bnmr−n−1

p (7.212)

n εinanmrn−1
p = −(n + 1) εoutbnmr−n−2

p (7.213)

It is straightforward to find that this system of two equations has a nontrivial
solution anm, bnm if the permittivity of the particle is



7.11 Negative Permittivity and Plasmonic Effects 421

εin = − n + 1
n

εout (7.214)

In particular, for n = 1 this is the already familiar condition εin = −2 εout.
The resonance permittivity is different for particles of different shape; al-

though no simple closed-form expression for this resonance value exists in
general, theoretical and numerical considerations for finding it are presented
in the following sections. Computing plasmon resonances is of great practi-
cal importance due to a variety of applications ranging from nano-optics to
nanosensors to biolabels; see S.A. Maier & H.A. Atwater’s review of plasmon-
ics [MA05].

7.11.2 Plasmon Resonances: Electrostatic Approximation

If the characteristic dimension of the system under consideration (e.g. the size
of a plasmonic particle) is small relative to the wavelength, analysis can be
simplified dramatically by electrostatic approximation – the zero-order term
in the asymptotic expansion of the solution with respect to the characteristic
size (see the previous section).

The governing equation for the electrostatic potential u is

∇ · ε∇u = 0; u(∞) = 0 (7.215)

An unusual feature here is the zero right hand side of the equation, along with
the zero boundary condition. Normally this would yield only a trivial solution:
the operator in the left hand side is self-adjoint and, if the dielectric constant
has a positive lower bound, ε(x, y, z) ≥ εmin > 0, positive definite. More
generally, however, the dielectric constant can be complex, so the operator
is no longer positive definite and for a real negative permittivity can have a
nontrivial null space. This is the plasmon resonance case that we have already
observed for spherical particles.

To study plasmonic resonances, let us revisit the formulation of the prob-
lem in the electrostatic limit. Since the dielectric constant need not be smooth
(it is often piecewise-constant, with jumps at material interfaces), the deriva-
tives in the differential equation (7.215) are to be understood in the generalized
sense. It is therefore helpful to write the equation in the weak form:

(ε∇u, ∇u′)L3
2(R

3) = 0; ∀u′ ∈ H1(R3) (7.216)

In contrast with standard electrostatics, for complex ε this bilinear form is
not in general elliptic. Importantly, ε can be (at least approximately) real and
negative in some regions, and this equation can therefore admit nontrivial
solutions.

To make further progress in the analysis, let us consider a specific case of
great practical interest: region(s) Ωp with one dielectric constant εp (particles,
particle clusters, layers, etc.) embedded in some “background” medium with
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another dielectric constant εbg �= εp. It is assumed that εp and εbg do not
depend on coordinates. The weak form of the governing equation can then be
rewritten as

εbg(∇u, ∇u′)L3
2(R

3) + (εp − εbg)(∇u, ∇u′)L3
2(Ωp) = 0; ∀u′ ∈ H1(R3)

(7.217)
or equivalently

(∇u, ∇u′)L3
2(Ωp) = λ(∇u, ∇u′)L3

2(R
3); ∀u′ ∈ H1(R3), (7.218)

λ =
εbg

εbg − εp
(7.219)

This is a generalized eigenvalue problem. Setting u′ = u reveals that all eigen-
values λ must lie in the closed interval [0, 1]. Indeed, both inner products with
u′ = u are always real and nonnegative; the inner product over Ωp obviously
cannot exceed the one over the whole R

3. Thus we have

0 ≤ εbg

εbg − εp
≤ 1

and consequently
εp
εbg

< 0 (7.220)

This result again highlights the key role of negative permittivity – without
that the resonance, in the strict sense of the word (the presence of a source-free
eigenmode), is not possible. If the dielectric constant of the particle is close but
not exactly equal to its resonance value (e.g. εp has a non-negligible imaginary
part), one can expect strong local amplification of applied external fields in
the vicinity of the particle,29 giving rise to many practical applications.

To find the actual numerical values of the eigenparameter λ in (7.218)
– and hence the corresponding value of the dielectric constant – one can
discretize the problem using finite element analysis, finite differences (K. Li
et al. [LSB03]), integral equation methods (D.R. Fredkin & I.D. Mayergoyz
[FM03, MFZ05a], T-matrix methods and other techniques. It goes without
saying that the plasmon modes and their spectrum do not depend on a specific
formulation of the problem or on a specific method of solving it. In particular,
regardless of the formulation, the problem with two media (e.g. host and
particles) splits up into a purely “geometric” eigenproblem (7.218) with no
material parameters and the relationship (7.219) between the eigenvalue λ
and the permittivity ε.

29 Unless the external field happens to be orthogonal to the respective resonance
eigenmode.
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7.11.3 Wave Analysis of Plasmonic Systems

Although the electrostatic approximation does provide a very useful insight
into plasmon resonance phenomena, accurate evaluation of resonance condi-
tions and field enhancement requires electromagnetic wave analysis. Effective
material parameters ε and µ are needed for Maxwell’s equations, but questions
do arise about the applicability of bulk permittivity to nanoparticles.

Various physical mechanisms affecting the value of the effective dielec-
tric constant in individual nanoparticles and in particle clusters are discussed
in detail in the physics literature: U. Kreibig & C. Von Fragstein [Fra69],
U. Kreibig & M. Vollmer [KV95], A. Liebsch [Lie93a, Lie93b], B. Palpant et
al. [PPL+98], M. Quinten [Qui96, Qui99], L.B. Scaffardi & J.O. Tocho [ST06].
As an example of such complicated physical phenomena, at the surfaces of sil-
ver particles due to quantum effects the 5s electron density “spills out” into
the vacuum, where 5s electronic oscillations are not screened by the 4d elec-
trons [Lie93a, Lie93b]. Further, for small particles the damping constant Γ
in the Drude model is increased due to additional collisions of free electrons
with the boundary of the particle [Fra69, KV95]; Scaffardi & Tocho [ST06]
and Quinten [Qui96] provide the following approximation;

Γ = Γbulk + C
vF

rp

where vF is the electron velocity at the Fermi surface and rp is the radius
of the particle (vF ∼ 14.1 · 1014 nm · s−1 for gold, C is on the order of 0.1–2
[ST06]).

Fortunately, the cumulative effect of the nanoscopic factors affecting the
value of the permittivity may be relatively mild, as suggested by spectral mea-
surements of plasmon resonances of extremely thin nanoshells by C.L. Nehl et
al. [NGG+04]: “the resonance line widths fit Mie theory without the inclusion
of a size-dependent surface scattering term”. Moreover, the measurements
by P. Stoller et al. [SJS06] show that bulk permittivity is applicable to gold
particles as small as 10–15 nm in diameter.

There is a large body of literature on the optical behavior of small parti-
cles. In addition to the publications cited above, see M. Kerker et al. [KWC80]
and K.L. Kelly et al. [KCZS03]. In the remainder of this section, our focus
is on the computational tools rather than the physics of effective material
parameters. Hence these parameters will be considered as given, with an im-
plicit assumption that proper adjustments have been made for the difference
between the parameters in the particles and in the bulk. However, it should
be kept in mind that such adjustments may not be valid if nonlocal effects of
electron charge distribution are appreciable.

7.11.4 Some Common Methods for Plasmon Simulation

This section is a brief summary of computational methods that are frequently
used for simulations in plasmonics. In the following sections, two other
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computational tools – the generalized finite-difference method with flexible lo-
cal approximation and the Finite Element Method – are considered in greater
detail.

Analytical Solutions

As an analytical problem, scattering of electromagnetic waves from dielectric
objects is quite involved. Closed-form solutions are available only for a few
cases (see e.g. M.I. Mishchenko et al. [MTL02]): an isotropic homogeneous
sphere (the classic Lorenz–Mie–Debye case); concentric core-mantle spheres;
concentric multilayered spheres; radially inhomogeneous spheres; a homoge-
neous infinite circular cylinder; an infinite elliptical cylinder; homogeneous
and core–mantle spheroids. For objects other than homogeneous spheres or
infinite cylinders, the complexity of analytical solutions (if they are available)
is so high that the boundary between analytical and numerical methods be-
comes blurred. At present, further extensions of purely analytical techniques
seem unlikely. On the other hand, with the available analytical cases in mind,
local analytical approximations to the field are substantially easier to con-
struct than global closed-form solutions. Such local analytical approximations
can be incorporated into “Flexible Local Approximation Methods” (FLAME),
Section 7.11.5 and Chapter 4.

T-matrix Methods

T-matrix methods (M.I. Mishchenko et al. [MTM96, MTL02]) are widely used
in scattering problems. Mishchenko et al. [MVB+04] collected a comprehen-
sive database of references and have developed a T-matrix software package
[MT98].

If a monochromatic wave impinges on a scattering dielectric object of ar-
bitrary shape, both the incident and scattered waves can be expanded into
spherical harmonics around the scatterer. If the electromagnetic properties
of the scatterer (the permittivity and permeability) are linear, then the ex-
pansion coefficients of the scattered wave are linearly related to the coeffi-
cients of the incident wave. The matrix governing this linear relationship is
called the T- (“transition”) matrix. For a collection of scattering particles,
the overall field can be sought as a superposition of the individual harmonic
expansions around each scatterer. The transformation of vector spherical har-
monics centered at one particle to harmonics around another one is accom-
plished via well-established translation and rotation rules (Theorems) (e.g.
D.W. Mackowski [Mac91], M.I. Mishchenko et al. [MTL02], D.W. Mackowski
& M.I. Mishchenko [MM96], Y.-l. Xu [lX95]).

Self-consistency of the multi-centered expansions then leads to a linear
system of equations for the expansion coefficients. Since the system matrix is
dense, the computational cost may become prohibitively high if the number
of scatterers is large. For spherical, spheroidal and other particles that admit
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a closed-form solution of the wave problem (see above), the T-matrix can be
found analytically. For other shapes, the T-matrix is computed numerically.
If the scatterer is homogeneous, the “Extended Boundary Condition Method”
(EBCM) (e.g. P. Barber & C. Yeh [BY75], M.I. Mishchenko et al. [MTL02])
is usually the method of choice. EBCM is a combination of integral equations
for equivalent surface currents and expansions into vector spherical harmon-
ics (R.F. Harrington [Har01] or J.A. Stratton [Str41]). While the T-matrix
method is quite suitable for a moderate number of isolated particles and is
also very effective for random distributions and orientations of particles (e.g.
in atmospheric problems), it is not designed to handle large continuous di-
electric regions. It is possible, however, to adapt the method to particles on
an infinite substrate at the expense of additional analytical, algorithmic and
computational work: plane waves reflected off the substrate are added to the
superposition of spherical harmonics scattered from the particles themselves
(A. Doicu et al. [DEW99], T. Wriedt and A. Doicu [WD00]).

The Multiple Multipole Method

In the Multiple Multipole Method (MMP), the computational domain is de-
composed into homogeneous subdomains, and an appropriate analytical ex-
pansion – often, a superposition of multipole expansions as the name suggests
– is introduced within each of the subdomains. A system of equations for the
expansion coefficients is obtained by collocation of the individual expansions
at a set of points on subdomain boundaries. Applications of MMP in computa-
tional electromagnetics and optics include simulations of plasmon resonances
(E. Moreno et al. [MEHV02]) and of plasmon-enhanced optical tips (R. Este-
ban et al. [EVK06]).

A shortcoming of MMP is that no general systematic procedure for choos-
ing the centers of the multiple-multipole expansions is available. The choice
of expansions remains partly a matter of art and experience, which makes it
difficult to evaluate and systematically improve the accuracy and convergence.
The MaX platform developed by C. Hafner [Haf99b, Haf99a] has apparently
overcome some of the difficulties.

The Discrete-Dipole Method

The Discrete-Dipole Method belongs to the general category of integral equa-
tion methods but admits a very simple physical interpretation. Scattering
bodies are approximated by a collection of dipoles, each of which is directly
related to the local value of the polarization vector. Starting with the volume
integral equation for the electric field, one can derive a self-consistent system
of equations for the equivalent dipoles (B. Draine & P. Flatau [DF94, DF],
P.J. Flatau [Fla97], A. Lakhtakia & G. Mulholland [LM03], J. Peltoniemi
[Pel96]).
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The method has gained popularity in the simulation of plasmonic particles,
as well as other scattering problems, because of its conceptual simplicity,
relative ease of use and the availability of public domain software DDSCAT
[DF94, DF] by Draine & Flatau. For application examples, see papers by
K.L. Kelly et al. [KCZS03], M.D. Malinsky et al. [MKSD01], K.-H. Su et al.
[SWZ+03].

DDM has some disadvantages typical for integral-equation methods. First,
the treatment of singularities in DDM is quite involved (Lakhtakia & Mulhol-
land [LM03], Peltoniemi [Pel96]). Second, the system matrix for the coupled
dipoles is dense, and therefore the computational time increases rapidly with
the increasing number of dipoles. If the dipoles are arranged geometrically
on a regular grid, the numerical efficiency can be improved by using Fast
Fourier Transforms to speed up matrix-vector multiplications in the itera-
tive system solver. However, for such a regular arrangement of the sources
DDM shares one additional disadvantage not with integral-equation methods
but rather with finite-difference algorithms: a “staircase” representation of
curved or slanted material boundaries. In DDM simulations (e.g. N. Félidj et
al. [FAL99], M.D. Malinsky et al. [MKSD01]), there are typically thousands
of dipoles in each particle and tens of thousands of dipoles for problems with
a few particles on a substrate. As an example, in [MKSD01] 11,218 dipoles
are used in the particle and 93,911 dipoles in the particle and substrate to-
gether, so that the overall system of equations has a dense matrix of dimension
280,000.

7.11.5 Trefftz–FLAME Simulation of Plasmonic Particles

This section shows an application of generalized finite difference schemes with
flexible local approximation (FLAME, Chapter 4) to the computation of elec-
tromagnetic waves and plasmon field enhancement around one or several cylin-
drical rods. The axes of all rods are aligned in the z direction and the field
is assumed to be independent of z, so that the computational problem is ef-
fectively two-dimensional. Two polarizations can be considered: the E-mode
with the E field in the z direction, and the H-mode. (The reason for using
this terminology, rather than more common “TE/TM” modes or s/p modes,
is explained on p. 385.)

Note that it is in the H-mode (one-component H-field perpendicular to
the xy-plane and the electric field in the plane) that the electric field “goes
through” the plasmon particles, thereby potentially giving rise to plasmon
resonances. The governing equation for the H-mode is:

∇ · (ε−1∇H) + ω2µH = 0 (7.221)

In plasmonics, permeability µ can be assumed equal to µ0 throughout the do-
main; the permittivity is ε0 in air and has a complex and frequency-dependent
value within plasmonic particles. Standard radiation boundary conditions for
the scattered wave apply.
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One specific problem that will be used here as an illustrative example
was proposed by J.P. Kottmann & O.J.F. Martin [KM01] and involves two
cylindrical plasmon particles with a small separation between them (Fig. 7.28).

Fig. 7.28. Two cylindrical plasmonic particles. Setup due to Kottmann & Martin
[KM01]. (This is one of the two cases they consider.)

Kottmann & Martin used integral equations in their simulation. In this
section as an alternative, Trefftz–FLAME schemes of Chapter 4 on a 9-point
(3× 3) stencil are applied. It is natural to choose the basis functions as cylin-
drical harmonics in the vicinity of each particle and as plane waves away from
the particles. “Vicinity” is defined by an adjustable threshold: r ≤ rcutoff ,
where r is the distance from the midpoint of the stencil to the center of the
nearest particle, and the threshold rcutoff is typically chosen as the radius of
the particle plus a few grid layers.

Away from the particles, eight basis functions are taken as plane waves
propagating toward the central node of the 9-point stencil from each of the
other eight nodes

ψα = exp(ik r̂α · r), α = 1, 2, . . . , 8, k2 = ω2µ0ε0 (7.222)

(see Appendix 4.8 on p. 236).
The 9 × 8 nodal matrix (4.14) of FLAME comprises the values of the

chosen basis functions at the stencil nodes, i.e.

Nβα = ψα(rβ) = exp(ik r̂α · rβ) α = 1, 2, . . . , 8; β = 1, 2, . . . , 9 (7.223)

The coefficient vector of the Trefftz–FLAME scheme (Chapter 4) is s =
Null NT . Straightforward symbolic algebra computation shows that this null
space is indeed of dimension one, so that a single valid Trefftz–FLAME scheme
exists (Appendix 4.8).

Substituting the nodal values of a “test” plane wave exp(−ikr̂ · r), where
r̂ = x̂ cos φ + ŷ sin φ, into the difference scheme, one obtains, after some addi-
tional symbolic algebra manipulation, the consistency error

εc =
1

12096
(hk)6(cos(φ)− 1) cos2(φ)(cos(φ) + 1)(2 cos2(φ)− 1)2 (7.224)
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where for simplicity the mesh size h is assumed to be the same in both coor-
dinate directions.

The φ-dependent factor has its maximum of (2− 2
1
2 )/8 at cos 2φ = (1

2 +
2

1
2 /4)

1
2 . Hence the consistency error εc ≤ (hk)6(2−2

1
2 )/96, 768 for any “test”

plane wave. Since any solution of the Helmholtz equation in the air region can
be locally represented as a superposition (Fourier integral) of plane waves,
this result for the consistency error has general applicability. Note that by
construction the scheme is exact for plane waves propagating in either of the
eight special directions (at ±45◦ to the axes if hx = hy = h). The domain
boundary is treated using a FLAME-style PML (Perfectly Matched Layer),
as mentioned on p. 218; see also [Tsu05a, Tsu06].

In the vicinity of each particle, the “Trefftz” basis functions satisfying the
wave equation are chosen as cylindrical harmonics:

ψ(i)
α =

{
anJn(kcylr) exp(inφ), r ≤ r0(

bnJn(kairr) + H
(2)
n (kairr)

)
exp(inφ), r > r0

where Jn is the Bessel function, H
(2)
n is the Hankel function of the second

kind [Har01], and an, bn are coefficients to be determined. These coefficients
are found via the standard conditions on the particle boundary; the actual
expressions for these coefficients are too lengthy to be worth reproducing here
but are easily usable in computer codes.

