

Emerging Nanotechnologies

Frontiers in Electronic Testing
Series Editor: Vishwani Agrawal

Auburn University
Auburn, Alabama

Emerging Nanotechnologies: Test, Defect Tolerance, and Reliability
Mohammad Tehranipoor (Ed.)
Volume 37, ISBN 978-0-387-74746-0, 2008

Oscillation-Based Test in Mixed-Signal Circuits
G. Huertas Sánchez, D. Vázquez Garcia de la Vega, A. Rueda Rueda, and J.L. Huertas Díaz
Volume 36, ISBN 978-1-4020-5314-6, 2006

The Core Test Wrapper Handbook: Rationale and Application of IEEE Std. 1500TM

Francisco da Silva, Teresa McLaurin, and Tom Waayers
Volume 35, ISBN 978-0-387-30751-0, 2006

Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits, Second Edition
Manoj Sachdev and José Pineda de Gyvez
Volume 34, ISBN 978-0-387-46546-3, 2007

Digital Timing Measurements: From Scopes and Probes to Timing and Jitter
Wolfgang Maichen
Volume 33, ISBN 978-0-387-31418-1, 2006

Fault-Tolerance Techniques for SRAM-Based FPGAs
Fernanda Lima Kastensmidt, Luigi Carro, and Ricardo Reis
Volume 32, ISBN 978-0-387-31068-8, 2006

Data Mining and Diagnosing IC Fails
Leendert M. Huisman
Volume 31, ISBN 978-0-387-24993-3, 2005

Fault Diagnosis of Analog Integrated Circuits
Prithviraj Kabisatpathy, Alok Barua, and Satyabroto Sinha
Volume 30, ISBN 978-0-387-25742-6, 2005

Introduction to Advanced System-on-Chip Test Design and Optimization
Erik Larsson
Volume 29, ISBN 978-1-4020-3207-3, 2005

Embedded Processor-Based Self-Test
Dimitris Gizopoulos, A. Paschalis, and Yervant Zorian
Volume 28, ISBN 978-1-4020-2785-7, 2004

Advances in Electronic Testing: Challenges and Methodologies
Dimitris Gizopoulos (Ed.)
Volume 27, ISBN 978-0-387-29408-7, 2006

Testing Static Random Access Memories: Defects, Fault Models and Test Patterns
Said Hamdioui
Volume 26, ISBN 978-1-4020-7752-4, 2004

Verification by Error Modeling: Using Testing Techniques in Hardware Verification
Katarzyna Radecka and Zeljko Zilic
Volume 25, ISBN 978-1-4020-7652-7, 2004

Elements of STIL: Principles and Applications of IEEE Std. 1450
Gregory A. Maston, Tony R. Taylor, and Julie N. Villar
Volume 24, ISBN 978-1-4020-7637-4, 2003

Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation
Alfredo Benso and P. Prinetto (Eds.)
Volume 23, ISBN 978-1-4020-7589-6, 2003

(Continued after index)

Mohammad Tehranipoor
Editor

Emerging Nanotechnologies

Test, Defect Tolerance, and Reliability

ABC

Editor
Mohammad Tehranipoor
Department of Electrical and Computer
Engineering
University of Connecticut
Storrs, CT 06269
USA

Series Editor
Vishwani Agrawal
Department of Electrical and Computer
Engineering
Auburn University
Auburn, AL 36849
USA

ISBN 978-0-387-74746-0 e-ISBN 978-0-387-74747-7

Library of Congress Control Number: 2007933699

c© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

Preface

The foundations of nanotechnology have emerged over many decades of research
in various fields. Over the years, computer circuits have been becoming smaller
and chemicals have been getting more complex. Biochemists have learned more
about how to study and control the molecular basis of organisms. Mechani-
cal engineering has been getting more precise which resulted in, for instance,
emergingnanoelectro-mechanical systems (NEMS).Computer engineeringhave
been getting a great deal of knowledge on how to design circuits with defective
components. Today, in the young field of nanotechnology, scientists and engi-
neers of various fields are taking control of atoms and molecules individually,
manipulating them and putting them to use with an extraordinary degree of
precision which was considered impossible many years ago. Word of the promise
of nanotechnology is spreading quickly, and the air is thickwith news of nanotech
breakthroughs especially over the last few years. Public awareness of nanotech
is clearly on the rise, too, partly because references to it are becoming more
common in popular culture and everyday life.

The wires and switches inside computer chips have been getting steadily
smaller for decades. They have already crossed the 100-nm threshold, sufficient
to be considered nanotechnology by the National Nanotechnology Initiative
(NNI) definition. As they continue to shrink, quantum effects will become
increasingly important, and future designs will stop working if not carefully
taken into consideration. Researchers in academia and industry are working
on various technologies, but among those there are few nanoscale technologies
that could potentially take over in near future. One is molecular electron-
ics: the use of single molecules (or sometimes, small clusters of molecules) to
build wires and switches. Another is quantum dots: instead of letting elec-
trons flow through wires, the electrons are tethered in place and only shift
back and forth. This shift causes nearby electrons to shift also, which is useful
for signaling and computation. Finally, carbon nanotube (CNT) based inter-
connects and transistors; CNTs have shown promising electrical behavior com-
pared to copper used in Complementary Metal Oxide Semiconductor (CMOS)
technology.

VI Preface

Technology Scaling Challenges and Effects

As functional density and operating frequency increase, the number of inter-
connects and length of interconnects are expected to increase as well. Over
the years, the number of metal layers has incrementally increased from the
original one. Using six to ten metal layers in industry is a common practice
nowadays. Increasing number of metal layers in turn increases the number of
vias where it is proven that vias are the main sources of defects. The situation
will grow worse since the number of metal layers will even further increase
going up to 12 within the next few years.

The material of the layers used in fabrication processes has also undergone
a major change from aluminum to copper. Using copper provides a better
scalability compared to aluminum. As technology scales and more transistors
are integrated on a chip, the interconnects become longer. For high-speed
nanometer technology designs the interconnect delay dominates gate delay.
It is predicted that in the near future the longest path in the design will
be the critical one not the paths with more gates. In nanometer technology
era, crosstalk will be a major contributor to interconnect delay. To keep the
resistance of the wires low as technology scales, the interconnects are becoming
narrower and taller. This results in large cross-coupling capacitances which
are now dominating substrate capacitances.

To reduce the power and minimize the negative impact of hot career, which
causes reliability issues overtime, the power supply is reduced. However, the
transistor voltage threshold is not scaling proportionally which results in in-
crease in the circuit sensitivity and reduction in noise margin. The scaling
also increases the leakage current. In 65 nm technology, the static power con-
sumption contributes to 50% of total power consumption while it is expected
to further increase in 45 and 32 nm technologies. Negative bias temperature
instability (NBTI) is considered a growing threat to device reliability in sub-
100 nm technologies as well.

Technology scaling also poses many challenging design and test issues.
The power and speed are two important parameters in today’s designs. The
low power supply has increased circuits sensitivity to noise caused by IR-drop,
crosstalk, and process variations. The voltage threshold does not scale propor-
tionally resulting in reduced noise margin. The wavelength of the light used
for imaging the geometries is longer than the geometry desired for printing.
For example, a designer uses an almost 200 nm light source for a 130 nm gate
length. The circuit speed will be limited by quantum effects along with high
power and temperature in future designs. Temperature variation can signifi-
cantly affect circuit performance. The process variation increases clock skew
resulting higher switching activity, hence higher temperature and power sup-
ply noise. The continuous decrease in transistor feature size has been pushing
the CMOS process to its physical limits caused by ultra-thin gate oxides, short
channel effects, doping fluctuations, and the unavailability of lithography in
nanoscale range. To be able to continue the size/speed improvement trends

Preface VII

according to Moore’s Law, research investments are growing on a wide range
of emerging devices and technologies.

Emerging Technologies

This book covers various technologies that have been suggested by researchers
over the last decades such as chemically assembled electronic nanotechnology,
Quantum-dot Cellular Automata (QCA), nanowires (NWs), and carbon nan-
otubes (CNTs). Each of these technologies offers various advantages and dis-
advantages. Some suffer from high power, some work in very low temperature
and some other need indeterministic bottom-up assembly. These emerging
technologies are not considered as a direct replacement for CMOS technology
and may require a completely new architecture to achieve their functionality.

Molecular logic devices are based on electron transport properties through
a single molecule. Two terminal molecular devices currently being explored
consists of thousands of molecules operating in parallel as digital switches or
analog diodes. In both cases, a voltage applied to a molecular layer (group of
molecules in parallel) results in reconfiguration of the molecular components.
This creates a nano-switch where the reconfiguration capability provide us
with the opportunity for computing. A near term opportunity of molecular
electronics is in integration of molecular devices with sub-50 nm CMOS com-
ponents to form a hybrid system. A full-molecular system is considered a
potential long-term opportunity. In addition to two terminal switches, few
other molecular components emerged over the past few years, e.g. bistable
switch, molecular NEMS, and spin-based molecular devices.

Carbon nanotube is a subset of molecular electronic materials. It is a
cylinder formed from an atomic sheet of carbon atoms. The carbon atoms are
bounded together into an array of hexagons which forms a planar sheet. This
sheet is rolled up to form a tube. Carbon nanotubes can have diameters up to
15 nm and lengths up to few microns. The diameter and the way the sheet is
rolled up determine whether the carbon nanotube has metal or semiconductor
properties. The semiconductor tube can be doped n-type and p-type, making
it possible to create n–p junction. Carbon nanotubes have shown strong cur-
rent capability which makes it interesting to IC designers to replace copper
with carbon nanotube, however, the integration will be expensive.

A novel mechanism for transmitting and processing information has been
extensively investigated in theoretical work on quantum-dot cellular automata
(QCA). This work assumes arrays of cells built from quantum dots, on a
molecular scale, from individual redox centers. The charges move within the
cells in response to external electric fields. It is fascinating that based on
such scheme, there is no need to let charges flow through the cells. Wires,
AND/OR gates, clocked QCA cells, QCA memory cell, and a shift register are
the components that have been successfully demonstrated. Today, standard
solid state Quantum-dot Cellular Automata cell design considers the distance
between quantum dots to be about 20 nm, and a distance between cells of
about 60 nm. Compared to CMOS technology, QCA is expected to present
less variability at this scale.

VIII Preface

Digital microfluidics is an alternative technology for lab-on-a-chip systems
based upon micromanipulation of discrete droplets. Microfluidic processing is
performed on unit-sized packets of fluid which are transported, stored, mixed,
reacted, or analyzed in a discrete manner using a standard set of basic instruc-
tions. Recent advances in microfluidics technology have led to the design and
implementation of miniaturized devices for various biochemical applications.
These microsystems have shown promises to revolutionize biosensing, clinical
diagnostics, and drug discovery. Such applications can benefit from the small
size of biochips compared to conventional laboratory methods.

Developments in these nanoscale technologies provide the hope that
current trend of integration of electronic devices can be continued. Due
to their small feature sizes and self-assembly-based fabrication methods,
nanoscale devices present many challenges in the area of testing, defect
tolerance, and reliability. As nanoscale fabrication technologies evolve over
the next few years, testing and reliability are expected to emerge as major
roadblocks to system integration.

Most of the suggested technologies offer very high defect density (up to
10%). Increasing defect density decreases yield and with such a high de-
fect density in nano-devices the manufacturing cost can be prohibitively
high and discarding a defective nano-chip will no longer be possible. As
a result, to achieve high reliability, nanoscale devices must be thoroughly
tested, diagnosed and the location of defects must be found. Novel defect
tolerance methods and architectures must be developed to deal with such
high defect densities. For example, architectures similar to field program-
mable gate array (FPGA) have been suggested to use crossbars built from
nanowires/nanotubes. Such crossbars can be programmed and the defects can
be avoided if the location of defects is known. Similarly, in other nano-devices
and architectures, a reliable system can be created using defective devices.

This book is divided into five sections. Section 1 includes five chapters
that discuss different aspects of test and defect tolerance for crossbar-
based nanoscale devices. The reconfiguration feature of the proposed nano-
architectures provides an ability to test these devices and avoid the defective
ones. Section 2 contains four chapters focusing on test, defect tolerance and
reliability for QCA circuits.

There are two chapters in Sect. 3 which present methods for testing and
diagnosis of realistic defects in digital microfluidic biochips. Due to the under-
lying mixed-technology and mixed-energy domains, biochips exhibit unique
failure mechanisms and defects. Finally, Sect. 4 contains three chapters deal-
ing with reliability of CMOS scale devices, developing nanoscale processors
and future molecular electronics-based circuits.

Mohammad Tehranipoor July 2007
University of Connecticut

Contents

Section 1: Test and Defect Tolerance for Crossbar-Based
Architectures
M. Tehranipoor . 1

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar
Circuits
T. Hogg and G. Snider . 5

Chapter 2: Built-in Self-Test and Defect Tolerance
in Molecular Electronics-Based Nanofabrics
Z. Wang and K. Chakrabarty . 33

Chapter 3: Test and Defect Tolerance for Reconfigurable
Nanoscale Devices
M. Tehranipoor and R. Rad . 63

Chapter 4: A Built-In Self-Test and Diagnosis Strategy
for Chemically-Assembled Electronic Nanotechnology
J.G. Brown and R.D. (Shawn) Blanton . 95

Chapter 5: Defect Tolerance in Crossbar Array
Nano-Architectures
M.B. Tahoori . 121

Section 2: Test and Defect Tolerance for QCA Circuits
M. Tehranipoor . 153

Chapter 6: Reversible and Testable Circuits for Molecular
QCA Design
X. Ma, J. Huang, C. Metra, and F. Lombardi . 157

X Contents

Chapter 7: Cellular Array-Based Delay-Insensitive
Asynchronous Circuits Design and Test for Nanocomputing
Systems
J. Di and P.K. Lala . 203

Chapter 8: QCA Circuits for Robust Coplanar Crossing
S. Bhanja, M. Ottavi, S. Pontarelli, and F. Lombardi 227

Chapter 9: Reliability and Defect Tolerance in Metallic
Quantum-Dot Cellular Automata
M. Liu and C.S. Lent . 251

Section 3: Testing Microfluidic Biochips
M. Tehranipoor . 265

Chapter 10: Test Planning and Test Resource Optimization
for Droplet-Based Microfluidic Systems
F. Su, S. Ozev, and K. Chakrabarty . 267

Chapter 11: Testing and Diagnosis of Realistic Defects
in Digital Microfluidic Biochips
F. Su, W. Hwang, A. Mukherjee, and K. Chakrabarty 287

Section 4: Reliability for Nanotechnology Devices
M. Tehranipoor . 313

Chapter 12: Designing Nanoscale Logic Circuits
Based on Principles of Markov Random Fields
K. Nepal, R.I. Bahar, J. Mundy, W.R. Patterson, and A. Zaslavsky 315

Chapter 13: Towards Nanoelectronics Processor Architectures
W. Rao, A. Orailoglu, and R. Karri . 339

Chapter 14: Design and Analysis
of Fault-Tolerant Molecular Computing Systems
D. Bhaduri, S.K. Shukla, H. Quinn, P. Graham, and M. Gokhale 373

Index . 399

List of Contributors

R. Iris Bahar
Brown University
Division of Engineering
Providence, RI 02912

Debayan Bhaduri
Virginia Polytechnic Institute
and State University
dbhaduri@vt.edu

Sanjukta Bhanja
Department of Electrical Engineering
University of South Florida
Tampa, (FL) 33620, USA
bhanja@eng.usf.edu

R.D. (Shawn) Blanton
Carnegie Mellon University

Jason G. Brown
Carnegie Mellon University

Krishnendu Chakrabarty
Duke University

Jia Di
University of Arkansas

Maya Gokhale
Los Alamos National Laboratory

Paul Graham
Los Alamos National Laboratory

Tad Hogg
HP Labs, 1501 Page Mill Road
Palo Alto, CA

Jing Huang
Department of Electrical
and Computer Engineering
Northeastern University
Boston, MA 02115
hjing@ece.neu.edu

William Hwang
Oxford University

Ramesh Karri
Polytechnic University

Parag K. Lala
Texas A&M University at Texarkana

Craig S. Lent
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA
lent@nd.edu

Mo Liu
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA
mliu1@nd.edu

XII List of Contributors

Fabrizio Lombardi
Department of Electrical
and Computer Engineering
Northeastern University
Boston, (MA) 02115, USA
lombardi@ece.neu.edu

X. Ma
Department of Electrical
and Computer Engineering
Northeastern University
Boston, MA 02115
xma@ece.neu.edu

Cecillia Metra
Department of Electrical Engineering
University of Bologna
Bologna, Italy
cmetra@deis.unibo.it

Arindam Mukherjee
University of North Carolina
at Charlotte

J. Mundy
Brown University
Division of Engineering
Providence, RI 02912

Kundan Nepal
Bucknell University
Department of Electrical Engineering
Lewisburg, PA 17837

Alex Orailoglu
University of California, San Diego

Marco Ottavi
Department of Electrical
and Computer Engineering
Northeastern University
Boston, (MA) 02115, USA
mottavi@ece.neu.edu

Sule Ozev
Duke University

W. R. Patterson
Brown University
Division of Engineering
Providence, RI 02912

Salvatore Pontarelli
Dipartimento di Ingegneria
Elettronica
Università di Roma “Tor Vergata”
Rome, 00133, Italy
pontarelli@ing.uniroma2.it

Heather Quinn
Los Alamos National Laboratory

Reza Rad
University of Maryland
Baltimore County
reza2@umbc.edu

Wenjing Rao
University of California, San Diego

Sandeep K. Shukla
Virginia Polytechnic Institute
and State University
shukla@vt.edu

Greg Snider
HP Labs, 1501 Page Mill Road
Palo Alto, CA

Fei Su
Intel Corporation

Mehdi B. Tahoori
Northeastern University
Boston, MA

Mohammad Tehranipoor
University of Connecticut
tehrani@engr.uconn.edu

Zhanglei Wang
Cisco Systems, Inc.

A. Zaslavsky
Brown University
Division of Engineering
Providence, RI 02912

Section 1: Test and Defect Tolerance
for Crossbar-Based Architectures

M. Tehranipoor

As complementary metal oxide semiconductor (CMOS) devices are scaled
down into the nanometer regime, new challenges at both the device and system
levels are arising. New devices and structures are being researched within the
device community including regular and reconfigurable nano-crossbar arrays.
Crossbar architectures are one approach to molecular electronic circuits for
memory and logic applications. However, currently feasible manufacturing
technologies for molecular electronics introduce numerous defects so insisting
on defect-free crossbars would give unacceptably low yields. Conventional test
and defect tolerance methods employed for CMOS reconfigurable devices such
as FPGA are not applicable to emerging nanoscale devices due mainly to the
high defect rates in nanotechnology. This section contains five chapters that
present novel methods of test and defect tolerance for such high defect density
nano-devices. The proposed methods try to alleviate problems such as (1)
defect identification, localization and isolation, (2) defect map generation and
defect avoidance, (3) test under very high defect rates, and (4) design flow
under high defect rates condition.

The first chapter, entitled “Defect-Tolerant Logic with Nanoscale Crossbar
Circuits”, argues that increasing the area of the crossbar provides enough
redundancy to implement circuits in spite of the defects. The authors identify
reliability thresholds in the ability of defective crossbars to implement boolean
logic. These thresholds vary among different implementations of the same
logical formula, allowing molecular circuit designers to trade-off reliability,
circuit area, crossbar geometry and the computational complexity of locating
functional components. These choices are illustrated in this chapter for binary
adders. For instance, one adder implementation yields functioning circuits 90%
of the time with 30% defective crossbar junctions using an area only 1.8 times
larger than the minimum required for a defect-free crossbar. The authors also
describe an algorithm for locating a combination of functional junctions that
can implement an adder circuit in a defective crossbar.

Chapter 2, entitled “Built-In Self-Test and Defect Tolerance in Molec-
ular Electronics-Based Nanofabrics”, presents a method to test nanoblocks

2 M. Tehranipoor

and switchblocks in a nano-architecture and identify the location of defects.
The authors in this chapter propose a built-in self-test (BIST) procedure for
nanofabrics implemented using chemically assembled electronic nanotechnol-
ogy. Several fault detection configurations are presented to target stuck-at
faults, shorts, opens, and connection faults in nanoblocks and switchblocks.
The detectability of multiple faults in blocks within the nanofabric is also
considered. The authors also present an adaptive recovery procedure through
which defect-free nanoblocks and switchblocks in the nanofabric-under-test
can be identified. The proposed BIST, recovery, and defect tolerance proce-
dures, in this chapter, are based on the reconfiguration of the nanofabric to
achieve complete fault coverage for different types of faults. It is shown that
a large fraction of defect-free blocks can be recovered using a small number of
BIST configurations. The authors also present simple bounds on the recovery
that can be achieved for a given defect density. Simulation results are pre-
sented for various nanofabric sizes, different defect densities, and for random
and clustered defects.

The third chapter entitled “Test and Defect Tolerance for Reconfigurable
Nanoscale Devices” presents a solution to dealing with issues such as storing
large defect map size and per chip placement and routing. In this chapter,
the authors present a new test method in addition to novel defect avoidance
methods for reconfigurable nanoscale crossbar-based devices. The proposed
defect tolerance methods are independent on defect map and avoid per chip
placement and routing. The test procedure proposed in this chapter is a built-
in self-test method that tests the function implemented on a logic block instead
of testing the block itself. The method avoids generation of large defect map
and speeds up the configuration process. Probabilistic analyses are presented
to show efficiency of the methods in avoiding defects in such high density
devices. Two simulation programs are developed and several experiments are
performed on MCNC benchmarks to evaluate the proposed methods in terms
of yield and timing requirements.

Chapter 4, entitled “A Built-in Self-test and Diagnosis Strategy for Chem-
ically Assembled Electronic Nanotechnology”, illustrates that the highly
defective nanosclae circuits will require a completely new approach to man-
ufacturing computational devices. In order to achieve any level of significant
yield, it will no longer be possible to discard a device once a defect is found.
Instead, a method of using defective chips must be devised. A testing strat-
egy is developed for chemically assembled electronic nanotechnology (CAEN)
that takes advantage of reconfigurability to achieve 100% fault coverage and
nearly 100% diagnostic accuracy.

Finally, the fifth chapter in this section entitled “Defect Tolerance in Cross-
bar Array Nano-Architectures” presents an application-independent defect-
tolerant design flow to minimize customized post-fabrication design efforts to
be performed per chip. In this flow, higher level design steps are not needed
to be aware of the existence and the location of defects in the chip. Only a
final mapping step is required to be defect-aware. Application independence of

Section 1: Test and Defect Tolerance for Crossbar-Based Architectures 3

this flow minimizes the amount of per chip design steps, making it appropriate
for high volume production. The manufacturing yield of molecular crossbars is
analyzed under different defect distribution models. The authors report on the
size of the minimum crossbar to be fabricated such that a defect-free crossbar
of the desirable size can be found with a guaranteed manufacturing yield.

Chapter 1: Defect-Tolerant Logic
with Nanoscale Crossbar Circuits

T. Hogg and G. Snider

1 Introduction

Molecular electronics offers the possibility of significantly denser circuits than
current lithography-based manufacturing. Achieving this potential requires
circuit designs exploiting the capabilities of molecular electronics while com-
pensating for limitations of current fabrication approaches, particularly de-
fects. Creating such circuits in spite of fabrication defects requires economic
trade-offs. For instance, accepting lower yields or improving fabrication could
reduce defect rates, but increase production cost. Algorithmic configuration
strategies for defect-tolerant systems [28], discussed in this chapter, provide
higher defect tolerance, but add to manufacturing cost with the additional
testing and analysis required. Evaluating this strategy requires determining
what defect rates are tolerable at all, i.e., is there some level of defects beyond
which constructing circuits is not practical? If we can accommodate defects,
how much area overhead is required and how is it affected by choice of circuit
geometry? This chapter is an empirical exploration of these questions.

We consider a particular type of molecular circuit, the crossbar described
in Sect. 2. For nanoscale crossbars, the main type of defect is that introduced
during manufacture (so-called “static defects”) rather than during operation.
This is reasonable for plausible fabrication technologies, which involve high
temperatures during manufacture, and hence a relative ease of introducing de-
fects, but low temperature during operation, with much less chance of creating
new defects. In this situation, an appropriate systems architecture consists of a
compiler to arrange for desired circuit behaviors by only using correctly func-
tioning components of a given crossbar circuit, as determined from a testing
phase after manufacture [15]. This approach of avoiding known defects gives
a defect-tolerant system architecture. It contrasts with methods dealing with
faults that may appear during the operation of the device, perhaps intermit-
tently, e.g., using majority votes from replicated hardware [32].

6 T. Hogg and G. Snider

This leads to the central question addressed in this chapter: given a defect
rate and a certain size crossbar, how likely is it we can find a way to imple-
ment a particular logical formula in the crossbar? Determining whether such
a circuit exists, and if so, finding one, is a combinatorial search problem. Thus
a related question is the computational difficulty for the compiler to identify
an implementation, or conclude no implementation is possible. For a given
desired circuit and crossbar size, decreasing the defect rate will generally re-
quire more difficult and costly manufacturing. On the other hand, increasing
the allowable defect rate will make it less likely the desired circuit can be im-
plemented and can also result in longer runtimes for the compiler to identify
a way to implement the circuit while avoiding the defects.

Furthermore, a logical formula can be written in various logically equiva-
lent forms, e.g.,

(a OR b) AND c

(a AND c) OR (b AND c)

are logically equivalent. These rewrites can involve different numbers of terms,
and hence require different crossbar areas and shapes to implement. They can
also differ in their likelihood of being implementable on crossbars with defects.

After describing the molecular crossbar hardware and the defect model
evaluated in this chapter, we consider a simple example of implementing AND
logic gates. We then turn to a more interesting circuit: the binary adder. We
first describe two approaches to implementing adders using crossbars, and
then show their feasibilities in the face of defects. We thus show how crossbar
architectures can implement logic circuits, even with numerous manufacturing
defects.

2 Crossbar Architecture

The crossbar architecture is a general approach for molecular circuits [2–
4, 6, 14, 19, 21, 25, 30]. A molecular crossbar consists of two parallel planes of
molecular wire arrays separated by a thin layer of a chemical species (called the
“interlayer”) with particular electrochemical properties (Fig. 1). Each plane
consists of a number of parallel molecular wires (also called “nanowires”), with
each wire in a plane being of the same type. The wires in one plane cross the
wires in the other plane at a right angle. The region where two perpendicular
wires cross is called a junction or crosspoint. Depending on the nature of the
interlayer and nanowires, each junction may be configured to implement an
electronic device, such as a resistor, diode or field effect transistor [22], or may
be left unconfigured so the two crossing wires do not interact electrically. We
consider crossbars whose junctions can only be configured as either resistors
or diodes, since those are easier to fabricate with current technology than
configurable transistors.

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 7

plane 1 nanowires

plane 2 nanowires

interlayer

junction

Fig. 1. Schematic view of a molecular crossbar from two different perspectives. Each
junction may be independently configured to behave as an electronic device

A

B

C

X

+ + + +

C

A

B
X

AND

OR

Fig. 2. Implementing the AND/OR function X = A + BC with a diode crossbar
and resistors

The crossbar structure is an attractive architecture for molecular elec-
tronics since it is relatively simple and inexpensive to fabricate using either
chemical self-assembly or nanoimprint lithography.

By suitable selection of the type of connections at each crosspoint (e.g.,
no connection, or a diode in one direction or the other), crossbars can be
set to evaluate any logical formula expressed as a combination of AND and
OR operations. Figure 2 shows one example. To see this, consider the output
wire, labeled “X”. It is connected to ground through a resistor, and via diode
junctions to the second and third vertical wires. If both vertical wires are at
low voltage (“off”), then the output wire X will also be at low voltage due
to its connection to ground. On the other hand, if either of the connected
vertical wires is at high voltage (“on”), the diode connection from the high
voltage vertical wire(s) will give a high voltage to the output wire (since, by
design, the diode resistance in the forward direction is much smaller than the
resistor connecting the output wire to ground). If only one of the vertical
wires is on, the high resistance of the diode junction in the reverse direction
ensures that the output wire remains at high voltage. Thus this combination
of resistors and diode connections makes the output X equal to the logical-OR
of the inputs on the two vertical wires. Similarly, the connections from the
inputs A, B and C implement logical-ANDs. Typical voltage drop across a
forward-biased diode is about 0.6 V, and resistors are about 100 kΩ.

8 T. Hogg and G. Snider

The crossbar of Fig. 2 connects each column, through a pullup resistor, to
a positive voltage source. With the diode directions shown here, each column
implements the logical-AND of its inputs (the horizontal wires). Each output
row, connected to ground through a pulldown resistor, implements the logical-
OR of the columns connected to it through diode junctions. Although this is
not the only way to configure crossbar circuits, it provides a simple functional
form in which each output is the logical-OR of a number of terms, each of
which is the logical-AND of some inputs.

Diode/resistor logic cannot implement logical inversion (i.e., a NOT gate).
However, by presenting the circuit with two wires for each input (i.e., one wire
representing the true input value, the other representing its complement), the
crossbars can produce internal signals in both the original and complemented
forms. Combining these signals using just AND and OR operations then al-
lows evaluating any logical formula. The complemented inputs to the crossbar
are readily produced by the external circuit, fabricated using conventional
technology, to which the crossbar is connected for input and output. Thus
by doubling the number of wires and presenting all primary inputs in both
true and complemented forms, the diode crossbar architecture can implement
any logical formula just using combinations of AND and OR operations, as
illustrated in Fig. 3.

Inputs and outputs of a nanoscale circuit ultimately need to be connected
to the external, sub-micron world. One might use an approach similar to
Likharev’s architecture [31] to accomplish this, by having the external wires
from the crossbar to spread out to a spacing large enough to match litho-
graphically. In such an architecture, generally only a small fraction of the
crossbar junctions (e.g., about 1%) are used. Thus, such an increased spacing
reduces the high density benefit of molecular electronics. Nevertheless, such
connection limitations allow tolerating high defect rates [31].

Alternatively, the high density of molecular electronics can be maintained
by using nanoscale latches [24] at the inputs for driving the logic functions,

A

A

B

+ + + +

B

X = AB

X = A + B = AB

Fig. 3. DeMorgan’s theorem allows generating a given logical AND/OR function
along with its complement. This generally requires all input signals to be presented
in both original and complemented forms

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 9

and at the outputs for signal regeneration. We consider this approach in our
study, to examine defect tolerance of circuits fully exploiting the density im-
provement of molecular electronics, though with less tolerance for defects than
sparser circuits. In this case, inputs can be provided via demultiplexer cir-
cuits [7, 8, 16, 20]. While demultiplexers require significant additional area for
the small circuits discussed in this chapter, Rent’s Rule states that the number
of external connections scales approximately with the square root of the num-
ber of components. So for large circuits of practical interest, the vast majority
of inputs and outputs on a single logic crossbar will be to other nanocrossbars.
Such larger circuits face the same issues of defect-tolerant design as discussed
in this chapter.

3 Model of Crossbar Defects

We restrict attention to defects leading to inoperative connections (i.e., with
no ability to activate them to make diode connections), rather than defects
that break or short out a wire, or prevent routing the output of one gate to the
input of another. Moreover, for a given defect rate p, we assume errors occur
independently, i.e., without any spatial correlation among defect locations.

Many researchers have explored the problem of finding such defects in
crossbars with high defect rates [1, 27,33].

In this scenario, we can test the circuits to determine which crosspoints
are defective, and then use the remaining ones to implement the circuit. That
is, a compiler uses the required logic formula and a table of defects to find a
way to implement the formula.

Our focus is on crossbars whose configurable junction devices (e.g., diodes)
have fixed parameters if they are functional (e.g., resistances in forward and
reverse directions). A complementary analysis to that presented here could
examine the consequences for circuit performance of various values of these
parameters, as has been applied to a different adder implementation than
discussed in this chapter, namely using a look-up table to evaluate all the
combinations of inputs [34].

We do not consider errors in connections to external circuits. These include
the inputs and outputs to the crossbar device, any feedback connections or
inverters that may be needed to create complementary inputs and resistive
connections to larger wires for the pullup and pulldown resistors. Other work
has addressed connecting molecular electronics to larger scale circuits through
the use of demultiplexer circuits with defects [7, 8, 16,20].

4 An AND Gate

A simple logic circuit created from the crossbar architecture is the logical AND
of k inputs. One implementation is as a single k-input AND gate, i.e., using k
connections to a single output wire. Another implementation is to decompose

10 T. Hogg and G. Snider

(a) (b)

output
output

output
output

Fig. 4. Logic gates: a 4-input AND, and the same function using 2-input AND
gates. Also shown is an implementation of these circuits using parts of a crossbar
network

the AND into a circuit of several AND gates with fewer inputs. For example,
k − 1 2-input AND gates connected in a tree structure implements a k-input
AND when k is a power of 2, as illustrated for k = 4 in Fig. 4.

For this example we suppose the assignments of input signals to input wires
are fixed, e.g., either from external connections or from outputs of another part
of a larger overall circuit. More generally, the circuit design could also involve
searching for a suitable choice of these input wires among a larger number of
rows in the crossbar network, as we discuss for the adder circuit in Sect. 5.

We also suppose the only defects in the crossbar are those preventing
configuration as logical ANDs, rather than also considering other defects such
as in the routing connections shown in Fig. 4. If each connection in the crossbar
is defective with independent probability p, the probability a given column
wire in the crossbar can be used to form a gate with k given inputs (i.e., row
wires) is (1− p)k. Thus in a crossbar with N columns, the probability that at
least one column will be able to implement the k-input gate is

Pgate(k,N) = 1 − (
1 − (1 − p)k

)N
. (1)

Computing the logical AND of k inputs using a single column, the prob-
ability to find a functional circuit is Pcircuit = Pgate. If we use k − 1 2-input
gates to compute the same logical value, the probability to find a functioning
circuit is complicated due to the requirement that each gate must use a dis-
tinct column. We can illustrate the consequences of different implementations
by using simple bounds on the probability. For an upper bound on the proba-
bility, we ignore the requirement for distinct columns. In this case, each gate’s
implementation is independent of all the others giving the upper bound

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 11

P upper
circuit(k,N) = Pgate(2, N)k−1. (2)

For a lower bound on the probability, we attempt to implement the gates in
a fixed order without regard for difficulties implementing subsequent gates.
This results in a lower bound for the probability since a failure to find an
implementation with this procedure may still allow constructing a circuit by
backtracking to make another choice for one of the earlier gates in the se-
quence. In this procedure, the first gate can use any of the N columns, allow-
ing implementation with probability Pgate(2, N). The second gate cannot use
the column already selected for the first gate, allowing implementation with
the somewhat smaller probability Pgate(2, N − 1). Each additional gate has
one fewer column to use. Continuing with all k − 1 2-input gates gives the
lower bound on probability to construct a circuit of

P lower
circuit(k,N) =

k−2∏
i=0

Pgate(2, N − i) (3)

Figure 5 shows the behavior of these expressions as a function of defect
probability p. In this example, with low p values, both circuits for evaluating
the logical expression are likely to be constructible. As p increases, the chance
of finding a single-gate circuit drops more rapidly: it is easier to find seven
column wires with functioning connections for 2-input gates than to find one
column to implement a single 8-input gate. This difference becomes more
extreme as the size of the circuits increases. The figure also illustrates the

0.2 0.4 0.6 0.8 1 p

0.2

0.4

0.6

0.8

1
Pcircuit

Fig. 5. Probability to be able to find a correct circuit in a crossbar with N = 15
columns as a function of defect probability p. The dashed curve is for a single 8-input
AND gate, and the solid curves are for the upper and lower bounds on equivalent
logical expression made with seven 2-input gates (black and gray curves, respectively)

12 T. Hogg and G. Snider

threshold nature of the behavior: most of the drop in success probability
occurs over a short range of p values.

Another way to characterize the ability to find functional circuits in spite
of defects is by the number of additional columns, or, equivalently, increased
circuit area, necessary to give at least, say, a 95% probability of being able
to find a functioning circuit. For the single k-input gate, inverting (1) gives
the minimum number of columns N required to have a success probability
at least α. Similarly, inverting (2) and (3) give corresponding bounds on the
number of columns required.1

With N columns, the circuit for the k-input gate has total area kN . With
k− 1 2-input gates, each gate has 2 inputs (distinct from all the rest) and the
connections among the gates do not add to the overall area, as seen in Fig. 4.
Thus in this case the circuit area is 2(k − 1)N .

Figure 6 illustrates the behavior of the area requirements for the two im-
plementations of the logical AND of k inputs. When p is low, both methods
have a high chance of success (as also seen in the threshold behavior illus-
trated in Fig. 5). In this case, the smaller size of the k-input AND gate is

0 0.1 0.2 0.3 0.4 0.5 p
10

50
100

500
1000

5000
area

Fig. 6. Logarithmic plot of area required to have at least 95% probability to be
able to find a correct circuit as a function of the defect probability p. The dashed
curve is for a single 8-input AND gate, and the solid curves are upper and lower
bounds for the equivalent logical expression made with seven 2-input gates (gray
and black curves, respectively). Actual circuits must have an integer number of
columns, resulting in slightly larger areas and step-functions in these plots, but with
qualitatively the same behavior

1 Actual circuits have integer numbers of columns. So the actual minimum number
of columns is the smallest integer greater than or equal to the values obtained by
inverting these equations. This slight increase in the number of columns and will
give somewhat higher success probabilities than α.

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 13

more important than the slightly higher success probability with the combi-
nation of 2-input gates. As p increases, the success probability for the k-input
gate drops more rapidly, leading to faster growth in area required, than the
2-input gates. Thus for large circuits, it is better to use more gates with few
inputs than fewer gates with more inputs.

This discussion considers only two possible implementations of the logic
formula. Additional possibilities include using a mixture of gates with different
numbers of inputs, or combining 4-input, rather than 2-input, gates (so a k-
input AND operation would be built from (k−1)/3 4-input AND gates). This
give qualitatively similar behaviors to those shown in Fig. 5 and additional
choices for circuit implementations.

5 Adder Circuits

We now consider the mapping of small adder circuits onto crossbars. There
are several ways to implement such circuits, with differing sensitivities to de-
fects [18]. Figure 7 shows a straightforward 3-bit, ripple-carry adder that is
essentially a direct translation of the logic circuit shown at the top, producing
four output bits S0 . . . S3 representing the sum of two 3-bit numbers. For in-
stance the bottom wire of the crossbar and the leftmost two columns compute
the least significant bit of the sum, S0, as S0 = A0B0 + A0B0. This logical
formula is equivalent to the exclusive-OR of the two least-significant bits of
the numbers to be added, i.e., A0 and B0.

Because this implementation uses several levels of logic, some of the in-
termediate output signals must be fed back to some of the inputs, possibly
requiring signal regeneration in the process to compensate for degradation
due to diode voltage drops. The signal restoration can be accomplished at the
nanoscale using, for example, a restorative latch [23, 24]. The circuit uses 12
input wires: each of the two numbers to be added has 3 bits, and each bit
must be presented as original and complementary values. The circuit has 4
outputs. The addition of the feedback signals gives a total of 30 rows. Forming
the required logical operations on these values uses 25 columns, as shown in
Fig. 7. This implementation, which uses 78 junctions configured as diodes,
thus requires a minimum crossbar area of 30 × 25 = 750 junctions.

A second approach to the 3-bit adder is shown in Fig. 8. Here the entire
circuit uses only two logic levels. It requires only enough rows to handle the
input and output wires, i.e., 16 rows. The circuit requires 31 column wires
to perform logic operations on the inputs, for a minimum crossbar area of
31×16 = 496. Again S0 is computed as S0 = A0B0 +A0B0, using the bottom
wire of the crossbar and the second and third columns from the right. This
implementation eliminates the need for feedback and requires less area. On the
other hand, it requires more diode junctions (147) and uses a greater number
of diodes along some of the vertical and horizontal wires. For instance, the
circuit in Fig. 7 never uses more than four diodes on any wire, while the circuit

14 T. Hogg and G. Snider

S0

S1

S3

S2

S2

S1

S0
A0

A1

B1

B2

B2

-B2

-A2

-A1
-B1

B1

A1

A0

-A0

B0

-B0

A2

A2

B0

S3

=

carry

carry

Fig. 7. A 3-bit adder which adds two 3-bit numbers (denoted as the bits A2A1A0

and B2B1B0, respectively) to produce a 4-bit sum (with bits S3S2S1S0). The ripple-
carry logic implementation (top) translates directly to a diode crossbar implemen-
tation (bottom) using feedback from some of the outputs to the inputs (gray lines).
Regenerative buffers (left pointing triangles) between stages regenerate signals de-
graded by diode and resistor voltage drops. The input wire marked −A0 gives the
complement of input bit A0, and similarly for the other inputs. The carry bit be-
tween successive stages of the crossbar implementation must be presented in both
original and complemented forms

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 15

-A0
-A1

A1

A0
B0

S0

S3

S1

S2

B1
B1
-B2

A2

-A2
-B2
-B0

Fig. 8. A 3-bit adder implemented as 2-level logic in a single diode crossbar. Al-
though this approach uses more diodes, it consumes less area, avoids the feedback
and regenerative buffers between stages, and will likely offer less propagation delay.
Inputs and outputs are labeled as in Fig. 7. The rightmost column wire is not used
in this circuit

in Fig. 8 requires as many as 16. Thus we can expect this circuit, packing more
diodes in a smaller area, will be more difficult to implement on a crossbar with
defects than that of Fig. 7.

Both of these adder circuits produce output bits corresponding to the sum.
This is suitable when these circuits are considered as stand-alone components
whose outputs are delivered to an external circuit composed of conventional
technology (which can implement inversion). If instead the crossbar adder is
to be used as part of a larger molecular-scale circuit, the adder will need to
be extended to also produce complement values of each of the output bits so
subsequent crossbars, using the results of the adder, will have access to both
original and complement values for their inputs. Such extensions are readily
included, as described with the discussion of Fig. 3, and will result in doubling
the number of output wires, as well as additional logic computations within
the crossbar. For simplicity, we focus on the adders treated as stand-alone
circuits without the need for complement values for the outputs.

In the remainder of this section, we first describe the algorithm used to
find a mapping of an adder circuit implementation to a crossbar with a known
set of defects. We then use this algorithm to produce implementations on
simulations of defective crossbars to identify their ability to give functional
adder circuits.

5.1 Allocation Algorithm

The diode/resistor fabric which we map onto is modeled as a set of four
crossbars tiled together to form a mosaic, illustrated schematically in Fig. 9
and more explicitly with the example circuits of Figs. 2 and 3. The pullup and

16 T. Hogg and G. Snider

AND
crossbar

OR
crossbar

pullup crossbar

inputs

outputs

pulldown crossbar

Fig. 9. Model of diode array as a set of four connected crossbars. The AND and OR
crossbars have configurable diode junctions, while the pullup and pulldown crossbars
have configurable resistor junctions. Any junction in any crossbar may be defective,
though the defect rate for junctions in the pullup and pulldown crossbars is much
lower than for other junctions

pulldown “crossbars” are only one wire tall and wide, respectively, but the
resistors there can be defective just like the diodes in the diode crossbars, so it
simplifies allocation to use a single model for all of the components. However,
the consequence of a defective pullup or pulldown resistor is to disable the
entire column or row, respectively, to which it is connected. Fortunately, these
resistors, at the edge of the crossbar, are formed from junctions between the
nanowires and much larger, microscale, wires. Thus the junction area per
device is significantly larger than that for the diode junctions used in the
AND and OR crossbars. This increased junction area means the chance of a
defective resistor is far smaller than having a defective diode.

Even though the AND and OR crossbars share the same junction type
and could be represented with a single crossbar, it is helpful to keep them
separate since input signals may only be bound to horizontal wires entering
the AND crossbar and output signals only bound to horizontal wires leaving
the OR crossbar. The allocation problem, then, is to implement a circuit in
the crossbars given a set of defective junctions in each. The allocation for the
adder circuits also considers alternate choices for the input and output wires.
However, input connections can only be made among wires preselected to be
part of the AND crossbar, and output connections only among wires in the
OR crossbar.

The allocation problem cannot be divided into separate crossbar allocation
subproblems when the crossbars contain defects because a particular alloca-
tion of resources in one tile may actually preclude a successful allocation in
another. We must also respect other constraints, such as input/output signal

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 17

restrictions (in the case where the crossbars are embedded in a larger system)
and asymmetric junctions, where component direction or polarity (such as
for diodes) must be respected. We address the problem by searching glob-
ally for a solution that meets all constraints (defect avoidance, input/output
constraints, junction polarity, and crossbar interaction) simultaneously.

Our allocation algorithm uses graphs with annotated edges and nodes to
represent both the original circuit to be mapped onto a set of crossbars as well
as the crossbars themselves. Figure 10 shows how a crossbar is represented
with a graph: a wire in the crossbar is represented by a node in the graph, and
a junction is represented by an edge between the two nodes representing the
wires that define the junction. A perfect crossbar (left) has an edge for every
junction. A defective crossbar (right) has edges only for usable junctions.

Graphs for multiple crossbars are constructed by first creating a graph for
each individual crossbar (Fig. 11, top left) and then interconnecting them (top
right). The resulting graph may then be (optionally) optimized by merging
identical nodes (bottom).

Allocation is accomplished by (1) creating graphs representing the de-
sired circuit and compound crossbars; and (2) searching for an embedding or
monomorphism between the circuit graph and the compound crossbar graph.

t
u
v

t
u
v

x xy yz z x y z x y z

t
u
v

t
u
v

perfect crossbar defective crossbar

Fig. 10. Representing a crossbar with a graph. Wires and junctions in the crossbar
correspond to nodes and edges of the graph, respectively. Defective junctions are
shown marked with an “X”

t
u
v

x x y zy z

x y z

q r s

q r s

q r s

l
m
n

t
u
v

l
m
n

t
u
v

Fig. 11. Representing composite crossbars with a graph. Edges are colored to rep-
resent the functionality of the junction that each one represents, since each crossbar
might have different functionality

18 T. Hogg and G. Snider

monomorphism?

(b) circuit graph (d) crossbar graph

C

A

B
C

C

B

C

Y

A

X

X Y

X A A BBY

(f) resources allocated

X Y

(a) circuit

(e) monomorphism found

Fig. 12. Resource allocation: searching for a monomorphism between a circuit graph
and a crossbar graph. The corresponding algorithm steps are described in the text

A graph monomorphism is the embedding of a small graph into a larger one,
by specifying the correspondence between the nodes of the small graph and a
subset of nodes in the larger graph so that the small graph forms a subgraph
of the larger one. Figure 12 illustrates this in detail. The steps for allocation
are:

1. For the desired circuit (Fig. 12a) create a circuit graph (Fig. 12b) repre-
senting it: wires and junctions in the circuit are represented by nodes and
edges in the circuit graph, respectively.

2. For the desired target compound crossbar (Fig. 12c), create a compound
tile graph (Fig. 12d) representing it. As in circuit graph case, wires and
junctions in the crossbars are represented by nodes and edges in the com-
pound tile graph, respectively. A defective junction in a crossbar is repre-
sented by the absence of its corresponding edge in the crossbar graph.

3. Annotate the edges of the circuit graph and the crossbar graph with an-
notations representing the functionality of those edges (junctions in the
circuit represented by the graph). For example, edges in both graphs rep-
resenting resistors would all be tagged with identical annotations.

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 19

4. Annotate the nodes of the circuit graph and crossbar graph with anno-
tations to constrain matching between the two graphs. As will be shown
later, this is done to either (a) enforce input/output constraints between
the desired circuit and other circuitry that has been or will be mapped to
other areas of a large compound tile graph; or (b) enforce directionality
constraints on asymmetric junctions, such as diodes, that must have, for
example, an input delivered on a horizontal wire and an output driven on
a vertical wire; or (c) enforce both.

5. Search for a monomorphism (Fig. 12e) between the annotated circuit
graph and the annotated target crossbar graph to do allocation (Fig. 12f),
subject to the constraints that node and edge annotations must match.
In other words, a node in the circuit graph can only be matched with
a node in the crossbar graph if they both have identical annotations or
both have no annotations. Similarly, edges can only be matched if they
both have identical (or non-existent) annotations. Algorithms for search-
ing for a graph monomorphism are well known [5,10,29]. They are efficient
for problems with many solutions, but can be computationally expensive
when there are few solutions.

6. Use the monomorphism to complete the allocation or mapping of wires
and junctions in the desired circuit graph onto wires and junctions of
the crossbar. For example, a node, A, in a circuit graph matched to a
node, B, in the crossbar graph will be used to allocate the crossbar wire
represented by B in the crossbar graph to carry the signal represented by
A in the desired circuit. Similarly, an edge, X, in a circuit graph matched
to an edge, Y , in the crossbar graph will be used to allocate the junction
in the crossbar represented by Y in the crossbar graph for the electrical
component represented by X in the desired circuit.

Edges in the circuit graph and crossbar graph are “colored” to reflect
the component and junction functionality, respectively. These edge colors are
additional constraints when searching for a monomorphism or embedding,
since an edge in the circuit graph may only be matched with an edge in the
compound tile graph with the same color. The edge coloring and the implied
matching constraint are referred to as “edge annotation.” Similarly, nodes
may be annotated with the same matching constraint, namely that a node in
a circuit graph may only be matched to a node in the crossbar graph with
the same annotation. As shown in Fig. 13, this is useful to meet input/output
constraints for a circuit. In this example the simple circuit (Fig. 13a) is to be
mapped onto a set of crossbars (Fig. 13c). External constraints may require
mapping the A signal onto a vertical wire and the B signal onto a horizontal
wire. This constraint can be met by tagging the computation graph vertices
(Fig. 13b) and the crossbar graph vertices (Fig. 13d) with legal matching tags.
In this case, the input signal, A, is tagged with the α tag as are the three ver-
tical wires in the crossbar graph. Similarly, B is tagged with a β tag as are the
three horizontal wires in the crossbar graph. When a monomorphism is found
(Fig. 13e), it meets the input/output constraints for the allocation (Fig. 13f).

20 T. Hogg and G. Snider

B
α β

β
β

β
β
β

β

A

A

A

B

 αα α

B

A

α α α

B

(a) circuit

(b) tagged circuit graph

(e) monomorphism found

(c) crossbar

(d) tagged crossbar graph

(f) resources allocated meeting input
output constraints.

Fig. 13. Nodes (wires) and edges (junctions) may be annotated with a matching
constraint

Node annotation is also useful for asymmetric junctions. The diode in
Fig. 14 may only be configured correctly in the target compound tile in one
direction. Annotating the vertices of the circuit graph and the compound
tile graph appropriately assures the diode will be allocated with the proper
orientation.

This allocation algorithm is a complete search method: if it does not find
a possible circuit implementation in the crossbar with given defects, then no
such implementation exists. In practice, the computational cost of such search
methods can be prohibitive, especially for circuits with many components. In
that case, one could instead use an incomplete search method, which often
solves combinatorial problems more rapidly than complete methods, but offers
no guarantee that failure to find a solution means no solution exists. For the
simulation results discussed below, we employed an incomplete search method
obtained by simply imposing a bound on the number of graph matching at-
tempts allowed for the allocation algorithm. If a match is not found within

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 21

A B

α

α
α

βββ

A

B

B
α β

A

(b) tagged circuit graph

(c) tagged crossbar
(a) circuit

(d) resources allocated meeting
junction orientation constraint.

Fig. 14. Node annotation to support allocation of asymmetric junctions

this number of attempts, we consider the defective crossbar to be a failure.
In a mass-production manufacturing context, the choice of the bound on the
algorithm results in a trade-off between increasing the computing and testing
time spent determining whether a crossbar is functional and decreasing the
yield of functional circuits.

5.2 Simulation Results for Adder Circuits

To examine the behavior of implementing adder circuits on defective crossbars,
we created a number of simulated test cases. Specifically, for a given adder
implementation (e.g., single or multiple stage) and crossbar size, we mark
each junction of the AND and OR crossbar as defective independently with
probability p. Because the pullup and pulldown resistors have much lower
defect rates, for simplicity, we restrict our attention to cases with no defective
resistors. We then run the allocation algorithm, recording whether it found an
allocation (within at most 30 s of CPU time, corresponding to about 7 × 107

graph matchings) and the number of steps required to reach a decision. We
repeat this procedure on new crossbars with randomly selected defects (using
the same parameters).

The limit on search time for the allocation algorithm was significantly
larger than the typical number of matchings needed in the cases that pro-
duced a successful match. From a pragmatic standpoint, the need to rapidly

22 T. Hogg and G. Snider

test circuits after fabrication would preclude spending an inordinate amount
of time trying to distinguish a crossbar with a possible, but difficult to find,
circuit implementation from one with no possible implementations. Thus, im-
posing a bound on CPU time is a simple approach to avoiding this excessive
search cost, with the tradeoff of slightly reducing the yield.

Threshold Behavior

From the set of simulation trials, we estimate Pcircuit, the probability an im-
plementation exists for a set of parameters. Suppose we successfully find an
allocation s times out of n trials. Because each trial uses an independently
generated crossbar, the probability to observe s successful circuits out of n
trials is the binomial distribution Bi(n, s;Pcircuit) where

Bi(n, k; p) ≡
(

n

k

)
pk(1 − p)n−k (4)

Thus the likelihood that Pcircuit equals the value f is proportional to fs(1 −
f)n−s. Maximizing this quantity gives f = s/n as the maximum-likelihood
estimate of Pcircuit. Evaluating the range of f values accounting for, say, 95%
of the likelihood indicates how well our simulation determines the value.

Figure 15 is an example of the behavior of implementing a 3-bit adder
circuit, using the two rewrites discussed in Sect. 5: a single stage and three
stages. In this and subsequent figures, each point for the 1-stage adder is the
result of 50 simulation trials at the corresponding defect rate p; and each point
for the 3-stage adder is from 100 trials. We see a threshold behavior as Pcircuit

drops abruptly over a fairly short range of p values. The 3-stage adder can
tolerate higher defect rates than the single-stage implementation.

As p increases, the probability of finding a given circuit monotonically
decreases. As a simple summary of the results from multiple sets of trials,
each using a different value of p to generate defective crossbars, we use a two-
parameter sigmoidal form relating Pcircuit to p. A sigmoid allows matching
the location and steepness of the threshold behavior to the simulation results,
and incorporates the monotonicity in the relation between Pcircuit and p. As
one specific choice for a sigmoidal function, let

S(x) =
1

1 + ea(x−b).
(5)

Here the parameter a determines the sharpness of the threshold and b its
location. Since Pcircuit is zero when p = 1, and Pcircuit = 1 when p = 0
(provided the crossbar is at least the minimum size required for the circuit),
we shift and scale this sigmoid to match these extremes. Thus we use

Pcircuit =
S(p) − S(1)
S(0) − S(1)

(6)

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 23

0.1 0.2 0.3 0.4 0.5p

0.2

0.4

0.6

0.8

1

1−stage 3−stage

Pcircuit

Fig. 15. Probability Pcircuit to be able to find a correct circuit for a 3-bit adder
in a crossbar as a function of defect probability p. The points show the estimates
from the simulation runs, with error bars indicating the 95% confidence intervals in
the estimates of Pcircuit. The curves show the maximum-likelihood fits of a sigmoid
function, for the single and three-stage adders (dashed and solid, respectively). The
crossbar sizes for the two circuits are 768 and 896 for the single and three-stages
adders, respectively

With multiple sets of trials, we select a and b to maximize the likelihood of
obtaining the observed results from the simulation. Since each trial is indepen-
dent of the others, this amounts to maximizing the product of the individual
likelihoods, described above, for each p value. Figure 15 shows examples of
the resulting fits.

To understand the existence of this threshold behavior, and how it depends
on the circuit and crossbar area, consider a simplified version of the allocation
in which we ignore all constraints on the locations of the functioning diodes.
By ignoring these constraints, we obtain an upper bound on Pcircuit and rough
guides to the location and steepness of the threshold. Specifically, a crossbar
with area A has k defective junctions with probability Bi(A, k; p) given by
(4). The expected number of defects is µ = Ap with standard deviation σ =√

Ap(1 − p). A circuit requiring d diode junctions is very likely to exist when
the number of defects is likely to be less than A − d. Conversely, when the
number of defects is usually larger than this value, the crossbar is unlikely
to be able to implement the circuit. More precisely, when A − d is several
standard deviations above or below µ, Pcircuit ≈ 1 or 0, respectively. This
discussion predicts the threshold near the value of p for which µ = A− d, i.e.,

p ≈ 1 − d/A. (7)

24 T. Hogg and G. Snider

The change between these extremes takes place mainly over a range of p values
corresponding to about a standard deviation around the mean, i.e., from the
value where µ + σ = A − d to that where µ − σ = A − d. The corresponding
range in p values is 1

A+1

√
1 + 4d − 4d2/A or ∼ √

1 + 4d/A for large areas.
These specific values, derived by ignoring all constraints on the locations

of the functioning devices, differ from the location and width of the threshold
seen in the simulations. Nevertheless, they give some qualitative insight into
the behaviors we observe. For instance, as the crossbar area increases, the
threshold moves to larger values of p: as one would expect, larger crossbars
provide more chances to find the required number of functioning junctions.
The threshold width is small when the area is close to the minimum possible
(i.e., just enough to hold the required number of functioning diodes) or when
the area is very large. For a given area, comparing two implementations with
different numbers of diodes, we see the implementation with more diodes,
i.e., larger d, has a lower threshold: it is less tolerant of defects. As a final
observation, consider the scaling to larger circuits (e.g., k-bit adders for k > 3).
Taking the crossbar area to be a fixed factor larger than the required number
of diodes, i.e., A = rd gives a fixed threshold location of 1− r while threshold
width decreases as O(1/

√
d). That is, for larger circuits the threshold behavior

becomes sharper.

Crossbar Area

Figure 15 shows the behavior for a fixed size crossbar. Since the single and
3-stage adder circuits require different areas, it is also useful to compare the
area required to obtain a fixed value of Pcircuit. To estimate the behavior of
the adder circuit for different areas, we used the sigmoidal fit of (6). This
fit has two parameters, a and b, characterizing the width and location of the
transition from Pcircuit ≈ 1 to Pcircuit ≈ 0. For definiteness, we consider arrays
of fixed shapes (i.e., ratio of number of columns to numbers of rows allocated
for the AND and OR operations), and show the resulting behavior in Fig. 16.
Specifically, for the single-stage adder, we examined arrays whose numbers of
columns, input rows and output rows had the ratios 4 : 2 : 1. By comparison,
the minimum size array that can implement the circuit, with 31 columns,
12 inputs and 4 outputs, has ratios 31 : 12 : 4 = 7.75 : 3 : 1. Thus the
shape we use allocates relatively more of the array area to the rows, especially
those for the outputs, than would be the case from uniformly scaling up the
minimum array. This allocation is beneficial because the single-stage circuit is
particularly sensitive to defects in the rows due to the need for large numbers
of functioning diodes, especially for the outputs, as seen in Fig. 8. For the
three-stage adder, various shapes close to scaled-up versions of the minimum
size array (25 columns, 19 inputs, 11 outputs) had similar behaviors. As a
convenient ratio to simulate with different sizes, we used 28 : 20 : 12.

Over the range of crossbar areas we examined via simulation, the transition
width had only small variation with area. On the other hand, the location of

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 25

0.1 0.2 0.3 0.4 0.5
p1

2

5

10

20

rel. area

1−stage
3−stage

Fig. 16. Relative area required to have at least 90% probability to be able to find a
correct 3-bit adder circuit as a function of defect probability p, based on interpolating
the fit to the simulation results. The dashed and solid curves correspond to single
and three-stage adders, respectively. The points correspond to values estimated from
individual sigmoid fits to results from each crossbar area, for a fixed choice of array
shapes. With the shapes used here, the lowest simulation point on each curve is the
smallest possible functional array with that shape, and have somewhat larger area
than the minimum area for each case (indicated by the bottoms of the two curves).
Areas are relative to that required for a single-stage adder on a defect-free crossbar,
i.e., 496 junctions

the threshold increased with area. Motivated by the discussion leading to (7),
we suppose the sigmoid parameters a, b vary with area A according to

a = αAδ

b = 1 − βA−η

where α, δ, β and η are parameters with nonnegative values. We fit these
four parameters to the simulation results for with different areas to produce a
single functional form relating Pcircuit to A and p for a given circuit and array
shape. The resulting functional form fits the results for single areas about
as well as sigmoid functions optimized individually for each area. This fit
allows interpolating the behavior for other areas and defect rates than those
evaluated via the simulation. In particular, it allows estimating the crossbar
area required to have at least a given desired yield, i.e., value of Pcircuit. For
instance, Fig. 16 shows the resulting estimates for the area required to achieve
Pcircuit = 90%. Thus, we have about 90% yield with the 3-stage adder at 30%
defect rate and area 896, which is 1.8 times the minimum area of 496 junctions.
We see the single-stage adder is much more sensitive to defects, so requires
larger areas to compensate.

26 T. Hogg and G. Snider

The lowest points on the curves in Fig. 16 correspond to the minimum
crossbar size that can implement the adder: 496 and 750 for the one and three-
stage circuits, respectively. These values do not occur at p = 0 because the
minimum areas are determined by the required numbers of logic operations,
inputs and outputs rather than the number of diode junctions. Hence even the
minimum area crossbars can tolerate some defective junctions. Comparing the
two adder implementations, we see that for p < 0.085, the single-stage adder
gives 90% success with crossbars whose size is too small to also implement the
three-stage adder. For 0.085 < p < 0.3, the three-stage adder on the small-
est possible crossbar that can implement it gives over 90% success, while the
area required for the single-stage adder increases significantly. With p > 0.3,
required areas of both circuits increase, though the three-stage implementa-
tion requires much less area. This discussion illustrates how achievable defect
rate, choice of circuit implementation and available crossbar area interact to
determine the circuit yield.

Array Shape

In addition to the area of a crossbar array considered above, its shape also
influences the likelihood of being able to implement a circuit in spite of de-
fects. A successful circuit requires not only enough functioning junctions, but
also the ability to properly connect them to each other and the inputs and
outputs. Thus Pcircuit is, in general, a function separately of the three num-
bers characterizing the crossbar: the number of columns, the number of rows
allocated for AND operations on inputs, and the number of rows for OR’s
on the results of the ANDs to produce the circuit outputs. For example, the
one-stage 3-bit adder uses 12 input wires (two for each of the 3 input bits for
each of the two numbers to be added) and 4 outputs, for a total of 16 rows. It
uses 31 columns to form the required logic operations. Thus a crossbar with
fewer than 16 rows could never implement this circuit, no matter how many
columns or how low a defect rate it had. More generally, scaling up the number
of rows and columns by the same factor may not be the best way to improve
performance from a given crossbar area. For example, it may be better to
increase number of rows more than number of columns for an implementation
requiring many diodes on the same row, vs. a different implementation using
many diodes on a single column.

Figure 17 shows an example of how array shape affects implementing the
single-stage 3-bit adder, shown in Fig. 8. In this example, we examined various
shaped arrays, all with the same area, 1,728, which is about 3.5 times the
minimum array size for this circuit. For each shape, we fit the sigmoid of (6)
to the simulation results and used this fit to estimate the defect rate with
90% probability to implement the circuit. The shapes cover a range from a
very wide array (108 columns, 12 inputs, 4 outputs) to the narrowest possible
arrays with area 1,728 still capable of implementing the circuit even when
there are no defects, which have 32 columns and 54 rows, with allocations of

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 27

0 0.5 1 1.5
input/col

0

0.5

1

output/col
0.05

0.1

0.15

p

0 0 5 1

Fig. 17. Defect rate, p, at which a single-stage 3-bit adder circuit can be found
with 90% probability as a function of array shape for area equal to 1728. The shape
is specified by the ratios of numbers of input and output rows to the number of
columns in the crossbar

those rows ranging from having 12 inputs and 42 outputs to 50 inputs and 4
outputs.

The best performance in Fig. 17 is for the array with 32 columns, 24
inputs and 30 outputs, giving at least 90% probability to produce a circuit
with p � 0.15. This shape tolerates about three times as many defects as
the worst shapes shown in the figure (which allocate only four wires to the
outputs). Because the one-stage adder requires many diode connections on the
outputs, this best performing array shape devotes a relatively large portion
of the area to redundant output wires. By contrast, the shape used in Fig. 16
to illustrate behavior as a function of area arrays whose numbers of columns,
input rows and output rows had the ratios 4 : 2 : 1, a shape with intermediate
performance among those shown in Fig. 17, i.e., allowing p � 0.11.

We also found variation due to shape in the three-stage adder, and that
the best choice of shape varies somewhat with array size.

Scaling and Allocation Run Time

For comparison, we also examined 1, 2 and 4-bit adder circuits. They gave the
same qualitative behaviors, and show the threshold behavior becomes more
abrupt as circuit size increases. Thus the threshold becomes more significant as
circuit size increases, thereby giving a useful design criterion for the maximum
allowable defect rate for a given desired circuit and crossbar area.

28 T. Hogg and G. Snider

For a given circuit, we found the typical run time of the allocation algo-
rithm increases with p up to the threshold region. For even higher p values,
most crossbars cannot implement the circuit and the algorithm terminates by
reaching the bound on its run time. Nevertheless, to examine the allocation
cost behavior for larger p, we also ran the algorithm to completion (i.e., with
no bound on the run time) for a smaller circuit, namely a 1-bit adder. We
found that the median allocation cost peaked near the threshold at which
Pcircuit ≈ 0.5 and then decreased for larger p values, as the additional con-
straints introduced with additional defects allows the allocation algorithm to
prune large sets of possibilities and more rapidly conclude no implementation
is possible. This behavior is consistent with that seen in many other stud-
ies of combinatorial search problems [17]. That is, as problems become more
constrained, there is an abrupt transition from almost always to almost never
having a solution, and the typical search cost for a variety of search methods
peaks near this transition.

6 Discussion

We examined the ability to map adder circuits onto a crossbar architecture in
spite of numerous independent defects. We also showed how logically equiv-
alent choices for the mapping differ in their tolerance for defects and use of
circuit area. We thus illustrate some design trade-offs for molecular electron-
ics systems. In general, higher defect rates require sparser circuit mappings.
Sparser circuits require fewer functioning junctions on a single row or column
of the crossbar and hence are more likely to have successful maps to a de-
fective crossbar. On the other hand, such circuits use more stages leading to
larger, slower implementations.

The computation required for the monomorphism algorithm we used to
map the circuits to the crossbar cannot easily be categorized with simple pa-
rameters of the graphs, e.g., their sizes. Instead, the computation time depends
on the detailed topological properties of the two graphs to be matched. In par-
ticular, the typical computational costs depends significantly on the number
of matchings. Thus, we used empirical testing to evaluate the performance.
For any given circuit architecture and defect rate, one will need to experi-
mentally trade-off logic density and mapping execution time to arrive at an
economically viable mapping strategy. In practice, such a trade-off could be
implemented by selecting an economically reasonable computational cost and
simply considering as failures any crossbars that do not produce a mapping
within that limit.

Quantitatively, the likelihood of tolerating defects shows a threshold be-
havior, i.e., changing from near one to near zero over a relatively small range
of defect rates (for a given crossbar size) or over a small range of crossbar area
(for a given defect rate). These thresholds become sharper as larger circuits
are considered. Thus identifying the threshold locations gives useful guidelines
for circuits feasible to implement with given defect rates and crossbar sizes.

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 29

More generally, thresholds are seen in many properties of numerous com-
binatorial structures, such as random graphs [11], and related search algo-
rithms [17]. Of particular interest in our context are the thresholds in existence
of various subgraphs [26] and extensions to any monotone property of graphs
with various geometries [12,13]. Monotone properties of a graph are those that
continue to hold when edges are added to that graph, and include the existence
of subgraphs with specified constraints as required for implementing circuits
on the crossbar with defects. These examples illustrate how definite behaviors
can arise from unreliable, statistical systems. From a practical perspective,
these thresholds are associated with large computational costs to determine
whether a consistent structure exists. Our simulations show this behavior
as well, with particularly high computational costs near the thresholds. In
the context of molecular circuits, identifying defect rates corresponding to the
thresholds provides a practical limit above which not only is yield low but also
attempting to allocate a circuit would likely be computationally expensive.

Several extensions to this work would be interesting. First, we examined
behavior with respect to independent point defects in the crossbar. It would
be useful to examine how defects actually arise in manufacturing and whether
they differ significantly from the independence we assumed. For example, de-
fects might short out an entire row or column of the crossbar, or appear with
strong spatial correlations. As with studies of other stochastic systems, these
different error models will likely give rise to similar qualitative behaviors,
including the existence of thresholds in implementation feasibility, but with
different quantitative values.

A second extension to this work involves the rewrites for the circuit. We
showed these rewrites have different resource requirements (i.e., crossbar area)
and tolerance for defects. Another application for rewrites would be to make
only minor modifications in a given circuit with the goal of removing just
those parts of the original circuit that are most difficult to map to a defective
crossbar. For instance, the fourth from last row of the adder in Fig. 8, com-
puting S2, requires 16 functioning diode junctions on the row. This is more
than is required on any other row or column of the circuit. In a defective
crossbar, the need to find one row with at least 16 functioning devices is a
major limitation that could be removed by simply rewriting just that part of
the circuit. For instance, instead of using one row to implement the logical-
OR of 16 inputs, we could split the function into two rows, each performing
a logical-OR of 8 inputs, followed by a logical-OR of those results to form
the final value for S2. This would improve the chances of mapping the circuit
to a defective crossbar. This rewrite also increases the size and delay of the
circuit, though not as much as the entirely different rewrite of Fig. 7. This
example illustrates how rewrites could be targeted to remove just the parts of
the circuit least tolerant of crossbar defects, thereby giving a range of options
suitable for crossbars with different defect rates.

We only considered logically equivalent rewrites: e.g., the different imple-
mentations of the adder circuit compute exactly the same logical function of

30 T. Hogg and G. Snider

their possible inputs. An additional possibility is allowing some non-equivalent
rewrites, particularly in conjunction with fault tolerance in a higher-level sys-
tem architecture of which the molecular device is only one part [9]. In this
case, an occasional error in the circuit (e.g., due to undetected or new defects,
or noisy operation) may be tolerable. As another application, logic circuits
used for pattern recognition based on combinations of different sensors (e.g.,
each detecting a different chemical or concentration in the environment) could
perform quite well even with a non-equivalent rewrite that gives different out-
puts from the ideal circuit on a small subset of inputs. For instance, suppose
a device consists of three sensors for different concentrations of a chemical
(“low”, “medium” and “high”) based on receptors with differing affinities and
saturation levels. Here the low concentration sensor will be active whenever
the medium or high are, and the medium one will be active whenever the high
one is. Thus a rewrite of a pattern-recognition circuit that changes the output
for the input corresponding to the low and high sensors on but the medium
sensor off would have no practical significance since that combination of inputs
would not arise with this particular set of sensors. More generally, extending
consideration to a limited set on non-equivalent rewrites could provide sub-
stantial improvements in ability to implement the circuit (by being below a
higher threshold) than would be possible among logically equivalent rewrites.

We focus on circuit area as the main cost criterion. In practice, other
properties may also be important in developing practical molecular circuit
designs. For instance, rewrites not only differ in the circuit area they require
but also in propagation delay and their need for additional components such as
restoring latches. Moreover, we have not included the cost to test the crossbar
for defects and the possibility this cost could vary with accuracy of this test. In
particular, false positives unnecessarily reduce the available circuit area and
false negatives could result in erroneous outputs for some inputs. Including
these criteria as part of the overall system manufacturing cost could alter the
choice of the best design.

Acknowledgements

We thank Phil Kuekes and Li Zhang for helpful discussions.

References

1. J. G. Brown and R. D. Blanton, “CAEN-BIST: testing the nanofabric,” In
Proc. of the Intl. Test Conf. (ITC2004), pages 462–471, 2004

2. Y. Chen et al., “Nanoscale molecular-switch crossbar circuits,” Nanotechnology,
14:462–468, 2003

3. Y. Chen and R. S. Williams, Nanoscale patterning for the formation of extensive
wires, US Patent 6,294,450, September 25 2001

Chapter 1: Defect-Tolerant Logic with Nanoscale Crossbar Circuits 31

4. C. P. Collier et al., “Electronically configurable molecular-based logic gates,”
Science, 285:391–394, 1999

5. L. P. Cordella et al., “An improved algorithm for matching large graphs,” In
Proc. of the 3rd IAPR-TC-15 Intl. Workshop on Graph-Based Representations,
pages 149–159, 2001

6. A. DeHon, “Array-based architecture for FET-based nanoscale electronics,”
IEEE Trans. on Nanotechnology, 2:23–32, 2003

7. A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, “Nonphotolithographic
nanoscale memory density prospects,” IEEE Trans. on Nanotechnology, 4:215–
228, 2005

8. A. DeHon, P. Lincoln, and J. E. Savage, “Stochastic assembly of sublithographic
nanoscale interfaces,” IEEE Trans. on Nanotechnology, 2:165–174, 2003

9. A. DeHon and H. Naeimi, “Seven strategies for tolerating highly defective
fabrication,” IEEE Design and Test of Computers, pages 306–315, July–August
2005

10. Y. El-Sonbaty and M. A. Ismail, “A graph-decomposition algorithm for graph
optimal monomorphism,” In A. F. Clark, editor, Proc. of the 8th British Mach-
ine Vision Conference (BMVC97), 1997

11. P. Erdos and A. Renyi, “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci., 5:17–61, 1960

12. E. Friedgut and G. Kalai, “Every monotone graph property has a sharp thresh-
old,” Proc. of the American Mathematical Society, 124(10):2993–3002, 1996

13. A. Goel, S. Rai, and B. Krishnamachari, “Monotone properties of random geo-
metric graphs have sharp thresholds,” Annals of Applied Probability, 15:2535–
2552, 2005

14. S. Goldstein and M. Budiu, “Nanofabrics: Spatial computing using molecular
electronics,” In Proc. of the 28th Intl. Symposium on Computer Architecture
(ISCA), pages 178–191, 2001

15. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A defect-tolerant
computer architecture: Opportunities for nanotechnology,” Science, 280:1716–
1721, 1998

16. T. Hogg, Y. Chen, and P. Kuekes, “Assembling nanoscale circuits with random-
ized connections,” IEEE Transactions on Nanotechnology, 5:110–122, 2006

17. T. Hogg, B. A. Huberman, and C. P. Williams, editors, Frontiers in Prob-
lem Solving: Phase Transitions and Complexity, volume 81, Amsterdam, 1996.
Elsevier. Special issue of Artificial Intelligence

18. T. Hogg and G. Snider, “Defect-tolerant adder circuits with nanoscale cross-
bars,” IEEE Transactions on Nanotechnology, 5:97–100, 2006

19. Yu Huang et al, “Logic gates and computation from assembled nanowire build-
ing blocks,” Science, 294:1313–1317, 2001

20. P. J. Kuekes and R. S. Williams, Demultiplexer for a molecular wire crossbar
network, US Patent 6,256,767, 3 July 2001

21. P. J. Kuekes, R. S. Williams, and J. R. Heath, Molecular wire crossbar memory,
US Patent 6,128,214, 3 Oct. 2000

22. P. J. Kuekes, R. S. Williams, and J. R. Heath, Molecular-wire crossbar inter-
connect (MWCI) for signal routing and communications, US Patent 6,314,019,
6 Nov. 2001

23. P. J. Kuekes, D. R. Stewart, and R. S. Williams, “The crossbar latch: Logic
value storage, restoration, and inversion in crossbar circuits,” J. Appl. Phys.,
97:034301, 2005

32 T. Hogg and G. Snider

24. P. Kuekes, Molecular crossbar latch, US Patent 6,586,965, 1 July 2003
25. N. A. Melosh et al, “Ultrahigh-density nanowire lattices and circuits,” Science,

300:112–115, 2003
26. E. M. Palmer, Graphical Evolution: An Introduction to the Theory of Random

Graphs, Wiley Interscience, NY, 1985
27. R. Rad and M. Tehranipoor, “SCT: An approach for testing and configuring

nanoscale devices,” In Proc. of the 24th IEEE VLSI Test Symposium (VTS06),
pages 370–377, 2006

28. S. K. Shukla and R. I. Bahar, editors, “Nano, Quantum and Molecular Comput-
ing: Implications to High Level Design and Validation,” Kluwer, Norwell, MA,
2004

29. SIVALab, VF graph matching library, University of Naples “Federico II”, 2001
30. M. Stan, P. Franzon, S. Goldstein, J. Lach, and M. Ziegler, “Molecular elec-

tronics: From devices and interconnect to circuits and architecture,” Proc. of
the IEEE, 91:1940–1957, 2003

31. D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable architec-
ture for hybrid digital circuits with two-terminal nanodevices,” Nanotechnology,
16:888–900, 2005

32. J. V. Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” In C. E. Shannon and J. McCarthy, editors,
Automata Studies, volume 34 of Ann. Math. Stud., pages 43–98. Princeton Uni-
versity Press, 1956

33. Z. Wang and K. Chakrabarty, “Using built-in self-test and adaptive recovery
for defect tolerance in molecular electronics-based nanofabrics,” In Proc. of
International Test Conf. (ITC2005), pages 477–486, 2005

34. M. M. Ziegler and M. R. Stan, “Design and analysis of crossbar circuits for mole-
cular nanoelectronics,” In Proc. 2nd IEEE Conf. on Nanotechnology (NANO-
2002), pages 323–327, 2002

Chapter 2: Built-in Self-Test and Defect
Tolerance in Molecular Electronics-Based
Nanofabrics

Z. Wang and K. Chakrabarty

1 Introduction

Although complementary metal-oxide semiconductor (CMOS) chips are pro-
jected to continue their dominance for another 10–15 years [1], CMOS tech-
nology today faces a number of challenges. Quantum effects will soon make
it nearly impossible to further scale devices. Deep sub-micron (DSM) tech-
nologies suffer from high leakage, and it is projected that stand-by power and
active power for CMOS chips will soon become comparable [2]. Moreover,
the high cost associated with chip masks and next-generation fabrication
plants poses a formidable economic barrier to commercial nanometer-scale
lithography.

Chemically-assembled electronic nanotechnology (CAEN) is a nanoelec-
tronic technology that is under intense investigation as a possible alternative
to CMOS integrated circuits [1, 3–6]. It has the potential to achieve high
density, and it can be fabricated using low-cost chemical synthesis processes.
CAEN uses self-assembly and self-alignment to construct electronic circuits
out of nanometer-scale devices. CAEN-based systems, referred to as the
nanofabric, can achieve a density of more than 108 gate-equivalents per cm2

by using interconnected 2D-arrays of nano-scale wires that can be electroni-
cally configured as logic networks, memory units, and signal-routing cells [6].
The 2D arrays, referred to as nanoblocks, are the fundamental units of the
nanofabric. A prototype nanowire-based crossbar design with 6.8 Gbits cm2

density is reported in [7], and a manufacturer is promising memories using
carbon nanotubes [8].

While CAEN-based systems offer the advantage of low manufacturing cost
and high density, they are inherently unreliable. The low reliability is a direct
consequence of the stochastic nature of self-assembly. It has been predicted
that the defect density of CAEN-based systems can easily exceed 10% [6];
therefore it is not economically feasible to discard a nanofabric once a fault is
detected. Defect tolerance is needed to make such nanofabrics commercially
viable.

34 Z. Wang and K. Chakrabarty

Defect tolerance refers to the ability to detect and locate fault sites on
a chip, and then avoid the faults through reconfiguration methods. The first
step in defect tolerance is to map designs to usable sets of resources; this
step leads to increased yield and reduced manufacturing cost. New methods
must therefore be devised to diagnose defective sections of the nanofabric. Un-
like many testing and diagnosis techniques intended for CMOS chips, testing
methods for nanofabrics cannot simply assume a small number of defects or
use conventional fault models that only target a few fault sites.

Modern memory chips use built-in redundancy, in which spare rows and
columns are used to replace defective rows and columns, respectively, to
achieve defect tolerance [9]. However, it is unlikely that any row or column
of nanoblocks will be defect-free. Moreover, the nanofabric is intended to
implement complex logic functions, hence simple row/column replacement al-
gorithms will not be efficient. Majority voting is another fault tolerance tech-
nique using redundant hardware resources to perform correct computation in
the presence of defects. However, due to the high anticipated defect density
of CAEN-based systems, the amount of additional physical resources required
will not be affordable.

A nanofabric system is similar to a field-programmable gate-array (FPGA)
because of its regular 2D-array architecture and reconfigurability. A num-
ber of testing methods have been proposed for various FPGA architectures,
e.g., [10–15]. In FPGA-BIST presented in [10,11], programmable logic blocks
(PLBs) are configured as test pattern generators (TPGs), blocks under test
(BUTs) and output response analyzers (ORAs) for built-in self-test (BIST).
A TPG applies exhaustive test patterns to a BUT and output responses are
fed to an ORA. Multiple configurations are needed to ensure that every PLB
is tested as a BUT. Teramac [16,17] is an FPGA-based custom computer sys-
tem that is capable of running user designs even if up to 75% of its FPGAs
contain defects. A testing phase is used after fabrication to identify defects
in FPGAs. In the Teramac system, circuit components are configured as LF-
SRs that generate long psuedo-random bit streams and communicate them
to primary outputs. If the output bit stream is correct, all components are
assumed to be defect-free; if incorrect, these components are configured to
create new LFSR signature generators. The resources at the intersection of
defective LFSR configurations are marked as defective. However, the problem
of nanofabric testing is different from FPGA testing due to two main reasons:
(1) nanofabric systems are expected to have much higher defect densities and
a larger number of resources, and (2) as detailed in Sect. 2, the fundamental
units (nanoblocks) in the nanofabric are very simple compared to PLBs in
FPGA. It is difficult to create complex comparators or LFSR signature gen-
erators using primitive units that are likely to be defective. Therefore, new
methods must be devised to address these problems.

In this work, we propose a BIST and recovery procedure for the nanofabric
that uses simple single-nanoblock TPGs, BUTs and ORAs. This fine-grained

Chapter 2: Testing Nanofabrics 35

test method allows us to handle high defect densities. We exploit the fact
that even for high defect densities, a small number of neighboring simple
nanoblocks can be expected to be defect-free. Instead of specifying a set of
complex test patterns, our procedures rely on a set of configurations to test
the nanofabric. Complex test patterns cannot be generated by simple TPGs
in the nanofabric, and due to limited routing resources, it is difficult to feed
test patterns using external testers. Since nanoblocks are tested in parallel,
the testing time using the proposed procedure is independent of the size of the
nanofabric. However, the method used to read out test results also affects the
overall testing time. In the absence of manufactured nanofabric chips, it is
not clear how much time will be needed for ORA access; the access time may
depend on the size of the nanofabric. We consider the detectability of multiple
faults in blocks within the nanofabric. We also present simple bounds on the
recovery that can be achieved for a given defect density.

The configurations for fault detection are presented in detail in Sects. 5 and
6. Section 7 discusses the detection of multiple faults. Section 8 presents an
adaptive recovery procedure to further improve the performance and Sect. 9
investigates the effectiveness of the whole procedure. We present our simula-
tion results in Sect. 10 and conclude the chapter in Sect. 11.

2 Nanofabric

A feasible fabrication process for CAEN systems is bottom-up manufacturing,
where basic components such as wires and switches are first obtained through
chemical self-assembly, and then aligned and grouped into regular structured
arrays through self-assembly to form complete systems [3]. Two planes of
aligned wires are combined to form a two-dimensional grid with configurable
molecular switches at the cross-points. The resulting grid is of the order of
a few microns. A post-fabrication configuration step is used to create useful
circuits out of these grids [3].

The nanofabric architecture has been proposed for a CAEN-based system
in [1,3,6]. The self-assembly process does not allow precise end-to-end connec-
tions between nanoscale wires. The nanofabric architecture requires that all
connections be made only at the cross-points between two orthogonal wires.
Molecular latches based on resonant tunneling diodes, referred to as RTDs, are
also incorporated in this architecture for saving states and for signal restora-
tion [18].

Similar to FPGAs, the nanofabric is a regular 2D-mesh of interconnected
fundamental units called nanoblocks, as shown in Fig. 1. A nanoblock can be
programmed after fabrication to implement logic functions. The switchblock
is the area where the input and output wires of nanoblocks overlap. It can be
configured to route signals between nanoblocks [3].

36 Z. Wang and K. Chakrabarty

switchblock

nanoblock

Fig. 1. The nanofabric architecture

2.1 Nanoblock

As shown in Fig. 2, a nanoblock consists of three parts: (1) the molecular
logic array (MLA), which implements the functionality of the block, (2) the
molecular latches, used for signal restoration and signal latching, and (3) the
I/O area, used to connect the nanoblock to its neighbors [3].

The MLA is composed of two orthogonal sets of wires. At each intersec-
tion of two wires lies a configurable molecular switch. The switches, when
configured to be “on”, act as diodes [3]. The direction of the current flowing
through a “on” molecular switch is determined during fabrication and is non-
reconfigurable. Figure 3 shows the implementation of an AND gate. If either
A or B is at logic “0”, the corresponding diode is forward-biased and turned
on. The resistors are manufactured appropriately, i.e., resistors attached to
Gnd have smaller impedances than those attached to VDD, such that the
output vertical wire is pulled down to logic “0” [3]. Note that the resistance
of nanowires and molecular switches are very low. Figure 3 also shows how an
OR gate can be implemented. This diode-resistor logic is unable to perform
the inversion operation, therefore complemented inputs are required and the
complement of each logic function also needs to be implemented.

If the MLA portion of a nanoblock has k horizontal wires and k vertical
wires, then the size of the nanoblock is referred to as k × k. We only consider
nanoblocks that have equal numbers of horizontal wires and vertical wires.

The above nanoblock design is dictated by fabrication constraints. Each
side of the block can have either inputs or outputs, but not both. All nanoscale
wire-to-wire connections are made between two orthogonal wires; precise end-
to-end alignment is not possible. The outputs of the blocks are either facing
south and east (SE) or north and west (NW), as shown in Fig. 2 [3]. Without
loss of generality, we assume that a nanofabric consists of only SE nanoblocks
whose outputs are facing south and east.

The MLA implements Boolean functions using diode-resistor logic. The
drawback of this logic style is that a signal is degraded whenever it passes a
molecular switch. The molecular latch, constructed entirely from molecular-
scale devices, is used to perform signal restoration using power from the clock
to provide gain. The molecular latch also provides the properties of I/O iso-
lation and noise immunity [18].

Chapter 2: Testing Nanofabrics 37

VDD

MLA

GND

Stripped regions indicates
connections from the CMOS layer

Inline NDR
molecular latches

Inputs on
north and
east sides.
Outputs on
south and
west sides.

G
ro

u
nd

Φ

Φ

Fig. 2. Schematic of a nanoblock [3]

V

A

A∧B

A∧B = A + B

A B

B

Fig. 3. An AND gate

2.2 Switchblock

A switchblock is similar to the MLA portion of a nanoblock, with the dif-
ference that it does not have inline NDR latches, I/O ports and connec-
tions to VDD and Gnd. As shown in Fig. 4, a switchblock is formed by four
nanoblocks; crossing horizontal wires and vertical wires from the surrounding
nanoblocks are connected by configurable molecular switches. If the size of the
nanoblocks is k × k, then there are 2k vertical wires and 2k horizontal wires

38 Z. Wang and K. Chakrabarty

Dataflow
direction

Molecular
switchDataflow

direction

k x k
Molecular
switches

nano-
block

Nano-
block

(a) Half of a switchblock

Switch block
with 4 k2

switches

nano-
Block

nano-
Block

nano-
Block

nano-
Block

(b) A switchblock with four surround-
ing nanoblocks

Fig. 4. Nanoblock connectivity [3]

inside a switchblock, and 4k2 cross-points can be formed. For SE nanoblocks,
a switchblock is capable of providing four directions of data flow: west to
south (WS), west to east (WE), north to east (NE), and north to south (NS).
WS and NE data flows can co-exist with each other in a same switchblock.
On the other hand, WE and NS data flows cannot co-exist with any other
data flows because vertical (horizontal) wires cannot be directly connected to
vertical (horizontal) wires. Therefore if two vertical (horizontal) wires are to
be connected, a horizontal (vertical) wire in the same switchblock must be
used, which means that this horizontal (vertical) wire cannot be used by its
own nanoblock in order to avoid conflicts.

2.3 Defect Tolerance

The nanofabric has a much higher defect density than standard CMOS chips
due to the imprecise and nondeterministic manufacturing process. Wires will
rarely all be equidistant from each other. Wires that should be parallel may
be askew or they may intersect. The connections between wires may be open
or wires may be shorted [6].

The nanofabric has a built-in capability for defect tolerance due to its
reconfigurability. An effective testing procedure should lead to a defect map,
which provides the locations of the defective nanoblocks and switchblocks.
The defect map can then be used by software tools to avoid faulty resources
during system reconfiguration.

One metric of defect map quality is recovery, defined as the percentage of
defect-free nanoblocks and switchblocks that are correctly diagnosed [1]. This

Chapter 2: Testing Nanofabrics 39

1

2

22

23

7

3

6

(a) Original schematic

1

3

2

22

23

7

6

3

(b) Equivalent schematic

Fig. 5. Schematics of c17

metric indicates the diagnostic accuracy of a testing procedure. It should also
be ensured that no faulty blocks are diagnosed as defect-free. An ideal recovery
of 100% implies that every defect-free block in the nanofabric is correctly
diagnosed. However, this metric is useful only for simulation; in practice, it is
difficult to ascertain the actual number of defect-free blocks after fabrication.
An effective testing procedure should correctly identify a large fraction of
these defect-free blocks, thereby minimizing wastage.

To illustrate how a nanofabric (with defects) can be used to implement
a real circuit, we take c17, an ISCAS’85 benchmark circuit, as an exam-
ple. Figure 5a shows the schematic of c17. To map it to a nanofabric, since
nanofabrics cannot implement inversion logic, we first transform it into an
equivalent circuit as shown in Fig. 5b. We assume that complemented input
signals (e.g., 3̄ and 6̄) are available. Figure 6 shows how this equivalent cir-
cuit can be mapped to a nanofabric with defects. We assume that defective
blocks (marked by crosses) are identified by a testing process. Note that even
if a nanoblock/switchblock is defective, it may still be used to route signals
if the exact nanowire in use is defect-free (e.g., the switchblock that routes
output 22).

3 Related Prior Work

The testing of nanofabrics was first addressed in [1,19]. The none-some-many
algorithm presented in [1] creates LFSR-based signature generators from a
random selection of nanoblocks. This approach however makes the unrealistic
assumption that unlimited interconnect resources are available to create

40 Z. Wang and K. Chakrabarty

1
3

3 6

2

7

OR

OR

AND

AND

AND OR

22

23

Fig. 6. The mapping of c17 to a defective nanofabric

signature generators from randomly-selected nanoblocks. Moreover, since this
approach uses a large number of nanoblocks to implement LFSR-based signa-
ture generators, it is coarse-grained and it can only provide limited recovery.

The CAEN-BIST approach presented in [19] is a fine-grained test method.
It configures a nanoblock as a tester to test its neighboring nanoblocks. Test
patterns are fed to both the tester and the nanoblock under test (BUT) from
an external source. A defect-free BUT generates output patterns that are
identical to the input patterns. The tester compares the input test patterns
and the output patterns from the BUT to see if the BUT is defective. The
average recovery is reported to be almost 100% for defect densities up to 20%.
However, this approach makes two strong assumptions: (1) a k-bit compara-
tor can be implemented using a nanoblock, and (2) defect-free data paths
from external test circuits to testers and BUTs can be dynamically identified
during the test procedure. Since the nanoblocks can only implement simple
logic functions, it is not clear how they can be configured to implement k-
bit comparators. Moveover, [19] does not consider the limitations in dataflow
imposed by the biasing of the molecular switches. In addition, because the in-
put patterns are provided by external circuits instead of internal nanoblocks,
CAEN-BIST can only be performed in a wave-like manner in which a set
of nanoblocks in the same diagonal tests another set of nanoblocks until the
entire nanofabric has been tested. Therefore, the complexity of CAEN-BIST
depends on the size of the nanofabric under test.

Recently, a BIST method to test the nanoblocks was presented in [20].
However, this work does not address switchblocks; thus it can lead to defect-
free switchblocks being deemed useless, and defective switchblocks being
marked defect-free. Moreover, the recovery procedure in [20] is coarse-grained;
it is limited by the fact that recovered blocks cannot be used to further in-
crease the nanofabric recovery.

Chapter 2: Testing Nanofabrics 41

Another BIST method for nanofabrics was proposed recently in [21]; this
method uses only TPGs and ORAs. The TPGs and ORAs are tested in parallel
to decrease testing time and to improve recovery. However, this work does not
address defects in switchblocks. In [22], an on-chip, application-specific BIST
approach is described for nanoscale devices. This BIST method is performed
whenever the chip is configured for a given application. It performs functional
test for the blocks in the nanoarray and it eliminates the use of defect maps.
However, because the BIST circuitry is implemented on-chip in the CMOS
domain, the area overhead tends to be excessive compared with the size of the
nano-domain circuitry. Moreover, during the BIST procedure, a large amount
of memory is needed to save intermediate test results.

4 Nanofabric BIST Approach

We now present a BIST approach for nanofabric testing that exploits the re-
configurability of nanoblocks and switchblocks. The nanoblocks are configured
as either TPGs, BUTs, or ORAs. Three nanoblocks (i.e., one TPG, BUT and
ORA) along with the switchblocks between them form a test group (TG) in
which the TPG applies input signals to the BUT, and the ORA examines
the output responses from the BUT to determine if there is a defect in the
group. The whole fabric is partitioned into a set of TGs such that all BUTs
inside them can be tested in parallel. We assume that nanoblocks along the
edges can be accessed by external circuits, which in turn can serve as TPGs or
ORAs for those blocks. In the nanofabric architecture described in [3], there
are “long wires” that are used for interconnection purposes. We assume that
such long wires can be used by external circuits to access blocks along the
edges. Since the number of long wires is limited, multiple configurations are
needed to access each of these blocks.

Our strategy relies on a set of fault detection configurations (FDCs) where
different faults of the BUT can be tested. The proposed configurations can
provide 100% fault coverage for any stuck-at, stuck-open, bridging, and con-
nection faults in the nanoblocks. The details of these configurations, referred
to FDC-1, are discussed in Sect. 5. A BUT is deemed to be defect-free only if
it operates correctly in all FDC-1 configurations. In addition to FDC-1 config-
urations, another set of configurations is proposed to target faults in switch-
blocks (referred to as FDC-2). Switchblock testing is discussed in Sect. 6.

The test procedure consists of a sequence of test phases, where each phase
consists of the following steps: (1) partition the nanofabric into TGs, (2)
configure the TGs into one of the FDCs, (3) apply the test and read outputs
of the ORAs, and (4) repeat from step (2) until all FDCs that are compatible
with the current set of TGs are applied. Multiple test phases are needed to
test each nanoblock and switchblock in the fabric. Each configuration uses
only one test pattern. When the test procedure is completed, a defect map
can be constructed. The test procedure is discussed further in Sect. 4.2.

42 Z. Wang and K. Chakrabarty

The method used to access ORAs affects the overall testing time. If long
wires, as described in [1], are used to read the outputs of ORAs, due to re-
stricted interconnect resources, it may not be possible to access all the ORAs
simultaneously. This will make the access time dependent on the size of the
nanofabric. However, in the absence of manufactured nanofabric chips, it is
not clear how much time will be needed to access ORAs. Contactless measure-
ment and testing techniques [23], e.g., electron beam testing [24] and massive
observability [25], may be used to reduce the ORA access time. Embedded
CMOS optical sensors may also facilitate ORA readout [26].

4.1 BIST Architecture

Figure 7a shows the structure of a TPG. In the proposed fault detection
configurations, a BUT only needs all-“1” and all-“0” input signals, thus the
TPG can be very simple. A TPG provides “1” and “0” on both output sides.
Every output port is connected to a molecular latch, which provides pull-up
and pull-down paths to the down-streaming block.

1

V

1 0

0

NDR

NDR

(a) A TPG.

A

B

C

D

NDR

V

(b) An AND ORA.

A B C D

NDR

(c) An OR ORA.

Fig. 7. Nanoblocks configured as TPG and ORA

Chapter 2: Testing Nanofabrics 43

(a) (b) (c)TG_SE with either
AND or OR ORA

TG_E with AND ORA TG_S with OR ORA

To AND-
ORA

ORA

BUT

TPG

To OR-
ORA

TPG

BUT AND
ORA

TPG

BUT

OR
ORA

Fig. 8. Illustrating the need for different TGs

Figure 7b, c shows the structures of the ORAs. We carefully designed the
BUTs such that the outputs of a defect-free BUT are identical, either all-“1”
or all-“0”. Therefore an ORA is simply a k-input AND gate or a k-input OR
gate. Due to the restrictions of the CAEN architecture, an AND gate can
only accept inputs on its east side for SE blocks (or west side for NW blocks),
and an OR gate can only accept inputs on the north side for SE blocks. This
restriction implies that three different types of TGs are needed such that all
FDCs can be applied. As shown in Fig. 8a, in TG SE the ORA is to the SE
of the BUT, and it can be either an AND or an OR gate, provided that the
outputs come from the appropriate side of the BUT. Similarly, the ORA in
TG E (Fig. 8b) is an AND gate and the ORA in TG S (Fig. 8c) is an OR gate.
which will be discussed in Sect. 6. We assume that the results of the ORAs can
be read out using an access mechanism that is used for configuring the fabric.
A similar assumption is made in recent work on nanofabric testing [1, 19].

