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Preface

A major feature in the evolution of modern technologies is the important role of surfaces
and near surfaces on the properties of materials. This is especially true at the nanometer
scale. In this book, we focus on the fundamental physics underlying the techniques
used to analyze surfaces and near surfaces. New analytical techniques are emerging to
meet the technological requirements, and all are based on a few processes that govern
the interactions of particles and radiation with matter. Ion implantation and pulsed
electron beams and lasers are used to modify composition and structure. Thin films are
deposited from a variety of sources. Epitaxial layers are grown from molecular beams
and physical and chemical vapor techniques. Oxidation and catalytic reactions are
studied under controlled conditions. The key to these methods has been the widespread
availability of analytical techniques that are sensitive to the composition and structure
of solids on the nanometer scale.

This book focuses on the physics underlying the techniques used to analyze the sur-
face region of materials. This book also addresses the fundamentals of these processes.
From an understanding of processes that determine the energies and intensities of the
emitted energetic particles and/or photons, the application to materials analysis follows
directly.

Modern materials analysis techniques are based on the interaction of solids with
interrogating beams of energetic particles or electromagnetic radiation. These inter-
actions and their resulting radiation/particles are based upon on fundamental physics.
Detection of emergent radiation and energetic particles provides information about the
solid’s composition and structure. Identification of elements is based on the energy
of the emergent radiation/particle; atomic concentration is based on the intensity of
the emergent radiation. We discuss in detail the relevant analytical techniques used to
uncover this information. Coulomb scattering from atoms (Rutherford backscattering
spectrometry), the formation of inner shell vacancies in the electronic structure (X-ray
photoelectron spectroscopy), transitions between levels (electron microprobe and
Auger electron spectroscopies), and coherent scattering (X-ray and electron diffracto-
metry) are fundamental to materials analysis. Composition depth profiles are obtained
with heavy-ion sputtering in combination with surface-sensitive techniques (electron
spectroscopies and secondary ion mass spectrometry). Depth profiles are also found
from energy loss of light ions (Rutherford backscattering and prompt nuclear analy-
ses). Structures of surface layers are characterized using diffraction (X-ray, electron,
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and low-energy electron diffraction), elastic scattering (ion channeling), and scanning
probes (tunneling and atomic force microscopies).

Because this book focuses on the fundamentals of modern surface analysis at
the nanometer scale, we have provided derivations of the basic parameters—energy
and cross section or transition probability. The book is organized so that we start
with the classical concepts of atomic collisions as applied to Rutherford scattering
(Chapter 2), energy loss (Chapter 3), sputtering (Chapter 4), channeling (Chapter 5),
and electron interactions (Chapter 6). An overview is given of diffraction techniques in
both real space (X-ray diffraction, Chapter 7) and reciprocal space (electron diffraction,
Chapter 8) for structural analysis. Wave mechanics is required for an understanding of
photoelectric cross sections and fluorescence yields; we review the wave equation and
perturbation theory in Chapter 9. We use these relations to discuss photoelectron spec-
troscopy (Chapter 10), radiative transitions (Chapter 11), and nonradiative transitions
(Chapter 12). Chapter 13 discusses the application of nuclear techniques to thin film
analysis. Finally, Chapter 14 presents a discussion of scanning probe microscopy.

The current volume is a significant expansion of the previous work, Fundamentals of
Thin Films Analysis, by Feldman and Mayer. New chapters have been added reflecting
the progress that has been made in analysis of ultra thin films and nanoscale structures.

All the authors have been engaged heavily in research programs centered on materials
analysis; we realize the need for a comprehensive treatment of the analytical techniques
used in nanoscale surface and thin film analysis. We find that a basic understanding of
the processes is important in a field that is rapidly changing. Instruments may change,
but the fundamental processes will remain the same.

This book is written for materials scientists and engineers interested in the use of
spectroscopies and/or spectometries for sample characterization; for materials analysts
who need information on techniques that are available outside their laboratory; and
particularly for seniors and graduate students who will use this new generation of
analytical techniques in their research.

We have used the material in this book in senior/graduate-level courses at Cornell
University, Vanderbilt University, and Arizona State University, as well as in short
courses for scientists and engineers in industry around the world. We wish to thank
Dr. N. David Theodore for his review of Chapters 7 and 8. We also thank Timothy
Pennycook for proofreading the manuscript. We thank Jane Jorgensen and Ali Avcisoy
for their drawings and artwork.



1
An Overview: Concepts, Units,
and the Bohr Atom

1.1 Introduction

Our understanding of the structure of atoms and atomic nuclei is based on scatter-
ing experiments. Such experiments determine the interaction of a beam of elemen-
tary particles—photons, electrons, neutrons, ions, etc.—with the atom or nucleus of
a known element. (In this context, we consider all incident radiation as particles,
including photons.) The classical example is Rutherford scattering, in which the scat-
tering of incident alpha particles from a thin solid foil confirmed the picture of an
atom as composed of a small positively charged nucleus surrounded by electrons in
circular orbits. As these fundamental interactions became understood, the scientific
community recognized the importance of the inverse process—namely, measuring the
interaction of radiation with targets of unknown elements to determine atomic compo-
sition. Such determinations are called materials analysis. For example, alpha particles
scatter from different nuclei in a distinct and well-understood manner. Measurements
of the intensity and energy of the scattered particles provides a direct measure of
elemental composition. The emphasis in this book is twofold: (1) to describe in a
quantitative fashion those fundamental interactions that are used in modern materials
analysis and (2) to illustrate the use of this understanding in practical materials analysis
problems.

The emphasis in modern materials analysis is generally directed toward the struc-
ture and composition of the surface and outer few tens to hundred nanometers of the
materials. The emphasis comes from the realization that the surface and near-surface
regions control many of the mechanical and chemical properties of solids: corrosion,
friction, wear, adhesion, and fracture. In addition, one can tailor the composition and
structure of the outer layers by directed energy processes utilizing lasers or electron and
ion beams, as well as by more conventional techniques such as oxidation and diffusion.

In modern materials analysis, one is concerned with the source beam (also referred
to as the incident beam or the probe beam or primary beam) of radiation; the beam
of particles—photons, electrons, neutrons, or ions; the interaction cross section; the
emergent radiation; and the detection system. The primary interest of this book is the
interaction of the beam with the material to be analyzed, with emphasis on the energies
and intensities of emitted radiation. As we will show, the energy of the emitted particles
provides the signature or identification of the atom, and the intensity tells the amount
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of atoms (i.e., sample composition). The radiation source and the detection system are
important topics in their own right; however, the main emphasis in this book is on the
ability to conduct quantitative materials analysis that depends upon interactions within
the target.

1.2 Nomenclature

Materials characterization involves the quantification of the structure, composition,
amount, and depth distribution of matter with the use of energetic particles (e.g.,
ions, neutrons, alpha particles, protons, and electrons) and energetic photons (e.g.,
infrared radiation, visible light, UV light, X-rays, and gamma rays). Any materials-
characterization techniques can be described in the following manner. The incident
probe beam of energetic photons or particles interrogates the solid. The incident parti-
cle or photon reacts with the solid in various manners; these reactions (Rx ) induce the
emission of a variety of detected beams in the form of energetic particles or photons,
i.e., the detected beam (Fig. 1.1). Hence, the primary interest of this book is in using the
reaction (between the beam and the solid) and the intensity and energy of the detected
beam to analyze solids. Since the energy of the detected particle/photon is measured,
the actual names of the various techniques have the prefix SPECTRO, meaning energy
measurement. The suffix gives information about the relationship between the specific
incidence photon/particle and the detected photon/particle. For example, if the inci-
dent species is the same as the emitted species, the technique is a SPECTROMETRY:
Rutherford backscattering spectrometry and X-ray diffractometry. If the incident
species is different from the emitted species, then the term SPECTROSCOPY is used:
Auger electron spectroscopy and X-ray photoelectron spectroscopy.

There is an impressive array of experimental techniques available for the analysis
of solids. Figure 1.2 gives the flavor of the possible combinations. In some cases,
the same incident and emergent radiation is employed (we will use the general terms
radiation and particles for photons, electrons, ions, etc.). Listed below are examples,
with commonly used acronyms in parentheses.

Primary electron in, Auger electron out: Auger electron spectroscopy (AES)
Alpha particle in, alpha particle out: Rutherford backscattering spectrometry (RBS)
Primary X-ray in, characteristic X-ray out: X-ray fluorescence spectroscopy (XRF)

Detected beam
out of the sample

Probe beam
into the sample

(Rx)
reaction between
the probe beam

and the solid

Figure 1.1. Schematic of the fun-
damentals of materials characteriza-
tion. The probe beam of energetic
photons or particles interrogates the
solid. The incident particle or photon
reacts (Rx ) and induces the emission
of a variety of detected beams in the
form of energetic particles or pho-
tons, i.e., the detected beam.
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IONS
IONS

DETECTORS

ELECTRONS

PHOTONS
PHOTONS

SOURCES

SOURCE

ELECTRONS

VACUUM SYSTEM

SAMPLE

SAMPLE

DETECTORSPUTTER
SOURCE

ANALYSIS CHAMBER

Figure 1.2. Schematic of radiation sources and detectors in thin film analysis techniques. Ana-
lytical probes are represented by almost any combination of source and detected radiation, i.e.,
photons in and photons out or ions in and photon out. Many chambers will also contain sample
erosion facilities such as an ion sputtering as well as an evaporation apparatus for deposition of
materials onto a clean substrate under vacuum.

In other cases, the incident and emergent radiation differ as indicated below:

X-ray in, electron out: X-ray photoelectron spectroscopy (XPS)
Electron in, X-ray out: electron microprobe analysis (EMA)
Ion in, target ion out: secondary ion mass spectroscopy (SIMS)

A beam of particles incident on a target either scatters elastically or causes an elec-
tronic transition in an atom. The scattered particle or the energy of the emergent ra-
diation contains the signature of the atom. The energy levels in the transition are
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Table 1.1. Nomenclature of many techniques available for the analysis of materials. The
name of a given technique often provides a complete or partial description of the technique.

Method In Out Rx

Energy Dispersive X-rays
(EDX) Spectroscopy

X-ray Fluorescence (XRF)
Spectroscopy

Particle Induced X-ray
Emission (PIXE)
Spectroscopy

X-ray Photoelectron
Spectroscopy (XPS)

X-ray Diffractometry (XRD) Coherent Scattering
νin = νout

(particle characteristics)

Electron Diffractometry (ED) Coherent Scattering
νin = νout

(wave characteristic)

Rutherford Backscattering
Spectrometry (RBS) Elastic Scattering

Secondary Ion Mass
Spectroscopy (SIMS)

Sputtered Ion
(erosion due to

momentum transfer)

characteristic of a given atom; hence, measurement of the energy spectrum of the
emergent radiation allows identification of the atom. Table 1.1 gives a summary of
various techniques based on the nomenclature of the incident probe beam, the induced
emission, and the detected beam.

The number of atoms per cm2 in a target is found from the relation between
the number, I, of incident particles and the number of interactions. The term cross
section is used as a quantitative measure of an interaction between an incident
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BEAM
FOIL

SCATTERING
CENTER

Figure 1.3. Illustration of the concept of cross section and scattering. The central circle defines
a unit area of a foil containing a random array of scattering centers. In this example, there are
five scattering centers per unit area. Each scattering center has an area (the cross section for
scattering) of 1/20 unit area; therefore, the probability of scattering is 5/20, or 0.25. Then a
fraction (0.25 in this example) of the incident beam will be scattered, i.e., 2 out of 8 trajectories
in the drawing. A measure of the fraction of the scattered beam is a measure of the probability
(P = Ntσ , Eq. 1.1). If the foil thickness and density are known, Nt can be calculated, yielding
a direct measure of the cross section.

particle and an atom. The cross section σ for a given process is defined through the
probability, P:

P = Number of interactions

Number of incident particles
. (1.1)

For a target containing Nt atoms per unit area perpendicular to an incident beam
of I particles, the number of interactions is IσNt. From knowledge of detection ef-
ficiency for measuring the emergent radiation containing the signature of the tran-
sition, the number of atoms and ultimately the target composition can be found
(Fig. 1.3).

The information required from analytical techniques is the species identification,
concentration, depth distribution, and structure. The available analytical techniques
have different capabilities to meet these requirements. The choice of analysis method
depends upon the nature of the problem. For example, chemical bonding information
can be obtained from techniques that rely upon transitions in the electronic structure
around the atoms—the electron spectroscopies. Structural determination is found from
diffraction or particle channeling techniques.

In the following chapters, we are mostly concerned with materials analysis in the
outer microns of the sample’s surface and near-surface region. We emphasize the energy
of the emergent radiation as an identification of the element and the intensity of the
radiation as a measure of the amount of material. These are the basic principles that
provide the foundation for the different analytical techniques.
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1.3 Energies, Units, and Particles

With few exceptions, the measurement of energy is the hallmark of materials analysis.
Although the SI (or MKS) system of units gives the Joule (J) as the derived unit of
energy, the electron volt (eV) is the traditional unit in materials analysis. The Joule is so
large that it is inconvenient as a unit in atomic interactions. The electron volt is defined
as the kinetic energy gained by an electron accelerated from rest through a potential
difference of 1 V. Since the charge on the electron is 1.602 × 10−19 Coulomb and a
Joule is a Coulomb-volt,

1 eV = 1.602 × 10−19 J. (1.2)

Commonly used multiples of the eV are the keV (103 eV) and MeV (106 eV).
In determination of crystal structure by X-ray diffraction, the diffraction conditions

are determined by atomic spacing and hence the wavelength of the photon. The wave-
length λ is the ratio of c/ν, where c is the speed of light and ν is the frequency, so the
energy E is

E(keV) = hν = hc

λ
= 1.24 keV-nm

λ (nm)
, (1.3)

where Planck’s constant h = 4.136 × 10−15 eV-sec, c = 2.998 × 108 m/sec, λ is in
units of nm, and 1 nanometer is 10−9 m.

The energies of the emergent radiation provide the signature of the transition; the
cross section determines the strength of the interaction. Although the MKS unit for
cross sectional area is m2, the measured values are often given in cm2. It is convenient
to use cgs units rather than SI units in relations involving the charge on the electron.
The usefulness of cgs units is clear when considering the Coulomb force between two
charged particles with Z1 and Z2 units of electronic charge separated by a distance r:

F = Z1 Z2e2kC

r2
, (1.4)

where the Coulomb law constant kC = (1/4πεo) = 8.988 × 109 m/farad (F) in the SI
system (where 1 F = 1 amp-s/V) and kc = 1 in the cgs system. In cgs units, the value
of e equals 4.803 × 10−10 stat C, which leads to a quick conversion factor for Coulomb
interactions of

e2 = 1.44 × 10−13 MeV-cm = 1.44 eV-nm. (1.5)

In this book we use kC = 1 and rely on Eq. 1.5 for e2. The masses of particles, given
in kg in SI units, are generally expressed in unified mass units (u), a measure that
replaces the older atomic mass units, or amu. The neutral carbon atom with 6 protons,
6 neutrons, and 6 electrons is the reference for the unified mass unit (u), which is defined
as 1/12th the mass of the neutral 12C carbon atom (where the superscript indicates the
mass number 12). Avogadro’s number NA is the number of atoms or molecules in a
mole (mol) of a substance and is defined as the number of atoms of an element needed
to equal its atomic mass in grams. Avogadro’s number of 12C atoms is equivalent to
a mass of exactly 12 g, and the mass of one 12C atom is 12 mass units. The value of



1.3. Energies, Units, and Particles 7

Avogadro’s number, the number of atoms/mol, is

NA = 6.0220 × 1023, (1.6)

and the unified mass unit u, the reciprocal of NA, is

u = 1

NA
= 1g

6.023 × 1023
= 1.661 × 10−24g . (1.7)

A large part of this book is devoted to the extraction of depth profiles—the atomic
composition or impurity concentration as a function of depth below the surface. In
terms of length measurement, the natural unit is the nanometer (nm), where

1 nm = 10−9 m .

For example, the separation between atoms in a solid is about 0.3 nm. The measurement
techniques give depth scales in terms of areal density, the number Nt of atoms per cm2,
where t is the thickness and N is the atomic density. For elemental solids, the atomic
density and the mass density ρ in g/cm3 are related by

N = NA ρ/A, (1.8)

where A is the atomic mass number and NA is Avogadro’s number. Another unit of
thickness is the mass absorption coefficient, usually expressed as g/cm2, the product
of the mass density and linear thickness.

Each nucleus is characterized by a definite atomic number Z and mass number A.
The atomic number Z is the number of protons and hence the number of electrons
in the neutral atom; it reflects the atomic properties of the atom. The mass number
gives the number of nucleons, protons, and neutrons; isotopes are nuclei (often called
nuclides) with the same Z and different A. The current practice is to represent each
nucleus by the chemical name with the mass number as a superscript, i.e., 12C. The
chemical atomic weight (or atomic mass) of elements as listed in the periodic table
gives the average atomic mass, i.e., the average of the stable isotopes weighted by their
abundance. Carbon, for example, has an atomic weight of 12.011, which reflects the
1.1% abundance of 13C. Appendix 10 lists the elements and their relative abundance,
atomic weight, atomic density, and specific gravity.

The masses of particles may be expressed in terms of energy through the Einstein
relation

E = mc2 , (1.9)

which associates 1 J of energy with 1/c2 kg of mass. The mass of an electron is 9.11 ×
10−31 kg, which is equivalent to an energy

E = (9.11 × 10−31 kg)(2.998 × 108 m/s)2

= 8.188 × 10−14J = 0.511 MeV . (1.10)

In materials analysis, the incident radiation is usually photons, electrons, neutrons,
or low-mass ions (neutral atoms stripped of one or more electrons). For example, the
proton is an ionized hydrogen atom, and the alpha particle is a helium atom with one or
two electrons removed. The notation 4He+ and 4He++ is often used to denote a helium
atom with one or two electrons removed, respectively. The deuteron, 2H+, is a neutron



8 1. An Overview: Concepts, Units, and the Bohr Atom

Table 1.2. Mass energies of particles and light nuclei.

Mass energy
Particle Symbol (MeV)

Electron e or e− 0.511
Proton p 938.3
Neutron n 939.6
Deuteron d or 2H+ 1875.6
Alpha α or 4He++ 3727.4

and proton bound together. The mass energies of some of these particles are given in
Table 1.2. In analytical applications, the velocities of these particles are generally well
below 107 m/sec; hence, relativistic effects do not enter, and the masses are independent
of velocity.

1.4 Particle–Wave Duality and Lattice Spacing

In materials analysis, one tends to view the incident beam and emergent radiation
as discrete particles—photons, electrons, neutrons, and ions. On the other hand, the
interactions of radiation with matter and, in particular, the cross section for a transition
is often based on the wave aspect of the radiation.

This wave–particle duality was of major concern in the early development of modern
physics. The photon and the electron provide examples of the wave and particle nature
of matter. For example, in the photoelectric effect, light behaves as if it were particle-
like, that each photon interacting with an atom to give up its energy, E = hν, to an
electron that can escape from the solid. The diffraction of X-rays from planes of atoms,
on the other hand, satisfies wave interference conditions.

Electrons and their diffraction from crystal surfaces constitute a sensitive probe of
surface structure. The classical, particle behavior of electrons, on the other hand, is
illustrated in their deflection in electric and magnetic fields. One can associate both
a wavelength λ and a momentum p with the motion of an electron. The De Broglie
relation gives their connection:

λ = h/p , (1.11)

where h is Planck’s constant. Distances between lattice planes are on the order of a
tenth of a nanometer (0.1 nm). For diffraction, the wavelengths of electrons are of com-
parable magnitude. The electron velocity, v = p/m, corresponding to a wavelength of
0.1 nm is

v = h

mλ
= 6.6 × 10−34

9.1 × 10−31 × 10−10
= 7.25 × 106 m-sec−1 ,

where MKS units are used with h = 6.6 × 10−34 J s. The energy is

E = 1

2
mv2 = 9.1 × 10−31(7.25 × 106)2

2
= 2.39 × 10−17J = 150 eV .



1.5. The Bohr Model 9

Electron diffraction studies of surfaces use electrons with low energies, between 40 eV
and 150 eV, giving rise to the acronym LEED—low-energy electron diffraction.

Energies of 1.0–2.0 MeV He+ are commonly used in materials analysis; here the
wavelengths are orders of magnitude smaller than the lattice spacing, and the inter-
actions of helium ions with solids are described on the basis of particle rather than
wave behavior. For helium atoms, an energy of 2 MeV corresponds to a wavelength
of 10−5 nm; whereas, distances between nearest-neighbor atoms in a solid are on the
order of 0.2–0.5 nm.

The distances between atoms and atomic planes can be calculated from a known
lattice constant and crystal structure. Aluminum, for example, contains ∼6 × 1022

atoms/cm3, has a lattice constant of 0.404 nm, and has a face-centered cubic (fcc)
crystal structure. One monolayer of atoms on the (100) surface then contains an areal
atom density of 2 atoms/(0.404 nm)2 or 1.2 × 1015 atoms/cm2. Almost all solids have
monolayer density values of 5 × 1014/cm2 to 2 × 1015/cm2 on major crystallographic
surfaces. In a loose way, a monolayer is usually thought of as 1015 atoms/cm2. The
spectroscopic sensitivity of various surfaces is often measured in units of monolayers
or atoms/cm2; bulk impurity determinations are usually given in atoms/cm3.

1.5 The Bohr Model

The identification of atomic species from the energies of emitted radiation was devel-
oped from the concepts of the Bohr model of the hydrogen atom. Particle scattering
experiments established that the atom could be treated as a positively charged nucleus
surrounded by a cloud of electrons. Bohr assumed that the electrons could move in
stable circular orbits called stationary states and would emit radiation only in the tran-
sition from one stable orbit to another. The energies of the orbits were derived from the
postulate that the angular momentum of the electron around the nucleus is an integral
multiple of h/2π (h/2π is written as h̄). In this section, we give a brief review of the
Bohr atom, which provides useful relations for simple estimates of atomic parameters.

For a single electron of mass me in a circular orbit of radius r about a fixed nucleus
of charge Ze, the balance between the Coulomb and centripetal forces leads to

Ze2

r2
= me

v2

r
. (1.12)

Bohr assumed that the angular momentum, mevr , has values given by an integer n
times h̄,

mevr = n h̄ .

From the above equations, we have

v2 = n2h̄2e2

m2
er2

= Ze2

mer
,

which can be rewritten to give the radii rn of allowed orbits:

rn = h̄2n2

me Ze2
. (1.13)
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For hydrogen, Z = 1, the radius ao of the smallest orbit, n = 1, is known as the Bohr
radius and is given by

ao = h̄2

mee2
= 0.53 × 10−10 m = 0.053 nm, (1.14)

and the Bohr velocity vo of the electron in this orbit is

vo = h̄

meao
= e2

h̄
= 2.19 × 108 cm-s−1. (1.15)

The ratio of vo to the speed of light is known as the fine-structure constant α, given
by:

α = vo

c
= 1

137
. (1.16)

The energy of the electron is defined here as zero when it is at rest at infinity. The
potential energy, PE, of an electron in the Coulomb force field has a negative value,
−Ze2/r , in this convention, and the kinetic energy (KE) is Ze2/2r (Eq. 1.12), so the
total energy E is

E = KE + PE = Ze2

2r
− Ze2

r
= − Ze2

2r
or, for the nth orbital,

En = − Ze2

2rn
= −mee4 Z2

2h̄2n2
= Eo Z2

n2
. (1.17)

The electron bound to a positively charged nucleus has a discrete set of allowed energies,

En = −13.6Z2

n2
eV. (1.18)

The binding energy EB of such an electron is the positive value 13.58Z2/n2. The
numerical value of the n = 1 state represents the energy required to ionize the atom by
complete removal of the electron; for hydrogen, the ionization energy is 13.58 eV.

The Bohr theory does lead to the correct values for energy levels observed in H
spectral lines. The nomenclature introduced by Bohr persists in the vocabulary of
atomic physics: orbital, Bohr radius, and Bohr velocity. The quantities vo and αo are
used repeatedly in this book, as they are the natural units with which to evaluate atomic
processes.

Problems

1.1. Calculate the density of atoms in C (graphite), Si, Fe, and Au. Express your answer
in atoms/cm3.

1.2. Calculate the number of atoms/ cm2 in one monolayer of Si(100), in Si(111), and
in W(100).

1.3. Calculate the wavelength (in nm) of a 1 MeV He ion, a 150 eV electron, and a
1 keV Ar ion.
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1.4. Show that e2 = 1.44 eV-nm.
1.5. Find the ratio of velocity of a 1 MeV ion to the Bohr velocity.
1.6. Use the literature and notes to state the incoming radiation (particles) in the fol-

lowing spectroscopies, and in each case, state the nature of the atomic transition
involved:

AES – Auger electron spectroscopy
RBS – Rutherford backscattering spectrometry
SIMS – secondary ion mass spectroscopy
XPS – X-ray photoelectron spectroscopy
XRF – X-ray fluorescence spectroscopy
SEM – scanning electron µ probe
NRA – nuclear reaction analysis

1.7. In this book we repeatedly make estimates using the Bohr model of the atom.
Test the validity of this approximation by calculating the K-shell binding energy,
EK(n = 1); the L-shell binding energy, EL(n = 2); the wavelength at the K-shell
absorption edge, (h̄ω = EK), and the K X-ray energy (EK − EL) for Si, Ni, and
W. Compare with the accurate values given in the appendices.

1.8. The Auger process, discussed in Chapter 12, corresponds to an electron transition
involving the emission of an Auger electron with the energy (EK − EL − EL),
where K is for n = 1 and L is for n = 2. Show that, in the Bohr model, aok = 1/

√
2,

where ao is the K-shell radius ao/Z and h̄k is the momentum of the outgoing
electron.

1.9. An incident photon of sufficient energy can eject an electron from an inner shell
orbit. Such an excited atom may relax by rearranging the outer electrons to fill the
vacancy. This is said to occur in a time equivalent to the orbital time. Calculate this
characteristic atomic time for Ni. In later chapters, we will show that the inverse
of this time may be thought of as the rate for the Auger process.
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2
Atomic Collisions and
Backscattering Spectrometry

2.1 Introduction

The model of the atom is that of a cloud of electrons surrounding a positively
charged central core—the nucleus—that contains Z protons and A − Z neutrons,
where Z is the atomic number and A the mass number. Single-collision, large-angle
scattering of alpha particles by the positively charged nucleus not only established
this model but also forms the basis for one modern analytical technique, Ruther-
ford backscattering spectrometry. In this chapter, we will develop the physical con-
cepts underlying Coulomb scattering of a fast light ion by a more massive stationary
atom.

Of all the analytical techniques, Rutherford backscattering spectrometry is perhaps
the easiest to understand and to apply because it is based on classical scattering in a
central-force field. Aside from the accelerator, which provides a collimated beam of
MeV particles (usually 4He+ ions), the instrumentation is simple (Fig. 2.1a). Semicon-
ductor nuclear particle detectors are used that have an output voltage pulse proportional
to the energy of the particles scattered from the sample into the detector. The technique
is also the most quantitative, as MeV He ions undergo close-impact scattering colli-
sions that are governed by the well-known Coulomb repulsion between the positively
charged nuclei of the projectile and target atom. The kinematics of the collision and
the scattering cross section are independent of chemical bonding, and hence backscat-
tering measurements are insensitive to electronic configuration or chemical bonding
with the target. To obtain information on the electronic configuration, one must employ
analytical techniques such as photoelectron spectroscopy that rely on transitions in the
electron shells.

In this chapter, we treat scattering between two positively charged bodies of atomic
numbers Z1 and Z2. The convention is to use the subscript 1 to denote the incident
particle and the subscript 2 to denote the target atom. We first consider energy transfers
during collisions, as they provide the identity of the target atom. Then we calculate
the scattering cross section, which is the basis of the quantitative aspect of Rutherford
backscattering. Here we are concerned with scattering from atoms on the sample surface
or from thin layers. In Chapter 3, we discuss depth profiles.
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a

Figure 2.1. Nuclear particle detector with respect to scattering angle courtesy of MeV He+

electron beam.

2.2 Kinematics of Elastic Collisions

In Rutherford backscattering spectrometry, monoenergetic particles in the incident
beam collide with target atoms and are scattered backwards into the detector-analysis
system, which measures the energies of the particles. In the collision, energy is trans-
ferred from the moving particle to the stationary target atom; the reduction in energy of
the scattered particle depends on the masses of incident and target atoms and provides
the signature of the target atoms.

The energy transfers or kinematics in elastic collisions between two isolated par-
ticles can be solved fully by applying the principles of conservation of energy and
momentum. For an incident energetic particle of mass M1, the values of the veloc-
ity and energy are v and E0(=1/2 M1v

2), while the target atom of mass M2 is at rest.
After the collision, the values of the velocities v1 and v2 and energies E1 and E2

of the projectile and target atoms are determined by the scattering angle θ and recoil
angle φ. The notation and geometry for the laboratory system of coordinates are given in
Fig. 2.1b.

Conservation of energy and conservation of momentum parallel and perpendicular
to the direction of incidence are expressed by the equations

1

2
M1v

2 = 1

2
M1v

2
1 + 1

2
M2v

2
2, (2.1)

M1v = M1v1 cos θ + M2v2 cos φ, (2.2)

0 = M1v1 sin θ − M2v2 sin φ. (2.3)
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Figure 2.2. Representation of the kinematic
factor KM2 (Eq. 2.5) for scattering angle θ =
170◦ as a function of the target mass M2 for
1H,4 He+,12 C,20 Ne, and 40Ar.

Eliminating φ first and then v2, one finds the ratio of particle velocities:

v1

v
=
[±(M2

2 − M2
1 sin2 θ )1/2 + M1 cos θ

M2 + M1

]
. (2.4)

The ratio of the projectile energies for M1 < M2, where the plus sign holds, is

E1

E0
=
[

(M2
2 − M2

1 sin2 θ )1/2 + M1 cos θ

M2 + M1

]2

. (2.5)

The energy ratio, called the kinematic factor K = E1/E0, shows that the energy
after scattering is determined only by the masses of the particle and target atom and the
scattering angle. A subscript is usually added to K, i.e., KM2 , to indicate the target atom
mass. Tabulations of K values for different M2 and θ values are given in Appendix 1
and are shown in Fig. 2.2 for θ = 170◦. Such tables and figures are used routinely in
the design of backscattering experiments. A summary of scattering relations is given in
Table 3.1.

For direct backscattering through 180◦, the energy ratio has its lowest value given by

E1

E0
=
(

M2 − M1

M2 + M1

)2

(2.6a)

and at 90◦ given by
E1

E0
= M2 − M1

M2 + M1
. (2.6b)

In collisions where M1 = M2, the incident particle is at rest after the collision, with
all the energy transferred to the target atom, a feature well known in billiards. For
θ = 180◦, the energy E2 transferred to the target atom has its maximum value given by

E2

E0
= 4M1 M2

(M1 + M2)2
, (2.7)

with the general relation given by

E2

E0
= 4M1 M2

(M1 + M2)2
cos2 φ. (2.7′)
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In practice, when a target contains two types of atoms that differ in their masses
by a small amount �M2, the experimental geometry is adjusted to produce as large a
change �E1 as possible in the measured energy E1 of the projectile after the collision.
A change of �M2 (for fixed M1 < M2) gives the largest change of K when θ = 180◦.
Thus θ = 180◦ is the preferred location for the detector (θ ∼= 170◦ in practice because
of detector size), an experimental arrangement that has given the method its name of
backscattering spectrometry.

The ability to distinguish between two types of target atoms that differ in their
masses by a small amount �M2 is determined by the ability of the experimental energy
measurement system to resolve small differences �E1 in the energies of backscattered
particles. Most MeV 4He+ backscattering apparatuses use a surface-barrier solid-state
nuclear-particle detector for measurement of the energy spectrum of the backscattered
particles. As shown in Fig. 2.3, the nuclear particle detector operates by the collection
of the hole–electron pairs created by the incident particle in the depletion region of
the reverse-biased Schottky barrier diode. The statistical fluctuations in the number of
electron–hole pairs produce a spread in the output signal resulting in a finite resolution.

Au

+ −  + − − + + + +
− +  − + + − − − −

−

+

He++

EF

EF

housing

valence band

conduction band

depletion
region

output connection

depletion regionSi

Au layer

+
+
+

+−− −
−

Au surface barrier nuclear particle detector

Figure 2.3. Schematic diagram of the operation of a gold surface barrier nuclear particle detector.
The upper portion of the figure shows a cutaway sketch of silicon with gold film mounted in
the detector housing. The lower portion shows an alpha particle, the He+ ion, forming holes
and electrons over the penetration path. The energy-band diagram of a reverse biased detector
(positive polarity on n-type silicon) shows the electrons and holes swept apart by the high electric
field within the depletion region.
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Energy resolution values of 10–20 keV, full width at half maximum (FWHM), for
MeV 4He+ ions can be obtained with conventional electronic systems. For example,
backscattering analysis with 2.0 MeV 4He+ particles can resolve isotopes up to about
mass 40 (the chlorine isotopes, for example). Around target masses close to 200, the
mass resolution is about 20, which means that one cannot distinguish among atoms
between 181Ta and 201Hg.

In backscattering measurements, the signals from the semiconductor detector elec-
tronic system are in the form of voltage pulses. The heights of the pulses are proportional
to the incident energy of the particles. The pulse height analyzer stores pulses of a given
height in a given voltage bin or channel (hence the alternate description, multichannel
analyzer). The channel numbers are calibrated in terms of the pulse height, and hence
there is a direct relationship between channel number and energy.

2.3 Rutherford Backscattering Spectrometry

In backscattering spectrometry, the mass differences of different elements and isotopes
can be distinguished. Figure 2.4 shows a backscattering spectrum from a sample with
approximately one monolayer of 63,65Cu, 107,109Ag, and 197Au. The various elements
are well separated in the spectrum and easily identified. Absolute coverages can be
determined from knowledge of the absolute cross section discussed in the following
section. The spectrum is an illustration of the fact that heavy elements on a light
substrate can be investigated at coverages well below a monolayer.

The limits of the mass resolution are indicated by the peak separation of the various
isotopes. In Fig. 2.4, the different isotopic masses of 63Cu and 65Cu, which have a
natural abundance of 69% and 31%, respectively, have values of the energy ratio, or
kinematic factor K, of 0.777 and 0.783 for θ = 170◦ and incident 4He+ ions (M1 = 4).
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Figure 2.4. Backscattering spectrum for θ = 170◦ and 2.5 MeV 4He+ ions incident on a target
with approximately one monolayer coverage of Cu, Ag, and Au. The spectrum is displayed as
raw data from a multichannel analyzer, i.e., in counts/channel and channel number.
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For incident energies of 2.5 MeV, the energy difference of particles from the two masses
is 17 keV, an energy value close to the energy resolution (FWHM = 14.8 keV) of the
semiconductor particle-detector system. Consequently, the signals from the two iso-
topes overlap to produce the peak and shoulder shown in the figure. Particles scattered
from the two Ag isotopes, 107Ag and 109Ag, have too small an energy difference, 6 keV,
and hence the signal from Ag appears as a single peak.

2.4 Scattering Cross Section and Impact Parameter

The identity of target atoms is established by the energy of the scattered particle after
an elastic collision. The number Ns of target atoms per unit area is determined by the
probability of a collision between the incident particles and target atoms as measured
by the total number QD of detected particles for a given number Q of particles incident
on the target in the geometry shown in Fig. 2.5. The connection between the number
of target atoms Ns and detected particles is given by the scattering cross section. For a
thin target of thickness t with N atoms/cm3, Ns = Nt .

The differential scattering cross section, dσ/d	, of a target atom for scattering an
incident particle through an angle θ into a differential solid angle d	 centered about θ

is given by

dσ(θ )

d	
d	 · Ns = Number of particles scattered into d	

Total number of incident particles
.

In backscattering spectrometry, the detector solid angle 	 is small (10−2 steradian
or less), so that one defines an average differential scattering cross section σ (θ),

σ (θ ) = 1

	

∫
Ω

dσ

d	
· d	, (2.8)

where σ (θ ) is usually called the scattering cross section. For a small detector of area
A, at distance l from the target, the solid angle is given by A/ l2 in steradians. For the
geometry of Fig. 2.5, the number Ns of target atoms/cm2 is related to the yield Y or the
number Q D of detected particles (in an ideal, 100%-efficient detector that subtends a
solid angle 	) by

Y = Q D = σ (θ)	QNs, (2.9)

where Q is the total number of incident particles in the beam. The value of Q is

TARGET:  NS ATOMS/cm2

INCIDENT
PARTICLES

SCATTERED
PARTICLES

DETECTOR
Ω

SCATTERING ANGLE
θ

Figure 2.5. Simplified layout of a scatter-
ing experiment to demonstrate the concept of
the differential scattering cross section. Only
primary particles that are scattered within the
solid angle d	 spanned by the detector are
counted.



18 2. Atomic Collisions and Backscattering Spectrometry

NUCLEUS
z

db

b θ
dθ

Figure 2.6. Schematic illustrating the number of particles between b and b + db being de-
flected into an angular region 2π sin θ dθ . The cross section is, by definition, the proportionality
constant; 2πb db = −σ (θ )2π sin θ dθ .

determined by the time integration of the current of charged particles incident on the
target. From Eq. 2.9, one can also note that the name cross section is appropriate in
that σ (θ ) has the dimensions of an area.

The scattering cross section can be calculated from the force that acts during the
collision between the projectile and target atom. For most cases in backscattering
spectrometry, the distance of closest approach during the collision is well within the
electron orbit, so the force can be described as an unscreened Coulomb repulsion of
two positively charged nuclei, with charge given by the atomic numbers Z1 and Z2 of
the projectile and target atoms. We derive this unscreened scattering cross section in
Section 2.5 and treat the small correction due to electron screening in Section 2.7.

The deflection of the particles in a one-body formulation is treated as the scattering of
particles by a center of force in which the kinetic energy of the particle is conserved. As
shown in Fig. 2.6, we can define the impact parameter b as the perpendicular distance
between the incident particle path and the parallel line through the target nucleus.
Particles incident with impact parameters between b and b + db will be scattered
through angles between θ and θ + dθ . With central forces, there must be complete
symmetry around the axis of the beam so that

2πb db = −σ (θ) 2π sin θ dθ. (2.10)

In this case, the scattering cross section σ (θ ) relates the initial uniform distribution
of impact parameters to the outgoing angular distribution. The minus sign indicates
that an increase in the impact parameter results in less force on the particle so that there
is a decrease in the scattering angle.

2.5 Central Force Scattering

The scattering cross section for central force scattering can be calculated for small
deflections from the impulse imparted to the particle as it passes the target atom. As
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Figure 2.7. Rutherford scattering geometry. The nucleus is assumed to be a point charge at the
origin O. At any distance r, the particle experiences a repulsive force. The particle travels along a
hyperbolic path that is initially parallel to line OA a distance b from it and finally parallel to line
OB, which makes an angle θ with OA. The scattering angle θ can be related to impact parameter
b by classical mechanics.

the particle with charge Z1e approaches the target atom, charge Z2e, it will experience
a repulsive force that will cause its trajectory to deviate from the incident straight line
path (Fig. 2.7). The value of the Coulomb force F at a distance r is given by

F = Z1 Z2e2

r2
. (2.11)

Let p1 and p2 be the initial and final momentum vectors of the particle. From Fig. 2.8,
it is evident that the total change in momentum �p = p2 − p1 is along the z′ axis. In
this calculation, the magnitude of the momentum does not change. From the isosceles
triangle formed by p1, p2, and �p shown in Fig. 2.8, we have

1
2�p

M1v
= sin

θ

2

or

�p = 2M1v sin
θ

2
. (2.12)

θ θ1
2

p1

p2 p

p1 M1v = 

p2 M1v = 

z′

Figure 2.8. Momentum diagram for Ruther-
ford scattering. Note that |p1| = |p2|, i.e., for
elastic scattering the energy and the speed of
the projectile are the same before and after the
collision.
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We now write Newton’s law for the particle, F = dp/dt , or

dp = F dt.

The force F is given by Coulomb’s law and is in the radial direction. Taking com-
ponents along the z′ direction, and integrating to obtain �p, we have

�p =
∫

(dp)z′ =
∫

F cos φ dt =
∫

F cos φ
dt

dφ
dφ, (2.13)

where we have changed the variable of integration from t to the angle φ. We can
relate dt/dφ to the angular momentum of the particle about the origin. Since the
force is central (i.e., acts along the line joining the particle and the nucleus at the
origin), there is no torque about the origin, and the angular momentum of the particle is
conserved. Initially, the angular momentum has the magnitude M1vb. At a later time,
it is M1r2 dφ/dt . Conservation of angular momentum thus gives

M1r2 dφ

dt
= M1vb

or

dt

dφ
= r2

vb
.

Substituting this result and Eq. 2.11 for the force in Eq. 2.13, we obtain

�p = Z1 Z2e2

r2

∫
cos φ

r2

vb
dφ = Z1 Z2e2

vb

∫
cos φ dφ

or

�p = Z1 Z2e2

vb
(sin φ2 − sin φ1). (2.14)

From Fig. 2.7, φ1 = −φ0 and φ2 = +φ0, where 2φ0 + θ = 180◦. Then sin φ2 −
sin φ1 = 2 sin(90◦ − 1/2θ ). Combining Eqs. 2.12 and 2.14 for �p, we have

�p = 2M1v sin
θ

2
= Z1 Z2e2

vb
2 cos

θ

2
. (2.15a)

This gives the relationship between the impact parameter b and the scattering angle:

b = Z1 Z2e2

M1v2
cot

θ

2
= Z1 Z2e2

2E
cot

θ

2
. (2.15b)

From Eq. 2.10, the scattering cross section can be expressed as

σ (θ ) = −b

sin θ

db

dθ
, (2.16)

and from the geometrical relations sinθ = 2 sin(θ/2) cos(θ/2) and d cot(θ/2) =
− 1

2 dθ/ sin2(θ/2),

σ (θ) =
(

Z1 Z2e2

4E

)2
1

sin4 θ/2
. (2.17)
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This is the scattering cross section originally derived by Rutherford. The experiments
by Geiger and Marsden in 1911–1913 verified the predictions that the amount of
scattering was proportional to (sin4 θ/2)−1 and E−2. In addition, they found that the
number of elementary charges in the center of the atom is equal to roughly half the
atomic weight. This observation introduced the concept of the atomic number of an
element, which describes the positive charge carried by the nucleus of the atom. The
very experiments that gave rise to the picture of an atom as a positively charged nucleus
surrounded by orbiting electrons has now evolved into an important materials analysis
technique.

For Coulomb scattering, the distance of closest approach, d, of the projectile to the
scattering atom is given by equating the incident kinetic energy, E, to the potential
energy at d:

d = Z1 Z2e2

E
. (2.18)

The scattering cross section can be written as σ (θ) = (d/4)2/ sin4 θ/2, which for
180◦ scattering gives σ (180◦) = (d/4)2. For 2 MeV He+ ions (Z1 = 2) incident on Ag
(Z2 = 47),

d = (2)(47) · (1.44 eV nm)

2 × 106 eV
= 6.8 × 10−5 nm,

a value much smaller than the Bohr radius a0 = h̄2/mee2 = 0.053 nm and the K-shell
radius of Ag, a0/47 ∼= 10−3 nm. Thus the use of an unscreened cross section is justified.
The cross section for scattering to 180◦ is

σ (θ) = (6.8 × 10−5 nm)2/16 = 2.89 × 10−10 nm2,

a value of 2.89 × 10−24 cm2 or 2.89 barns, where the barn = 10−24 cm2.

2.6 Scattering Cross Section: Two-Body

In the previous section, we used central forces in which the energy of the incident
particle was unchanged through its trajectory. From the kinematics (Section 2.2), we
know that the target atom recoils from its initial position, and hence the incident particle
loses energy in the collision. The scattering is elastic in that the total kinetic energy
of the particles is conserved. Therefore, the change in energy of the scattered particle
can be appreciable; for θ = 180◦ and 4He+(M1 = 4) scattering from Si (M2 = 28),
the kinematic factor K = (24/32)2 = 0.56 indicates that nearly one-half the energy is
lost by the incident particle. In this section, we evaluate the scattering cross section
while including this recoil effect. The derivation of the center of mass to laboratory
transformation is given in Section 2.10.

The scattering cross section (Eq. 2.17) was based on the one-body problem of the
scattering of a particle by a fixed center of force. However, the second particle is not
fixed but recoils from its initial position as a result of the scattering. In general, the
two-body central force problem can be reduced to a one-body problem by replacing
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Figure 2.9. Scattering of two parti-
cles as viewed in the laboratory sys-
tem, showing the laboratory scattering
angle θ and the center of mass scatter-
ing angle θc.

M1 by the reduced mass µ = M1 M2/(M1 + M2). The matter is not quite that sim-
ple as indicated in Fig. 2.9. The laboratory scattering angle θ differs from the an-
gle θc calculated from the equivalent, reduced-mass, one-body problem. The two an-
gles would only be the same if the second remains stationary during the scattering
(i.e., M2 � M1).

The relation between the scattering angles is

tan θ = sin θC

cos θC + M1/M2
,

derived in Eq. 2.24. The transformation gives

σ (θ ) =
(

Z1 Z2e2

4E

)2
4

sin4 θ

({
1 − [(M1/M2) sin θ ]2

}1/2 + cos θ
)2

{
1 − [(M1/M2) sin θ ]2

}1/2 , (2.19)

which can be expanded for M1 � M2 in a power series to give

σ (θ) =
(

Z1 Z2e2

4E

)2
[

sin−4 θ

2
− 2

(
M1

M2

)2

+ · · ·
]

, (2.20)

where the first term omitted is of the order of (M1/M2)4. It is clear that the leading
term gives the cross section of Eq. 2.17, and that the corrections are generally small.
For He+(M1 = 4) incident on Si (M2 = 28), 2(M1/M2)2 ∼= 4%, even though appre-
ciable energy is lost in the collision. For accurate quantitative analysis, this correction
should be included, as the correction can be appreciable for scattering from light atoms
such as carbon or oxygen. Cross section values given in Appendix 2 are based on
Eq. 2.19. A summary of scattering relations and cross section formulae are given in
Table 3.1.
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2.7 Deviations from Rutherford Scattering
at Low and High Energy

The derivation of the Rutherford scattering cross section is based on a Coulomb inter-
action potential V (r ) between the particle Z1 and target atom Z2. This assumes that the
particle velocity is sufficiently large so that the particle penetrates well inside the or-
bitals of the atomic electrons. Then scattering is due to the repulsion of two positively
charged nuclei of atomic number Z1 and Z2. At larger impact parameters found in
small-angle scattering of MeV He ions or low-energy, heavy ion collisions (discussed
in Chapter 4), the incident particle does not completely penetrate through the electron
shells, and hence the innermost electrons screen the charge of the target atom.

We can estimate the energy where these electron screening effects become important.
For the Coulomb potential to be valid for backscattering, we require that the distance of
closest approach d be smaller than the K-shell electron radius, which can be estimated
as a0/Z2, where a0 = 0.053 nm, the Bohr radius. Using Eq. 2.18 for the distance of
closest approach d, the requirement for d less than the radius sets a lower limit on the
energy of the analysis beam and requires that

E > Z1 Z2
2

e2

a0
.

This energy value corresponds to ∼ 10 keV for He+ scattering from silicon and ∼ 340
keV for He+ scattering from Au (Z2 = 79). However, deviations from the Rutherford
scattering cross section occur at energies greater than the screening limit estimate given
above, as part of the trajectory is always outside of the electron cloud.

In Rutherford-backscattering analysis of solids, the influence of screening can be
treated to the first order (Chu et al., 1978) by using a screened Coulomb cross section σsc

obtained by multiplying the scattering cross section σ (θ) given in Eqs. 2.19 and 2.20
by a correction factor F,

σsc = σ (θ)F, (2.21)

where F = (1 − 0.049 Z1 Z4/3
2 /E) and E is given in keV. Values of the correction

factor are given in Fig. 2.10. With 1 MeV 4He+ ions incident on Au atoms, the correction
factor corresponds to only 3%. Consequently, for analysis with 2 MeV 4He+ ions, the
screening correction can be neglected for most target elements. At lower analysis
energies or with heavier incident ions, screening effects may be important.

At higher energies and small impact parameter values, there can be large departures
from the Rutherford scattering cross section due to the interaction of the incident
particle with the nucleus of the target atom. Deviations from Rutherford scattering due
to nuclear interactions will become important when the distance of closest approach of
the projectile-nucleus system becomes comparable to R, the nuclear radius. Although
the size of the nucleus is not a uniquely defined quantity, early experiments with alpha-
particle scattering indicated that the nuclear radius could be expressed as

R = R0 A1/3, (2.22)
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Figure 2.10. Correction factor F, which describes the deviation from pure Rutherford scattering
due to electron screening for He+ scattering from the atoms Z2, at a variety of incident kinetic
energies. [Courtesy of John Davies]

where A is the mass number and R0
∼= 1.4 × 10−13 cm. The radius has values from a

few times 10−13 cm in light nuclei to about 10−12 cm in heavy nuclei. When the distance
of closest approach d becomes comparable with the nuclear radius, one should expect
deviations from the Rutherford scattering. From Eqs. 2.18 and 2.22, the energy where
R = d is

E = Z1 Z2e2

R0 A1/3
.

For 4He+ ions incident on silicon, this energy is about 9.6 MeV. Consequently, nuclear
reactions and strong deviations from Rutherford scattering should not play a role in
backscattering analyses at energies of a few MeV.

One of the exceptions to the estimate given above is the strong increase (resonance)
in the scattering cross section at 3.04 MeV for 4He+ ions incident on 16O, as shown
in Fig. 2.11. This reaction can be used to increase the sensitivity for the detection of
oxygen. Indeed, many nuclear reactions are useful for element detection, as described
in Chapter 13.

2.8 Low-Energy Ion Scattering

Whereas MeV ions can penetrate on the order of microns into a solid, low-energy
ions (∼keV) scatter almost predominantly from the surface layer and are of consid-
erable use for first monolayer analysis. In low-energy scattering, incident ions are
scattered, via binary events, from the atomic constituents at the surface and are de-
tected by an electrostatic analyzer (Fig. 2.12). Such an analyzer detects only charged
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Figure 2.11. Cross section as a function of energy for elastic scattering of 4He+ from oxygen.
The curve shows the anomalous cross section dependence near 3.0 MeV. For reference, the
Rutherford cross section 3.0 MeV is ∼0.037 barns.

particles, and in this energy range (∼= 1 keV), particles that penetrate beyond a mono-
layer emerge nearly always as neutral atoms. Thus this experimental sensitivity to only
charged particles further enhances the surface sensitivity of low-energy ion scattering.
The main reasons for the high surface sensitivity of low-energy ion scattering is the
charge selectivity of the electrostatic analyzer as well as the very large cross section for
scattering.

The kinematic relations between energy and mass given in Eqs. 2.5 and 2.7 re-
main unchanged for the 1 keV regime. Mass resolution is determined as before by the
energy resolution of the electrostatic detector. The shape of the energy spectrum is,
however, considerably different than that with MeV scattering. The spectrum consists
of a series of peaks corresponding to the atomic masses of the atoms in the surface
layer.

Quantitative analysis in this regime is not straightforward for two primary reasons:
(1) uncertainty in the absolute scattering cross section and (2) lack of knowledge
of the probability of neutralization of the surface scattered particle. The latter factor
is minimized by use of projectiles with a low neutralization probability and use of
detection techniques that are insensitive to the charge state of the scattered ion.

Estimates of the scattering cross section are made using screened Coulomb potentials,
as discussed in the previous section. The importance of the screening correction is
shown in Fig. 2.13, which compares the pure Rutherford scattering cross section to
two different forms of the screened Coulomb potential. As mentioned in the previous
section, the screening correction for ∼1 MeV He ions is only a few percent (for He+

on Au) but is 2–3 orders of magnitude at ∼1 keV. Quantitative analysis is possible if
the scattering potential is known. The largest uncertainty in low-energy ion scattering
is not associated with the potential but with the neutralization probability, of relevance
when charge sensitive detectors are used.
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Figure 2.12. Schematic of self-contained electrostatic analyzer system used in low-energy ion
scattering. The ion source provides a beam of low-energy ions that are scattered (to 90◦) from
samples held on a multiple target assembly and analyzed in a 127◦ electrostatic energy analyzer.

Low-energy spectra for 3He and 20Ne ions scattered from an Fe–Re–Mo alloy are
shown in Fig. 2.14. The improved mass resolution associated with heavier mass pro-
jectiles is used to clearly distinguish the Mo from the Re. This technique is used in
studies of surface segregation, where relative changes in the surface composition can
readily be obtained.
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2.9 Forward Recoil Spectrometry

In elastic collisions, particles are not scattered in a backward direction when the mass
of the incident particle is equal to or greater than that of the target atom. The incident
energy is transferred primarily to the lighter target atom in a recoil collision (Eq. 2.7).
The energy of the recoils can be measured by placing the target at a glancing angle
(typically 15◦) with respect to the beam direction and by moving the detector to a
forward angle (θ = 30◦), as shown in the inset of Fig. 2.15. This scattering geometry
allows detection of hydrogen and deuterium at concentration levels of 0.1 atomic
percent and surface coverages of less than a monolayer.