Eight basis functions are obtained by retaining the monopole harmonic
(n = 0), two harmonics of orders n = 1, 2, 3 (i.e. dipole, quadrupole and
octupole), and one of harmonics of order n = 4. Numerical experiments for
scattering from a single cylinder, where the analytical solution is available for
comparison and verification, show convergence (not just consistency error!) of
order six for this scheme [Tsu05a].

In Fig. 7.29, the electric field computed with Trefftz–FLAME is compared
with the quasi-analytical solution via the multicenter-multipole expansion of
the wave (V. Twersky [Twe52], M.I. Mishchenko et al. [MTL02]), for the
following parameters.30

The radius of each silver nanoparticle is 50 nm. The wavelength of the inci-
dent wave varies as labeled in the figure; the complex permittivity of silver at
each wavelength is obtained by spline interpolation of the Johnson & Christy
values [JC72]. As evident from the figure, the results of FLAME simulation
are in excellent agreement with the quasi-analytical computation.

Kottman & Martin applied volume integral equation methods where “the
particles are typically discretized with 3000 triangular elements” [KM01]. For
two particles, this gives about 6000 unknowns and a full system matrix with
36 million nonzero entries. For comparison, FLAME simulations were run on
grids from 100 × 100 to 250 × 250 (∼100–500 thousand nonzero entries in a
very sparse matrix).

30 The analytical expansion was implemented by Frantisek Čajko.
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Fig. 7.29. (Credit: F. Čajko.) The magnitude of the electric field along the line
connecting two silver plasmonic particles. Comparison of FLAME and multipole-
multicenter results. Particle radii 50 nm; varying wavelength of incident light.
(Reprinted by permission from [Tsu06] c©2006 Elsevier.)

7.11.6 Finite Element Simulation of Plasmonic Particles

As we have seen, plasmonic resonances of metal particles may lead to very
high local enhancement of light. Cascade amplification may produce an even
stronger effect.

As an illustration, an interesting self-similar cascade arrangement of par-
ticles in 3D, where an extremely high plasmon field enhancement can be
achieved, was proposed by K. Li, M.I. Stockman and D. Bergman [LSB03]
(Figs. 7.30, 7.31). Three spherical silver particles, with the radii 45, 15 and
5 nm as a characteristic example, are aligned on a straight line; the air gap is
9 nm between the 45 and 15 nm particles, and 3 nm between the 15 and 5 nm
particles. Each of the smaller particles is in the field amplified by its bigger
neighbor; hence cascade amplification of the field.

The quasi-static approximation of [LSB03] is helpful if the size of the sys-
tem is much smaller that the wavelength. Electrodynamic effects were reported
by another group of researchers (Z. Li et al. [LYX06]) to result in correction
factors on the order of two for the maximum value of the electric field. How-
ever, as K. Li et al. argue in [LSB06], the grid size in the finite-difference
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time-domain (FDTD) simulation of [LYX06] was too coarse to accurately
represent the rapid variation of the field at the focus of the “lens”. To analyze
the impact of electrodynamic effects on the nano-focusing of the field more
accurately, J. Dai et al. [DvTS] use adaptive finite element analysis in the
frequency domain, which is more straightforward and reliable that reaching
the sinusoidal steady state in FDTD.

1

2
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5
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Fig. 7.30. A cascade of three particles and reference points for field enhancement.

Some of the results by J. Dai et al. are reported below. It is assumed (as
was done in [LSB03]) that, to a reasonable degree of approximation, the per-
mittivity of the particles is equal to its bulk value for silver. As already noted,
the optical response of small particles is very difficult to model accurately due
to nonlocality, surface roughness, “spillout” of electrons and other factors.
Nevertheless the bulk value of the permittivity may still provide a meaningful
approximation (p. 423).

Under the electrostatic approximation, the maximum field enhancement in
the Li–Stockman–Bergman cascade is calculated to occur in the near ultravio-
let at �ω = 3.37 eV, with the corresponding wavelength of ∼367.9 nm in a vac-
uum and the corresponding frequency ∼814.8 THz. The relative permittivity
at this wavelength is, under the exp(+iωt) phasor convention, −2.74− 0.232 i
according to the Johnson & Christy data [JC72].

Electric field E is governed by the wave equation

∇× µ−1∇×E − ω2εE = 0 (7.225)

For analysis and simulation – particularly for imposing radiation boundary
conditions – it is customary to decompose the total field into the sum of the
incident field Einc and the scattered field Es; by definition, Es = E−Einc. In
our simulations, the incident field is always a plane wave with the amplitude
of the electric field normalized to unity.

The governing equation for the scattered field is

∇×∇×Es − ω2µ0εEs = −(∇×∇×Einc − ω2µ0εEinc) (7.226)

(for µ = µ0 at optical frequencies). The differential operators should be under-
stood in the sense of generalized functions (distributions) that include surface
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delta functions for charges and currents (Appendix 6.15 on p. 343). The right
hand side of the equation is nonzero due to these surface terms and due to
the volume term inside the particles, as the incident field is governed by the
wave equation with the wavenumber of free space.

In the electrostatic limit, the governing equation is written for the total
electrostatic potential φ:

∇ · ε∇φ = 0; φ(r) → φext(r) as r →∞ (7.227)

where φext(r) is the applied potential (typically a linear function of position
r, corresponding to a constant external field). The differential operators in
(7.227) should again be understood in the generalized sense.

In FEM, (7.226) is rewritten in the weak (variational) form. Boundary
conditions on the surfaces are natural – that is, the solution of the vari-
ational problem satisfies these conditions automatically. The mathematical
and technical details of this approach are very well known (e.g. P. Monk
[Mon03], J. Jin [Jin02]). J. Dai et al. [DvTS] used the commercial soft-
ware package HFSSTM by Ansoft Corp. for electrodynamic analysis31 and
FEMLABTM (COMSOL Multiphysics) in the electrostatic case. Both pack-
ages are FEM-based: second-order triangular nodal elements for the electro-
static problem and tetrahedral edge elements with 12 degrees of freedom for
wave analysis. HFSS employs automatic adaptive mesh refinement for higher
accuracy and either radiation boundary conditions or Perfectly Matched Lay-
ers to truncate the unbounded domain.

To assess the numerical accuracy, J. Dai et al. first considered a single
particle. The average difference between Mie theory [Har01] and HFSS field
values is ∼2.3% for a dielectric particle with ε = 10 and ∼4.9% for a silver
particle with εs = −2.74−0.232 i. At the surface of the particle, the computed
normal component of the displacement vector, in addition to smooth variation,
was affected by some numerical noise. The noise was obvious in the plots and
was easily filtered out. The HFSS mesh had 20,746 elements in all simulations.

Let us now turn to the simulations of particle cascades. A sample distri-
bution of the field enhancement factor (i.e. the ratio of the amplitude of the
total electric field to the incident field) in the cross-section of the cascade is
shown in Fig. 7.31 for illustration; the incident wave is polarized along the
axis of the cascade and propagates in the downward direction.

Four independent combinations of the directions of wave propagation and
polarization can be considered (left–right and up–down directions are in ref-
erence to Fig. 7.30):

1. The incident wave propagates from right to left. Electric and magnetic
fields are both perpendicular to the axis of the cascade. (Mnemonic label:
⇐⊥.)

31 Caution should be exercised when representing the measured Johnson & Christy
data [JC72], with its exp(−iωt) convention for phasors, as the HFSS input, with
its exp(+iωt) default.
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Fig. 7.31. Electric field enhancement factor around the cascade of three plasmonic
spheres. (Simulation by J. Dai & F. Čajko.)

2. Same as above, but the wave impinges from the left. (⇒ ⊥)
3. The direction of propagation and electric field are both perpendicular to

the axis of the cascade. (⇑ ⊥)
4. The direction of propagation is perpendicular to the cascade axis and the

electric field is parallel to it. (⇑ ‖)
Table 7.2 shows the field enhancement factors at the reference points for

cases (i)–(iv) [DvTS]. The “hottest spot,” i.e. the point of maximum enhance-
ment, is indicated in bold and is different in different cases. When the electric
field is perpendicular to the axis of the cascade, the local field is amplified by
a very modest factor g < 40. Not surprisingly, enhancement is much greater
(g ≈ 205) in case (iv), when the field and the dipole moments that it induces
are aligned along the axis.

Table 7.2. Field enhancement for different directions of propagation and polar-
ization of the incident wave. P1–P9 are the reference points shown in Fig. 7.30.
(Simulation by J. Dai & F. Čajko.)

Case P1 P2 P3 P4 P5 P6 P7 P8 P9

⇐⊥ 5.45 17.3 10.2 9.43 34.4 10.7 5.53 10.4 3.21
⇒⊥ 6.37 6.49 2.41 1.43 4.17 3.39 3.91 11.2 2.00
⇑⊥ 2.44 8.48 6.65 7.60 23.3 8.31 4.69 10.1 2.61
⇑‖ 90.8 35.9 250 146 10.3 70.9 51.9 2.72 6.47

To gauge the influence of electrodynamic effects, field enhancement is an-
alyzed as a function of scaling of the system size. Scaling is applied across the
board to all dimensions: all the radii of the particles and the air gaps between
them are multiplied by the same factor. The radius of the smallest particle,
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with its original value [LSB03] of 5 nm as reference, is used as the independent
variable for plotting and tabulating the results (Fig. 7.32).

The enhancement factor decreases rapidly as the size of the system in-
creases. This can be easily explained by dephasing effects. Conversely, as the
system size is reduced, the local field increases significantly. It is, however,
somewhat counterintuitive that the electrostatic limit does not produce the
highest enhancement factor (Fig. 7.32). Further, the point of maximum en-
hancement does not necessarily lie on the axis of the cascade. As noted by
F. Čajko, some clues can be gleaned by approximating each particle as an
equivalent dipole in free space and neglecting higher-order spherical harmon-
ics. The electric field of a Hertzian dipole is given by the textbook formula

Edip = − η0
kωp exp(−ikr)

4πr

{
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[
1

ikr
+

(
1
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)2
]
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1 +
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) 1
2

(7.228)

where the dipole with moment p is directed along the z-axis of the spherical
system (r, θ, φ). In the case under consideration, kr is on the order of unity,
and no near/far field simplification is made in the formula. Since all dipole
moments approximately scale as the cube of a characteristic system size l, the
magnitude of the field, say, on the axis θ = 0 behaves as ∝ c1 +c2l

2 with some
positive coefficients c1,2. This explains the mild local minimum of the field in
the electrostatic limit in Fig. 7.32. Furthermore, since (7.228) includes both
sin θ and cos θ variations, it is clear that the maximum magnitude of the field
cannot in general be expected to occur on the axis θ = 0.

To summarize, while electrostatic analysis provides a useful insight into
plasmonic field enhancement, electrodynamic effects lead to appreciable cor-
rections. Field enhancement factors on the order of a few hundred by self-
similar chains of plasmonic particles may be realizable. Maximum enhance-
ment does not necessarily correspond to polarization along the axis of the
cascade and to the electrostatic limit; hence the size of the system is a non-
trivial variable in the optimization of optical nano-lenses.

7.12 Plasmonic Enhancement in Scanning Near-Field
Optical Microscopy

This section reflects some results of collaborative work with A. P. Sokolov and
his group at the Department of Polymer Science, the University of Akron,
and with F. Keilmann & R. Hillenbrand’s group at the Max-Planck-Institut
für Biochemie in Martinsried, Germany. The simulations in this section were
performed by F. Čajko.
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Fig. 7.32. Maximum field enhancement vs. radius of the smallest particle. All
dimensions of the system are scaled proportionately. LSB: the specific example by
K. Li et al. [LSB03], where the radius of the smallest particle is 5 nm. ES: the
electrostatic limit. Credit: J. Dai & F. Čajko.

7.12.1 Breaking the Diffraction Limit

As a rule, diffraction constrains the focusing of light and the resolution in
optical systems to about one half of the wavelength. While in geometric optics
an ideal lens can focus a beam of light to a single point, in reality the focus is
smeared to an area on the order of the wavelength in size. The previous section
showed, however, that plasmon resonances, especially in particle cascades and
clusters, can produce very strong fields in highly localized areas; this can be
interpreted as nano-focusing or nano-lensing.

The diffraction limit is often viewed as a manifestation of the Heisenberg
uncertainty principle

∆y ∆py ∼ �

2
(7.229)

where � is the reduced Planck constant (∼ 1.05457×10−34 m2 · kg/s); ∆y, ∆py

are the uncertainties in the position and momentum of a quantum particle
(in our case, a photon) along a given direction labeled in the formula as y.
A photon with frequency ω arriving at the focus of a lens (Fig. 7.33) has the
magnitude of momentum p = �k = � 2π/λ, where λ is the wavelength in the
medium around the lens. Since the photon can come from any angle θ between
some −θmax and +θmax, the uncertainty in the y-component of its momentum
is

∆py = 2p sin θmax = 4π� sin θmax/λ

and hence the uncertainly in its position is, by the Heisenberg principle,
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∆y ∼ �

2∆py
=

λ

8π sin θmax
(7.230)

Thus the uncertainly principle prohibits ideal focusing of light by a conven-
tional lens.

Fortunately, however, the connection between the uncertainly principle
and the diffraction limit is not cut and dried. Contrary to what the lens
example may lead us to believe, there appears to be no fundamental theoretical
limit on the level of optical resolution – only practical limitations.

Fig. 7.33. In geometric optics, an ideal lens can focus light to a single point, but
in reality the focusing is limited by diffraction. In this case, the diffraction limit can
be linked to the Heisenberg uncertainty principle (see text).

A key case in point is the Veselago–Pendry “perfect lens” [Ves68, Pen00]
(see p. 447) that is, in principle, capable of producing ideal (non-distorted)
images.32 This is possible because the evanescent waves with large wavenum-
bers kx, ky in the image plane xy, or equivalently with large components of
momentum px = �kx, py = �ky resolve [Pen01] the apparent contradiction

32 The perfect lensing effect has been challenged by many researchers (N. Garcia &
M. Nieto-Vesperinas [GNV02, NVG03], J.M. Williams [Wil01], A.L. Pokrovsky &
A.L. Efros [PE03], P.M. Valanju et al. [VWV02, VWV03]) but for the most part
has survived the challenge (see J.B. Pendry & D.R. Smith [PS04], J.R. Minkel
[Min03]). Part of the difficulties and the controversy arise because the problem
with the “perfect lens” parameters (ε = −1, µ = −1 for a slab) is ill-posed, and
the analysis depends on regularization and on the way of passing to the small-loss
and (in some cases) low-frequency limits.
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[Wil01] between the diffraction limit and the uncertainty principle. Indeed,
the dispersion relation for waves in free space (air) is

k2
x + k2

y + k2
z =

(ω

c

)2

In the evanescent field, kx and ky can be arbitrarily large, with the corre-
sponding imaginary value of kz and negative k2

z . The uncertainty in the xy-
components of the photon momentum is therefore infinite, and there is no
uncertainty in the position in the ideal case.

The remainder of this section is devoted to a less exotic way of beating the
diffraction limit: strong plasmon amplification of the field in SNOM (Scanning
Near-Field Optical Microscopy). SNOM is a very significant enhancement of
more traditional Scanning Probe Microscopy (SPM).

The first type of SPM, the Scanning Tunneling Microscope (STM), was
developed by Gerd Binnig and Heinrich Rohrer at the IBM Zurich Research
Laboratory in the early 1980’s [BRGW82] (see also [BR99]). For this work,
Binnig and Rohrer were awarded the 1986 Nobel Prize in Physics.33 The main
part of the STM is a sharp metallic tip in close proximity (∼ 10 Å or less) to
the surface of the sample; the tip is moved by a piezoelectric device. A small
voltage, from millivolts to a few volts, is applied between the tip and the
surface, and the system measures the quantum tunneling current (from pico-
to nano-Amperes) that results. Since the probability of tunneling depends
exponentially on the gap, the device is extremely sensitive. Binnig and Rohrer
were able to map the surface with atomic resolution. STMs normally operate
in a constant current mode while the tip is scanning the surface. The constant
tunneling current is maintained by adjusting the elevation of the tip, which
immediately identifies the topography of the surface.

The second type of Scanning Probe Microscopy is Atomic Force Mi-
croscopy (AFM). Instead of the tunneling current, AFM measures the in-
teraction force between the tip and the surface (short-range repulsion or van
der Waals attraction), which provides information about the surface structure
and topography.

To achieve atomic-scale resolution in all types of SPM, the position of the
tip has to be controlled with extremely high precision and the tip has to be
very sharp, up to just one atom at its very apex. Modern SPM technology
satisfies both requirements.

While the level of resolution in atomic force and tunneling microscopes is
amazing, these devices are blind – they can only “feel” but not see the surface.
Vision – a tremendous enhancement of the scanning probe technology – is
acquired in Scanning Near-Field Optical Microscopy.

Two main approaches currently exist in SNOM. In the first one, light
illuminates the sample after passing through a small (subwavelength) pinhole;

33 Ernst Ruska received his share of that prize “for his fundamental work in electron
optics, and for the design of the first electron microscope”.
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the size of the hole determines the level of resolution. The idea dates back to
E.H. Synge’s papers in 1928 and 1932 [Syn28, Syn32]. In modern realization,
the “pinhole” is actually a metal-coated fiber (Fig. 7.34 and caption to it).

Fig. 7.34. A schematic of aperture-SNOM. An optical-fiber tip is scanned across a
sample surface to form an image. The tip is coated with metal everywhere except for
a narrow aperture at the apex.(Reprinted by permission from D. Richards [Ric03]
c©2003 The Royal Society of London.)