Due to the connectivity restrictions shown in Fig. 4, none of the three TGs
can be used for all FDCs. To achieve full fault coverage, we need a separate
test procedure for each type of TG, which results in three partial defect maps.
An overall defect map can then be derived from these partial defect maps. A
nanoblock is considered to be fully-recovered or defect-free only if it is defect-
free in all the three partial defect maps; otherwise a nanoblock is considered
as partially-recovered if it is defect-free in any of the partial defect maps. A
partially-recovered nanoblock can be used in some specific applications but
its complete functionality cannot be guaranteed.

4.2 The BIST Procedure

The BIST procedure is shown in Fig. 9. In Step 2, TGs are allocated so that
the BUTs can be tested in parallel. A TG allocation is a high level configu-
ration for the entire nanofabric defining how TGs are created. The number
of TG allocations is independent of the size of the fabric. For TG SE, three

44 Z. Wang and K. Chakrabarty

BIST Procedure: input: type of test group (TG)

1. while not all nanoblocks and switchblocks are tested
2. partition the fabric into TGs;
3. while not all compatible FDCs are applied
4. apply one FDC;
5. run the test;
6. read out ORA responses;
7. end while (FDC)
8. end while (nanoblocks)
9. generate the defect map.

Fig. 9. BIST procedure for any given TG

ORA

BUT

TG allocation 1, starting from the
top-left corner. External circuits
are used as TPGs and ORAs.

Shift along the diagonals to
obtain TG allocation 2. External

circuits are used as ORAs.

Shift again to obtain TG
allocation 3. External circuits

are used as ORAs.

External circuits
used as TPGs. External circuits

used as ORAs.

TPG

Fig. 10. TG allocations for TG SE

Overall BIST Algorithm:

1. Run the BIST procedure using TG SE;
2. Run the BIST procedure using TG E;
3. Run the BIST procedure using TG S;
4. Run the BIST procedure using TGs only for switchblock testing;
5. Generate an overall defect map;
6. Run the adaptive recovery procedure to further improve recovery.

Fig. 11. Overall BIST algorithm

allocations are needed, as shown in Fig. 10. A TG is represented by an arrow
that starts from the TPG and ends at the ORA. Arrows whose start or end is
outside the fabric represent those TGs that use external circuits as TPGs or
ORAs. We simply shift all the arrows along the diagonals to obtain the three
allocations. Similarly, for TG S and TG E, four allocations are needed.

In Step 9, initially all nanoblocks and switchblocks are deemed to be de-
fective. If a BUT produces the correct outputs for all the applied FDCs, it is
deemed to be defect-free.

A nanoblock cannot be recovered if any nanoblock or switchblock in the
same TG is defective. However, we can use recovered nanoblocks and/or ex-
ternal circuits that are not adjacent to, but are reachable from the candidate
defective block, as its TPG and ORA. This procedure, referred to as adaptive
recovery, can greatly improve recovery and it is discussed in detail in Sect. 8.
The overall BIST algorithm is shown in Fig. 11.

Chapter 2: Testing Nanofabrics 45

5 FDC-1: Fault Detection Configurations for Nanoblocks

FDC-1 configurations configure the TGs into different circuits to provide 100%
fault coverage for stuck-at, stuck-open, bridging, and connection faults in
nanoblocks. These configurations are classified into five categories.

In the FDC-1 configurations, we make the following assumptions based on
published papers on nanofabrics: (1) Each output port has an associated inline
NDR latch, whose state can be reset to “0” [18], and (2) Resistors attached
to Gnd have much smaller resistance that those attached to VDD [3].

5.1 Category 1: FDCs for Stuck-At and Stuck-Open Faults

In Category 1(a) illustrated in Fig. 12a, all inputs are connected to VDD or
“1”, therefore all outputs should be high for a defect-free BUT. The inline
NDR molecular latches are initially set to “0” by adjusting Vref [3]. For a
defect-free BUT, since each output port is connected to an inline NDR, the
latches are driven to “1”. However, a line with a stuck-at-0 and/or stuck-open
fault will fail to drive its associated NDR to the “1” state. By using a k-input
AND gate as an ORA, any stuck-at-0 and stuck-open fault on a line can
be detected. Category 1(a) includes two configurations, one corresponding to
TG SE and the other corresponding to TG E. The TG, BUT and ORA for
TG SE are shown in Fig. 8.

Similarly, in Category 1(b) shown in Fig. 12b, all inputs are connected to
Gnd or “0”. With a k-input OR gate, any stuck-at-1 fault can be detected.

1

1

1

1

1

1

V V V V

1
NDR

NDR

1

1

1 1 1

(a) Category 1(a): stuck-at-0 and
stuck-open faults.

0

0
NDR

NDR

0

0

0 0 0 0

0 0 0 0

(b) Category 1(b): stuck-at-1 faults.

Fig. 12. BUTs for Category 1

46 Z. Wang and K. Chakrabarty

Category 1(b) also has two configurations, out of which one configuration is
compatible with TG SE and the other is compatible with TG S.

5.2 Category 2: FDCs for Connections of Forward-Biased Diodes
and AND-Bridging Faults

Category 2 includes k configurations. In each configuration, one of the vertical
wires is connected to VDD and the other vertical wires are connected to “0”.
All horizontal wires are connected to Gnd. The k junctions along the vertical
wire that is connected to VDD are configured to “on” and are forward-biased.
The outputs are “1” for a defect-free BUT. If a forward-biased diode is de-
fective, the horizontal wire attached to it becomes “0”. With a k-input AND
gate ORA, we can test all the k × k cross-points.

The above category can also detect AND-bridging faults among the ver-
tical wires (v/v). For a given configuration, if the wire connected to VDD is
shorted to any of the other vertical wires, the output will become “0” and
can be detected by the ORA. All the k configurations together can test any
AND-bridging faults between vertical wires.

AND-bridging faults involving a vertical wire and a horizontal wire (v/h)
can also be detected using the FDC in Category 2. If any of the vertical
wires connected to “0” is shorted to any of the horizontal wires, the output
becomes “0” and the error can be detected. The k configurations for this FDC
can together detect any AND-bridging faults of this type.

Configurations in Category 2 can only be used with TG E because an
AND ORA is used and the output responses come from the W-side of the
BUT. Hence TG S and TG SE cannot be used for this category.

5.3 Category 3: Reverse-Biased Diodes

In Category 3, all molecular switches are configured to be closed. Horizontal
wires are connected to “1” and vertical wires to “0”. Therefore all the cross-
points are reverse-biased and the output should be “1” on the east side and
“0” on the south side. If any of the reverse-biased diodes is defective and has
a small enough resistance to bridge the wires forming this cross-point, the
output on the east side will be pulled down to “0” (AND-bridging), or the
output on the south side will be pulled up to “1” (OR-bridging). By using an
AND/OR gate we can detect defective reverse-biased diodes.

A total of two configurations are needed for this category, one using TG E
to observe W-side outputs and the other using TG S to observe S-side outputs.

5.4 Category 4: AND-Bridging Fault Among Horizontal
Wires (h/h)

Category 4 is the same as Category 3, with the difference that the vertical
wires are connected to VDD. The correct output on a wire is “1”. For a given

Chapter 2: Testing Nanofabrics 47

Table 1. Summary of proposed FDC-1 configurations

Fault model 1a 1b 2 3 4 5

stuck-at-0 x
stuck-at-1 x
open-line x
AND-bridging (v/v, v/h) x
AND-bridging (h/h) x
OR-bridging x
cross-points (forward) x
cross-points (reverse) x
of configurations needed 2 2 k 2 k 2k
Type of TG SE, SE, E E, SE SE,

E S S S

configuration, if the horizontal wire connected to “1” is shorted to any of the
other horizontal wires, assuming AND-bridging fault, the output will become
“0” because there are pull-down resistors attached to VDD. A k-input AND
ORA can detect this fault. This category requires the use of TG SE. The
k configurations can together detect any AND-bridging faults in nanoblocks.

5.5 Category 5: OR-Bridging Fault

Category 5 is used to detect OR-bridging faults between any of the nano
wires. Only one wire is connected to “0” and all other wires are connected to
VDD or “1”. If the “0”-wire is bridged to any other wire, it will be pulled up
to “1”. We only need to monitor the voltage level of this single wire using a
1-input OR gate. Clearly, 2k configurations are needed to test all the possible
OR-bridging faults. Note that TG SE and TG S are compatible with this
category.

In summary, a total of 4k + 6 configurations are needed to test for the
stuck-at, stuck-open, bridging and defective cross-points. Table 1 lists the
faults indicated with x entries that each category can detect.

6 FDC-2: Fault Detection Configurations
for Switchblocks

FDC-1 configurations only address faults in nanoblocks. As shown in Fig. 4,
switchblocks and nanoblocks are closely coupled with each other. Hence, if
a test group generates an error for a given configuration, it is difficult to
ascertain whether switchblocks or nanoblocks are faulty. On the other hand,
if a test group is error-free for a given set of configurations, and if all the
switchblocks and nanoblocks in the test group are exercised adequately by
these configurations, we can conclude that these blocks are all defect-free.

48 Z. Wang and K. Chakrabarty

In this section, we describe an additional set of configurations, referred to as
FDC-2, to provide 100% coverage for switchblock faults.

As discussed in Sect. 2.2, a switchblock contains 4k2 cross-points and pro-
vides four data flow directions. For SE blocks, directions WS and NE each
use k2 cross-points, while directions NS and WE each use 2k2 cross-points.
All the four directions need to be thoroughly tested.

Similar to [19], we use a walking binary sequence to test switchblocks.
As shown in Fig. 15, to test the k2 connections used by the WS direction, a
sequence of test stimuli, 1000, 0100, 0010 and 0001, is applied to the inputs
of the 4 × 4 switchblock. If the switchblock is defect-free, the same sequence
should appear in the outputs. After the test sequence is applied, the configura-
tions are shifted, as shown in Fig. 16. The walking sequence is repeated k times
so that all connections are tested. Therefore a total of k2 configurations are
needed. This test set ensures that every connection in the switchblock is tested
in both the “on” and “off” configurations. It provides 100% fault coverage for
single stuck-line, bridging, and connection faults [19].

6.1 Testing the WS Dataflow Direction

In FDC-1 Category (2), the input to the BUT is simply a walking sequence
of ones. If the TPG is configured to provide this sequence to the BUT, the
switchblock that connects the TPG to the BUT, and provides the WS dataflow
direction, can be tested; see Fig. 17. A total of k2 additional configurations
need to be added to Category (2). Only the TPG and the switchblock under
test are changed in these configurations. If the test group operates correctly
in this category, we can conclude that the k2 connections of the switchblock
that are used by dataflow direction WS are defect-free.

6.2 Testing the NE Dataflow Direction

In FDC-1 Category (4), the input to the BUT is also a walking sequence of
ones. Therefore, we can add k2 additional configurations to Category (4) to
test the swtichblock that connects the TPG and the BUT and provides the
NE dataflow direction, as shown in Fig. 18.

6.3 Testing the NS and WE Dataflow Directions

To test the NS and WE directions, FDC-1 category (2) and (4) are used again.
However, we need two new types of TGs, where the TPG is to the north and
west of the TPG, respectively.

As shown in Fig. 19, a new type of TG, TG SE W, is used in order to test
the WE direction. The BUT is configured as FDC-1 category (4). Although the
WE direction uses 2k2 connections, we still need k2 additional configurations.
This is because among the 2k2 connections, the k2 connections between the
horizontal wires from the west nanoblock and the vertical wires from the
south nanoblock are tested in the WS direction; only the other k2 connections

Chapter 2: Testing Nanofabrics 49

between the horizontal wires from the west nanoblock and the vertical wires
from the north nanoblock need to be tested (Fig. 20). Figure 21 illustrates
how the NS direction is tested.

In summary, a total of 4k2 configurations are needed to test the four
dataflow directions that a switchblock provides. Each direction requires k2

configurations. Directions WS and NE are tested in TG E and TG SE respec-
tively, and therefore can share TG allocations with FDC-1. Directions NS and
WE, however, must be tested separately using TG SE W and TG E N.

7 The Detection of Multiple Faults

In this section, we discuss the effectiveness of the FDC-1 and FDC-2 config-
urations in detecting multiple faults in nanoblocks and switchblocks. If none
of the proposed configurations can detect a specific combination of multiple
faults within one test group, then there may be two cases: (1) more than one
block within the test group are faulty and these faults mask each other; (2)
faults inside one nanofabric or switchblock mask each other, such that the
output response of the faulty block is the same as the error-free response.

While Case (1) cannot be ruled out, it is not likely in practice for the pro-
posed BIST approach. Since the test groups are simple and each test group
contains only a small number of blocks (one TPG, BUT, ORA and the asso-
ciated switchblocks), any faulty block will cause the whole group to generate
incorrect outputs. The probability for a faulty test group to pass a test is ex-
tremely low. Moreover, the nanoblocks in a test group are also used in other
test groups in different roles, which facilitates fault detection. Therefore, in
this section we will only consider Case (2).

Since FDC-2 is an exhaustive functional test for the switchblocks, in which
each cross-point is tested for both on and off states, FDC-2 can detect any
combinations of faults in a switchblock. If a switchblock passes all tests pro-
vided by FDC-2, then it is guaranteed to be fault-free for any number of
connection faults.

Next, we consider whether multiple faults in a BUT can mask each other
and become undetectable. Intuitively, since the BUT is intensively exercised
by 4k+6 FDC-1 configurations, the probability is extremely low that a specific
combination of multiple faults inside the BUT can escape these tests.

7.1 Multiple Stuck-At Faults

In Category 1 of FDC-1, since the ORA directly observes the output re-
sponses of the nanowires, any number of stuck-at faults on horizontal or
vertical nanowires can be detected. Therefore, FDC-1 can provide 100% cov-
erage for multiple stuck-at faults in one nanoblock. Moreover, stuck-at faults
on these wires cannot be masked by other faults, such as bridging faults and
cross-point faults, in the same BUT because the responses of the nanowires

50 Z. Wang and K. Chakrabarty

are directly observed. This implies that whenever a BUT contains stuck-at
faults, it can always be identified as being faulty.

7.2 Multiple Bridging Faults

Multiple bridging faults inside a BUT, including AND- and OR-bridging faults
among all nanowires, can also be detected by FDC-1. When detecting bridging
faults using Category 2, 4 and 5, respectively, k configurations are applied to
the BUT, and each nanowire is tested separately to see if it is bridged to any
other nanowire. Therefore, if there are multiple pairs of nanowires that are
bridged, they can be detected separately.

Bridging faults that involve more than two nanowires can also be detected.
For example, as in Category 5 (Fig. 14b), only one nanowire is connected to 0
and all other nanowires are connected to 1. If the nanowire connected to 0 is
bridged to multiple nanowires, as long as it is OR-bridged to one nanowire,
it will be detected. This is also true for Category 2 and 4. Note that in this
work, we only consider AND- and OR-bridging faults. We have not considered
the physical phenomenon of resistive bridging faults.

A defective diode behaves either like a stuck-open switch or a stuck-on
switch, depending on the bias voltage across it. If a defective diode is reverse-
biased, then the two nanowires associated with this diode are either AND-
bridged or OR-bridged with each other. Therefore, bridging faults can be
detected even if there are defective reverse-biased diodes. Defective forward-
biased diodes are simply stuck-open switches, whose existence will not affect
the detection of any other fault. Hence, multiple bridging faults are detectable
even when there are defective diodes in the same nanoblock.

In some cases, multiple bridging faults in a BUT may form feedback loops
and turns the BUT into a sequential circuits. The detection of such faults is
complex and we will not consider it in this work.

7.3 Multiple Cross-Point Faults

In Category 2, the diodes associated with the nanowire that is connected to
VDD are tested if they operate correctly when forward-biased. If other diodes
in the same nanoblock are defective, they behave as either stuck-open or stuck-
on switches. It can be seen from Fig. 13a that these defective diodes will not
affect the test of the forward-biased diodes, even if they cause their associated
nanowires to be AND-bridged or OR-bridged. In Category 3, all diodes are
reverse-biased and tested in parallel. If there are multiple defective diodes in
the nanoblock, then they may form feedback loops in the nanoblock. We do
not consider such faults in this work.

In summary, FDC-1 can detect most combinations of multiple faults in
a single nanoblock. FDC-1 can provide 100% coverage for multiple stuck-at
faults, 100% non-feedback bridging faults among nanowires, and 100% cov-
erage for multiple cross-point faults. Feedback bridging faults and feedback
cross-point faults are beyond the scope of this work.

Chapter 2: Testing Nanofabrics 51

1

0

V

0 0

1
NDR

(a)

1

1 0

NDR

(b)

NDR

00 0

0

1

1

1

1

1

1

1

1

0 0 0

Fig. 13. (a) Category 2: forward-biased diodes faults and AND-bridging faults (v/v,
v/h). (b) Category 3: reverse-biased diodes faults

V V V V

1 1 1 1
NDR

(a)

0

1

0

0

NDR
(b)

1

1

1

1

0

0

V V V

Fig. 14. (a) Category 4: AND-bridging fault among horizontal wires (h/h).
(b) Category 5: OR-bridging fault

1 1 1

1

1
1

0
0
0

0
0

0
0

0
0

0
1

0
0

0 0 0 0 0 0 00 0 00 1 0

Fig. 15. A walking sequence of ones is applied to the inputs and appears in the
outputs

52 Z. Wang and K. Chakrabarty

1 10 0 0 0 0 0 00 0 1 00 1 0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

Fig. 16. The configuration of the switchblock is shifted after all test patterns have
been applied and the process is repeated until all connections have been tested

Fig. 17. Testing the WS direction of a switchblock: The BUT is configured as FDC-
1 category (2), except that all inputs are from the switchblock under test. In the
k2 configurations, the TPG and the switchblock under test are changed so that the
walking sequence are repeated k times and the k2 connections are tested. FDC-1
category (2) only works in TG E

Fig. 18. Testing the NE direction of a switchblock: The BUT is configured as FDC-
1 category (4), except that all inputs are from the switchblock under test. In the
k2 configurations, the TPG and the switchblock under test are changed so that the
walking sequence are repeated k times and the k2 connections are tested. FDC-1
category (4) only works in TG SE

Chapter 2: Testing Nanofabrics 53

Fig. 19. Testing the WE direction of a switchblock: The BUT is configured as
FDC-1 category (4). These configurations need a new TG type, i.e., TG SE W

Fig. 20. Only connections between the vertical wires from the north nanoblock and
the horizontal wires from the west nanoblock need to be tested in the WE direction

Fig. 21. Testing the NS direction of a switchblock: The BUT is configured as FDC
category (2). These configurations need a new TG type: TG E N

54 Z. Wang and K. Chakrabarty

8 Adaptive Recovery Procedure

As discussed in Sect. 4.2, a defect-free nanoblock or switchblock B cannot be
recovered if there are faulty blocks in the same TG. However, if other blocks
outside the TG can be used to form a new TG to test B, this block may be
recovered. For example, as shown in Fig. 22, a new TG that is similar to TG E
but consists of non-adjacent nanoblocks is created to test the BUT whose west-
side neighbor is defective. In this section, we propose an adaptive recovery
procedure that dynamically generates configurations to recover blocks that
are not recovered by Steps (1)–(5) in Fig. 11.

The adaptive recovery procedure only tries to recover blocks that have a
high probability to be defect-free. These blocks are referred to as candidates. A
candidate nanoblock or switchblock must have at least one of its surrounding
blocks (1) fully-recovered, or (2) partially-recovered and the failing tests do
not involve the candidate block itself. This is because a defective block will
cause all its surrounding blocks to fail the tests whose TGs contain it.

In the adaptive recovery procedure, first the partial and overall defect maps
are searched and candidates are identified. Then a search procedure is invoked
for each candidate. Paths that start from the current candidate block and lead
to a recovered block, another candidate block, or an edge of the nanofabric are
searched, such that new TGs can be formed. The same procedure as shown
in Fig. 9 is then executed to test the current candidate. To avoid using known
defective blocks, the paths only consist of fully or partially-recovered blocks
and other candidate blocks, as shown in Fig. 22. In this work, a simple back-
trace search algorithm has been implemented.

The nanofabric is reconfigured multiple times until either all candidates
are tested or a satisfactory recovery level is achieved. In each configuration,
several candidates can be tested in parallel. The adaptive recovery procedure
is summarized in Fig. 23.

TPG

BUT X

AND
ORA

Defective
nanoblock

A path consists of only recovered or candidate blocks

Fig. 22. A TG E variant TG that uses non-adjacent nanoblocks

Chapter 2: Testing Nanofabrics 55

Adaptive Recovery Procedure:

1. identify candidates;
2. while (not all candidates are tested) and (satisfactory recovery not reached)
3. generate TGs for each remaining candidate;
4. while not all compatible FDCs are applied
5. apply one FDC;
6. run the test;
7. read out ORA responses;
8. end while (FDC)
9. end while (candidates)

Fig. 23. The adaptive recovery procedure

9 Recovery Analysis

In order to better understand the effectiveness of the proposed BIST proce-
dure, we derive simple upper and lower bounds of the recovery. As shown
in Fig. 26, a defective switchblock causes two of its surrounding nanoblocks
to become non-recoverable. Thus the minimum recovery is obtained when all
defective blocks are switchblocks and each of them causes two nanoblocks to
become unrecoverable. For a n×n nanofabric with defect density d, there are a
total of (1−d)n2 defect-free blocks, among which 2dn2 defect-free nanoblocks
are not recovered in the worst case. A lower bound LB on the recovery is
therefore given by

LB =
(1 − d)n2 − 2dn2

(1 − d)n2
× 100% =

1 − 3d

1 − d
× 100%

For d = 0.1 (d = 0.2), LB is 78% (50%). Figure 24 shows how LB varies
with d.

The best recovery is achieved when all defective blocks are nanoblocks
and they are not close to each other so that no switchblocks are rendered
non-recoverable. Hence the upper bound is simply UB = 100%. However,
this upper bound is meaningful only when the defect density is below a max-
imum value dmax, such that each switchblock has at least three defect-free
surrounding nanoblocks. If a switchblock has more than two defective sur-
rounding nanoblocks, the probability that it is not recoverable is 1/3 (i.e., the
two defective nanoblocks are both at the inputs or outputs of the four dataflow
directions). To derive dmax, consider a nanofabric consisting of m nanoblocks
and m switchblocks with defect density d. Since each nanoblock is shared by
four switchblocks, there should be at least 3m

4 defect-free nanoblocks. Hence
m − dmax × 2m = 3m

4 and dmax = 12.5%. If d > dmax, the upper bound is
below 100 % and it depends on both the defect density and the distribution
of the defective blocks; it is difficult to derive a closed-form expression for the
upper bound.

In some special cases, even when d is higher than 12.5 %, the recovery
can still be 100%. Figure 25 illustrates a special case, in which all defective

56 Z. Wang and K. Chakrabarty

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
40

50

60

70

80

90

100
Lower Bound on Recovery

defect density (%)

re
co

ve
ry

 (
%

)

Fig. 24. Lower bound on the recovery

Defective
nanoblock

Defect-free
nanoblock

Defect-free
switchblock

Fig. 25. Special case of 100% recovery

blocks are nanoblocks and they only appear along alternate major diagonals.
In this case, the defect density d = 25%. Using adaptive recovery as shown
in Fig. 25, a recovery of 100% is achievable. Note that all switchblocks are
partially-recovered.

Chapter 2: Testing Nanofabrics 57

10 Simulation Results

In this section, we present simulation results for the proposed BIST approach.
The BIST procedure was implemented in C++ and an array of bits is used
to represent the nanofabric. Blocks are randomly selected to be faulty and a
simple array look-up is performed to determine if a nanoblock or a switchblock
is defective.

Figure 26 shows the defect maps obtained from simulation on a 10 × 10
nanofabric with 10% defect density. The overall recovery, defined as the per-
centage of the number of fully or partially-recovered blocks to the total number
of defect-free blocks, is 92.1%. There are 11 defective blocks, 59 fully-recovered
blocks, and 23 partially-recovered blocks. Among the 82 recovered blocks,
13 blocks are recovered by the adaptive recovery procedure.

In TG SE and TG E, both nanoblocks and switchblocks are tested. There-
fore the corresponding partial defect maps contain recovered nanoblocks and
switchblocks. In other partial defect maps, there are only recovered nanoblocks
or switchblocks. The adaptive recovery procedure is performed as the last step,
so only the overall defect map shows blocks recovered by it.

As shown in Fig. 26, a defective switchblock consistently renders the
nanoblocks to the east or south of it non-recoverable, because these
nanoblocks, when configured as BUTs, cannot receive input signals from
TPGs through the defective switchblock. A defective nanoblock, however,
only causes its surrounding switchblocks to be partially-recovered. These
switchblocks fail the tests involving the defective nanoblock, but pass other
tests not involving it. Therefore, a defective switchblock has greater impact
on recovery than a defective nanoblock.

Figure 27 shows how the recovery varies with defect density and the size
of the nanofabric. For each value of defect density and nanofabric size, 100
simulations were performed and the average recovery as well as the maximum
and minimum recovery values were determined. As shown in Fig. 27a, the
average recovery is almost independent of the size of the nanofabric. This
implies that the BIST procedure and the recovery algorithm scale well with the
size of the nanofabric. Moreover, the average recovery is inversely proportional
to the defect density. This is obvious because a defective block, especially a
defective switchblock, affects the functionality of its neighbors.

Figure 27b, c show that the recoveries of small nanofabrics are more likely
to be affected by the defect distribution. With the same defect density, if
relatively more switchblocks than nanoblocks are defective, the recovery is
likely to be lower. In large nanofabrics, the number of defective nanoblocks
and the number of the defective switchblocks are more likely to be the same.
The recovery values lie within the upper and lower bounds derived in Sect. 9.
In particular, the recovery obtained is close to the lower bound. The minimum
recoveries when d = 0.1 and d = 0.2 are about 78 and 56%, respectively.

Figure 28 shows how clustered defects affect recovery. We use two clustered
defect models: (1) defective blocks are in the same row or column, and (2)

58 Z. Wang and K. Chakrabarty

(a) Defect map for TG SE (b) Defect map for TG E

(c) Defect map for TG S (d) Defect map for TG E N

(e) Defect map for TG SE W (f) Overall defect map

defective block

adaptively-
recovered block

fully-recovered
block

Non-recovered
block

partially adaptively-
recovered block

partially-
recovered block

Fig. 26. Defect maps for a 10 × 10 fabric with 10% defect density

Chapter 2: Testing Nanofabrics 59

5 10 15 20
45

50

55

60

65

70

75

80

85

90

95
Average Recovery

defect density (%)

re
co

ve
ry

 (
%

)

10x10
50x50
100x100
1000x1000
Lower bound

(a) Average recovery

5 10 15 20
40

50

60

70

80

90

100
Maximum Recovery

defect density (%)

re
co

ve
ry

 (
%

)

10x10
50x50
100x100
1000x1000
Lower bound

(b) Maximum recovery

5 10 15 20
45
50
55
60
65
70
75
80
85
90
95

Minimum Recovery

defect density (%)

re
co

ve
ry

 (
%

)

10x10
50x50
100x100
1000x1000
Lower bound

(c) Minimum recovery

Fig. 27. Recovery results

(a) (b)

defective block

adaptively-
recovered block

fully-recovered
block

Non-recovered
block

partially adaptively-
recovered block

partially-
recovered block

Fig. 28. Clustered defective blocks

60 Z. Wang and K. Chakrabarty

defective blocks are inside a rectangle. The recoveries of Fig. 28a, b are 77.8
and 97.8% respectively, and the defect densities are 19 and 16% respectively.
Only the nanoblocks and switchblocks adjacent to the edges of the cluster
cannot be recovered. Clustered defects do not influence the effectiveness of
the BIST approach.

11 Conclusions

We have presented a new built-in self-test strategy for the CAEN-based
nanofabric. The proposed BIST procedure configures the nanoblocks into test
pattern generators (TPGs), blocks under test (BUTs) and output response
analyzers (ORAs), which in turn form test groups where the BUTs and switch-
blocks are tested. A test group only contains three nanoblocks and the switch-
blocks between them, therefore the algorithm is able to handle nanofabric
systems with a large number of devices and high defect densities. A set of con-
figurations have been presented to detect various faults in both nanoblocks and
switchblocks; these configurations provide 100% fault coverage for stuck-at,
stuck-open, bridging, and connection faults. All multiple stuck-at faults, as
well as non-feedback bridging and crosspoints faults can also be detected.
The complexity of this algorithm and its recovery capability are independent
of the size of the nanofabric (if the time required to read out output responses
is O(1)). The recovery procedure can also utilize recovered defect-free blocks
in an adaptive fashion.

References

1. M. Mishra and S. Goldstein, “Defect Tolerance at the End of the Roadmap,” in
Proc. International Test Conference, 2003, pp. 1201–1210.

2. E. J. Nowack, “Maintaining the Benefits of CMOS scaling when Scaling Bogs
Down,” IBM Journal of Research and Development, no. 2/3, Mar.-May 2002.

3. S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molec-
ular Electronics,” in Proc. International Symposium on Computer Architecture,
2001, pp. 178–189.

4. S. C. Goldstein and D. Rosewater, “Digital Logic Using Molecular Electronics,”
in Proc. IEEE International Solid State Circuits Conference, vol. 1, 2002, pp.
204–459.

5. M. Butts, A. DeHon, and S. C. Goldstein, “Molecular Electronics: Devices, Sys-
tems and Tools for Gigagate, Gigabit Chips,” in Proc. International Conference
on Computer-Aided Design, 2002, pp. 433–440.

6. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler,
“Molecular Electronics: From Devices and Interconnect to Circuits and Archi-
tecture,” Proc. IEEE, vol. 91, Nov. 2003, pp. 1940–1957.

7. Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, and R. StanleyWilliams, “Nanoscale molecular-
switch crossbar circuits,” Nanotechnology, vol. 14, Mar. 2003, pp. 462–468.

Chapter 2: Testing Nanofabrics 61

8. Nantero Inc., http://www.nantero.com/.
9. A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice.

ComTex Publishing, 1998.
10. C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In Self-Test of Logic

Blocks in FPGAs (Finally, A Free Lunch: BIST Without Overhead!),” in Proc.
IEEE VLSI Test Symposium, 1996, pp. 387–392.

11. M. Abramovici, E. Lee, and C. Stroud, “BIST-based Diagnostics for FPGA
Logic Blocks,” in Proc. International Test Conference, 1997, pp. 539–547.

12. C. Metra, G. Mojoli, S. Pastore, D. Salvi, and G. Sechi, “Novel Technique for
Testing FPGAs,” in Proc. Design, Automation and Test in Europe, 1998, pp.
89–94.

13. S. J. Wang and T. M. Tsai, “Test and Diagnosis of Fault Logic Blocks in FP-
GAs,” in IEE Proceedings: Computers and Digital Techniques, vol. 146, 1999,
pp. 100–106.

14. M. B. Tahoori, E. J. McCluskey, M. Renovell, and P. Faure, “A multi-
configuration strategy for an application dependent testing of FPGAs,” in Proc.
IEEE VLSI Test Symposium, 2004, pp. 154–159.

15. M. Tahoori and S. Mitra, “Techniques and algorithms for fault grading of FPGA
interconnect test configurations,” IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 23, Feb. 2004, pp. 261–272.

16. W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, and G. Snider, “Defect
Tolerance on the Teramac Custom Computer,” in Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines, 1997, pp. 116–223.

17. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A Defect-Tolerant
Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280,
Jun. 1998, pp. 1716–1721.

18. S. C. Goldstein and D. Rosewater, “What Makes a Good Molecular-Scale Com-
puter Device?” School of Computer Science, Carnegie Mellon University, Tech.
Rep. CMU-CS-02-181, Sep. 2002.

19. J. G. Brown and R. D. S. Blanton, “CAEN-BIST: Testing the NanoFabric,” in
Proc. International Test Conference, 2004, pp. 462–471.

20. Z. Wang and K. Chakrabarty, “Built-in Self-Test of Molecular Electronics-Based
Nanofabrics,” in Proc. European Test Symposium, 2005, pp. 168–173.

21. M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFab-
rics Using Built-In Self-Test Procedure,” in Proc. International Symposium on
Defect and Fault Tolerance in VLSI Systems, 2005, pp. 305–313.

22. R. M. Rad and M. Tehranipoor, “SCT: An Approach for Testing and Con-
figuring Nanoscale Devices,” in Proc. IEEE VLSI Test Symposium, 2006 (to
appear).

23. S. Sayil, D. V. Kerns, and S. E. Kerns, “A survey contactless measurement and
testing techniques,” IEEE Potentials, vol. 24, Feb.-Mar. 2005, pp. 25–28.

24. M. Vallet and P. Sardin, “Electrical testing for failure analysis: Ebeam testing,”
Microelectronic Engineering, vol. 49, 1999, pp. 157–167.

25. A. Mabrouk and A. Hubbard, “Design and implementation of an optical test-
ing technique for VLSI chips using a potential-sensitive fluorescing dye,” in
Proc. IEEE Pacific Rim Conference on Communications, Computers and Sig-
nal Processing, 1997, pp. 568–572.

26. S. Sayil, “All-Silicon Optical Contactless Testing Of ICs,” International Journal
of Electronics, vol. 89, 2002, pp. 537–547.

Chapter 3: Test and Defect Tolerance
for Reconfigurable Nanoscale Devices

M. Tehranipoor and R. Rad

1 Introduction

According to international technology roadmap for semiconductors (ITRS) [1]
scaling of CMOS technology will face many practical and theoretical difficul-
ties within the next few years. In order to enhance the domain of information
processing applications beyond CMOS capabilities and continue Moore’s law,
several technologies are being examined for future computing devices. Among
these technologies, quantum devices, optical devices, biologically inspired de-
vices, molecular devices, nanowire and carbon nanotube based devices are
under intense investigation. High defect rate is expected to be the common
problem for all these emerging technologies. Defect density of such technolo-
gies will be considerably higher than that of CMOS due to indeterministic
fabrication processes and dominance of quantum effects at such scale. Deal-
ing with such high defect densities requires wide research on new test and
defect tolerance techniques that they are able to provide high defect toler-
ance while the amount of area overhead and test/configuration time are kept
reasonable.

Among different proposed technologies, devices built based on crossbars
of nanowires or nanotubes are most widely discussed in literature [1]. These
crossbars can be used to implement memories [2] or memory-based logic (PLA
or LUT) [3,4]. Although feature sizes of individual nanowires (or nanotubes)
is not much smaller than scaled CMOS wires (5–10 nm compared to 22 nm
scaled CMOS), yet area efficient circuits can be designed using these nanoscale
wires mainly because the switching task in this technology is performed by
molecular switches which are much smaller than transistors used in CMOS
devices [4, 5].

Several test and defect/fault tolerance methods have been proposed for de-
vices built using crossbars of nanowires or nanotubes and molecular switches.
Most of the proposed dynamic fault tolerance techniques are based on tradi-
tional techniques used in CMOS devices such as triple modular redundancy

64 M. Tehranipoor and R. Rad

(TMR), NMR, cascaded TMR (CTMR) and coding-based fault tolerance
methods [6, 7]. However, redundancy based methods like TMR/NMR result
in high area overhead for devices with very high defect rates. Coding-based
methods also suffer from high area overhead due to implementation of coder
and decoder circuits and also delay overhead due to delay of the coder-decoder
circuits. As [7] suggests, coding methods can still provide good fault tolerance
to some parts of the device such as address decoders in a memory or memory-
based logic.

1.1 Defect Map Strategy

Static defect tolerance techniques for nanoscale crossbars have been proposed
mostly based on defect avoidance through reconfiguration and defect map. The
basic idea of such techniques was originated from Teramac experiments [8].
Teramac was a custom computer built upon reconfigurable blocks (i.e. FP-
GAs). It could tolerate defects in its components through reconfiguration and
avoiding the defective components. This defect avoidance scheme required that
the location of defective components to be identified during a pre-configuration
test process and stored in a defect database called defect map. Similar defect
avoidance methods are proposed to be employed for nanoscale devices [9,10].
Also test methods have been proposed to find the location of faulty com-
ponents in crossbar-based circuits and store them in defect map [11, 13, 14].
However, there are major difficulties associated with using defect map strat-
egy in mass production of nanoscale devices. For instance, due to random
nature of defect occurrence, there will be different defect maps for different
chips. Even if we assume that it is possible to find defect locations through a
test process, it will be very time consuming task for such high density devices.

Another issue related to defect map-based strategies is that defect map size
for the device will be extremely large and it will be almost infeasible to store
it on-chip. This will be prohibitively expensive since, for reliability purposes, a
CMOS scale memory should be used to store the defect map. Shipping defect
map of each chip along with the chip on a separate storage device does not also
seem to be a practical solution. Coarse-grained techniques will not alleviate
the concern either. This is because decreasing the test resolution and storing
defect location information for larger blocks instead of low level molecular
switches or wires, will result in considerable loss in utilizable blocks of the
device. In other words, a large number of blocks will be considered as faulty
and they will be avoided during reconfiguration phase. Hence, in this case,
blocks of the device will be used very inefficiently.

Another problem associated with defect map strategy is the requirement
of performing placement and routing (PNR) process for each chip separately
because each chip will have a unique defect map. If defect map method is to be
used to provide defect tolerance, placement and routing should be performed
for each device. This results in high amount of time spent for PNR during
the configuration phase of each device. Also configured devices might have

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 65

different performances since the blocks will be placed and routed differently
in each chip due to different defect maps.

To avoid per chip placement and routing [15] proposed a different defect
avoidance mechanism. Assuming that the configurable nanoscale array is made
of N ×N crossbars, authors of [15] suggest that based on defect probabilities
of nanoscale components of the device, a K × K defect-free crossbar can be
found within each N ×N crossbar (where K < N). Therefore, to configure a
circuit on the nanoscale device, it must be partitioned into blocks of size K.
During configuration process, in order to implement each block, the K × K
defect-free crossbar should be identified inside each N × N crossbar. This is
suggested to be done by referring to the defect map. As a result, per-chip
placement and routing will not be required using this method. However, it
still relies on having defect location information. Meanwhile, for high defect
rate situations, N might be very large in order to confirm the availability of
a defect-free crossbar of size K. In other words, one will have to implement
rather very large crossbars in order to make sure that an acceptable percentage
of N × N crossbars in the device are usable as blocks of size K. And this is
an important achievement.

1.2 Inherent Redundancy in Reconfigurable Devices

As discussed in FPGA literature, memory-based logic provides considerable
amount of redundancy in each PLA or LUT of the device [17]. In other words,
a configured application into a FPGA uses only a small amount of hardware
resources provided in each block of the FPGA. Figure 1 shows the average
utilization of blocks in FPGAs vs. different block sizes (block inputs and
outputs) [17]. This fact proposes that there is always a large amount of re-
dundancy in blocks of reconfigurable devices. We refer to this as inherent
redundancy of the device. This redundancy can be used to provide the re-
quired defect tolerance for reconfigurable nanoscale devices. This can be done
by searching for fault-free configuration of functions mapped onto each PLA
or LUT. Hence, by doing so and identifying fault-free implementation of the
functions in their assigned blocks, the requirement of moving functions into
different blocks and performing per chip placement and routing can be re-
moved. We will further discuss this in the next section.

1.3 Overview of the Proposed Methods

In this chapter, we propose novel defect tolerance methods for nanoscale de-
vices with no dependence on defect map. It also enables avoiding per chip
placement and routing. It is shown that per chip placement and routing can
be avoided due to availability of sufficient redundancy in crossbar blocks so
that defect-free implementation of the functions can be found. We first propose
a method that simultaneously test and configure the reconfigurable nanoscale
devices without identifying the exact location of defects. The second method

66 M. Tehranipoor and R. Rad

Fig. 1. Average utilization of FPGA PLA blocks (source: [17]). Utilization drops
(redundancy increases) as the block size increases

we propose here searches redundant parts inside each block and configures the
functions on defect-free sections of the blocks and tests the mapped function
at the same time. The available redundancy of the configurable blocks (inher-
ent redundancy) is utilized to provide defect tolerance. Hence, the amount of
additional redundancy required for having acceptable yields would be small.
We have performed analyses to evaluate the proposed methods for different
defect probabilities that may occur in defect prone crossbar-based devices.
Also, simulation programs have been developed to examine the method for
different MCNC benchmarks implemented on such devices.

2 Simultaneous Configuration and Test (SCT) Method

As mentioned above, locating all defects inside a nano-device with very high
density (1010 gate-equivalents cm−2) and high defect density (up to 10%)
will be a challenging and time consuming task. In this chapter, a method is
proposed for testing and configuring circuits that can be used to avoid the time
consuming process of locating all defects. We assume that the architecture
offers rich interconnect resources and is able to provide efficient access to
its logic blocks through its input/output interfaces. Such architectures are
presented in literature [3, 9, 18].

The proposed method, in this chapter, is conceptually similar to those
proposed for FPGAs [19], but we consider TPG and RA to be components
of BIST circuit and to be implemented in CMOS scale to provide tests and

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 67

analyze the responses. Detailed architecture of the proposed BIST circuit for
testing configured blocks is described in this section and interconnect testing
issues will be discussed in next section. The main difference between our
method and the FPGA BIST method suggested in [19] is that in our method
the goal of testing is not to confirm the correct functionality of a BUT for
all functions. Here, the goal is to make sure that each function (fi) of an
application configured into a block is working correctly. So, the test patterns
should be applied for testing that function only.

In SCT method [16], instead of testing all resources of a reconfigurable
device to locate all the defects, each block of the architecture can be tested
for the specific function of a circuit, i.e. fi, after fi is configured into a block
of the device. The applied test here just checks the correct functionality of
the configured function (fi), rather than diagnosing all defects of the block.
So, there might be defects in molecular switches or nanowires of the block but
as long as those defects do not cause any malfunctioning the function fi is
identified as fault-free. In other words, creating the function fi on a block bj

requires just a subset of all nanowires and switches of that block. So, if the
defective components of the block are not used during configuring fi into that
block, then the function can operate without fault. Therefore, the defects of
the block are tolerated.

In the SCT procedure, the application is divided into m-input functions
and each time one of these functions (fi) should be configured into a block
of the device and the input and output lines from the BIST circuit to fi

must be configured. Also, the same function fi should be configured into the
LUT of the BIST circuit (see Fig. 2). Next, the BIST circuit can simply apply
exhaustive set of test patterns (2m) to the function and test its functionality.

Function under test:

Nanoscale architecture with rich
interconnect resources

m-input LUT
implements
an ideal copy
of the function
under test

m-bit
counter

m-bit

1-bit

1-bit comparator

CMOS scale BIST
circuit

Pass/Fail

fi

fi

Block bj

Clk

BIST_LUT

(fi)

Fig. 2. The proposed CMOS BIST circuit used to test nano devices

68 M. Tehranipoor and R. Rad

If the implemented function passes the test, then it can be reliably used in
the circuit. The process of selecting a function, mapping it onto a block of
the device and creating interconnections between the configured block and
BIST circuit and testing the function will be repeated for all functions of the
application. If a function fails the test then we should configure another block
with that function and the test process should be repeated.

Note that methods and tools for configuring nanoscale reconfigurable ar-
chitectures will be similar to those used for FPGAs but some modifications
may be required due to the architectural differences. This will be further dis-
cussed later in this chapter.

Figure 2 shows the proposed BIST scheme. The BIST circuit is composed
of an m-bit counter, an m-input LUT and a comparator, resulting in low BIST
area overhead. BIST circuit is assumed to be implemented in reliable CMOS
scale.

Figure 3 shows the detailed SCT procedure. In this procedure, a function
fi of the desired application is selected (line #10) from the list of functions
(F) and configured onto the LUT of the BIST circuit (BIST LUT, line #10).
If there are available blocks in the block list (B), one of them, e.g. bj , will
be selected and removed from the list of available blocks (line #13). Then
function fi will be mapped into this block (bj) and the wires between this
block and BIST circuit are configured (line #14). Test patterns are then
applied to the block. If the test fails (line #15), the block will be sent to
the set of defective blocks, i.e. DB (line #16). This will be repeated until
either all functions are configured into the blocks of the device (F = {}) and
the procedure is successfully finished or there are still some functions of the
application left unmapped and the set of available blocks (B) becomes empty.
In this case all the blocks of the device have been tried once, either they have
been successfully used to implement one of the functions or they have shown
defective behavior and were sent to the set of defective blocks (DB). If a
block shows faulty behavior for one function, it does not mean that it will
necessarily be faulty for every function because different functions will use
different subsets of switches and nanowires in a block. Therefore, if there are
some functions of the application left, defective blocks of the device can be
tried (line #21). However, if a block is tried for a number of different functions
and for all of them has shown a faulty behavior, i.e. nk � Discard Threshold
(where nk is the number of times block bk was used to implement a function
and the result was faulty), then the block should be discarded and sent to
discarded block list, i.e. DiB (line #26). After trying all the defective blocks
of the device if still there are some functions of the application left in F, then
the application is identified to be not implementable on the device.

As seen in the figure, two selections should be made during these steps.
First, one of the functions of the application should be selected from the set
of all functions, i.e. F (line #10). Then, an appropriate block of the device
should be selected and configured with the selected function (line #13 or
#21). Block selection is a decision that programming device should make

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 69

Fig. 3. The SCT procedure

based on the available blocks in the architecture, interconnections between
the function being implemented (fi) and other functions of the application
and timing requirements of the circuit.

Low area overhead of this BIST structure provides the opportunity of
parallel implementation of these testers on the chip so that at any time more
than one function can be implemented and tested on the device as shown
in Fig. 4. When multiple BIST circuits are implemented, test time will be
reduced. In this case, more than one function and more than one block of the
device should be selected at any time. Efficient methods based on heuristics
can be used for these selections.

70 M. Tehranipoor and R. Rad

Functions under test

CMOS-scale BIST circuits

BIST 1

BIST 2

BIST N/2

BIST N/2 +1

BIST N/2 +2

BIST N

Fig. 4. Parallel use of multiple BIST circuits for testing nano devices

The interconnections between functions of the circuit also need to be con-
figured and tested. This will be further discussed later in this chapter.

2.1 Analysis of the SCT Method

Since no nano-device is currently available to perform any real implementa-
tion, in this section, a probabilistic analysis is presented to show the timing
requirements of the proposed process. We first calculate the probability of oc-
curring a fault in a function fi configured into a block of the device. Based on
this probability we calculate the average number of blocks that must be con-
figured to finally find a fault-free implementation for the function. Hence, we
can calculate the required number of clock cycles for configuring and testing
function fi. Finally, for an application with T functions ({f1, f2, ...,fT } the
average number of clock cycles required to configure and test all functions can
be calculated. The results are compared with the number of cycles required
to apply the BIST method presented in [14].

To keep the analysis simple, reliable CMOS scale interconnects are as-
sumed for the architecture. We target an application that can be partitioned
into T small functions each with m inputs, i.e. functions {f1, f2, ..., fT }. As
Fig. 5 shows, an m-input function can be implemented on a (2m + 1) × 2m

crossbar of nanowires configured as an m-input lookup table (LUT). Note that
since diode logic cannot provide signal inversion, complement of the m input
signals should either be applied to the block or created inside the block. As
seen in the figure, switches on the junctions of the vertical nanowires with first

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 71

min0 min1 min2 min2-1
m

X1

X2

LUT

X1

Xm

X2

Out

Xm

...

...

Fig. 5. Implementation of an m-input function on a (2m + 1) × 2m crossbar con-
figured as a lookup table. Function F (x1, x2, .., xm) =

∑
Minterms(0, 2, 4) is im-

plemented as an example

2m horizontal nanowires are configured to provide the minterms. The switches
on the crosspoints of vertical nanowires with last horizontal nanowire (Out)
are configured to provide the sum of the minterms specified by the function.
So, the first 2m horizontal wires create the AND terms (minterms) and the
last horizontal wire creates the OR term.

First, we calculate the average probability of having a fault in a function
configured in a LUT. Let’s assume that Po is the probability of an open fault
in a molecular switch, Pc shows the probability of a closed fault in a molecular
switch and Pw denotes the probability of a fault caused by a defect in one of
the nanowires.

The probability of an implemented minterm to be faulty is given by:

P(faulty minterm) = 1 − P(fault−free minterm)

= 1 − (1 − pc)m(1 − po)(m+1)(1 − pw)(2m+2)

The probability of an m-input function with x minterms to be faulty is
obtained by:

P(faulty function) = 1 − P(fault−free function)

= 1 − [(1 − pc)m(1 − po)(m+1)(1 − pw)]x(1 − pw)(2m+1)

72 M. Tehranipoor and R. Rad

The average probability of having a fault in a function (Pff) and the
probability of successful implementation (Psi) of a function on this structure
after a number of repeated configurations (Nr) will be:

Pff =
∑2m

x=1 P(faulty function)

2m

Psi = (1 − Pff)P (Nr−1)
ff ⇒ Nr = 1 +

log Psi

1−Pff

log Pff

Nr can also be defined as the average number of blocks that should be
configured to finally find a fault-free implementation of a function fi on the
device with a probability higher than Psi. The average number of switches
to be configured for a function can be calculated as the average number of
minterms in a function multiplied by the number of switches for each minterm.
As seen in Fig. 5, there are (m+1) switches for each minterm to be configured,
so the average number of switches to be configured for a function (Nsf) is:

Nsf =
m + 1

2m

2m∑
x=1

x =
(m + 1)(2m + 1)

2

We assume that access and configuration structure of the architecture is
capable of configuring Ncs switches in each cycle. It should also be noted that
2m tests should be applied to each of the configured functions to test it ex-
haustively. Therefore, the average number of cycles required to configure and
test an m-input function with a success probability higher than Psi would be:

Config & Test Cycles (prob � Psi) = Nr · 2m +
Nr · Nsf

Ncs

First term in the above equation is the number of cycles required for test-
ing the configured functions (when a function is configured, 2m test patterns
should be applied to it). Second term is the number of cycles required for
configuring the function. For a circuit with T m-input functions, the time of
performing SCT procedure assuming N parallel BIST circuits, as shown in
Fig. 4, can be calculated as:

Cycles (SCT) = Nr × (
T

N
) × (2m +

Nsf · N
Ncs

) (1)

In this equation, first term of the sum is the cycles required to apply 2m test
patterns through N parallel BIST circuits to N configured functions and the
second term of the sum is the cycles required to configure the functions into
the blocks through configuration circuitry (Ncs switches in each cycle).

To compare this with the number of cycles required to test a nanoscale
architecture using previously proposed test methods, we estimated the num-
ber of cycles for testing a circuit with the same specifications mentioned earlier

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 73

(T m-input functions) based on the BIST method proposed in [14]. The num-
ber of configurations required for testing a K×K nanoblock of a nanofabric is
calculated to be 4K +6 and the number of configurations required for testing
a K × K switchblock of a nanofabric is estimated to be 4K2 [14].

To make a fair comparison, here we use the same assumptions and para-
meters used in the analysis of our SCT method. We assumed using CMOS
scale interconnects for the architecture hence, the required number of cycles for
test and configuration of the interconnects were omitted from the calculations.
Therefore, to keep the same conditions for [14], we assume the switchblocks of
the architecture to be fault-free. So, we omit the 4K2 configurations required
for testing each switchblock in the architecture. Based on our analysis, the
number of cycles required for BIST method proposed in [14] based on these
assumptions can be calculated as:

Cycles(BIST [14]) =
T

(1 − pw)2K(1 − pc)K2(1 − po)K2 × 4K + 6
Ncs

(2)

where K =
√

(2m + 1)2m.
Once defect map is created and stored, it can be used to configure the

functions of the design on the device. Therefore, additional cycles will be re-
quired to implement the functions based on the calculated defect map. Also,
as discussed in [14], applying the test patterns using their BIST process (and
almost all other proposed methods) will not result in finding the exact lo-
cation of the faulty block. Hence, there will be some fault-free blocks that
are identified as faulty during these test methods. That means recovery, i.e.
the ratio of detected fault-free blocks to all fault-free blocks, in these test
methods is lower than 100%. To achieve high recovery it is suggested that
a recovery procedure should be applied to exactly locate the faulty blocks.
This diagnostic procedure will require considerable number of reconfigura-
tions that will significantly increase the test time. In analysis presented above
we assumed that the test process can exactly locate the faulty blocks (in other
words we assumed 100% recovery). This assumption makes (2) to show test
cycles lower than the actual number of cycles required by the BIST method
presented in [14].

The number of cycles for SCT procedure and for BIST process proposed
in [14] are compared for different defect probabilities and design parameters
and the results are presented in Figs. 6 and 7. In each of these figures, constant
values are assigned to m, T , Ncs and Psi. Different values are assigned to N ,
i.e. the number of parallel BIST circuits, and to the fault probabilities of the
molecular switches and nanowires. As the results demonstrate, in most cases
the required cycles for our SCT procedure is considerably less than cycles of
BIST method of [14].

As Fig. 8 shows, increasing N , i.e. the number of concurrent BIST circuits,
will result in decreasing the overall time of the SCT procedure and increasing
the BIST area overhead. However, increasing N will not decrease overall SCT
procedure time linearly. If the configuration circuitry is capable of configuring

74 M. Tehranipoor and R. Rad

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04

R
eq

ui
re

d
cy

cl
es

 fo
r

te
st

Fault Probablity in nanowires and switches (Pw=Po=Pc)

SCT (N=1)
SCT (N=5)
SCT (N=10)
SCT (N=20)
BIST [22]

Fig. 6. Number of cycles required for testing a nano device using SCT method and
BIST method proposed in [14] when m = 3, T = 1, 000, 000, Psi = 0.999, Ncs = 5

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

0 0.004

Fault Probablity in nanowires and switches (Pw=Po=Pc)

 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04

R
eq

ui
re

d
cy

cl
es

 fo
r

te
st

SCT (N=1)
SCT (N=5)
SCT (N=10)
SCT (N=20)
BIST [22]

Fig. 7. Number of cycles required for testing a nano device using SCT method and
BIST method proposed in [14] when m = 4, T = 500, 000, Psi = 0.999, Ncs = 5

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 75

 0

 3e+06

 6e+06

 9e+06

 1.2e+07

 1.5e+07

0 5 10 15 20 25 30 35

R
eq

ui
re

d
cy

cl
es

 fo
r

S
C

T
 p

ro
ce

du
re

Area overhead in terms of parallel BIST circuits (N)

p=.001, Ncs=5
p=.005, Ncs=5
p=.01, Ncs=5
p=.001, Ncs=20
p=.005, Ncs=20
p=.01, Ncs=20

Fig. 8. SCT procedure time vs. N , i.e. the number of parallel BIST circuits, which
is a measure of BIST area overhead (m = 3, T = 1, 000, 000, Psi = 0.999)

a constant number of switches in each cycle (Ncs), then as N increases config-
uration time becomes the dominant part of the SCT procedure and this part
cannot be reduced through adding the number of parallel BIST circuits (N).
Adding more parallel configuration circuitry, i.e. increasing Ncs from 5 to 20
as shown in the figure, will reduce the configuration time and this in turn
reduces the SCT time. Area overhead resulted by adding the parallel BIST
circuits will be still small comparing to the area required to store the defect
map as previously proposed by BIST methods such as [11,13,14].

3 PNR-Aware Defect Avoidance

One of the disadvantages of the proposed SCT procedure is that it still does
not take place and route (PNR) tool information into account. In other words,
it may result in different performance every time a nano-device is configured.
To alleviate the problem, in this section we propose a new method that uses
SCT as the basic engine but it considers the placement and routing provided
by the tool to avoid per chip PNR. The proposed method takes advantage
of the existing redundancy in the nano-LUTs or nano-PLAs to configure the
target function. It still does not require creation of defect map.

76 M. Tehranipoor and R. Rad

3.1 Redundancy in Crossbar-Based PLAs

Figure 9 shows two implementations of function f = ab + b̄c on a defective
crossbar-based PLA. The PLA, shown in the figure, is a combination of an
AND plane and an OR plane and can be implemented based on diode logic
by using a crossbar of nanowires and configurable molecular switches on the
crosspoints of the wires [10]. The PLA may also be implemented using switch-
ing properties of FETs created on carbon nanotubes. As seen in the figure,
even in the presence of a number of defects in the crossbar, there are several
choices for fault-free implementation of function f . This is due to the fact that
there is high amount of inherent redundancy in this crossbar and large number
of resources (switches and wires) available for implementing a function.

In general, if we consider the case of configuring a function of size
(Kf ,Mf , 1), i.e. Kf inputs, Mf product terms and one output, on a PLA
of size (K,M,N), i.e. K input lines, M product lines and N output lines as
shown in Fig. 9, the number of possible ways to implement a function on PLA
can be calculated as:

PM
Mf

× PK
Kf

× PN
1

where PM
Mf

represents all possible permutations of Mf product terms among
M product lines. (Mf � M and Kf � K). This relation holds true for a
defect-free crossbar that all its resources are utilizable for implementing a

.

.

. .
.
.

b

b

a

c

In 1

In 2

In 3

In K

OutN

Out1

OR−Plane

AND−Plane

f= ab + bc

b

b

a

c

In 1

In 2

In 3

In K

OutN

Out1

OR−Plane

AND−Plane

P
roduct line M

P
roduct line 1

f= ab + bc

P
roduct line 2

P
roduct line 1

P
roduct line 2

P
roduct line M

Product term ab of function f is
configured on second product line
of the PLA

: Open switch defect

: Line defect
: Closed switch defect

Fig. 9. Two different implementations of function f = ab+b̄c on a defective crossbar

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 77

Several available tracks in each trunk (Channel Segment)

1

2

3

Block 1

Block 2

Fig. 10. There are several tracks in each routing channel that can be used in the
interconnect between two blocks. They can be carefully selected to avoid the defects

function. For example, for implementing a function of size (5,6,1) on a PLA
of size (7,8,3), there are 7065 possible configurations. Efficient algorithms must
be devised to find a fault-free mapping of the function onto the PLA.

Redundancy is also available in interconnects formed using crossbars of
nanowires. As Fig. 10 shows, there is redundancy in interconnect resources
used between two blocks of a device. Therefore, one can find several paths
from one block to another without changing the structure of the path be-
tween them. Hence timing characteristics of this path will not change. In
other words, in each segment of the route between two blocks (segments 1, 2
and 3 in the figure) there are several tracks that can be used. The amount of
redundancy in routing resources of the device is a design parameter (as well
as the block size) that should be precisely determined for architecture of the
device. In FPGA design, an optimum value for the number of available tracks
in each routing channel should be considered so that an acceptable trade-off
between area and performance can be reached. In nanoscale reconfigurable
devices, the number of tracks in each routing channel should be selected care-
fully such that routing resources can provide the required defect tolerance
while maintaining the area in an acceptable range.

3.2 Configuration and Test Procedure

Top level flow of the proposed test and configuration procedure is depicted
in Fig. 11. The first phase of the method is the conventional placement and

78 M. Tehranipoor and R. Rad

Find fault−free routes between
blocks and boundaries

(based on provided routing info)

Find fault−free routes between
interconnected blocks

Find fault−free implementation
for each function on its

assigned block
(based on provided placement info)

1) Perform Placement & Routing
(PNR)

2) Obtain PNR info. for blcoks,
their interconnects and

routes between blocks and
boundaries of the device

Step1: Step2:

Design Phase
(done only once)

Configuration and Test Phase
(performed for each device)

Fig. 11. The proposed test and configuration procedure considering placement and
routing information

routing which is performed only once during the design phase. Placement and
routing information of the blocks will be used in the next steps of the proce-
dure. In this phase, in addition to placement and routing of blocks, connec-
tions between the blocks and boundary of device are also determined. Routes
between blocks and boundaries of the device will be temporarily configured
during test phase for each block and used by tester and programming device
to apply tests and configuration voltages to the block.

Test and configuration procedure starts after placement and routing phase.
For every block, routes between the block and boundaries are used to access
the block (Step 1). The block is configured as pass-through and a small test
and selection phase is performed to find a defect-free route from the block to
boundaries. After finding the defect-free routes between the boundaries and
blocks, these routes can be used to find defect-free routes between the blocks
in a similar approach. Performing the proposed method for interconnections
requires detailed information about the routing architecture of the device.
However, since both routing resources and blocks of these devices are based
on crossbars, it can be expected that similar defect tolerance capabilities ex-
ist in routing section of these devices and performing the proposed method
for interconnects will require similar test and configuration efforts and will
result in similar defect tolerance and yield values. Simulation programs dis-
cussed in this chapter focus on Step 2 of Fig. 11, i.e. searching for a fault-free
implementation of the functions on the blocks of the device.

Note that the SCT procedure is used to test all blocks and routes. Once
fault-free routes are found, the procedure goes into the step of configuring
and testing each of the functions on the block specified in placement phase
(Step 2). This can be performed through various approaches. The following
subsections will present two of our proposed methods.

3.3 Identifying Fault-Free Configuration of Functions

Figure 12 shows a high level pseudo code for the identifying fault-free imple-
mentation of each function of the target application. It shows that either of

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 79

Fig. 12. The proposed procedure for identifying fault-free implementation of
functions

Fig. 13. Using exhaustive method for identifying fault-free implementation of each
function on its assigned crossbar block

the two algorithms (Greedy or Exhaustive) can be used (Figs. 13 and 14). An
exhaustive search method can be implemented to examine all possible con-
figurations of the functions on their blocks. In each case, once the function
is configured, test patterns should be applied through selected paths from
boundaries of device to the block. If the test results for the function shows a
fault-free behavior then the desired configuration is found. This, search should
be repeated for all functions of the application. Exhaustive searching of all
possible configurations of functions on crossbar blocks cannot be practical due

80 M. Tehranipoor and R. Rad

Fig. 14. Using greedy algorithm for identifying fault-free implementation of each
function on its assigned crossbar block

to high amount of time required for performing this search on each device.
However, it can provide the upper limit of defects that can be tolerated in
crossbar devices. Function Exhaustive Search() in Fig. 16 is a pseudo code
for this exhaustive approach.

Having the access routes from device boundaries to each of the blocks,
implementation of each function of the application on its assigned block can
be performed by a greedy search algorithm. Function Greedy Search() in
Fig. 14 shows the proposed approach. First, a set of simple test patterns are
applied to find Kf fault-free lines among K inputs of the PLA and one fault-
free line from its N outputs (lines 6–15 in Fig. 14). Then, each product term
of the function is configured on one of the available product lines of PLA and
test vectors are applied to test it. If the product line shows faulty behavior,
the process configures the product term on the next available product line and

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 81

tests it again. This will be repeated until all product terms of the function are
configured and tested on appropriate product lines of the block (lines 17–28
in Fig. 12).

3.4 Probabilistic Analysis

To evaluate the feasibility of the proposed method, a probabilistic analysis is
performed. We assume that the crossbar-based PLA has M product terms,
K inputs and N outputs (see Fig. 9). Also assume that the function that is
intended to be implemented on PLA has Mf product terms (Mf < M), Kf

inputs (Kf < K) and one output. Also assume that pl, po and pc are the
probabilities of a defect in lines (vertical/horizontal) of the crossbar, stuck-
open defect on each molecular switch and stuck-closed defect on a molecular
switch, respectively. Probability of finding Kf defect-free input lines (Pin)
among all K inputs of the PLA will be:

Pin � 1 −
K∑

i=K−Kf +1

(pl)i

Probability of finding one defect-free output line (Pout) among N outputs
of the PLA is given by:

Pout = 1 − (pl)N

Once Kf defect-free inputs and one defect-free output is found for imple-
menting the function, Mf defect-free product terms should be found among
M product lines of the PLA. To have a product line of the PLA usable as
a product term of the function, the product line itself should be defect-free
and the switches on the crosspoints of the line with Kf input lines and one
output line should also be defect-free. In other words, when a switch needs to
be configured as open in the function, then it should not have a stuck-closed
defect on the product line of PLA and if it must be configured as closed in the
function, then it should not have stuck-open defect in the PLA. Therefore,
probability of being defect-free for a product line (or product term) of the
PLA (Ppterm) is computed by:

Ppterm = (1 − pl) × (1 − po + pc

2
)Kf +1

At least Mf of these defect-free product lines are required to be able to
implement the function on the PLA. Probability of having these defect-free
product lines (Pat least Mf P lines) is given by:

Pat least Mf P lines � 1 −
M∑

i=M−Mf +1

(1 − P i
pterm)

82 M. Tehranipoor and R. Rad

Finally, probability of successful implementation of the function on the
PLA (Psuccess) can be calculated as:

Psuccess � Pin × Pout × Pat least Mf P lines

Ar denotes the ratio of the area of a PLA with M product lines, K inputs
and N outputs to the minimum area required for implementation of a func-
tion with Mf product terms, Kf inputs and one output on the PLA. Ar is
computed by:

Ar =
M × (K + N)
Mf × (Kf + 1)

Figure 15 shows the probability of successful implementation of a function
on a PLA for different defect densities and different amounts of redundancy
provided in the PLA. As seen in the figure, having higher amount of redun-
dancy in the PLA results in very high probability of successful implementation
(Psuccess) of functions. It should be noted that for the results shown in Fig. 15
we have set pc = pl = po. Therefore, the probabilities shown in horizontal axis
in Fig. 15 are the total probability of stuck-open, stuck-closed and line defects.
In fact, this is a pessimistic assumption because the probability of occurring
stuck-closed and line defects are expected to be much less that that of stuck-
open defects [12]. Therefore, we can expect higher Psuccess in implementing
functions on crossbar PLA.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 3 6 9 12 15 18 21 24

S
uc

ce
ss

 P
ro

b.

 % Defect Prob. (pl + pc + po)

PLA/Function Area Ratio (Ar):
1

1.75
2.4

3.15
4

4.95

Fig. 15. Probability of successful implementation (Psuccess) of a function on cross-
bar PLA for different defect probabilities and different amounts of redundancy

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 83

3.5 Two Different Implementations of the Proposed PNR-Aware
Defect Avoidance Method

In order to evaluate the proposed method in terms of the ability to find defect-
free implementation of target application’s functions on PLAs and at the same
time testing the configured functions, we have developed two simulation pro-
grams for implementing the proposed method on MCNC benchmarks. They
implement the second step of the block diagram shown in Fig. 11, i.e. Step 2 of
the second phase which is identifying a fault-free implementation of functions
on configurable crossbar blocks. Both implementations use outputs of SIS
(Flowmap and Flowpack). SIS is a synthesis package that can be used to map
the benchmarks into partitions (here functions, fi) of a specified size. Each of
these partitions are implementable on a PLA. In our simulations, SIS provides
the required partitioning of benchmarks into small functions of size Kf .

Implementation 1: Exhaustive Method

The first method performs an exhaustive search on a crossbar to implement
the logic functions. The crossbar is modeled as a two dimensional array. Each
array element specifies the status of one of the crosspoints of the vertical and
horizontal nanowires in the crossbar. Defects are randomly generated in this
array. As discussed in the previous section, open diode defects, closed diode
defects and nanowire defects are considered with probabilities of Po, Pc and
Pl, respectively. The logic functions are extracted from MCNC benchmarks
through a Perl script. In this experiment the search program is called a hun-
dred times for each function and average rate of success in implementing the
function on defective crossbar is measured. The results of these experiments
show the success rate in implementing functions on defective crossbars under
different defect rates through an almost exhaustive search. Figure 16 shows
various steps required for our exhaustive search.

Generate random defects
Read the function file

For each permutation of
outputs, inputs and

product lines

* Find the mapping of function
 onto crossbar

* Check the functionality of
 the mapped function

* If fault−free behavior
 return SUCCESS
 return the number of
 iterations

C++ Program

MCNC Benchmarks

Benchmarks b1,b2,..
.blif file

SIS (Flowmap & Flowpack)
(maps the benchmarks into

Kf input functions)

Function
Implementation results

* Call exhaustive search
* Check the result

Exract functions from .blif file
For each function (repeat 100 times)

Perl Script

Calculate the success ratio,
area ratio and the number of iterations

Fig. 16. Exhaustive method for mapping functions onto defective crossbars

84 M. Tehranipoor and R. Rad

Implementation 2: Greedy Method

The second implementation consists of three parts: the SIS package, a perl
script and a PLA Verilog model. Figure 17 shows a high level flow of the
developed simulation program. The Perl part of simulation program reads
outputs of SIS and extracts each of the functions of the benchmark, i.e. the
product terms of each function is obtained. Then, the program searches dif-
ferent possible configurations for each function on the PLA. This is performed
using the greedy algorithm shown in Fig. 14. For each of these configurations,
input and configuration files are generated and applied to the Verilog model
of PLA and Verilog simulator (Synopsys VCS) is then called to simulate that
configuration. This will be repeated for all product terms of each function of
the benchmark. For implementing each function on the PLA model, a defect
file should be created for the model. This file is created by random assignment
of defects to different PLA components. Probabilities of line defects, stuck-
open and stuck-closed switches are the inputs to the program and they can be
tuned to simulate different defect densities. The generated defect file will also
be applied to Verilog model of PLA and used in all steps of implementing a
function. For each function a new random defect file should be created. This
is because each crossbar PLA block has its own set of defects.

We have written behavioral Verilog models for each component in a PLA
including product line, input line, output line and molecular switches between
input/output and product lines. For each of these components appropriate
defect types are considered and behavior of the component is described under
each of these defects. Finally, all these components are put together in an
array to create the PLA module. The PLA module is capable of reading three
different files: configuration information file, defect information file and the

MCNC Benchmarks

Functions f1,f2,..fT
.blif file

PLA Verilog Model

Verilog Simulator (VCS)

SIS (Flowmap & Flowpack)
(maps the benchmarks into

Kf input functions)

Perl Script

Fail

For each function fi:

* Extract its product terms
* Generate a random defect file

For each product term Pj:

* Generate input file
* Generate configuration file
* Generate expected output file

* Read resulted output file
* Compare it with expected outputs

Fig. 17. Greedy method for mapping functions to defective crossbars

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 85

input file. Once these three files are prepared for the PLA, Verilog simulator
will be called to obtain the outputs which will be stored in an output file.

In order to find a defect-free implementation of function fi on the PLA,
the simulation program looks for appropriate positions for each product term
(ptij) of function fi in the PLA. The program maps the product term ptij
into a product line of the crossbar. Then, Verilog simulator is called and the
simulation output file is analyzed. If the Verilog simulation result is correct
for the specific product term, then the process will be repeated for another
product term of the function. Otherwise, a new product line of the PLA should
be selected for implementation of the product term of function fi and new
configuration and input files will be created and the Verilog simulation will
be repeated.

Once all product terms of the function fi are placed on product lines of
the PLA model and their functionality is verified the task of implementing
function on the PLA model is accomplished. This task should be performed
for all functions of the benchmark. If the program cannot find defect-free
implementation of function fi on a PLA, then the chip will be discarded. This
is considered as yield loss because no defect-free mapping of the benchmark
on the device was found.

For our simulations, size of the functions in the benchmarks, i.e. number of
their inputs (Kf), is specified through the mapping phase in the SIS package.
Size of the PLA model can be specified as a parameter to the Verilog code.
So, the amount of redundancy available in the PLA model can be calculated.
Also defect densities can be specified as parameters in the program. The
overall yield resulted from the process of testing, configuring and searching
for defect-free implementation of benchmarks is calculated and reported by
the simulation program.

In this section we present the results obtained from running the simulation
programs on 10 MCNC benchmarks (i1 − i10). As discussed in the previous
section, the SIS package was used to partition the MCNC benchmarks into Kf

input functions implementable on PLAs. The .blif output file obtained from
SIS are used in our simulation program. In all the experiments, defects are
randomly injected in the PLA models. In our experiments, we have assumed a
uniform defect distribution and made the experiments under different defect
probabilities.

3.6 Results Obtained from Exhaustive Method

We have performed the exhaustive search simulation for very high defect rates.
In these experiments stuck-open defects have probability values of 10 and
15% and stuck-closed defects occur with probability 10, 12, and 15%. Also
probability of nanowire defects is considered to be 5 and 10%. These defect
conditions are clearly beyond the expected rate of defects for technology of
nanowire crossbars. However, by assuming such extremely high defect rates we
can evaluate the upper limits of defect tolerance on a crossbar if an exhaustive

86 M. Tehranipoor and R. Rad

Fig. 18. Success ratio in implementing logic functions of the benchmarks on defec-
tive crossbar PLAs using exhaustive method

search is employed to find fault-free implementation of functions. The number
of inputs of the functions (Kf) is set to be less than four through SIS. For
each of these functions the search program is executed exhaustively and the
number of successful mappings of the function onto defective crossbars is
obtained. Also the average number of iterations the exhaustive search program
required to find a fault-free implementation of the function is obtained. In
these experiments we have considered a crossbar of size M = 7, K = 7
and N = 3. Since the functions of benchmarks are bounded to be less than
four inputs then there will be different area ratios based on the function size
(number of its inputs and product terms) and size of the crossbar.

Figure 18 shows the average success ratio in implementing functions into
the crossbar under different defect rates. As figure depicts, very high defect
rates can be tolerated in crossbars given enough amount of time to search the
crossbar for a fault-free implementation. Although exhaustive search cannot
be considered a practical approach, the observed tolerance against defects
encourages developing fast search algorithms for fault-free implementation of
the functions on crossbars.

Figure 19 shows the average number of iterations required for finding fault-
free implementation of functions on crossbars. As seen in the figure, increasing
Ar (increasing redundancy) will reduce the number of required iterations.

3.7 Results Obtained from Greedy Method

In these experiments we have assumed that stuck-open probability of molecu-
lar switches changes from 0 to 10% and stuck-closed probability of molecular
switches and line defect probabilities changes from 0 to 6%. Therefore, in

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 87

Fig. 19. Average number of iterations for implementing functions of the benchmarks
on defective crossbar PLAs using exhaustive method

Fig. 20. Success rates for implementing the benchmarks on defective crossbar PLAs
when Ar = 1.3

worst-case condition, there will be 10% stuck-open plus 6% stuck-closed and
6% nanowire (line) defect in the PLA model that is still beyond the expected
defect rates for nanowire crossbars.

Another parameter that must be taken into consideration in these exper-
iments is the amount of redundancy provided in crossbar PLAs. This redun-
dancy can be measured as the area ratio (Ar) between the crossbar PLA of
size M ×K ×N and the functions of size Mf ×Kf ×1. The first set of results
shown in Figs. 20 and 21 are the average values of success rate obtained from
running the simulation program on the 10 MCNC benchmarks. The figures
show the obtained success rates for two different amounts of redundancy and
for different values of defect probability.

88 M. Tehranipoor and R. Rad

Fig. 21. Success rates for implementing the benchmarks on defective crossbar PLAs
when Ar = 2.6

Here, we have defined success rate as ratio of the number of times that
implementation of functions on the crossbar PLA is successful to the total
number of functions in the benchmarks.

Success Rate =
no. of functions successfully implemented on the crossbar PLA

Total no. of functions in the benchmarks

This definition of success rate can provide an understanding of how much
success the method has had in providing defect tolerance in a nanoscale de-
vice. This is the same definition used in the exhaustive search experiments
implemented for functions of benchmarks as described in the previous sub-
section. Although the results are only for the device blocks and not routing,
yet high success rate can be achieved. For example, as seen in Fig. 21, when
po = 6% and pl = pc = 2%, 80% success rate can be achieved. As reported in
literature, in fabrication methods of nanoscale crossbars, defect probabilities
of up to 10% for stuck-open faults are expected and considerably lower prob-
abilities are predicted for stuck-closed and line defects [7]. As seen in Figs. 20
and 21, success rate considerably decreases for higher values of stuck-closed
and line defects. Stuck-closed and line defect will cause parts of the crossbar
(a defective line or two closed lines) to function incorrectly. Therefore, their
adverse effect on achievable success rate is more considerable than stuck-open
defects.

Figure 22 provides a comparison between achieved success rates in four
different redundancy conditions. These results are shown for 2% probability of
stuck-closed and line defects (pl = pc = 2%) and different values of stuck-open
probability (po). As seen in Fig. 22, relatively high success rate is achievable
through the proposed test and configuration method.

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 89

Fig. 22. Success rate for implementing the benchmarks on defective crossbar PLAs
under different values of redundancy when pl = pc = 2%

Ar = 1.3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10

Stuck-open prob. (po) %

of

 C
on

fig
ur

ed
 s

w
itc

he
s

pl = pc = 0%
2.00%
4.00%
6.00%

Fig. 23. Average number of configured switches for implementing the benchmarks
when Ar = 1.3

Results shown in Figs. 23 and 24 represent the estimated average number
of required molecular switch configurations for finding defect-free implemen-
tations of each benchmark on the defective crossbar PLAs. The time required
for these configurations is a major part of the total test and configuration
time. This time depends on the bandwidth of the programming device, i.e.
the number of molecular switches that can be programmed in parallel. It
will also be proportional to the total number of switches to be configured.

90 M. Tehranipoor and R. Rad

Ar = 2.6

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 2 4 6 8 10

Stuck-open prob. (po) %

#
 o

f
C

on
fi
gu

re
d

sw
it
ch

es

pl = pc = 0%

2.00%

4.00%

6.00%

Fig. 24. Average number of configured switches for implementing benchmarks when
Ar = 2.6

pl = pc = 2%

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14

Stuck-open prob. (po) %

of

 C
on

fig
ur

ed
 s

w
itc

he
s

Ar = 1.3

2.6

5

8.4

Fig. 25. Average number of configured switches for implementing the benchmarks
under different values of redundancy (pl = pc = 2%)

Therefore, we have reported the number of switch configurations as a pa-
rameter directly affecting the process time. As seen in the figures, higher
probabilities of stuck-open faults will increase switch configurations gradu-
ally. However, higher values of stuck-closed and line defects will increase the
number of required switch configurations more considerably.

Figure 25 shows the average number of switch configurations for different
redundancy values. As redundancy increases, crossbar size and hence number
of its molecular switches increases. Therefore, number of switch configurations
and overall process time increases as well.

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 91

Ar = 1.3

0

100

200

300

400

500

600

0 2 4 6 8 10

Stuck-open prob. (po) %

#
 o

f
T

es
t
C

yc
le

s

pl = pc = 0%

2.00%

4.00%

6.00%

Fig. 26. Average number of test cycles for implementing the benchmarks when
Ar = 1.3

Ar = 2.6

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Stuck-open prob. (po) %

#
 o

f
T

es
t
C

yc
le

s

pl = pc = 0%

2.00%

4.00%

6.00%

Fig. 27. Average number of test cycles for implementing the benchmarks when
Ar = 2.6

Figures 26 and 27 show estimated average number of required test cycles
for finding defect-free implementations of benchmarks. Number of test cycles is
another parameter that directly affects total time of the test and configuration
method. As seen in the figures, for higher defect probabilities, there is a slight
increase in the number of required test cycles. This, along with results shown
in Figs. 23 and 24, suggests that the total time of the method does not have
dramatic changes in different defect probabilities and the method can be used
even for very high defect rates.

Figure 28 shows the average number of test cycles for different values of
redundancy. Increasing the size of crossbars used in the device, i.e. increas-
ing redundancy, results in higher number of test cycles because there will be
more product lines in each crossbar PLA that must be searched for finding

92 M. Tehranipoor and R. Rad

pl=pc= 2%

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14

Stuck-open prob. (po) %

of

 T
es

t c
yc

le
s

Ar = 1.3

2.6

5

8.4

Fig. 28. Average number of test cycles for implementing the benchmarks under
different values of redundancy when pl = pc = 2%

defect-free implementation of functions into it. Therefore, higher redundancy
results in higher number of test cycles and higher number of switch configu-
rations and as a result, run time of the method will increase.

4 Conclusions

In this chapter an efficient test and defect tolerance method is proposed for
crossbar-based nanoscale reconfigurable devices. An important advantage of
the proposed method compared to previously proposed methods is that it
does not require defect information of the device to be stored in a defect map.
Also based on this method, placement and routing task will be performed only
once in design phase. The proposed method is based on searching for possible
implementations of a logic function in a crossbar PLA and finding its fault-
free implementation. A probabilistic analysis was presented to demonstrate
the high possibility of finding defect-free implementations of logic functions in
defective crossbars. Two different implementations are presented and several
experiments were performed on MCNC benchmarks under different defect
probabilities and redundancy. The results obtained from the two methods
show that very high defect rates can be tolerated.

References

1. ITRS 2005, International Technology Roadmap for Semiconductors, Emerging
Research Devices, http://public.itrs.net/Common/2005ITRS/

2. A. DeHon, S. C. Goldstein, P.J. Kuekes and P. Lincoln, “Nonphotolithographic
Nanoscale Memory Density Prospects,” IEEE Transactions on Nanotechnology,
vol. 4, no. 2, pp. 215–228, March 2005

Chapter 3: Test and Defect Tolerance for Nanoscale Devices 93

3. A. DeHon and M. J. Wilson, “Nanowire-Based Sublithographic Programmable
Logic Arrays” Int. Symp. on Field Programmable Gate Arrays (FPGA’04), pp.
123–132, 2004

4. R. M. P. Rad and M. Tehranipoor, “A New Hybrid FPGA With Nanoscale Clus-
ters and CMOS Routing,” submitted to Design Automation Conf. (DAC’06),
pp. 727–730, 2006

5. A. DeHon, “Nanowire-Based Programmable Architectures,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 1, no. 2, pp. 109–162, July
2005

6. D. Bhaduri and S. Shukla, “NANOLAB – A Tool for Evaluating Reliability of
Defect-Tolerant Nano-Architectures,” IEEE Transactions on Nanotechnology,
vol. 4, no. 4, pp. 381–394, July 2005

7. P. Kuekes, W. Robinett, G. Seroussi and R. S. Williams, “Defect-Tolerant Inter-
connect to Nanoelectronic Circuits: Internally Redundant Demultiplexers Based
on Error-Correcting Codes,” Inst. Phys. Nanotechnology, issue 16, pp. 869–882,
2005

8. B. Culbertson, R. Amerson, R. Carter, P. Kuekes and G. Snider, “Defect Tol-
erance on the Teramac Custom Computer,” in Proc. IEEE Symp. on FPGA’s
for Custom Computing Machines (FCCM’97), pp. 116–123, 1997

9. A. DeHon and H. Naeimi, “Seven Strategies for Tolerating Highly Defective
Fabrication,” IEEE Design & Test of Computers, vol. 22, Issue 4, pp. 306–315,
2005

10. S. C. Goldstein and M. Budiu, “NanoFabric: Spatial Computing using Molecular
Electronics,” in Proc. Int. Symp. on Computer Architecture, pp. 178–189, 2001

11. J. G. Brown and R. D. S. Blanton, “CAEN-BIST: Testing the Nanofabrics,” in
Proc. Int. Test Conf. (ITC’04), pp. 462–471, 2004

12. M. Mishra and S. C. Goldstein, “Defect Tolerance at the End of the Roadmap,”
in Proc. Int. Test Conf. (ITC’03), pp. 1201–1210, 2003

13. M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFab-
rics Using Built-In Self-Test Procedure,” in Proc. Int. Symp. Defect and Fault
Tolerance in VLSI Systems (DFT’05), pp. 305–313, 2005

14. Z. Wang and K. Chakrabarty, “Using Built-In Self-Test and Adaptive Recovery
for Defect Tolerance in Molecular Electronics-Based Nanofabrics,” in Proc. Int.
Test Conf. (ITC’05), pp. 477–486, 2005

15. M. B. Tahoori, “Defects, Yield, and Design in Sublithographic Nano-
electronics,” in Proc. Defect and Fault Tolerance in VLSI Systems (DFT’05),
pp. 3–11, 2005

16. R. M. P. Rad and M. Tehranipoor, “SCT: An Approach For Testing and Con-
figuring Nanoscale Devices,” in Proc. VLSI Test Symp. (VTS’06), pp. 370–377,
2006

17. J. L. Kouloheris and A. E. Gamal, “PLA-based FPGA Area versus Cell Gran-
ularity,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 4.3.1–4.3.4,
1992

18. R. M. Rad and M. Tehranipoor, “Fine-Grained Island Style Architecture for
Molecular Electronic Devices,” submitted to Int. Symp. on Field Programmable
Gate Arrays (FPGA’06), 2006

19. C. Stroud, S. Konala, P. Chen and M. Abramovici, “Built-In Self-Test of Logic
Blocks in FPGAs (Finally, A Free Lunch: BIST without overhead!),” in Proc.
14th VLSI Test Symposium, pp. 387–392, 1996

Chapter 4: A Built-In Self-Test and Diagnosis
Strategy for Chemically-Assembled
Electronic Nanotechnology

J.G. Brown and R.D. (Shawn) Blanton

1 Introduction

Very recently, researchers have achieved revolutionary advances that may
radically change the future of computing. By controlling the transfer of
energy between molecules, molecular-scale structures can be used to per-
form computational tasks. As we approach the economic and physical limits
of current solid-state electronics, traditional semiconductor devices become
increasingly difficult to manufacture. Advances in physics, chemistry, and
biology have exposed new research opportunities for “bottom-up” fabrica-
tion techniques [1–8]. These bottom-up techniques are referred to as chemical
self-assembly. Unlike photolithographic and etch techniques used in CMOS
technologies, bottom-up fabrication techniques rely on molecules assembling
themselves into regular patterns to create a computing system. Molecular elec-
tronics will not only address the ultimate limits of miniaturization but also
provide promising methods for novel manufacturing techniques.

Chemically-assembled electronic nanotechnology (CAEN) is under intense
investigation as a possible alternative or complement to CMOS-based com-
puting [9–15]. CAEN, also referred to as the nanoFabric, is a form of molecular
electronics, which uses directed self-assembly and self-alignment to construct
electronic circuits from nanometer-scale devices that exploit quantum-
mechanical effects. CAEN-based systems consist of devices that are two-
dimensional arrays of nano-scale wires that can be electronically configured
for memory, logic, or signal routing applications [16, 17]. Although expected
to have densities greater than 108 gate-equivalents/cm2, the nanoFabric may
possibly exhibit defect densities of up to ten percent. These highly-defective
circuits will therefore require a completely new approach to manufacturing
computational devices. In order to achieve any level of significant yield, it
will no longer be possible to discard a chip once a defect is found. Instead, a
method of using defective chips must be devised that will most likely focus
on post-fabrication reconfiguration to determine the properties of the device
in order to avoid or tolerate defects.

96 J.G. Brown and R.D.S. Blanton

Testing and diagnosis of CAEN are required to achieve fault tolerance
through reconfiguration. In this work, a built-in self-test (BIST) strategy
called CAEN-BIST is described that uses a test and diagnosis methodol-
ogy to identify faulty blocks in the nanoFabric. This methodology allows a
defective nanoFabric to be utilized despite the presence of defects. A behav-
ioral model for the nanoFabric is created in order to understand its behavior
and to explore the effectiveness of various test strategies. This model pro-
vides an environment for fault simulation that allows diagnostic accuracy to
be investigated. An analysis of previously published test strategies and our
proposed algorithm is presented. The test strategy proposed is intended for
the nanoFabric but can be applied to other, regular circuit architectures as
well (e.g., FPGAs).

2 Related Work

An integrated circuit is discarded after manufacturing if some part of it is
defective. One form of defect tolerance involves the ability to diagnose defec-
tive sections of a chip and map the design to a usable set of resources, thus
avoiding defective components. Defect tolerance provides increased yield and
therefore reduced manufacturing costs. A reconfigurable device consists of a
set of resources, some of which may be defective. Once the defects have been
located, a reconfigurable architecture can be programmed to avoid them.

Modern RAM chips are able to tolerate defects by using built-in redun-
dancy. For example, if a memory cell is found to be defective, a spare column
of cells can be used to replace the defective cell. First, testing is performed to
identify and locate any failures in the memory. Next, a redundancy analysis is
performed to determine which memory cells can be repaired with redundant
resources. There are two types of repairs that can be made. A “hard” repair
uses fuses, antifuses, or laser programming to disconnect rows or columns
with faulty memory cells. On the other hand, a “soft” repair uses an address-
mapping procedure to bypass faulty address locations. The primary reason
for redundancy within memories is to enhance yield. Studies have shown that
yield can be enhanced 5–20% [18]. However, in CAEN-based systems, it is
highly unlikely that a similar approach is viable. Only a small percentage of
resources are typically available for replacement, so if a large portion of the
system is defective, replacement will not be possible. Also, there is no way
to ensure that the components used for replacement are defect-free. There-
fore, simple row/column replacement will not be a viable approach for defect
tolerance in the nanoFabric.

Since the nanoFabric has the advantage of reconfiguration, a natural
solution to the defect density problem is likely suggested by studying other
reconfigurable fabrics [19] such as Field-Programmable Gate Arrays (FP-
GAs). An FPGA consists of an array of programmable logic blocks (PLBs)
interconnected by a programmable routing network. The function of the

Chapter 4: CAEN-BIST 97

Fig. 1. Logic blocks are programmed as test pattern generators (TPGs), blocks
under test (BUTs), or output response analyzers (ORAs) for FPGA-BIST [20]

device is determined by the programming bits, or configuration. Application-
independent testing of such a device is complicated by the fact that all
possible modes of operation must be covered.

FPGA-BIST [20,21] is a test and diagnosis strategy that makes use of the
reconfigurability of an FPGA to provide a complete test for all PLBs. In this
BIST approach, the logic blocks of the FPGA are divided into three groups.
As shown in Fig. 1, the PLBs are configured as either test pattern generators
(TPGs), blocks under test (BUTs), or output response analyzers (ORAs).
The TPG applies exhaustive test patterns to the BUTs, which send output
responses to the ORA, and the ORA compares responses from multiple BUTs
to determine if there is a defect. Since the PLBs of an FPGA are identical,
there is no need to store output responses for testing. Defect-free PLBs have
the same output responses, so the ORA only needs to compare the responses
received. As shown in Fig. 1, each ORA compares the responses of BUTs that
have different TPGs. This strategy is used to avoid the case in which a faulty
TPG applies an incomplete test which would lead to a faulty BUT escaping
detection. After the exhaustive test set is applied to the BUTs, the configura-
tions of the blocks are then interchanged to ensure that every PLB is tested.

FPGA-BIST also takes advantage of reconfigurability for diagnosis of
faulty PLBs. By configuring an FPGA according to the floorplans shown in
Fig. 2, each TPG is configured to test different sets of BUTs for each config-
uration. Therefore, the results of FPGA-BIST provide increased diagnostic
resolution. The reconfigurable nature of the nanoFabric will surely play a
pivotal role in developing effective test strategies. However, FPGA test and
diagnosis strategies [20–23] do not account for an extremely high defect den-
sity, nor a large numbers of components. Test and diagnosis of a CAEN-based
system requires a new approach.

The EasyPath Solution [24] from Xilinx is an effort towards defect toler-
ance for FPGAs. Chips that are manufactured with defects cannot be used for

98 J.G. Brown and R.D.S. Blanton

Fig. 2. Multiple test configurations of an FPGA provide increased diagnostic reso-
lution [21]

all possible applications. However, defective chips may be usable for designs
that do not make use of the defective portions of the chip. By testing the
defective chip for the customer’s specific design, it is possible to salvage these
chips for use. Although these defective FPGAs are no longer reconfigurable,
the ability to use them in this limited fashion improves yield and thus reduces
manufacturing cost.

Teramac [17, 25] is an FPGA-based system capable of running user de-
signs at one megahertz despite a defect density of nearly 3%. This system
consists of 864 FPGAs, with over 650,000 gate equivalents. Testing is per-
formed by downloading designs called signature generators. These are sets of
circuit components, including switches, wires, and logic blocks, that are config-
ured as linear feedback shift registers (LFSRs). Long, psuedo-random number
strings are generated and communicated throughout the set of components.
If the final bit stream generated by the LFSR is correct, all the components
are assumed to be defect-free. If the bit stream is incorrect, there must be a
defective component, so these components are used to create new signature
generators. The resources found at the intersection of the defective LFSR con-
figurations are recorded as defective in a defect database. The database is used
to ensure that the system is programmed to use only defect-free components.
Teramac provides empirical evidence that reliable systems can be created from
unreliable components. To utilize a nanoFabric, defective components must
be tolerated in a similar fashion.

Since the introduction of CAEN-BIST [26], Wang and Chakrabarty [27]
have introduced a nanoFabric BIST strategy. Similar to FPGA-BIST, their
approach configures each block as either a TPG, BUT, or ORA. Their strategy
provides 100% fault coverage for stuck-at, stuck-open, bridge, and connection
faults. Moreover, since every BUT is tested in parallel, the complexity of the
algorithm is independent of the size of the nanoFabric.

3 NanoFabric

The CAEN-based system analyzed here is an architecture called the nanoFab-
ric [9–14]. In this section, we describe the nanoFabric architecture (Sect. 3.1),
defect tolerance for the nanoFabric (Sect. 3.2), our simulation model of the
nanoFabric (Sect. 3.3), and algorithms for testing the nanoFabric (Sect. 3.4).

Chapter 4: CAEN-BIST 99

3.1 Architecture

The nanoFabric is a regular architecture that consists of an array of inter-
connected nanoBlocks (squares) and switchBlocks (circles) as shown in Fig. 3.
Unlike typical CMOS circuits, the nanoFabric does not have a dependence
on the underlying substrate. Therefore, as presented in [28, 29], the nano-
scale circuitry can be fabricated on top of a conventional CMOS circuit. This
capability enables an interface between nano-scale components and CMOS
circuitry. The interface is used to apply configuration bits and supply power
and ground to each component in the nanoFabric.

A nanoBlock is the fundamental unit of the nanoFabric and is analogous to
a PLB of an FPGA. A set of configuration bits establishes the logic behavior
for each block and the interconnections between blocks. A nanoBlock consists
of a molecular logic array (MLA) of switches to store the configuration of the
block, latches used for sequential circuit implementation, and I/O for forming
connections to adjacent nanoBlocks within the nanoFabric. The MLA is a
mesh of wires, commonly referred to as a crossbar architecture, as illustrated
in Fig. 4. Carbon nanotubes, silicon nanowires, and other nano-scale wires
have been used in this architecture. The regularity of the crossbar architecture
provides an inherent defect tolerance since any row or column can be selected
to implement a logic function.

At each intersection of wires, there is a carbon-based molecule called ro-
taxane that acts as a switch. The structure of the molecule resembles a ring on

Fig. 3. The nanoFabric is an array of interconnected nanoBlocks and switch-
Blocks [9]

Fig. 4. The crossbar architecture is comprised of a mesh of nano-scale wires with
molecular switches at each intersection [9]

100 J.G. Brown and R.D.S. Blanton

a rod. When a voltage is applied to the rod, the position of the ring changes.
The position of the ring determines the resistance of the molecule. The cur-
rent for a closed switch has been reported to be 60–80 times greater than that
of an open switch [30]. Therefore, the rotaxane switch can be configured to
behave as a diode-connection (“on”) or a highly-resistive open (“off”).

As shown in Fig. 5a, the switches shown in black are configured as diode
connections and the remaining switches are configured as highly resistive
opens. By applying inputs A and B to the first two horizontal wires of the
nanoBlock and configuring the first vertical wire as output Z, the diode-
resistor logic implementation shown in Fig. 5b is created. This circuit performs
the logic-AND function. NanoBlocks can be used to create simple logic gates,
as well as more complex logic functions.

The region between a set of nanoBlocks is known as a switchBlock, as de-
picted in Fig. 6. A switchBlock is also reconfigurable and serves to connect wire
segments of adjacent nanoBlocks. The configuration bits of the switchBlock
determine the direction of data flow through the block. The switchBlocks of
the nanoFabric provide the interconnect between each of the nanoBlocks.

(a) (b)

Fig. 5. In (a), the connections shown in black are configured as diodes while the re-
maining connections are configured as opens. This nanoBlock configuration produces
the diode-resistor logic implementation shown in (b)

Fig. 6. A switchBlock is the region between a set of nanoBlocks used to determine
the direction of data flow [9]

Chapter 4: CAEN-BIST 101

(a) (b) (c) (d)

Fig. 7. Non-deterministic fabrication methods may lead to (a) a perfectly aligned
mesh of wires, (b) alignment problems, (c) unwanted overlaps, or (d) missing over-
laps [12]

Unlike traditional CMOS technologies, CAEN involves self-assembly and
self-alignment methods. This approach is most effective at creating random
or very regular structures. Aperiodic structures produced through photolitho-
graphy will not be an option for this technology. Furthermore, like any manu-
facturing process, the fabrication of CAEN is imperfect. Unlike the ideal mesh
of wires (Fig. 7a) expected in a crossbar architecture, a nanoBlock may have
alignment problems (Fig. 7b), unwanted overlaps (Fig. 7c), or missing over-
laps (Fig. 7d) [12]. The challenges involved with the nanoFabric are unique
and require novel test and diagnosis strategies in order to utilize a defective
fabric.

3.2 Defect Tolerance

Reconfigurability has provided a new outlook for test strategies and defect
tolerance. However, in order to take advantage of the nanoFabric’s reconfig-
urable architecture, new test strategies must be explored to create a defect
map. As shown in Fig. 8, the shaded shapes represent defective components in
an example nanoFabric. However, rather than discarding this device, we desire
a test phase that results in a defect map that indicates which components are
defective. Figure 8 shows a defect map that has defective components marked
with an ×. The defect map provides an opportunity for defect tolerance. If
the defective components can be located, the configuration of the chip can be
adjusted through defect-aware place-and-route [31] to ensure that only defect-
free components are used to program the application functionality. The defect
map is specific to each particular fabric and is used to route around the defec-
tive components. Creating the defect map for a nanoFabric, however, requires
new test and diagnosis strategies.