The spectrum for 1H and 2H (deuteron) recoils from a thin polystyrene target are
shown in Fig. 2.15. The recoil energy from 3.0 MeV 4He+ irradiation and recoil angle φ

of 30◦ can be calculated from Eq. 2.7′ to be 1.44 MeV and 2.00 MeV for 1H and 2H,
respectively. Since 2H nuclei recoiling from the surface receive a higher fraction (∼2/3)
of the incident energy Eo than do 1H nuclei (∼1/2), the peaks in the spectrum are well
separated in energy. The energies of the detected recoils are shifted to lower values
than the calculated position due to the energy loss in the mylar film placed in front of
the detector to block out He+ ions scattered from the substrate.

The application of forward recoil spectrometry to determine hydrogen and deuterium
depth profiles is discussed in Chapter 3. The forward recoil geometry can also be used
to detect other light-mass species as long as heavy-mass analysis particles are used.

2.10 Center of Mass to Laboratory Transformation

The derivation of the Rutherford cross section assumes a fixed center of force. In
practice, the scattering involves two bodies, neither of which is fixed. In general, any
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two-body central force problem can be reduced to a one-body problem. However, since
actual measurements are done in the laboratory, one must be aware of the appropriate
transformation. The transformation equations yield finite and important corrections
that must be incorporated in careful analytical work. These corrections are most impor-
tant when the mass of the projectile, M1, becomes comparable to the mass of the target
M2. Under these conditions, the recoil effects (nonfixed scattering center) become
largest.

The relationship between the scattering angles in the laboratory system, namely, θ

and φ, and the angles in the center of mass (CM) system are illustrated in Fig. 2.16a.
The first step is to determine an analytical relation between the scattering angles in the
two systems.

We use the following notation: r1 and v1 are the position and velocity vectors of
the incident particle in the laboratory system; r1

′ and v1
′ are the position and velocity

vectors of the incident particle in the center-of-mass system; and R and Ṙ are the
position and velocity vectors of the center of mass in the laboratory system.

By definition,

r1 = R + r1
′,

so

v1 = Ṙ + v1
′.
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The geometrical relationship between vectors and scattering angles shown in
Fig. 2.16b indicates the relation

tan θ = v1
′ sin θc

v1
′ cos θc + ∣∣Ṙ∣∣ . (2.23)

The definition of the center-of-mass vector, R, is

(M1 + M2)R = M1r1 + M2r2,

so that

(M1 + M2)Ṙ = M1ṙ1 + M2ṙ2,

where M2, r2 refers to the target atom. From the vector diagram,

v1
′ = v1 − Ṙ,

or

v′
1 = M2

M1 + M2
(ṙ1 − ṙ2) .

Since the system is conservative, the relative velocity, ṙ1 − ṙ2, is the same before and
after the collision. Initially, ṙ2 = 0, so

v′
1 = M2

M1 + M2
v,

where v is the initial velocity of the particle. The constant velocity of the CM can also
be derived from the definition:

(M1 + M2)Ṙ = M1v.

Substituting the relations for Ṙ and v′
1 in Eq. 2.23, we have

tan θ = sin θc

cos θc + M1
M2

. (2.24)

When M1 � M2, the angles in the two systems are approximately equal; the massive
scatterer M2 suffers little recoil. A useful form of Eq. 2.24 is written as

cot θ = cot θc + x csc θc,

where x = M1/M2. This can be rearranged to yield

cot θ − cot θc = x csc θc,

or

sin θc cos θ − cos θc sin θ = x sin θ

so that

sin(θc − θ) = x sin θ. (2.25)

For simplicity, we let ξ = θc − θ . From Eq. 2.25, we have

cos ξ dξ = x cos θ dθ
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and
dξ

dθ
= dθc

dθ
− 1 = x cos θ

cos ξ
,

or
dθc

dθ
= sin θc

sin θ cos ξ
.

Then

dσ

d	
=
(

Z1 Z2e2

2E

)2 [
(1 + x) sin θc

2 sin θ sin2 θc/2

]2/
cos ξ,

where E, the energy in lab coordinates, is given by

E = Ec(1 + x).

It is useful to derive an expression for the cross section simply in terms of θ and x. We
make use of the fact that

1 + x = (sin ξ + sin θ )/ sin θ,

sin
(
θc

/
2
)

sin2
(
θc

/
2
)

= cot
(
θc

/
2
)

,

sin θ + sin ξ

cos θ + cos ξ
= tan

θc

2
,

so that
(1 + x) sin ξc

2 sin2
(
θc

/
2
)

,
= cos θ + cos ξ

sin θ

and

dσ

d	
=
(

Z1 Z2e2

2E

)2
(cos θ + cos ξ )2

sin4 θ cos ξ
.

Noting that cos ξ = (1 − sin2 ξ )1/2 = (1 − x2 sin2 θ )1/2, we obtain

dσ

d	
=
(

Z1 Z2e2

2E

)2 [cos θ + (1 − x2 sin2 θ )1/2
]2

sin4 θ (1 − x2 sin2 θ )1/2
, (2.26)

which is the form given in Eq. 2.19.

Problems

2.1. 4He++ particles are scattered from a thin foil of an elemental material with atomic
number Z1, mass density ρ1, number A1, and thickness t1, and are observed at
some fixed angle θ . The first foil is replaced with a second one (Z2, ρ2, A2, t2).
What is the ratio of the number of particles observed at θ for the first and second
foils?

2.2. A beam of 2 MeV helium ions is incident on a silver foil 10−6 cm thick and
undergoes Coulomb scattering in accordance with the Rutherford formula.
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(a) What is the distance of closest approach?
(b) Find the impact parameter for He+ ions scattered through 90◦.
(c) What fraction of the incident 2 MeV He+ ions will be backscattered (i.e.,

θ > 90◦)?

The density of silver is 10.50 g/cm3, and its atomic weight is 107.88 g mol.
[Hint: The integrated cross section for scattering through angles 0◦ to 90◦ is∫ π/2

0 dσ.]
2.3. An α particle, 4He+, makes a head-on collision with (a) a gold nucleus, (b) a

carbon nucleus, (c) an α particle, and (d) an electron, each initially at rest. What
fraction of the α particle’s initial kinetic energy is transferred to the struck particle
in each instance?

2.4. (a) Using the formula for the Rutherford scattering cross section in center-of-mass
coordinates (CM) and the relations for the recoil energy (Eq. 2.7), and noting
that φ = π/2 − θc/2 (Fig. 2.16), calculate an expression for dσ/dE2, the cross
section for transferring an energy E2 to a nucleus. Hint:

dσ

dθc

dθc

d E2
= dσ

d E2
.

(b) Using the result of part (a), integrate dσ/d E2 from Emin to Emax to find the
total cross section for transferring an energy greater than Emin.

(c) Evaluate the result of part (b) in cm2 for the case of 1.0 MeV He ions bom-
barding Si. Use Emin = 14 eV, the displacement energy of a Si atom bound in
an Si lattice. Compare this cross section to σRuth(θ = 180◦).

(d) Use the result of (c) to calculate the fraction of atoms displaced (i.e., undergoing
an energy transfer greater than 14 eV) for 1 µC of He+ ions incident on a target
where the He+ beam diameter = 1 mm. This result is only a lower limit to the
displacements, since we have ignored displacements due to recoiling Si atoms.

2.5. A carbon film is known to contain surface contaminants of Au, Ag, and Si. Sketch
the backscattering spectrum, indicating the energies of the various peaks and their
relative heights.

2.6. An accelerator produces an He+ ion current of 50 nA at 1.0 MeV. Using a 1 cm2

detector 5 cm from the target at a scattering angle of 170◦, determine the smallest
amount of Au (atoms/cm2) that can be detected. Detectability is arbitrarily defined
as 100 counts in 1 hr. Under similar conditions, what is the detection limit for
oxygen? Compare these limits with the number of atoms/cm2 in a monolayer
(∼=1015 atoms/cm2).

2.7. Derive the expression for E2 (Eq. 2.7′), the energy transferred to the target atom
using conservation of energy and momentum relations. Give the expression for
E2/E0 for θ = 90◦.

2.8. Use the small angle approximation (sin θ = θ ) to show that the scattering cross
section can be expressed as σ (θ ) = (Z1 Z2e2/E)2(θ)−4. Derive this expression
using the impulse approximation in which the force of Z1 Z2e2/b2 acts on the
particle for an effective time t = l/v, where l = 2b. [Hint: An intermediate step
in the derivation is to show that b = Z1 Z2e2/Eθ.]
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3
Energy Loss of Light Ions and
Backscattering Depth Profiles

3.1 Introduction

In the previous chapter, it was tacitly assumed that the atoms to be identified were at
the surface of the materials. In this chapter, we consider composition depth profiles
that can be obtained from Rutherford backscattering spectrometry (RBS) and nuclear
reaction analysis. In this case, the depth scale is established by the energy loss d E/dx
of light (H+, d+, and He+) ions at high energies (0.5–5 MeV) during their passage
through the solid (Fig. 3.1). The energy lost in penetration is directly proportional
to the thickness of material traversed, so a depth scale can be assigned directly and
quantitatively to the energy spectra of detected particles. The yield of backscattered
particles or reaction products is proportional to the scattering or reaction cross sections,
so the composition depth profile can be found from knowledge of energy loss and cross
sections.

3.2 General Picture of Energy Loss and Units of Energy Loss

For light ions such as 4He+ penetrating a solid, the energetic particles lose energy pri-
marily through excitation and ionization in inelastic collisions with atomic electrons—
termed electronic-energy loss. Microscopically, energy loss due to excitation and ion-
ization is a discrete process. Macroscopically, however, it is a good assumption that the
moving ions lose energy continuously. All we are concerned with here is the average
energy loss during the penetration of ions into a given material.

To measure energy loss, we must determine two quantities: the distance �t that the
ions traverse in the target, and the energy loss �E in this distance. The mass density
ρ or the atomic density N are frequently combined with the distance, in the form ρ�t
or N�t , to express the amount of material per unit area or the number of atoms per
unit area that the projectiles have traversed in losing energy �E to the target material.
Energy loss can be expressed in several different ways. Some frequently used units are

d E/dx : eV/nm,

(1/ρ) d E/dx : eV/(µg/cm2),

ε = (1/N ) d E/dx : eV/(atoms/cm2), eV-cm2.
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Figure 3.1. Energy-loss components for a projectile that scatters from depth t. The sequence
is: energy lost via electronic stopping on inward path �Ein; energy lost in the elastic scattering
process, �Ein; and energy lost to electronic stopping in the outward path, �Eout. Then E1 =
Eo − �Ein − �Es − �Eout.

Recently, most authors have adopted (1/N ) d E/dx ( eV-cm2) as the stopping cross
section ε; we give the 4He+ stopping cross section in these units in Appendix 3.

3.3 Energy Loss of MeV Light Ions in Solids

3.3.1 Applicable Energy Ranges

When a He+ or H ion moves through matter, it loses energy through interactions with
electrons that are raised to excited states or ejected from atoms. The radii of atomic
nuclei are so small compared with atomic dimensions that nuclear scattering is rare
compared with interactions with electrons; therefore, in a first approximation, nuclear
interactions may be neglected in the slowing down process.

Theoretical treatments of inelastic collisions of charged particles with target atoms
or molecules are separated into fast collisions and slow collisions. The criterion is
the velocity of the projectile relative to the mean orbital velocity of the atomic or
molecular electrons in the shell or subshell of a given target atom. When the projectile
velocity v is much greater than that of an orbital electron (fast-collision case), the
influence of the incident particle on an atom may be regarded as a sudden, small external
perturbation. This picture leads to Bohr’s theory of stopping power. The collision
produces a sudden transfer of energy from the projectile to the target electron. The
energy loss of a fast particle to a stationary nucleus or electron can be calculated from
scattering in a central-force field. The stopping cross section decreases with increasing
velocity because the particle spends less time in the vicinity of the atom. In the low-
energy (slow velocity) regime, this argument does not hold, and it is found that the
stopping power is proportional to velocity. The maximum in the stopping cross section
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Figure 3.2. Stopping cross section ε and energy loss rate dE/dx 4He+ and 1H+ in Al. The open
squares for the hydrogen data are scaled from the He+ data by evaluating the stopping powers
at the same velocity (E/4) and scaling by 4 for the Z1 dependence. The atomic density of Al is
6 × 1022 atoms/cm3.

is found at the energy separating these two regions. In backscattering spectrometry, we
are concerned with the region near and above the maximum.

One useful estimate of the lower energy limit of the fast-collision case is to compare
the particle velocity or energy with the Bohr velocity v0 of an electron in the innermost
orbit of a hydrogen atom:

v0 = e2

h̄
= c

137
= 2.2 × 108cm/s. (3.1)

This velocity is equivalent to that of a 0.1 MeV He ion or 25 keV H ion. As shown
in Fig. 3.2, the values of the energy loss reach a maximum around 0.5 MeV for He in
Al. In this high-energy, fast-collision regime, values of d E/dx are proportional to Z2

1
at the same velocity. The dashed curve and squares in Fig. 3.2 are the values for the
energy loss of 4He ions in Al reduced by a factor of four (Z2

1 H/Z2
1 He = 1/4) and plotted

at an energy of one-quarter of that for the He ion (MH/MHe) = 1/4), i.e., at the same
velocity. The incident He or H particle is considered as fully ionized (He+ or α particle,
H+ or proton) in its passage through matter—the velocity of the particle is sufficiently
great so that it is stripped of its electrons. At lower velocities, the average charge of the
projectile becomes lower and the number of electrons available for excitation decreases;
therefore, the energy loss decreases.

3.3.2 Derivation of dE/dx

In 1913 Bohr derived an expression for the rate of energy loss of a charged particle
on the basis of classical considerations. He considered a heavy particle, such as a
particle or a proton, of charge Z1e, mass M, and velocity v passing an atom electron
of mass me at a distance b (Fig. 3.3). As the heavy particle passes, the Coulomb force
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Figure 3.3. (a) A heavy particle of charge Z1e passing an electron at distance b (b) A shell of
radius b and thickness db with its axis the path of the heavy charged particle.

acting on the electron changes direction continuously. If the electron moves negligibly
during the passage of the heavy particle, the impulse,

∫
Fdt , parallel to the path is

zero by symmetry, since for each position of the incident particle in the −x direction
there is a corresponding position in the +x direction that makes an equal and opposite
contribution to the x component of the momentum. Throughout the passage, however,
there is a force in the y direction, and momentum �p is transferred to the electron. This
problem of energy transfer is similar to the Coulomb force scattering used to derive the
Rutherford scattering law in Chapter 2, if we think of the electron moving towards the
stationary projectile at the same velocity v. The momentum transferred to the electron
during the full passage is therefore

�p = 2Z1e2

bv
, (3.2)

where we have used Eq. 2.15a with θ ∼= 0, a small angle approximation. If the electron
has not achieved a relativistic velocity, its kinetic energy is given by

�p2

2m
= 2Z2

1e4

b2mv2
= T, (3.3)

where T is the energy transfer in the collision.
The differential cross section, dσ (T ), for an energy transfer between T and T + dT

is

dσ (T ) = −2πb db, (3.4)

and the energy loss per unit path length, d E/dx , is

−d E

dx
= n

Tmax∫
Tmin

T dσ, (3.5)

where n is the number of electrons per unit volume. In terms of impact parameter b,

−d E

dx
= n

bmax∫
bmin

T 2πb db, (3.6)
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which reduces to

−d E

dx
= 4π Z2

1e4n

mv2
ln

bmax

bmin
. (3.7)

To choose a meaningful value for bmin, we observe that if the heavy particle collides
head on with the electron, the maximum velocity transferred to a stationary electron
is 2v. The corresponding maximum kinetic energy (for a nonrelativistic v) is Tmax =
1/2m(2v)2 = 2mv2. If this value of Tmax is inserted in Eq. 3.3, the corresponding bmin

becomes

bmin = Z1e2

mv2
. (3.8)

If bmax is allowed to become infinite, −d E/dx goes to infinity because of the con-
tribution of an unlimited number of small energy transfers given to distant electrons.
But the smallest energy an atomic electron can accept must be sufficient to raise it to
an allowed excited state. If I represents the average excitation energy of an electron,
we choose Tmin = I , and find

bmax = 2Z1e2

√
2mv2 I

. (3.9)

When Eqs. 3.8 and 3.9 are substituted in Eq. 3.7, we obtain

−d E

dx
= 2π Z2

1e4n

mv2
ln

2mv2

I
.

This calculation is based on direct collisions with electrons in the solid. There is another
term of comparable magnitude due to distant resonant energy transfer. The derivation
is outside the scope of this book but leads, in its simplest form, to a total stopping power
twice that shown above, i.e.,

−d E

dx
= 4π Z2

1e4n

mv2
ln

2mv2

I
, (3.10)

or

−d E

dx
= 2π Z2

1e4

E
N Z2

(
M1

m

)
ln

2mv2

I
,

where E = M1v/2 and n = N Z2, with N given by the atomic density in the stopping
medium.

Thus we can regard the electronic interactions as composed of two contributions: (1)
close collisions with large momentum transfers, where the particle approaches within
the electronic orbits, and (2) distant collisions with small momentum transfers, where
the particle is outside the orbits. The two contributions are nearly equal (equipartition
rule) for the particle velocities used in Rutherford backscattering.

The average excitation energy I for most elements is roughly 10 Z2 in eV, where Z2

is the atomic number of the stopping atoms. Experimental and calculated values of I
are given in Fig. 3.4. The description of stopping power so far ignores the shell structure
of the atoms and variations in electron binding. Experimentally, these effects show up
as small deviations (except for the very light elements) from the 10 Z2 approximations
shown in Fig. 3.4.
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Figure 3.4. Calculation of mean excitation energy by Lindhard and Scharff’s theory with a
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The complete energy loss formula (often referred to as the Bethe formula) contains
corrections that include relativistic terms at high velocities and corrections for the
nonparticipation of the strongly bound inner-shell electrons. For helium ions in the
energy regime of a few MeV, relativistic effects are negligible and nearly all the target
electrons participate (n = N Z2) in the stopping process. Consequently, Eq. 3.10 can
be used to estimate values of d E/dx . In analysis, it is preferable to use tabulated or
numerical values such as those listed in Appendix 3.

For example, the electronic energy loss of 2 MeV 4He+ ions in Al has a value
(calculated from Eq. 3.10) of 315 eV/nm using values of n = N Z2 = 780/nm3 and
I = 10Z2 = 130 eV. The value given in Appendix 3 is ε = 44.25 eV/(1015 atoms/cm2)
or a value of d E/dx = 266 eV/nm (d E/dx = εN ). Thus the first-order treatment gives
values to within 20% of the experimental values.

3.3.3 Comparison of Energy Loss to Electrons and to Nuclei

A penetrating He ion can also transfer energy to the nuclei of the solid through small-
angle scattering events. This component to the total energy loss of an energetic ion
is termed nuclear energy loss. Nuclear energy loss is much smaller than the elec-
tronic loss. If the derivation of Eq. 3.7 is repeated for collisions with target atoms, we
find

−d E

dx

∣∣∣∣
n

= 4π Z2
2 Z2

1e4 N

M2v2
ln

bmax

bmin
, (3.11)
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where bmin corresponds to the maximum energy transfer to a target atom in a head-on
collision,

Tmax = 4M1 M2

(M1 + M2)2
E, (3.12)

so that bmin becomes

bmin = 2Z1 Z2e2

vp
, (3.13)

and bmax can be approximated by Eq. 3.9, with I now representing a displacement
energy.

In a comparison of Eqs. 3.7 and 3.11, the major differences are the mass (m or M2)
in the denominator and the charge Z2 of the target atom. For protons, neglecting the
ratio of log terms, the ratio of nuclear to electronic energy loss per atom is

d E/dx |n
d E/dx |e

∼= N
Z2

2

M2
× m

n
= Z2

M2
m ∼= 1

3600
, (3.14)

where the number of electrons per volume n ∼= Z2 N , M2
∼= 2 Z2mp, and mp

∼= 1836 me

is the mass of the proton.

3.4 Energy Loss in Compounds—Bragg’s Rule

The process by which a particle loses energy when it moves swiftly through a medium
consists of a random sequence of independent encounters between the moving projectile
and an electron attached to an atom of the solid. For a target that contains more than one
element, the energy loss is the sum of the losses of the constituent elements weighted
by the abundance of the elements. This postulate is known as Bragg’s rule and states
that the stopping cross section εAm Bn of a solid of composition Am Bn is given by

εAm Bn = mεA + nεB, (3.15)

where εεεA and εεεB are the stopping cross sections of the atomic constituents A and B.
To take the specific example of SiO2 on a molecular basis,

εSiO2 = εSi + 2εO, (3.16)

where εSiO2 is now the stopping power/molecule, so d E/dx = NεSiO2 , where N is the
number of molecules/volume. Figure 3.5 shows the stopping cross section for SiO2 on
a molecular basis.

The energy loss value, d E/dx , for 2.0 MeV He is 283 eV/nm, close to the value of
elemental Si, namely, 246 eV/nm.

3.5 The Energy Width in Backscattering

As MeV He ions traverse the solid, they lose energy along their incident path at a rate
d E/dx between 300 and 600 eV/nm. In thin film analysis, to a good approximation,
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the total energy loss �E into a depth t is proportional to t. That is,

�Ein =
t∫

0

d E

dx
dx ∼= d E

dx

∣∣∣∣
in

· t, (3.17)

where d E/dx
∣∣
in is evaluated at some average energy between the incident energy Eo

and Eo − t(d E/dx). The energy of a particle at depth t is

E(t) = Eo − t d E/dx
∣∣
in. (3.18)

After large-angle scattering, the particle energy is KE(t), where K is the kinematic
factor defined in Eq. 2.5. The particle loses energy along the outward path and emerges
with an energy

E1(t) = KE(t) − t

| cos θ |
d E

dx

∣∣∣∣
out

= −t

(
K

d E

dx

∣∣∣∣
in

+ 1

| cos θ |
d E

dx

∣∣∣∣
out

)
+ K Eo,

(3.19)

where θ is the scattering angle. The energy width �E of the signal from a film of
thickness �t is

�E = �t

(
K

d E

dx

∣∣∣∣
in

+ 1

| cos θ |
d E

dx

∣∣∣∣
out

)
= �t[S]. (3.20a)
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Figure 3.6. The backscattering spectrum (θ = 170◦) for 3.0 MeV He+ ions incident on a 400
nm Al film with thin Au markers on the front and back surfaces.

The subscripts in and out refer to the energies at which d E/dx is evaluated, and [S] is
often referred to as the backscattering energy loss factor. The backscattering spectrum
at θ = 170◦ for 3 MeV 4He incident on a 400 nm Al film with thin Au markers (∼= 3
monolayers of Au) on the front and back surfaces is shown in Fig. 3.6. The energy
loss rate d E/dx along the inward path in Al is ∼= 220 eV/nm at energies of 3 MeV
and is ∼= 290 eV/nm on the outward path at energies of about 1.5 MeV (KAl

∼= 0.55).
Inserting these values into Eq. 3.20, we obtain an energy width �EAl of 165 keV. The
energy separation between the two Au peaks is slightly larger, 175 keV, because one
uses KAu in Eq. 3.20 along with d E/dx (Al).

The assumption of constant values for d E/dx or ε along the inward and outward
tracks leads to a linear relation between �E and the depth t at which scattering occurs.
For thin films, �t ≤ 100 nm, the relative change in energy along the paths is small. In
evaluating d E/dx , one can use the surface-energy approximation, in which (d E/d X )in

is evaluated at E0 and (d E/dx)out is evaluated at �E0. In this approximation, the energy
width �E0 from a film of thickness �t is

�E0 = �t[S0] = �t

[
K

d E

dx

∣∣∣∣
E0

+ 1

| cos θ |
d E

dx

∣∣∣∣
KE0

]
, (3.20b)

where the subscripts denote the surface-energy approximation. When the film thickness
or the path length becomes appreciable, a better approximation can be made by selecting
a constant value of d E/dx at a mean energy Ē intermediate between that at the end
points of each track. For the inward track, the incident particle enters at energy E0

and has an energy E(�t) before scattering at �t so that Ēin = 1/2[E(�t) + E0]. After
scattering, the particle has an energy KE(�t) so that Ēout = 1/2[E1 + KE(�t)]. In this
mean-energy approximation, the energy E(�t) before scattering can be calculated from
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Figure 3.7. Comparison of the calculated relationship between the energy width, �E , and
thickness for a Pt film. In the surface-energy approximation, the values of dE/dx are evaluated
at the incident energy, Eo on the inward path and KEo on the outward path. In the mean-energy
approximation, dE/dx is evaluated at appropriate average energies as discussed in the text.

values of d E/dx or can be further approximated by assuming that the energy difference
�E is measured or known and that this loss is subdivided equally between the incident
and the outward path so that E is approximately E0 − 1/2�E . Then Ēin = E0 − 1/4�E
and Ēout = E1 + 1/4�E .

A comparison between the surface-energy and the mean-energy approximations is
shown in Fig. 3.7 for 2.0 MeV He scattering from a Pt film. In the surface-energy approx-
imation, the conversion between energy width �E and thickness �t is 1500 eV/nm. In
the mean-energy approximation, the �E versus �t relation deviates from a straight line
relation, and the value of �E for a 500 nm film exceeds by about 3% the value from the
surface-energy approximation. The comparison between the mean-energy and surface-
energy approximations serves as a quick estimate of the probable error introduced by
using the surface-energy approximation. The main point here is that a backscatter-
ing spectrum can be thought of as a linear depth profile of the elements within the
sample.

3.6 The Shape of the Backscattering Spectrum

The energy spectrum from an infinitely thick target has a characteristic slope (Fig. 3.8)
that can be understood from these relations between depth and energy loss and the
energy dependence of the Rutherford cross section. In backscattering measurements,
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the detector subtends a solid angle 	 so that the total number of detected particles QD

or yield Y from a thin layer of atoms, �t , is

Y = σ (θ) 	QN�t, (3.21)

where Q is the measured number of incident particles and (N�t) is the number of
target atoms/cm2 in the layer.

For thicker layers or bulk targets, projectiles can scatter from any depth t, resulting
in a continuous energy spectrum to low energy. The yield from a slice of width �t at
depth t is given (for θ = 180◦) by

Y (t) =
(

Z1 Z2e2

4E(t)

)2

N Q	 �t, (3.22)

where E(t) is the energy of the particle at depth t Eq. 3.18 and N is the atomic density.
In backscattering, one measures the spectrum of particles emerging with energy E1. To
convert Eq. 3.22 to a spectrum Y (E1)d E1 of the measured energy E1, we note that E(t)
is an intermediate energy between E0 and E1. If we denote �Ein as the energy lost
on the inward path, �Ein = E0 − E(t), and �Eout as the energy lost on the outgoing
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path, �Eout = KE(t) − E1, the ratio

A = �Eout

�Ein
= KE (t) − E1

E0 − E(t)
≈ d E/dx

∣∣
out

d E/dx
∣∣
in

. (3.23)

This ratio is approximately constant for slowly varying energy-loss values, as is the
case for 2.0 MeV He ions. Then the energy E at depth t is

E(t) = E1 + AE0

K + A
. (3.24)

The value of A can be determined explicitly, but for medium to heavy mass targets
where K ∼= 1 and A ∼= 1, the value of E(t) ∼= (E0 + E1)/2 and

Y (E1) ∝ 1

(E0 + E1)2
. (3.25)

This spectral shape for E0 = 1.4 MeV is indicated in Fig. 3.7.
The shape of backscattering spectra and depth profiles can be obtained from computer

programs (i.e., RUMP, Doolittle, 1985), which are used in both simulation and analysis
of RBS data. Simulations of energy widths and signal heights, for example, guides in
the design of sample configuration and scattering geometry.

3.7 Depth Profiles with Rutherford Scattering

The energy loss of light ions follows a well-behaved pattern in the MeV energy range.
The values of d E/dx or ε can be used to obtain composition depth profiles from the
energy spectra of backscattered particles or particles emitted in nuclear reactions. We
illustrate the technique with backscattering spectra from an implanted Si substrate and
a thin film on Si.

For dilute concentrations of an impurity, ≤1 atomic %, the stopping power is simply
determined by the host. Figure 3.9 shows a spectrum of As implanted into Si. The
conversion of the energy scale to a depth scale is given by Eq. 3.20 using K = KAs

and d E/dx for silicon. The shift, �EAs, indicates that the As is implanted below the
surface of the Si.

The upper section in Fig. 3.10 shows a 100 nm Ni film on Si. Nearly all of the incident
4He+ beam penetrates microns into the target before it is stopped. Particles scattered
from the front surface of the Ni have an energy given by the kinematic equation,
E1 = E0 K , where the kinematic factor K for 4He+ backscattered at a laboratory angle
of 170◦ is 0.76 for Ni and 0.57 for Si.

As particles traverse the solid, they lose energy along their incident path at a rate of
about 640 eV/nm (assuming a bulk density for Ni of 8.9 g-cm−3). In thin film analysis,
to a good approximation, energy loss is linear with thickness. Thus, a 2 MeV particle
will lose 64 keV penetrating to the Ni–Si interface. Immediately after scattering from
the interface, particles scattered from Ni will have an energy of 1477 keV derived from
KNi × (E0 − 64). On their outward path, particles will have slightly different energy
loss due to the energy dependence of the energy loss processes, in this case 690 eV
nm−1. On emerging from the surface, the 4He+ ions scattered from Ni at the interface
will have an energy of 1408 keV. The total energy difference �E between particles
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scattered at the surface and near the interface is 118 keV, a value that can be derived
from Eq. 3.20.

In general, one is interested in reaction products or interdiffusion profiles, and the
lower portion of Fig. 3.10 shows schematically a Ni film reacted to form Ni2Si. After
reaction, the Ni signal �ENi has spread slightly, owing to the presence of Si atoms
contributing to the energy loss. The Si signal exhibits a step corresponding to Si in the
Ni2Si. It should be noted that the ratio of the heights HNi/HSi of Ni to Si in the silicide
layer gives the composition of the layer. To a first approximation, the expression of the
concentration ratio is given by

NNi

NSi
= HNi

HSi

σSi

σNi

∼= HNi

HSi

(
ZSi

Z Ni

)2

, (3.26)

where we have ignored the difference in stopping cross sections along the outward path
for particles scattered from Ni and Si atoms. The yield from the Ni or Si in the silicide
is given closely by the product of signal height and energy with �E . Therefore, a better
approximation to the concentration ratio of two elements A and B uniformly distributed
within a film is

NA

NB
= HA�E AσB

HB�EBσA
. (3.27)
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Figure 3.10. Schematic backscattering spectra for MeV 4He+ ions incident on 100 nm Ni film
on Si (top) and after reaction to form Ni2Si (bottom). Depth scales are indicated below the energy
axes.

In this case of Ni2Si, the difference between applications of Eqs. 3.26 and 3.27 corre-
sponds to a 5% difference in the determination of the stoichiometry of the silicide.

3.8 Depth Resolution and Energy-Loss Straggling

With backscattering spectrometry, one can determine composition changes with depth.
In this section, we consider the limits to depth resolution δt in backscattering spec-
trometry. The relation between the energy resolution δE1 and depth resolution is given
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by Eq. 3.20 as

δt = δE1/[S]. (3.28)

3.8.1 Grazing Angle Techniques

Eqs. 3.20a and 3.28 give the following formula for the depth resolution:

δt = δE1

K (d E/dx)in + (d E/dx)out

| cos θ |
. (3.29)

This equation corresponds to the case of a flat planar sample with the incident beam
normal to the surface and a scattering angle θ . For a given detector energy resolution,
depth sensitivity is optimum by maximizing the energy loss associated with scattering
from a depth into the sample. In general, this is done by grazing-angle techniques so
that the path length and hence the energy loss is a maximum. Using Eq. 3.29, the depth
resolution is improved by observing the scattering at angles close to 90◦, so that the
cos θ term approaches zero. With this geometry, depth resolutions as small as 2 nm have
been observed using standard solid-state detectors. There are three factors to consider
that influence grazing-angle methods of improving depth resolution.

1. Finite detector acceptance angle. In any useful system, the detector possesses a
finite detector angle that constitutes a broadening to the scattering angle set by the
geometry. A common grazing exit-angle configuration consists of a slit aperture to
define the detector angle, with a width of 1 mm in the scattering plane and a height of
∼1 cm perpendicular to the plane, yielding a total area of 0.1 cm2. If such a detector
is 6 cm from the target, an additional uncertainty of approximately 1◦ is added to the
scattering angle. This constitutes an appreciable broadening factor as the grazing angle
becomes substantially less than 5◦. Smaller acceptance angles become impractical
when considering the total charge (time) required for an experiment.
2. Surface roughness. One of the most difficult parameters for the analyst to control
is the surface roughness of the unknown sample. It is clear, however, that surface
roughness will set a limit to any grazing-angle technique. We note that polished semi-
conductor grade material is usually extraordinarily flat on the scale of a few degrees
and lends itself to these types of analysis. In general, it is surface roughness that will set
a final limit to depth resolution, even if acceptance angles are made extremely small.
3. Straggling. This contribution is discussed in the following section.

3.8.2 Straggling

The energy resolution is normally composed of two contributions: detector resolution
δEd and energy straggling δEs. If the two contributions are independent and satisfy
Poisson’s statistics, the total resolution, δE1, is given by

(δE1)2 = (δEd)2 + (δEs)
2. (3.30)

An energetic particle that moves through a medium loses energy via many individual
encounters. Such a discrete process is subject to statistical fluctuations. As a result,
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identical energetic particles, which have the same initial velocity, do not have exactly
the same energy after passing through a thickness �t of a homogeneous medium. The
energy loss �E is subject to fluctuations. This phenomenon is called energy straggling.
Energy straggling places a finite limit on the precision with which energy losses, and
hence depths, can be resolved.

Light particles such as 1H+ or 4He+ in the MeV energy range lose energy primarily
by encounters with the electrons in the target, and the dominant contribution to energy
straggling is the statistical fluctuations in these electronic interactions. The distribution
of energy loss �E for many particles passing through a foil gives a distribution that
is approximately Gaussian, when �E is small compared with the incident energy E0.
In the Gaussian region, the probability of finding an energy loss between �E and
d�E is

P(�E) d�E = exp
[− �E2/2	2

B

]
(
2	2

Bπ
)1/2 d �E .

where 	2
B is the mean square derivation. If we consider dσ as the cross section for an

energy transfer T, in a foil of thickness t containing n electrons/cm3, then similar to
Eq. 3.5,

�E = nt
∫

T dσ

and

	2
B = nt

∫
T 2dσ. (3.31)

From Eqs. 3.3 and 3.4, we have

dσ = 2π Z2
1e4

mv2T 2
dT,

so

	2
B = 2π Z2

1e4nt

mv2
(Tmax − Tmin),

where Tmax = 2mv2 and Tmin = I . For these swift particles, Tmax >> I and n = NZ 2,
giving

	2
B = 4π Z2

1e4NZ 2t, (3.32)

an expression often referred to as the Bohr value of energy straggling. To determine the
energy resolution in Eq. 3.30, we note that the full width at half maximum is 2(2 ln 2)1/2

times the standard deviation, δES = 2.35	B.
Bohr’s theory predicts that energy straggling does not depend on the energy of the

projectile and that the value of the energy variation increases with the square root of
the electron density per unit area NZ 2t in the target. The quantity 	B

2/Nt for He ions
is numerically equal to Z2 within 4% when expressed in units of 10−12 (eV-cm−2).
This rule of thumb allows one to construct a simple estimate of the thickness of target
material (atoms/cm2) that produces an energy straggling of 15 keV for 2 MeV 4He+.
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Figure 3.11. The amount of target material Nt (number of atoms/cm2) required to produce
15 keV (FWHM) of energy straggling in a transmission experiment of 21 keV (FWHM) in a
backscattering experiment. The projectiles were 4He+ at 2 MeV. [Adapted from Feldman and
Mayer, 1986].

Figure 3.11 shows a calculation of straggling for elements throughout the periodic
chart. In Si, for example (Z2 = 14 and N = 5 × 1022 at. cm−3), films approximately
500 nm thick can be analyzed before straggling becomes comparable to normal detector
resolution of 15–20 keV.

Straggling sets a fundamental limit to depth resolution, possible with ion beam
energy-loss techniques. Since 	2

B is proportional to t, the straggling is a function of the
depth of penetration. For He+ ions incident on layers <100 nm, the straggling is small
compared with the resolution of a solid-state detector and hence plays no role in the
obtainable depth resolution. For depths greater than 200 nm, energy-loss straggling sets
the limit in depth resolution. With a scattering angle of 95◦ (grazing exit angle of 5◦),
a particle scattering from a depth t in the sample corresponds to an energy-loss path
length of 10t. Thus straggling, which contributes to the energy resolution at depths on
the order of 200 nm in conventional backscattering, now becomes important at depths
of approximately 20 nm. The point is that improvement in depth resolution by grazing-
angle methods represents a genuine improvement only in the near-surface region.

3.9 Hydrogen and Deuterium Depth Profiles

Forward recoil spectrometry (Section 2.9) is a method for nondestructively obtaining
depth profiles of light elements in solids. For the geometry shown in Fig. 3.12a, the
technique can be used to determine hydrogen and deuterium concentration profiles in
solid materials to depths of a few microns by using 4He+ ions at energies of a few
MeV. The forward recoil technique is similar to backscattering analysis, but instead of
measuring the energy of the scattered helium ion, the energies of the recoiling 1H or 2H
nuclei are measured. Hydrogen is lighter than helium, and both particles are emitted in
the forward direction. A mylar foil (∼=10 µm) is placed in front of the detector to block
the penetration of the abundantly scattered helium ions while permitting the passage
of the H ions. The stopping power of 1H ions is sufficiently low compared with that
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Figure 3.12. (a) Experimental geometry for forward recoil spectrometry experiments to deter-
mine depth profiles of 1H and 2H in solids. (b) Recoil spectrum of 2H diffused in a sample of
polystyrene for 1 hr at 170◦ C. The sample consisted of a bilayer film consisting of 12 nm of
deuterated polystyrene on a large-molecular-weight (Mw = 2 × 107) film of polystyrene.

of He ions (Fig. 3.2), so a 1.6 MeV 1H ion only loses 300 keV in penetrating a film
that completely stops 3 MeV 4He+ ions. The mylar absorber does introduce energy
straggling that combined with the energy resolution of the detector, results in an energy
resolution at the sample surface of about 40 keV.

Depth profiles are determined by the energy loss of the incident He+ ion along
the inward path and the energy loss of the recoil 1H or 2H ion along the outward
path. The diffusion of deuterium (2H) in polystyrene can be determined from spectra
such as those shown in Fig. 3.12b. In that case, a 2H ion detected at an energy of 1.4
MeV corresponds to a collision that originated a 2H recoil from a depth about 400 nm
below the surface. The use of forward recoil spectrometry allows the determination of
hydrogen and deuterium diffusion coefficients in the range of 10−12–10−14 cm2/sec, a
range that is difficult to determine by conventional techniques.

As an example of depth measurement, consider a layer of hydrocarbon on both
sides of a self-supported 400 nm Al film (instead of the Au markers shown in Fig.
3.6). We will use a symmetrical scattering geometry with the sample inclined at an
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angle α to the beam and the detector at an angle 2α so that the path length to the
back surface (sample thickness t) is the same, t/sin α, for both the inward He ion and
the outward proton. Hydrogen recoils originating from the front surface will have an
energy E2 = K ′E0, where K ′ = 0.480 for 2α = 30◦ (Eq. 2.7′, where K ′ denotes the
recoil kinematic factor). Hydrogen recoils originating from the back surface at t will
have an energy E2(t) given by

E2(t) = K ′E0 − K ′�EHe − EH, (3.33)

where �EHe is the energy loss of the He+ on the inward path and �EH is the energy
loss of the hydrogen on the outward path:

�EHe = d E

dx

∣∣∣∣
He

t

sin α

and

�EH = d E

dx

∣∣∣∣
H

t

sin α
,

where d E/dx
∣∣
He is evaluated at E0 and d E/dx

∣∣
H at E2 or for simplicity at K ′E0.

The energy width �E between recoils from the front E1 and back E1(t) surfaces is

�E = t

sin α

d E

dx

∣∣∣∣
He

{
K ′ + d E

dx

∣∣∣∣
H

/
d E

dx

∣∣∣∣
He

}
, (3.34)

where the stopping power ratio is about one-sixth. For a 400 nm Al film, the energy
width �E from the H recoils at the front and back side is about 250 keV for 2 MeV
He ions. This width is sufficiently large to make forward recoil spectrometry a useful
technique for hydrogen analysis. Hydrogen depth profiles can also be determined from
nuclear reaction analysis (Chapter 13) or by use of secondary ion mass spectroscopy,
discussed in the following chapter (Chapter 4).

3.10 Ranges of H and He Ions

Hydrogen depth profile analysis by forward recoil spectroscopy (Section 3.9) requires
the use of mylar foils to stop the scattered He ions while permitting the hydrogen
ions to penetrate the foil into the detector (Fig. 3.12a). Mylar foils are also used in
prompt radiation analysis using nuclear reactions (Chapter 13) in order to block the
elastically scattered particles from reaching the detector (Fig. 13.11). In this section,
we will discuss ranges of H and He ions in solids.

The penetration of alpha particles and protons in matter was a subject of great
interest in the 1930s. The energies of these charged particles could be determined by
measurements of their absorption in matter—particularly in air. These measurements
were made by placing a collimated α-emitting source in air on a movable slide whose
distance from a particle detector could be varied. The number of detected α particles
stayed practically constant with increased separation between source and detector up
to a distance R, and then the number of detected particles dropped to zero. The distance
R is the range of the particles. Values of R can be correlated with the initial energy of
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the particle; for example, the mean range of 5.3 MeV α particles (210Po) is about 3.8
cm in air, while that of 8.78 MeV particles (212Po) is about 6.9 cm.

Here, we are interested in the stopping of 1–5 MeV charged particles (protons,
deuterons, and α particles) in foils and can use many of the approximations used in
evaluating α-particle ranges in air. The range R of a particle is given by

R =
E0∫

0

(
d E

dx

)−1

d E, (3.35)

where E0 is the initial kinetic energy and d E/dx is the energy lost per unit path length.
For these swift nonrelativistic particles where electronic energy loss dominates, the
rate of energy loss is given by Eq. 3.10.

For our purposes, the ranges of particles can be found in Northcliffe and Schilling
(1970) or Ziegler (1977). We can use the scaling parameter, for which the range is
given, using velocity as a parameter, as

R = M1

Z2
1

F(v), (3.36)

where F(v) is a function of velocity. This expression is not exact for the neutraliza-
tion phenomena at the end of the range, and other corrections are neglected; but it is
sufficiently accurate for most cases, excluding very low energies. From Eq. 3.36, we
conclude for the same incident velocities that R(4He+) = R(1H+) (see Problem 3.1).

The range–energy relations for α particles (4He+) and protons (1H+) are given for
mylar and silicon in Fig. 3.13a. The data show that for 4He+ energies above 4 MeV, the
ranges are equal to those of protons at the same velocity [E(He)/4]. The scaling only
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mylar.



54 3. Energy Loss of Light Ions and Backscattering Depth Profiles

holds at energies above the maximum in the d E/dx curves shown in Figure 3.13b.
In these curves, d E/dx values at the same velocity scale as Z2

1, so the 1H values are
one-fourth of the 4He+ values.

A 10 µm mylar film is sufficient to stop a 2.5 MeV He ion. The energy loss of a 2.5
Me V proton in the film can be estimated from the range–energy relation. The range of
a 2.5 MeV proton in mylar is 80 µm, and a 70 µm film has a thickness equivalent to the
range of a 2.3 MeV proton; hence, the energy lost by a 2.5 MeV proton in traversing
the film is about 0.2 MeV. This loss could also be estimated from the d E/dx curve in
Fig. 3.13b by noting that a 2.5 MeV proton loses 18 keV/µm in mylar.

3.11 Sputtering and Limits to Sensitivity

The Z2 dependence of the Rutherford scattering cross section clearly indicates a large
sensitivity to heavy elements. It is of interest to ask for the ultimate sensitivity, i.e., the
smallest amount of material detectable by this technique.

The limit for the ion scattering technique is set by sputtering. Sputtering is a process
in which an energetic ion impinging on a solid creates a collision cascade due to
small angle nuclear events. Some fraction of the secondary ions acquire the correct
momentum to escape the solid, giving rise to an erosion process. This erosion technique
is an important process in surface analysis and is described completely in Chapter 4. In
the case of Rutherford scattering, this erosion process is an undesirable phenomenon
and sets the limit on sensitivity. The basic question is under what conditions will the
erosion of the material will occur before a measurement is complete. Sputtering is
defined in terms of a sputtering yield Y, which is the number of atoms ejected from the
solid per incident ion. In the following, we calculate the limit to sensitivity set by the
sputtering process.

We consider a thin layer of material (possibly submonolayer) containing NS atoms/
cm2. The yield of scattered ions, QD, is given by the usual equation in a Rutherford
backscattering measurement:

QD = σ (θ)	QNS,

where σ (θ ) is the differential cross section, 	 is the solid angle of the detector, and Q
is the number of incident ions.

For the same number of incident ions, the loss of atoms from the layer, �NS, due to
sputtering by the incident ions is

�NS = YQ/a, (3.37)

where a is the area of the probing beam spot. We require that the amount of erosion be
less than the original film thickness, i.e.,

�NS < NS, (3.38)



Problems 55

which can be expressed as a limit on the value of Q given by

Q <

(
QDa

Yσ (θ)	

)1/2

, (3.39)

and a corresponding minimum value of NS given by

NS >

(
Q DY

σ (θ )a	

)1/2

. (3.40)

In evaluating this quantity, we use the following standard numbers for the case of a layer
of gold (Z = 79): σ (θ), the cross section for He scattering at 2 MeV to 170◦, is 10−23

cm2/steradian; 	, the solid angle of the detector corresponding to a 1 cm2 detector 5
cm from the target, is 4 × 10−2 steradians; Y, the sputtering yield, is 10−3 (see Chapter
4); Q, the area of the probing beam, is 10−2 cm2; and Q D is arbitrarily taken as 102,
the minimum number of counts required for a statistically significant measurement.
With these values, we find a minimum layer thickness of 5 × 1012 Au atoms/cm2 or
close to 1/1000 of a monolayer. Using these expressions, we see that the scattering
parameters and geometry could be optimized in a number of ways to further increase
the sensitivity. Experience suggests that the absolute best sensitivity realizable for this
favorable case of a heavy scatterer is 5 × 1011 atoms/cm2. Note that the incident charge
required is not prohibitive. Equation 3.39 corresponds to an incident particle dose of
5 × 1013 ions or about 10 µ Coulombs.

3.12 Summary of Scattering Relations

Throughout this book, and particularly in Chapters 2 and 3, we have developed
and used a number of kinematic relations and cross sections and the backscattering
factor. For the reader’s convenience, we have collected these scattering relations in
Table 3.1 on page 57.

Problems

3.1. Derive

R = M1

Z2
1

F(v)

(Eq. 3.36), using dE = Mv dv and dx = mv2 dE (4π Z2
1e4n ln(2mv2/I ))−1, and

estimate the range of 1.0 MeV deuterons in Si using Eq. 3.36 and Fig. 3.13.
3.2. Using Eq. 3.10:

(a) Evaluate dE/dx in eV/nm for 1 MeV He in Si.
(b) Convert to units of eV (1015 atoms/cm2) and compare your answer with

Appendix 3.
(c) Determine dE/dx in eV/nm for 4 MeV C ions in silicon.



56 3. Energy Loss of Light Ions and Backscattering Depth Profiles

3.3. Show that the maximum in the stopping power is given by

E = MZ 2 I0

4m
e,

where e is 2.718 and I0 = 10 eV. Evaluate for He in Si.
3.4. Draw the backscattering spectrum (θ = 180◦) for 2.0 MeV He+ expected for

(a) a sample of Si containing a uniform 1% Au impurity;
(b) a sample of Au containing a uniform 1% Si impurity;
(c) a sample of Si covered with a 100 nm Pt film; and
(d) a sample of Si with a 100 nm PtSi film on Si.

In all spectra, show specific energies for the leading edge (and trailing edge in thin
film cases) of the spectral features, and indicate the relative heights.

3.5. For the scattering geometry in Fig. 3.12a, what is the energy width of the recoiling
hydrogen atoms for a 200-nm-thick mylar target? Use the energy loss values in
mylar given in Fig. 3.13 and ignore the influence of the stopper foil in front of the
detector.

3.6. Determine the backscattering energy loss factor (S) (as in Eq. 3.20) for the case of
nonnormal incidence: incident beam at angle θ1 with respect to the sample normal
and scattering angle θ2.

3.7. Consider an experiment involving 2.0 MeV ions backscattered to 180◦ from a 200
nm SiO2 target.

(a) Sketch the backscattering spectrum indicating the energies of the features in
the spectrum.

(b) Assuming that the stopping power is energy independent, show that the ratio
of the energy widths of scattering from oxygen and Si can be written as

(KSi + 1)/(K0 + 1),

where K denotes the kinematic factor.
(c) Recognizing that energy loss is not energy independent, derive a precise form

for the ratio of the energy widths from the two elements. Evaluate the ratio
and compare this to the expression given in part (b).

(d) Using the stopping powers, the stoichiometry, and the cross section, derive an
equation for the heights of the Si and oxygen peaks and evaluate.

(e) Assume the oxide is of unknown stoichiometry, Six Oy . Derive an expression
for the ratio of the heights in terms of the scattering cross section, the elemental
stopping powers, and x/y. [Hint: Express the stopping power in terms of x
and y using Bragg’s rule.]

3.8. Assume in backscattering measurements that energy straggling is given by
	2

tot = (K	B|in)2 + (K	B|out)2. Calculate the amount of energy straggling in an
RBS signal from a thin Cr layer underneath an Al film 400 nm thick with an
analysis beam of 2 MeV 4He ions (θ = 180◦). What is the total signal width
(FWHM) if the detector resolution is 15 keV? To what thickness of Al does this
correspond?
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Table 3.1. Summary of Relations

Lab Energy of Scattered
Particle; Kinematic Factor,
KM2

σ (θ ) =
(

Z1 Z2e2

4E

)2 [
sin−4 θ

2
− 2

(
M1

M2

)
+ · · ·

]

Lab Energy of Recoil Nucleus E2/E0 = 1 − E1/E0 = 4M1 M2

(M1 + M2)2
cos2 φ; φ < π/2

Lab Angle of Recoil Nucleus φ = 1

2
(π − θc); sin φ =

(
M1 E1

M2 E2

)1/2

sin θ ; tan θ = sin 2φ

M1/M2 − cos 2φ

C, M , Angle of Scattered
Particle

cos θc = 1 − 2 cos2 φ

Lab Energy if Scattered
Particle

E1

E0
= M2 − M1

M2 + M1
, θ = 90◦;

E1

E0
=
(

M2 − M1

M2 + M1

)2

, θ = 90◦

Rutherford Scattering Cross
Section

dσ

d	
=
(

Z1 Z2e2

4Ec

)2 [
1

sin4 θc/2

]

dσ

d	
=
(

Z1 Z2e2

4E0

)2 [
sin−4 θ

2
− 2

(
M1

M2

)
+ · · ·

]
; M1 < M2

Backscattering Factor, [S] �E = �t[S]

Normal Incidence [S] = �t

[
K

d E

dx

∣∣∣
E

+ 1

| cos θ |
d E

dx

∣∣∣
KE

]

M1

M1

M2

M2 RECOIL

SCATTERED

TARGETINCIDENT

E0

E1

E2

θ
φ

θc

φc

M1 Z1 = mass charge incident of particle
M, Z = mass, charge of target atom
θ, φ = scattered angle of scattered particle and recoil in laboratory system
θc, φc = angle of scattered particles and recoil in center-of-mass system
E1, E2 = the energy after the scattering of the projectile in the laboratory system
E = the energy of the incident projectile in the laboratory system
E = (M2/M2 + M1)E0 = incident energy in center-of-mass system
d E

dx

∣∣∣
in
,

d E

dx

∣∣∣
out

= the rate of energy loss on the inward, outward path
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4
Sputter Depth Profiles and Secondary Ion
Mass Spectroscopy

4.1 Introduction

This chapter deals with the erosion of the sample by energetic particle bombardment.
In this process, called sputtering, surface atoms are removed by collisions between
the incoming particles and the atoms in the near-surface layers of a solid. Sputtering
provides the basis for composition depth profiling with surface analysis techniques,
either by analysis of the remaining surface with electron spectroscopies or by analysis of
the sputtered material. Here we describe the most widely used of these latter techniques,
secondary ion mass spectroscopy (SIMS).