An interesting timeline for the development of this aperture-limited type
of SNOM is posted on the website of Nanonics Imaging Ltd.:34

1928/1932
E.H. Synge proposes the idea of using a small aperture to image a
surface with subwavelength resolution using optical light. For the small
opening, he suggests using either a pinhole in a metal plate or a quartz
cone that is coated with a metal except for at the tip. He discusses
his theories with A. Einstein, who helps him develop his ideas. . . .
1956
J.A. O’Keefe, a mathematician, proposes the concept of Near-Field
Microscopy without knowing about Synge’s earlier papers. However,
he recognizes the practical difficulties of near-field microscopy and
writes the following about his proposal: “The realization of this pro-
posal is rather remote, because of the difficulty providing for relative
motion between the pinhole and the object, when the object must be

34 http://www.nanonics.co.il/main/twolevels item1.php?ln=en&item id=34-
&main id=14 Nanonics Imaging Ltd. specializes in near-field optical microscopes
combined with atomic force microscopes.
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brought so close to the pinhole.” [J.A. O’Keefe, “Resolving power of
visible light,” J. of the Opt. Soc. of America, 46, 359 (1956)].
In the same year, Baez performs an experiment that acoustically
demonstrates the principle of near-field imaging. At a frequency of
2.4 kHz (λ = 14 cm), he shows that an object (his finger) smaller
than the wavelength of the sound can be resolved.
1972
E.A. Ash and G. Nichols demonstrate λ/60 resolution in a scanning
near-field microwave microscope using 3 cm radiation. [E.A. Ash and
G. Nichols, “Super-resolution aperture scanning microscope,” Nature
237, 510 (1972).]
1984
The first papers on the application of NSOM/SNOM appear. These
papers . . . show that NSOM/SNOM is a practical possibility, spurring
the growth of this new scientific field. [A. Lewis, M. Isaacson, A. Ha-
rootunian and A. Murray, Ultramicroscopy 13, 227 (1984); D.W. Pohl,
W. Denk and M. Lanz [PDL84]].

[End of quote from the Nanonics website.]
In aperture-limited SNOM, high resolution, unfortunately, comes at the

expense of significant attenuation of the useful optical signal: the transmission
coefficient through the narrow fiber is usually in the range of ∼ 10−3–10−5,
which limits the applications of this type of SPM only to samples with very
strong optical response.

A very promising alternative is apertueless SNOM that takes advantage
of local amplification of the field by plasmonic particles. This idea was put
forward by J. Wessel in [Wes85]; his design is shown in Fig. 7.35 and is sum-
marized in the caption to this figure.

A remarkably high optical resolution of ∼15–30 nm has already been
demonstrated by several research groups (T. Ichimura et al. [IHH+04], N. An-
derson et al. [AHCN05]), albeit with rather weak useful optical signals. To
realize the full potential of apertureless SNOM, the local field amplification
by plasmonic particles needs to be maximized. However, this amplification
is quite sensitive to the geometric and physical design of plasmon-enhanced
tips. For a radical improvement in the strength of the useful optical signal,
one needs to unify accurate simulation with effective measurements of the
efficiency of the tips and with fabrication.

As an illustration, in A.P. Sokolov’s laboratory at the University of
Akron35 a stable and reproducible enhancement of for the Raman signal on
the order of ∼ 103–104 was achieved for gold- and silver-coated Si3N4- and
Si-tips in 2005–2006. As noted by Sokolov, this enhancement may be sufficient
for the analysis of thin (a few nanometer) films. However, for thicker samples,

35 A brief description of their experimental setup for Raman spectroscopy is given
below.
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Fig. 7.35. The optical probe particle (a) intercepts an incident laser beam, of
frequency ωin, and concentrates the field in a region adjacent to the sample surface
(b). The Raman signal from the sample surface is reradiated into the scattered
field at frequency ωout. The surface is scanned by moving the optically transparent
probe-tip holder (c) by piezoelectric translators (d). (Reprinted by permission from
J. Wessel [Wes85] c©1985 The Optical Society of America.)

due to the large volume contributing to the far-field signal relative to the vol-
ume contributing to the near-field signal, the Raman enhancement of ∼ 104

does not produce a high enough ratio between near-field and far-field signals.
At the same time, a dramatically higher Raman enhancement, by a factor

of ∼ 106 or more, appears to be within practical reach if tip design is opti-
mized. This would constitute an enormous qualitative improvement over the
existing technology, as the useful Raman signal would exceed the background
field. Since plasmon enhancement is a subtle and sensitive physical effect,
and since human intuition with regard to its optimization is quite limited,
computer simulation – the main subject of this book – becomes crucial.

The computational methods and simulation examples for plasmon-enhanced
SNOM are described in Section 7.12.3, after an illustration of the experimen-
tal setup in Section 7.12.2. For general information on SNOM, the interested
reader is referred to the books by M.A. Paesler & P. J. Moyer [PM96] and by
P.N. Prasad [Pra03, Pra04].

7.12.2 Apertureless and Dark-Field Microscopy

This section briefly describes the experimental setup in A.P. Sokolov’s lab-
oratory at the University of Akron. The figures in this section are courtesy
A.P. Sokolov. For further details, see D. Mehtani et al. [MLH+05, MLH+06].

A distinguishing feature of the setup is side-collecting optics (Fig. 7.36,
top) that does not suffer from the shadowing effect of more common
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illumination/collection optics above the tip. Another competing design, with
illumination from below, works only for optically transparent substrates,
whereas side illumination can be used for any substrates and samples. Fi-
nally, the polarization of the wave coming from the side can be favorable for
plasmon enhancement. Indeed, it is easy to see that the electric field, being
perpendicular to the direction of propagation of the incident wave, can have a
large vertical component that will induce a plasmon-resonant field just below
the apex of the tip, as desired. In contrast, for top or bottom illumination the
direction of wave propagation is vertical, and hence the electric field has to be
horizontal, which is not conducive to plasmon enhancement underneath the
tip.

    
 

Fig. 7.36. Experimental setup. Top: schematics of side-illumination/collection op-
tics. Bottom: dark-field microscopy for measuring plasmon field enhancement at the
apex of the tip. (Figure courtesy A.P. Sokolov. Bottom part reprinted by permission
from D. Mehtani et al. [MLH+06] c©2006 IOP Publishing Ltd.)

Before a plasmon-enhanced tip can be used, it is important to evaluate
the level of field amplification at the apex. Direct measurements of the optical



7.12 Plasmonic Enhancement in Scanning Near-Field Optical Microscopy 441

response of the tip are not effective because the measured spectrum of the tip
as a whole may differ significantly from the spectrum of the plasmon area at
the apex.

An elegant solution is dark-field microscopy (C.C. Neacsu et al. [NSR04],
D. Mehtani et al. [MLH+06]). The apex of the tip is placed in the evanescent
field that exists above the surface of a glass prism due to total internal re-
flection (Fig. 7.36, bottom). Away from the glass surface, the evanescent field
falls off exponentially and therefore is not seen by the collecting system. At
the same time, the evanescent field does induce a plasmon resonance. Indeed,
such resonance is, to a good degree of approximation, a quasi-static effect
that will manifest itself once an external electric field is present and once the
effective dielectric constant of the plasmonic structure is close to its resonance
value. The exponential decay of the field matters only insofar as it can induce
higher-order plasmon modes; this happens if the particle size is large enough
for the variation of the field over the particle to be appreciable. The frequency
of light affects the result indirectly, via frequency dependence of the dielectric
permittivities.

The side-collecting optics is critical for dark-field measurements, as it al-
lows virtually unobstructed collection of optical signals from the apex of the
tip.

7.12.3 Simulation Examples for Apertureless SNOM

The dependence of plasmon-amplified fields on geometric and physical para-
meters, as well as the dependence of these parameters (dielectric permittiv-
ities) on frequency, is so complex that computer modeling is indispensable
in tip design and optimization. A natural simulation protocol consists of two
parts: electrostatics and wave analysis. Electrostatic simulations may give
qualitative predictions and allow one to optimize the design but at the same
time have substantial limitations, as discussed below.

Electrostatic Approximation in SNOM

The electrostatic approximation is useful because the dimensions of the apex
of the tip, with its plasmon decoration, are typically much smaller than the
wavelength of incident light. In addition, for axially symmetric designs, the
electrostatic problem becomes effectively two-dimensional and hence is much
faster to solve. One needs to be aware, however, of a major limitation of the
electrostatic model: it cannot adequately represent dephasing, retardation,
and antenna-like resonances along the length of the tip. Hence full electromag-
netic wave analysis is in many instances indispensable and will be considered
later in this section.

For the electrostatic simulations, the FEMLABTM (COMSOL Multi-
physicsTM) package was used. F. Čajko incorporated FEMLAB commands
into Matlab scripts for postprocessing and multiparametric optimization
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(D. Mehtani et al. [MLH+06]). In all simulations described below, the am-
plitude of the incident field is normalized to unity, so that the values in the
plots represent the amplification of the electric field. To get a more realistic
picture, it makes sense to deal with the mean value of the field rather than
just the point-wise value at the very apex. To this end, the field is computed
1 nm below the tip (which represents a practically useful gap between the apex
and the sample) and, since the resolution of the tip-enhanced spectroscopy is
expected to approach ∼10–15 nm, the field is averaged over a horizontal disk
with radius 10 nm located 1 nm below the apex.

In the simulations, the P.B. Johnson & R.W. Christy data [JC72] for the
dielectric properties of silver and gold are used, and the M.A. Ordal et al.
[OLB+83] and J.H. Weaver et al. [WOL75] data are adopted for tungsten
tips.

One sample setup, due to Y.C. Martin et al. [MHW01], is useful for testing
and verification and involves a semispherical gold or silver particle at the apex
of the tungsten or silicon tip (Fig. 7.37, top). With the optimal dimensions of
the particle, the field of coated Si tip is amplified by a factor of ∼47 for gold
and ∼132 for silver.

F. Čajko’s simulations have shown that the level of plasmon enhancement
depends strongly not only on the dimensions and material of the plasmonic
particle but also on other geometric parameters and on the material of the tip.
For different materials (Au and Ag) the resonance wavelength is different as
shown in Fig. 7.37, and the optimal aspect ratio of the semispheroid changes
as well. For a slightly different design with a conical tip, Fig. 7.38 illustrates
the effects of the varying permittivity of the tip and the angle of the cone.
These two parameters have a lesser impact on the field enhancement than the
aspect ratio of the particle.

Wave Simulations of Optical Tips

Full-wave simulations are performed using HFSSTM – the Finite-Element
software from the Ansoft Corporation. Under the electrostatic approximation,
the problem is axisymmetric; in wave analysis the distinctive direction of wave
propagation breaks the axial symmetry.

The Martin et al. tip with a semispheroidal particle [MHW01] is again used
as a test case. To limit the size of the computational domain, for simplicity of
this model example the tip is truncated to a length of 100 nm. However, as
discussed later in this section, one should be aware that such truncation may
have undesirable side effects.

The simulation domain is cylindrical, with radius 800 nm and height
340 nm. Due to computational constraints, the radial distance between the
scatterer and the domain boundary is about one wavelength, and second-order
radiation boundary conditions are applied to reduce the error due to this fi-
nite domain size. Incident plane waves travel from the left and are polarized
in the vertical direction (Fig. 7.37, top).
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Fig. 7.37. (Credit: F. Čajko.) Electrostatic simulation. Top: Geometric setup
[MHW01] – a semispherical plasmonic particle (with dimensions a, b as shown) at-
tached to a tip with height h and radius r. Incident plane wave traveling in the +x-
direction is linearly polarized in the vertical direction. Bottom: FEMLABTM sim-
ulation for Si tips with attached Au and Ag semispheroids. The mean total electric
field 1 nm below the tip is shown as a function of wavelength in air for the geometric
parameters h = 100 nm, r = 17 nm, a = 40 nm and b = 8 nm.

Wave analysis is used to relate local field amplification below the tip to
the spatial distribution of the radiated fields. If a strong correlation between
these fields exists, far fields measured by dark-field microscopy will indeed be
a good indicator of the near-field enhancement at the tip. The simulations
do confirm this correlation (D. Mehtani et al. [MLH+06]), in agreement with
experimental results published by other groups (C.C. Neacsu et al. [NSR04]).
In Fig. 7.39, a measure of the far field is plotted against the magnitude of the
near-field. Different curves in the figure correspond to different tip designs.
Points on the curves correspond to different wavelengths. As the wavelength
increases, the near- and far-fields increase simultaneously, and roughly in pro-
portion to one another, until they reach their maximum values; then both
fields simultaneously decrease as the wavelength keeps increasing.
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Fig. 7.38. (Credit: F. Čajko.) The electric field enhancement for a conical tip
with a semispheroidal gold particle. Top: the geometric setup. The wave impinging
from the left is linearly polarized in the vertical direction. Bottom: electrostatic
simulations of the average electric field for several sets of parameters. The aspect
ratio, the permittivity and the angle vary.

The main challenge in the full electrodynamic simulation of optical tips
is the multiscale nature of the problem. The apex of the tip, with dimensions
well below the wavelength (radius of ∼20–30 nm), has to be represented very
accurately in the model, as it is the heart of the optical device. At the same
time, the tip could be several wavelengths long, so that the difference between
the height of the tip and the size of its apex could reach about three orders of
magnitude. Although truncation of the tip for computational purposes may at
first glance look like a reasonable idea, this truncation distorts the antenna-
type resonances that can be induced along the length of the tip.

The problem can thus be viewed as multiscale not only in terms of its
geometry but in terms of physics as well: antenna resonances along the length
of the tip are coupled with plasmon resonances and scattering effects in the
small area around the apex. This has been pointed out in the literature,
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Fig. 7.39. (Credit: F. Čajko.) Correlation between the far field and the near-field
for two tip designs and different wavelengths. h = 100 nm, a = 40 nm. Design 1:
r = 20 nm, b = 12 nm; design 1b: r = 17 nm, b = 8.6 nm.

particularly by F. Keilmann’s experimental group [KH04] and in the paper
on tip simulation by R. Esteban et al. [EVK06].

The multiscale character of the modeling is a hurdle for any numerical
method. Esteban et al. use the Multiple Multipole Method (see Section 7.11.4
on p. 425) and report a variety of interesting results, including the dependence
of near-fields around the apex on the height of the tip, i.e. on its antenna-like
behavior.

In FEM, there are several ways of dealing with multiscale challenges. One
is adaptive mesh refinement described in Section 3.13 on p. 148. Another
possibility – after solving the global problem on a relatively coarse mesh –
is to “zoom in” on the apex area and solve a local problem there with high
resolution. The boundary conditions for the local problem come from the
global solution. This approach is not completely satisfactory, though, as the
accuracy of the local boundary conditions is limited by the global mesh. A
related systematic and rigorous procedure is known as domain decomposition
and has been very extensively studied (A. Toselli & O. Widlund [TW05]).36

An example of adaptive mesh refinement and a distribution of the scattered
field is given in Fig. 7.40. The simulation was performed by F. Čajko with the
HFSS package, and the physical and experimental setup is due to F. Keilmann,
R. Hillenbrand [HTK02, KH04] and others at the Max-Planck-Institut für

36 See also http://www.ddm.org
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Biochemie in Martinsried, Germany.37 The useful signal is due to scattering
from a sharp platinum tip; its apex is not plasmon-enhanced. This technique is
known as scattering-type Scanning Near-field Optical Microscopy (s-SNOM),
in contrast with plasmon-enhanced SNOM. The antenna-like behavior of the
tip and its coupling with near-field at the apex are indeed very important
in this setup. The near-field is strongly enhanced when a polaritonic sample
(such as silicon carbide) with negative dielectric permittivity is probed.

Fig. 7.40. (Credit: F. Čajko.) An example of a finite element mesh and the scattered
field near the infrared tip. Experimental setup due to F. Keilmann’s group.

F. Keilmann’s device operates in the mid-infrared; the simulation example
is for the wavelength λ = 10.5 µm in free space. The radius of the apex of the
tip in the simulation is about 600 times smaller than the domain size, so that
truly disparate scales are involved. Moreover, a thick SiC substrate with a thin
(10–30 nm) gold layer is also included in the model. Very high mesh density
in the gold layer is clearly visible in Fig. 7.40. Details of these simulations are
left for more specialized publications and will not be described here.

7.13 Backward Waves, Negative Refraction and
Superlensing

7.13.1 Introduction and Historical Notes

Since the beginning of the 21st century, negative refraction has become one of
the most intriguing areas of research in nano-photonics, with quite a few books
37 I am grateful to Fritz Keilmann for giving us an opportunity to work on this

problem.
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and review papers already written: P.W. Milonni [Mil04], G.V. Eleftheriades
& K.G. Balmain (eds.) [EB05], S.A. Ramakrishna [Ram05]. Development of
optical materials with negative refraction is examined by V.M. Shalaev in
[Sha06].

In his 1967 paper [Ves68],38 V.G. Veselago showed that materials with
simultaneously negative dielectric permittivity ε and magnetic permeability
µ would exhibit quite unusual behavior of wave propagation and refraction.
More specifically:

• Vectors E, H and k, in that order, form a left-handed system.
• Consequently, the Poynting vector E × H and the wave vector k have

opposite directions.
• The Doppler and Vavilov–Cerenkov effects are “reversed”. The sign of the

Doppler shift in frequency is opposite to what it would be in a regular
material. The Poynting vector of the Cerenkov radiation forms an obtuse
angle with the direction of motion of a superluminal particle in a medium,
while the wave vector of the radiation is directed toward the trajectory of
the particle.

• Light propagating from a regular medium into a double-negative material
bends “the wrong way” (Fig. 7.41). In Snell’s law, this corresponds to a
negative index of refraction. A slab with ε = −1, µ = −1 in air acts as an
unusual lens (Fig. 7.42).