First, the defect density of CAEN is higher than standard CMOS-based
circuits so many test and diagnosis algorithms intended for CMOS will not
be effective. Among other reasons, these algorithms either assume a single
instance of a defect [32], a small number of defects [33], or that the misbehav-
ior of a defective circuit can be captured by conventional fault models [32].
However, the high defect density of the nanoFabric makes such algorithms
ineffective.

102 J.G. Brown and R.D.S. Blanton

Fig. 8. Testing of the nanoFabric provides a defect map that can be used to avoid
defective components when programming the application functionality [13]

Next, a nanoFabric may contain billions of components. Therefore, the
complexity of the test algorithm is a very important issue. Separately testing
each component is obviously not viable. Similar to what was done in [17,25],
creating signature generators that contain a large number of circuit compo-
nents would improve test time, but would also increase the complexity of the
test required to achieve comparable diagnostic resolution. Given the expected
defect density, it is highly unlikely than any reasonably large set of compo-
nents would be defect-free. Therefore, signature generators are not likely to
be useful. For a nanoFabric, the large number of components and high de-
fect density provide hurdles for the creation of a defect map. NanoFabric test
requires a unique strategy to overcome these challenges.

A metric for describing the quality of a defect map is referred to as
recovery [13]. Recovery is the percentage of defect-free components that are
correctly diagnosed. This metric measures the diagnostic accuracy of a par-
ticular test strategy, but assumes there are no undetected defects. The ideal
recovery of 100% means every component in the nanoFabric is diagnosed cor-
rectly. However, since the actual number of defect-free components cannot be
known, this metric is meant solely for assessing simulation results.

3.3 Simulation Model

We created a behavioral model of the nanoFabric using C++ to determine
the effectiveness of various test strategies. The nanoFabric model consists of

Chapter 4: CAEN-BIST 103

a set of interconnected nanoBlocks and switchBlocks as shown in Fig. 3. The
number of nanoBlocks and switchBlocks in the nanoFabric (n), the number
of wires in each nanoBlock (k× k), and defect density (d) are all configurable
quantities. The model created for the nanoFabric is a generalized model and is
intended to simulate the high-level behavior of the nanoFabric. Therefore, the
characteristics of diodes were not included in the nanoBlock configurations.
Moreover, issues such as gain and isolation were not taken into account.

Each nanoBlock has input and output connections to adjacent nanoBlocks.
Although the CMOS-CAEN interface [28,29] may provide I/O for each of the
nanoBlocks in the nanoFabric, in order to truly take advantage of nanometer-
scale components, the nanoFabric interface should be minimized. Therefore,
test algorithms should not assume that there is an unlimited amount of I/O.
A limited I/O however makes the internal blocks of the fabric more difficult
to control and observe. Moreover, since the defect rate in the fabric is ex-
tremely high, controlling and observing internal blocks becomes even more of
a challenge.

The model created for the nanoBlock is similar to that of a programmable
logic array (PLA). As shown in Fig. 9, a PLA has a set of input lines I1, . . . , Il,
a set of product lines P1, . . . , Pm, and a set of output lines Z1, . . . , Zq.

Logic values are applied to the input lines and based on the connections
between the input and product lines, the logic-AND function is performed
on the input lines connected to a particular product line. For example, if
connections are made from the input lines I1 and I2 to product line P1, the
value of P1 equals (I1 ∩ I2). The set of connections between input lines and

Product Lines

Input Lines

Output Lines

I1

I2

Il

P1 P2 Pm

Z1

Z2

Zq

. . .

.

.

.

.

.

.

Fig. 9. A PLA consists of a set of input lines I1, . . . , Il, a set of product lines
P1, . . . , Pm, and a set of output lines Z1, . . . , Zq

104 J.G. Brown and R.D.S. Blanton

product lines is therefore known as the AND plane. The connections in the
AND plane are defined in a personality matrix⎛

⎜⎜⎜⎜⎝
A11 A12 . . . A1m

A21 A22 . . . A2m

...
... . . .

...
Al1 Al2 . . . Alm

⎞
⎟⎟⎟⎟⎠ .

Aij equals zero if there is a connection between input line Ii and product
line Pj . Otherwise, Aij equals one. If there are no connections between a
product line and any input line, the nanoBlock model assigns floating values
to the product line. Otherwise, the logic value of the product line is

Pj =
l∏

i=1

(Ii + Aij)]. (1)

Connections between product lines and an output line form a logic-OR
function. For example, if product lines P1 and P2 are connected to output line
Z1, the value of Z1 equals (P1 ∪ P2). The set of connections between product
and output lines is therefore known as the OR plane. The connections in the
OR plane are defined in a personality matrix⎛

⎜⎜⎜⎜⎝
B11 B12 . . . B1m

B21 B22 . . . B2m

...
... . . .

...
Bq1 Bq2 . . . Bqm

⎞
⎟⎟⎟⎟⎠ .

Bij equals one if there is a connection between product line Pj and output
line Zi. Otherwise, Bij equals zero. If there are no connections between an
output line and any product line, the nanoBlock model assigns floating values
to the output line. Otherwise, the value of the output line is

Zp =
m∑

j=1

(BpjPj)]. (2)

In the nanoBlock model, horizontal and vertical wires can be configured
as either input, product, or output lines. The configuration inputs of the
nanoBlock, shown as diode connections in Fig. 10, determine the functionality
of the block. Based on (1) and (2), an output Zp is assigned the appropriate
values according to

Zp =
m∑

j=1

[Bpj

l∏
i=1

(Ii + Aij)], (3)

where l is the number of input lines and m is the number of product lines. For
example, in Fig. 10, the top two horizontal wires are configured as inputs I1

Chapter 4: CAEN-BIST 105

Fig. 10. A nanoBlock configured as a two-input OR gate. Active switches are shown
as diode connections

and I2. The bottom horizontal wire is configured as output Z1. Therefore, the
connections along the top two wires are A connections, while the connections
along the bottom wire are B connections. The product lines P1 and P2 assume
the values of I1 and I2, respectively, due to the A connections, and the B
connections create a logic-OR function of the two product lines. Therefore,
the output Z1 equals (I1∪I2). The wires of the nanoBlock can be reconfigured
as either inputs or outputs, which can change the behavior of these connections
and therefore change the logic function of the block.

A nanoBlock consists of a mesh of k horizontal wires and k vertical wires
with k2 configuration bits. A k×k nanoBlock can be used to implement a logic
function with (2k−1) inputs and one output, (2k−2) inputs and two outputs,
(2k − 3) inputs and three outputs, etc. The selection of wires in the block is
arbitrary, however. Any of the wires, horizontal or vertical, can be configured
as inputs or outputs to implement the desired logic function. In the model, a
nanoBlock can also be configured as a tester. As a tester, a nanoBlock applies
a test pattern, receives a response, and stores a binary value to indicate if the
BUT has passed all tests.

The model for a switchBlock is quite simple, consisting of four ports (north,
south, east, and west) and twelve control bits used to determine the direction
of data flow as shown in Fig. 11. Each control bit enables data to flow from
one port of the switchBlock to another. For example, if control bit zero is
asserted, data flows from the west to the north.

A set of nanoBlocks uses the adjacent switchBlocks to create complex logic
functions. Figure 12 is an example in which nanoBlocks 1 and 2 are used to
create AND gates and the adjacent switchBlock transfers the outputs of these
gates to nanoBlock 3, which is configured as an OR gate. This configuration
creates a sum-of-products

Z2 = I5 + I4 = Z1 + Z0 = I3I2 + I1I0.

106 J.G. Brown and R.D.S. Blanton

Fig. 11. The control bits of the switchBlock determine the flow of data between its
four ports

Fig. 12. Three nanoBlocks and a switchBlock used to create a sum-of-products
function

In order to simulate a faulty nanoFabric, fault injection is performed.
A nanoBlock or switchBlock is selected randomly from the nanoFabric and a
randomly selected fault type is applied to the model for that block. Fault types
include traditional PLA fault models such as stuck-at, connection, and bridge

Chapter 4: CAEN-BIST 107

faults. A stuck-at fault is injected by randomly selecting a wire in a nanoBlock
or switchBlock and driving it to a specific value. Likewise, connection faults
are injected by randomly selecting a bit from the personality matrix of a
nanoBlock or a control bit of a switchBlock and driving it to a specific value.
Additionally, bridge faults are injected by inserting logic functions between
wires (AND-type, OR-type bridge fault) or overriding one signal with another
(dominant bridge fault). The probability of a nanoBlock or switchBlock being
defective is determined by the defect density d, and a block may have any
number of faults. Therefore, the average nanoFabric would have d% defective
blocks and (100− d)% defect-free blocks. Once the faults are injected, an ex-
act defect map is created based on the locations of the injected faults. This
“golden” defect map is used to determine the diagnostic accuracy.

Based on the specified values of n, k, and d, a defective nanoFabric is
created and simulated for a given test strategy. A second defect map is de-
rived from the test-simulation results. A comparison between the derived and
golden defect maps allows recovery to be calculated. To robustly examine
the effectiveness of test strategies, thousands of simulations are performed for
different sizes and defect densities of the nanoFabric.

3.4 Test Algorithms

In order to understand the effectiveness of testing, some notation is defined.
First, the time required to apply a test pattern is defined as ttest. Second,
the time required to reconfigure the entire nanoFabric is defined as tconfig.
Next, the time required for an LFSR signature generator to generate a final
signature is defined as tLFSR. Although no assumptions have been made as to
the values of these parameters, one can speculate that the configuration time is
substantial compared to ttest. Also, the time required for an LFSR to generate
a signature is substantial compared to ttest. The values of these parameters
are dependent on the number of nanoBlocks and switchBlocks in the fabric
(n) and the number of wires in a nanoBlock (k×k). The values of these three
timing parameters are used to characterize the complexity of each nanoFabric
test algorithm.

We explored several test algorithms using the nanoFabric model. The first
algorithm creates signature generators (LFSRs, counters, etc.) from rows and
columns of nanoBlocks. By creating large signature generators, test time can
be reduced. The circuit generates a signature, which can be used to deter-
mine if there are defects in any of the nanoBlocks. If the tests pass, all the
blocks in the signature generator are marked as defect-free. However, if any
of the tests fail, all of the blocks are marked as defective. Therefore, one de-
fective block in a large signature generator forces all the blocks in the circuit
to be diagnosed as defective. By creating signature generators from rows of
nanoBlocks and then repeating the process for each of the columns, diagnostic
accuracy is improved. For example, if the first row of nanoBlocks is found to
be defective and the first column of nanoBlocks is found to be defective, then

108 J.G. Brown and R.D.S. Blanton

Fig. 13. Signature generators are created using diagonals of components

the nanoBlock that is located at the intersection of these two circuits must be
defective. This algorithm requires two configuration phases and therefore two
signature generation phases. Therefore, the time required for this algorithm
to execute is 2tconfig + 2tLFSR.

A similar algorithm involves diagonal signature generators. This strategy
creates signature generators from diagonals of nanoBlocks. In a manner similar
to row-column testing, if a defect is detected, the entire diagonal is diagnosed
as defective. As shown in Fig. 13, the first three diagonals from the upper-left
corner are labeled 1, 2, and 3, respectively. In this approach, the signature
generators are of varying sizes, which allows for improved diagnostic resolution
in some cases. For example, in Fig. 13, diagonal 1 has only one nanoBlock,
while diagonal 3 has five. Smaller signature generators allow higher diagnostic
resolution. Similar to the row-column approach, diagonal testing requires two
configuration phases and therefore two signature generation phases. Therefore,
the time required for this algorithm to execute is also 2tconfig + 2tLFSR.

As shown in Fig. 14, for a defect density d = 10%, row-column testing
achieves an average recovery just greater than 60% while diagonal testing
results in an average recovery of approximately 95%. However, these results
assume a fabric size of n = 25 blocks. Although the time complexity is rea-
sonable, these algorithms prove ineffective for larger circuit sizes. As shown
in Fig. 15, the average recovery for these algorithms drops below 10% for fab-
rics that are larger than n = 2,000 blocks. Since the nanoFabric is expected
to consist of millions of nanoBlocks, it is highly unlikely that either of these
approaches are viable.

The “none-some-many” strategy is described in [13]. This approach cre-
ates LFSR-based signature generators from a random selection of nanoBlocks.
Based on the results of the test set, each nanoBlock is assigned a probability
of being defective. NanoBlocks that exceed a certain probability threshold are
marked as defective in the defect map and removed from the fabric. New signa-
ture generators are created and the test is performed again for the remaining

Chapter 4: CAEN-BIST 109

Fig. 14. Average recovery for row-column and diagonal testing as the defect density
d increases, n = 25, k = 10

Fig. 15. Average recovery for row-column and diagonal testing as the number of
components n increases, k = 10, d = 10

nanoBlocks. This process repeats until all the nanoBlocks are diagnosed as
defective or defect-free. The average recovery is reported to be approximately
55% for d = 10%. This approach however assumes an unlimited amount of
interconnect between nanoBlocks in order to create signature generators con-
sisting of randomly selected nanoBlocks.

110 J.G. Brown and R.D.S. Blanton

3.5 CAEN-BIST

The test strategy presented in this chapter is a BIST method for the nanoFab-
ric we call CAEN-BIST. This method not only enables the nanoFabric to test
itself, but also stores the results of the tests internally. Since standard BIST
approaches require only a small percentage of the circuit components, many
algorithms assume that the additional hardware implemented for BIST is
defect-free. However, due to the high defect density, no such assumptions can
be made for the nanoFabric. Therefore, all blocks of the nanoFabric must be
tested. CAEN-BIST is unlike traditional BIST since test pattern generation
is not accomplished within the nanoFabric. The test patterns and configura-
tions are created externally and delivered to the fabric. However, the output
response analysis and diagnosis are accomplished internally.

The process of testing a nanoBlock requires a set of test patterns and a set
of configurations. Since a nanoBlock can be configured to implement virtually
any logic function, the block must be tested completely for any possible con-
figuration. A nanoBlock has similar structure and behavior to that of a PLA
and therefore should make use of similar fault models. These fault models
include stuck-line, connection, and bridge faults [32].

The nanoBlock is configured for testing as shown in Fig. 16. A walking
binary sequence is applied to the inputs of the nanoBlock. For a nanoBlock
with 4 inputs, for example, the following test patterns are applied: 1000, 0100,
0010, 0001 as shown in Fig. 16. This configuration causes the walking sequence
to appear as outputs on the vertical wires. If a walking sequence does not ap-
pear correctly, a fault is detected in the nanoBlock. After the test sequence
is applied, the configuration is shifted, as shown in Fig. 17. The walking se-
quence is repeated until all connections in the nanoBlock have been tested.
For a nanoBlock with k2 connections, k test patterns are applied to k different
configurations for a total of k2 tests. This test set ensures that every connec-
tion in the nanoBlock is tested in both the “on” and “off” configurations and
therefore provides 100% fault coverage for single stuck-line, connection, and
bridge faults [34,35].

The switchBlocks of the nanoFabric are not directly tested in this ap-
proach. However, a defective switchBlock is detected during the testing of

Fig. 16. A walking sequence of ones is applied to the horizontal wires and the
output response is transmitted along the vertical wires

Chapter 4: CAEN-BIST 111

Fig. 17. The configuration of the nanoBlock is shifted after all test patterns have
been applied and the process is repeated until all connections have been tested

Fig. 18. A nanoBlock configured as a tester applies a test pattern to its neighboring
nanoBlock, the block under test (BUT), compares the output response to the test
pattern applied, and stores the status of the tested neighbor

its adjacent nanoBlock. Since the CAEN-BIST approach tests a nanoBlock
multiple times, the diagnosis of a switchBlock is made accurately.

In CAEN-BIST, nanoBlocks are used to test neighboring nanoBlocks [36].
When configured as a tester, the nanoBlock passes a test pattern to the block
under test (BUT) that sends an output response back to the tester as depicted
in Fig. 18. The BUT is configured to receive the test pattern and generate an
output response that matches the test pattern. Therefore, if the nanoBlock is
defect-free, the output response matches the test pattern. Therefore, there is
no need to store the correct response. The tester compares the test pattern to
the response received to determine if the BUT is defective. Unlike standard
BIST techniques, there is no signature-based compaction, so there are no
aliasing problems.

Assuming the tester has memory storage [37], it stores a binary test out-
come to indicate whether the neighbor is defective. Each nanoBlock has a sin-
gle bit of storage for each of its three neighbors, which represents the status
of the neighboring nanoBlock. Rather than storing the status of a nanoBlock
within itself, the neighbors of a nanoBlock indicate whether it is defective. This
approach is used to avoid the problem of defective nanoBlocks marking them-
selves as defect-free. As a result, if a nanoBlock is defective, the neighbors,
when configured as testers, store a binary value to indicate that the neigh-
boring nanoBlock is defective and that it should not be used. Each neighbor

112 J.G. Brown and R.D.S. Blanton

Fig. 19. Each nanoBlock stores three bits to indicate the condition of its three
neighbors

is tested individually by a tester, but an entire diagonal of nanoBlocks is
simultaneously configured as testers in order to reduce test time.

CAEN-BIST is performed in a wave-like manner [13]. First, the corner
nanoBlock of the fabric is tested by an external tester and if this nanoBlock
is defect-free, it is configured as a tester and used to test its three neighbors.
In Fig. 19, for example, nanoBlock 1 is configured as a tester to test its three
neighbors, 2, 4, and 6. After these three nanoBlocks are tested, nanoBlock
2 tests nanoBlock 3, nanoBlock 4 tests nanoBlock 5, and nanoBlock 6 tests
nanoBlock 7, simultaneously. Each of these testers (2, 4, and 6) then test
their next neighbors (5, 7, and 9) and once all three of their neighbors have
been tested, the next diagonal of nanoBlocks becomes testers. Each diagonal
is configured as testers until the entire fabric has been tested.

There are
√

n diagonals to be tested, each tester tests three neighboring
nanoBlocks, and k2 test patterns are applied to each nanoBlock. Therefore,
the total number of test patterns for CAEN-BIST is 3k2

√
n. The number of

reconfigurations required is 3k
√

n. Therefore, the time for this algorithm to
execute is (3k

√
n)tconfig + (3k2

√
n)ttest.

Once the entire fabric has been tested, each nanoBlock has three bits
stored internally to indicate the condition of its three neighboring nanoBlocks
as shown in Fig. 19. The symbol “1” indicates a defect-free neighbor, “0”
indicates a defective neighbor, and “X” indicates that there is no neighbor. In
this particular example, nanoBlocks 7, 9, and 11 have all tested nanoBlock 12
and stored a “0” value in memory to indicate that nanoBlock 12 is defective.
Therefore, nanoBlock 12 is diagnosed as defective since each tester was found
to be defect-free by other testers. Although nanoBlock 12 has stored a “0” to
indicate that nanoBlock 13 is defective, this result is arbitrary and cannot be
used for diagnosis since a defective nanoBlock cannot be trusted as a reliable

Chapter 4: CAEN-BIST 113

tester. Also, nanoBlock 3 indicates that nanoBlock 8 is defective. However,
nanoBlocks 5 and 7 indicate that the same nanoBlock is defect-free. Since
nanoBlocks 3, 5, and 7 were all found to be defect-free, there must be a
defect in the interconnect between nanoBlock 3 and nanoBlock 8. Therefore,
the switchBlock between these two nanoBlocks is diagnosed as defective, but
nanoBlock 8 is diagnosed as defect-free. In the case where there is no tester
available to test a nanoBlock, the untested nanoBlocks are assumed to be
defective.

The corner nanoBlocks are tested in an initial phase and their test out-
comes are stored externally. All other nanoBlocks are assumed to be defective
until a defect-free nanoBlock marks that block as defect-free. Since the defect
map is kept internal during test, the defects are transparent to the outside
world, and testing the fabric becomes less complicated since the nanoBlocks
are aware of their defective neighbors. Furthermore, the need to observe ef-
fects of defects is eliminated. As long as the nanoBlocks are controllable, they
can be tested effectively.

Controlling the nanoBlock is a challenge however. Since there is a large
number of nanoBlocks and a high defect density, finding a path of defect-
free nanoBlocks through the fabric is a non-trivial task. In Fig. 20, testers
are labeled with a “1” while the BUT is labeled with a “2”. In order to pass
data from the corner nanoBlock to the testers, there is a defective nanoBlock
(marked with an ×) that must be avoided. However, since each nanoBlock is
aware of its defective neighbors, the data is only passed along the solid lines
shown. Based on the bit stored to indicate whether a neighbor is defective, a
nanoBlock is configured to only communicate with a neighbor that is defect-
free. Defect-free nanoBlocks disable the ports (shown as dotted lines) of the
switchBlocks that are adjacent to the defective nanoBlock. This terminates

Fig. 20. Defective nanoBlocks must be avoided to ensure a defect-free path to the
testers

114 J.G. Brown and R.D.S. Blanton

communication to and from the defective block so that no corrupted data can
be sent through the fabric. Therefore, a defect-free path can be assured for the
testers, if one exists. If a path from the corner nanoBlock to a tester does not
exist, a set of nanoBlocks may go untested and are assumed to be defective.

CAEN-BIST requires an external tester to apply configurations and test
patterns. However, the test patterns and configurations being applied to the
nanoFabric are independent of the defect map. The external tester has a
standard sequence of test patterns and configurations. The only requirements
of the external tester are to test the corner nanoBlocks of the fabric, configure
each diagonal of the nanoFabric as testers and BUTs sequentially, and repeat
a sequence of test patterns to the corner nanoBlock. The corner nanoBlock
tests its neighbors with the test patterns received and then configures the
adjacent switchBlocks to avoid any defects found. Next, the corner nanoBlock
passes the test patterns to the next set of testers and the process repeats until
the entire fabric has been tested. Since the nanoBlocks configure around their
defective neighbors by enabling and disabling their adjacent switchBlocks, the
external tester does not need to have any knowledge of the defect map. The
sequence of test patterns and configurations are consistent for any nanoFabric
under test. This external tester can therefore be implemented with a simple
finite state machine, perhaps in the underlying CMOS.

A problem arises when corner nanoBlocks are defective. If a corner
nanoBlock is defective, there is no defect-free path into the nanoFabric and
so testing cannot be carried out effectively. However, since the selection of the
corner nanoBlock is arbitrary, any corner nanoBlock can be used as the entry
point for CAEN-BIST. Also, if the defect map is downloaded from the fabric,
the process can be repeated from all the defect-free corners in order to provide
higher diagnostic resolution based on four defect maps. If a nanoBlock is diag-
nosed as defect-free during any of the iterations, the nanoBlock is defect-free.
Unfortunately, for a nanoFabric that has four defective corner nanoBlocks, the
algorithm has no entry point and therefore diagnoses the entire nanoFabric
as defective. Once testing is complete, the circuitry used during testing can
be reprogrammed for application functionality.

4 Simulation Experiments

For the following experiments, 1,000 different versions of the nanoFabric were
created for each combination of values for the parameters n, k, and d. A defect
map is created for the nanoFabric based on test-simulation results and it is
compared to the golden defect map to determine the recovery. Recovery is
averaged over 1,000 nanoFabric simulations and is therefore referred to as
average recovery.

CAEN-BIST has been found to provide an average recovery greater than
92% for defect densities reaching as high as 10%, and average recovery re-
mains nearly 80% for defect densities up to 20%. The average recovery can

Chapter 4: CAEN-BIST 115

Table 1. Average recovery for increased iterations of CAEN-BIST for n = 1 million,
k = 10, and d = 10%

No. of Average
iterations recovery (%)

1 92.1
2 97.9
3 99.6
4 99.9

Fig. 21. CAEN-BIST provides high average recovery for increasing defect densities.
Four iterations of CAEN-BIST provides nearly 100% average recovery for defect
densities up to 20%

be improved however by repeating the algorithm from all the corners of the
fabric. Although one corner provides acceptable results, the average recovery
can be improved to nearly 100% by repeating the process for each corner of
the fabric. As shown in Table 1, the average recovery for four iterations of
CAEN-BIST is 99.9%.

Moreover, the average recovery remains high for increasing defect densities.
As shown in Fig. 21, for a defect density of 20%, one iteration of CAEN-BIST
achieves an average recovery of 79.5% and four iterations achieves an average
recovery of 97.8%. If the defect density of CAEN exceeds expectations, CAEN-
BIST will remain an effective test strategy.

CAEN-BIST also scales with the size of the nanoFabric. As shown in
Table 2, the average recovery remains greater than 99% for large fabric sizes.
The effectiveness of CAEN-BIST appears to be independent of the number

116 J.G. Brown and R.D.S. Blanton

Table 2. Average recovery for four iterations of CAEN-BIST as fabric size increases
for k = 10 and d = 10%

No. of Average
blocks (n) recovery (%)

100 99.86
400 99.91
2,500 99.88
10,000 99.88
40,000 99.72
250,000 99.85
1,000,000 99.82
4,000,000 99.85
25,000,000 99.83
100,000,000 99.92

Fig. 22. Four iterations of CAEN-BIST achieves superior average recovery for in-
creasing defect densities for n = 1 million and k = 10

of blocks in the nanoFabric. If the nanoFabric reaches or exceeds billions of
nanoBlocks, we believe CAEN-BIST would remain an effective test algorithm.

CAEN-BIST achieves higher levels of average recovery than the other al-
gorithms discussed in Sect. 3.4. As shown in Fig. 22, the row-column, diagonal,
and the none-some-many algorithms do not achieve comparable levels of av-
erage recovery.

For the aforementioned experiments, faults are injected at the rate of d%
using a random distribution. However, another set of experiments is per-
formed to determine the effects of clustered faults within the nanoFabric. The

Chapter 4: CAEN-BIST 117

(a) (b) (c)

Fig. 23. Examples of clustered faults: (a) faulty row, (b) faulty column, and
(c) faulty group

location, size, and type of clusters are chosen randomly. Examples of clus-
tered faults are shown in Fig. 23. Clustered faults include faulty rows, faulty
columns, or large groups of faulty nanoBlocks in one location. Fault clustering
has a significant effect on the average recovery. For d = 10%, n = 1 million,
and k = 10, after one iteration of CAEN-BIST, the average recovery is only
12.3%. However, after testing from every corner of the fabric, the average re-
covery is greater than 98%. Therefore, if fault clustering becomes likely for
CAEN, the repeated iterations of CAEN-BIST will be absolutely necessary
to achieve a high level of recovery.

5 Implementation Challenges

There are several implementation challenges that must be addressed for
CAEN-BIST to be effective. First, the time required for the nanoFabric to
be configured is a major factor in this algorithm. Also, since the results of
tests are stored internally, the defect map must be downloaded after each it-
eration of CAEN-BIST, which may also require a significant amount of time.
If this required time becomes substantial, testing will become a major bot-
tleneck in the manufacturing process. The next challenge involves the storage
of test results. Since each nanoBlock uses three bits to store results for its
neighboring nanoBlocks, this may become significant for larger fabric sizes.
Memory storage becomes even more substantial when there are increased it-
erations of CAEN-BIST since intermediate defect maps must also be stored.
Finally, CAEN-BIST creates a defect map that diagnoses each nanoBlock as
defective or defect-free. However, the ideal defect map would have information
regarding the condition of each wire and switch within a nanoBlock. There-
fore, diagnostic resolution needs to be increased in order to provide the most
ideal recovery for the nanoFabric.

118 J.G. Brown and R.D.S. Blanton

6 Summary

We have developed a test and diagnosis strategy called CAEN-BIST that di-
agnoses faulty blocks in the nanoFabric. Our CAEN-BIST approach exploits
the reconfigurability of the nanoFabric by configuring nanoBlocks as testers
for their neighboring nanoBlocks. A behavioral model of the nanoFabric was
created to simulate the behavior of the architecture and to provide an environ-
ment for different test algorithms. This environment allowed us to empirically
show that an algorithm such as CAEN-BIST is viable for achieving accurate
diagnostic results. CAEN-BIST achieves 100% coverage for all single stuck-
line, connection, and bridge faults and average recovery of 92% for defect
densities up to 10%. Moreover, diagnostic accuracy is improved significantly
when the algorithm is performed on all four corners of the nanoFabric with
the additional cost of storing the intermediate defect map. CAEN-BIST ap-
proaches 100% recovery for increased iterations and scales well with the size
of the nanoFabric and defect density.

CAEN-BIST has provided promising results for diagnosis of the nanoFab-
ric. The efficient creation of a defect map provides stepping stones toward
defect tolerance in CAEN-based systems and an outlook toward the utiliza-
tion of other defective circuit fabrics.

References

1. Y. Cui et al., “Diameter-controlled Synthesis of Single Crystal Silicon
Nanowires,” Applied Physics Letters, vol. 78, pp. 2214–2216, 2001.

2. T. Kamins et al., “Chemical-vapor Deposition of Si Nanowires Nucleated by
TiSi2 Islands on Si,” Applied Physics Letters, vol. 76, 2000.

3. J. Mbindyo et al., “DNA-directed Assembly of Gold Nanowires on Complemen-
tary Surfaces,” Advanced Materials, vol. 13, pp. 249–254, 2001.

4. D. J. Pena et al., “Electrochemical Synthesis of Multi-Material Nanowires as
Building Blocks for Functional Nanostructures,” in MRS Symposium Proceed-
ings, vol. 636, 2001.

5. R. Service, “Assembling Nanocircuits from the Bottom Up,” Science, vol. 293,
2001.

6. H. Soh et al., “Integrated Nanotube Circuits: Controlled Growth and Ohmic
Contacting of Single-walled Carbon Nanotubes,” Applied Physics Letters,
vol. 75, 1999.

7. E. Winfree et al., “Design and Self-Assembly of Two-Dimensional DNA Crys-
tals,” Nature, vol. 394, pp. 539–544, 1998.

8. Y. Xia et al., “Unconventional Methods for Fabricating and Patterning Nanos-
tructures,” Chemical Review, 1999.

9. S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Mole-
cular Electronics,” in Proceedings of the 28th Annual International Symposium
on Computer Architecture, pp. 178–191, 2001.

10. S. C. Goldstein and D. Rosewater, “Digital Logic Using Molecular Electron-
ics,” in Proceedings of the IEEE International Solid State Circuits Conference,
pp. 204–205, 2002.

Chapter 4: CAEN-BIST 119

11. M. Butts, A. DeHon, and S. C. Goldstein, “Molecular Electronics: Devices,
Systems and Tools for Gigagate, Gigabit Chip,” in Proceedings of International
Conference on Computer Aided Design, pp. 440–443, 2002.

12. M. R. Stan et al., “Molecular Electronics: From Devices and Interconnect to
Circuits and Architecture,” in Proceedings of the IEEE, vol. 91, pp. 1940–1957,
November 2003.

13. M. Mishra and S. C. Goldstein, “Defect Tolerance at the End of the Roadmap,”
in Proceedings of International Test Conference, 2003.

14. M. A. Reed and T. Lee, ed., Molecular Electronics, ch. 13. American Scientific
Publishers, 2003.

15. M. Mishra and S. C. Goldstein, “Scalable Defect Tolerance for Molecular
Electronics,” in Proceedings of International Symposium on High-Performance
Architecture, Feb. 2002.

16. Y. Luo et al., “Two-Dimensional Molecular Electronics Circuits,”
CHEMPHYSCHEM, vol. 3, pp. 519–525, 2002.

17. J. R. Heath, et al., “A Defect-Tolerant Computer Architecture: Opportunities
for Nanotechnology,” Science, vol. 280, pp. 1716–1721, June 1998.

18. R. Rajsuman, “Design and Test of Large Embedded Memories: An Overview,”
in IEEE Design and Test of Computers, vol. 18, pp. 16–27, May-June 2001.

19. S. K. Sinha et al., “Tunable Fault Tolerance for Runtime Reconfigurable Ar-
chitectures,” in IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 185–192, April 2000.

20. C. Stroud, et al., “Built-In Self-Test of Logic Blocks in FPGAs (Finally, A
Free Lunch: BIST Without Overhead!),” in Proceedings of IEEE VLSI Test
Symposium, pp. 387–392, 1996.

21. C. Stroud, E. Lee, and M. Abramovici, “BIST-based Diagnostics for FPGA
Logic Blocks,” in Proceedings of IEEE International Test Conference, pp. 539–
547, 1997.

22. C. Metra et al., “Novel Technique for Testing FPGAs,” in Proceedings of Design,
Automation and Test in Europe, pp. 89–94, February 1998.

23. S. J. Wang and T. M. Tsai, “Test and diagnosis of faulty logic blocks in FPGAs,”
in IEE Proceedings of Computers and Digital Techniques, vol. 146, pp. 100–106,
March 1999.

24. F. Toth, “Get the EasyPath Solution,” Xcell Journal, Summer 2003.
25. B. Culbertson et al., “Defect Tolerance on the Teramac Custom Computer,” in

Proceedings of 5th IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 140–147, 1997.

26. J. G. Brown and R. D. Blanton, “CAEN-BIST: Testing the NanoFabric,” in
International Test Conference, pp. 462–471, Oct. 2004.

27. Z. Wang and K. Chakrabarty, “Built-In Self-Test of Molecular Electronics-Based
Nanofabrics,” in Proceedings of European Test Symposium, pp. 168–173, May
2005.

28. M. M. Ziegler and M. R. Stan, “A Case for CMOS/Nano Co-design,” in Pro-
ceedings of the International Conference on Computer-Aided Design, November
2002.

29. M. M. Ziegler and M. R. Stan, “The CMOS/Nano Interface from a Circuits
Perspective,” in Proceedings of the International Symposium on Circuits and
Systems, May 2003.

30. C. P. Collier et al., “Electronically Configurable Molecular-Based Logic Gates,”
Science, vol. 285, July 1999.

120 J.G. Brown and R.D.S. Blanton

31. S. Goldstein et al., “Reconfigurable Computing and Electronic Nanotechnol-
ogy,” in Proceedings of IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, pp. 132–142, 2003.

32. M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and
Testable Design. Piscataway, NJ: IEEE Press, 1990.

33. S. Venkataraman and S. B. Drummonds, “Poirot: Applications of a Logic Fault
Diagnosis Tool,” in IEEE Design and Test of Computers, vol. 18, January 2001.

34. J. E. Smith, “Detection of Faults in Programmable Logic Arrays,” IEEE Trans-
actions on Computers, vol. C-28, no. 11, pp. 845–853, 1979.

35. M. M. Ligthart and R. J. Stans, “A Fault Model for PLAs,” IEEE Transactions
on Computer-aided Design, vol. 10, no. 2, pp. 265–270, 1991.

36. L. Durbek and N. J. Macias, “Defect Tolerant, Fine-Grained Parallel Testing of
a Cell Matrix,” in Proceedings of SPIE ITCom, vol. 4867, 2002.

37. T. Rueckes et al., “Carbon Nanotube-Based Nonvolatile Random Access Mem-
ory for Molecular Computing,” Science, vol. 289, pp. 94–97, 2000.

Chapter 5: Defect Tolerance in Crossbar Array
Nano-Architectures

M.B. Tahoori

1 Introduction

Conventional lithography-based CMOS technology down-scaling faces serious
challenges at both the device and system levels. Some of the challenges at
the device level are manufacturing variability, sub-threshold leakage, power
dissipation, increased circuit noise sensitivity, and cost/performance improve-
ment. At the system level, some of the challenges are effective utilization of
over-a-billion gates, system integration issues, power, and performance. While
temporary solutions to these challenges will continue to be found, alternative
devices need to be explored for possible replacement of or integration within
CMOS. Some of the emerging candidates include carbon nanotubes (CNTs)
[1–3], silicon nanowires (NWs) [4, 5], resonant tunneling diodes (RTDs) [6],
single electron transistors [7], and quantum-dot cellular automata (QCA) [8].

Today’s integrated circuits are designed using a top-down approach where
lithography imposes a pattern. Unnecessary bulk material is then etched
away to generate the desired structure. An alternative bottom-up approach,
which avoids the sophisticated and expensive lithographic process, utilizes
self-assembly, in which nanoscale devices can be self-assembled on a molecule-
by-molecule basis. Examples of such devices are carbon nanotubes and silicon
nanowires [2, 5, 9, 10]. Chemically self-assembled structures, as the building
blocks for molecular-scale computing, are by their nature very regular and
therefore well suited to the implementation of regular arrays similar to Field
Programmable Gate Arrays (FPGAs). Reprogrammable nano-architectures
are currently being investigated [11–14].

Self-assembly processes promise to considerably lower manufacturing costs,
but at the expense of reduced control of the exact placement of these de-
vices. Without fine-grained control, these devices will certainly exhibit higher
defect rates. Moreover, nanofabrication process yields nanowires which are
a few atoms long in the diameter. For instance, the contact area between
nanowires contains only a few tens of atoms. With such small cross-section
and contact areas, fragility of these devices is orders of magnitude more than

122 M.B. Tahoori

devices currently being fabricated using conventional lithography techniques.
The need for defect and fault tolerance for this technology has been already
stressed [9, 11,13,15].

The reconfigurability of this nanotechnology is well suited for the imple-
mentation of defect and fault tolerant mechanisms. For instance, after iden-
tifying defective resources in the chip using test and diagnosis, they can
be bypassed by post-fabrication configuration. This approach is similar to
conventional memory defect tolerant scheme which utilizes spare rows and
columns. Nevertheless, the efficient implementation of this flow is not straight-
forward. Applying per-chip-customized configuration in the entire physical
design flow causes serious problems for high-volume production. These in-
clude prohibitively large amount of information to be stored for the location
of defect-free resources within the chip (defect map) and excessively increased
post-fabrication efforts per chip (including test, diagnosis, and design).

In this chapter, we present a methodology to analyze the manufacturing
yields of molecular crossbars in the presence of defects. We also present an
alternative defect tolerant flow, the so-called defect-unaware design flow, in
which most physical design steps (and also all higher level design steps) are
unaware of the existence and the location of defects in the chip. The key idea
is to identify universal defect-free subsets within the partially-defective chip to
be used in the design flow. These subsets are called “universal” because these
defect-free subsets are supposed to be identical for all manufactured chips
with the same level of defect density. As a result, the size of the defect map
as well as the amount of per-chip customized design time can be drastically
reduced. Since this defect-tolerant flow is application-independent, i.e. it is
not tailored for each particular mapped design, the amount of per chip design
effort is minimized. Therefore, it is applicable for high-volume production.
The only part of the physical design that needs to be aware of the location of
the defects within the fabric is the final mapping in which the used resources
in the universal subsets are mapped to the actual defect-free resources in the
partially-defective fabric using defect map information.

The amount of excessive (spare) resources, also called redundancy, is a key
factor that affects both the manufacturing yield and the cost of nano-scale
systems. The amount of required redundancy is a function of manufacturing
defect density, the required manufacturing yield, the size of the device, the
architecture, and how the device will be used at the design steps. We try to an-
alyze the amount of required redundancy in nano-architectures by examining
two-dimensional (2D) programmable crossbar structures.

We also present and compare two different approaches to identify the max-
imum defect-free subsets and construct the compact defect map. One of the
algorithms is an exact method whereas the other one is a heuristic approach
for the same problem with faster run-time. These algorithms are also utilize
in yield analysis method.

Since the molecular crossbar is the main building block in CNT-
based crossbar array nano-architectures to implement logic, programmable

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 123

interconnects, and memory arrays, the main focus of the chapter is on the
analysis of these crossbars for defect and fault tolerance. Nevertheless, we
model and analyze the interconnect (nanowire) defects in our analysis by
considering the crossbar defects and its surrounding nanowires.

The organization of this chapter is as follows. In Sect. 2 some background
on CNT-based crossbar array nano-architectures is presented. The definitions
and preliminaries are described in Sect. 3. The proposed design flow is de-
scribed in Sect. 4. The yield metric and estimation method are presented in
Sect. 5. The algorithms for yield estimation and mapping are explained in
Sect. 6. The yield results as well as a comparison of the proposed heuristic
algorithm vs. the exact method are discussed in Sect. 7. Finally, Sect. 8 con-
cludes the chapter.

2 Programmable Crossbar Array Architectures

As explained in the introduction, bottom-up approaches used in the fabrica-
tion of nano-scale devices rely on self-assembly for defining feature size and
may offer opportunities to drastically reduce the number of steps required to
produce a circuit. However, the biggest impact in going from top-down designs
to bottom-up is the inability to arbitrarily determine placement of devices or
wires. Without fine control of the design, devices made from self-assembly
techniques tend to be restricted to simple structures, such as two-terminal
devices. Since these devices are usually non-restoring, one design challenge
would be providing signal restoration between nanoscale logic stages.

Two dimensional (2D) crossbars are the building blocks of reconfigurable
crossbar array architectures. In these architectures, two layers of orthogonal
nanowires or carbon nanotubes form the crossbars [3,16]. These nanowires or
carbon nanotubes are aligned in parallel rows using bottom-up self assembly
process. At each intersection, also called crosspoint, there is a programmable
switch which is non-volatile. A one-time programmable switch consists of a
monolayer of redox-active rotaxanes sandwiched between metal electrodes is
demonstrated in [15]. In the closed state, the switch acts as a diode. It can
also be irreversibly opened by applying a oxidizing voltage across the device.
In these crossbars, configuration of crosspoint is performed by applying a
higher voltage (programming voltage) to the intersecting nanowires. In other
words, the same signal lines can be used as configuration circuitry. Unlike pro-
grammable crosspoints in conventional VLSI which are an order of magnitude
larger than wire crossing area, crosspoint switches in this nanotechnology take
the same area as of a wire crossing.

In [13], a chemically assembled electronic nanotechnology FPGA-like ar-
chitecture called NanoFabric has been proposed. Nano logic arrays, also called
Nanoblocks, implement a diode-resistor logic (DRL) since crosspoints act as
programmable diodes. Since only AND and OR logic can be implemented by
DRL, i.e. no inversion, inputs and their complements are given to nanoblocks

124 M.B. Tahoori

and the output function and its complement are generated. Signal restoration
is performed by using a molecular latch at the output of crossbars.

DeHon has presented an array based nano-architecture using Program-
mable Logic Arrays (PLAs) [11, 12, 17]. The main building block, called the
nano programmable logic array (nanoPLA), is built from a crossed set of
N-type and P-type nanowires. This architecture allows inversion by using
nanowire Field Effect Transistor (FET) devices as buffers. Logic functionality
is achieved in the form of two stages of programmable crossbars. The first
stage defines the logical product terms (pterms) by creating a wired-OR of
appropriate inputs. The outputs of this wire-OR plane are restored through
field-effect controlled nanowires that invert the outputs (thus creating the log-
ical NOR of the selected input signals). These restored signals are then sent
to the inputs of the next stage of programmable crosspoints. Each nanowire in
this plane computes the wired-OR of one or more restored pterms. The out-
puts of the stage are then restored in the same manner as the first stage. The
two stages together provide NOR-NOR logic (equivalent to a conventional
PLA) The nanoPLA is programmed using lithographic-scale wires along with
stochastically-coded nanowire addressing [17].

The molecular CMOS (CMOL) circuits proposed in [18] are designed
using the same crossbar array structure as the nanoPLA design consist-
ing of two levels of nanowires. The main difference with CMOL is how the
CMOS/nanodevices are interfaced. Pins are distributed over the circuit in a
square array, on top of the CMOS stack, to connect to either lower or upper
nanowire levels. The nano crossbar is turned by some angle less than 90◦ rela-
tive to the CMOS pin array. By activating two pairs of perpendicular CMOS
lines, two pins together with the two nanowires they contact are connected
to the CMOS lines. Each nanodevice may be uniquely accessed using this ap-
proach. By angling the nanoarray, the nanowires do not need to be precisely
aligned with each other and the underlying CMOS layer in order to be able to
uniquely access a nanodevice. The most straightforward application of CMOL
would be for memories (embedded or standalone). The CMOL circuits have
also been proposed for building FPGA-like architectures for implementing
random logic [19].

A CMOS-compatible crossbar memory array, called NRAM, has been
proposed by Nantero Inc. [20]. In this architecture, everything but nano-
electromechanical switches are implemented in CMOS using conventional
lithography processes (CMOS-compatible fabrication). The programmable
switches are realized by a belt of carbon nanotubes (monolayer fabric of nan-
otubes). The same technology can be also used to implement programmable
logic and interconnection network.

Defect tolerance of nano-architectures has been discussed in the literature.
Hierarchical sparing is used in [11] to achieve defect tolerance. In [12], manu-
facturing yield of the proposed array-based architecture is analyzed based on
the nanowire defect density, the yield of the stochastic decoder, and the sto-
chastic buffering. In [21], the problem of logic mapping in a defective crossbar

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 125

is modeled by matching in a bipartite graph and a greedy matching algo-
rithm with linear time complexity for logic mapping is presented. It is shown
that when 20% of devices (i.e., crossbar diodes) were defective, only a 10%
overhead in devices was needed to correctly configure the array around the
defects.

3 Definitions

In CNT nanotechnology, the molecular crossbar is the main building block.
An example of a 4×4 crossbar is shown in Fig. 1a. The crossbar consists of two
sets of orthogonal nanowires. The horizontal nanowires are the inputs whereas
the vertical nanowire are the outputs. There is a programmable switch at each
intersection (crosspoint).

An n×n 2D crossbar can be represented by a bipartite graph G = (U, V,E),
as illustrated in Fig. 1b. A bipartite graph is a special graph where the set of
vertices can be divided into two disjoint sets U and V such that no edge has
both end-points in the same set. U represents the set of input nanowires and V
represents the output nanowires; E, the set of edges, models the programmable
switches in the crossbar. In a defect-free crossbar, there is a switch at the
intersection of each input and output nanowire, i.e. |E| = |U |×|V |. Therefore,
a defect-free crossbar can be modeled by a complete bipartite graph.

In the presence of defects, some nanowires or switches become unusable
and the corresponding bipartite graph is no longer complete. However, it might
be possible to find a maximum defect-free subset of the crossbar which is
complete. A subgraph of a bipartite graph is a biclique if this subgraph is a
complete bipartite graph. The maximum complete subset of a bipartite graph
is called the maximum biclique.

H
or

iz
on

ta
l N

an
ow

ire
s

Vertical Nanowires

crossbar

crosspoint

i1

i2

i3

i4

O1 O2 O3 O4

(a)

Partition
V

Partition
U

i1

i2

i3

i4

O1

O2

O3

O4

(b)

Fig. 1. (a) 4 × 4 2D nano-scale crossbar; (b) bipartite graph representation

126 M.B. Tahoori

Partition
V

Partition
U

i1

i2

i3

i4

O1

O2

O3

O4

(a)

Partition
U

Partition
V

i1

i2

i3

i4

O1

O2

O3

O4

(b)

Partition
U

Partition
V

i1

i2

i3

i4

O1

O2

O3

O4

(c)

Fig. 2. (a) A bipartite graph G(U, V, E); (b) biclique ({i2, i3, i4}, {o2, o3}) in G; (c)
a perfect matching in G

In some applications, such as logic mapping and some special routings, it
is required to find a one-to-one mapping between input nanowires and output
nanowires through crosspoints. A matching T is a set of edges such that no
two edges share the same vertex. If an edge (vi, vj) is in the matching, then
vertices vi and vj are said to be matched. A perfect matching of a graph is a
matching such that all vertices are matched.

Figure 2 shows an example of a 4 × 4 bipartite graph. It also shows the
maximum biclique in this graph. This maximum biclique is 3×2. Every node is
the set {i2, i3, i4} is connectable to each and every node in {o2, o3}. A perfect
matching of this bipartite graph is also shown.

4 Defect-Unaware Design Flow

Thorough testing and high-resolution diagnosis play major roles in the imple-
mentation of defect and fault tolerant systems. Test and diagnosis techniques
for crossbar array architectures have been presented in [22–25], which ex-
ploit the reconfigurability of these nano-architectures to achieve a very high
coverage test and high resolution diagnosis. These techniques are mainly cat-
egorized as Built-in Self-test (BIST) since test vector generation and output
response analysis are performed on-chip. Such techniques are described in
more details in the other chapters of this book, since test and diagnosis for
crossbar array architectures are out of the scope of this chapter.

In the conventional adaptive defect tolerant flow, the existence and the
location of defective elements are identified using test and diagnosis steps.
After these steps, each individual resource in the crossbar array (e.g. nanowire,
crosspoint, buffer) is precisely identified as defect-free (usable) or defective
(unusable). The fault location information is stored in the so-called defect map
which identifies the usability of the (programmable) elements of each man-
ufactured chip. Defect tolerance is achieved by avoiding defective resources
in the physical design flow using the defect map. Particularly, placement and
routing phases of the physical design use the defect map in order to map the

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 127

Defect Map
(Huge)

Test and Diagnosis

n x n
crossbars

(with defects)

Modified
Design

Physical
Design

Crossbar Array

R
ep

ea
te

d
fo

r
ea

ch
 c

hi
p

Fig. 3. Defect-aware design flow

design to the crossbar array by using only defect-free resources. This flow is
shown in Fig. 3. We call this flow defect-aware or application-dependent since
design phases use the defect map information. In addition to physical de-
sign phases, higher-level design steps, such as logic and architecture design,
might need to be modified to incorporate defect map information. An ex-
ample of an application-dependent defect tolerance flow for crossbar array
nano-architectures is presented in [21].

However, there are several problems associated with this approach:

– First, the size of the defect map for the entire chip can be prohibitively
large. Note that defect map stores the usability of each and every individual
resources in the crossbar array and 1012 to 1014 devices are anticipated
per chip at the nano-scale integration. Moreover, it would be impossible
to store and use this defect map for online testing and fault tolerance
purposes.

128 M.B. Tahoori

– Second, the entire design flow has to be customized per chip. This is be-
cause the defect map is unique for each manufactured chip (different chips
have different defect maps). Since the design phases use defect map infor-
mation, all defect-aware design phases have to be repeated for each manu-
factured chip. This adds the design time (∼hours) to the post-fabrication
test time (∼seconds to minutes) per chip. Note that in today’s design flow
(i.e. without defect tolerance), the design effort is independent of the num-
ber of manufactured chips. However in this defect-aware flow, most design
steps have to be performed in a per-chip basis.

– Third, per-chip design customization results in large and unacceptable
parametric variations for a same design mapped into different chips. As
the defect maps of different manufactured chips could be be considerably
dissimilar and the outcome of the physical design is highly dependent on
the defect map, the parametric characteristics (including performance and
power) of a same design mapped into various chips might be completely
different.

– Fourth, this defect-aware scheme results in a radical shift from conven-
tional design methods such that all logic and physical design tools have
to re-developed. The design steps need to be modified such that they can
accept the defect map as one of the design inputs.

Due to these fundamental problems, this traditional approach cannot be used
for high-volume production of nano-chips.

Most drawbacks of the defect-aware flow are due to the fact that this
method is application dependent, i.e. defects are handled in a per-application
basis. In contrast to the defect-aware design flow, we propose a defect-unaware
design flow to tolerate defects in crossbar arrays. Our proposed defect tolerant
approach is an application independent flow, which means that the defects are
bypassed before mapping any particular application to the nano-architecture.
In other words, defect tolerance is performed once and the same recovered
array can be used for all applications mapped to the nano-architecture. In the
proposed flow, almost all design steps, from high-level architecture design to
the last step of the physical design, are unaware of the existence and the loca-
tion of defects within the nano-architecture. In other words, all design steps
work on a design view of the nano-chip which is defect-free. There is a final
mapping phase, as the very last step of the physical design flow that makes
the connection between the defect-free design view and the actual physical
view of the nano-chip which contains the actual defects.

The key idea in this defect-unaware flow is to identify universal defect-
free subsets of resources within the original partially-defective nano-chip. All
design steps use these universal defect-free subsets as the physical implementa-
tion devices (design view of the nano-chip). Hence, conventional architectural,
logic, and physical design flows and tools can be reused. These defect-free
subsets are called “universal” because the size of these subsets is identical
for all nano-chips fabricated in the same process environment (similar defect

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 129

densities). Also, these universal defect-free subsets remain unchanged for dif-
ferent applications mapped into the same nano-chip, making this approach
application-independent. An additional step, after placement and routing, is
required to map the used resources within the universal subset (design view)
into the actual resources within the original device (physical view). This is
the only defect-aware step in the entire design flow which has to be performed
for each manufactured nano-chip. The two major tasks of defect-tolerance is
this defect-unaware flow is to

1. Identify and extract the defect-free universal subsets from partially-
defective nano-chip

2. Perform the final mapping phase, which consists of mapping the used
resources in the design view to the actual resources in the physical view.

For molecular crossbars, the goal is to identify defect-free k × k crossbars
within the original partially-defective n × n crossbars (task 1). These defect-
free subsets of the crossbars are complete, which means that every k input
nanowire in the defect-free subset is connectable to every k output nanowire
through a defect-free crosspoint. In general, the defect-free subset is smaller
than the original crossbar (k < n). The final mapping step maps the used
resources within k × k crossbars into the actual defect-free resources within
the original n × n crossbars (task 2).

Figure 4 shows the defect-unaware physical design flow. Test and diagnosis
steps identify the size and the location of defect-free k × k crossbars within

Test and Diagnosis

N x N
crossbars

(with defects)

k x k
crossbars

(no defects)

Design

Defect Map
O(N)

Physical Design
(Defect Unaware)

k

Final Mapping
(Defect Aware)

Process
Defect
Density

samples

k

Fig. 4. Defect-unaware design flow

130 M.B. Tahoori

partially-defective fabricated n×n crossbars. The size of the maximum defect-
free crossbar, k, can be estimated using a yield analysis method (presented in
Sect. 5) based on a sample of fabricated devices and this value will be used for
all chips manufactured in the same process environment. All crossbars with
a defect-free subset not smaller than k × k are considered as “good” (pass)
devices, otherwise they are marked as “bad” (fail) devices. The information
regarding the location of defect-free subsets of crossbars is stored in a compact
defect map. Compared to the defect map in the defect-aware flow which stores
the location of each defective switch within each crossbar, this one stores only
the position of the defect-free k × k crossbar within the original crossbar.

During the physical design, the original design will be mapped (placed and
routed) into an array of k × k crossbars. A final defect-aware mapping step is
required to re-map the used resources within k × k crossbars into the actual
defect-free resources within partially-defective n×n crossbars using the defect
map information.

Note that the value of k cannot be determined in a per-chip based other-
wise some design steps will have to be customized for each chip. Therefore,
the value of k is estimated based on the defect density level of the fabrication
process. This is the critical point to make the design efforts independent of
the number of manufactured chips. Moreover, the value of k is fixed for all
manufactured parts in the same fabrication environment. For example, if the
value of k is set to 16, then, all crossbars for which k � 16 are considered
as good (passing) devices, and those with k < 16 are considered as failing
devices. It needs to be mentioned that the desirable value of k is set such that
a large (and acceptable) fraction of manufactured devices passes the test. The
yield analysis method required for this step is presented in the next section.

Another advantage of this approach is the reduction in the size of the
defect map. In the conventional defect-aware flow, the size of the defect map
is O(n2) for an n×n crossbar. This is because one bit information is required
for each switch to specify whether it is defect-free or not. In the proposed
defect-unaware flow, it is only needed to identify the location of k × k defect-
free crossbar within the partially-defective n × n crossbar. Therefore, only
two binary vectors of size n, the vertical and horizontal vectors, are needed
to be stored. Each bit position in the vertical (horizontal) vector corresponds
to a row (column) in the original crossbar and specifies whether this row
(column) participates in the defect-free biclique (k × k crossbar). These two
O(n) vectors are sufficient to precisely locate the defect-free subset within the
original crossbar. Consequently, the size of the defect map is reduced from
O(n2) to O(n).

Figure 5 shows and compares defect maps in defect-aware and defect-
unaware flows. In Fig. 5 (a), the bipartite graph model of a defective 6 × 6
crossbar is shown. This crossbar is defective since the corresponding bipartite
graph is not complete. Each missing edge corresponds to a defective switch.
The complete defect map, as used in the original defect-aware flow, is shown
in Fig. 5 (b) in which a “1”(“0”) entry represents a usable (unusable) switch.

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 131

Partition
U

Partition
V

i0

i1

i2

i3

O0

O1

O2

O3

i4

i5

O4

O5

⎛
⎜⎜⎜⎜⎜⎜⎝

i0 i1 i2 i3 i4 i5
O0 1 1 0 1 1 1
O1 0 1 1 1 1 1
O2 1 0 0 0 1 0
O3 1 1 0 1 1 1
O4 0 1 0 1 0 1
O5 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

)b()a(

Partition
U

Partition
V

i0

i1

i2

i3

O0

O1

O2

O3

i4

i5

O4

O5

V = [1 1 0 1 0 1]
H = [0 1 0 1 1 1]

)d()c(

Fig. 5. (a) 6×6 Crossbar (b) complete O(n2) defect map (c) defect-free 4×4 subset
of crossbar (d) reduced defect map: two vectors of O(n)

The defect-free 4×4 subset of the crossbar is shown in Fig. 5 (c). The reduced
defect map containing only of two vectors of size n is shown in Fig. 5 (d).
Using these two vectors, the defect-free 4 × 4 subset, corresponding to the
complete 4 × 4 subgraph can be uniquely identified. The horizontal vector
identifies the nodes in the input partition (U) participating in the defect-free
subset whereas the vertical vector corresponds to the output partition (V).

The nano-architecture can be viewed as an array of crossbars. The global
view of this architecture considers only the interconnection of crossbars
whereas the local view deals with the individual resources within each crossbar.
The main focus of this chapter is the local view of the nano-architecture in
which the structure of a crossbar is fully analyzed. Considering the local view
(used in detailed placement and routing), the problem of performance varia-
tion due to detailed mapping, placement, and routing can be solved with the
proposed design flow. Nevertheless, we discuss some issues related to defect
tolerance in the global view of the nano-architecture in Sect. 7.3.

132 M.B. Tahoori

In the next section, we present a yield metric based on this design flow
in which we explain how to set the value of k such that a large fraction
(high yield) of manufactured crossbars contain defect-free subsets of minimum
size k. In Sect. 6, two algorithms for identifying and extracting the defect-free
subset within the fabricated crossbar, based on the information obtained from
test and diagnosis steps, are presented. These algorithms can also be used to
estimate the value of k from process defect density information using a sample
of manufactured chips. The reduced O(n) defect map will be generated as one
of the outputs of these algorithms. The generated defect map is also used
in the final mapping phase. Since this step has to be performed for each
manufactured chip, its run time has to be minimized. Therefore, we propose
a fast greedy algorithm for this purpose.

5 Yield Metric

In this section we present a yield analysis framework which is compatible with
the defect tolerant flow presented in the previous section. Specifically, this
framework is used to analyze the yield and the expected size of the defect-free
subsets within the partially-defective crossbars.

We have addressed the matching problem in defective crossbars in [26].
In matching problem, the goal is to find a routing between m distinct input
signals to m output signals through an n × n crossbar using m non-incident
defect-free switches (m � n). However, defect-free matching which is sufficient
for logic mapping, is not adequate for signal routing in the general form since
selective connectivity is lost. From algorithmic point of view, there is an exact
solution for defect-free matching problem based network flow algorithm with
polynomial time complexity, O(n

5
2), [26]. The goal in this chapter is to find

a defect-free k × k crossbar in a partially-defective n × n (k < n) crossbar at
a specified defect density level. Based on the design flow presented in Sect. 4,
the following yield metric is defined:

Yield metric Y d
n,k. The probability of finding a biclique (defect-free cross-

bar) of size k × k in an n × n crossbar when the defect density is d.
Based on this yield metric Y d

n,k, we can identify the minimum size of a
fabricated (partially defective) crossbar, n×n, such that a defect-free crossbar
of size k × k can always be found with the yield of y when the defect density
is d. In other words, for desirable values of k and y, and given value of d, the
minimum value for n can be obtained such that Y d

n−1,k < y but Y d
n,k � y.

5.1 Defect Distribution Models

The distributions of defects in the crossbar can be modeled using uniform or
non-uniform probability distributions. We consider both clustered and unclus-
tered defects distribution models. In the unclustered model, as the simplest
model, the defect probability distribution over the crossbar is uniform. In other

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 133

words, the probability of defect at each location (e.g. crosspoint or nanowire)
is p, the defect density, and independent of the locations of other defects in
the crossbar. Figure 6 describes the unclustered defect injection method.

In real cases, defects tend to cluster together and the distribution in not
uniform [27]. In this model, the probability of defects in the regions near
already existing defects is higher. We can consider this clustering effect by a
model in which the defect probabilities in the regions near defect clusters are
higher than other regions. This probability is also inversely proportional to
the distance from the existing defect clusters. Formally, if Nd defects already
exists (are injected) in the crossbar, the defect probability at location i, Pi,
is calculated as

Pi ∝
Nd∑
j=1

(
1

dij

)α

where dij is the distance between switch (nanowire) i and j, and α is the clus-
tering parameter. Note that a larger value of α corresponds to more clustering.

In defect injection based on this clustering model, if the defect density
is d, and there are N resources (crosspoints and nanowires) as candidates
for defect injection, total of N.d defects will be injected. The algorithm for
defect injection based on the clustering defect distribution model is given in
Fig. 7. Figure 8 shows an example of defect injection patterns in a 32 × 32

Unclustered Defect Injection(N, d)
Nd ← 0
while Nd < N.d do

i ← random(0, N)
j ← random(0, N)
if location (i, j) is not defective then

Inject defect at location (i, j)
Nd ← Nd + 1

Fig. 6. Unclustered defect injection algorithm

Clustering Defect Injection(N, d, α)
Nd ← 1
Inject the first defect randomly
while Nd < N.d do

for each location i do (defects already injected in locations j)

Pi ←
∑Nd

j=1

(
1

dij

)α

Normalize Pi s.t.
∑N

i=1
Pi = 1

r ← random(0,1)

choose k s.t.
∑k

i=1
Pi < r �

∑k+1

i=1
Pi

Inject defect at location k
Nd ← Nd + 1

Fig. 7. Clustering defect injection algorithm

134 M.B. Tahoori

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(a) Unclustered

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b) Clustered α = 1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(c) Clustered α = 2

Fig. 8. Defect injection in a 32 × 32 crossbar using different defect distribution
models

crossbar with 30% defect density using unclustered and clustered models. As
can clearly be seen in this figure, defects are more clustered with α = 2
compared to unclustered or α = 1.

5.2 Fault Injection Method for Yield Estimation

We use a fault injection platform to obtain the the value of the yield metric
Y d

n,k. Once the locations of the defects in the crossbar are identified based on
defect density and distribution model, faults are introduced in the complete
bipartite graph G = (U, V,E) representing the defect-free crossbar resulting
in a new bipartite graph G′ = (U ′, V ′, E′) corresponding to the defective
crossbar. The problem of finding a defect-free crossbar (of size k×k) within a
partially-defective one can be expressed as finding a biclique of the desirable
size (k) in bipartite graph G′.

In this work we consider the faults within the crossbar as well as the in-
terconnect faults surrounding the crossbar (outside crossbar). By considering
the interconnect (nanowire) faults surrounding each crossbars, faults in the
entire crossbar array can be modeled.

Switch stuck-open faults (within crossbar). A switch stuck-open fault cor-
responds to a missing switch at the crosspoint. Hence, the faulty bipartite
graph G′ can be obtained by simply deleting from G the edges corresponding
to the faulty switches.

Switch stuck-closed faults (within crossbar). If there is a stuck-closed fault
on a switch corresponding to edge (u, v), the horizontal nanowire u ∈ U and
the vertical nanowire v ∈ V are shorted together and both become unusable.
Therefore, G′ can be obtained by removing the nodes u and v from G along
with all edges incident to these nodes (U ′ = U − {u}, V ′ = V − {v}). In
this case, some fault-free switchings connected to u or v become unusable as
well. Note that this situation is different from the effect of switch stuck-closed
faults when defect-free matching is required [26]. We can relax this constraint
by just removing one node (either u or v) along with all edges incident to that
node. This reduces the number of defect-free switches that become unusable

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 135

due to a stuck-closed fault. This relaxed case is similar to the situation for
nanowire open faults described below.

Nanowire open fault (within and outside crossbar). In some architectures
the precharge/evaluation logic is used at the output stage of molecular cross-
bars [12]. As a result, broken nanowires are of no use at all and cannot be
used to carry signals. In this case, all switches connected to a nanowire with
an open fault become unusable. So G′ is obtained by deleting the faulty node
(broken nanowire) from G.

Nanowire bridging fault (within and outside crossbar). In case of a nanowire
bridging fault, two (or more) nanowires are shorted together, and both (all) of
them become unusable. When constructing the faulty bipartite graph G′, all
nodes corresponding to the shorted nanowires and all incident edges to these
nodes are removed from the original graph G.

Figure 9 shows the graph model of a 4 × 4 crossbar in the presence of
some faults. As can be seen from this example, short faults (nanowires and
switches) have clearly more severe effect on the usability of crossbars than
switch open faults.

The fault injection method is as follows. Depending on the defect density
d and the particular fault model, there are FP fault patterns each corresponds
to a different G′. For example, in the case of switch stuck-open faults, there
are (n2

�n2d�) possible fault patterns. Since the number of possible fault patterns
can be quite large, we only consider a statistical sample of them. For each
fault pattern, one defective crossbar is generated with defect density d, fault
models, and defect distribution model. The yield metric Y d

n,k is estimated as
the ratio of the number of simulated fault patterns with a minimum biclique
of size k × k over the total number of simulated fault patterns. The fault
injection approach for yield estimation is shown in Fig. 10. In order to improve
the accuracy of this fault injection method, it can be implemented using the
monte-carlo simulation in which the number of simulated fault patterns can
be adjusted such that the variance of the estimated yield metric falls within
predefined ranges.

Partition
U

Partition
V

i1

i2

i3

i4

O1

O2

O3

O4

(a)

Partition
U

Partition
V

i1

i2

i3

i4

O1

O2

O3

O4

(b)

Partition
U

Partition
V

i1

i2

i3

i4

O1

O2

O3

O4

(c)

Fig. 9. (a) Switch Open (i4, O4) (b) Switch Short (i3, O2) (c) Nanowire i3 Open

136 M.B. Tahoori

Fault Injection Approach for Yield Estimation(n, k, d)
Nsuccess ← 0
for each fault pattern i, 1 � i � FP , do

Inject n2.d defects in crossbar G based on fault models and
defect distribution model to obtain G′

if Biclique(G′) � k × k then
Nsuccess ← Nsuccess + 1

Y d
n,k = Nsuccess

FP

Fig. 10. Fault injection method

6 Biclique Algorithms

In this section we present two different approaches to find the maximum
defect-free crossbar within a partially defective crossbar. The first approach
is a variation of the exact method in which the optimal solution is guaranteed
at the expense of exponential run time. The second one is a greedy heuristic
method in which the optimal solution is not guaranteed whereas its run time
complexity is O(n log n). These algorithms can be used for the yield analysis
step as explained in Sect. 5 as well as the extraction of the universal defect-free
subsets. They are also the basis for the final mapping phase and the generation
of the reduced defect map (Sect. 4).

6.1 Recursive Biclique Algorithm

Given the location of defect-free switches and nanowires in the crossbar, ob-
tained from test and diagnosis procedures, the graph model of the defective
crossbar can be formed. The goal is to find (and locate) the maximum defect-
free k × k crossbar within the original crossbar. This problem corresponds to
finding the maximum biclique in a bipartite graph.

Finding the maximum biclique in a bipartite graph is an NP-complete
problem [28]. However, we solve a decision version of this problem which is
less complex compared to the original optimization version. Instead of finding
the maximum biclique in G(U, V,E), we solve the following decision (Yes/No)
problem: “Does G(U, V,E) have a biclique of size k1 × k2 ?”

Note that in the above problem k1 × k2 is not necessarily the size of
the maximum biclique of G. Using the fault injection approach presented in
Sect. 5.2, by setting k1 = k2 = k, the desirable probability of Y d

n,k can be
obtained. The recursive algorithm shown in Fig. 11 is developed for solving
the decision problem outlined above.

Proof of Correctness

Since this algorithm is recursive, we provide a proof of the algorithm based on
induction hypothesis. The induction basis is checked in lines 2–5. Bicliques of

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 137

1 Function HasBiclique(G(U, V, E), k1, k2)
2 if k1 � 0 ∨ k2 � 0 then
3 return TRUE
4 if |U | � k1 ∨ |V | � k2 then
5 return FALSE
6 U1 ← {u|u ∈ U, d(u) < k2}
7 V 1 ← {v|v ∈ V, d(v) < k1}
8 U2 ← {u′|u′ ∈ U, d(u′) = |V |}
9 V 2 ← {v′|v′ ∈ V, d(v′) = |U |}
10 U ← U − (U1 ∪ U2); V ← V − (V 1 ∪ V 2)
11 k1 ← k1 − |U2|; k2 ← k2 − |V 2|
12 u ←node with minimum degree in U
13 V ′ ←{nodes connected to u in V}
14 return HasBiclique(G(U − {u}, V, E),k1,k2) ∨

HasBiclique(G(U − {u}, V ′, E),k1 − 1,k2)

Fig. 11. Recursive biclique algorithm

sizes 0×k2 and k1×0 can be always found (lines 2–3), so the function returns
“true”. Similarly, the size of any biclique cannot be larger than the size of the
original graph (lines 4–5), and as a result, the return value is “false”.

If there is a node in U whose degree in less than k2, it cannot participate in
the biclique and hence, can be excluded from the graph during the search. The
set of these nodes are represented by U1. Moreover, if there is a complete node
(i.e. connected to all nodes in V), it can be always included in the biclique.
Hence, we can remove this node from U and decrease k1 by one. The set of
such nodes is represented by U2. The similar cases for the nodes in the second
partition, V , are also considered (lines 6–11).

The induction step is performed as follows. Let |U |+|V | = n. The induction
hypothesis is that HasBiclique function works correctly for any graph of node
size smaller than n. Consider an arbitrary node u ∈ U . This node is either
included in the biclique or not.

– If it is not included, we need to find a biclique of size k1 × k2 in G(U −
{u}, V, E). Since the node size of this graph is n − 1, based on induction
hypothesis, the HasBiclique function gives a correct answer for this graph.

– If this node is included in the biclique, the nodes of V that can participate
in the biclique are those connected to u. So, if we call this set V ′, we should
be able to find a biclique of size k1−1×k2 in G(U−{u}, V ′, E). In order to
reduce the number of recursions, u is chosen as the node with the minimum
degree. This way, the size of V ′, which directly affects the search space,
is minimized. In other words, if the answer is supposed to be “false”, we
will be able to find it out with the minimum number of iterations. Since
|V ′| � |V |, the node size of G(U − {u}, V ′, E) is smaller than or equal to
n− 1. Again, based on the induction hypothesis, the HasBiclique function
will return a correct answer for this graph.

138 M.B. Tahoori

There is a biclique of size k1 × k2 in G(U, V,E) if at least one of the
above cases is true (line 14). Therefore, based on the induction hypothesis, the
function works correctly on graphs of node size n, and the proof is complete.

Run Time Analysis

The worst case run time complexity of this recursive algorithm is exponential.
Let |U | + |V | = n and f(n) be the run time of this algorithm on G(U, V,E).
In the worst case |V ′| = |V | and hence, f(n) = f(n − 1) + f(n − 1) + O(1) =
2f(n − 1) + O(1). Also, f(1) = O(1). This makes f(n) = O(2n) for the worst
case. However, since the removed node is chosen as the node with the minimum
degree, |V ′| < |V |, otherwise the algorithm terminates in the next iteration
(lines 8–9 followed by lines 2–3). In general, since this is an exact algorithm
(if there is a solution, it guarantees to find that solution), its average case
complexity is still exponential.

6.2 Greedy Mapping Algorithm

The recursive algorithm presented above is an exact algorithm, however its
worst case complexity is exponential. Here we present a heuristic greedy algo-
rithm for finding the maximum biclique. This algorithm is not exact, i.e. its
solution is not guaranteed to be optimum, however, its run time is completely
tractable. We will compare the accuracy and run time of this greedy algorithm
vs. the exact algorithm in Sect. 7.

Our approach here is to convert this problem to the problem of finding
the maximum independent set in the complement graph. The outline of the
proposed greedy algorithm is shown in Fig. 12. The complement of a graph
G is a graph G with the same set of vertices such that two vertices of G are
adjacent if and only if they are not adjacent in G. An independent set S in
a graph G is a subset of nodes that are disconnected, i.e. there are no edges
between any two nodes in an independent set: ∀u, v ∈ S, (u, v) /∈ E(G). The
maximum independent set is an independent set with the maximum number
of nodes.

Even in the presence of defects (defect density < 30%), the correspond-
ing bipartite graph model of the crossbar is still dense, i.e. |E| = O(n2).
Consequently, the complement graph would be sparse and therefore, we can
efficiently use a heuristic approach for finding the maximum independence set
in the complement graph. This is the main motivation behind converting the
maximum biclique problem into the maximum independent set problem in
the complement graph.

The proposed heuristic works as follows. Nodes with zero degree (i.e. the
number of edges connected to that node) can always participate in the inde-
pendent set. Our objective is to remove some nodes along with their incident
edges from the complement graph such that more nodes with zero degree can
be found in the reduced graph. Our heuristic is based on removing the nodes

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 139

1 Function Biclique(G(U, V, E))

2 Obtain G(U, V, E), E = K|U|,|V | − E

3 Find maximum independent set in G

4 Sort U based on d(u) in G (decreasing order)

5 Sort V based on d(v) in G (decreasing order)

6 Ub ← φ, V b ← φ, flag ← TRUE
7 Repeat

8 Ub ← Ub ∪ {u|u ∈ U, d(u) = 0}, U ← U − Ub

9 V b ← V b ∪ {v|v ∈ V, d(v) = 0}, V ← V − V b

10 if flag then
11 u ← node in U with maximum degree
12 U ← U − {u}
13 for each v′ ∈ V such that (u, v′) ∈ E do
14 d(v′) ← d(v′) − 1
15 Re-sort V accordingly
16 else
17 v ← node in V with maximum degree
18 V ← V − {v}
19 for each u′ ∈ U such that (u′, v) ∈ E do
20 d(u′) ← d(u′) − 1
21 Re-sort U accordingly
22 flag ← ¬flag
23 Until U = φ and V = φ

24 return Ub × V b as the maximum biclique

Fig. 12. Greedy biclique algorithm

with the maximum degree since it is assumed that they will not participate
in the maximum independent set. Deleting the nodes with the maximum de-
gree allows us to remove a maximum number of edges with a minimum node
removal. This increases the chance of finding a large independent set in the
remaining nodes. Since the complement graph is sparse and nodes with the
maximum degree in the reduced graph are removed, we hope that the set of
independent nodes with zero degree in the reduced graph is very close to the
maximum independent set.

First, the complement graph is formed (line 2). The nodes in each partition
are sorted based on their degrees in the complement graph in the decreasing
order (lines 4–5). At each iteration, nodes with zero degree are added to the
solution list (lines 8–9). In this pseudo-code, the set of nodes from U and V
participating in the maximum independent set are denoted as U b and V b,
respectively.

Bicliques with square shapes are preferred, i.e. if the biclique obtained
by this algorithm is k1 × k2, it is preferred that k1 is very close to k2. The
presented heuristic approach (removing nodes with the highest degrees) finds
an independent set (biclique) with minimum node removal. In other words,
this algorithm tries to maximize k1 + k2, the number of nodes in the biclique

140 M.B. Tahoori

(independent set). Since the number of edges (switches) in the biclique is
k1.k2, the number of edges in the biclique is maximized when k1 ≈ k2, for a
fixed k1 + k2.

To obtain a maximum-edge biclique, our heuristic is to alternate between
U and V when removing the nodes with the highest degrees. Hence, at every
other iterations, nodes with the highest degree are removed from U (lines
10–15), whereas in the alternating iterations, nodes with the maximum degree
are removed from V (lines 16–21). Since |U | = |V |, at the end of the execution
of the algorithm |U b| = |V b| ± 1. Consequently, the resulting biclique has a
square shape and hence, contains a maximum number of edges.

Proof of Correctness

At each iteration of the repeat-until loop (lines 7–23), one node with the
maximum degree will be removed either from U or V . Let’s denote the set of
nodes removed from U and V as Ur and V r, respectively. The invariant of
the algorithm can be defined as follows:
Invariant. During the execution of the algorithm, U b ∪V b forms an indepen-
dent set of G.
Proof. At the beginning of the algorithm (line 6), U b and V b are initialized to
the empty sets, and hence, the invariant holds. At each iteration of the repeat-
until loop, nodes with zero degree from U−Ur and V −V r are added to U b and
V b, respectively. Let’s denote the set of nodes removed from U by the end of
ith iteration as Ur

i . We define V r
i similarly. Since Ur

i ⊆ Ur
i+1 and V r

i ⊆ V r
i+1,

d(u) in G(U − Ur
i , V − V r

i , E) � d(u) in G(U − Ur
i+1, V − V r

i+1, E), u ∈
(U − Ur

i+1) ∪ (V − V r
i+1). Therefore, if d(u) = 0 in the ith iteration, it is

independent from all nodes in (U − Ur
i) ∪ (V − V r

i). Consequently, any node
u′ to be added to U b or V b in the i + 1th iteration is also independent from
u. This proves the invariant.

Based on this invariant, at the end of the execution of the algorithm,
U b ∪ V b forms an independent set in the complement graph, G, and hence, a
biclique in the original graph, G.

Run Time Analysis

Removing nodes with maximum degrees modifies the degrees of remaining
nodes in the graph. Therefore, the ordering of nodes based on their degrees
has to be refreshed at each step. By implementing U and V sets as binary
heaps, deletion and reordering can be performed in a logarithmic time.

If |U | + |V | = O(n), the initial sorting takes O(n log n) (lines 4–5). The
repeat-until loop (lines 7–23) will be executed n times in the worst case, since
at each step at least one node is removed from U or V . The execution of the
body of the loop takes O(log n) assuming that the binary heap is used for
the implementation of U and V sets (deletion and reordering). Therefore, the
worst case time complexity of this algorithm is O(n log n).

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 141

7 Experimental Results

7.1 Yield Analysis Results

The objective in defect tolerance is to extract the maximum defect-free block
from a partially-defective manufactured device. Alternatively, if a k×k defect-
free crossbar is required, we find the smallest n × n crossbar (n > k) to be
fabricated in a manufacturing environment with defect density d. For the fixed
values of k and d, and desirable yield of y, we find an n such that Y d

n,k = y but
Y d

n−1,k < y. Typically, we set y = 100%. Such evaluations can be performed
based on the yield analysis framework, as discussed in Sect. 5, and are utilized
in the proposed defect tolerance flow to make the connection between the
design view and the physical view (Sect. 4).

Experimental results for various sized defect-free crossbars in the presence
of stuck-open faults are presented in Figs. 13 and 14. In these experiments,
the number of simulated fault patterns, FP , ranges between 500 and 5000
depending on the size of the crossbar (n). The results are presented for three
different defect distribution models, unclustered and clustered (with α = 1, 2).
For each defect density, the minimum size of the original crossbar (n) is given
such that the desirable defect-free crossbar can be always found (yield =
100%).

Figure 15 shows the same data in a different format. In this figure, the
amount of area overhead required to achieve the desirable defect-free subset
is reported. The overhead is normalized to the area of the defect-free subset,
i.e. n2/k2. Note that the y-axis is in the logarithmic scale. As can clearly
be seen in this figure, the amount of redundancy required to obtain smaller
defect-free subsets are much smaller. Also, the overhead associated with the
clustered defect distribution model is much lower than unclustered one. This
figure also shows that for any fixed defect density, the area overhead increases
exponentially with the size of the required defect-free crossbar. Therefore, it
might be more economical to tailor the defect-unaware steps of the design
flow to map the design into a set of smaller crossbars rather than a set of
larger crossbars. In other words, it costs less to use (map the design into) a
large number of small crossbars instead of a small number of large crossbars.
However, the impact on the routability of the crossbar array needs to carefully
be considered, as well. Hence, there is a minimum (threshold) on the size of the
crossbar such that below that threshold, the routability could negatively be
affected. Figure 16 shows the size of minimum fabricated crossbar to achieve a
defect-free 16×16 crossbar for various yields (y = 80%, 85%, 90%, 95%, 100%).
The defect distribution is unclustered. This figure suggests that the effect of
the required yield on the amount of redundancy is almost linear.

The situation for short (bridging) defects is different from open defects.
If there is a stuck-closed fault, both nanowires (or at least one nanowire in
the relaxed model) intersecting at the faulty switch position become unusable.
This corresponds to missing vertices in the graph model instead of missing

142 M.B. Tahoori

0 5 10 15 20 25 30
0

5

10

15

S
iz

e
o

f
O

ri
g

in
al

 C
ro

ss
b

ar
 (

N
)

% Defect Density

Unclustered
Clustered (a=1)
Clustered (a=2)

(a) 4 × 4 crossbar

0 5 10 15 20 25 30
0

10

20

30

40

50

S
iz

e
o

f
O

ri
g

in
al

 C
ro

ss
b

ar
 (

N
)

% Defect Density

Unclustered
Clustered (a=1)
Clustered (a=2)

(b) 8 × 8 crossbar

Fig. 13. The size of original crossbar (n) required for obtaining the desirable defect-
free crossbar (k = 4, 8) in the presence of stuck-open faults (yield = 100%)

edge which is the case of open defects. For open defects, the probability of find-
ing a defect-free crossbar is roughly the function of defect density. However,
the probability of finding a defect-free crossbar in the presence of stuck-closed
faults is a function of the number of faulty switches. This severely affects the
yield metric in the presence of short defects (switch or nanowire).

The difference between stuck-open and stuck-closed faults is well depicted
in Fig. 17a. In this figure, the probabilities of finding a defect-free 16 × 16
crossbar within various sized defective crossbars with defect density of 2.5%

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 143

0 5 10 15 20 25 30
0

50

100

150

S
iz

e
o

f
O

ri
g

in
al

 C
ro

ss
b

ar
 (

N
)

% Defect Density

Unclustered
Clustered (a=1)
Clustered (a=2)

(a) 12 × 12 crossbar

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

S
iz

e
o

f
O

ri
g

in
al

 C
ro

ss
b

ar
 (

N
)

% Defect Density

Unclustered
Clustered (a=1)
Clustered (a=2)

(b) 16 × 16 crossbar

Fig. 14. The size of original crossbar (n) required for obtaining the desirable defect-
free crossbar (k = 12, 16) in the presence of stuck-open faults (yield = 100%)

for both stuck-open and stuck-closed faults are plotted. The defect distrib-
ution model is unclustered. The probability of finding a defect-free crossbar
with a fixed size in the presence of stuck-open faults is monotically increasing
given the size of the original defective crossbar is increasing as well (assuming
that the defect density is also fixed). However, for stuck-closed faults, this
probability decreases at some point. This is due to the fact that as the size
of the original defective crossbar increases (with a fixed defect density), the
number of faulty switches will also increase.

144 M.B. Tahoori

0 5 10 15 20 25 30

104

103

102

101

100

N
o

rm
al

iz
ed

 A
re

a
O

ve
rh

ea
d

% Defect Density

4 * 4
8 * 8
12 * 12
16 * 16

(a) Unclustered

0 5 10 15 20 25 30

104

103

102

101

100

N
o

rm
al

iz
ed

 A
re

a
O

ve
rh

ea
d

% Defect Density

4 * 4
8 * 8
12 * 12
16 * 16

(b) Clustered (α = 2)

Fig. 15. Area overhead (redundancy) required to achieve defect-free crossbars with
different sizes (yield = 100%)

Unlike for stuck-open faults, the effect of different defect distribution mod-
els on the probability of finding a defect-free crossbar in the presence of stuck-
closed faults is quite significant. Figure 17b shows the probability of finding
a defect-free 16 × 16 crossbar within defective crossbars with defect density
of 2.5% using different defect distribution models. As can be seen in this fig-
ure, this probability for the clustered distribution model with α = 2 is much
higher than other models, and converges to more than 90% (while the other
two converge to zero).

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 145

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

S
iz

e
o

f
O

ri
g

in
al

 C
ro

ss
b

ar
 (

N
)

% Defect Density

Yield = 100%
Yield = 95%
Yield = 90%
Yield = 85%
Yield = 80%

Fig. 16. Size of minimum fabricated crossbar for finding 16 × 16 crossbar with
various yields (unclustered defect distribution)

Fortunately, the stuck-closed faults are much less likely than stuck-open
faults in the self-assembly fabrication of molecular crossbars, as shown in [11].
Moreover, in the fabrication process, it is possible to tailor the chemical
synthesis technique to decrease the probability of having switch stuck-closed
faults at the expense of increasing the total number of switch faults [13]. In
this case, we expect to have a much higher defect density of stuck-open faults
than stuck-closed faults, thus resulting in a better defect tolerance in overall.

7.2 Comparison of Recursive and Greedy Algorithms

Here we compare the accuracy and run time of the two algorithms presented in
Sect. 6. As explained in Sect. 6.1, the recursive algorithm is an exact approach
which always gives the optimum solution. However, the greedy algorithm is
a heuristic approach with much reduced run time in which the maximum
biclique is not guaranteed. Figure 18 shows the results obtained by these two
methods for 16× 16 and 32× 32 crossbars, using defect densities (stuck-open
defects) up to 30%. For each data point, 1000 crossbars with the given defect
density are randomly generated and the average sizes of the maximal bicliques
obtained by these two methods are reported. As can be seen in this figure, the
difference between the recursive (exact) method and the greedy algorithm is
almost negligible.

Table 1 shows the run time comparison of these two approaches for three
different sizes of the crossbars, 16×16, 24×24, and 32×32. The run time num-
bers are normalized to the run of the greedy algorithm for 16×16 crossbar
with 5% defect density (the smallest run time number). With these crossbars,
the greedy algorithm is up to 406 times faster than the recursive (exact) al-
gorithm and this speedup exponentially increases for larger crossbars. As can

146 M.B. Tahoori

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

P
ro

b
 o

f
F

in
d

in
g

 a
 D

ef
ec

t−
fr

ee
 1

6*
16

Size of Original Defective Crossbar

Stuck Closed
Stuck Open

(a)

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
 o

f
F

in
d

in
g

 a
 D

ef
ec

t−
fr

ee
 1

6*
16

Size of Original Defective Crossbar

Unclustered
Clustered (Alpha 1)
Clustered (Alpha 2)

(b)

Fig. 17. Finding a defect-free 16 × 16 crossbar within defective crossbars (d =
2.5%): (a) open and short faults (b) short faults

be seen in this table, the run time of the recursive (exact) approach grows ex-
ponentially with the size of the crossbar. However, the run time of the greedy
approach grows almost linearly with the crossbar size. Another observation is
that the run time of the greedy algorithms grows monotically with the defect
density. This is because the efficiency of the heuristic has a direct relation
with the sparseness of the complement graph. In other words, as the defect
density increases, the algorithm requires to remove more nodes before termi-
nation. However, the run time of the recursive approach does not necessarily
increases with the defect density. When the defect density is very low, there
are many nodes that are connected to all nodes in the other partition (i.e.

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 147

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Si
ze

 o
f m

ax
im

um
 b

ic
liq

ue
 (k

)

% Defect Density

Recursive Algoritm (32 x 32)
Greedy Algorithm (32 x 32)
Recursive Algoritm (16 x 16)
Greedy Algorithm (16 x 16)

Fig. 18. Greedy Algorithm vs. Recursive Algorithm

Table 1. Normalized execution time for greedy and recursive algorithms

Defect 16×16 24×24 32×32
density (%) Greedy Recursive Greedy Recursive Greedy Recursive

5 1.0 3.7 3.8 111.4 9.9 3,258.4

10 1.6 9.1 5.8 260.6 12.6 5,127.4

15 1.9 12.3 6.9 205.7 14.8 3,617.4

20 2.1 11.3 6.5 208.6 16.5 2,337.9

25 2.4 9.9 7.2 133.6 16.5 1,520.6

30 2.6 9.5 7.8 103.7 17.7 866.3

satisfying the conditions of lines 8–9 in the pseudo code of Fig. 11). on the
other hand, when the defect density is large enough, there are many nodes
connected to less than k nodes (i.e. satisfying the conditions of lines 6–7 in
the pseudo code of Fig. 11). This is why the run time for very low and very
high defect densities is smaller than that for medium cases.

Defect map is generated as a byproduct of these algorithms. As a result,
no extra time is required to obtain the defect map (i.e. the execution times in
Table 1 include defect map generation). As stated in Sect. 4, the size of the
reduced defect map is only 2n (the vertical and horizontal vectors).

7.3 Defect Tolerant Crossbar Array

The nano-architecture is based on an array of molecular crossbars. The global
view of this architecture considers the connections among crossbars and how
the design is partitioned and mapped into crossbars. The local view focuses on
individual crossbars, the resources within each crossbar and how the crossbar

148 M.B. Tahoori

resources are utilized for a particular mapped design. The floorplanning, global
placement, and global routing phases of the physical design use the global
view, whereas the detailed placement and routing are based on the local view.
As stated in the introduction, the main focus of the chapter is defect tolerance
in the local view of the nano-architecture. Nevertheless, here we discuss some
defect tolerance issues related to the global view of the nano-architecture.

In order to achieve a global defect tolerant architecture, one option is
to generate a defect-unaware (application-independent) global architecture
which consist of an array of k × k defect-free crossbar. The size of this cross-
bar array needs to be the same for all the chip manufactured in the same
fabrication environment. In other words, the value of k has to be constant
for all crossbars in the chip. Therefore, k has to be chosen such that that
all crossbars in the chip have defect-free subsets of minimum size k. This
might result in excessive area overhead and smaller values for k. Moreover in
this scheme, the chips containing crossbars with very small defect-free subset
(smaller than expected k) will be thrown away and this affects the overall
yield of manufactured chips.

The other option is to use an application-dependent flow for the global
view and use the proposed defect-unaware flow only for the local view. In this
scheme, the crossbars on the chip with defect-free subset smaller than k are
marked as “unusable” and will not be used for application mapping. As a
result, the size of “usable” crossbar array might vary from chip to chip. The
advantage of this approach is its reduced area overhead (i.e. larger values of k)
compared to the application-independent global defect tolerance, as explained
above. This comes with the cost of using application-dependent global map-
ping per chip. Since the complexity of global mapping (placement and routing)
is less than local mapping (detailed placement and routing), the amount of per
chip customization of this mixed globally-defect-aware locally-defect-unaware
defect tolerance flow is not high.

One major issue that needs to be resolved in the defect tolerant crossbar ar-
ray is how to make connections between defect-free subsets of individual cross-
bars. Since defect-free subsets of individual crossbars are locally extracted,
the inputs/outputs of defect-free subsets of adjacent crossbars might not fully
match. In this situation, we use some crossbars just to make defect-free match-
ing between the inputs and outputs of defect-free subsets of crossbars [29].
This n × n crossbar, which makes the connection between k particular input
nanowires to k particular output nanowires using a one to one matching, is
called a permutation crossbar. In the application-independent defect-tolerant
architecture, the crossbars are divided into two sets of user crossbars (UCB)
and permutation crossbars (PCB). UCBs are used for the implementation of
logic, programmable switch block, or non-volatile memory array. The design
view of an n× n partially-defective crossbar used as a UCB is a k × k defect-
free complete crossbar (biclique). UCBs are connected through PCBs. PCBs
are transparent to the mapped design and the design flow. In other words,
only UCBs exist in the design view and can be used for application mapping.

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 149

PCBs provide defect-free matching between their input and output nanowires
participating in the corresponding defect-free subsets of the adjacent UCBs
to that PCB.

8 Conclusions

Defect densities in self-assembly enabled nanotechnology are significantly
higher than those in the lithography-based CMOS technology due to non-
determinism in self-assembly nano-fabrication and atomic device sizes. Defect
tolerant techniques are therefore essential for the designs realized using this
nanotechnology to achieve an acceptable level of manufacturing yield.

In this chapter, we have proposed a defect-unaware design flow for de-
fect tolerance of reconfigurable crossbar array architectures. The presented
application-independent flow has many advantages over the defect-aware
adaptive defect tolerance (application-dependent), including a considerable
reduction in the defect map size, negligible per-chip customized design ef-
fort, and predictability in the performance of mapped designs. We have also
investigated defect tolerance of the two-dimensional crossbar, which is used
as the basic building block for logic, interconnect and memory in various
nano-architectures. We have presented a yield analysis method based on the
proposed defect-unaware flow in which the probability of finding a defect-free
subset within a partially-defective fabricated crossbar is identified. We have
presented algorithms to identify the maximum defect-free crossbar with the
partially-defective fabricated crossbar. These algorithms can be used in yield
analysis as well as final mapping and defect map generation steps.

References

1. S. Iijima. Helical Microtubules of Graphitic Carbon. In Nature, volume 354,
pages 56–58, 1991.

2. A. Bachtold, P. Harley, T. Nakanishi, and C. Dekker. Logic Circuits with Carbon
Nanotube Transistors. In Science, volume 294, pages 1317–1320, 2001.

3. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber.
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular
Computing. In Science, volume 289, pages 94–97, 2000.

4. T. Kamins, R. Williams, Y. Chen, Y. -L. Chang, and Y. Chang. Chemical Vapor
Deposition of Si Nanowires Nucleated by TiSi2 Islands on Si. In Applied Physics
Letters, volume 76, pages 562–564, 2000.

5. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber. Logic
Gates and Computation From Assembled Nanowire Building Blocks. In Science,
volume 294, pages 1313–1317, 2001.

6. K. Chen, K. Maezawa, and M. Yamamoto. Inp-based High-Performance
Monostable-Bistable Transition Logic Elements (MOBILE’s) Using Integrated
Multiple-Input Resonant-Tunneling Devices. In IEEE Electron Device Letters,
volume 17, pages 127–129, 1996.

150 M.B. Tahoori

7. K. Likharev. Single Electron Devices and their Applications. In Proc. IEEE,
volume 87, pages 606–632, 1999.

8. P. Tougaw and C. Lent. Logical Devices Implemented Using Quantum Cellular
Automata. In Applied Physics, volume 75, pages 1818–1825, 1994.

9. M. Butts, A. DeHon, and S. C. Goldstein. Molecular Eletronics: Devices, Sys-
tems and Tools for Gigagate, Gigabit Chips. In Proc. Int’l Conf. on Computer-
Aided Design, pages 443–440, 2002.

10. Y. Cui and C. M. Lieber. Functional Nanoscale Electronics Devices Assembled
Using Silicon Nanowire Building Blocks. In Science, volume 291, pages 851–853,
2001.

11. A. DeHon. Array-Based Architecture for FET-Based, Nanoscale Electronics. In
IEEE Trans. on Nanotechnology, volume 2, pages 23–32, 2003.

12. A. DeHon and M. J. Wilson. Nanowire-Based Sublithographic Programmable
Logic Arrays. In Proc. ACM Int’l Symp. on Field-Programmable Gate Arrays,
pages 123–132, 2004.

13. S. C. Goldstein and M. Budiu. NanoFabrics: Spatial Computing Using Molecular
Electronics. In Proc. Int’l Symp. on Computer Architecture, pages 178–189,
2001.

14. M. M. Ziegler and M. R. Stan. Design and Analysis of Crossbar Circuits for
Molecular Nanoelectronics. In Proc. IEEE Int’l Conf. on Nanotechnology, pages
323–327, 2002.

15. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart,
P. J. Kuekes, R. S. Williams, and J. R. Heath. Electronically Configurable
Molecular-Based Logic Gates. In Science, volume 285, pages 391–394, 1999.

16. Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale Molecular-Switch
Crossbar Circuits. In Nanotechnology, volume 14, pages 462–468, 2003.

17. A. DeHon, P. Lincoln, and J. E. Savage. Stochastic Assembly of Sublitho-
graphic Nanoscale Interfaces. In IEEE Trans. on Nanotechnology, volume 2,
pages 165–174, 2003.

18. X. Ma, D. Strukov, J. Lee, and K. Likharev. Afterlife for Silicon: CMOL Circuit
Architectures. In Proc. IEEE Conf. on Nanotechnology, pages 175–178, 2005.

19. D. Strukov and K. Likharev. CMOL FPGA: A Reconfigurable Architecture for
Hybrid Digital Circuits with Two-Terminal Nanodevices. In Nanotechnology,
volume 16, pages 888–900, 2005.

20. Nantero. www.nantero.com, 2005.
21. H. Naeimi and A. DeHon. A Greedy Algorithm for Tolerating Defective Cross-

points in NanoPLA Design. In Proc. Int’l Conf. on Field-Programmable Tech-
nology, pages 49–56, 2004.

22. M. Mishra and S. C. Goldstein. Defect Tolerance at the End of the Roadmap.
In Proc. Int. Test Conf., pages 1201–1211, 2003.

23. M. B. Tahoori and S. Mitra. Defect and Fault Tolerance in Reconfigurable Mole-
cular Computing. In Proc. Field Custom Computing Machines, pages 176–185,
2004.

24. Z. Wang and K. Chakrabarty. Using Built-In Self-test and Adaptive Recovery
for Defect Tolerance in Molecular Electronics-Based Nanofabrics. In Proc. Int.
Test Conf., pages 477–486, 2005.

25. R. Rad and M. Tehranipoor. SCT: an approach for testing and configuring
nanoscale devices. In Proc. VLSI Test Symp., pages 370–377, 2006.