In previous chapters, we have been concerned with the energies and yields of parti-
cles scattered from the target material under analysis. With Rutherford backscattering
spectrometery (RBS) using MeV He+ ions, the energy loss along the inward and
outward paths provides the depth information (Fig. 4.1). In other analytical techniques,
the atoms to be identified must lie at the surface of the materials. For example,
the observation depth in X-ray photoelectron spectroscopy and Auger-electron
spectroscopy (XPS and AES) can be as small as 1.0–2.0 nm. In order to use XPS and
AES to determine depth profiles, it is necessary to remove controlled thicknesses of
the surface layer. This surface layer removal is carried out in materials analysis by
bombarding the surface with low-energy (0.5–20 keV) heavy ions, such as O+ or Ar+,
which eject or sputter target atoms from the surface. The yield of sputtered atoms,
the number of sputtered atoms per incident ion, lies in the range of 0.5–20 depending
upon ion species, ion energy, and target material. Surface-sensitive techniques can
then be used after each layer is removed in order to determine the composition of the
new surface and hence deduce the depth profile of the atomic composition. It is also
possible to analyze the sputtered atoms, generally the ionized species, to determine
the composition of the sputter-removed materials. This technique of secondary ion
mass spectroscopy, or SIMS, has been used extensively in depth profiling. One can
also measure the characteristic radiation emitted from excited sputtered ions or atoms
to determine the composition of the sputter-removed material.

For sputtering, it is the energy lost in elastic collisions with the atomic cores—termed
nuclear energy loss—that determines the energy transfer to and eventual ejection of
surface atoms. For backscattering or nuclear analysis, the energetic particles lose energy
primarily through electron excitation and ionization in inelastic collisions with atomic
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Figure 4.1. Schematic diagram of two approaches to obtain depth profiles in the thin films.
With particle energy loss techniques, the thickness of the layer is determined from the energy
loss of the energetic particles. With sputter sectioning techniques, the amount of material probed
is determined by the sputtering yield. The surface composition can be directly analyzed either
by electron spectroscopies or by the amount of material removed by sputter species detection.

electrons—termed electronic energy loss. A good assumption is that electronic energy
loss and nuclear energy loss can be treated separately and independently. In Chapter 3,
we described electronic energy loss and showed that the amount of nuclear energy loss
was small. In the sputtering regime, the nuclear energy loss dominates.

4.2 Sputtering by Ion Bombardment—General Concepts

Surfaces of solids erode under ion bombardment. The erosion rates are characterized
primarily by the sputtering yield Y, which is defined as

Y = Sputtering yield = Mean number of emitted atoms

Incident particle
. (4.1)

The sputtering yield depends on the structure and composition of the target material,
the parameters of the incident ion beam, and the experimental geometry. Measured
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values of Y cover a range of over seven decades; however, for the medium-mass ion
species and keV energies of general interest in depth profiles, the values of Y lie be-
tween 0.5 and 20. The sputtering yields of MeV light ions for most materials are of
the order of 10−3. Consequently, Rutherford backscattering analysis will cause the
sputtering of only a small fraction of a monolayer during a typical analysis (see
Section 3.11).

Sputtering yields can be accurately predicted by theory for single-element materials.
Figure 4.2 shows the energy and incident particle dependence of the sputtering yield
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Figure 4.2. (a) Energy dependence of the Ar+ ion sputtering yield of Si and (b) incident ion
dependence of the Si sputtering yield. The solid line represents the calculations of Sigmund, and
the data are from Andersen and Bay (1981). [With permission of Springer Science+Business
Media.]
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Figure 4.3. Schematic of the ion–solid interactions and the sputtering process.

of Si. The experimental values, in good agreement with calculations (solid line) by
Sigmund (1981), are based on nuclear energy loss mechanisms and the sharing of this
energy loss among the large number of atoms that define the collision cascade. For any
given ion–target combination, it is desirable to refer to tabulated values or to determine
the yield experimentally.

A number of review articles and books on the topic of sputtering are listed in the
references at the end of this chapter. In the sputtering process, atoms are ejected from
the outer surface layers. The bombarding ion transfers energy in collisions to target
atoms that recoil with sufficient energy to generate other recoils (Fig. 4.3). Some of
these backward recoils (about 1–2 atoms for a 20 keV Ar ion incident on Si) will
approach the surface with enough energy to escape from the solid. It is these secondary
recoils that make up most of the sputtering yield. For example, for the case of Ar ions
on Si, target recoils in the backward direction toward the surface are kinematically
forbidden, as is Ar backscattering (see Chapter 2). The sputtering process involves
a complex series of collisions (the collision cascade) involving a series of angular
deflections and energy transfers between many atoms in the solid. It is possible to
simulate the sputtering process on a computer via a series of binary events, but such
simulations do not readily yield the dependencies of the sputtering process on various
experimental parameters. The problem has been approached based on transport theory,
which considers the dynamics of the collision cascade and derives the total energy
flux in the backward direction. Such a derivation is beyond the scope of this book.
However, we do extract the important parameters based on nuclear energy loss concepts.
Clearly, the most important parameter in the process is the energy deposited at the
surface.

The sputtering yield should be proportional to the number of displaced or recoil
atoms. In the linear cascade regime that is applicable for medium mass ions (such as
Ar+), the number of recoils is proportional to the energy deposited per unit depth in
nuclear energy loss. We can then express the sputtering yield Y for particles incident
normal to the surface as

Y = � FD(E0), (4.2)
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where � contains all the material properties such as surface binding energies, and
FD(E0) is the density of deposited energy at the surface and depends on the type,
energy, and direction of the incident ion and the target parameters Z2, M2, and N.

The deposited energy at the surface can be expressed as

FD(E0) = αN Sn(E0), (4.3)

where N is the atomic density of target atoms, Sn(E) is the nuclear stopping cross
section, and NSn(E) = dE dx|n is the nuclear energy loss. In this equation, α is a
correction factor that takes into account the angle of incidence of the beam to the
surface and contributions due to large-angle scattering events that are not included in
the development. The sputtering yield is calculated in Section 4.4.

The evaluation of Sn(E) rests on the collision cross section for energy transfer to a
substrate atom. In the keV sputtering regime where the particle velocity is much less
than the Bohr velocity, screening of the nuclear charge by the electrons must be included
in the description of the collisions. The procedure to obtain the sputtering yield is to
first treat a screened potential from a description of the Thomas–Fermi approximations
(Section 4.9), and then derive the collision cross section based on a screened potential
to obtain the nuclear stopping cross section (Section 4.3).

4.3 Nuclear Energy Loss

A charged particle penetrating a solid loses energy through two processes: (1) energy
transfer to electrons (electronic energy loss); and (2) energy transfer to the atoms of
the solid (nuclear energy loss). In both cases, the interaction is basically of a Coulomb
type; for the electronic case, it is pure Coulomb (see Chapter 3), while in the nuclear
case, it is a form of screened Coulomb potential. The two mechanisms have different
energy dependencies—in the electronic case, there is a peak in the cross section at
projectile energies of the order of 0.1–1.0 MeV for light projectiles; in the nuclear
case, the peak in the loss cross section is at much lower energy, of the order of 0.1–
10 keV. In penetration theory, the electronic and nuclear energy losses are treated
as uncorrelated and simply summed. In many cases, one or the other contribution is
negligible and is simply ignored. Sputtering is governed by the energy deposited via
nuclear energy loss at the surface of a solid. This mechanism transfers momentum and
energy to the atoms of the solid, resulting in energetic secondaries and sputtering. In
this section, we give a simple description of nuclear energy loss and compare it to the
more sophisticated treatments. As in other sections of this text, our aim is to provide
a simple mathematical description of the process in order to provide some insight into
the quantitative understanding of the physics.

The derivation of nuclear energy loss uses two main assumptions: (1) a simple
screened Coulomb potential and (2) the impulse approximation.

The interaction potential between two atoms Z1 and Z2 can be written in the form
of a screened Coulomb potential (Section 4.9), using χ as the screening function:

V (r ) = Z1 Z2e2

r
χ
( r

a

)
, (4.4)
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where a is the Thomas–Fermi screening radius for the collision

a = 0.885a0

(Z1/2
1 + Z1/2

2 )2/3
. (4.5)

The values of a lie between 0.01 and 0.02 nm for most interactions. We take as a
screening function

χ (r/a) = a/2r, (4.6)

leading to a potential of the form

V (r ) = Z1 Z2e2a

2r2
. (4.7)

The screening functions a/r and a/2r are illustrated in Fig. 4.4, and the latter reasonably
follows the shape of the more accurate Molière potential for r/a > 1. The 1/r2 potential
is not a good approximation for r/a < 1, since it does not go into the pure Coulomb
form as r → 0. For low-energy particles as used in sputtering, this problem is not
severe, since the distance of closest approach is large, thus preventing interactions at
small r.

The impulse approximation is appropriate for the small-angle, large-impact param-
eter collisions that dominate the sequence of scatterings which determine the charged
particle trajectory. We have used this approximation in the derivation of electronic
stopping given in Chapter 3. In the impulse approximation, the change in momentum



4.3. Nuclear Energy Loss 65

is given by

�p =
∞∫

−∞
F⊥ dt, (4.8)

or

�p = 1

v

∞∫
−∞

F⊥ dx, (4.9)

where F⊥ is the component of the force acting on the ion perpendicular to its incident di-
rection. By using the geometry of Fig. 3.3, the force may be written with r = √

x2 + b2

as

F⊥ = ∂V (r )

∂y
= −

∂V
(√

x2 + b2
)

∂b
. (4.10)

Then

�p = 1

v

∂

∂b

∞∫
−∞

V
(√

x2 + b2
)

dx, (4.11)

or, using Eq. 4.7,

�p = 1

v

∂

∂b

∞∫
0

Z1 Z2e2a

(x2 + b2)
dx, (4.12)

which reduces to

�p = π Z1 Z2e2a

2vb2
. (4.13)

The energy transferred, T, to the recoiling nucleus is

T = �p2

2M2
,

T = π2 Z2
1 Z2

2e4a2

8M2v2b4
. (4.14)

The cross section dσ (T ) for transfer of energy between T and T + dT is

dσ = −2πb db,

or

dσ = − π2 Z1 Z2e2a

8
√

(M2/M1)E
T −3/2 dT, (4.15)
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where E = M1v
2/2. It is convenient to express this result in terms of the maximum

energy transfer Tmax, where

Tmax = 4M1 M2

(M1 + M2)2
E .

Then

dσ = −π2 Z1 Z2e2a

4T 1/2
max

M1

(M1 + M2)
T −3/2 dT . (4.16)

The nuclear stopping cross section Sn is given by

Sn = −
∫

T dσ,

or

Sn = π2 Z1 Z2e2a

2T 1/2
max

(
M1

M1 + M2

)
T 1/2

∣∣∣∣
Tmax

0

.

Sn = π2 Z1 Z2e2aM1

2(M1 + M2)
, (4.17)

The nuclear energy loss is given by

dE

dx

∣∣∣
n

= NSn, (4.18)

where N is the number of atoms/volume in the solid. Note that, in this approximation,
dE/dx|n is independent of energy, i.e.,

dE

dx

∣∣∣
n

= N
π2

2
Z1 Z2e2a

M1

M1 + M2
. (4.19)

Figure 4.5 compares this energy-independent value to the values of the nuclear energy
loss using the Thomas–Fermi potential, and follows the description of Lindhard in
which the nuclear energy loss is expressed in terms of a reduced energy ε′. This energy
is given by the ratio of the Thomas screening distance to the distance of closest approach,

ε′ = M2

M1 + M2
E

a

Z1 Z2e2
, (4.20a)

and a reduced length ρ based on a cross section πa2 and an energy ratio Tmax/E ,

ρ = x N M24πa2 M1/(M1 + M2)2. (4.20b)

This form is generally useful in that the stopping power for any combination of projectile
and target at any energy can be found. In this formalism, dε′/dρ = Sn(ε′), so if we use
Eqs. 4.20a and 4.20b,

dE

dx

∣∣∣
n

= 4πaN Z1 Z2e2 M1

M1 + M2
Sn(ε′), (4.21)

where Sn(ε′) depends on the form of V (r ). In terms of the value of (dE/dx)n derived in
Eq. 4.19, the energy-independent value of the nuclear energy loss in reduced units of
energy and length is 0.393. This value is slightly different than that given by Lindhard
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Figure 4.5. Reduced nuclear stopping cross section Sn(ε ′) (or dε ′/dρ) as a function of ε ′. The
Thomas–Fermi curve represents the most accurate value of Sn for the Thomas–Fermi potential;
the horizontal line is the result for an R−2 potential [Eq. (4.17)].

et al. (1963), since we have used an impulse approximation, while these authors evaluate
the scattering integral more completely.

Note that our approximation, Eq. 4.19, gives the correct order of magnitude for the
stopping power but deviates considerably in the energy dependence. Most significantly,
it does not display the 1/E dependence at high energy. This outcome is the result of
using a 1/r2 potential rather than a 1/r potential. Clearly, the 1/r2 approximation is
worst at high energies, where close collisions are important. Accurate values of the
nuclear energy loss (dE/dx)n can be derived from Eq. 4.21 and Fig. 4.5, which give
Sn(ε′) for the more accurate Thomas–Fermi potential (Section 4.9).

For 1 keV Ar ions incident on a medium mass target, Cu, a = 0.0103 nm and
ε′ = 0.008, and, for 10 keV O ions on Cu, a = 0.115 and ε′ = 0.27. (Ar and O are
generally used in sputter profiling.) Thus, for ion energies from 1 to 10 keV, the values
of ε′ are in the range of 0.01–0.3; this is a range just below the plateau of dE/dx. As
an approximation to estimate the magnitude of dE/dx|n, an energy-independent value
(a rough average) of Sn(ε′) ∼= 0.39 can be used. For Ar+ ions incident on Cu, dE/dx|n
= 12.4 eV/nm, and for oxygen ions incident on Cu, dE/dx|n ∼= 3.2 eV/nm.

4.4 Sputtering Yield

The yield Y of sputtered particles from single-element amorphous targets was expressed
in Eq. 4.2 as the product of two terms: one, �, containing material parameters and the
other, FD, the deposited energy. The derivation of� involves a description of the number
of recoil atoms that can overcome the surface barrier and escape from the solid:

Y = �FD, (4.22a)

where

� = 4.2 × 10−3

NU0
(nm/eV), (4.22b)
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where N is the atomic density (in nm−3) and U0 (in eV) is the surface binding energy.
The value of U0 can be estimated from the heat of sublimation (∼= heat of vaporization)
and typically has values between 2 and 4 eV. For the deposited energy, Eq. 4.3,

FD = α N Sn. (4.22c)

The value of α is a function of the mass ratio and ranges between 0.2 and 0.4, as
shown in Fig. 4.6. The value of α increases with the angle of incidence because of
increased energy deposition near the surface. A reasonable average value for normal
incidence sputtering with medium mass ions is α = 0.25.

For Ar+ ions incident on Cu (where N = 85 atoms/nm3), the value of NSn =
1240 eV/nm. The surface binding energy, U0, is ∼ 3 eV based on a heat of vapor-
ization of ∼= 3 eV. If we rewrite Eq. 4.2, the sputtering yield is

Y = 4.2

NU0
α N Sn

= 4.2 × 0.25 × 1240 eV/nm

84.5/nm3 × 3 eV
= 5.1.

This result is in reasonable agreement with measured values of about 6. These estimates
hold for the ideal case of an amorphous single-element target. The sputtering yields
from single-crystal, polycrystalline, or alloy targets may deviate significantly from the
simple estimates above. With polyatomic targets the preferential sputtering of one of
the elements can lead to changes in composition of the surface layer. These changes
will be reflected in the Auger yields, which give the composition of the altered, not
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original, layer. Another complication is ion beam mixing (redistribution within the
collision cascade), which can lead to broadening of the interface during the profiling of
layered targets. In many of these cases, it is possible to use Rutherford backscattering
to establish layer thicknesses and the concentration of the major constituents. This
information will then provide a calibration for the sputter profile.

4.5 Secondary Ion Mass Spectroscopy (SIMS)

Surface layers are eroded by the sputtering process, and hence the relative abundance
of the sputtered species provides a direct measure of the composition of the layer that
has been removed. Sputtered species are emitted as neutrals in various excited states;
as ions both positive and negative, singly and multiply charged; and as clusters of
particles. The ratio of ionized to neutral species from the same sample can vary by
orders of magnitude, depending on the condition of the surface. Analysis of sputtered
species is the most sensitive of the surface-analysis techniques. The common use is the
detection and measurement of low concentrations of foreign atoms in solids.

One of the most commonly used sputtering techniques is the collection and analysis
of the ionized species—the secondary ions. As shown in Fig. 4.7, the secondary ions
enter an energy filter, usually an electrostatic analyzer, and then are collected in a
mass spectrometer. This process gives rise to the acronym SIMS for secondary ion

+
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SURFACECRATER
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Figure 4.7. (a) Schematic of the SIMS apparatus. An incident ion beam results in sputtered
ionic species, which are passed through an electrostatic energy filter and a mass spectrometer
and finally detected by an ion detector. (b) The beam is usually swept across a large area of the
sample and the signal detected from the central portion of the sweep. This setup avoids crater
edge effects.
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mass spectroscopy. All SIMS instruments possess a capability for surface and elemental
depth concentration analysis. In one mode of operation, the sputter ion beam is rastered
across the sample, where it erodes a crater in the surface. To insure that ions from the
crater walls are not monitored, the detection system is electronically gated for ions
from the central portion of the crater. There are also direct imaging instruments—ion
microscopes—in which the secondary ions from a defined micro-area of the sample
are detected so that an image of the surface composition can be displayed.

The spectra of both positive and negative secondary ions are complex, exhibiting not
only singly and multiply charged atomic ions but all ionized clusters of target atoms.
As shown in Fig. 4.8, the mass spectrum from Ar+-bombarded Al shows not only
singly ionized atoms but also doubly and triply ionized atoms and two-, three-, and
four-atom clusters. In most cases, the yield of singly ionized atoms predominates.

Sputtered particles emerge from the solid with a distribution of energies correspond-
ing to the fluctuations in the many individual events that make up the sputtering process.
The sputtered particles have a total yield Y related to the energy spectrum Y (E) such
that

Y =
Emax∫
0

Y (E) dE, (4.23)

where Emax is the maximum energy of the sputtered particles. The positively ionized
secondary ion yield Y +(E) is related to the sputtering yield Y (E) by

Y +(E) = α+(E)Y (E), (4.24)

and the total secondary positive ion yield is

Y + =
Emax∫
0

α+(E)Y (E) dE, (4.25)
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where the ionization probability α+(E) depends on the particle energy and the nature
of the substrate. As shown in Fig. 4.9, the ionization yield can vary by three orders of
magnitude between species with nearly identical sputtering yields. The major difficulty
in quantitative analysis by SIMS is the determination of α+(E).

The measured signal I +, generally given in counts/s, of a mono-isotopic element of
mass A at a concentration CA in the target is given by

I +
A = CAipβT α+(E, θ )Y (E, θ ) �	 �E, (4.26)

where ip is the primary beam current (ions/s), θ and E represent the angle and pass
energy of the detector system, �	 and �E are the solid angle and width of the energy
filter, and β and T are the detector sensitivity and the transmission of the system for
the ion species measured. Both α+ and Y are dependent on the sample composition.
The composition dependence can frequently be neglected if concentration profiles of a
low-level constituent in a matrix of constant composition are to be determined. A good
example of this application is the measurement of the depth profile of ion-implanted
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impurities in semiconductors (Fig. 4.10). The maximum impurity concentration is less
than 10−3, and hence the presence of the As has minimal effect on α+. A strong feature
of SIMS is the ability to analyze hydrogen over a wide range of concentrations, as
shown in Fig. 4.11. In this case, surface contamination by water vapor can influence
the dynamic range.

Secondary ion yields are very sensitive to the presence of either electropositive or
electronegative ions at the target surface. The picture of neutralization of a positive ion
leaving a surface involves the atomic energy levels of the emitted species and the avail-
ability of electrons at the solid surface to fill the ionized level. In one view, this process
is most efficient when there are electrons in the solid at precisely the same binding
energy as the unoccupied level. Under this condition, a resonance tunneling can occur
that neutralizes the outgoing species (Fig. 4.12). Thus the probability of neutralization
depends on the band structure of the solid and the atomic levels of the sputtered ion.
For high yields of ionized particles, one desires to reduce the neutralization probability.
This could be accomplished by the formation of a thin oxide layer, which results in
a large forbidden gap and a decrease in number of available electrons for neutraliza-
tion. For example, oxygen adsorption causes an enhancement of secondary ion yield.
Figure 4.13 shows secondary ion yields for 3 keV Ar+ bombardment of clean and
oxygen-covered metals. The enhancement in yield covers a wide range of two to three
orders of magnitude. The enhancement for Si is shown in Fig. 4.13b as a function
of oxygen concentration in the Si. The sensitivity to an oxidized surface can be an
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advantage; for this reason, SIMS analysis is often carried out with the surface flooded
with oxygen or bombarded with an oxygen beam.

4.6 Secondary Neutral Mass Spectroscopy (SNMS)

As shown in Fig. 4.13, the secondary ion yield from Si could vary over three or-
ders of magnitude, depending on the oxygen concentration. These matrix effects
can be avoided when the sputtered neutral particles are used for composition anal-
ysis. The mass analysis system still requires ions for detection, and, in SNMS, the
emission (sputtering) and ionization (charge transfer) processes can be decoupled by
ionizing the sputtered neutral atoms after (postionization) emission from the sample
surface.

An example of an SNMS system is shown in Fig. 4.14, where the major difference
from a conventional SIMS system (Fig. 4.7) is the insertion of an ionizing plasma
chamber in front of the mass spectrometer. The grids act as an electrical diaphragm
between the sample and the chamber, which prevents ions of both signs from entering or
leaving the chamber. Thus only neutral species enter the ionizing chamber, and species
ionized within the chamber cannot reach the sample.
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sputtered by 3 keV argon ions. (b) Intensity ratios �I/I , for Si+ and Si− ion yields from oxygen-
implanted Si versus oxygen concentration for 3 keV Ar sputtered silicon The oxygen-induced
intensity �I is given by �I = I − Ic, where I is the measured intensity from oxygen-doped Si,
and Ic is the ion emission from clean Si. [Both (a) and (b) are from Wittmaack, Surface Sci. 112,
168 (1981), with permission from Elsevier.]
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Figure 4.14. Apparatus for conducting secondary neutral mass spectroscopy (SNMS), in which
neutral sputtered species enter a plasma environment for postionization. The ions are then ex-
tracted and detected in the quadruple mass spectrometer system.

Ionization of the neutral species can be achieved in the chamber by use of a low-
pressure, high-frequency plasma excited by electron cyclotron wave resonance (Oech-
sner, 1984). The postionization factor α0

A for the sputtered species A depends on the
plasma parameters, electron impact ionization of A, and the travel time of A through
the ionizer. Values of α0

A close to 10−1 are achieved for near noble ions and 10−2 for
transition metal ions like Ta. The postionization factor α0 is determined by the exper-
imental conditions of the system, and for a particular species A, the factor α0

A can be
treated as a constant for the apparatus. The measured signal α0

A of the neutral species
A can be written as

I 0
A = ip YA α0

A (1 − α+
A − α−

A ) η0
A, (4.27)

where ip is the primary beam current, YA is the sputtering yield of A, α+
A and α−

A are
ionization yields for the formation of secondary ions, and ηA is the instrumental factor.
The ionization probabilities α+ and α− are usually well below unity, so the factor
(1 − α+ − α−) can be treated as unity. Since sample matrix effects are small in the
postionization factor α0, calibration can be achieved readily by use of standards. The
sensitivity of SNMS to low concentrations of impurities is comparable to that of SIMS,
with a detection value of about 1 ppm. In SNMS, however, one does not expect large
variations in yield with variation in the properties of the substrate. Instead of plasmas,
high-powered lasers can be used to ionize the neutral species.

4.7 Preferential Sputtering and Depth Profiles

In a description of sputtering from a multicomponent system, the influence of prefer-
ential sputtering and surface segregation must be included. For a homogeneous sample
with two atomic components A and B, the surface concentrations C s are equal to those
in the bulk, Cb, in the absence of segregation to the surface, which might occur due to
thermal processes. Then, at the start of sputtering,

C s
A/C s

B = Cb
A/Cb

B . (4.28)
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The partial yield of atomic species A and B is defined as in Eq. 4.1 by

YA,B = Number of elected atoms A, B

Incident particle
, (4.29)

where the partial sputtering yield YA of species A is proportional to the surface concen-
tration C s

A, and similarly, YB is proportional to Cs
B . The ratio of partial yields is given

by

YA

YB
= f AB

C s
A

C s
B

, (4.30)

where the sputtering factor f AB takes into account differences in surface binding ener-
gies, sputter escape depths, and energy transfers within the cascade. Measured values
of f AB generally are in the range between 0.5 and 2.

In the case where f AB is unity, YA/YB = C s
A/C s

B , and the yield of sputtered particles
is a direct measure of the bulk concentration ratio. In the case where f AB �= 1, the surface
concentrations and yields will change from their initial values, C s

A(0) and YA(0), to their
values Y s

A(∞) and YA(∞) at long times when steady state is achieved.
At the start of sputtering, t = 0,

YA(0)

YB(0)
= f AB

C s
A(0)

C s
B(0)

= f AB
Cb

A

Cb
B

. (4.31)

At long times, when steady-state conditions have been achieved, conservation of mass
requires that the ratios of partial yields equal the bulk concentration ratio,

YA(∞)

YB(∞)
= Cb

A

Cb
B

. (4.32)

For example, if there is preferential sputtering where f AB > 1, the sputtering yield of
A is greater than that of B, and the surface will be enriched in B. This enrichment of the
surface produces an increase in the sputtering yield of B (more B atoms) and a decrease
in the sputtering yield of A (less A atoms). As the process continues with macroscopic
amounts (greater than 10 nm) of material removed, the increased concentration of B
just balances out the preferential sputtering of A. Therefore, at steady state, the surface
concentration ratio will differ from that of the bulk when fAB �= 1:

CA(∞)

CB(∞)
= 1

f AB
· Cb

A

Cb
B

. (4.33)

That is, the surface composition is rearranged so that the total sputtering yield gives
the bulk composition in spite of differences in yields of the individual atomic species.
Analysis of the composition of the remaining surface layer at this point would show a
difference from that of the bulk composition.

An example of the change in composition of a silicide layer is shown in Fig. 4.15
for PtSi that was sputtered with 20 keV argon ions and then analyzed with 2 MeV
4He+ ions. The Rutherford backscattering spectrum shows an enrichment of the Pt
concentration in the surface region. The ratio of Pt/Si increased from the value of unity
associated with that of the bulk values to a value near two in the surface region. The
increase in the Pt concentration is due to the fact that the partial sputtering yield of Si is
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Figure 4.15. RBS spectrum of a PtSi film after sputtering with 20 keV Ar ions. The shaded
portion in this Pt signal indicates an increase in the concentration of Pt in the near-surface region
as a result of the enhanced Si sputtering. [From Liau et al., J. Appl. Phys. 49, 5295 (1978).
Copyright 1978 by the American Physical Society.]

greater than that of Pt, YSi > YPt. Figure 4.16 shows the partial yields as a function of
argon ion dose. As one would expect, at low bombardment doses the sputtering yield
of Si is significantly greater than that of Pt. At the onset of sputtering, the yield ratio
YSi(0)/YPt(0) = 2.4. As the bombardment proceeds, the partial sputtering yields merge
into the same value. The equality of the Si and Pt yields merely reflects the fact that
the yield ratio, after steady state has been reached, is equal to the bulk concentration
ratio, which for PtSi is unity.

4.8 Interface Broadening and Ion Mixing

One of the applications of sputtering is the removal of deposited or grown layers in thin
film structures in order to analyze the composition at the interface between the film
and substrate. In these applications, the penetration of the ions used in the sputtering
beam can induce an intermixing between the film and substrate due to the strong atomic
displacements and diffusion that occurs within the collision cascade around the track
of the ion used in sputtering. This intermixing leads to an artificial broadening of the
concentration depth profiles at the interface.

Sputtering requires bombardment of the surface with primary ions of appreciable
energy (typically 1–20 keV) whose range far exceeds the escape depth of the sputtered
ions and often exceeds the observation depth in electron spectroscopies. Therefore,
due to the ion-induced intermixing in the collision cascade, a zone of altered mate-
rial precedes the analytical zone during layer removal. Ion mixing is illustrated in
Fig. 4.17 for SIMS analysis of a Pt film deposited on Si and sputtered by argon ions.
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Figure 4.16. Dose dependence of the partial sputtering yields of Si and Pt emitted from PtSi
for 40 keV Ar bombardment, where fluence denotes dose. [From Liau and Mayer, 1980.]

When the argon ions penetrate through the Pt/Si interface, some of the Si atoms in
the substrate will be transported to the top surface of the Pt film, where they can be
sputtered. Thus a silicon signal will appear before the Pt film is sputtered away. Plat-
inum is also intermixed with the Si, and, consequently, a Pt signal will persist in the
SIMS spectrum at depths well beyond the thickness of the original deposited layer
of Pt.

An estimate of the interfacial broadening in such systems can be made by setting the
range R of the sputtering ion equal to the half-width of the broadened signal. The ion
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Figure 4.17. Schematic diagram of Ar+ ion sputtering of a 100 nm Pt layer on Si at three
different times in the sputtering process. When the Ar range is less than the Pt film thickness,
only Pt ions are sputtered. When the Ar ion penetrates through the Pt/Si interface, ion-induced
intermixing occurs, and a Si signal is found in the sputtering yield. After the initial Pt film has
been removed, a Pt signal is still observed due to mixing of Pt into the substrate Si. [From Liau
et al., J. Vac. Sci. Technol. 16, 121 (1979).]
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range is given by

R =
0∫

E0

1

dE/dx
dE, (4.34)

which can be approximated for medium mass ions in the keV energy range by assuming
that nuclear energy loss dominates and has an energy-independent value,

R = E0/(dE/dx)n, (4.35)

where (dE/dx)n is given by Eq. 4.19. The value of (dE/dx)n for Ar+ ions in Cu is about
1000 eV/nm, which is the basis for the rule of thumb that the altered layer extends
1 nm/keV.

The amount of interface broadening can be minimized by proper choice of ion ener-
gies and incident angles during sputter profiling. In many cases, sputter depth profiles
can have a better depth resolution than that obtained with backscattering spectrometry.

When possible, it is advantageous to use two or more analytical techniques that pro-
vide complementary data. Figure 4.18 shows the analysis of a tungsten silicide film on
polycrystalline silicon (poly-Si). Secondary ion mass spectroscopy (Fig. 4.18a) is used
to determine the phosphorus concentration in polycrystalline Si and to detect oxygen
contamination at the interface. Backscattering spectrometry (Fig. 4.18b) provides the
depth scale and the composition of the sputter-deposited silicide—in this case, 183 nm
of WSi2.7. In the SIMS data, the phosphorus concentration in poly-Si was calibrated
from a standard obtained by implanting phosphorus into a silicon sample.

The ratio of W to Si signals in SIMS data (Fig. 4.18a) does not reflect the silicide
composition, and there is an order-of-magnitude increase in the Si signal going from
the silicide into the Si. These effects are due to the influence of the matrix on the
yield of secondary ions. The peak in the W signal at the silicide/Si interface is due
to the enhancement of the W ion yield because of oxygen at the interface (note also
the enhancement of the phosphorus yield at the Si/SiO2 interface). The RBS spectrum
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Figure 4.18. (a) Secondary ion mass spectroscopy (SIMS) and (b) Rutherford backscattering
spectrometry (RBS) analysis of a tungsten silicide layer sputter deposited on a phosphorus-doped
polycrystalline silicon layer on a layer of SiO2 on silicon.
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(Fig. 4.18b) shows that there is no peak in the W distribution at the interface and that the
composition of the silicide is WSi2.7. The increase in the Si signal around 950 keV is
due to the increase in Si concentration going from silicide to Si, and the decrease around
800 keV is due to the presence of a layer of SiO2 70 nm thick at the interface between
the poly-Si layer and substrate Si. The signal from the 1 atomic % of phosphorus in
the poly-Si cannot be detected in the RBS spectrum but is easily detected in the SIMS
data. The amount of interface broadening is minimal in the depth profile of the SIMS
data, and the concentration of light mass elements (oxygen and phosphorus) can easily
be detected. The strong influence of the matrix on the ion yield does not allow an
accurate determination of the relative concentration of the major constituents (tungsten
and silicon). These quantities are found along with layer thickness from the Rutherford
backscattering spectrum. By the use of two complementary analytical techniques (RBS
and SIMS), a rather accurate picture of the composition of the sample can be obtained.

4.9 Thomas–Fermi Statistical Model of the Atom

In low-velocity collisions, the impact parameter is sufficiently large such that the nu-
clear charge is screened by the electrons. This leads to a modification of the scattering
potential from that of the unscreened Coulomb potential, V = Z1 Z2e2/r . The modi-
fied potential is found from the Thomas–Fermi description, which treats all atoms as
identical aside from scaling factors.

The Thomas–Fermi model assumes that the electrons can then be treated by statistical
mechanics, Fermi–Dirac statistics, in which they behave as an ideal gas of particles
that fills the potential well around the positively charged core. The density of states,
n(E), of a free electron gas is obtained by applying periodic boundary conditions and
box normalization to a cell of length L to give

n(E) = L3

2π2h--3
(2m)3/2 E1/2. (4.36)

The energy of the gas increases as the number of electrons increases. For a collection
of electrons, the number at a point r, Z (r ), is given by

Z (r ) =
EF(r )∫
0

n(E) dE = L3(2m)3/2

2π2h--3

EF(r )∫
0

E1/2dE = L3(2m)3/2

3π2h--3
EF(r )3/2, (4.37)

where EF(r ) is associated with the maximum energy of the ensemble of electrons at r.
The Fermi energy is simply the energy of the highest filled state. In the many-electron
atom that we are considering, the total energy Er of an electron is Er = EK + V (r ),
where EK is the kinetic energy. For a bound electron, Er ≤ 0, which requires that for
the maximum kinetic energy electron, EF = −V (r ). From Eq. 4.37,

ρ(r ) = Z (r )

L3
= (2m)3/2

3π2h--3
[−V (r )]3/2. (4.38)

The self-consistency condition is that the potential due to the electron density in Eq.
4.38, as well as that due to the nuclear charge, properly reproduces the potential
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energy, −V (r ). Consequently, the charge density, −eρ, and the electrostatic poten-
tial, −[V (r )/e], must satisfy Poisson’s equation

−1

e
∇2V = − 4π (−eρ),

or

∇2V = 1

r2

d

dr

(
r2 dV

dr

)
= 4πe2ρ = 4e2[−2mV (r )]3/2

3πh--3
. (4.39)

Equations 4.38 and 4.39 may be solved simultaneously for ρ and V, with boundary
conditions as follows: As r → 0, the leading term in the potential energy must be due
to the nucleus, so that V (r ) → −Ze2/r , and as r → ∞, there must be no net charge
inside the sphere of radius r, so that V falls off more rapidly than 1/r, and r V (r ) → 0.
Equation 4.39 and the boundary conditions given above are conveniently expressed in
a dimensionless form in which Z , E, m, and h appear only in scale factors. We put

V (r ) = − Ze2

r
χ, r = ax,

and

a = 1

2

(
3π

4

)2/3 h--2

me2 Z1/3
= 0.885a0

Z1/3
, (4.40)

where a0 = h--2/me2, the Bohr radius. Eq. 4.8 indicates that the scaling parameter to
describe the size of an atom is inversely proportional to the cube root of the atomic
number. (For electron spectroscopies where transitions are between core levels, the 1s
radius is approximated by a0/Z .) With these substitutions, Eq. 4.39 becomes

x1/2 d2χ

dx2
= χ3/2. (4.41)

In this dimensionless Thomas–Fermi (TF) equation, the potential behaves like a
simple Coulomb interaction in the extreme case as r → 0. The accurate solution of
Eq. 4.41 is done numerically, and there are also analytical approximations represented
in series expansions or exponentials. The Molière approximation to the Thomas–Fermi
screening function shown in Fig. 4.4 is most often used in computer simulations and
is given by

χ (x) = 0.35e−0.3x + 0.55e−1.2x + 0.10e−6.0x, (4.42)

where x = r/a.

Problems

4.1. The maximum value of the nuclear energy loss occurs at the reduced energy
value of 0.3 for the Thomas–Fermi potential. What energy in keV does ε′ = 0.3
correspond to for Ar+ ion incident on Si?

4.2. Assuming nuclear energy loss dominates and the stopping cross section is energy
independent, what is the range of 10 keV Ar ions incident on Cu?



82 4. Sputter Depth Profiles and Secondary Ion Mass Spectroscopy

4.3. For a screened Coulomb collision with χ = a/2r , use the impulse approximation
to show that b, the impact parameter, is proportional to (a/Eθ)1/2, and derive σ (θ),
the cross section.

4.4. Calculate the ratio of the unscreened to screened nuclear cross section dσ/dT for
the following cases: 2.0 MeV He+ on Au, 0.1 MeV He+ on Au, and 1 keV Ar+

on Cu.
4.5. For a scattering potential V (r ) ∝ r−3, what is the energy dependence of the

energy loss dE/dx?
4.6. Calculate the sputtering yield for 45 keV Ar ions incident on Si (U0 = 4.5 eV)

using a screened potential. Compare your answer with the data given in Figure 4.2.
4.7. If the sputtering yield of species A is twice that of species B in a matrix AB, what

is the ratio A to B of the flux of sputtered species at (a) the initial time and (b) the
steady-state time, and what is the ratio A to B of surface composition at (c) the
initial time and (d) the steady-state time?

4.8. Determine the time in seconds required to sputter 50 nm of Si using a 10 µA/cm2

beam of 45 keV ions of (a) Ne, (b) Kr, and (c) Xe. (Use data given by the solid
line in Fig. 4.2.)
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5
Ion Channeling

5.1 Introduction

The arrangement of atoms in a solid determines the properties of a material and, in
single crystals, determines the magnitude of incident ion–target-atom interactions. The
influence of the crystal lattice on the trajectories of ions penetrating into the crystal
is known as channeling—a term that visualizes the atomic rows and planes as guides
that steer energetic ions along the channels between rows and planes. The steering
action is effective and can lead to hundredfold reductions in the yield of backscattered
particles. In this chapter, we describe channeling of high-energy ions in single crys-
tals and show how use of this technique can improve the depth resolution of the ion
scattering technique and improve its sensitivity to light impurities. The combination
of Rutherford backscattering and channeling plays an important role in the materials
analysis of a variety of thin film/single-crystal problems. Single crystals are not rare
in modern-day technology, as all electronic components are based on single-crystal
semiconductors.

5.2 Channeling in Single Crystals

Channeling of energetic ions occurs when the beam is carefully aligned with a ma-
jor symmetry direction of a single crystal (Lindhard, 1965). By a major symmetry
direction, we mean one of the open directions as viewed down a row of atoms in
a single crystal. Figure 5.1 shows a side view of this process in which most of the
ion beam is steered (channeled) through the channels formed by the string of atoms.
Channeled particles cannot get close enough to the atomic nuclei to undergo large-
angle Rutherford scattering; hence, scattering from the substrate is drastically reduced
by a factor of ∼100. This improves the ion scattering sensitivity to light impuri-
ties on the surface. There is always a full interaction with the first monolayers of
the solid. This surface interaction results in an improved depth resolution in these
experiments.

The trajectory of a channeled ion is such that the ion makes a glancing angle impact
with the axes (axial channeling) or planes (planar channeling) of the crystal and is
steered by small-angle scattering collisions at distances greater than 0.01 nm from the
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Figure 5.1. Schematic of particle trajectories undergoing scattering at the surface and channeling
within the crystal. The depth scale is compressed relative to the width of the channel in order to
display the trajectories.

atomic cores. Since the steering of the channeled particle involves collisions with many
atoms, one may consider in a continuum model that the nuclear charge of the atoms
in a row (or plane) is uniformly averaged along the row (or plane). The interaction of
a channeled particle with an atomic row is described in terms of a single continuum
potential Ua(r ), where r is the perpendicular distance from the row. Ua(r ) is the value
of the atomic potential averaged along the atomic row with atomic spacing d. For the
axial case,

Ua(r ) = 1

d

∞∫
−∞

V
(√

z2 + r2
)

dz, (5.1)

where V (r̃ ) is the screened Coulomb potential and r̃ is the spherical radial coordinate,
r̃2 = z2 + r2. Rather than using the Molière potential, we use a more convenient form
of the screened Coulomb potential, extensively used in channeling theory because
it permits analytical treatments of channeling parameters without significant loss of
precision. This standard potential is given by

V (r̃ ) = Z1 Z2e2

(
1

r̃
− 1√

r̃2 + C2a2

)
, (5.2)

where C2 is usually taken as equal to 3 and a is the Thomas–Fermi screening distance
(Eq. 4.5). Then we obtain for the axial continuum potential

Ua(r ) = Z1 Z2e2

d
ln

[(
Ca

r

)2

+ 1

]
, (5.3)

where d is the average distance between atoms in the rows. The magnitude of this
potential is the order of atomic potentials, that is, 223 eV at r = 0.01 nm for He along
the 〈110〉 rows of Si (d = 0.384 nm).
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PII
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Figure 5.2. Components of the initial momentum vector for a particle incident to an atomic
string at an angle ψ .

The continuum potential and conservation of energy allow us to find the critical
angle for channeling. The total energy E of a particle inside the crystal is

E = p2
‖

2M
+ p2

⊥
2M

+ Ua(r ), (5.4)

where p‖ and p⊥ are, respectively, the parallel and perpendicular components of the
momentum with respect to the string direction (Fig. 5.2). Then

p‖ = p cos ψ, p⊥ = p sin ψ,

and

E = p2 cos2 ψ

2M
+ p2 sin2 ψ

2M
+ Ua(r ). (5.5)

Channeling angles are small, and we (1) use a small-angle approximation and (2) equate
the last two terms with the transverse energy

E⊥ = p2ψ2

2M
+ Ua(r ), (5.6)

i.e., a kinetic energy contribution and a potential energy contribution. The total energy
is conserved, and, in this approximation, the transverse energy is conserved. Then the
critical angle ψc is defined by equating the transverse energy at the turning point U (rmin)
to the transverse energy at the midpoint:

Eψ2
c = U (rmin), (5.7)

or

ψc =
(

U (rmin)

E

)1/2

. (5.8)

The thermal smearing of the atom positions sets a lower limit to the minimum distance
for which a row can provide the necessary correlated sequence of scatterings required
for the channeling condition. The most useful first approximation to the critical angle
is obtained by substituting rmin = ρ in Eqs. 5.3 and 5.8, where ρ2 is two-thirds of the
mean square thermal vibration amplitude:

ψc(ρ) = ψ1√
2

∣∣∣∣∣ln
[(

Ca

ρ

)2

+ 1

]∣∣∣∣∣
1/2

, (5.9)
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where

ψ1 =
(

2Z1 Z2e2

Ed

)1/2

. (5.10)

Thermal vibrations and the definition of ρ are discussed in Section 8.3.
The values of ψc(ρ) are within 20% of experimental measurements and follow the

measured temperature dependence. For 1.0 MeV He+ incident on Si〈110〉 at room
temperature, ψc(ρ) = 0.65◦, while the experimentally measured value is 0.55◦.

The concept of a distance of closest approach, rmin, allows a simple geometric deriva-
tion of the fraction of channeled particles for incidence parallel to a crystal axis, ψ = 0.
In Fig. 5.3, we are looking head-on into the crystal. Around each string of atoms is an
area πr2

min in which particles cannot channel; particles incident at r > rmin can channel.
Then the fraction not channeled is simply πr2

min/πr2
0 , where r0 is the radius associated

with each string:

πr2
0 = 1

Nd
. (5.11)

Here N is the atomic concentration of atoms and d is the atomic spacing along the
string. In the literature, the ratio πr2

min/πr2
0 is usually referred to as the minimum yield,

χmin. In a backscattering experiment, for example, χmin is the yield of close-encounter
events as a result of the channeling process. Since rmin ∼0.01 nm, the minimum yield
is on the order of 1% or the fraction of particles channeled is ∼99%.

The continuum description can be applied to planar channeling as well as to axial
channeling. For planes, two-dimensional averaging of the atomic potential results in
a sheet of charge, as with the corresponding planar continuum potential Up(y) being
defined as

Up(y) = Ndp

∫
V
(√

y2 + r2
)

2πr dr, (5.12)

where Ndp is the average number of atoms per unit area in the plane, dp is the spacing
between planes, and y is the distance from the plane. For the standard potential, Up(y)
is given by

Up(y) = 2π Z1 Z2e2aNdp

{[( y

a

)2
+ C2

]1/2

− y

a

}
. (5.13)
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Similarly to axial channeling, a critical angle can be defined as

ψp =
(

Up(ymin)

E

)1/2

, (5.14)

where ymin
∼= ρ/

√
2 is the one-dimensional vibrational amplitude. We define the char-

acteristic angle for planar channeling,

ψ2 =
(

2π Z1 Z2e2a Ndp

E

)1/2

, (5.15)

which is on the order of the critical angle for planar channeling. Experimentally, planar
critical angles are a factor of 2–4 smaller than characteristic critical angles for axial
channeling.

A geometric picture of planar channeling indicates that the minimum yield,
χmin(planar), is approximately given by

χ = 2ymin

dp
, (5.16)

which is substantially larger than the corresponding value for axial channeling. The
value of the minimum yield for good planar channeling directions is typically on the
order of 10–25%.

5.3 Lattice Location of Impurities in Crystals

One application of channeling is the determination of the lattice site (substitutional
or nonsubstitutional) of an impurity in a single crystal. For small concentrations of
impurities,<1%, the presence of the impurities does not affect the channeling properties
of the host lattice. Therefore, the close-encounter probability of a substitutional impurity
follows the same angular dependence as that of the host lattice. Impurities that occupy
an ensemble of different sites, such as might exist in an impurity cluster, show no angular
dependence in the yield curve. The angular yield curves for both the substitutional case
and the random cluster of nonsubstitutional impurity atoms are shown schematically
in Fig. 5.4.

Rutherford backscattering is typically used to investigate the lattice site location of
impurities that have a larger atomic mass than the host atoms. Scattering kinematics
separates the signal of the impurity and host. For lighter-mass impurities, the yield from
nuclear reactions (Chapter 13) or ion-induced X-ray interactions (Chapter 11) is used
to monitor particle-impurity interactions. The angular yield curve, shown in Fig. 5.4, is
obtained by monitoring the yield of the impurity and the host lattice. The simultaneous
accumulation of both angular yield curves provides a sensitive experimental test of
the actual substitutionality of the impurity. For substitutional impurities (i.e., those
that replace a host atom on its lattice site), the angular scan and minimum yield for
scattering from impurities follow that of the host crystal (Fig. 5.4). Impurities located
at interstitial sites show a different angular scan. The interpretation of these angular
scans requires knowledge of the flux distribution of channeled particles.
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Figure 5.4. Schematic of the close-encounter probability curve expected for substitutional im-
purities and for a nonsubstitutional cluster.

5.4 Channeling Flux Distributions

A channeled particle is confined within equipotential contours, UT, such as the contin-
uum contours shown in Fig. 5.5. Here UT =∑Ui is the sum of the individual potentials
Ui of the nearby rows or planes. Thus a particle with a given transverse energy E⊥ must
always lie within a region given by UT(r ) ≤ E⊥.

ATOM ROWS
a b

0.1
1 3

30

30

100

100

10 eV

Figure 5.5. (a) Equipotential contours of the axial continuum potential for the case of He+ in
the 〈110〉 direction of Si. Note the change in shape of the potential contours corresponding to
the geometry of the channel. (b) The potential contours for an array of the channels of the type
shown in Fig. 5.5a.
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For silicon the 3 eV potential contour closes within the center of the channel (Fig. 5.5),
and hence particles with a transverse energy less than 3 eV will have their trajectories
confined to a particular channel. Channeled particles with higher transverse energies,
E⊥ ≥ 10 eV, are not confined within one channel but are guided by the cylindrically
symmetric potentials around the axial rows (Fig. 5.5). If we normalize to unit probability
of finding a particle somewhere in its allowed area A(E⊥), the probability to finding a
particle of transverse energy E⊥ at any point r is

P(E⊥, r) =
⎧⎨
⎩

1

A(E⊥)
, E⊥ ≥ UT(r)

0, E⊥ < UT(r)
. (5.17)

The area A(E⊥) is defined by an equipotential contour such as that shown in Fig. 5.5.
For example, particles with E⊥ = 10 eV (i.e., 1 MeV particles entering the center of
the channel at an angle 0.18◦) have equal probability of being found at any point within
the area defined by the equipotential contour UT(r ) = 10 eV.

In the following, the flux distribution of ions for a channeled beam (ψ = 0) is
calculated:

1. Due to conservation of transverse energy, a particle that enters at rin cannot get closer
than rin to the string.

2. For two-dimensional axial channeling, a particle has a uniform probability of being
found in its allowed area; for cylindrical symmetry, the allowed area is πrin

2, where
rin is the initial distance from the string at the crystal surface, i.e.,

P(rin, r ) =
{

1

πr2
0 − πr2

in
, r > rin

0, r < rin

. (5.18)

3. We assume cylindrical symmetry for simplicity (Fig. 5.6).

ALLOWED REGIONUa(r)

rrin

Figure 5.6. Geometry associated with the flux
distribution calculation showing the cylindrical
geometry and the allowed area.
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Figure 5.7. Flux distribution of the channeled beam as a function of distance from the row for
the case of the parallel incidence. ψ = 0, and assuming statistical equilibrium and cylindrical
symmetry. The small r/r0 approximation (Eq. 5.20) is shown for comparison.

The flux distribution inside the crystal, f (r ), then corresponds to integrating over all
initial impact parameters:

f (r ) =
r0∫

0

P(rin, r )2πrin drin

=
r0∫

0

1

πr2
0 − πr2

in

2πrin drin

= ln
r2

0

r2
0 − r2

. (5.19)

The effect of channeling is to transform a spatially uniform distribution to the peaked
distribution shown in Fig. 5.7. This flux distribution displays the most prominent feature
of channeling, namely, that the flux intensity and hence the close-encounter probability
approaches zero near the atomic rows (as r → 0). Expansion f (r ) for small r, near the
atom rows, gives

f (r ) ≈ r2

r2
0

, (5.20)
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where the approximation is shown by the dashed line in Fig. 5.7. This simple flux dis-
tribution is useful for estimating the scattering intensity from substitutional impurities.

Examination of Fig. 5.7 indicates another property of the channeling flux distribution:
the peaking of the particle density in the center of the channels (r ∼= r0). The intensity
is far in excess of unity, the value corresponding to the nonchanneling particle density.
Thus the yield from interstitial impurities located near the channels (r ≈ r0) will be
greater than the nonchanneling value.

The flux peaking effect at r = r0 was first shown in lattice location experiments of
Yb implanted into Si (Fig. 5.8). A substitutional impurity would have an angular scan
equivalent to that of the host. Clearly, the Yb is not substitutional but is located at a
position where the flux intensity is appreciably greater than that for a nonchanneling
direction.

5.5 Surface Interaction via a Two-Atom Model

The two-atom model is a simple and illustrative example of the interaction of the
ion beam with the atomic structure at a surface. We calculate the shadow behind a
repulsive scattering center, the topmost atom on a surface. Essentially, we calculate the
flux distribution f (r2) at the second atom as a result of scattering interactions with the
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Figure 5.9. Geometry for the calculation of the shadow cone and the flux distribution at the
second atom.

first atom. The small-angle approximation to pure Coulomb scattering is used so that
φ = Z1 Z2e2/Er1, as shown in Fig. 5.9. Then

r2 = r1 + φd

= r1 + Z1 Z2e2d

Er1

= r1 + R2
C/4

r1
, (5.21)

where the Coulomb shadow cone radius RC is defined as

RC = 2

(
Z1 Z2e2d

E

)1/2

. (5.22)

This quantity is the distance of closest approach to the second atom (Fig. 5.10). The
flux distribution at the second atom, f (r2), is given by

f (r2) 2πr2 dr2 = f (r1)2πr1dr1, (5.23)

where f (r1), the incident flux distribution, is uniform and normalized to unity so that

f (r2) = r1

r2

∣∣∣∣dr1

dr2

∣∣∣∣ . (5.24)

As shown in Fig. 5.10, r2 has a minimum, i.e., dr2/dr1 = 0. It is simplest to evaluate
f (r2) in two steps, for r1 < r1C and for r1 > r1C ; r2(r1C ) = RC. The final result is

f (r2) =

⎧⎪⎪⎨
⎪⎪⎩

0, r2 < RC

1

2

⎡
⎣ 1√

1 − R2
C/r2

2

+
√

1 − R2
C/r2

2

⎤
⎦ , r2 > RC

. (5.25)

The function f (r2) is sketched in Fig. 5.11.
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Figure 5.10. The dependence of r2 on the initial impact parameter r1 for the case of 1.0 MeV
He+ ions on W 〈100〉; r2 is calculated for d = 0.316 nm corresponding to the atom spacing in
the 〈001〉 direction. The minimum value of r2 is the Coulomb shadow cone with radius RC.