Subjects closely related to Veselago’s work had been in fact discussed
in the literature well before his seminal publication – as early as in 1904.
S.A. Tretyakov [Tre05], C.L. Holloway et al. [HKBJK03] and A. Moroz39 pro-
vide the following references:

• A 1904 paper by H. Lamb40 on waves in mechanical (rather than electro-
magnetic) systems.

• A. Schuster’s monograph [Sch04], pp. 313–318; a 1905 paper by H.C. Pock-
lington41.

• Negative refraction of electromagnetic waves was in fact considered by
L.I. Mandelshtam more than two decades prior to Veselago’s paper.42 Man-

38 Published in 1967 in Russian. In the English translation that appeared in 1968,
the original Russian paper is mistakenly dated as 1964.

39 http://www.wave-scattering.com/negative.html
40 “On group-velocity,” Proc. London Math. Soc. 1, pp. 473–479, 1904.
41 H.C. Pocklington, Growth of a wave-group when the group velocity is negative,

Nature 71, pp. 607–608, 1905.
42 Leonid Isaakovich Mandelshtam (Mandelstam), 1879–1944, an outstanding

Russian physicist. Studied at the University of Novorossiysk in Odessa and the
University of Strasbourg, Germany. Together with G.S. Landsberg (1890–1957),
observed Raman (in Russian – “combinatorial”) scattering simultaneously or even
before Raman did but published the discovery a little later than Raman. The 1930
Nobel Prize in physics went to Raman alone; for an account of these events, see
I.L. Fabelinskii [Fab98], R. Singh & F. Riess [SR01] and E.L. Feinberg [Fei02].
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Fig. 7.41. At the interface between a regular medium and a double-negative medium
light bends “the wrong way”; in Snell’s law, this implies a negative index of refrac-
tion. Arrows indicate the direction of the Poynting vector that in the double-negative
medium is opposite to the wave vector.

delshtam’s short paper [Man45] and, even more importantly, his lecture
notes [Man47, Man50] already described the most essential features of
negative refraction. The 1945 paper, but not the lecture notes, is cited by
Veselago.

• A number of papers on the subject appeared in Russian technical journals
from the 1940s to the 1970s: by D.V. Sivukhin (1957) [Siv57], V.E. Pafo-
mov (1959) [Paf59] and R.A. Silin (1959, 1978) [Sil59, Sil72].

• Silin’s earlier review paper (1972) [Sil72], where he focuses on wave prop-
agation in artificial periodic structures.

In one of his lectures cited above, Mandelshtam writes, in reference to a
figure similar to Fig. 7.41 ([Man50], pp. 464–465):43

“... at the interface boundary the tangential components of the fields
. . . must be continuous. It is easy to show that these conditions cannot

43 My translation from the Russian. A similar quote is given by S.A. Tretyakov in
[Tre05].
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Fig. 7.42. The Veselago slab of a double-negative material acts as an unusual lens.
Due to the negative refraction at both surfaces of the slab, a point source S located
at a distance a < d has a virtual image S′ inside the slab and a real image I outside.
The arrows indicate the direction of the Poynting vector, not the wave vector.

be satisfied with a reflected wave (or a refracted wave) alone. But with
both waves present, the conditions can always be satisfied. From that,
by the way, it does not at all follow that there must only be three
waves and not more: the boundary conditions do allow one more wave,
the fourth one, traveling at the angle π − φ1 in the second medium.
Usually it is tacitly assumed that this fourth wave does not exist, i.e.
it is postulated that only one wave propagates in the second medium.
. . . [the law of refraction] is satisfied at angle φ1 as well as at π −
φ1. The wave . . . corresponding to φ1 moves away from the interface
boundary. . . . The wave corresponding to π − φ1 moves toward the
interface boundary. It is considered self-evident that the second wave
cannot exist, as light impinges from the first medium onto the second
one, and hence in the second medium energy must flow away from
the interface boundary. But what does energy have to do with this?
The direction of wave propagation is in fact determined by its phase
velocity, whereas energy moves with group velocity. Here therefore
there is a logical leap that remains unnoticed only because we are
accustomed to the coinciding directions of propagation of energy and
phase. If these directions do coincide, i.e. if group velocity is positive,
then everything comes out correctly. If, however, we are dealing with
the case of negative group velocity – quite a realistic case, as I already
said, – then everything changes. Requiring as before that energy in
the second medium flow away from the interface boundary, we arrive



450 7 Applications in Nano-Photonics

at the conclusion that phase must run toward this boundary and,
therefore, the direction of propagation of the refracted wave will be
at the π − φ1 angle to the normal. However unusual this setup may
be, there is, of course, nothing surprising about it, for phase velocity
does not tell us anything about the direction of energy flow.”

A quote from Silin’s 1972 paper:

“Let a wave be incident from free space onto the dielectric. In prin-
ciple one may construct two wave vectors β2 and β3 of the refracted
wave . . . Both vectors have the same projection onto the boundary of
the dielectric and correspond to the same frequency. One of them is
directed away from the interface, while the other is directed toward it.
The waves corresponding to the vectors β2 and β3 are excited in me-
dia with positive and negative dispersion, respectively. In conventional
dielectrics the dispersion is always positive, and a wave is excited that
travels away from the interface. . . .
The direction of the vector β3 toward the interface in the medium with
negative dispersion coincides with the direction of the phase velocity
. . . and is opposite to the group velocity vgr. The velocity vgr is always
directed away from the interfaces, so that the energy of the refracted
wave always flows in the same direction as the energy of the incident
wave.”

Of the earlier contributions to the subject, a notable one was made by
R. Zengerle in his PhD thesis on singly and doubly periodic waveguides in
the late 1970s. His journal publication of 1987 [Zen87] contains, among other
things, a subsection entitled “Simultaneous positive and negative ray refrac-
tion”. Quote:

“Figure 10 shows refraction phenomena in a periodic waveguide whose
effective index . . . in the modulated region is . . . higher than . . . in the
unmodulated region. The grating lines, however, are not normal to
the boundaries. As a consequence of the boundary conditions, two
Floquet-Bloch waves corresponding to the upper and lower branches
of the dispersion contour . . . are excited simultaneously . . . resulting
generally in two rays propagating in different directions. This ray re-
fraction can be described by two effective ray indices: one for ordinary
refraction . . . and the other . . . with a negative refraction angle . . . ”

The first publication on what today would be called a (quasi-)perfect cylin-
drical lens was a 1994 paper by N.A. Nicorovici et al. [NMM94] (now there
are also more detailed follow-up papers by G.W. Milton et al. [MNMP05,
MN06]).44 These authors considered a coated dielectric cylinder, with the core
of radius rcore and permittivity εcore, the shell (coating) with the outer radius

44 I am grateful to N.-A. Nicorovici for pointing these contributions out to me.
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rshell and permittivity εshell, embedded in a background medium with permit-
tivity εbg. It turns out, first, that such a coated cylinder is completely trans-
parent to the outside H-mode field (the H-field along the axis of the cylinder)
under the quasistatic approximation if εcore = εbg = 1, εshell → −1. (The lim-
iting case εshell → −1 should be interpreted as the imaginary part of the per-
mittivity tending to zero, while the real part is fixed at −1: εshell = −1−iε′′shell,
ε′′shell → 0.)45 Second, under these conditions for the dielectric constants, many
unusual imaging properties of coated cylinders are observed. For example, a
line source placed outside the coated cylinder at a radius rsrc < r3

shell/r2
core

would have an image outside the cylinder, at rimage = r4
shell/(r2

corersrc).
A turning point in the research on double-negative materials came in 1999–

2000, when J.B. Pendry et al. [PHRS99] showed theoretically, and D.R. Smith
et al. [SPV+00] confirmed experimentally, negative refraction in an artificial
material with split-ring resonators [SPV+00]. A further breakthrough was
Pendry’s “perfect lens” paper in 2000 [Pen00]. It was known from Veselago’s
publications that a slab of negative index material could work as a lens focus-
ing light from a point-like source on one side to a point on the other side.46

Veselago’s argument was based purely on geometric optics, however. Pendry’s
electromagnetic analysis showed, for the first time, that the evanescent part of
light emitted by the source will be amplified by the slab, with the ultimate re-
sult of perfect transmission and focusing of both propagating and evanescent
components of the wave.

The research field of negative refraction and superlensing has now be-
come so vast that a more detailed review would be well beyond the scope
of this book. Further reading may include J.B. Pendry & S.A. Ramakr-
ishna [PR03], J.B. Pendry & D.R. Smith [PS04], S.A. Ramakrishna [Ram05],
A.L. Pokrovsky & A.L. Efros [PE02, PE03], and references therein. Selected
topics, however, will be examined in the remainder of this chapter.

7.13.2 Negative Permittivity and the “Perfect Lens” Problem

This section gives a numerical illustration of Pendry’s “perfect lens” in the
limiting case of a thin slab. If the thickness of the slab is much smaller than the
wavelength, the problem becomes quasi-static and the electric and magnetic
fields decouple. Analysis of the (decoupled) electric field brings us back from
a brief overview of negative index materials to media with a negative real part
of the dielectric permittivity. Rather than repeating J.B. Pendry’s analytical
calculation for a thin metal slab, let us, in the general spirit of this book,
consider a numerical example illustrating the analytical result.

The problem, in the electrostatic limit, can be easily solved by Finite Ele-
ment analysis. The geometric and physical setup is, for the sake of comparison,

45 As a reminder, the exp(+iωt) convention is used for complex phasors. See p. 352.
46 V.G. Veselago remarks that this is not a lens “in the usual sense of the word”

because it does not focus a parallel beam to a point.
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chosen to be the same as in Pendry’s paper [Pen00]. A FEMLABTM (Comsol
MultiphysicsTM) mesh for 2D simulation is shown in Fig. 7.43. A metal slab of
thickness 40 nm acts, under special conditions, as a lens. To demonstrate the
lensing effect, two line charges (represented in the simulation by circles of 5 nm
radius, not drawn exactly up to scale in the figure) are placed 20 nm above
the surface of the slab, at points (x, y) = (±40, 40) nm. (The y axis is normal
to the slab.) In the simulations reported below, the FE mesh has 30,217 nodes
and 60,192 second-order triangular elements, with 120,625 degrees of freedom.
Naturally, for the FE analysis the domain and the (theoretically infinite) slab
had to be truncated sufficiently far away from the source charges.

Fig. 7.43. A finite element mesh for Pendry’s lens example with two line sources.

In Pendry’s example ([Pen00], p. 3969), the relative permittivity of the
slab is εslab ≈ −0.98847 − 0.4i,47 which corresponds to silver at ∼ 356 nm.
The magnitude of the electric field in the source plane y = 40 nm is shown,
as a function of x, in Fig. 7.44 and, as expected, exhibits two sharp peaks
corresponding to the line sources.

The lensing effect of the slab is manifest in Fig. 7.45, where the field
distributions with and without the slab are compared in the “image” plane
(y = −40 nm).48 Perfect lensing is a very subtle phenomenon and is extremely

47 With the exp(+iωt) convention for phasors.
48 A similar distribution of the electrostatic potential in the image plane has a flat

maximum at x = 0 rather than two peaks. Note also that the maximum value
theorem for the Laplace equation prohibits the potential from having a local
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Fig. 7.44. The magnitude of the electric field in the source plane (y = 40 nm) as a
function of x. The two line sources are manifest. (The field abruptly goes to zero at
the very center of each cylindrical line of charge.)

sensitive to all physical and geometric parameters of the model. Ideally, the
distance between the source and the surface of the slab has to be equal to half
of the thickness of the slab; the relative permittivity has to be −1. In addition,
if the thickness of the slab is not negligible relative to the wavelength, the
permeability also has to be equal −1. R. Merlin [Mer04] (see also D.R. Smith
et al. [SSR+03]) derived an analytical formula for the spatial resolution ∆ of a
slightly imperfect lens of thickness d and the refractive index n = −(1−δ)1/2,
with δ small:

∆ =
2πd∣∣log δ

2

∣∣ (7.231)

According to this result, for a modest resolution ∆ equal to the thickness of
the slab, the deviation δ must not exceed ∼ 0.0037. For ∆/d = 0.25, δ must
be on the order of 10−11, i.e. the index of refraction must be almost perfectly
equal to −1. This obviously imposes serious practical constraints on the design
of the lens.

For a qualitative illustration of this sensitivity to parameters, let us turn to
the electrostatic limit again and visualize how a slight variation of the numbers
affects the potential distribution. In Figs. 7.46–7.48 the dielectric constant is
purely real and takes on the values −0.9, −1, and −1.02; although these values
are close, the results corresponding to them are completely different.

maximum (or minimum) strictly inside the domain with respect to all coordinates.
Viewed as a function of one coordinate, with the other ones fixed, the potential
can have a local maximum.
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Fig. 7.45. The magnitude of the electric field in the image plane (y = −40 nm) as
a function of x, with and without the silver slab. The lensing effect of the slab is
evident. The staircase artifacts are caused by finite element discretization.

Fig. 7.46. The potential distribution for Pendry’s lens example with two line
sources; εslab = −0.9.
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Fig. 7.47. The potential distribution for Pendry’s lens example with two line
sources; εslab = −1.

Fig. 7.48. The potential distribution for Pendry’s lens example with two line
sources; εslab = −1.02.

Similarly, in Figs. 7.49–7.51 the imaginary part of the permittivity of the
slab varies, with the real part fixed at−0.98847 as in Pendry’s example. Again,
the results are very different. As damping is increased, “multi-center” plasmon
modes (no damping, Fig. 7.49) turn into two-center and then to one-center
Teletubbies-like49 distributions (Fig. 7.51).

49 http://pbskids.org/teletubbies/parentsteachers/progmeet.html
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Fig. 7.49. The potential distribution for Pendry’s lens example with two line
sources; εslab = −0.98847.

Fig. 7.50. The potential distribution for Pendry’s lens example with two line
sources; εslab = −0.98847 + 0.1i.

7.13.3 Forward and Backward Plane Waves in a Homogeneous
Isotropic Medium

In backward waves, energy and phase propagate in opposite directions (Sec-
tion 7.13.1). We first examine this counterintuitive phenomenon in a hypothet-
ical homogeneous isotropic medium with unusual material parameters (the
“Veselago medium”). In subsequent sections, we turn to of forward and back-
ward Bloch waves in periodic dielectric structures; plane-wave decomposition
of Bloch waves will play a central role in that analysis.

Let us review the behavior of plane waves in a homogeneous isotropic
medium with arbitrary constant complex parameters ε and µ at a given fre-
quency. The only stipulation is that the medium be passive (no generation



7.13 Backward Waves, Negative Refraction and Superlensing 457

Fig. 7.51. The potential distribution for Pendry’s lens example with two line
sources; εslab = −0.98847 + 0.4i.

of energy), which under the exp(+iωt) phasor convention implies negative
imaginary parts of ε and µ. It will be helpful to assume that these imaginary
parts are strictly negative and to view lossless materials as a limiting case of
small losses: ε′′ → −0, µ′′ → −0. The goal is to establish conditions for the
plane wave to be forward or backward. In the latter case, one has a “Veselago
medium”.

Let the plane wave propagate along the x axis, with E = Ey and H = Hz.
Then we have

E = Ey = E0 exp(−ikx) (7.232)

H = Hz = H0 exp(−ikx) (7.233)

where E0, H0 are some complex amplitudes. It immediately follows from
Maxwell’s equations that

H0 =
k

ωµ
E0 (7.234)

k = ω
√

µε (which branch of the square root?) (7.235)

Which branch of the square root “should” be implied in the formula for the
wavenumber? In an unbounded medium, there is complete symmetry between
the +x and −x directions, and waves corresponding to both branches of the
root are equally valid. It is clear, however, that each of the waves is unbounded
in one of the directions, which is not physical.

For a more physical picture, it is tacitly assumed that the unbounded
growth is truncated: e.g. the medium and the wave occupy only half of the
space, where the wave decays. With this in mind, let us focus on one of the
two waves – say, the one with a negative imaginary part of k:

k′′ < 0 (7.236)
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(The analysis for the other wave is completely analogous.) Splitting up the
real and imaginary exponentials

exp(−ikx) = exp(−i(k′ + ik′′)x) = exp(k′′x) exp(−ik′x)

we observe that this wave decays in the +x direction. On physical grounds,
one can argue that energy in this wave must flow in the +x direction as well.
This can be verified by computing the time-averaged Poynting vector

P = Px =
1
2

Re E0H
∗
0 =

1
2

Re
k

ωµ
|E0|2 (7.237)

To express P via material parameters, let

ε = |ε| exp(−iφε); µ = |µ| exp(−iφµ); 0 < φε, φµ < π

Then the square root with a negative imaginary part, consistent with the wave
(7.236) under consideration, gives

k = ω
√
|µ| |ε| exp

(
−i

φε + φµ

2

)
(7.238)

Ignoring all positive real factors irrelevant to the sign of P in (7.237), we get

sign P = sign Re
k

µ
= sign cos

φε − φµ

2

The cosine, however, is always positive, as 0 < φε, φµ < π. Thus, as expected,
Px is positive, indicating that energy flows in the +x direction indeed.

The type of the wave (forward vs. backward) therefore depends on the sign
of phase velocity ω/k′ – that is, on the sign of k′. As follows from (7.238),

sign k′ = sign cos
φε + φµ

2

and the wave is backward if and only if the cosine is negative, or

φε + φµ > π (7.239)

An algebraically equivalent criterion can be derived by noting that the co-
sine function is monotonically decreasing on [0, π] and hence φε > π − φµ is
equivalent to

cos φε < cos(π − φµ)

or
cos φε + cos φµ < 0

This coincides with the Depine–Lakhtakia condition [DL04] for backward
waves:
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ε′

|ε| +
µ′

|µ| < 0 (7.240)

This last expression is invariant with respect to complex conjugation and is
therefore valid for both phasor conventions exp(±iωt).

Note that the analysis above relies only on Maxwell’s equations and the
definitions of the Poynting vector and phase velocity. No considerations of
causality, so common in the literature on negative refraction, were needed to
establish the backward-wave conditions (7.239), (7.240).