Chapter 5: Defect Tolerance in Crossbar Array Nano-Architectures 151

26. J. Huang, M. B. Tahoori, and F. Lombardi. On the Defect Tolerance of Nano-
Scale Two-Dimensional Crossbars. In Proc. IEEE Int’l Symp. on Defect and
Fault Tolerance of VLSI systems, pages 96–104, 2004.

27. F. J. Meyer and D. K. Pradhan. Modeling Defect Spatial Distribution. In IEEE
Trans. on Computers, volume 38, pages 538–546, 1989.

28. F. C. Doherty, J. R. Lundgren, and D. J. Siewert. Bicliquecovers and Partitions
of Bipartite Graphs and Digraphs and Related Matrix Ranks of 0,1-Matrices.
In Congressus Numerantium 136, pages 73–96, 1999.

29. M. B. Tahoori. Application Independent Defect Tolerant Crossbar Nano-
Architectures. In Proc. IEEE Int’l Conf. on Computer Aided Design, 2006.

Section 2: Test and Defect Tolerance for QCA
Circuits

M. Tehranipoor

Traditionally, cellular automata (CA) were commonly implemented as soft-
ware programs. However, a physical implementation of an automaton using
quantum-dot cells was proposed about a decade ago. The automaton quickly
gained popularity among researchers in academia and research laboratories.
The discrete nature of both, cellular automata and quantum mechanics, was
then combined to create nanoscale devices capable of performing computa-
tion at very high switching speeds and consuming extremely small amounts
of power. Today, standard solid state quantum-dot cellular automata (QCA)
cell design considers the distance between quantum dots to be about 15 nm,
and a distance between cells of about 50 nm. Just like any CA, Quantum-dot
Cellular Automata are based on the simple interaction rules between cells
placed on a grid. A QCA cell is constructed from four quantum dots arranged
in a square pattern. These quantum dots are the sites in which electrons can
occupy by tunneling to them.

Complementary metal-oxide semiconductor (CMOS) technology has been
the industry standard for implementing very large scale integrated (VLSI)
devices for the last two decades, and for very good reasons mainly due to the
consequences of miniaturization of such devices. QCA is only one of the many
alternative technologies proposed as a replacement solution to the fundamen-
tal limits CMOS technology will impose in the years to come. Optimistic
assumptions suggest that intrinsic switching time of a QCA cell is in the or-
der of terahertz, however, switching speed is not limited by a cells intrinsic
switching speed but by the proper quasi-adiabatic clock switching frequency
setting. QCA technology resolves, in principle, the problems of current CMOS
technology, and it is currently limited by the availability of its practical fab-
rication methods.

This section contains four chapters that deal with various challenges in
test and defect tolerance for QCA devices. The first chapter (Chap. 6) in
this section entitled “Reversible and Testable Circuits for Molecular QCA
Design” describes that reversible logic design is a well-known paradigm in
digital computation. While an extensive literature exists on its mathematical

154 M. Tehranipoor

characterization, little work has been reported on its possible technological
basis. In this chapter, Quantum-dot Cellular Automata is investigated for
testable implementations of reversible logic. In QCA, the basic combinational
unit is the majority voter, so new criteria must be met in the logic design.
Two new reversible gates (denoted as QCA1 and QCA2) are proposed. These
gates are compared with other reversible gates (such as Toffoli and Fredkin)
for QCA implementation. Figures of merit for the evaluation of area, delay and
synthesis, are provided. As the bijective nature of reversibility makes testing
significantly easier than in the general case, testing of the reversible gates is
pursued in detail. As applicable to molecular QCA implementations, differ-
ent array configurations are treated in detail under single and multiple faults.
Issues related to controllability and observability are addressed for both fully
exhaustive and reduced test sets.

“Cellular Array-based Delay-insensitive Asynchronous Circuits Design and
Test for Nanocomputing Systems” is the second chapter (Chap. 7) in this
section. This chapter presents the design, layout, and testability analysis of
delay-insensitive circuits on cellular arrays for nanocomputing system design.
In delay-insensitive circuits the delay on a signal path does not affect the cor-
rectness of circuit behavior. The combination of delay-insensitive circuit style
and cellular arrays is a useful step to implement nanocomputing systems. In
the approach proposed in this chapter the circuit expressions corresponding
to a design are first converted into Reed–Muller forms and then implemented
using delay-insensitive Reed–Muller cells. The design and layout of the Reed–
Muller cell using primitives are described in detail. The effects of stuck-at
faults in both delay-insensitive primitives and gates are analyzed. Since cir-
cuits implemented in Reed–Muller forms constructed by the Reed–Muller cells
can be easily tested offline, the proposed approach for delay-insensitive cir-
cuit design improves a circuits testability. Potential physical implementation
of cellular arrays and its area overhead are also discussed in this chapter.

Chapter 8, entitled “QCA Circuits for Robust Coplanar Crossing”, pro-
poses different circuits of QCA for the so-called coplanar crossing. Coplanar
crossing is one of the most interesting features of QCA because it allows
for mono-layered interconnected circuits, whereas CMOS technology needs
different levels of metallization. However, the characteristics of the coplanar
crossing make it prone to malfunction due to thermal noise or defects. The
proposed circuits exploit the majority voting properties of QCA to allow a
robust crossing of wires on the Cartesian plane. This is accomplished using
enlarged lines and voting. A Bayesian Network (BN) based simulator is uti-
lized for evaluation; results are provided to assess robustness in the presence
of cell defects and thermal effects. The BN simulator provides fast and reliable
computation of the signal polarization vs. normalized temperature. Simulation
of the wire crossing circuits at different operating temperatures is provided
with respect to defects and a quantitative metric for performance under tem-
perature variations is proposed and assessed.

Section 2: Test and Defect Tolerance for QCA Circuits 155

The final chapter in this section (Chap. 9) entitled “Reliability and Defect
Tolerance in Metallic Quantum-dot Cellular Automata” focuses on the issue
of robustness in the presence of disorder and thermal fluctuations. It examines
the performance of a semi-infinite QCA shift register as a function of both
clock period and temperature. The existence of power gain in QCA cells acts
to restore signal levels even in situations where high-speed operation and
high-temperature operation threaten signal stability. Random variations in
capacitance values can also be tolerated.

Chapter 6: Reversible and Testable Circuits
for Molecular QCA Design

X. Ma, J. Huang, C. Metra, and F. Lombardi

1 Introduction

Emerging technologies have been widely advocated to supersede the projected
limitations of CMOS at the end of the roadmap [27]. Computation at nano
regimes is substantially different from conventional VLSI. Extremely small fea-
ture size, high device density and low power are some of the attributes that
emerging technologies must address, while implementing new computational
paradigms [1]. One of these paradigm is reversible computing. Reversible com-
putation is accomplished by establishing a one-to-one onto mapping between
the input states and output states of the circuit [7]. This bijective property was
initially investigated by Landauer who showed that kT ln 2 joules of energy
are generated for each bit of information lost due to non reversible compu-
tation [6]. But, if computation is performed in a reversible manner, it has
been shown that kT ln 2 energy dissipation would not necessarily occur. Due
to the bijective property, testing of reversible logic is generally simpler than
conventional irreversible logic [31].

An extensive literature exists on reversible computing [2, 4, 5], different
gates as primitives for reversible logic computation have been proposed. In
most cases, an elegant mathematical analysis (such as those based on the
conservative property) of these gates has been provided to describe a technol-
ogy independent characterization by which reversible computing (mostly at
logic level) can be accomplished. However, little work has been reported on
the capabilities of emerging technologies to perform reversible computation.

Among emerging technologies, Quantum-dot Cellular Automata (QCA)
[9,18] relies on novel design concepts to exploit new physical phenomena (such
as Coulombic interactions), and implement unique paradigms [10, 14] with
desirable features such as low power. In QCA, gates (such as the inverter,
INV and majority voter, MV) and other devices (such as the binary wire and
the inverter chain) have been proposed as primitives for combinational circuit
design [16]. It has been shown [25, 26] that for QCA, the functions with at

158 X. Ma et al.

most three input variables (such as the MV) provides the basis for efficient
combinational design.

As a combined methodology for computation and communication [11, 13,
14], different designs of logic circuits have been proposed for QCA imple-
mentation [14, 15, 17, 19, 20]. Recent developments in manufacturing involve
molecular assembly of the QCA devices to supersede metal-based implemen-
tations [12]. At very small features sizes, self-assembly and large scale cell
deposition on insulated substrates have been proposed.

QCA has also very low power consumption. Using an induced electric field
mechanism for clocking (made of four phases), true power gain is possible
in this technology. QCA has been used to quantitatively assess the relation
between computation and energy dissipation [32]. In QCA, the information
stored in the cell is “erased” when cell is released by clock. Two strategies
have been considered for clocking QCA [32]: logically irreversible “erase” and
logically reversible “copy-then-erase”. The “copy” operation is performed by a
nearby QCA cell (called the demon cell). It has been shown that erasure with-
out copying requires an amount of dissipated energy in the order of the signal
energy. However, the energy dissipation during a “copy then erase” process in
which a copy of the bit is retained, can be made arbitrarily small. The oper-
ation of a binary wire (i.e. a QCA shift register) can be viewed as a sequence
of “copy then erase” operations. It has been shown that the energy dissipated
per switching event can be much less than kT ln 2. However, it should be
pointed out that the majority voting function is logically irreversible, because
the information in the minority input is lost during computation. A novel
clocking scheme referred to as Bennett clocking has been proposed for QCA
in [33]. Bennett clocking offers a practical realization of reversible computing.
The basic principle of Bennett clocking is that bit information is held in place
by the clock until a computational block is complete, then an erasure takes
place in the reverse order of computation. The process is reversible and has
been shown by direct calculation that energy dissipation per switching event is
much less than kT ln 2 for QCA circuits containing MV and fanout [33]. Ben-
net clocking does not require any change in the QCA layout, i.e. no additional
circuit complexity at QCA level, only clocking signals are modified.

Although it is possible in theory to design a system with virtually zero
energy dissipation with Bennett clocking, the main focus of this chapter is
to analyze the testability advantage of logically reversible QCA systems by
considering different features such as fault model, test set cardinality, ob-
servability and controllability. In this chapter, new reversible logic gates are
defined in QCA by their bijective property, i.e. the one-to-one onto mapping
between inputs and outputs. However, QCA does not have the same logic and
physical features of existing technologies, such as CMOS. Hence, the logic de-
finition of a reversible gate must take into consideration the unique features
of QCA, such as the majority voter based synthesis and timing requirements.
Additionally, reversible circuits are amenable to efficient testing due to their
bijective property. The one-to-one onto mapping of reversible logic improves

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 159

both controllability and observability of a circuit. As applicable to molecular
implementations, different array structures of basic units (referred to as mod-
ules made of reversible gates) are analyzed under single and multiple fault
models. It is shown that constant testability (C-testability) is achieved in
these arrays under different conditions of controllability, observability, fault
models and test sets.

This chapter is organized as follows. Section 2 presents a brief review of
reversible computing. Section 3 deals with a brief review of QCA. Preliminar-
ies inclusive of the defect model and assumptions are presented in Sect. 4. Re-
versible gates for QCA implementation are proposed in Sect. 5. Defect analysis
and testing for the QCA gates are given in Sect. 6. Section 7 discusses test-
ing of one-dimensional arrays made of reversible modules with controllability
limited to the primary inputs and outputs of the array. The issue of array
testability, controllability and observability are analyzed in Sect. 8. Section 9
presents the testing process for one-dimensional arrays in which controllability
and observability are added to the intermediate modules. Section 10 concludes
the chapter.

2 Reversible Computing

Reversible computing is based on invertible primitives and composition rules
that preserve invertibility [2]. Reversible computing can be used in quantum
computing, optical computing and nanotechnology and has attracted consid-
erable research attention in recent years [5]. The basic principle of reversible
computing is that no information is lost during the computation process and
the entire computing process is invertible, i.e. given the final state of the
system, a unique initial state can be determined.

In has been proved in [6] that the irreversibility of traditional logic gates
inevitably leads to power dissipation in the order of kT for the erasure of each
bit of information. Although currently the power dissipation of CMOS cir-
cuits is much higher than kT , in the future with low power dissipation and an
increased level of integration of nano-based technologies this theoretical limit
may become a major barrier. Bennett [4] has shown that to avoid energy dis-
sipation reversible logic gates must be used. Using reversible logic, it is ideally
possible to build sequential circuits with no internal power dissipation [2]. Fur-
thermore, [2] has shown that even if the reversible circuit is interfaced with
conventional irreversible logic gates, the power dissipation at the interface is
in the worst case proportional to the number of inputs and outputs (instead
of the number gates). A reversible logic function is a one-to-one onto mapping
(bijection) between inputs and outputs, i.e. each input pattern is mapped to
a unique output pattern, while each output pattern has a unique input pat-
tern mapped to it. Traditional logic functions (such as AND and OR) are not
reversible, because more than one input state is mapped to a common out-
put state. In this case, given the output state, it is not possible to determine

160 X. Ma et al.

the input state, thus information is lost during the computation process. INV
is a simple example of a reversible logic gate. The most studied reversible
logic gates are the Toffoli [2] and the Fredkin gates [3]. Quantum analysis of
these two gates has been given in [7]. In the simplest form, the Toffoli gate
has three inputs and three outputs and is universal [2], i.e. any combinational
reversible logic circuit can be build with Toffoli gates. The Fredkin gate also
has three inputs, three outputs and is universal. In addition, the Fredkin gate
is also conservative, i.e. the number of “1”s in the outputs is the same as the
number of “1”s in the inputs.

The bijective nature of reversible gates makes testing significantly sim-
pler compared to the conventional case. Reversible logic gates are informa-
tion lossless, i.e. the information output of a reversible circuit is maximized.
Therefore according to [30], the probability of fault detection is maximized
too. Reversible logic is inherently easier to test because the one-to-one onto
property improves the controllability as well as the observability of the circuit.
It has been proved [31] that any test set that detects all single stuck-at faults
must detect all multiple stuck-at faults. Efficient test generation algorithms
can be used [31] to obtain a test set of half the size of that generated by
conventional ATPG. One bound presented in [31] shows that the size of the
test set grows at most logarithmically with the size of the circuit. The testa-
bility problem for a subclass of reversible logic gates, namely the k-CNOT
gates have been investigated in [35]. It is shown that n-wire reversible circuits
have a universal test set of size n2 + 2n + 2. Iterative Logic Arrays (ILAs)
built with reversible logic gates have been also considered in [35] under a sin-
gle module fault assumption. Assuming each module has h horizontal inputs
(outputs) and v vertical inputs (outputs), it has been proved that a 1D array
with a single faulty module is C-testable and fault detection requires 2h+v test
vectors, i.e. an exhaustive test set. Furthermore, it has been shown that any
d-dimensional array is C-testable under a single-faulty-module assumption.
However, multiple faulty modules are not addressed; in this case, masking
may occur. Moreover, multiple faulty modules are likely to be present in nan-
otechnology, especially for biological and molecular based implementations.
In this chapter, the test properties of reversible logic are investigated in de-
tail. Test properties of 1D ILAs made of modules with reversible logic gates
in QCA are considered under single and multiple faulty modules. It will be
shown that a reversible 1D array has the attractive property of C-testability
under specific fault assumptions.

3 Review of QCA

A QCA cell can be viewed as a set of four charge containers or “dots”, po-
sitioned at the corners of a square [16]. The cell contains two extra mobile
electrons which can quantum mechanically tunnel between dots, but not cells.
The electrons are forced to the corner positions by Coulombic repulsion. The

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 161

"0" "1"
Polarization − 1 Polarization + 1

dot

quantum
cell

Fig. 1. QCA cell and polarization states

(a) Inverter

(b) Majority Voter

B

C

A

F=AB+AC+BC

(c) Binary Wire

(d) Inverter Chain

Fig. 2. Basic QCA devices

two possible polarization states represent logic “0” (polarization P = −1)
and logic “1” (polarization P = +1), as shown in Fig. 1. Unlike conventional
logic circuits in which information is transferred by electrical current, QCA
operates by the Coulombic interaction that connects the state of one cell to
the state of its neighbors. This results in a technology in which information
transfer (interconnection) is the same as information transformation (logic
manipulation).

One of the basic logic gates in QCA is the majority voter (MV) [16]. The
majority voter with logic function MV (A,B,C) = AB + AC + BC, can be
realized by only five QCA cells, as shown in Fig. 2b. Logic AND and OR
functions can be implemented from the majority voter by setting one input
(the so-called programming or control input) permanently to a 0 or 1 value.
The inverter is the other basic gate in QCA and is shown in Fig. 2a. The binary
wire and inverter chain (as interconnect fabric) are shown in Figs. 2c,d.

In VLSI systems, timing is controlled through a reference signal (i.e. the
clock); however, timing in QCA is accomplished by clocking in four distinct
and periodic phases [12] (as shown in Fig. 3). A QCA circuit is partitioned
into serial (one-dimensional) zones, and each zone is maintained in a phase.
The use of a quasi-adiabatic switching technique for QCA circuits requires
a four-phased clocking signal which is commonly supplied by CMOS wires
buried under the QCA circuitry for modulating the electric field. The four
phases are Relax, Switch, Hold and Release. During the Relax phase, there is
no interdot barrier and a cell remains unpolarized. During the Switch phase,
the interdot barrier is slowly raised and a cell attains a definitive polarity
under the influence of its neighbors. This is the phase in which the actual

162 X. Ma et al.

Switch Hold Release Relax

E field
barrier

Si
gn

al
 t

ra
ns

fe
r

Time

Time

subarray4
clockzone4

subarray3
clockzone3

subarray2
clockzone2

subarray1
clockzone1

(b) Switching of a Binary Wire

fixed polarization
input

(a) 4 Phase Clocking

Fig. 3. Four-phased signal for clocking zones in QCA, adiabatic switching

computation takes place. In the Hold phase, barriers are high and a cell retains
its polarity. Finally in the Relax phase, barriers are lowered and a cell loses its
polarity. Timing zones of a QCA circuit or system are arranged by following
the periodic execution of these four clock phases. Zones in the Hold phase
are followed by zones in the Switch, Release and Relax phases, one after
another. There is effectively a latch between two clocking zones. A signal is
latched when one clocking zone goes into Hold phase and acts as input to the
subsequent zone. This clocking mechanism provides inherent pipelining [23,24]
and allows multi-bit information transfer for QCA through signal latching.
Because a zone in the Hold phase is followed by a zone in the Switch phase (and
preceded by a zone in the Relax phase), the computation in QCA is strictly
one-dimensional (i.e. unidirectional and consistent with signal propagation).
Designs are partitioned along one dimension (say the X-axis), thus effectively
creating columns of clocking zones. The clocking signal is applied through
an underlying CMOS circuitry that generates the required electric field to
modulate the tunnelling barrier of all cells in the zones.

At logic level, two synthesis approaches are applicable to QCA-based
design. The first approach referred to as AND/OR-based synthesis, has
been recently proposed specifically for QCA combinational circuits [8]. This

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 163

approach reduces the number of MV gates required for computing three vari-
able Boolean functions to facilitate the conversion of SOP expressions into
QCA majority logic. Thirteen standard functions [8] are utilized to completely
represent all three-variable Boolean functions. Using a three cube represen-
tation, an iterative procedure is proposed [8] to generate a reduced majority
gate expression that is amenable to QCA. The generated expression however
is not always optimal, because for some standard functions the expression
contains three levels of MVs. It is know that any combinational function of
at most three literals can be implemented with a two-level [1] MV network.

The second synthesis approach which can be applied to QCA, is the so-
called MV-based synthesis [1]. This approach relies on the logic analysis of
the MV function as an instance of threshold logic. Threshold logic has been
extensively analyzed in the past and the majority threshold function of three
variables (i.e. corresponding to the MV) is equivalent to a logic representation
which can be easily implemented in QCA. Synthesis under the technique of [1]
is based on identifying negated or permutated variables of a function such
that restrictions can be generated to comply with the voting nature (such as
agreement or disagreement) of this threshold function. An iterative process
which can be extended to the general case of n variable voting functions, is
described in [1].

This chapter presents reversible gates implemented by QCA. In addition
to the Toffoli and the Fredkin gates, two new reversible gates (namely QCA1
and QCA2) are proposed. Area, number of QCA cells and delay of the four
reversible logic gates are analyzed and compared.

4 Preliminaries

QCA gates used in this chapter contains MV, fanout and fixed polarization
cells. These gates are therefore not strictly “reversible”. However, the focus
of this chapter is not constructing a system with zero energy dissipation, but
rather exploring the testability advantage of logically reversible system and
the one-to-one onto mapping. In this chapter, reversible logic gates are defined
by their bijective property between inputs and outputs.

The following notation and assumptions are valid hereafter:

1. As applicable to molecular implementations, missing/additional QCA cell
defects are considered in a gate. Only defects in the active devices (MV and
INV) are considered. For a QCA interconnect, results under this defect
model have been reported in previous manuscripts [21, 22]. A single fault
per gate is assumed.

2. The basic function of a reversible logic gate is a one-to-one onto mapping
of input to output patterns. Let ai represent the 3 bit pattern whose
decimal value is i, e.g. a0 = 000, a5 = 101. Then a reversible logic gate
can be represented by an input/output mapping ai → aj . Independently

164 X. Ma et al.

of the status (defective or defect-free) of a gate, the number of distinct
output patterns can not be greater than the number of distinct input
patterns. The ith faulty mapping from inputs to outputs results in a fault
pattern that is denoted by FPi.

3. In all cases, simulation is performed using QCADesigner v1.4 and its co-
herence vector engine [36]. All cells used in the simulations have size of
10 nm×10 nm, and dot size of 2.5 nm. Cell to cell distance in a binary
wire is set to 2.5 nm. Additional/missing cell defects are identified by the
x and y coordinates in the layout of each device. In the layout, each MV
is highlighted by a dotted grid.

4. The four phase clocking is assumed in all QCA designs; cells in the differ-
ent clocking zones are represented by different colors.

5 Reversible Gates in QCA

In this section, the QCA implementations of four gates are presented. Two of
these gates are new as applicable to QCA. As consistent with previous papers
and practical considerations [2,5], each gate has three inputs and three outputs
and is universal.

– Fredkin gate. The Fredkin gate [3] has a truth table shown in Table 1 with
three output functions given as follows (where u′ denotes the complement
of u):

v = u,

y1 = u′x2 + ux1,

y2 = u′x1 + ux2.

The QCA implementation of the Fredkin gate is shown in Fig. 4 with its
logic schematic diagram in Fig. 5. This corresponds to a two-level MV
implementation. Altogether six MVs are used: four MVs are used as AND
gates, while the other two MVs are used as OR gates.

Table 1. Truth table of the Fredkin gate

u x1 x2 v y1 y2

000 000
001 010
010 001
011 011
100 100
101 101
110 110
111 111

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 165

0 1 2 3

v

1
2
3

6
7
8
9
10
11
12

14
15
16
17
18

13

19

21
20

22
23
24
25
26
27
28
29

y

5
4

P=−1
P=−1

P=1

u
x1

x2

P=1

P=−1
P=−1

y1

y2

3456789 12x

AND1

AND3

AND2

AND3

OR1

OR2

Clock Zone

Fig. 4. QCA layout of the Fredkin gate

– Toffoli gate. The Toffoli gate [2] is defined by the truth table in Table 2.
The output functions are

y1 = x1x2′ + x1x3′ + x1′x2x3,

y2 = x2,

y3 = x3.

A QCA implementation of the Toffoli gate is presented in Fig. 6 with its
schematic in Fig. 7. This is also a two-level MV implementation with four
MVs. One of the MV is used as AND gate and one is used as an OR gate.

166 X. Ma et al.

u
x1

x2

y1

y2

v

Fig. 5. Logic schematic diagram of the Fredkin gate

Table 2. Truth table of the Toffoli gate

x1 x2 x3 y1 y2 y3

000 000
001 001
010 010
011 111
100 100
101 101
110 110
111 011

– QCA1. The first gate designed for QCA implementation is referred to as
QCA1. This reversible gate is defined by the truth table in Table 3. The
output functions are

y1 = MV (x1, x2, x3),

y2 = MV (x1, x2, x3′),

y3 = MV (x1′, x2, x3).

A QCA implementation of the QCA1 gate is shown in Fig. 8 with its
schematic diagram in Fig. 9. This gate requires only one-level MV imple-
mentation in QCA.

– QCA2. The second gate designed for QCA implementation is referred to
as QCA2. This gate has a truth table given in Table 4. Its output functions
are

y1 = MV (x1, x2, x3),

y2 = MV (x1, x2, x3′),

y3 = MV (x1′, x2, x3′).

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 167

Clock Zone

P=−1

x1

x2

P=+1

x3

y2

y1

y3

1
2
3

5
4

6
7
8
9
10
11
12

14
15
16
17
18

13

19

21
20

22
23
24
25
26
27
28
29

3456789 2 1

y

x

AND

MV1 MV2

OR

0 1 2 3

Fig. 6. QCA layout of the Toffoli gate

QCA2 has similar properties to QCA1. A QCA implementation of QCA2
is given in Fig. 10 with a schematic diagram in Fig. 11. The implementation
requires only one-level MV (with three disjoint MVs).

QCA1 and QCA2 allow multiple MV functions to be embedded in a gate
at the same time, thus they are amenable to threshold-based synthesis.

The implementations of the four reversible logic gates can be compared
according to different measures as applicable to QCA. The results are shown in
Table 5. The number of clocking zones in each reversible logic gate is presented
to quantify the delay between inputs and outputs. Also, the geometric area

168 X. Ma et al.

MV MVx1

x3

x2

y1

y3

y2

Fig. 7. Logic schematic diagram of the Toffoli gate

Table 3. Truth table of QCA1

x1 x2 x3 y1 y2 y3

000 000
001 001
010 011
011 101
100 010
101 100
110 110
111 111

occupied by each gate is provided. This is defined as the rectangular area
occupied by the design. For example, the geometric area of a single MV is
3 × 3. The number of QCA cells used in each design is also compared. The
control cells are the input cells with fixed polarization (P = +1 or P = −1),
which are used to program the MV as either a 2-input OR, or AND gate.
All other cells are referred to as normal cells. In these implementations, two
types of normal cells are used, namely the non-rotated cells (for the MVs and
binary wires) and the rotated cells (obtained by rotating the non-rotated cell
by 45◦ for the inverter chains).

As QCA1 and QCA2 have one-level MV implementations and the Fredkin
and Toffoli gates have two-level MV implementations, the delay (number of
clocking zones) is smaller for the former gates. Also, QCA1 and QCA2 occupy
a smaller area with a reduced number of QCA cells (and no control cell).

The 13 standard combinational functions proposed in [8] are initially uti-
lized for comparison purposes. These functions represent all 256 three-variable
Boolean functions. Let the three Boolean variables be denoted as a, b and c,
then the 13 standard functions are shown in Table 6 (where A, B and C
can be mapped to any one of a, b, c, a′, b′, c′). For example, F = a′b + bc′

and F = bc + ca can both be represented by the same standard function
F = A′B + BC ′. For comparison, the 13 standard functions have been imple-
mented using each of the four reversible gates. The number of gates and the
number of clocking zones are reported in Table 6.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 169

10

y2

y1

y3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

17

16

15

19

18

20

21

22

23

12345

x2 x3

x1

Clock Zone

Fig. 8. QCA layout of QCA1

As in previous papers, an additional clocking zone is needed to connect two
gates. For example in Table 6, the function F1, implemented by Fredkin gates
requires two gates and has a total delay of nine clocking zones, i.e. in addition
to the four clocking zones of each Fredkin gate, gates are concatenated through
a QCA interconnect (wire) requiring an additional clocking zone, so in total
4 + 1 + 4 = 9 clocking zones are needed.

Synthesis results for a few benchmark circuits are provided and compared
in terms of area and delay of their QCA implementations. Three benchmark
circuits from [28] are chosen (their specifications can be found for completeness

170 X. Ma et al.

MV

MV

MV

x3

x2

y3

y2

y1
x1

Fig. 9. Logic schematic diagram of QCA1

Table 4. Truth table of QCA2

x1 x2 x3 y1 y2 y3

000 001
001 000
010 011
011 101
100 010
101 100
110 111
111 110

in Appendix A). These circuits were synthesized using QCA1, QCA2 and
Toffoli as gates with the addition of the so-called CNOT [28]. The CNOT
gate implements the following logic functions

y1 = x1,

y2 = x1 XOR x2 = x1x2′ + x1′x2.

A QCA implementation of the CNOT gate is shown in Fig. 12. This imple-
mentation requires an area of 15 × 15 and has a delay of four clocking zones.

Two synthesis methods as applicable to reversible logic design, were used.
The first method is a slight variation of the MV-based synthesis for threshold
circuits proposed in [1]. The modified synthesis algorithm can be described as
follows:

1. Step 1: Use the algorithm of [1] to synthesize the boolean function of the
required circuit into a network of MVs and INVs.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 171

1

2

3

4

5

6

7

8

9

10

11

12

13

14

17

16

15

19

18

20

21

22

23

12345

10

x2 x3

x1

y3

y2

y1

Clock Zone

Fig. 10. QCA layout of QCA2

2. Step 2: Find the internal signals that appear more than once in the net-
work from Step (1). These shared internal signals are implemented by
fanout interconnections.

3. Step 3: Further simplify the circuit by reusing internal signals and substi-
tuting the appropriate primitives in the MV network with CNOT gates.
For example, the benchmark 3 17 with three inputs (A, B and C) and
three outputs (1, 2 and 3) is implemented as

172 X. Ma et al.

MV

MV

MV
x1

x3

x2

y3

y2

y1

Fig. 11. Logic schematic diagram of QCA2

Table 5. Comparison between the four QCA reversible gates

Fredkin Toffoli QCA1 QCA2

Clk zones 4 4 2 2

MVs 6 4 3 3

Area 30 × 18 31 × 18 27 × 15 27 × 15

Ctrl cells 6 2 0 0

Normal cells 185 167 146 147
non-rotated 122 140 100 100
rotated 63 27 46 47

1 = (A′ AND B′) OR (B AND C)
= MV [MV (A′, B′, 0), MV (B,C, 0), 1]

2 = A XOR B XOR C ′

= MV [C, MV (A,B′, C ′), MV (A′, B,C ′)]
3 = (A′ AND C ′) OR (A AND B)

= MV [MV (A′, C ′, 0), MV (A,B, 0), 1]

Then, using the CNOT gate the function A XOR B XOR C ′ is imple-
mented with a smaller number of gates (hence at a reduced area). Using
the output signal 2 and CNOT gates, the output signals 1 and 3 can also
be simplified. The simplified circuit is given by

1 = (A′ AND B′) OR (B AND C)
= C CNOT MV (B′, 2, 0)

2 = A XOR B XOR C ′

= A CNOT B CNOT C ′

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 173

Table 6. Reversible gate implementation of 13 standard functions

Functions Fredkin + INV Toffoli + INV QCA1 QCA2
of # of clk # of # of clk # of clk # of clk
Fre. INV zone Tof. INV zone QCA1 zone QCA2 zone

F1 = AB′C 2 0 9 2 0 9 2 5 2 5
F2 = AB 1 0 4 1 0 4 1 2 1 2
F3 = A′BC + A′B′C′ 2 1 9 2 1 9 2 5 2 5
F4 = A′BC + AB′C′ 2 0 9 3 1 9 3 8 3 8
F5 = A′B + BC′ 2 0 9 2 0 9 2 5 2 5
F6 = AB′ + A′BC 2 0 9 3 0 9 3 5 3 5
F7 = A′BC 3 1 9 3 2 9 3 5 3 5
+ABC′ + A′B′C′

F8 = A 1 0 4 1 0 4 1 2 1 2
F9 = AB + AC + BC 3 1 9 4 0 14 1 2 1 2
F10 = A′B + B′C 1 0 4 3 0 9 3 5 3 5
F11 = A′B 3 1 9 1 0 4 4 5 4 5
+BC + AB′C′

F12 = AB + A′B′ 1 1 4 1 0 4 2 5 2 5
F13 = ABC′ + A′B′C′ 2 2 9 2 1 9 2 5 2 5
+AB′C + A′BC

0 1 2 3

x2

P=1

P=−1
P=−1

AND1

AND3 OR1

x1
y1

y2

3456789 2 1
1
2
3

6
7
8
9
10
11
12

14
15

13

5
4

y

Clock Zone

Fig. 12. QCA layout of the CNOT gate

174 X. Ma et al.

3 = (A′ AND C ′) OR (A AND B)
= B CNOT MV (A′, 2, 0)

4. Step 4: Map all MVs with the same input signals into QCA1/QCA2 gates
(as these gates can operate as three disjoint MVs).
For example, benchmark rd32 has three inputs (A, B and Cin) and two
outputs (Sum and Cout); synthesis after the first three steps yields the
following equations:

Sum = A XOR B XOR Cin

= MV [Cin′, MV (A,B′, Cin)
= MV (A′, B,Cin)]

Cout = MV (A,B,Cin)

Three MVs with input A, B and Cin (including the inverted signals)
are required. These three MVs can be mapped into a single QCA1/QCA2
gate, e.g. for QCA1, the arrangement x1 = A, x2 = Cin, x3 = B results in
y1 = MV (A,B,Cin), y2 = MV (A,B′, Cin) and y3 = MV (A′, B,Cin).
It is in this final step that QCA1/QCA2 could be advantageous over the
Toffoli/Fredkin gates, because in QCA1/QCA2 all MV outputs can be
used (as disjoint devices differently from the Toffoli/Fredkin gates in which
some of the outputs are simply a repetition of the inputs).

Note that this is not a true reversible logic synthesis method as in QCA
fanouts and fixed polarization cells are allowed in the circuit.

For comparison purposes, synthesis results in [28] with the NCT library
containing CNOT, Toffoli and INV is employed. The synthesis algorithm of
[28] takes the number of so-called garbage signals as its major optimization
goal, while the MV-based synthesis method of [1] is area-oriented. For fair
comparison, benchmarks were also synthesized using the NCT library with
the MV-based method. The modified version of the synthesis algorithm of [28]
has an execution similar to the one described previously for QCA1/QCA2 and
is given as follows:

1. Step 1: Synthesize the circuit using the algorithm of [28].
2. Step 2: There is no separate step involving the CNOT gate, because CNOT

is already an integral part of the synthesis algorithm of [28].
3. Step 3: Use the fanout to parallelize the circuit (rather than the garbage-

optimized, but serialized version) by decreasing the number of clocking
zones.
As an example, Fig. 13 shows the changes incurred in this step by bench-
mark rd32.

Note that in this algorithm there is no further adjustment as presented
previously in the modified MV-based synthesis for QCA1/QCA2.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 175

a

b

Cin

0

Cout

Sum

a

b

Cin

0

Cout

Sum

After Step 3 Before step 3

Fig. 13. Changes in rd32 due to step 3

Table 7. Benchmark synthesis results

Bench 3 17 mod5 rd32

[28] Gar. 0 4 2
(Toff+CNOT) gate 6 5 4

Adevice 1791 1570 1570
Atotal 31×90 34×81 37×77

=2790 =2754 =2849
clk 21 17 16

Modified [28] Gar. 4 4 6
(Toff+CNOT) gate 4 3 4

Adevice 1566 1008 1566
Atotal 67×60 37×4 57×51

=4020 =1517 =2907
clk 14 9 10

MV-based Gar. 12 8 4
(QCA1+CNOT) gate 7 5 2

Adevice 2835 2035 810
Atotal 62×86 32×35 33×41

=5332 =1120 =1353
clk 18 7 6

MV-based Gar. 12 8 4
(QCA2+CNOT) gate 7 5 2

Adevice 2835 2035 810
Atotal 62×86 32×31 33×41

=5332 =992 =1353
clk 18 7 6

The synthesis results are given in Table 7. As shown in Table 7, there are
different figures of merit used in the comparison of the synthesis approaches:
“Gar.” denotes the number of garbage signals; “Gate” identifies the number
of gates used in the QCA implementation; “Adevice” is the rectangular area
occupied by the active devices (QCA1, QCA2, Toffoli and CNOT), assuming
the area of one QCA cell is 1; “Atotal” denotes the rectangular area occupied
by the whole QCA circuit, including interconnections between gates; “Clk”
shows the number of clocking zone needed in the QCA implementation. Note

176 X. Ma et al.

that INV is not considered as an active gate, but rather part of the inter-
connect, because in most cases the INV function can be achieved using an
inverter chain, (as part of the interconnect).

The benchmark synthesis results confirm the findings established previ-
ously for the 13 standard functions. QCA1/QCA2 gates with CNOT have
similar features as reflected in the figures of merit; compared with its original
version, the modified synthesis algorithm of [28] results in a considerable re-
duction of clocking zones (albeit an increase in area and number of garbage
signals occur). Noticeably, QCA1 and QCA2 show no improvement in terms
of area but the number of clocking zones (and therefore operating speed of
the synthesized circuit) is significantly lower than [28] with Toffoli gates.

6 Defect Analysis and Gate Testing

Recent developments in QCA manufacturing focus on molecular implemen-
tation, in which each QCA cell is a molecule. In manufacturing, defects can
occur in both the chemical synthesis phase (in which the QCA cells are man-
ufactured) and the deposition phase (in which the QCA cells are attached to
a substrate) [29]. According to [29], defects are more likely to occur in the de-
position phase than in the chemical synthesis phase, which results in perfectly
manufactured cells imperfectly placed in the substrate. In this chapter, two
types of defects are considered, namely the missing cell defect and the addi-
tional cell defect. The former represents the case where a cell fails to attach to
the substrate while the latter represents the case of unwanted cell deposition.

The four reversible gates have been characterized in the presence of a
single missing/additional cell defect. In QCADesigner an exhaustive test set
(consisting of eight input test patterns) has been initially used in all cases:

– Fredkin gate. The results for the defects are shown in Table 8. Fourteen
fault patterns are generated at the outputs.

– Toffoli gate. For this gate, the results are shown in Table 9. Thirteen fault
patterns are generated at the outputs.

– QCA1. The results are shown in Table 10. Seven fault patterns are observed
at the outputs.

– QCA2. The results are shown in Table 11. Again seven fault patterns are
observed at the outputs.

Consider next the testing process of each reversible gate. The minimal test
set that detects a single missing/additional cell defect with 100% coverage,
has been established for each reversible gate using the simulation results.

– Fredkin gate. For a single Fredkin gate, the test has a cardinality of 3:
vy1y2 = a1 = 001; vy1y2 = a2 = 010 and vy1y2 = a7 = 111.

– Toffoli gate. The test set consists of three vectors: x1x2x3 = a3 = 011,
x1x2x3 = a4 = 100 and x1x2x3 = a7 = 111.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 177

Table 8. Single missing/additional cell defect results for the Fredkin gate

Fault free outputs:

v=0000,1111
y1=0101,0011
y2=0011,0101

Missing Faulty v y1 y2
cell pattern

9,6 Correct Correct Correct

8,7 FP1 Correct Correct 0111,0101

(AND4 acts as horizontal wire)

8,6 FP2 Correct Correct 1111,1111
(AND output sa1)

8,5 FP1 Correct Correct 0111,0101

(AND4 acts as horizontal wire)

7,6 Correct Correct Correct

9,11 Correct Correct Correct
8,12 FP3 Correct Correct 1111,0101

(AND3 acts as horizontal wire)

8,11 FP2 Correct Correct 1111,1111
(AND2 output sa1)

8,10 FP3 Correct Correct 1111,0101
(AND3 acts as horizontal wire)

7,11 Correct Correct Correct
4,11 Correct Correct Correct
3,12 FP4 Correct Correct 0011,0000

(OR2 acts as horizontal wire)

3,11 FP4 Correct Correct 0011,0000

(OR2 acts as horizontal wire)
3,10 FP4 Correct Correct 0011,0000

(OR2 acts as horizontal wire)
2,11 Correct Correct Correct

3,6 FP5 Correct Correct 1111,1010

(extra INV AND4→OR2)
8,3 FP6 Correct Correct 0111,0000

(extra INV u→AND4)
8,14 FP7 Correct Correct 1100,0101

(extra INV x1→AND3)

9,20 Correct Correct Correct
8,21 FP8 Correct 1111,0011

(AND2 acts as horizontal wire) Correct

8,10 FP9 Correct 1111,1111 Correct
(AND2 output sa1)

8,19 FP8 Correct 1111,0011 Correct

(AND2 acts as horizontal wire)
7,20 Correct Correct Correct

9,25 Correct Correct Correct

8,26 FP10 Correct 0111,0011 Correct

(AND1 acts as horizontal wire)
8,25 FP9 Correct 1111,1111 Correct

(AND1 output sa1)

8,24 FP10 Correct 0111,0011 Correct

(AND1 acts as horizontal wire)

178 X. Ma et al.

Table 8. Continued

Fault free outputs:

v=0000,1111

y1=0101,0011
y2=0011,0101

Missing Faulty v y1 y2

cell pattern

7,25 Correct Correct Correct

4,20 Correct Correct Correct
3,21 FP11 Correct 0101,0000 Correct

(OR1 acts as horizontal wire)
3,20 FP11 Correct 0101,0000 Correct

(OR1 acts as horizontal wire)

3,19 FP11 Correct 0101,0000 Correct
(OR1 acts as horizontal wire)

2,20 Correct Correct Correct
3,25 FP12 Correct 1111,1100 Correct

(extra INV AND1→OR1)

8,18 FP13 Correct 1010,0011 Correct
(extra INV x2→AND2)

8,28 Fp14 Correct 0111,0000 Correct
(extra INV u→AND1)

Additional Fault v y1 y2
cell pattern

9,26 Correct Correct Correct

9,24 Correct Correct Correct
7,26 Correct Correct Correct

7,24 Correct Correct Correct
4,7 Correct Correct Correct
9,4 Correct Correct Correct

– QCA1. The test set consists of three vectors: x1x2x3 = a1 = 001,
x1x2x3 = a3 = 011, x1x2x3 = a5 = 101

– QCA2. The test set consists of three vectors: x1x2x3 = a0 = 000,
x1x2x3 = a2 = 010, x1x2x3 = a4 = 100.

Note that in cases of weak polarized outputs, signals are restored by QCA
lines in the next clocking zone.

7 Reversible 1D Array Testing

In this section, testing of a 1D unilateral ILA made of N identical modules1

is considered. In this array configuration, there is no direct controllability and
observability of the intermediate modules. Constant testability (C-testability)

1 Hereafter, the logic cell in the array is referred to as “module” to differ from the
QCA cell in the previous discussion. Also in the following presentation, modules
are made of reversible gates such as presented in previous sections.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 179

Table 9. Single missing/additional cell defect results for the Toffoli gate

Fault free outputs:
y1=0001,1110
y2=0011,0011
y3=0101,0101

Missing Faulty y1 y2 y3
cell pattern

9,24 Correct Correct Correct
8,25 FP1 0001,1111(AND acts as horizontal wire) Correct Correct
8,24 FP2 1111,1111(AND gate output sa1) Correct Correct
8,23 FP1 0001,1111(AND acts as horizontal wire) Correct Correct
7,24 Correct Correct Correct
9,15 Correct Correct Correct
8,16 FP3 0000,1110(MV1 acts as horizontal wire) Correct Correct
8,15 FP4 1000,1110(MV1 performs MV(x2’,x1,x3’) Correct Correct
8,14 FP3 0000,1110(MV1 acts as horizontal wire) Correct Correct
7,15 Correct Correct Correct
4,15 Correct Correct Correct
3,16 FP5 0001,0111(MV2 acts as horizontal wire) Correct Correct
3,15 FP5 0001,0111(MV2 acts as horizontal wire) Correct Correct
3,14 FP5 0001,0111(MV2 acts as horizontal wire) Correct Correct
2,15 Correct Correct Correct
9,6 Correct Correct Correct
8,7 FP6 0001,0010(OR acts as horizontal wire) Correct Correct
8,6 FP7 0000,0010(OR output sa0) Correct Correct
8,8 FP6 0001,0010(OR acts as horizontal wire) Correct Correct
7,6 Correct Correct Correct
3,24 FP8 1111,0101(extra INV in AND→MV2) Correct Correct
2,5 FP9 0000,0011(extra INV in OR→MV2) Correct Correct
8,9 FP10 0001,0011(extra INV in x2→OR) Correct Correct
11,12 FP10 0001,0011(extra INV in x2→OR) Correct Correct
8,12 FP11 0100,1100(extra INV in x2→MV1) Correct Correct
8,18 FP12 0010,1010(extra INV in x3→MV1) Correct Correct
11,18 FP12 0010,1010(extra INV in x3→MV1) Correct Correct
8,21 FP13 0001,0101(extra INV in x3→AND) Correct Correct

Additional cell v y1 y2

11,9 FP10 0001,0011(extra INV in x2→OR) Correct Correct
11,21 FP13 0001,0101(extra INV in x3→AND) Correct Correct

in the presence of at most one faulty module (given by a reversible gate under
the defect model presented previously) is initially considered. C-testability
refers to the property by which the number of vectors for testing the 1D array
is independent of N . The previously presented defect analysis of reversible
QCA gates and corresponding testability can be extended to a 1D array whose
basic module is one of the reversible gates.

180 X. Ma et al.

T
a
b
le

1
0
.

S
in

g
le

m
is

si
n
g

ce
ll

d
ef

ec
t

re
su

lt
s

fo
r

Q
C

A
1

F
a
u
lt

fr
ee

o
u
tp

u
ts

:
y
1
=

0
0
0
1
,0

1
1
1

y
2
=

0
0
1
0
,1

0
1
1

y
3
=

0
1
1
1
,0

0
0
1

M
is

si
n
g

F
a
u
lt
y

y
1

y
2

y
3

ce
ll

p
a
tt

er
n

4
,3

F
P

1
C

o
rr

ec
t

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

3
=

x
2
)

5
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,4

F
P

2
C

o
rr

ec
t

C
o
rr

ec
t

0
0
1
0
,1

0
1
1
(x

1
′
→

x
1
,
x
3
→

x
3
′)

3
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,5

F
P

1
C

o
rr

ec
t

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

3
=

x
2
)

4
,1

2
F

P
3

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

2
=

x
2
)

C
o
rr

ec
t

5
,1

3
F

P
4

C
o
rr

ec
t

0
0
0
0
,1

1
1
1
(y

2
=

x
1
)

C
o
rr

ec
t

4
,1

3
F

P
5

C
o
rr

ec
t

0
1
1
1
,0

0
0
1
(x

1
→

x
1
′ ,

x
3
′
→

x
3
)

C
o
rr

ec
t

3
,1

3
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,1

3
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,1

4
F

P
3

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

2
=

x
2
)

C
o
rr

ec
t

4
,2

1
F

P
6

0
0
1
1
,0

0
1
1
(y

1
=

x
2
)

C
o
rr

ec
t

C
o
rr

ec
t

5
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,2

2
F

P
7

1
0
1
1
,0

0
1
0
(x

1
→

x
1
′ ,

x
3
→

x
3
′)

C
o
rr

ec
t

C
o
rr

ec
t

3
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,2

3
F

P
6

0
0
1
1
,0

0
1
1
(y

1
=

x
2
)

C
o
rr

ec
t

C
o
rr

ec
t

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 181

T
a
b
le

1
1
.

S
in

g
le

m
is

si
n
g

ce
ll

d
ef

ec
t

re
su

lt
s

fo
r

Q
C

A
2

F
a
u
lt

fr
ee

o
u
tp

u
ts

:
y
1
=

0
0
0
1
,0

1
1
1

y
2
=

0
0
1
0
,1

0
1
1

y
3
=

1
0
1
1
,0

0
1
0

M
is

si
n
g

F
a
u
lt
y

v
y
1

y
2

ce
ll

p
a
tt

er
n

4
,3

F
P

1
C

o
rr

ec
t

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

3
=

x
2
)

5
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,4

F
P

2
C

o
rr

ec
t

C
o
rr

ec
t

0
0
0
1
,0

1
1
1
(x

1
′
→

x
1
,
x
3
′
→

x
3
)

3
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,4

C
o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,5

F
P

1
C

o
rr

ec
t

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

3
=

x
2
)

4
,1

2
F

P
3

C
o
rr

ec
t

0
0
1
1
,0

0
1
1
(y

2
=

x
2
)

C
o
rr

ec
t

5
,1

3
F

P
4

C
o
rr

ec
t

0
0
0
0
,1

1
1
1
(y

2
=

x
1
)

C
o
rr

ec
t

4
,1

3
F

P
5

C
o
rr

ec
t

0
1
1
1
,0

0
0
1
(x

1
→

x
1
′ ,

x
3
′
→

x
3
)

C
o
rr

ec
t

3
,1

3
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,1

3
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,1

4
F

P
3

co
rr

ec
t

0
0
1
1
,0

0
1
1
(y

2
=

x
2
)

C
o
rr

ec
t

4
,2

1
F

P
6

0
0
1
1
,0

0
1
1
(y

1
=

x
2
)

C
o
rr

ec
t

C
o
rr

ec
t

5
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,2

2
F

P
7

1
0
1
1
,0

0
1
0
(x

1
→

x
1
′ ,

x
3
′
→

x
3
)

co
rr

ec
t

co
rr

ec
t

3
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

2
,2

2
C

o
rr

ec
t

C
o
rr

ec
t

C
o
rr

ec
t

4
,2

3
F

P
6

0
0
1
1
,0

0
1
1
(y

1
=

x
2
)

C
o
rr

ec
t

C
o
rr

ec
t

182 X. Ma et al.

n

m

array 1

array 2
(masked)

FF array

FF array

FF array

FF array
Module

(1)
FE

Module
(m)
FE

Module
(n)
FE

k

Fault−free module

Faulty module

Fig. 14. One-to-one onto mapping and fault masking

Initially, the one-to-one onto mapping of the reversible gate will be ana-
lyzed in detail. It shows that if a faulty reversible gate has a one-to-one onto
mapping (albeit different from the fault free one), then masking can occur
after n iterations in a 1D array. Consider an array divided into two subarrays:
the first subarray consists of only faulty modules (all modules are faulty with
a pattern given by a one-to-one onto mapping different from the fault free
one), while the second subarray is fault free.

This array can be modelled as equivalent to a fault-free k-module array and
an additional fault-equivalent (FE) module, as shown in Fig. 14. Consider the
function of the whole array, while increasing the length of the faulty subarray
from 1 to k. The function of FE module corresponding to the array with
n faulty modules is denoted by FE(n). As the possible function of the FE
module is finite, for k sufficiently large, there must be a number n (n < k)
such that FE(n) equals to some FE(m) with m < n. So, the n-module faulty
array has the same function as the m-module faulty array (m < n < k).
Observe the array 1 and array 2 in the figure. They receive same input and
produce same output when the whole k-module array is tested. Because the
input to k-module array is exhaustive and modules in the array have one-to-
one onto function, array 1 and array 2 are tested exhaustively. So, array 1
(which is faulty-free) cannot be differentiated from array 2 (which has m− n
faulty modules). Fault mask exists where there are m−n concatenating faulty
modules.

Consider a 3-input reversible gate as module; the number of possible FE
functions in a module is given by (23)! = 40, 320, i.e. a very long array is
required to exhaust all output combinations and guarantee the repetition of
the FE function for undetection due to masking. If a reversible gate has many
inputs, then the probability of masking is further reduced. However, for the
considered gates this can be significant. Consider for example QCA1, FP7

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 183

1 2 i N

Primary Input Primary Output

Reversible
Gate

Reversible
Gate

Reversible
Gate

Reversible
Gate

Fig. 15. 1D array of modules made of reversible logic gates

(missing cell 4,22) results in a faulty one-to-one onto function. Let this faulty
function be denoted as F and the fault free function by FF . An array of 12
F modules behaves the same as an array of 12 FF modules under any input
vector. So, fault masking occurs. A similar problem occurs for QCA2 because
FP5 (missing cell 4,13) results in a one-on-one onto function. These results
show that if the fault patterns are one-to-one onto mappings, masking will
occur. An analysis of this type of faults will be pursued in a later section.

C-testability in the presence of single and multiple faulty modules can be
then analyzed for the 1D array.

– Fredkin gate, Consider a 1D array of N concatenated Fredkin gates as
shown in Fig. 15. As established previously, the input test set consists of
the three vectors: a1, a2 and a7. If these vectors are applied to a fault free
module, the output values are a2, a1 and a7. Therefore, in the 1D array
the test vectors at the primary inputs can be regenerated internally by the
fault free modules. Assume there is at most one faulty module in the 1D
array. The vector set a1, a2, a7 is sufficient for detection, this can be proved
as follows. Every fault free module located prior to the faulty module will
regenerate each input test vector; so a1, a2, a7 will also be applied to the
faulty module. As this test set has 100% coverage, the faulty module will
produce erroneous outputs. Moreover, as every fault free module located
after the faulty module has a function given by a one-to-one onto mapping
of the inputs to the outputs, then propagation from the faulty module to
the primary outputs is guaranteed. Thus, the fault is detected.
However, when multiple faulty modules are present in the array, masking
can occur. As shown in Table 8, the two patterns FP7 and FP13 result in
one-to-one onto mappings, i.e. different permutations between the inputs
and outputs. If a module with FP7 is followed by a module with FP13,
then also the application of a fully exhaustive test set will result in an
output pattern that is the same as for a concatenation of two fault free
modules, thus this fault is not detected.

– Toffoli gate. Consider a 1D array of N concatenated modules made of
Toffoli gates, as shown in Fig. 15. It will be proved next that the minimal
test set a3,a4,a7 is sufficient for detection even in the presence of multiple
faulty modules. The mappings of a fault free module and a faulty module
are provided in Table 12. When applying the vectors a3, a4, a7, a fault
free module regenerates these vectors. If the 1D array has only fault free
modules, then at the primary outputs the pattern is a7, a4, a7 (for N even)

184 X. Ma et al.

Table 12. Outputs of fault free and faulty Toffoli gates

Input Fault free FP1 FP2 FP3 FP4 FP5 FP6

vector output

a0 a0 a0 a4 a0 a4 a0 a0

a1 a1 a1 a5 a1 a1 a1 a1

a2 a2 a2 a6 a2 a2 a2 a2

a3 a7 a7 a7 a3 a3 a7 a7

a4 a4 a4 a4 a4 a4 a0 a0

a5 a5 a5 a5 a5 a5 a5 a1

a6 a6 a6 a6 a6 a6 a6 a6

a7 a3 a7 a7 a3 a3 a7 a3

FP7 FP8 FP9 FP10 FP11 FP12 FP13

a0 a4 a0 a4 a0 a4 a0

a1 a5 a1 a5 a5 a1 a1

a2 a6 a2 a6 a2 a6 a2

a3 a7 a3 a7 a3 a3 a7

a0 a0 a0 a0 a4 a4 a0

a1 a5 a1 a1 a5 a1 a5

a6 a2 a6 a6 a2 a6 a2

a3 a7 a7 a7 a3 a3 a7

and a3, a4, a7 (for N odd). The fault patterns can be categorized into
two types: type I includes FP6 and FP9, type II includes all other fault
patterns. As shown in Table 12, when a3, a7 are applied at the inputs,
faulty modules of type II will generate the same values at the outputs (for
example, a module with FP4 will generate a3 and a3). When a3 and a7

are applied, a fault free module (faulty module of type I) will generate at
the outputs a3 and a7 (a7 and a3). Consider initially the scenario when
there is at least one faulty module of type II in the array. Let the type
II faulty module located closest to the primary inputs be denoted by A.
Then, from the primary inputs to A, there can only be fault free, or type I
faulty modules. Therefore, a3 and a7 will be applied to A, thus generating
two identical patterns at the outputs of A. For either a faulty, or fault free
module the number of distinct output patterns can not be greater than
the number of distinct input patterns; so the fault will be propagated to
the primary outputs of the array, i.e. detection is accomplished.
A different situation occurs when all faulty modules are of type I. Let the
type I faulty module closest to the primary inputs be denoted by B. Then,
from the primary inputs to B, there can be only fault free modules. After
applying the vector set, a4 is applied to B; this is mapped to a0 by B.
Since the array consists of only type I and fault free modules, then in the
modules following B, a0 will always be mapped to a0. So, at the primary
outputs of the array, a0 will be observed (instead of the expected a4) and
thus, detection is achieved.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 185

Table 13. Outputs of fault free and faulty QCA1

Input Fault free FP1 FP2 FP3 FP4 FP5 FP6 FP7

vector output

a0 a0 a0 a0 a0 a0 a0 a0 a4

a1 a1 a0 a0 a1 a1 a3 a1 a1

a2 a3 a3 a3 a3 a1 a3 a7 a7

a3 a5 a5 a4 a7 a5 a7 a5 a5

a4 a2 a2 a3 a0 a2 a0 a2 a2

a5 a4 a4 a4 a4 a6 a4 a0 a0

a6 a6 a7 a7 a6 a6 a4 a6 a6

a7 a7 a7 a7 a7 a7 a7 a7 a3

The C-testability of a 1D array made of Toffoli gates is established, be-
cause none of the faulty modules will generate a fault pattern that is a
permutation in itself. Hence, detection in the presence of multiple faulty
modules is always possible.

– QCA1. Consider detection in an array made of QCA1 modules under the
single faulty module assumption; the test set a1, a2, a3 can detect any
single faulty module in the array. As shown in Table 13, a1, a2/a5 and
a3/a4 combined are sufficient to test all possible faults of QCA1. a1 can
be regenerated by the fault free module. When applying a2 to the primary
inputs of the array, a2 or a5 will be applied to odd numbered modules and
a3 or a4 to the even numbered modules. When applying a3 to the array,
a2 or a5 will be applied to even numbered modules and a3 or a4 to the
odd numbered modules. Thus, 100% coverage of single faulty module can
be guaranteed.
Under a multiple faulty module assumption, FP1, FP2, FP3, FP4, FP5

and FP6 are irreversible faults, so the number of possible combinations at
the outputs is less than eight, therefore an exhaustive test can always ac-
complish detection irrespective of the number of faulty modules. However,
for FP7, the faulty function is a one-to-one onto mapping, and this fault
can be masked by multiple occurrence of itself in the array.

– QCA2. Under a single faulty module assumption, complete full coverage
can be achieved by the test set a0, a1, a2 and a3. As shown in Table 17, a0,
a2/a5 and a3/a4 can fully test QCA2. When applying a0 to the primary
inputs of the array, a0 is regenerated at the inputs of all odd numbered
modules. When a1 is provided as input to the array, a0 will be regenerated
at the inputs of all even numbered modules. Similarly for a2 (a3) at the
primary inputs of the array, a2 or a5 (a4) will be regenerated for the odd
(even) numbered modules and a3 or a4 (a5) for the even (odd) numbered
modules. Therefore, every module in the array is fully tested.
Detection in the presence of multiple faulty modules in a 1D array made
of QCA2 can not be guaranteed. For most defects (such as defects 1, 3, 6,
7, 8, 12, 13, 15 and 18), the number of possible combinations of the output

186 X. Ma et al.

signals is less than 8, so they are always testable. However, for defect 9
(missing cell 4,13), the faulty function is a one-to-one onto mapping, so it
can be masked by multiple appearances of itself in the array.

8 Array Testability

In this section, the testability of a 1D ILA made of reversible modules is
analyzed. In such analysis. It is assumed that an exhaustive test set will
be applied to the primary inputs; controllability and observability must be
established to guarantee that C-testability can be accomplished. In a 1D array
(as shown in Fig. 16), controllability is not difficult, i.e. in the absence of a
fault, if the leftmost module is provided with all possible input combinations
during the testing process, then all modules in the array will also receive all
possible input combinations. If any module in the array has an irreversible
fault (i.e. a fault that change the reversible function of a module into an
irreversible function), then the erroneous output due to this fault can always
be propagated to the primary outputs of the array (provided all possible
combinations are applied at the primary inputs). So, any number of irreversible
faults can be observed and multiple fault detection is accomplished.

Consider in more detail only the faults in the reversable modules of the
array (connection between modules are assumed to be fault free). Different
fault models can be considered for the modules:

– The traditional Stuck-At Fault (SAF), or line Bridging Fault (BF) are
irreversible faults, i.e. faults that will result in an irreversible function.
Therefore, they can be detected with a constant number of tests. The array
is C-testable and no additional control, or observable lines are required to
the modules. However, these fault models are not sufficient for modeling
the faults in QCA [21].

– Consider an arbitrary functional fault (AFF) model in which it is assumed
that a fault may cause an arbitrary change in the truth table of the circuit.
If there is any number of faulty modules whose function is not a one-to-
one onto mapping (i.e yielding irreversible faults), then the number of
possible output combinations of the array will be less than an exhaustive
combination (for three inputs this number is less than 8). This scenario
(irrespective of the number of faulty modules) can be detected at the
primary outputs. So, only those reversible faults (faults that will result

Primary
Input

Primary
Output

Observation Line

Fig. 16. 1D array of reversible module

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 187

in a reversible gate function different from the fault-free one) must be
considered.

– The most comprehensive fault model is he so-called arbitrary reversible
fault model (ARF). In ARF, a fault is assumed to change the truth table
of the gate as long as the resulting function is still reversible. The question
is, is it possible to achieve C-testability if observability is added such that
outputs of intermediate modules are made directly observable? Unfortu-
nately, it will be shown next through an example that even if a subset of
the ARF model is considered, then the array is not C-testable.
Consider the so-called Single Pin Inversion (SPI) model as a subset of the
ARF model. In the SPI model, every module has at most one fault in one
of its input/output pins, such that an inversion of the signal occurs at that
pin. The inversion fault is very common in QCA circuits, because it results
from misalignment of QCA cells [21].
As shown in Fig. 17, if a faults is present between the nth output pin of the
kth module and the nth input pin of the (k +1)th module, then detection
can not be guaranteed unless it is possible to directly observe the internal
pins (in this case pin n) between these two modules. The faulty pin can be
any one of the module pins, so we have to observe every internal connection
to detect all SPI faults, which is a pathological case of an array as a fully
observable system.

So, any generalized fault model cannot be used to fully assess the C-
testability of reversible arrays under multiple faults. A case-by-case study of
different logic gates (as making up a module) together with their specific
input/output functions and fault patterns, is required. All reversible faults
(and corresponding functions) in a module must be considered to make an
array C-testable by selecting those lines in a module for observability. Three
conditions are proposed for selecting lines for observability in each module of
an array:

1. Rule 1: If all reversible faults change the entries of an output in the truth
table of a module, then this output signal should be a primary observable
line.

N

n

1

N

n

1

SPI Fault

Observe Line

k k+1

Fig. 17. SPI fault

188 X. Ma et al.

Table 14. Example for rule 1

Input Fault free FP1 FP2

x1x2x3 y1y2y3 y1y2y3 y1y2y3

0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1

0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 1 0 0 1 0 0 1 1 1

1 0 1 1 0 1 1 0 1 1 0 0

1 1 0 1 1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1 0 1 1 0

Table 15. Example for rule 2

Input Fault free FP1 FP2 FP3

x1x2x3 y1y2y3 y1y2y3 y1y2y3 y1y2y3

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 1 0 0 1 0 0 1 1 1 1 1 0

1 0 1 1 0 1 1 0 1 1 0 0 1 0 1

1 1 0 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 0 1 1 0 1 1 0 1 0 0

For example, consider a reversible module with fault free and fault pat-
terns given in Table 14. It has two reversible fault patterns: FP1 affects
the output y3, FP2 affects the outputs y2 and y3. By Rule 1, the truth
table of y3 is changed by all reversible faults, so if y3 is made a primary
observable line in the modules, then the array is C-testable.
The application of Rule 1 to QCA1 and QCA2 results in a C-testable
array by making one observable line as primary in each module. As shown
in Fig. 21, the arrays can be fully tested by applying the exhaustive test
set (of cardinality 8) at the primary inputs. For the QCA1 array, the
only reversible fault pattern is FP7 and it modifies the output y3 of a
faulty module. So by observing this output, detection will occur at the
faulty module. Similarly, the QCA2 array is C-testable by making the
output y2 as a primary observable line in each module.

2. Rule 2: If all reversible faults can be propagated to a module output prior
to masking, then such output should be a primary observable line.
In Table 15, a reversible module and a fault pattern are shown as an
example. The module has three reversible fault patterns: FP1 changes the
output y3, FP2 changes the outputs y2 and y3, FP3 changes y2. FP1 and
FP2 can be propagated to y3 of the faulty module. FP3 can be propagated
to y3 of the module after the faulty one, independently of the status (faulty

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 189

or fault free) of this module. By Rule 2, the selection of y3 as an observable
line for each module makes the array C-testable.

3. Rule 3: If the above conditions cannot be satisfied, two or more observable
lines are needed in each module; each of these lines will be required to
observe part of the possible fault patterns and the union of the covered
fault patterns must be the entire possible fault pattern set.
By applying Rules 1 and 2, it is possible to observe different module out-
puts to detect different fault patterns. In the general case, the problem of
selecting multiple output lines for observability is a set covering problem.
Let the outputs lines of a reversible module be y1, y2, . . . , yn. The possi-
ble fault patterns of each module are denoted by FP1, FP2, . . . , FPm. By
observing an output line yi, a group of fault patterns can be detected, i.e.
yi “covers” a group of fault patterns. Thus, the problem is equivalent to
selecting the minimum cardinality set of output lines such that all fault
patterns are covered, which is the definition of a set covering problem [34].
The set covering problem is NP hard. However, heuristic algorithms based
on greedy criteria [34] can be used to solve it.
Consider the Fredkin gate for example; there are two reversible fault pat-
terns, FP7 and FP13. FP7 changes the output y3 and FP13 changes the
output y2; so, Rule 1 cannot establish a primary observable line for both
fault patterns. The output of two adjacent modules with FP7 and FP13

will result in masking; hence, Rule 2 cannot be used. By applying Rule
3, y1 and y2 are selected as multiple observable lines, because all possible
reversible fault patterns are detected.

Each of the above three rules gives a sufficient condition for construct-
ing a C-testable array. Rule 1 requires only a primary observable line and
is relatively easy to assess, so in general it is the preferable condition. Rule
2 requires also one observable line, but propagation under different multiple
fault patterns must be established. Therefore, it can be applied if Rule 1 fails.
Rule 3 requires more than one observable lines and may account for a large
overhead. Rule 3 however, can be applied following an analysis of Rules 1 and
2 for fault detection. Hence, realistically Rule 3 should be applied after Rules
1 and 2 have been unsuccessful. A combination of Rules 1 and 2 provides the
necessary condition for constructing a C-testable array with only one primary
observable line per module. Rule 3 can ensure C-testability in an array as long
as a large overhead is acceptable.

9 Array Controllability and Observability

In this section, a different 1D array configuration is analyzed; controllabil-
ity and observability are introduced in the intermediate modules to enhance
coverage of the fault detection process. In this configuration, intermediate
modules are provided with one primary input and one primary output, both

190 X. Ma et al.

in the vertical direction. As proved in a previous section, a 1D array with
Toffoli gates is already C-testable in the presence of multiple faulty modules,
hence this case will not be considered. Moreover differently from the previ-
ous section, a non fully exhaustive test set (albeit with 100% coverage of the
modelled faults) is utilized.

– Fredkin gate. It has been shown that fault masking exists in an 1D array
such as the one shown in Fig. 15. However, the 1D array of Fig. 18a is C-
testable under the assumption that multiple modules may be faulty (each
faulty module can only have a fault as described in Sect. 6).
In the array of N modules, additional controllability is provided by set-
ting the u input of each module as a primary (vertical) input; additional
observability is obtained by setting the y2 output of each module as a
primary (vertical) output. Let the primary (horizontal) inputs x1, x2 of
the first module in the array be denoted as PI1, P I2. Let the ith module
in the array be Gi, the input u of Gi be denoted as Ui.
The mapping between inputs and outputs of a fault free module as well as
a faulty module (by using FPi) is shown in Table 16. The fault patterns
are categorized into two types: (1) FP1, FP8, FP9, FP10, FP11, FP12,
FP13 and FP14 are type I; (2) FP2, FP3, FP4, FP5, FP6 and FP7 are
type II.
The test vector set that detects multiple faulty modules in an array is, as
follows:
1. First Test Vector: PI1 = 0, P I2 = 1, Ui = 0 for all i. If the array

is fault free, then all modules in the array will receive input vector
ux1x2 = 001 = a1. The expected (fault free) output at y2 of any
module in the array is “0”.

2. Second Test Vector: PI1 = 1, P I2 = 1, Ui = 1 for all i. If the array is
fault free, then all modules in the array will receive as input ux1x2 =
111 = a7. The expected (fault free) output at y2 of any module is “1”.

3. Third Test Vector: PI1 = 1, P I2 = 0, Ui = 0 for i = 1, 3, 5, 7, . . . and
Ui = 1 for i = 2, 4, 6, . . ., as shown in Fig. 18b. If the array is fault free,
the input vector ux1x2 = 010 = a2 is applied to all Gi (for i an odd
integer). The expected output at y2 of Gi is “1” for odd i and “0” for
even i.

4. Fourth Test Vector: PI1 = 0, P I2 = 0, Ui = 1 for i = 1, 3, 5, 7, . . . and
Ui = 0 for i = 2, 4, 6, . . ., as shown in Fig. 18b. If the array is fault free,
ux1x2 = 010 = a2 is applied as input vector to all Gi (for i as an even
integer). The expected output at y2 of Gi is “0” for odd i and “1” for
even i.

Initially, it will be shown that if the array contains any (single or multiple)
type II fault pattern(s), detection is accomplished by observing y2 as pri-
mary output of the modules using the first and second test vectors. When
applying vector 1, all Ui = 0 and v = u for all modules, every module (ei-
ther faulty or fault free) will have as input x1 = 0. Therefore, any module

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 191

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u
x1
x2

v
y1

y2

u

(a)

G1 G2 Gi GN

OutputInput
Primary

PI(1)
PI(2)

U(1) U(2) U(i) U(N)

Primary

PI(1)
PI(2)

G1 G2 G4G3

(c)

(d)

(e)

Primary
Input

1

0

0

0

1

0

0

0

1010

1 10 0

PI(1)
PI(2)

Primary
Input

1

1

10

0

0
(b)

G1 G2 G3 G4

0

0

1

0

0

0

1

0

U(1) U(2) U(3) U(4)

U(4)U(3)U(2)U(1)

U(i−1) U(i) U(i+1) U(i+2)

Gi
0

0

1

0

0

0/1

Gi+1 Gi+2Gi−1
1

0 1 10

1

Input

0

1

0

1

0

1

0

00

0 0 00
GNG2 GiG1

U(1) U(2) U(i) U(N)

0/1
(fault−free/faulty)

0/1
(fault−free/faulty)

Primary
Output
Primary

U(1) U(2) U(i) U(N)

Gi+1 GNGiG1

PI(2)
PI(1) 11

1/0
1

1

1

1

(fault−free/faulty)
11 1/0

1 1 11

Primary
Output

Fig. 18. C-testability of one-dimensional array (made of Fredkin gates) with in-
creased observability and controllability

192 X. Ma et al.

Table 16. Outputs of fault free and faulty Fredkin gates

Input Fault free FP1 FP2 FP3 FP4 FP5 FP6

vector output

a0 a0 a0 a0 a1 a0 a1 a0

a1 a2 a3 a3 a3 a2 a3 a3

a2 a1 a1 a1 a1 a1 a1 a1

a3 a3 a3 a3 a3 a3 a3 a3

a4 a4 a4 a5 a4 a4 a5 a4

a5 a5 a5 a5 a5 a4 a4 a4

a6 a6 a6 a7 a6 a6 a7 a6

a7 a7 a7 a7 a7 a6 a6 a6

FP7 FP8 FP9 FP10 FP11 FP12 FP13 FP14

a1 a2 a2 a0 a0 a2 a2 a0

a3 a2 a2 a2 a2 a2 a0 a2

a0 a3 a3 a3 a1 a3 a3 a3

a2 a3 a3 a3 a3 a3 a1 a3

a4 a4 a6 a4 a4 a6 a4 a4

a5 a5 a7 a5 a5 a7 a5 a5

a6 a6 a6 a6 a4 a4 a6 a4

a7 a7 a7 a7 a5 a5 a7 a5

in the array has ux1 = 00; so, if a module with fault pattern FP2,FP3,FP5

or FP7 is present, then the y2 output of that module will be “1” instead
of the expected “0”. Thus, these fault patterns will be detected by vec-
tor 1. Similarly, when applying vector 2, all Ui = 1 and PI1 = 1, P I2 = 1;
therefore, each module in the array will have input ux1 = 11. If a module
with fault pattern FP4 or FP6 is present, the y2 output of that module is
“0” (instead of the expected “1”). Thus by applying vector 1 and vector
2, any number of type II fault patterns can be detected.
Now consider the case in which the array contains faulty modules with only
type I fault patterns. Let the faulty module that is closest to the primary
inputs be Gi, i.e. only fault free modules exist from the primary inputs
to Gi. Gi must have one of the type I fault patterns, i.e. FP1, FP8, FP9,
FP10, FP11, FP12, FP13 or FP14. If i is odd, the third vector ux1x2 = 010
to Gi is applied; if i is even, then the fourth vector ux1x2 = 010 to Gi

is applied. In both cases, Gi will have as inputs ux1x2 = 010 and the
expected output is vy1y2 = 001; therefore, Gi+1 is expected to have as
inputs ux1x2 = 100 and generate a “0” at the output y2, as shown in
Fig. 18c. If Gi has fault patterns FP8, FP9, FP10, FP12, FP13 or FP14,
Gi will produce a “1” at the output y1, thus Gi+1 will have as inputs
ux1x2 = 101. Since Gi+1 is either fault free, or it generates one of the type
I fault patterns, then Gi+1 will produce a “1” (instead of the expected “0”)
at the output y2 (as shown in Table 16), thus, the fault can be detected.
Assume that Gi generates FP1. When the first vector is applied, Gi will
have as inputs ux1x3 = 001, at the y2 output a “1” will be produced

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 193

(instead of the expected “0”). So, this fault can also be detected. The only
other case is that Gi has as fault pattern FP11, it will be shown next that
the second vector can detect it. When the second vector is applied, Gi

will have as inputs ux1x2 = 111, the expected value of the y2 output of
all modules is “1”. Since G1 has as fault pattern FP11, then it will a “0”
(instead of a “1”) at the y1 output. So Gi+1 has as inputs ux1x2 = 110.
Gi+1 is either fault free or contains one of the type I fault patterns so Gi+1

will produce a “0” (instead of the expected “1”) at the primary output y2
(as shown in Table 16), thus detection is accomplished.

– QCA1. With additional controllability and observability, a 1D array of
QCA1 gates as shown in Fig. 19a is C-testable under a multiple faulty
module assumption. In the array of N modules, additional controllability
is provided by setting x3 of each module as a primary input; additional
observability is obtained by setting y3 of each module as a primary output.
Let the primary inputs for x1 and x2 of the first module in the array be
denoted as PI1 and PI2; the primary outputs for the y1 and y2 outputs
of the last module be denoted as PO1 and PO2 and the ith module in
the array be denoted by Gi. If x3 of a Gi is denoted by Ui, then the fault
patterns of the mapping between inputs and outputs for the fault free and
faulty modules with FPi are shown in Table 13.
The test vector set that detect any multiple faulty modules, is given as
follows:
1. First Test Vector: PI1 = 0, P I2 = 0, Ui = 1 for all i, as shown in

Fig. 19a. If the array is fault free, x1x2x3 = 001 = a1 is applied to
all modules Gi. The expected output at y3 is “1” for every Gi. The
expected value at the primary outputs is PO1PO2 = 00.

2. Second Test Vector: PI1 = 1, P I2 = 0, Ui = 1 for all i, as shown in
Fig. 19b. If the array is fault free, this applies x1x2x3 = 101 = a5 to
all Gi. The expected value at y3 is “0” for each Gi. The expected value
at the primary outputs is PO1PO2 = 10.

3. Third Test Vector: PI1 = 0, P I2 = 1, Ui = 1 for i = 1, 3, 5, 7, . . . and
Ui = 0 for i = 2, 4, 6, . . ., as shown in Fig. 19c. If the array is fault
free, this vector applies the input vector x1x2x3 = 011 = a3 to all
Gi (for odd i) and x1x2x3 = 100 = a4 to all Gi (for even i). The
expected value at y3 of Gi is “1” (for odd i) and “0” (for even i). The
expected value at the primary outputs is PO1PO2 = 01 (for even N)
and PO1PO2 = 10 (for odd N).

A test set with 100% coverage for a module made of a QCA1 gate is
x1x2x3 = a1 = 001, a3 = 011 (or a4 = 100) and a5 = 101. The first
test applies a1 to all modules, while the second test applies a5 to all mod-
ules. The third test vector applies a3 or a4 to all modules. Next it will
be shown that these vectors can detect multiple faulty modules (assum-
ing each module can only have one of the faults described in Sect. 6) for
arbitrary N .

194 X. Ma et al.

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2
y3

x3
y1

y2

x1

x2

x3

y3
y2

y1 x1

x2
y3

x3
y1

y2

Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3

0

P0(2)

P0(1)

0 0 0

1111

0 0

111

(a)

x1

x2

x3

y3

y1

y2

x1

x2
y3

x3
y1

y2

x1

x2

x3

y3
y2

y1 x1

x2
y3

x3
y1

y2

Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3

P0(2)

P0(1)

0 0 0

1111

000

111

(b)

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

Primary Output

U(1) U(2) U(3) U(N)

GN

P0(2)

P0(1)

1FP_4, FP_6 or F_7

1

0

Gi Gi+1 Gi+2

1/1/0

0/1/0

0/1/0(FP_1 or 2)
1(otherwise)

0; 0(FP_1 or 2)
 1(otherwise)

1; 0

0; 0

1; 0

0; 0

FF /FP_4 /FP_6 or FP_7 FF; FP_6 or 7 followed by FP_1 or 2

(d)

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

Primary Output

Gi Gi+1 Gi+2

1 1

U(i) U(i+1) U(i+2)

0

1

FP_3 or FP_5

1/1

0/1

1/1

FF /FP_3 or FP_5

0/0/1/0

0/1/DC/1

1/0/DC/1

FF /FP_3or5 +FP_5 / FP_3or5 +FP_1or2/other

Gi+3

U(i+3)

00

P0(1)

P0(2)

0/DC/DC/0

1/DC/DC/1

1/0/DC/1

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

x1

x2

x3

y3

y1

y2

(e)

Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3

0

P0(2)

P0(1)

0

0

11 0

0 1

1111

1

1

1

1

1

(c)

Primary Output

Gi Gi+1 Gi+2

U(i) U(i+1) U(i+2)

FP_3 or FP_5

1

FF /FP_3 or FP_5FF /FP_3or5 +FP_1or2 / FP_3or5 + other

0

P0(1)

P0(2)

0

1

0

0/0

0/0

1/0

1

0/0/DC

1/0/DC

0/0/1

U(N)

GN

Fig. 19. C-testability of one-dimensional array (made of QCA1 gates) with increased
observability and controllability

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 195

Assume that the faulty module closest to the primary inputs is given by
Gi; then Gi must have one of the fault patterns given in Table 13. Consider
initially the case when Gi has FP1 or FP2. When applying x1x2x3 = a1 =
001 to Gi, Gi will produce a “0” at the y3 output instead of the expected
“1”, thus it will be detected. Next consider the case when Gi has FP4, FP6

or FP7. When applying x1x2x3 = a5 = 101 to Gi (as shown in Fig. 19d)
and the fault pattern is FP4, then x1x2x3 = a7 = 111 is applied to Gi+1.
So, y3 of Gi+1 will be “1” (instead of the expected “0”) and detection
will occur. If the fault pattern is FP6 or FP7, then x1x2x3 = a1 = 001 is
applied to Gi+1. If Gi+1 does not have FP1 or FP2, then y3 of Gi+1 will
become “1” (instead of the expected “0”) and detection is accomplished.
If there is FP1 or FP2 at Gi+1, Gi+2 will get as input x1x2x3 = a1 = 001,
and so on, till the last module of the array. So, there will be either an
unexpected “1” at y3 of some module, or an unexpected “00” at PO1,
PO2. Detection is always accomplished for a faulty array. Another case is
when Gi has FP3 or FP5, as shown in Fig. 19e. For the third vector, if
i is an odd number, x1x2x3 = a3 = 011 is applied to Gi and Gi+1 has
x1x2x3 = a6 = 110 as input. If Gi+1 has FP1 or FP2, an unexpected “1”
will be detected at y3 of Gi+1. If Gi+1 has FP5, then Gi + 2 will receive
x1x2x3 = a4 = 100 as input and an unexpected “0” is observed at y3
of Gi+2. Else, x1x2x3 = a7 = 111 will be applied to Gi+2. If Gi+2 has
FP7, it will be detected by the second test vector; if it does not have FP7,
then x1x2x3 = a6 = 110 will be the input for Gi+3, and the previously
described case will apply as x1x2x3 = a6 = 110 on Gi+1. So the fault will
be detected either at y3 of some module, or at the primary output.
If i is an even number, the fault will result in x1x2x3 = a1 = 001 at Gi+1.
If Gi+1 does not have FP1 or FP2, this will result in an unexpected “1”
at y3 of Gi+1. If Gi+1 has FP1 or FP2, FP1 or FP2 is detected by the
first test vector.
In conclusion, the array shown in Fig. 18a is C-testable and four test vec-
tors are required to detect any number of faulty modules, given the fault
model in Sect. 6.

– QCA2. With additional controllability and observability, a 1D array of
QCA2 gates as shown in Fig. 20a is C-testable under the assumption that
multiple modules may be faulty (only have faults described in Sect. 6).
In the array of N modules, additional controllability is provided by setting
the x2 input of each module be a primary input; additional observability
is obtained by setting the y2 output of each module be a primary output.
Let the primary input feeding x1, x3 of the first module in the array be
PI1, P I2; the primacy outputs connecting the y3, y1 outputs of the last
module be PO1, PO2. Let the ith module in the array be Gi, the input
feeding x2 of the Gi be Ui. The mapping between input and output of the
fault free module as well as a faulty module with FPi is shown in Table 17.
The test vector set that can detect any multiple module fault is the
following:

196 X. Ma et al.

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2 Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3
0 1

P0(2)
P0(1)

0 000

0

000

010

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2 Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3
0 1

P0(2)
P0(1)

0 0

01 1

1 1 1

0

0

1

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2 Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3

P0(2)
P0(1)

1 1 1

000

1

110 0

01 1

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2 Primary Output

GiGi−1

U(1) U(2) U(3) U(N)

GNGi+1

P0(2)
P0(1)

0 0

0

1/0

0

1 1/0

0 011

00 0

01

0

faultfree/faulty

FP1 or FP2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

y1

y3

y2 Primary Output

U(1) U(2) U(3) U(N)

GN

P0(2)
P0(1)

0

1 1 1 1

faultfree/faulty

0/1

Gi Gi+1 Gi+2

0/1

010

1

1

1

FP6 or FP7 FP3 or FP5FP4

(a)

Primary OutputPrimary Input

G2G1

U(1) U(2) U(3) U(N)

GN

PI(1)

PI(2)

G3

P0(2)
P0(1)

0 00 0

000

1 0

101

1

(b)

(c)

(d)

Fig. 20. C-testability of one-dimensional array (made of QCA2 gates) with increased
controllability and observability

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 197

Table 17. Outputs of fault free and faulty QCA2

Input Fault free FP1 FP2 FP3 FP4 FP5 FP6 FP7

vector output

a0 a1 a0 a0 a1 a1 a1 a1 a5

a1 a0 a0 a0 a0 a0 a2 a0 a0

a2 a3 a3 a2 a3 a1 a3 a7 a7

a3 a5 a5 a5 a7 a5 a7 a5 a5

a4 a2 a2 a2 a0 a2 a0 a2 a2

a5 a4 a4 a5 a4 a6 a4 a0 a0

a6 a7 a7 a7 a7 a7 a5 a7 a7

a7 a6 a7 a7 a6 a6 a6 a6 a2

1. First Test Vector: PI1 = 0, P I2 = 0, Ui = 0 for all i, as shown in
Fig. 20a. If the array is fault free, this vector applies input vector
x1x2x3 = 000 = a0 to all Gi such that i is odd and input vector
x1x2x3 = 100 = a4 to all Gi such that i is even. The expected output
at y2 of Gi is “0” for odd i and “1” for even i. The expected output
at primary outputs is PO1PO2 = 00 if N is even and PO1PO2 = 10
if N is odd.

2. Second Test Vector: PI1 = 1, P I2 = 0, Ui = 0 for all i, as shown
in Fig. 20a. If the array is fault free, this vector applies input vector
x1x2x3 = 000 = a0 to all Gi such that i is even and input vector
x1x2x3 = 100 = a4 to all Gi such that i is odd. The expected output
at y2 of Gi is “0” for even i and “1” for odd i. The expected output at
primary outputs is PO1PO2 = 00 if N is odd and PO1PO2 = 10 if N
is even.

3. Third Test Vector: PI1 = 0, P I2 = 0, Ui = 1 for i = 1, 3, 5, 7, . . . and
Ui = 0 for i = 2, 4, 6, . . ., as shown in Fig. 20b. If the array is fault free,
this vector applies input vector x1x2x3 = 010 = a2 to all Gi such that
i is odd and input vector x1x2x3 = 100 = a4 to all Gi such that i is
even. The expected output at y2 of Gi is “1” for i. The expected output
at primary outputs is PO1PO2 = 00 if N is even and PO1PO2 = 10
if N is odd.

4. Fourth Test Vector: PI1 = 0, P I2 = 0, Ui = 0 for i = 1, 3, 5, 7, . . . and
Ui = 1 for i = 2, 4, 6, . . ., as shown in Fig. 20b. If the array is fault free,
this vector applies input vector x1x2x3 = 010 = a2 to all Gi such that
i is even and input vector x1x2x3 = 100 = a4 to all Gi such that i is
odd. The expected output at y2 of Gi is “1” for i. The expected output
at primary outputs is PO1PO2 = 00 if N is odd and PO1PO2 = 10 if
N is even.

A 100% coverage test set for a single QCA2 gate is x1x2x3 = a0 = 000,
a2 = 010, a4 = 100. The combination of vector 1 and vector 2 applies
input vector a0 and a4 to all modules, while the combination of vector 3
and vector 4 applies input vector a2 and a4 to all modules. Next, we will

198 X. Ma et al.

1

2

3

1

2

3

QCA1
1

2

3

1

2

3

QCA1
1

2

3

1

2

3

QCA1
1

2

3

1

2

3

QCA1

1

2

3

1

2

3

QCA2
1

2

3

1

2

3

QCA2
1

2

3

1

2

3

QCA2
1

2

3

1

2

3

QCA2

Observation Line

Observation Line

PI PO

PI PO

Fig. 21. C-testability of 1D array

show that these vectors can detect multiple module faults (given the fault
model in Sect. 6) for arbitrary N .
Assume the faulty module closest to primary input be Gi, the Gi must have
one of the fault patterns from Table 17. First consider the case when Gi

has FP3 or FP5. When applying vector 1 and vector 2, x1x2x3 = a4 = 100
will be applied to Gi once. With this input, Gi will produce an “0” at the
y2 output instead of the expected “1”, thus it will be detected.
Next consider the case when Gi has FP4. When applying vector 3 and
vector 4, x1x2x3 = a2 = 010 will be applied to Gi once. Gi will produce an
“0” at the y2 output instead of the expected “1”, thus it will be detected.
Another possibility is that Gi has FP1 or FP2, as shown in Fig. 20c. When
applying vector 1 and vector 2, x1x2x3 = a0 = 000 will be applied to Gi

once. Gi will produce y1y2y3 = 000 at the output, so Gi+1 will have inputs
x1x2x3 = a0 = 000. Since Gi+1 is either fault free or contains one of the
faulty patterns in Table 17, Gi+1 will produce an “0” at the y2 output
instead of the expected “1”, thus it will be detected.
The only remaining case is when Gi has FP6 or FP7. When applying
vector 3 and vector 4, x1x2x3 = a2 = 010 will be applied to Gi once.
Gi will produce y1y2y3 = 111 at the output so Gi+1 will have inputs
x1x2x3 = a5 = 101, as shown in Fig. 20d. If Gi+1 is fault free or contains
any faulty pattern other than FP4, it will produce an “0” at the y2 output
instead of the expected “1”, thus it will be detected. If Gi+1 has FP4, then
it will have outputs y1y2y3 = 110 and thus apply x1x2x3 = a3 = 011 to
Gi+2. If Gi+2 is fault free or contains any faulty pattern other than FP3

or FP5, it will produce an “0” at the y2 output instead of the expected
“1”, thus it will be detected. If Gi+2 has FP3 or FP5, it will have outputs
y1y2y3 = 111 and thus apply x1x2x3 = a5 = 101 to Gi+3. At this point it
can be seen that unless the faulty patterns of the 1D array is the following:
Gi has FP6 or FP7, Gi+j has FP4 for j = 1, 3, 5, 7, . . . and Gi+j has
FP3 or FP5 for j = 2, 4, 6, 8, . . ., the fault can be detected at the y2

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 199

outputs of some module after Gi. If the faulty array has the above faulty
configuration, it will produce a “1” instead of the expected “0” at the
primary output PO2 (the output y1 of the last module), thus the fault
can also be detected.
In conclusion, the array shown in Fig. 18a is C-testable and four test vec-
tors are required to detect any number of faulty modules (given the fault
model in Sect. 6).

10 Conclusion

This chapter has presented a comprehensive analysis of reversible and testable
circuits implemented in Quantum-dot Cellular Automata (QCA). Initially,
two new reversible gates (denoted as QCA1 and QCA2) have been proposed;
these gates take into account the logic primitives of QCA (such as the MV)
to retain the one-to-one onto nature of the mapping between inputs and out-
puts. Albeit the majority function is not reversible, it has been shown in
the literature that in QCA different clocking arrangements can be used for
reversible computing [32]. In this chapter, testing of one-dimensional arrays
under single and multiple faulty modules has been considered; this analysis
has encompassed different features as related to the assumed fault model, the
cardinality of the test set and controllability/observability in the intermediate
modules of the one-dimensional array.

To summarize, Table 18 shows the C-testability of one-dimensional arrays
made of Toffoli, Fredkin, QCA1 or QCA2. In all cases, it is assumed the at
most one cell fault can occur in each module (as according to the fault model
discussed in Sect. 6). The first column of the Table is the type of gate used in
the module of the array. The second column shows the fault assumption: “S”
stands for single faulty module and “M” stands for multiple faulty modules.
The third column shows the cardinality of the test set for detection, i.e. the

Table 18. Benchmark result

Module Faults Test set Type of array
S/M cardinality

Toffoli S 3 1D array
M 3 1D array

Fredkin S 3 1D array
M 4 1D array with 1OB, 1CO
M 8 1D array with 2OB

QCA1 S 3 1D array
M 3 1D array with 1OB, 1CO
M 8 1D array with 1OB

QCA2 S 4 1D array
M 4 1D array with 1OB, 1CO
M 8 1D array with 1OB

200 X. Ma et al.

number of vectors in the test set. The last column is the type of array. The
1D array is shown in Fig. 15, where only the inputs of the first module can
be controlled and only the outputs of the last module can be observed. The
1D array with 1OB, 1CO is shown in Fig. 18, where each module has one
controllable input and one observable output. the 1D array with 1OB is shown
in Fig. 21, where each module has one observable output. The 1D array with
2OB is the array in which each module has two observable outputs.

Appendix A: Benchmark Specifications2

MOD5: Four inputs (A, B, C, D, from MSB to LSB) one output.
Output = (A XNOR C) AND (B XNOR D). XNOR implemented using

the CNOT gate, AND implemented by QCA1/QCA2 gate.
rd32: Three inputs (A, B, Cin) and two outputs (Sum, Cout).
Sum = A XOR B XOR Cin; Cout = MV(A,B,Cin). The 3-input XOR

implemented with two QCA1/QCA2 gates, and Cout is available at the output
of one of these QCA1/QCA2 gates, too.

3 17: Three inputs (A, B, C, from MSB to LSB), three outputs (3,2,1,
from MSB to LSB).

2 = A XOR B XOR C ′

1 = (A′ AND C ′) OR (A AND B) = B CNOT (A′ AND 2)
3 = (A′ AND B′) OR (B AND C) = C CNOT (B′ AND 2)
The XOR gate implemented with the CNOT gate, the AND gate is im-

plemented with the QCA1/QCA2 gate.

References

1. S. Muroga, “Threshold Logic and its Applications”, Wiley Interscience,
New York, 1971.

2. T. Toffoli, “Reversible Computing”, Technical Report MITLCSTM151, MIT
Laboratory for Computer Science, 1980.

3. E. Fredkin and T. Toffoli, “Conservative Logic”, International Journal of The-
oretical Physics, vol. 21, pp. 219–253, 1982.

4. C.H. Bennett, “Logic Reversibilty of Computation”, IBM Journal of Research
and Development, vol. 17, pp. 525–532, 1973.

5. D. Maslov, G.W. Dueck and D.M. Miller, “Synthesis of Fredkin-Toffoli Re-
versible Networks”, IEEE Transaction on VLSI, 2004.

6. R. Landauer, “Irreversibility and Heat Generation in the Computing Process”,
IBM Journal of Research and Development, vol. 5, pp. 183–191, 1961.

7. M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information”,
Cambridge University Press, Cambridge, 2000.

2 For QCA, inversion is considered as part of the interconnect, so inverters are not
counted in the number of gates.

Chapter 6: Reversible and Testable Circuits for Molecular QCA Design 201

8. W. Wang, R. Zhang, K. Walus and G.A. Jullien, “A Method of Majority Logic
Reduction for Quantum Cellular Automata”, IEEE Transaction on Nanotech-
nology, vol. 3(4), pp. 443–450, 2004.

9. C.S. Lent, P.D. Tougaw and W. Porod, “Quantum Cellular Automata: The
Physics of Computing with Arrays of Quantum Dot Molecules”, Proceedings of
the Workshop on Physics and Computing, pp. 5–13, 1994.

10. M.T. Niemier and P.M. Kogge, “Problems in designing with QCAs: lay-
out=timing”, International Journal of Circuit Theory and Applications, vol.
29(1), pp. 49–62, 2001.

11. M.T. Niemier and P.M. Kogge, “Logic-in-Wire: Using Quantum Dots to Imple-
ment a Microprocessor”, International Conference on Electronics, Circuits, and
Systems (ICECS ’99), vol. 3, pp. 1211–1215, 1999.

12. K. Hennessy and C.S. Lent, “Clocking of Molecular Quantum-Dot Cellular Au-
tomata”, Journal of Vaccum Science and Technology, vol. 19(5), pp. 1752–1755,
2001.

13. I. Amlani, A.O. Orlov, G. Toth, C.S. Lent, G.H. Bernstein and G.L. Snider,
“Digital Logic Gate Using Quantum-Dot Cellular Automat”, Science, vol.
284(5412), pp. 289–291, 1999.

14. S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch and P.M. Kogge,
“Memory in Motion: A Study of Storage Structures in QCA”, 1st Workshop on
Non-Silicon Computation, 2002.

15. M.T. Niemier, A.F. Rodrigues and P.M. Kogge, “A Potentially Implementable
FPGA for Quantum Dot Cellular Automata”, 1st Workshop on Non-Silicon
Computation (NSC-1), held in conjunction with 8th Int. Symp. on High Perfor-
mance Computer Architecture (HPCA-8), 2002.

16. P.D. Tougaw and C.S. Lent, “Logical Devices Implemented Using Quantum
Cellular Automata”, Journal of Applied Physics, vol. 75(3), pp. 1818–1825, 1994.

17. V.S. Dimitrov, G.A. Jullien and K. Walus, “Quantum-Dot Cellular Automata
Carry-Look-Ahead Adder and Barrel Shifter”, IEEE Emerging Telecommunica-
tions Technologies Conference, pp. 2/1–2/4, 2002.

18. C.G. Smith, “Computation Without Current”, Science, vol. 284(2), p. 274, 1999.
19. K. Walus, R.A. Budiman and G.A. Jullien, “Effects of morphological variations

of self-assembled nanostructures on quantum-dot cellular automata (QCA) cir-
cuits”, Frontiers of Integration, An International Workshop on Integrating Nan-
otechnologies, 2002.

20. K. Walus, A. Vetteth, G.A. Jullien and V.S. Dimitrov, “RAM Design Using
Quantum-Dot Cellular Automata”, NanoTechnology Conference, vol. 2, pp. 160–
163, 2003.

21. M.B. Tahoori, M. Momenzadeh, J. Huang and F. Lombardi, “Testing of Quna-
tum Cellular Automata”, IEEE Transaction on Nanotechnology, vol. 3(4), pp.
432–442, 2004.

22. J. Huang, M. Momenzadeh, M.B. Tahoori and F. Lombardi, “Defect Charac-
terization for Scaling of QCA Devices”, Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 30–38, 2004.

23. D.A. Antonelli, D.Z. Chen, T.J. Dysart, X.S. Hu, A.B. Kahng, P.M. Kogge,
R.C. Murphy and M.T. Niemier, “Quantum-Dot Cellular Automata (QCA)
Circuit Partitioning: Problem Modeling and Solutions”, Design Automation
Conference (DAC), pp. 363–368, 2004.

24. K. Walus, G.A. Jullien and V.S. Dimitrov, “Computer arithmetic Structures for
Quantum Cellular Automata”, Proceedings of Asimolar Conference, 2003.

202 X. Ma et al.

25. J. Huang, M. Momenzadeh, M. Ottavi, L. Schiano and F. Lombardi, “A Pre-
deposition Methodology for Tile-Based Design of QCA Combinational Circuits”,
Internal report, 2004.