The flux distribution is so sharp that the curvature occurs within a distance that is
small compared to the thermal vibration amplitude of atoms in a crystal. Thus we
approximate f (r2) to a delta function, i.e.,

f (r2) =
⎧⎨
⎩

0, r2 < RC

1 + R2
C

2

δ(r2 − RC )

r2
, r2 ≥ RC

. (5.26)

The intensity of scattering from the second atom, I2, which we treat as a measure of

1.0

1.0

r2 / RC

f (r2)

Figure 5.11. Flux distribution f (r2) as a function of
r2/RC.
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the close-encounter probability, is given by the overlap of the flux distribution with the
Gaussian position distribution P(r2) of the second atom:

I2 =
∫

P̃(r2) f (r2)2πr2 dr2, (5.27)

where

P̃(r ) = 1

πρ2
e−r2/ρ2

. (5.28)

This treatment assumes that the close-encounter process has a characteristic interac-
tion distance that is very small compared to thermal vibration amplitudes or RC; such
processes are nuclear reactions, Rutherford backscattering, and inner-shell X-ray ex-
citation. If we use Eqs. 5.26 and 5.28,

I2 =
[

1 + R2
C

ρ2

]
e−R2

C/ρ2
, (5.29)

and the total surface peak intensity I is given by the unit contribution for the first atom
and I2 (Fig. 5.12). Note that the intensity I2 is determined by a single parameter ρ/RC,
which defines the ratio of the thermal vibration amplitude to the shadow cone:

I = I2 + 1. (5.30)

For values of ρ < RC, the topmost atom does indeed shadow the underlying atoms
from direct, close encounters with the analysis beam. This surface shadowing effect
is most vividly revealed in the backscattering spectrum from clean, single crystals.
The spectrum is dominated by the surface peak corresponding to interactions with the
first few monolayers of the solid; at lower energies, there is a continuum of scattering
corresponding to scattering by the relatively few nonchanneled particles. As described
previously, the intensity of the surface peak is sensitive to the arrangement of surface
atoms.

5.6 The Surface Peak

The application of ion beams to surface structure determination depends upon (1)
accurate measurement of a surface peak in monolayers and (2) the ability to predict the
surface peak for a given surface structure. For example, the aligned spectra in Fig. 5.13
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Figure 5.13. Channeling spectrum showing the surface peak for an ideal surface and a
reconstructed surface.

differ in their surface peak intensity for different surface structures. The reconstructed
surface shows a higher yield than the ideal surface due to surface displacements.

More sophisticated treatments of the surface peak take into account that more than
two atoms may contribute to the surface peak, and the governing potential is not a
pure Coulomb description but a screened potential, for example, the Molière potential.
The intensity of the surface peak is established by numerical techniques. The results
of many calculations demonstrate that the surface peak scaling still holds; the scaling
parameter is ρ/RM, where RM is the shadow cone radius associated with the Molière
potential, roughly RM

∼= RC.
The values of the surface peak in terms of atoms/row have been calculated for a

broad range of cases in which an ideal surface with a bulklike structure is assumed.
The results are plotted in Fig. 5.14, as a universal curve for the intensity of the surface
peak as a function of ρ/RM, where ρ is the two-dimensional vibrational amplitude.

Four simple cases of surface structure are shown with their corresponding surface
peak spectra in Fig. 5.15. The dashed spectra represent the scattering yield from a crystal
with an ideal surface for the case where the thermal vibration amplitude ρ is much less
than the shadow cone radius RM. This condition assures that the surface peak intensity
corresponds to one atom/row in this ideal case. The crystal with a reconstructed surface
where the surface atoms are displaced in the plane of the surface (Fig. 5.15b) represents
a situation where the second atom is not shadowed. The surface peak intensity in this
case is twice that of the ideal crystal. To test for relaxation where the surface atoms are
displaced normal to the surface plane (Fig. 5.15c), one must use nonnormal incidence
so that the shadow cone established by the surface atoms is not aligned with the atomic
rows in the bulk. Here, normal incidence would yield a surface peak intensity equivalent
to one monolayer. These two measurements, then, at normal and oblique incidence
reveal the presence of relaxation. A surface adsorbate atom can shadow the atoms
of the substrate if Radsorbate > ρsubstrate. The atomic mass sensitivity of ion scattering
permits discrimination between substrate and adsorbate. In Fig. 5.15d, the adsorbate
is positioned exactly over the surface atoms and hence reduces the substrate surface
peak.
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Figure 5.14. Comparison of the universal curve with experimental values for a number of
different bulklike surface. The experimental values were determined from backscattering mea-
surements. The notation Pt (111) 〈116〉 indicated a Pt crystal with a (111) surface plane; the
backscattering measurement is in the 〈116〉 axial direction.

The comparison between a spectrum obtained with the incident beam aligned with
the 〈100〉 axis of W (an aligned spectrum) and with the spectrum obtained with the
beam oriented away from a crystallographic direction (a random spectrum) is shown in
Fig. 5.16. The surface peak is clearly visible and corresponds to about two atoms per
row (ρ/RM = 0.65). Scattering from the bulk of the crystal in this aligned geometry is
two orders of magnitude smaller than the scattering yield under random incidence due
to the bulk channeling effect. It is this suppression of the scattering from the bulk in
the aligned spectrum that permits measurement of the surface peak.

5.7 Substrate Shadowing: Epitaxial Au on Ag(111)

An important application of ion scattering is the study of the initial stages of epitaxy.
The ability to monitor epitaxial growth from the very first monolayer is indicated by
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Figure 5.15. Representations of different surfaces on a simple cubic crystal. The backscattering
spectra shown on the right-hand side represent the expected signal from the different structures.
The dashed line represents the signal from the bulklike crystal.

Fig. 5.15d. If the deposited atoms are in perfect registry with the substrate, the shadow
cones established by these adsorbed atoms will shield the substrate atoms from the
incident beam.

The shielding concept is demonstrated in Fig. 5.17 for the deposition of monolayer
coverage of Au on Ag(111). The upper portion of the figure shows a cross-sectional
view of the (111) surface. The plane of the figure is the (011) plane, which contains the
〈111〉 normal direction and the off-normal 〈011〉 direction. In the 〈111〉 direction, the ion
beam sees the first three monolayers of the uncovered Ag surface; whereas in the 〈011〉
direction, only the first monolayer is visible. Figure 5.17 shows the backscattering
spectra for 1.0 MeV 4He+ incident along the 〈011〉 direction of a clean Ag surface
and a surface covered with approximately one, three, and four monolayers of Au. For
the covered surface, the decrease in the Ag surface peak is direct evidence that the Au
overlayer is registered with respect to the Ag substrate; that is, the Au is epitaxial on
Ag. The determination of registry, monolayer by monolayer, is more sensitive for the
〈011〉 direction in which only one monolayer of Au can cover all the available Ag sites.

The decrease of the Ag surface peak as a function of Au coverage is shown in Fig. 5.18
for low temperature (140 K) deposition and analysis in the 〈011〉 direction. The solid



5.8. Epitaxial Growth 99

 1.60

 <100>

<R> ÷ 10

 1.52

 100

200

Y
IE

LD

300

400

500

600

700
2.0 MeV He
on W

800

900

1000

1100

 1.68

ENERGY (MeV)

 1.76  1.84

Figure 5.16. Backscattering spectra from 2.0 MeV He+ incident on a clean W(001) surface for
the beam aligned with the 〈100〉 axis (◦) and for the beam aligned away from any major crys-
tallographic direction (•). Note that the nonchanneling spectrum 〈R〉, termed random incidence,
has been reduced by a factor of 10.

line is the result of computer simulations, which assume that Au atoms form uniform
coverage monolayer by monolayer. The agreement between the data and calculated
curve shows that the Au has good epitaxy and uniform coverage.

The registration of the first monolayer of Au with the Ag substrate can be monitored
through the reduction of the Ag surface peak. The registration of subsequent Au layers
with the initial Au layer can be monitored with the Au–Au shadowing effect. The
ratio of the Au signal for 〈011〉 incidence to random incidence—χmin (Au)—exhibits
a break at one monolayer coverage and a pronounced decrease at higher coverage
(Fig. 5.18). The dashed curve is a computer simulation. The agreement between the
calculated curve and the data shows that the Au is indeed epitaxial. The decrease of
the Ag surface peak with Au coverage measures the registry of the epitaxial layer to
the substrate; the decrease of χmin (Au) measures the quality of the epitaxial film.

5.8 Epitaxial Growth

The Au/Ag case is a good example of the growth of a high-quality epitaxial film. This
combination of materials satisfies the most important criterion for epitaxy, namely, a
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Figure 5.18. Intensity of the Ag surface peak as a function of Au coverage in terms of monolayers
on a (111) surface for 1.0 MeV He+ incident along the 〈110〉 direction of a Ag(111) surface at
140 K. Also shown (right-hand scale) is the ratio of the Au signal in the aligned and random
direction as a function of Au coverage. The solid line and dashed line are calculated assuming
pseudomorphic, monolayer-by-monolayer growth. Bulk vibrations are used, and correlations in
thermal vibrations are not included. [From Culbertson et al., 1981 c©1981, by The American
Physical Society]
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Figure 5.19. Shadowing of the substrate surface peak as a function of Au coverage: (a) For
Ag(111) along the 〈110〉 direction, with deposition and analysis at 140 K using 1.0 MeV He+;
(b) for Pd(111) along the 〈100〉 direction, with deposition and analysis at 300 K using 1.8 MeV
He+. The full curve is a theoretical line assuming a pseudomorphic, monolayer-by-monolayer
growth and includes correlations in thermal vibration.

good lattice constant match; in this case, the mismatch is < 0.2%. Figure 5.19 compares
the reduction of the substrate surface peaks for the case of Au epitaxy on Ag(111) and
Pd(111). In this latter case, the mismatch is poor: ∼ 4.7%. Note that in both cases there
is an immediate decrease in the surface peak corresponding to pseudomorphic growth.
However, in Au/Pd this pseudomorphic growth is disrupted after only two layers. This
outcome is consistent with epitaxy theory, which considers the strain in a mismatched,
epitaxial film, and the eventual onset of misfit dislocations. The calculated thickness
corresponding to this onset of dislocations for Au/Pd is ∼ 2 monolayers. In a film
with dislocations, the overlayer atoms are not registered and hence do not shadow the
substrate.

5.9 Thin Film Analysis

An important use of channeling is the suppression of scattering from the single-crystal
substrate. Scattering from amorphous overlayers such as oxides are not suppressed. The
net result is an increased sensitivity to light impurities as well as structural information
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Figure 5.20. Energy spectra taken in channeling configuration from an Si(110) single crystal
with a = 0.15 nm of SiO2. The top figure shows a detector placed at grazing exit angle geometry;
the bottom figure shows a detector placed at ∼180◦.

for the near-surface region. Here we discuss an experiment that reveals the stoichiometry
and subsurface strain in the SiO2/Si system.

The sensitivity of these types of experiments has been improved by use of a grazing
exit angle geometry, as shown by the spectra in Fig. 5.20 for a Si crystal with a
small overlayer of SiO2. The placement of the detector has no influence on the close-
encounter interactions and channeling of the incident beam, but does influence the
relation between detected energy widths and depth intervals. At grazing exit angles
(Fig. 5.20a), the outgoing path length of the emergent particles can be five times that
for the path length near 180◦ scattering (Fig. 5.20b). The stretching of the depth scale
spreads the total number of detected scattering events in a given thickness over a greater
energy interval and hence decreases the number of counts per energy channel in the
bulk crystal. In the sample, the surface layer (∼1.3 nm of oxide) is thin compared with
the depth resolution, so the energy width of the signal is determined by the energy
resolution of the detector system.
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The scattering spectrum from the aligned Si crystal with a thin oxide layer consists
of (1) a Si peak with scattering contributions from Si in the oxide, nonregistered Si
in the surface region, and the intrinsic surface peak from the underlying single crystal
and (2) at lower energy, an oxygen peak corresponding to the oxygen coverage. These
peak areas can be converted to atoms/cm2 with approximately 5% accuracy.

The Si versus oxygen intensities are shown in Fig. 5.21 for a range of oxides up
to ∼4.0 nm. Over most of the range, the data are well fitted by a line expected for
stoichiometric SiO2 plus an additional offset of 8.6 × 1015 Si/cm2. Most of this offset
is the expected contribution from the intrinsic Si surface peak. The results from Fig. 5.21
show that the oxide is primarily stoichiometric SiO2 and that the interface is sharp. The
data suggest that the interface consists of either two monolayers of Si not registered to
the bulk or a thin region (< 0.5 nm) of nonstoichiometric oxide.

Problems

5.1. Calculate and compare values of the standard potential, the Thomas–Fermi po-
tential, and the 1/r2 potential at r/a = 0.01, 0.1, and 1.0, for He+ ions incident
on Si.

5.2. Cu is an FCC metal with a lattice constant of 0.3615 nm. Calculate the axial and
planar critical angles and minimum yield for 2 MeV 4He+ ions incident along 100
axial and planar directions of Cu with a thermal vibration amplitude ρ = 0.012 nm.

5.3. Calculate the shadow cone radius R, and the surface peak in the two-atom and
universal model (assume RC = RM) for 1.0 MeV 4He+ ions incident along the
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100 axis of Al (lattice constant = 0.405 nm and ρ = 0.014 nm). What energy is
required for a unity surface peak intensity (ρ/RM = 0.4)?

5.4. Use the r2/r2
0 approximation to the flux distribution (Eq. 5.20), and calculate the

minimum yield of an impurity displaced 0.01, 0.03, and 0.05 nm from the atomic
row. Take the vibration amplitude as 0.01 nm and use an r0 value appropriate to
the Si 〈010〉 channeling direction.

5.5. Channeling occurs not only along the strings of atoms but also between the sheets
of atoms that make up atomic planes. In this case, the potential governing the
transverse notion can be described by a parabolic potential of the form

V (y) = 1

2
ky2, 0 ≤ |y| ≤ dp/2,

where dp is the planar spacing and y is the distance to the planar wall measured
from the midpoint. Using the concept of motion in a harmonic potential, derive
a formula for the wavelength of the oscillatory motion. Evaluate this wavelength
for 1.0 MeV ions channeling along the W(100) planes. The spring constant k can
be estimated by noting that V (dp/2) = Up(0) from Eq. 5.13.
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6
Electron–Electron Interactions
and the Depth Sensitivity of
Electron Spectroscopies

6.1 Introduction

Detection of an element from the near-surface region of a solid often involves the
measurement of an electron energy characteristic of a particular atom. The depth res-
olution of these techniques is then determined by the thickness of the material that
an emitted electron can traverse without undergoing an inelastic event and thus al-
tering the electron energy. We consider these inelastic electron processes in order to
obtain a quantitative understanding of the thickness of the analyzed layer. An under-
standing of these phenomena is particularly useful in the design of surface studies, as
an experimenter can often choose the electron energy and thus determine the depth
probed. In this chapter, we use the particle-scattering concepts developed in Chapters 2
and 3 to derive classical relations for electron–electron collisions. These provide a
guide for useful approximations for electron escape depths and impact ionization cross
sections.

6.2 Electron Spectroscopies: Energy Analysis

The surface analytical tools, photoelectron and Auger electron spectroscopy, discussed
in the following chapters use photons or electrons to excite electrons that escape from
the solid with sharply defined energies. Emitted electrons in the 100 eV range have
escape depths on the order of 1.0 nm. By choosing the appropriate incident beam
parameters and detection systems, these electron spectroscopies become extremely
surface sensitive. Electron spectroscopies have found their widest application in sur-
face analysis for a number of reasons. Electrons are easily focused into beams, are
efficiently detected and counted, and may be analyzed with respect to angular and
energy distribution using electrostatic lenses and deflection systems.

The electron spectroscopies are based on an analysis of the energy distribution of
electrons emitted from the surface. The different features of the emission spectra and
the requirements imposed by the analytical technique have led to the development
of a variety of analyzers for measuring the electron energy distributions (see also
Chapter 10). In the cylindrical mirror analyzer (CMA) (Fig. 6.1), the emitted electrons
are focused electrostatically in such a way that only those electrons with energies within
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ELECTRONS
FROM TARGET

NEGATIVE BIAS
WITH RESPECT TO
INNER CYLINDER

ELECTRON
DETECTOR

Figure 6.1. Schematic diagram
of a cylindrical mirror ana-
lyzer used for electron energy
detection in various electron
spectroscopies.

a certain small range pass through the analyzer and arrive at the collector. Focusing is
achieved by applying a potential Va to create a cylindrical electric field between the
two coaxial electrodes. The outer cylinder is held at a negative potential with respect
to the inner cylinder. Electrons entering the analyzer through the annular entrance are
deflected toward the inner cylinder. The analyzer design allows electrons with energy
E = eVa and energy spread �E to pass through the exit slit to the collector; the energy
resolution �E/E is usually between 0.1% and 1%. The transmission of the analyzer
is high, since it accepts electrons over a large solid angle. A modulating AC voltage is
superimposed upon the cylinder potential to allow single and double differentiation so
that the sharp characteristic energy peaks can be removed from the background.

6.3 Escape Depth and Detected Volume

For quantitative analysis, it is important to determine the escape depth: the distance
that electrons of a well-defined energy, EC, can travel without losing energy (Fig. 6.2).
The incident radiation, whether photons or electrons, is sufficiently energetic so that
it penetrates deeply into the solid, well beyond the escape region for characteristic-
energy electrons. The electrons that undergo inelastic collisions and lose energy δE in
transport from the point of excitation to the surface leave the solid with a lower energy

ESCAPE
DEPTH

PHOTONS, E = hν

EC

EC − δE

δE = ELECTRON ENERGY
        LOSSES

Figure 6.2. Schematic of energetic photons incident on a surface creating characteristic electrons
relatively deeply in the solid. Only those electrons created near the surface escape with no loss
of energy.
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and contribute to a background signal or tail that can extend several hundred eV below
the main signal peak. In analogy with the experimental methods used to determine the
escape depth, we consider the substrate as a source of a flux I0 of electrons of well-
defined energy EC and deposit a thin film on the substrate. Any inelastic collisions
within the thin film will remove electrons from the group of electrons of energy EC.
Consider that the cross section for the inelastic collision is σ and that there are N ′

scattering centers/cm3 in the deposited film. The number dI of electrons removed from
the initial group is σ I per scattering center, and the number of electrons removed per
thickness increment dx is

−d I = σ I N ′ dx,

which gives

I = I0e−σ N ′x . (6.1)

The mean free path is related to the cross section by definition as

I/λ = N ′σ, (6.2)

so Eq. 6.1 can be written as

I = I0e−x/λ. (6.3)

The number of electrons that can escape from the surface of the deposited absorber film
then decreases exponentially with film thickness. In this discussion, we treat the mean
free path to be synonymous with the escape depth and use the same symbol λ. The
yield of electrons from a solid excited uniformly in depth is given by

∫
I (x) dx = I0λ,

such that a thick substrate appears as a target of thickness λ.
A method used to characterize the attenuation of electrons is to monitor the signal

from electrons generated in a substrate as a function of the thickness of a deposited
overlayer of different metal. Figure 6.3 shows the relative intensity of Auger electrons
(92 eV) from Si as a function of the thickness of an overlayer of Ge. The Ge thick-
ness was determined from Rutherford backscattering analysis (Chapter 3). The data of
Fig. 6.3 show that the intensity decreases exponentially with Ge film thickness with
a decay length λ equivalent to 2.5 × 1015 Ge atoms/cm2 (∼0.5 nm). The attenuation
of electrons depends upon the characteristic energy of the outgoing electrons. Figure
6.3b illustrates the energy dependence of the attenuation for two different characteristic
energies of electrons emitted from Ge (LMM, 1147 eV; MVV, 52 eV) as a function
of Si overlayer thickness. The mean free paths correspond to 9.81 × 1015 atoms/cm2

and 9.81 × 1015 atoms/cm2, respectively. The terminology for Auger transitions is
discussed in Chapter 12.

These values of mean free paths are in agreement with other measurements of electron
mean free paths shown in Fig. 6.4. The data show that the mean free path is energy
dependent with a broad minimum centered around 100 eV. The mean free path is
relatively insensitive to the material traversed by the electrons. Such curves of mean
free path versus energy have come to be called universal curves.
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6.4 Inelastic Electron–Electron Collisions

The cross section for an inelastic collision can be derived using the impulse approxi-
mation (Chapter 3) for scattering in a central force field. For an electron of velocity v,
the amount of momentum transferred to a target electron is

�p = 2e2

bv
, (6.4)

where b is the impact parameter. Here we have taken the small-angle scattering results
from Chapter 3 with Z1 = Z2 = 1 and M1 = M2 = m (Fig. 6.5). Let T denote the
energy transferred by an electron of energy E = 1/2 mv2; then

T = (�p)2

2 m
= e4

E b2
. (6.5)

∆P

m, v

db

b

Figure 6.5. Schematic of an electron of mo-
mentum mv interacting with a free electron at
an impact parameter b.
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The differential cross section dσ (T ) for an energy transfer between T and T + dT is

dσ (T ) = −2πb db. (6.6)

From Eq. 6.5, 2b db = −(e4/ET 2) dT, so

dσ (T ) = πe4

E

dT

T 2
. (6.7)

The cross section for an electron to transfer an energy between Tmin and Tmax is

σe =
Tmax∫

Tmin

dσ (T ), (6.8)

σe
∼= π

e4

E

(
1

Tmin
− 1

Tmax

)
. (6.9)

For energetic electrons with energy E of several hundred eV or greater, the maximum
energy transfer (Tmax = E for M1 = M2) is very much greater than Tmin; therefore,

σe
∼= πe4

E

1

Tmin
= 6.5 × 10−14

ETmin
cm2, (6.10)

with E and Tmin in eV and using the values e2 = 1.44 eV-nm.

6.5 Electron Impact Ionization Cross Section

The value of the cross section can be estimated from Eq. 6.10 with Tmin = EB,

σe = πe4

E EB
= πe4

U E2
B

, (6.11)

where U = E/EB and EB is the binding energy of an orbital electron. For incident
energies less than EB, U < 1, the cross section must be equal to zero. The actual
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Figure 6.6. Ionization cross section versus reduced energy U for interactions within a solid.
[From C. C. Chang, in P. F. Kane and G. B. Larrabee, Eds., Characterization of Solid Surfaces
(Plenum Press, NY, 1974), with permission from Springer Science+Business Media.]
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shape of the cross section as a function of U is shown in Fig. 6.6. The value of the cross
section has a maximum near reduced energy value of U ∼= 3 to 4. For EB = 100 eV and
U = 4, the value of the cross section is 1.6 × 10−18 cm2. The value is in reasonable
agreement with measured values of the maximum electron impact ionization cross
section (measured near U = 4) that are shown in Fig. 6.7.

6.6 Plasmons

In solids, the collective excitation of the conduction electron gas leads to discrete peaks
in the energy loss of electrons. The plasmon is a quantum of a plasma oscillation and
has an energy h̄ωp of about 15 eV. From a classical viewpoint, the plasma frequency
is determined by oscillations of the valence electrons in a metal with respect to the
positively charged cores (Fig. 6.8). Consider the fluctuation δr in radial distance r
from a positive core of a free electron gas containing a concentration n of electrons.
If the gas expands from its equilibrium radius δr , the number of electrons in the shell,

+

δr

ELECTRON GAS
n = electrons/cm−3

Figure 6.8. Electron gas with 4/3 πr 3n electrons
around a positive core and undergoing a radical con-
traction δr .
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δn = 4π nr2 δr , establishes an electric field

E = e

r2
δn = 4πe δr. (6.12)

The retarding force F created by the expansion is

F = −e E = −4πe2n δr. (6.13)

The solution for the frequency of a harmonic oscillator with a force given in Eq. 6.13
is

ωp =
(

4πe2n

me

)1/2

, (6.14)

where me is the mass of the electron. For metals, the value of n ∼= 1023/cm2 gives an
oscillator frequency ωp = 1.8 × 1018 rad/s and an energy h̄ωp = 12 eV. The plasma
frequency may be thought of as a natural frequency of the electron–ion system that is
excited by an incoming charged particle.

The measured value of the plasmon energy for Mg is 10.6 eV and for A1 is 15.3 eV.
Figure 6.9 shows energy loss spectra for electrons reflected from a film of Al. The
loss peaks are made up of combinations of the bulk plasmon h̄ωp = 15.3 eV and the
surface plasmon at an energy of 10.3 eV. The surface plasmon frequency ωp(s) has the
following relationship to the bulk plasmon:

ωp(s) = 1√
2
ωp. (6.15)

This equation is found to hold for many metals and semiconductors. The calculated
plasmon energies of Si and Ge are 16.0 eV based on four valence electrons per atom with
the entire valence electron sea oscillating with respect to the ion cores. The measured
values for Si are 16.4–16.9 eV and for Ge are 16.0–16.4 eV.
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6.7 The Electron Mean Free Path

The mean free path can be estimated using the general formulation for electron energy
loss in a solid of n electrons/unit volume (see Eq. 3.10),

−dE

dx
= 4πe4n

mv2
ln B, (6.16)

where B represents a ratio of particle energy to excitation energy. The excitation of
plasma oscillations, plasmons, in distant collisions is the dominant mode of energy
loss of electrons in solid. The electron energy loss for 80 keV electrons traversing a
thin NiAl foil is shown in Fig. 6.10. The dominant feature in the figure is the energy
distribution of electrons that have lost 17.8 eV, the bulk plasmon energy, in transmission
through the film. This finding suggests that the energy losses occur in quantum jumps
of h̄ωp, and we set

B = 2mv2

h̄ωp
, (6.17)
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points) from EELS spectra similar to that shown in (a). Core level threshold transitions are shown
by arrows. [Adapted from Fledman and Mayer, 1986]
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and from ωp = (4πe2n/m)1/2 (Eq. 6.14), write the energy loss in terms of ωp:

−d E

dx
= ω2

Pe2

v2
ln

2mv2

h̄ωp
, (6.18)

A similar formulation is presented by Ibach (1977). If we treat the plasmon as the major
source of energy loss in determining the mean free path λ for electrons, we can write
λ as

1

λ
=
(

−dE

dx

)
1

h̄ωp
. (6.19)

This gives

1

λ
= −ωpe2

h̄v2
ln

2mv2

h̄ωp
. (6.20)

For example, we calculate the value of λ to be 0.92 nm for 350 eV electrons in Al
( h̄ωp = 15 eV, v2 = 2E/m = 1.23 × 1018 cm2/s2, and h̄ = 6.6 × 10−16 eV-s). This
value is in reasonable agreement with the data presented in Fig. 6.4.

6.8 Influence of Thin Film Morphology on
Electron Attenuation

One of the many prominent uses of electron spectroscopies is in the characteriza-
tion of different modes of film growth. Questions about the growth mode are particu-
larly important in the creation of uniform layered films in which one desires extreme
uniformity in composition for films thinner than 10 nm. Common types of growth
include the following:

1. Layer-by-layer, in which the deposited film completes one monolayer of coverage,
then the second, etc. This mode is commonly referred to as Frank–van der Merwe
growth.

2. Layer plus islanding, in which the first layer completely covers the surface of the
substrate and subsequent layers form islands of deposited material. This mode is
referred to as Stranski–Krastanov growth.

3. Complete islanding, in which the material immediately forms islands on the surface.
This mode is commonly referred to as Volmer–Weber growth.

4. Statistical deposition, in which the growth corresponds to the random occupancy of
surface sites according to Poisson statistics.

6.8.1 Layer-by-Layer Growth

In the following discussions, we continually make use of the exponential probability
of inelastic scattering for a characteristic electron emerging from a solid. As a first
example, consider the attenuation of electrons from a substrate as a result of an overlayer
that deposits in a layer-by-layer mode. Although the derivation here is for attenuation
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of substrate electrons, very similar considerations can be used to derive formulae for
the increase of the electron yield from the overlayer.

A typical experiment involves a measurement of the intensity Is of a characteristic
Auger electron from the substrate as a function of overlayer thickness t. (Naturally, the
overlayer is a different material.) The mean free path of the substrate Auger electron in
the material of the overlayer is λ. Then, for coverages up to one monolayer, the Auger
intensity can be written as

IS/IS0 = (1 − x) + xe−l/λ, 0 ≤ x ≤ 1, (6.21)

where x is the fraction of the surface covered by the overlayer, IS0 is the intensity from
the clean surface, and I is the thickness of a monolayer. In this regime of up to one
monolayer, the dependence of the intensity on coverage is linear in x. Hence, a similar
formula can be written for the region from 1 to 2 monolayers as

IS/IS0 = (1 − x)e−l/λ + xe−2l/λ, 0 ≤ x ≤ 1, (6.22)

where x is now the fraction of the surface covered with two layers and (1 − x) is the
fraction covered with one layer. Again, in the region of coverage of one to two layers,
the attenuation is linear in x.

In general, a similar formula can be written for the transition from the n to the (n + 1)
layer as

IS/IS0 = (1 − x)e−nl/λ + xe−(n+1)l/λ, 0 ≤ x ≤ 1, n = 0, 1 . . . , (6.23)

where (1 − x) is the fraction of the surface covered with n layers and x is the fraction
covered with (n + 1) layers. The characteristic shape of this curve is a series of straight
lines (on a linear plot) with breaks at coverages corresponding to an integral number
of monolayers. The envelope of points corresponding to integral coverages describes
an exponential decay of the form e−nt/λ (Fig. 6.11).

6.8.2 Single Layer plus Islanding

A second type of growth mode corresponds to the deposition of a single uniform layer
that is then followed by islanding. From the discussion in the previous section, we can
write the attenuation of up to one monolayer of coverage as

IS/IS0 = (1 − x) + xe−l/λ, 0 ≤ x ≤ 1, (6.24)

where x represents the fraction of the covered surface. In the second stage of growth,
the deposited material forms islands of unspecified dimensions, and we cannot write
a simple analytical formula, as the actual attenuation will depend on the fraction of
covered surface. As an example, however, we take as a very simple case that the islands
cover 50% of the surface. Then, for the second monolayer’s worth of material, the
coverage formula can be written as

IS/IS0 = (1 − x)e−l/λ + xe−3l/λ, 0 ≤ x ≤ 0.5, (6.25)

where x is the fraction of the surface covered with two-monolayer-high islands. A
similar formula can be written for any coverage regime, but there will always be a term
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Figure 6.11. Extinction curves for characteristic substrate electrons as a function of average
coverage of an overlayer. In these examples, the mean free path, λ is taken as two monolayers,
close to the minimum mean free path achievable. In the case of the uniform overlayer, the
growth is assumed to be layer by layer and the extinction curve is a series of straight lines with
the envelope of points at integral coverage corresponding to an exponential decay. The other
curves correspond to a single-layer-plus-islanding growth mode and a case of pure islanding.
For the cases involving islanding, it is assumed that 50% of the surface is covered.

of magnitude 0.5 e−l/λ in the formula, plus additional positive contributions. The net
result is that the Auger yield from the substrate is always finite and does not approach
the zero yield associated with layer-by-layer growth. The decay curve for this type of
growth is shown schematically in Fig. 6.11. An actual case is shown in Fig. 6.12 for the
growth of Pb on Cu(100). Note the almost constant level of the Cu Auger yield beyond
one monolayer of coverage. Such curves can be fitted with simple models of islands as
described above. The Auger signal from the Pb overlayer increases with coverage but
saturates again consistent with islanding.

6.8.3 Islanding

As described in the preceding section, the substrate yield curve as a function of coverage
does not show a simple exponential decay in cases of islanding. In this type of growth,
the substrate yield remains high, since some fraction of the substrate is not covered
by the overlayer. Figure 6.11 shows the expected curve for the simple case of islands
covering 50% of the surface. Obviously, the yield can never have values below 0.5 in
this scheme. The differences in the extinction curves (Fig. 6.11) reveal the different
modes of growth. The interpretation of these curves requires an accurate measurement
of the absolute coverage and knowledge of the mean free path.
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Figure 6.12. Auger yield curve for the deposition of Pb on Cu(100) at room temperature. The
solid circles represent the attenuation of Cu substrate signal and the open squares the growth of
the Pb signal. This type of the growth corresponds to the “one layer plus islanding” mode. In this
example, the (average) Pb coverage is measured by RBS. [From R.J. Culbertson, unpublished
data.]

6.8.4 Distribution of Deposited Atoms

By a statistical distribution we mean that deposited atoms simply reside on the surface
in a Poisson distribution—as if they impinged randomly and simply stuck at the landing
site. For an average coverage θ , the probability of finding a structure that is k atom
layers high is

Pk = θ k e−θ

k!
, (6.26)

so

P0 = e−θ ,

the usual coverage formula for the fraction of the surface not covered by the adsorbate.
Then the Auger intensity factor is given for layers of thickness I by

IS/IS0 =
∑

k

Pke−kl/λ, (6.27)

or

IS/IS0 = e−θ
∑

k

θ k

k!
e−kl/λ. (6.28)



118 6. Electron–Electron Interactions and the Depth Sensitivity of Electron Spectroscopies

This expression can be rewritten as

IS/IS0 = e−θ
∑
k=0

(θe−l/λ)k

k!
, (6.29)

or

IS/IS0 = e−θ (1 − e−l/λ). (6.30)

Note that this attenuation curve is a pure exponential for all coverages. The effective
decay length is now (1 − e−l/λ)−1 rather than λ.

6.9 Range of Electrons in Solids

In materials analysis, energetic electrons are used to generate inner-shell vacancies
that decay by Auger emission or X-ray emission. In measurements of the emitted
characteristic X-rays in the electron microprobe, the concern is with the depth over
which the X-rays are generated. The situation is more complex for incident electrons
with energies between 1 and 50 keV than for heavy ions whose path is relatively straight
over most of the range. For electrons, significant deviations from the incident direction
occur due to elastic scattering. Monte Carlo calculations of the paths of electrons in Fe
(E0 = 20 keV) are shown schematically in Fig. 6.13. The elastic scattering is composed
of both large-scale scattering events and multiple small-angle scattering events that can

0.5 µm

Figure 6.13. Monte Carlo electron trajectory simulation of a 20 keV beam at normal incidence
on Fe. The density of trajectory gives a visual impression of the interaction volume. [From
Goldstein et al., 1981, with permission from Springer Science+Business Media.]
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also lead to a large change in the direction of the electrons. The electron range R is
defined as the total distance that an electron travels in the sample along a trajectory and
can be written as

R =
0∫

E0

dE

dE/dx
, (6.31)

where the energy loss expression has been discussed previously. The energy loss for-
mula, d E/dx , is of the form

dE

dx
∝ NZ2

E
ln

E

I
, (6.32)

or

dE

dx
∝ ρ

E
ln

E

I
, (6.33)

where N is the atomic density so that NZ2 is the proportional to ρ and I is the average
ionization energy, I − 10Z2 (eV). From experimental results, the dependence of the
range on incident energy has the form

R = K

ρ
Eγ

0 , (6.34)

where ρ is the density (g/cm3), K is a material-independent constant, and γ varies from
1.2 to 1.7. It is convenient to use the mass range ρR, since, to a first approximation,
ρR is independent of target material. The electron range R as a function of energy is
given in Fig. 6.14 for K = 0.064 and γ = 1.68.
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Figure 6.14. The electron range R
(µm) versus incident electron en-
ergy for different density ρ ma-
terials. The lines are calculated
from Eq. 6.24, with K = 0.064 and
γ = 1.68.
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The mass range ρRX for characteristic X-ray production is smaller than the range
of electrons, since characteristic X-rays can only be produced at energies above the
critical excitation energy, or binding energy EB, for a given element. The mass range
for characteristic X-ray production is given by

ρRX = K (Eγ

0 − Eγ

B). (6.35)

As discussed by Goldstein et al. (1981), the mass range equation for X-ray production
can be expressed as

ρRX = 0.064
(
E1.68

0 − E1.68
B

)
, (6.36)

where E0 and EB are in keV, ρ is in g/cm3, and RX is in microns (µm). Figure 6.15
shows the electron range R in Al and RX for the Al Kα and Cu Kα lines gener-
ated in Cu-doped Al and the Cu Kα and Cu Lα lines in pure Cu. The ranges for
X-ray production depend, of course, on the density of the matrix (Al = 2.7 g/cm3,
Cu = 8.9 g/cm3) and on the value of EB (Cu Kα, EB = 8.98 keV; Cu Lα, EB =
0.93 keV).

6.10 Electron Energy Loss Spectroscopy (EELS)

The characteristic energy losses of electron beams penetrating through a film or reflected
from a surface can give important information about the nature of the solid and the
relevant binding energies. Electron energy loss spectroscopy (EELS) is carried out from
≤ 1 eV to ∼100 keV. The choice is based on a variety of experimental considerations and
the energy range of interest. The low-energy regime is used primarily in surface studies,
where the investigation centers on the energies of vibration in states associated with
absorbed molecules. The energy loss spectrum contains discrete peaks corresponding
to the vibrational states of absorbed molecules.
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At higher energies, as shown in Section 6.7, the dominant peak corresponds to a
plasmon loss or losses. A detailed examination of the energy loss spectrum would also
show discrete edges in the spectra corresponding to excitation and ionization of atomic
core levels. These features represent a means of element identification, particularly
useful in cases where the spatial resolution of the electron microscope is required.
The features tend to be broad, since the incident electron can transfer a continuum
of energies to the bound electron. For example, a core electron may be excited to
the unoccupied states within the solid (excitation) or actually ejected from the solid
(ionization). The cross section tends to strongly favor small energy transfers, thus
making excitation dominant. An examination of the loss features under high resolution
can then yield information on the unoccupied density of states. In the following, we
show EELS spectra of Nix Siy films using the inelastic spectrum from an ∼100 keV
electron beam. High-energy electrons, approximately 100 keV, are used because the
long distance between collisions, about 50.0–100.0 nm, permits examination of self-
supporting films that can be mounted on conventional electron microscopy sample
grids. Electrostatic analyzers of 0.1–0.5 eV energy resolution are generally used so
that changes in the density of states can be monitored.

The energy loss of 80 keV electrons transmitted through 50.0 nm films of crystalline
NiAI was given earlier in Fig. 6.10. The dominant feature in the spectrum is the large
bulk plasmon peak, labeled h̄ωp, that is centered at 17.8 eV. This resonance involves
all the valence electrons and is displaced to higher energy loss in NiAl than the bulk
plasmon found at 15.0 eV in Al. The sensitivity of the bulk plasmon to the composition
of the sample is shown in Fig. 6.16, which gives spectra for samples of Si, NiSi2 (the
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Figure 6.16. Electron energy loss spec-
tra for 80 keV electrons incident on thin
(∼40 nm) self-supporting films of Si, NiSi2,
Ni2Si, and Ni. The positions of the bulk plas-
mon peaks h̄ωp are shown for two nickel
silicides. [From J. C. Barbour et al., in
Thin Films and Interfaces II, J. Baglin, J.
Campbell, and W.-K. Chu, Eds. (North-
Holland, Amsterdam, 1984), with permis-
sion from Elsevier]
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most Si-rich nickel silicide), Ni2Si, and Ni. The bulk plasmon peaks become broader
and are centered at increasingly higher energies with increasing Ni concentration.
Silicon, NiSi2, and Ni2Si have bulk plasmon energies, h̄ωp, of 16.7, 17.2, and 21.8 eV,
respectively. The spectra in Fig. 6.16 were scaled such that the plasmon peak heights are
equivalent, even though the absolute intensity of the Si plasmon peak is much greater
than the corresponding peaks in the Ni spectrum.

The bulk plasmon may also be used to estimate the relative amount of plural scat-
tering. Scattering of the incident electron beam by two sequential bulk plasmon events
produces a peak in the loss function at twice the bulk plasmon energy, as can be seen
in the peak in the Si spectrum at 33.4 eV in Fig. 6.16. From the figure we can see that
the ratio of the double to single plasmon intensity is quite small, which indicates that
the sample thickness is less than the mean free path for excitation of bulk plasmons.

In the EELS spectrum of NiAI (Fig. 6.10), weak but sharp peaks appear at high
energy loss values of ∼70 eV. These correspond to excitation of individual deeply
bound core electrons to the unfilled conduction band states. The Al L23 transition of
about 75 eV in the spectrum of Figure 6.10 corresponds to excitations of the Al 2p core
electrons to unfilled states above the Fermi level. In this figure, the measured Al L23

data points are aligned with calculated values (solid line) of the density of states (DOS).
The experimental points mirror the DOS shape, indicating that EELS measurements
can be used to determine the density of states above the conduction band.

The energy loss spectra for nickel silicides also display features due to core ex-
citations. Figure 6.17a is an electron energy loss spectrum of a 40 nm thick NiSi2
self-supporting film taken over the energy region from 0 to 138 eV. The largest peak
is the bulk plasmon ( h̄ωp), with the Ni M23 and Si L23 core excitation peaks at higher
energies, magnified by 100 and 350 times, respectively. No multiple scattering events
are discernible in the EELS spectrum (no higher-order plasmon loss peaks are present),
indicating that the background on the low energy loss side of the Ni before the Ni M
edge is primarily due to the tail of the plasmon peak. The heights of the steps at the Ni
M and Si L edges can be used to determine the composition.

At energies below the bulk plasmon peak (energy loss values 0–15 eV in Fig. 6.17a),
there are peaks in the spectrum that correspond to interband transitions. The interband
transitions involve a convolution of the valence and conduction band densities of states
and hence are more difficult to interpret than core level spectra, where the initial states
are sharp.

The differences in the spectrum step heights at the Ni and Si edges for different Ni
to Si concentration ratios can be seen in Fig. 6.17b, which gives spectra taken from
samples of Ni2Si and NiSi2. The yield YA for detection of an incident electron that loses
energy E A when passing through a material of thickness t containing a concentration
NA of atoms is given by

YA = Q NA t σA η 	, (6.37)

where Q is the integrated incident electron current density, NAt is the number of A atoms
contributing to the inelastic scattering events, σA is the cross section for excitation
of an electron in a given core energy level of atom A, η is a collection efficiency,
and 	 is the detector collection angle. Equation 6.37 assumes the collected electrons
experience only single inelastic scattering events. Provided that the collection efficiency
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Figure 6.17. (a) Electron energy loss spectrum of NiSi2 showing the bulk plasmon peak and
the characteristic Ni M23 and Si L23 core level excitations. (b) A comparison of EELS spectra
in the energy region of the characteristic Ni and Si level excitations. [From J. C. Barbour et al.,
Ultramicroscopy 14, 79 (1984).]

in scattering from A atoms is equal to that in scattering from B atoms, then the atomic
ratio of A atoms to B atoms is

(NA/NB) = (YA/YB)(σB/σA), (6.38)

where YA and YB can be experimentally measured as the areas above background in an
energy window above the edge. Therefore, the accuracy of the atomic ratio is sensitive
to the cross section calculations and the accuracy in determining the relative Ni M to
Si L areas by fitting the background after the edges.

Electron energy loss spectroscopy is not the most straightforward or sensitive method
of detecting average composition or trace impurities. Its major advantage is analysis
of small areas (<100 nm) for detecting microprecipitates and composition variations.
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6.11 Bremsstrahlung

The energy loss of electrons passing through matter contains an additional significant
component corresponding to the radiation loss. Classical physics tells us that an accel-
erated charge emits radiation. This acceleration is caused, for example, by the deflection
of an electron in the field of an atom as the charged particle penetrates matter. Since the
acceleration is essentially the ratio of the electrostatic force to the mass, this radiation
component is significantly more important for electrons than heavy projectiles. As we
will show, this bremsstrahlung (German for braking radiation) yields a continuum of
photons up to the energy of the incident electron. It is of interest to the materials analyst,
since bremsstrahlung may provide a significant background in analysis techniques that
use incident electrons and detect characteristic photons. It is most obvious in electron-
µ-probe analysis as a background underlying the characteristic X-ray spectrum.

The elastic scattering cross section of a charged particle, Z1, by a nucleus of charge
Z2 is given by Eq. 2.17:

dσ

d	
=
(

Z1 Z2e2

4E

)2
1

sin4 θ/2
, (6.39)

where θ is the scattering angle. It is convenient to express this cross section in terms
of the associated momentum transfer �p (Chapter 2).

�p = 2p sin θ/2, (6.40)

and

d	 = 2π sin θdθ = 2π�p d�p

p2
.

Then the cross section for a momentum transfer �p is given by

dσ

d�p
= 8π

(
Z1 Z2e2

v

)
1

(�p)3
. (6.41)

Classical electromagnetic theory shows that the total energy radiated per unit fre-
quency interval per collision (Jackson, 1975) is

dl

dω
= 2

3π

(Z1e)2�p2

m2c3
, (6.42)

where m is the mass of the deflected particle. This formula is derived for the nonrel-
ativistic case and in the limit of low ω; both conditions are of interest here. Then the
differential radiation cross section is

d2χ

dω d�p
= d I

dω

dσ

d�p
,

that is, the probability of emitting a photon of energy h̄ω associated with a momentum
transfer �p times the probability of a momentum transfer, �p. Explicitly,

d2χ

dω d�p
= 16

3

Z2
2e2
(
Z2

1e2
)2

m2v2c3

1

�p
. (6.43)
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We integrate over all possible energy transfers �pmin to �pmax to find the frequency
spectrum,

dχ

dω
= 16

3

Z2
2e2
(
Z2

1e2
)2

m2v2c3
ln

�pmax

�pmin
.

To determine the ratio, �pmax/�pmin, we consider in detail the kinematics of the
process. Energy conservation and momentum conservation can be written as

E = E ′ + h̄ω,

and

(�p)2 = (p − p′ − k)2 = (p − p′)2, (6.44)

where E, p and E ′, p′ refer to the energy and momentum of the particle before and
after the collision, and h̄k is the momentum of the emitted bremsstrahlung photon.
Here we have neglected the momentum associated with the photon. Then

�pmax

�pmin
= p + p′

p − p′ =
(√

E − √
E − h̄ω

)2

h̄ω
,

so

dχ

dω
= 16

3

Z2
2e2(Z2

1e2)2

m2v2c3
ln

(
2 − h̄ω/E + 2

√
1 − h̄ω/E

h̄ω/E

)
. (6.45)

This function falls off as ( h̄ω/E) for small h̄ω/E and flattens out with a sharp cut-off
at E = h̄ω (Fig. 6.18). This form of the bremsstrahlung spectrum was first derived by
Bethe and Heftier in 1934.

The radiation cross section, dχ/dω, is proportional to Z 2
2 Z4

1/m2, showing that the
emission is most important for light particles (electrons) in materials of high atomic
number. The total energy lost by radiation for a particle traversing a material of N nuclei
per unit volume is

dErad

dx
= N

ωmax∫
0

dχ (ω)

dω
dω.

Letting x = h̄ω/E and noting that(
1 + √

1 − x√
x

)2

=
(

2 − x + 2
√

1 − x

x

)
,

we have

d Erad

dx
= 16

3

N Z2
2e2
(
Z2

1e2
)2

c3 h̄

1∫
0

ln

(
1 + √

1 − x√
x

)
dx . (6.46)

The dimensionless integral has the value of unity. The radiative loss is essentially
energy independent. The ratio of radiative loss (for electrons) to nonradiative loss,
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Figure 6.18. Radiation cross section (energy × area / unit frequency) for nonrelativistic
Coulomb collisions as a function h̄ωp/E (Eq. 6.45).

d Erad/d Enr, is approximately given by

dErad

dEnr

∼= 4

3π

Z2

137

(v

c

)2
, (6.47)

and is small for v < c. For electron probe analysis, we are concerned that the
bremsstrahlung photon may obscure the characteristic energy of interest. As shown
by Evans, the ratio of the ionization cross section to the radiative cross section is
roughly Z2(v/c)2/137, or −0.01 for Z2/137 = 4 and 100 keV electrons. This is what
sets the limit for detecting approximately 1% of an impurity in a solid matrix.

Problems

6.1. Draw the curve of Auger yield versus overlayer thickness for the signal from the
overlayer atoms in the case of
(a) uniform growth in a layer-by-layer fashion and
(b) island growth with 50% coverage.
Assume that the mean free path λ is equivalent to two monolayers.
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6.2. Typically, electron impact ionization cross sections have a maximum at E/EB = 3.
Calculate the value of E at σmax for the K shell and L shell of Si for incident
electrons. As discussed in the text, ionization cross sections depend primarily on
the velocity of the incident charged particles; calculate the energies of incident
protons where the protons have the same velocities as those of the electrons in the
examples for the ionization of K- and L-shell electrons.

6.3. You deposit an Al film on a copper substrate, and use 3 keV electrons to ex-
cite Cu Lα X-rays for the determination of Cu penetration into Al. What thick-
ness of the deposited Al film is required so that the electrons do not excite Cu
Lα X-rays in the Cu substrate? Use values of K = 0.064 and γ = 1.68, and
Eq. 6.34.

6.4. You are carrying out a transmission electron energy loss experiment with
100 keV electrons incident on an Al film where the bulk plasmon energy is 15.3 eV.
Estimate the value of λ for 100 keV electrons. Compare the values of the range
of 100 keV electrons using Eq. 6.34 with that of Eq. 6.31 where you assume that
dE/dx is a constant evaluated at 50 keV.

6.5. The Si LVV Auger electron is emitted with 92 eV. Assuming that the only mech-
anism for energy loss is ionization of Si atoms (Appendix 4), calculate the mean
free path for these electrons
(a) with the relations given in Section 6.7 and
(b) with λ = 1/Nσ , where σ is the cross section given in Eq. 6.11.

6.6. In a vacuum system, the flux of gas atoms impinging on a surface is Nv/4, where
N is the density of atoms per cm3 and v is the thermal velocity of the gas atoms.
Assuming every gas atom sticks, calculate the value of N such that an absorbed
layer of oxygen atoms is thinner than two monolayers after one hour. Express N in
torr, noting that one atmosphere (760 torr) is approximately 2 × 1019 atoms/cm3.
It is these basic requirements that determine the need for good vacuum in thin film
analysis.

6.7. Consider a semiconductor structure consisting of 2.5 nm of Si, one monolayer
of Ge, 2.5 nm of Si, and one monolayer of Ge on a thick Si substrate. Imagine
an Auger/sputter profiling analysis of this structure in which one detects the Ge
MVV Auger line (λ = 1.0 nm in Si). Assume that the sputtering process removes
one monolayer of material at a time with no interface broadening or other mixing
effects. Write an equation for the yield of Ge as a function of material removed,
and plot the Ge profile expected in this kind of analysis. (Ignore the effect of the
single monolayers of Ge in the extinction path.)
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7
X-ray Diffraction

7.1 Introduction

Crystalline structures are deduced by the diffraction of known radiation incident from
solid materials. The three-dimensional regularity of unit cells in crystalline materials
results in coherent scattering of the radiation. The directions of the scattered beams
are a function of the wavelength of the radiation and the specific interatomic spacing
(dhkl) of the plane from which the radiation scatters. The intensity of the scattered
beam depends on the position of each atom in the unit and on the orientation of the
crystal relative to the direction of the incident X-ray beam. Those beams that scatter in
a constructive manner result in allowed reflections, i.e., the intensity is a nonzero value.
Those beams that scatter in a destructive manner result in unallowed reflections, i.e.,
the intensity has a minimal value. Each of the constructively scattered beams depends
directly on the wavelength of the incident radiation. Having said this, we must address
the issue: Why is the wavelength important? One of the requirements for diffraction
is that the wavelength of the incident radiation λ must be smaller than the distance
between scattering sites. Typically, in crystalline solids, we desire to measure atomic
spacing on the order of the lattice constants, e.g., 0.2–0.4 nm. Hence, we must use
radiation with wavelengths less than 0.2 nm. This range of wavelength includes those
of X-rays and high-energy electrons. Another criteria is that the scattering occurs in
a coherent manner, i.e., the energy of the incident radiation equals the energy of the
scattered radiation.

W.L. Bragg derived a simplistic description of coherent scattering from an array of
periodic scattering sites, such as atoms in a crystalline solid. The scalar description
of diffraction considers the case of monochromatic radiation impinging onto sheets of
atoms spaced at dhkl within the crystal. The wavelength λ of the radiation is smaller
than the interatomic spacing dhkl of the specific (hkl) plane. Based on this description of
diffraction, we can conduct experiments to determine the distance between reflecting
planes, crystallographic structure, coefficient of thermal expansion, texture, stress, and
composition of thin films.

X-rays typically used in diffraction analysis penetrate to a depth of 1–2 µm, depend-
ing on the atomic number and destiny of the sample (see Section 8.8). This limits to
approximately one micron the depth at which useful information can be derived.
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7.2 Bragg’s Law in Real Space

We now know that when a solid is irradiated under specific conditions, unique reflections
are allowed. However, the question posed is:

In a straightforward manner, can we predict the angle of specific reflections?

Historical records show evidence of Laue’s diffraction experiments prior to the pub-
lication of W.L. Bragg’s explanation of diffraction of radiation by crystalline solids.
However, it was the inquisitive attempts by W.L. Bragg to resolve an intellectual debate
between his father, W.H. Bragg, and Laue that resulted in the formulation of the famous
Bragg’s Law.

Laue argued that only optical rules determine the occurrences of diffraction (i.e.,
wave interactions only). Radiation acts as waves, and scattering depends on the optical
laws of scattering (e.g., Law of Reflectivity) and of constructive interference (i.e., waves
in phase add constructively and waves out of phase add destructively). These published
rules even gained the name the Laue Equations. (We will review these equations when
we develop Bragg’s Law vectorally in Section 8.4). Laue’s description of diffraction
in three-dimensional space required solving three equations with twelve unknowns.
Even then, the derivation is arduous. W.H. Bragg’s rebuttal stated that any symmetrical
elements present in the diffraction pattern reduces the number of unknowns and that
only particle–particle interactions induce diffraction. Kinetic theory required that the
particles scatter from atoms coherently, i.e., the incident particle does not lose any
energy during the scattering event. Even the earliest Laue experiment supported this
account. W.L. Bragg utilized all the above precepts to derive a simplistic description
of coherent scattering. The actual development first appeared in vector form. However,
the most recognized form appears in scalar form and is represented in Fig. 7.1.