7.13.4 Backward Waves in Mandelshtam’s Chain of Oscillators

A classic case of backward waves in a chain of mechanical oscillators is due
to L.I. Mandelshtam. His four-page paper [Man45]50 published by Mandelsh-
tam’s coworkers in 1945 after his death is very succinct, so a more detailed
exposition below will hopefully prove useful. An electromagnetic analogy of
this mechanical example (an optical grating) is the subject of the following
section.

Consider an infinite 1D chain of masses, with the nearest neighbors sep-
arated by an equilibrium distance d and connected by springs with a spring
constant f . Newton’s equation of motion for the displacement ξn of the n-th
mass mn is

ξ̈(n) = ω2
n [ξ(n− 1)− 2ξ(n) + ξ(n + 1)] , ω2

n =
f

mn
(7.241)

For brevity, dependence of ξ on time is not explicitly indicated. For waves at
a given frequency ω, switching to complex phasors yields

ω2ξ(n) + ω2
n [ξ(n− 1)− 2ξ(n) + ξ(n + 1)] = 0 (7.242)

Mandelshtam considers periodic chains of masses, focusing on the case with
just two alternating masses, m1 and m2. The discrete analog of the Bloch
wave then has the form

ξ(n) = ξPER(n) exp(−iKBnd) (7.243)

where KB is the Bloch wavenumber. ξPER is a periodic function of n with the
period of two and can hence be represented by a Euclidean vector ξ ≡ (a, b) ∈
R

2, where a and b are the values of ξPER(n) for odd and even n, respectively.51

50 The paper is also reprinted in Mandelshtam’s lecture course [Man47].
51 Alternatively and equally well, ξPER can be represented via its two-term Fourier

sum, familiar from discrete-time signal analysis:

ξPER(n) = ξ̃(0) + ξ̃(1) exp(inπ) = ξ̃(0) + (−1)nξ̃(1)

where

ξ̃(0) =
1

2
(ξ(0) + ξ(1)); ξ̃(1) =

1

2
(ξ(0) − ξ(1))
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Substituting this discrete Bloch-type wave into the difference equation
(7.242), we obtain(

ω2
2(λ2 + 1) λ(ω2 − 2ω2

2)
λ(ω2 − 2ω2

1) ω2
1(λ2 + 1)

) (
a
b

)
= 0, λ ≡ exp(−iKBd) (7.244)

Hence (a, b) is the null vector of the 2× 2 matrix in the left hand side of
(7.244). Equating the determinant to zero yields two eigenfrequencies ωB1,B2

of the Bloch wave

ωB1,B2 = ω2
1 + ω2

2 ± λ−1
√

(ω2
1 λ2 + ω2

2) (ω2
2 λ2 + ω2

1)

To analyze group velocity of Bloch waves, compute the Taylor expansion
of these eigenfrequencies around KB = 0 (keeping in mind that λ =
exp(−iKBd)):

ωB1 = 2
d2ω2

2ω2
1

ω2
1 + ω2

2

ωB2 = 2(ω2
1 + ω2

2)− 2
d2ω2

2ω2
1

ω2
1 + ω2

2

K2
B

which coincides with Mandelshtam’s formulas at the bottom of p. 476 of his
paper. Group velocity vg = ∂ωB/∂KB of long-wavelength Bloch waves is
positive for the “acoustic” branch ωB1 but negative for the “optical” branch
ωB2.52

For KB = 0 (i.e. λ = 1), simple algebra shows that the components of the
second null vector (aB2, bB2) of (7.244) are proportional to the two particle
masses:

aB2

bB2
= − m2

m1
(KB = 0) (7.245)

(The first null vector aB1 = bB1 corresponding to the zero eigenfrequency for
zero KB represents just a translation of the chain as a whole and is uninter-
esting.)

Next, consider energy transfer along the chain. The force that mass n− 1
exerts upon mass n is

Fn−1,n = [ξ(n− 1)− ξ(n)] f

The mechanical “Poynting vector” is the power generated by this force:

Pn−1,n(t) = Fn−1,n(t) ξ̇(n, t)

the time average of which, via complex phasors, is

〈Pn−1,n〉 =
1
2

Re {Fn−1,niωξ(n)}

52 On the acoustic branch, by definition, ω → 0 as KB → 0; on optical branches,
ω � 0.
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For the “optical” mode, i.e. the second eigenfrequency of oscillations, direct
computation leads to Mandelshtam’s expression

〈P 〉 =
1
2

fωab sin(KBd)

The subscripts for 〈P 〉 have been dropped because the result is independent of
n, as should be expected from physical considerations: no continuous energy
accumulation occurs in any part of the chain.

We have now arrived at the principal point in this example. For small
positive KB (KBd � 1), the Bloch wave has a long-wavelength component
exp(−iKBnd). Phase velocity ω/KB of the Bloch wave – in the sense discussed
in more detail below – is positive. At the same time, the Poynting vector, and
hence the group velocity, are negative because aB2 and bB2 have opposite signs
in accordance with (7.245). Thus mechanical oscillations of the chain in this
case propagate as a backward wave. An electromagnetic analogy of such a
wave is mentioned very briefly in Mandelshtam’s paper and is the subject of
the following subsection.

Backward Waves in Mandelshtam’s Grating

We now revisit Example 27 (p. 376) of a 1D volume grating, to examine
the similarity with Mandelshtam’s particle chain and the possible presence of
backward waves. For definiteness, let us use the same numerical parameters as
before and assume a periodic variation of the permittivity ε(x) = 2+cos 2πx.

The Bloch–Floquet problem, in its algebraic eigenvalue form K2e = ω2Ξe
(7.108), was already solved numerically in Example 27 (p. 375), and the band
diagram was presented in Fig. 7.10.

We now discuss the splitting of the Poynting vector into the individual
“Poynting components” Pm = km|em|2/(2ωµ) (7.118); this splitting has im-
plications for the nature of the wave. The distribution of Pm for the first four
Bloch modes in the grating is displayed in Fig. 7.52. The first mode shown
in Fig. 7.52(a) is almost a pure plane wave (P±1 are on the order of 10−5;
P±2 are on the order of 10−13, and so on) and does not exhibit any unusual
behavior.

Let us therefore focus on mode #2 (upper right corner of the figure).
There are four non-negligible harmonics altogether. The stems to the right
of the origin (K > 0) correspond to plane wave components propagating to
the right, i.e. in the +x-direction. Stems to the left of the origin correspond
to plane waves propagating to the left, and hence their Poynting values are
negative. It is obvious from the figure that the negative components dominate
and as a result the total Poynting value for the Bloch wave is negative. The
numerical values of the Poynting components and of the amplitudes of the
plane wave harmonics are summarized in Table 7.3.

Now, the characterization of this wave as forward or backward hinges on
the definition and sign of phase velocity. The smallest absolute value of the
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(a) (b)

(c) (d)

Fig. 7.52. The Poynting components Pm of the first four Bloch waves (a)–(d)
for the volume grating with ε(x) = 2 + cos 2πx. Solution with 41 plane waves.
KBx0 = π/10.

wavenumber in the Bloch “comb” KB = 0.1π determines the plane wave
component with the longest wavelength (bold numbers in Table 7.3). If one
defines phase velocity vph = ω/KB based on KB = 0.1π, then phase velocity
is positive and, since the Poynting vector was found to be negative, one has
a backward wave.

K/π em Pm

−5.9 −0.0023 −1.79 × 10−5

−3.9 −0.0765 −0.013
−1.9 −0.948 −0.997
0.1 0.174 0.00177
2.1 0.253 0.0783
4.1 0.0179 0.000767
6.1 0.000495 8.73 × 10−7

Table 7.3. The principal components of the second Bloch mode in the grating
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However, the amplitude of the KB = 0.1π harmonic (e0 ≈ 0.174) is much
smaller than that of the KB − κ0 = −1.9π wave (italics in the Table). A
common convention (P. Yeh [Yeh79], B. Lombardet et al. [LDFH05]) is to use
this highest-amplitude component as a basis for defining phase velocity. If this
convention is accepted in our present example, then phase velocity becomes
negative and the wave is a forward one (since the Poynting vector is also
negative).

One may then wonder what the value of phase velocity “really” is. This
question is not a mathematically sound one, as one cannot truly argue about
mathematical definitions. From the physical viewpoint, however, two aspects
of the notion of phase velocity are worth considering.

First, boundary conditions at the interface between two homogeneous me-
dia are intimately connected with the values of phase velocities and indexes
of refraction (defined for homogeneous materials in the usual unambiguous
sense). Fundamentally, however, it is the wave vectors in both media that
govern wave propagation, and it is the continuity of its tangential component
that constrains the fields. Phase velocity plays a role only due to its direct
connection with the wavenumber. For periodic structures, there is not one but
a whole “comb” of wavenumbers that all need to be matched at the interface.
We shall return to this subject in Section 7.13.5.

Second, in many practical cases phase velocity can be easily and clearly
visualized. As an example, Fig. 7.53 shows two snapshots, at t = 0 and t = 0.5,
of the second Bloch mode described above. For the visual clarity of this figure,
low-pass filtering has been applied – without that filtering, the rightward
motion of the wave is obvious in the animation but is difficult to present
in static pictures. The Bloch wavenumber in the first Brillouin zone in this
example is KB = 0.1π and the corresponding second eigenfrequency is ω ≈
4.276. The phase velocity – if defined via the first Brillouin zone wavenumber
– is vph = ω/KB ≈ 4.276/0.1π ≈ 13.61. Over the time interval t = 0.5
between the snapshots, the displacement of the wave consistent with this phase
velocity is 13.61× 0.5 ≈ 6.8. This corresponds quite accurately to the actual
displacement in Fig. 7.53, proving that the first Brillouin zone wavenumber is
indeed relevant to the perceived visual motion of the Bloch wave.

So, what is one to make of all this? The complete representation of a
Bloch wave is given by a comb of wavenumbers KB −mκ0 and the respective
amplitudes em of the Fourier harmonics. Naturally, one is inclined to distill
this theoretically infinite set of data to just a few parameters that include the
Poynting vector, phase and group velocities. While the Poynting vector and
group velocity for the wave are rigorously and unambiguously defined, the
same is in general not true for phase velocity.53 However, there are practical

53 As a mathematical trick, any finite (or even any countable) set of numbers can
always be combined into a single one simply by intermixing the decimals: for ex-
ample, e = 2.71828 . . . and π = 3.141592 . . . can be merged into 2.3711481258 . . ..
Of course this is not a serious proposition for us here.
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Fig. 7.53. Two snapshots, at t = 0 and t = 0.5, of the second Bloch mode. (Low-
pass filtering applied for visual clarity.) The wave moves to the right with phase
velocity corresponding to the smallest positive Bloch wavenumber KB = 0.1π.

cases where phase velocity is meaningful. The situation is most clear-cut when
the Bloch wave has a strongly dominant long-wavelength component. (This
case will become important in Section 7.13.6.) Then the Bloch wave is, in
a sense, close to a pure plane wave, but nontrivial effects may still arise.
Even though the amplitudes of the individual higher-order harmonics may be
small, it is possible for their collective effect to be significant. In particular, as
the example in this section has shown, the higher harmonics taken together
may carry more energy than the dominant component, and in the opposite
direction. In this case one has a backward wave, where phase velocity is defined
by the dominant long-wavelength harmonic, while the Poynting vector is due
to a collective contribution of all harmonics.

An alternative generalization of phase velocity in 1D is the velocity vfield

of points with a fixed magnitude of the E field. From the zero differential

dE =
∂E

∂x
dx +

∂E

∂t
dt = 0

one obtains

vfield =
dx

dt
= − ∂E

∂x

/
∂E

∂t

(see also equations (7.26), p. 354 and (7.37), p. 357). Unfortunately, this def-
inition does not generalize easily to 2D and 3D, where an analogous velocity
would be a tensor quantity (a separate velocity vector for each Cartesian
component of the field).
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7.13.5 Backward Waves and Negative Refraction in Photonic
Crystals

Introduction

As already noted on p. 450, R. Zengerle in the late 1970s – early 1980s
examined and observed negative refraction in singly and doubly periodic
waveguides. In 2000, M. Notomi [Not00] noted similar effects in photonic
crystals. For crystals with a sufficiently strong periodic modulation, there
may exist a physically meaningful effective index of refraction within certain
frequency ranges near the band edge. Under such conditions, anomalous re-
fractive effects can arise at the surface of the crystal. Negative refraction is one
of these possible effects. Another one is “open cavity” formation where light
can run around closed paths in a structure with alternating positive-negative
index of refraction (Fig. 7.54), even though there are no reflecting walls. No-
tomi’s specific example involves TE modes in a 2D GaAs (index n ≈ 3.6)
hexagonal photonic crystal, with the diameter of the rods equal to 0.7 of the
cell size.

Fig. 7.54. [After M. Notomi [Not00].] “Open cavity” formation: light rays can form
closed paths in a structure with alternating positive–negative index of refraction.

Since 2000, there have been a number of publications on negative refraction
and the associated lensing effects in photonic crystals. To name just a few:

1. The photonic structure proposed by C. Luo et al. [LJJP02] is a bcc lattice
of air cubes in a dielectric with the relative permittivity of ε = 18. The
dimension of the cubes is 0.75 a and their sides are parallel to those of
the lattice cell. The computation of the band diagram and equifrequency
surfaces in the Bloch space, as well as FDTD simulations, demonstrate
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“all-angle negative refraction” (AANR), i.e. negative refraction for all an-
gles of the incident wave at the air–crystal interface. AANR occurs in the
frequency range from 0.375(2πc/a) to 0.407(2πc/a) in the third band.

2. E. Cubukcu et al. [CAO+03] experimentally and theoretically demonstrate
negative refraction and superlensing in a 2D photonic crystal in the mi-
crowave range. The crystal is a square array of dielectric rods in air,
with the relative permittivity of ε = 9.61, diameter 3.15 mm, and length
15 cm. The lattice constant is 4.79 mm. Negative refraction occurs in the
frequency range from 13.10 to 15.44 GHz.

3. R. Moussa et al. [MFZ+05b] experimentally and theoretically studied neg-
ative refraction and superlensing in a triangular array of rectangular di-
electric bars with ε = 9.61. The dimensions of each bar are 0.40a× 0.80a,
where the lattice constant a = 1.5875 cm. The length of each bar is
45.72 cm. At the operational frequency of 6.5 GHz, which corresponds
to λair ≈ 4.62 cm and a/λair ≈ 0.344, the effective index is n ≈ −1 with
very low losses. Only TM modes are considered (the E field parallel to
the rods.)

4. V. Yannopapas & A. Moroz [YM05] show that negative refraction can
be achieved in a composite structure of polaritonic spheres occupying the
lattice sites. A specific example involves LiTaO3 spheres with the radius
of 0.446 µm; the lattice constant is 1.264 µm, so that the fcc lattice is
almost close-packed. Notably, the wavelength-to-lattice-size ratio is quite
high, 14:1, but the relative permittivity of materials is also very high, on
the order of 102.

5. M.S. Wheeler et al. [WAM06], independently of Yannopapas & Moroz,
study a similar configuration. Wheeler et al. show that a collection of po-
laritonic spheres coated with a thin layer of Drude material can exhibit
a negative index of refraction at infrared frequencies. The existence of
negative effective magnetic permeability is due to the polaritonic mater-
ial, while the Drude material is responsible for negative effective electric
permittivity. The negative index region is centered at 3.61 THz, and the
value of neff = −1, important for subwavelength focusing, is approached.
The cores of the spheres are made of LiTaO3 and their radius is 4 µm.
The coatings have the outer radius of 4.7 µm, and their Drude parameters
are ωp/2π = 4.22 THz, Γ = ωp/100. The filling fraction is 0.435.

6. S. Foteinopoulou & C.M. Soukoulis provide a general analysis of negative
refraction at the air–crystal interfaces and, as a specific case, examine
Notomi’s example (a 2D hexagonal lattice of rods with permittivity 12.96
and the radius of 0.35 lattice size).

7. P.V. Parimi et al. [PLV+04] analyze and observe negative refraction and
left-handed behavior of the waves in microwave crystals. The structure is
a triangular lattice of cylindrical copper rods of height 1.26 cm and radius
0.63 cm. The ratio of the radius to lattice constant is 0.2. The TM-mode
excitation is at frequencies up to 12 GHz. Negative refraction is observed,
in particular, at 9.77 GHz.
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For the analysis of anomalous wave propagation and refraction, it is im-
portant to distinguish intrinsic and extrinsic characteristics, as explained in
the following subsection.

“Extrinsic” and “Intrinsic” Characteristics

This terminology, albeit not standard, reflects the nature of wave propagation
and refraction in periodic structures such as photonic crystals and metama-
terials. Intrinsic properties of the wave imply its characterization as either
forward or backward; that is, whether the Poynting vector and phase velocity
(if it can be properly defined) are in the same or opposite directions. (Or,
more generally, at an acute or obtuse angle.)

Extrinsic properties refer to conditions at the interface of the periodic
structure and air or another homogeneous medium. The key point is that
refraction at the interface depends not only on the intrinsic characteristics of
the wave in the bulk, but also on the way the Bloch wave is excited.

This can be illustrated as follows. Let the x axis run along the interface
boundary between air and a material with x0-periodic permittivity ε(x). For
simplicity, we assume that ε does not vary along the normal coordinate y.
Such a periodic medium can support Bloch E-modes of the form

E(r) =
∞∑

m=−∞
em exp(imκ0x) exp(−iKBxx) exp(−iKyy)

Let the first-Brillouin-zone harmonic (m = 0) have an appreciable magnitude
e0, thereby defining phase velocity ω/KBx in the x-direction. For KBx > 0,
this velocity is positive.