26. M. Momenzadeh, J. Huang, M. Ottavi, N. Park and F. Lombardi, “Computing
with Grids of QCA Cells”, Internal report, 2004.

27. R. Compano, L. Molenkamp and D.J. Paul, “Technology Roadmap for Nano-
electroincs”, European Commission IST programme, Future and Emerging Tech-
nologies, 2000.

28. Reversible Logic Synthesis Benchmarks Page, available online: http://www.cs.
uvic.ca/damslov

29. Personal communication with Professor Marya Lieberman, Department of
Chemistry and Biochemistry, University of Notre Dame, IN, USA.

30. V.D. Agrawal, “An Information Theoretic Approach to Digital Fault Testing”,
IEEE Transaction on Computers, vol. 30, pp. 582–587, 1981.

31. K.N. Patel, J.P. Hayes and I.L. Markov, “Fault Testing for Reversible Circuits”,
IEEE Transaction on CAD, vol. 23(8), pp. 1220–1230, 2004.

32. J. Timer and C.S. Lent, “Maxwell’s Demon and Quantum-dot Cellular Au-
tomata”, Journal of Applied Physics, vol. 94(2), pp. 1050–1060, 2003.

33. M. Liu, C.S. Lent, “Bennett and Landauer Clocking in Quantum-dot Cellular
Automata”, International Workshop on Computational Electronics, Abstracts
pp. 120–121, 2004.

34. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algo-
rithms, 2nd ed.”, McGraw-Hill, New York, 2001.

35. A. Chakraborty, “Synthesis of Reversible Circuits for Testing with Universal
Test Set and C-Testability of Reversible Iterative Logic Arrays”, Proceedings of
the 18th International Conference on VLSI Design, 2005.

36. QCADesigner Homepage, available online: www.qcadesigner.ca

Chapter 7: Cellular Array-Based
Delay-Insensitive Asynchronous Circuits
Design and Test for Nanocomputing Systems

J. Di and P.K. Lala

1 Introduction

Complementary metal-oxide semiconductor (CMOS) has been the dominant
technology for implementing VLSI systems because it provides a good trade-
off of high speed and small area. The continuous decrease in transistor fea-
ture size has been pushing the CMOS process to its physical limits caused
by ultra-thin gate oxides, short channel effects, doping fluctuations, and the
unavailability of lithography in nanoscale range. To continue the size/speed
improvement trends according to Moore’s Law, nanoelectronic and molecu-
lar electronic devices are needed. A significant amount of research has been
done in nanoscale computing system design [1–5]. Although recent research
have resulted in the development of basic logic elements and simple circuits
in nanoscale, there are still debates on what logic style and architecture will
be the best for nanocomputers. A family of asynchronous logic called delay-
insensitive circuits has drawn attention in recent years. The advantages of
delay-insensitive circuits include flexible timing requirement, low power, high
modularity, etc. These characteristics fit the needs of nanoscale computing.
Cellular arrays have an ideal architecture for implementing delay-insensitive
circuits in nanoscale; they have highly regular structures, simple cell behav-
ior, and flexible scalability [5, 6]. The regular structure together with delay-
insensitive circuit style makes cellular arrays a viable option for implementing
nanocomputing systems.

In this chapter the design and layout of delay-insensitive circuits on cellu-
lar arrays are presented. One appealing approach to design nanoscale circuits
is to express the logic functions in the Reed–Muller form using AND and XOR
gates only [7]; the Reed–Muller representation of Boolean functions have been
discussed in detail in Sect. 5. The main motivation for using the Reed–Muller
form is that the testability of circuits implemented from Reed–Muller expan-
sions is considerably improved compared to that of their original forms. This
chapter presents the design and layout of a delay-insensitive Reed–Muller
cell which is composed of the three primitives proposed in [6]. In addition,

204 J. Di and P.K. Lala

a potential physical implementation for asynchronous circuits on cellular ar-
rays introduced by IBM researchers [8], and the effects of possible stuck-at
faults on this molecular implementation have been analyzed. Certain faults
in these circuits can be detected during normal operation without applying
any external test patterns, i.e. the faults can be detected on-line [7]. However,
faults that escape on-line detection can be easily detected off-line by apply-
ing a few external test patterns; this is possible because of the Reed–Muller
expression-based structure of the delay-insensitive circuits.

2 Delay-Insensitive Circuits

Currently synchronous logic is predominantly used in commercial integrated
circuit chip design. Synchronous logic uses a global clock to control logic
behavior. On the other hand asynchronous logic delay-insensitive circuits do
not require a clock. Delay-insensitivity is achieved by checking the completion
of an operation in a subblock and sending a signal to previous subblock stages
to acknowledge the completion. The clock-less operation of such circuits lead
to the following benefits:

– No clock skew. Since delay-insensitive asynchronous circuits have no glob-
ally distributed clock, clock skew need not be considered.

– High energy efficiency. Delay-insensitive circuits generally have transitions
only where and when involved in the current computation. Some imple-
mentations inherently eliminate glitches, therefore decreasing energy con-
sumption.

– Robust external input handling. Since signals do not need to be synchro-
nized with a clock, delay-insensitive circuits accommodate external inputs
thus avoiding the metastability problem in synchronous circuits [9].

– Low noise and low emission. In mixed-signal circuits, a digital subcir-
cuit usually generates noise and/or emits electromagnetic (EM) radiation
which affects the whole circuit performance. Due to the absence of a com-
plex clocking network, delay-insensitive circuits may have better noise and
EM properties [10].

Asynchronous circuits are very different from Boolean logic based syn-
chronous circuits and are usually more difficult to design without appropriate
CAD tools. This remains a major obstacle to the use of asynchronous logic
systems. However, in recent years the clock skew problem in synchronous
circuits is becoming increasingly critical. Because of above listed advantages
delay-insensitive circuits utilizing dual-rail encoding are becoming popular.
Dual-rail encoding uses a two-rail code to represent a data bit as shown in
Table 1 [11].

As can be seen in Table 1, besides Data 0 and Data 1 there is a spacer state
denoted by both rails being logic low. For each circuit element, after a data
bit has been processed, it goes to a spacer state before it is allowed to process

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 205

Table 1. Dual-rail encoding truth table

State Rail 1 Rail 0

Spacer 0 0
Data 0 0 1
Data 1 1 0
Invalid 1 1

the next data. This is known as the return-to-spacer protocol. This return-
to-spacer procedure is actually a self-resetting step of the circuit operation.
Delay-insensitivity is achieved by checking the completion of an operation in
a subblock and sending a signal to previous subblock stages to acknowledge
the completion. Dual-rail encoding is used to design delay-insensitive circuits
in this chapter.

3 Asynchronous Cellular Arrays

Cellular arrays have been widely studied as a computational model. A cellular
array is a d-dimensional array of identical cells, which are placed next to each
other. Each cell has a finite number of states. Based on its current state and
the states of its neighbor cells, the cell can change its state by an operation
known as a transition [6]. Following certain transition rules, the cellular arrays
are able to perform logic computation as well as data storage.

In this chapter, two-dimensional cellular arrays are used. Each cell has
four bits, represented by rectangles located at north, south, east, and west,
respectively, as shown in Fig. 1. If one or more rectangles in a cell are filled
a signal is said to have arrived at this cell. An empty rectangle represents a
logic “0” and a filled rectangle (also known as a block) represents a logic “1,”
as shown in Fig. 2. Depending on the physical implementation, signals can be
generated by different phenomena. In the molecular cascade structure which
will be explained in the next section, signals are generated by CO molecular
hopping.

Based on the von Neumann neighborhood definition, the cell’s next state
will be determined by its current state and states of the four nearest bits of
its nearest orthogonal cells as shown in Fig. 3. The letters in the rectangles of
each cell represent the bit-states (0 or 1) of the cell.

A cell changes its state based on previously mentioned transition rules as
shown in Table 2 below [6]. There is no timing restraint on such transitions,
except that two neighboring cells may not be updated simultaneously. Instead,
the cells are updated in order following the signal transmission direction, and
the primitives should be placed in such a way that they will not share cells in
each other. Thus cellular arrays are ideal for implementing delay-insensitive
circuits.

206 J. Di and P.K. Lala

North

EastWest

South

Fig. 1. Cell structure

Fig. 2. A 2D cellular array

a
b

e f

g
h

dc

b�
a�

e� f�

g�

h�

c� d�

Fig. 3. Transition of cell

Table 2. Transition rules. (i) Signal propagation; (ii) Rule for Fork; (iii) and (iv)
Rules for Merge; (v) and (vi) Rules for R-Counter

i. ii. iii.

iv.

v. vi.

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 207

k

k

r

r

a

a

b

b

(c)(b)(a)

Fig. 4. Primitives (a) Fork (b) Merge (c) R-Counter

Three primitives – Fork, Merge, and Resettable Modulo 2 Counter
(R-Counter) – in conjunction with the transition rules shown in Table 2 form a
complete set for designing delay-insensitive circuits [6]. They are shown in
Fig. 4 with their symbols:

– Fork. It produces one signal on each of its two output paths upon assimi-
lating a signal from its input path.

– Merge. Signals arriving from the input paths are redirected to the output
path. Simultaneous input signals are allowed, giving rise to two consecutive
output signals.

– Resettable Modulo 2 Counter (R-Counter). Two successive input signals
on a give rise to one output signal on b. One input signal on a and one on
r give rise to one output signal on k.

Note that in a cellular array after signals along a path have been processed,
the relevant cells along the path including both primitives and signal paths
go back to their initial states, which are logic 0’s. Thus the requirement of
“return-to-spacer” protocol is automatically satisfied, thereby providing sev-
eral advantages, e.g. less area and power, higher reliability, lower circuit com-
plexity, and less design effort.

A delay-insensitive module named TRIA (see Fig. 5) was introduced in
[12]. It has three inputs and three outputs, each output corresponding to a
unique pair of inputs. If a TRIA receives one input signal on one input line,
it stays pending until a second input signal arrives on another input line. It
then responds by outputting a signal to the corresponding output line. For
example, if the two inputs are on input line Ii and Ij , where i, j ∈ [1, 3], the
output will be on output line O6−i−j [6]. For example if the inputs are on
I1 and I3 the output will be on O2 as 6 − 1 − 3 = 2. A TRIA, which can
be expressed in terms of the previously mentioned primitives, and its symbol
are shown in Fig. 5. TRIAs are convenient building blocks for constructing
delay-insensitive circuits.

208 J. Di and P.K. Lala

O3

O2 O1

I2

I1

I3

Fig. 5. Design of TRIA constructed from basic modules and its symbol

4 Potential Physical Implementation and Area
Discussions of Cellular Arrays

4.1 Molecule Cascades

Recently researchers at IBM have demonstrated the layout of cascades of hop-
ping CO molecules on a Cu(111) surface at cryogenic temperatures [8]. If CO
molecules are arranged in configurations such that the motion of one molecule
causes the subsequent motion of another, the hops of molecules behave like a
row of toppling dominoes [8]. The cascade of CO molecules in staggered chains
of “dimers” can be initiated by moving a “trigger” CO molecule to form an
initial “chevron.” This newly formed chevron then spontaneously decays and
forms yet another chevron, and so on for a cascade of any length [8]. Note that
although the time for each chevron to decay differs, all chevrons will decay in
order to reach the final configuration. This is a typical delay-insensitive mode
of operation.

The interactions of the CO molecules can be utilized to realize the trans-
mission along a path, as well as the operation of delay-insensitive primitives
and logic gates. A logic AND gate, a two-input sorter, and a three-input sorter
were introduced in [8].

4.2 Possible Faults in Molecule Cascades

During the fabrication process of cascades of CO molecules certain faults
may occur. The possible faults include missing CO molecule, misplaced CO
molecule, wrong configuration, adding “trigger” molecule by mistake, etc. If
such a fault occurs inside a logic gate formed by molecule cascades, its effect
maybe the same as the stuck-at faults in CMOS circuits, e.g. the output of a
logic gate is held at a certain logic value regardless of the input pattern. Thus
such faults need to be analyzed and modeled for logic circuits implemented
on molecule cascades based cellular arrays.

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 209

4.3 Cost

Delay-insensitive circuits usually require more area than their synchronous
counterparts due to the multi-rail encoding scheme. For dual-rail encoding
delay-insensitive circuits, the total area of logic gates and interconnections
is about four times larger. This fact has been restricting the commercializa-
tion of delay-insensitive asynchronous circuits because the extra die area is
very expensive in modern digital integrated circuits. However, this may not
be a problem if implemented using molecule cascades. The most salient fea-
ture of molecule cascades is their size: A three-input sorter implemented in
CMOS9s technology requires an area of 53 µm2, whereas the cascade imple-
mentation uses only 200 nm2, an improvement factor of 260,000 [8]. Therefore
even though delay-insensitive asynchronous circuits have more wires and more
complex circuit structure, their implementation on molecule cascades based
cellular arrays will still be requiring much less area than their synchronous
counterparts implemented using CMOS technology.

5 Testable Circuit Design Based on Reed–Muller
Expansion

As indicated earlier a Boolean function can be expressed in the Reed–Muller
form, i.e. as a linear sum of product terms with no complementation. The
typical Reed–Muller canonical form is shown in (1), where z is the output
variable, xi, i ∈ [1, n], are the input variables, aj ∈ {0, 1}, j ∈ [0, 2n − 1],
are the coefficients.

z = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2 ⊕ · · · ⊕ a2n−1x1x2 . . . xn (1)

An n-variable Boolean function designed in Reed–Muller form has certain
properties that make the resulting circuit easily testable. These properties
are [13]:

1. If the primary input leads are fault free, then at most n+4 tests are
required to detect all single stuck-at faults in the circuit.

2. If there are faults on the primary input leads as well, then the number of
tests required is (n + 4) + 2ne, where ne is the number of input variables
that appear an even number of times in the product terms of the Reed–
Muller expansion. However, by adding an extra AND gate with its output
being made observable, the additional 2ne tests can be removed. The input
to the AND gate are those inputs appearing an even number of times in
the Reed–Muller product terms.

210 J. Di and P.K. Lala

6 Implementation of Delay-Insensitive Circuits Using
Reed–Muller Cell

As mentioned earlier, the main motivation for using the Reed–Muller form is
to improve the testability of circuits implemented from Reed–Muller expan-
sions. There are only two components in a Reed–Muller circuit, AND gate
and XOR gate. A dual-rail delay-insensitive NAND gate is given in [6]. Since
a dual-rail signal can be inverted simply by crossing the two rails, the AND
gate has the same circuit structure as NAND gate, as shown in Fig. 6. Its
layout is shown in Fig. 7.

A delay-insensitive XOR gate, which is more complicated than an AND
gate, has been designed by the authors as shown in Fig. 8 and its layout of

A1

C1

C0

A0

B1
B0

Fig. 6. Delay-insensitive AND gate

b0
b1

a1

c0

c1

a0

Fig. 7. Layout of AND gate on cellular arrays

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 211

A1

C1

C0

B1

A0

B0

Fig. 8. Delay-insensitive XOR gate

Dual Rail-Ex-OR - Cellular Array Implementation

a0
a1

b0

c0

c1

b1

Fig. 9. Layout of XOR gate on cellular arrays

shown in Fig. 9. Note that for each of these two delay-insensitive gates the
output is not produced unless both dual-rail inputs arrive. Thus if only one
input arrives, it will wait for the other one, and no output will be generated
in the meantime.

For implementing sequential logic, a dual-rail delay-insensitive 1-bit reg-
ister has been designed as shown in Fig. 10. The layout is shown in Fig. 11.
Based on the state of REQ signal from the next stage, the register is able
to either pass or hold the current input. Note if the input arrives before the
REQ signal, the register will hold this input and wait for the REQ signal.
Only after the arrival of REQ signal will the input be passed to the output.
Once the input has been passed to the next stage, an ACK signal is generated
and transferred to the previous stage.

212 J. Di and P.K. Lala

D1

D0

Ack

Q1

Err

Req

Q1

Fig. 10. Delay-insensitive register

Err

D1

Q1

Ack

Q0

Req

D0

Fig. 11. Layout of delay-insensitive register on cellular arrays

In many cases a Reed–Muller expression has AND terms with more than
two variables. Thus multiple-input AND gates are needed to implement cer-
tain Reed–Muller expressions. A dual-rail 2-to-1 multiplexer is employed to
construct multiple-input AND gates; this will be illustrated later in this sec-
tion. Figure 12 shows the design of such a multiplexer.

We propose a cell identified as a Reed–Muller cell shown in Fig. 13 to
implement Reed–Muller expressions. It contains an AND gate, an XOR gate,
a 2-to-1 multiplexer, and a 1-bit register. Every input and output is encoded in
dual-rail except the REQ and ACK signals. The select signals, Sel 0 and Sel 1,
are logic 0 after reset. Based on the Reed–Muller expression, the synthesis tool
connects the REQ signal from the next stage to either Sel 0 or Sel 1 signal of
the multiplexer. If the REQ signal is connected to Sel 1, the cell will realize
the function shown in (2); if the REQ signal is connected to Sel 0, the cell

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 213

A1

A0

sell

sel0
B0

Z0

Z1

B1

Fig. 12. Dual-rail 2-to-1 multiplexer
S

el_0
In

0
In

1

MUX

D

B C

Q

R A

REG

O
ut

A

ACK

Z

REQ

S
el_1

Fig. 13. Basic circuit block for Reed–Muller circuits

will realize the function shown in (3). As stated before, this is to handle
expressions in which some AND terms contain more than two variables. The
register ensures the delay-insensitivity by getting REQ signal from the next
stage and driving ACK signal to the previous stage.

Z = A ⊕ BC (2)
Z = BC (3)

Figures 14a,b illustrate the use of the Reed–Muller cell in implementing
the Boolean expressions of (4) and (5), respectively. Note that (5) requires a
three-input AND gate.

Z = A ⊕ BC ⊕ DE (4)
Z = A ⊕ BCD (5)

A Boolean expression needs to be converted into Reed–Muller form before
it can be implemented using Reed–Muller cells. To illustrate let us realize the

214 J. Di and P.K. Lala

B

A
ACK

A
ACK

MU

S
el_0

S
el_1

X

In
1

In
0

O
ut

MU

S
el_0

S
el_1

X

In
1

In
0

O
ut

MU

S
el_0

S
el_1

X

In
1

In
0

O
ut

C

B C D

D Q
RE

REQ

REQ

REQ

REQ

Z

Z

ED

ACK

ACK

(a)

(b)

G
R A

D Q
RE
G

R A

MU

S
el_0

S
el_1

X

In
1

In
0

O
ut D Q

RE
G

R A

D Q
RE
G

R A

Fig. 14. Implementation of multiple-input AND gates

a
b
c

0
z

Fig. 15. Normal circuit implementation for (7)

logic function shown in (6). A corresponding complement-free Reed–Muller
expression is shown in (7) and its regular implementation is shown in Fig. 15.
The implementation of (7) using the Reed–Muller cells is shown in Fig. 16.

Z = a · b + a · c + b · c (6)
Z = b ⊕ c ⊕ a · c ⊕ b · c ⊕ a · b · c (7)

Equation (6) can be written in an alternate form as shown in (8). The
implementation of the equation is shown in Fig. 17. Note this implementa-
tion does not require any inverters; the inversion of an input is achieved by
swapping the two rails of each input. Compared to the circuit in Fig. 16, the
implementation of Reed–Muller form with complementary inputs uses less

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 215

a
bc

0
Ack

z

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut

D Q

REG

R A

MUX
S

el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut

D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut

D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A Req

Fig. 16. Circuit realizing equation (7) using basic circuit blocks

b
a

c

0

Ack

Z

Req

a

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

MUX

S
el_0

S
el_1

In
1

In
0

O
ut D Q

REG

R A

Fig. 17. Circuit realizing equation (8) using basic circuit blocks

216 J. Di and P.K. Lala

area and reduces the number of transitions, thereby reducing power consum-
ption.

Z = a · b ⊕ a · c ⊕ b · c ⊕ a · b · c (8)

It should be clear from the above example that the delay-insensitive Reed–
Muller cell of Fig. 13 can be used to implement arbitrary logic functions. The
high modularity feature of the proposed approach should ease the automatic
synthesis of nanocomputing circuits/systems.

7 Fault Analysis of Logic Functions Implemented
by Reed–Muller Cells

This section provides a comprehensive analysis of the effect of stuck-at faults
in the proposed Reed–Muller cell in both primitive- and gate-level.

7.1 Primitive-Level Fault Analysis

During the analysis, two assumptions have been made:

Assumption 1. The changes of configuration due to a fault happen before
any input arrives.

This assumption indicates that after power on, all configuration changes
caused by stuck-at faults happen first. Thus no input signal arrives during the
configuration change of a primitive.

Assumption 2. Stuck-at faults occur one at a time.
This assumption simplifies the analysis by ignoring the possibility of many

faults occurring simultaneously.
The results of all stuck-at faults in primitives can be classified into four

categories:

1. Faulty signal. One or more faulty signals are transmitted.
2. Configuration transformation. The primitive cannot perform its in-

tended function when the correct inputs arrive. Instead, these inputs
are processed by a faulty configuration formed due to the transformation.

3. Null configuration. The primitive loses its original function but no new
configuration is formed to process the input data.

4. Benign fault. The fault does not affect the primitive’s function.

For each stuck-at fault, the result could be one or a combination of these
four categories. Stuck-at fault analysis for all three primitives has been per-
formed. But for the sake of brevity only those for Fork are discussed in detail
here. Merge and R-Counter can be analyzed in the same manner. The detailed
analysis can be found in [14].

To identify the location of a fault, the rectangles in Fork are numbered as
shown in Fig. 18.

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 217

1
2

3 4

7
8

5 6

Fig. 18. Rectangle numbers in Fork

The effects of a stuck-at-0 fault in each rectangle/block of Fork are dis-
cussed as follows:

No. 2 – signals to the top are blocked. If the rectangle No. 2 is stuck at 0,
it cannot be filled by the incoming signal. Therefore the upper branch of the
Fork is blocked.

No. 3 – null configuration; circuit fails to function. If the rectangle No. 3
is stuck at 0, it cannot be filled by the incoming signal. Therefore no signal
can reach the Fork.

No. 5 – signals to the bottom are blocked. If the rectangle No. 5 is stuck
at 0, it cannot be filled by the incoming signal. Therefore the bottom branch
of the Fork is blocked.

No. 7 – a faulty signal is transmitted to the left. If the rectangle No. 7
is stuck at 0, it cannot be filled by the incoming signal. The Fork will be
transformed to a signal path from right to left.

218 J. Di and P.K. Lala

No. 8 – a faulty signal is transmitted to the right. If the rectangle No. 8
is stuck at 0, it cannot be filled by the incoming signal. The Fork will be
transformed to a signal path from left to right.

The stuck-at-0 faults in slots 1, 4 and 6 have no effect on the normal
operation of a Fork, i.e. these faults are benign.

The effects of a stuck-at-1 fault in each slot of Fork are discussed as follows:
No. 1 – faulty signals are transmitted to the left; it works as a Merge

No. 2 – faulty signals are transmitted to the top

No. 3 – two sets of faulty signals are transmitted to the top and bottom

No. 4 – faulty signals are transmitted to the left

No. 5 – faulty signals are transmitted to the bottom

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 219

No. 6 – faulty signal are transmitted to the left; it works as a Merge

The stuck-at-1 faults in slots 7 and 8 have no effect on the normal operation
of a Fork.

7.2 Gate-Level Fault Analysis

Stuck-at-0 Faults

A stuck-at-0 fault on any input rail will cause a false spacer state if this rail
is supposed to be logic 1 during the current data state. For example, if a
dual-rail signal A is supposed to be Data 1, i.e. A1 is 1 and A0 is 0, and A1

happens to be stuck-at-0, then A1A0 will be 00 and signal A will be in a false
spacer state.

Stuck-at-0 faults can be detected by monitoring the output. Due to the
delay-insensitive nature of logic gates in the Reed–Muller cells, the output of
each gate will remain in a spacer state until all inputs arrive with data. So no
data will be detected at the output of the circuit.

Stuck-at-1 Faults

To analyze the effect of stuck-at-1 faults on the Reed–Muller cell, it is neces-
sary to understand how stuck-at-1 faults affect the behavior of TRIA, which
is the essential element of all logic gates in the cell.

Single Stuck-at-1 Fault in a TRIA

A single stuck-at-1 fault means there is only one input of TRIA that is stuck-
at-1. Figure 19 shows the effect of this type of fault. Note that in Figs. 19–25,
a solid dot (•) besides a rail indicates this rail is always at logic 1 because
of the stuck-at-1 fault, a solid triangle (�) besides a rail on the other hand
indicates this rail is at a normal logic 1.

As shown in Fig. 19, the stuck-at-1 fault on I1 causes consecutive signals to
a input of the R-Counter at the top, which in turn causes output O2 to always
be logic 1. In general, if the single stuck-at-1 fault occurs on input Ik, the
output Om will always be logic 1, where m = k + 1 if k �= 3 otherwise m = 1.

Now consider a normal signal comes to input I2 when I1 is stuck-at-1.
Figure 20 shows that if Ik is stuck-at-1 and a normal input comes to Ij , a
normal output will be generated at O6−j−k whereas the faulty output Om will
always be 1, where m = k + 1 if k �= 3 otherwise m = 1.

If after I1 is stuck-at-1, normal signals come to both input I2 and I3, the
effect is shown in Fig. 21.

220 J. Di and P.K. Lala

stuck-at-1

O3

O3

O3

O1

O1

O2

O2

O2 is
always 1

I2

I2

I2

I3

I3

O1
O2 I3

I1

I1

I1

I1

Fig. 19. Single stuck-at-1 fault in TRIA

One signal
outputs to

O3

O3 O3

O3

O3 O3

O3

I2 I2

I2

I2 I2

I2

I1 I1

I1

I1 I1

I1

O2 O2

O2

O2

O2

O2

I3 I3

I3

I3

I3

I3

O1 O1

O1

O1

O1

O1

I1 stuck-at-1

I2 comes

O2 is
always 1

Fig. 20. Single stuck-at-1 fault in TRIA with one normal input

It can be seen from Fig. 21, if Ik is stuck-at-1 and two signals come at the
other two inputs, a normal output will be generated at Ot with the faulty
output Om always being 1, where m = k + 1 if k �= 3 otherwise m = 1, and
t = k − 1 if k �= 1 otherwise t = 3. No output will be generated at Ok.

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 221

No output
on O1

O2

O2

O2 O2
O2

O3

O3

O3 O3 O3

I2

I2

I2 I2 I2

O3

O3 O3

O3I2

I2 I2

I2

I1

I1

I1 I1 I1

I1

I1 I1

I1

I3

I3

I3 I3 I3

O1

O1

O1 O1
O1

O2

O2 O2

O2I3

I3 I3

I3
O1

O1 O1

O1

I1stuck-at-1

I2 and I3
come

Fig. 21. Single stuck-at-1 fault in TRIA with two normal inputs

Double Stuck-at-1 Faults in TRIA

The effect of two inputs are stuck-at-1 is shown in Fig. 22. If Ij and Ik are
stuck-at-1, O6−j−k will always be logic 1. If then a normal signal comes at
the third input, it will have no effect on the outputs as explained in Fig. 23.

Triple Stuck-at-1 Faults in TRIA

Figure 24 shows if all three inputs are stuck-at-1, no output will be generated.
The signals (shown as dots) circulate inside the circuit, i.e. a loop is formed.

Stuck-at-1 Faults in AND Gate

The Reed–Muller cell has three AND gates – two in the multiplexer and one
separate. Each AND gate has two TRIAs. If A and B are the two dual-rail
inputs to the delay-insensitive AND gate and A is at Data 1 and B is at Data
0, thus A1 is 1, A0 is 0, B1 is 0, and B0 is 1. Therefore the output C should
be at Data 0, i.e. C1 is 0 and C0 is 1. However, if a stuck-at-1 fault occurs on
B1, the effect is shown in Fig. 25.

Most faults can be detected on-line, i.e. during the normal operation of a
delay-insensitive circuit. However, there are certain faults can only be detected

222 J. Di and P.K. Lala

O3
is always 1

O3

O3

O3

I1 I1

I1

O2

O2

O2I3

I3

I3
O1

O1

O1

I2

I2

I2
I1 and I2

stuck-at-1

Fig. 22. Double stuck-at-1 faults in TRIA

I3 comes

I3 has no effect
on the outputs

O3

O3

O3 O3

O3

O3

I2

I2

I2 I2

I2

I2

I1

I1

I1 I1

I1

I1

O2

O2

O2

O2

O2

O2

I3

I3

I3

I3

I3

I3

O1

O1

O1

O1

O1

O1

I1and I2
stuck-at-1

Fig. 23. Double stuck-at-1 faults in TRIA with a normal input

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 223

No output is
generated

O3

O3

O3I2

I2

I2

I1

I1

I1

O2

O2

O2I3

I3

I3

O1

O1

O1

All inputs
stuck-at-1

Fig. 24. Triple stuck-at-1 faults in TRIA

during off-line testing of a circuit. As explained previously (Fig. 25), an AND
gate outputs a wrong (but valid) data value due to the presence of the stuck-at-
1 fault. Since this value is still valid it cannot be detected on-line by monitoring
the output. For off-line testing of a large delay-insensitive circuit, a set of test
patterns that provides both reasonable number of tests and high fault coverage
is extremely difficult to generate.

In our approach, circuits are designed using the proposed Reed–Muller
cell. Based on the Reed–Muller expansion theory discussed in Sect. 4, the
number of test patterns for off-line testing is proportional to the total number
of inputs and all single stuck-at faults in the circuit are covered. Therefore
our approach makes it possible to detect those faults like the one shown in
Fig. 25 by off-line testing, thus improving the overall testability of nanoscale
delay-insensitive circuits on cellular arrays.

The effect of stuck-at faults in an OR gate and an XOR gate can be
analyzed in the same manner. As in an AND gate, certain stuck-at faults in
OR gate and XOR gate cannot be detected on-line. However, those can be
detected off-line because of the Reed–Muller based circuit structure.

8 Comparison with Previous Work

So far only limited amount of research has been done on designing and lay-
ing out delay-insensitive circuits on cellular arrays, testing of delay-insensitive
circuits has not been addressed at all. In [1] a five-state asynchronous cellu-
lar automaton was presented and its behavior was discussed. Five primitives
were proposed with twelve transitions rules describing their behavior. The

224 J. Di and P.K. Lala

No output yet

Still No output

B0 comes

A1 comes

A1

A0

A1

A0

B1

B1

B0

B0
A1

A0

B1

B0

B1

B0

A1

A0

B1

B0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

A1

A0

B1
B0
A1

A0

B1

B0

C1

C0

A1

A0

B1

B0

A1

A0

B1

B0

A1

A0

B1 stuck-at-1

Output
becomes
Data 1

Fig. 25. Single stuck-at-1 fault in AND gate example

large numbers of primitives and transition rules make it difficult to use them
for designing delay-insensitive circuits, e.g. any transition including signal
propagation needs five stages to complete. Two even more complicated struc-
tures were introduced in [2] and [3]. In [2] a Hexagonal Cellular Automaton
(HCA) was presented. Each cell in HCA has six bits and six neighbors. The
Reversible HCA has 64 states. In [3] each cellular automaton has six states,
and thirteen transition rules were needed to propagate a signal. Lee et al. [4]
used the same cell structure as in [3] with different transition rules. Layout of
delay-insensitive circuits on cellular arrays was discussed in [5]. However, it

Chapter 7: Cellular Array-Based Delay-Insensitive Asynchronous Circuits 225

used bi-directional signal paths resulting in the increase of design complexity.
In [6], only the design of a NAND gate was shown and no design methodology
or layout strategy was given.

As for Field-Effect Transistor (FET)-based nanoscale electronics design,
an approach to build defect-tolerant, nanoscale compute fabrics of assemblies
of defective crossbars of configurable FETs and switches was presented in [15].
Both n-channel FETs and p-channel FETs are arranged in crossbar architec-
ture to implement CMOS-like logic capable of universal computation. The
functional redundancy makes them tolerate both “Stuck Open” and “Stuck
Close” faults although the latter one is more problematic. Research in the
same category includes [16], in which a FET-based nanoarray architecture
was proposed. Carbon nanotubes (CNTs), silicon nanowires (SiNWs), and
molecular-scale devices were organized to form the array. Defect tolerance
was provided through hierarchically sparing, e.g. fabricate more wires than
it is actually needed. These approaches are very interesting and might be
considered to implement cellular arrays.

9 Conclusions

The fundamental concepts of delay-insensitive circuits and layout of such cir-
cuits on cellular arrays for nanocomputing system implementation have been
introduced in this chapter. A delay-insensitive Reed–Muller cell, which con-
sists of an AND gate, an XOR gate, a 2-to-1 multiplexer, and a 1-bit register,
is proposed. The successful layouts of these circuit components are also in-
cluded. Arbitrary logic functions will first be transformed into Reed–Muller
form; then be synthesized using a series of the proposed Reed–Muller cells.

The effect of stuck-at faults in delay-insensitive circuits has been analyzed
and the improvement in testability by using the proposed Reed–Muller cells
is also discussed. The next step will be investigating the fault-tolerant de-
sign methodology for delay-insensitive circuits on cellular arrays. Due to the
high regularity of the cellular arrays and the flexible timing requirements of
delay-insensitive circuits, this approach is an important step towards feasible
nanocomputing system design.

References

1. J. Lee, S. Adachi, F. Peper, and K. Morita, “Embedding Universal Delay-
Insensitive Circuits in Asynchronous Cellular Spaces,” Fundamenta Informati-
cae, XX (2003) I-24, IOS Press

2. K. Morita, M. Margenstern, and K. Imai, “Universality of Reversible Hexag-
onal Cellular Automata,” MFCS’98 Satellite Workshop on Frontiers Between
Decidability and Undecidability, Aug. 24–25, 1998

3. S. Adachi, F. Peper, and J. Lee, “Computation by Asynchronously Updating
Cellular Automata,” Journal of Statistical Physics, Vol. 114, Nos. 1–2, Jan. 2004

226 J. Di and P.K. Lala

4. J. Lee, F. Peper, S. Adachi, K. Morita, and S. Mashiko, “Reversible Computa-
tion in Asynchronous Cellular Automata,” Unconventional Models of Compu-
tation (2002), LNCS 2509, pp. 220–229

5. F. Peper, J. Lee, S. Adachi, and S. Mashiko, “Laying out circuits on asynchro-
nous cellular arrays: a step towards feasible nanocomputers?” Nanotechnology,
Vol. 14, 469–485, 2003

6. F. Peper, J. Lee, F. Abo, T. Isokawa, S. Adachi, N. Matsui, and S. Mashiko,
“Fault-tolerance in nanocomputers: a cellular array approach,” IEEE Transac-
tions on Nanotechnology, Vol. 3, No. 1, 187–201, Mar. 2004

7. P. K. Lala, Self-checking and Fault-tolerant Digital Design, Morgan Kaufmann,
San Francisco, 2001

8. A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, “Molecule cascades,”
Science, Vol. 298, 1381–1387, Nov. 2002

9. M. Renaudin and B. El Hassan, “The design of fast asynchronous adder struc-
tures and their implementation using DCVS logic,” 1994 IEEE International
Symposium on circuits and systems, Vol. 4, 291–294, 1994

10. W. Kuang, “Iterative Ring and Power-Aware Design Techniques for Self-Timed
Digital Circuits,” Ph.D. dissertation, University of Central Florida, July 2003

11. J. Di, J. S. Yuan, and M. Hagedorn, “Energy-aware Multiplier Design in Multi-
rail Encoding Logic,” IEEE 45th Midwest Symposium on Circuits and Systems,
Aug. 2002

12. P. Patra and D. S. Fussell, “Building-blocks for designing DI circuits,” Technical
report TR93-23, Dept. of Computer Sciences, The University of Texas at Austin,
Nov. 1993

13. P. K. Lala, Digital Circuit Testing and Testability, Academic Press,
New York, 1997

14. J. Di, P. K. Lala, and D. Vasudevan, “On the Effect of Stuck-at Faults on Delay-
Insensitive Nanoscale Circuits,” Defect and Fault Tolerance in VLSI Systems
Symposium 2005 (DFT 2005), Oct. 2005

15. G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like logic in defective,
nanoscale crossbars,” Nanotechnology, Vol. 15, 881–891, 2004

16. A. Dehon, “Array-based architecture for FET-based nanoscale electronics,”
IEEE Transactions on Nanotechnology, Vol. 2, No. 1, 23–32, Mar. 2003

Chapter 8: QCA Circuits for Robust Coplanar
Crossing

S. Bhanja, M. Ottavi, S. Pontarelli, and F. Lombardi

1 Introduction

Quantum-dot cellular automata (QCA) [16] may overcome some of the limi-
tations of current technologies, while meeting the density foreseen by Moore’s
Law and the International Technology Roadmap for Semiconductors (ITRS).
For manufacturing, molecular QCA implementations have been proposed to
allow for room temperature operation; the feature of wire crossing on the
same plane (coplanar crossing) provides a significant advantage over CMOS.
Coplanar crossing is very important for designing QCA circuits; multi-layer
QCA has been proposed [4] as an alternative technique to route signals, how-
ever it still lacks a physical implementation. At design level, algorithms have
been proposed to reduce the number of coplanar wire crossings [9]. In QCA
circuits, a reliable operation of coplanar crossing is dependent on the temper-
ature of operation. Resilience to temperature variations due to thermal effects
is also an important feature to consider for practical applications. A reduction
in the probability of generating an erroneous signal is also of concern, hence,
robustness must be addressed.

Robustness to thermal effects must consider the repeated estimates of
ground (and preferably near-ground) states, along with cell polarization for
different designs. This evaluation is presently possible only through a full
quantum-mechanical simulation (over time) that is known to be computa-
tionally intensive. Tools such as AQUINAS [16] and the coherence vector sim-
ulation engine of QCADesigner [17] perform an iterative quantum mechanical
simulation (as a self-consistent approximation, or SCA) by factorizing the
joint wave function over all QCA cells into a product of individual cell wave
functions (using the Hartree–Fock approximation). This results in accurate
estimates of ground states, cell polarization (or probability of cell state), tem-
poral progress and thermal effects, but also at the expense of a large com-
putational complexity. Other techniques such as QBert [12], Fountain-Excel

228 S. Bhanja et al.

simulation, nonlinear simulation [14,17], and digital simulation [17] are faster,
but they only estimate the state of the cells; in some cases unfortunately, they
may fail to estimate the correct ground state. Also these techniques do not
fully estimate the cell polarization or take into account thermal effects. In this
chapter, we use a Bayesian modeling method that allows to estimate the cell
polarization for the ground state and to study the effects of thermal variations
and layout defects. As introduced in [1], a Bayesian model makes possible to
perform a thermal characterization of coplanar crossing; in the next sections,
the Bayesian model is also amenable for simulating the combined effects of
layout defects and temperature.

The objective of this chapter is to propose and analyze different circuits
for QCA coplanar crossing. The coplanar crossing designs that are analyzed in
this chapter are for two signals orthogonally routed on the same plane using
the following circuits: (1) the coplanar crossing of [8], (2) a novel TMR-based
coplanar crossing , (3) the so-called thick coplanar crossing of [3]. This chapter
deals with the robust operation of these three coplanar crossing circuits to
thermal variation and in the presence of cell defects; the proposed circuits
utilize different features of the majority voting function of QCA circuits to
route signals on a Cartesian plane. Also, they utilize different types of QCA
cells (rotated and not rotated) and their immediate adjacency. The objective
of this analysis is to select the coplanar crossing circuit that offers the highest
performance. Finally a simulation on a full adder circuit proves that the use
of the proposed crossing designs increases the thermal and defect robustness
when applied to a generic circuit.

This chapter is organized as follows: Sect. 2 provides a brief overview of
QCA technology, Sect. 3 introduces the Bayesian model used for temperature
characterization and Sect. 4 describes the coplanar wire crossing circuits (in-
clusive of layouts). Section 5 provides an analysis of the designs with respect
to normalized temperature, while Sect. 6 shows the simulation results for de-
fective circuits. Section 7 shows the results of the thermal characterization
of defective layouts under temperature variations while Sect. 8 analyzes the
thermal and defect robustness of a full adder circuit. Finally, Sect. 9 draws
the conclusion of this analysis.

2 Review of QCA

A QCA cell can be viewed as a set of four charge containers or “dots”, posi-
tioned at the corners of a square. The cell contains two extra mobile electrons
which can quantum mechanically tunnel between dots, but not cells. The
electrons are forced to the corner positions by Coulomb repulsion. Therefore,
electrons have a preferential alignment along one of the two perpendicular cell
axes, as shown in Fig. 1. The polarization δ (δ refers to polarization as P is
used for defining probabilities) measures the extent of this alignment.

Chapter 8: QCA Circuits for Robust Coplanar Crossing 229

P = +1
Logic “1”

P = - 1
Logic “0”

1

23

4

Fig. 1. QCA cell and polarization states

(a) Inverter

(b) Majority Voter

B

C

A

F=AB+AC+BC

(c) Binary Wire

(d) Inverter Chain Relax Switch Hold Release

π/2 2π3π/2π

1

0

-1V
 /

V
 m

ax

(1) (2)

Fig. 2. (1) Basic QCA devices (2) Cmos-clock-signal

If the two extra electrons are completely localized on dots 1 and 3, the
polarization is +1 (binary 1); if they are localized on dots 2 and 4, the po-
larization is −1 (binary 0). Tunneling between dots implies that charges may
not be not completely localized and consequently, the polarization value can
be not integer.

Unlike conventional logic circuits in which information is transferred by
electrical current, QCA operates by the Coulombic interaction that connects
the state of one cell to the state of its neighbors. This results in a technology
in which information transfer (interconnection) is the same as information
transformation (logic manipulation) with low power dissipation [15]. One of
the basic logic gates in QCA is the so-called majority voter (MV) with logic
function Maj(A,B,C) = AB+AC +BC. MV can be realized by 5 QCA cells,
as shown in Fig. 2(1b). Logic AND and OR functions can be implemented from
the MV by setting an input (the so-called programming or control input)
permanently to a “0” or “1” value. The inverter (INV) is the other basic gate
in QCA and is shown in Fig. 2(1a). The binary wire and inverter chain (as
interconnect fabric) are shown in Fig. 2(1c)(1d). In VLSI systems, timing is
controlled through a reference signal (i.e., the clock), however timing in QCA
is accomplished by clocking in four distinct and periodic phases [5] (as shown
in Fig. 2(2)). A QCA circuit is partitioned into serial (one-dimensional) zones,
and each zone is maintained in a phase. Clocking implements quasi adiabatic
switching to ensure that the QCA cells reach the lowest energy state (or
ground state) during this operation.

230 S. Bhanja et al.

3 Bayesian Model

An approximate two-state model of a single QCA cell [16] is utilized. In this
model, each cell can be observed to be in one of two possible states, corre-
sponding to logical states 0 and 1. Let the probability of observing the ith QCA
cell at state 0, be denoted by P (Xi = 0) or PXi

(0), or simply by P (xi). Hence
for polarization, δXi

= PXi
(1) − PXi

(0). The joint probability of observing a
set of steady-state assignments for the cells is denoted by P (x1, · · · , xn). To
reduce the combinatorial complexity of the analysis, the joint wave function
must be considered in terms of the product of the wave function over one or
two variables (i.e., the Slater determinants). This corresponds to a factored
representation of the wave function (Hartree–Fock approximation) [7,15]. As
an example, consider the linear wire arrangement of nine QCA cells, shown in
Fig. 3a. With no assumption, the joint state probability function can be de-
composed into a product of conditional probability functions by the repeated
use of the property that P (A,B) = P (A|B)P (B) (as shown in Fig. 3d).

P (x1, · · · , x9) = P (x9|x8 · · ·x1)P (x8|x7 · · ·x1) · · ·P (x2|x1)P (x1) (1)

The radius of influence (denoted by r) is defined as the maximum distance
(normalized to the cell-to-cell distance) that allows interaction between two
cells. If a 2-cell radius (r = 2) of influence is considered, then the conditional
probability P (xi|xi−1, · · · , x1) can be approximated by P (xi|xi−1, xi−2), and
the overall joint probability can be factored as

P (x1, · · · , x9) =
{

P (x9|x8, x7)P (x8|x7, x6) · · ·P (x2|x1)P (x1) r = 2
P (x9|x8)P (x8|x7) · · ·P (x2|x1)P (x1) r = 1 (2)

3.1 Inferring Link Structure

The complexity of a Bayesian network representation is dependent on the or-
der of the conditional probabilities, i.e., the maximum number of parents (Np)

x
3

x
1

x
2

x
4

x
5

x
6

x
7

x
8

x
9

(a)

C
C

C
C

C
C

C
C

C
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9

O
u

tp
u

t
In

p
u

t

(b)

C

C
C

C

C

C

C

C

C x9

x1

x2
x3

x4

x5

x6

x7x8

Input

Output

(c)

C

C C

C

C

C
C

C

C
x9

x1

x2 x3

x4

x5

x6
x7x8

Input

Output

(d)

Fig. 3. Bayesian net dependency model (BN) for (a) 9-cell QCA wire with (b) 1-cell
radius of influence (c) 2-cell radius of influence, and (d) all cells

Chapter 8: QCA Circuits for Robust Coplanar Crossing 231

for a node. The maximum size of the conditional probability table stored is
2Np+1; thus, it is important to have a representation with a minimal possible
number of parents per node, while preserving all dependencies. For this rep-
resentation conditional independencies that might exist must be used. Note
that modeling all dependencies is possible by utilizing a complete graph rep-
resentation; however, it is the independencies that result in a sparse graph
representation. It can be shown that all conditional independencies among
all triple subsets of variables can be captured by a directed acyclic graph
(DAG) representation if the links are directed along causal directions [13],
i.e., a parent should represent the direct causes of its children. Such minimal
representations are termed Bayesian networks. A link is directed from node X
to node Y , if X is a direct cause of Y . For QCA circuits, there is an inherent
causal ordering among cells. Part of the ordering is imposed by the clocking
zones. Cells in the previous clock zone are the drivers or the causes of the
change in polarization of the current cell. Within each clocking zone, ordering
is determined by the direction of propagation of the wave function [16].

Let Ne(X) denote the set of all neighboring cells than can effect a cell,
X. It consists of all cell within a pre-specified radius. Let C(X) denote the
clocking zone of cell X (as commonly assumed for phased clocking zones in
QCA). Let T (X) denote the time for the wave function to propagate from
the nodes nearest to the previous clock zone or from the inputs, if X shares
the clock with the inputs. Only the relative values of T (X) are important to
decide upon the causal ordering of the cells. A breadth first search strategy,
outlined in Fig. 4 is employed to decide upon the time ordering, T (X).

The direct causes or parents of a node X are determined based on the
inferred causal ordering; this parent set is denoted by Pa(X) and is logically
specified as follows.

Pa(X) = {Y |Y ∈ Ne(X), (C(Y) <mod4 C(X)) ∨ (T (Y) < T (X))} (3)

The causes, and hence the parents, of X are the cells in the previous clocking
zone and the cells are nearer to the previous clocking zone than X. The
children set, Ch(X), of a node, X, are the neighbor nodes that are not parents,
i.e., Ch(X) = Ne(X)/Pa(X).

An important part of a Bayesian network is the conditional probabilities
P (x|pa(X)), where pa(X) represents the values taken on by the parent set,
Pa(X).

3.2 Quantification of Conditional Probabilities

In a four-phased clocked design [16], all cells must be placed into the ground
state by systolically driving subgroups of cells (all in one clock zone) into
their local ground states. So, in this respect the conditional probabilities are
the probabilities of the ground states, defined locally over the Markov neigh-
borhood of each cell, i.e., to decide upon the conditional probability of a cell

232 S. Bhanja et al.

Variables:

Q: queue to process cells in a breadth first order

T(X): each cell, X, has a time tag, T(X), that is initialized to -1

Count: counter that is incremented at each iteration.

Clock: to keep track of the clock zone being processed.

1. Enqueue input cells onto Q 2. Set time tags of input cells

to -2 to denote cells in Q 3. do repeat 4. while Q is not

empty 5. X = Dequeue(Q); 6 Clock = Clock(X); 7.

T(X) = Count++; 8. Ne(X) = Neighbors of X sorted from

nearest to farthest 9. for neighbor, Y, in Ne(X) 10.

if Y has not been tagged, i.e., T(Y) == -1, and

Y is in the same clock zone as X

11. Enqueue(Q, Y)

12. T(Y) = -2

13. end if

14. end for

15. end while

16. Enqueue cells onto Q that are adjacent to cells in Clock zone

17. Set the time tags of these cells to -2;

18. while (Q is not empty)

Fig. 4. Breadth-first search algorithm to establish the causal order of the QCA cells

state given the states of the parent nodes, P (X = 1|Pa(X) = pa(X)). Hence,
all cells within the Markov neighborhood, Ne(X) must be considered. This
includes the cells that are the parents in the Bayesian network representation
Pa(X) and also the children, Ch(X). The states of these parents are fixed at
the conditioned state assignments pa(X); however, the states of the children
are unspecified. As a clocked circuit is modelled (in this circuit the phased
clock design keeps the cells at their ground states in each clocking epoch),
then the polarization of X and Ch(X) is chosen such that given the parent
states, the energy (Hamiltonian) in the local neighborhood is minimized. A
quantum mechanical formulation is effectively achieved.

An array of cells can be modeled by considering the cell-level quantum
entanglement of the two states and the Coulombic interaction of nearby cells
(that is modeled using the Hartee–Fock (HF) approximation [10, 16]). The
HF model approximates the joint wave function over all cells by the product
of the wave functions over individual cells (actually the sum of permutations
of the individual wave functions by their Slater determinant). This allows to
characterize the evolution of the individual wave functions. The evolution of
the wave function of the cell X in the local neighborhood Ne(X) is of interest.

Let denote the eigenstates of a cell corresponding to the 2-states by |0〉
and |1〉. The state at time t, that is referred to as the wave-function and
denoted by |Ψ(t)〉, is a linear combination of these two states, i.e., |Ψ(t)〉 =
c0(t)|0〉+ c1(t)|1〉. The coefficients are function of time. The expected value of

Chapter 8: QCA Circuits for Robust Coplanar Crossing 233

any observable, 〈Â(t)〉, can be expressed in terms of the wave function as 〈Â〉 =
〈Ψ(t)|Â(t)|Ψ(t)〉 or equivalently as Tr[Â(t)|Ψ(t)〉〈Ψ(t)|], where Tr denotes the
trace operation, Tr[· · ·] = 〈0| · · · |0〉+〈1| · · · |1〉. The term |Ψ(t)〉〈Ψ(t)| is known
as the density operator, ρ̂(t). The expected value of an observable of a quantum
system can be computed if ρ̂(t) is known.

The entries of the density matrix, ρij(t), can be shown to be defined by
ci(t)c∗j (t) or ρ(t) = c(t)c(t)∗, where ∗ denotes the conjugate transpose op-
eration. The density matrix is Hermitian, i.e., ρ(t) = ρ(t)∗; each diagonal
term, ρii(t) = |ci(t)|2, represents the probabilities of finding the system in
state |i〉. It can be easily shown that ρ00(t) + ρ11(t) = 1. These two entries of
the density matrix are pertinent to logic modeling; ideally, these probabilities
should be zero or one. For QCA device modeling, the polarization index (P)
is commonly used, i.e., ρ00(t)−ρ11(t) as the difference of the two probabilities
in a range between −1 and 1.

The density operator is a function of time, ρ̂(t), and its dynamics is cap-
tured by the Loiuville equation or the von Neumann equation, that can be
derived from the basic Schrodinger equations to capture the evolution of the
wave function over time, Ψ(t).

i� ∂
∂tρ(t) = i� ∂

∂tc(t)c(t)
∗

= Hρ(t) − ρ(t)H
(4)

where H is a 2 x 2 matrix representing the Hamiltonian of the cell. For QCA
cells, it is common to assume only Columbic interaction between cells and use
the Hartree–Fock approximation to arrive at the matrix representation of the
Hamiltonian given by [16]

H =
[− 1

2

∑
i∈Ne(X) Ekδifi −γ

−γ 1
2

∑
i∈Ne(X) Ekδifi

]
(5)

where the sums are over the cells in the local neighborhood, Ne(X). Ek is
the energy cost of two neighboring cells having opposite polarizations; this is
also referred to as the “kink energy”. fi is the geometric factor capturing the
electrostatic fall off with distance between cells. δi is the polarization of the
ith neighboring cell. The tunneling energy between the two states of a cell,
that is controlled by the clocking mechanism, is denoted by γ.

In the presence of inelastic dissipative heat bath coupling (open world),
the system moves towards the ground state [10, 16]. At thermal equilibrium,
the steady-state density matrix is given by

ρss =
e−H/kT

Tr[e−H/kT]
(6)

where k is the Boltzman constant and T is the temperature. Of particular
interest are the diagonal entries of the density matrix, that express the prob-
abilities of observing the cell in the two states. They are given by

234 S. Bhanja et al.

ρss
11 =

1
2

(
1 − E

Ω
tanh(∆)

)

ρss
22 =

1
2

(
1 +

E

Ω
tanh(∆)

) (7)

where E = 1
2

∑
i∈Ne(X) Ekδifi, the total kink energy at the cell, Ω =√

E2 + γ2, the energy term (also known as the Rabi frequency), and ∆ = Ω
kT ,

is the thermal ratio. These probabilities are used for establishing the mini-
mum energy ground state values. This is determined by the eigenvalues of the
Hamiltonian (5) that are ±Ω, a function of the kink energy with the neigh-
bors. However, the states (or equivalently, polarization) of only the parents
are specified in the conditional probability that we seek. The polarization of
the children are unspecified. The children states (or polarization) are chosen
such that Ω is maximized, i.e., to minimize the ground state energy over all
possible ground states of the cell. Thus, the chosen children states are

ch∗(X) = arg max
ch(X)

Ω = arg max
ch(X)

∑
i∈(Pa(X)∪Ch(X))

Ekδifi (8)

The steady state density matrix diagonal entries (7) with these children
state assignments are used to decide upon the conditional probabilities in
the Bayesian network (BN):

P (X = 0|pa(X)) = ρss
11(pa(X), ch∗(X))

P (X = 1|pa(X)) = ρss
22(pa(X), ch∗(X))

(9)

It is presently possible to estimate the polarization and ground state prob-
abilities through a full quantum-mechanical simulation of the system evolu-
tion over time, that is known to be computationally intensive. Tools such as
AQUINAS [16] and the coherence vector engine of QCADesigner [17] perform
an iterative quantum mechanical simulation (self-consistent approximation,
SCA) by factorizing the joint wave function over all cells into a product of in-
dividual cell wave functions exploiting the Hartree–Fock approximation. These
approaches obtain accurate results for the computation of ground states, cell
polarization (or probability of cell state), temporal progress, and thermal ef-
fects, but they are slow. In addition, they cannot estimate the near-ground
state configurations, that are important for analyzing the sensitivity of circuits
to parametric variations (such as temperature). Other tools such as QBert [12],
nonlinear simulation [17], and digital simulation [17] are fast iterative schemes;
however, they just estimate the state of the cells and in some cases, some fail
to estimate the correct ground state. Moreover, they do not estimate the cell
polarization and cannot take into account temperature effects. The BN sim-
ulator presented in [2] is used in this work because it is is very efficient in
terms of computational complexity and its features are well suited to analyze
parametric variations in the operation of a circuit. In particular this simulator
provides the following features as outcome:

Chapter 8: QCA Circuits for Robust Coplanar Crossing 235

1. The ground state configuration;
2. The polarization of each cell;
3. The probability of the near-ground state (next to the lowest one) to study

sensitivity to the most probable erroneous behavior (such as due to vari-
ations in operating parameters or defects);

4. The feature of each type of cell (rotated and non-rotated) to ensure ro-
bustness in operation;

5. The study of the thermal characteristics of a QCA circuit.

4 Coplanar Crossing Circuits

Coplanar wire crossing is one of the most interesting features of QCA; it
allows for the physical intersection of horizontal and vertical QCA wires on
the same plane, while retaining logic independence in their values; the vertical
wire is implemented by rotating the QCA-cells at 45◦, i.e., by means of an
inverter chain. The feature of this structure is that the information along the
vertical wire does not interact with the horizontal, wire. Crossing is obtained
by interrupting either the horizontal, or the vertical wire; these interruptions
are hereafter also referred to as cuts. Switching of the signals is accomplished
by the four phased clock through the release phase.

As in previous papers in the technical literature, layouts are considered to
be in a single clocking zone. The outputs are evaluated when the ground state
is attained by quasi adiabatic switching. A different approach [6] proposes the
vertical and horizontal waves alternatively passing through an intersection.
While this approach has the interesting feature of exploiting the intrinsically
pipelined behavior of QCA, crossings in a single clocking zone require less
area and a simple clocking circuitry.

A set of three layouts for the coplanar crossing analogous to that intro-
duced in [1] is hereafter analyzed.

1. Normal crossing: this is based on the orientation of the cells.
2. TMR crossing: this is based on the voting nature in the QCA layout.
3. Thick crossing: this is based on the interaction among cells in an enlarged

wire.

For normal crossing, the cell orientation is interrupted on the central cell
of either the horizontal (A line), or vertical line (B line). For the other two
circuits, the cell orientation is interrupted on the horizontal (A line), or vertical
line (B line).

4.1 Normal

The normal coplanar crossing circuit can have two arrangements (shown in
Figs. 5 and 6) as corresponding to the employed cut. This circuit has been

236 S. Bhanja et al.

(a)

A20

A19

A18

A17

A16
A15A14

A13

A12

A11

A10

A9

A8

A7

A6
A5

A4
A3

A2
A1

A0

(b)

Fig. 5. Normal crossing with rotated central cell (Xa) (a) Layout (b) BN with
2-cell radius of influence

(a) (b)

Fig. 6. Normal crossing with rotated central cell (Xb). (a) Layout (b) BN with
2-cell radius of influence

proposed in [8]; it has been shown that an horizontal wire (with input A and
output Aout) can be crossed with a vertical inverter chain (with input B and
output Bout) with no interference among wires.

These arrangements differ by the orientation of the cell at the crossing
point: Xa in Fig. 5(a) has the central cell rotated by 45◦, Xb in Figs. 6(a) has
a non-rotated cell. Figures 5(b) and 6(b) show the BN for analyzing these two
arrangements. Note that only the BN shown in Fig. 5(b) reports the actual

Chapter 8: QCA Circuits for Robust Coplanar Crossing 237

number of connections which account for a radius of influence of two; hereafter
in this chapter, all BNs are simplified for improved readability of the figures.

4.2 TMR

A simple approach for implementing robust crossing in QCA is to take advan-
tage of the inherent voting characteristic of this technology. The QCA wire is
split through fanout, crossed and then re-converged and voted by a MV which
performs a TMR voting function of the signals.

Two types of arrangement for the TMR based coplanar crossing circuit
are proposed:

1. 3-to-1 TMR;
2. 3-to-3 TMR.

In the 3-to-1 TMR shown in Fig. 7 and associated BN, voting occurs along
the direction on which the cell rotation is interrupted, thus producing two
different arrangements TMR Xa for voting the A line and TMR Xb for voting
the B line (shown in Fig. 7).

If both wires are split and reconverged, the more complex 3-to-3 (triple)
TMR (as shown in Fig. 8 with corresponding BN) is applicable. The triple
TMR has also two arrangements: double TMR Xa (Fig. 8) for the interrupted
A line direction, and double TMR Xb for the interrupted B line direction.
The 3-to-3 TMR utilizes a larger number of cells (92 vs. 41) than the 3-to-1
TMR.

(a)

A7

A16

A15

A6

A40

A0 A11 A12 A1 A39

A37 A38A36A35

A8

A2

A9

A18 A33 A34A32A31

A3 A4

A23

A22

A24

A30

A13

A29

A28

A20

A19

A21

A27

A26

A25

A17

A14

A10

A5

(b)

Fig. 7. 3× 1 TMR crossing with non-rotated central cell (TMRXb voting on the B
line). (a) Layout (b) BN with 2-cell radius of influence

238 S. Bhanja et al.

(a)

A92A91

A90

A89

A88

A87

A86

A85

A84

A83

A82

A81

A80

A79

A78

A77

A76

A75

A74

A73

A72

A71 A70A69A68A67A66A65

A64

A63A62

A61A60

A59A58

A57

A56

A55A54A53A52A51A50

A49

A48A47

A46A45

A44A43

A42

A41

A40

A39

A38

A37A36A35A34A33A32A31

A30

A29A28A27A26

A25A24A23A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5A4

A3

A2

A1

A0

(b)

Fig. 8. 3× 3 TMR crossing with rotated central cell (a) Layout (b) BN with 2-cell
radius of influence

(a)

A0 A38 A13 A14 A1

A9

A17

A16

A8

A7

A2 A3

A34 A28 A24 A10

A35 A29 A20 A21 A22

A25 A26

A4

A23

A27

A5

A31

A30

A15

A33

A32

A36 A37

A11

A19

A18

A12

A6

(b)

Fig. 9. Thick horizontal crossing. (a) Layout (b) BN with 2-cell radius of influence

4.3 Thick

A coplanar crossing circuit that is still based on TMR voting, has been pro-
posed in [3] and is hereafter referred to as thick crossing. Differently from
TMR, in thick crossing the fanout of the three wires generates a “thick” wire
that has a width of three cells; crossing between wires is performed by inter-
rupting the thick wire with a single wire whose cells are rotated with respect
to the thick wire. Figures 9 and 10 show these arrangements together with

Chapter 8: QCA Circuits for Robust Coplanar Crossing 239

(a)

A0 A13 A14 A1 A2

A9

A37

A18A21

A17A22

A8A23

A7

A3

A24

A25

A26

A27

A28

A36

A35

A34

A4

A33

A32A10

A31

A11

A30A20

A29A19

A38

A5 A15 A16

A12

A6

(b)

Fig. 10. Thick vertical crossing. (a) Layout (b) BN with 2-cell radius of influence

the corresponding BN for horizontal and vertical crossings. A thick circuit
requires 37 QCA cells.

5 Temperature Characterization

This section presents the simulation results using the Bayesian network of
the proposed coplanar crossing circuits with respect to temperature. All plots
start from the correct (expected) value of the output; this output value tends
to 0 when the normalized temperature tends to one, i.e., when the temperature
is such that kT � Ek (the thermal energy is equal to the kink energy) and the
two extra electrons are delocalized. The increase in temperature has different
effects on the layouts, therefore allowing to define a metric. Figures 12–15
show the output value vs. temperature for the previously introduced circuit
arrangements when considering the exhaustive combinations of the A,B in-
puts, i.e., (0, 0) (1, 0) (0, 1) and (1, 1), respectively. The plots show the robust-
ness of the proposed designs with respect to a temperature increase: a steep
slope at the output to reach the zero polarization accounts for an inefficient
temperature solution, while a smooth slope shows a good temperature perfor-
mance. A quantitative metric for evaluating the performance of the different
arrangements is also introduced by taking into account the increase of nor-
malized temperature for a drop in output polarization from 90 to 10% of the
nominal value. This metric is referred to as Thermal robustness (Th) and is
defined as

Th = ∆T∆P90−10

240 S. Bhanja et al.

Table 1. Thermal robustness of Aout for the different circuits

A B Xa Xb TMRXa TMRXb dblTMRXa dblTMRXb ThickXa ThickXb Average

0 0 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375

0 1 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375

1 0 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375

1 1 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375

Table 2. Thermal robustness of Bout for the different circuits

A B Xa Xb TMRXa TMRXb dblTMRXa dblTMRXb ThickXa ThickXb Average

0 0 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

0 1 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

1 0 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

1 1 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

Tables 1 and 2 report the Th computed for Aout and Bout, respectively, for
the considered coplanar crossing circuits; a higher value accounts for better
performance.

The following observation can be drawn from analyzing the plots and
tables:

(1) In all circuit arrangements, thermal robustness is not affected by the input
values, i.e., there is no relation between polarization levels for boolean
states and temperature;

(2) In all circuit arrangements, the outputs along the uninterrupted direction
behave in a similar fashion: for example, in the A direction ThickXb, Xb
and TMRXb result in the same Th, because there is no interrupted wire
in such direction.

(3) The double TMR layout has always the lowest performance along the
interrupted direction, i.e., dblTMRXa has the lowest Th value in Table 1,
while dblTMRXb has the lowest Th value in Table 2.

(4) Thick crossings have always the highest performance along the interrupted
direction.

(5) Cuts reduce performance, for example double TMRXa has a lower perfor-
mance than TMRXa.

In general, the Th of Bout is higher than Aout for the same circuit design.
This is also applicable if “uncut” circuit arrangements are compared. For
example, in Table 1, Aout for Xb is 0.383, while in Table 2, Bout for Xa
is 0.543. The last observation can be explained as follows. The kink energy
between two cells is determined by the difference in energy between the higher
and the lower energy configurations. Assume two possible states for each cell;
then the two possible energy configurations for two cells are shown in Fig. 11.

The energy of each configuration is computed by summing the Coulomb
energies between the dots in the cells:

Chapter 8: QCA Circuits for Robust Coplanar Crossing 241

Energy:−1.48 milli-eV

Energy:−2.17 milli-eV Energy:+2.17 milli-eV

Energy:+1.48 milli-eV

Fig. 11. Configuration energies for normal (top row) and rotated (bottom row) cells
(the lowest energy configurations on the left, the highest energy configurations on
the right)

(a) (b)

Fig. 12. Output polarization vs. normalized temperature for A=0 B=0. (a) Aout
(b) Bout

(a) (b)

Fig. 13. Output polarization vs. normalized temperature for A=1 B=0 (a) Aout
(b) Bout

242 S. Bhanja et al.

(a) (b)

Fig. 14. Output polarization vs. normalized temperature for A=0 B=1. (a) Aout
(b) Bout

(a) (b)

Fig. 15. Output polarization vs. normalized temperature for A=1 B=1. (a) Aout
(b) Bout

E12 =
4∑

i=1

4∑
j=1

q1iq2i

4πεεr

1
dij

(10)

The charge at the ith dot of the first cell is denoted by q1i, and the distance
between the ith dot in the first cell and the jth dot in the second cell is denoted
by dij . On the assumption that there exists a −1/2q charge at each black dot
and +1/2q at the white dots, the overall charge of a cell is zero. The kink
energy for the normal cell is 2.96 meV, while the energy of the rotated cell
is higher at 4.34 meV. The difference in kink energy is due to the distance
between the dots for the two cell types. The distance between two dots in a
normal cell is greater than for a rotated cell. Therefore, this suggests that a
rotated cell is thermally more stable than a non-rotated one.

Chapter 8: QCA Circuits for Robust Coplanar Crossing 243

6 Single Defect Characterization

In this section, the coplanar crossing circuits are analyzed with respect to the
occurrence of a single missing cell defect. It has been shown in [11] that missing
cell placement (as defects) contribute to the almost totality of the logic faults
occurring in molecular QCA circuits. Results have been obtained by modifying
the Bayesian networks of the coplanar crossing circuits to simulate the absence
of cells and record the logic faults due to these defects. Each circuit has
been simulated for all possible single missing cell defects under the exhaustive
combinations of inputs and at T=10 K (with a normalized temperature ratio
(kT/Ek)= 0.198), i.e., the highest value (as found previously) prior to the
steep drop in performance.

An example of the different effects of QCA cells is shown in Fig. 16 in which
the case of the polarization of the outputs A and B for inputs 1, 1 is provided
for TMRXahor. The data in Fig. 16 shows that the effects of a fault are (a)
a strong and mild lack of polarization and (b) a strong and mild inversion at
the outputs.

Table 3 reports the results of simulation for all circuit arrangements; the
incorrect outputs are either inverted or undetermined (when the polarization
is under the threshold of uncertainty given by 0.1). In Table 3, the results are
specified by the number of defective cells resulting in faults on the outputs
for each proposed crossing layout.

From the analysis of the simulation results of Table 3 it is evident that as
expected, inversion always happens in the B direction (as corresponding to
an inverter chain). Moreover, the following conclusions can be drawn.

TMR_Xa_hor

−1.5

−1

−0.5

0

0.5

1

1.5

−1 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39

Missing Cell (-1: No missing cells)

Aout for A=1
Bout for B −=1

P
o

la
ri

za
tio

n

Fig. 16. TMRXahor

Table 3. Defect effects for the different circuits

Circuit Number Ain=0 Undet. Ain=1 Undet. Ain=0 Undet. Ain=1 Undet.
of cells Bin=0 Bin=0 Bin=1 Bin=1

Inv. Inv. Inv. Inv.
Xa 17 8 6 8 6 8 6 8 6
Xb 17 3 6 3 6 3 6 3 6
TMRXaHor 37 4 8 4 8 4 8 4 8
TMRXbHor 37 1 4 1 4 1 4 1 4
ThickXa 35 10 2 10 2 10 2 10 2
ThickXb 35 1 2 1 2 1 2 1 2

244 S. Bhanja et al.

Table 4. Fault percentages for circuits

Circuit Fault occurrence (%)
Inversion Undetermined Total

Xa 47.1 35.3 82.4

Xb 17.6 35.3 52.9

TMRXaHor 10.8 21.6 32.4

TMRXbHor 2.7 10.8 13.5

ThickXa 28.6 5.7 34.3

ThickXb 2.9 5.7 8.6

1. Faults appear at the output independently of the values of the inputs,
thus a fault can be detected by any test vector.

2. ThickXb shows the highest performance with respect to a single missing
cell defect.

3. Xa shows the lowest performance with respect to a single missing cell
defect.

As faults are independent of the values of the inputs, the results are shown
in Table 4. The percentages of occurrence for each of the two types of fault are
computed as the number of single missing cells over the total number of cells
that cause the fault. Also the total percentage of single missing cells causing
any type of fault is reported as the sum of the percentage of occurrence of
any of the two faults.

The results reported in Table 4 show that the coplanar crossing circuits
that present the highest resilience to defects, are ThickXb and TMRXbHor.

7 Thermal Characterization of Defective Circuits

In the previous sections, defect free circuits with respect to temperature and
at a given temperature have been evaluated. In this section, the circuits that
have shown the highest resilience to defects are considered further to assess
whether the presence of a defect increases the loss of correct polarization at
the outputs with an increase of temperature.

The analysis has been performed on the circuits that in the previous section
have shown the highest performance, i.e., ThickXb and TMRXbHor. Figure 17
shows the simulation results; as observed previously, the values of the inputs
have no effect, so the results show no inversion when positive (upper half of
the figure) and inversion when negative (lower half of the figure). Therefore,
the following conclusions can be drawn:

1. Both circuits present two inversions;
2. ThickXb has in almost all cases a better thermal robustness than TMRXb.

The last result and the assumption of randomly distributed defects imply
that ThickXb should be preferred as coplanar crossing circuit because on

Chapter 8: QCA Circuits for Robust Coplanar Crossing 245

Normalized Temperature

TMR_Xb_hor

ThickXb

P
o

la
ri

za
ti

o
n

 (
B

o
u

t)

1

0.8

0.6

0.4

0.2

0

−0.2
0.2 0.4 0.6 0.8 10

−0.4

−0.6

−0.8

−1

Fig. 17. Polarization vs. temperature for different defects

Table 5. Thermal robustness for Aout in presence of defects

A B TMRXb ThickXb

Minimum Median Maximum Minimum Median Maximum

0 0 0.146 0.268 0.347 0.192 0.257 0.280

0 1 0.147 0.267 0.291 0.192 0.259 0.280

1 0 0.147 0.280 0.347 0.192 0.259 0.279

1 1 0.146 0.265 0.280 0.192 0.251 0.280

Table 6. Thermal robustness for Bout in presence of defects

A B TMRXb ThickXb

Minimum Median Maximum Minimum Median Maximum

0 0 0.307 0.337 0.350 0.3578 0.563 0.602

0 1 0.297 0.336 0.349 0.358 0.563 0.602

1 0 0.298 0.337 0.349 0.358 0.563 0.602

1 1 0.307 0.337 0.349 0.358 0.563 0.602

average its thermal robustness is better than TMRXb. To better understand
the behavior of these circuits in the presence of defects and resulting faults,
the Thermal robustness (Th) (as defined in Sect. 5) has been computed for
each simulated defect. The minimum, maximum and median values of Th for
the defective circuits has been reported in Tables 5 and 6. Even if the selected
circuits have a good thermal robustness for almost all simulated defects, those
defects that produce as fault an inverted value at the outputs, are serious,
because the inversion appears also at low temperature. The erroneous outputs

246 S. Bhanja et al.

appear across the whole temperature range and therefore for these defects,
thermal robustness is not fully accounted. The values reported in the tables are
computed only for the non-inverting defects and the range of Th can be used to
provide a quantitative comparison of the robustness of ThickXb and TMRXb.

Tables 5 and 6 show that on the interrupted direction, both circuits behave
in a similar manner for the A direction, even though ThickXb shows a higher
minimum value; for the B direction ThickXb outperforms the TMR circuit.
The smallest value of ThickXb is higher than the highest value of TMRXb,
corresponding to a better behavior for all possible missing cell defects.

8 Performance Analysis on a Full Adder

In this section a full adder circuit is analyzed when using the proposed arrange-
ments for the coplanar crossing.

Figure 18 shows as an example three of the layouts using Xb TMRXb and
ThickXb, respectively.

The results of the temperature analysis in Figs. 19 and 20 show that
ThickXb and ThickXa have the best performance, although the difference
between them is less due to the fault masking induced by the inherent signal
regeneration of the cell-to-cell non-linear response of QCA. These results are
closely dependent on the considered layout and that are not fully applicable
in general as when considering the coplanar crossing as a stand-alone device.

The single defect characterization for a full adder using the coplanar cross-
ings Xa TMRXa ThickXa TMRXb ThickXb is reported in Table 7.

A B Carry In

Sum

Carry Out

(a)

A B
Carry In

Sum

Carry Out

(b)

A B
Carry In

Sum

Carry Out

(c)

Fig. 18. Full adder. (a) Xb crossings (b) TMRXb crossings (c) ThickXb crossings

Chapter 8: QCA Circuits for Robust Coplanar Crossing 247

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
0 0.05 0.1 0.15 0.2 0.25 0.35

Xa
Xa TMR
Xa Thick
Xb
Xb TMR
Xb Thick

Carry for Input (0,0,1)

P
o

la
ri

za
ti

o
n

kT/E_k

Fig. 19. Full adder: thermal performances on the carry output

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.05 0.1 0.15 0.2 0.25 0.3

Xa
XaTMR
XaThick
Xb
XbTMR
XbThick

Sum for Input (0,0,1)

P
o

la
ri

za
ti

o
n

kT/E_k

Fig. 20. Full adder: thermal performances on the sum output

Table 7. Full adder: fault injection of single missing cell

Crosswire Number Sum output (inversions) Carry output (inversions)
designs of cells for inputs for inputs

“0,0,0” “0,1” “0,1,0” “0,1,1” “0,0,0” “0,0,1” “0,1,0” “0,1,1”

Xa 172 41 61 72 69 2 10 12 1

TMRXa 402 52 80 93 89 0 12 13 3

ThickXa 252 18 42 47 58 0 21 19 5

Xb 180 37 62 82 64 0 0 0 0

TMRXb 396 6 14 20 18 0 0 2 0

ThickXb 252 0 0 0 0 0 0 0 0

As done previously for each of the single crossing layouts the simulations
were performed after injecting a single missing cell on the layout of the full
adder. The targets of the defects were only the coplanar crossings and the

248 S. Bhanja et al.

Table 8. Percentage of single missing cell faults in the crosswire designs that are
detected in the sum and carry outtputs

Designs “Correct” “Incorrect” “Total faults” Fault detected %

Xa 77 95 172 55

TMRXa 279 123 402 31

ThickXa 144 108 252 43

Xb 98 82 180 46

TMRXb 370 26 396 7

ThickXb 252 0 252 0

number of simulations has been such that every single cell defect on all the
coplanar crossings has been injected and its effects simulated and evaluated
at the sum and carry outputs. We report the number of faults that generated
error in sum outputs in columns 2–5 in Table 7 for each cross-wire design for
four of the input combinations. For symmetry, results on the other four inputs
are not reported. Note that a fault can generate error in sum for more than
one input combinations. The same is also reported for the carry outputs in
columns 6–10 in Table 7.

As could be expected, Table 7 shows that Thick crossings especially
ThickXb provides the best results in terms of resilience to the occurrence
of a single defect.

In Table 8 shows the single missing cell faults (in column 2) that did
not generate any error in both outputs sum and carry for all eight input
combinations and in column 3 we report the faults that generated at least
one output error for at least one input. Fault occurrence percentage is then
computed.

We provide the system perspective of both thermal and defect studies
however, we believe that relative merits of the various implementation of cross-
wires is more meaningful considering them as stand-alone but system analysis
would help study various masking effects offered by the layouts.

9 Conclusion

This chapter has analyzed the robustness and thermal performance of differ-
ent circuits for coplanar crossing in QCA. Resilience to temperature and to
missing cell defects has been treated in detail. The use of a Bayesian Net-
work (BN) simulator has allowed for fast and reliable computation of the
thermal properties of these circuits. The BN simulator is useful for studying
the near-ground state (as related to the error probability) and the thermal
characterization of QCA circuits. In this chapter, it has been shown that in
all circuits and related configurations for the two directions of signal flow,
thermal robustness is not affected by input values; moreover, the use of the
so-called thick crossing circuit accounts for the highest resilience to temper-
ature. From the simulation results it has been shown and then proved that

Chapter 8: QCA Circuits for Robust Coplanar Crossing 249

rotated cells are thermally more stable than non-rotated ones. A missing cell
defect model has been evaluated for the coplanar crossing to select the circuit
with the highest performance for thermal robustness. Simulation has shown
that that a thick crossing circuit is very robust also in presence of defects and
related logic faults. Finally a simulation on a full adder circuit has proved
that the use of thick crossing increases the thermal and defect robustness.

References

1. S. Bhanja, M. Ottavi, S. Pontarelli, and F. Lombardi. Novel designs for ther-
mally robust coplanar crossing in qca. IEEE Design and Testing in Europe,
pp. 786–791, 2006.

2. S. Bhanja and S. Sarkar. Probabilistic modeling of qca circuits using bayesian
networks. IEEE Transactions on Nanotechnology, 5(6):657–670, November 2006.

3. A. Fijany, N. Toomarian, and K. Modarress. Block qca fault-tolerant logic gates.
Technical report, Jet Propulsion Laboratory, California, 2003.

4. A. Gin, P. D. Tougaw, and S. Williams. An alternative geometry for quantum-
dot cellular automata. J. Appl. Phys., 85(12):8281–8286, June 1999.

5. K. Hennessy and C. Lent. Clocking of molecular quantum-dot cellular automata.
Journal of Vacuum Science and Technology, 19(B):1752–1755, 2001.

6. C. Lent. Molecular quantum-dot cellular automata. Seminar, May 2004.
7. C. Lent and P. Tougaw. Lines of interacting quantum-dot cells - a binary wire.

Journal of Applied Physics, 74:6227–6233, 1993.
8. C. Lent and P. Tougaw. A device architecture for computing with quantum

dots. Proceedings of the IEEE, 85(4):541–557, April 1997.
9. S. K. Lim, R. Ravichandran, and M. Niemier. Partitioning and placement for

buildable qca circuits. J. Emerg. Technol. Comput. Syst., 1(1):50–72, 2005.
10. G. Mahler and V. A. Weberruss. Quantum Networks: Dynamics of Open Nanos-

tructures. Springer Verlag, 1998.
11. M. Momenzadeh, M. Ottavi, and F. Lombardi. Modeling qca defects at

molecular-level in combinational circuits. IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems DFT 2005, pages 208–216, 2005.

12. P. M. Niemier, M. T. Kontz, M. J. Kogge. A design of and design tools for a
novel quantum dot based microprocessor. In Design Automation Conference,
pages 227–232, June 2000.

13. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible
Inference. Morgan Kaufmann Publishers, 1998.

14. G. Toth. Correlation and Coherence in Quantum-dot Cellular Automata. PhD
thesis, University of Notre Dame, 2000.

15. P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum
cellular automata. Journal of Applied Physics, 75(3):1818–1825, Oct 1994.

16. P. D. Tougaw and C. S. Lent. Dynamic behavior of quantum cellular automata.
Journal of Applied Physics, 80(15):4722–4736, Oct 1996.

17. K. Walus, T. Dysart, G. Jullien, and R. Budiman. QCADesigner: A rapid
design and simulation tool for quantum-dot cellular automata. IEEE Trans. on
Nanotechnology, 3(1):26–29, 2004.

Chapter 9: Reliability and Defect Tolerance
in Metallic Quantum-Dot Cellular Automata

M. Liu and C.S. Lent

1 Introduction

Conventional transistor-based CMOS technology faces great challenges with
the down-scaling of device sizes in recent years. Issues such as quantum effects,
dopant-induced disorder, and power dissipation may hinder further progress
in scaling microelectronics. As the scaling approaches a molecular level, a new
paradigm beyond using current switches to encode binary information may be
needed. Quantum-dot cellular automata (QCA) [1–3,5, 11,12,15,18] emerges
as one such a paradigm. In the QCA approach bit information is encoded in
the charge configuration within a cell. Columbic interaction between cells is
sufficient to accomplish the computation; no current flows out of the cell. It
has been shown that very low power dissipation is possible [14].

A clocked QCA cell constructed with six quantum dots is shown in Fig. 1.
Dots are simply places where a charge is localized. Two mobile electrons are
present in the cell. The electrons will occupy antipodal sites in the corner
dots because of Coulomb repulsion. The two configuration states correspond
to binary information of “1” and “0”. The electrons can also be pulled to
middle dots if the occupancy energy in the middle dots is lower than corner
dots. In this case we term the configuration “null”, with no binary information
present. The clock adjusts the relative occupancy energy between active dots
in the corner and null dots in the middle, pushing electrons to either active
dots or null dots. The cell therefore switches between null state and active
state. When a cell is placed close to another cell (as shown in Fig. 1b), they
will have the same polarization due to Coulomb coupling. Based on the cell-
to-cell interaction, logical QCA devices like binary wires, inverters, majority
gates and full adders can all be implemented [15].

QCA devices exist. QCA devices made of metal-dot cells have been success-
fully demonstrated at low temperatures. Majority gates, binary wires, memo-
ries, clocked shift registers and fan outs have all been fabricated [1–3,11,12,18].
Figure 2 shows a schematic diagram and scanning electron micrograph of a
clocked shift register. Aluminum islands form the dots and Al/AlOx tunnel

252 M. Liu and C.S. Lent

Fig. 1. Schematic of a QCA cell. (a) The three states of a single cell. (b) Coulomb
interactions couple the states of neighboring cells

E1 E2

VIN
+

VIN−

Clock1 Clock2

D1

D2

D3

D4

D5

D6

(a) (b)

Fig. 2. (a) Schematic of a clocked shift register. (b) Scanning electron micrograph
of a clocked shift register

junctions serve as the tunneling path between dots. Tunnel junctions are fabri-
cated with shadow evaporation technique. Multiple tunnel junctions are used
instead of a single junction to suppress co-tunneling. The clock is implemented
by simply applying voltage to leads capacitively coupled to the middle dots.
Single electron transistors (SET’s) are used as readout electrometers.

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 253

Though the operation of metal-dot QCA devices is restricted to cryogenic
temperatures, they may be viewed as prototypes for molecular QCA cells that
will operate at room temperature. It may well be that molecular QCA, with
the possibility of enormous functional densities, very low power dissipation,
and room temperature operation, is finally the most promising system [4, 7–
10,13]. Metal-dot QCA do have the advantage of having been already created
and tested, and we expect that understanding the details of robustness in the
metal-dot system will yield benefits for designing molecular systems.

Here we focus on the robustness in metal-dot QCA circuits. In particular,
we consider theoretically the effects of temperature, random variations in ca-
pacitance, and operating speed, on the performance of a semi-infinite QCA
shift register. The chapter is organized as follows: In Sect. 2, we describe the
application of single-electron tunneling theory to metal QCA devices. Sec-
tion 3 describes the characterization of power gain in QCA circuits. In Sect. 4
we analyze the operation of a semi-infinite QCA shift register. Finally, in
Sect. 5 we calculate behavior of the QCA shift register in the limits of high
speed, high temperature, and high defect levels.

2 Single Electron System Theory

Metal-dot QCA can be described with the orthodox theory of coulomb
blockade [16]. The circuit is defined by charge configurations, which are deter-
mined by the number of electrons on each of the metal islands. Metal islands
are regions of metal surrounded by insulators; at zero temperature they hold
an integer number of charges. The islands play the role of QCA dots and are
coupled to other islands and leads through tunnel junctions (i.e. quantum-
mechanically leaky capacitors) and non-leaky capacitors. Leads by contrast
are metal electrodes whose voltages are fixed by external sources. We define
dot charge qi as the charge on island i and q′k as the charge on lead k. The
free energy of charge configuration within the circuit is the electrostatic en-
ergy stored in the capacitors and tunnel junctions minus the work done by
the voltage sources [17]:

F =
1
2

[
q
q′

]T

C−1

[
q
q′

]
− vT q′ (1)

Here C is the capacitance matrix including all the junctions and capacitors,
v is the column vector of lead voltages, and q and q′ are the column vectors
of dot charges and lead charges. At zero temperature, the equilibrium charge
configuration is the one that has minimum free energy and the number of
charges on each islands is exactly an integer. A tunneling event happens at
zero temperature only if the free energy is lower for the final state than for the
initial state. At finite temperatures, a dot charge need no longer be an integer
but is rather a thermal average over all possible configurations. A thermally

254 M. Liu and C.S. Lent

excited tunneling event may happen even when the free energy increases.
The transition rate of tunneling between two charge configuration states at a
certain temperature T is given by

Γij =
1

e2RT

∆Fij

1 − e−∆Fij/(kT)
(2)

where RT is the tunneling resistance, ∆Fij is the energy difference between
the initial state i and final state j.

The tunneling events can be described by a master equation – a conserva-
tion law for the temporal change of the probability distribution function of a
physical quantity,

dP

dt
= ΓP (3)

where P is the vector of state probabilities and Γ is the transition matrix.
From the solution P(t) we can obtain the ensemble average of the charge on
each dot. We solve (3) directly and find the dot charge as a function of time;
from this we can obtain any other voltage or charge in the circuit. In many
systems direct solution of the master equation, which requires the enumeration
of all the accessible states of the system is impractical due to the large set
of accessible states. Because QCA operates so near the instantaneous ground
state of the system, complete enumeration of the accessible states is possible
and we need not resort to Monte Carlo methods.

3 Power Gain in QCA

A robust circuit must have power gain in order to restore signals weakened
due to unavoidable dissipative processes. In conventional CMOS, the power
supply provides the energy power gain. In QCA systems the energy needed for
power gain is supplied by the clock. A weak input is augmented by work done
by the clock to restore logic levels. Power gain has been studied theoretically in
molecular QCA circuits [14] and measured experimentally in metal-dot QCA
circuits [3]. Power gain is defined by the ratio of the work done by the cell on
its neighbor to the right (the output of the cell), to the work done on the cell
by its neighbor to the left (the input to the cell). The work done on a cell by
an input lead coupled through an input capacitor C over a time interval T is
given by

W =

T∫
0

V (t)
d

dt
Qc(t)dt (4)

where V(t) is the lead voltage, Qc(t) is the charge on the input capacitor.
We consider the total work done over a clock period so the cell configuration
is the same at t = 0 and t = T. The power gain is thus the ratio of output
to input signal power Wout/Win, where each sums the work done by (on) all
input (output) leads.

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 255

4 Operation of Semi-Infinite QCA Shift Register

The schematic of a clocked half QCA cell is shown in Fig. 3a. The capacitances
are taken to be Cj = 1.6aF, Cg = 0.32aF, Cc = 0.8aF, and the tunneling
resistance RT = 100kΩ. Each island is grounded through a capacitance of
0.32 aF. These are physically reasonable though somewhat better (meaning
capacitances are smaller) than the experiments have so-far achieved. Input is
applied to the top and bottom dot through coupling capacitors. The potential
difference between the top and bottom dots is the output Vcell.

The phase diagram of the equilibrium charge state configuration of the cell
shown in Fig. 3a is plotted in Fig. 4. The diagram shows the calculated stable
regions of charge configuration as a function of input and clock potential.
Each hexagonal region is labeled by three integers (n1, n2, n3), the number
of elementary charges in the top, middle, and bottom dot respectively. A
positive number indicates an extra hole and negative number represents an
extra electron. Each hexagon represents the configuration state that has, for
those values of input voltage and clock voltage, the lowest free energy.

The clocking cycle can be envisioned as follows. First, a small input bias
is applied, when the clock is high (less negative, in fact for this circuit 0).
This situation corresponds to point (a) in Fig. 4; no electron switching event
happens and the cell remains in the null state, holding no information. When
the clock is then lowered (more negative) the system moves along the line

Fig. 3. (a) Schematic of a clocked triple dot. The input is applied to the top and bot-
tom dot. The clock is set to the middle dot. The output defined as Vcell is the differen-
tial potential between the top and the bottom dot. Cj = 1.6 aF, Cg = 0.32 aF, Cc =
0.8 aF. The capacitor to ground is 0.32 aF. RT = 100kΩ. (b) Schematic of a shift
register composed of a line of identical triple dots in (a). The thick line described
the actual four cells simulated

256 M. Liu and C.S. Lent

a

b
c

(0 0 0)

(0 1 –1) (-1 1 0)

(1 –1 0) (0 –1 1)

(1 0 –1) (-1 0 1)

Vin (mv)

V
c

(m
v)

Fig. 4. The equilibrium state configuration of a triple dot cell described in Fig. 6.
(n1, n2, n3) are the number of charges in the top, middle and bottom dot, respec-
tively. The cell is in the null state in point (a). The cell is in the active state in point
(b). The cell is in locked state in point (c)

shown through point (b). An electron is switched to either top dot or bottom
dot, decided by the input; the cell is then in the active state. If the clock is
held very negative point (c), the electron is locked in the active state, since
the energy barrier in the middle dot is too high to overcome. The locked cell is
essentially a single bit memory – its present state depends on its state in the
recent past, not on the state of neighbors. Varying clock potential gradually
between point (a) and (c) will switch the cell between null, active and locked
state adiabatically.

A QCA shift register can be constructed with a line of capacitively coupled
half QCA cells shown in Fig. 3b, where the output from each cell acts as the
input to its right neighbor. The transport of information from cell to cell is
controlled by clock signals. Initially, all the cells are in the null state since the
clocks are high. Then an input signal is applied to the first cell and the clock
for the first cell is lowered. The first cell thus switches to the opposite state of
the input and holds to that state even when input is removed. When the clock
for the second cell is lowered, the second cell switches to the opposite state
to the first cell accordingly and locks the bit. The information is thereafter
propagated along the cell line by the clock signals. Each cell in turn copies
(an inverts) a bit from its neighbor to the left when the left neighbor is in
the locked state and erases the bit, i.e. returns to the null state, while its
right neighbor still holds a copy (inverted) of the bit. The copying of the bit
can be accomplished gradually so that the switching cell is always close to its
instantaneously ground state and thus dissipates very little energy.

It’s instructive to model a semi-infinite shift register in order to study the
robustness in the QCA circuit. A four phase clocking scheme is adopted to
achieve adiabatic switching, shown in Fig. 5. Each clock signal is shifted a
quarter-period. As a bit moves down the shift register, we need model only
a four QCA half-cells at a time, since by the time the bit is latched in the
leading cell, the leftmost cell has returned to null. This is equivalent to viewing
the simulation as occurring on a ring of four half-cells. Figure 6 shows the

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 257

V
c1

(m
v)

V
c2

(m
v)

V
c3

(m
v)

V
c4

(m
v)

0 0.5 1 1.5 2
Time/Clock period

locked

null
−800

−600

−400

−800

−600

−400

−800

−600

−400

−800

−600

−400

Fig. 5. A four phase clocking scheme in metal-dot QCA

V
ce

ll(
m

v)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Time/Clock period

−50

0

50

−50

0

50

−50

0

50

−50

0

50

(1
)

V
ce

ll(
m

v)
(2

)
V

ce
ll(

m
v)

(3
)

V
ce

ll(
m

v)
(4

)

Fig. 6. Time evolution of cell potential in the neighboring cells. Vcell
(n) is the

differential potential between the top and the bottom dot of the nth cell

time evolution of cell potentials for four neighboring cells in a semi-infinite
shift register. The shaded areas indicate stored bit information. Each cell has
the opposite signal to its neighboring cells with a quarter period shift; the
information is both copied and inverted. The arrow indicates the direction of

258 M. Liu and C.S. Lent

the information flow. At the end of the first quarter clock period, the first
clock is set to low so that the first cell latches the input and locks it while the
second cell is in the null state. By the time the second clock is low, the first
cell is still kept locked. The second cell thus copies the bit from the first cell.
By the end of the third quarter period, the bit in the first cell is erased as
its clock is set to high. The third cell copies the bit from the second cell and
holds it. The process goes on and the bit information is transported along the
chain. Note that there are always at least two copies of the bit at one time.
When there are three copies of the bit, the cell potential in the middle cell
decreases slightly (in absolute value) while the cell potential in its left and
right neighbor increase slightly (thus the small “notch” in the center of the
flat parts of the waveform).

5 Robustness in Semi-Infinite QCA Shift Register

5.1 Effect of Temperature and Speed

Because of the difficulty of fabricating small capacitors, metal-dot QCA cir-
cuits operate at low temperatures. Thermal excitation is therefore a potential
source of random error in metal-dot QCA circuits, and it is clear that at high
enough temperatures the circuit will fail. It is tempting to conclude that for
a long line of cells, failures are unavoidable at any non-zero temperature. It is
well known that there is no long-range order in one-dimensional systems [17].
While the energy for a mistake might be higher than kBT, the degeneracy (and
therefore entropy) of mistake states increases as the system size expands. For a
system in thermal equilibrium therefore, the free energy of the mistake states
eventually become lower than the mistake-free zero-entropy ground state [6].
A static (unclocked) chain of QCA cells therefore has, for any non-zero tem-
perature, a characteristic length (∼eEk/kBT) after which mistakes become very
likely. But a clocked line is not in thermal equilibrium – it is actively driven.
The clock can supply energy to the system to restore signal states.

To see the effect of temperature on the performance of the clocked semi-
infinite shift register, we here solve the time-dependent problem of the clocked
shift register using the master-equation (3) approach described in Sect. 2. The
calculated cell potential (see Fig. 3) of the kth cell in the chain at time t is
Vcell(k, t). When each cell in the chain in turn latches the bit the cell poten-
tial is at its largest magnitude. Figure 7 shows this maximum cell potential
Vcell(k) = max(|Vcell(k, t)|) as a function of cell number k down the chain. The
calculated response is plotted for various values of the temperature. The cell
potential is higher at the very beginning of the chain simply because the first
cell is driven by an input voltage which is a stronger driver than subsequent
cells see; they are driven by other cells. At temperatures above 10 K the cell
potential decays with distance as information is transported along the chain.
At each stage the signal deteriorates further, and for a long shift register the

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 259

0 20 40 60 80 100
Cell number

7K

9K

10K11K12K

8K

6K
5K
1K,3K

13K

0

10

20

30

40

50

60

C
el

l
po

te
nt

ia
l
(m

v)

Fig. 7. Cell potential as a function of cell number at different temperatures

information will be lost. For individual cells, this means errors due to thermal
fluctuations become increasingly more likely. As the temperature is lowered
the signal decay-length increases. At temperatures below 5 K, however, the
behavior appears qualitatively different – the cell potential remains constant
along the long the chain. To the accuracy of our calculation for a large but
finite number of cells, no signal degradation appears at all.

The degradation of performance with increasing temperature can be ex-
plained in terms of power gain. We calculate the power gain of each individual
cell in the chain by directly calculating the work done on the cell by its neigh-
bor to the left, and the work done by the cell on its neighbor to the right. For
each operating temperature the power gain is the same for each cell (apart
from those very near the beginning of the line). If the power gain is precisely
1 (or greater), then there is no signal degradation moving down the line. At
each cell, power is drawn from the clock sufficient to completely restore the
signal as it is copied to the next cell. We refer to the situation in which unity
power gain enables transmission of signals over arbitrarily long distances as
“robust” operation. If the power gain is less than 1, then the signal will be
degraded as it moves down the line. Figure 8 shows the deviation from unity
power gain as a function of temperature on a logarithmic scale. For temper-
atures below 5 K the power gain is 1; above 5 K, the power gain is less than
1. At higher temperatures, the flow of energy from the clock can no longer
compensate for the energy loss to the thermal environment, with the result
that the signal decays at each stage. As the difference between the power gain
and 1 becomes small our analysis is limited by the numerical accuracy of the
calculation.

Nevertheless, the exponential character of the approach to unity power
gain supports the interpretation that this transition is a qualitative change
between robust and non-robust behavior, analogous to a phase transition.