The scalar description of diffraction considers the case of monochromatic radiation
impinging on two sheets of atoms in the crystal, spaced at a distance of dhkl between
the reflecting planes. Invoking the Law of Reflectivity (or Reflections), θin = θout, gives

180◦ = ψ + 90◦ + α

= (90◦ − θ) + 90◦ + α

θ = α.

Constructive inference occurs if and only if the wave scattered by the atoms results in a
total path difference (2�P) for the reflected waves that is equal to integer (n) multiples
of λ:

nλ = 2�P = 2dhkl sin θ. (7.1)

Hence, the scalar form of Bragg’s Law, nλ = 2dhkl sin θ , defines the condition for
diffraction.

7.2.1 X-ray Powder Analysis

The simplest of all modern X-ray analyses is powder analysis using an X-ray diffrac-
tometer. The technique can be used to characterize powders as well as polycrystalline
materials. The material of interest is ground to produce a fine, randomly orientated
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Figure 7.1. Development of Bragg’s Law.

powder, with each particle in the powder consisting of small single crystals or an ag-
gregate of crystals 10 µm or less. The powder is placed into a recess of a plastic sample
holder and leveled flat in the sample holder with a straight edge.

The key components of a modern diffractometer include a monochromatic radiation
source, sample stage (goniometer), radiation detection system, enclosure, and safety
features. One of the most common configurations is the θ–θ upright. This type of
diffractometer has a movable detector and X-ray source, rotating about the circumfer-
ence of a circle centered on the surface of a flat powder specimen. Figure 7.2 shows
the beam path schematically. The intensity of a diffracted beam is measured directly
by an electronic solid-state detection system. The scattered X-rays dissipate energy
by generating electron–hole pairs in the detector. The electronic system converts the
collected charge into voltage pulses. The electronics counts the number of pulses per

sample

source detector

side view

� �
2�

Figure 7.2. Schematic of a θ–θ upright shows
how the source and detector each move at a con-
stant rate of θ/s relative to the sample. Hence,
the source and detector move at constant rate of
2θ/s relative to one another. This tool is ideal
for loose powders and large samples.
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Table 7.1. Normalized h2 + k2 + l2 values for the BCC and FCC structures.

BCC FCC

(hkl) h2 + k2 + l2 nomalized (hkl) h2 + k2 + l2 nomalized

(0 1 1) 2 1.00 (1 1 1) 3 1.00
(2 0 0) 4 2.00 (2 0 0) 4 1.33
(1 1 2) 6 3.00 (2 2 0) 8 2.67
(0 2 2) 8 4.00 (3 1 1) 11 3.67
(0 1 3) 10 5.00 (2 2 2) 12 4.00
(2 2 2) 12 6.00 (4 0 0) 16 5.33
(1 2 3) 14 7.00 (3 3 1) 19 6.33
(4 0 0) 16 8.00 (4 2 0) 20 6.67

unit of time, and this number is directly proportional to the intensity of the X-ray beam
entering the detector.

7.2.2 Data Analysis

Software for peak location and intensity determination allows for significant time sav-
ings during the identification of an unknown specimen. Even with this luxury, experi-
enced operators still examine each peak of every spectrum, inspecting peak positions
and shapes, the presence or absence of peaks, and relative background levels. The use
of software packages without understanding the algorithms that are employed can lead
to serious misinterpretation. Hence, we will index a diffraction pattern from first prin-
ciples and will start with the simplest case: the analysis of FCC and BCC structures.

Indexing a diffraction pattern (also called a diffractogram or spectrum) involves
determining the lattice constant and structure and labeling each peak with its appropriate
hkl designation. Starting with Bragg’s Law, we rewrite dhkl in terms of the lattice
parameter ao and then rearrange the equation and square both sides:

nλ = 2dhkl1 sin θ = 2
ao1√

h2 + k2 + l2
sin θ,√

h2
1 + k2

1 + l2
1 = 2

ao1

nλ
sin θ = κ sin θ, (7.2)

h2
1 + k2

1 + l2
1 = κ2 sin2 θ.

The next step is to normalize all the equations relative to the equation for the first
reflection:

(h2
i + k2

i + l2
i )i

(h2
1 + k2

1 + l2
1)1

= κ2 sin2 θ

κ2 sin2 θ
= sin2 θ

sin2 θ
. (7.3)

In a later section, the structure factor calculations give the relationship for allowed
reflections for the cases of FCC and BCC structures:

FCC — h, k, l unmixed (all odd or all even numbers)

BCC — h + k + l equals an even number

Table 7.1 lists the normalized values for both BCC and FCC structures based on Eq. 7.3.
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Figure 7.3. X-ray spectrum from an unknown metallic specimen.

Figure 7.3 displays a diffractogram obtained from an unknown FCC or BCC metal
using an incident λ equal to 0.154056 nm. The data are typically presented in the form
of intensity as a function of 2θ, θ , or d-spacing. Maxima in the intensity correspond
to the peak positions. Using Table 7.1 and Eq. 7.3, the results presented in Table 7.2
confirm that the material has a BCC structure. Next we calculate a lattice constant from
each peak and report the average value as the lattice constant. The structure and lattice
parameter (BCC and ao = 0.2864 nm) match that of α-Fe. The final step is to label
each peak with the appropriate hkl.

Table 7.2. Confirmation that the material has a BCC structure.

sin2(θ )
line 2θ sin2(θ ) sin2(θ )1 (hkl) ao (nm)

1 44.67 0.1444 1.00 (0 1 1) 0.2867
2 64.92 0.2881 1.99 (2 0 0) 0.2870
3 82.39 0.4338 3.00 (1 1 2) 0.2865
4 98.95 0.5778 4.00 (0 2 2) 0.2866

<a0 >= 0.2867

7.3 Coefficient of Thermal Expansion Measurements

Thermal expansion is a phenomenon that influences the adhesion and mechanical
properties of solids. For example, if layers of electronic materials are made of two
dissimilar materials, an increase in temperature during device processing or operation
results in each material expanding by different amounts. This outcome is a result of
differences in the coefficients of thermal expansion (CTE, α). A classical example is
the attachment of integrated circuit chips of silicon to alumina substrates using Cu or
Sn–Pb solder bumps; note that each of these materials has a different CTE. For the case
of good adherence between the layer and the substrate, the expansion of the layer is
constrained by the expansion of the substrate and vice versa. Even small dimensional
changes result in stresses. When these stresses exceed a critical value, the material fails
by either delamination or facture. By measuring the change in the lattice constant and
knowing the elastic constant, one can calculate the thermal stress and determine the
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safe processing and operating conditions. This calculation, however, requires accurate
measurement of the CTEs.

In-situ heating during X-ray diffraction analysis is a means by which to measure the
thermal expansion of crystalline solids. As the temperature of the specimen increases,
the lattice constant increases in each unit cell. The net effect is an increase in the overall
length. The thermal expansion coefficient can be determined by measuring the increase
in the lattice constant (the decrease of the 2θ angle for a given diffraction peak) with
increasing temperature. This technique can provide the coefficients of linear thermal
expansion along different crystallographic axes for single or polycrystalline materials,
and can also provide information regarding volume changes.

In-situ heating during X-ray diffraction requires the use of specially equipped diffrac-
tometers that have the capability to controllably heat and cool the sample during anal-
ysis in an open or closed ambient. Analysis is performed at moderate temperatures,
e.g., T < 0.5Tmelt for metals. Typically, at temperatures higher than 0.5Tmelt, metals
substantially increase their contribution of vacancies to the overall lattice parameter.
However, in-situ heating can also be used to monitor phase transformation, as well as
solid solution formation as a function of heating. Some modern tools can heat up to
1200 ◦C in vacuum or inert ambient. The design of these tools allows the sample to
remain on the goniometer during heating without any damage to the diffractometer or
the operator.

The analysis consists of initially measuring the lattice spacing for a specific reflec-
tion to determine the value of a0 at room temperature. The sample is then heated to
an elevated temperature. Once the temperature equilibrates, the lattice constant ai is
again measured. This step is repeated several times. The CTE (α) is the fractional
change in length (�l) per unit length (l) per unit change in temperature (�T ):

�l/ l = α�T,

CTE (α) = (�l/ l) (�T −1). (7.4)

In the simplest case, the cubic case, CTE is also equal to the fractional change in lattice
constant per unit change in temperature:

CTE (α) = (�a/ai) (�T −1). (7.5)

Starting with Bragg’s Law, a relationship for the relative change in lattice spacing with
respect to the change in θ is developed:

λ = 2d sin θ

d = λ

2

1

sin θ

�d = −λ

2

cos θ

sin2 θ
�θ

�d

d
= −λ

2

cos θ

sin2 θ
�θ

(
2

λ

sin θ

1

)
= −�θ cot θ. (7.6)

For the case of cubic materials,

�d

d
= −�θ cot θ = �a

a0
. (7.7)
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Figure 7.4. a) X-ray spectra of the (hkl) reflection of β-parylene-n at room temperature, 100,
200, 300, and 375 ◦C; b) a/a0 is calculated and plotted against the change in temperature.

Combining Eqs. 7.7 and 7.8 yields Eq. 7.9. This technique requires letting a0 equal the
theoretical value (i.e., tabulated value) for that specific material and replacing θ with
the theoretical value of θB, where θB is calculated using again the theoretical value of
a0:

−�θ cot θB = �a

a0
= �l

l
= α �T . (7.8)

With the extracted value of �θ , the CTE is determined:

α = −�θ cot θB

�T
. (7.9)

Figure 7.4a shows a series of scans taken from an n-parylene sample. The diffractometer
is equipped with a hot stage capable of heating the sample to temperatures of 100, 200,
300, and 400 ◦C. For each temperature, values of �T and �θ are extracted from the
plot. Using Eq. 7.8, �a/a0 is calculated and plotted against the change in temperature
(Fig. 7.4b). The straight line fit yields a slope and CTE of 1.13 × 10−4.

7.4 Texture Measurements in Polycrystalline Thin Films

The texture of metallic thin films influences the electrical and metallic properties that are
important to the reliability of semiconductor devices. Texture is characterized through
the use of X-ray diffraction pole-figure analysis. In order to obtain a pole-figure, the
detector and sample geometry are set such that the incident and diffracted X-rays make
a specific angle with the sample surface. This angle is the same as the angle necessary to
satisfy the Bragg condition for a specific set of {hkl} planes of the thin film (Fig. 7.5a).
One-dimensional pole-figures (Fig. 7.5b) measure the intensity of X-rays diffracted
from the sample as a function of tilt angle (ψ in this text), without rotation about
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Figure 7.5. Schematic drawing (a) showing the geometry of pole-figure measurements with an
X-ray diffractometer, and (b) a diagram showing the corresponding stereographic projection.

an axis perpendicular to the sample surface. The results of one-dimensional pole-
figure measurements are shown in the form of intensity versus tilt-angle (ψ) plots
(Fig. 7.6). The {200} texture of Ag films on amorphous SiO2 is determined for samples
annealed at different temperatures. The Ag films display preferred {111} orientation
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Figure 7.6. {111} pole-figures obtained from Ag thin films on SiO2 substrates, as-deposited
(solid line) and annealed at 400 ◦C (dashed line) and 600 ◦C (dotted line) for 1 hour in vacuum.



7.5. Strain Measurements in Epitaxial Layers 137

(texture) when annealed at different temperatures, respectively. At ψ (tilt angle) = 0◦,
the {111} intensity is the highest, indicating that the Ag films are highly textured, with
<111> directions of grains in the films being normal to the surface of the substrate.
Theoretically, given a <111> texture orientation at ψ = 0◦, another {111}-type set of
planes can be expected to be present at ψ = 70.5◦ in cubic crystal systems. Consistent
with this expectation, high {111} intensities are detected at ψ = 70.5◦. Note that the
texturing increases with increased annealing.

A two-dimensional pole-figure is obtained by first setting the tilt angle, and then
measuring intensity as a function of sample rotation (φ) about an axis perpendicular to
the surface of the sample (see Fig. 7.5a,b). The sample is rotated from 0◦ to 360◦(φ).
After completing an azimuthal rotation, the sample is tilted (ψ) by a single tilt-angle
step (typically 1◦). Azimuthal rotation of the sample is repeated, while the intensity
of the diffracted beam is recorded. This process is repeated for the entire range of
desired rotation and tilt angles. Three-dimensional contour plots are then generated to
show texture. The two-dimensional pole-figure measurements and three-dimensional
contour maps are obtained from a 150 nm layer of Ag on SiO2 substrates, annealed
in vacuum. Two-dimensional {200} pole-figures are plotted in Fig. 7.7a,b, and the
corresponding contour maps are displayed in Fig. 7.7c,d. Silver exhibits fiber-texture
for both as-deposited and annealed samples. In addition, the fiber-textured grains ({111}
and {200}) are distributed randomly about the normal to the substrate, i.e., the film
possesses mosaic structure. This is indicated by the contour line-shapes being circular
at each tilt-angle position. Due to the mosaic structure of the Ag, the {111} intensity
at ψ = 70.5◦ is lower than the {111} intensity at ψ = 0◦. Upon annealing, the {200}
intensity is reduced and the {111} increases with temperature.

7.5 Strain Measurements in Epitaxial Layers

The strain in an epitaxial layer is determined by comparing the perpendicular and paral-
lel lattice spacings (a) of the film to that of the underlying substrate asub and determining
whether they are larger or smaller and by how much. The film is pseudomorphic when
lattice planes of the epilayer align with the lattice planes of the substrate. The resulting
strain values are expressed as [�a/a]⊥ and [�a/a]‖, and are based on the difference
in the perpendicular and parallel lattice constants, respectively. Since these differences
are measured relative to the substrate, the substrate lattice spacing must be known.
From these parameters, a strain value is calculated by determining the difference in the
lattice spacing of the film from its bulk relaxed state.

The application of X-ray diffraction in thin film samples is illustrated by diffraction
measurement of epitaxial layers of SiGeC layers on silicon. Initially, an asymmetrical
scan is taken about a plane (hkl) not parallel to the surface plane, where that plane
makes an angle ψ relative to the surface (see Fig. 7.8). Since, in this case, θin + ψ
and θout − ψ are not identical, the asymmetrical scan provides information about both
perpendicular spacing (a⊥) and parallel spacing (a‖). For analysis of Si-based structures,
both (2̄ 2̄ 4) and (2 2 4) reflections are typically used (Fig. 7.9). In one case, the spectrum
is a glancing incidence (2 2 4) reflection and the other is a (2̄ 2̄ 4) glancing exiting
reflection. Note the presence of a peak from the Si substrate and from the SiGeC film in
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Figure 7.7. Two-dimensional {200} pole-figures and contour plots obtained from (a) Ag, as-dep;
(b) Ag, annealed at 600 ◦C in vacuum for 1 hour, and corresponding three-dimensional {200}
pole-figure (c) as-dep, and (d) 600 ◦C, respectively.
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Figure 7.8. Schematic showing symmetrical scan and asymmetrical scan is taken about a plane
(hkl) not parallel to the surface plane, where that plane makes an angle ψ relative to the surface.
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Figure 7.9. Asymmetrical scan (2 2 4) and (2̄ 2̄ 4) reflection of a 180 nm thick Ge–Si alloy on
a Si(0 0 1) single-crystal substrate.

both scans. Satellite peaks above and below the substrate reflection are due to thickness
interference fringes. The absence of satellites for the (2̄ 2̄ 4) peaks is due to dispersion
of the diffracted beam.

For epilayer strain calculations, the substrate is typically considered to be unstrained,
and hence all measurements are made relative to the substrate’s lattice constant. For
this reason, it is useful to plot rocking curve measurements of intensity as a function
of �θ from the substrate peak. The perpendicular and parallel lattice constants are
calculated by first measuring the angular peak separation from glancing incident (2 2 4)
reflections, ω1, and the glancing exit (2̄ 2̄ 4) reflections, ω2. The deviation of the Bragg
angle between the substrate and layer, �θ , is calculated from

�θ = 0.5(ω1 + ω2). (7.10)

Due to tetragonal distortion in the epitaxial layer, the angle between the {224} planes
and the surface in the substrate will not be the same as this angle in the film. This
difference �ψ is calculated from

�ψ = 0.5(ω1 − ω2). (7.11)

The perpendicular lattice constant of the film is calculated by

[�a/a]⊥ = −�θ cot(θB) + �ψ tan(ψ), (7.12)

where θB is the Bragg angle for the reflection measured relative to the substrate. The
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Figure 7.10. Symmetrical scan (0 0 4) reflection of a 180 nm thick Ge–Si alloy on a Si(0 0 1)
single crystal substrate.

parallel lattice constant of the film is calculated from

[�a/a]‖ = −�θ cot(θB) + �ψ cot(ψ). (7.13)

Using Eqs. 7.12 and 7.13, values of θB = 44.015◦, ψ = 35.26◦, �θ = −0.529, and
�ψ = 0.3963 yield values of [�a/a]⊥ and [�a/a]‖ as +0.0144 and −0.0002, respec-
tively. Note that negative values for �a indicate that the dimension in the film is smaller
than that of the substrate; hence, the film is in tension. When the perpendicular lattice
constant for a pseudomorphic film is larger than the substrate, the film has a larger unit
cell and is in compression in the plane of the film. As an independent check of the pro-
cedure above, a symmetrical scan is taken from an allowed reflection parallel to the (0 0
1) surface. The (0 0 4) reflection is an example of such an allowed reflection. If we use
the (0 0 4) reflection in Fig. 7.10, Eq. 7.24, and �ψ = 0, a value of [�a/a]⊥ = 0.0146
is obtained and is consistent with values obtained from the asymmetrical scans.

High-resolution X-ray diffraction can also be used to generate reciprocal space maps.
The significance of reciprocal space maps is that they can directly distinguish between
mosaic-related defects (which result in diffuse scattering along the ω axis) and from
alloying-induced dhkl spacing variations (which cause diffuse scattering along the ω/2θ

axis). With a single asymmetric reflection, a map can also quickly reveal whether the
film is pseudomorphic or relaxed. Reciprocal lattice points for a pseudomorphic (in
plane) and tetragonally distorted (out of plane) layer lie directly along the same [0
0 1] vector. For relaxed layers, the lattice point lies parallel to the [0 0 1] vector;
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Figure 7.11. A reciprocal lattice map of the same sample previously shown in Figs. 7.9 and 7.10.

however, the point has a finite ω separation. This ω separation of the maxima is
used to quantify both the parallel and perpendicular lattice constants. Figure 7.11
shows a reciprocal space map for a glancing incidence (2 2 4) reflection from the same
SiGeC sample described above. The reciprocal space maps are oriented with the [0 0 1]
growth direction on the vertical axis and the [1 1 0] direction along the x-axis. The area
of reciprocal space scanned during the X-ray measurement axes is labeled as ω and
ω/2θ. The values needed for Eqs. 7.12 and 7.13 can be measured directly from the map.
Such measurement yields values of [�a/a]⊥ and [�a/a]‖ as +0.0147 and −0.0001,
respectively. In addition, a layer reciprocal lattice point lies directly below the substrate
lattice point on the [0 0 1] axis. This indicates that the layers are pseudomorphic, since
all the deflection is in the [0 0 1] growth direction. Film relaxation would result in an
increase in the parallel lattice parameter, which would be reflected in a change in the
[1 1 0] dimension. This shift would cause the layer reciprocal lattice point to move
out of this [0 0 1] axis toward the diffraction vector. The reciprocal space maps also
show a high structural quality of the layers by the lack of diffuse scattering of the layer
lattice points. The low values of the full width at half maximum in the ω/2θ direction
indicates a lack of variability in the dhkl spacing in the layer.

7.6 Crystalline Structure

Crystallographers describe each of the over 40,000 known crystalline structures through
the use of one of the 14-point lattices. At first inspection, one would think, “How is
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Lattice + Basis = CRYSTAL STRUCTURE

Figure 7.12. Schematic of a structure consisting of one point lattice and a unique basis.

this possible?” Crystallographers use a specific and yet simple nomenclature to define
crystal structures. The term structure refers to a composite of a point lattice and a
unique basis (Fig. 7.12). The basis refers to a motif (i.e., repeating theme) placed on
each lattice point. In some structures, the motif consists of a single atom; in other
structures, it consists of a group of atoms placed on each lattice point.

Any introductory materials engineering or solid-state physics book will address the
uniqueness of the 14 Bravais point lattices. The uniqueness of structures is also based
on lattice point positions in addition to the atom positions in the basis. The position of
the j th atom in the basis is described by the repeat vector r j ,

r j = a j x + b j y + c j z, (7.14)

where 0 ≤ a j , b j , c j ≤ 1, as measured relative to a lattice point (typically the origin of
the specific lattice). The origin is defined as the position 0,0,0. We then measure atomic
positions relative to this origin, using vector notation. For this example, let the basis
consist of a molecule AX (given in Figure 7.13a). For the two-atom basis, the smaller
atom is placed at a position vector [0 0 0] relative to the origin, and the second atom
is placed at position [1/2

1/2
1/2] relative to the origin. Hence the positions of the atoms

in the basis are given by the relationship atom A at [0 0 0] and atom X at [1/2
1/2

1/2].
In short-hand notation, this relationship is expressed as A 000, X1/2

1/2
1/2. As indicated

above, the lattice is built by repetitive displacements of these basic units cells. For
example, consider the tetragonal lattice in Fig. 7.13b. Now place the motif on every
lattice point. The formal description of the structure is a primitive tetragonal plus a

a) b) c) d)

a
a

c

a
a

c

a
a

c

c/2
a/2

a/2

Figure 7.13. (a) Schematic of the spatial relationship between atoms in a basis, and the formation
of a crystal structure: (b) take a point lattice, (c) place a common basis on each lattice point, and
(d) the final structure.



7.7. Allowed Reflections and Relative Intensities 143

two-atom basis 000, 1/2
1/2

1/2. Later we will use the formal notation to determine the
allowed reflections during diffraction analysis. Note that Fig. 7.13c and Fig. 7.13d
maintain the same symmetry and hence they each describe the same structure.

Let us now examine the crystal structures of some widely used materials. The metal
Fe has a BCC structure that consists of a BCC lattice and a one-atom basis of Fe on
each lattice site. We describe its structure as BCC lattice + Fe 000. The atomic ar-
rangement of the diamond structure consists of two interpenetrating FCC sublattices
displaced from each other by a

√
3/4. Both sublattices are occupied by identical atoms.

Silicon, diamond, and germanium crystallize in this structure: FCC lattice + Si 000,
1/4

1/4
1/4. The zinc-blend structure also consists of two interpenetrating FCC sublattices

displaced from each other by
√

3 a/4, where a is the lattice parameter. In this case,
one of the sublattices is occupied by one type of atom and the other sublattice is oc-
cupied by another type of atom. GaAs, InP, and GaP crystallize in this structure: FCC
lattice + Ga 000, As 1/4

1/4
1/4. In the NaCl structure, Na and Cl ions reside on their

respective FCC sublattices. Furthermore, the nearest neighbors of Na+ ions are Cl−

ions. This structure occurs to avoid the electrostatic repulsion between the positively or
negatively charged ions. Based on the symmetry of the basis, the NaCl structure is de-
scribed as FCC lattice + Na+ 000, Cl− 1/2

1/2
1/2 or FCC lattice + Cl− 000, Na+ 1/2

1/2
1/2.

In the CsCl structure, Cs and Cl ions reside on their respective simple cubic sublat-
tice, and the structure is SC lattice + Cs+ 000, Cl− 1/2

1/2
1/2 or SC lattice +Cl− 000,

Cs+ 1/2
1/2

1/2.

7.7 Allowed Reflections and Relative Intensities

In X-ray diffraction, we view the incident and emergent radiation both as discrete
particles with a specific energy and as electromagnetic radiation with λ on the order
of 0.1 nm. Engineers and scientists use diffraction analyses to quantitatively determine
crystal structure, lattice parameter, orientation, defects, and mechanical properties.
The analysis involves interrogating the sample with X-rays or electrons and interpreting
the resulting diffraction pattern. The pattern consists of a series of intensity peaks that
arise from coherent scattering from specific planes. Each peak corresponds to a specific
hkl reflection and conveys information about crystal structure and symmetry. Note that
planes are (hkl) and reflections are hkl. This leads us to the following question:

Can we predict the allowed reflections and their relative intensities?

Structure Factor Calculations (SFC) determine the resultant scattering power of the
whole crystal structure. Given the fact that the whole structure consists of a large num-
ber of unit cells (all of which scatter in phase under Bragg diffraction conditions), the
resultant scattering power need only be calculated for the contents of one unit cell.
Structure factor calculations start by initially determining the relative scattering inten-
sity of the atom relative to the scattering by a single electron. Secondly, we predict the
relative scattering intensity of the unit cell relative to the scattering by a single electron.
Those reflections that result in nonzero intensities are allowed. Those reflections that
result in a zero intensity are not allowed.
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13

sin θ/λ

fθ

Figure 7.14. Atomic scattering factor fϑ for Be as a function of sin θ /λ.

7.7.1 Scattering by the Atom—Atomic Scattering Factor

The efficiency of the atom in scattering waves is quantified relative to the scattering by
a single electron. The atomic scattering factor fϑ is the amplitude of the wave scattered
by the atom relative to the amplitude of a wave scattered by an isolated electron.

fϑ = amplitude scattered by the atom/amplitude scattered by a single electron

= An/Ae (7.15)

The fθ depends on both scattering angle θ and λ of the incident radiation. Figure 7.14
displays a schematic diagram showing the variation of the atomic scattering factor fθ
with sin θ /λ for Be. Note that these two species have an identical number of electrons.
At a zero scattering angle, the scattered waves are in phase and the scattered amplitude
is the sum from all the electrons, i.e., fθ equals Z (atomic number) in the atom or ion.
As λ increases, the intensity decreases because the efficiency for scattering through
large angles is lower. From Appendix 5, the values can be determined for atoms and
ions. For example, the fθ value can be determined for the case when Mo Kα (λ of
Mo Kα is 0.07107 nm) is incident on a Be atom at an angle of 16.52◦. First calculate
the value of sin θ /λ = sin(16.52◦)/0.07107 nm = 4.0 nm−1. The value of fθ can be obtained
from Appendix 5, and is found to be equal to 1.6. In a similar manner, Mo Kα incident
on N3+ at the same angle results in a fθ value of 2.0. Upon inspection, it becomes
evident that atoms with greater numbers of electrons scatter radiation more effectively.

7.7.2 Scattering by Unit Cell and Structure Factor Calculations

A monochromatic beam incident upon a regularly spaced three-dimensional array of
atoms can result in an interference pattern. In this particular case, the path difference
between scattered beams results in a phase difference. A phase difference of zero results
in constructive inference. A phase difference of 180◦ results in destructive inference.
The superimposition of all the scattered waves from the single unit cell produces the
resultant intensity from the whole crystal. This resultant wave and the phase difference
are a function of the number of electrons and the positions of each of the atoms in the unit
cell. The structure factor Fhkl therefore corresponds to the summation of amplitude A
of scattering of all the electrons of one unit cell relative to the amplitude of scattering
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θ θ θ

θ θ θ θ

θ

dhkl

Figure 7.15. Schematic of coherent scattering from a lattice with a basis of one atom.

from an isolated electron:

Fhkl = �An/Ae

= amplitude of all atoms of the unit cell/amplitude of a single electron.

Structure factor calculations establish the allowed hkl reflections. In addition, SFC
also conveys the amplitude and the phase for each reflection. The intensity of the
reflection is influenced by the direction and wavelength of the incident radiation and
by the structure of the crystalline solid. Note that the presence of the reflection is not
dependent on the method used to obtain the reflection or the type of radiation used.

Starting with the simplest case of a primitive unit cell with a single atom basis at each
lattice point, Fig. 7.15 displays a schematic of the incident and scattered waves for a
crystalline lattice. For a specific set of (hkl) planes, each atom has an atomic scattering
factor f0 at the correct Bragg angle. For all the atoms residing on the successive planes,
the path difference is zero for the case of constructive interference. Hence, the total
scattered amplitude relative to a single electron is the sum of the contribution from all
atoms [(1 atoms/8 corners)∗8 corners = 1 atom] in the unit cell, Fhkl , and this equals f0.

Next we consider the case for a two-atom basis (Fig. 7.16). Consider an atom placed
at the origin with atomic scattering factor f0 and another atom placed at a position
defined by r1, the position vector, and with atomic scattering factor f1. As previously
stated, r1 is expressed in terms of fractional coordinates [uvw] along the axes x, y, and
z, respectively. The incident wave and scattered waves can be described by the vectors
s0 and s, respectively. For a wave front scattering from points A and D, constructive
interference will occur if the path difference PD = AB − CD is equal to an integral

θ

dhkl

θ θ

D

C
s

s0

B

r1

θ θ
r1

θ θ
r1

A

Figure 7.16. Schematic of coherent scattering from a lattice with a basis of two atoms.
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multiple of λ:

P D = AB − C D

= r1 · s0 − r1 · s (7.16)

= r1 · (s0 − s) .

At this point, we need to solve Bragg’s Law vectorally in reciprocal space. We shall do
this later in Section 8.4. For the time being, we will accept that

PD = r1 · (s0 − s) = λ(hu1 + kv1 + lw1), (7.17)

where h, k, and l are Miller indices of the reflecting planes. Eq. 7.17 expresses the
scattered wave’s path difference from different atoms in the unit cell (and from the
basis) conveniently as an angular phase difference (φ). This value is measured relative
to an atom at the origin of the unit cell (i.e., generally the origin of the basis as well).
The resultant is calculated by the superimposition of waves, one from each atom in
the unit cell (and from the basis). The amplitude of each wave depends on the number
of electrons in the atom (atomic scattering factor, fθi, and scattering angle θ) and the
phase, which depends on the position of the atom in the unit cell (and from the basis):

φn = (2π/λ) · PD

= (2π/λ) · λ(hun + kvn + lwn)

= 2π (hun + kvn + lwn). (7.18)

Equation 7.18 gives the phase difference for any unit cell of any shape. In general,
to add combinations of the atoms, we need only to use a vector-phase relationship in
which the vectors are proportional to the atom’s atomic scattering.

7.7.3 Allowed Reflections

Now we only need to sum the scattering of all the atoms in the unit cell to determine
the relative intensity of allowed reflections. This sum is called the structure factor Fhkl

for the crystal structure. For a primitive cell, the scattering from the whole unit cell
(given by the structure factor Fhkl) is the same as the scattering from one single atom
(given by the atomic scattering factor fθ ). The scattered amplitude (A) from each atom
in the unit cell can be described as

A = fθ exp [iφ], (7.19)

where fθ is the scattering factor for a single atom and φ is the phase of the wave with
respect to the wave scattered from the origin of the unit cell. If diffraction occurs from
the (hkl) plane, then the phases are such that scattering from the atom n at cell position
uvw can be given by

An = fn exp [iφn] = fn exp [2π i(hun + kvn + lwn)]. (7.20)

The scattering from each atom and its corresponding phase difference are summed over
the entire unit cell:

Fhkl = 1/Ae
�An = � fn exp [2π i(hun + kvn + lwn)]. (7.21)
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Table 7.3. Useful relationships.

ei x = cos(x) + i sin(x) einπ/2 = ein5π2 . . . = i
ei x + e−i x = 2 cos(x) enπ i = e3πni . . . = −1
e2nπ i = e4nπ i . . . = 1 ei3πn/2 = ein7π/2 . . . = −i

Typically, XRD analyses only involve measurements of relative intensities; hence,
only the nonzero and zero values of intensity (Ihkl) determine the allowed and unallowed
reflections, respectively. The structure factor Fhkl for a given reflection is related to the
intensity (Ihkl) by the relationship (Ihkl) ∝ (Fhkl)2. If Fhkl equals a complex number
(x + iy), then we multiply the complex number by its complex conjugate (x − iy)
to determine the intensity values of (Fhkl)2. Several useful relationships are given in
Table 7.3.

We will review two approaches for determination of allowed reflections. The first is
the long approach. Initially, we identify each atom in the unit cell by its position vector
[uvw] and by its contribution to the unit cell (corners 1/8 atom, face 1/2 atom, and body
1 atom). By using Eq. 7.18, the sum all the atoms is obtained. We simplify the equation
and develop relationships that generate integer sums of the exponents. It is then useful
to summarize results. Below are a few examples.

In the first example, we determine the allowed reflections for the case of α-Fe (BCC
structure). Eight Fe atoms reside on the corners and one in the body position. Each
corner atom contributes 1/8 atom to the unit cell, and the body atom contributes one
atom to the unit cell. Using Eq. 7.21, we sum over all atom positions:

Fhkl = � fn exp [2π i(hu + kv + lw)]

= fFe[1/8e(0∗2π i) + 1/8e(h2π i) + 1/8e(k2π i) + 1/8e(l2π i) + 1/8e(h+k)2π i

+1/8e(h+l)2π i + 1/8e(k+l)2π i + 1/8e(h+k+l)2π i + (1)e(h/2+k/2+l/2)2π i ].

Note that all hkl are Miller indices, and hence they must be integers:

Fhkl = fFe[1/8(1) + 1/8(1) + 1/8(1) + 1/8(1) + 1/8(1) + 1/8(1) + 1/8(1)

+ 1/8(1) + (1)e(h+k+l)π i ]

= fFe[1/8(8) + (1)e(h+k+l)π i ] = fFe[1 + e(h+k+l)π i ].

At this point, we develop relationships that generate integer sums of the exponents:

If h + k + l equals an even integer Fhkl = fFe[1 + e(2n)π i ] = fFe[1 + 1] = 2 fFe

If h + k + l equals an odd integer Fhkl = fFe[1 + e(2n+1)π i ] = fFe[1 − 1] = 0

where n = 1, 2, 3. . . .

Finally, multiply the SFC by the complex conjugate to determine the relative intensity
and summarize results:

If h + k + l equals an even integer Ihkl = (Fhkl)2 = 4( fFe)2 allowed reflections;

If h + k + l equals an odd integer Ihkl = (Fhkl)2 = 0 reflections absent.

The second example requires identifying the allowed reflections for CsCl. Eight
anions reside on the corners and one cation on the body position. Due to the symmetry
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of the structure, it can also be stated that eight cations reside on the corners and one
anion on the body position. Again, each corner atom contributes 1/8 atom to the unit
cell, and the body atom contributes one atom to the unit cell. For this example, we will
assume Cs+ on the corners and Cl− in the body. Using Eq. 7.18, we sum over all atom
positions:

Fhkl = � fn exp [2π i(hu + kv + lw)]

= fCs[
1/8e(0∗2π i) + 1/8e(h2π i) + 1/8e(k2π i) + 1/8e(l2π i) + 1/8e(h+k)2π i

+1/8e(h+l)2π i + 1/8e(k+l)2π i + 1/8e(h+k+l)2π i ] + fCl e(h/2+k/2+l/2)2π i .

Note that all hkl are Miller indices, and hence they must be integers:

= [ fCs
1/8(8) + fCle

(h+k+l)π i ] = fCs + fCle
(h+k+l)π i ].

In this case, we multiply the SFC by the complex conjugate and summarize the intensity
results:

If h + k + l equals an even integer,

Ihkl = (Fhkl)
2 = ( fCs)

2 + 2( fCl)
2 + 2( fCs)( fCl) allowed reflection;

If h + k + l equals an odd integer,

Ihkl = (Fhkl)
2 = ( fCs)

2 + 2( fCl)
2 − 2( fCs)( fCl) allowed reflection.

The structure of any crystalline solid is best described by its lattice and basis
(Section 7.4). In a similar manner, the structure factor is also best described by the
relationship between the structure factor of the lattice and the structure factor of the
basis:

Fhkl = Fhkl
Lattice · Fhkl

Basis = � fn exp[2π i(hun + kvn + lwn)]. (7.22)

The relationship above, considered a short approach, often reduces the algebra by
a considerable amount. Using this advancement, one initially identifies the structure
(lattice and basis). This requires distinguishing each atom in the basis by its position
vector [uvw]. Each atom of the basis contributes one atomic scattering factor. Set up the
relationship for the lattice times the basis equation, and solve for the allowed reflections
for the lattice first. The allowed reflections will contribute the number of lattice points
per unit cell. Use any known relationships for allowed and absent reflections for that
lattice. Simplify the equation and develop relationships that generate integer sums of
the exponents. Finally, summarize results.

If we repeat the previous example for CsCl, the structure is defined as a simple cubic
lattice plus a basis of Cs 000 and Cl 1/2

1/2
1/2. Given the structure’s symmetry, a basis of

Cl 000 and Cs 1/2
1/2

1/2 can also be used. A convenient relationship is that all reflections
are allowed for any simple lattice (regardless of the crystal system). Using Eq. 7.12,
we multiply the lattice times the basis and sum over all atom positions:

Fhkl = Fhkl
Lattice · Fhkl

Basis = � fn exp[2π i(hun + kvn + lwn)]

=
All h,k,l allowed
[1] · [ fCs e(0∗2π i) + fCle

(h/2+k/2+l/2)2π i
]
.
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Figure 7.17. Diffraction pattern obtained from a CsCl sample using CuKα radiation.

At this point, the only remaining steps are as those above—multiply the SFC by the
complex conjugate and summarize the intensity results. Figure 7.17 shows an actual
indexed X-ray diffraction pattern obtained from a CsCl sample using Cu Kα radiation.

Problems

7.1. Use Fig. 7.17 to show that the lattice parameter of CsCl is 0.412 nm.
7.2. X-ray diffraction analysis is conducted on a pure iron sample using Mo Kα.

radiation. The peak positions are listed below. Prove that the metal is indeed
BCC and calculate the index pattern and determine the lattice parameter.

Peak 2θ (deg)

1 20.16
2 28.66
3 35.29
4 40.95
5 46.10

7.3. Show that the allowed FCC structure reflections correspond to h k l being unmixed
(i.e., all odd or all even) using structure factor calculations. Using the information
obtained and Appendix 5, calculate the expected peak positions and quantitatively
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z

A

B

C

y

x
Figure 7.18. Problem 7.5.

approximate relative intensities when a piece of copper is analyzed using Cr Kα

radiation (see Appendix 6 for the wavelength values).
7.4. Use the allowed FCC structure reflections (the short notation) to determine the

allowed reflections for diamond. (Hint: start with the lattice and basis.)
7.5. For the structure shown in Fig. 7.18:

a) For the crystal, determine the structure (i.e., lattice and basis) and give the
chemical equation.

b) What are the symmetry elements along the [1̄ 0 1̄], [0 0 1], and [1 1 1]
directions?

c) Using structure factor calculations, derive simplified expressions for the rel-
ative intensity of each allowed reflection.

7.6. Determine the allowed reflections for HCP Zinc.
7.7. For the case when the atoms in the basis are positioned to the incident and reflected

beams as shown in Fig. 7.19, using simple geometry to show that Bragg’s Law
is satisfied when (AB + BC) = 2dhkl sin θ .

7.8. A single crystal of Si of Pd is heated during XRD analysis. The 111 reflection is
monitored. From the data below, calculate the coefficient of thermal expansion
and compare your data to the tabulated values.

D

C

B

A

θ

θ

θ

θ

Figure 7.19. Problem 7.7.
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C◦ �2θ (deg)

25 0.000
125 −0.024
225 −0.048
325 −0.072

7.9. The data below are taken from an unknown BCC or FCC metal using Mo Ka
radiation. Identify the materials and index the pattern.

line 2θ

1 19.57
2 22.63
3 32.22
4 37.98
5 39.73
6 46.21

7.10. Pole-figure analysis is conducted on a single-crystal Pd(0 0 1) layer on a Si(0 0 1)
substrate. The layer’s normal vector is parallel to the z-axis. Predicate the number
of {2 0 0} poles and calculate the angles between the each pole and the layer’s
normal. Also calculate the angle between the poles. How would these values
differ if a Si(0 0 1) substrate is analyzed?
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8
Electron Diffraction

8.1 Introduction

In this chapter, we consider thin film analysis using high-energy electron diffraction
with an electron microscope. The most common form of the technique is known as
transmission electron microscopy (TEM). As discussed in Chapter 7, diffraction reveals
detailed information about the crystalline nature of a thin film. Electron microscopy
has the critical advantage of providing a nanometer-scale electron beam spot as the
radiation source. Thus crystallinity can be examined nanometer by nanometer in order
to address questions such as crystal uniformity and to identify individual large de-
fects and a variety of other structures. A simple example illustrates the importance of
this parameter. Most metal films, when deposited, form as polycrystalline structures
composed of nanoscale crystallites. Clearly, it is of interest to directly characterize
this structure, to examine the crystallinity of individual crystallites, and to understand
their connectivity. Such issues are addressed by transmission electron microscopy
and the accompanying electron diffraction. This chapter presents the fundamental
aspects of electron diffraction and its implementation in the transmission electron
microscope.

In the case of crystalline solids, we typically desire to measure atomic spacings on
the order of the lattice constants, e.g., 0.2–0.4 nm. Hence, we must use radiation with
wavelengths less than 0.2 nm. This range of wavelengths corresponds to high-energy
electrons. Here we recall from earlier sections that photons are massless particles.
The photon’s wavelength and energy are given by the relationship λ (µm) = 1.24 (eV-
µm)/E (eV). Electrons are not massless particles; hence, the equation above does not
yield the correct wavelength for high-energy electrons traveling at relativistic speeds.
For such cases, the de Broglie (particle–wave) relation mv = h/λ and the kinetic energy
of the electrons, 1/2 mv2 = eV, are used to correct the inverse relationship between
applied voltage and wavelength:

λ(nm) =
[

0.139 volts-nm2

V (volts)

]1/2

, (8.1)

where V is the applied voltage in volts and wavelength is in units of nm. Using
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Eq. 8.1, we can calculate the wavelength of a 100 keV electron:

λ(nm) =
[

1.39 volts-nm2

100, 000 volts

]1/2

= 3.2 × 10−3 nm.

Hence, the 100 keV electrons typically used in transmission electron microscopy have
wavelengths that are appropriate for diffraction analysis of crystalline solids. Given that
these wavelengths are two orders of magnitude smaller than typical X-ray wavelengths
used for diffraction studies, we will use a different approach in the development of
Bragg’s Law.

Chapter 7 presents Bragg’s Law as a simple law that has application in describing
diffraction. This chapter develops Braggs Law in terms of vectors in reciprocal lattice
space. Initial encounters with reciprocal space may seen abstract. However, reciprocal
space is a powerful vehicle that also describes many other phenomena in solid-state
science.

8.2 Reciprocal Space

Real (R) space point (Bravais) lattices are mathematical constructs that are described
by specific translation vectors. In a similar manner, this section develops the concept of
the reciprocal (1/R) lattice as a mathematical construct that is best understood in terms of
vector algebra. At first glance, the notation and units may appear difficult; however, 1/R
space is an extremely useful means to describe the behavior of electrons in crystals. In
this case, the reciprocal space is called k-space or momentum space. Here in this chapter,
we will use 1/R-space relationships to describe the coherent scattering of particles and
photons by crystalline solids. Our understanding of the 1/R-lattice in combination with
the Ewald sphere construction will simplify the description of electron diffraction in
the transmission electron microscope.

Normal vectors can represent families of crystal planes in R-space. Consider a family
of planes in a crystal (Fig. 8.1) in R-space. Normal vectors to these planes are drawn
from a common origin, and these specify the orientation and spacings of the planes.
For example, the (001) and (010) planes of the cubic system have normal vectors along
the [001] and [010], respectively. The interplanar spacing d001 and d010 have a length

010

100
1000 0

010

1/b

1/a

b

a

b*

R-space

a*

a* = d*100 and ⏐a*⏐=1/d100 ; b* = d*010 and ⏐b*⏐=1/d010.

1/R-space

Figure 8.1. Schematic of the relationship between R-lattices and 1/R-lattices.



154 8. Electron Diffraction

b*

a*a

b

020

010

100

110

200

220

0
(110)

Figure 8.2. Schematic of the re-
lationship between R-lattice planes
and 1/R-lattice points.

of a0. In comparison, the (004) plane has a normal vector of [004] and its interplanar
spacing d004 has a length of 1/4 a0. Hence, for a specific plane, the interplanar spacing
corresponds to the reciprocal of the length of the normal vector.

In reciprocal space, the reciprocal lattice vector d∗ has the inverse magnitude of the
corresponding interplanar spacing dhkl for the specific plane. Reciprocal lattice vectors
have dimensions of 1/length (nm−1):

|d∗
hkl | = 1

dhkl
. (8.2)

Using Eq. 8.2, we can calculate the magnitudes of the d∗
004 and the d∗

2̄11 vectors
for Si. Given that silicon’s lattice parameter a0 is 0.543 nm, and dhkl is equal to
[h2 + k2 + l2]

1/2
a−1

0 ,

|d∗
004| = 1/d004 = [02 + 02 + 42]1/2 (0.543 nm)−1 = 7.37 nm−1,

|d∗
211| = 1/d211 = [22 + 12 + 12]1/2 (0.543 nm)−1 = 4.51 nm−1.

The first axiom used to understand reciprocal lattices in this: the 1/R-space lattice is
directly related to the R-space lattice. For example, the 1/R-space vector d∗ is composed
of reciprocal unit cell vectors a∗,b∗, and c∗ and may be defined in terms of the real-space
lattice unit cell vectors a, b, and c. In Fig. 8.2, we draw the reciprocal lattice vectors in
a section perpendicular to the z-axis (i.e., containing the a and b lattice vectors), from
which we will define the reciprocal lattice unit cell vectors a∗ and b∗. This then enables
us to express reciprocal lattice vectors in terms of their 1/R-space lattice unit vectors
a∗,b∗, and c∗ or real lattice unit vectors. For the schematic in Fig. 8.2, the section of
the lattice is taken from about the origin and perpendicular to the z-axis. A key point
to note is that in the case of the cubic system, the R-space units vectors are parallel to
the complementary 1/R-space units vectors, i.e.,

a‖a∗, b‖b∗, and c‖c∗. (8.3)

Figure 8-2 shows the (110) plane in R-space and the corresponding 1/R-lattice vector
d∗

110, with the reciprocal lattice point 110 labeled. Notice the reciprocal relationships
between the d∗ lengths and the dhkl spacings—the (002) plane has half the d-spacing
of the (001) plane. The corresponding reciprocal lattice point 002 is twice the distance
from the origin as the reciprocal lattice point 001. Likewise, the lattice point 003 is
three times the lattice point 001 distance from the origin. Hence, the 1/R-lattice points
can be propagated throughout 1/R-space.
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The reciprocal lattice vectors can now be expressed in terms of their components of
the reciprocal unit cell vectors a∗, b∗, and c∗:

d∗
hkl = ha∗ + kb∗ + lc∗. (8.4)

Note that the Miller indices hkl are the scalar components of a reciprocal lattice vector.
Hence, a vector d∗

hkl drawn from the origin of the 1/R-lattice to any point with coor-
dinates hkl is perpendicular to the R-space plane (hkl); the normal vector nhkl‖d∗

hkl .
In the cubic system, any vector in 1/R-space that is drawn from the origin to the point
hkl is also perpendicular to the (hkl) plane in the real crystal. Each point in 1/R-space
represents a given set of parallel planes in R-space.

8.2.1 The Addition Rule

Just like vectors in R-space, 1/R-space vectors add in a tail-to-head manner to generate
the resultant vector. The addition rule simply states that the resultant vector is the sum
of the indices of the two reciprocal lattice vectors:

d∗
h1k1l1

+ d∗
h2k2l2

= d∗
h1+h2 k1+k2 l1+l2

. (8.5)

Using Eq. 8.5, we can develop several relationships for the reciprocal lattice vector
d∗

hkl = [220]:

d∗
220 = d∗

110 + d∗
110 = 2d∗

110

= d∗
200 + d∗

020 = 2d∗
100 + 2d∗

010 = 2(d∗
100 + d∗

010)

= d∗
110 + d∗

010 + d∗
100

= d∗
330 − d∗

010 − d∗
100.

For the case of orthogonal axes (in orthorhombic, tetragonal, and cubic systems), a
simple expression is obtained for d∗

hkl · d∗
hkl :

d∗
hkl · d∗

hkl = (ha∗ + kb∗ + lc∗) · (ha∗ + kb∗ + lc∗)

= ha∗ · ha∗ + kb∗ · kb∗ + lc∗ · lc∗. (8.6)

For crystals where a∗ · b∗ = 0 and a∗ · a∗ = 1, etc.,

d∗
hkl · d∗

hkl = h2

a2
+ k2

b2
+ l2

c2

= 1

d2
hkl

. (8.7)

The angle γ between plane normal vectors from (h1k1l1) and (h2k2l2) planes or the
angle γ between two vectors a and b is given by

cos γ = a · b

|a||b| . (8.9a)
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In a similar manner, the angle γ between two 1/R-space points h1k1l1 and h2k2l2 is given
by

cos γ = d∗
h1k1l1

· d∗
h2k2l2∣∣d∗

h1k1l1

∣∣∣∣d∗
h2k2l2

∣∣ . (8.9b)

The volume (V) of the unit cell is given by a · (b × c). The cross product (b × c) yields
a vector parallel to a∗ and with a magnitude equal to the area of the face of the unit cell
defined by b and c; then

a∗ = b × c
a · (b × c)

, b∗ = c × a
V

, c∗ = a × b
V

, (8.10)

In a similar manner, real space can be defined in terms of the reciprocal space unit
vectors:

a = V · (b∗ × a∗), b = V · (c∗ × a∗), c = V · (a∗ × b∗). (8.11)

8.2.2 Proof of the Zone Law

The intersection of planes (h1k1l1) and (h2k2l2) is a vector. Figure 8.3 depicts the zone
axis (ZA) as the common intersection of several planes. For example, consider the case
of planes A(h1k1l1) and B(h2k2l2) in the cubic system, having normal vectors [h1k1l1]
and [h2k2l2], respectively. The vector ZA is defined by the relationship

ZA = nA × nB = [h1k1l1] × [h2k2l2] (8.12)

Given that the zone axis is [u v w], then for any plane (hkl) that belongs to that ZA (or
zone), the following relationship is satisfied:

hu + kv + lw = 0 (8.13)

In order to belong to a zone, the normal of the plane must be perpendicular to the zone
axis; hence, the Zone Law is given as

(u a + v b + w c) · nhkl = 0 (8.14)

For example, the zone axis for the (011) and (101) planes is calculated by taking the
cross product [h1k1l1] × [h2k2l2] = (+1)a − (−1)b + (−1)c = [1 1 1]. To verify that
the calculated ZA is indeed correct, one uses the zone law (ZA · nhkl = 0) for validation.
Here, [0 1 1] · [1 1 1] = 0 and [1 0 1] · [1 1 1] = 0. Hence, the calculated ZA is
correct.

To address the zone law in 1/R space, we consider the condition for a 1/R-lattice point
with coordinates hkl with position vector d∗

hkl passing through the origin. For a ZA,

B A
ZA Figure 8.3. Schematic showing two intersecting

planes and the corresponding zone axis (ZA).
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vector [uvw] in R-space is perpendicular to d∗
hkl , and hence,

d∗
hkl · ZA = 0,

(ha∗ + kb∗ + lc∗) · (u a + v b + w c) = 0. (8.15)

Since c∗ is perpendicular to both a and b, the scalar (or dot) products are zero,
i.e., c∗ · a = 0, c∗ · b = 0, and similarly for a∗ and b∗, i.e., a∗ · b = 0, a∗ · c = 0,

b∗ · a = 0, b∗ · c = 0, so

hu + kv + lw = 0. (8.16)

8.3 Laue Equations

The Laue Equations represents Laue’s use of optical relationships to describe the
diffraction of photons by crystalline structures. For simplicity, we consider a simple
array of atoms in a crystalline structure with a one-atom basis. (From our previous dis-
cussion of Bragg’s Law in R-space, the number of atoms in basis does not really matter
as long as the basis resides on lattice sites (see Section 7). From this 3-D structure, let
us only consider a row of atoms along the x-direction such that the incident radiation
s0 and the scattered radiation s are at angles α0 and αn to the row. Note that Fig. 8.4
is somewhat misleading in that it only shows the diffracted beam at angle αn below
the atom row—but the same path difference is obtained if the diffracted beam lies in
the plane of the paper at angle αn above the atom row, as well as out of the plane of the
paper at angle αn to the atom row. The condition for constructive interference requires
that the path difference (AB − CD) must be an integer multiple of the wavelengths
(Fig. 8.4). The path difference between the incident beam and scattered beam:

AB − C D = a(cos αn − cos α0) = nxλ. (8.17)

Equation 8.17 can also be presented in vector form, where a is the translation vector
in the x-direction. The path difference of the projection along the x-direction may be
represented by the scalar product a · s − a · s0 = a · (s − s0):

s0 · a − s · a(cos αn − cos α0) = nxλ. (8.18)

For a 3-D solid, we can develop similar relationships for the y- and z-directions:

b(cos βn − cos β0) = nyλ,

c(cos γn − cos γ0) = nzλ.
(8.19)

The scalar forms of Eqs. 8.18 and 8.19 are referred to as the Laue Equations and
are based solely on optical scattering theory (like that for the scattering of optical

B
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C

s

so
a

αn

αo

Figure 8.4. Schematic of scattering by an
array of atoms.
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light by slits). For constructive interference to occur simultaneously from all atoms in
all three directions, all three Laue equations must be satisfied simultaneously. Each
diffracted beam may be identified by three integers nx , ny , and nz , which represent
the order of diffraction from each of the atom rows. Hence, to determine or predict
the condition for which constructive interference occurs simultaneously from all three
rows, we need to determine all the constants. This would mean that for each diffraction
peak obtained from our spectrum, we must solve three simultaneous equations with
a total of twelve unknowns (αn, αo, a, nx , βn, βo, b, ny, γn, γo, c, nz). Hence, Laue’s
optical approach has practical disadvantages when used to calculate the angles of the
diffracted beams.