But any plane-wave component of the Bloch wave can serve as an “exci-
tation channel”54 for this wave, provided that it matches the x-component of
the incident wave in the air:

KBx − κ0m = kair
x

First, suppose that the “main” channel (m = 0) is used, so that KBx = kair
x .

If the Bloch wave in the material is a forward one, then the y-components
of the Poynting vector Py and the wave vector Ky are both directed away
from the interface, and the usual positive refraction occurs. If, however, the
wave is backward, then Ky is directed toward the surface (against the Poynting
vector) and it can easily be seen that refraction is negative. This is completely
consistent with Mandelshtam’s explanation quoted on p. 448.

Exactly the opposite will occur if the Bloch wave is excited through an
excitation channel where KBx − κ0m is negative (say, for m = 1). The match-
ing condition at the interface then implies that the x-component of the wave

54 A lucid term due to B. Lombardet et al. [LDFH05].
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vector in the air is negative in this case. Repeating the argument of the previ-
ous paragraph, one discovers that for a forward Bloch wave refraction is now
negative, while for a backward wave it is positive.

In summary, refraction properties at the interface are a function of the
intrinsic characteristics of the wave in the bulk and the excitation chan-
nel, with four substantially different combinations possible. This conclu-
sion summarizes the results already available but dispersed in the literature
[BST04, LDFH05, GMKH05].

Negative Refraction in Photonic Crystals: Case Study

To illustrate the concepts discussed in the sections above, let us consider, as
one of the simplest cases, the structure proposed by R. Gajic, R. Meisels et
al. [GMKH05, MGKH06]. Their photonic crystal is a 2D square lattice of
alumina rods (εrod = 9.6) in air. The radius of the rod is rrod = 0.61 mm,
the lattice constant a = 1.86 mm, so that rrod/a ≈ 0.33. The length of the
rods is 50 mm. Gajic, Meisels et al. study various cases of wave propagation
and refraction. In the context of this section, of most interest to us is negative
refraction for small Bloch numbers in the second band of the H-mode.

The band diagram for the H-mode appears in Fig. 7.55. The diagram,
computed using the plane wave method with 441 waves, is very close (as of
course it should be) to the one provided by Gajic et al. Fig. 7.55 is plotted
for the normalized frequency ω̃ = ωa/(2πc); in the Gajic paper, the diagram
is for the absolute frequency f = ω/2π = ω̃c/a.

Fig. 7.55. The H-mode band diagram of the Gajic et al. crystal.
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We observe that the TE2 dispersion curve is mildly convex around the Γ
point (KB = 0, ω̃ ≈ 0.427), indicating a negative second derivative ∂2ω/∂K2

B

and hence a negative group velocity for small positive KB and a possible
backward wave. As we are now aware, an additional condition for a backward
wave must also be satisfied: the plane-wave component corresponding to the
small positive Bloch number must be appreciable (or better yet, dominant).
Let us therefore consider the plane wave composition of the Bloch wave.

The amplitudes of the plane-wave harmonics for the Gajic et al. crystal
are shown in Fig. 7.56. For KB = 0 (i.e. at Γ ) the spectrum is symmetric
and characteristic of a standing wave. As KB becomes positive and increases,
the spectrum gets skewed, with the backward components (K < 0) increasing
and the forward ones decreasing.

Fig. 7.56. Amplitudes hm of the plane-wave harmonics for the Gajic et al. crystal
(arb. units). Second H-mode (TE2) near the Γ point on the Γ → X line.

The numerical values of the amplitudes of a few spatial harmonics from
Fig. 7.56 are also listed in Table 7.4 for reference. From the figure and table,
it can be seen that the amplitudes of the spatial harmonics of this Bloch wave
in the first Brillouin zone (the first four rows of numbers in the Table) are
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quite small. It is therefore debatable whether a valid phase velocity can be
attributed to this wave. The Bloch wave itself is pictured in Fig. 7.57 for
illustration.

Normalized wavenumber Kxa/π Amplitude hm of the plane-wave harmonic

0 0
0.1 0.00124
0.2 0.00477
0.4 0.0159

2 0.4023
2.1 0.3589
2.2 0.3175

Table 7.4. Amplitudes of the spatial harmonics of the TE2 Bloch wave for the
Gajic et al. photonic crystal.

Fig. 7.57. The H field of the second H-mode (TE2, arb. units) for the Gajic et
al. crystal. Point KB = 0.2π on the Γ → X line.

The distribution of Poynting components of the same wave and for the
same set of values of the Bloch wavenumber is shown in Fig. 7.58. It is clear
from the figure that the negative components outweigh the positive ones, so
power flows in the negative direction.
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Fig. 7.58. The plane-wave Poynting components Pm for the Gajic et al. crystal
(arb. units). Second H-mode (TE2) near the Γ point on the Γ → X line.

7.13.6 Are There Two Species of Negative Refraction?

Negative refraction is commonly classified as two species: first, homogeneous
materials with double-negative effective material characteristics, as stipu-
lated in Veselago’s original paper [Ves68]; second, periodic dielectric struc-
tures (photonic crystals) capable of supporting modes with group and phase
velocity at an obtuse angle to one another. The second category has been
extensively studied theoretically, and negative refraction has been observed
experimentally (see the list on p. 465 and Section 7.13.5).

Truly homogeneous materials, in the Veselago sense, are not currently
known and could be found in the future only if some new molecular-scale
magnetic phenomena are discovered. Consequently, much effort has been de-
voted to the development of artificial metamaterials capable of supporting
backward waves and producing negative refraction. Selected developments of
this kind are summarized in Table 7.5. (The numerical values in the Table
are approximate.) The list is in no way exhaustive, and substantial further
progress will almost certainly be made even before this book goes to press.

The right column of the table displays an important parameter: the ratio
of the lattice cell size to the vacuum wavelength. One would hope that further
improvements in nanofabrication and design could bring the cell size down to
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Year Publication Design f λ a a/λ

2000

D.R. Smith
et al. [SPV+00]

Copper
SRR and
wires

4.85 GHz 6.2 cm 8 mm 0.13

2001

R.A. Shelby
et al. [SSS01]

Copper SRR
and strips

10 GHz 3 cm 5 mm 0.17

2003

C.G. Parazzoli
et al.
[PGL+03]

A stack of
SRRs with
metal strips

12.6 GHz 2.38 cm 0.33 cm 0.14

2003

A.A. Houck
et al. [HBC03]

Composite
wire and
SRR prisms

10 GHz 3 cm 0.6 cm 0.2

2004

D.R. Smith &
D.C. Vier
[SV04]

Copper SRR
and strips

11 GHz 2.7 cm 3 mm 0.11

2005

V.M. Shalaev
et al. [Sha06]

Pairs of
nanorods

200 THz 1.5 m 0.64 × 1.8 µm 0.42–1.2

2005

S. Zhang et al.
[ZFP+05]

Nano-fishnet
(circular
voids in
metal)

150 THz 2 µm 0.838 µm 0.42

2005–
2006 S. Zhang et al.

[ZFM+05,
ZFM+06]

Nano-fishnet
with
rectangular/
elliptical
voids

215,
170 THz

1.4,
1.8 µm

0.801,
0.787 µm

0.57, 0.44

2006–
2007

G. Dolling
et al.
[DEW+06,
DWSL07]

Nano-fishnet
with
rectangular
voids

210,
380 THz

1.45,
0.78 µm

0.6, 0.3 µm 0.41, 0.38

Table 7.5. Selected designs and parameters of negative-index metamaterials. The
numerical values are approximate.
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a small fraction of the wavelength, thereby approaching the Veselago case of
a homogeneous material.

However, the main message of this section is that the cell size is constrained
not only by the fabrication technologies. There are fundamental limitations on
how small the lattice size can be for negative index materials. Homogeneous
negative index materials may not in fact be realizable as a limiting case of
spatially periodic dielectric structures with a small cell size.

The following analysis, available in a more detailed form in [Tsu07], shows
that negative refraction disappears in the homogenization limit when the size
of the lattice cells tends to zero, provided that other physical parameters,
including frequency, are fixed. To streamline the mathematical development,
let us focus on square Bravais lattice cells with size a in 2D and introduce
dimensionless coordinates x̃ = x/a, ỹ = y/a, so that in these tilde-coordinates
the 2D problem is set up in the unit square. (The 3D case is considered in
[Tsu07].) The E-mode in the tilde-coordinates is described by the familiar 2D
wave equation

∇̃2E + ω̃2εrE = 0, (7.246)

where
ω̃ =

ωa

c
= 2π

a

λ0
(7.247)

Here c and λ0 are the speed of light and the wavelength in free space, respec-
tively. The relative permittivity εr is a periodic function of coordinates over
the lattice. The fundamental solutions of the field equation is a Bloch-Floquet
wave; in the tilde-coordinates,

E(r̃) = EPER(r̃) exp(−iK̃B · r̃) (7.248)

where r̃ is the position vector. As in Section 7.6.2, it is convenient to view
this Bloch wave as a suite of spatial Fourier harmonics (plane waves):

E(r̃) =
∑

n
En ≡

∑
n
ẽn exp(i2πn · r̃) exp(−iK̃B · r̃) (7.249)

(Summation in this and subsequent equations is over the integer lattice Z
2.)

As also noted in Section 7.6.2, the time- and cell-averaged Poynting vector
〈P〉 = 1

2 〈Re{E×H∗}〉 can be represented as the sum of the Poynting vectors
for the individual plane waves [LDFH05]:

〈P〉 =
∑

n
Pn; Pn =

πn

ω̃µ0
|ẽn|2 (7.250)

As we know, in Fourier space the scalar wave equation (7.246) becomes

∣∣∣K̃B − 2πn
∣∣∣2 ẽn = ω̃2

∑
m

ε̃n−mẽm, n ∈ Z
2 (7.251)

where ε̃n are the Fourier coefficients of the dielectric permittivity ε:
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ε =
∑

n
ε̃n exp (i2πn · r̃) (7.252)

The normalized band diagram, such as the one in Fig. 7.55, indicates that
negative refraction disappears in the homogenization limit when the size of
the lattice cells tends to zero, provided that other physical parameters, in-
cluding frequency, are fixed. Indeed, the homogenization limit is obtained by
considering the small cell size – long wavelength condition a → 0, K̃ → 0
(see [SEK+05, Sj5] for additional mathematical details on Floquet-based ho-
mogenization theory for Maxwell’s equations). As these limits are taken, the
problem and the dispersion curves in the normalized coordinates remain un-
changed, but the operating point (ω̃, K̃) approaches the origin along a fixed
dispersion curve – the acoustic branch. In this case phase velocity in any given
direction l̂, ω/Kl = ω̃/K̃l, is well defined and equal to group velocity ∂ω/∂Kl

simply by definition of the derivative. No backward waves can be supported
in this regime.

This conclusion is not surprising from the physical perspective. As the size
of the lattice cell diminishes, the operating frequency increases, so that it is not
the absolute frequency ω but the normalized quantity ω̃ that remains (approx-
imately) constant. Indeed, a principal component of metamaterials with nega-
tive refraction is a resonating element [SPV+00, SV04, Ram05, Sha06] whose
resonance frequency is approximately inverse proportional to size [LED+06].

It is pivotal here to make a distinction between strongly and weakly inho-
mogeneous cases of wave propagation. The latter is intended to resemble an
ideal “Veselago medium,” with the Bloch wave being as close as possible to a
long-length plane wave. Toward this end, the following conditions character-
izing the weakly inhomogeneous backward-wave regime are put forth:

• The first-Brillouin-zone component of the Bloch wave must be dominant;
this component then defines the phase velocity of the Bloch wave.

• The other plane-wave components collectively produce energy flow at an
obtuse angle to phase velocity.

• The lattice cell size a is small relative to the vacuum wavelength λ0;
a/λ0 � 1.

• At the air-material interface, it is the long-wavelength, first-Brillouin-zone,
plane wave component that serves as the excitation channel for the Bloch
wave.

If any of the above conditions are violated, the regime will be characterized
as strongly inhomogeneous: the EM wave can “see” the inhomogeneities of the
material. By this definition, in the weakly inhomogeneous case the normalized
Bloch wavenumber K̃B must be small, K̃B ≡ KBa � π. Larger values of KB

would indicate a strongly inhomogeneous (or, synonymously, “photonic crys-
tal” or “grating”) regime, where the lattice size is comparable with the Bloch
wavelength. As we shall see, under reasonable physical assumptions, back-
ward waves cannot be supported in the weakly inhomogeneous case; strong
inhomogeneity is required.
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As a preliminary step in the analysis, it is instructive to examine the
direction of power flow for small K̃B in the lossless case (real ε). The average
Poynting vector is, according to (7.250) and with a convenient normalization,

P̃ ≡ 2ω̃µ0〈P 〉 = KB

∣∣∣ẽ0(K̃B)
∣∣∣2 +

∑∞
m=1

(K̃B − 2πm)
∣∣∣ẽm(K̃B)

∣∣∣2 + (K̃B + 2πm)
∣∣∣ẽ−m(K̃B)

∣∣∣2 (7.253)

The scalar form is used for notational convenience only; the vectorial case is
quite similar. It is, however, essential to indicate explicitly that the Fourier
amplitudes ẽm depend on the Bloch parameter K̃B . Since the waves corre-
sponding to ±K̃B are complex conjugates of one another, we have ẽ−m(K̃B) =
ẽ∗m(−K̃B), and the expression for the Poynting vector becomes

P̃ = K̃B

[∣∣∣ẽ0(K̃B)
∣∣∣2 +

∑∞
m=1

(∣∣∣ẽm(K̃B)
∣∣∣2 +

∣∣∣ẽm(−K̃B)
∣∣∣2)]

− 2π
∑∞

m=1
m

(∣∣∣ẽm(K̃B)
∣∣∣2 − ∣∣∣ẽm(−K̃B)

∣∣∣2) (7.254)

The first line in (7.254) is directly proportional to K̃B . To make this small
parameter explicit in the second line as well, let us write

P̃ = K̃B

[
|ẽ0|2 +

∑∞
m=1

(∣∣∣ẽm(K̃B)
∣∣∣2 +

∣∣∣ẽm(−K̃B)
∣∣∣2)

− 2π
∑∞

m=1
m

∂ |ẽm|2

∂K̃B

]
(7.255)

For small ω̃, the positive term |ẽ0|2 in the square brackets tends to be dom-
inant, making it difficult to produce a negative power flow and a backward
wave. This is so because the magnitudes of all spatial harmonics except for ẽ0

are for small ω̃ constrained by (7.251):

|ẽn| ≤ ω̃2
∣∣∣K̃B − 2πn

∣∣∣−2

‖ε̃‖l2
, ‖ẽ‖l2

= 1, n �= 0 (7.256)

The arguments above suggest that there must be a lower bound for the
relative cell size a/λ0 = ω̃/2π when the medium could still support backward
waves. Such a bound is derived below for the weakly inhomogeneous backward-
wave regime, which implies that K̃B = KBa � 1. To simplify mathematical
analysis, we focus on the limiting case KB = 0, but the conclusions will apply,
by physical continuity, to small K̃B . We first turn to the E-mode governed by
the 2D equation (7.246):

εE = −η∇̃2E, η = ω̃−2 (ω̃ �= 0) (7.257)
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Further analysis relies on the inversion of ∇̃2. To do this unambiguously,
let us split E up into the zero-mean term E⊥ and the remaining constant
E0: E = E0 + E⊥. Symbol ‘⊥’ indicates orthogonality to the null space of
the Laplacian (i.e. to constants). To eliminate the constant component E0, we
integrate (7.257) over the lattice cell. Integrating by parts and noting that the
boundary term vanishes due to the periodic boundary conditions (KB = 0),
we get

E0 = − ε̃−1
0

∫
Ω

εE⊥ dΩ, ε̃0 �= 0

(The exceptional case ε̃0 = 0 is mathematically quite intricate and may con-
stitute a special topic for future research.) With E0 eliminated, the eigenvalue
problem for E⊥ becomes

ε

[
E⊥ − ε̃−1

0

∫
Ω

εE⊥ dΩ
]

= −η∇̃2E⊥

Since E⊥ by definition is zero-mean,

∇̃−2
⊥

{
ε
[
E⊥ − ε̃−1

0 (ε, E⊥)
]}

= − ηE⊥ (7.258)

where ∇̃−2
⊥ is the zero-mean inverse of the Laplacian. Fourier analysis eas-

ily shows that this inverse is bounded (the Poincaré inequality):
∥∥∥∇̃−2

⊥
∥∥∥ ≤

(4π2)−1. Then, taking the norm of both sides of (7.258), we get

|η| ≤ (4π2)−1 |ε|max (1 + |ε|max/ |ε̃0|) (7.259)

This result, that can be viewed as a generalization of the Poincaré inequality
to cases with variable εr, leads to a simple lower bound for the lattice cell
size, with the mean and maximum values of ε as parameters:

(
a

λ0

)2

=
ω̃2

4π2
≥ 1

|ε|max (1 + |ε|max/ |ε̃0|)
(7.260)

This completes the theoretical derivation of lattice size bounds for the E-
mode. Examples and analysis for the vector case can be found in [Tsu07]. The
main conclusion is that for periodic structures capable of supporting backward
waves and producing negative refraction, the lattice cell size, as a fraction of
the vacuum wavelength and/or the Bloch wavelength, must be above cer-
tain thresholds. These thresholds depend on the maximum, minimum and
mean values of the complex dielectric permittivity as key parameters. In the
presence of good conductors (e.g. at microwave frequencies) such theoretical
constraints are not very restrictive. However, at optical frequencies and/or
for non-metallic structures the bounds on the cell size must be honored and
may help to design metamaterials and photonic crystals with desired optical
properties.
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7.14 Appendix: The Bloch Transform

In Sections 7.4–7.10, we had an occasion to consider individual Bloch–Floquet
waves in periodic structures. More generally, the electric or magnetic field can
be represented via the Bloch Transform – a “continuous superposition” of
Bloch waves. It can be viewed as a reformulation of the Fourier transform and
is considered in this Appendix in 1D.