260 M. Liu and C.S. Lent

10−10

10−5

100

Temperature (K)

1−
P

ga
in

No Errors Errors

0 5 10

Fig. 8. Deviation from unity power gain for an individual cell as a function of
temperature

a b

Clock period (ns)

T
em

pe
ra

tu
re

 (
K

) fail

succeed

0 0.2 0.4 0.6 40
Clock period (ns)

T
em

pe
ra

tu
re

 (
K

)

succeed

fail

0

1

2

3

4

5

6

7

8

0 2 4 6 400 0

10

20

30

40

50

60

70

80

Fig. 9. The phase diagram of the operation space as a function of temperature and
clock period when (a) Cj = 1.6 aF, and (b) Cj = 0.16 aF. The shaded area below
the curve is where the circuit succeeds and the white area is where the circuit fails

The time-dependent calculation above is repeated for various tempera-
tures and clock speeds to generate the phase diagram of the operational space
of the circuit shown in Fig. 9. We display the results for the circuit with our
standard parameters, with Cj = 1.6 aF in Fig. 9a and for more aggressively
scaled parameters, with Cj = 0.16 aF in Fig. 9b. All capacitances and voltages
in the circuit are scaled appropriately with Cj. The aggressively scaled para-
meter calculation illustrates scalability of QCA circuits. The performance of
the circuit will increase with smaller capacitances. The shaded area below the
curve indicates speeds and temperatures for which the circuit is robust. The
white area represents non-robust operation for which bit information decays

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 261

along the chain. The two figures are identical except for the scale: the aggres-
sively scaled circuit of Fig. 9b operates ten times faster and at a temperature
ten times higher than the circuit in Fig. 9a.

The area of robust operation is limited by both speed and temperature.
In Fig. 9a, when the clock period is less than about 0.2 ns (corresponding to
5 GHz), the circuit fails (is not robust) even at zero temperature. This occurs
as the clock period approaches the electron tunneling rate. When the clock
speed is too fast, the electrons do not have enough time to tunnel reliably
from one dot to another. The error probability accumulates as the information
moves along the chain. Increasing the clock period increases the probability
of electrons being in the “right” states. This improvement quickly saturates
and further increasing the clock period has no effect since the electrons have
had enough time to be in the correct state. The tunneling rate is related to
the tunnel resistance, so this description is equivalent to the observation that
the speed is limited to the RC time-constant of the circuit.

5.2 Defect Tolerance in the QCA Shift Register

A robust circuit must be tolerant of defects that introduce variations in the val-
ues of the designed parameters. We consider the situation of a very long shift
register in which the value of each capacitor in the circuit is varied randomly
within a fixed percentage range from its nominal value. The circuit is robust
if the perturbation of the capacitances does not influence the performance of
the circuit. We choose a working point in Fig. 9a where clock period is 5 ns,
the temperature is 4K, and vary all the capacitances randomly by ±10% and
±15%. Figure 10 shows the cell potential as a function of cell number with
random capacitance variation. Different color represents different capacitance
variation within the certain percentage range. When the deviation is ±10%,
the circuit is robust and transmits bit information with no errors. The bit in-
formation is carried on correctly even at the 2000th cell. When the deviation

0 500 1000 1500 2000 2500

C
el

l
po

te
nt

ia
l
(m

v)

0 500 1000 1500 2000 2500

a b

−60

−40

−20

0

20

40

60

C
el

l
po

te
nt

ia
l
(m

v)

−60

−40

−20

0

20

40

60

Cell number Cell number

Fig. 10. Cell potential as a function of cell number at 4K when capacitance variation
is a ±10% b ±15%

262 M. Liu and C.S. Lent

increases to ±15%, the circuit is fragile since cells are flipped to the wrong
states during propagation. This calculation demonstrates, again as a result
of the power gain in each cell, that QCA circuits can tolerate considerable
variation in parameter values and still function correctly.

6 Conclusion

The QCA approach represents an entirely new way of encoding, moving, and
processing binary information. As more experimental realizations of devices
appear, attention naturally turns to the broader circuit behavior of these new
devices. While molecular QCA may represent the most realistic long-term
system for robust room temperature operation, the metal-dot QCA system
provides an extremely valuable prototype system in which to explore QCA
properties. Metal dot systems also have the advantage of being realizable now.

We have explored here the behavior of metal-dot QCA systems under stress
– stressed by high temperature operation, high speed operation, and random
variation in parameter values. In each case enough stress destroys the correct
operation of the circuit. What we observe however is that these systems are
not terribly fragile, they can survive in a broad range of operational space.
In each case small errors threaten to accumulate over many cells and result
in signal loss. The key feature is power gain from the clocking circuit which
provides considerable robustness against these error mechanisms, restoring
signal levels at each stage.

References

1. I. Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, “Digital
logic gate using quantum-dot cellular automata,” Science 284: 289–291, 1999.

2. R. K. Kummamuru, J. Timler, G. Toth, C. S. Lent, R. Ramasubramaniam,
A. O. Orlov, G. H. Bernstein, G. L. Snider, “Power gain in a quantum-dot
cellular automata latch,” Applied Physics Letters 81: 1332–1334, 2002.

3. R. K. Kummamuru, A. O. Orlov, C. S. Lent, G. H. Bernstein, G. L. Snider,
“Operation of a quantum-dot cellular automata (QCA) shift register and analy-
sis of errors,” IEEE Transactions on Electron Devices 50: 1906–1913, 2003.

4. C. S. Lent, B. Isaksen, “Clocked molecular quantum-dot cellular automata,”
IEEE Transctions on Electron Devices 50: 1890–1896, 2003.

5. C. S. Lent, P. D. Tougaw, W. Porod, G. H. Bernstein, “Quantum cellular auto-
mata,” Nanotechnology 4: 49–57, 1993.

6. C. S. Lent, P. D. Tougaw, W. Porod, “Quantum cellular automata: the physics
of computing with quantum dot molecules,” PhysComp’94, Proceedings of
the Workshop on Physics and Computing, IEEE Computer Society Press, pp.
5–13, 1994.

7. C. S. Lent, B. Isaksen, M. Lieberman, “Molecular quantum-dot cellular auto-
mata,” Journal of American Chemical Society 125: 1056–1063, 2003.

Chapter 9: Reliability and Defect Tolerance in Metallic QCA 263

8. A. Li, T. P. Fehlner, “Molecular QCA Cells. 2. Characterization of an unsym-
metrical dinuclear mixed-valence complex bound to a Au surface by an organic
linker,” Inorganic Chemistry 42: 5715–5721, 2003.

9. Z. Li, A. M. Beatty, T. P. Fehlner, “Molecular QCA Cells. 1. Structure and func-
tionalization of an unsymmetrical dinuclear mixed-valence complex for surface
binding,” Inorganic Chemistry 42: 5707–5714, 2003.

10. M. Lieberman, S. Chellamma, B. Varughese, Y. L. Wang, C. S. Lent,
G. H. Bernstein, G. L. Snide, F. C. Peiris, “Quantum-dot cellular automata
at a molecular scale,” Annals of the New York Academy of Sciences 960:
225–239, 2002.

11. A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider, “Reali-
zation of a functional cell for quantum-dot cellular automata,” Science 277:
928–930, 1997.

12. A. O. Orlov, I. Amlani, R. K. Kummamuru, R. Ramasurbramaniam, G. Toth,
C. S. Lent, G. H. Bernstein, G. L. Snider, “Experimental demonstration of
clocked single-electron switching in quantum-dot cellular automata,” Applied
Physics Letters 77: 295–297, 2000.

13. H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, T. P. Fehlner,
“Molecular quantum cellular automata cells. Electric field driven switching of a
silicon surface bound array of vertically oriented two-dot molecular quantum cel-
lular automata,” Journal of American Chemical Socety 125: 15250–15259, 2003.

14. J. Timler, C. S. Lent, “Power gain and dissipation in quantum-dot cellular
automata,” Journal of Applied Physics 91: 823–831, 2002.

15. P. D. Tougaw, C. S. Lent, “Logical devices implemented using quantum cellular
automata,” Journal of Applied Physics 75: 1818–1825, 1994.

16. C. Wasshuber, Computational single-electronics, Springer, Berlin Heidelberg
New York, 2001.

17. C. Wasshuber, H. Kosina, S. Selberherr, “SIMON: A simulator for single-
electron tunnel devices and circuits,” 16: 937–944, 1997.

18. K. K. Yadavalli, A. O. Orlov, R. K. Kummamuru, C. S. Lent, G. H. Bernstein,
G. L. Snider, “Fanout in quantum dot cellular automata,” 63rd Device Research
Conference 1: 121–122, 2005.

Section 3: Testing Microfluidic Biochips

M. Tehranipoor

Recent years have seen the emergence of droplet-based microfluidic systems for
safety-critical biomedical applications. Microfluidics-based biochips are soon
expected to revolutionize biosensing, clinical diagnostics and drug discovery.
Digital microfluidics is an alternative technology for lab-on-a-chip systems
based upon micromanipulation of discrete droplets. Microfluidic processing is
performed on unit-sized packets of fluid which are transported, stored, mixed,
reacted, or analyzed in a discrete manner using a standard set of basic instruc-
tions. This section contains two chapters dealing with issues of test planning
and diagnosing realistic defects in Digital Microfluidic Biochips.

Authors in Chap. 10, entitled “Test Planning and Test Resource Optimiza-
tion for Droplet-Based Microfluidic Systems”, investigate test planning and
test resource optimization for droplet-based microfluidic arrays. The authors
first formulate the test planning problem and prove that it is NP-hard. They
then describe an optimization method based on integer linear programming
(ILP) that yields optimal solutions. Due to the NP-hard nature of the prob-
lem, the authors develop heuristic approaches for optimization. Experimental
results indicate that for large array sizes, the heuristic methods yield solutions
that are close to provable lower bounds. These heuristics ensure scalability and
low computation cost.

The second chapter in this section (Chap. 11) “Testing and Diagnosis of
Realistic Defects in Digital Microfluidic Biochips” argues that robust off-line
and on-line test techniques are required to ensure system dependability as
these biochips are deployed for safety-critical applications. Due to the under-
lying mixed-technology and mixed-energy domains, biochips exhibit unique
failure mechanisms and defects. The authors first relate some realistic defects
to fault models and observable errors. They next set up an experiment to
evaluate the manifestations of electrode-short faults. Motivated by the exper-
imental results, the authors present a testing and diagnosis methodology to
detect catastrophic faults and locate faulty regions. The proposed method is
evaluated using a biochip performing real-life multiplexed bioassays.

Chapter 10: Test Planning and Test Resource
Optimization for Droplet-Based Microfluidic
Systems

F. Su, S. Ozev, and K. Chakrabarty

1 Introduction

Next-generation system-on-chip designs are expected to be composite mi-
crosystems with microelectromechanical and microfluidic components [15,23].
These mixed-signal and mixed-technology systems monolithically integrate
microelectronics with microsensors and microactuators, thereby leading to
chips that cannot only compute and communicate, but also sense and actuate.
This high level of integration is enabling a new class of microsystems targeted
at health care, environmental monitoring, biomedical analysis, harmful agent
detection for countering bio-terrorism, and precision fluid dispensing [13].

In recent years, novel droplet-based microfluidic systems have been de-
veloped to analyze nanoliter volumes of agents [18]. These systems reduce
the rate of reagent consumption, thereby enabling continuous sampling and
analysis for on-line, real-time biological/chemical analysis. By scaling down
the concentration of the samples, simple sensing techniques can be utilized
to replace conventional, costly, and time-consuming practices involving batch
analysis, sample pre-treatment and frequent calibration. Droplet-based mi-
crofluidic systems therefore offer a promising platform for massively parallel
DNA analysis, and real-time molecular detection and recognition.

As microfluidic systems become widespread in safety-critical biomedical
applications, system reliability emerges as an essential performance para-
meter. In order to ensure reliability, composite microsystems incorporating
microfluidic components must be tested adequately. Therefore, there is a pres-
sing need for efficient test methodologies for these microsystems. The ITRS
2003 document recognizes the need for new test methods for disruptive device
technologies that underly microelectromechanical systems and sensors, and
highlights it as one of the five difficult test challenges beyond 2009 [27].

Recently, a fault classification and a unified test methodology for droplet-
based microfluidic systems has been developed [22]. Faults are classified as
either catastrophic or parametric, and they are detected by electrostatically
controlling and tracking droplet motion. This cost-effective test methodology

268 F. Su et al.

facilitates concurrent testing, which allows fault testing and biomedical as-
says to run simultaneously on a microfluidic system. Test planning and test
resource optimization are motivated by the need for concurrent testing.

In this chapter, we investigate test planning and test resource optimization
problems for droplet-based microfluidic arrays. We first formulate the test
planning problem and prove that it is NP-hard. We then show how optimal
solutions can be obtained using integer linear programming (ILP). Due to
the NP-hard nature of the problem, the ILP model is not applicable to large
microfluidic arrays. We therefore develop heuristics to solve this problem in
a computationally efficient manner. Experiments show that for large array
sizes, the results obtained from the heuristic method are close to provable
lower bounds.

2 Background: Droplet-Based Microfluidic Systems

The operation of droplet-based microfluidic systems is based on the principle
of electrowetting actuation. By varying the electrical potential along a linear
array of electrodes, electrowetting can be used to move liquid droplets of nano-
liter volume along this line of electrodes [18]. Droplets can also be transported,
in user-defined patterns under clocked-voltage control, over a two-dimensional
array of electrodes without the need for pumps and valves.

The basic component of a droplet-based microfluidic system is shown
in Fig. 1. The droplet, usually containing biomedical samples, and the filler
medium, such as silicone oil, are sandwiched between two parallel glass plates.
The bottom plate contains a patterned array of individually controllable elec-
trodes, while the top plate is coated with a ground electrode. The hydrophobic
dielectric insulator is added to the top and bottom plates to decrease the wet-
tability of the surface and to add capacitance between the droplet and the
control electrode.

The basic principle underlying droplet transportation is the electrostatic
control of the interfacial tension at the droplet–insulator interface. A control

Fig. 1. (a) Basic cell used in a droplet-based microfluidic system; (b) a two-
dimensional array for digital microfluidics

Chapter 10: Test Planning and Test Resource Optimization for Biochips 269

(actuating) voltage is applied to an electrode adjacent to the droplet and,
at the same time, the electrode just under the droplet is deactivated. This
causes an accumulation of charge in the droplet–insulator interface, resulting
in a surface tension gradient across the gap between the adjacent electrodes,
which consequently causes the transportation of the droplet. The velocity of
the droplet can be controlled by adjusting the actuation voltage (0–90 V), and
droplets can be moved at speeds of up to 20 cm s−1. Based on this principle,
microfluidic droplets can be moved freely to any location of a two-dimensional
array; see Fig. 2. This design, which has been fabricated on PCBs at Duke
University [18], is ideally suited for a large-scale integrated microfluidic sys-
tem. Such a system is expected to be common in the near future for various
biomedical applications, such as DNA sequencing and bimolecular detection.
A droplet can be easily detected using the capacitive sensing circuit shown
in Fig. 3.

Using a two-dimensional microfluidic array, many common operations for
different biomedical assays can be performed, such as sample introduction
(dispense), sample movement (transport), temporarily sample preservation
(store), and mixing of different samples (mix). Note that these operations
can be performed anywhere on the array, whereas in continuous-flow systems
they must operate in a specific micromixer or microchamber. The configura-
tions of the microfluidic array, i.e., the routes that sample droplet travel and

Fig. 2. Droplet transport in a two-dimensional array. (detailed video available at
http://www.ee.duke.edu/Research/microfluidics)

Fig. 3. Simple capacitive sensing circuit

270 F. Su et al.

the rendezvous points of droplets, can be obtained using software running on
a PC or an ASIC [20, 21]; they are then programmed into a microcontroller
that controls the voltages of the electrodes in the array. Test planning for a
microfluidic array can also be implemented using a PC or an ASIC.

3 Related Prior Work

Over the past decade, the focus in testing research has broadened from logic
and memory test to include the testing of analog and mixed-signal circuits.
MEMS is a relatively young field compared to IC design, and MEMS testing
is still in its infancy. Recently, fault modeling and fault simulation in sur-
face micromachined MEMS have received attention [4,11,14]. Researchers at
Carnegie Mellon University are developing a comprehensive testing method-
ology for a class of MEMS known as surface micromachined sensors.

However, test techniques for MEMS cannot be directly applied to mi-
crofluidic systems, since the techniques and tools currently in use for MEMS
testing do not handle fluids. Hence they are of limited use for testing microflu-
idic devices. Most recent work in this area has been limited to the testing
of continuous-flow microfluidic systems [?]. Researchers at the MESA+ Re-
search Institute of the University of Twente have applied mixed-signal testing
techniques to the problem of testing a microanalysis system. Also, a design-
for-testability (DFT) technique for Flow-FET-based microfluidic systems has
been proposed [9]. Similar to the MOSFET, a Flow-FET has source and drain
electrodes over which a relatively large voltage (∼100V) is applied. Due to
the principle of electro-osmotic flow, the electric field moves the charge accu-
mulated between the fluid and the surface of channel, dragging the bulk liquid
through the channel.

Optimal strategies for moving droplets in a microfluidic system are pro-
posed in [3]. The A∗ algorithm from artificial intelligence is used as the basis
of a systematic search, which is performed to generate a sequence of control
signals for moving one or multiple droplets from the start to the goal posi-
tions in the shortest number of steps. This method is closely related to the
optimization problem of motion planning with multiple moving robots [1,12].
There are two different groups of path planning problems for moving robots.
Navigation problem attempts to find a path from a start position to a goal po-
sition through the shortest path, whereas coverage problem focuses on finding
the path of coverage of an environment by mobile robots.

4 Problem Definition

In the test methodology proposed in [22], test stimuli droplets are dispensed
into the microfluidic system from the droplet source and transported through
the array (traversing the cells) by following the designed testing scheme.

Chapter 10: Test Planning and Test Resource Optimization for Biochips 271

As described in [22], most catastrophic faults in droplet-based microfluidic
systems can lead to a complete cessation of droplet transportation. Thus, for
the faulty case, the test stimuli droplet is stuck at an intermediate point dur-
ing motion. On the other hand, the detection of all test stimuli droplets at
the droplet sinks indicates fault-free operation. This methodology allows fault
testing and biomedical assays to run concurrently on a microfluidic system.
An efficient test plan not only ensures that the testing operation does not con-
flict with the normal biomedical assay, but it also guides test stimuli droplets
to cover all the cells available for testing. This test plan can be optimized to
minimize the total testing time cost for a given test hardware overhead, which
refers here to the number of droplet sources and droplet sinks. Note that some
faults such as electrode shorts affect two adjacent electrodes [19,22]. To detect
such faults, defect-oriented test procedures are required, which focus on pairs
of cells and the traversal of droplets from one cell to all its neighbors [19]. For
simplicity, we do not take into account such types of faults in this chapter;
only catastrophic faults related to a single cell are targeted.

We can formulate the test planning problem in terms of graph partitioning
and the Hamiltonian path problem from graph theory [5]. The key idea under-
lying this optimization approach is to model the two-dimensional microfluidic
array as a directed graph, and then partition it into non-overlapping sub-
graphs. Each part of the microfluidic array is represented by a subgraph that
is tested concurrently and independent of the other parts. In this way, the
total test application time is reduced.

First we model the array of microfluidic cells using a directed graph G =
(V,E) where the set of vertices V represents the set of available microfluidic
cells, droplet sources and droplet sinks, and eij ∈ E is a directed edge from
vertex i to vertex j if and only if these two vertices represent two adjacent
microfluidic cells and they satisfy the criterion described below.

Note that unlike V, E is not determined a priori; rather the set of edges is
a variable, and the edges are determined through the optimization procedure.

Definition 1. A Hamiltonian path from vertex s to vertex t in a graph G is
a path that starts at vertex s, ends at vertex t, and visits every vertex of G
exactly once.

We define eij as follows:

eij =

⎧⎪⎨
⎪⎩

1
if a Hamiltonian path from a droplet source to a droplet sink
includes vertex i and vertex j in consecutive order

0 otherwise.

If a Hamiltonian path exists in an array with n cells, then for any cell i in

the array,
n∑

j=1

eij =
n∑

j=1

eji = 1.

The problem of finding a Hamiltonian path in graph G from one source to
one sink can be expressed as the following problem: find a numerical instance

272 F. Su et al.

Fig. 4. Graph model for a 4 × 4 microfluidic array

of the set of binary variables E = {eij}, e.g., {e12 = 1, e21 = 0, . . . , eij =
1, . . . }, that represents a Hamiltonian path from one source to one sink.

If a Hamiltonian path exists, the cost C for this path is defined as

C =
n∑

i=1

n∑
j=1

eijwij , where i represents any vertex in this path, j is the vertex

adjacent to i in the path, and wij is the weight of eij . Without loss of gen-
erality, we set wij to be a constant value, assuming that the transportation
velocity between any two adjacent microfluidic cells is the same. For simplic-

ity, let wij = 1. Therefore, C =
n∑

i=1

n∑
j=1

eij =
n∑

i=1

1 = n, i.e., the number of

vertices on the Hamiltonian path. If G has no Hamiltonian path, the cost C
is infinite.

Figure 4 gives an example of a graph model for single source and single
sink. In the graph model of this 4 × 4 array, a black arrow between vertices
i and j denotes that eij = 1, while the gray arrow between vertices i and j
denotes that eij = 0. The cost C for this example is 11.

Based on the above definitions, we now develop the test planning problem
for multiple sources and multiple sinks. We attempt to partition the directed
graph representing the microfluidic array into subgraphs, such that in each
subgraph there exists a Hamiltonian path from one source to one sink. In this
way, the testing of the different partitions can be performed independently and
simultaneously in non-overlapping parts of the microfluidic array. The total
cost for the array is the maximum of the cost for any of these subgraphs. This
leads us to the following optimization problem for minimizing the total cost:

– Optimal partitioning problem (OPP). Given N source/sink pairs, deter-
mine an optimal partition that divides the available cells in the array into
N non-overlapping partitions, such that in each partition there exists a
Hamiltonian Path from one source to one sink and the maximum of the
cost for these Hamiltonian paths is minimized.

5 Analysis of Computational Complexity

In this section we prove that OPP is NP-hard. We first review the following
definition from computational complexity theory:

Chapter 10: Test Planning and Test Resource Optimization for Biochips 273

Definition 2. [17]: Let L1 and L2 be two decision problems. L1 is
polynomial-time reducible to L2 (L1 � L2) if a polynomial-time reduction f
from L1 to L2 exists, subject to

– f(x) is a yes-input for L2 if and only if x is a yes-input for L1
– f is computable in polynomial-time.

We next note that if L1 is NP-complete, and L1 � L2, then L2 is NP-
hard. This is a common technique to prove that a given optimization problem
is NP-hard.

We first consider the decision version D-PP of OPP, which is expressed as
follows.

– D-PP: Given N source/sink pairs and an upper limit D on the cost, is it
possible to partition array into N parts such that there exists a Hamiltonian
path of cost Ci for each partition and max

1�i�N
{Ci} < D?

Theorem 1. OPP is NP-hard.

Proof. We first show that D-PP ∈ NP. We can non-deterministically generate
a N -partition and then verify in polynomial time that max

1�i�N
{Ci} < D. To

show that D-PP is NP-hard, we reduce the problem of determining a Hamil-
tonian cycle in grid graph (HC-GG), which is known to be NP-complete [7].
A grid graph G is a finite, induced subgraph of the infinite two-dimensional
grid. It has a finite set of vertices V = {v1, v2, . . . , vn}, where vi represents
a grid point (x, y). Note that x and y are positive integers, denoting the x
and y coordinates, respectively. An edge exists in G between point (x, y) and
(x′, y′) if and only if |x − x′| + |y − y′| = 1.

We next define a polynomial-time reduction f from an arbitrarily-chosen
instance of HC-GG to an instance of D-PP with N = 1 and D = ∞. Given a
grid graph G, any vertex vi in G is mapped to a cell ci in array A, such that
cell ci = f(vi) and cj = f(vj) are adjacent in A if and only if there exists an
edge between vi and vj in G. We define the vertices with the maximum (or
minimum) value x of the x-coordinate (or the y-coordinate y) in the corre-
sponding grid graph to be boundary vertices in G. Similarly, the cells in the
array obtained by mapping from the boundary vertices in G are defined as
boundary cells in A. Next we attempt to add a droplet source s1 and a droplet
sink s2 to this array. There are two possible cases. In Case 1, there exist two
adjacent boundary vertices (noted as v1 and vn) in G, such that there also
exist two adjacent cells (noted as c1 and cn) on the boundary of array A. We
then add s1next to c1 and s2 next to cn; see Fig. 5a. In Case 2, if there are
no adjacent boundary vertices in G and neither are there adjacent boundary
cells in A, we select a single boundary cell denoted by c1, and place s1 and
s2 together adjacent to c1; see Fig. 5b. It is obvious that the transformation
described above can be carried out in polynomial time.

274 F. Su et al.

V1

V1

Vn

S1

S2

(a)

C1

C1

Cn

(b)

S1
S2

Fig. 5. (a) Illustration of Case 1; (b) illustration of Case 2

Next we prove that there exists a Hamiltonian path from s1 to s2 of cost
C < ∞ in A if and only if there exists a Hamiltonian cycle in G of cost less
than ∞.

(1) Proof for Case 1. Assume there exists a Hamiltonian cycle in G, denoted
by v1v2 . . . vnv1, where v1 and vn are two adjacent boundary vertices. Due
to the mapping f : G → A, c1 = f(v1), cn = f(vn) and they are two
adjacent cells on the boundary of array A. In this way, there exists a path
f(v1)f(v2) . . . f(vn) from c1 to cn that visits every cell exactly once. In
addition, s1 is adjacent to c1 and s2 adjacent to cn.
Therefore, there is a Hamiltonian path from s1 to s2 in A and cost C =
n < ∞. On the other hand, if there exits a Hamiltonian path s1c1. . .cns2

from s1 to s2 in array A, a Hamiltonian path from c1 to cn also exists. Now
by the inverse transformation f−1 : A → G, it is seen that there exists a
Hamiltonian path f−1(c1). . .f−1(cn) from f−1(c1) to f−1(cn). Moreover,
f−1(c1) and f−1(cn) are two adjacent vertices. Therefore, there exists a
Hamiltonian cycle f−1(c1). . .f−1(cn)f−1(c1) in G.

(2) Proof for Case 2. If there exist no adjacent cells on the boundary of A,
we place s1 and s2 together next to one boundary cell c1. This implies
that in any path from s1 to s2, c1is visited at least twice. Therefore, there
exists no Hamiltonian path in A for this case and C = ∞. Similarly in
G, since there are no adjacent vertices on the boundary, some boundary
vertices have only degree one. This violates the necessary condition for
the existence of a Hamiltonian cycle, i.e., every node should have a degree
of at least two. Hence there is also no Hamiltonian cycle in G.

Thus we have shown that any instance of HC-GG is polynomial-time
reducible to an instance of D-PP (N = 1 and D = ∞). Since HC-GG is
NP-complete, D-PP is at least NP-hard. Moreover, since D-PP is in NP, it is

Chapter 10: Test Planning and Test Resource Optimization for Biochips 275

also NP-complete. The optimization version of D-PP, i.e., the Optimal Parti-
tioning Problem is therefore NP-hard.

6 Integer Linear Programming Model for OPP

Although OPP has been proven in Sect. 5 to be NP-hard, we show in this
section that it can be solved exactly using integer linear programming (ILP)
for a microfluidic array of modest size. An ILP model can be described as
follows:

Minimize : Ax (objective function)
Subject to : Bx � C (constraint inequalities),

where x is a vector of variables, A is an objective function vector, B is a
constraint matrix and C is a column vector of constraints. We used a popular
public domain ILP solver called lpsolve for our work [2].

We formulate the ILP model for OPP as follows. It is obvious that when
N = 1, OPP is equivalent to the Hamiltonian path problem for a single source
and a single sink described in the earlier section.

For N > 1, we define a binary variable Sik as follows:

Sik =

⎧⎪⎨
⎪⎩

1 if vertex i is in subgraph k i.e., microfluidic cell i belongs to
partition k.

0 otherwise

where 1 � k � N . Since every vertex only belongs to one subgraph,
N∑

k=1

Sik = 1∀i.

Definition 3. Vertex j is the connected neighbor of vertex i, if there is an
edge between i and j, and either eij = 1 or eji = 1.

Next we impose the constraint that vertex i is in partition k if and only if
its connected neighbor is also in partition k. This is expressed as follows:

Sik = 1 if and only if
n∑

j=1

eijSjk = 1 ⇒ Sik =
n∑

j=1

eijSjk.

The existence of Hamiltonian paths in non-overlapping partitions ensures

that, for every cell i in array,
n∑

j=1

eij =
n∑

j=1

eji = 1.

Finally, we incorporate the objective function into the ILP model. The
objective of this optimization problem is to minimize the total cost C =
max

k
{Ck} = max

k
{nk} , k = 1, 2 . . . N , where nk is the number of vertices

276 F. Su et al.

visited by Hamiltonian path k. It is easily seen that nk =
n∑

i=1

Sik. Therefore,

C = max
1�k�N

n∑
i=1

Sik.

We now have a mathematical programming model for OPP, described as
follows.

Objective: minimize C = max
1�k�N

n∑
i=1

Sik

Subject to: (1)
N∑

k=1

Sik = 1∀i.

(2) Sik =
n∑

j=1

eijSjk∀i, 1 � k � N.

(3)
n∑

j=1

eij =
n∑

j=1

eji = 1∀i.

In order to solve the above mathematical programming model using lp-
solve, its objective function and some constraint inequalities must be linearized
to match the canonical form of an ILP model. First, the objective function

is linearized as: Minimize C, subject to C �
n∑

i=1

Sik, 1 � k � N . The set

of constraints in (2) above contains the non-linear term eijSjk, which can be
linearized by introducing a binary variable Zijk = eijSjk, with the following
additional constraints [25]:

(1) eij + Sjk − Zijk � 1.
(2) eij + Sjk− 2Zijk � 0.

This transformation is verified as follows: If Sjk = 0, from (1) and (2), Zijk +
1 � eij and 2Zijk � eij ; since eij � 1, Zijk = 0. If Sjk = 1, we get Zijk � eij

and 2Zijk � eij + 1. Therefore, Zijk = eij .
We now describe the ILP model for OPP, which includes the new variable

and constraints.

Objective: Minimize C

Subject to: (1) C �
n∑

i=1

Sik1 � k � N.

(2)
N∑

k=1

Sik = 1∀i.

(3) Sik =
n∑

j=1

Zijk ∀i1 � k � N.

(4) eij + Sjk − Zijk � 1 ∀i, ∀j, 1 � k � N.

Chapter 10: Test Planning and Test Resource Optimization for Biochips 277

(5) eij + Sjk − 2Zijk � 0 ∀i,∀j, 1 � k � N.

(6)
n∑

j=1

eij =
n∑

j=1

eji = 1 ∀i.

The above ILP model can now be solved using lpsolve. The complexity
of this model, measured by the number of variables and the number of con-
straints, is O(n2 × N), where n is the number of cells in an array and N is
the number of source/sink pairs.

The following example illustrates an optimal partitioning of a 4×4 micro-
fluidic array with two sources a1 and a2, and two sinks b1 and b2, respectively;
see Fig. 6. The result is obtained using lpsolve. It took 10 min of CPU time
on a 1.6 GHz Pentium-IV PC with 392 MB of RAM. An optimal partitioning
generated by lpsolve is as follows: Partition 1 = {1–3, 5, 7, 9, a1, b1},
Partition 2 = {4, 6, 8, 10–12, a2,b2}; see Fig. 7. Based on this test plan, the
total time cost C is max {8, 8} = 8.

Fig. 6. An example of a 4 × 4 microfluidic array

5

1 2 3 4

9 10 11 12

7 8

6

 a1

 b1

 a2

 b2

Partition 1

Partition 2
a1

b1

9

7

5

 1

2

3 4

6

8

12

11

10 b2

a2

Partition 2Partition 1

Fig. 7. An optimal partition and test stimuli droplet flow path for the 4× 4 micro-
fluidic array in Fig. 6

278 F. Su et al.

We have shown that an ILP model can be used to solve this optimization
problem exactly for a microfluidic array of modest size. However, there exist
several major limitations inherent in OPP:

(1) Sometimes there exists no Hamiltonian path in the array. Even if Hamil-
tonian paths exist, optimal partitioning obtained by solving OPP may not
be the best solution for optimal test planning. The suboptimal nature of
the test plan derived from the optimal solution to OPP results from the
property of a Hamiltonian path that every node in the path should be
visited exactly once. Lower-cost solutions can be obtained if we allow a
cell to be visited more than once.

(2) The partitioning in OPP does not take into account the constraint that
droplets can never be in a cell directly adjacent or diagonally adjacent
to another droplet. The optimal solution to OPP may be not a feasible
test plan because perhaps some test stimuli droplets would be adjacent to
each other, thereby leading to the mixing of these droplets.

Moreover, due to the inherent complexity of the model, there is a need
for heuristic algorithms that can be applied to a large array and that can
eliminate the limitations inherent in the OPP problem.

7 Heuristic Algorithms

One possible heuristic method is motivated by the similarity of the test plan-
ning problem for a microfluidic array to the robot motion planning problem,
where we view every test stimuli droplet as a mobile robot. However, there
are a number of important differences:

(1) The test planning problem can be considered as a combination of both
the navigation problem and the full coverage problem. It attempts to
minimize the total time cost from the starting point (droplet source) to
the end point (droplet sink), while it also requires all available cells to be
covered in the droplet path. Therefore it is more complicated than either
the navigation problem or the coverage problem alone.

(2) A major constraint in the application of multiple test stimuli droplets
is that droplets can never be in a cell directly adjacent or diagonally
adjacent to another droplet except in the case of mixing of two droplets.
This restriction increases the complexity of the problem of test planning
and resource optimization.

7.1 Simple Monte-Carlo Search Algorithm (SMC)

Monte-Carlo based search algorithms have been proposed in the literature for
problems with a large number of constraints [16]. The key idea underlying
these algorithms is that random points are generated in the search space and

Chapter 10: Test Planning and Test Resource Optimization for Biochips 279

the point with the lowest value for the objective function is taken to be the
global optimum. In this modified random walk method, a large number of
simulation runs are carried out to generate enough samples. First we apply
the simple Monte-Carlo search algorithm to heuristically solve the problem
of test planning and optimization. In each run, the test stimuli droplet starts
from the cell directly adjacent to the droplet source and ends in the droplet
sink. It randomly moves to the neighboring cell with some probability p. We
mark the cell if it has been visited, then the larger p is assigned to the motion
towards the unmarked cell. After randomly selecting the new positions of test
stimuli droplets, the procedure checks if no two droplets are directly adjacent
or diagonally adjacent in their new positions. If this restriction is satisfied, test
stimuli droplets move to these new positions. Otherwise the new positions are
selected again. If all available cells have been visited and test stimuli droplets
have reached the droplet sinks, the test process is concluded. Here we assume
that each droplet move only once in each time slot. Therefore, the test plan
with the smallest number of total time slots, i.e., total test time, is selected
as the optimal solution.

7.2 Modified Real-Time Algorithm (MRT)

We can further leverage real-time search algorithms and incorporate them
into the heuristic algorithm for test planning. While the previous Monte-
Carlo search algorithm simply marks the cell with a binary variable (0/1)
based on whether it has been visited, this modified algorithm associates an
evaluation function U with each cell. It always decides which neighboring cell
to move to based only on the U -values of its neighbors. That is, the droplet
always greedily moves to an adjacent cell with the smallest U -value. Ties
due to same U -value neighbors are broken randomly. Similar to the Monte-
Carlo search algorithm, the new positions of test stimuli droplets should be
verified to satisfy the physical restriction. Then the U -value of the current
cell is updated according to a predefined rule. We study four different U -
value update rules, which been used successfully in robot motion planning, as
listed in Table 1. Each rule assigns a different meaning to the U - value. For
example, Node Counting interprets the U -value as the number of times the
location has been visited, while LRTA* interprets U -value as approximations
of the goal distances of the location [12,21]. The introduction of the evaluation
function U decreases the arbitrariness of the selection of new positions in the

Table 1. Different U -value update rules

Value-update rules Real-time search algorithms

U(current) = 1 + U(current) Node counting [1]
U(current) = 1 + U(New) Learning Real-time A∗(LRTA∗) [12]
If U(current) � U(New), Wagner’s value-update rule [24]
U(current) = 1 + U(current)
U(current) = max(1+ U(current), 1 + U(New)) Thrun’s value-update rule [23]

280 F. Su et al.

Monte-Carlo search algorithm and therefore increases the possibility of finding
a better solution for the same number of simulation runs.

7.3 Proposed Improved Heuristic Algorithm for Multiple Droplets
(PIH-MD)

When multiple test droplets are used, the above heuristic algorithms might
move two droplets closer to each other. Additional effort may therefore be
needed to prevent droplets from being directly or diagonally adjacent to each
other. Moreover, if these two droplets are too close, the overlap of their cover-
age areas might increase, consequently leading to low efficiency in searching.
Therefore we modify the heuristic algorithm for multiple test droplets by at-
tempting to separate two droplets. We add a new evaluation function ∆P to
approximate the relative distance between two droplets. When ties for new
positions with the lowest U -value are encountered, we evaluate the ∆P func-
tion for every two possible positions of these droplets and select the new
positions with smallest value of ∆P . Instead of breaking such ties arbitrarily
as in MRT, this approach adds more guidance to heuristically find the near-
optimal solution for test planning. Simulation results presented in the next
section show that it provides better performance than the simple Monte-Carlo
search algorithm and the modified real-time search algorithm for multiple test
stimuli droplets. The procedure is outlined in Fig. 8.

8 Experimental Results

In this section, we report simulation results on test planning and resource
optimization for droplet-based two-dimensional microfluidic arrays. Note that
there exists an inherent tradeoff between test hardware overhead, i.e., test
stimuli droplet source/sink pairs, and test application time. The location and
the number of droplet sources and sinks can affect the time cost of the as-
sociated test plan [19]; a higher test hardware overhead usually leads to less
testing time. Here we attempt to minimize the test application time for a
given test hardware overhead. In addition, the concurrent test plan for a mi-
crofluidic array is also affected by the array configuration, i.e., the usage of
cells in normal biomedical assays. In fact, design-for-testability (DFT) tech-
niques can be used to optimize the assay schedule and array configuration to
increase the efficiency of the corresponding concurrent test plan. In order to
facilitate the evaluation and comparison, a set of given array configurations
are deployed here for the different proposed test planning methods.

In the following experiments, two sets of cases are analyzed:

(1) A single source and a single sink;
(2) Two sources and two sinks.

Chapter 10: Test Planning and Test Resource Optimization for Biochips 281

Loop: For n = 1 to N (the maximum number of simulation runs)

 Initialization: Status initialization:

 All cells available for testing are set to ‘0’;

 All cells not available for testing are set to ‘2’.

 (Here ‘0’ denotes that the cell is not visited yet.

 ‘1’ denotes that the cell has been visited

 ‘2’ denotes that the cell is not available for testing)

 Evaluation function value initialization:

 The U values of all cells are set to 0.

 Starting point:

 The cell adjacent to source is set to be ‘1’ when t = 1

 Loop: For t = 2 to T (maximum index of time-slot)

 1. Select new location of test stimuli droplet:

Droplet moves to its neighbor cell with smallest U-value. That is,

 U(new location)=min(U(neighbors of current location). When

 there are ties, we evaluate ∆P between two droplets.

 2. Verify relative distance between new locations:

We select the new locations which satisfy the restriction and

 have lowest ∆P.

 3. Update U-value of current location, then go on to next time-slot.

If all available cells have been visited and test stimuli droplets have

 reached the sink, (Test finished)

 Record the time cost;

 Record test planning;

 Break; End;

 End

 If time cost < minimum cost

 minimum cost = time cost.

 Record the best test planning.

End

Fig. 8. Sketch of the improved heuristic algorithm for multiple droplets

The configurations of the microfluidic arrays, e.g., the assignment of cells
used for biomedical assays, as well as the locations of the source and the sink
used in both sets of experiments, are shown in Fig. 9.

For arrays of modest size, optimal solutions can be obtained using ILP
model. Therefore, we can compare the result of the heuristic algorithms with
the optimal solution (OPT). However, for arrays of the larger size, optimal
solutions are not available. The performance of heuristic algorithms in these
cases can only be compared with a lower bound (LB) and an upper bound
(UB) on the optimal solution as described next.

282 F. Su et al.

Fig. 9. Microfluidic array configurations in (a) the first set of experiments; (b) the
second set of experiments

Table 2. Simulation results for Case (1)

3 × 3 3 × 5 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

OPT 8 12 14 23 N/A N/A N/A N/A
LB 8 10 14 22 30 41 52 64
UB 16 20 28 44 60 82 104 128
SMC 8 12 14 30 39 54 84 91
NC 8 12 14 23 34 47 66 77
LRTA∗ 8 12 14 25 34 47 66 81
Wagner 8 12 14 25 34 49 70 78
Thrun 8 12 14 23 32 47 62 77

The entries in the table denote testing time (in time-slots)

In an ideal case, the available cells of the array can be partitioned evenly.
In each partition, there exists a Hamiltonian path from one droplet source
to one droplet sink. Multiple tests can be run in non-overlapping parts in
parallel without violating the restriction on droplet motion. Therefore, we
have a lower bound LB on optimal solution of [n/k], where n is the number
of available cells in the system and k is the number of source-sink pairs. The
tightness of this lower bound is determined by the topological configuration
of the microfluidic array. In addition, an upper bound on the optimal solution
can be shown to be 2× n, which results from the depth-first search on a grid
graph [6].

In the first set of experiments, we determined the test time for two different
heuristic algorithms, i.e., the simple Monte-Carlo algorithm and the MRT
(four different U -value update rules) for Case (1). We assigned 10,000 runs
to the simple Monte-Carlo algorithm and 1,000 runs to the MRT. Table 2
shows the simulation results. Some optimal solutions obtained from the ILP
model, as well as lower bounds and upper bounds, are also listed. The results
show that heuristic algorithms provide close-to-optimal solutions for small

Chapter 10: Test Planning and Test Resource Optimization for Biochips 283

Fig. 10. Comparison of different heuristic approaches

Fig. 11. Simulation results for Case (2)

array sizes, such as 3× 3, 4× 4 and 5× 5. When the array size increases, the
results for heuristic algorithms are still contained between the lower bound
and upper bound of the optimal solution. The results for MRT are much closer
to the lower bound than the simple Monte-Carlo algorithm; see Fig. 10. These
experimental results highlight the advantage of adding the evaluation function
U -value.

In the second set of experiments for multiple test stimuli droplets (Case 2),
we compare the MRTs to the proposed improved heuristic algorithm (PIH-
MD). Here the arrays of larger sizes are considered. Simulation result shows
that the improved heuristic algorithm significantly outperforms the MRT for
larger array sizes; see Fig. 11. The ratio of the actual testing time to the lower
bound is always under 1.8 for the improved heuristic algorithm, while this
ratio for the MRT increases with the array size; see Fig. 12.

Finally, we study the number of available solutions for each heuristic algo-
rithm when the number of simulation runs is fixed, i.e., 500. Figure 13 shows
that the proposed improved heuristic algorithm (PIH-MD) generates many

284 F. Su et al.

Fig. 12. Scalability of PIH-MD compared to MRT

Fig. 13. Comparison of the number of available solutions for 500 simulation runs

more available solutions than the MRT. This advantage results from adding
a new evaluation function ∆P to reduce the overlap between the coverage
areas of the two test stimuli droplets, and it leads to a better solution for test
planning and resource optimization.

9 Conclusions

In this chapter, we have presented an analysis of the test planning problem for
droplet-based microfluidic systems. Due to NP-hard nature of the problem,
heuristic approaches are needed. We have developed heuristic algorithms that
are applicable to droplet-based microfluidic arrays of large sizes. Experiment
results have shown that the heuristic solutions are close to the lower bounds
on the optimal solutions. The advantage of the improved heuristic algorithm
for multiple test stimuli droplets has been evaluated. In our ongoing work, we
are investigating fault tolerance techniques based on the concurrent testing
and reconfigurability of the droplet-based microfluidic systems.

Chapter 10: Test Planning and Test Resource Optimization for Biochips 285

References

1. T. Balch and R. Arkin, “Avoiding the past: a simple, but effective strategy for
reactive navigation”, Proc. Int. Conf. Rob. Autom., pp. 678–685, 1993

2. M. Berkelaar. lpsolve. Eindhoven Univ. Technol., Eindhoven, The Netherlands.
[Online]. Available: ftp://ftp.ics.ele.tue.nl/pub/lp solve

3. K. F. Böhringer, “Optimal strategies for moving droplets in digital microfluidic
systems”, Int. Conf. Miniaturized Chem. Biochem. Anal. Syst. (MicroTAS’03),
pp. 591–594, 2003

4. N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined
MEMS”, Proc. IEEE Int. Test Conf., pp. 739–749, 2000

5. J. Gross and J. Yellen, Graph Theory and its Applications, Boca Raton, FL:
CRC Press, 1999

6. C. Icking, T. Kamphans, R. Klein and E. Langetepe, “Exploring an Unknown
Cellular Environment”, Proc. Eur. Workshop Comput. Geometry, pp. 140–143,
2000

7. A. Itai, C. H. Papadimitriou and J. L. Szwarcfiter, “Hamilton paths in grid
graphs”, SIAM J. Computing, vol. 11, pp. 676–686, 1982

8. H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc.
SPIE: Design, Test Microfabrication MEMS MOEMS, vol. 3680, pp. 78–83, 1999

9. H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic
arrays”, Proc. IEEE VLSI Test Symp., pp. 403–409, 2003

10. H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation
in mixed micro-fluidic microelectronic systems”, J. Electron. Testing: Theory
Appl. (JETTA), vol. 17, pp. 427–437, 2001

11. A. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodol-
ogy”, Proc. IEEE Int. Test Conf., pp. 923–931, 1997

12. R. E. Korf, “Real-time heuristic search”, Artif. Intell., vol. 42, pp. 189–211, 1990
13. W. Menz and A. Guber, “Microstructure technologies and their potential in

medical applications”, Minimally Invasive Neurosurgery, vol. 37, pp. 21–27, 1994
14. S. Mir, B. Charlot and B. Courtois. “Extending fault-based testing to micro-

electromechanical systems”, J. Electron. Test. Theory Appl. (JETTA), vol. 16,
pp. 279–288, 2000

15. S. Mir, H. Kerkhoff, R. D. Blanton, H. Bederr and H. Klim, “SoCs with MEMS?
Can we include MEMS in the SoCs design and test flow?”, Proc. IEEE VLSI
Test Symp., pp. 449, 2002

16. S. D. Nigam and J. U. Turner, “Review of statistical approaches to tolerance
analysis”, Computer-Aided Des., vol. 27, pp. 6–25, 1995

17. C. H. Papadimitriou, Computational Complexity, Reading, MA: Addison
Wesley, 1993

18. M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actua-
tion of liquid droplets for microfluidic applications”, Appl. Phys. Lett., vol. 77,
pp. 1725–1726, 2000

19. F. Su, W. Hwang, A. Mukherjee and K. Chakrabarty, “Defect-oriented test-
ing and diagnosis of digital microfluidics-based biochip”, Proc. IEEE Int. Test
Conf, 2005

20. F. Su and K. Chakrabarty, “Design of fault-tolerant and dynamically-
reconfigurable microfluidic biochips”, Proc. Des. Automation Test Eur. (DATE)
Conf.,, pp. 1202–1207, 2005

286 F. Su et al.

21. F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidics-
based biochips”, Proc. IEEE Int. Conf., CAD, pp. 223–228, 2004

22. F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic
systems”, Proc. IEEE Int. Test Conf., pp. 1192–1200, 2003

23. S. Thrun, Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92–102, Carnegie Mellon University, 1992

24. I. Wagner, M. Lindenbaum and A. Bruckstein, “On-line graph searching by
a smell-oriented vertex process”, Proc. AAAI Workshop on On-Line Search,
pp. 122–125, 1997

25. H. P. Williams, Model Building in Mathematical Programming, New York:
Wiley, 1999

26. T. Zhang, K. Chakrabarty and R. B. Fair, Microelectrofluidic Systems: Modeling
and Simulation, Boca Raton, FL: CRC Press, 2002

27. International Technology Roadmap for Semiconductor (ITRS), http://public.
itrs.net/Files/2003ITRS/Home2003.htm

Chapter 11: Testing and Diagnosis of Realistic
Defects in Digital Microfluidic Biochips

F. Su, W. Hwang, A. Mukherjee, and K. Chakrabarty

1 Introduction

Over the past decade, research in integrated circuit testing has broadened
from digital test to include the testing of analog and mixed-signal devices.
More recently, new test techniques for mixed-technology microelectromechan-
ical systems (MEMS) are also receiving attention [1–5]. As MEMS rapidly
evolve from single components to highly integrated systems for safety-critical
applications, dependability is emerging as an important performance para-
meter. Fabrication techniques such as silicon micromachining lead to new
types of manufacturing defects in MEMS [2]. Moreover, due to their underly-
ing mixed technology and multiple energy domains (e.g., electric, mechanical,
and fluidic), such composite microsystems exhibit failure mechanisms that are
significantly different from those in electronic circuits. In fact, the 2003 Inter-
national Technology Roadmap for Semiconductors (ITRS) recognizes the need
for new test methods for disruptive device technologies that underly compos-
ite microsystems, and highlights it as one of the five difficult test challenges
beyond 2009 [6].

Microfluidics-based biochips constitute an emerging category of mixed-
technology microsystems [7]. Recent advances in microfluidics technology have
led to the design and implementation of miniaturized devices for various bio-
chemical applications. These microsystems, referred to interchangeably in the
literature as microfluidics-based biochips, lab-on-a-chip and bioMEMS [8, 9],
promise to revolutionize biosensing, clinical diagnostics, and drug discovery.
Such applications can benefit from the small size of biochips, the use of micro-
liter/nanoliter sample volumes, lower cost, and higher sensitivity compared to
conventional laboratory methods.

The first generation of microfluidics-based biochips was based on the ma-
nipulation of continuous liquid flow through fabricated microchannels [7].
Liquid flow was achieved either by external pressure sources, integrated
mechanical micropumps, or by electrokinetic mechanisms such as electro-
osmosis. Recently, a novel microfluidics technology has been developed to

288 F. Su et al.

manipulate liquids as discrete microliter/nanoliter droplets. Following the
analogy of digital electronics, this technology is referred to as “digital mi-
crofluidics” [8]. Compared to continuous-flow systems, digital microfluidics
offer the advantage of dynamic reconfigurability and architectural scalability.

The level of system integration and the complexity of digital microfluidics-
based biochips are expected to increase in the near future due to the growing
need for multiple and concurrent bioassays on a chip [9]. However, shrink-
ing processes, new materials, and the underlying multiple energy domains
will make these biochips more susceptible to manufacturing defects. More-
over, some manufacturing defects are expected to be latent, and they may
manifest themselves during field operation of the biochips. In addition, harsh
operational environments may introduce physical defects such as particle con-
tamination during field operation. Consequently, robust off-line and on-line
test techniques are required to ensure system dependability as biochips are
deployed for safety-critical applications such as field diagnostics tools to mon-
itor infectious disease, and biosensors to detect biochemical toxins and other
pathogens.

Although research in the design of digital microfluidics-based biochips has
gained considerable momentum in recent years [8–10], only limited work has
been reported thus far on biochip testing. A cost-effective test methodology
for digital microfluidic systems was first described in [11]. Likely physical de-
fects in such systems were analyzed and faults were classified as being either
catastrophic or parametric. Faults are detected in [11] by electrically con-
trolling and tracking the motion of test droplets. An optimal test planning
method for the detection of catastrophic faults in digital microfluidic arrays
was investigated in [12]. It is based on a graph model of the microfluidic ar-
ray and a problem formulation based on Hamiltonian paths in a graph. An
efficient concurrent testing method that interleaves test application with a
set of bioassays was proposed in [13]. Reconfiguration and defect tolerance
techniques for biochips were described in [14,15].

Prior work on the testing of digital microfluidics-based biochips is based
on invalid assumptions regarding the impact of certain defects on droplet
flow. For example, a common defect seen in fabricated microfluidic arrays is a
short-circuit between two adjacent electrodes [11]. It was assumed in [11–13]
that this defect causes a droplet to be stuck at one of the two electrodes irre-
spective of the orientation of liquid flow. No attempt was made in prior work
to experimentally validate this assumption. Experiments show however that
the effect of this short-circuit defect on droplet flow depends on whether the
droplet flow path is perpendicular to the two shorted electrodes or aligned
with them. A test procedure for such defects should therefore not only test
single cells as in [11–13], but it should also focus on pairs of cells and the tra-
versal of droplets from one cell to all its neighbors. In addition, no systematic
attempt has been made to relate defects to fault models and observable errors.

No attempt has been made in prior work to account for the hardware cost
of droplet sources and sinks. The locations of droplet sources and sinks are

Chapter 11: Testing and Diagnosis of Realistic Defects 289

determined manually, and the problem of determining these locations is not
incorporated in the test planning problem. Moreover, as shown in [14, 15],
digital microfluidic biochips offer dynamic reconfigurability to support defect
tolerance, whereby groups of cells in a microfluidic array can be reconfigured
to change their functionality in order to bypass defective cells. To facilitate
this reconfiguration, we not only need a pass/fail test, but we also need to
locate faulty cells. However, prior work has not addressed the issue of fault
diagnosis in microfluidic arrays.

In this chapter, we attempt to address the above issues for digital
microfluidics-based biochips. First we relate some realistic defects to fault
models and observable errors. We next set up an experiment to evaluate the
manifestation of electrode shorts at the fluidic behavioral level. Motivated by
the experimental results, we present a testing methodology based on graph
theory to detect catastrophic faults, including those caused by electrode
shorts. While this method can easily determine a test droplet flow path for
off-line testing, we show that it can be extended to support on-line testing,
whereby the test procedure is performed concurrently with a set of bioas-
says. This methodology can also automatically determine the location of test
droplet sources/sinks to optimize the test plan. In addition, we investigate the
problem of fault diagnosis. We apply this methodology to a real-life biochip
performing multiplexed biochemical assays, and compare our results with the
results reported in [13].

2 Prior Work

MEMS is a relatively young field compared to microelectronics. The hetero-
geneity inherent in MEMS, resulting from the use of interacting mechanical
and electronic devices, gives rise to many possible failure mechanisms and fail-
ure modes that are quite different from those in microelectronics. Thus efficient
fault models and test generation methods for MEMS remain a major chal-
lenge. Recently, fault modeling and fault simulation for surface-micromachined
MEMS have been analyzed [1–4]. In [1,2], a comprehensive testing methodol-
ogy for surface micromachined sensors has been presented. High-reliability and
safety-critical markets for MEMS, e.g., accelerometers used in automobiles,
are driving the integration of efficient built-in self-test and on-line monitoring
functions. Design-for-manufacturing (DFM) and design-for-testability (DFT)
methodologies have been incorporated in the design flow for MEMS [16].

However, test techniques for classical MEMS cannot be directly applied
to microfluidic systems, since they differ in the underlying energy domains
and in their working principles. The techniques and tools currently in use for
the testing of classical MEMS (e.g., comb-drive microresonator) mainly aim at
mechanical defects such as stiction; they do not handle fluids. Thus new testing
techniques are required for microfluidics-based biochips. Very limited work has
been reported in this area. Recently, fault modeling and fault simulation for

290 F. Su et al.

Fig. 1. Simple capacitive sensing circuit

continuous-flow microfluidic biochips have been proposed in [17, 18]. Also, a
DFT technique for microfluidic systems based on electro-osmotic flow has
been discussed in [19].

The first attempt to address testing problem of droplet-based “digital”
microfluidic biochips is described in [11]. In the proposed testing methodology,
test stimuli droplets containing the normal conductive fluid (e.g., 0.1 M KCL)
are released into a two-dimensional microfluidic array from on-chip reservoirs,
and are guided through the system following the designed testing scheme. Both
catastrophic and parametric faults are detected by electrically controlling and
tracking the motion of these test stimuli droplets. This testing method is
minimally invasive and easy to implement, thus it alleviates the need for
expensive and bulky external testing devices.

The proposed unified detection mechanism consists of a simple RC os-
cillator circuit formed by the sink electrodes and the fluid between them as
an insulator; see Fig. 1 [12]. The capacitance of this structure depends on
the presence of the droplet since the filler medium and the droplet have dis-
tinct permittivities. By sensing the capacitance of this structure using a sim-
ple frequency counter, one can determine whether a droplet has reached the
sink. This mechanism can be electronically implemented and easily integrated
on-chip. In order to provide a unidirectional and unambiguous detection mech-
anism, the pass/fail criterion has to be determined based on the presence of
the droplet at the sink electrode and this criterion should be applied for all
test cases, i.e., the fault-free operation is associated with the presence of the
droplet at the sink electrode and faulty operation with its absence.

In [12, 13], the test planning problem was formulated in terms of the
graph partitioning and the Hamiltonian path problems from graph theory.
The key idea underlying this optimization approach is to model the two-
dimensional microfluidic array as a directed graph, and then partition it into
non-overlapping subgraphs. In each subgraph, a Hamiltonian path from one
source to one sink is determined as the flow path of test droplets such that
each cell of a microfluidic array can be traversed. If one single cell becomes

Chapter 11: Testing and Diagnosis of Realistic Defects 291

faulty, test droplet would be stuck during its transportation. The faulty status
can be easily determined by observing the corresponding test points (i.e., sink
electrodes connected with capacitive sensing circuits).

3 Fault Modeling

Like microelectronic circuits, a defective microfluidic biochip is said to have a
failure if its operation does not match its specified behavior. In order to facil-
itate the detection of defects, fault models that efficiently represent the effect
of physical defects at some level of abstraction are required. These models
can be used to capture the effect of physical defects that produce incorrect
behaviors in the electrical or fluidic domain. As described in [11], faults in
digital microfluidic systems can be classified as being either catastrophic or
parametric. Catastrophic faults lead to a complete malfunction of the system,
while parametric faults cause degradation in the system performance. Table 1
lists some common failure sources, defects, and the corresponding fault models
for catastrophic faults in digital microfluidic biochips.

Table 1. Some failure sources, corresponding defects, fault models, and observable
errors in digital microfluidic biochips

Failure source Defect Fault model Observable error

Excessive voltage
applied to
electrode

Dielectric
breakdown

Short between
the droplet and
the electrode

Droplet undergoes
electrolysis, which
prevents its further
transportation

Abnormal metal
layer deposition
and etch
variation during
fabrication

Metal connection
between two
adjacent
electrodes

Electrode short A droplet resides in
the middle of these
two shorted
electrodes, and its
transport along one
or more directions
cannot be achieved

Broken control
wire to control
source

Electrode open A failure in
activating the
electrode for droplet
transport

Particle
contamination

Fluidic
high-impedance
between plates

Fluidic open A droplet cannot
move across the
obstacle

Abnormal
environment –
temperature
variation during
operation

Unexpected
viscosity change
of fluids (droplet
and filler
medium)

Fluidic open A droplet cannot
move due to the
increased friction at
the droplet/medium
interface

292 F. Su et al.

In addition, physical defects that cause parametric faults include geomet-
rical parameter deviations. The deviation in insulator thickness, electrode
length, and height between parallel plates may exceed their tolerance value
during fabrication. Note that, even though the methodology described in this
chapter is applied to only catastrophic faults, it can easily be extended for
the detection of parametric faults based on the unified detection mechanism
proposed in [11].

It is evident that catastrophic faults can lead to a complete cessation of
droplet transportation. However, there exist differences between their corre-
sponding erroneous behaviors. For instance, to test for the electrode-open
fault, it is sufficient to move a test droplet from any adjacent cell to the faulty
cell. The droplet will always be stuck during its motion due to the failure in
charging the control electrode. On the other hand, if we move a test droplet
across the faulty cells affected by an electrode-short fault, the test droplet
may or may not be stuck depending on its flow direction. In the next section,
we design a defect-oriented experiment to evaluate the behavioral impacts of
electrode-short faults.

4 Defect-Oriented Experiments

4.1 Microfluidic Biochip Description

The microfluidic biochip discussed in this chapter is based on the manipu-
lation of microliter–nanoliter droplets using the principle of electrowetting-
on-dielectric (EWOD) [8, 20]. Electrowetting refers to the modulation of the
interfacial tension between a conductive fluid and a solid electrode coated with
a dielectric layer by applying an electric field between them. An imbalance of
interfacial tension is created if an electric field is applied to only one side of
the droplet; this tension gradient forces the droplet to move.

The basic cell of an EWOD-based digital microfluidic biochip consists
of two parallel glass plates, as shown in Fig. 2. The bottom plate contains
a patterned array of individually controllable electrodes, and the top plate
is coated with a continuous ground electrode. The control electrodes in the
bottom plate are coated with a dielectric insulator, e.g., parylene C, for in-
sulation. A hydrophobic thin film is also added to the top and bottom plates

Top plate

Bottom plate
Electrode gapControl electrodes

Hydrophobic
insulators

Droplet Filler
fluid

Side View

31 2

1 2 3
Top View

Control electrodes

Ground electrode

Fig. 2. Basic cell used in a digital microfluidic biochip

Chapter 11: Testing and Diagnosis of Realistic Defects 293

to decrease the wettability of the surface and to add capacitance between the
droplet and the control electrode. The droplet containing biochemical samples
and the filler medium, such as the silicone oil, are sandwiched between the
plates; the droplets travel inside the filler medium.

In order to move a droplet, a control voltage is applied to an electrode
adjacent to the droplet (e.g., electrode 3 in Fig. 2) and at the same time the
electrode just under the droplet (e.g., electrode 2 in Fig. 2) is deactivated.
Thus, the charge in the droplet/insulator interface that is accumulated over
the activated electrode results in an interfacial tension gradient, which conse-
quently causes droplet transport. By varying the electrical potential along a
linear array of electrodes, microliter/nanoliter-volume droplets can be trans-
ported along this line of electrodes. The velocity of the droplet can be con-
trolled by adjusting the control voltage (0 ∼ 90V), and droplets have been
observed to move with velocities up to 20 cm s−1 [8]. Furthermore, based on
this principle, droplets can be transported freely to any location on a two-
dimensional array without the need for micropumps and microvalves that are
required in continuous-flow systems.

Using a two-dimensional microfluidic array, many common operations for
different bioassays can be performed, such as sample movement (transport),
temporary sample preservation (store), and the mixing of different samples
(mix). For instance, the store operation is performed by applying an insu-
lating voltage around the droplet. The mix operation is used to route two
droplets to the same location and then turn them about some pivot points.
Note that these operations can be performed anywhere on the array, whereas
in continuous-flow systems they must operate in a specific micromixer or mi-
crochamber. This property is referred to as the reconfigurability of a digital
biochip. The configurations of the array, i.e., the droplet transport routes and
their rendezvous points, are programmed into a microcontroller that controls
the voltages of electrodes in the array.

The in vitro measurement of glucose and other metabolites, such as
lactate, glutamate, and pyruvate, is of great importance in clinical diag-
nosis of metabolic disorders. A colorimetric enzyme-kinetic glucose assay
has been recently demonstrated in lab experiments on a digital microfluidic
biochip [10,21,22]. This biochip uses a digital microfluidic array, which moves
and mixes droplets containing biochemical samples and reagents, and an in-
tegrated optical detection system consisting of a LED and a photodiode; see
Fig. 3 [10, 21, 22]. We further envision that a disposable microfluidic biochip
will be easily plugged into a controller circuit board that can be programmed
and powered via a standard USB port, as shown in Fig. 4.

4.2 Experiment Design

To evaluate the effect of an electrode short on microfluidic behavior, we design
an experiment using a 2×4 microfluidic array as shown in Fig. 5a. This exper-
iment includes two steps. First, we impose the condition that two electrodes

294 F. Su et al.

Fig. 3. Schematic of a digital microfluidic biochip used for colorimetric assays: (a)
basic cell; (b) top view of microfluidic array

Fig. 4. The concept of a commercial disposable microfluidic biochip

adjacent in the X-direction, e.g., electrode 6 and 7 in Fig. 5b, are shorted. A
horizontal flow path, e.g., 5 → 6 → 7 → 8, is used to guide a test droplet
across the shorted cells. The effect of the short between two adjacent elec-
trodes can be simulated by simultaneously changing the voltages on these
two electrodes. In the second step, two electrodes adjacent in the Y-direction,
e.g., electrode 2 and 6 in Fig. 5c are considered to be shorted. As in the first
step, a test droplet traverses the faulty cell (electrode 6) following a flow path
in the X-direction (e.g., 5 → 6 → 7). For both steps, we use optical devices
such as CCD cameras to visually inspect if the test droplet is stuck during its
transportation.

4.3 Chip Fabrication

The 2 × 4 microfluidic array used in the experiment was fabricated using
standard microfabrication techniques. The detailed fabrication process is de-
scribed in [20]. The control electrodes in the bottom glass plate are formed

Chapter 11: Testing and Diagnosis of Realistic Defects 295

Fig. 5. Design of an experiment to study microfluidic behavior in the presence of
the electrode-short fault

by a 200 nm thick layer of chrome, which is further coated with a layer of
parylene C (800 nm) as a dielectric insulator. This microfluidic array uses a
1.0 mm electrode pitch size. A layer of optically transparent indium tin oxide
(ITO) in the top glass plate is used as the continuous ground electrode. In
addition, a 50-nm-thick film of Teflon AF 1600 is added as the hydrophobic
coating on both the top and the bottom plates. The 600 µm gap between the
top and bottom plates is set using a glass spacer.

4.4 Experimental Setup

The experimental setup for testing the 2 × 4 microfluidic array is shown in
Fig. 6. The chip-under-test was mounted on a custom-assembled platform.
We use a custom-made electronic unit to independently control the voltages
of each control electrode in the array by switching them between ground and
a DC actuation voltage. In our experiments, the actuation voltage was set at
50 V. A 1-microliter test droplet containing 0.1 M KCL was dispensed onto
the chip using a micropipettor; the filler fluid medium, i.e., 1 cSt silicone oil
was introduced after droplet dispensing. Images of droplet transportation dur-
ing the experiment were obtained with an industrial microscope (VZM 450i,
Edmund Industrial Optics) and a color CCD camera (Sony XC-999). Images
were either captured directly to a PC using a frame grabber (MicroDC30,
Pinnacle Systems) or were video-recorded with a super-VHS videocassette
recorder (JVC-S4600).

296 F. Su et al.

Fig. 6. Experimental setup

4.5 Results and Analysis

In the first step of the evaluation experiment, we let a test droplet move
through two electrodes that are adjacent in the X-direction. As indicated
before, these two electrodes are effectively shorted by setting them to identical
voltages. A droplet aligns itself with the charged electrode to maximize the
area of overlap and therefore the electrostatic energy stored in the effective
capacitors between the droplet and the electrode. Thus the test droplet resides
around the middle of two shorted electrodes as shown in Fig. 7. Since there is
no overlap between this droplet and neighboring electrode (i.e., electrode 8),
the test droplet cannot be further moved to electrode 8; it is stuck between
electrode 6 and electrode 7 in the experiment.

The second step of the experiment is to investigate what happens when
there is a short between two electrodes that are adjacent in the Y-direction.
Interestingly, our experiment shows that in this case, the test droplet can still
move across electrode 6, even though this electrode is shorted with electrode
2; see Fig. 8. We can explain this phenomenon on the basis of the fact that
there still exists sufficient overlap between the test droplet and electrode 7,
even though the droplet tends to move towards the middle of electrodes 6 and
2. Thus, the test droplet is not stuck if it follows the test plan 5 → 6 → 7.

The above experimental results provide useful insights on how testing
should be carried out for microfluidic arrays. We find that electrode short
faults lead to an error only when the droplet flow path is aligned with the
orientation of the electrode shorts. In addition to electrode short, there exist
other physical defects that lead to similar erroneous behavior. For example,
particle contamination between two adjacent cells also produces an error under
specific droplet flow paths. In order to detect these defects, a test plan should
guide the test droplet to move from a cell in the array to all its neighbors.

These experimental results also highlight a major deficiency of prior work
on the testing of microfluidic arrays [12,13]. The previous approaches map the

Chapter 11: Testing and Diagnosis of Realistic Defects 297

Fig. 7. Experimental results and analysis for the first step

Fig. 8. Experimental results and analysis for the second step

droplet flow path problem to that of finding a Hamiltonian path in a graph
model of the array. In other words, the test droplet is routed through the ar-
ray such that it visits every cell exactly once. While this approach guarantees

298 F. Su et al.

the detection of faults involving only one electrode or cell, it is not sufficient
to detect electrode-short and fluidic-open faults that affect two adjacent elec-
trodes. This is highlighted in the next section.

5 Testing and Diagnosis

The “edge-dependent” nature of some defects (e.g., electrode shorts), as seen
in Sect. 4, indicates that test planning methods proposed in [12, 13], which
are based on the notion of the Hamiltonian path from graph theory, are not
sufficient for fault detection. For example, in Fig. 5c the test droplet path
5 → 6 → 7 → 8 → 4 → 3 → 2 → 1 fails to detect an electrode short fault
between electrodes 2 and 6, even though this Hamiltonian path-based flow
visits each cell exactly once. Thus, a new test planning method is required
to deal with this problem. Since this type of defect can be introduced into
microfluidic biochips not only during fabrication (e.g., electrode shorts due
to manufacturing problems), but also during in-field operation (e.g., due to
particle contamination and electrode metal migration), both off-line and on-
line testing techniques are necessary. In addition, to support defect tolerance
based on reconfiguration, a diagnosis technique is needed to locate candidate
fault sites in a microfluidic array that is deemed to be faulty by the testing
procedure.

5.1 Off-Line Testing

Test droplets are first dispensed onto the microfluidic array from the droplet
source (i.e., on-chip reservoir and dispensing port). They are then routed
through the biochip-under-test, i.e., traversing all the cells and cell boundaries.
If there exists a catastrophic fault on the chip, the test droplet gets stuck at
an intermediate point. Otherwise, it is eventually guided back to the droplet
sink. The sink electrode is connected to a capacitive detection circuit that
can determine the presence of the test droplet [11]. In this way, we can easily
determine the faulty or fault-free status of the microfluidic biochip from the
electrical output of the detection circuit.

We formulate the test planning problem in terms of the Euler circuit and
Euler path problems from graph theory [21]. The key idea underlying this
approach is to model the digital microfluidic array under test as an undirected
graph, and then “eulerize” this graph. On the basis of Euler’s theorem [21], a
flow path for the test droplet can be easily obtained, which allows us to detect
shorts between any two directly adjacent electrodes in the array.

First, we model the array of microfluidic cells using an undirected graph
G = (V,E) where the set of vertices V represents the set of microfluidic
cells in the array, and each edge is an unordered pair of vertices. The edge
{u, v} ∈ E if and only if vertex u and vertex v represent two directly adjacent

Chapter 11: Testing and Diagnosis of Realistic Defects 299

Fig. 9. (a) Graph model for a 5×5 microfluidic array; (b) eulerized graph containing
an Euler circuit; (c) eulerized graph containing an Euler path

microfluidic cells. Figure 9a shows an example of the graph model for a 5× 5
microfluidic array.

An Euler path in a graph G is defined as a path that traverses all the edges
of G exactly once [23]. Similarly, an Euler circuit is a cycle that traverses all
the edges of the graph exactly once. We know from [23] that an undirected
graph has an Euler circuit if and only if it is connected, and each vertex
has even degree. Moreover, an undirected graph has an Euler path if it is
connected and has exactly two vertices of odd degree. The Euler path must
start at one of the odd-degree vertices and must end at the other odd-degree
vertex [23].

Euler’s theorems give us the means for finding efficient ways in which
to traverse all the edges of an undirected graph. However, we notice that a
graph model of a microfluidic array usually has more than two vertices of odd
degree. Thus we have to retrace some of the edges in order to traverse all
edges at least once. In order to apply existing Euler cycle/path algorithms,
we need to convert some or all the vertices of odd degree to even degree by
adding additional edges. The process of eliminating odd degree vertices by
adding additional edges is called eulerizing the graph. There are two different
ways for eulerizing the graph model of a microfluidic array, depending on
whether an Euler circuit or an Euler path is desired. For example, as shown
in Fig. 9b, there exists an Euler circuit in the eulerized graph model for a
5 × 5 microfluidic array since each vertex becomes to be even degree. On the
other hand, another eulerized graph in Fig. 9c contains an Euler path starting
from one odd-degree vertex, e.g., cell (2,1) and ending at another odd-degree
vertex, e.g., cell (4,5).

300 F. Su et al.

Although both these eulerizing methods can provide an edge tour as the
feasible flow path of a test droplet, we use the first method (i.e., to find an
Euler circuit) here. There are two main reasons for this choice. First, in the
second eulerizing method we must use the node with odd degree as the starting
or the ending point. Thus, to find an Euler path between another pair of cells,
a different eulerized graph is required. In contrast, since any vertex can be
used as the start and end point of an Euler circuit, we can locate the test
droplet source/sink adjacent to any boundary cell using the same eulerized
graph in the first method. Thus, this method is especially suitable when we
try to determine the optimal location of droplet sources and sinks. Second, we
are motivated by considerations of physical implementation. If we merge the
test droplet source and sink, i.e., connect the electrode of the dispensing port
to the capacitive detection circuit, it not only reduces the area overhead of the
test hardware, but it can also conserve the liquid volume of on-chip reservoir
by recycling test droplets. This reduces the cost of manual maintenance. This
feature is especially desirable for in-field testing.

Using the selected Eulerizing method, a graph model for the microfluidic
array under test is modified to G′ = (V, E′), where the new set of edges
E′ includes all edges from E as well as the additional edges. The following
theorem quantifies the number of additional edges that are necessary.

Theorem 1. The minimum number of additional edges Na required to euler-
ize an m×n microfluidic array such that an Euler circuit exists in the corre-
sponding graph, is given by:

Na =

{
m + n − 4, if m and n are even;
m + n − 2, otherwise.

Proof. Since in an m × n array all internal vertices have even degree, i.e., 4,
we only need to add additional edges to the boundary vertices. Then this
theorem can easily be proven using three different cases. 1) if m and n are
both odd, Na = 2

⌊
m−1

2

⌋
+ 2

⌊
n−1

2

⌋
= m + n − 2; 2) if m or n is even and

another one is odd, Na =
⌊

m−1
2

⌋
+

⌊
m
2

⌋
+

⌊
n−1

2

⌋
+

⌊
n
2

⌋
= m + n − 2; 3) if m

and n are both even, Na = 2
⌊

m−1
2

⌋
+ 2

⌊
n−1

2

⌋
= m + n − 4. ��

Based on Theorem 1, we find that the total number of edges of an eulerized
graph model G′ = (V, E′) for an m × n microfluidic array is as follows:

N(E′) = N(E) + Na = (2mn − m − n) + Na

=

{
2 mn − 4, if m and n are even;
2 mn − 2, otherwise.

We next define the length of a time slot to be equal to the time during
which a test droplet moves from one cell to an adjacent one. Thus, the total
testing application time is N(E′) time slots, if a test droplet follows an Euler
circuit-based path.

Chapter 11: Testing and Diagnosis of Realistic Defects 301

Procedure FLEURY’S ALGORITHM

1 Make sure the graph is connected and all vertices have even degree
2 Start at any vertex
3 Travel through an edge that is not visited if

a) it is not a bridge for the part not visited, or
b) there is no other alternative

4 Label the edges in the order in which they were visited
5 When there is no edge not visited, an Euler circuit is found.

Fig. 10. Pseudocode of Fleury’s algorithm [23]

To find an Euler circuit in the eulerized graph, we use the well-known
Fleury’s algorithm; its pseudocode is shown in Fig. 10 [23]. The advantage of
this algorithm is that since it is a real-time search algorithm, it can be easily
modified to handle both multiple test droplets and the concurrent testing
problem.

The identification of an edge as a bridge, i.e., cut edge,1 in Fleury’s algo-
rithm can be achieved by applying depth-first search to check the connectivity
of the untested part of the graph [24]. Although it works well for a microfluidic
array of modest size, its complexity is O(n+e), where n and e are the number
of vertices and edges in the part of an undirected graph that has not been
visited, respectively. This amounts to high computation cost because of the
need for iterative connectivity checking during the search for an Euler circuit.
Therefore, we modify Fleury’s algorithm by replacing bridge checking with
a probabilistic search procedure based on some simple rules of complexity
O(1). We probabilistically select the edge to visit. The probability assignment
is based on some simple rules, which can be used as guidelines to find Euler
circuits; some of these rules are listed as follows:

1. Do not use an edge to go to a vertex unless there is another edge available
to leave that vertex (except for the last step). An example of probability
assignment based on this rule is shown in Fig. 11a.

2. An edge that belongs to a loop is not a bridge. Note that if there exist
two “not visited” edges between two adjacent vertices, they form a loop.
Thus, we can select one such edge with a higher probability compared to
other edges; see Fig. 11b.

Although this rule-based search cannot guarantee the identification of an
Euler circuit in one run, an appropriate number of simulation runs can eas-
ily lead to the desired result. This method is scalable to large problem sizes.
In addition, the starting point, i.e., the location of droplet source and sink,
can be selected at random, which is especially important for multiple test
droplets and for concurrent testing. The pseudocode of this probabilistic mod-
ified Fleury’s algorithm (PMF) is shown in Fig. 12.
1 A cut edge (bridge) of a graph G is an edge whose removal disconnects G.

302 F. Su et al.

There is no other edge
available to leave this vertex

P = 0

P = 0.5
P = 0.5

These two edges can
form a loop

P = 0.2

Either one edge
is selected with

P = 0.8

(a) (b)

P : probability of edge selection

Test droplet flow
Visited edge that is not to

be visited again

Assign a higher probability

probability set to 0

Fig. 11. Illustration of simple rules

Procedure PMF ALGORITHM

/∗ Probabilistic modified Fleury’s algorithm ∗/
1 Loop: For n = 1 to N (maximum number of simulation runs)
2 Select vertex vn (1) as the starting point at random

{vn (1) ∈ V : it represents the boundary cell on the array}
3 Repeat {/∗ test one “not visited” edge at each time step t∗/
4 Determine candidate edges E(t) =

{e ∈ E: it is not visited and one of its end vertex is vn(t)}
5 Select e ⊆ E(t) with probability P (e)

/∗ P (e) is assigned to edge e based on simple rules∗/
6 Visit e, and set vn(t + 1) = another end vertex of e
7 t = t + 1}
8 Until (E(t) is empty)
9 If (all edges have been tested)
10 /∗An Euler circuit-based test plan found∗/
11 Record a test plan {vn(t)}
12 Else Search for an Euler circuit failed
13 End if
14 Record the location of source and sink, i.e., vn(1)
15 End loop

Fig. 12. Pseudocode of the PMF algorithm

The Euler circuit-based method can be further extended to find a test
schedule for more than one test droplet. We first partition the graph model
of a microfluidic array into subgraphs, and then eulerize them individually
such that there exists an Euler circuit in each subgraph. In this way, multi-
ple test droplets can perform the edge-tour testing simultaneously in different
parts of the microfluidic array. The total testing application time is the maxi-
mum of the testing time for any of these subgraphs. This leads to the reduction
of the testing time at the expense of test hardware overhead, corresponding
to multiple droplet sources/sinks. Figure 13 shows an example of two test

Chapter 11: Testing and Diagnosis of Realistic Defects 303

Fig. 13. Application of two test droplets to a 5 × 5 microfluidic array

droplets that are applied to a 5×5 microfluidic array. The testing time can be
reduced significantly, i.e., from 48 time slots to 28 time slots. Note that there
exist overlaps between the different subgraphs in order to cover all edges in
the graph, as shown in Fig. 8. However, we must not allow two test droplets
to traverse an edge at the same time. In addition, an important constraint
arising from fluidic considerations is that a droplet should never be in a cell
directly adjacent or diagonally adjacent to another droplet; otherwise, these
two droplets will mix together. This restriction increases the complexity of
test planning problem and it may introduce waiting time (stall cycles) for
some test droplets. The proposed PMF algorithm can be easily modified to
solve the above problem. To ensure that fluidic constraints are satisfied, we
assign a random (but distinct) priority to each test droplet; the test droplet
movements are planned in prioritized order, whereby in each time step the
test droplet with higher priority is scheduled first, and the droplet with lower
priority attempts to avoid the droplet with higher priority.

5.2 On-Line Testing

Some cells in a digital microfluidic biochip may be rendered faulty during
in-field operation. Therefore, on-line concurrent testing, which allows testing
and normal bioassays to run simultaneously on a chip, can play an important
role in alerting the user to an unpredictable faulty status.

We can easily modify the PMF algorithm to derive a test plan that sup-
port on-line concurrent testing. We assume that the schedule of a bioassay
performed on the microfluidic biochip is known a priori, e.g., using methods
described in [9]. The goal of a desirable test plan is to avoid conflicts with
the normal assay operation while traversing all the edges in the array. Thus,
an additional evaluation step is added to the search procedure in the PMF
algorithm, i.e., in each time step we need to check the other endpoint (ver-
tex) of each candidate edge. If this vertex represents the cell that is occupied
by the assay operation at this time slot or adjacent to an assay droplet, the
corresponding edge cannot be visited. If no edges are available at this time

304 F. Su et al.

step, the test droplet must wait at the current cell until there is an avail-
able edge to visit. The total concurrent testing time equals Euler tour time,
i.e., N(E′) time slots, plus the waiting time. Different locations of test droplet
sources and sinks can affect the on-line testing time. By randomly selecting
the starting point, the PMF algorithm attempts to find the best location of
test droplet sources and sinks to minimize the testing time. Moreover, as in
off-line testing, multiple test droplets can be applied to reduce the testing
time, whereby each test droplet is guided to traverse the partition and also
does not conflict with the bioassay in this region.

5.3 Diagnosis

In order to increase the reliability and system lifetime of digital microflu-
idic biochips, defect tolerance based on reconfiguration can be used to bypass
faulty cells [14, 15]. We implement the diagnosis procedure using multi-step
and adaptive Euler circuit-based testing methods. In each step, we divide the
candidate faulty region into two partitions, and then test each partition to
determine whether it is a candidate faulty region. Under single fault assump-
tion [14], we can simply check either one binary partition to determine the
faulty candidate region. By using a series of adaptive testing steps, we can
eventually determine the location of candidate faulty cells. Assume that such
a diagnosis procedure includes a series of testing steps, i.e., T1, T2, . . . , Tk,
where Ti (i = 1 ∼ k) denotes an Euler circuit-based traversal of the candidate
faulty region at step i, and the final testing step Tk is to traverse a 2 × 2
array, i.e., the minimum candidate faulty region that can be located by Euler
circuit-based approach. The number of steps k for a given microfluidic array
size is given by using the following theorem.

Theorem 2. To locate any single fault (including electrode-short faults) in an
m×n microfluidic array (m, n > 2), the number of Euler circuit-based testing
steps k in the proposed diagnosis scheme is k = �log2(m − 1)�+�log2(n − 1)�.
Proof. We can prove this theorem by using the two-phase partitioning
schemes. In the first phase, we split the array in half with a cutting line
in the Y-direction (North–South). The binary partition is recursively applied
until each partition contains only one edge in the row of the corresponding sub-
array. The number of steps in recursive binary partitioning is �log2(n − 1)�.
Next, a similar partitioning scheme is applied to the m × n array with a
cutting line in the X-direction, until each partition only has one edge in
the column; the number of binary partitioning steps is �log2(m − 1)� in this
phase. Through these two phases, we are able to locate any single fault to a
minimum candidate faulty region. The total number of partitioning steps is
�log2(m − 1)�+�log2(n − 1)�, which is a sufficient number of adaptive testing
steps to locate any single fault. Thus k = �log2(m − 1)� + �log2(n − 1)�. ��

We denote the time needed for each testing step Ti by Tt(Ti); it includes
the Euler traversal time in the candidate faulty region described in Sect. 5.1,

Chapter 11: Testing and Diagnosis of Realistic Defects 305

Fig. 14. An example of fault diagnosis for a 5 × 5 microfluidic array

and the droplet transportation time between the droplet source/sink and the
testing region (if droplet source and sink are not adjacent to this testing
region). Thus, the total diagnosis time Td is Td =

∑k
i=1 Tt(Ti).

Figure 14 illustrates the adaptive diagnosis procedure for an array with
an electrode-short fault. Based on the single fault assumption, we can easily
locate the faulty region caused by the electrode-short fault through a series of
testing steps, i.e., T1 ∼ T4. If some bioassay operations are scheduled in this
region, they must be remapped to other faulty-free regions on the microfluidic
array to avoid erroneous assay results. This diagnosis method can locate not
only single faults, but it can also easily be extended to locate multiple faults
by using multiple test droplet sources and sinks.

Furthermore, a comprehensive testing and diagnosis procedure can be
developed for digital microfluidic biochips. As digital microfluidic biochips
become widespread in safety-critical biochemical applications, the reliabil-
ity of these systems will emerge as a critical performance parameter. These

306 F. Su et al.

systems need to be tested adequately not only after fabrication (off-line), but
also continuously during in-field operation (on-line). Once the testing proce-
dure determines the faulty status of biochips, the operation of the normal
bioassay is stopped. Diagnosis techniques are applied to determine the loca-
tion of faulty region. Then reconfiguration techniques are applied to tolerate
operational faults; the biochip is redesigned with the help of the proposed
system-level design automation tools.

6 Real-Life Application

In this section, we use the real-life application example from [13], i.e., multi-
plexed glucose assay and lactate assay, to illustrate how Euler circuit-based
method can be used for off-line testing, on-line testing and diagnosis in digital
microfluidic biochips.

The glucose assay performed on digital microfluidic biochips is based
on Trinder’s reaction, a colorimetric enzyme-based method. In addition to
glucose assays, the detection of other metabolites such as lactate, gluta-
mate, and pyruvate using digital microfluidics has also been demonstrated
recently [10, 21, 22]. Furthermore, all these assays can be integrated to form
a set of multiplexed bioassays that are performed concurrently on a microflu-
idic platform. Figure 15 illustrates a fabricated microfluidic biochip prototype
used for multiplexed bioassays [6]. For example, Sample 1 can be assayed for
glucose using Reagent 1, which contains glucose oxidase and other chemicals.
Similarly, Sample 2 can be assayed for lactate using Reagent 2, which consists
of lactate oxidase and other chemicals. In this way, both glucose assay and
lactate assay can be carried out concurrently. To demonstrate multiplexed
assays, only cells and electrodes used for the bioassay have been fabricated.

Fig. 15. Fabricated microfluidic array used for multiplexed bioassays [13]

Chapter 11: Testing and Diagnosis of Realistic Defects 307

Fig. 16. A 15 × 15 microfluidic array used for multiplexed bioassays

In our example, the digital microfluidics-based biochip used for the multi-
plexed biochemical assay operations contains a 15 × 15 microfluidic array, as
shown in Fig. 16. This example is a full-packed array design compared to the
prototype shown in Fig. 15. The fabricated prototype chip can be embedded
in this array; the latter is expected to be the next-generation prototype for
demonstrating more complex bioassays. Note that, unlike previous work, we
do not manually assign the location of test droplet sources and sinks here.
Instead, the proposed PMF algorithm can be used to determine the optimal
location of the test hardware. The schedule of the set of bioassays, determined
using the techniques in [9], is listed in Table 2; one procedure of the multi-
plexed assays takes 25.8 s. The movement of droplets (including test droplets)
is controlled using a 50 V actuation voltage with a switching frequency of
16 Hz. The details of these colorimetric enzymatic reactions as well as the
fabricated prototype can be found in [13].

We first apply the PMF algorithm described in Sect. 5 to obtain an off-line
testing plan for the 15 × 15 microfluidic array. Its eulerized graph model for
a single test droplet is shown in Fig. 17a; next a test plan based on an Euler
circuit is found using the PMF algorithm. The total testing time involves
448 time slots (i.e., 28 s), where the length of a time slot equals the droplet
transportation time between two adjacent cells, i.e., 62.5 ms. The test droplet
sources and sinks can be located at any boundary cell other than dispensing
ports for sample and reagent droplets. Next, we consider on-line testing for
this example. The optimized concurrent test plan obtained using the PMF
algorithm takes 480 time slots (i.e., 30 s); compared to off-line testing, the
test time is slightly higher due to the waiting time that is necessary to avoid
conflicts with the normal bioassay. The optimal location for the test droplet
source and sink is shown in Fig. 17a. The test plan for the same biochip in [13]

308 F. Su et al.

Table 2. Schedule of multiplexed biomedical assay (Sample 1 and Reagent 1 are
for Glucose assay; Sample 2 and Reagent 2 are for Lactate assay)

Time (s) Operation

0 Sample 2 and reagent 2 start to move towards the mixer.
0.8 Sample 2 and reagent 2 begin to mix together and turn around in the

2 × 3 array
6.0 (1) Sample1 and reagent 1 start to move towards the mixer.

(2) Sample 2 and reagent 2 continue the mixing.
6.8 (1) Sample 2 and reagent 2 finish the mixing and product2 leave

the mixer to optical detection location 2.
(2) Sample 1 and reagent 1 begin to mix in 2 × 3 array mixer.

12.8 (1) Sample 1 and reagent 1 finish the mixing and product1 leave
the mixer to the optical detection location 1.

(2) Product 2 continues the absorbance detection.
19.8 (1) Product 2 finishes optical detection and leaves the array to the

waste reservoir.
(2) Product 1 continues the absorbance detection.

25.8 Product 1 finishes optical detection and leaves the array to the waste
reservoir. One procedure of the multiplexed biomedical assay ends.

is only 18.7 s. Although the Euler circuit-based test plan requires more test-
ing time, it provides higher defect coverage, since it can detect defects such
as electrode shorts that affect two adjacent cells. For safety-critical applica-
tions, defect coverage is more important than a slight increase in the test
application time.

We further consider the application of multiple test droplets for this exam-
ple. If we partition 15× 15 microfluidic array into two 8× 15 arrays as shown
in Fig. 17b, we can obtain an off-line test plan that allows two test droplets to
traverse each partition while adhering to the constraints on droplet motion.
The test application time for two test droplets is 238 time slots (i.e., 14.9 s),
which is 47% less than that for a single test droplet. An optimized test plan for
concurrent testing requires a total test time of 332 time slots, i.e., 20.8 s. Using
the PMF algorithm, we find that the first partition requires 332 time slots for
testing, while the second partition requires 308 time slots. The locations of
two test droplet sources and sinks are also shown in Fig. 17b.

Finally, we apply the proposed diagnosis technique to this example. As-
sume that the cell used as the first optical detection site is shorted to its
adjacent cell. Thus the product droplet of the glucose assay cannot be trans-
ported to the appropriate location for optical detection, thus leading to a
measurement error. The adaptive diagnosis scheme proposed in Sect. 5.3 can
be applied to locate faulty regions, as shown in Fig. 18. There are in all
(�log2(15 − 1)� + �log2(15 − 1)�), i.e., eight steps of adaptive testing proce-
dures. Following the diagnosis procedure, we can reschedule the detection
operation for the product of the glucose assay to another optical detector to
avoid the error.

Chapter 11: Testing and Diagnosis of Realistic Defects 309

Fig. 17. Testing of a 15×15 microfluidic array: (a) eulerized graph for the applica-
tion of the single test droplet; (b) partitions and eulerized graphs for the application
of two test droplets

7 Conclusions

We have presented a defect-oriented testing and diagnosis methodology for
digital microfluidics-based biochips. Experimental results have highlighted a
major deficiency of prior work on the testing of microfluidic arrays; faults such
as electrode shorts that affect two consecutive cells are not always detected
by prior methods. To address this issue, we have formulated test planning
in terms of the Euler circuit problem from graph theory. Both off-line and
on-line testing methods have been presented. Diagnosis techniques to locate
faulty cells in the microfluidic array have also been implemented using multi-
step and adaptive Euler circuit-based testing procedures. The testing and
diagnosis methods have been evaluated for a set of real-life bioassays. This
work is expected to facilitate defect tolerance of digital microfluidics-based
biochips, thereby increasing the reliability and system lifetime of these com-
posite microsystems.

310 F. Su et al.

Faulty region located

T1 T2 T3

T4T5
T6

T7 T8

Test droplet source/sink Candidate faulty region

Fig. 18. Diagnosis procedure for a 15 × 15 microfluidic array

Acknowledgement

The authors thank Phil Paik of Duke University for help in carrying out the
experiments involving electrode shorts.

References

1. A. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodol-
ogy”, Proc. IEEE Int. Test Conf., pp. 923–93, 1997.

2. N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined
MEMS”, Proc. IEEE Int. Test Conf., pp. 739–749, 2000.

Chapter 11: Testing and Diagnosis of Realistic Defects 311

3. N. Deb and R. D. Blanton, “Multi-modal built-in self-test for symmetric mi-
crosystems”, Proc. IEEE VLSI Test Symp., pp. 139–147, 2004.

4. S. Mir, B. Charlot and B. Courtois, “Extending fault-based testing to micro-
electromechanical Systems”, Journal of Electronic Testing: Theory and Appli-
cations, vol. 16, pp. 279–288, 2000.

5. A. Dhayni, S. Mir and L. Rufer, “MEMS built-in-self-test using MLS”, Proc.
IEEE Eur. Test Symp., pp. 66–71, 2004.

6. International Technology Roadmap for Semiconductor (ITRS), http://public.
itrs.net/Files/2003ITRS/Home2003.htm.

7. E. Verpoorte and N. F. De Rooij, “Microfluidics meets MEMS”, Proc. IEEE, vol.
91, pp. 930–953, 2003.

8. M. Pollack, A. D. Shenderov and R. B. Fair, “Electrowetting-based actuation of
droplets for integrated microfluidics”, Lab on a Chip, vol. 2, pp. 96–101, 2002.

9. F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidics-
based biochips”, Proc. IEEE Int. Conf. on CAD, pp. 223–228, 2004.

10. V. Srinivasan V. K. Pamula and R. B. Fair, “An integrated digital microfluidic
lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab on a
Chip, vol. 4, pp. 310–315, 2004.

11. F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic
systems”, Proc. IEEE Int. Test Conf., pp. 1192–1200, 2003.

12. F. Su, S. Ozev and K. Chakrabarty, “Test planning and test resource opti-
mization for droplet-based microfluidic systems”, Proc. IEEE Eur. Test Sym.,
pp. 72–77, 2004.

13. F. Su, S. Ozev and K. Chakrabarty, “Concurrent testing of droplet-based mi-
crofluidic systems for multiplexed biomedical assays”, Proc. IEEE Int. Test
Conf., pp. 883–892, 2004.

14. F. Su, K. Chakrabarty and V. K. Pamula, “Yield enhancement of digital
microfluidics-based biochips using space redundancy and local reconfiguration”,
accepted for publication in Proc. DATE Conference, 2005.

15. F. Su and K. Chakrabarty, “Defect tolerance for gracefully-degradable
microfluidics-based biochips”, accepted for publication in Proc. IEEE VLSI Test
Symp., 2005.

16. S. K. Tewksbury, “Challenges facing practical DFT for MEMS”, Proc. Defect
and Tolerance in VLSI Systems, pp. 11–17, 2001.

17. H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc.
SPIE: Design, Test and Microfabrication of MEMS and MOEMS, vol. 3680,
pp. 78–83, 1999.

18. H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation
in mixed micro-fluidic microelectronic systems”, Journal of Electronic Testing:
Theory and Applications, vol. 17, pp. 427–437, 2001.

19. H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic
arrays”, Proc. IEEE VLSI Test Symp., pp. 403–409, 2003.

20. M. G. Pollack, “Electrowetting-Based Microactuation of Droplets for Digital
Microfluidics”, PhD thesis, Duke University, 2001.

21. V. Srinivasan, V. K. Pamula, M. G. Pollack and R. B. Fair, “A digital mi-
crofluidic biosensor for multianalyte detection”, Proc. IEEE MEMS Conference,
pp. 327–330, 2003.

312 F. Su et al.

22. V. Srinivasan, V. K. Pamula, M. G. Pollack and R. B. Fair, “Clinical di-
agnostics on human whole blood, plasma, serum, urine, saliva, sweat, and
tears on a digital microfluidic platform”, Proc. Micro Total Analysis Systems,
pp. 1287–1290, 2003.

23. D. B. West, Introduction to Graph Theory, Prentice Hall, NJ, 1996.
24. T. H. Cormen, S. Clifford, C. E. Leiserson and R. L. Rivest, Introduction to

Algorithm, MIT, 2001

Section 4: Reliability for Nanotechnology
Devices

M. Tehranipoor

As devices and operating voltages are scaled down, future circuits will be
plagued by higher soft error rates, reduced noise margins, increased circuit
sensitivity, and defective devices. A key challenge for the future is retaining
high reliability in the presence of faulty devices and noise. To further scaling
CMOS technology, new device models and circuit design methods are much
needed.

Transient and time-related faults also impose reliability concerns and
must be taken into account in nanotechnology designs. Several methodolo-
gies have been reported recently on mapping computation onto chemically
self-assembled defect-prone molecular nanofabrics. These methodologies use
defect-mapping followed by defect-avoidance techniques. Most of these defect-
mapping techniques can only generate defect maps for deterministic defect
models and fail to alleviate the susceptibility of nanofabrics to transient faults.

This section contains three interesting chapters that cover various reli-
ability challenges in current CMOS and future molecular electronics-based
nanotechnologies.

Chapter 12, entitled “Designing Nanoscale Logic Circuits Based on
Principles of Markov Random Fields”, suggests that probabilistic computing
would be one possible approach to future reliability problems. In this chapter
the authors describe an approach for mapping circuits onto CMOS using
principles of probabilistic computation. In particular, they demonstrate how
Markov random field elements may be built in CMOS and used to design
combinational circuits running at ultra low supply voltages. They show that
with their new design strategy, circuits can operate in highly noisy condi-
tions and provide superior noise immunity, at reduced power dissipation. If
extended to more complex circuits, the proposed approach could lead to a
paradigm shift in computing architecture without abandoning the dominant
silicon CMOS technology.