8.4 Bragg’s Law

W. L. Bragg envisaged diffraction in terms of reflections from crystal planes initially
using vector notation. Bragg invoked all the criteria for coherent scattering as prescribed
by the senior Bragg (his father) and Laue. Let s0/λ and s/λ be unit reciprocal space
vectors along the directions of the incident and diffracted beams, respectively. Figure 8.5
shows geometrically the development of the Bragg’s vector relationship. Initially, we
establish that the vector (s − s0)/λ is parallel to the reciprocal lattice vector d∗

hkl for
the specific (hkl) reflecting planes:

(s − s0)/λ ‖ d∗
hkl ‖ nhkl .

⎯s/λλλλ

(⎯s -

-

⎯so)/λλλλ

⎯so/λ

⎯s/λ

dhkl

d*
hkl

(⎯s -⎯so)/λλλλ

⎯so/λ

⎯s/λ
-⎯so/λ

q

⎯so/λ

⎯s/λ

d*
hkl

-⎯so/λ λλλλ-1sinq

λλλλ-1sinq Figure 8.5. Development of Bragg’s Law in vector
form.
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Comparing these vectors, |s − s0|/λ = (2/λ) sin ϑ and |d∗
hkl | = 1/dhkl . Hence, Bragg’s

Law may be written as

(s − s0)/λ = d∗
hkl , (8.20)

2(1/λ) sin ϑ = ∣∣d∗
hkl

∣∣ = 1/dhkl ,

2 dhkl sin ϑ = λ.

Hence, constructive interference occurs, or Bragg’s law is satisfied when the vector
|s − s0|/λ coincides with the reciprocal lattice vector d∗

hkl of the reflecting planes.
Another way of saying this is that when the vector |s − s0|/λ coincides with the recip-
rocal lattice point hkl, Bragg’s Law is satisfied:

Bragg’s Law: (s − s0)/λ = d∗
hkl = ha∗ + kb∗ + lc∗. (8.21)

It is important to note that Bragg’s law applies irrespective of the positions of the atoms
in the planes; it is solely the spacing between the planes and the periodicity of the
lattice that applies.

Bragg’s development must be consistent with the Laue Equations to be meaningful.
Upon inspection of Bragg’s development, one realizes that the number of variables
needed to calculate the directions of the diffracted beams is much less when compared
with Laue’s approach. Now let us apply Bragg’s Law to the Laue Equations (Eqs. 8.18
and 8.19). Consider the case for scattering along the x-direction:

nxλ = a · (s − s0) = a · (d∗
hkl λ) = a · (ha∗ + kb∗ + lc∗)λ = hλ. (8.22)

Similarly, we can consider the scattering along the y- and z- directions. Hence, the n’s in
the Laue Equations equate to hkl of the scattering plane: nx = h, ny = k, and nx = l.
Finally, application of relevant symmetry elements, the law of reflections, and structure
factor calculations can further reduce the number of variables in the Laue Equations.
For example, if the material is cubic, αn, α0, βn, β0, γn, γ0 = θ ; a, b, c, = a0; and
nx , ny, nz = h, k, l, respectively. Hence, Bragg’s Law is satisfied when the vector (s −
s0)/λ coincides with the 1/R-lattice point hkl where the hkl are allowed reflections.

8.5 Ewald Sphere Synthesis

A useful means to understand the occurrence of diffraction is through use of a geomet-
rical representation of Bragg’s Law in reciprocal space. Ewald sphere (ES) synthesis
begins by drawing a sphere of radius 1/λ, where λ is the wavelength of the radiation
used for coherent scattering. We imagine the real crystal placed at the center of the ES.
Figure 8.6a shows the case for a crystal with the (hkl) planes at the correct Bragg angle.
The center of the reflecting sphere is at a distance 1/λ from the origin of the reciprocal
lattice and resides along the line of the incident beam. Note again that the origin of the
reciprocal lattice is not at the center of the sphere but is at the point where the direct
beam exits from the sphere. Bragg’s law is satisfied when a reciprocal lattice point hkl
lies exactly on the Ewald sphere.

In reciprocal space, the Ewald sphere (Fig. 8.6b) is drawn with radius 1/λ with the
crystal at the center. The origin of the reciprocal lattice is fixed at O, and the reciprocal
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Figure 8.6. (a) Scattering conditions used for Ewald sphere synthesis. (b) Schematic of one
reflecting plane and one reciprocal lattice point.

lattice point hkl intersects the sphere at the exit point of the diffracted beam. The
incident radiation is directed toward the sample and is parallel to the incident radiation
unit vector, s0/λ. The scattered vector is along s/λ. The reciprocal lattice vector d∗

hkl

is drawn from the origin to the point hkl in reciprocal space. Since Bragg’s Law is
satisfied when d∗

hkl equals (s − s0)/λ, Bragg’s Law is equivalent to the statement
that the reciprocal lattice point for the reflecting planes (hkl) intersects the sphere.
Conversely, if the reciprocal lattice point does not intersect the sphere, then Bragg’s
Law is not satisfied and no diffracted beams occur. It is a simple matter to extend
Bragg’s Law to all the reciprocal lattice points in a crystal.

Note the Ewald sphere development applies to any diffraction phenomena regardless
of the wavelength of the radiation used. For the case of X-ray diffraction, the Ewald
sphere is much larger compared with the size of the unit cell in reciprocal space and
much smaller than the ES using typical electron wavelengths. This situation typically
results in only one reciprocal lattice point satisfying Bragg’s Law for a given value of
2θ . For the case of electron diffraction, the ES has a large radius of curvature near the
origin of reciprocal space, and this allows the ES to pass through the origin and several
other reciprocal lattice points. Consequently, several reciprocal lattice points satisfy
Bragg’s Law simultaneously.

8.6 The Electron Microscope

This section will acquaint the reader with the basic components and typical operation
of a transmission electron microscope (TEM). The TEM allows the user to determine
the internal structure of materials. Samples for the TEM must be specially prepared to
thicknesses that allow electrons to be transmitted through the sample, as light is trans-
mitted through materials in a conventional transmission optical microscope. Because
the wavelength of electrons is much smaller than that of light, the optimal resolution
attainable for TEM images is many orders of magnitude better than that from a light
microscope. Thus, TEMs can reveal the finest details of internal structure—in some
cases as small as individual atoms. Magnifications greater than 300K times are rou-
tinely obtained for many materials. Under optimal conditions, even individual atoms
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can be imaged. Because of the high spatial resolution obtained, TEMs are often em-
ployed to determine the detailed crystallography of fine-grained or thin film materials.
The biological sciences often use TEM as a complementary tool to conventional crys-
tallographic methods such as X-ray diffraction.

The size of the TEM and number of controls can make the microscope quite daunting.
However, if one thinks of an electron microscope as a large light microscope, the
TEM becomes less intimidating. For example, the light from a bulb shines (transmits)
through the specimen on a glass slide. As the radiation passes through the specimen,
it is influenced by the structure and composition of the specimen. This results in the
incident light beam being transmitted through only certain parts of the slide, while
being scattered or absorbed by other parts. The lenses project an enlarged image of the
specimen onto a florescent viewing screen or photographic plate or digital camera.

Passage of electrons through the TEM column requires an ultra-high vacuum in the
column. This vacuum level also minimizes the contamination that occurs when the beam
interacts with the specimen. The sample and photographic plates are introduced into
the high vacuum through separate evacuated load locks without breaking the vacuum.

The energy of the electrons in the TEM determines the relative degree of electron
penetration into a specific sample, which in turn directly influences the thickness of
material from which useful information may be obtained. At Cornell University, a 1000
kV TEM not only provides close to the highest resolution available but also allows for
the observation of relatively thick samples (e.g., ∼200 nm to 1000 nm) when compared
with the more conventional 100 kV or 200 kV instruments.

Figure 8.7 shows a cross-section schematic of the components and beam path of
the typical TEM. The four basic components that are required to produce a magnified
image are (1) an electron gun, which emits a beam of monochromatic electrons as the
illumination source, (2) a set of condenser lenses to focus the illumination onto the
specimen, (3) an objective lens used to form the first image of the specimen, and (4) a
series of magnifying lenses to create the final magnified image.

The electron gun produces a beam of monochromatic electrons along the optical
axis of the microscope. An intense electron beam is required for imaging at high
magnification. The amount of electronic energy deposited in the beam spot causes
sample damage, and ultimately limits the resolution. Electrons are emitted by heating a
filament (thermionic emission, tungsten or LaB6 filament) or from an unheated filament
that has an extremely high potential gradient placed across the filament ( field emission,
fine-tipped single-crystal tungsten). The electron beam is focused into a thin, coherent
beam with the use of the first and second condenser lenses. The first lens controls the
beam-spot size and dictates the general size range of the final spot that illuminates the
sample. The second lens controls the intensity and the size of the spot on the sample.
A user-selectable, condenser aperture removes high-angle electrons (those far from the
optic axis) and allows for a collimated beam down the optical axis.

The beam strikes the specimen, and a portion of the beam is transmitted through the
sample and other parts of the beam are diffracted. The sample stage must allow for easy
access to the specimen, mechanical stability, and reproducible translations. Specialty
stages allow for excess cooling (liquid nitrogen temperatures) or heating (∼ 500 ◦C)
or increased tilting (± 60 ◦). State-of-the-art stages allow for in-situ nanoindentation,
in-situ electrical probing, or scanning tunneling microscopy.
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Figure 8.7. Diagram displaying the cross section of a transmission electron microscope and the
path of the electron beam down the column of the TEM.

The transmitted portion of the beam is focused by the objective lens into an image.
The electron image is focused by adjusting the objective focal length. Any defects
associated with the objective lens are subsequently magnified onto the final image.
Chromatic aberration results from variation in the electron velocity entering the spec-
imen. Spherical aberration is due to variations in focal length as a function of radial
position of the electrons in the beam. Such aberration is influenced by the effective
aperture of the microscope. Lens-current fluctuations produce lens instabilities, which
give unstable images.
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The objective aperture and selected area diffraction aperture can both restrict the
beam. The objective aperture enhances image contrast by blocking out high-angle
diffracted electrons. Use of a selected-area aperture enables the user to image the elec-
tron diffraction pattern from a specific portion of the TEM sample. Accurate alignment
of the various apertures is important for good imaging. The image is passed down the
column through the intermediate and projector lenses. There the image of the sample is
magnified onto the viewing screen or onto the recording media. Upon selection of the
appropriate control, the projector system magnifies the image of the electron diffraction
pattern from the rear focal plane of the objective lens. It is the projection lens setting
that defines the camera length.

The electrons that form the image strike a fluorescent screen (typically coated with a
fine-grain ZnS). When the electrons strike the screen, fluorescence occurs and results in
the formation of a visible image, allowing the user to see the image. The darker areas of
the image represent those areas of the sample where fewer electrons were transmitted
(they are thicker or denser). The lighter areas of the image represent those areas of
the sample where more electrons were transmitted (they are thinner or less dense).
Note that X-rays are also generated when the electrons strike the viewing screen. The
leaded viewing glass absorbs the X-rays. A photographic plate or digital camera resides
beneath the moveable viewing screen.

A potential operational hazard can occur when the electron beam strikes the apertures
or part of the column and produces X-rays. Hence, the column is shielded to protect the
operator. On the other hand, the column must be shielded from external stray radiation,
vibrations, and magnetic fields, if one desires a stable image.

8.6.1 Imaging Modes

In the bright field (BF) mode of the TEM, an aperture is placed in the back focal plane of
the objective lens, allowing only the transmitted or direct beam to pass (see Fig. 8.8a).
The diffracted beams are blocked. In this case, diffraction contrast contributes to image
formation. Crystalline regions that are oriented so as to strongly diffract intensity
away from the transmitted beam will appear dark. In addition, Z-contrast occurs when
regions with heavy atoms scatter more of the incident beam and appear darker. Useful
information is obtainable from BF images. However, interpretation of contrast should
be done with care, since the phenomena mentioned above occur simultaneously.

In dark field (DF) images, a selected diffracted beam is allowed to pass through the
objective aperture (see Fig. 8.8b). This is accomplished by electromagnetic lenses that
effectively tilt the incident beam from the optical axis by an amount 2θhkl such that
the hkl diffracted beam exits the sample parallel to the TEM optical axis. The aperture
blocks the direct beam. In contrast to the direct beam, the diffracted beam has interacted
strongly with the specimen, and very useful information is often present in DF images,
e.g., about planar defects, stacking faults, or particles. Figure 8.9 shows a bright field
image and the corresponding dark field image for a TiAl(N,O) layer on an oxidized
silicon substrate. In many analyses, correlation between DF and BF images provides
useful information about structure and morphology, including layer thickness, grain
size, grain orientation, and defect orientations. In general, one or both of these imaging
modes are used in conjunction with electron diffraction analysis.
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Figure 8.8. Diagram of an electron’s path during (a) bright field imaging and (b) dark field
imaging.

8.6.2 Selected Area Diffraction

Diffraction imaging is similar to BF and DF imaging—an image of the diffracted beams
is brought into focus at the back focal plane of the objective lens. Once this real image is
formed, it can be projected onto the viewing screen by the intermediate and projection
lens system. In many cases, one desires to obtain crystallography information about a
specific area of the sample or about a secondary phase present in the sample. For such
cases, selected area diffraction (SAD) requires that an intermediate aperture is placed
at the first intermediate image focal plane to specify the area from which the diffraction
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Figure 8.9. (a) Bright field and (b) dark field image of a TiAl(N,O) layer on an oxidized silicon
substrate. (Courtesy N.D. Theodore.)

image is acquired. Through use of this method, crystallographic information is obtained
from small features and from small volumes of materials such as precipitates.

Under diffraction conditions, a portion of the incident radiation makes the appropriate
angle with a specific set of (hkl) planes such that Bragg’s Law is satisfied (Fig. 8.10a).
Given that the typical operation wavelength can vary between 0.37 and 0.87 pm, the
diameter of the Ewald sphere (ES) is very large when compared with the size of the unit
cell in reciprocal space. Hence, near the origin of reciprocal space, the curvature of the
ES is so small that it is essentially a plane perpendicular to the direction of the incident
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Transmitted
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Image of reciprocal 
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Figure 8.10. (a) View of the incident radiation making an angle of θB to a set of (hkl) planes
and the corresponding diffracted radiation. (b) View of the same sample and under the same
diffraction conditions showing the Ewald sphere and reciprocal lattice. Note that the diffraction
pattern is the projection of the ES surface onto a flat surface.
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Figure 8.11. Selected area electron
diffraction pattern from a TiAl(N,O)
layer on an oxidized silicon substrate.
(Courtesy N.D. Theodore.)

radiation. Hence, the ES passes through several points in reciprocal space that satisfy
Bragg’s Law. The function of the magnification lenses is to project the image that is
in the back focal plane, and that image is a set of points on the surface of the Ewald
sphere. The image in fact is a planar section of the reciprocal lattice, perpendicular
to the incident radiation. A single-crystal sample produces spot patterns associated
with a specific zone axis for that crystal (Fig. 8.10b). Under diffraction conditions,
polycrystalline samples give rise to ring patterns, which are actually the superposition
of many single-crystal patterns. An example of this is the SAD pattern from a TiAl(N,O)
layer on an oxidized silicon substrate (Fig. 8.11). In general, correlation between DF
and BF images can provide extensive information about structure and morphology,
including layer thickness, grain size, grain orientation, and defect orientation. Typically,
however, one or both of these imaging modes are used in conjunction with electron
diffraction analysis.

8.7 Indexing Diffraction Patterns

8.7.1 Single-Crystal Diffraction Patterns

Single-crystal diffraction patterns consist of a series of bright spots, with the transmitted
beam being the brightest and the others bright spots being the diffracted beams. The
first step in the analysis of electron diffraction patterns is to measure the dhkl values.
Figure 8.12 shows a set of reflecting planes at the Bragg angle ϑ (much exaggerated)
to the electron beam. The diffracted beam makes an angle of 2ϑ relative to the direct
beam and falls on the screen at a distance R from the transmitted spot. Figure 8.12 does
not represent the actual ray paths in the electron microscope, which are determined
and controlled by the lens settings. However, the net effect of the lens settings is
encompassed in the camera length (L). This variable is not the actual distance between
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the specimen and screen, but is a projection length (or effective distance) between the
sample and the photographic plate (and/or viewing screen). When diffraction spots
appear, the Ewald sphere intersects the center spot (i.e., the origin of 1/R space) and also
intersects the 1/R-lattice vector d∗

hkl , so Bragg’s Law is satisfied.
When Bragg’s Law (Eq. 7.1) is satisfied during ED, the wavelength is small (∼ tens

of picometers) and the Bragg angle is also small (0.5◦). From Fig. 8.12, tan(2θ ) = R/L .
Since θ is small, tan(2θ ) ≈ 2θ (in radians); this gives us the relationship 2θ = R/L .
Similarly for Bragg’s Law, sin(2θ ) ≈ θ and hence λ = 2 dhkl θ or λ/dhkl = 2θ .

R/L = 2θ = λ/dhkl ,

R dhkl = L λ, (8.23)

where λL is known as the camera constant and (like L) varies with the lens settings
in the microscope. The units of the camera constant are typically expressed in units
of mm-nm or cm-nm or m-nm, where R is the distance measured on the screen or
photographic plate (e.g., mm or cm or m) and dhkl (e.g., nm) is the interatomic spacing
of the planes (hkl). The camera constant is a function of the lens settings. It is these
lens settings that actually control the optical system’s magnification, and the electron
energy determines the value of the wavelength.

The accuracy of the calculated dhkl is limited by uncertainty in the diffraction spot
positions and of the camera constant. The diffraction spots are often diffuse, and hence
the determination of the center position is an approximation. The camera constant is
used to determine a known standard sample for a given electron energy setting. The
resulting diffraction pattern is indexed, and the calculated camera constant is loaded
into the microscope’s memory.

Even with this calibration of the camera constant, small variations in lens settings
from specimen to specimen and from day to day limit the accuracy of the camera
constant to at best four significant figures. The camera constant will have the effect
of changing the magnification of the ring patterns; however, a given pattern will have
the symmetry of the ZA and will only differ slightly in scale with respect to the dhkl

values of the diffraction spots. Therefore, the one constant element from microscope
to microscope is the symmetry of the resulting patterns for a single-crystal sample.
Figure 8.13a is a diffraction pattern obtained from a piece of single-crystal Si using
100 keV electrons. To calibrate the camera constant and the camera length settings on
the electron microscope, first draw diagonals from common indices (Fig. 8.13b). Use
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Figure 8.13. Diffraction pattern obtained from a piece of single-crystal Si along the [1 1 1] ZA;
b) schematic of the indexed diffraction pattern. (Courtesy N.D. Theodore)

as many reflections as are available to increase resolution. For each set of reflections,
calculate the average diameter (diagonal) value, and from this, determine the radius
length. Next, calculate the dhkl for the common reflection. Using Eq. 8.23, calculate
the camera constant:

hkl dhkl D1 D2 D3 Daverage Radius R ∗dhkl

(nm) (cm) (cm) (cm) (cm) (cm) (nm-cm)

022 0.192 3.7 3.8 3.7 3.7 1.9 0.357

Eq. 8.23 can be rearranged to give, L = Rdhkl/λ. Given the fact that 100 keV electrons
have a wavelength of 0.0037 nm, the value of the camera length is 96.4 cm.

The diffraction spots may then be indexed by reference to tables of data such as those
contained in the JCPDS Powder Diffraction File hkl, corresponding to the measured
dhkl values. In doing so, a further step is required: the indexing must be such that the
addition rule is satisfied. A given set or family of planes (hkl) will consist of a number
of variants of identical dhkl values. For example, in the cubic system, there are six
variants of the “plane of the form” (100), all of which have identical dhkl values.

Indexing involves selection of the appropriate variants such that the addition rule
(Eq. 8.5) is satisfied. Note that there are six spots with identical dhkl values closest to the
center spot, and these are all reflections from planes of the form {022}. The particular
indices have been chosen such that the indices of the remaining spots are determined
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correctly, and the zone axis, [111], is found by cross-multiplication of any pair. The
choice only needs to be made once, and once made, all the other spots in the pattern
can be indexed consistently by repeated application of the addition rule, all leading to
a self-consistently indexed diffraction pattern, depending on the number of equivalent
variants of the zone axis.

When diffraction takes place through use of a low-index zone axis, the symmetry of
the diffraction pattern allows indexing to be done by inspection. In this case, the distance
R from the transmitted beam to a specific hkl point is proportional to the reciprocal
of the lattice spacing of the corresponding {hkl} planes in real space. Hence, the
ratio of squares of two specific reflections (R1/R2)2 equals the ratio of the squares of
the interplanar spacing. Also, the angle between the points h1k1l1 and h2k2l2 must equal
the angle between the planes (hkl)1 and (hkl)2 in real space. Using this technique, let
us index the single-crystal Ni diffraction pattern shown in Fig. 8.14. Nickel has an FCC
structure. Inspection of the pattern reveals the fourfold symmetry, and hence the ZA
is of the type 〈001〉. There are two sets of reflections with the same distance R from
the transmitted beam. The ratio of (R1/R2)2 equals the ratio of (b/a)2 = (1.414)2 = 2.

a

b

2 2 0

2 0 0 2 0 0

2 2 00 2 02 2 0

0 2 0 2 2 0
Figure 8.14. Diffraction pattern obtained from a single-crystal
nickel sample using a [0 0 1] ZA.



170 8. Electron Diffraction

This value of two is equal to the ratio of the squares of the interplanar spacing of two
specific {hkl} planes:

(
Rb

Ra

)2

= 2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

/
ao√

h2
b + k2

b + l2
b

1

/
ao√

h2
a + k2

a + l2
a

⎞
⎟⎟⎟⎟⎟⎟⎠

2

=
(
h2

b + k2
b + l2

b

)
(
h2

a + k2
a + l2

a

) . (8.24)

From the structure factor calculations in Section 7.7, the lowest order of allowed FCC
reflections that satisfy Eq. 8.24 would be the {200} and {220} planes. Label the first
{200} and {220} type reflections as (200) and (220), respectively. With the addition
rule (Eq. 8.5), all the points can be indexed accordingly. To determine the ZA, one
would take the cross-product of the two nonlinear vectors (corresponding to diffraction
spots), yielding a value of [001]. The final step is to check for consistency; all diffraction
spots must have the same ZA. Hence, using the Zone Law (Eq. 8.15), all points residing
in that zone must satisfy the relationship ZA· d∗

hkl = 0. If we use Eq. 8.9b, the angle
between (200) and (220) equals 45◦— the same value as the angle between the 200
and 220 reciprocal lattice points.

8.7.2 Polycrystalline Diffraction Patterns

For fine-grain polycrystalline materials, each grain has a ZA associated with it. Because
λ is so small, many grains satisfy Bragg conditions. These have different orientations
relative to the surface normal and the ZA. This difference in orientation corresponds to
rotation about the origin in 1/R space and gives rise to ring patterns for polycrystalline
materials. The simplest case is for BCC and FCC elemental metals. Since both are
based on the cubic system, the camera constant equation can be rewritten as

Lλ = R
ao√

h2 + k2 + l2
, R = Lλ

√
h2 + k2 + l2

ao
. (8.25)

Each ring corresponds to a specific reflection, and the radii are easily measured from the
plate. In a manner analogous to that done previously for X-ray spectra, we normalize
the square of the radii relative to the square of the initial reflection. The relationship
below shows how the normalized values of R squared correspond to the normalized
sum of the squared h, k, and l values:

(
Ri

Ro

)2

=

⎛
⎜⎜⎜⎜⎜⎝

Lλ

√
h2

i + k2
i + l2

i

ao

Lλ
√

h2
o + k2

o + l2
o

ao

⎞
⎟⎟⎟⎟⎟⎠

2

=
(
h2

i + k2
i + l2

i

)
(
h2

o + k2
o + l2

o

) . (8.26)

For example, index the polycrystalline diffraction pattern shown in Fig. 8.15. Assume
that the specimen is an elemental metal (with either an BCC or FCC structure). Given
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Figure 8.15. Diffraction pattern obtained from an unknown elemental BCC or FCC metal.

a camera constant of 0.629 cm-nm, Table 8.1 displays the approach used to identify the
structure and to calculate the lattice. Initially for each ring, two perpendicular diameters
are measured and the average is taken. This is done to minimize any stigmatism effects.
From this value, the value of R— the distance from the transmitted spot —is obtained.
The squared values of R are normalized relative to the initial value. Comparing these
values to the normalized values in Table 7.1, one can identify the unknown elemental
metal’s structure as FCC. After indexing the pattern, the lattice parameter is calculated
as 0.573 nm. Cullity’s Elements of X-ray Diffraction provides additional descriptions
for the indexing of other crystalline structures.

Table 8.1. Approach used to index the polycrystalline ED example shown in Fig. 8.15.

diameter 1 diameter 2 average (cm) R2 R2
i /R2

o h2 + k2 + l2 (hkl) (nm)

1 3.80 3.80 3.80 1.90 3.61 1.00 3 (1 1 1) 0.5734
2 4.40 4.35 4.38 2.19 4.79 1.33 4 (2 0 0) 0.5751
3 6.25 6.20 6.23 3.11 9.69 2.68 8 (2 2 0) 0.5716
4 7.28 7.30 7.29 3.65 13.29 3.68 11 (3 1 1) 0.5723
5 7.50 7.70 7.60 3.80 14.44 4.00 12 (2 2 2) 0.5734
6 8.80 8.80 8.80 4.40 19.36 5.36 16 (4 0 0) 0.5718

avg = 0.5729
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Figure 8.16. Diffraction pattern for
Problem 8.2.

Problems

8.1. Calculate the wavelengths of 80 eV, 80 keV, and 1 MeV electrons.
8.2. Show that the electron diffraction pattern in Fig. 8.16 is from an FCC metal.
8.3. Give two examples of how TEM is used in the characterization of bulk materials.

For your examples, what are the advantages and disadvantages of using TEM?
8.4. Show that the ZA has an orientation [0 0 1] for the diffraction pattern shown in

Fig. 8.17. Use the rule of addition to index the diffraction pattern. By inspection,
determine if the pattern is from an FCC or a BCC metal.

8.5. Describe how dark field images are generated and why their use is important in
materials characterization. State any risk to image quality when using dark field
imaging.

8.6. For the following statement, argue with supporting evidence whether the state-
ment is true or false: “One disadvantage of using the reciprocal lattice to deter-
mine which diffracted beams are possible is that the directions s and so are not
measurable; this is not the case for the scalar form of Bragg’s Law.”

8.7. Give two examples of how TEM is used in the characterization of bulk materials.
For your examples, what are the advantages and disadvantages of using TEM?

_
0 2 0

_
0 2 2

Figure 8.17. Problem 8.4.
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8.8. Calculate the camera length for the diffraction pattern shown in Fig. 8.13. Note
100 keV electrons are used to obtain the pattern.

8.9. Calculate the camera constant for the diffraction pattern shown in Fig. 8.14.
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9
Photon Absorption in Solids and EXAFS

9.1 Introduction

In surface and thin film analysis, the most important photon absorption process is
the photoelectric effect. In this process, an incident photon of energy h̄ω transfers all
its energy to a bound electron in an atom. The energy Ee of the outgoing electron
is

Ee = h̄ω − EB,

where EB is the binding energy of the electron in the atom. The binding energies of
electrons are well known and distinct for each element, so the measurement of EB for
the atomic constituents in a solid represents a technique for materials analysis. In this
chapter, we consider the binding energy of electrons in atoms and the cross section for
photon absorption by a bound electron.

The photoelectric effect was instrumental in the early development of the quantum
theory of matter. Today, it has been developed to a high degree of sophistication to
yield not only an elemental analysis of materials but also a detailed description of the
energies and momenta of electrons in solids.

The proper treatment of the photoelectric process requires a knowledge of the wave
functions of the electrons within an atom. These wave functions result from solving the
basic equation of quantum mechanics, the Schrödinger equation, which describes the
properties of a quantum system through a wave equation. In this chapter, we review
the Schrödinger equation and its solutions in order to arrive at a quantitative estimate
of the cross section for the photo effect.

9.2 The Schrödinger Equation

The wave–particle duality of matter is expressed mathematically by the Schrödinger
equation:

−
[

h2

2m
∇2 + V (r)

]
ψ(r, t) = ih̄

∂ψ(r, t)

∂t
, (9.1)
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where ψ(r, t) is the wave function that describes the motion of the particle under
the influence of the potential V (r). As in classical mechanics, a physics problem is
solved when, under the influence of a given potential, the coordinates of the parti-
cle are expressed as a function of time. In quantum mechanics, a problem is solved
when ψ is known as a function of r and t. There are very few interesting physical
problems that can be solved exactly. Almost all processes that are necessary for materi-
als analysis are approximate solutions to the Schrödinger equation using perturbation
theory.

In Cartesian coordinates, the Schrödinger equation is written explicitly as

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψ + V (x, y, z)ψ = ih̄

∂ψ

∂t
, (9.2)

where ψ may be a function of x, y, z, and t.
For many examples it is sufficient to consider the one-dimensional Schrödinger

equation

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = ih̄

∂ψ(x, t)

∂t
. (9.3)

The solution ψ(x, t) can be written as the product of two functions:

ψ(x, t) = u(x)T (t). (9.4)

This can be substituted into Eq. 9.3 to yield

1

u

(
− h̄2

2m

∂2u

∂x2
+ V (x)u

)
= ih̄

T

dT

dt
. (9.5)

Using the mathematical device of separation of variables, we note that the left-hand
side depends only on x and the right-hand side only on t; therefore, both sides are
proportional to a separation constant E. Then

T (t) = Ce−i Et/h̄, (9.6)

where C is an arbitrary constant and the equation for u(x) is[
− h̄2

2m

∂2

∂x2
+ V (x)

]
u(x) = Eu(x) . (9.7)

The total solution is then

ψ(x, t) = Au(x)e−i Et/h̄, (9.8)

where A is a normalization constant. Eq. 9.7 is known as the time-independent
Schrödinger equation; the separation is valid provided that the potential V is not a
function of time.

The philosophy underlying the Schrödinger equation is discussed in other books.
Note, however, that −(h̄2/2m) · (∂2/∂x2) is associated with the kinetic energy, V with
the potential energy, and Eq. 9.7 is often written in shorthand as

Hψ = Eψ, (9.9)
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where H (= kinetic energy + potential energy) is associated with the classical
Hamiltonian. The meaning of ψ(r, t) is given through |ψ(r, t)|2, the probability of
finding the particle at position r at time t. Eq. 9.7 is an example of an eigenvalue equa-
tion, where u is said to be the eigenfunctions of the operator H = −(h̄2/2m) · ∇2 + ∇
and E is the eigenvalue. E is the energy of the system. The solution of Eq. (9.7) for
many real potentials involves only discrete values of E, thus verifying the quantization
assumptions in the Bohr theory given in Chapter 1.

In central force problems, the potential V (x, y, z) = V (r ), and we convert the
Schrödinger equation to spherical coordinates (r, θ, φ):

− h̄2

2m

1

r2

∂

∂r

(
r2 ∂u

∂r

)
− h̄2

2mr2

[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

sin2 θ

∂2u

∂φ2

]
+ V u = Eu.

(9.10)
Separation of variables is again possible,

u(r, θ, φ) = R(r ) f (θ)g(φ), (9.11)

and the radial part becomes

− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)
+
[

l(l + 1)h̄2

2mr2
+ V (r )

]
R = E R, (9.12)

where l is the orbital quantum number.

9.3 Wave Functions

There are two kinds of wave functions that we will need in order to illustrate the main
points of this chapter: (1) a free particle wave function (V = 0) and (2) hydrogenic
wave functions (V = Z1 Z2e2/r ).

9.3.1 Plane Waves (V = 0)

Analysis techniques require an incident beam and outgoing radiation. The incident
particle of energy E directed along the x-direction, say, is not under the influence of a
potential. Then the solution to the appropriate Schrödinger equation,

− h̄2

2m

d2u

dx2
= Eu,

is

u(x) = Aeikx , (9.13)

where

h̄2k2

2m
= E . (9.14)

This describes a particle moving in the positive x-direction with momentum |p| = h̄k.
The total wave function ψ(x, t) is given by

ψ(x, t) = Aei(kx−ωt), (9.15)
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where E = h̄ω. In both Eqs. (9.13) and (9.15), A is an arbitrary constant to be determined
by the beam parameters.

9.3.2 Hydrogenic Wave Function [V(r) = Z e2/r]
The solution to the Schrödinger equation in radial coordinates may be written as

u(r, θ, φ) = R(r )Y (θ, φ), (9.16)

where Y (θ, φ) is known as a spherical harmonic. The solution to the angular part
of the differential equation results in quantum numbers, i.e., Y (θ, φ) is not always a
solution; it only satisfies physical conditions for certain integer values of the parameters
1 and m.

To see how this arises, consider the φ dependence of the Schrödinger equation:

d2g

dφ2
= −m2g(φ), (9.17)

where m is a constant that arises in the separation of variables. Then

g(φ) = Aeimφ, (9.18)

but φ is the azimuthal angle, and the function must have the same value at φ = 0 or
φ = 2π . This is true if

m = 0 or an integer. (9.19)

The separation of the three variables leads to three quantum numbers n, l, and m, and
the solutions to the hydrogen atom problem are

unlm(r, θ, φ) = Rnl(r ) flm(θ)eimφ. (9.20)

Rnl and flm, are functions that can be written explicitly for a particular value of n, l,
and m. The first few wave functions are

u100 =
[

1

πa3

]1/2

e−ρ,

u200 = 1

8

[
2

πa3

]1/2

(2 − ρ)e−ρ/2, (9.21)

where ρ = Zr/a0 and a = a0/Z . Table 9.1 lists the lowest-energy wave functions for
the hydrogen atom, and Fig. 9.1 gives the radial distribution function in terms of r2 R2

n .
This quantity gives the probability density of finding a particle within a shell of radius r.
Figure 9.1 also shows the energy levels for the hydrogen atom; the same values are
found in the Bohr treatment.

The above wave functions are properly normalized, i.e., the probability of finding a
particle somewhere in space is unity. That is,∫

u∗u dr = 1, (9.22)

where u∗ is the complex conjugate of u.
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Table 9.1. Hydrogenlike wave functions umin(r, θ�)ρ = r/σ and a = αo/Z .

n = 1, l = 0, m = 0 U100 =
[

1
πa3

]1/2
e−ρ

n = 2, l = 0, m = 0 U200 = 1
8

[
2

πa3

]1/2
(2 − ρ)e−ρ/2

n = 2, l = 1, m = 0 U210 = 1
8

[
2

πa3

]1/2
ρe−ρ/2 cos θ

n = 2, l = 1, m = ±1 U211 = 1
8

[
1

πa3

]1/2
ρe−ρ/2 sin θ eiφ

U21−1 = 1
8

[
1

πa3

]1/2
ρe−ρ/2 sin θ e−iφ

n = 2, l = 0, m = 0 U300 = 1
243

[
2

πa3

]1/2
(27 − 18ρ + 2ρ2)e−ρ/3

n = 3, l = 1, m = 0 U310 = 1
81

[
2

πa3

]1/2
ρ(6 − ρ)e−ρ/3 cos θ

n = 3, l = 1, m = ±1 U311 = 1
81

[
1

πa3

]1/2
ρ(6 − ρ)e−ρ/3 sin θeiφ

U31−1 = 1
81

[
1

πa3

]1/2
ρ(6 − ρ)e−ρ/3 sin θe−iφ

n = 3, l = 2, m = 0 U320 = 1
486

[
6

πa3

]1/2
ρ2 e−ρ/3(3 cos2 θ − 1)

n = 3, l = 2, m = ±1 U321 = 1
81

[
1

πa3

]1/2
ρ2 e−ρ/3 sin θ cos θeiφ

U32−1 = 1
81

[
1

πa3

]1/2
ρ2 e−ρ/3 sin θ cos θe−iφ

n = 3, l = 2, m = ±2 U322 = 1
162

[
1

πa3

]1/2
ρ2 e−ρ/3 sin2 θei2φ

U32−2 = 1
162

[
1

πa3

]1/2
ρ2 e−ρ/3 sin2 θe−i2φ

Positions that satisfy the selection rule �l = ±1.
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Figure 9.1. (a) Probability density for the hydrogenic wave function for different values of the
quantum numbers n and l. (b) Energy levels in the hydrogen atom; the vertical lines represent
transitions that satisfy the selection rule �l = ±1.
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9.4 Quantum Numbers, Electron Configuration, and Notation

Quantum mechanics requires the assignment of four quantum numbers to specify the
state of the electron in an atom:

Principal quantum number n = 1, 2, · · ·
Orbital quantum number l = 0, 1, 2, . . . n − 1
Magnetic quantum number m = 0, ±1, ±2, . . . , ±1
Spin quantum number ms = + 1/2, − 1/2

The internal angular momentum of the electron, the spin, leads to the fourth quan-
tum number, ms, which has values ±1/2. The existence of spin is responsible for the
fine structure seen in high-resolution measurements of spectral lines. From the Pauli
exclusion principle, only one electron can have a given set of quantum numbers; that
is, no two electrons in an atom can have the same set of values of the quantum numbers
n, l, m, and ms. Another set of quantum numbers can be assigned when the intersection
between the orbital and spin is taken into account (i.e., the spin–orbit interaction).

An electron has both orbital angular momentum (the quantum number l) and spin
angular momentum s. The resultant spin plus orbital angular momentum, j = l + s,
has the value

A j =
√

j( j + 1)h̄ with j = |(1 ± 1/2)|,

and the projection of the component around the polar axis has a quantized value of

(A j )z = m jh̄,

where m j takes on integrally spaced values of j, j − 1, . . . , − j . Thus for j =
3/2, m j = 3/2, 1/2, −1/2, −3/2. In spectroscopic notation, the total angular momen-
tum quantum number of an atomic state is written as a subscript, so a state with principal
quantum number 2, l = 1, and j = 1/2 is denoted as 2p1/2.

When spin–orbit splitting is considered, an appropriate set of quantum numbers is
as follows:

Principal quantum number n = 1, 2, · · ·
Orbital quantum number l = 0, 1, 2, . . . , n − 1
Angular momentum quantum number j = |1 ± 1/2|
Z-component of j quantum number m j = j, j − 1, . . . , − j

Here the quantum numbers j and m j are always half-integral.
The periodic table can be built by assigning electrons to quantum states character-

ized by the four quantum numbers n, l, m, and ms with no two electrons in any one
atom having the same four quantum numbers. The Z electrons in the atom occupy the
lowest energy states, with the energy primarily determined by the principal quantum
number n and to a lesser degree by the orbital quantum number l with no apprecia-
ble difference due to different values of the spin substates ms (spin–orbit splitting
ignored). The filling of electron levels within an atom is often designated in terms of
the principal quantum numbers, n, and the historical notation for angular momentum,
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Table 9.2. Atomic versus ionic energy levels

Atomic levels

Number of Singly ionized atom
n 1 Electron shell electrons X-ray symbol

1 0 1s 2 K
2 0 2s 2 L1

1 2p 6 L2

L3

3 0 3s 2 M1

1 3p 6 M2

M3

2 3d 10 M4

M5

4 0 4s 2 N1

1 4p 6 N2

N3

2 4d 10 N4

N5

3 4f 14 N6

N7

5 0 5s 2 O1

where l = 0 corresponds to the letter s (for sharp), l = 1 to p (for principal), l = 2
to d (for diffuse), and l = 3 to f (fundamental). Thus He has an electronic configura-
tion given by 1s2 (2 electrons in the n = 1, l = 0 shell) and neon has a configuration
1s2, 2s2, 2p6 (2 electrons in the n = 1, l = 0 shell; 2 electrons in the n = 2, l = 0 sub-
shell and 6 electrons in the n = 2, l = 1 subshell). Table 9.2 lists the atomic levels,
the electron shells, and X-ray symbols. When spin–orbit interactions are included, we
find that the p, d, · · · shells can be further split (in energy) to give configuration of
the sort 1s, 2s, 2p1/2, 2p3/2, where the subscript denotes the angular momentum l ± 1/2,
which is a result of summing the orbital angular momentum and spin angular mo-
mentum. The 2p3/2 − 2p1/2 splitting is approximately 1.5 eV for chlorine and is easily
resolved in a standard XPS spectrometer. The splitting increases with increasing Z.
Appendix 4 gives electron configurations of atoms along with ionization potentials
(the energy to remove one electron from neutral atom), and Appendix 6 lists binding
energies EB.

9.5 Transition Probability

Analysis techniques involve one or more atomic transitions. Auger analysis involves
the creation of a core hole, one atomic transition, and a subsequent Auger decay,
the second atomic transition. Similarly, X-ray fluorescence (X-ray in, characteristic
X-ray out) and the electron-microprobe (electron in, X-ray out) are examples of two
transition processes. X-ray photoelectric spectroscopy is an example of a process that
involves one atomic transition, the creation of an inner electron hole and an energetic
photoelectron.
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The most useful formula to calculate the probability of a transition comes from
time-dependent perturbation theory. In first-order perturbation theory, the Hamiltonian
acting on the system is written as

H = H0 + H ′. (9.23)

H0 is a Hamiltonian for which the Schrödinger equation can be solved, and H ′ contains
an additional potential, i.e., an applied electric field.

There is a set of eigenfunctions that are the solutions to H0 such that H0un = Enun .
As discussed in Section 9.10, the transition probability per unit time for a transition to
the state k from the initial state m is given by

W = 2π

h̄
ρ(E)|〈ψk |H ′|ψm〉|2. (9.24)

In this equation, ρ(E) is the density of final states per unit energy,

〈ψk |H ′|ψm〉 =
∫

ψ∗
k H ′ψdτ = ∣∣H ′

km

∣∣, (9.25)

where ψ∗ is the complex conjugate of ψ, dτ is a three-dimensional volume element
(i.e., r2dr sin θ dθ dφ), and the wave function ψm is

ψm = ei tωm um . (9.26)

Eq. 9.24 is famous in quantum mechanics and is known as Fermi’s Golden Rule. Its
great advantage is that one need not know the wave functions for the true potential,
H0 + H ′; rather, only the solutions to H0 are required. Note that W has dimensions of
(time)−1:

W = 1

energy · time
· 1

energy
· (energy)2 = 1

time
.

The derivation of Eq. 9.24 is given in Section 9.10.

9.6 Photoelectric Effect—Square-Well Approximation

The goal in this chapter is to make a quantitative calculation of the cross section for the
photoeffect: i.e., an electron with binding energy EB is irradiated with light of energy
h̄ω and is ejected with energy h̄ω − EB. In this section, we calculate the relatively
simple problem of the transition probability and then the cross section for an electron
bound in a one-dimensional square well. In the next section, we consider the more
realistic case of the photoeffect in a hydrogenic atom.

A flux of incident photons is represented by an electromagnetic field, and the per-
turbation is

H ′(x, t) = H ′(x)eiωt = eExe−iωt , (9.27)

where the electric field E that acts on the particle is uniform in space (wavelength
greater than atomic dimensions) but harmonic in time. This perturbation represents the
potential energy of the electron in the field of a photon of frequency ω.
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The transition rate between the initial and final state is given in Eq. 9.24 as

W = 2π

h̄
ρ(E)

∣∣H ′
f1

∣∣2,
where the initial state is the wave function ψi of a particle bound in the well and the
final state is an outgoing one-dimensional plane wave, e−ikx .

To calculate the density of final statesρ(E), we consider the system to have dimension
of length L and require periodic boundary conditions so that ψ(x0) = ψ(x0 + L). The
normalized states are

ψE = 1√
L

eikx , (9.28)

where kL = (2m E)1/2L/h̄ = 2π N (i.e., periodic boundary conditions).
The density of states is the number of states with energy between E and E + �E .

Then

ρ(E)�E = �N = L

2π
�k,

ρ(E) = L

2π
· �k

�E
. (9.29)

For a free particle, E = h̄2k2/2m and �E = (h̄2k/m) · �k, so

ρ(E) = L

2πh̄

(
2m

E

)1/2

, (9.30)

where we have included a factor of 2 for positive and negative values of N. The matrix
element in the transition probability is

H ′
f1

=
∫

1√
L

eikx eExψi (x) dx, (9.31)

where h̄k is the momentum of the final state.
In order to calculate the matrix element for a specific example, we consider the

electron to be weakly bound in a narrow potential well. For the one-dimensional well,
the wave function u0 outside the well must satisfy

−h2

2m

d2u0

dx2
= −EBu0,

which leads to exponentially decaying solutions of the form

u0 = Ce±ki x ,

where ki is the momentum associated with the bound state, ki = (2mEB)1/2/h̄ and
C = √

ki . For ease of calculation, we extrapolate the exterior wave function to the
origin, as indicated in Fig. 9.2. Now, the normalized initial wave function ψi is

ψi (x) ∼=
[√

ki

]
e−ki |x |. (9.32)
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Figure 9.2. Schematic of the pho-
toeffect from an electron bound in
a square well. The full curve shows
the approximate wave function used
in the calculation, while the dashed
line shows the true wave function in
the region between x = ±a.

With this simplification, we have

〈ψf|x |ψi〉 = 1√
L

∞∫
−∞

eikx xψi(x) dx,

= 1√
L

k1/2
i

[
4ikki(

k2 + k2
i

)2
]

. (9.33)

The transition rate is then

W = 2π

h̄
ρ(E)

∣∣H ′
fi

∣∣2,
= 4e2E 2h̄

m

(
EB

E

)1/2 E EB

(E + EB)4
,

where E is the external electric field. We consider the case that h̄ω � EB so that
E ∼= h̄ω. Then

W = 4e2E 2h̄

m

E3/2
B

E7/2
. (9.34)

For analytical purposes, we are interested in the probability of the event per incident
photon, i.e., the cross section for the process. This quantity σ is related to W by
determining the flux F of photons in the oscillating electric field.

From classical electromagnetic theory, we have that the power density in the field
is cE/2. The power density is the energy/area-sec. Thus the flux F, the number of
photons/area/s, is given by cE2/2h̄ω. Dimensionally, the cross section is

σ = W

F
= Transition probability/time

No. of photons/area/time
,
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or

σ = 8e2h̄

mc

E3/2
B

E5/2
. (9.35)

The cross section decreases with increasing photon energy (E = h̄ω) as E5/2.

9.7 Photoelectric Transition Probability for a Hydrogenic Atom

In this section, we describe a calculation of the cross section for the photoelectric
effect using hydrogenic wave functions in three-dimensional space. The formula for
the transition probability is given by Eq. 9.24. The relevant wave functions for the
initial and final state are given by

ψi = 1√
πa3

e−ρ

and

ψf = 1√
V

eik·r, (9.36)

where the initial state, ψi, describes a ground state hydrogenic wave function in an
atom of atomic number Z and the final state is the usual outgoing plane wave of final
energy Ef = h̄2k2/2m normalized to a volume V. The binding energy of the electron,
EB, is expressed as Z2e2/2a0 (see Eq. 1.17), and in this calculation we assume the
energy of the incoming photon, h̄ω � EB. Here, the three-dimensional density of
states, ρ(E) = (V/2π2)(2m/h̄2)3/2 E1/2, is used.

The transition probability can be calculated explicitly if the perturbation potential
used is

H ′ = −eExeiωt .

In that case, the final result for the photoeffect cross section σph yields

σph = 288π

3

e2h̄

mc

E5/2
B

E7/2
,

a result similar to the square-well one-dimensional calculation carried out explicitly in
the previous section.

Using a more sophisticated description of the perturbation potential, but precisely
the same wave functions and assumption of h̄ω � EB, Schiff (1968) shows that

σph = 128π

3

e2h̄

mc

E5/2
B

E7/2
. (9.37)

The value of e2h̄/mc = 5.56 × 10−4 eV-nm2, so for convenience we write

σph = 7.52 × 10−2 nm2

h̄ω
×
(

EB

h̄ω

)5/2

, (9.37′)

by setting the incoming photon energy h̄ω in eV equal to the energy E of the outgoing
electron, since EB � h̄ω (i.e., E = h̄ω − EB

∼= h̄ω).
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As an example, the photoelectric cross section for Fe Kα radiation (h̄ω = 6.4 ×
103 eV, Appendix 7) incident on K-shell electrons in Al (EB

K = 1.56 × 103 eV,
Appendix 6) has a value

σph = 7.45

6.4 × 103
× 0.01 ×

(
1.56

8.4

)5/2

nm2 = 3.4 × 10−21 cm2.

For the total absorption, all electrons in all shells must be considered.
The cross section for impact ionization by electrons is given in Chapter 6 (Eq. 6.11)

for E > EB as σe = π (e2)2/EB E , where E is the energy of the incident electron. For
the same conditions, E = 6.4 × 103 eV and EB = 1.56 × 103 eV, the electron impact
ionization cross section σe has a value

σe = π (1.44 eV-nm)2

6.4 × 1.56 × 106
= 6.5 × 10−21 cm2,

which is a factor of two greater than that for the photoelectron cross section.
The electron impact cross section depends inversely on the energy of the incident

particle while the photo-effect cross section is a strong function, σ ∝ (h̄ω)−7/2, of the
incident photon energy for cases where h̄ω � EB. Thus, in most cases, the values of
σe are significantly greater than that of the photoelectric cross section. The primary
advantage of using electrons as a method of creating inner-shell vacancies is not the
increase in the cross section but rather that an electron beam can be obtained with orders-
of-magnitude greater intensity than is possible with an X-ray source in a laboratory
system. An electron beam can also be focused and scanned for the analysis of submicron
regions.

9.8 X-ray Absorption

In the previous section, we have been concerned with photoelectric absorption. This is
but one of three processes that lead to attenuation of a beam of high-energy photons
penetrating a solid: photoelectron production, Compton scattering, and pair production.
In the Compton effect, X-rays are scattered by the electrons of an absorbing material.
The radiation consists of two components, one at the original wavelength λ and one
at a longer wavelength (lower energy). The problem is generally treated as an elastic
collision between a photon with momentum p = h/λ and a stationary electron with
rest energy mc2. After scattering at an angle θ , the photon wavelength is shifted to
larger values by an amount �λ = (h/mc)(1 − cos θ ), where h/mc = 0.00243 nm is
known as the Compton wavelength of the electron.

If the photon energy is greater than 2mc2 = 1.02 MeV, the photon can annihilate with
the creation of an electron–positron pair. This process is called pair production. Each
of the three processes—photoelectric, Compton scattering, and pair production—tend
to dominate in a given region of photon energies, as shown in Fig. 9.3. For X-ray and
low-energy gamma rays, photoelectric absorption makes the dominant contribution to
the attenuation of the photons penetrating the material. It is this energy regime that is
of primary concern for atomic processes in materials analysis.
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Figure 9.3. The relative importance of the three major types of photon interactions. The lines
show the values of Z and h̄ω for which the neighboring effects are equal.

The intensity I of X-rays transmitted through a thin foil of material for an incident
intensity I0 follows an exponential attenuation relation

I = I0e−µx = I0 exp[−µ/ρ]ρx, (9.38)

where ρ is the density of the solid (g/cm3), µ is the linear attenuation coefficient, and
µ/ρ is the mass attenuation coefficient given in cm2/g. Figure 9.4 shows the mass
absorption coefficient in Ni as a function of X-ray wavelength. The strong energy
dependence of the absorption coefficient follows from the energy dependence of the
photoelectric cross section. At the K absorption edge, photons eject electrons from the
K shell. At wavelengths longer than the K edge, absorption is dominated by the photo-
electric process in the L shells; at shorter wavelengths where h̄ω � EB(K ), photoelectric
absorption in the K shell dominates.