The general idea is rather simple: as we know, a Bloch wave in Fourier
space is just a “comb” of plane waves at the spatial frequencies KB−mκ0 (m =
0,±1,±2, . . .). A generic Fourier transform can be viewed as a continuous
superposition of such combs for a varying KB . The details are as follows.

Let a function f(x) be expressed via its Fourier transform F (k):

f(x) =
1
2π

∫ ∞

−∞
F (k) exp(ikx) dk (7.261)

Let the k-axis be subdivided into intervals of equal length κ0: [mκ0, (m+1)κ0],
m = 0,±1,±2, . . . .

The Fourier transform F (k) can then be viewed as a superposition of
“Bloch combs”

. . . , KB − 2κ0, KB − κ0, KB , KB + κ0, KB + 2κ0, . . .

with KB ∈ [0, κ0]; one such comb is shown in Fig. 7.59 for illustration. More

Fig. 7.59. From Fourier to Bloch: Fourier transform as a superposition of “Bloch
combs”.

precisely, Fourier integration can be broken up into “combs” by setting k =
KB −mκ0, which yields
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f(x) =
1
2π

∫ κ0

0

{ ∞∑
m=−∞

F (KB −mκ0) exp(imκ0x)

}
exp(iKBx) dKB

(7.262)
For a fixed KB , the expression in the curly brackets is a Fourier series, with the
coefficients Fm = F (KB −mκ0). The sum of this series is a periodic function
of x, with the period x0 = 2π/κ0. Let us denote this sum with fPER(KB , x),
where “PER” implies periodicity with respect to x:

fPER(KB , x) ≡
∞∑

m=−∞
F (KB −mκ0) exp(imκ0x) (7.263)

With this in mind, the Bloch transform is, in essence, Fourier transform in
terms of the Bloch variable KB :

f(x) =
1
2π

∫ κ0

0

fPER(KB , x) exp(iKBx) dKB (7.264)

7.15 Appendix: Eigenvalue Solvers

The computational work in the bandgap structure calculation is dominated
by the solution of the eigenvalue problem. This area of numerical analysis is
remarkably rich in ideas and includes several classes of methods. An excellent
compendium of computational strategies for solving eigenvalue problems is
the Templates book [BDD+00]. The following quote from this book identifies
the key questions for choosing the best strategy:

1. Mathematical properties of the problem: Is it a Hermitian (real
symmetric, self-adjoint) or a non-Hermitian eigenproblem? Is it
a standard problem involving only one matrix or a generalized
problem with two matrices?

2. Desired spectral information: Do we need just the smallest eigen-
value, a few eigenvalues at either end of the spectrum, a subset
of eigenvalues “inside” the spectrum, or most eigenvalues? Do we
want associated eigenvectors, invariant subspaces, or other quan-
tities? How much accuracy is desired?

3. Available operations and their costs: Can we store the full matrix
as an array and perform a similarity transformation on it? Can
we solve a linear system with the matrix (or shifted matrix) by a
direct factorization routine, or perhaps an iterative method? Or
can we only multiply a vector by the matrix, and perhaps by its
transpose? If several of these operations are possible, what are
their relative costs?

The Templates book is perhaps the best starting point for studying eigenvalue
algorithms. G.H. Golub & H.A. van der Vorst have written excellent reviews
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of the subject [GvdV00, vdV04]. In addition to the classical monographs by
J.H. Wilkinson [Wil65], G.H. Golub & C.F. van Loan [GL96] and B.N. Parlett
[Par80], more recent books by Y. Saad [Saa92], J.W. Demmel [Dem97] and
L.N. Trefethen & D. Bau [Tre97] are highly recommended.

This section summarizes the eigenvalue methods relevant to the PBG
analysis. The answers to the Templates questions quoted above are differ-
ent for Fourier-space and finite-element algorithms; we therefore deal with
these two approaches separately.

Let us start with plane-wave expansion and assume that a regular (rather
than generalized) eigenvalue problem is solved; this is the case when all
coordinate-dependent quantities are incorporated into the differential oper-
ator on the left hand side of the eigenvalue equation and do not appear on the
right. The system matrix is generally full because products in real space turn
into convolutions in the Fourier space, with all spatial harmonics coupled. The
matrix is Hermitian for the H-problem and non-Hermitian for the E-problem.

The standard solution procedure has two stages. At the first stage, the
matrix is converted to a simpler form – usually upper Hessenberg form (upper
triangular plus one lower subdiagonal) – by a sequence of orthogonal similarity
transformations. The transformations are usually Householder reflections with
respect to judiciously chosen hyperplanes. The purpose of conversion to upper
Hessenberg form is to make QR iterations (see below) much more efficient.

Fig. 7.60 gives a geometric illustration of a Householder reflection. The
picture is drawn just in two dimensions because the hypervolume of this book
is limited. The hyperplane of reflection is orthogonal to a certain vector u that
does not have to be a unit vector.

The projection of an arbitrary vector x onto u is easily calculated to be

xu = u
uT x

uT u

The “mirror image” of x with respect to the hyperplane is therefore

x′ = x− 2xu = x− 2u
uT x

uT u
=

(
I − 2

uuT

uT u

)
x

The matrix in the parentheses formally defines the Householder reflection and
is easily shown to be symmetric and orthogonal. It can also be demonstrated
(see any of the monographs cited above) that a series of suitable Householder
transforms will convert any matrix, column by column, to upper Hessenberg
(“almost triangular”) form. Since orthogonal similarity transforms preserve
symmetry, for a symmetric (Hermitian in the complex case) matrix the upper
Hessenberg form is also symmetric (Hermitian) and hence tridiagonal.

The second stage of the typical eigenvalue algorithm consists in applying
QR-iterations to the upper Hessenberg (tridiagonal in the symmetric case)
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Fig. 7.60. A geometric illustration of Householder reflection. An arbitrary vector
x is reflected with respect to a hyperplane orthogonal to some vector u.

matrix.55 As known from linear algebra, any matrix A can be factored as

A = QR (7.265)

where Q is an orthogonal matrix (QT Q = I) in the real case or a unitary
matrix Q∗Q = I) in the complex case; R is an upper triangular matrix. This
factorization is applicable not only to square matrices, but to rectangular
m×n matrices with m ≥ n as well. However, we only need to consider square
matrices here.

The QR decomposition is not a similarity transform and therefore is not
by itself suitable for eigenvalue analysis. A similarity transform is obtained by
multiplying Q and R in the opposite order:

A′ = RQ = Q∗AQ (7.266)
55 QR iterations should not be confused with QR decomposition. The iterative

process does have QR factorization as its central part but also involves RQ-
multiplication and shifts, as summarized in the text below.
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where the complex case is assumed for generality and R is expressed as
Q∗A from (7.265). Remarkably, by repeating these two operations (QR-
decomposition, then RQ-multiplication) one obtains a sequence of matrices
A, A′, A′′, . . . that usually converges very rapidly to a triangular matrix (di-
agonal in the symmetric/Hermitian case). 56 Since similarity transforms pre-
serve the eigenvalues, the diagonal of this triangular matrix in fact contains
the eigenvalues of the original matrix. The eigenvectors of the original matrix
can be computed by “undoing” the orthogonal similarity transforms.

The first stage of the overall procedure – the transformation to upper
Hessenberg (or tridiagonal, in the symmetric/Hermitian case) form – for a
full n × n matrix requires O(n3) operations. QR iterations, the second stage
of the procedure, typically exhibit quadratic convergence at least; hence the
number of iterations per eigenvalue is virtually independent of the size of the
system, and the total operation count for the QR stage is O(n2) if only the
eigenvalues are sought. If the eigenvectors are also needed, the cost is O(n3).

In summary, the total computational cost for the standard eigenvalue
solver with Householder reflections and QR iterations is, as a rule, asymp-
totically proportional to the cube of the system size. In practical applications
to photonic bandgap structure calculation, the computational cost limits the
number of PWE terms, and hence the accuracy of the solution.

QR-based methods are usually viewed as direct solvers. An alternative is
iterative eigenvalue solvers. Strictly speaking, all eigenvalue solvers for
systems of dimension greater than four are, by necessity, iterative (as there
is no general way of computing the roots of the corresponding characteristic
polynomial in a finite number of operations). However, due to fast convergence
of QR iterations, the direct part (Householder reflections) is dominant, and
for practical purposes QR solvers are viewed as direct.

Iterative methods do not require explicit access to the matrix entries, as
long as a matrix-vector multiplication procedure is available. The system ma-
trix (or matrices, for the generalized eigenproblem) remains unchanged in the
course of the iterations, and hence for sparse matrices no additional fill-in is
created (i.e. zero entries remain zero). Moreover, in large-scale finite element
simulations matrix-vector operations can be carried out on an element-by-
element basis, without having to store the entries of the global matrix. How-
ever, additional memory is needed for an auxiliary set of orthogonal vectors,
as described below.

The literature on iterative methods is vast and the algorithms are quite
elaborate. Here I only highlight the main ideas, from the perspective of solving

56 This algorithm, however, is not infallible. In practice, it is implemented
with shifts: the QR factorization is applied not to the original matrix A
itself but to A − sI, where the shift s may vary from iteration to it-
eration. Algorithms for choosing the shifts can be quite involved. A very
interesting note on the Matlab implementation of the QR algorithm was
written by Cleve Moler in 1995 and is posted on the Mathworks website:
www.mathworks.com/company/newsletters/news notes/pdf/sum95cleve.pdf
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photonic bandgap problems; further details and references can be found in the
monographs and review papers already cited on p. 478.

A key part of iterative algorithms is projection onto a suitably chosen
subspace – in practice, with a small number of dimensions. Let us consider
an eigenvalue problem Ax = λx, where A is an n × n matrix and x ∈ C

n,
and assume that an orthonormal set of m vectors qk ∈ C

n, k = 1, 2, . . . , m is
available. Construction of this set is the second key part of the procedure and
a defining feature of particular classes of iterative methods.

To find an approximate solution of the eigenvalue problem within the
subspace Qm spanned by vectors qk, a natural (but not the only) option
is to apply the Galerkin method. The approximate solution xm is a linear
combination of m basis vectors qk, and the same vectors are used to test the
fidelity of this solution. In matrix form,

xm = Qmcm, cm ∈ C
n

where the n×m matrix Qm comprises the m column vectors qk and cm is a
coefficient vector. The Galerkin equations are

(Axm, qk) = µ(xm, qk), k = 1, 2, . . . , m

where µ is an approximate eigenvalue. Substituting xm = Qmcm and putting
the system in matrix-vector form leads to

Q∗
mAQmcm = µcm (7.267)

The right hand side got simplified due to the orthogonality of the columns
of Qm: Q∗

mQm = Im. This eigenvalue problem reduced to subspace Qm has
m eigensolutions that are called the Ritz values and Ritz vectors of A with
respect to Qm.

There are two main approaches for constructing the orthonormal sequence
of vectors qk. The first one involves the Krylov spaces. By definition, these
spaces are spanned by the Krylov vectors y1, y2 = Ay1, y3 = Ay2 = A2y1, . . .,
ym = Am−1y1, where y1 is some starting vector. The orthonormal basis qk in
the Krylov space is obtained by the modified Gram–Schmidt algorithm.57

Let us focus on the non-degenerate case where the n Krylov vectors, up to
yn, are linearly independent, and assemble these vectors as columns into an
n×n matrix Y . Since the dimension of the whole space is n, vector yn+1 = Ayn

must be a linear combination of the n Krylov vectors, with some coefficients
−s. (The minus sign is included for compatibility with the conventional form
of the “companion matrix” S below.) Then we have [Dem97]

AY = Y S (7.268)

57 The modified version of the Gram–Schmidt algorithm is mathematically equiva-
lent to the classical one but is more stable, due to the way the orthogonalization
coefficients are calculated. See e.g. J.W. Demmel [Dem97], p. 107.
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where

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . . 0 −s1

1 0 . . . . . . 0 −s2

0 1 . . . . . . 0 −s3

. . . 0 1 . . . 0 −s4

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 1 −sn

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.269)

This is just a matrix-form expression of two facts: (i) multiplying A with
each column of matrix Y (i.e. with each Krylov vector) except for the very
last one produces, by construction of the Krylov sequence, the next column;
(ii) multiplying A by the last column of Y produces a vector that is a linear
combination of all columns.

Since S is upper-Hessenberg, the matrix identity (7.268) can be interpreted
as a transformation of the original matrix A to the upper Hessenberg form:

Y −1AY = S (7.270)

Although this transformation is non-orthogonal and computationally not ro-
bust, its conceptual importance is in establishing the connection between the
Krylov vectors and upper Hessenberg matrices. An orthogonal transformation
can be obtained by the QR-decomposition of Y , which is nothing other than
the Gram–Schmidt procedure already mentioned:

Y = QY RY

Upon substitution into (7.270), this yields

R−1
Y Q∗

Y AQY RY = S

or equivalently
Q∗

Y AQY = H ≡ RY SR−1
Y (7.271)

where H is upper-Hessenberg because S is.
This conversion of the original matrix to upper Hessenberg form using

the orthogonalized Krylov sequence is known as the Arnoldi algorithm. In
the Hermitian case, this algorithm simplifies dramatically: the upper Hessen-
berg matrix H becomes tridiagonal and the orthogonal vector sequence can
be generated by a simple three-term recurrence, as described in all texts on
numerical linear algebra. This procedure for complex Hermitian or real sym-
metric matrices is known as the Lanczos method.

The Lanczos method is in exact arithmetic direct, in the sense that it or-
thogonally transforms the matrix to a tridiagonal one in a finite number of
operations (after which the eigenproblem can be efficiently solved by QR iter-
ations). However, in practice the Lanczos method and numerous other related
Krylov-space algorithms are used almost exclusively as iterative solvers to
compute the Ritz approximations (7.267) to the eigenpairs. The main reason
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is that roundoff errors destroy orthogonality, so the procedure cannot be suc-
cessfully completed in finite-precision arithmetic without additional measures
such as reorthogonalization.

The highest and lowest eigenvalues in the Lanczos method converge faster
as a function of m in (7.267) than the values in the interior of the spec-
trum. Applying the algorithm to a shifted and inverted matrix (A − σI)−1

instead of A will yield faster convergence for the eigenvalues closest to the shift
σ. This, however, necessitates solving linear systems with matrix (A − σI),
which may be prohibitively expensive for large matrices. Many precondition-
ing techniques, that can be viewed as approximate inverses in some sense, have
been developed to overcome this difficulty. In addition to the review papers
by H.A. van der Vorst [vdV04] and G.H. Golub & van der Vorst [GvdV00]
already cited, see papers by A.V. Knyazev [Kny01], P. Arbenz [AHLT05] and
references therein.

An interesting alternative to the Krylov-subspace solvers is the Jacobi–
Davidson method. Van der Vorst [vdV04] notes the origin of this method in
the 1846 paper by C.G.J. Jacobi [Jac46], the 1975 paper by E.R. Davidson
[Dav75] and, finally, the 1996 paper by G.L.G. Sleijpen & H.A. van der Vorst
[SvdV96].

An instructive way to view the Jacobi–Davidson method is as Newton–
Raphson iterations [vdV04]. Let a unit vector y and a number θ (real for
the Hermitian case) be an approximation to an eigenvector/eigenvalue pair of
matrix A, so that

y∗Ay = θ (7.272)

We are looking for suitable corrections ∆y and ∆θ that would improve this ap-
proximation. Since it does not make sense to update y along its own direction,
∆y is sought to be orthogonal to y:

y∗∆y = 0 (7.273)

The target condition for the corrections is

A(y + ∆y) = (θ + ∆θ)(y + ∆y) (7.274)

Ignoring the second order product ∆θ∆y as in the Newton–Raphson lineariza-
tion and moving the ∆-terms to the left hand side yields

(A− θI)∆y − ∆θ y = − (A− θI)y (7.275)

Since the left hand side contains two unknown increments, a relationship
between ∆θ and ∆y needs to be established to close the procedure. This can
be done by pre-multiplying the equation for the corrections (7.273) with y∗

[vdV04]:
y∗A(y + ∆y) = y∗(θ + ∆θ)(y + ∆y)

After taking into account the orthogonality condition y∗∆y = 0, the eigen-
value condition y∗Ay = θ and the unit length of y (y∗y = 1), one obtains
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y∗A∆y = ∆θ (7.276)

Substituting this ∆θ into the Newton–Raphson formula (7.275) yields an equa-
tion for ∆y alone:

(I − yy∗)(A− θI)∆y = − (A− θI)y

Since y∗∆y = 0, the last equation can be symmetrized:

(I − yy∗)(A− θI)(I − yy∗)∆y = − (A− θI)y (7.277)

The entries of matrix yy∗ are pairwise products of the components of y, and
hence matrix (I − yy∗) is in general full. However, it need not be computed
explicitly; to carry out the iterative procedure, one only needs the product of
(I − yy∗) with an arbitrary vector z, which is easily calculated right-to-left:
(I − yy∗)z = z − y(y∗z).

The meaning of (I − yy∗) as a projection operator is clear from Fig. 7.61.
Indeed, y∗z (a scalar) is geometrically the length58 of the projection of z onto
y; y(y∗z) is this projection itself; finally, z− y(y∗z) is the projection of z onto
the hyperspace orthogonal to y.

Fig. 7.61. A geometric illustration of the (I − yy∗) projector.