“Towards Nanoelectronics Processor Architectures” is the second chapter
in this section (Chap. 13) that focuses on reliability, one of the most funda-
mental and important challenges, in the nanoelectronics environment. For a

314 M. Tehranipoor

processor architecture based on the unreliable nanoelectronic devices, fault
tolerance schemes are required so as to ensure the basic correctness of any
computation. Since any fault tolerance approach demands redundancy either
in the form of time or hardware, reliability needs to be considered in con-
junction with the performance and hardware tradeoffs. The authors propose
a new computational model for the nanoelectronics-based processor architec-
tures, that provides flexible fault tolerance to deal with the high and time
varying faults. The model guarantees the correctness of instruction execu-
tions, while dynamically balancing hardware and performance overheads. The
correctness of every instruction is confirmed by multiple execution instances
through a hybrid hardware-time redundancy approach. To achieve high sys-
tem performance, multiple unconfirmed computation branches are exploited
in a speculative manner. Hardware resource growth that these speculative
computations entail is controlled so that the utilization of hardware is bal-
anced between the two competing goals of performance and fault tolerance.
In addition, the authors examine the impact on the proposed computational
model of other nanoelectronic characteristics such as the necessity for local-
ization of interconnections and the regularity of nanofabric structures on the
proposed computational model. They set up an experimental framework to
validate the effectiveness of the proposed scheme as well as to investigate mul-
tiple tradeoff points within the proposed approach. Simulation data confirm
that the proposed computational model achieves the goal of providing flexi-
ble fault tolerance under a wide range of fault occurrence rates, while at the
same time guaranteeing high system performance and efficient utilization of
hardware resources.

Finally, Chap. 14, entitled “Design and Analysis of Fault-tolerant Molec-
ular Computing Systems”, addresses the issue of defect-mapping by (1) de-
veloping a non-deterministic probabilistic defect map generation scheme that
extends a fail-stop defect model-based defect-mapping technique proposed by
Dwyer et al., (2) enhancing Jacome et al.’s hierarchical methodology to design
structural redundancy-based architectures that can mask transient faults, and
(3) developing a framework that integrates these techniques and provides sys-
tem designers an environment for the design and analysis of molecular systems
that are more tolerant towards permanent and transient faults. The authors
have used this framework for generating defect maps for different molecular
nanofabrics to evaluate the performance of their defect-mapping scheme and
for designing and analyzing permanent and transient fault-tolerant signal and
image processing computing systems.

Chapter 12: Designing Nanoscale Logic
Circuits Based on Principles of Markov
Random Fields

K. Nepal, R.I. Bahar, J. Mundy, W.R. Patterson, and A. Zaslavsky

1 Introduction

As Si CMOS devices are scaled down into the nanoscale regime, current
microarchitecture approaches are reaching their practical limits. Thus far,
the semiconductor industry has successfully overcome many hurdles, includ-
ing the current transition to silicon-on-insulator (SOI) technology [1]. Looking
to the future, the next major challenges to Si CMOS include new materials
(high-κ and low-κ dielectrics [2]), new device geometries (dual-gate or fin-
FET devices [3]), and further downscaling of devices and supply voltages with
attendant difficulties in manufacturing, power dissipation, and economics of
commodity manufacturing [2]. The longer-term prospects of digital computa-
tion then diverge into two interrelated areas. On the system side, there are the
computer architecture issues arising from the problem of integrating billions of
transistors at the lowest possible supply voltage, with tremendous constraints
on total power dissipation and device reliability. On the device integration
front, there is hope that hybrid systems will emerge, combining CMOS FET-
based digital logic with any number of alternative devices, ranging from analog
circuits, to more exotic alternatives (optical sources and detectors, quantum or
molecular transistors, carbon nanotube devices, etc.) all on the same chip [4].

While there is no clear consensus on how far and how fast CMOS will
downscale and which of the emerging hybrid technologies will eventually enter
production, it is certain that future nanodevices will have high manufacturing
defect rates. Further, it is clear that the supply voltage, VDD, will be aggres-
sively scaled down to reduce dynamic power dissipation – VDD = 0.5V is the
current prediction for low-power CMOS in 2018 [5], although extrapolations
to even lower VDD = 0.3V have appeared in the literature [4]. The resulting
reduction in noise margins will expose computation to higher soft error rates.

Probabilistic computing provides a new approach towards building fault-
tolerant nanoarchitectures and systems. We propose a new CMOS-compatible
approach, based on principles of Markov Random Fields, to the design and
operation of logic circuits. In this approach, the logic states are considered to

316 K. Nepal et al.

be random variables whose values can vary over the range of the logic signal
level between 0 V and VDD. Under this framework, one no longer expects a
correct logic signal at all nodes at all times, but only that the joint prob-
ability distribution of signal values has the highest likelihood for valid logic
states. The random logic variables for a circuit interact through a distribution
representing their joint probability. Circuit design is guided by the formula-
tion of a multivariate distribution on vectors of logic variables, aiming for a
distribution that attains maximum probability for valid states of the circuit.

In this chapter, we describe how logic circuits may be designed using
CMOS elements, based on principles of Markov Random Fields, such that
correct logic operation may be obtained even under extremely noisy condi-
tions. We show that with our new design strategy, the circuits provide supe-
rior noise immunity and at reduced power dissipation compared to standard
CMOS counterparts.

2 Markov Random Fields: Theory

Before presenting our MRF style circuits, we first provide a brief overview of
the Markov random field theory. Consider a set of random variables called
sites, X = {x1, x2, . . . , xk} where each variable, xi can take on various values
called labels. The sites in X are related to one another via a neighborhood
system (N) defined by a set of variables from X − {xi}. This collection of
random variables is called a Markov Random Field (MRF) if and only if:

P (x) > 0, ∀x ∈ X (Positivity), (1)
P (xi|{X − xi}) = P (xi|Ni) (Markovianity). (2)

In other words, a set of random variables form a MRF if all sites have a
finite positive probability and the probability of a particular site in the neigh-
borhood depends only on its immediate neighbors to which it is connected by
an edge. The edges in the neighborhood represent the conditional dependence
between the connected variables in the neighborhood. The joint probability
of a given set of sites can be formulated in terms of the associated clique of
the graph structure. Figure 1 shows one such neighborhood with one 1storder
clique and one 2nd order clique.

The Hammersley–Clifford theorem [6] asserts that X is a Markov random
field on graph G if and only if it has a Gibbs distribution with respect to G.
Using this theorem, the joint probability can be written as,

P (x) =
1
Z

∏
c∈C

e
−U(xc)

kT (3)

where X is the set of all nodes in the neighborhood, C is the set of cliques,
xc is the set of nodes in a clique c and U(xc) is the clique energy function.

Chapter 12: Designing Based on Markov Random Fields 317

2x

3x

1x

Neighborhood of ix
iN

1st Order Clique

2nd Order Clique

ix

Fig. 1. The MRF neighborhood system

The term Z is called the partition function and is a constant required to
normalize the probability function to [0,1]. The term kT can be interpreted
as thermal energy from the physical point of view, but here it is merely treated
as a constant in proportion to the clique energy that controls the sharpness
of the probability distribution. This form of the distribution is called the
Gibbs distribution. This Gibbs formulation of the Markov random field is an
attractive representation for computation, since the physical interpretation of
the probabilities in terms of entropy of computation is likely to find ready
interpretation in the physical device characteristics.

3 Markov Random Fields and Circuit Networks

Circuit networks can be expressed in terms of neighborhoods shown in Fig. 1
and the interaction of the logic states and variables can be represented as a
dependence graph. Figure 2 shows a simple multi-level circuit and its corre-
sponding dependence graph. In this case, the graph is equivalent to a Markov
random field, where the nodes are random logic variables that can hold val-
ues ranging from 0 V to VDD and the edges are the conditional dependencies
between the variables. Importantly, there is no notion of directed logic flow
and causality, just statistical dependence. For instance, if the output of the
first NAND gate is at logic 0, then both the inputs are constrained to be at
logic 1 (i.e., there is a backward statistical dependency between the output
state and the input states).

318 K. Nepal et al.

S0
S1
S2

S3
S4 S5

S0

S1

S3

S2

S4 S5

Fig. 2. A logic circuit and its dependence graph for a simple Markov random field

All the logic variables, {s0, s1, s2, s3, s4, s5}, in the example, are vary-
ing in a random manner over the range of the voltage levels. The correct
logic states are those that maximize their joint probability, i.e., the correct
logic operation for the example corresponds to the variables that maximize,
p(s0, s1, s2, s3, s4, s5). In large logic networks with hundreds of logic variables
it is impractical to directly consider a joint probability distribution. The num-
ber of constraints required to enforce maximum probability for the valid states
grows exponentially with the dimension of the random vector space and so the
computation quickly becomes intractable. Fortunately there exists a represen-
tation for high dimensional joint distributions that can be factored into low
dimensional distributions [7, 8]. The Hammersley–Clifford assertion that an
MRF is equivalent to Gibbs distribution allows for this representation. Using
this important relationship, the joint probability distribution P (S) can be
factored into terms each of which depends only on the variables covered by a
set of cliques. In the graph of Fig. 2, three distinct sets of cliques (i.e., the sets
of fully connected subsets of the nodes in the graph) {s0, s1, s3}, {s2, s3, s4},
{s4, s5} are observed. These cliques represent the local statistical dependen-
cies of the logic states. The joint probability p(s0, s1, s2, s3, s4, s5) can now be
decomposed into:

p(s0, s1, s2, s3, s4, s5) =
∏
c∈C

Uc(sc) (4)

= U013(s0, s1, s3)U234(s2, s3, s4)U45(s4, s5)

This simple decomposition means that the maximum overall probability
corresponds to the individual maximization of each clique function. This is
crucial for probabilistic circuit design where the full set of logic variables
(nodes) in the circuit can now be factored into a product of joint probabilities
in the set of cliques that describe the local interactions.

Chapter 12: Designing Based on Markov Random Fields 319

4 State Propagation in MRF Networks

In this section we briefly describe the nature of computation in the MRF
framework. The general algorithm for finding individual site labels that
maximize the probability of the overall network is called Pearl’s belief prop-
agation [9] and provides an efficient means of solving inference problems by
propagating marginal probabilities through the network.

In a Markov random network, we have two types of nodes - the observable
nodes and the hidden nodes. The observable nodes (e.g., inputs to a logic
circuit) have label probabilities pre-assigned to them by the problem setup.
The probabilities of the hidden nodes (e.g., internal nodes and output nodes
of a logic circuit) are not defined and need to be computed by the belief
propagation algorithm.

The goal of belief propagation is to compute the marginal probability
distribution p(xi) at each node i of the network. The probability of state labels
at a given node in the network can be determined by marginalizing (summing)
over the joint probabilities for the node state given just the probabilities for
site labels in the Markov neighborhood, Ni. This marginalization establishes
the label probabilities for the next propagation step.

Belief propagation is an incremental/iterative process. Messages are passed
from each node to its neighbors and the process repeats until a convergence is
reached. If the Markov random network is acyclic (i.e., it contains no loops),
it has been shown that the propagation algorithm converges to the maximum
probability site label assignment for the entire network [10]. This incremental
algorithm has computational complexity on the order of the number of nodes.

Most practical MRF networks are not acyclic and contain loops. In such
networks, the marginalization must be done combinatorially over a region of
the network that bounds the loops in order to guarantee maximum probability
solutions. That is, one would partition the network into a loop-free network of
blocks which internally contain loops. Yedidia et al. [10] showed that the belief
propagation algorithm works well in graph with loops and usually converges
to the maximum probability state even in presence of such loops.

Consider the circuit network from Fig. 2. For belief propagation, we start
from the primary inputs of the circuit network and work our way to the
outputs. As a first step, one of the input nodes with a known probability,
(e.g., s0) is taken and the node is marginalized out by summing the entire
distribution over all possible states of that node. Then other input nodes are
marginalized out. After all the input nodes have been eliminated, some of
the hidden nodes now have marginal probabilities that are known. After a
few iterations, the marginal probabilities are propagated to the output. Here,
we outline the basic steps of the propagation algorithm in the network of
Fig. 2 to determine the marginal probability p(s5) of the output node s5:

Inputs: f0(s0), f1(s1), f3(s2)
Cliques: f2(s0, s1, s3), f4(s2, s3, s4), f5(s4, s5)
Goal: p(s5)

320 K. Nepal et al.

STEP 1: Eliminate s0

Eliminated: f0(s0), f2(s0, s1, s3)
New: f6(s1, s3)

⇒ p(s5)=f1(s1)f6(s1, s3)f3(s2)f4(s2, s3, s4)f5(s4, s5)

STEP 2: Eliminate s1

Eliminated: f1(s1), f6(s1, s3)
New: f7(s3)

⇒ p(s5)=f7(s3)f3(s2)f4(s2, s3, s4)f5(s4, s5)

STEP 3: Eliminate s2

Eliminated: f3(s2), f4(s2, s3, s4)
New: f8(s3, s4)

⇒ p(s5)=f7(s3)f8(s3, s4)f5(s4, s5)

STEP 4: Eliminate s3

Eliminated: f7(s3), f8(s3, s4)
New: f9(s4)

⇒ p(s5)=f9(s4)f5(s4, s5)

STEP 5: Eliminate s4

Eliminated: f9(s4), f5(s4, s5)
New: f10(s5)

⇒ p(s5)=f10(s5)

This example illustrates that achieving the correct state configuration in
the network corresponds to propagating state values through the network
and updating each node assignment with a node state having the maximum
probability. Now we show how the mathematical framework of MRF can be
related to logical elements suitable for computation.

The Markov random field framework can be represented by a number
of models of computation such as the auto model, the multi-level logistic
model, the smoothness prior model, the FRAME model and the hierarchical
Gibbs random field model among many others [7]. These models help encode
the clique energy function in the MRF framework. In [11] Bahar et al. used
the auto-model to represent computation in Markov random networks. For
combinational logic, this model, serves as a simple yet powerful representation
of the clique energy function (logic compatibility function). In the auto-model,
the clique energy function is represented as the summation of the interaction
between different sites in a given clique.

Chapter 12: Designing Based on Markov Random Fields 321

Uc(si, sj , sk) = ξ +
∑
i∈C0

αisi +
∑

{i,j}∈C1

βi,jsisj +
∑

{i,j,k}∈C2

γi,j,ksisjsk (5)

where the constant ξ is just an energy offset while α, β and γ are called
interaction coefficients.

Boolean logic is represented in the MRF framework with nodes that in-
teract and can take on labels from the set L={0, 1}. A site si with label 1
(logic high) is written as si and a site with label 0 (logic low) is represented
as s′i

1. Hence, if three interacting sites s0, s1 and s2 have the site labels 1, 0,
1, respectively, the overall interaction between the sites is written as:

Uc(s0, s1, s2) = s0s
′
1s2 (6)

Consider the inverter from Fig. 2 with input s4 and output s5. Successful
operation of this inverter is designated by the compatibility function f(s4, s5)
as shown in Table 1. This compatibility function or the clique energy function
syntactically describes the interaction of the neighboring nodes represented in
the circuit dependence graph.

Here we list all possible states (input/output pairs) : valid states with
f = 1 and invalid states with f = 0. In [11] Bahar et al. proved that for
a combinational logic circuit, the energy of correct logic state is always less
than that of the invalid state by a constant. Hence, the valid input/output
pair should have a lower energy than the invalid pairs. Thus, the clique energy
expression is obtained by a negative sum over minterms from the valid states,

Uc(s4, s5) = −
∑

i

fi(s4, s5)

= −(s4s
′
5 + s′4s5) (7)

For the two valid states {01, 10} of the inverter, the clique energy is −1
while for the two invalid states {00, 11} the clique energy is 0. As long as
the energy of the correct logic state configurations is less than that of the
invalid state configurations, the logic element will operate correctly. Although
the example of a two-state inverter may appear trivial, similar clique energy
expressions may be written down for all elementary logic elements.

Table 1. The logic compatibility function for an inverter with all possible states

s4 s5 f

0 0 0
0 1 1
1 0 1
1 1 0

1 In [11] Bahar et al. used Boolean ring to represent a site with label 0 (logic low)
as 1 − si.

322 K. Nepal et al.

5 Building MRF Elements in CMOS

As described in the previous section, the key underpinning of the MRF cir-
cuit behavior is that the logic states of network nodes need to depend, in a
probabilistic fashion, on the logic states of some finite number of neighbor-
ing nodes. For the purposes of probabilistic computation based on interacting
nanodevices, we need to find a physical embodiment of interacting logic lev-
els and the clique energy function. In principle, these could be encoded in
many physical variables, from occupation of quantum dots by single elec-
trons with occupation probability of neighboring dots mutually influenced by
their Coulomb repulsion [12], to the orientation of magnetic spins influencing
each other via the exchange interaction. However in this chapter, we present
the MRF computational paradigm in CMOS Si technology. By choosing the
CMOS route, we can use proven device and circuit simulation techniques to
more easily examine the higher-level architectural implications of probabilis-
tic computing, including the power consumption, speed and fault tolerance of
our circuits.

In the preceding section we discussed clique energy minimization to obtain
correct circuit operation. This energy minimization can be achieved by a de-
vice or device configuration that produces a bi-stable energy function. A bi-
nary flip-flop circuit possesses this desired energy behavior where the required
asymmetry of state energy is created by the summing mechanism just de-
scribed. As such, the mapping of MRF model into CMOS circuitry requires
the following two essential ingredients [13]:

– Each logic state, si, should be represented as a bistable storage element,
taking on logical values of “0” an “1” with equal probability. The proba-
bility for any other signal value should be low.

– The constraints of each logic graph clique should be enforced by feedback
to the appropriate storage elements, implementing the logic compatibility
functions to maximize the joint probability of the correct logical values.

The first requirement ensures that the MRF logic states are maintained so
that the conditional probabilities among the neighboring elements can propa-
gate. The feedback paths, required by the second design principle, are based on
conditional probabilities and ensure that the correct logic states are the most
probable states. Each logic state, valid or invalid, has a probability distribu-
tion associated with it. In the absence of feedback the probability distribution
of the circuit would be uniformly distributed between all states. Whereas the
bistable element allows us to maintain a particular logic state at a given node,
the feedback mechanism allows us to model the belief propagation and the
dependence of a node on the state of its neighborhood, as described in Sect. 4.

5.1 MRF Inverter

For combinational circuits, this notion of feedback can be enforced by real-
izing the relationship between inputs and outputs of each gate or function.

Chapter 12: Designing Based on Markov Random Fields 323

For example, consider the inverter of Fig. 2 with input variable s4 and output
variable s5 and logic compatibility function or clique energy described by (7).
Following the recipe for mapping MRF networks into CMOS structures, we
can create a bistable structure with feedback reinforcement that represents
the clique energy function of the inverter relation using CMOS logic gates.
For the mapping, we create a bi-stable element for each minterm of the logic
compatibility equation – i.e., one bi-stable element for s4s

′
5 and the other bi-

stable element for s′4s5. The feedback for each node comes from the output
of the bi-stable element containing its complemented counterpart. The MRF
implementation of the inverter is shown in Fig. 3. The existence of two in-
verters in a chain between the bistable element and the input/output nodes
might seem redundant. The cascade of inverters serves two purpose – firstly it
allows us to reduce the capacitive load strain on the bistable output node and
secondly it allows us to size the feedback paths to the input nodes and the
output nodes differently. This sizing is crucial to make sure that the circuit
does not stay at some metastable state or oscillate between the valid states.
In our implementation, as illustrated in, the output feedback path is sized to
have double the drive-current strength compared to the input feedback path.

The circuit consists of two “storage nodes”, one for s4 and one for s5.
The stable states of the nodes correspond to the maximum probability con-
figurations of the variables. For example, suppose that s4 = 0 and s5 = 1.
Then the top NAND-inverter gate is active and feeds the logic state “1”
back to the inputs, thereby reinforcing the expected output value. The other
NAND-inverter gate feeds back the logic “0” state. These feedback values are
consistent with the input values {s4, s5} and the overall circuit latches into
this state. The other configuration, s4 = 1 and s5 = 0, corresponding to the
other valid inverter logic state, is also stable.

S4 S4� �S5 S5

Fig. 3. A circuit for encoding the clique function of two logic variables defining an
inverter

324 K. Nepal et al.

The MRF inverter and all of the more complex MRF gates and circuits de-
scribed later in this chapter were simulated in SPICE using the 70 nm Berkeley
predictive technology model [14] at T = 100◦C. In order to simulate the ag-
gressively scaled VDD of future circuits, as well as noisy environment that
will plague the end-of-the-roadmap CMOS, we operated our MRF gates at
a supply voltage of 0.15 V – a voltage level below the threshold voltages of
our transistor models, which are VTH=0.2 and –0.22 V for NMOS and PMOS,
respectively.

We ran two sets of simulations. First, we simulated the output of the cir-
cuit for a noisy input signal in comparison with the standard CMOS gates.
Second, we simulated the effect of VTH variation on the MRF element. We
emphasize that the sources of signal noise in ultimate transistors are a sub-
ject of current research. Some noise sources, e.g., hot-electron effects, cannot
be treated analytically even for standard supply voltages but rather require
Monte–Carlo techniques. On the basis of such simulations, some authors have
argued that current noise models will underestimate noise levels in nanode-
vices [15]. Since we propose to run our circuits at very low VDD, both thermal
noise and hot-electron effects, as well as power supply and electromagnetic
coupling noise will significantly degrade the logic voltages, while substantial
and unavoidable VTH variation [16] between transistors will reduce the noise
margins.

An estimate of the noise on a typical signal arising from thermal noise
aggravated by threshold variation can be obtained in SPICE by transient
simulation of a chain of standard CMOS inverters. A sample of bandwidth-
limited random noise of magnitude and spectrum determined from the steady-
state noise of the Berkeley transistor model was added to the output of each
of 10 inverter stages in tandem, with thresholds VTH of individual transis-
tors allowed a random variation of ± 10%. The resulting noise was roughly
Gaussian with 30 mV RMS standard deviation. However, the Berkeley model
deals with 70 nm planar bulk devices, whereas the future Si technology relies
on fully depleted SOI with substantially lower node capacitances. Since noise is
inversely proportional to the square root of the node capacitance [17], it is ex-
pected to be higher. In addition, our thermal model leaves out crosstalk noise,
which will also have a significant effect. While research is underway in trying
to accurately model the noise sources in nanoscale CMOS designs [18], we
have added Gaussian noise of zero mean and 60 mV RMS standard deviation
to our 0.15 V and zero voltage levels – a value we believe to be a reasonable
estimate for the true signal noise seen by ultimate transistors operated at
low VDD.

With this choice of noisy input signals, we have compared the noise immu-
nity for the MRF and CMOS inverters, initially assuming no VTH variation.
The inverters are compared in Fig. 4, where it is evident that the noisy input
causes the standard CMOS inverter to switch between correct and incorrect
output values, due to the small noise margin at low VDD compared to the

Chapter 12: Designing Based on Markov Random Fields 325

−0.1

0

0.1

0.2
V

in

0

0.05

0.1

0.15

0.2

V
C

M
O

S

0 50 100 150 200 250 300 350 400

0

0.05

0.1

0.15

time (ns)

V
M

R
F

Fig. 4. Simulation of standard CMOS inverter and MRF inverter operation at
subthreshold supply voltage

input noise amplitude. The MRF inverter, on the other hand, provides excel-
lent noise immunity.

We emphasize that simulation illustrated in Fig. 4 assumed noisy input
signals, without any VTH variation from transistor to transistor (expected to
reduce the noise margins in any large-scale circuit). The expected threshold
voltage variation in ultimate CMOS transistors will depend on how the thresh-
old is controlled. Current expectation is that they will have fully depleted
undoped Fin-FET channels [2,5] and VTH will be controlled by the appropri-
ate mid-gap gate material. In order to maintain effective gate control over the
potential along the channel, the channel thickness W will need to be smaller
than the gate length LG, so W < 10 nm for ultimate CMOS devices. At the
same time, W cannot be made too small because size quantization in the
channel renders VTH very sensitive to any variation in W [19, 20]. A mono-
layer fluctuation in W would lead to several mV variation in VTH . As a result,
in the following simulations we chose a worst-case ±10% (that is, ±20 mV)
variation in VTH .

Given the larger transistor counts, the immunity of the MRF inverter in
Fig. 3 to VTH variation is not self-evident, but our preliminary simulations,
shown in Fig. 5 are reassuring. Figure 5 compares MRF inverter operation for
VTH = 0.2 and –0.22 V model values with the worst-case situation of ∆VTH

= 20 mV in all transistors but with N and P devices changing in opposite
senses. In all cases, the MRF inverter operates correctly.

326 K. Nepal et al.

Fig. 5. MRF inverter with variable transistor VTH . Comparison of VTH values =
0.2 and –0.22 V (standard) with worst-case ± 20mV variation (10% of VTH) for all
transistors

VinVin

VDCVS�

�

VDCVS

−0.1

0

0.1

0.2

Vi
n

0

0.05

0.1

0.15

V DC
VS

0 50 100 150 200 250 300 350 400

0

0.05

0.1

0.15

time (ns)

V M
RF

Fig. 6. Comparison of DCVS (top, with inset showing the DCVS transistor layout)
and MRF inverters operated at VDD = 0.15 V, given noisy voltage inputs (Gaussian
noise with zero mean and 60 mV RMS amplitude). Note that DCVS provides some
noise immunity over standard CMOS, but not as much as MRF

The MRF implementations analogous to Fig. 3 provide correct probabilis-
tic operation at low VDD in the presence of noise that would ordinarily defeat
standard CMOS. Nevertheless, it is instructive to compare this implementa-
tion with other implementations that also have noise-immunity characteris-
tics. For example, consider a gate based on differential cascode voltage switch
(DCVS) logic. By virtue of its differential operation and positive feedback,
DCVS has some built-in noise immunity. Figure 6 compares the DCVS inverter
(see inset for layout) to our MRF inverter of Fig. 3, in the presence of the same
noisy input signals as in Fig. 4 (i.e., Gaussian voltage noise). We find that
the DCVS inverter has much better noise immunity than a standard CMOS
inverter, but is still not as stable as our MRF inverter. At the same time, a

Chapter 12: Designing Based on Markov Random Fields 327

DCVS inverter requires twice the transistor count of standard CMOS, while
our MRF inverter is an order of magnitude higher.

5.2 MRF NAND Element

The layout of Fig. 3 suggests a programmable logic array style encoding
where different functions can be achieved by varying feedback paths. Logic
functions with more variables are implemented by feedback paths involving
NAND/NOR gates with larger fan-in, and complex feedback elements. Here
we use a 2-input NAND gate to illustrate the design of an MRF element with
a three-node clique function.

Consider the truth table of a two-input NAND gate shown in Table 2.
Again all valid states in the table are labeled with f=1. The clique energy
function of this three-node gate can be obtained as:

Uc(x0, x1, x2) = x′
0x

′
1x2 + x′

0x1x2 + x0x
′
1x2 + x0x1x

′
2 (8)

The clique energy function shows that there are a total of four minterms
for the NAND2 element. Each minterm is a valid input–output pair whose
probability must be be maximized using a bistable storage element. The feed-
back circuitry becomes slightly more complicated compared to the previous
example. The feedback to x′

2 comes from the first three minterms containing
x2, while the feedback to x2 comes only from the final minterm containing
x′

2. Since more than one minterm can determine the state of a logic variable,
a more complex feedback network consisting of NOR logic gates are needed
as shown in Fig. 7.

The circuit suggests that a bistable element is required for each minterm.
If explicit enumeration of all valid input–output pairs were necessary, creating
a MRF element with a larger fan-in would cause an explosion in the transis-
tor count, severely limiting the applicability of this approach. Fortunately,
an alternate mapping of the MRF elements described below provides better

Table 2. The logic compatibility table for a two-input NAND gate as a function of
all possible input–output pairs

x0 x1 x2 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The inputs are x0 and x1, the output is x2

328 K. Nepal et al.

'
0x 0x '

1x 1x
'
2x 2x

Fig. 7. Implementation of the MRF NAND2 element. The inputs are x0 and x1,
the output is x2

efficiency in terms of area and power and allows for creation of larger fan-in
elements.

The clique energy function of (8) for the NAND gate can be re-expressed
as:

Uc(x0, x1, x2) = (x′
0 + x′

1)x2 + x0x1x
′
2 (9)

Using this factored form of (8), a more efficient mapping of the NAND gate
can be created as shown in Fig. 8.

The new mapping consists of an OAI (OR-AND-INV) gate implementing
the first term (x′

0 + x′
1)x2 and a 3-input static CMOS NAND gate imple-

menting the second term x0x1x
′
2. The number of bistable elements required

decreased from 4 (for the four minterms) to just 2. This decrease also reduced
the complexity of the feedback path. In our earlier approach, the feedback to
x′

2 came from the output of a NOR gate whose inputs were three elements

Chapter 12: Designing Based on Markov Random Fields 329

'
0x0x '

1x1x '
2x2x

Fig. 8. Area efficient MRF NAND gate implementation (total transistor count is
28 compared to 60 of the mapping shown in Fig. 7). The inputs are x0 and x1, the
output is x2

representing the minterms containing the term x2 (see (8)). This feedback
complexity reduced from a three-input NOR (or its DeMorgan’s equivalent)
to a simple inverter that takes the output of the topmost complex gate and
feeds back to x′

2. Similarly, the feedback to other nodes are also reduced.
Mapping the simplified equation now produces a circuit that uses only 28
transistors, compared to the 60 transistors shown in Fig. 7.

The simulation of the optimized MRF NAND element of Fig. 8 and its
comparison to standard CMOS when subjected to uncorrelated noisy inputs
is shown in Fig. 9. As can be seen from the figure, the output of a regular static
CMOS NAND gate is very noisy, rendering the gate unusable. However, the
MRF NAND gate provides stable and correct voltage operation and excellent
noise immunity.

It should be noted that, for all MRF elements, the presence of a feedback
loop in the circuit can result in the circuit oscillating between valid states.
This oscillation behavior (although not desirable in an electrical circuit) is
consistent with the theory of belief propagation in a loop, where the loop is
not guaranteed to settle in a particular state but can oscillate between valid
states [21]. The feedback components must be sized properly to ensure that
no oscillation or metastable states are possible at the supply voltage being
used. In our circuits, all feedback to the circuit output are sized slightly larger
to eliminate the possibility of any metastable states that might arise due to
contention between the input and feedback.

Using this factorization technique, higher fan-in circuits can be created
without exponentially increasing the circuit area and complexity. Table 3

330 K. Nepal et al.

−0.1

0

0.1

0.2

V
in
1

−0.1
0

0.1
0.2

V
in
2

0
0.05

0.1
0.15

V
cm
os

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

V
m
rf

time(ns)

Fig. 9. Simulation of regular static CMOS NAND and optimized MRF NAND gate
in presence of noise

Table 3. Comparison of transistor counts for multiple-input standard MRF elements

Std. gates MRF mapping

1-input 20
2-input 28
3-input 36
4-input 44
5-input 48

shows the transistor counts for different gates (given as a function of its inputs)
mapped into MRF elements.

The fan-in of the MRF elements is limited only by the maximum number
of transistors connected in series in their transistor-level implementations. For
instance, in the 2-input MRF NAND element shown in Fig. 8, a 3-high stack
is required to implement the OAI gate within the element. In general, an
N -input MRF element would require at most (N + 1) transistors in series
in the transistor-level implementation. While larger logic functions could be
realized using higher transistor stacks, for practical purposes this is generally
not preferred. When all the devices in the stack are turned on and conducting,
the threshold voltage of each device effectively increases due to the stack effect
and causes the drive current to decrease. This, coupled with the fact that all
our circuits are operating at a subthreshold voltage regime prompted us to
limit the maximum stack size of all our circuits to four transistors.

Chapter 12: Designing Based on Markov Random Fields 331

5.3 Circuits with Multiple Outputs

So far we have looked at simple logical elements. Often in real designs we
encounter circuits that have multiple outputs. Usually these multiple outputs
are all a function of the same primary inputs of the circuit. Consider a circuit
with inputs p, q and outputs x and y. The output x is defined by the logical
AND of the two inputs, i.e., x = p.q and y is defined as y = p + q′. The clique
energy function for these two relations can be written as:

Uc(p, q, x) = pqx + x′(q′ + p′) (10)
Uc(p, q, y) = p′qy′ + y(p + q′) (11)

The dependence graph in Fig. 10 shows the relationship between the inputs
and the respective outputs. The solid lines in the graph show a dependence of
the two separate outputs x, and y on the inputs. There is also a dashed line
between outputs x and y. The dashed line between the two outputs represents
an implied dependence between the two outputs. For example, the logical state
of output x is directly dependent on inputs p and q. But the state of inputs
p and q is also directly dependent on y. That means if output y was set to a
0 then inputs p and q would have to be logic 0 and 1, respectively. These two
inputs being in those states means that x has to be at logic 0. This implied
dependence between all the nodes of the dependence graph adds some degree
of complexity but it also has an advantage. The main advantage here is that
instead of treating these two outputs as two separate entities with two different
clique functions, we can treat the entire system as one large entity governed
by a fourth-order clique function consisting of nodes p, q, x and y.

Uc(p, q, x, y) = pqxy + p′qx′y′ + q′x′y (12)

Using this combined clique energy function, we can now create an MRF map-
ping for the circuit the same way as we did for the MRF inverter and NAND2
elements. The circuit encoding is shown in Fig. 11. The total number of transis-
tor required to implement this combined clique energy function is 50 compared
to 84 if the individual clique energies were separately mapped.

p

q

x

y

Fig. 10. A graph representing a circuit with multiple outputs. p, q are the inputs
and x, y are the outputs

332 K. Nepal et al.

p p’ q q’ x x’ y y’

Fig. 11. MRF encoding of clique energy function shown in (12). p, q are the inputs
and x, y are the outputs

0x
2x
1x 3x 4x

5x

6x

Fig. 12. A multi-level circuit

5.4 Building Larger Circuits

The MRF approach can be generalized to larger combinations of logic gates.
Consider the circuit shown in Fig. 12 which implements the function x6 =
x2(x0 + x′

1). Larger multilevel circuits such as the one shown here can always
be built by cascading MRF elements like the MRF inverter and the MRF
NAND gate introduced earlier. The noise tolerance of the individual MRF
element cascaded to form such multi-level elements will result in a reliable
signal at the output x6. However, the total cost of this reliability in terms of
transistor count is 104, which is a large area penalty to pay for what is a 14
transistor circuit in regular static CMOS.

Instead of cascading individual MRF elements naively, one can take
advantage of the fact that not all internal nodes are important. If the circuit

Chapter 12: Designing Based on Markov Random Fields 333

designer were interested only in the primary inputs and primary outputs of
the circuit and did not care about the internal nodes, one could do away with
cascading MRF gates. In the circuit shown in Fig. 12, the important nodes
are just the inputs x0, x1, x2 and the output x6. As such, one can write the
clique energy function directly for the circuit, ignoring all internal nodes, as:
Uc = x6x2(x0 +x′

1)+x′
6(x

′
0x1 +x′

2). Implementing this clique energy function
directly requires a total of only 36 transistors compared to 104.

While this decrease in transistor count is impressive, one cannot always
ignore the internal nodes of a circuit. Consider a cascade of two inverters as
shown in Fig. 13 for an application where the output of the first inverter as
well as the second inverter is equally important. In such a case, one cannot
ignore the middle node y. One possible solution is again to take just two
MRF inverter elements and cascade them together. The total cost of this
implementation would be 40 transistors. However, instead of cascading the
two MRF inverter elements, we can again look at this circuit in terms of
implied dependence. Signals x and y have an explicit dependence while y
and z also have an explicit dependence. In such a case, the dependence of x
and z is implicitly defined. Hence, an MRF encoding can be built by sharing
the common label y as shown in Fig. 14. Here the total cost in terms of area
is just 28 transistors.

x y

z

Fig. 13. An inverter cascade

y’ z’x’ yx z

Fig. 14. Clique encoding of the inverter cascade

334 K. Nepal et al.

6 Power, Area and Delay Analysis

In this section, we compare the power dissipation and area overhead in terms
of transistor counts of MCNC’91 combinational benchmark circuits mapped
onto our optimized MRF elements operating at 150 mV and regular static
CMOS gates running at 1 V (the expected VDD for 70 nm technology) [5].

Table 4 shows the comparison between the standard CMOS and MRF
implementations in terms of the number of transistors and power consumption
under noisy conditions. Also shown in the table are the number of first-stage
transistors (i.e., the number of transistors gated by primary inputs) and the
maximum number of gates along any path from primary input to output
(i.e., the depth of the circuit). For all our circuit simulations, because of the
subthreshold operation of our circuits, we limit the maximum stack size to
four transistors. Hence, the MRF approach used two and three input MRF
elements when mapping the benchmark circuits to gates.

The table shows that the average increase in area for the MRF implemen-
tation is about 4.7 times the static CMOS implementation. At the same time,
other redundancy approaches like Triple Modular Redundancy (TMR) are not
that far lower (3X overhead for a fine-grained implementation). Regardless of
whether a fine-grained or coarse-grained approach is used, the TMR method
needs a reliable and a noise-free final majority gate. The MRF elements, how-
ever, have no such requirements. The effectiveness of the MRF approach com-
pared to the TMR and the cascaded TMR approach was shown in [22]. In the
presence of extreme noise and single-bit errors, the MRF approach produced
correct output and showed superior immunity to noise compared to TMR.

The results in Table 4 also show that the MRF mapping provides a power
advantage compared to static CMOS gates, particularly for circuits with larger
depth and many transistors in the first stage. Specifically, the MRF imple-
mentation dissipates on average 33% less power than the standard CMOS
implementation for these larger circuits (e.g., alu4, cordic, ex5, and table5).

Table 4. Comparison of transistor counts and power for MCNC’91 benchmark
circuits

Circuit in out CMOS VDD=1V MRF mapping

tran 1st-stage depth power(µW) # tran power(µW)

5xp1 7 10 568 25 10 101.4 2,756 151.2
alu4 14 8 6,928 153 23 875.2 33,416 612.1
con1 7 2 78 6 6 16.5 356 16.9
cordic 23 2 604 32 15 89.8 2,612 54.7
ex5 8 63 5,448 135 13 692.5 25,964 506.9
misex1 8 7 356 11 7 69.6 1,700 82
o64 130 1 520 65 8 24.7 2,752 44.5
rd53 5 3 232 6 9 40.7 1,012 46.3
squar5 5 8 346 10 8 55.6 1,532 70.1
table5 17 15 10,192 237 23 1,522.5 47,948 936.1

Chapter 12: Designing Based on Markov Random Fields 335

Table 5. Delay of CMOS and MRF elements normalized to the delay of a CMOS
inverter operated at VDD = 0.15V

Circuit Delay

CMOS INV 1.0
CMOS NAND2 1.6
MRF INV 7.1
MRF NAND2 8.6

This is significant, since this implies that our MRF elements may be used more
effectively in larger circuit designs. For circuits with shallower depth, there is
not as much flexibility available in the MRF mapping, so a power advantage
may not always exist. In these cases, as a power/reliability tradeoff, it might
be advantageous to evaluate the circuit areas most vulnerable to defects and
noise, and selectively introduce MRF elements as needed to achieve desired
reliability.

For sake of completeness, a quick glance at the propagation delay of the
MRF elements is also provided. As the power supply is decreased into the
subthreshold operation region, the propagation delay of a circuit increases
significantly. The increase in delay for the MRF elements shown in the previous
section is even more obvious because of the increased level of circuitry and the
existence of feedback paths. The feedback paths add capacitance at the output
node and the contention between the input and the feedback values causes
an increase in the latency of the circuit. Table 5 shows the delay of the MRF
elements normalized to a CMOS inverter operated at the same subthreshold
voltage of 150 mV.

Depending on where and how these MRF elements are used, some path in
the circuit may be able to tolerate the increase in delay. However, the problem
will remain one with reliability, power and delay tradeoffs.

7 Quantifying Noise Immunity

In Sect. 5, we showed the noise tolerance of MRF elements compared to their
CMOS counterparts. Here we quantify the circuit’s tolerance to noise. An
appropriate measure of the discrepancy between the actual output signal prob-
ability of a logical element or circuit Preal and the ideal (correct) output Pideal

is the Kullback–Leibler distance (KLD) [23]. For a digital system with two
levels (“0” and “1”), the KLD is the measure of the distance between Preal

and Pideal (where output is sampled and noise leads to some probability of
finding an incorrect output value):

KLD(Pideal, Preal) =
∑

states

Pideal log2(
Pideal

Preal
) (13)

336 K. Nepal et al.

Table 6. Comparison of Kullback–Leibler distance from correct (noise-free) output
of unloaded CMOS, DCVS, and MRF logic elements fed with noisy input voltages

INV NAND

CMOS 3.404 3.7947
DCVS 2.1832 3.6608
MRF 0.5878 0.4126

Table 7. Comparison of Kullback–Leibler distance from correct (noise-free) output
of MRF and standard CMOS benchmark circuits (run at VDD = 0.15 V, T = 100◦C)

Circuit CMOS MRF

5xp1 1.23 0.23
alu4 0.76 0.39
con1 1.03 0.20
cordic 0.60 0.33
ex5 1.18 0.50
misex1 1.00 0.24
o64 0.85 0.37
rd53 0.98 0.11
squar5 1.13 0.28
table5 0.90 0.34

where the smaller the KLD, the better the noise immunity of the circuit. By
sampling the output voltage at discrete points we can quantitatively compare
the noise immunity of our simple logic elements. For the KLD calculation
the voltage values are sampled at 0.1 ns, because this time is much smaller
compared to the switching time of our MRF elements. A comparison of stan-
dard CMOS, DCVS and MRF inverters and NAND gates is shown in Table 6.
Clearly, the MRF implementations have much better noise immunity as mea-
sured by the KLD (for perfectly correct operation, the KLD is zero; see (13)).

We have also carried out the same noise immunity simulations for several
larger benchmark circuits, each with two different implementations; one based
on our MRF circuits and the other based on “standard” CMOS gates. The
KLD values were computed by creating a probability distribution averaged
over all primary outputs. As can be seen in Table 7, the KLDs for the MRF
circuits are much smaller than those of the standard CMOS circuits, indicating
that the probability distributions of the MRF gates more closely mimic the
ideal output probability distributions.

8 Conclusions and Future Work

As devices are sized down to the nanoscale and supply voltage is scaled down
below 0.5 V, circuit designs will need to account for significant signal noise
in order to guarantee reliable computation. The MRF probabilistic model

Chapter 12: Designing Based on Markov Random Fields 337

provides a framework for designing CMOS circuits that can operate effectively
under conditions of ultra-low supply voltage and extreme noise conditions. We
have demonstrated that probabilistic computation based on MRF principles
may be implemented in CMOS circuitry with much greater reliability in the
presence of noisy inputs, but at a cost of larger transistor counts. The MRF
circuits may be operated at much lower supply voltage, leading to reduced
power dissipation along with improved reliability.

Our immediate goal in the future is to further reduce the area overhead
to make the MRF design methodology more viable for large circuits. Our
ultimate goal is to develop a noise-aware logic synthesis and technology map-
ping tool. Given a functional description of a circuit, the tool will produce
an error-tolerant design that balances area, power, delay, and reliability con-
straints when generating the final mapped circuit. In addition, work is also
underway in trying to accurately model the noise sources in nanoscale CMOS
designs.

References

1. G. K. Celler and S. Cristoloveanu. Frontiers of silicon-on-insulator. Journal of
Applied Physics, 93:4955–4978, 2003.

2. S. Luryi, J. M. Xu, and A. Zaslavsky, eds. Future Trends in Microelectronics:
The Nano, the Giga, and the Ultra. New York: Wiley, 2004.

3. H. S. P. Wong. Beyond the conventional transistor. IBM Journal of Research
and Development, 46(2-3):133–168, 2002.

4. H. Iwai. The future of CMOS downscaling, paper in: S. Luryi, J. M. Xu, and
A. Zaslavsky, eds., Future Trends in Microelectronics: The Nano, the Giga, and
the Ultra, pages 23–33. Wiley, New York, 2004.

5. International Technology Roadmap for Semiconductors. The latest update is at
http://www.public.itrs.net.

6. J. Besag. Spatial interaction and the statistical analysis of lattice systems. Jour-
nal of the Royal Statistical Society, Series B, 36(3):192–236, 1994.

7. S. Z. Li. Markov Random Field Modeling in Computer Vision. Berlin Heidelberg
Newyork: Springer, 1995.

8. R. Chellappa. Markov Random Fields: Theory and Applications. New York:
Academic, 1993.

9. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. San Francisco, CA: Morgan Kaufmann Publishers, 1988.

10. J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its
generalizations. In International Joint Conference on AI, 2001. Distinguished
Lecture.

11. R. I. Bahar, J. Mundy, and J. Chen. A probabilistic-based design methodol-
ogy for nanoscale computation. In Proceedings of International Conference on
Computer Aided Design, November 2003.

12. K. K. Likharev. Single-electron devices and their applications. Proceedings of
the IEEE, 87(4):606–632, April 1999.

338 K. Nepal et al.

13. K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. Designing
logic circuits for probabilistic computation in the presence of noise. In Proceed-
ings of Design Automation Conference, June 2005.

14. Berkeley Predictive Technology Model. Available at http://www-device.eecs.
berkeley.edu/∼ptm/.

15. V. M. Polyakov and F. Schwierz. Excessive noise in nanoscaled double-gate
mosfets: A monte carlo study. Journal of Semiconductor Science and Technology,
19(4):145–147, 2004.

16. S. Narendra, V. De, S. Borkar, D. A. Antoniadis, and A. P. Chandrakasan.
Full-chip subthreshold leakage power prediction and reduction techniques for
sub-0.18 µm cmos. IEEE Journal Of Solid-State Circuits, 39:501–510, March
2004.

17. R. Sarpeshkar, T. Delbrueck, and C. A. Mead. White noise in mos transistors
and resistors. IEEE Circuits and Devices Magazine, 6:23–29, November 1993.

18. H. Li, J. Mundy, W. R. Patterson, D. Kazazis, A. Zaslavsky, and R. I. Bahar.
A model for soft errors in the subthreshold cmos inverter. In Proceedings of
Workshop on System Effects of Logic Soft Errors, November 2006.

19. E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa,
K. Nagai, and H. Hiroshima. Highly suppressed short-channel effects in ul-
trathin soi n-mosfets. IEEE Transactions on Electron Devices, 47(2):354–359,
February 2000.

20. T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono,
Y. Takahashi, and K. Murase. Ultimately thin double-gate soi mosfets. IEEE
Transactions on Electron Devices, 50:830–838, March 2003.

21. K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate
inference: an empirical study. In Proceedings of Uncertainty in AI, 1999.

22. K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. MRF Re-
inforcer: A Probabilistic Element for Space Redundancy in Nanoscale Circuits.
IEEE Micro, 26(5):9–27, September–October, 2006.

23. S. Kullback. Information Theory and Statistics. New York: Dover, 1969.

Chapter 13: Towards Nanoelectronics
Processor Architectures

W. Rao, A. Orailoglu, and R. Karri

1 Introduction

CMOS technology has moved beyond 80 nanometers in scale, and accord-
ing to the International Technology Roadmap for Semiconductors (ITRS), is
projected to reach beyond 22 nanometers in the next several years [1, 2]. At
nanometer scale, CMOS devices start to meet the physical limits and further
shrinking in the CMOS feature sizes is checkmated by the insurmountable
barriers of quantum effects, leakage current and power consumption.

A number of nanoelectronic devices, based on the quantum physical effects,
have been proposed as highly promising to continue the scaling down of tran-
sistor sizes into the nanometer scale. Although no single nanoelectronic device
can be expected to replace CMOS in the next generation, there are a num-
ber of promising device candidates, including Carbon Nanotube Electronics
(CNT) [3], Resonant Tunnel Devices (RTD) [4], Quantum Cellular Automata
(QCA) [5], Single-Electron Transistors (SET) [6, 7], Molecular devices [8–11]
and Spin devices [12]. These nanoscale devices are promising due to their
potential for high speed operation, low power consumption and device den-
sities of the order 1012 device/cm2 [1, 2]. Although these multiple candidates
have different underlying characteristics, they do share a number of important
characteristics, determined by their nanometer scale, that are significantly
different from the ones exhibited by CMOS based devices [1, 2]. Particularly,
unreliability, localized communication and regular structure of the nanofab-
rics, all essentially stem from the common nanoscale device dimensions:

1. Fabrication. Current CMOS systems utilize top-down fabrication, which
is limited in obtaining precision when scaling down to the nano level.
Aggressive approaches in lithographic fabrication do exist for the na-
noelectronic environment, yet they are too expensive to be applied for
massive production. On the other hand, a bottom-up approach is ex-
pected to prevail as the basic way to construct nanoscale circuits by
building structures in a self-assembly manner. The main implications of

340 W. Rao et al.

a bottom-up fabrication process are (1) regularity in structures imposed
by the self-assembly process, (2) massive defects caused during the fab-
rication process, and (3) post-fabrication reconfigurability necessitated to
define the circuits and bypass the defects.
It has been shown that the bottom-up self-assembly process of nanofab-
rics can be used to generate a crossbar-like structure, where a number of
perpendicular nanowires form a grid with nanoelectronic devices located
at the cross points [13–16]. Based on the crossbar structure, latch based
storage elements and programmable logic array (PLA) like logic blocks
have been investigated [14, 17, 18]. These approaches on the development
of nanoelectronics based memory and logic, in conjunction with research
work on the interface design between CMOS and nanodevices [17–20], have
exhibited promising potential for the construction of functioning nanoelec-
tronic systems.

2. Interconnect. Accessing the extremely small devices and delivering
information at high speed and bandwidth is an essential challenge in
the nanoelectronic environment. The small gain of the quantum devices
strongly limits the number of fan-outs, while some devices, such as QCA,
even rely on the interaction between neighboring devices to implement the
transfer of signals. Interconnection essentially becomes the dominant issue
in a nanoelectronic system in terms of area, delay, and power consump-
tion. Communications between geographically distant devices through
nanowires is extremely expensive and localized interconnection becomes a
critical criterion in the nanoelectronic environment.

3. Reliability. Perhaps the most severe challenge as well as the most basic
issue that needs to be addressed to build working nanoelectronic processor
architecture is the reliability problem, which is commonly exhibited among
all the emerging nanodevices [1,2,21,22]. Although the multiple nanodevice
candidates exploit various underlying physical characteristics, the severe
reliability challenge is caused in common by their highly shrinking device
scale. In contrast to the current CMOS based systems, defect and fault
tolerance is emerging as one of the most important design objectives in
constructing any functional systems based on nanoelectronics. The unre-
liability of nanoelectronic devices exists mainly in two forms.
– First, manufacturing defects increase significantly. Due to the device

scale and the stochastic process involved in the bottom-up fabrication,
the manufacturing defect rates in these emerging nanodevices are pro-
jected to be in the order of 10−3–10−1, in comparison to the defect
rates of 10−9–10−7 in CMOS technology [2, 21,22].
Related research in defect tolerance for the nanoelectronic systems
includes system level approaches [23] and logic level solutions [24, 25].
These approaches reconfigure the redundant hardware to bypass the
defective units according to a defect map in the post-fabrication stage.

– Second, a high occurrence of transient faults is expected during run-
time [2, 21, 26]. Due to the nanometer scale of devices which utilize

Chapter 13: Towards Nanoelectronics Processor Architectures 341

ultra low voltage, nanoelectronic transistors tend to be highly sensitive
to environmental influences, such as temperature, cosmic ray particles,
and background noise.

In fact, transient faults have been observed increasingly in the current
CMOS based systems as the device scales down to the deep submicron
stage. Single event upset caused by cosmic particles have already been
observed in large amounts in the memory systems and sequential logic
state elements. Similar transient faults have started to be observed in com-
binational logic as well [27–29]. The challenge of dynamic transient faults is
furthermore severely aggravated in nanoelectronics based systems [21,30].
The ultra low power utilized as well as the quantum effects nanoelectronic
devices rely on, both result in significantly reduced noise margins and
increased sensitivity to environmental effects, including cosmic particles,
temperature, and crosstalk effects [2,21,26,30]. In the nanoelectronic sys-
tems, transient faults are projected to be frequently occurring in not only
memory elements, but also combinational logic blocks, since most of the
logic functions are to be implemented by crossbar based PLAs and look-up
tables.
In addition, the functionality of most nanoelectronic devices is extremely
sensitive to a certain set of manufacturing parameters. However, the
bottom-up manufacturing process cannot perfectly control such para-
meters to be precisely identical across all the devices fabricated, thus
inevitably resulting in variations among the transistors. Such variations
lead to significant differences in performance, robustness, as well as noise
immunity among the devices in a chip, engendering clustered fault behav-
ior in the system. Furthermore, such clustering behavior of the faults is
exasperated by the factor that most environmental effects, including eleva-
tion in temperature generated by heavy computations, exhibit clustering
and time varying behaviors as well.

The identification of a common set of new challenges among the multiple
nanoelectronic devices provides an initial starting point to address the funda-
mental questions regarding the construction of nanoelectronic systems. Essen-
tially, the highly shrunk dimensions and the severe unreliability in nanodevices
introduce significant changes in the design optimization considerations of the
current CMOS based systems.

Specifically, in nanoelectronic system design, on the one hand, the hard-
ware constraint becomes less stringent due to the abundance of resources intro-
duced by the shrinking of transistor sizes; on the other hand, reliability needs
to be addressed as a fundamental issue, thus presenting an important new di-
mension into the design optimization space. The most fundamental challenge
that has emerged in constructing a workable nanoelectronic system is to enable
reliable computations despite the severe unreliability imposed by the under-
lying nanoelectronic devices. On top of the reliability challenge, a number
of particular characteristics that are significantly distinct for nanoelectronics,

342 W. Rao et al.

such as the strict interconnect constraint, the regularity in structure as a
result of the bottom-up fabrication, the reconfigurability required to form
essentially any operational functionality of the system, interacting with the
fault tolerance aspect, will influence the design for the future nanoelectronic
systems.

The emerging nanotechnologies are projected to offer a boosting of device
density of the order 103–106 on the basis of current CMOS device scales [1].
This in turn can support a significant increase in the number of high-level com-
putational units at the processor architecture level, which can be exploited
for the dual competing goals of system performance and fault tolerance. Since
processor architecture level fault tolerance in a nanoelectronic environment
has direct impact on the performance and parallelism of the system, new com-
putational models are required to support dynamically the tradeoff between
hardware resources and system performance while efficiently guaranteeing the
correctness of computations.

For nanoelectronic processor architectures, we focus on two core require-
ments that computational models should satisfy. First, correctness of com-
putations is a fundamental requirement. The overall system should operate
reliably even though the underlying nanodevices are highly unreliable. A sec-
ond requirement is high performance. The large number of computation units
should be efficiently organized to support system performance speedups. Over-
all, we need to understand (1) how can we translate the speedup afforded by
nanoelectronic devices into system-level high performance; and (2) how can
one organize the abundant computational resources to trade off fault toler-
ance against system performance in the presence of high rates of time varying
faults.

We introduce a fault tolerance computational model according to the above
considerations for the nanoelectronic processors. During the run time, each
instruction is confirmed by multiple computation instances exploiting both
hardware and time redundancy. On the performance aspect, through paral-
lel speculative executions, the proposed computational model eliminates the
severe performance deterioration typically caused by time redundancy ap-
proaches on data dependent instructions. On the hardware aspect, to avoid
the exponential growth of resource allocation introduced by the hardware re-
dundancy based speculations, a resource allocation framework is developed to
control the hardware resource requirement, while preserving the low latency
achieved through speculative executions. In addition to the fault tolerance,
performance, and hardware resource tradeoff, we further provide a discussion
on a number of other emerging issues in a nanoelectronic processor archi-
tecture, namely the localized interconnection constraint, CMOS/nano hybrid
approach, and the decentralization over a regular structured nanofabric, based
on the proposed computational model.

A simulation framework is setup to validate the effectiveness of the compu-
tational model and investigate the variations of the algorithm under different
parameters. Simulation data confirm that, both in terms of hardware and

Chapter 13: Towards Nanoelectronics Processor Architectures 343

latency aspects, fault tolerance can be achieved by the new computational
model under various fault rates, with high system performance and low hard-
ware overhead. The simulation results also show that, for various fault rate
ranges, a solution quite close to the optimal can be achieved through the
proper selection of parameters in the proposed computational model.

2 Nanoelectronic Processor Fault Tolerance Overview

To tolerate the dynamically occurring faults at run-time, classic fault toler-
ance techniques such as N-Module Redundancy (NMR) and NAND multi-
plexing [31–34] have been examined and proposed for nanoelectronic systems.
These hardware redundancy based techniques are typically applied at the
logic gate level so as to mask the fault behavior through a majority vote.
However, the reliance on applying these hardware redundancy based schemes
at a low level in the design hierarchy is highly impractical, since it requires
immense amount of hardware. It is shown that hardware redundancies of sev-
eral orders are required to tolerate fault rates in the order of 10−2. This is
prohibitively expensive even for the resource abundant nanoelectronic envi-
ronment [22,30]. The dynamic faults caused by environmental factors exhibit
clustered and time varying behavior. They exacerbate hardware replication
based techniques, since the hardware redundancy approaches always need to
aim at the worst case.

Consequently, the correctness of a nanoelectronic system based on the
unreliable devices needs to be guaranteed by fault tolerance approaches at
multiple levels in processor architecture. Various fault tolerance approaches,
including hardware redundancy, time redundancy, and information redun-
dancy can be exploited.

At the processor architecture level, execution of individual instructions is
susceptible to runtime faults. In fact, the issue of fault tolerance for processor
architectures has been addressed for CMOS based systems. In [35], the commit
phase of the processor pipeline is augmented with a functional checker unit,
which verifies the correctness of the core processor’s computation, thus only
permitting correct results to commit. In RAFT [36], fault tolerance in terms of
diagnosis and recovery is achieved by duplicating the computation on different
processors and comparing the signatures derived from their results. In [37],
two modules are used to execute the same task, and compared for detection of
faults. If a disagreement occurs, the two differing states are both stored. The
state at the preceding checkpoint, where both processing modules agreed,
is loaded into a third spare module to recompute the phase where faults
had occurred. Concurrently, the task continues forward on the two active
modules, beyond the checkpoint where the disagreement occurred. At the
next checkpoint, the state of the spare is compared with the stored states of
the two active modules and one which disagrees with the spare is identified to
be faulty. When the faulty module is identified, the state of the faulty module

344 W. Rao et al.

is restored to the correct state by copying the state from the other active
module, which is fault-free. The spare is released to the pool after recovery is
completed.

To address the problem of transient faults for multiprocessors, secondary
versions of jobs are scheduled on the unused, or spare, processors of the sys-
tem. Comparisons are used to detect faults [38, 39]. Redundant thread based
recovery schemes have been proposed [40], in which fault tolerance is achieved
by executing and comparing two copies of threads, namely leading and trail-
ing threads, of a given application. For real-time multiprocessor systems, pri-
mary backup model is utilized, with two versions of the task executed serially
on two different processors. An acceptance test is used to check the result,
and the backup version is executed only if the output of the primary version
fails the acceptance test [41]. Logic topologies of fault tolerant multiprocessor
architecture have also been examined in [42].

Overall, for CMOS based processor architectures, fault tolerance is
achieved by performing a computation with one or two extra redundant
copies, either with hardware or time redundancy. This presumes a low and
rather fixed rate of faults, which is true for CMOS based processors. Under
limited hardware resources and low fault rates, these approaches are feasible.
However, these schemes do not provide a satisfiable solution for the fault
tolerant computation in nanoelectronic processor architectures. On the one
hand, the significantly higher rates of dynamic faults cannot be handled
efficiently based on the assumptions of low fault rates; on the other hand, the
massive hardware resources offered by the nanoelectronic environment are
not fully exploited. Due to the changes in the reliability challenge as well as
the particularities of nanoelectronic environment, the fault tolerance issue in
a nanoelectronic processor needs a rethinking from the perspectives of both
component composition and the computational model.

In general, constructing a reliable processor architecture using highly un-
reliable components requires immense amounts of redundancy [22]. However,
at the processor architecture level, multiple subsystems can be treated with
various fault tolerance schemes. Furthermore, if a part of a system can be
implemented with components of certain reliability guarantee, fault tolerance
can be achieved with much lower overhead for the overall system. The back-
bone control of the system as well as the crucial components for fault tolerant
purposes such as the majority voters, need to be implemented with compo-
nents with higher reliability. Such a system construction is actually feasible,
as CMOS and nanoelectronic hybrid structures are shown to be not only
implementable, but also a necessary step towards the construction of nano-
electronics based systems. A number of research approaches have exhibited
various ways to construct functional CMOS–nano hybrid electronic circuits,
containing both logic and memory elements [17–20, 43]. Therefore, in a na-
noelectronic system, a comparatively small number of reliable CMOS based
components can be utilized to implement the critical components so as to
construct efficient fault tolerance schemes.

Chapter 13: Towards Nanoelectronics Processor Architectures 345

At the processor architecture level, it is possible to exploit various forms of
redundancies, such as hardware, time and information redundancy, and var-
ious subsystems can incorporate distinct fault tolerance schemes, since each
strategy has distinct applicability according to the functionality of the sub-
system. Typically the reliability of the memory and bus subsystem can be
guaranteed by adopting information redundancy based schemes, since a num-
ber of well-developed error checking/correction coding theories are applicable
in particular to these subsystems [44]. The reliability of the control subsys-
tem is crucial for the functionality of the processor architecture as well as for
guaranteeing the fault tolerance of other modules in a nanoelectronic processor
architecture. We therefore envision the backbone control of a nanoelectronic
processor architecture, as well as the control units for fault tolerance purpose
to be implemented with reliable components such as CMOS devices, so as to
carry out the fault tolerance schemes for the entire nanoelectronic processor.1

The arithmetic/logic computation subsystem of a nanoelectronic proces-
sor consists of a large number of ALU components, which perform the core
task of instruction execution. These computation units exploit the paral-
lelism supported by the large number of unreliable nanoelectronic devices,
thus necessitating aggressive fault tolerance approaches to guarantee correct-
ness. Information redundancy based error checking code approaches are hardly
applicable for the arithmetic/logic computation subsystem since the compu-
tational components typically perform quite complex calculations, while the
error checking code approaches rely on strict algebraic structures. Therefore,
we focus our architecture-level fault tolerance approach on the faults occur-
ring in the subsystem of computational components, with the assumption that
control components can be implemented with reliable CMOS based devices,
while data storage/transfer can be made reliable by applying error checking
codes on memory and buses.

3 Motivation

According to the above analysis, applying hardware or time redundancy based
fault tolerance schemes for the arithmetic/logic computation subsystem is
the only choice. However, this is challenging due to the high cost in either
hardware resource or performance. We motivate the proposed approach in this
section by investigating a set of conflicts among hardware resources, system
1 For performance reasons a number of control units close to the arithmetic units

might be implemented with nanoelectronic devices. Special fault tolerance ap-
proaches need to be applied for these control units. In fact, a number of existing
techniques can be used in enhancing the reliability of controllers and checkers [45].
For both FSM and RAM based controllers, coding based techniques have been
developed to use redundant states or bits to provide error checking/correcting
capabilities [45]. Additional coding based techniques such as the two-rail code are
applicable for fault tolerant checker designs [45].

346 W. Rao et al.

performance, and fault tolerance in a nanoelectronic architecture under high
and time varying rates of faults.

Triple-Modular Redundancy (TMR) and in its generalized form, N-
Modular Redundancy (NMR), have been some of the most commonly applied
hardware redundancy based approaches for fault tolerance. To apply this
straightforward strategy, an instruction can be computed by N distinct units
in parallel and the result confirmed by a majority/plurality vote. This strategy
is supported by the emerging nanotechnologies due to the abundant hardware
resources.

A careful analysis reveals however that this approach is practical only
if the fault rates are steady and the faults are evenly distributed, since the
amount of redundancy is predefined and fixed. With high occurrence of time
varying faults, however, a low predetermined number of computation units
might generate distinct results and fail to confirm the computation. On the
other hand, setting the redundant computation unit number high to match
the worst case scenario consumes unnecessary hardware overhead. Therefore,
the rigidity of the NMR fault tolerance strategy makes it extremely hard to
match a predefined amount of redundancy with the high and varying fault
occurrence in the nanoelectronic environment.

Consider a straightforward time redundancy strategy instead. Multiple
clock cycles may elapse before the result of an instruction can be confirmed.
For time redundancy based schemes, recompute with shifted operand (RESO)
can be used to deal with dynamic permanent faults [46, 47]. However, the
application of RESO is strictly limited to a small subset of functions, such
as the addition operation. For general arithmetic/logic computation, a time-
redundancy based scheme that reuses the same computation unit over multi-
ple time slots is only effective for transient faults. If the component becomes
permanently faulty or the transient fault lasts across multiple cycles, distinct
computation units need to be allocated. Basically, both hardware and time
redundancy are required in a complementary manner, so as to provide high
flexibility. With time redundancy, an instruction is always confirmable despite
the dynamically varying fault rate, since it can always allocate new computa-
tion units at the next cycle when the current results do not conform.

Severe compromises in system performance can be introduced by the time
redundancy based approach if subsequent instructions need to wait and con-
tend for a common centralized control unit, which performs both the instruc-
tion issue and the fault tolerance control task. Such a centralized control
becomes the performance bottleneck in the system with time-redundancy
based fault tolerance approaches. This problem can be resolved by introduc-
ing more parallelism. In fact, the control for fault tolerance purposes can be
separated from the main architecture control unit, forming a second level
distributed control for fault tolerance. Supported by the abundant hardware
resource in nanoelectronic environment, multiple dedicated control units can
be used in parallel, each performing a decentralized fault tolerance scheme for
an instruction being executed. Consequently, the latency caused by the time

Chapter 13: Towards Nanoelectronics Processor Architectures 347

redundancy approach on one instruction does not block the next instruction
from being issued. By adding a new layer of decentralized control units for
fault tolerance purposes, instructions can be issued and dispatched without
stalls.

Computations at the processor architecture level are not isolated. The
existence of large number of dependencies among the instructions further
causes complications in the performance overhead of time redundancy based
approaches. The main performance bottleneck thus resides among the instruc-
tions with data dependencies. Basically, applying a time redundancy approach
inevitably costs prolonged latency in the confirmation process. It might take
an unpredictable number of cycles, as determined by the time varying fault
occurrence, before an instruction can be confirmed. Therefore, any succes-
sor instructions that rely on the unconfirmed result of a current instruction
have to be delayed, resulting in a domino effect on the subsequent dependent
instructions and a tremendous number of stalls in an instruction pipeline.
Consequently, the latency introduced by time redundancy becomes a severe
problem when data dependency exists among instructions, especially in a
pipelined environment.

To solve this problem, it can be observed that a dependent instruction
need not wait for the confirmation of its predecessor results; additional units
can be used to speculatively execute an instruction. In other words, a de-
pendent instruction can use the unconfirmed results in a speculative manner.
Multiple speculative branches may be formed for a dependent instruction. As
results are confirmed, the correct branches of the dependent instruction are
retained and the remaining branches are pruned. While speculation can speed
up instruction execution in the presence of data dependencies, one has to
carefully manage the amount of speculation. Speculative branches can grow
exponentially and quickly exhaust the available hardware, furthermore com-
promising parallelism and performance in a processor system. We will present
an allocation algorithm that carefully manages the speculative instruction
execution by allocating hardware frugally.

4 Nanoelectronic Processor Computational Model

In a nutshell, the key features of a high-performance fault-tolerant computa-
tional model for the nanoelectronic processor architectures are:

– Decentralized fault tolerance control units (denoted as voters) with a large
number of complex computation units (denoted as C-units)

– Fault tolerance scheme that utilizes hardware and time redundancy to
guarantee the correctness of computations

– Support for speculative instruction execution of dependent instructions
– Hardware allocation algorithm that dynamically balances hardware

resources and system performance when dealing with speculation branches
for dependent instructions

348 W. Rao et al.

4.1 Voter/C-unit Structure

In the nanoelectronic environment where the device densities can be 1–3 or-
ders of magnitude higher than the current CMOS systems, a nanoelectronic
processor can support a large number of computation units. Under such a sce-
nario, parallel instruction improve system performance. However, the parallel
instruction execution demands not only multiple execution units, but also de-
centralized control units to support fault tolerance to guarantee correctness
of each instruction.

In the proposed architecture for a nanoelectronic processor, the system
includes a pool of decentralized control units, denoted as voters. The control
of the instruction is handled over to the voter once such a connection is estab-
lished with the allocated voter. The centralized control performs the fetching,
decoding and dispatching of the subsequent instructions in the instruction
queue without delay. The voters support the parallel execution of the instruc-
tion and guarantee the correctness of the computations. Specifically, when an
instruction is issued, a voter is allocated to it. The voter manages the reli-
able execution of the instruction by applying hybrid redundancy based fault
tolerance approaches.

Computation units (C-units), which carry out the actual arithmetic and
logic computations doing instruction execution, are managed by the voters.
C-units are dynamically allocated by a voter, and receive from the voter the
input values to perform a specific computation. Upon returning result back to
the voter, the C-unit is released by the voter and is free for future allocations.
In order to confirm the result of an instruction, a voter assigns the same
computation to multiple C-units, and compares their results. Figure 1 shows
a functional view of the instruction issue process. It can be seen that the Issue
Machine constitutes the highest centralized control while the voters constitute
the second level of decentralized control.

Allocate Voter
Dispatch Instruction Voter

Pool

C− Unit

Pool

Get instruction
Instruction

Queues

Issue Machine

Fig. 1. Instruction issue process with voter/C-unit structure

Chapter 13: Towards Nanoelectronics Processor Architectures 349

4.2 Fault Tolerant Computation

In order to guarantee the correctness, an instruction should be confirmed by at
least two results in agreement.2 The fault tolerance computation is composed
of two processes:

1. An initial NMR hardware redundancy approach, followed by
2. A time redundancy approach, which continues invoking new computation

instances until two of the results conform

The main idea behind such a hybrid approach is two-folded (1) the hard-
ware redundancy based NMR provides an initial trial to confirm the instruc-
tion, such that under the situation of low fault rate the computation can
be quickly confirmed with minimum hardware resource required; (2) the time
redundancy based approach provides full flexibility by trading off performance
for reliability, so that high fault rates can be handled in a hardware-efficient
way. In this section, we provide an exposition of the proposed scheme based
on the minimum redundancy of two C-units.

Specifically, a voter accomplishes fault tolerance computation for each
instruction by combining hardware and time redundancy in the following way.
At the beginning, the voter allocates two C-units for an instruction for the
initial hardware redundancy based NMR. Triple modular redundancy (TMR)
is not necessary for this initial allocation, since the follow-on time redun-
dancy can be invoked if an instruction cannot be confirmed with the initial
C-units. After the execution, the unconfirmed values are stored by the voter
while the C-units are released so as to support the computation requirement
for other instructions. If the initial two results conform, then the instruction
is deemed confirmed. Otherwise, the voter incrementally applies time redun-
dancy by allocating one C-unit at a time until two of the results agree and the
instruction can be confirmed. Similarly, each C-unit allocated during the time
redundancy process is released once the result is stored back to the voter.

The voter performs a comparison each time a new result is returned. Since
the previous stored results in a voter are all deemed distinct, the only possi-
ble agreement is between one of the previously stored results and the newly
returned result. Therefore, only two-input comparators are needed in the vot-
ers and the number of comparisons performed inside a voter equals the number
of existing results stored in the voter. Figure 2 depicts the comparisons needed
to be performed upon the nth result being available.

Due to the involvement of time redundancy approach, the confirmation
of an instruction might demand unpredictable latency. For a multi-cycle
2 Note that in the computation of a processor architecture level the results typi-

cally consist of multiple bits, and it is presumed that faults in computation units
exhibit themselves in distinct ways. Therefore, the faults occurring in multiple
computation units tend to have negligible chances of generating a conforming yet
faulty result. Further insurance against letting faulty computations slip through
can be attained by increasing the threshold of agreement.

350 W. Rao et al.

n−1 n321

compare

Fig. 2. Comparison performed in a voter when the nth result is returned

Cycle:

Comparison result:

5 6 7

C−unit: allocated result storedin execution

2 3 41

Fig. 3. An example of the instruction confirmation process

pipelined processor architecture, such a confirmation process can stride across
multiple cycles. In implementing high performance processor architectures,
pipelines of various depths have been utilized, varying from the simple five-
stage pipelines in RISC architectures to the complex twenty-stage pipelines
in Pentium 4 [48]. However, for the purpose of illustration, we make consider-
able simplification and divide an instruction confirmation process into three
pipeline stages:

(a) Instruction decode and initial allocation of C-units by the voters
(b) Instruction execution carried out by C-units
(c) Result comparison and new C-unit allocation (if needed)

According to the above functionality division, the confirmation process of an
instruction has a pattern of {a, b, c, (b, c)∗}, which consists of a first initial
allocation cycle (a), and followed by a number of recurrent (b, c) steps, due
to possibly non-conforming comparisons.

Figure 3 shows an example of an instruction being confirmed in seven
cycles with four C-units allocated throughout the process. In cycle 1 the voter
initially allocates two C-units and the results are available in the third cycle.
The two C-units are released at this point and the results stored in the voter.
Since the results are not conforming, a new C-unit is allocated at the third
cycle. After the execution stage in the 4th cycle, the new result is available

Chapter 13: Towards Nanoelectronics Processor Architectures 351

at the 5th cycle and is compared with the two stored results. Again the com-
parisons cannot achieve an confirmation, thereby a new C-unit is allocated in
cycle 5. The instruction is finally confirmed at cycle 7 when one of the three
previous stored results conforms with the newly returned result.

To carry out the fault tolerance approach, a voter needs a number of stor-
age elements and comparators. Although multiple values need to be compared
to check for possible conformity between two results, the comparisons are
always performed pairwise, since they are only required between the returning
result and the existing ones. Therefore, these comparisons can be performed
in parallel with a number of two-input comparators, avoiding the necessity
of multi-input comparators, which are expensive both in terms of hardware
and latency. Furthermore, a tradeoff needs to be examined when designing
the voters: a voter can utilize a large number of comparators for fast parallel
comparisons; alternatively, a voter can perform the comparisons in serial with
shared comparators, which might result in a prolonged multi-cycle comparison
process in the pipelined environment.

The storage elements in a voter is for the purpose of keeping the non-
conformable results. The number of storage elements set in a voter depends
on the tradeoff between hardware and fault tolerance requirement. At the rare
occasions where fault rate is extremely high and all the storage elements are
used up in a voter, a simple strategy of discarding a fraction of the existing
results can be used. Since all the results stored are unconfirmed and distinct,
the chance of discarding a correct result is very low.

4.3 Speculative Computation to Improve Performance

We have discussed the fault tolerance computation scheme, which confirms
each instruction through a hybrid redundancy of hardware and time. The
main concern for system performance, consequently, hinges on the data de-
pendencies on the instructions yet to confirm. Consider the situation where
an instruction B takes as input the result of a yet unconfirmed instruction A
(we denoted B as a child instruction, and A as a parent instruction), since the
execution of B needs to be based on a correct input, B’s execution is delayed
until the confirmation of A’s result.

Alternatively, in order to improve system performance, dependent instruc-
tions do not need to stall for the confirmation of their operands. A child
instruction can speculatively use the results of the yet unconfirmed parent
instruction. As a confirmed result of the parent instruction is obtained at a
later cycle, it can be used to confirm or prune the corresponding speculative
branches of the child instruction.

As an example, suppose instruction B uses the result of instruction A as an
input, while A takes an exceedingly long time to confirm. B can start executing
speculatively without delay, based on the multiple unconfirmed results of A.
Multiple speculative branches for computing B can thus be formed. As the
result of A is finally confirmed, the correct branches of B are retained and

352 W. Rao et al.

the incorrect speculative branches are pruned. The conforming results within
a correct branch of B’s execution can further confirm the instruction B.

According to the above analysis, two extremal positions in terms of hard-
ware vs. latency tradeoff can be envisioned.

– In a no speculation approach, if the input data of a child instruction
depends on a parent instruction that is not yet confirmed, the execution
of the child instruction is delayed and waits for the confirmed input from
the parent instruction, thus necessitating no extra computation units for
speculations.
The no speculation approach is a simple scheme that uses a small constant
number of C-units, yet inevitably results in significant delay among the
dependent instructions. Particularly, in the case of a sequence of depen-
dent instructions, the delay caused by the time redundancy approach is
transferred to all the descendent instructions, resulting in a domino effect
of latency accumulation. Consequently, the no speculation approach rep-
resents a mechanism with low hardware, yet high latency overhead.

– In a full speculation approach, an instruction can start execution by gen-
erating multiple speculative branches for every unconfirmed input. Since
the initial NMR needs to be applied in each speculative branch for the
purpose of local confirmation,3 the formation of full speculative branches
necessitates at least twice the number of the hardware resources to com-
pute all the branches of a child instruction in parallel. Consequently, the
full speculation approach represents a mechanism with low latency, yet
high hardware overhead.

Figure 4 illustrates the no speculation and the full speculation approaches.
When executing dependent instructions with the no speculation case as shown

(b): full speculation

A1 A1A2 A2

A3A3

A4 C1 C2 C8C7

B1

B1 B3

B2

B2 B4

B6B5

. . .

A confirmed

L
 a t e n cy

(a): no speculation

.

. . .

H a r d w a r e

Fig. 4. An example for the cases of (a) no speculation and (b) full speculation

3 We assume each speculative branch always allocates the minimum number, i.e.,
two, redundant computations for local confirmation purposes.

Chapter 13: Towards Nanoelectronics Processor Architectures 353

in Fig. 4a, the latency can be arbitrarily long; in the case of full speculation
as shown in Fig. 4b, an exponential growth in the hardware requirements is
encountered.

Basically, while speculation can speed up instruction execution in the
presence of data dependencies, speculative branches can grow exponentially
and exhaust rapidly even the abundant hardware available in a nanoelec-
tronic environment. To avoid the severe latency problem in the no speculation
approach and the exponential growth of hardware allocation in the full spec-
ulation approach, a hardware allocation framework needs to be developed to
achieve both frugal hardware resource allocation and short overall latency.
The essence of such a resource allocation mechanism is to control the gener-
ation of speculative branches, such that hardware resources are allocated on
an as-necessary basis. Specifically, extra hardware is only allocated when an
instruction is known definitely not confirmable.

4.4 Dynamic Hardware Allocation Algorithm

For a child instruction that depends on the unconfirmed input data from its
parent instruction, the correctness of the result relies on:

1. The correctness of the input data, and
2. The confirmation of the computation process within the child instruction

The challenge of performing speculative execution essentially comes from these
two points.

First of all, a parent instruction might have multiple unconfirmed results,
thus forming multiple speculation branches for a child instruction. These spec-
ulation branches are dynamically changing. According to the time redundancy
approach of the parent instruction, new unconfirmed results might emerge
and form additional branches. Furthermore, the confirmation of the parent
instruction will cause merging of correct branches and pruning of incorrect
ones.

Secondly, within the child instruction itself, the hardware and time re-
dundancy approach applied to confirm the computation for each speculation
branch is dynamically changing: two C-units are allocated initially for each
branch and additional ones are added in later cycles if necessary.

Overall, these two means of guaranteeing the correctness of a child
instruction, when combined, result in an exponential hardware growth in the
full speculation approach. The underlying reason for the exponential growth
of hardware resources needed in the full speculation approach is that it does
not differentiate the hardware allocation policy in a parent instruction and
a child instruction. In a sequence of dependent instructions, the exponen-
tial growth in hardware resources occurs when a speculation tree is formed
with the branch number doubling with depth. The most significant part of
the hardware is therefore spent on extensive speculations, a large portion of
which might turn out to be based on faulty input data.

354 W. Rao et al.

From the above analysis, we can draw the conclusion that, hardware allo-
cation should be concentrated on the root-level parent instruction, where the
confirmation will accelerate the further confirmation of the descendent instruc-
tions. In other words, the C-unit allocation in the child instructions should
be controlled so as to reduce the hardware resources spent in the speculative
execution. This is the core idea that enables reductions in the exponential
hardware growth to be otherwise expected.

An ideal C-unit allocation algorithm for the child instructions needs to
achieve the goals of frugal hardware resource allocation, quick confirmation
with low latency and fault tolerance for a computation. Specifically, the fol-
lowing aspects should be addressed:

– Parent instructions should be provided with higher priority for obtain-
ing hardware resources in order to quickly prune out wrong speculative
branches.

– Child instructions should be updated with the states of the parent instruc-
tions during the fault tolerant computation, so as to effectively control the
speculation branches.

– The initial C-unit allocation for a child instruction should try to preserve
the confirmation possibility of the instruction, yet with minimum hardware
resources.

– For a child instruction based on unconfirmed input, hardware allocation
should be frugal yet maintain the possibilities for confirmation. In other
words, for fault tolerance of the speculative branches, hardware is only
added when the instruction becomes impossible to confirm.

Essentially, when the fault rate is low, the initial speculative branches
suffice for the child instruction to quickly confirm, without consuming large
amounts of hardware resources. When the fault rate is high, the speculation
branches should be controlled to a limited number to avoid an exponential
growth of hardware requirement. Hardware resources need to be highly prior-
itized, in this case, on the root level of the speculation tree, thus guaranteeing
the quick confirmation of the parent instructions.

We explore the hardware allocation algorithm in depth in the following
three subsections. Basically, we discuss the initial C-unit allocation of the
dependent instructions, how the parent instruction level information is utilized
for the child instructions and how the hardware growth in the dependent
instructions is managed. The description of the proposed technique is followed
by an example and a discussion subsection.

Initial C-Unit Allocation of Dependent Instructions

The minimum hardware resources needed to confirm an instruction in the
shortest time are two C-units. For a child instruction based on an unconfirmed
input, the full speculation approach allocates likewise two initial C-units for
each unconfirmed input. This eventually leads to an exponential growth in

Chapter 13: Towards Nanoelectronics Processor Architectures 355

hardware requirement for a sequence of dependent instructions. In fact, two
of the results in the parent instruction will turn out to conform, yet the initial
allocation of the child instruction in the full speculation approach presumes
every unconfirmed result to be distinct, thus generating a number of redundant
speculative branches.

When a child instruction is issued, information from the previous compar-
isons in the parent instruction should be utilized. Obviously, an input with the
full resolution of information, i.e., known to be correct or incorrect, is easy to
deal with. However, for most of the unconfirmed inputs, at a particular cycle,
such full resolution is not achievable. However, even if an input is not under
full resolution, information can be extracted by distinguishing between the
following two states:

– Distinct. The unconfirmed result is known to be distinct among all the
other unconfirmed results.

– Conformable. The unconfirmed result has a comparison companion, i.e., is
to be compared with another unconfirmed result. In this case there is a
possibility that the unconfirmed result might conform with the comparison
companion’s result.

In the example shown in Fig. 3, at the 3rd cycle and the 5th cycle, the
stored results, represented by the shadowed circles, are all in the distinct
state, since the newest comparison indicates they differ from each other. On
the other hand, at the fourth and sixth cycle, the stored results are all in the
conformable state, since they are all to be compared with the new result in
execution.

Figure 5 shows the two specific situations as well as the corresponding
initial C-unit allocation cases for a child instruction. In the case shown on the
left side, all the results in the parent instruction are known to be distinct since
a comparison has just completed and it turns out no conformity is achieved.
For the child instruction, two C-units are initialized for each distinct result,
forming multiple speculation branches that can be locally confirmed. There is

··· ···

C−unit result available and stored

C−unit allocated C−unit in execution

Fig. 5. Initial allocation of C-unit in a child instruction

356 W. Rao et al.

no need to allocate any C-units in the child instruction to take the result of
the newly issued C-unit in the parent instruction, since this result will not be
available until two cycles later.

However, in the case shown on the right side of Fig. 5, all the available
results in the parent instruction are to be compared with the last C-unit,
the result of which will be available in the next cycle. Therefore, every result
has its comparison counter part and is conformable with the new result in
the parent instruction. In this situation, the child instruction only needs to
allocate one C-unit for each unconfirmed input, with the same comparison
companion relationship constructed as the parent instruction. A C-unit is
also allocated in the child instruction for the C-unit currently being executed
in the parent instruction, the result of which will be available in the next
cycle. With this initial C-unit allocation, the child instruction can confirm in
minimum latency when the fault rate is low.

To summarize, for every unconfirmed result in the parent instruction, the
initial C-unit allocation for a child instruction is described below:

– For inputs known to be incorrect, no C-unit is allocated.
– If the input is known to be distinct, allocate two C-units initially.
– If the input is conformable, allocate only one C-unit initially and assign

the comparison companion according to the parent instruction.

Information Propagation

In a child instruction, based on (1) the state of the input data, and (2) the
computation within a specific branch, the result of a speculative branch at
any cycle can fall into one of the following categories:

1. Full resolution.
– Correct. Both the input data and the computation are confirmed to be

correct; thus the instruction can be confirmed with this result.
– Wrong. Either the input data or the computation within the branch

itself is confirmed to be wrong; thus this result is known to be incorrect.
2. Half resolution.

– Global. The input data is confirmed to be correct but the correctness
of the computation within the branch is not confirmed yet.

– Locally confirmed. The input data is not confirmed but the computation
is locally confirmed within the branch.

3. Zero resolution.
– Unknown. No information is available for the correctness of the input

data, and the result is not confirmed within the branch either.

Table 1 illustrates how a specific result falls into one of the above categories
according to the information from the input data as well as the computation
within the child instruction branch.

It can be observed that in order for a result within a speculative branch
to be correct, it has to satisfy two conditions (1) the input data has to be

Chapter 13: Towards Nanoelectronics Processor Architectures 357

Table 1. Speculation branch result categories

Computation within Input data from parent instruction
speculative branch correct wrong unconfirmed

confirmed with conformation correct wrong locally confirmed
confirmed to be incorrect wrong wrong wrong
unconfirmed global wrong unknown

confirmed as correct, and (2) the result conforms with another one locally
within the branch. When any of the two conditions turns out to be false, the
result is deemed wrong. When one of the conditions is true while the other
not available yet, the result is either locally confirmed or global.

If a pair of results in a branch are marked as global4 and they conform,
then the instruction can be confirmed with this pair of results marked as
correct. Otherwise, if the result pair within a branch agrees but is unknown,
then the pair of results becomes locally confirmed.

During the process of the fault tolerance computation, the information
obtained from a parent instruction comparison needs to be dynamically prop-
agated to all the child instructions, so as to direct the branch pruning and
hardware allocation in the child instruction. Basically, according to the com-
parison performed in the parent instruction, two types of information can be
propagated:

– Information propagation on non-conforming comparison results
If a pair of results in a parent instruction is compared, the non-conforming
comparison result affects only the child instructions that had initially allo-
cated one C-unit for each of the results, as is shown in the right hand part of
Fig. 5. When the two C-units in the child instruction are set as comparison
companions according to the parent instruction, this is based on the pre-
sumption that the two inputs are conforming. When the resulting C-unit
pair in the parent instruction does not conform, the information should
be propagated to cancel the comparison between the two child C-units,
since they are deemed non-conforming due to their distinct data inputs.
Through the propagation of the non-conforming comparison results, the
distinct property is propagated from the parent instruction results to the
corresponding results in the child instructions.

– Information propagation on conforming comparison results
When a parent instruction is confirmed to be correct, information is passed
to preserve the correct and prune the wrong speculation branches. The
speculative branches that take the correct results as inputs are marked
as global, indicating that the input inherited from the parent instruc-
tion is confirmed. If the results of the children are already locally con-

4 If an instruction does not depend on the results of any unconfirmed instructions,
i.e., it has no parent instruction, then all its unconfirmed results are marked as
global.

358 W. Rao et al.

firmed, then they become correct and the child instruction can be con-
firmed too. The speculative branches taking the wrong results as input
will inherit the wrong attribute and propagate the information to all the
descendants, thus pruning the speculation branches.

C-Unit Update

The speculative execution of a child instruction is based on the unconfirmed
results of the parent instruction. These unconfirmed results of the parent
instruction, however, may be dynamically generated after the initial C-unit
allocation of the child instruction. A full speculation scheme allocates new
C-units and forms a new speculation branch in the child instruction for every
newly generated result in the parent instruction.

To control the growth of hardware resources in the speculation of child
instructions, the allocation of new C-units for a child instruction should be
strictly limited. A voter only allocates new C-units in two cases (1) the initial
C-unit allocation, and (2) when the child instruction becomes impossible to
confirm. The first case has been discussed in the previous section, and we
focus on the second case in this section. There are two situations when a child
instruction can be identified as impossible to confirm:

– All the results in the child instruction turn out to be wrong.
This occurs when every speculation branch of the child instruction turns
out to have a wrong input. In other words, the results which the child
instruction inherited from the parent instruction all turn out to be wrong.
Obviously the confirmation of the child instruction is impossible under
this situation.
The new C-units are allocated by taking the results which are not identified
as wrong in the parent instruction. Similar to the initial C-unit allocation
process, two C-units are allocated for each distinct result while one C-unit
is allocated for each conformable result.

– There exist some unconfirmed results in the child instruction which are
not wrong, but all known to be distinct.
This is either due to the propagation of the distinct attribute, or because
the computation within the branch fails to conform. Under this situation
the child instruction becomes impossible to confirm, due to the lack of
local confirmation capability within each speculative branch.
To make the child instruction possible to confirm, new C-units are allo-
cated by duplicating the computation of the distinct results.

4.5 An Example

We show an example of dynamic allocation of C-units in Fig. 6, where a
sequence of instructions, A,B,C,D,E, are executed and confirmed, each de-
pending on the result of the previous one. A C-unit of any instruction can be

Chapter 13: Towards Nanoelectronics Processor Architectures 359

A1 A1 A1 A1A3
A3A2 A2

A1

A2 A2 A3

A2

Issue: Execute: Compare:

Cycle 1:

(a)

Cycle 2:
Instruction B issued
B depends on A’s result
Instruction A in execution

(b)

Instruction A issued
V(A) allocates 2 C−units for A

(c)

Cycle 3:

Comparison of A’s results finished

Existing C−units for B in execution

Issue new C−units for B and A

Instruction C (depending on B) issued

Cycle 4:

(d)

Newly issued C−unit for A, B, C in execution

Instruction D (depending on C) issued Cycle 5:
Instruction A confirmed

Instruction B, C confirmed
Wrong speculation branches pruned.

Instruction E (depending on D) issued

(e)

B1
1

B3
1 B3

1 B3
1

B1
1 B1

1 B1
1B2

2 B2
2

B4
2 B4

2

C1
1 C1

1 C1
1

D1
1 D1

1

E1
1 E2

2

D2
2 D2

2
D3

3 D3
3

D4
4 D4

4

C2
1 C2

1 C2
1

C3
2 C3

2 C3
2

C4
2 C4

2 C4
2

B2
2 B4

2

B2
2

Fig. 6. An example of five cycles for a sequence of instructions using the proposed
allocation algorithm

in one of the three main states: issue, execute, and compare. For representa-
tional convenience, we use the superscript of a C-unit to indicate the index of
the parent-level C-unit from which the input is taken; we use the subscript of
a C-unit for its own index.

Figure 6a shows the first cycle, during which instruction A is issued; the
voter of A initially allocates two C-units, A1 and A2, in this cycle. In the
second cycle shown in the (b) part, A1 and A2 are in the execution cycle,
while at the same time instruction B is issued. B depends on A’s result. At
this stage A1 and A2 are set as comparison companions. According to the
algorithm, the voter of B allocates two C-units B1

1 and B2
2 , taking the results

from A1 and A2 correspondingly.
In the third cycle, as is shown in Fig. 6c, the comparison of A1 and A2

is finished and the results do not conform. A1 and A2 are thus known to
be distinct, and the information is passed further to split B1

1 and B2
2 to be

distinct as well.
To continue the fault tolerance computation of A, the voter of A allocates

and issues a new C-unit A3 in this cycle. Now that B is known to be impossible
to confirm, since all its C-units are distinct, the voter of B also needs to
allocate two new C-units by duplicating B1

1 with B1
3 and B2

2 with B2
4 . These

newly allocated C-units are issued for instruction B in the third cycle.
Instruction C is also issued in the third cycle. Since B1

1 and B2
2 are in the

execution stage and their results will be available in the next cycle, C-unit
allocation for instruction C is only considered for them. Since both B1

1 and B2
2

are distinct, two C-units are allocated for each: C1
1 and C1

2 are set to take the
result from B1

1 , while C2
3 and C2

4 are set to take the result from B2
2 . On the

other hand, B1
3 and B2

4 are still in the issue stage, so no C-units are allocated
to await their result at this cycle.

The (d) part of Fig. 6 shows the fourth cycle of the example. A3, B1
3 and

B2
4 are now in the execution stage while the results of B1

1 and B2
2 are available

360 W. Rao et al.

and have been passed to {C1
1 , C1

2}, {C2
3 , C2

4} correspondingly. No comparison
is made between B1

1 and B2
2 because they are already identified to be distinct.

All four C-units of instruction C are in the execution stage. Instruction D
is issued with four C-units allocated, inheriting the comparison companion
relationship of instruction C.

The (e) part in Fig. 6 shows the propagation of confirmation as well as the
branch pruning process in the fifth cycle. In this cycle, instruction A is con-
firmed with A1 = A3, while the result of A2 is identified to be wrong and the
corresponding speculative branch is pruned. Also in this cycle, instructions B
and C are locally confirmed with B1

3 = B1
1 and C1

1 = C1
2 . Since the specula-

tive branch of A1 is confirmed to be correct, instruction B is confirmed, which
further confirms instruction C.

The example shows that the proposed hardware frugal allocation algo-
rithm can be used to achieve a fault tolerance scheme with high flexibility for
performance. In this example, although A2 is faulty and the confirmation of
A is delayed for two cycles, with the proper control of speculative branches,
the delay is not propagated to the subsequent dependent instructions and the
whole sequence of instructions is confirmed in time.

4.6 Discussion

The fault tolerance computational model for the nanoelectronic processor
architecture basically consists of a voter/C-unit architecture to perform a
hybrid hardware and time redundancy based fault tolerance approach, and a
novel controlled speculation mechanism for data dependent instructions.

With the new computational model, among data dependent instructions,
the speculated execution of the instructions is performed out of order while the
confirmed results are always generated in order. In general, such a computa-
tional model supports out-of-order execution among independent instructions
so as to exploit the parallelism offered by the nanoelectronic environment.
The related issues of out-of-order execution, including the imprecise excep-
tion problem, are essentially similar to the same issues existing in traditional
CMOS based architectures, and can be approached accordingly with a number
of available techniques being utilized currently.

The speculative execution in the computational model can be further
extended beyond the arithmetic instructions to the branch instructions.
Essentially, multiple speculations can be formed on the branch targets and
the wrong speculation can be pruned according to the address calculation.

Overall, the fault tolerant computational model targets the main reliability
challenge of the emerging nanoelectronic environment, and provides a novel
approach that integrates fault tolerance, performance and hardware overhead
considerations. These conflicting optimization criteria are effectively balanced
under such a computational model at the processor architecture level.

Chapter 13: Towards Nanoelectronics Processor Architectures 361

4.7 Simulation Results

In the above described computational model, hybrid hardware and time redun-
dancy is used to guarantee the correctness of instruction executions. For the
instructions with dependencies, the hardware allocation algorithm is used to
balance the performance and hardware utilization according to the occurrence
of faults. A simulation framework is developed to evaluate the effectiveness of
the computational model. Detailed simulation results are available in [49–51].

Basically, two sets of simulations are provided. First, the new fault tol-
erance computational model is compared with the no speculation and full
speculation approaches, which represent the two extreme points in the perfor-
mance/latency tradeoff. Both hardware requirement and latency are compared
for the three strategies. Through this set of experiments, the tradeoff between
latency and hardware is examined. Secondly, various replication quantities,
N , for the initial NMR hardware redundancy approach are compared. The
results show the multiple tradeoff points existing within the computational
model and they have corresponding applicability under various fault rates.

It turns out that, as expected, the no speculation approach suffers from
significant delays in comparison to the other two models. Since no speculation
branch is ever formed, the data dependencies among the instruction sequences
result in the delayed issuing of child instructions. The tremendous latency of
the no speculation approach grows and makes the gap even larger as fault
rates increase. The full speculation approach, as expected, achieves the min-
imum latency since it utilizes hardware resources without any constraints to
provide the same redundancy for every speculation branch. The new compu-
tational model, in terms of latency, exhibits behavior similar to that of the full
speculation approach. Overall, simulation results confirm that the new com-
putational model can achieve a near-optimum performance that is comparable
to the full speculation, which is the best case in terms of performance [49–51].

The hardware resource consumption in the fault tolerance computation
models is considered from two aspects. First, the number of C-units occupied
at each cycle shows the amount of computational unit hardware requirement
in the system. Notice that a C-unit is released once its computation is finished
and the result is returned to the voter. The number of C-units occupied there-
fore indicates the amount of parallelism existing when multiple speculation
branches are executed. Second, since the unconfirmed results are stored by
the voter, the number of unconfirmed results during the computation depicts
the storage hardware requirement in a voter. From both aspects of hardware
consumption, the new computational model displays efficient hardware alloca-
tion, that significantly outperforms the full speculation approach and is close
to the no speculation approach in hardware requirement.