Both X-ray photoelectron spectroscopy (discussed in Chapter 9) and X-ray absorp-
tion depend on the photoelectric effect. The experimental arrangements are shown in the
upper portion of Fig. 9.5 (XPS on the left side and X-ray absorption on the right side).
In XPS, a bound electron such as the K-shell electron shown in Fig. 9.5 is promoted
to a free state outside the sample. The kinetic energy of the photoelectron is well de-
fined, and sharp photopeaks appear in the photoelectron spectrum. In X-ray absorption
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Figure 9.4. The mass absorption coeffi-
cient µ/ρ (cm2/g) of Ni versus λ.
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spectra, an edge occurs when a bound electron is promoted to the first unoccupied level
allowed according to the selection rules. With metallic samples, this unoccupied level
is at or just above the Fermi level. In X-ray absorption, the absorption is measured as a
function of X-ray energy, whereas in XPS one irradiates with constant-energy photons
and measures the kinetic energy of the electrons.
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The mass absorption coefficient µ/ρ for electrons in a given shell or subshell can
be calculated from the photoelectric cross section σ:

µ

ρ
= σ (cm2/electrons) × N (atoms/cm3)2 · ns(electrons/shell)

ρ(g/cm3)
, (9.39)

where ρ is the density, N the atomic concentration, and ns the number of electrons in a
shell. For example, for Mo Kα radiation (λ = 0.0711 nm and h̄ω = 17.44 keV) incident
on Ni, which has a K-shell binding energy of 8.33 keV, the value of the photoelectric
cross section per K electron is

σph = 7.45 × 10−16 cm2

17.44 × 103

(
8.33

17.44

)5/2

= 6.7 × 10−21 cm2.

The atomic density of Ni is 9.14 × 1022 atom/cm3 and the density is 8.91 g/cm3. The
mass absorption coefficient µ/ρ for K-shell absorption (ns = 2 for the K-shell) is

µ

ρ
= 6.7 × 10−21 × 9.14 × 1022 · 2

8.91
= 138 cm2/g.

In this calculation, the contribution of the L-shell electrons was neglected. For photon
energies greater than the K-shell binding energy, the photoelectric cross section for the
L-shell is at least an order of magnitude smaller than that of the K shell; of course, this
is the major factor in the sharp increasing absorption when one crosses the K absorption
edge. In the present case of MoKα radiation on Ni, if we assume an average binding
energy of 0.9 keV for the L1, L2, and L3 shells, the photoelectric cross section per
electron is a factor of 3.8 × 10−3 smaller than that of the K-shell electrons due to the
(EB/h̄ω)5/2 term.

The calculated value, 138 cm2/g, is greater than the measured value of 47.24 (Ap-
pendix 7). The major difficulty in the mass absorption calculation above was that the
energy E of Mo Kα radiation is only twice that of the K-shell binding energy EB,
and the derivation of Eq. 9.37 was based on h̄ω � EB. For Cu Kα radiation with
E = 8.04 keV, the photon energy is about 10 times that of the L-shell binding energy,
and the calculated photoelectric cross section (σ = 3.1 × 10−21 cm2) for the L shell
gives a value of µ/ρ = 32 cm2/g, a value close to the tabulated value of 48.8 cm 2/g.

Measured values of the mass absorption coefficient for different radiation are tabu-
lated in Appendix 8 and displayed in Fig. 9.6a for Z = 2 − 40. For a given element,
the absorption coefficient can vary over two orders of magnitude depending on the
wavelength of the incident radiation. The strong photon energy dependence (h̄ω−7/2)
of the absorption coefficient is illustrated in Fig. 9.6b.

The tenfold change in the absorption coefficient on either side of the K edge, as shown
in Fig. 9.4, represents a major change in transmitted intensity for thin foils because
of the exponential nature of the transmission factor I/I0. If the transmission factor of
a particular sheet is 0.1 for a wavelength just longer than λK , then for a wavelength
just shorter, the transmission is reduced by a factor of about exp(−10). This effect
has been used to design filters for X-ray diffraction experiments that require nearly
monochromatic radiation. As shown in Fig. 9.7a, the characteristic radiation from the
K shell contains a strong Kα line and a weaker Kβ line (the Kβ/Kα emission ratio is
discussed in Section 11.10). The Kβ line intensity relative to that of the Kα line can
be decreased by passing the beam through a filter made of material whose absorption
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edge lies between the Kα and Kβ wavelength of the target material. For metals with Z
near 50, the filter will have an atomic number one less than that of the target. As shown
in Fig. 9.7, a Ni filter has a strong effect on the ratio of the Cu Kα and Kβ lines, where
µ/p has a value of 48 for Cu Kα and 282 for Kβ radiation.

9.9 Extended X-ray Absorption Fine Structure (EXAFS)

In the previous sections, the emphasis was upon the photoelectric cross section and ab-
sorption edges without consideration of the fine structure that is found at energies above
the absorption edges. Figure 9.8 is a schematic representation of an X-ray absorption of
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µX versus the energy of the incident radiation plotted over an energy region extending
about 1 keV above the K absorption edge. In this energy region, there are oscillations in
absorption. The term extended X-ray absorption fine structure (EXAFS) refers to these
oscillations, which may have a magnitude of about 10% of the absorption coefficient
in the energy region above the edge. The oscillations arise from interference effects
due to the scattering of the outgoing electron with nearby atoms. From analysis of the
absorption spectrum for a given atom, one can assess the types and numbers of atoms
surrounding the absorber. EXAFS is primarily sensitive to short-range order in that
it probes out to about 0.6 nm in the immediate environment around each absorbing
species. Synchrotron radiation is used in EXAFS measurements because it provides an
intense beam of variable-energy, monoenergetic photons.

For an incoming photon of energy h̄ω, a photoelectron can be removed from a K
shell of atom i and have a kinetic energy h̄ω − E K

B . The outgoing electrons can be
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Figure 9.8. Schematic of the trans-
mission experiment and the resulting
X-ray absorption µx versus E for an
atom in a solid.
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Figure 9.9. Schematic of the EXAFS process il-
lustrating an emitted e− scattering from a nearby
atom at a distance Rj.

represented as a spherical wave (Fig. 9.9), which has a wave number k = 2π/λ given
by

k = p

h̄
=
√

2m(h̄ω − E K
B )

h̄
(9.40)

and a wave function y of the form

ψ = ψ0eik·r

r
. (9.41)

Note that this is a different final state term than used in the calculation of σph, since
low-energy electrons are well represented by this spherical wave. When the outgoing
wave from atom i arrives at atom j a distance R j away, it can be scattered through 180◦

so that its wave function is

ψj = ψ0 f eik·R j +φa

R j
;

where f is an atomic scattering factor and φa is a phase shift. When the scattered wave
arrives back at atom i, it has a wave function ψi j ,

ψij = ψ0
f eik·R j +φs

R j

eik·R j +φ j

R j
;

that is, the outgoing photoelectron wave from atom i is backscattered with amplitude
f from the neighboring atom, thereby producing an incoming electron wave. It is the
interference between the outgoing and incoming waves that gives rise to the sinusoidal
variation in the absorption coefficient.

The net amplitude of the wave at atom will be ψ0 + ψi j ,

ψ0 + ψi j = ψ0

(
1 + f

R2
j

ei2k·R j +φi +φa

)
,

and the intensity I = ψψ∗ will have the form

I = ψ0ψ
∗
0

(
1 + 2 f sin(2k · R j + φi j )

R2
j

+ higher terms

)
,
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Figure 9.10. (a) X-ray absorption spectrum of crystalline Ge at a temperature of 100 K. The
sharp rise near 11 keV is the K edge, and the modulation in µx above the edge is the EXAFS.
(b) Fourier transform of (a) showing the nearest neighbor and second nearest neighbor distances.

where φi j represents the phase shifts. There are additional terms to account for the fact
that the atoms have thermal vibrations and that the electrons which suffer inelastic losses
in their path between atoms will not have the proper wave vector to contribute to the
interference process. This latter factor is usually accounted for by use of an exponential
damping term, e(−2R j /λ), where λ is the electron mean free path. The damping term is
responsible for the short-range order description, while the sinusoidal oscillation is a
function of the interatomic distances (2k R j ) and the phase shift (φi j ). The important
part of this equation is the term proportional to sin(2k R j + φi j ). By measuring I (k)
and taking a Fourier transform of the data with respect to k, one can extract R j . The
data and the transform are illustrated in Fig. 9.10.

The ability of EXAFS to determine the local structure around a specific atom has
been used in the study of catalysts, multicomponent alloys, disordered and amorphous
solids, and dilute impurities and atoms on a surface. In surface EXAFS (SEXAFS), the
technique has been used to determine the location and bond length of absorbed atoms
on clean single-crystal surfaces. EXAFS is an important tool in structural studies; the
requirement for strong radiation sources leads to these types of experiments being
carried out at synchrotron radiation facilities.

9.10 Time-Dependent Perturbation Theory

9.10.1 Fermi’s Golden Rule

In this section, we give a brief treatment of perturbation theory, which leads to the basic
formula for the transition probability of a quantum system. It is the formula that is the
starting point for many of the derivations of cross sections given in this book.

Consider a system with a Hamiltonian H given by

H = H0 + H ′, (9.42)
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where H0 is a time-independent operator with an eigenvalue ψ0. H0 could be, for
example, the Hamiltonian that describes a hydrogenic atom, while H ′ may be a time-
dependent perturbation, i.e., an oscillating electric field. The wave function ψ0 satisfies
the Schrödinger equation such that

ih̄
∂ψ0

∂t
= H0ψ0. (9.43)

Since H0 is time independent, we can write

ψ0 = u(x, y, z)e−i E0t/h̄ (9.44)

or

ψ0 =
∑

n

a0
nu0

ne−iE0
n t/h̄, (9.45)

where

H0u0
n = E0

nu0
n, (9.46)

with the u0
n being an orthonormal set of eigenvectors and the constants a0

n independent
of time.

For the perturbed Hamiltonian, we write

Hψ = ih̄
∂ψ

∂t
= (H0 + H ′)ψ (9.47)

and

ψ =
∑

n

an(t)u0
ne−E0

n t/h̄, (9.48)

where the coefficients an are now a function of time.
Substituting of (9.48) into (9.47), multiplying by the complex conjugate u0∗

n , and
using the orthonormality relation yields

das

dt
= ȧs = − i

h̄

∑
n

an(t)Hsn
′ei(E0

s −E0
n )t/h̄, (9.49)

where

H ′
sn =

∫
u0∗

s H ′u0
ndτ,

the integral being over all space. We approximate the solution by noting that if the
perturbation is small, the time variation of an(t) is slow; then an(t) ∼= an(0) and

as(t) − as(0) = − i

h̄

∑
n

an(0)

t∫
0

H ′
sn(t)eiωsn t dt , (9.50)

where h̄ωsn = E0
s − E0

n .
A special case is if the system is in state n at t = 0; then an(0) = 1 and all other a’s

are zero. For the case s �= n, Eq. 9.50 then gives

as(t) = i

h̄

t∫
0

H ′
sn(t)eiωsn t dt, (9.51)
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The perturbation H ′(t) can induce transitions from the state n to any state s, and the
probability of finding the system in the state s at time t is |as(t)|2.

If H ′ is independent of time, then

as = −H ′
sn

(eiωsn t − 1)

h̄ωsn
, (9.52)

and

|as(t)|2 = 4
H ′2

sn sin2(ωsnt/2)

h̄2ω2
sn

, (9.53)

and is valid if |as(t)| < 1.
In many applications, the result of a perturbation is a particle in the continuum, i.e.,

a free particle. Then an explicit final state is not appropriate, but the density of final
states is relevant. We call ρ(E) the density of final states (number of energy levels/per
unit energy interval) and assume that H ′

sn is the same for all final states.
The transition probability P(t) is then given by

P(t) =
∑

s

|as(t)|2 = 4|H ′
sn|2
∑

S

sin2(ωsnt/2)

h̄2ω2
sn

. (9.54)

For a continuum, we transform the sum to an integral and note that the number of states
in energy interval dEs is ρ(Es)dEs ; then

P(t) = 4
∣∣H ′

sn

∣∣2 ∞∫
−∞

ρ(Es)
sin2(ωsnt/2)

h̄2ω2
sn

dh̄ωsn. (9.55)

The major contribution of the integral comes from ωsn = 0 (it is a bit like a delta
function), and noting that

∫
sin2 αx/x2 dx = πα, we have

P(t) = 4
∣∣H ′

sn

∣∣2ρ(En)
π t

2h̄
, (9.56)

so the rate of the transition, W, is given by

W = 2π

h̄
ρ(En)

∣∣H ′
sn

∣∣2. (9.57)

This is a famous and important formula denoted as the Golden Rule of Fermi.

9.10.2 Transition Probability in an Oscillating Electric Field

Another important application of perturbation theory is when the perturbing field has
a time dependence of the form eiωt . Consider for example an oscillating electric field
directed along the x-axis such that

E = E cos ωt = E0

2
(eiωt + e−iωt ) (9.58)

and

H ′(t) = e

2
E0x(eiωt + e−iωt ). (9.59)
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Inserting H ′(t) into (9.51) gives

as(t) = i

h̄
e

E0xsn

2

t∫
0

(ei(ωsn+ω)t + e−i(ωsn−ω)t ) dt. (9.60)

If ωsn �= ω, the integral averages to zero. If ωsn
∼= ω, we have

|as(t)|2 = e2E2
0

h̄2 |xsn|2 sin2 [(t/2)(ω − ωsn)]

(ω − ωsn)2
, (9.61)

where |xsn| = ∫ u∗
s xun dτ . We recognize that E 2

0/2 is the energy density in the field,
which can be represented by ρ(ω) to obtain a transition probability:

Tns = |as(t)|2 = 2e2|xsn|2
∞∫

0

sin2[(t/2)(ω − ωsn)]

h̄2(ω − ωsn)
ρ(ω) dω. (9.62)

Assume that the distribution ρ(ω) varies much more slowly than the sharply peaked
function by which it is multiplied. Then ρ(ω) is nearly constant over the small range
of values of ω for which the integrand is nonzero, so we can replace ρ(ω) by its value
at ω = ωsn , and remove it from the integral, with no loss of accuracy. With the further
substitution z = 1/2(ω − ωsn)t ′, the expression becomes

|asn(t ′)|2 = e2ρ(ωsn)|xsn|2t ′

h̄2

∞∫
−∞

sin2 z

z2
dz,

or, since

∞∫
−∞

sin2 z

z2
dz = π,

the transition probability is

Tsn = |asn(t ′)|2 = πe2ρ(ωsn)|xsn|2t ′

h̄2 , (9.63)

where xsn = ∫ u∗
s xun dτ . Eq. 9.63 holds for radiation that is polarized along the x-axis.

In the general case, when radiation is incident upon the atom from all directions and
with random polarization, Tsn must include equal contributions from xsn, ysn , and zsn ,
so

Tsn = πe2ρ(ωsn)t ′

3h̄2

∣∣〈ψs |r|ψn
〉∣∣2, (9.64)

where the factor of 3 has been introduced into the denominator because each polariza-
tion direction is assumed to contribute one-third of the intensity and |xn|2 + |ysn|2 +
|zsn|2 = |〈ψs |r|ψn〉|2 = |rsn|2 · 〈ψs |r|ψn〉 is known as the dipole matrix element and
Eq. 9.64 is the dipole approximation to the transition probability.
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9.10.3 Spontaneous Transitions

Spontaneous transitions are those that occur in the absence of an external field. An
example is the transition from an excited state to a ground state. To calculate such
phenomena, we rely on a treatment developed in 1917 by Einstein, which enables one
to calculate the rate of spontaneous transitions from knowledge of the rate of induced
transitions calculated in Section 9.10.2.

Consider a collection of atoms in thermal equilibrium; each atom must be emitting
and absorbing radiation at the same rate. Let Pns be the probability that a given atom
will go from the nth state to the sth state in a short time dt. This probability, Pns ,
must be proportional to the probability Pn that the atom is in the nth state to begin
with, multiplied by the transition probability to go from state n to state s, Tns (given by
Eq. 9.64):

Pns = Tns Pn.

In view of Eq. 9.64, we may write this expression as

Pns = Ans ρ(ωns)Pn dt, (9.65)

where ρ(ωns) is defined as before, dt takes the place of t ′ as the time interval, and Ans

is equal to all the other factors in Eq. 9.64.
The probability of a downward transition from state s to state n may be written as

Psn = Asnρ(ωsn)Ps dt,

but because of the symmetry of the equations leading to Eq. 9.64, we know that Asn =
Ans and ωsn = ωns , so

Psn = Asnρ(ωns)Ps dt. (9.66)

Notice that Pns does not equal Psn , because Pn > Ps ; the nth state, being lower in
energy, is more heavily populated, according to the Boltzmann factor.

The system is in equilibrium, so the total number of transitions from n to s must equal
the total number of transitions from s to n. Since the induced transition probabilities
are unequal (Pns �= Psn), there must be additional transitions from state s to state n that
are spontaneous. The spontaneous transition probability by definition does not depend
on the energy density of the externally applied field; this probability may be written
Bsn Ps dt , where Bsn is the spontaneous transition probability. The coefficients A and
B are referred to as the Einstein coefficients.

The total transition probability from s to n is therefore equal to Psn + Bsn Ps dt , and
this total should equal the transition probability Pns . Thus, from Eqs. 9.65 and 9.66,
we have

ρ(ωns)Pn Ans = ρ(ωns)Pn Ans + Ps Bsn

or

Bsn = ρ(ωns)Ans

[
Pn

Ps
− 1

]
.
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But the population of a state of energy E is proportional to the Boltzmann factor e−E/kT ,
so the ratio Pn/Ps may be written

Pn

Ps
= e(Es−En )/kT

= eh̄ωm/kT .

Thus

Bsn = ρ(ωns)Ans
(
eh̄ωm/kT − 1

)
. (9.67)

The factor ρ(ωns) in Eq. 9.67 is misleading because Bsn by definition does not depend
on the energy density of the radiation field. We can eliminate this factor by using an
expression for the energy density inside the cavity. Planck’s law for thermal radiation
gives

ρ(ω) = h̄ω3

π2 c2
(
eh̄ωm/kT − 1

) . (9.68)

Substitution of this expression into Eq. 9.67 yields an expression for Bsn involving only
Ans and known constants:

Bsn = h̄ω3
ns

π2 c3
Ans . (9.69)

The transition rate for a spontaneous transition from a filled to an empty state is

W = 4

3

e2

h̄

[ωns

c

]3 ∣∣〈ψs |r|ψn〉
∣∣2, (9.70)

where e2 = 1.44 eV-nm. This can be expressed as

W = 0.38 × 1014(h̄ω)3 · ∣∣〈ψs |r|ψn〉
∣∣2,

where h̄ω is in units of keV and the matrix element has dimensions of (0.01 nm)2. A
typical value of W is 1015/s for elements in the middle of the periodic table.

In summary,

W = 2π

h̄
|H ′

sn|2ρ(En); static perturbation [Eqs. 9.24 and 9.57]

W = πe2ρ(ωsn)

3h̄2 |rsn|2; time dependent, H ′ = E0 cos ωt [Eq. 9.64]

W = 4

3

e2

h̄

[ωsn

c

]3
|rsn|2; spontaneous transitions [Eq. 9.70]

Problems

9.1. For Cu Ka radiation (E = 8.04 keV) incident on Al:
(a) Calculate the photoelectric cross section σph for the K shell of Al and compare

its value with the electron impact ionization cross section σe for 8.04 keV
electrons.
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(b) Calculate the mass absorption coefficient for Al based on only K-shell absorp-
tion and compare with the values tabulated in Appendix 8. The Al L shells
have 8 electrons compared to 2 in the Al K shell.

(c) Estimate the contribution of L-shell electrons to the mass absorption coefficient
for 8.04 keV electrons.

9.2. Consider 5.41 keV radiation [photon (Cr Kα) and electron] incident on Si. Com-
pare the values in microns of the linear absorption coefficient, the electron range,
and the electron mean free path.

9.3. You use an Ni filter to attenuate the Cu Kβ radiation from a Cu X-ray source. If
the Ni filter thickness is sufficient to a attenuate the KB radiation by a factor of
1000, how much will the Kα radiation be attenuated. How thick is the Ni filter?
Estimate to zero order how much the Cu Lα radiation is attenuated.

9.4. Be is used as a “window” material that allows X-rays to enter the X-ray detector
with minimum attenuation. The absorption of X-rays from elements with Z < 10
is one of the limitations of microprobe analysis. Estimate the absorption of carbon
Kα X-rays by a 7-µm thick Be window.

9.5. Consider a photon of energy h̄ω inducing a photoeffect process with an electron
of binding energy EB bound in an atom of mass Mn . Assume that the electron
is emitted in the forward direction, i.e., along the same direction as the incident
photon. In the approximation that h̄ω � EB, show that the energy of the recoiling
atom, E, is given by

Er = (h̄ω)2

2Mnc2
+ me

Mn
h̄ω = h̄ω

Mnc2

√
2Mec2h̄ω

where me is the electron mass. Evaluate this expression for h̄ω = 1 keV, 100 keV,
and Mn = 28 (Silicon) and compare the result to 14 eV, the binding energy of Si in
the Si lattice. Such considerations are important in determining the destructiveness
of a given analysis technique.

9.6. Using conservation of momentum and energy, show that the photoeffect cannot
occur with a free electron. Consider the nonrelativistic case, h̄ω < mec2. The
photoeffect occurs with photon irradiation of solids, since all electrons in solids
are bound to some degree.
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10
X-ray Photoelectron Spectroscopy

10.1 Introduction

In this chapter, electronic structure is the dominant theme. Photons with energies of up
to 10 keV interact with the atomic electrons primarily via the photon absorption process
(Chapter 9). The photoelectric process is a direct signature of the photon interaction
with the atom and is the basis of one of the major analytical tools—photoelectron
spectroscopy. This is referred to as UPS when ultraviolet light is incident on the sample
and XPS when X-rays are used. Another acronym is ESCA (for Electron Spectroscopy
for Chemical Analysis); in this case, the main concern is the chemical bonding.

The energy spectrum of electromagnetic radiation along with the common nomen-
clature is shown in Fig. 10.1. In material analysis, the photon energy range of interest
corresponds to the ultraviolet (UV) and X-ray region. In practice, it extends from 10 eV,
close to the binding energy (13.6 eV) of the electron in the hydrogen atom, to energies of
around 0.1 MeV. At these energies, photons can penetrate within the solid and interact
with the inner-shell electrons. Lower-energy photons are used to establish the visible
spectra associated with the outermost, less tightly bound electrons. These outermost
electrons are involved in chemical bonding and are not associated with specific atoms
and hence are not useful for elemental identification. Photon-induced spectroscopies
have undergone a major advance due to the advent of electron synchrotrons, which
produce an intense source of monochromatic photons over a broad range of energies
for materials science. Most laboratory instruments produce X-rays in the 1–10 keV
region, which is the main region discussed in this chapter.

10.2 Experimental Considerations

The basic processes of interest in photoelectron spectroscopy are the absorption of
a quantum of energy h̄ω and the ejection of an electron, the photoelectron, whose
kinetic energy, referenced to an appropriate zero of energy, is related to the binding
energy of an electron in the target atom. In this process, an incident photon transfers
its entire energy to the bound electron, and element identification is provided by the
measurement of the energy of the electrons that escape from the sample without energy
loss. As indicated in Fig. 10.2, photoelectron spectroscopy requires both a source of



200 10. X-ray Photoelectron Spectroscopy

WAVELENGTH
λ

106 µm 103 µm 10−3 µm

10−6 eV 10−3 eV

10−6 µm1 µm

1 eV 1 keV 1 MeV ENERGY
E

GAMMA RAYSX-RAYSU.V.INFRA
RED

SHORT WAVE
RADIO

BROAD-
CAST

VISIBLE

Si K-SHELL BINDING ENERGY

ELECTRON REST ENERGY

Figure 10.1. Electromagnetic spectrum indicating the region used for photoelectron spec-
troscopy. Ultraviolet photoelectron spectroscopy corresponds to incident photons in the UV
region. X-ray electron spectroscopy corresponds to incident photons in the X-ray region.

monochromatic radiation and an electron spectrometer. As is common to all the electron
spectroscopies where the escape depth is 1–2 nm, careful sample preparation and clean
vacuum systems are required.

10.2.1 Radiation Sources

A convenient source of characteristic X-rays is provided by electron bombardment of
Mg or Al targets. The relative intensity of the bremsstrahlung or X-ray continuum to
characteristic X-rays is less important in the production of these soft X-rays (∼1 keV)
than for hard X-rays, i.e., from Cu bombardment. For Mg and Al, about one-half of
the X-rays produced by electron bombardment are the Kα X-rays. The contribution
from the continuous spectrum is hardly noticeable, since the bremsstrahlung spectrum
is distributed over several keV while the K X-rays are concentrated in a peak of ∼1 eV
FWHM. In addition to the two Kα lines (Kα2 corresponds to a 2p1/2 → 1s transition
and Kα1 corresponds to a 2p3/2 → 1s transition, indicated in Fig. 10.3a), there are
lower intensities of higher-energy characteristic lines that correspond to two electron

AL X-RAY SOURCE

ENERGY ANALYZER

AI

PHOTON
SAMPLE

e− ELECTRON
OPTICS

ELECTRON

DETECTOR

Figure 10.2. Schematic of the basic apparatus used in X-ray photoelectron spectroscopy. X-rays
are produced at the Al anode by bombardment of electrons created at the filament. The X-rays
impinge on a sample, producing photoelectrons that are detected after analysis in the electron
energy analyzer.
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Figure 10.3. The two components of the Kα spectrum (Kα1 + Kα2) which comprise the Kα

spectrum of Al. [Spectrum from Sieqbanhn et al., 1967]

excitations (a 1s ionization plus a 2p ionization) in the Al target. For most applications,
however, the spectrum is sufficiently clean for analysis purposes. If higher-energy
resolution is required in the photon source, a monochromator (Fig. 10.4) must be used,
with a corresponding decrease in efficiency. X-ray monochromators usually make use
of crystal diffraction to energy select the beam.

As shown in Fig. 10.3, the Al Kα1,2 lines consist of two components separated by
the 0.4 eV spin–orbit splitting of the 2p state. The Kα1 line that arises from the four
electrons in the 2p3/2 → 1s transition has about twice the intensity as that from the two
electrons in the 2p1/2 state. For Mg Kα X-rays, a somewhat better resolution (≈0.8
eV) can be obtained. The Kα lines from Cr (∼5 keV) and Cu (∼8 keV) have energy
widths ≥2.0 eV, Mo (∼17 keV) has an energy width of about 6 eV, and all are not
suitable for high-resolution studies without further energy selection.

Ultraviolet photoemission spectroscopy (UPS) generally uses resonance light source
such as He discharge lamp with energies in the 16–41 eV range. The energies are
sufficient to allow analysis of the valence band density of states of most solids. The

X-RAY SOURCE

SAMPLE
ROWLAND
CIRCLE

CRYSTAL
DISPERSER

ENERGY ANALYZER

e−

Figure 10.4. Schematic of an X-ray
monochromation system.
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intensity of the light sources is high and the energy widths are sharp. The energy
resolution in these experiments is generally limited by the electron analyzer, in contrast
to the case with X-ray sources. UPS studies are primarily directed at examining electron
configurations in the valence shells or bonding orbits of a solid rather than determining
elemental composition.

The use of synchrotron radiation from electron storage rings provides a continuous
spectrum with intensities far in excess of the characteristic X-ray lines or resonance
light sources. The use of polarized, tunable radiation from the synchrotron is a distinct
advantage in experimental investigations. However, the limited access to synchrotron
facilities restricts the applicability of synchrotron radiation in routine sample analysis.

10.2.2 Electron Spectrometers

The energy of photoelectrons is determined by their deflection in electrostatic or mag-
netic fields. Magnetic deflection analyzers such as those used in β-ray spectroscopy or
early XPS measurements (Siegbahn et al.,1967) are difficult to use in routine analysis,
and electrostatic analyzers are the instruments found in most laboratory systems. There
are two general operating modes for analyzers: deflection and reflection (mirror). In
deflectors, electrons travel along equipotential lines, and in mirror-type analyzers, the
electrons travel across equipotentials. In the deflection type, shown in Fig. 10.2, a
potential is applied across two concentric sectors, and the electrons pass through the
analyzer without a change in energy. In the mirror-type analyzer, the electrons travel
across potential lines and are reflected away from the reflecting electrode into the
analyzer exit.

A common type of mirror analyzer is the cylindrical mirror analyzer (CMA) with
angular entrance and exit slits so that the entire spectrometer has cylindrical symmetry
(Fig. 10.5). The deflection is caused by the potential difference (set by the analyzer
control) between the inner and outer cylinder. The CMA shown in Fig. 10.5 is a double
pass with essentially two CMAs in series. The spherical retarding grids are used to scan
the spectrum while the CMA is operated at constant pass energy in order to maintain
a constant energy resolution.

X-RAY SOURCE
ANALYZER
CONTROL

MAGNETIC
SHIELD

ELECTRON
DETECTOR

SAMPLE

RETARDING
GRIDS

Figure 10.5. Schematic of a double pass cylindrical mirror analyzer (CMA) used in photoelec-
tron spectroscopy.
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The detection system is based upon the gain provided by electron multipliers, com-
monly a channel electron multiplier or channeltron. These channeltrons have a conelike
opening and a continuous tube of high-resistivity, semiconducting glass with a high
secondary emission coefficient. A high electric field is applied along the tube, and
incident electrons create a shower of secondary electrons that in turn hit the tube walls
and create further secondaries. A gain of 108 can be achieved with the output taken
through an amplifier-rate meter system.

10.3 Kinetic Energy of Photoelectrons

In photoelectron spectroscopy of solids, one analyzes the kinetic energy of electrons
ejected when a solid is irradiated with monoenergetic photons of energy h̄ω. The
relevant energy conservation equation is

h̄ω + E i
tot = Ekin + E f

tot(k), (10.1)

where E i
tot is the total energy of the initial state, Ekin is the kinetic energy of the

photoelectron, and E f
tot(k) is the total final energy of the system after ejection of the

photoelectron from the k th level. Contributions from a recoil energy Er can be neglected
(see problem 10.5). Only for the lightest atoms (H, He, and Li) is Er significant when
compared to the instrumental linewidths in XPS spectra. The binding energy of the
photoelectron is defined as the energy required to remove it to infinity with a zero
kinetic energy. In XPS measurements EV

B (k), the binding energy of an electron in the
k th level referred to the local vacuum level is defined as

EV
B (k) = E f

tot − E i
tot. (10.2)

Substituting Eq. 10.1 into Eq. 10.2 results in the photoelectric equation

h̄ω = Ekin + EV
B (k). (10.3)

Binding energies are expressed relative to a reference level. In gas phase photoemission,
binding energies are measured from the vacuum level. In the study of solids, the Fermi
level is used as a reference.

In the case of a solid specimen, an electrical contact is made to the spectrometer. For
metallic samples, the resulting energy levels are shown in Fig. 10.6. Because the sample
and spectrometer are in thermodynamic equilibrium, their electrochemical potentials
or Fermi levels are equal. In passing from the sample surface into the spectrometer,
the photoelectron will feel a potential equal to the difference between the spectrometer
work function φspec and the sample work function φs. Thus, the electron kinetic energy,
E1

kin, at the sample surface is measured as Ekin inside the spectrometer analyzer:

Ekin = E1
kin + (φs − φspec). (10.4)

From Fig. 10.6, it can be seen that the binding energy in a metallic specimen may be
determined relative to the common Fermi level as follows:

h̄ω = EF
B(k) + Ekin + φspec, (10.5)
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Figure 10.6. Schematic of the relevant energy levels for binding energy measurements. Note
that the conducting specimen and spectrometer housing are in electrical contact and thus have
common Fermi levels. The incoming photons, energy hν, create an electron of kinetic energy E
relative to the vacuum level of the sample. The electron is detected by spectrometer with work
function �spec so that the measured energy Ekln = Ekln

1 − (φspec − φs).

where E F
B (k) is the binding energy referred to the Fermi level. Notice that the sample

work function φs is not involved but that of the spectrometer is.
When analyzing insulating samples, more care is required because of sample charg-

ing and the uncertainty in the location of the Fermi level within the band gap. One
approach is to deposit a thin film of Au (or other metal) on the surface of the sample
and use one of the known Au core levels to define the energy scale. Alternatively, the
energies can be referenced to a well-defined feature of the electronic structure such as
the valence band edge, which can be located in the XPS spectra.

In the following, we will use the symbol EB to indicate the binding energy without
specifying the energy reference level. Although the Fermi level is most commonly used
for metals and metallic substances such as silicides, a well-defined reference level is not
found in semiconductors and insulators. This ambiguity along with sample charging
indicates that care must be taken in evaluating spectra.

10.4 Photoelectron Energy Spectrum

The major features of the energy spectrum of X-ray-excited photoelectrons are illus-
trated in Fig. 10.7 for Mg Kα(E = 1.25 keV) irradiation of Ni. The spectrum exhibits
the typical appearance of sharp peaks and extended tails through the allowed energy
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Figure 10.7. The energy spectrum of electrons from the 1.25 keV photon irradiation—Mg Kα –
of nickel. The energy axis is in terms of binding energy, i.e., hν − Ekin. The vertical axis is
denoted as N (E)/E to denote that the admittance of the spectrometer decreases as 1/E . [From
Phi Handbook, Eden Prairie, MN.]

range. The peaks correspond to the energies of characteristic electrons that escape from
the solid without undergoing energy loss. The higher-energy tails correspond to elec-
trons that have undergone inelastic scattering and energy loss on their outward path,
thus emerging with lower kinetic energy (apparently higher binding energy).

The energy of the Mg Kα line is not sufficient to eject K-shell electrons from Ni but
can create vacancies in the L and M shells. The 2s and 2p as well as the 3s and 3p
lines are clearly seen. The most prominent lines are the 2p1/2 and 2p3/2. Photoemission
from p, d, and f electronic states, with nonzero orbital angular momentum produces a
spin–orbit doublet such as the 2p1/2 − 2p3/2 lines shown in the inset to Fig. 10.7. The
two lines correspond to final states, with j+ = 1 + ms = 3/2 and j− = 1 − ms =1/2.
The intensity ratio of the lines is given by the ratio (2 j− + 1)/(2 j+ + 1), which gives
a ratio of line intensities of 1:2 for p1/2 to p3/2, 2: 3 for d3/2 to d5/2, and 3:4 for f5/2 to
f7/2.

After emission of a core electron such as the 2s or 2p electrons from the L shell, a
hole is left in the core shell. The hole can be filled by an electron from the M shell
or valence band (V), with another M or V electron carrying away the energy. This
Auger process is the dominant deexcitation process for elements lighter than Z ≈ 35
and is described in more detail in Chapter 12. The Auger lines LMM, LMV, and LVV
are clearly visible in the XPS spectrum of Fig. 10.7. Since the Auger lines are element
specific, they can also be used in element identification. As is the case for photoelectron
lines, each Auger line is accompanied by a low-energy tail corresponding to electrons
that have lost energy on the outward path. The energy of an Auger line is independent
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of the incident photon energy, while the energy of the photoelectron line varies linearly
with the incident photon energy.

10.5 Binding Energy and Final-State Effects

X-ray photoelectron spectroscopy is a straightforward and useful technique for the
identification of atomic species at the surface of a solid. Adjacent elements throughout
the periodic chart can easily be distinguished. The binding energies of adjacent elements
are shown in Fig. 10.8 for the 2s(L1) lines of elements in the third period of the periodic
table. Electron spectra for a variety of elements in the energy range of 600–20 eV are
shown in Fig. 10.9. The spin–orbit splittings are apparent for each group of elements.
An overview of the variation in binding energy with atomic numbers is shown in
Fig. 10.10. The binding energies increase as the square of atomic number. For photon
energies around 1 keV, only the outer M or N shells can be ionized for Z > 30. A
compilation of binding energies is given in Appendix 6.

As indicated by Eq. 10.2, the binding energy as measured in XPS is the difference
in the total energy between the initial and final state of the system from which one
electron has been removed. This binding energy is not the same as the eigenvalue
that one would calculate from an atom in its initial state with all orbitals occupied.
In photoemission, the outer shells of the atom readjust when an inner electron is re-
moved, because the Coulomb attraction of the positive nucleus is then less effectively
screened. The difference between an initial-state calculation with occupied orbitals
and the experiment can be viewed as the following sequence: After the bound elec-
tron absorbs an energy h̄ω from the photon, it loses some of its kinetic energy in
overcoming the Coulomb attraction of the nucleus — that is, it loses kinetic energy.
The outer orbitals readjust, lowering the energy of the final state and giving this ad-
ditional energy to the outgoing electron. As a result of the formation of a vacancy
in an inner shell by photoelectron ejection, the readjustment in the orbital of the
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Figure 10.8. Electron lines from the L1 subshells of the third period elements (Sodium to
chlorine) excited with magnesium Kα radiation (1.25 keV). [From Siegbahn et al., 1967]
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Kα . [From Siegbahn et al., 1967.]

outer-shell electron may not necessarily proceed to the ground state of the hole-state
atom. The outer electron may go into an excited state (electron shakeup) or into a
continuum state (electron shakeoff), and hence less additional energy is given to the
outgoing electron. These transitions that produce excited final states result in satellite
structure at the high binding energy (lower kinetic energy) side of the photoemission
line.
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Figure 10.10. Binding energies of the elements.
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Handbook, Eden, Prairie, MN.]

10.6 Binding Energy Shifts—Chemical Shifts

The exact binding energy for an electron in a given element depends on the chemical
environment of that element. If we consider a core level, the energy of an electron
in this core state is determined by the Coulomb interaction with the other electrons
and the attractive potential of the nuclei. Any change in the chemical environment
of the element will involve a spatial redistribution of the valence electron charges of
this atom and the creation of a different potential as seen by a core electron. This
redistribution affects the potential of the core electrons and results in a change in their
binding energies.

The shift in the binding energies of core electrons as a function of the chemical
environment is demonstrated in Fig. 10.11 for the Si 2p line. The measured binding
energy of the Si 2p level shifts by more than 4 eV when the matrix is changed from Si to
SiO2. The existence of chemical shifts in XPS has led directly to analytical applications.
The early work of the Uppsala group (Siegbahn et al., 1967) showed that core electron
binding energies in molecular systems exhibit chemical shifts that are simply related
to the covalency.

The concept of chemical shifts is based on the idea that the inner electrons feel an
alteration in energy due to a change in the valence-shell contribution to the potential
based on the outer-electron chemical binding. In the simplest picture, valence electrons
are drawn either from or toward the nucleus, depending on the type of bond. The
greater the electronegativity of the surrounding atoms, the more the displacement of
electronic charge from the atom and the higher the observed binding energies of the
core electrons. For example, Fig. 10.12 shows the binding energy shifts of the carbon
atoms in ethyl trifluoroacetate, C4F3O2H5. Each carbon atom is in a different chemical
environment and yields a slightly different XPS line. The binding energy shifts cover
a change of about 8 eV.

An example of the shift in the Ni 2p XPS spectra as a result of the formation of
Ni2Si and NiSi is shown in Fig. 10.13. Here the shift in the Ni signal represents 1.1 eV
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for the transition from Ni to NiSi. The decrease in the peak intensity is due to the
decrease in the amount of Ni atoms/cm2 contained within the escape depth for the
Ni 2p electrons as the compound becomes richer in Si. This is an example in which
information on stoichiometry change comes primarily from intensity variations, with
only minor chemical shift changes.
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Figure 10.13. Three-dimensional plot of the Ni2p XPS spectra, with the z-axis representing
time during heat treatment. The spectra illustrate the planar growth of different forms of nickel
silicide, as shown in the inset. Here chemical shifts are relatively small, but the change in intensity
indicates a change in composition. [From P.J. Grunthaner, Ph.D. thesis, Caltech, 1980.]
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10.7 Quantitative Analysis

Line intensities or the area of the photoelectron peaks are of interest for quantitative
analysis. The intensity of a given line depends on a number of factors, including the
photoelectric cross section σ , the electron escape depth λ, the spectrometer trans-
mission, surface roughness or inhomogeneities, and the presence of satellite structure
(which results in a decrease in the main peak intensities). The flux of X-rays is essen-
tially unattenuated over the depths from which XPS signal peaks originate because the
absorption lengths of X-rays are orders of magnitude larger than the escape depth of
the electrons. The probability Ppe per incident photon for creating a photoelectron in a
subshell k is

Ppe = σ k N t, (10.6)

where Nt is the number of atoms/cm2 in a layer of thickness t and σ k is the cross
section for ejecting a photoelectron from a given orbital k. Some of the basic concepts
underlying the determination of the photoelectric cross section are given in Chapter 9.
The calculations of Scofield for the photoelectric cross section at 1.5 keV for different
subshells are presented in Fig. 10.14 in units of barns (one barn is 10−24 cm2). These
calculations give an overview of the large variation in cross sections that can be found
in the analysis of a given material. Empirical studies indicate that these cross sections
follow the strong Z dependence shown in Fig. 10.14, but the values may be in error by
a factor of 2 or greater.

As discussed in Chapter 6, the number of electrons that can escape from a solid
without undergoing an elastic collision decreases with depth as exp(−x/λ), where λ is
the mean free path. The universal curve for escape depth versus energy is given in Fig.
6.4. The number of atoms per cm2 that can produce a detectable photoelectron is then
Nλ, so the probability Pd per incident photon of creating a detectable photoelectron
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Figure 10.14. Calculations of the photoelectric cross section for different subshells throughout
the periodic chart. The incident radiation is 1.5 keV; (a) the dominant shells most used in XPS;
(b) the complete set of subshells. [From J.H. Scofield, J. Electron Spectrosc. 8, 129, 1976, with
permission from Elsevier.]
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from a subshell k is given by

Pd = σ k Nλ. (10.7)

Not all the photoelectrons from a given subshell contribute to the photopeak, which
corresponds to the ground-state configuration for a single vacancy in an inner shell. The
influence of excited states (electron shakeup and shakeoff) is to decrease the intensity
of the photopeak. The efficiency y in the production of a photopeak signal can vary over
values of 0.7–0.8 for free atoms and, more importantly, can have a strong dependence
on the chemical environment.

Finally, the instrumental efficiency T is a function for the kinetic energy E of the
electron and usually varies as E−1. For example, Fig. 10.7 presents the energy spec-
trum N (E) of the photoelectrons as N (E)/E to compensate for the transmission effi-
ciency.

In chemical analysis, one is generally interested in the relative concentrations, nA/nB,
of elements A and B in a sample, so that only the ratio of the areas of lines (the intensity
ratio IA/IB) is required. The composition ratio is then

nA

nB
= IA

IB

σBλB yBTB

σAλA yATA
. (10.8)

If the photopeaks have about the same energy so that λA
∼= λB and TA

∼= TB and the pho-
topeak efficiencies are about equal, then the composition ratio can be approximated by

nA

nB
= IA

IB

σB

σA
. (10.9)

This approach assumes that the sample is flat and homogeneous, that the photoelectrons
are emitted isotropically, and that the sample surface is clean, without a layer of surface
contamination.

The sensitivity to the detection of trace elements depends upon the cross section
of the element and the background of the signals from the other elements. Under
favorable conditions, elemental analysis in bulk samples can reach sensitivities of
1 part in 1000. XPS measurements are extremely sensitive to the presence of surface
layers. One often can detect as little as 0.01 monolayers of an element. The main use
of XPS in materials analysis is determination of the chemical binding of atoms in the
surface region of a solid.

Problems

10.1. (a) Compare the tabulated values of the binding energy, EB (Appendix 6), for
the 1s and 2s levels with the prediction of the Bohr theory (Eq. 1.15) for
atoms with Z = 10, 20, 30, and 40. Does the Bohr theory serve as a useful
approximation (to within 10%) of the binding energies?

(b) Using the Pauli exclusion principle and quantum numbers with spin–orbit
splitting, sketch an energy-level diagram for copper based on Bohr values of
the binding energy. Indicate the number of electrons in each level and verify
that the ratio of electrons in the d levels, d3/2 to d5/2, is 2/3.
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10.2. For Al Kα X-rays incident on the compound NiSi, calculate the ratio of yields
using Eq. 10.8, assuming that the ratios of photopeak and instrument efficiencies
are equal. Use Fig. 10.14 and 6.4 to estimate the cross sections and escape depths:

(a) Ni 2s to Ni 2p;
(b) Ni 2s to Ni 3s;
(c) Ni 2p to Si 2p.

10.3. Consider incident radiation on Al at the same energy: 5.41 keV electrons and Cr
Kα X-rays.

(a) Calculate the cross section for creating Al K-shell vacancies for electrons
(Eq. 6.11) and photons (Eq. 10.37).

(b) Calculate the electron range (Eq. 6.25) and linear absorption coefficient
(Eq. 10.35). Compare the calculated value of the mass absorption coefficient
with the value listed in Appendix 8.

(c) What is the energy of the K-shell photoelectrons? Calculate the value of the
escape depth λ (Eq. 6.20) and compare it with the value estimated from Fig.
6.4.

10.4. For Al Kα radiation incident on Cu, calculate the ratio of 2s to 3s photoelectron
yields based only on cross sections (Fig. 10.15) and escape depths.

10.5. Estimate the binding energy shift between the Li (Z = 3) atom and LiF in the
following way (the Li atom has an electron configuration of 1s22s1):

(a) Calculate the probability of finding the 2s electron within the 1s orbit; i.e.,
calculate

�q =
r=a0/Z∫
r=0

ψ2
2sr

2 dr sin θdθdφ,

where ψ2s is a hydrogenic wave function (Chapter 9) and a0/Z is the Bohr
radius of the 1s shell. (Note that 0 < �q < 1).

(b) Estimate the binding energy of the 1s shell in the atom using the Bohr model
with ZLi

eff = Z − �q .
(c) In LiF, the outer electron is essentially on the F atom. Assume there is no

contribution to the 1s screening from the 2s electron in LiF and estimate the
binding energy shift using the Bohr model.
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11
Radiative Transitions and the Electron
Microprobe

11.1 Introduction

In previous chapters, we have calculated the cross section for creating an inner-shell va-
cancy by irradiation with X-rays (photoelectric cross section, Chapter 9) and energetic
electrons (impact ionization cross section, Chapter 6). After a vacancy is created, an
electron can make a transition from an outer shell to fill the vacancy with the emission
of a photon. This process is referred to as the spontaneous emission of radiation. In this
chapter, we consider the energies of X-ray transitions and calculate radiative transition
rates. We will use the formula for the radiative transition rate from an initial state i to
a final state f (derived in Chapter 9):

W = 4

3

(h̄ωf1 )3

(h̄c)3

(e2)

h̄
|〈ψ f |r|ψi〉|2 , (11.1)

where h̄ωf1 = E i
B − E f

B is the energy of the emitted radiation, where EB is the binding
energy of the initial or final state. The transition rate increases strongly with pho-
ton energy or, for a given transition, increases rapidly with Z. Evaluation of the ma-
trix elements indicates that W = 0 for some of the transitions, and hence selection
rules for allowed transitions can be derived. These considerations are used in the de-
scription of the electron microprobe, where bombardment of a solid by a beam of
electrons leads to the emission of X-rays with energies characteristic of the atomic
species. The relative advantages of proton-induced X-ray excitation will be discussed in
Section 11.9.

Consider an excited atom with a hole in the K or L shell. A straightforward means
of deexcitation is the transition of an electron from an occupied state in a shell to the
empty state (hole) with the emission of X-rays as shown by the L3 to K transition
(Kα1 X-ray) in Fig. 11.1.

X-ray emission is mainly due to dipole radiation, and electron transition selection
rules are obeyed (�l = ±1 , � j = 0, ±1 ); the energy is given by the difference in
binding energies,

h̄ω(Kα) = EK
B − EL3

B = hν . (11.2)



11.4. Nomenclature in X-Ray Spectroscopy 215

2p3/2
2p1/2

2s

L3
L2

L1

L3
L2

L1

KK

Ka

hνhν

1s

e–

Figure 11.1. Schematic of photon interaction process with atoms: (a) photon absorption in
which an electron is emitted with energy, E, given by E = h̄ω − EB , where EB is the electron
binding energy of the shell; (b) photon (X-ray) emission where the L-shell electron makes a
transition to fill the vacancy in the K shell.

11.2 Nomenclature in X-Ray Spectroscopy

The arrows in Fig. 11.2 show the allowed transitions of the atom and indicate their
commonly used designation. For example, a K → L3 transition, Kα1 X-ray line, is
one in which there is an initial vacancy in the K shell and a final vacancy in the L
shell. In spite of the fact that the energy levels belong to the atom as a whole, the one-
electron quantum numbers n, l, j are used in descriptions of atomic levels, as shown
in Fig. 11.2. States with the same values of n and l but different values of j(= l ± 1/2)
are well separated.

The main X-ray transitions for Pb are also shown in Fig. 11.2. The intensity ratios
are indicated at the top of the diagram and are referenced to Kα1 = 100 for K X-rays,
Lα1 = 100 for L X-rays, etc. The strong transitions obey the dipole selection rules.
The intensity ratios and energy positions serve to establish the fingerprint pattern that
identifies the element.

11.3 Dipole Selection Rules

The formula for the transition probability (Eq. 11.1) contains the matrix element
〈ψf|r|ψi〉 known as the dipole matrix element. This quantity is identically zero—that
is, transitions are forbidden—between certain initial, ψi, and final, ψ f , states. Basi-
cally, a photon can be considered as a particle with unit angular momentum. Therefore,
in order to conserve angular momentum as well as energy, transitions in which the
angular momentum changes by one unit, �l = 1, are allowed. These selection rules
(�l = ±1, � j = 0, ±1) result in a simplification of the observed X-ray spectrum. The
allowed transitions are illustrated in Fig. 11.2, along with a few weak lines arising from
transitions that are dipole forbidden but allowed for magnetic and electric quadrupole
transitions.
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Figure 11.2. Principal X-ray transitions, including their common designations. The upper por-
tion of the figure indicates the relative intensities of the various lines that form the characteristic
X-ray spectrum and indicates the spectral distribution for Pb. [From F. Folkmann in Thomas and
Cachard, 1978, with permission from Springer Science+Business Media.]

11.4 Electron Microprobe

The detection and measurement of the characteristic X-rays for materials excited by
energetic electrons is the basis of electron microprobe analysis. The essential feature
of the electron microprobe (Fig. 11.3) is the localized excitation of a small area of
the sample surface with a finely focused electron beam. The volume of the sample
material excited by the electrons has dimensions on the order of a micron, and hence
the analytical technique is often referred to as electron probe microanalysis or electron
microprobe analysis (EMA). The electron beam can be scanned across the surface to
give an image of the lateral distribution of the material composition.
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Figure 11.3. Electron beam interaction with a solid. Incident electrons create inner-shell va-
cancies within the first micron of the solid.

In materials analysis, there are only a few lines that are important, mainly Kα and
Kβ and the L series (Lα, Lβ, and Lγ lines). The energies of the K series and L series are
tabulated in the Appendices. The energies of the more important characteristic lines
are shown in Fig. 11.4. In the analysis of X-ray spectra, it is common to refer to either
energy or wavelength, depending on the type of detection system, either energy or
wavelength dispersive. The most convenient form of analysis is the energy dispersive
spectroscopy (EDS) mode using a Si(Li) detector whose basic operation is similar to
that of a charged-particle solid-state detector as described in Chapter 3. An incoming X-
ray creates a photoelectron that eventually dissipates its energy through the formation of
electron–hole pairs. The number of pairs is proportional to the incident photon energy.
Under bias, an electrical pulse is then formed with a magnitude proportional to the
number of pairs or to the X-ray spectrum over a broad range of energies with an energy
resolution of approximately 150 eV. The spectrum from Mn K X-rays taken with a
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Figure 11.5. K X-ray spectra from Mn measured with an energy-dispersive Si(Li) solid-state
detector. The Kα line is at 5.89 keV, the Kβ line at 6.49 keV, and the resolution of the detector,
full width at half maximum, is 148 eV.

Si(Li) detector is shown in Fig. 11.5. The Kα and Kβ lines are clearly resolvable. The
full width at half maximum of the Kα line (148 eV) is determined by the resolution of the
detector. The resolution is set by the statistical variations associated with the electron—
hole pair creation process. Higher resolution is obtainable with wavelength-dispersive
techniques, albeit at the expense of efficiency.

Wavelength-dispersive spectroscopy (WDS) involves X-ray diffraction from an ana-
lyzer crystal; only those X-rays that satisfy the Bragg relation (nλ = 2d sin θ ) are con-
structively reflected into the detector. Higher-order reflections of a given wavelength
can also be diffracted into the detector. The reflected wavelengths are λ, λ/2, λ/3, . . .

corresponding to first-, second-, third-, reflections. In Fig. 11.6a,b, X-ray spectra are
shown from a materials analysis of a nickel base alloy, using an energy-dispersive
system and a wavelength-dispersive system. The energy resolution is sufficiently good
in wavelength-dispersive systems (∼ 5 eV) that closely spaced lines can easily be
resolved.

With energy-dispersive systems, it is possible to have signal interference from dif-
ferent elements when the energies of X-rays are close together. The Kα line of el-
ement Z falls close to the Kβ line of element Z-1 or Z-2; i.e., Br and Rb. As can
be seen in Fig. 11.6b, an L transition from Ta falls close to the K transition of
Ni; the Ta component of the material is, however, readily apparent from the wave-
length-dispersive system. These interferences can complicate analysis of multielement
samples.

The chemical binding energy shifts found in photoemission (XPS) are not as readily
detectable in X-ray analysis, since the X-rays are due to a transition between two levels,
both of which shift in the same direction due to bonding effects. Wavelength shifts to
both longer and shorter wavelength are observed in very-high-resolution X-ray spectra
for various elements upon chemical combination.
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Figure 11.6. (a) Energy-dispersive and (b) wavelength-dispersive X-ray spectra from nickel
base alloy. The energy-dispersive spectrum uses a Si(Li) solid-state detector, and the wavelength-
dispersive spectrum uses a LiF diffracting crystal. [Adapted from Goldstein et al. 1981.]