In the Jacobi–Davidson method, the Newton–Raphson iteration outlined
above defines a new direction ∆y to be added to the Ritz approximation space.
The complete Jacobi–Davidson algorithm is quite involved and includes, in
addition to the computation of ∆y: modified Gram–Schmidt orthogonaliza-
tion; restarting procedures when the dimension of the Ritz subspace gets too

58 For the geometric interpretation, vectors should be viewed as real.



486 7 Applications in Nano-Photonics

large; solution of the eigenvalue problem in the subspace; deflation (i.e. pro-
jection onto a hyperspace orthogonal to the eigenvectors already found – a
generalization of I − yy∗). Furthermore, preconditioning for eigensolvers in
general, and within the Jacobi–Davidson algorithm in particular, is a more
complicated matter than for linear system solvers. Parallel implementation
of these algorithms is a very rich area of research as well. On all these sub-
jects (except for parallel eigensolvers), the Templates book is again a compre-
hensive and condensed initial source of information; in addition, see papers
by G.L.G. Sleijpen & F.W. Wubs [SW03], A.V. Knyazev [Kny98, Kny01],
A. Basermann [Bas99, Bas00].

What is, then, the bottom line for the photonic bandgap computation as
far as eigensolvers are concerned? Methods that are based on plane wave (or
spherical/cylindrical wave) expansion lead to dense matrices. For problems of
small or moderate size, direct methods are typically the best choice.

However, large-scale problems are common in computational practice: tens
of thousands or more unknowns are often needed for adequate accuracy. At
the same time, only a small number of low-frequency eigenmodes may be of
interest. In such cases, iterative eigensolvers have an advantage. S.G. Johnson
& J.D. Joannopoulos, in their highly cited paper [JJ01], apply preconditioned
conjugate-gradient minimization of the block Rayleigh quotient or, alterna-
tively, the Davidson method.

Finite element analysis leads to generalized eigenproblems, with the “stiff-
ness” matrix on the left and the “mass” matrix on the right. Both matrices
are sparse. For regular media with symmetric material tensors, the matrices
are Hermitian; the stiffness matrix is nonnegative definite, and the mass ma-
trix is positive definite. The use of direct solvers is justified only for small-size
problems; the relevant direct solver for the generalized eigenproblem is the QZ
method by C.B. Moler & G.W. Stewart [MS73]. A review of iterative methods
for this type of problem is given in the Templates [BDD+00]. W. Axmann &
P. Kuchment [AK99] offer an interesting comparison of FEM with plane wave
expansion; they use the “simultaneous coordinate overrelaxation method” as
an eigenvalue solver for finite-element photonic (and acoustic) bandgap cal-
culation in two dimensions.



8

Conclusion: “Plenty of Room at the Bottom”
for Computational Methods

Google returns 57,000 references to R. Feynman’s talk “There’s Plenty of
Room at the Bottom” [Fey59]. This talk, given on December 29, 1959 at the
annual meeting of the American Physical Society, presaged the development
of nanoscale science and technology.

As a 57,001st reference to Feynman, I argue in this book that there is
“plenty of room at the bottom” for modeling and simulation. This point is
illustrated with a number of examples: computation of long-range interactions
between charged or polarized particles in free space and in heterogeneous me-
dia; plasmonic field enhancement by metal layers or cascades of particles; the
bandgap structure and light waves in photonic crystals; scattering and en-
hancement of light in near-field optical microscopy; backward waves, negative
refraction and perfect lensing.

The content of the book lies in the intersection of computational methods
and applications, especially to problems on the nanoscale. Whenever possible,
I have tried to give a common-sense explanation of mathematical, physical and
computational ideas, hoping that sizeable portions of the text will be acces-
sible and understandable to specialists in diverse areas of nanoscale science
and technology: physicists, engineers, chemists, mathematicians, numerical
analysts. Many sections in the book should be suitable for graduate students
doing interdisciplinary research and to undergraduate students interested in
simulation and in nanoscience.

Some of the material, however, is more advanced. For example, in addition
to traditional techniques such as the Finite Element Method, the new finite-
difference calculus of Flexible Local Approximation MEthods (FLAME) is
presented and its applications in colloidal simulation and photonics are dis-
cussed. In many cases, the accuracy of FLAME is much higher than that of
the standard finite-difference schemes and even of the finite element method.
Another more advanced topic is finite element error estimates, with un-
conventional eigenvalue and singular value accuracy conditions presented in
Section 3.14. Yet another example is the York–Yang “fast Fourier–Poisson”
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method, including its versions without Fourier transforms; this method is
known less well than its more conventional Ewald counterparts.

There is, unfortunately, less than “plenty of room” in this book, as nano-
fonts were not yet available at the time of its publication. Because of that,
and due to the natural constraints of time and the limits of my own expertise,
only a limited number of topics in nanoscale simulation could be included. For
example, Boundary Integral methods, Fast Multipole algorithms and Finite
Difference Time Domain schemes appear primarily in the review sections and
as alternatives to other techniques that are discussed in much greater detail
(Ewald summation, standard and generalized FD and FEM). On the applica-
tion side, subjects that are not discussed in the book (nanotubes, nanodots,
nanocomposites, and so on) would form a much longer list than the ones that
are included (selected topics in molecular dynamics, colloidal systems and
photonics). My goal will be achieved if some of this book’s ideas in the in-
tersection of numerical methods and nanoscale applications help to stimulate
further analytical, computational and experimental work.

In closing, let me single out one particularly fascinating subject of current
and future research: optical metamaterials. Such materials, with nanoscale
feature sizes and very unusual optical properties, have intriguing applications
from guiding light to nanofocusing to “cloaking”. Progress in this field is im-
possible without support by physical experiments and simulation; especially
important are analysis and control of effective electric and magnetic parame-
ters at optical frequencies. Not only for technology, but also for theory and
simulation there is indeed “plenty of room at the bottom”.
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[Bab58] Ivo Babuška. On the schwarz algorithm in the theory of differential
equations of mathematical physics. Tchecosl. Math. J., 8:328–342, 1958.
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[BV83] A. Bossavit and J.C. Vérité. The Trifou code: solving the 3d eddy
currents problems by using h as state variable. IEEE Trans. Magn.,
19:2465–2470, 1983.

[BY75] P. Barber and C. Yeh. Scattering of electromagnetic waves by arbitrarily
shaped dielectric bodies. Applied Optics, 14(12):2864–2872, 1975.

[Byk72] V.P. Bykov. Spontaneous emission in a periodic structure. So-
viet physics, JETP (Journal of Experimental and Theoretical Physics),
35(2):269–273, 1972.

[Byk75] V.P. Bykov. Spontaneous emission from a medium with a band spec-
trum. Sov. J. Quant. Electron., 4(7):861–871, 1975.

[Byk93] V.P. Bykov. Radiation of Atoms in a Resonant Environment. World
Scientific, Singapore, 1993.

[CAO+03] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis.
Subwavelength resolution in a two-dimensional photonic-crystal-based
superlens. Phys. Rev. Lett., 91(20):207401, Nov 2003.

[CBPS00] P. Castillo, B.Cockburn, I. Perugia, and D. Schöotzau. An a priori
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[OBB98] J.T. Oden, I. Babuška, and C.E. Baumann. A discontinuous hp finite
element method for diffusion problems. J. of Comp. Phys., 146:491–519,
1998.

[Ohs94a] Hiroyuki Ohshima. Electrostatic interaction between a hard-sphere with
constant surface-charge density and a soft-sphere – polarization effect
of a hard-sphere. J. Colloidal & Interface Sci., 168(1):255–265, 1994.

[Ohs94b] Hiroyuki Ohshima. Electrostatic interaction between two dissimilar
spheres: an explicit analytic expression. J. of Colloid & Interface Sci,
162(2):487–495, 1994.

[Ohs95] Hiroyuki Ohshima. Electrostatic interaction between two dissimilar
spheres with constant surface charge density. J. of Colloid & Inter-
face Sci, 170(2):432–439, 1995.

[OLB+83] M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander,
and C.A. Ward. Optical properties of the metals Al, Co, Cu, Au, Fe,
Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far-infrared. Appl.
Opt., 22:1099–1119, 1983.

[OP01] J. Tinsley Oden and S. Prudhomme. Goal-oriented error estimation
and adaptivity for the finite element method. Computers & Math. with
Appl., 41:735–756, 2001.

[Ors80] S.A. Orszag. Spectral methods for problems in complex geometries. J.
Comp. Phys., 37(1):70–92, 1980.

[OS97] Walter Oevel and Mark Sofroniou. Symplectic runge–kutta-schemes ii:
Classification of symmetric methods, 1997.

[Ott96] Hans Christian Ottinger. Stochastic Processes in Polymeric Fluids:
Tools and Examples for Developing Simulation Algorithms. Springer,
1996.

[Paf59] V.E. Pafomov. K voprosu o perehodnom izluchenii i izluchenii Vavilova-
Cherenkova. Zh. Eksp. Teor. Fiz., 36(6):1853–1858, 1959.

[Pan84] Victor Pan. How can we speed up matrix multiplication? SIAM Rev.,
26(3):393–415, 1984.

[Par80] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, En-
glewood Cliffs, N.J., 1980.



References 511

[Par06] Vozken Adrian Parsegian. Van der Waals Forces : A Handbook for
Biologists, Chemists, Engineers, and Physicists. New York : Cambridge
University Press, 2006.

[Pat80] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. John Ben-
jamins Publishing Co., 1980.

[PB02] John A. Pelesko and David H. Bernstein. Modeling MEMS and NEMS.
CRC Press, 2002.

[PDL84] D.W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy: Image record-
ing with resolution lambda/20. Applied Physics Letters, 44(7):651–653,
1984.

[PE02] A.L. Pokrovsky and A.L. Efros. Sign of refractive index and group
velocity in lefthanded media. Solid State Communications, 124:283–
287, 2002.

[PE03] A.L. Pokrovsky and A.L. Efros. Diffraction theory and focusing of
light by a slab of left-handed material. Physica B: Condensed Matter,
338:333–337, 2003.

[Pel96] J. Peltoniemi. Electromagnetic scattering by irregular grains usingvari-
ational volume integral equation method. J. Quant. Spectrosc. Radiat.
Transfer, 55(5):637–647, 1996.

[Pen00] J.B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett.,
85(18):3966–3969, Oct 2000.

[Pen01] John Pendry. Pendry replies:. Phys. Rev. Lett., 87(24):249704, Nov
2001.

[Pet95] Henrik G. Petersen. Accuracy and efficiency of the particle mesh ewald
method. The J. of Chem. Phys., 103(9):3668–3679, 1995.

[PGL+03] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and
M. Tanielian. Experimental verification and simulation of negative in-
dex of refraction using snell’s law. Phys. Rev. Lett., 90(10):107401, Mar
2003.

[PHRS99] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart. Magnetism
from conductors and enhanced nonlinear phenomena. IEEE Trans. on
Microwave Theory & Tech., 47(11):2075–2084, Nov 1999.

[Pis84] Sergio Pissanetzky. Sparse Matrix Technology. London : Academic
Press, 1984.

[PLV+04] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Srid-
har. Negative refraction and left-handed electromagnetism in microwave
photonic crystals. Phys. Rev. Lett., 92(12):127401, 2004.

[PM96] M.A. Paesler and P.J. Moyer. NearField Optics: Theory, Instrumenta-
tion and Applications. New York: John Wiley & Sons, Inc., 1996.

[PO02] S. Prudhomme and J. Tinsley Oden. Computable error estimators and
adaptive techniques for fluid flow problems. In T. Barth and H. Decon-
inck, editors, Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics, Lecture Notes in Computational Sci-
ence and Engineering, vol. 25, pages 207–268. Springer-Verlag, Heidel-
berg, 2002.

[PP62] Wolfgang K.H. Panofsky and Melba Phillips. Classical Electricity and
Magnetism. Reading, Mass., Addison-Wesley Pub. Co., 1962.
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[SEK+05] Daniel Sjöberg, Christian Engstrom, Gerhard Kristensson, David
J. N. Wall, and Niklas Wellander. A floquet–bloch decomposition of
maxwell’s equations applied to homogenization. Multiscale Modeling &
Simulation, 4(1):149–171, 2005.

[Sel84] Siegfried Selberherr. Analysis and Simulation of Semiconductor De-
vices. Springer-Verlag, 1984.

[SF73] G. Strang and G.J. Fix. An Analysis of the Finite Element Method.
Prentice-Hall, Englewood Cliffs, 1973.

[SF90] P.P. Silvester and R.L. Ferrari. Finite Elements for Electrical Engineers.
Cambridge ; New York : Cambridge University Press, 2nd ed., 1990.

[SH90] Kim A. Sharp and Barry Honig. Calculating total electrostatic ener-
gies with the nonlinear poisson-boltzmann equation. J. Phys. Chem.,
94:7684–7692, 1990.

[Sha06] Vladimir M. Shalaev. Optical negative-index metamaterials. Nature
Photonics, 1:41–48, 2006.

[She94] N. Al Shenk. Uniform error estimates for certain narrow lagrange finite
elements. Math. Comput., 63(207):105–119, 1994.

[Sil59] R.A. Silin. Waveguiding properties of two-dimensional periodical slow-
wave systems. Voprosy Radioelektroniki, Elektronika, 4:11–33, 1959.

[Sil72] R.A. Silin. Optical properties of artificial dielectrics. Izvestia VUZov
Radiofizika, 15:809–820, 1972.



References 515

[Sim03] Thomas Simonson. Electrostatics and dynamics of proteins. Reports
on Progress in Physics, 66(5):737–787, 2003. and references therein.

[Siv57] D.V. Sivukhin. The energy of electromagnetic waves in dispersive me-
dia. Optika i Spektroskopia, 3:308–312, 1957.
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[Stü83] K. Stüben. Algebraic multigrid (AMG): experiences and comparisons.
Appl. Math. Comput., 13:419–452, 1983.
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methods, 223, 224

Finite element analysis, 148, 389, 401,
451, 486

Finite element approximation, 127, 128
Finite element approximation vs.

interpolation, 109, 124, 159–161,
163, 177, 180

Finite element matrices, sparsity, 94,
113–116

Finite element mesh, 190
in 2D, 90
in 3D, 92

Finite Element Method (FEM), 11, 69,
70

convergence of, 159, 177
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numerical bases, 297, 303
particles in dielectrics, 307
particles in solvents, 315–318
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Flexible Local Approximation MEthods.
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errors, 45
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Scheme, 210
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Galerkin method
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1D, 206
2D, 384
and FD schemes, 227
solution, 428

Helmholtz free energy, 331, 338, 339,
341

Hertzian dipole, 433
Hierarchial bases

edge elements, 150
nodal elements, 150

Higher-order elements, 102, 104, 105
Hill’s equation, 360, 363, 366
Homgenization, local in FDTD, 223,

224

I
Immersed surface methodology, 227,

228
Implicit models, 4
Implicit schemes, 29, 38
Integral conservation principle, 49
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Macromolecular simulation, 4
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Mass matrix, 111
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Maxwell’s equations

and Bloch wave, 379, 382
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material parameters for, 423
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Mehrstellen (Mehrstellenverfahren)
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Mesh generation, 98
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Mesh-based methods, 6, 7
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algorithms, 154–156
convergence of, 157, 158
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Multivalued approximation, 190, 193,

199, 224, 232
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Nano-lens, 433, 434
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waves
historical notes, 446–451
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negative-index materials, 451, 473
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Newton-Raphson method, 31, 204, 205,
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See Newton-Raphson method
Numerical errors for different one-step
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Numerical solutions
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Partition function-sum over states, 341

Patches (subdomains)
FLAME, 232, 291, 300, 303
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and group velocity, 474
value of, 463
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and wave propagation, 449, 450, 467

Photonic band structure
FEM, 393–397, 399, 415
FLAME, 405–411
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Photonic crystal, 2, 3
Photonic crystal waveguide, 402, 405
Photonic crystals, band structure, 230,

349, 399, 410
Phototonic bandgap, 373, 374

in 2D, 386–389, 393
in 3D, 411–415
computation, 486
historical notes, 416
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problems, 481, 482

Plane-wave expansion (PWE), 10
Fourier approximation, 391–400
role of polarization, 390, 391
solution by, 389, 390
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Plasmon resonances

and diffraction, 434
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and Multiple Multipole Method
(MMP), 425

phenomena, 420, 421
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Poisson equation
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in 2D, 51, 52
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for cloud potential, 272

and collodial simulation, 5

and Ewald formulae, 252, 253

and Finite Element Method, 69–71,
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in Fourier space, 259, 270, 275

Taylor-based difference scheme, 47,
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Poisson-Boltzmann equation (PBE).
See Poisson-Boltzmann model

Poisson-Boltzmann model
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introduction to, 309–313
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linearized, 322
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procedure, 319

operator, 237
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method
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S
Scanning Near-Field Optical Microscopy
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electrostatic approximation in,
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Scanning Probe Microscopy (SPM), 436
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systems, 133–135

Symplecticness, 5, 33, 38, 39

Synge-Babuška-Aziz maximum angle
condition, 161, 170, 177, 180, 181

T

Taylor approximation, 42, 162–164, 166,
170, 192, 193

Taylor derivation, 39, 40

Taylor expansion, 39–42, 47, 48, 50

in 3D, 55

Taylor-based schemes, 17

Tetrahedral elements, 122, 160, 167, 168

Theory of homogenization, 225, 226

Thermodynamic potential, 328–332
for electrostatics in solvents, 338–343

Three-point flux balance scheme, 44
T-matrix method, 401, 422, 424, 425
Trapezoidal scheme. See Crank-Nicolson

scheme
Trefftz-FLAME, 190, 197, 198, 200

case-studies, 202–211
simulation, 426–428

Triangular mesh example, 106

U
Uncertainty principle, 326, 434–436

V
Van der Waals forces, 324–326, 436
Variational FLAME, 231–236
Variational methods, 6
Vector and matrix norms, 65
Veselago medium, 456, 457, 474

W
Wave analysis, 443
Wavefunction, 2
Whitney-Nédélec elements, 142. See

also edge elements
Wigner-Seitz cell, 243

Y
Yee scheme, 223
York–Yang method, 271, 272, 274, 487
Yukawa potential, 313, 324

and FLAME basis functions, 321
and linearized PBE, 317
superposition of, 314, 332, 336

Z
Zlámal’s minimum angle condition, 159,

167, 180, 181
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