Essentially, through the simulation results it can be observed that the new
computational model shows significant results both in performance and hard-
ware, thus achieving the goal of fault tolerance with ideal balance of hardware
and latency. In comparison to the other two models, the new computation

362 W. Rao et al.

model can be seen to compete with the best aspects of both, i.e., the short
delay of the full speculation and the frugal hardware allocation in the no
speculation model.

As the emerging nanoelectronics are expected to offer a density boost in
the order of 103–106 compared to today’s CMOS technology, a crucial deter-
minant factor for the amount of corresponding boost of parallel computation
power at the architectural level is the amount of hardware that is demanded
for fault tolerance purposes. According to the simulation results, the new com-
putational model shows significant potential by using an order of magnitude
less hardware for fault tolerance purposes while sacrificing neither reliability
nor performance, thus supporting eventually the boost of computation power
in the nanoprocessor architectures.

The minimum initial NMR of C-unit allocation for the proposed compu-
tational model is two; however, the manner in which various initial C-unit
settings influence the behavior of the algorithm bears further scrutiny. In this
experiment set, we compare the minimum case of two initial C-units with the
cases of initially allocating three and four C-units. The simulation results are
expected to provide knowledge of various tradeoff points within the proposed
scheme.

With more initially allocated C-units, an instruction can be confirmed
more quickly when the fault rate is high. On the other hand, when the fault
rate is low, some initially allocated C-units are essentially redundant, thus
consuming comparatively more hardware resources. The simulation results
confirm this syllogism. Essentially, when the fault rate is low, the configura-
tion of minimum initial C-unit allocation provides a highly attenuated loss
of latency, while exhibiting a significantly reduced amount of hardware con-
sumption. When the fault rate is high, allocating more C-units in the initial
cycle helps reduce the overall latency by and large, while consuming almost
the same hardware resources as the minimum initial C-unit allocation con-
figuration. Therefore, the initial C-unit allocation number in the proposed
computational model provides multiple optimal points under various fault
rate ranges.

5 Topological Structure Design of Nanoprocessor
Architectures

The proposed computational model aims at providing fault tolerance for the
nanoelectronics based processor architecture, with the tradeoff consideration
for performance and hardware issues. In addition to the unreliability challenge,
a number of other characteristics, particularly, the localized communication
constraint imposed by nanodevices, need to be investigated. Due to these new
characteristics, multiple issues are raised when the proposed behavioral com-
putational model is mapped to a number of structural components in a proces-
sor, consisting of both CMOS and nanodevices. In this section, we discuss a

Chapter 13: Towards Nanoelectronics Processor Architectures 363

coarse distribution of architecture level components in a CMOS/nano hybrid
system, based on a number of existing research approaches for the interface
design among the CMOS and nano systems. We investigate the message pass-
ing mechanisms that are crucial in the communication of the proposed fault
tolerance computational model, with a further topological constraint imposed
by the limitation of localized communication in nanoelectronic environment.

5.1 Research Approaches Supporting the Addressing Mechanism
at the CMOS/Nano Interface

A number of research approaches have shown various interface designs that
integrate a crossbar based nanoelectronic system with a CMOS based sys-
tem [17–20, 43]. Based on these techniques, each nanowire/device can be
addressed individually through a combination of CMOS devices.

In the CMOL approach [19, 20], a layer of nano crossbar is posed above
a layer of CMOS cells. The interface between the nanowire and the CMOS
cells is formed through a limited number of pins, such that each CMOS cell is
connected to exactly one nanowire. A particular angle is formed between the
CMOS cells and the nanowires; therefore, the addressing of each nanodevice
located at the cross point in the nano crossbar structure can be approached
through the combination of two CMOS cells.

An alternative approach has been proposed in [17, 18], which utilizes a
decoder, possibly formed stochastically to perform the mapping from CMOS
wires to nanowires. A number of microwires of CMOS scale are initially con-
nected on a one-to-one base with the same number of nanowires, then ex-
panded to an exponential number of nanowires through a decoder. A detailed
description of the nanowire based architecture can be found in [17,18,43]

These techniques facilitate the communication between a CMOS system
and a nano crossbar based system, thus exhibiting multiple possibilities of
implementing a CMOS/nano hybrid architecture system. These approaches
essentially provide the basis for the proposed computational model, which
exploits the potentiality of both CMOS and nanoelectronic devices to over-
come the challenges for the processor architectures in the nanoelectronic
environment.

5.2 Processor Architecture Components Across CMOS/Nano
Layers

We envision the construction of a nanoprocessor architecture in a hybrid
approach, consisting of a reliable CMOS layer and an unreliable nano layer,
each containing correspondingly the components of logic devices, buses/wires
and storage elements. The main modules of the proposed nanoprocessor
architecture consist of the main control system for the processor, the ad-
ditional fault tolerance control of voters, the register file, memory and ALU

364 W. Rao et al.

Architecture
Control

Voters
Control

FT

File
Register

Memory

CMOS layer

nano layer

ALU

Fig. 7. Decomposition of the implementation layers across a CMOS/nano hybrid
system for the components in the proposed nanoprocessor architecture

components. Figure 7 exhibits the information connection among the modules
and our vision of their implementation in a CMOS–nano hybrid approach.

Basically, the main concern of implementing a component in the CMOS
or the nano layer is related to the following differences:

1. Performance. Consisting of the following two aspects:
– Computation. Nanodevices outperform CMOS devices significantly.
– Communication. Nano signal transfer is expensive and suffers from

significant wire delay, thus making it in general worse than the CMOS
level communications.

2. Hardware. Nanodevices offer significantly more abundant hardware re-
sources than CMOS.

3. Reliability. CMOS devices are significantly more reliable than nanodevices.
4. Locality. Communication among nanodevices is strictly constrained to

within a nearby locality, in contrast to CMOS which has a comparatively
much wider communication range.

5. Power. Nanoelectronic devices consume significantly lower power than the
CMOS counterparts.

According to the above analysis, a component suffers from the reliability
problem when implemented in the nano layer, while tending to be much more
reliable when implemented in the CMOS layer. On the other hand, a compo-
nent is more expensive in hardware if implemented in CMOS, in comparison
to its implementation in nanoelectronics.

Based on the the consideration of the reliability/hardware cost tradeoff,
ALU components and memory blocks, occupying the majority of hardware
requirement in a processor architecture, should be implemented with nano-
electronic devices, so as to benefit from the abundant hardware resources. Fur-
thermore, since ALU is heavily computational oriented, a nanodevice based
ALU also has the advantage of computational performance boosting. However,
from the aspect of locality, implementing these components in the nano layer
strictly limits the communication range among the components within the
nano layer. Global communication in the nano layer is prohibitively expensive,

Chapter 13: Towards Nanoelectronics Processor Architectures 365

while only localized communication among the ALU components (C-units) is
supported. Consequently, the communication among the ALU components
should be limited within a local area.

The control units, including the processor architecture controller and the
voters for fault tolerance purposes, impose higher demands of reliability and
massive communications with other modules. Therefore, the implementation
of these control components in the CMOS layer is advantageous in terms of
reliability, locality, and communication performance.

Due to the large loads of communication between the register file and
the voters, it is more beneficial in terms of communication performance to
implement the register file in the CMOS level.

5.3 Message Passing Mechanism

During the speculative computations, the information regarding an instruc-
tion being confirmed or speculation branches being confirmed/pruned is trans-
ferred among the voters of dependent instructions. Unconfirmed results are
transferred directly among the C-units. Voters and C-units also communicate
during the C-unit allocation process and the result transmission process.

Essentially, three types of messages are transferred in the proposed fault
tolerant computational model:

– Voter/voter. Messages transferred among the voters contain information
about the speculative computation: confirmation of instructions and con-
firmation/pruning/splitting of speculation branches. These messages are
always transferred unidirectionally from the voters of the parent instruc-
tions to the voters of the dependent child instructions.

– Voter/C-unit. Messages transferred among the voters and the C-units
contain the C-unit allocation and release information, parameters of the
instructions sent from a voter to the C-units, and the transmission of
unconfirmed results from a C-unit to its voter, thus consisting of bidirec-
tional transfer of messages.

– C-unit/C-unit. Messages transferred among the C-units contain the direct
passing of unconfirmed results among the C-units of dependent instruc-
tions. The messages are always transferred unidirectionally from the
C-units of the parent instructions to the C-units of the dependent child
instructions.

The three types of messages described above can be transferred by two genres
of communication mechanisms: one with the sender in control, while the other
with the receiver in control.

The first and the third types of messages, the voter/voter and the
C-unit/C-unit, are transferred unidirectionally from the parent instructions
to the dependent child instructions. Since the parent instructions are always
dispatched ahead of the child instructions, the sender of the messages in this
case cannot be aware of the receivers. The receivers, on the other hand, can

366 W. Rao et al.

establish a connection with the sender easily at the initial stage, both in the
cases of voter/voter messages and the C-unit/C-unit messages. Therefore,
the messages need to be passed in a receiver-in-control mechanism, where a
sender simply broadcasts the message while each receiver is responsible for
identifying the messages relevant to it.

The second type of messages, which are transferred between a voter and
multiple C-units, consist of information passing in both directions: from the
voter to the C-units during C-unit allocation, and from the C-units back to the
voter when returning the results. In this case, the voter and the C-units are of
the same instruction. The C-units are allocated and initialized by the voter,
during which process the communication bond can be established on both
sides. Therefore, either the voter or the C-unit, when acting as the sender of a
message can clearly identify the receivers, supporting a sender-in-control mes-
sage passing mechanism to address the specific receivers without the overhead
of broadcasting.

The receiver-in-control message passing mechanism can be easily imple-
mented on a bus topology, while the sender-in-control mechanism fits best to
a star topology with the voter connecting multiple C-units. Specifically, the
messages within the voters are passed through a common bus, supporting the
receiver-in-control, sender-broadcasting mechanism. A similar bus can be used
for message passing among the C-units. Among a voter and its related C-units,
a star topology is used to support the sender-in-control message passing.

In a CMOS–nano hybrid system, since the voters are in the CMOS layer
while the C-units are implemented by the nanoelectronics, the bus among
the voters is implemented by CMOS-level wires while the bus among the
C-units is implemented by nanowires. The connections among the voters and
the C-units can be implemented through the access mechanism developed for
the CMOS/nano interface [17–20].

Error checking code (ECC) can be applied to the message transfer process
to enhance reliability. It is worth noticing that, although the reliability of
information transfer can be enhanced by applying well developed coding tech-
niques, as in the memory case, the proposed fault tolerant computational
model neither presumes, nor relies on the reliability in the message transfer
process involving the nanodevices. Any fault or failure in the message trans-
fer of voter/C-unit and C-unit/C-unit can be dealt with in the same manner
as the failure of C-unit computations, thus covered by the proposed fault
tolerance scheme.

5.4 Locality Constraint Aware Network Topology

The simple network topology model described above inherently bears a num-
ber of constraints. The receiver-in-control mechanism requires a broadcasting
on the common bus; however, such a common bus is always subject to the
contention problem. One solution to the contention problem is to introduce
multiple buses. When broadcasting, a random subset of buses is selected so

Chapter 13: Towards Nanoelectronics Processor Architectures 367

as to minimize the collision probability. Furthermore, the star topology with
the voter at the center is not flexible in the run-time environment where the
number of C-units requested by a voter is dynamically changing. Allowing
voters to share accessibility to all the C-units provides maximum flexibility,
however, at the price of a highly complex mesh network topology.

More importantly, when the characteristics of a nanoelectronic environ-
ment are included in the consideration, a number of new challenges are raised.
Neither the global common bus nor the complete mesh network fits the locality
constraint severely imposed in a nanoelectronic environment.

Taking into consideration the localized interconnection constraints, the
accessibility of any component in the nanoprocessor is limited to a localized
neighborhood. Figure 8 exhibits a revised logic topology of the voters and
the C-units adjusted to the localized communication constraint. As is shown
in Fig. 8, the voters are connected by a number of buses that cover merely
a local neighboring area. A similar localized bus structure is shown among
the C-units. The communication among the voters, as well as among the C-
units, is therefore limited to the ones that share at least one common local
bus. The interconnection among the voters and the C-units is also organized
to support the sharing of C-units among the voters in a localized manner.
Essentially, neighboring voters have accessibility to a common set of C-units,
thus being flexible when unbalanced C-unit allocation occurs dynamically
among multiple neighboring voters.

Figure 8 shows the logic topology of the voters and C-units, where these
components are placed on a number of one-dimensional lines. When the spe-
cific regular structure constraint is considered, these components need to be
physically placed on a two-dimensional regular structure based nanofabric. It
can be envisioned that the voter and the C-units need to be placed with an
interleaved manner, as is shown in the example of Fig. 9, where each voter
has a number of locally accessible C-units. The accessibility among the voters

CCCCCCC

V V V V VV

CC

···

···
···
···
···

Fig. 8. The logic message passing channels for voters and C-units considering the
locality constraint of nanoelectronic environment

368 W. Rao et al.

V

V V V

V

V V

CCC C C C C C C

C

CCC C C C C C

CCC C C C C C C

C C C C C

C C

C C

CCCCCC

C

VV

Accessible local area

C

V

Fig. 9. The topology of voters and C-units on a regular structured nanofabric
considering the locality constraint

and among the C-units is similarly limited to within a local range, with an
underlying network implementing the logic topology of Fig. 8.

The localization constraint further influences the schedule and dispatch of
instructions. Basically, according to the localized communication among the
voters, dependent instructions need to be dispatched into a neighboring area
where communication is feasible for the voter/voter messages. When allocat-
ing C-units for the fault tolerance computation, the same locality principle
needs to be applied for the C-units so as to enable the fast transfer of uncon-
firmed results for dependent instructions among the neighboring C-units.

It is certainly true that the locality principle of most programs supports
the dispatch of dependent instructions to the neighboring voters and C-units.
However, how to optimally perform the mapping of a program with arbitrary
dependency structure onto the regular fabric based nanoprocessor remains
challenging.

6 Conclusion

Multiple challenges and opportunities are raised by the new characteristics of
nanoelectronics. Particularly, for the construction of a nanoelectronics based
processor architecture, unreliability, localized communication constraints, per-
formance and hardware resource tradeoffs all need to be considered. A new
architectural level computational model for the future nanoelectronic proces-
sors is developed, addressing the above issues.

The main techniques in this architecture level computational model in-
clude (1) a fault tolerance scheme exploiting hardware and time redundancy

Chapter 13: Towards Nanoelectronics Processor Architectures 369

dynamically to guarantee the correctness of each instruction, (2) the idea of
computation through multiple speculative branches to improve system per-
formance in data dependent instructions, (3) the algorithm of dynamically
allocating computation units to avoid the exponential growth in hardware
consumption, and (4) localized communication among the processor compo-
nents in the computational model considering the interconnect overhead in
the nanoelectronic environment.

Such a computational model exploits the abundant hardware resources
provided by the nanoelectronic technology and makes tradeoffs between hard-
ware and computation performance. Fault tolerance in instruction execution
can be guaranteed and system performance is boosted as well; yet communica-
tions among the nanoelectronics based components are designed to be within
a localized area. Through the simulation with multiple parameters, several
tradeoff points are identified for the computational model, thus providing
an insight in selecting the proper parameter for a certain fault rate range
to achieve the best hardware/latency tradeoff. The overall simulation results
confirm the effectiveness of the computational model from both a performance
and a hardware overhead perspective, thus evincing that a strong solution is
provided to the vital challenges in architecture level fault tolerant computa-
tion in nanoelectronic processors. Overall, the computational model sets up a
starting point of designing nanoelectronic based processors, and based on the
emerging nanoelectronic characteristics provides a framework in investigating
multiple nanoelectronic characteristics related issues including reliability, per-
formance, hardware and localized communication at the architecture level for
the future processors based on nanoelectronics.

References

1. ITRS, International Technology Roadmap for Semiconductors Emerging Re-
search Devices, 2006.

2. European Commission, Technology Roadmap for Nanoelectronics, 2001.
3. P. Avouris, J. Appenzeller, R. Martel and S. Wind, “Carbon Nanotube Elec-

tronics”, Proceedings of the IEEE, vol. 91, n. 11, pp. 1772–1784, 2003.
4. P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun and G. I. Haddad, “Dig-

ital Circuit Applications of Resonant Tunneling Devices”, Proceedings of the
IEEE, vol. 86, n. 4, pp. 664–686, April 1998.

5. C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum Cellular
Automata”, Nanotechnology, vol. 4, pp. 49–57, 1993.

6. M. A. Kastner, “The Single-Electron Transistor”, Review of Modern Physics,
vol. 64, pp. 849–858, 1992.

7. R. H. Chen, A. N. Korotkov and K. K. Likharev, “Single-electron Transistor
Logic”, Applied Physics Letters, vol. 68, n. 14, April 1996.

8. J. C. Ellenbogen and J. C. Love, “Architectures for Molecular Electronic Com-
puters: 1. Logic Structures and an Adder Designed from Molecular Electronic
Diodes”, Proceedings of the IEEE, vol. 88, n. 3, pp. 386–425, 2000.

370 W. Rao et al.

9. Y. G. Krieger, “Molecular Electronics: Current State and Future Trends”, Jour-
nal of Structural Chemistry, vol. 34, pp. 896–904, 1993.

10. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach and M. M. Ziegler, “Mole-
cular Electronics: From Devices and Interconnect to Circuits and Architecture”,
Proceedings of the IEEE, vol. 91, n. 11, pp. 1940–1957, November 2003.

11. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart,
P. J. Kuekes, R. S. Williams and J. R. Heath, “Electronically Configurable
Molecular-Based Logic Gates”, Science, vol. 285, pp. 391–394, July 1999.

12. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar,
M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, “Spintronics: A Spin
Based Electronics Vision for the Future”, Science, vol. 294, pp. 1488–1495,
November 2001.

13. Y. Huang, X. Duan, Y. Cui, L. J. Jauhon, K. Kim and C. M. Lieber, “Logic
Gates and Computation from Assembled Nanowire Building Blocks”, Science,
vol. 294, pp. 1313–1317, November 2001.

14. P. J. Kuekes, D. R. Stewart and R. S. Williams, “The Crossbar Latch: Logic
Value Storage, Restoration, and Inversion in Crossbar Circuits”, Journal of
Applied Physics, vol. 97, n. 3, pp. 034301, July 2005.

15. G. Snider, P. J. Kuekes and R. S. Williams, “CMOS-like Logic in Defective,
Nanoscale Crossbars”, Nanotechnology, vol. 15, pp. 881–891, August 2004.

16. G. Snider and W. Robinett, “Crossbar Demultiplexers for Nanoelectronics
Based on n-Hot Codes”, IEEE Transactions on Nanotechnology, vol. 4, pp. 249–
254, 2005.

17. A. DeHon and M. J. Wilson, “Nanowire-based Sublithographic Programmable
Logic Arrays”, in FPGA, pp. 123–132, 2004.

18. A. DeHon, “Array-Based Architecture for FET-Based, Nanoscale Electronics”,
IEEE Transactions on Nanotechnology, vol. 2, n. 1, pp. 23–32, 2003.

19. D. B. Strukov and K. K. Likharev, “CMOL FPGA: A Reconfigurable Architec-
ture for Hybrid Digital Circuits with Two-terminal Nanodevices”, Nanotech-
nology, vol. 16, pp. 888–900, April 2005.

20. D. B. Strukov and K. K. Likharev, “A Reconfigurable Architecture for Hybrid
CMOS/Nanodevice Circuits”, in ACM FPGA, pp. 131–140, 2006.

21. P. Beckett and A. Jennings, “Towards Nanocomputer Architecture”, in Asia-
Pacific Computer System Architecture Conference, pp. 141–150, 2002.

22. K. Nikolic, A. Sadek and M. Forshaw, “Architectures for Reliable Computing
with Unreliable Nanodevices”, in Proceedings of the 1st IEEE Conference on
Nanotechnology, pp. 254–259, 2001.

23. J. R. Heath, P. J. Kuekes, G. S. Snider and S. Williams, “A Defect-Tolerant
Computer Architecture: Opportunities for Nanotechnology”, Science, vol. 280,
pp. 1716–1721, June 1998.

24. S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Mole-
cular Electronics”, in ISCA, pp. 178–191, 2001.

25. S. C. Goldstein, M. Budiu, M. Mishra and G. Venkataramani, “Reconfigurable
Computing and Electronic Nanotechnology”, in ASAP, pp. 132–143, 2003.

26. M. S. Montemerlo, J. C. Love, G. J. Opitech, D. G. Gordon and J. C. Ellenbogen,
Technologies and Designs for Electronic Nanocomputers, MITRE, July 1996.

27. T. Juhnke and H. Klar, “Calculation of the Soft Error Rate of Submicron CMOS
Logic Circuits”, IEEE Journal of Solid-State Circuits, vol. 30, n. 7, pp. 830–834,
July 1995.

Chapter 13: Towards Nanoelectronics Processor Architectures 371

28. T. Karnik, P. Hazucha and J. Patel, “Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes”, IEEE Transactions on Dependable
and Secure Computing, vol. 1, pp. 128–143, April–June 2004.

29. P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L. Alvisi, “Modeling
the Effect of Technology Trends on the Soft Error Rate of Combinational Logic”,
in DSN, pp. 1112–1119, 2002.

30. M. Forshaw, R. Stadler, D. Crawley and K. Nikolic, “A Short Review of Nano-
electronic Architectures”, Nanotechnology, vol. 15, pp. 220–223, 2004.

31. K. Nikolic, A. Sadek and M. Forshaw, “Fault-tolerant Techniques for Nanocom-
puters”, Nanotechnology, vol. 13, pp. 357–362, 2002.

32. J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organ-
isms from Unreliable Components”, in C. Shannon and J. McCarthy, editors,
Automata Studies, Princeton University Press, Princeton, 1956.

33. J. Han and P. Jonker, “A System Architecture Solution for Unreliable Nanoelec-
tronic Devices”, IEEE Transactions on Nanotechnology, vol. 1, n. 4, pp. 201–208,
December 2002.

34. J. Han, J. Gao, Y. Qi, P. Jonker and J. A. B. Fortes, “Toward Hardware-
Redundant, Fault-Tolerant Logic for Nanoelectronics”, IEEE Design and Test
of Computers, vol. 22, n. 4, pp. 328–339, July–August 2005.

35. T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchi-
tecture Design”, in ACM/IEEE Annual Symposium on Microarchitecture, pp.
196–207, 1999.

36. P. Agrawal, “Fault Tolerance in Multiprocessor Systems without Dedicated
Redundancy”, IEEE Transactions on Computers, vol. 37, pp. 385–362, March
1988.

37. D. K. Pradhan and N. H. Vaidya, “Roll-Forward Checkpointing Scheme: A
Novel Fault-Tolerant Architecture”, IEEE Transactions on Computers, vol. 43,
pp. 1163–1174, October 1994.

38. A. Dahbura, K. Sabnani and W. Henry, “Spare Capacity as a Means of Fault
Detection and Diagnosis in Multiprocessor Systems”, IEEE Transactions on
Computers, vol. 38, n. 6, pp. 881–891, June 1989.

39. S. Tridandapani, A. K. Somani and U. R. Sandadi, “Low Overhead Multiproces-
sor Allocation Strategies Exploiting System Spare Capacity for Fault Detection
and Location”, IEEE Transactions on Computers, vol. 44, pp. 865–877, July
1995.

40. M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar and I. Pomeranz, “Transient-
Fault Recovery for Chip Multiprocessors”, IEEE Micro, vol. 23, n. 6, pp. 76–83,
November/December 2003.

41. G. Manimaran and C. S. R. Murthy, “A Fault-Tolerant Dynamic Scheduling Al-
gorithm for Multiprocessor Real-Time Systems and Its Analysis”, IEEE Trans-
actions on Parallel and Distributed Systems, vol. 9, pp. 1137–1152, November
1998.

42. B. Izadi and F. Ozguner, “Enhanced Cluster k-Ary n-Cube, A Fault-Tolerant
Multiprocessor”, IEEE Transactions on Computers, vol. 52, n. 11, pp. 1443–
1453, November 2003.

43. A. DeHon, “Nanowire-Based Programmable Architectures”, ACM JETC, vol. 1,
n. 2, pp. 109–162, 2005.

44. R. B. Blahut, Algebraic Codes for Data Transmission, Cambridge University
Press, Cambridge, 2002.

372 W. Rao et al.

45. P. K. Lala, Self-Checking and Fault-Tolerant Digital Design, Morgan Kaufmann,
San Francisco, 2000.

46. J. H. Patel and L. Y. Fung, “Concurrent Error Detection in ALUs by Re-
computing with Shifted Operands”, IEEE Transactions on Computers, vol. 31,
pp. 589–592, December 1982.

47. K. Wu and R. Karri, “Algorithm Level RE-computing with Shifted Operands -
A Register Transfer Level Concurrent Error Detection Technique”, in ITC, pp.
971–978, 2000.

48. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Third Edition, Morgan Kaufmann, San Francisco, 2002.

49. W. Rao, A. Orailoglu and R. Karri, “Fault Tolerant Nanoelectronic Processor
Architectures”, in ASPDAC, pp. 311–316, 2005.

50. W. Rao, A. Orailoglu and R. Karri, “Architectural-Level Fault Tolerant Com-
putation in Nanoelectronic Processors”, in ICCD, pp. 533–542, 2005.

51. W. Rao, A. Orailoglu and R. Karri, “Towards Nanoelectronics Processor Ar-
chitectures”, JETTA Special Issue on Test, Defect Tolerance, and Reliability of
Nanoscale Devices, vol. 23, pp. 235–254, 2007.

Chapter 14: Design and Analysis
of Fault-Tolerant Molecular Computing Systems

D. Bhaduri, S.K. Shukla, H. Quinn, P. Graham, and M. Gokhale

1 Introduction

As electronics enters the nanoscopic realm, patterning and fabrication costs to
manufacture nanoscale CMOS chips are expected to increase exponentially.
Hence, researchers are looking at technologies that can be more viable for
the miniaturization of electronics than conventional technologies that require
almost perfect control over lithography, etching and other processes. One of
the technologies that the microelectronics community has been investigating
is chemical self-assembly of devices from elementary and identical molecular
units by controlled deposition of molecular monolayers on the substrates, a
technology that has given birth to molecular electronics [28].

Molecular electronic devices usually consist of self-assembled organic mole-
cules sandwiched between conducting electrodes. Early work on these devices
showed that they either exhibited electron tunneling [20] or rectification [1],
but reaching agreement between theory and experiments has always been a
major hurdle [11]. Recently, molecular switch tunnel junctions have been con-
structed experimentally [2] and have been seen to exhibit prominent switching
behavior. However, such switching behavior can also arise from non-molecular
mechanisms leading to inherent transient faults [19]. Manufacturing defects
have also been observed to be a major problem since controlled fabrication
of these devices within specified tolerances is a non-trivial process, specif-
ically, controlling the properties of molecule-electrode interfaces [11] is the
main challenge. Therefore, there is a need to develop methodologies and tools
to design molecular systems that are tolerant to both manufacturing defects
and transient faults.

Chemically self-assembled molecular nanofabrics (Fig. 1) are by nature
very regular and homogeneous, hence, well-suited for reconfigurability [9, 10,
12]. Due to the reconfigurable nature of molecular nanofabrics, defect-mapping
techniques [15, 21] followed by defect-avoidance can be used to circumvent
manufacturing defects in these nanofabrics so that systems can be built which

374 D. Bhaduri et al.

Fig. 1. Molecular nanofabric

are close to 100% defect-tolerant. But such systems are still highly suscepti-
ble to transient faults. It has been shown in [13, 14, 22], that, the addition of
structural redundancy a priori may enhance the reliability of such systems in
the presence of transient faults.

There are two schools of thought for designing fault-tolerant molecular
nanofabrics and the application of any of these design philosophies depends
on the failure tolerance threshold of the system being designed. One school
of thought [6,14] considers mapping systems directly onto unreliable reconfig-
urable nanofabrics with adequate structural redundancy, hence saving com-
putational time and cost associated with defect-mapping and avoidance. This
design philosophy is only applicable to systems that are not mission-critical
and admit low but nonzero failure probabilities. The other school of thought
is applicable to mission-critical systems that need 100% reliability guarantee,
hence, this design philosophy uses defect-mapping and defect avoidance tech-
niques on reconfigurable molecular nanofabrics to circumvent manufacturing
defects and then applies structural redundancy-based techniques to tackle
transient faults.

Both of the above design philosophies have a number of problems that hin-
der their usefulness in designing fault-tolerant systems on molecular nanofab-
rics. These problems are as follows:

– Most defect map generation techniques consider fail-stop deterministic
defect models [24] that assume nodes to either function perfectly or fail
completely. Others use a large number of test-circuit configurations to
determine the exact functional correctness of each node [21], hence, con-
suming more computational resources and time. Hence, there is a need
for generating defect maps that can reflect the inherent non-deterministic
nature of manufacturing defects in the nodes, interconnects and interfaces
(vias) without using a large number of test-circuits.

Chapter 14: Fault-Tolerant Molecular Computing Systems 375

– Although [21,24] propose scalable defect-mapping techniques, the problem
of scaling these techniques to ultra-dense nanofabrics remains far from
solved.

– There is a lack of scalable methodologies that can map hardware designs
onto dense molecular nanofabrics.

– If structural redundancy is inserted a priori, the redundancy factor (R) that
can guarantee tolerance to transient faults needs to be determined. We de-
fine R as the ratio of the circuit sizes of the redundant and non-redundant
designs. Figuring out the correct architectural level (gate, configurable
logic block, functional block, etc.) where redundancy may be most effec-
tive and analyzing the performance, area and cost penalties that may be
incurred due to redundancy insertion are additional challenges.

A lot of effort is being employed to provide solutions to these challenges [16,21,
24]. This chapter attempts at providing methodologies and tools for addressing
these issues. Our proposed solutions to these problems are as follows:

– We address the first problem by developing a non-deterministic defect-
mapping scheme which is a hybrid of the methodologies proposed in [21]
and [24].

– The second problem of scalability is addressed by modeling the molecular
nanofabrics hierarchically, and computing the defect distributions of the
nanofabric nodes by applying state space partitioning techniques to the
Markovian analysis [25].

– The third issue has been reasonably dealt with in [16]. The authors in
that work have proposed a three level design hierarchy to map hardware
designs onto ultra-dense nanofabrics with bounded complexity. We have
extended this methodology so that behavioral and/or structurally redun-
dant systems can be mapped effectively to nanofabrics.

– Since there is no formal methodology to pin-point R and the granularity
level for structural redundancy insertion, we have developed an automation
framework that provides an experimental environment to determine these
parameters and to measure the different penalties associated with such
redundancy insertion.

To demonstrate the effectiveness of our methodologies and automation
framework, mission-critical systems are designed and analyzed on 2D pro-
grammable crossbar-based molecular nanofabrics. We have chosen cross-
bars since they are reconfigurable architectures well-suited for implementing
defect- and fault-tolerance. Probabilistic defect maps are generated for spe-
cific nanofabrics and designs are mapped onto these defect-mapped nanofab-
rics with adequate redundancy to mask permanent and transient faults. Our
defect-mapping and hierarchical redundancy insertion methodologies are an-
alyzed independently in terms of different performance measures with special
emphasis on reliability, to clearly show the benefits of each. In the next sub-
section, we discuss the main contributions of our work.

376 D. Bhaduri et al.

1.1 Main Contributions

Probabilistic Defect-Mapping Mechanism

Mishra and Goldstein [21] define recovery as a quality metric that shows the
percentage of defect-free components that are identified by a defect-mapping
algorithm, and points out that recovery depends on the type of test-circuits,
the number of test-circuits run and the post-testing analysis. This means that
for achieving high recovery values, the computational complexity of on-line
defect map generation techniques maybe unacceptable. This is why we have
developed a methodology that uses simple test-circuits from [21] to deter-
mine approximate defect rates of the structural primitives of the nanofabrics,
and uses these approximate values to compute the failure distributions of the
nodes and interconnects that are composed of these primitives. These failure
distributions and our non-deterministic broadcast-based algorithm are then
applied to probabilistic models of these nanofabrics to locate the defective
nodes and generate the defect maps. Since this broadcast-based simulation is
done by an external system (off-line), we can avoid the time-consuming on-line
testing-based defect location phase of the defect-mapping technique in [21].

The broadcast-based defect-mapping algorithm we use is a modification of
the algorithm proposed in [24]. In [24], the on-line defect map generation algo-
rithm employs a variation of the reverse path forwarding (RPF) algorithm of-
ten used for broadcast routing [8] in computer networks. But the defect model
used in [24] is deterministic, hence, is non-ideal for self-assembled molecular
nanofabrics. We have modified this methodology such that probabilistic defect
maps can be generated that can truly reflect the non-deterministic defects and
faults in molecular nanofabrics.

Since a predominant part of our methodology could be externally run on
coprocessors suitable for high-speed floating point computations, we claim
that the computational time associated with our limited on-line testing and
off-line broadcast-based defect-mapping methodology will be less than gener-
ating fully on-line defect maps [21,24]. Note that Sect. 3 points out the novelty
of our approach and highlights the differences with the approaches in [21,24].

We have evaluated the performance of our non-deterministic defect-
mapping mechanism in terms of recovery for different (1) nanofabric configu-
rations, (2) failure probabilities of the crossbar switches, (3) R at the crossbar
level, and (4) via configurations. We have also computed the expected latency
of our methodology to show the effect of varying nanofabric sizes and defect
distributions on the broadcast latency.

Hierarchical Redundancy Insertion Methodology

The basis of the hierarchical logic mapping approach in [16] is the transla-
tion of data flow graphs (DFGs) of systems to graphs composed of fine-grained

Chapter 14: Fault-Tolerant Molecular Computing Systems 377

primitive data flows (limited behavior). Jacome et al. (2004) [16] also assumes
that the basic structural units, or processing elements (PEs), are homogeneous
and have limited functionalities, hence, the fine-grained computational behav-
iors or data flows can be directly mapped to the PEs.

Redundancy can be added to the behavioral primitives, i.e., at the appli-
cation level and/or to any of the structural units of the molecular nanofab-
rics. Our hierarchical redundancy insertion methodology extends the design
methodology in [16] by generating pseudo-random maps (Sect. 3) that trans-
late the non-redundant or redundant DFGs of systems onto the structurally
redundant nanofabrics. These maps introduce redundant structural units at
the different architectural levels of the nanofabrics and at the same time at-
tempt to reduce routing latencies.

We have analyzed the performance of our redundancy insertion methodol-
ogy by determining the trade-offs associated with redundant designs mapped
onto defect-mapped nanofabric models. Some of the trade-offs computed for
these designs are: (1) Reliability-Redundancy, (2) Reliability -Redundancy-
Delay at different architectural levels, and (3) Reliability-Redundancy-Cost.
These trade-off computations help in analyzing our redundancy insertion
methodology.

Toolset

We have developed a toolset to design fault-tolerant molecular systems and
analyze the quality of the defect maps and the fault-tolerant designs. Our
toolset

1. Integrates both our probabilistic defect-mapping and hierarchical redun-
dancy insertion methodology,

2. Models any arbitrary molecular nanofabric and any number of vias,
3. Analyzes the quality of the defect maps,
4. Analyzes performance measures of behaviorally and/or structurally redun-

dant systems, and
5. Is extensible and user-guided.

1.2 Organization

This chapter is organized as follows: Sect. 2 introduces the crossbar architec-
ture, our target nanofabric and fault models, the software package SMART
and the probabilistic design paradigm proposed in [16]. We discuss our fault-
tolerant design methodology and automation framework in Sect. 3. Section 4
analyzes our defect-mapping mechanism and reports interesting performance
measures of redundant designs mapped to defect-mapped molecular nanofab-
rics. Finally, Sect. 5 provides some concluding remarks.

378 D. Bhaduri et al.

2 Background

2.1 Crossbar Architecture

The two-dimensional (2D) crossbar architecture is a general approach to in-
tegrate molecular devices. Some of the reasons for the crossbar being one of
the more dominant nanoarchitectures are: (1) simple and homogenous layout
– it involves only two sets of aligned and perpendicular wires with molecular
switches formed at the junction point of the wires, (2) easy integration with
microscale addressing circuitry, and (3) defect-tolerance due to structural re-
dundancy. One of the ways to enhance the inherent defect-tolerance of this
architecture is by increasing the number of rows and columns of the crossbar,
hence, increasing the number of molecular devices or junction points [27].

Molecular diode-based crossbars are not sufficient for building complete
systems since the output signals suffer from degradation, making the cascad-
ing of many crossbar stages challenging. In this chapter, we use a crossbar
architecture that uses molecular latches [7] and a variant of the conventional
diode logic. Such an architecture (Fig. 2) has been used in [7] to build com-
plete systems. Logic values held in such latches are encoded using impedance
– an unusual characteristic of hysteretic resistor-based latches [7].

The probability that a column wire can be used to form a k-input gate (k
rows) is (1 − p)k, if each junction has an independent probability of failure
p. The probability that at least one column out of N columns will be able
to implement the k-input gate is Pgate(k,N) = 1 − (1 − (1 − p)k)N . In this

Fig. 2. A crossbar with molecular latches built from hysteretic resistors

Chapter 14: Fault-Tolerant Molecular Computing Systems 379

chapter, the crossbar is configured to implement a logic function as a com-
bination of 2-input gates. Thus, the probability of a crossbar composed of R
2-input gates functioning correctly is Pcrossbar = (Pgate(2, N))R. Test-circuits
are configured on such crossbars to deduce approximate failure probability of
the crossbar, and the individual junction failure probability (p) is computed
from this equation.

2.2 Nanofabric and Fault Models

Nanofabric model. Our target nanofabric model is composed of PEs built from
crossbars such as the ones shown in Fig. 2 and is similar to the model in [24].
Figure 1 shows a nanofabric composed of a grid of PEs connected together.
We have modeled the PEs to function as simple single-bit Arithmetic Logic
Units (ALUs), 8-bit adders or 8-bit combinational multipliers depending on
the application being targeted. In our model, each PE has four transceivers
that are connected to the four asynchronous bi-directional interconnects. Fig-
ure 1 also shows vias that are used to interface the nanofabric with external
circuitry. Our nanofabric model has three levels of hierarchy: regions, mapping
units (MUs) and components, whereas, the model used in [24] is monolithic.
We will discuss this hierarchy in details in Sect. 2.4.

Fault model. Our fault model considers the effects of both manufacturing de-
fects and transient faults. Since this work focuses on crossbar-based nanofab-
rics, we discuss the faults relevant to such nanofabrics. The manufacturing
defects in the crossbar cause stuck-open and stuck-closed faults at the junc-
tions and wires. It is possible to bias the chemical self-assembly process to
decrease the probability of stuck-closed faults – faults which significantly re-
duce the crossbar yield [12]. Hence, we consider only stuck-open faults at the
junctions and wires. Our methodology models these faults as the probability
of failure to program the molecular diodes or latches to the appropriate logic
value. Also, the faults at the interconnects are modeled as Gaussian failure
distributions to quantify the effects of signal noise – flipping the correct signal
value. It is also assumed that the faults at the junctions and interconnects are
distributed independently, identically and are unclustered (henceforth called
i.i.u.). This fault model can be easily changed in our toolset and the cur-
rent model has been used to represent the fault classes that have the highest
probability of occurrence in chemical self-assembly fabrication processes.

2.3 SMART Overview

The Stochastic Model checking Analyzer for Reliability and Timing (SMART)
[26] is a tool that can be used to model and analyze complex probabilistic
systems. As in traditional model checking, the logical behavior of the sys-
tem can be analyzed by modeling the system as a probabilistic state ma-
chine, generating the state space and asking temporal logic queries about its

380 D. Bhaduri et al.

dynamic behavior. The tool implements both numerical solution algorithms
and discrete-event simulation techniques and can integrate different high-level
logical and stochastic modeling formalisms such as Petri Nets, discrete time
Markov chains (DTMC), etc.

We use SMART to (1) build molecular nanofabric models that are prone to
defects, (2) generate probabilistic defect maps by analyzing these models, and
(3) analyze redundant designs that are mapped onto these nanofabric models
in the presence of transient faults. We have used SMART’s state space parti-
tioning capabilities in our models to alleviate the computational complexity
associated with analyzing these models. The DTMC-based modeling formal-
ism is used, since DTMCs are suitable for the analysis of digital circuits [25].

2.4 Background on Hierarchical Mapping Methodology

Jacome et al. [16] proposes a hierarchical approach to map logic onto re-
configurable nanofabrics. The authors show that this approach enhances the
scalability of mapping large designs onto dense nanofabrics. This methodol-
ogy is based on decomposing a nanofabric into a structural hierarchy shown
in Fig. 3, decomposing designs into smaller logic functions and hierarchically
mapping these designs. We extend the methodology in [16] to allow hierarchi-
cal insertion of redundancy in nanofabrics with delay and cost constraints.

Region

Mapping
Unit

Component

Fig. 3. Three level design hierarchy from [16]

Chapter 14: Fault-Tolerant Molecular Computing Systems 381

Fig. 4. The set of primitive data flows from [16]

Let us discuss the methodology in [16] in brief. The lowest tier of the de-
sign hierarchy is composed of regions, that are comprised of eight PEs and
the same number of switching elements (SEs). The PEs and SEs can either be
crossbars (Fig. 2) or more complicated nanoBlocks [12]. Logic is configured on
the PEs, while the SEs are used for interconnections. These regions are the ba-
sic configurable blocks (structural primitives) and can be used collectively to
form mapping units (MUs), and these MUs can be grouped together to form
components . Jacome et al. [16] also identifies 11 primitive functional data
flows (behavioral primitives), shown in Fig. 4, that can be directly mapped to
regions. DFGs of different designs are translated to DFGs composed of such
data flows, and these DFGs are called covers. This is a sort of behavioral de-
composition of the designs such that each primitive data flow is configured on
a single, limited functionality region. These flows are instantiated on regions
if the probability of successful configuration is high. The probability of such
successful configuration is estimated by applying Monte Carlo (MC) simula-
tions. In this chapter, we consider our nanofabric models to have the same
structural hierarchy and represent designs that need to be mapped to these
nanofabrics as covers – DFGs composed of the primitive data flows.

3 Our Probabilistic Design and Analysis Methodology

There are two distinct methods [5] that can be used to analyze the reliability
of circuits: generalized or instance-based. The generalized approach entails the
combinatorial modeling of circuits without considering specific failure distrib-
utions at the inputs, gates and interconnects. The output probability distribu-
tion of a circuit is computed through combinatorics under the assumption that
each gate can fail independently. Thus, the reliability is evaluated in stages
using conditional probabilities. Generalized techniques to compute the relia-
bility of large circuits require complex combinatorial reasoning, and re-using
the analysis of sub-circuits in the analysis of a larger circuit is difficult. Since
specific input probability distributions are not considered during analysis, the
generalized approach determines either the circuit’s lower or upper bound on
the reliability.

382 D. Bhaduri et al.

Several instance-based methodologies have been proposed recently [3, 18,
23]. Instance-based reliability circuit analysis uses probability distributions
on the primary inputs as well as gate and interconnect failure probabilities
to develop an instance of the circuit. Each instance is then transformed into
probabilistic circuit models. This method computes the exact reliability of the
circuit for a specific primary input distribution. The main drawback of these
methodologies is that several instances of the circuit need to be analyzed to
predict performance trends, which can be computationally expensive.

We have developed an instance-based methodology to design and ana-
lyze molecular nanosystems. This has been done by: (1) developing a script
to translate molecular nanofabric specifications in terms of the number of
PEs, each PE’s crossbar, etc. into probabilistic transition models; (2) deter-
mining the exact failure probability of each junction by running test-circuits
physically on the nanofabrics and using these values and a broadcast-based
mechanism on the nanofabric models to generate probabilistic defect maps;
(3) developing a script to insert behavioral redundancy in the designs and/or
structural redundancy at the different structural hierarchies of the nanofab-
rics; and (4) developing Markovian and state space traversal techniques to
analyze redundant instances of different designs that are mapped onto de-
fective or defect-mapped nanofabrics. Our methodology computes the exact
reliability of specific instances of the nanofabrics and the designs mapped onto
them, hence, is plagued by the drawback of computational complexity that
also affects others instance-based approaches. We have addressed this issue by
hierarchical modeling and state space partitioning techniques discussed later
in this section.

Our methodology can be applied for the design and analysis of mission-
critical systems and systems that can tolerate certain degrees of failure as
shown in Fig. 5. If the system is mission-critical and needs a reliability guar-
antee that is arbitrarily close to 100%, we can use our probabilistic defect-
mapping mechanism with high reachability threshold values – implying that
each PE needs to be accessed from one of the vias with very high probabil-
ity. PEs that are not reachable are marked defective and are not considered
while mapping the system onto the nanofabric. The non-defective nodes are

Fig. 5. Application of our methodology

Chapter 14: Fault-Tolerant Molecular Computing Systems 383

partitioned into regions, MUs and components, and the DFG of the system is
mapped to the defect mapped nanofabric model with suitable redundancy. If
the system can tolerate low but non-zero failure probabilities, it may not be
required to generate defect maps for the nanofabric. Instead, such a system
can be mapped onto the defective nanofabric with suitable redundancy. This
will help in avoiding the defect-mapping phase, but still allow the design of a
fault-tolerant system with less computational overhead. In both of the system
types, the value of R and architectural level for redundancy insertion is de-
pendent on the system and its operational environment, hence, determining
these parameters is experimental. We use our toolset to determine whether
these parameters provide the necessary reliability without causing unaccept-
able delay, area and cost penalties. The next subsections elaborate on our
instance-based methodology.

3.1 Test-Circuits

Our defect-mapping technique is based on limited on-line testing of nanofab-
rics. We configure simple test-circuits on the nanofabrics to get a notion of the
probability of the crossbar-based PE being defective. One of the easiest test-
circuits proposed for such purposes is a counter circuit [21]. These counters
indicate the number of defective PEs up to some threshold t. Since the lowest
element of our structural hierarchy is a region (composed of eight PEs), t for
such a counter circuit may be set to 8.

Another set of simple circuits that can be used for this purpose are linear
feedback shift registers (LFSRs). LFSRs are used widely in built-in self test
(BIST) of RAMs. These can be configured on MUs and run autonomously
with sets of inputs. Parallel Signal Analyzers (PSAs) are also configured on the
MUs. These PSAs are used as parallel-to-serial compression circuits to avoid
testing a large number of pseudo-random vectors generated by the LFSRs.
The compression of a number of patterns using a PSA is called a signature.
If there are signature mismatches, the LFSRs may be split into smaller units
and configured on each region of the specific MU instance. Note that even
if there are no signature mismatches, it does not mean that the constituent
nodes are defect free. This is due to a non-zero probability of aliasing. A
way to minimize this aliasing problem is to use maximal-length PSAs and to
frequently compare the signatures with the expected values [17].

The test-circuits discussed here are just a small subset of the different
test-circuits that can be used to compute the probability of PEs being defec-
tive. The crossbar junction failure probability can be computed using these
probabilities and the equations in Sect. 2.1. Note that determining the junc-
tion failure probability is required for both our defect-mapping and structural
redundancy insertion methodologies, since broadcasting and other logic func-
tions need to be mapped to the crossbar-based PEs, respectively.

384 D. Bhaduri et al.

3.2 Defect-Mapping Technique

We have developed a non-deterministic defect-mapping technique based on a
variant of the RPF broadcast scheme [24] and on the defect-mapping method-
ology proposed in [21]. We configure simple test-circuits from [21], also dis-
cussed in Sect. 3.1, physically on the nanofabrics to determine the probability
of the molecular junctions being defective. These defect rates are used in de-
termining the probability of successfully configuring all PEs with the same
broadcasting functionality. Once this configuration probability is computed,
probabilistic models representing such PE-based nanofabrics are constructed
and our broadcast-based algorithm is used to determine the reachability graph
of each PE from the vias.

The broadcast-based algorithm we use is a modification of the determin-
istic algorithm proposed in [24]. We have modified this algorithm such that
defect maps represented by probabilistic broadcast trees can be generated,
hence, reflecting the non-deterministic defects in molecular nanofabrics. In
our algorithm, the probability of a PE being reached depends on the proba-
bility of the packet reaching the previous PE that forwarded the packet and
the probability of the interconnect on which the packet was transmitted being
defect free. Our methodology also stores the via number from which a PE is
reachable with highest probability, since this facilitates the configuration of
the fabric at a later stage if there are more than one available via. Since our
methodology applies this modified broadcasting algorithm on a nanofabric
model, we mimic the dynamics of the physical broadcast in our model. Note
that the broadcast-based part of our defect-mapping technique is run off-line,
i.e., on an external system.

Our methodology also partitions the nanofabric models to decrease the
computational complexity of our off-line probabilistic broadcasting algorithm.
A molecular nanofabric is partitioned into equal-sized smaller units such that
the algorithm can be run simultaneously on all the units. This partitioning
implies that in certain cases some of the PEs may be a part of more than one
unit and hence can be reached from more than one via, an algorithmic feature
that increases the reachability of these PEs. Our defect-mapping mechanism
pin-points the via from which a specific PE can be reached with the highest
probability. If the highest probability value of reaching a PE from any of the
vias is lower than a user-specified threshold, that PE is marked defective.

Our defect mapping technique forms a generalized probabilistic model for
a specific molecular nanofabric configuration and generates a defect map for
that particular configuration. Whereas, on-line methodologies [21,24] have to
be applied physically to each fabricated molecular nanofabric, even if their
configurations are the same. Hence, we claim that the computational time
associated with our limited on-line testing and generalized off-line broadcast-
based methodology will be less than generating fully on-line defect maps for
each molecular nanofabric.

Chapter 14: Fault-Tolerant Molecular Computing Systems 385

At this point, it is pertinent to provide a detailed discussion on the differ-
ences between our methodology and the methodologies in [21, 24]. These are
as follows:

– Mishra and Goldstein [21] uses extensive on-line testing to improve the re-
covery metric, whereas, our methodology only uses limited on-line testing.

– Patwardhan et al. [24] proposes a deterministic broadcast algorithm that
has been extensively modified to a non-determinsitc broadcast algorithm.

– Patwardhan et al. [24] generates on-line defect maps by physically broad-
casting test packets in the nanofabrics, whereas, we mimic such broadcasts
in our nanofabric models.

– Our methodology uses state space partitioning techniques on the nanofab-
ric models to alleviate off-line computational complexity. This was not
considered in either [21] or [24] since the problem of physically partition-
ing nanofabrics is intractable.

3.3 Hierarchical Redundancy Insertion Methodology

The problem of mapping logic onto ultra-dense nanofabrics has been handled
well in [16]. We have used the same procedure to map covers (2.4) of different
designs onto the structural hierarchy of our nanofabric models. Since there
can be more than one way of decomposing a generic DFG of a system into a
cover, there may be more than one cover for a system. Figure 6 shows one of
the possible covers for an Auto Regression (AR) filter hardware design.

We have extended the methodology in [16] so that behaviorally redundant
systems can be mapped onto structurally redundant molecular nanofabrics.

f1 f2

f0

f0

f2f1

Fig. 6. Cover for AR filter

386 D. Bhaduri et al.

3 4

1

2

A B

Flow 5

**

+

*
+

A0 B0 A1 B1

A2 B2

Flow 3

3 4

2

Flow 2

Node 1 is

behaviorally
triplicated

(a) Redundant cover (b) Structural redundancy at the differ-
ent hierarchies

Fig. 7. Behavioral and structural redundancy

Redundancy can be added to the covers by replacing original computational
nodes by primitive data flows that represent some form of behavioral re-
dundancy. For instance, Fig. 7a shows how a non-redundant cover with a
single data flow changes to a cover with two data flows when node 1 is be-
haviorally triplicated. The logic function of a Triple Modular Redundancy
(A0 × B0 + A1 × B1 + A2 × B2) replaces the original × function at node 1.
Similarly, structural redundancy can be inserted either at the crossbar level
by adding columns (2.1) or at any of the three tiers of the nanofabric hierar-
chy. Figure 7b shows Triple Modular redundancy (TMR) configurations [25]
for the different structural hierarchies. The TMR configurations are repre-
sentative examples of behaviorally and structurally redundant fault-tolerant
configurations. Our hierarchical redundancy insertion methodology maps the
non-redundant or redundant covers of the systems onto the structurally re-
dundant nanofabrics, by generating pseudo-random maps.

These pseudo-random maps (1) avoid defective components if and only if
a defect map is available for the nanofabric, since a designer can opt not to
generate a defect map; (2) introduce redundant structural units at the different
hierarchies of the nanofabrics; and (3) attempt to reduce routing latencies
while inserting structural redundancy. We have developed scripts that use
these maps to hierarchically translate each primitive data flow of the covers
onto the structurally redundant nanofabric models. We emphasize hierarchy
since the computational time required for steady state probability analysis of
hierarchically mapped designs is less when compared to flat models [4]. Such
a specific structural mapping of a cover is called a cover-map for a hardware
design.

Chapter 14: Fault-Tolerant Molecular Computing Systems 387

Fig. 8. Design flow

3.4 Design Flow

Figure 8 shows the design flow of our design and analysis methodology. The
different steps are outlined in details below:

1. Test-circuits would be run physically on the nanofabric to compute the ap-
proximate junction defect rate. A model of the specific molecular nanofab-
ric is built in SMART by creating an array of PEs and interconnects. Since
each PE needs to have some functionality to support our broadcast-based
algorithm, our nanofabric model requires that each PE must have enough
logic functionality to support four transceivers, a simple single-bit ALU
and control circuitry for routing. The junction defect rate is used to com-
pute the probability of the PEs being successfully configured to achieve
such minimal functional capabilities.

2. Our non-deterministic broadcast-based algorithm (Sect. 3.2) is used to gen-
erate a defect map, if the designer opts to generate one.

3. If a defect map is generated, the designer can analyze the performance
of our defect-mapping scheme in terms of the broadcast coverage and
recovery.

4. We have developed a transient fault injection library to model signal noise
at the interconnects. This library can be used to model noise as Gaussian
failure distributions with different means and variances.

388 D. Bhaduri et al.

5. We use the hierarchical logic-mapping scheme proposed in [16] and our
pseudo-random map to translate the non-redundant or redundant cover
(Fig. 7a) onto the nanofabric model composed of regions, MUs and com-
ponents.

6. The mapped design is analyzed to check conformance to required specifi-
cations in terms of reliability, cost, latency and area. If the specifications
are met, the system is physically configured onto the nanofabric.

7. If the specifications are not met, structural redundancy is added at the
different hierarchies of the nanofabric by using our redundancy insertion
methodology discussed in Sect. 3.3.

4 Experimental Results

In this section, we experimentally analyze our design methodology by trans-
lating behaviorally redundant or non-redundant mission-critical systems onto
defect-mapped molecular nanofabrics. We have also inserted structural re-
dundancy at the different nanofabric hierarchies to demonstrate the effect of
varying R and redundancy insertion level on the area, cost and delay para-
meters.

All experiments have been run using SMART 1.1 [26] on a Dell worksta-
tion running Linux with dual 3.4 GHz microprocessors and 4 GB of RAM. As
discussed in Sect. 3.1, our methodology entails determining the junction and
latch defect rates by running test-circuits. But for the sake of analyzing dif-
ferent scenarios, we have varied the junction defect rate in all the experiments
and fixed the defect rate of molecular latches to 0.1. Also, we have modeled
four vias at the corners of the nanofabrics and assumed that if any PE is
reachable with a probability of less than 0.9 from these vias, it is marked
defective. Since our framework is parameterized, such reachability thresholds
can be varied depending on the level of reliability that has to be guaranteed
for the system. We have used benchmark image and digital processing systems
in our experiments. The computational nodes of the covers for these systems
are either 8 bit adders or 8 bit multipliers, hence, the crossbar-based PEs need
to be configured with such logic functionalities.

We show the execution time in Table 1 required to generate a defect map
for a target nanofabric model, translating each non-redundant system onto the
nanofabric model, and determining different performance measures of each de-
sign. All execution times are averaged over 1, 000 runs. Specifically, each run
includes the time to (1) build a model of a 100 × 100 grid of PEs and inter-
connects; (2) determine the probability to reach each PE from the different
vias; (3) partition the non-defective PE-based model into sub-models based
on regions, MUs and components, and (4) construct a pseudo-random map to
translate a specific system onto a nanofabric model and compute the different
design trade-offs. As can be seen from Table 1, these execution times for all
of the hardware designs is reasonable. The analyses of median sort and Sobel

Chapter 14: Fault-Tolerant Molecular Computing Systems 389

Table 1. Execution time for the design and analysis of systems

Systems Cover Map Time (s)

Auto regression 1 2 2054.83

Discrete cosine 1 2 2047.90

FIR 2 3 2053.50

Avenhous filter 2 1 2049.25

Avenhous filter mod 1 2 2048.88

Median sort 1 2 3400.01

Sobel edge detection 1 2 3690.33

edge detection systems need relatively higher execution time since the state
space generated by these models are relatively large.

It has also been observed from experimental results that as the nanofabric
size and the number of vias increases, the execution time of our design and
analysis methodology increases. This is intuitive since the probabilistic com-
putation becomes more involved as the nanofabric size increases. Since our
methodology is parallelizable, high performance parallel computing solutions
may exist that can address this execution time problem. Currently, we are
looking at efficient ways of parallelizing our methodology and using high per-
formance computing solutions. We present the analysis of our defect-mapping
and hierarchical redundancy insertion methodologies separately in the next
subsections.

4.1 Analyzing Defect-Mapping Technique

In this subsection, we analyze the performance of our probabilistic defect-
mapping technique. We evaluate the defect-mapping scheme by varying (1)
the number of PEs in a nanofabric model, (2) the junction defect rate, (3) the
number of columns of the crossbar (R), and (4) the number of vias. We also
compute the expected latency of the probabilistic broadcast to quantify the
delay that is associated with our technique.

Varying junction defect rate. Figure 9a indicates that smaller nanofabrics
have higher tolerance to junction failure, given that the number of vias is
a constant. As the nanofabric size increases, the broadcast distances from
the vias increase. Since each PE is assumed to fail independently with the
same failure probability, the likelihood that a broadcast packet reaches a PE
located far away from the via decreases. For this experiment, we increased
the number of vias from 4 to 5 and observed that the percentage of reachable
(non-defective) PEs increased slightly due to the addition of the fifth, center
via (Fig. 1), since some of the PEs became more accessible from the center via.
Hence, the number of vias need to be increased as the nanofabric size increases.

Further, for large nanofabrics, the percentages of non-defective nodes at
higher junction defect rates are almost the same. This can be seen from the

390 D. Bhaduri et al.

0.01 0.1 0.11 0.12 0.13 0.14 0.15 0.16

Probability of junction failure →

Percentage of non−defective nodes with a threshold of 0.9
and junction failure of 0.13

0

10

20

30

40

50

60

70

80

90

100

30�30
50�50
80�80
100�100

P
er

ce
n

ta
g

e
o

f
n

o
n

−d
ef

ec
ti

ve
 n

o
d

es
 →

(a) Varying junction defect rate

6 6.5 7.5 8.5 9.57 8 9 10
0

10

20

30

40

50

60

70

80

90

Percentage of non−defective nodes with a threshold of 0.9
and junction failure of 0.13

Number of columns →

P
er

ce
n

ta
g

e
o

f
n

o
n

−d
ef

ec
ti

ve
 n

o
d

es

30�30
50�50
80�80
100�100

(b) Varying crossbar R

Fig. 9. Percentage of non-defective PEs for different nanofabric sizes

plots for the 80× 80 and 100× 100 nanofabrics and for junction failure prob-
abilities above 0.15. This can be inferred as follows: for high junction defect
rates, the probability of reaching PEs in a large nanofabric decreases steadily
until almost all the PEs become unreachable, i.e., the reachability threshold
of 0.9 in this experiment is not met. Similar results are also observed when
junction defect rates are varied between 0.01 and 0.16 for five vias and for
nanofabric sizes up to 104 × 104 .
Varying number of columns. In this experiment, R for the molecular crossbars
is varied (crossbar size). The junction defect rate is fixed at a probability
of 0.13. The major observation from Fig. 9 (b) is as follows: for a specific

Chapter 14: Fault-Tolerant Molecular Computing Systems 391

10

20

30

40

50

60

70

80

90

100

Sqrt (total network size) →

E
xp

ec
te

d
 la

te
n

cy
 (

n
u

m
b

er
 o

f
h

o
p

s)
→

Broadcast coverage for node at the center of the network

30 40 50 60 70 80 90 100

No Defects
> 10% and < 30% Defects

> 30% and < 50% Defects

Fig. 10. Broadcast latency

nanofabric configuration, increasing the number of columns of the crossbar re-
sults in a higher percentage of non-defective nodes. This improvement reaches
a steady state at a particular point (number of columns) beyond which increas-
ing R does not increase the percentage of non-defective nodes. This observa-
tion can be interpreted as follows: for a junction failure probability of 0.13, the
probability of successfully configuring broadcasting functionality on each PE
saturates at a certain R of the crossbar. Thus, the number of PEs that can be
reached reliably stabilizes and cannot be improved by adding more number of
columns. A similar observation has been made for nanofabrics with five vias
and sizes up to 104 × 104, for different values of R.

Broadcast latency. We have computed the expected latency of our scheme by
modeling the dynamics of broadcasting test packets physically. For a nanofab-
ric with four vias, the maximum broadcast latency is for the center PE.
Figure 10 shows the expected latency for the center PE in terms of the number
of hops and plots it as a function of the square root of the number of PEs. The
plots show that, for a nanofabric with no defects, > 10% and < 30% defects,
or, > 30% and < 50% defects, the expected latency to reach the center PE
from one of the vias is almost a linear monotonically increasing function of
the square root of the nanofabric size. It is also observed that as the number of
defective PEs increases, the expected broadcast latency decreases, since fewer
PEs are reachable with probability values within the reachability threshold
and the algorithm does not need to be process PEs beyond the reachable PEs
in the system.

392 D. Bhaduri et al.

Absolute

Convolution

RegionRegion

Region

RegionRegion

MU

MU

Fig. 11. Sobel edge detection cover-map combination

4.2 Analyzing Hierarchical Redundancy Insertion Methodology

In this subsection, we analyze our hierarchical redundancy insertion method-
ology by experimenting with the systems outlined in Table 1. Different cover-
map combinations and structural redundancy-based techniques are considered
for these experiments. The pseudo-random map generation technique (3.3) is
used to translate these systems onto defect-mapped nanofabric models and our
toolset is used to compute different design trade-offs for these mapped sys-
tems. We present results for the AR filter and 2D-Discrete Cosine Transform
(DCT) systems to illustrate the influence of such analysis on fault-tolerant
system design.

To compute the delay associated with redundancy insertion, we use the
metrics of relative performance (RP) and normalized relative performance
(NRP) for each cover-map combination of the two systems. We will discuss
how these metrics are computed for each system. Each PE is assumed to
take 2 cycles to complete an operation and route it to an adjacent PE. Thus,
if CP is the critical path length of a system, CPdelay = 2 × CP is a lower
bound on the delay for any cover-map combination representing a system [16].
For instance, it can be seen from Fig. 11 that the CP has eight PEs in the
Absolute and Convolution covers, hence CPdelay = 16. RP is computed by
taking the ratio of the CPdelay and actual delay that is dependent on the cover-
map combination, i.e., the structural mapping of the cover. The actual delay
includes intra-MU and inter-MU routing delays that are considered to take 1
and 2 cycles, respectively. Thus, a high RP implies a lower delay overhead.
NRP is computed by taking the ratio of the RPs of any cover-map and the
cover-map combination that has all the flows mapped to a single MU (least
routing delay). A higher NRP similarly indicates better performance for a
cover-map combination.

Chapter 14: Fault-Tolerant Molecular Computing Systems 393

6 7 8 9 10 11 12

AR Kernel Cover1:Map1 IntraMU = 0.0001 InterMU = 0.005

Number of Columns →

P
ro

b
ab

ili
ty

 o
f

C
o

rr
ec

t
O

u
tp

u
t

→

RP=0.84

NRP=0.52

NRP=0.79
NRP=0.85

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

Non Redundant
TMR at PE Level
TMR at MU Level
TMR at Component Level

(a) AR filter system

1

0.95

0.9

0.85

80.8

0.75

P
ro

b
ab

ili
ty

 o
f

C
o

rr
ec

t
O

u
tp

u
t

→

RP = 0.86

NRP = 0.55

NRPc = 0.91

NRPm = 0.91

Number of Columns →
6 7 8 9 10 11 12

DCT Kernel Cover1:Map3 IntraMU = 0.0001 InterMU = 0.005

Non Redundant
TMR at PE Level
TMR at MU Level
TMR at Component Level

(b) DCT system

Fig. 12. Reliability-redundancy-delay trade-offs

Also, to determine the cost of inserting redundancy in systems, we develop
a cost metric, relative cost (RC) for each cover-map combination. RC consists
of the cost associated with fabricating crossbar-based PE, intra-MU and inter-
MU routing lines. Routing within regions is assumed to be free. It is assumed
that the cost of each molecular crossbar column is 2 units. Similarly, intra-MU
and inter-MU routing tracks cost 2 and 4 units, respectively. The RC for any
non-redundant system is computed as the ratio of the cost associated with the
CP and the actual cost of the cover-map combination. The RC for any redun-
dant system is computed as the ratio of the least cost non-redundant cover-
map and the cost of the redundant cover-map. A higher RC value implies a
more cost-effective design. We have also computed the average reliability of
both the non-redundant and redundant cover-maps for both the AR filter and
DCT systems. This metric is the mean reliability level, determined by varying
the number of crossbar columns (redundancy at the PE level).

Non-redundant and TMR-based designs. Figure 12a shows the probability of
correct output for the AR filter for different numbers of crossbar columns.
Signal noise at the intra-MU and inter-MU routing tracks are assumed to
be Gaussian failure distributions with means 0.0001 and 0.005 and variances
0.001 and 0.01, respectively. The plots in Fig. 12a indicate the reliability-
redundancy-delay trade-offs for a specific non-redundant AR filter cover-map
and its TMR configurations at the PE, MU and component levels. One of
the major observations from these plots is: TMR at the PE level (maximum
redundancy) yields high reliability when the number of columns is small. But
once the number of columns reaches 8, TMR at the MU level provides similar
reliability with less redundancy. Also, the NRP values indicate that the per-
formance penalty for TMR at the PE level is very high as compared to TMR
at the MU level. Hence, for this specific fault distribution and cover-map, if
the number of crossbar columns for implementing a 2-input logic function is
greater than or equal to 8, TMR at the MU level is the better choice.

394 D. Bhaduri et al.

0.001 0.01 0.02 0.03 0.04 0.05 0.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

AR Kernel Cover1:Map1 N = 12 (Pe=1%, Pc=0.1%, Pa=1%)

InterMU Signal Noise →

P
ro

b
ab

ili
ty

 o
f

C
o

rr
ec

t
O

u
tp

u
t

→

NRP = 0.79

NRP = 0.52

NRP = 0.58

NRP = 0.66

0th Order CTMR
1st Order CTMR
2nd Order CTMR
3rd Order CTMR

(a) Reliability-redundancy-delay trade-
offs for different MU-based CTMR con-
figurations

6 7 8 9 10 11 12

AR Kernel Cover1:Map1 Cost of each column = 2 units

Number of Columns →

R
el

at
iv

e
C

o
st

 →

Avg Rel = 0.80

Avg Rel = 0.87

Avg Rel = 0.91

Avg Rel = 0.97

1

0.95

0.9

0.85

0.75

0.65

0.55

0.5

0.8

0.7

0.6

No Redundancy
TMR at PE Level
TMR at MU Level
TMR at Component Level

(b) Reliability-redundancy-cost trade-
offs for non-redundant and TMR con-
figurations

Fig. 13. Trade-offs for different redundant configurations for the AR filter

Such non-intuitive inferences can also be drawn for the DCT system from
Fig. 12 (b). In this case, the pseudo-random map generated for the system
places all of the behavioral flows in one MU (higher probability of failure
but lower delay). TMR at the component and MU levels provides equivalent
reliability and performance (as indicated by NRPc and NRPm), since the
TMR configurations are equivalent.

Cascaded triple modular redundancy (CTMR). We have computed the trade-
offs for CTMR configurations for the AR filter cover-map combination used
previously by varying the failure probability of the inter-MU routing lines and
keeping the number of crossbar columns, N , fixed at 12. The probability of
failure of the PEs, SEs and majority voters or arbiters are computed to be
Pe = 1%, Pc = 0.1%, Pa = 1% when these are configured on the crossbars
with 12 columns and junction defect rate of 0.1. The plots in Fig. 13 (a)
indicate that as the MU-based CTMR orders increase, the reliability of the
architecture improves and the delay penalties increase (intuitive). But the
major observation is: when the inter-MU routing line is affected by a failure
distribution due to signal noise that is centered around 0.1 with a variance
of 2, the 0th order CTMR (TMR) seems to do better than 1st order CTMR.
Although, it is observed that the 2nd and 3rd order CTMRs for this cover-map
provides marginal improvements in reliability as compared to the 0th and 1st
order CTMRs, they also entail substantial degradation. Hence, TMR is the
best choice for this cover-map and fault distribution.

Reliability-redundancy-cost trade-offs. The other basis for analyzing redun-
dant systems is analyzing the implementation cost. Although the cost units
in this chapter are artificial, they can be modified easily in our automation
framework. In Fig. 13b, the RC is plotted against different redundancy levels,

Chapter 14: Fault-Tolerant Molecular Computing Systems 395

i.e., number of columns at the crossbar level. One of the design intuitions
indicated by the plots is: for the TMR configuration at the PE level, average
reliability is highest but the implementation cost is very high.

5 Conclusion

Nanoscale molecular systems will be susceptible to both defects and transient
faults. It has been shown that defect-mapping techniques can be used to mit-
igate defects and structural redundancy may be used to mitigate transient
faults. Since defect-mapping is computationally intensive, it would be benefi-
cial to avoid this process for systems that are more tolerant to failures. In this
chapter, we propose a unified probabilistic methodology to design and ana-
lyze mission-critical systems and systems that allow low but non-zero failure
probabilities. Our automation framework can be directed to either generate
defect maps or avoid defect map generation and be used to automatically in-
sert structural redundancy. Since redundancy-based nanodesigns may entail
penalties in terms of area, cost and delay, our framework can be used to an-
alyze these parameters to quantitatively guide the selection of an acceptable
fault-tolerant design.

In this chapter, we have also pointed out the need for developing defect-
mapping techniques that truly reflect the non-determinism in nanodevices, yet
are computationally viable. We have developed a limited testing and prob-
abilistic broadcast-based defect-mapping scheme that is predominantly run
off-line on external systems. Although this methodology is motivated from
the rich literature in this area, we have pointed out the differences of our non-
deterministic defect-mapping scheme with existing techniques. We have also
enhanced a hierarchical logic mapping methodology to incorporate behavioral
and structural redundancy insertion.

We have also applied our design methodology in designing image and signal
processing systems on target molecular nanofabrics. The computational times
for designing and analyzing these systems have been presented and seem to
be reasonable even for large designs. Different performance trade-offs such
as reliability-redundancy-delay trade-offs have been determined that indicate
the effectiveness of our methodology in expediting and guiding fault-tolerant
design of such systems.

References

1. A. Aviram and M. Ratner. Molecular rectifiers. Chemical Physics Letters,
29(2):277–283, November 1974

2. A. Bandyopadhyay and A. Pal. Large conductance switching and memory effects
in organic molecules for data storage applications. Applied Physics Letters,
82(8):1215–1217, 2003

396 D. Bhaduri et al.

3. D. Bhaduri and S. Shukla. NANOLAB—a tool for evaluating reliability
of defect-tolerant nanoarchitectures. IEEE Transactions on Nanotechnology,
4(4):381–394, 2005

4. D. Bhaduri, S. Shukla, P. Graham, and M. Gokhale. Comparing reliability-
redundancy trade-offs for two von neumann multiplexing architectures.
IEEE Transactions on Nanotechnology, 2006. To appear. Available at
http://fermat.ece.vt.edu/Publications/online-papers/Nano/MUX TNANO.pdf

5. D. Bhaduri and S. K. Shukla. Comparing the reliability-redundancy trade-
offs for two von neumann multiplexing architectures. Technical report, Fermat
Lab, Virginia Tech, 2005. Available at http://fermat.ece.vt.edu/Publications/
pubs/techrep/techrep05 01.pdf

6. D. Bhaduri, S. K. Shukla, P. Graham, and M. Gokhale. Reliability analysis of
fault-tolerant reconfigurable architectures. In NANOARCH, May 2005. Avail-
able at http://fermat.ece.vt.edu/Publications/pubs/techrep/techrep0415.pdf

7. Yong Chen et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology,
14:462–468, 2003

8. Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast packets.
Communications of the ACM, 21(12):1040–1048, 1978

9. A. DeHon. Array-based architecture for fet-based nanoscale electronics. IEEE
Transactions on Nanotechnology, 2:223–232, 2003

10. A. DeHon and M. J. Wilson. Nanowire-based sublithographic programmable
logic arrays. In Int’l Symp. on FPGAs, pages 123–132, 2004

11. A. Flood, J. Stoddart, D. Steuerman, and J. R. Heath. Whence molecular
electronics? Science, 306(5704):2055–2056, Dec 2004

12. S. C. Goldstein and M. Budiu. Nanofabrics: Spatial computing using molecu-
lar electronics. In Annual International Symposium on Computer Architecture
(ISCA), pages 178–189, July 2001

13. J. Han and P. Jonker. Fault tolerance in nanocomputers: random interwoven
redundancy. IEEE Trans. VLSI. To Appear.

14. J. Han and P. Jonker. A system architecture solution for unreliable nanoelec-
tronic devices. IEEE Transactions on Nanotechnology, 1:201–208, 2002

15. J. Heath, P. Kuekes, G. Snider, and R. Williams. A defect tolerant computer
architecture: Opportunities for nanotechnology. Science, 80:1716–1721, 1998

16. M. Jacome, C. He, G. Veciana, and S. Bijansky. Defect tolerant probabilistic
design paradigm for nanotechnologies. In DAC, pages 596–601, June 2004

17. J. Koeter. What’s an lfsr? (rev. a). Tech. report, Texas Instruments, 1996.
Available at http://www.ti.com/sc/docs/psheets/abstract/apps/scta036a.htm

18. S Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes. Accurate
reliability evaluation and enhancement via probabilistic transfer matrices. In
Design, Automation and Test in Europe (DATE’05), volume 1, pages 282–287,
New York, NY, USA, 2005. ACM Press

19. C.N. Lau, D. R. Stewart, R. S. Williams, and M. Bockrath. Direct observation of
nanoscale switching centers in metal/molecule/metal structures. Nano Letters,
4(4):569–572, 2004

20. H. M. McConnell. Intramolecular charge transfer in aromatic free radicals. The
Journal of Chemical Physics, 35(5704):508–515, August 1961

21. Mahim Mishra and Seth Copen Goldstein. Defect tolerance at the end of the
roadmap. In International Test Conference (ITC), Charlotte, NC, Sep 30-Oct
2 2003

Chapter 14: Fault-Tolerant Molecular Computing Systems 397

22. K. Nikolic, A. Sadek, and M. Forshaw. Architectures for reliable computing
with unreliable nanodevices. In Proc. IEEE-NANO’01, pages 254–259. IEEE,
2001

23. G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the relia-
bility of nand multiplexing with prism. IEEE Transactions on CAD, 24(9). To
appear September 2005

24. J. Patwardhan, C. Dwyer, A. Lebeck, and D. Sorin. Evaluating the connectivity
of self-assembled networks of nano-scale processing elements. In IEEE Interna-
tional Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures,
May 2005

25. Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems: Design
and Evaluation. Digital Press, Burlington, MA, 2nd edition, 1992

26. Web Page: http://www.cs.ucr.edu/ ciardo/SMART/, 1994
27. M. B. Tahoori. Defects, yield and design in sublithographic nano-electronics. In

IEEE Symposium in Defect and Fault Tolerance, 2005
28. Victor V. Zhirnov and Daniel J. C. Herr. New frontiers: Self-assembly and

nanoelectronics. Computer, 34(1):34–43, January 2001

Index

A

Adaptive Recovery, 35, 44, 54–57
Adder circuit, 1, 10, 13–29
Allocation algorithm, 15–21, 28
AND gate, 9–13
Application-dependent, 127, 128, 148,

149
Application-independent, 122, 128, 129,

148, 149
Arbitrary functional fault (AFF), 186
Arbitrary reversible fault (ARF), 187
Asynchronous logic, 203–204
Auto Regression (AR), 385, 392–394
Auto-model, 320
Average recovery, 108–109, 114–118

B

Bayesian Network, 230–232, 234,
236–239, 243, 248

Behavioral model, 96, 102, 118
Behaviorally redundant, 385, 388
Belief propagation, 319, 322, 329
Benefits of delay-insensitive circuit,

203–205, 207, 209, 210, 221,
223–225

Benign fault, 216
Biclique, 125, 126, 130, 132, 134–140,

145, 147, 148
Biochip, 287–298, 303–307
Biomedical applications, 267, 269
Biomedical assay, 268, 269, 271, 280,

281

BioMEMS, 283
Biosensing, 283
Bipartite graph, 125, 126, 130, 134–136,

138
BIST, 383
Bistable storage element, 322, 327
Blocks under test (BUT), 34, 40–46,

48–50, 52–54, 57, 60, 111
Bottom-up fabrication, 95
Branch merging, 353
Branch pruning, 357, 360
Bridging fault, 46, 47, 49–51
Broad-cast based defect-mapping, 376,

395
Built-in redundancy, 96
Built-in Self-test (BIST), 96, 119, 126

C

CAEN-BIST, 96–99, 101, 103, 105, 107,
109–119

Capacitance matrix, 253
Carbon nanotubes, 120, 121, 123, 124
Catastrophic fault, 271
Cell, cellular array, 203–212, 223–225
Cellular automata, 262
Chemical synthesis process, 33
Chemically-assembled electronic

nanotechnology (CAEN), 33–35,
43, 60, 96

Circuit area, 1, 12, 28, 30
Circuit compiler, 1, 6, 9
Circuit layout, 10, 18
Circuit reliability, 5

400 Index

Circuit shape, 25
Circuits, 227–229, 231, 232, 234, 235,

237–240, 243–246, 248, 249
Clinical diagnostics, 283
Clique energy function, 316, 320–323,

328, 331–333
Clique energy, 316, 317, 320–323, 327,

328, 331– 333
Clique, 316–318, 320–323, 327, 328,

331–333
Clocked QCA, 251
Clocking zone, 162, 164, 167–170,

174–176, 178
Clocking, 255–257, 262
Clustered, 132, 134, 141–144, 146
Clustering parameter, 133
CMOS/nano hybrid system, 363, 364
CMOS-CAEN interface, 103
Complement graph, 138–140, 146
Complete bipartite graph, 125, 134
Computational complexity, 272–275
Computational components, time

varying fault rate, 342, 345, 346
Conditional probability, 322
Configuration shift, 110, 111
Configuration transformation, 216
Configuration, 97, 99–101, 104–105,

107–108, 110–111
Conservative, 157, 160
Continuous-flow, 290, 293
Control units, 345–348, 365
Corner nanoBlock, 112–114
Cost, 209
Co-tunneling, 252
Coulomb blockade, 253
Coulomb coupling, 251
Critical path (CP), 392, 393
Crossbar architecture, 1, 6–9, 28, 99,

101
Crossbar, 122–136, 138, 141–149
2D Crossbar, 378
Crosspoint, 35, 38, 46–50, 123–126, 129,

133, 134
C-testability controllability, 159, 160,

178, 179, 183, 185–187, 189, 191,
194, 196, 198, 199

CTMR, 394
C-unit, 347–362, 365–368
Cut edge, 297

D

Decentralized control, 347, 348
Defect correlations, 9, 29
Defect density, 96–98, 101–103,

107–110, 113, 115, 118, 122, 124,
129, 130, 132–135, 138, 141–147

Defect Distribution Model, 132–136,
141, 143, 144

Defect map, 38, 41, 43, 44, 54, 57, 58,
101–102, 107–108, 113–114,
117–118, 122, 126–132, 136, 147,
149, 374–377, 380, 382–388, 395

Defect tolerance, 1, 2, 5, 9, 96–99, 101,
118–119, 124, 126–129, 131, 141,
145, 148, 149, 253, 255, 257, 259,
261, 289, 298, 304, 340, 378

Defect, 121–136, 138, 141–149
Defect-avoidance, 373, 374
Defect-aware place-and-route, 101
Defect-aware, 127–130, 148, 149
Defect-models, 374, 376
Defect-unaware design flow, 122,

126–132, 149
Defect-unaware, 122, 126–132, 141, 148,

149
Delay-insensitive AND gate layout, 210
Delay-insensitive AND gate, 210, 221
Delay-insensitive circuit, 203–205, 207,

209–216, 221, 223–225
Delay-insensitive register layout, 212
Delay-insensitive register, 212
Delay-insensitive XOR gate layout, 211
Delay-insensitive XOR gate, 210, 221
Dependence graph, 317, 318, 321, 331
Design view, 128, 129, 141, 148
Diagnosis, 96–97, 101, 110–112, 118–120
Diagonal algorithm, 108, 109, 112
Differential cascade voltage switch

(DCVS) logic, 326, 327, 336
Digital circuits, 315, 335
Digital microfluidics, 288, 307
Diode logic circuit, 6, 9
Diode-resistor logic (DRL), 36, 123
Directed self-assembly, 95
Discrete cosine transform (DCT),

392–394
Double stuck-at-1 fault in a TRIA,

221–222

Index 401

Droplet, 267–271, 273, 277–284
Drug discovery, 283
Dual-rail 2-to-1 multiplexer, 212, 213
Dual-rail encoding, 204, 205, 209
Dynamic hardware allocation, 353

E

EasyPath, 97, 119
Edge-dependent, 298
Electrode, 288–296, 298, 300, 304–308
Electrode-short fault, 292, 304, 305
Electrowetting, 268
Electrowetting-on-dielectric (EWOD),

292
Error probability, 261
Error rates, 259
Euler circuit, 299–302, 307
Euler path, 299, 300

F

Fault clustering, 117
Fault detection configuration (FDC),

41–50, 52, 53, 55
Fault injection, 106
Fault masking, 182, 183, 190
Fault model, 291
Fault modeling, 34
Fault pattern, 135, 136, 141
Fault rate, 343, 344, 346, 349, 351, 354,

356, 361, 362, 369
Fault tolerance, 322, 340, 342–349, 351,

354, 357, 359–366, 368, 369
Fault tolerant computational model,

347, 360, 365, 366
Fault, 204, 208, 209, 216–225
Fault-equivalent module, 182
Fault-models, 377, 379
Faulty-signal, 217–219
Feedback, 322, 323, 327–329, 335
Field effect transistor (FET), 124
Field Programmable Gate Arrays

(FPGAs), 34, 35, 121, 123, 124
Final mapping, 122, 128, 129, 132, 136,

149
Fleury’s algorithm, 301, 302
Fork, 206, 207, 216–219
FPGA-BIST, 97–98

Fredkin gate, 160, 163–166, 169, 174,
176, 177, 183, 189–192

Free energy, 253–255, 258

G

Gain, 253–254, 259–260, 262
Gate-level fault, 219–223
Gibbs distribution, 316–318
Global view, 131, 147, 148
Glucose assay, 306, 308
Graph monomorphism, 18, 19
Graph theory, 290, 298
Greedy mapping algorithm, 138–140

H

Hamiltonian path, 271–276, 278, 282
Hammersley-Clifford theorem, 316
Hard repair, 96
Hardware redundancy, 342, 343, 346,

349, 361
Heuristic algorithm, 278–284
Hierarchical mapping, 380–381
Hybrid redundancy, 348, 351

I

Implied dependence, 331, 333
Independent set, 138–140
Indium tin oxide (ITO), 295,
Information propagation, 356, 357
Instruction confirmation, 350
Instruction dependency, 347
Instruction execution, 345, 347, 348,

350, 353, 361, 369
Instruction issue, 346, 348
Integer linear programming, 275
Interaction coefficients, 321
Irreversible fault, 185, 186
Irreversible logic, 157, 159
Iterations, 114–117
Iterative Logic Array (ILA), 160, 178,

186

J

Joint probability, 316, 318, 322
Junction defect rates, 389, 390

402 Index

K

Kullback-Leibler distance (KLD), 335,
336

L

Lab-on-a-chip, 287
Lactate assay, 306
LFSR, 383
Linear feedback shift register, 98
Local view, 131, 147, 148
Locality constraint, 366–368
Localized communication, 339, 362,

363, 365, 367–369
Localized interconnection, 340, 342, 367
Locally confirmed instruction, 355–357,

360
Locked cell, 256
Logic circuits, 6, 30
Logic compatibility function, 320–323
Logical formula rewrites, 6
Low power, 315

M

Majority voting, 228
Manufacturing defect, 340
Manufacturing yield, 122, 124, 149
Mapping units (MU), 379, 381, 383,

388, 392–394
Markov neighborhood, 319
Markov random field, 315–318, 320
Markov random network, 319, 320
Markovian, 375, 382
Master equation, 254, 258
Matching, 125, 126, 132, 134, 148, 149
Memory, 256
MEMS, 270, 287, 289,
Merge, 206, 207, 216, 218, 219
Message passing, 363, 365–367
Metal-dot QCA, 253, 254, 258, 262
Microfluidic array, 268–272, 277, 278,

280–282, 288–290, 293–296,
298–309

Microfluidic systems, 267, 268, 270, 271
Microfluidics, 287–289, 307
Microsystems, 267
Mixed-energy domain, 289

Mixed-technology, 287
Molecular circuits, 6, 29
Molecular CMOS (CMOL), 124
Molecular electronics, 1, 5, 7–9, 28,

33–60
Molecular latch, 378, 388
Molecular logic array (MLA), 36, 37, 99
Molecular nano-fabrics, 373–377, 380,

382, 384, 385, 387, 388, 395
Molecular switch, 35–38, 40, 46, 373,

378
Molecule cascades, 208–209
Mono-layered interconnected circuits,

154
Monte-Carlo, 278–280, 282, 283
Multiple fault, 159, 186, 187, 189
Multiple faulty module, 160, 183, 185,

190, 193, 199
Multiplexed bioassay, 306, 307

N

Nano-architecture, 340, 342–350, 360,
362–369

NanoBlock controllability, 113
NanoBlock tester, 105, 111–114
NanoBlock, 33–45, 47–50, 53–57, 60,

99–101, 103–105, 107–114, 117,
123

Nanoelectromechanical switch, 124
Nanoelectronic device, 339–342, 345,

363, 364
Nanoelectronic system, 340–344, 363
Nanoelectronics, 340, 341, 343, 344,

362, 364, 366, 368
NanoFabric, 33–43, 45, 49, 54, 55, 57,

60, 95–109, 114–118, 123
Nanoprocessor architecture, 362–368
Nanoscale computational model,

342–344, 347–363, 365, 366, 368,
369

Nanoscale devices, 315, 324, 336, 337
Nanoscale wire, 35, 36
Nanotechnology, 1, 2
Nanowire bridging fault, 135
Nanowire open fault, 135
Nanowire, 99
N-Modular Redundancy (NMR), 343,

346, 349, 352, 361, 362

Index 403

Noise immunity, 316, 324–326, 329, 335,
336

Noise, 315, 316, 324–326, 329, 330, 332,
334–337

Noise-aware logic design, 337
None-some-many algorithm, 116
Non-volatile, 123, 148
Normalized Relative Performance

(NRP), 392–394
NP-hard, 272–275
Null cell, 251, 255–257
Null configuration, 216, 217

O

Observability, 158–160, 178, 186, 187,
189–191, 193–196, 199

Off-line test, 298–303, 306–308
One-to-one onto mapping, 157–159,

163, 182, 183, 185, 186
On-line test, 288, 303, 304, 307
Optimal partitioning, 277, 278
Output response analyzer (ORA), 34,

35, 41–47, 49, 54, 55, 60, 97

P

Perfect matching, 126
Performance overhead, 347
Performance thresholds, 24, 25, 27
Permutation crossbar, 148, 149
Personality matrix, 104, 107
Phase diagram, 255, 260
Physical view, 128, 129, 141
Power gain, 254, 259, 260
Primary observable line, 187–189
Primitive, 203, 205, 207, 208, 216, 223,

224
Primitive-level fault, 216–219
Probabilistic computing, 315, 322
Probabilistic defect-maps, 375, 376,

380, 382
Processing elements (PE), 377, 379,

382–384, 387–389, 391–395
Processor architecture, 340, 342–345,

347, 349, 350, 360, 362–365, 368
Programmable Logic Arrays (PLAs),

103, 124
Programmable logic block (PLB), 34,

96

Programmable switch, 123–125, 148
PSA, 383
Pseudo-random maps, 377, 386, 388,

392, 394

Q

QCA (Quantum-dot Cellular
Automata), 157–176, 178, 179,
186, 187, 199, 227–235, 237, 239,
243, 246, 248, 251–262

QCA cell, 251–253, 256, 258
QCA devices, 251, 253
QCA shift register, 253, 255, 256, 258,

261
QCA1 gate, 166, 193, 194
QCA2 gate, 195–197
Quantum dot, 251
Quantum modeling, 232
Quantum tunneling, 253–255

R

RAM, 96
Reagent, 306–308
Realistic defect, 291, 292
Reconfigurability, 34, 38, 41, 97, 101,

118
Reconfiguration, 289, 298, 304, 306
Recovery, 34, 35, 38–41, 44, 54–57, 59,

60, 102, 107–109, 114–117
Recursive Biclique Algorithm, 136–138
Reduced noise margins, 315, 324, 325
Redundancy factor, 375, 376, 379, 383,

388–391
Redundancy insertion, 375–377, 383,

385, 386, 388, 389, 392, 395
Redundancy, 122, 141, 144
Reed-Muller cell, 203, 210–223, 225
Reed-Muller form, 203, 209, 210, 213,

215, 225
Region based mapping, 388
Regions, 379–381, 383, 388, 392, 393
Relative cost (RC), 393, 394
Relative Performance (RP)

Self-assembled, 392
Reliability, 267, 340, 341, 344, 345, 349,

360, 362, 364–366, 369
Resettable Modulo 2 Counter, 207

404 Index

Resistor logic circuit, 8, 36
Resonant tunneling diode (RTD), 35
Return-to-spacer protocol, 205, 207
Reversibility, 154
Reversible computing, 157–160, 199
Reversible fault, 187–189
Reversible logic, 157–160, 163, 167, 170,

174, 183
Robust Coplanar Crossing, 227–249
Robustness, 253, 258
Rotaxane, 99
Routing, 376, 377, 386, 387, 392–394
Row-column algorithm, 108, 109, 116

S

Self-alignment, 33, 95, 101
Self-assembly, 33, 35, 121, 123, 145, 149
Shift register, 251–253, 255–258
Signal noise, 324, 336
Signal polarization, 154
Signal restoration, 254
Signal, block, 204, 217
Signature generator, 98, 107–109
Silicon nanowires, 121
Single electron transistor, 252
Single electronics, 253–254
Single fault, 160, 163, 185, 199
Single faulty module, 160, 185, 199
Single missing/additional cell defect,

176, 177, 179, 243, 244
Single Pin Inversion (SPI), 187
Single stuck-at-1 fault in a TRIA,

219–221
SMART, 377, 379–380, 387, 388
Soft repair, 96
Speculative branch, 347, 351–358, 360,

369
Speculative computation, 351–353, 365
Stochastic Model Checking, 379
Structurally redundant, 375, 377, 385,

386
Stuck-at fault, 49, 50, 60, 160, 186
Stuck-at-0 fault, 217–219
Stuck-at-1 fault in AND gate, 221, 222,

224
Sub-threshold voltage, 324, 330, 335
Switch stuck-closed fault, 134–135, 145
Switch stuck-open fault, 134, 135

SwitchBlock, 35–41, 44, 47–49, 52–57,
60, 99, 103, 105–107, 110

System-on-chip, 263

T

Teramac, 34, 98
Test group (TG), 41, 43–49, 52–55, 57,

58, 60
Test pattern generator (TPG), 34, 35,

41–44, 48, 49, 52, 54, 57, 60, 97
Test planning, 268, 270, 278–280, 284
Test resource optimization, 268
Testability, 158–160, 163, 178, 179, 183,

186, 187, 189, 191, 194, 196, 198,
199

Thermal effects, 227, 228, 234
Thermal noise, 154, 324
Threshold voltage variation, 325
Time complexity, 125, 132, 136, 138,

140
Time redundancy, 343–347, 349, 352,

360, 361, 368
TMR, 386, 393–395
Toffoli gate, 160, 165–168, 176, 179,

183–185, 190
Topological structure, 362–368
Transient faults, 346, 373–375, 379,

380, 387, 395
Transition rules, 205–207, 224
Transition, 205–207, 224,
TRIA, 207, 208, 219–223
Trinder’s reaction, 306
Triple stuck-at-1 fault in a TRIA, 221,

223
Triple-Modular Redundancy (TMR),

334, 346, 349
Tunnel junction, 252, 253
Tunneling, 252–255
Two dimensional (2D) crossbar, 123,

125, 149
Two-dimensional cellular array, 206

U

Ultimate CMOS, 325
Ultra-low voltage, 337
Unclustered, 132–134, 141–146
Universal defect-free subset, 122, 128,

129, 136
User crossbar, 148, 149

Index 405

V

Von Neumann neighborhood, 205
Voter, 344, 347–351, 358–361, 363–368

W

Walking sequence of ones, 48, 51

Walking test patterns, 110
Wave-like test, 112
Wire mesh, 99, 101

Y

Yield estimation, 123, 134–136
Yield metric, 123, 132–136, 142

Frontiers in Electronic Testing (Continued from page ii)

Power-Constrained Testing of VLSI Circuits
Nicola Nicolici and Bashir M. Al-Hashimi
Volume 22B, ISBN 978-1-4020-7235-2, 2003

High Performance Memory Testing: Design Principles, Fault Modeling and Self-Test
R. Dean Adams
Volume 22A, ISBN 978-1-4020-7255-0, 2002

SOC (System-on-a-Chip) Testing for Plug and Play Test Automation
Krishnendu Chakrabarty (Ed.)
Volume 21, ISBN 978-1-4020-7205-5, 2002

Test Resource Partitioning for System-on-a-Chip
Krishnendu Chakrabarty, Vikram Iyengar and Anshuman Chandra
Volume 20, ISBN 978-1-4020-7119-5, 2002

A Designer’s Guide to Built-In Self-Test
Charles E. Stroud
Volume 19, ISBN 978-1-4020-7050-1, 2002

Boundary-Scan Interconnect Diagnosis
José T. de Sousa and Peter Y.K. Cheung
Volume 18, ISBN 978-0-7923-7314-8, 2001

Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, Second Edition
M. Bushnell and Vishwani Agrawal
Volume 17, ISBN 978-0-7923-7991-1, 2000

Analog and Mixed-Signal Boundary-Scan: A Guide to the IEEE 1149.4 Test Standard
Adam Osseiran (Ed.)
Volume 16, ISBN 978-0-7923-8686-5, 1999

Design for AT-Speed Test, Diagnosis, and Measurement
Benoit Nadeau-Dostie (Ed.)
Volume 15, ISBN 978-0-7923-8669-8, 1999

Delay Fault Testing for VLSI Circuits
Angela Krstic and Kwang-Ting (Tim) Cheng
Volume 14, ISBN 978-0-7923-8295-9, 1998

Research Perspectives and Case Studies in Systems Test and Diagnosis
John W. Sheppard and William R. Simpson (Eds.)
Volume 13, ISBN 978-0-7923-8263-8, 1998

Formal Equivalence Checking and Design Debugging
Shi-Yu Huang and Kwang-Ting (Tim) Cheng
Volume 12, ISBN 978-0-7923-8184-6, 1998

On Line-Testing for VLSI
Michael Nicolaidis, Yervant Zorian, and Dhiraj Pradhan (Eds.)
Volume 11, ISBN 978-0-7923-8132-7, 1998

Reasoning in Boolean Networks: Logic Synthesis and Verification Using Testing Techniques
Wolfgang Kunz and Dominik Stoffel
Volume 9, ISBN 978-0-7923-9921-6, 1997

Introduction to IDDQ Testing
S. Chakravarty and Paul J. Thadikaran
Volume 8, ISBN 978-0-7923-9945-2, 1997

Multi-Chip Module Test Strategies
Yervant Zorian
Volume 7, ISBN 978-0-7923-9920-9, 1997

Testing and Testable Design of High-Density Random-Access Memories
Pinaki Mazumder and Kanad Chakraborty
Volume 6, ISBN 978-0-7923-9782-3, 1996

From Contamination to Defects, Faults and Yield Loss: Simulation and Applications
Jitendra B. Khare and Wojciech Maly
Volume 5, ISBN 978-0-7923-9714-4, 1996

Efficient Branch and Bound Search with Application to Computer-Aided Design
Xinghao Chen and Michael L. Bushnell
Volume 4, ISBN 978-0-7923-9673-4, 1996

Testability Concepts for Digital ICs: The Macro Test Approach
F.P.M. Beenker, R.G. Bennets, and A.P. Thijssen
Volume 3, ISBN 978-0-7923-9658-1, 1995