In X-ray spectroscopy, as in most atomic transitions, there is an energy (line width)
width or breadth associated with the lifetime of the core hole. This is a fundamental
width set by the atomic processes involved and is the minimum energy width that could
be observed in a high-resolution detector. The uncertainty principle states that

�E�t ≥ h̄. (11.3)

For atomic energy levels, we may take �t = τ , where τ is equal to the mean life
of the excited state. The mean life is determined by radiative and Auger transitions.
Then,

�E ∼= h̄

τ
. (11.4)

The lifetime broadening can be as large as 10 eV for the L shells and more than 100
eV for the K shell of high Z elements. These widths are a consequence of the filling of
an inner-electron-shell vacancy by outer electrons within a time interval on the order
of 10−16 sec.
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11.5 Transition Rate for Spontaneous Emission

The rate for a spontaneous transition from an electron in an initial state i to a final state
f is

W = 4

3

e2

h̄

(ωf1

c

)3 |〈ψf|r|ψi〉|2 , (11.5)

where e2 = 1.44 eV-nm, c is the speed of light, h̄ωf1 is the energy of the emitted photon,
and ψi and ψf are the wave functions of the initial and final states, respectively. This
rate can be expressed as

W = 0.38 × 1018(h̄ω)3 |〈ψf|r|ψi〉|2 ,

in units of inverse seconds, where h̄ω is in units of keV and the matrix element
(|〈ψf|r|ψi〉|2) has dimensions of (0.01 nm)2. A typical value of W is 1015/s for K-
shell transitions of elements in the middle of the periodic table. This formula is derived
by considering the absorption transition probability in an electromagnetic field and the
Einstein coefficients that describe the balance between photon absorption and induced
and spontaneous transitions (Section 9.10).

11.6 Transition Rate for Kα Emission in Ni

We illustrate the use of Eq. 11.5 by explicitly calculating the transition rate for a
particular case. Our starting point is the transition rate formula

W = 4

3

ω3e2

h̄c3

∣∣∣∣
〈
ψf|r|ψi

〉∣∣∣∣
2

.

As a first estimate, we note that 〈ψf|r|ψi〉 ∼ a0/Z . The wave functions ψf(r) and
ψi(r) have a finite intensity only for values of |r| � a0/Z , where a0 is the Bohr radius,
a0 = 0.053 nm. Then

W = 4

3

ω3e2

h̄c3

a2
0

Z2
. (11.6)

The energy of the transition, h̄ω, for 2p → 1s transitions in hydrogenic atoms is 10.2 Z2

(eV) [i.e., h̄ω = 13.6(1 − 1/n2)Z2, where n = 2]. Therefore, the transition probability
is proportional to Z4:

W ∝ Z4. (11.7)

This dependence will hold in more sophisticated treatments as well. We can give a
simple order-of-magnitude estimate of W. The units of W are often given in terms of
eV/ h̄. Thus we rewrite Eq. 11.6 as

W = 4

3

1

h̄
(h̄ω)3

(
e2

h̄c

)3 (a0

e2

)2 1

Z2
, (11.8)
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(note that e2/h̄c = 1/137 and e2/a0 = 27.2 eV). Consider the Kα transition in Ni
(Z = 28, h̄ω = 7.5 × 103 eV). Then

W = 0.38 eV/h̄.

Actually, the six 2p electrons in Ni can contribute to the process so that

W = 2.3 eV/h̄.

The accepted result is W = 0.551 eV/h̄. A factor of 4 is close for a crude estimate.
In units of time and using the accepted value, W = 8.3 × 1014s−1, or

1

W
= 1.2 × 10−15s.

A detailed evaluation of the transition probability is given in Section 11.9.
The energy width � of an atomic state is related to the mean life τ of the state through

the Heisenberg uncertainty principle:

� τ = h̄. (11.9)

In the previous section, we estimated the radiative contribution to the width or, more
precisely, the decay probability (per unit time) for a 2p to 1s transition, i.e.,

Wrad = �rad/h̄. (11.10)

The width of the state is made up of all the processes that contribute to its finite lifetime:

� = �rad + �nonrad, (11.11)

where �rad represents all the radiative processes that contribute to the lifetime (i.e.,
X-ray emission) and �nonrad contributes to all nonradiative contributions (i.e., Auger
emission). The probability of a radiative decay is �rad/(�rad + �nonrad) and is known
as the fluorescence yield ωX (see Section 11.3). For a state consisting of a K vacancy
with atomic Z > 40, radiative processes dominate: �nonrad << �rad. In a hydrogenic
approximation,

� = 4

3
(h̄ω)3

(
e2

h̄c

)3 (a0

e2

)2 0.74

Z2
(6), (11.12)

where the extra factor of 6 allows for six 2p electrons. In the spirit of the hydrogenlike
model, we note that the energy of the 2p–1s transition is given by

h̄ω = 13.6(1 − 1

4
)Z2, (11.13)

so

� = 3.3 × 10−8 Z4(eV). (11.14)

This calculated result is only a factor of ∼2 greater than the fit to experiment
shown in Fig. 11.7. Note that the Z4 dependence is close to that observed experi-
mentally.
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11.7 Electron Microprobe: Quantitative Analysis

The electron microprobe is used for identification of elements and the quantitative
analysis of elemental composition. All elements with atomic number greater than that
of Be can be analyzed in principle, but in practice the technique is mostly applied to Z
approximately >10. The detection limit for elements is 50–110 ppm except for low-Z
elements (below Mg), which are detectable in concentrations greater than about 0.1
atomic percent.

Quantitative analysis of the concentration of a given element can be carried out with
an accuracy of about 1% if suitable standards are available. The simplest procedure is
to measure the yield Yp of a given element at a wavelength λp, subtract the background
yield Yb, and determine the ratio K of the corrected yield in the sample to that in the
standard Y s

p − Y s
b , where the background is due to bremsstrahlung (see Section 6.11).

Using this definition,

K = Yp − Yb

Y S
p − Y S

b

. (11.15)

The concentration cA of element A can be determined from the concentration cs
A in the

standard by

cA = cs
A K , (11.16)

where the standard and sample are subject to identical electron beam impingement and
X-ray detection conditions, and the standard has a composition near that of the sample
to allow for equivalent X-ray absorption effects.

Often it is the concentration ratio cA/cB of two elements in a bulk or thin film sample
that is desired. In this case, it is useful to establish a calibration curve that relates peak
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intensity ratios to atomic ratios. An example of this procedure is illustrated in Fig. 11.8,
which shows the NiLα and SiKα lines and the ratio of yields versus the measured
Si/Ni atomic ratio in nickel silicide standards whose composition was determined by
Rutherford backscattering analysis. The electron beam energy was sufficiently low (see
electron ranges, Chapter 6) that the penetration of the electrons was confined to the
silicide layer, and X-ray generation in the Si substrate was minimal.

11.7.1 Quantitative Analysis

The determination of an absolute concentration of an element in an unknown matrix
represents a complicated problem. Consider first the yield of X-rays, YX, produced
from a thin layer of width �t and depth t into the sample:

YX(t) = N�tσe(t)ωX e−µt/cos θ I (t)η
d	

4π
, (11.17)

where

N is the number of atoms/volume;
σe(t) is the ionization cross section at depth t, where the particle has energy Et ;
µ is the X-ray absorption coefficient;
ωX is the fluorescence yield;
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θ is the detector angle;
ηd	 is the efficiency and solid angle of the detector;
I (t) is the intensity of electron beam at depth t.

The total observed yield Y is given by

Y =
R∫

t=0

Y (t)dt + Secondary Fluorescence, (11.18)

where R is the range of the electron, and the second term includes the effect of secondary
fluorescence due to absorption of high-energy X-rays (generated by other heavy atoms
within the matrix) and re-emission of the X-rays of interest.

Equation 11.17 takes into account (1) the change in cross section as a function of
depth into the sample due to the change in electron energy as the beam penetrates the
sample and (2) the attenuation of the beam, I (t), as it penetrates the sample due to
backscattering of the electrons.

The attenuation of the beam can be a surprisingly large factor. Figure 11.9 shows
the backscattered fraction as a function of Z for two different incident energies. The
backscattered fraction is almost energy independent.

11.7.2 Correction Factors

In practice, Eqs. 11.17 and 11.18 are usually not used explicitly in the evaluation of
composition; rather, comparisons of X-ray yields from the unknown sample and a
standard are used. Even under these conditions, however, corrections must be made,
since many of the factors in Eq. 11.17 are matrix dependent. Extensive investigations
in the field of microprobe analysis have generated an approach based on empirical
correction factors that represent those matrix-dependent effects.

Some insight into the correction factors involved in quantitative analysis can be
gained by considering the procedure for determining the concentration CA of an element
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A in an alloy from the ratio K of X-ray intensities from the sample and from a standard
composed of element A. An expression of the form

CA = KZAF (11.19)

is used (Birks, 1979; Goldstein et al., 1981), where Z is the atomic number correction
factor, A is the absorption correction factor, and F is the fluorescence correction factor.
These corrections relate to the three major effects that arise from the differing character-
istics of the sample and the standard with respect to electron and X-ray interactions. The
atomic number correction Z allows for the fact that the generation of primary X-rays in
the samples does not increase linearly with concentration. The proportion of incident
electrons that are backscattered and the volume of the sample in which X-rays are gen-
erated depend on sample composition. The absorption correction A is required because
the absorption coefficients — i.e., the attenuation of the emerging X-radiation — will be
different in the sample and the standard. The fluorescent correction F accounts for the
generation of secondary X-rays from element A due to fluorescent excitation by X-rays
emitted by another element (Fig. 11.10). The effect is strongest when the exciting lines
have an energy slightly greater than the binding energy associated with the line that is
being measured, i.e., near the maximum of the absorption cross section. For example,
in a sample containing Fe and Ni, the Ni K X-rays could excite Fe K X-rays, and in a
Cu–Au sample, the Au L lines can excite Cu Kα. The correction for fluorescence by
characteristic lines depends on the atomic fluorescence yield ωX and the fraction of the
exciting element in the sample. For X-ray lines with energies below 3 keV, the values

ELECTRONS

ZONE OF FLUORESCENT
EXCITATION OF λA BY λB

ZONE OF PRIMARY
EXCITATION OF λA

ELECTRON-PROBE MICROANALYSIS

λA λA

X-RAYS TO
SPECTROMETER

λB

Figure 11.10. Schematic illustration of the generation of secondary radiation as a result of
fluorescence excitation by primary radiation.
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of ωX are small and the fluorescence becomes negligible. The magnitude of each of the
correction factors in Eq. 11.19 is between 2% and 10% in most cases.

11.8 Particle-Induced X-Ray Emission (PIXE)

Inner-shell ionization is caused by the time-dependent electric field created by the
passage of a charge near an atom. In a classical sense, the field from a proton is
precisely the same (aside from a sign) as that of an electron at the same velocity. In
terms of kinetic energy, this occurs at an ion energy of (M/me)E , where M and me are
the masses of the ion and electron, respectively, and E is the electron kinetic energy.
Thus the velocity matching criteria require proton kinetic energies of 1836 E, which
corresponds to the MeV ion range to match keV electrons.

Proton-induced K-shell ionization cross sections are shown in Fig. 11.11 in a re-
duced plot. The horizontal axis is E/E K

B, the ratio of the ion energy to the K-shell
binding energy. The vertical axis is (E K

B/Z1)2σ , the product of the square of the
K-shell binding energy and the reduced ionization cross section σ/Z2

1. This scaling
allows the formulation of a universal plot for the cross section. In Fig. 11.11, the ratio
MP/M1 allows scaling for heavier projectiles. For protons, MP/M1 = 1 and Z1 = 1; for
He+ ions, MP/M1 = 1/4 and Z1 = 2; etc. X-ray production cross sections are shown
explicitly in Fig. 11.12. The X-ray production cross section σKα is related to the ion-
ization cross section σ (Fig. 11.11) through the fluorescence yield ωX; σKα = ωXσ .
The fluorescence yield is the probability of a radiative transition relative to all possible
transitions (radiative and nonradiative). The maximum value of the cross section de-
creases with increasing atom number or binding energy. Further, the maximum of the
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cross section is at higher energy for the heavier elements, corresponding to the idea of
velocity matching, similar to that for electrons where the maximum occurs at energies
of three to four times the binding energy EB.

Particle-induced X-rays (PIXE) have been used for a variety of analytical problems
with MeV accelerators. The major advantage of ion-induced X-ray analysis is a reduc-
tion in background relative to that of electrons, yielding a better sensitivity for trace
element analysis. The background in the electron-microprobe-induced X-ray spectrum
is due to electron bremsstrahlung (see Section 6.11). This is a continuous distribu-
tion associated with the deceleration of the electron as it traverses a solid. A quantum
treatment of the bremsstrahlung process shows that the probability of photon emission
decreases strongly with increasing mass of the charged particle projectile. Thus, at the
same velocity, protons and electrons have approximately the same characteristic X-ray
production probability but a large difference in bremsstrahlung background. Particle-
induced X-rays can be combined with the formation of microbeams (of order 10 µm) to
do high-sensitivity lateral mapping of trace element distributions. Such beams can also
be brought into air for analysis of biological and vacuum-degradable samples (Cahill,
1980).

11.9 Evaluation of the Transition Probability for Radiative
Transitions

In this section, we make a detailed evaluation of radiative transition probabilities and
first concentrate on the dipole moment 〈ψf|r|ψi〉. For ψi and ψf, we will use hydrogenic
wave functions (see Table 9.1):

ψf = ψ1s, (11.20)

ψ1s = R10(r )Y0,0(θ, φ), (11.21)
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Table 11.1. Spherical harmonics.

l m Ylm

0 0 Y00 = 1√
4π

1 1 Y11 = − ( 3
8π

)1/2
sin θ exp(iφ)

1 0 Y10 = ( 3
4π

)1/2
cos θ

1 −1 Y1−1 = ( 3
8π

)1/2
sin θ exp(−iφ)

2 2 Y22 = ( 15
32π

)1/2
sin2 θ exp(2iθ )

2 1 Y21 = − ( 15
8π

)1/2
cos θ sin θ exp(iφ)

2 0 Y20 = − ( 5
16π

)1/2
(3 cos2 θ − 1)

2 −1 Y2−1 = ( 15
8π

)1/2
cos θ sin θ exp(−iφ)

2 −2 Y2−2 = ( 15
32π

)1/2
sin2 θ exp(−2iθ )

where

R10 = 2

a3/2
e−ρ, (11.22)

and ρ = r Z/a0 = r/a;

ψi = ψ2p = 1√
3

R21(r ){Y1,0(θ, φ) + Y1,−1(θ, φ) + Y1,1(θ, φ)}, (11.23)

where R21 = [1/4(2π )1/2] · (1/a3/2)ρe−ρ/2 and the spherical harmonics, the Y’s,
are defined in Table 11-1. The factor 1/

√
3 assures proper normalization, i.e.,

〈ψ2p|r|ψ2p〉 = 1.
The matrix element of r is given by 〈ψf|x |ψi〉 + 〈ψf|y|ψi〉 + 〈ψf|z|ψi〉, or in spher-

ical coordinates as

〈ψf|x |ψi〉 = 〈ψf|r sin θ cos φ|ψi〉, (11.24)

〈ψf|y|ψ1〉 = 〈ψf|r sin θ sin φ|ψi〉, (11.25)

and

〈ψf|z|ψi〉 = 〈ψf|r cos φ|ψi〉. (11.26)

All the terms can be separated in the following sense:

〈ψf|z|ψi〉 = 1

3

{∫
R21(r ) · r · R10(r )r2dr

×
∫ [(

Y1,1 + Y1,−1 + Y1,0
) · Y0,0

]× cos θ sin θ dθ dφ

}
. (11.27)

Consider the φ dependence of integrals such as∫
Y1,−1(θ, φ)Y0,0(θ, φ) sin θ dθ dφ = 1√

4π

(
3

8π

)1/2

×
∫

sin2 θ dθ

∫
e−iφdφ,
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where Y1,−1 = (3/8π )1/2 sin θe−iφ . In general, any integral of the form∫
Yl,m(θ, φ)Yl ′,m ′ (θ, φ) sin θ dθ dφ

will result in a factor of the form
2π∫

0

e−i(m−m ′)φdφ.

This second integral is identically zero unless m = m ′, thus yielding a selection rule.
That is, the matrix element and hence the transition probability is identically zero unless
m = m ′. For the z component, the selection rule reduces to mf = m i. For the x and y
components, the integral is of the form∫

sin φ e−i(m−m ′)φdφ

or ∫
cos φ e−i(m−m ′)φdφ,

which yield a selection rule m ′ = m ± 1 or mf = m i ± 1. These dipole selection rules
govern the observed spectra.

The z-matrix element for 2p to 1s hydrogenic wave functions reduces to

1

3
〈ψ100|r cos θ |ψ210〉 = 0.248a. (11.28)

In a similar manner, one can show that

〈ψ1s|x |ψ2p〉 = 〈R10|r |R21〉δl ′,l±1δm ′,m±1, (11.29)

where

δl ′,1±1 = 1 if l ′ = l ± 1

= 0 otherwise. (11.30)

Then 〈ψ1s|x |ψ2p〉 reduces to

= 2

3
√

24

1

a3

∫
e−3r/2a r

a
r3 dr, (11.31)

or

〈|x |〉 =
(

81

54

)1/2

· 〈|z|〉, (11.32)

and

〈|y|〉 =
(

81

54

)1/2

· 〈|z|〉.

Finally

〈|x |〉 + 〈|y|〉 + 〈|z|〉 = 〈|r|〉, (11.33)
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and

〈|r|〉 = 0.248a
[
1 + 2

(
81
54

)1/2
]
,

〈|r|〉2 = 0.74a2, (11.34)

for 2p → 1s. Using Eq. (11.5), we find a value for the transition probability for Ni of

W = 1.2 eV/h̄,

a factor of 2 greater than the accepted value of 0.55 eV/h̄.

11.10 Calculation of the Kβ/Kα Ratio

As a further example of the use of the transition probability formula, we calculate
the Kβ/Kα ratio for hydrogenic atoms. We use the following form for the radiative
transition rate W:

W = 4ω3e2

3h̄c3
|〈ψf|r|ψi〉|2 .

The ratio R is

R = WKβ

WKα

= ω3
β |〈ψ100|r|ψ31〉|2

ω3
α |〈ψ100|r|ψ21〉|2

, (11.35)

where

ψ3,1 = 1√
3

(ψ310 + ψ311 + ψ31−1)

and

ψ2,1 = 1√
3

(ψ210 + ψ211 + ψ21−1).

These equations represent wave functions that are properly normalized and reflect the
statistical weights of the degenerate sublevels, i.e.,

〈ψ3,1|ψ3,1〉 = 1/3(1 + 1 + 1) = 1.

We have also used the �l = ±1 selection rule by considering p → s transitions only.
Consider the z component, z = r cos θ :

〈ψ100|r cos θ |ψ3,1〉 = 1

3
{〈ψ100|r cos θ |ψ310〉

+ 〈ψ100|r cos θ |ψ311〉
+ 〈ψ100|r cos θ |ψ31−1〉}, (11.36)

which reduces to ∼0.1a.
For the n = 2 → 1 transition: 〈ψ100|r cos θ |ψ2,1〉 reduces to 1/3〈ψ100|r cos θ |ψ210〉,

which is the matrix element in the Kα transition (=0.25a) (Eq. 11.28) given in the
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previous section. The ratio of Kβ to Kα intensities is

R =
ω3

Kβ

ω3
Kα

× (0.1)2

(0.25)2
.

In hydrogenic atoms,

ωKα
= 3

4
EK ,

ωKβ
= 8

9
EK ,

so

R =

⎛
⎜⎜⎝

8
9
3
4

⎞
⎟⎟⎠

3

·
(

0.1

0.25

)2

= 0.25. (11.37)

The measured values of the Kβ/Kα intensity ratio are given in Fig. 11.13 and shown
for a Mn spectrum in Fig. 11.5. Except for low Z values, the ratio is nearly independent
of Z, and the calculation above is a reasonable estimate for Z ≥ 40. At low Z, the
calculation is influenced simply by the number of electrons available for the transitions
(i.e., R ∼= 0 for Z ∼ 10, where there are no M-shell electrons).

Problems

11.1. Compare the values of Lα radiation given in Fig. 11.4 with values you would
predict from the Bohr theory for elements with Z = 30, 40, 50, and 60. Does the
Bohr theory give a reasonable estimate (within 10%)?

11.2. Consider X-radiation emitted from a sample of CuTa irradiated by 15 keV elec-
trons. List the appropriate bindings energies associated with Kα1, Kβ1, Lα1, Lβ1.
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What energy resolution would be required to separate the signals for Cu K and
Ta L radiation?

11.3. The energy width for the K vacancy state of Ca is about 1 eV. Estimate the ratio
of radiative to nonradiative transitions.

11.4. Calculate the cross section for Ni K-shell production by 20 keV electrons and
for 6.5 MeV protons. Compare the proton velocity with that of the Bohr velocity
of Ni K-shell electrons.

11.5. You have thin films of HgxCd1−xTe whose composition is to be evaluated for
a program on infrared detectors. You want to determine the Hg to Cd ratio and
suspect that the sample may contain 1 at.% of Cu as an impurity. You mount
a 100 nm thick film in an electron microscope (125 keV electrons) that has an
energy-dispersive spectrometer for measurement of X-ray intensities with an
energy resolution of 200 eV.
(a) For a given composition x = 0.2 of HgxCd1−x, estimate the ratio of Hg to

Cd Kα X-ray intensities from the ratio of cross sections and fluorescence
yields (Appendix 11).

(b) Would you expect interference from K , Lα, or M X-ray lines from Hg, Cd,
or Te?

(c) Estimate from Fig. 9.6 the mass absorption coefficient for Hg and Cd X-
rays in Cd Te (assume values for Sn). Would X-ray absorption have a major
influence in the intensity ratio?

(d) Estimate the Cu/Cd K X-ray intensity for 1 at.% Cu. Would interference or
absorption have an influence?

11.6. Compare the Rutherford scattering cross section with the Kα X-ray production
cross section for 4 MeV protons incident on Ag. Compare the two techniques on
the basis of mass resolution and depth resolution.

11.7. Compare electron and X-ray emission processes for 4keV X-rays and electrons
incident on Al.
(a) What is the range, Rx, for the electrons in K-shell X-ray production, and

what is the absorption depth where the incident X-ray flux decreases by 1/e
(use Fig. 9.6)?

(b) What is the cross section for K-shell ionization by electrons and X-rays?
(c) What is the escape depth of K-shell photoelectrons and the absorption length

(1/e attenuation) for the Al Kα X-rays?
(d) What is the ratio of photoelectron- to electron-induced X-ray emission yields

for a 3 nm film and a 300 nm film?
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12
Nonradiative Transitions and Auger
Electron Spectroscopy

12.1 Introduction

In previous chapters, we have discussed inner-shell vacancy formation by photon ir-
radiation (the basis of X-ray photoelectron spectroscopy) or energetic electron and
proton irradiation. The excited atoms can release their energy in radiative transitions
(Chapter 11) with the emission of X-rays or in nonradiative transitions with the emis-
sion of electrons. The latter process forms the basis for Auger electron spectroscopy
(AES), in which one determines composition by measuring the energy distribution of
electrons emitted during irradiation with a beam of energetic electrons. As with other
electron spectroscopies, the observation depth is about 1.0–3.0 nm and is determined
by the escape depth (Chapter 7). The identification of atoms by core-level spectro-
scopies is based upon the values of the binding energies of the electrons. With Auger
electron spectroscopy, the energy of the emergent electron is determined by the differ-
ences in binding energies associated with the deexcitation of an atom as it rearranges
its electron shells and emits electrons (Auger electrons) with characteristic energies.
Figure 12.1 shows the Auger radiationless deexcitation processes, in which the atom
is left in the final state with two vacancies (or holes). If one of the final-state vacancies
lies in the same shell as the primary vacancy (although not in the same subshell), the
radiationless transition is referred to as a Coster–Kronig transition. This transition is
significant because the Coster–Kronig transition rates are much higher than the normal
Auger transitions and influence the relative intensities of the Auger lines. For exam-
ple, in Fig. 12.1, if an L1 shell has a vacancy, the L2 to L1 transition will be rapid
(Coster–Kronig), therefore reducing vacancy transitions of the M electron to L1.

12.2 Auger Transitions

12.2.1 Nomenclature

The nomenclature used to describe the Auger processes is shown in Fig. 12.1. For
vacancies in the K shell, the Auger process is initiated when an outer electron such
as an L1 electron (dipole selection rules are not followed) fills the hole. The energy
released can be given to another electron such as another L1 or an L3 electron, which is
then ejected from the atom. The energy of the outgoing electron is EK − EL1 − EL1.
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Figure 12.1. Schematic diagram of various two-electron deexcitation processes. The KL, L,
Auger transition corresponds to an initial K hole that is filled with an L1 electron, while simul-
taneously the other L1 electron is ejected to the vacuum. The LM1M1 Auger transition is the
corresponding process with an initial 2s vacancy. The Coster–Kronig L1L2M1 transition contains
an initial L1 hole that is filled with an L2 electron accompanied by ejection of an M1 electron.

The process described is called a KLL Auger transition in general terms and more
specifically denoted as KL1L1 or KL1L3. If there are vacancies in the L shell, one can
have Auger processes in which an electron from the M shell (M1 electron) fills the
L hole and another M-shell electron (for example, an M1 electron) is ejected — an
L1M1M1 Auger transition. Since electron–electron interactions are strongest between
electrons whose orbitals are closest together, the strongest Auger transitions are of the
type KLL or LMM. For Coster–Kronig transitions, the vacancy is filled by electrons
that come from the same shell, i.e., LLM. Auger transitions involving the outermost
orbitals, the valence band, have an energy width of about twice that of the valence
band. In Fig. 12.2, the Si KL1L2,3 and L2,3V1V2 (or LVV) Auger transitions are indicated
with V1 and V2 located at positions of maxima in the density of states in the valence
band.

A complete nomenclature describing Auger transitions indicates the shells involved
and the final state of the atom. The final state is usually described using the spectroscopic
notation describing the orbitals. For example, a K L1L1 transition would leave the
2s shell empty (two vacancies) and the 2p shell with six electrons; the transition is
KL1L1 (2s02p6). A KL2L3 would leave the vacancies in the 2p shell and would be
indicated as KL2L3 (2s22p4). Even in the relatively simple KLL transition, there is a
large variety of final states that can have slightly different energies and hence will
correspond to slightly different Auger lines. In the following, we discuss these states in
detail.
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Figure 12.2. Schematic of the (a) KL1 and (b) LVV Auger deexcitation processes in Si. Binding
energies are indicated on the left. The energy of Auger electron in the K L1 L23 process is
approximately 1591 eV, and the L23V V Auger electron has an energy of approximately 90 eV.

12.2.1.1 K L1L1

In the usual X-ray notation, this transition corresponds to an initial state of a single
1s hole and a final state of two 2s holes. We can consider electron holes as elec-
trons to find the possible final configurations of the final states. The n = 2 shell is
now considered as 2s02p6 (where the filled shell is 2s22p6) and has states given by
the possible allowed quantum numbers consistent with the Pauli exclusion principle:
ms = ±1, ML = 0, Ms = 0, where ML and Ms are the total orbital and spin angular
momenta, respectively. The notation 1S indicates a state of total orbital momentum zero
(S). This transition is properly written KL1L1(1S), although the final state (1S) is the
only one allowed, and therefore, in this case, the notation is slightly redundant.

12.2.1.2 K L1L2 or K L1L3

In this case, the final-state electron configuration is written 2s12p5. The possible quan-
tum states are 1 P and 3 P , where P denotes the total orbital angular momentum. This
corresponds to two states coupling to a total angular momentum L = 1, i.e., a P state
with the electron spins aligned 3 P and antialigned 1 P .

12.2.1.3 K L2L2, K L2L3, and K L3L3 Transitions

Here the final states can couple to total angular momenta states of D(L = 2), P(L = 1),
and S(L = 0), with different possible spin alignments to yield states 1D, 3 P , and 1S.

Thus, in KLL-type transitions, there is a total of six final states possible:

K L1L1—2s02p6(1S),

K L1L2,3—2s12p5(1P,3 P),
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[From Siegbahn et al., 1967.]

K L2,3L2,3—2s22p4(1D,3 P,1S)

These final states are shown experimentally in Fig. 12.3 for the case of magnesium.
[Actually, the 2s22p4(3P) state is not observed due to lack of intensity.]

12.2.2 Energies

The energy of the Auger electrons can in principle be determined in the same way as
that of X-rays: by the difference of the total energies before and after the transition. An
empirical way of doing this, for example, is by

E Z
αβγ = E Z

α − E Z
β − E Z

γ − 1

2
(E Z+1

γ − E Z
γ + E Z+1

β − E Z
β), (12.1)

where E Z
αβγ is the Auger energy of the transition αβγ of the element Z . The first

three terms correspond to the difference in the binding energies of shells α, β, γ of the
element Z . The correction term is small and involves the average of the increase in
binding energy of the γ -electron when a β-electron is removed and of the β-electron
when a γ -electron is removed. Measured values of Auger KLL transitions are given
in Appendix 9 along with values of the binding energies (Appendix 6). A numerical
test of the approximation of Eq. 12.1 is given in Table 12.1 for KLL transitions. The
agreement is good. Figure 12.4 shows the dominant Auger energies versus atomic
number. The strong Z dependence of the binding energies leads to a straightforward
elemental identification using this technique.
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Table 12.1. Tabulation of values used to calculate the energy of the
K L1 L2 Auger transition in Ni

(1) E Ni
K L1 L2

= ENi
K − ENi

L1
− ENi

L2
− 1

2

(
ECu

L2
− ENi

L2
+ ECu

L1
− ENi

L1

)
(2) Electron binding energies in keV from Appendix 6

ENi
K = 8.333 ECu

L2
= 0.951 ECu

L1
= 1.096

−ENi
L1

= 1.008 −ENi
L2

= 0.872

0.079
−ENi

L1
= 1.008

0.088

−ENi
L2

= 0.872

6.453

1

2
(0.079 + 0.088) = 0.084

ENi
K L1 L2

= 6.453 − 0.084 = 6.369 keV

(3) Auger transition energy from Appendix 9

ENi
K L1 L2

= 6.384 keV

12.2.3 Chemical Shifts

The chemical environment of an atom is reflected in changes in the valence-shell
orbitals, which in turn influence the atomic potential and the binding energy of the
core electrons. The binding energies of the inner-core K and L shells shift in unison
with changes in the chemical environment. For this reason, the Kα X-ray emission
lines, which are transitions between K and L shells, have only small shifts. For KLL
Auger electron lines, both the K and L shells are involved, but unlike the Kα X-ray
emission lines, the L shell is involved twice in the transition. The inner-shell electron
that is ejected in KLL Auger processes therefore will display a chemical shift. Thus,
one would expect chemical shifts in both AES and XPS spectra.
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Figure 12.4. Principal Auger energies versus atomic number. The heavy points indicate the
strong transitions for each element. [From Davis et al., 1976.]
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Chemical shifts are evident in both AES and XPS spectra. However, the chemical
shifts are more difficult to interpret in the two-electron Auger process than in the one-
electron photoelectric process. Further, Auger line widths are broader than XPS lines.
Consequently, the latter technique is typically used to explore changes in chemical
binding.

12.2.4 Estimate of the Auger Transition Probability
in a Hydrogenlike Atom: KLL Transition

In the usual manner, the transition probability for the Auger effect, WA, can be written
as

WA = 2π

h̄
ρ(k)

∣∣∣∣φf(r1)ψf(r2)
e2

|r1 − r2|φi(r1)ψi(r2) dr1dr2

∣∣∣∣
2

, (12.2)

where ρ(k) = m(V/8π3 h̄2) k sin θ dθdφ is the density of states associated with
normalization in a box of volume V and for a KLL Auger transition from a hydrogenlike
atom:

φi (r1) = 1√
6a3

r1

a
e−r1/2aY m

1 (θ1, φ1), (12.3)

φf (r1) = 2√
a3

e−r1/a, (12.4)

ψi(r2) = 1√
6a3

r2

a
e−r2/2aY m

1 (θ2, φ2), (12.5)

ψf (r2) = 1√
V

eik.r2 . (12.6)

These wave functions represent electrons in the 2p state, the 1s state, the 2p state, and
a free electron, respectively, with a = a0/Z , and a0 the Bohr radius. For convenience,
it is useful to write these equations as functions of r/a:

φi (r1) = 1√
6a3

φi
′
(r1

a

)
, (12.3′)

φf (r1) = 2√
a3

φf
′
(r1

a

)
, (12.4′)

ψi (r2) = 1√
6a3

ψ1
′
(r2

a

)
, (12.5′)

ψf (r2) = 1√
V

eiak·r2/a, (12.6′)

and the potential as

e2

a

(
1

|r1/a − r2/a|
)

= e2

a
V ′(r1/a, r2/a). (12.7)
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In this calculation, we are considering a K L2L2 Auger transition, the transition of a
2p electron (L2) to the 1s state (K), and the subsequent emission of another 2p electron
(L2) to a free electron. In this hydrogenic model, the energy of the Auger electron, EA,
is

EA = EK − EL − EL = EK /2,

where EK and EL are the binding energies of the K and L shells, respectively, and
EL = 1/4 EK in the Bohr model. In the hydrogenic model,

EK = e2 Z2/2a0,

and

a = a0/Z ,

so

ak = (a0/Z )
√

m Ek/h̄2,

= 1/
√

2,

where we have used the Bohr relation a0 = h̄2/me2. Then

ψf (r2) = 1√
V

eir2 cos θ2/a
√

2 .

In this form we can extract the basic dependence of the transition probability on
atomic parameters such as the atomic number Z. Substituting Eqs. 12.3–12.7 (in mod-
ified form) into the formula for the transition probability, we find

WA = 2π

h̄

mk/d	

h̄28π3

e4a

9
F, (12.8)

where d	 = sin θdθ dφ and

F =
∣∣∣∣
∫ ∫

dr1

a3
·dr2

a3
φ′

f

(r1

a

)
ψf

′
(r2

a

)
·V ′
(r1

a
,

r2

a

)
φ1

′
(r1

a

)
ψ ′

1

(r2

a

)∣∣∣∣
2

.

F is a definite integration over all space for r1/a and r2/a, resulting in a definite number
that represents a matrix element of the potential factor (|r2/a − r1/a|)−1.

Remembering that ak = 1/
√

2 and taking d	 = 4π , we can write the transition
probability as

WA = C
e4m

h̄3 ,

where C is a numerical constant dependent on the various factors in WA and F. Noting
that a0 = h̄2/me2 and v0 = e2/h̄, we have the simple relationship

WA = Cv0/a0, (12.9)

where v0 is the Bohr velocity, 2.2 × 108 cm/s; a0 is the Bohr radius, 0.053 nm; and
a0/v0 is a characteristic atomic time, 2.4 × 10−17s. The integral F can be evaluated in
the crude approximation r2 > r1 so that 1/|r2 − r1| ∼= [1 + (r1/r2) cos θ1,2]/r2, where
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Table 12.2. Comparison of Auger transition
rates and K -level X-ray emission rates.

Atomic # Element Auger K X-ray

10 Ne 0.23 0.005
11 Na 0.29 0.007
12 Mg 0.36 0.010
13 Al 0.40 0.014
14 Si 0.44 0.02
15 P 0.48 0.03
16 S 0.51 0.04
17 Cl 0.54 0.05
18 Ar 0.58 0.07
20 Ca 0.65 0.12
22 Ti 0.69 0.19
24 Cr 0.72 0.28
26 Fe 0.75 0.40
28 Ni 0.78 0.55
32 Ge 0.83 1.0
36 Kr 0.89 1.69
40 Zr 0.94 2.69
46 Pd 0.99 4.94
52 Te 1.04 8.40
58 Ce 1.07 11.6
65 Tb 1.10 21.8
70 Yb 1.13 29.6

θ1,2 = θ1 − θ2. This approximation is based on the fact that the radial extension of the
1s wave function is small compared to the 2p function. The calculation of C is tedious
but straightforward, resulting in C = 7 × 10−3. The result for WA (Eq. 12.9) is inde-
pendent of Z, as suggested by Table 12.2. In a more complete calculation, one must
properly account for all the different equivalent pairs of electrons available for Auger
decay. The calculations can be done more precisely via numerical techniques, which
include more sophisticated wave functions and a better description of the interaction
potential (Bambynek et al., 1972). The main feature is that the Auger transition prob-
ability is roughly independent of Z in contrast to the strong Z dependence of radiative
transitions.

12.3 Yield of Auger Electrons and Fluorescence Yield

The lifetime of an excited state τ (a hole in a shell), is determined by the sum of
all possible decay processes. Radiative transitions occur with probability WX. Auger
transitions have a probability WA and Coster–Kronig (where the hole is filled by an
electron of the same shell) WK. There are no other deexcitation mechanisms, so

1/τ = WX + WA + WK . (12.10)
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Figure 12.5. Auger electron and X-ray yields per K vacancy as a function of atomic number.
The curves are from Equ 12.12. [Adapted from Siegbahn et al. 1967]

For transitions to vacancies in the K shell (as well as for holes in the L3 and M5

shells), Coster–Kronig transitions do not occur, and the probability for X-ray emission,
ωX, is given by

ωX = WX

WA + WX
, (12.11)

ωX is commonly called the fluorescence yield. For transitions to K-shell vacancies,
the probability for radiative decay is proportional to Z4 (Chapter 11), and the Auger
probability is essentially independent of Z, as suggested by the semiempirical relation
for ωX of the form

ωX = WX/WA

1 + WX/WA
, (12.12)

where

WX

WA
= (−a + bZ − cZ3)4, (12.13)

with the numerical values a = 6.4 × 10−2, b = 3.4 × 10−2, and c = 1.03 × 10−6.
This relationship yields the solid curve shown in Fig. 12.5. The Auger electron yield is
1 − ωx. This figure shows the dominance of Auger transitions for low Z elements; in
these cases, Auger emission is the important mechanism for relaxation of K vacancies.
This curve does not imply that the Auger rate decreases at high Z, but emphasizes that
the X-ray transition becomes the preferred method of deexcitation at high Z.

The fluorescence yield for K , L3, and M5 shells versus binding energy is shown in
Fig. 12.6. The point of the figure is that the fluorescence yield is approximately the same
for comparable transition energies independent of the electronic shell, in those cases
where Coster–Kronig transitions do not occur. For K-shell transitions, the fluorescence
yield is less than 0.1 for binding energies less than 2 keV, and the total Auger yield is
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larger than 90% for low Z elements (Z < 15). Similarly, for L3 transitions (Coster–
Kronig transitions not allowed), Auger transitions dominate for Z < 50 where L-shell
binding energies are less than 5 keV.

12.4 Atomic Level Width and Lifetimes

As pointed out in Chapter 11, the energy width �E , or more conventionally �, is
related to the mean life τ of the state through the uncertainty principle, �τ = h̄. The
decay probability per unit time is equal to the sum of the transition probabilities, so the
total energy width of the state is given by

� = �radiative + �nonradiative. (12.14)

There is a decay probability for each atomic process, but there is only a single lifetime
for the hole. The natural line width for each process is given by the total lifetime. In the
Z < 30 regime where Auger emission dominates, Table 12.2 shows that Auger rates
vary from 0.23 to 0.80 eV/h̄. The total width of the atomic transition then is 0.23–0.8 eV.
For Z > 30, the K X-ray emission rates range up to 30 eV/h̄, with a corresponding
increase in atomic level width. The total lifetime τ = h̄/�, where h̄ = 6.6 × 10−16 s,
will vary from about 10−17 to 10−15 s. Consequently, the measured X-ray spectrum
will exhibit more line broadening at higher Z than at low Z, and hence Al or Mg is used
as an X-ray source for XPS.

An X-ray spectrum measured with high resolution would be in the form of a
Lorentzian centered about an energy EX (Fig. 12.7):

Y (E) = A

(E − EX)2 + �2/4
. (12.15)
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12.5 Auger Electron Spectroscopy

As with the other electron spectroscopies, Auger analysis is done under high vacuum
conditions. Figure 12.8 shows schematically an experimental apparatus. The cylindrical
mirror analyzer (CMA) has an internal electron gun whose beam is focused to a point
on the specimen sample at the source point of the CMA. Electrons ejected from the
sample pass through an aperture and then are directed through the exit aperture on
the CMA to the electron multiplier. The pass energy E is proportional to the potential
applied to the outer cylinder, and the range �E of transmitted electrons is determined
by the resolution R = �E/E , where R is typically 0.2–0.5%.

A schematic overall spectrum of electrons emitted from a solid irradiated by a 2 keV
electron beam is shown in Fig. 12.9. The narrow peak on the right side is made up
of elastically scattered electrons (no energy loss). Features at slightly lower energy
correspond to electrons with characteristic energy losses due to electronic and plasma
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Figure 12.8. Experimental apparatus used in Auger spectroscopy. [After Palmberg in Czanderna
et al., 1975.]
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excitations. Auger electron transitions generally appear as small features superimposed
on the large background of secondary electrons. The usual practice is to use derivative
techniques and generate a dN(E)/dE function (inset to Fig. 12.9). Differential analysis
of a hypothetical spectrum is shown in Fig. 12.10. The contribution from the slowly
varying background is minimized by the derivative technique. The total backscattered
background current with energy greater than 50 eV is typically 30% of the primary
beam current. The noise level due to this current and the ratio of the analyzer �E to
Auger line width generally establishes the signal-to-noise ratio and hence the detection
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Figure 12.10. A hypothetical spec-
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limit for impurities in the sample. A typical value for the detection limit is 1000 ppm,
∼= 0.1 atomic %.

In practice, Auger spectroscopy is usually carried out in the derivative mode be-
cause of the small signal. The differentiation is conveniently done electronically by
superimposing a small AC voltage on the outer-cylinder voltage and synchronously
detecting the in-phase signal from the electron multiplier with a lock-in amplifier. The
y-axis of the recorder is then proportional to dN(E)/dE and the x-axis to the kinetic
energy E of the electrons. The derivative spectrum is extracted directly. In this scheme,
a perturbing voltage,

�V = k sin ωt, (12.16)

is superposed on the analyzer energy so that the collected electron current I(V) is
modulated. I (V + �V ) can be written in a Taylor expansion:

I (V + k sin ωt) = I0 + I ′k sin ωt + k2 sin2 ωt

2!
I ′′ . . . , (12.17)

where the prime denotes differentiation with respect to V. If we include higher-order
terms in the expansion, then

I = I0 +
[

k I ′ + k3

8
I ′′′
]

sin ωt −
[

k2

4
I ′′ + k4

48
I ′′′′
]

cos 2ωt, (12.18)

where I0 contains all non-time-dependent terms. In this calculation, we assumed k � V
so that terms of order k3 and higher can be neglected in practice. Using a lock-in
amplifier, for phase-sensitive detection, we select the component of the signal associated
with the frequency ω, which is simply the desired quantity I′ or dN/dE for a cylindrical
mirror Auger analyzer. To satisfy this criterion, we require that k be less than the Auger
width of ∼5 eV.

An example of the use of derivative techniques is shown in Fig. 12.11 for 2 keV
electrons incident on a Co sample. In the direct spectrum, N (E), the main features are
the peak of elastically scattered electrons and a nearly flat background. The arrows in
Fig. 12.11a indicate the energies of oxygen and Co Auger transitions. The derivative
spectrum (Fig. 12.11b) reveals the LMM Co and KLL carbon and oxygen signals.

For a free atom, the Auger yield YA is determined by the product of the electron
impact ionization cross section (Chapter 6) and the probability for the emission of an
Auger electron (1 − ωx):

YA ∝ σe · (1 − ωX). (12.19)

In a solid, the situation is more complicated even when considering the yield from a
layer of the thickness of the electron escape depth λ. For example, primary electrons that
penetrate the surface layer and then are backscattered can contribute to the Auger yield
when the energy Ep of the primary electron is much greater than the binding energy. The
yield is also strongly affected by the angles of incidence (diffraction effects influence
the number of elastically scattered primaries) and of emission (geometric projection of
the escape depth). Consequently, surface roughness plays a role; the escape probability
of electrons from a rough surface is less than that from a smooth surface. In analyzing
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solids, then, one must consider the modification of both the incident beam and the
Auger electrons on passing through the solid.

Auger electron spectroscopy is a surface-sensitive technique. Figure 12.12 shows
the oxygen signal corresponding to the absorption of 0.5 monolayers of oxygen atoms.
In general, small amounts of the typical contaminants, C, N, and O, are easily detected.
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Figure 12.12. Auger spectra from single-
crystal Si (111) after absorption of ∼ 0.5
monolayers of oxygen atoms.



248 12. Nonradiative Transitions and Auger Electron Spectroscopy

Pd (MNN)

Cu(MVV)

105

59

181

18161
42 324

329

25 100 200 300 400 500
ELECTRON ENERGY (eV)

600 700 800 900 1000

CI

(a)

(b)

(c)

918

918

CI

Cu (LMM)

dN dE⎯
, A

U
G

E
R

 S
IG

N
A

L

PdCu

61
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Hydrogen cannot be detected in Auger measurements, since three electrons are needed
in an Auger transition.

The Auger signal from a substrate is sensitive to the presence of surface layers. In
Chapter 6, we noted that the substrate signal decreased as e−x/λ, where λ = 0.5 nm for
Si electrons penetrating Ge. Fig. 12.13 shows Auger spectra from a Cu substrate before
and after the deposition of 1.35 nm of Pd. It is clear from the figure that the Cu signal
is strongly attenuated by the Pd coverage. In particular, the low-energy Cu(MVV)
line is completely attenuated due to the small escape length for 60 eV electrons; the
high-energy line at 918 eV is only partly attenuated.

12.6 Quantitative Analysis

The determination of an absolute concentration of an element x in a matrix from the yield
YA of Auger electrons is complicated by the influence of the matrix on the backscattered
electrons and escape depth. For simplicity, let us consider YA(t), the yield of KLL Auger
electrons produced from a thin layer of width �t at a depth t in the sample:

YA(t) = Nx�t ·σe(t)[1 − ωX]e−(tcos θ/λ) · I (t) · T · d	/4π, (12.20)

where
Nx = the number of x atoms/unit vol;
σe(t) = the ionization cross section at depth t ;
ωX = the fluorescence yield;
λ = the escape depth;
θ = the analyzer angle;
T = the transmission of the analyzer;
d	 = the solid angle of the analyzer;
I(t) = the electron excitation flux at depth t .
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It is convenient to separate the excitation flux density into two components,

I (t) = Ip + IB(t) = Ip(t)[1 + RB(t)],

where Ip is the flux of primary electrons at depth t, IB is the flux due to backscattered
primary electrons, and RB is the backscattering factor (Section 10.7).

When external standards are used with a known concentration N S
X of element x in

the standard, the concentration N T
X in the test sample can be found from the ratio of

Auger yields:

N S
X

N T
X

= Y S
X

Y T
X

(
λT

λS

)[
1 + RT

B

1 + RS
B

]
.

In this approach, the ionization cross section and the fluorescence yield are not required
because the Auger yields from the same atom are measured. In addition, if the compo-
sition of the standard is close to that of the test sample, the element composition can
be determined directly from the ratio of Auger yields if the measurements are made
under identical experimental conditions. When the composition of the standard differs
substantially from that of the test specimen, the influence of the matrix on electron
backscattering and escape depth must also be considered.

Elemental sensitivities are acquired using pure element standards and are applied to
unknown determinations in multielemental matrices. One must correct for the highly
matrix-dependent parameters, which include the inelastic mean free path λ.

Even with corrections for escape depth and backscattering, the measured surface
composition may not be related to the bulk composition of the sample because of the ion
bombardment used in sputtering for sample cleaning and depth profiling (see Chapter 4).

12.7 Auger Depth Profiles

A major use of Auger electron spectroscopy is determining the composition as a
function of depth in thin films and layered structures. The conventional apparatus
is illustrated in Fig. 12.8, which consists of an electron gun and CMA assembly as
well as a sputter ion gun. The Auger signal is generated in the near surface region
of the sample (∼3.0 nm), and ion sputtering provides the layer sectioning technique
required for depth analysis. In routine laboratory use, the depth profiles are shown as
Auger signal height versus sputter time. Further calibrations are required to convert
sputter time to depth and signal height to atomic concentration. The combination of
Rutherford backscattering spectrometry (RBS) and Auger electron spectroscopy (AES)
is quite useful in such depth profile analyses because RBS gives quantitative informa-
tion on depths and heavy mass constituents without the complications introduced by
the intermixing due to sputtering. As discussed in Chapter 4, ion sputtering causes a
change in the composition of the surface layers due to surface segregation and pref-
erential sputtering. As compared to RBS, Auger depth profiling provides better depth
resolution and is sensitive to both heavy and light elements.

In Fig. 12.14, we illustrate the data obtained from RBS and AES measurements on a
sample prepared by depositing 100 nm of Ni on 〈100〉 InP (Fig. 12.14a) and annealing
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(a) as deposited; (b) annealed at 250 ◦C for 30 min. [From Appelbaum, private communication.]

at 250◦C for 30 min (Fig. 12.14b). In the RBS spectrum for the as-deposited case, the
Ni signal is superimposed on the signal from the InP substrate. In the AES spectrum,
both the In and P signals have comparable heights and can be clearly resolved. The
long tail on the Ni signal, which extends well beyond the interface region, is clearly
an artifact of the sputtering process because the Ni/InP interface is sharp, as can be
inferred from the rear edge of Ni signal in the RBS spectrum. After annealing, the layer
is partially reacted with an outer layer of Ni on a layer of Inx PyNz . The Ni layer and the
reacted InPNi layer can be clearly seen in the AES spectrum, which has a P/In yield
ratio of ∼=2/1. In the RBS spectrum, the heights of the Ni and In signals are nearly
equal, which indicates that the ratio of Ni to In is about 3[σIn/σNi

∼= 3.08]. Analysis
of the RBS spectra yields a P/In ratio of 0.5, a value quite different from the P-rich
composition deduced from the AES data. The origin of the discrepancy possibly is due
to preferential sputtering and segregation. The region of pure Ni in the reacted film is
better resolved with AES due to its superior depth resolution. Further AES allowed a
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Figure 12.15. Sputter depth pro-
filing with AES of the interface re-
gion of a Ta–Si film deposited on
polycrystalline Si. The shaded area
represents the oxygen signal from
the native oxide at the interface.
[From D. Pawlik, H. Oppolzer, and
T. Hillmer, J. Vac. Sci. Technol.
B, 3, 492 (1985). Copyright 1985
American Physical Society.]

determination of the carbon and oxygen at the interface region (not shown), which is
not possible with RBS.

One of the advantages of Auger electron spectroscopy is its sensitivity to low mass
impurities, such as carbon or oxygen, which are common contaminants at surfaces
and interfaces. The presence of these interfacial contaminants plays a disruptive role
in thin film reactions by retarding interdiffusion. The degradation of the planarity of
thin film structures following thermal processing is often directly correlated with these
contaminants. The presence of a native oxide of about 1.5 nm thicknesses is readily
apparent in the AES depth profile shown in Fig. 12.15. The removal of this native
oxygen layer is crucial for the formation of thin, uniform oxide layers on top of the
Ta–silicide layers during thermal oxidation. The presence of the native oxide layer
retards the release of Si from the poly-Si layer and leads to the oxidation of the whole
Ta–silicide layer rather than the formation of a SiO2 layer on the surface. Auger electron
spectroscopy in conjunction with sputter depth profiling has the prerequisite sensitivity
to detect contaminant layers that impede thin film reactions.

Multilayer films are used in integrated circuits and optical structures as well as in
many other aspects of solid-state science. Auger electron spectroscopy with sputter
depth profiling has a natural application to the analysis of these structures.

Figure 12.16 shows sputter depth profiles of multilayer Cr/Ni thin film structures
deposited in a Si substrate. This impressive figure demonstrates the ability of Auger
spectroscopy, combined with sputtering, to profile a multilayer film of nearby elements
in the periodic chart in a semiquantitative manner. The rounding in the traces in the
upper portion of the figure reflects the irregularity in the surface topology that developed
during sputtering with a rastered beam of 5 keV Ar ions (see Chapter 4 and Carter et al.,
1983). In this example, the surface roughness could be minimized by rotating the sample
(lower portion of Fig. 12.16) during sputtering.

Modern analytical laboratories are now equipped with a variety of systems for depth
profiling of samples. When confronted with a layered or thin film sample contain-
ing unknown impurities or contaminants, the analyst will use all techniques at hand.
Sputter depth profiling with Auger analysis often represents the starting point for initial
analyses.
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Figure 12.16. Auger electron spectroscopy sputter depth profiles of multilayer Cr/Ni thin film
structures deposited on a Si substrate. The top Ni layer is about 25 nm thick and the other films
are about 50 nm thick. Sputtering was carried out with a rastered beam of 5 keV Ar ions, with
a stationary sample in the upper portion (a) and a rotating sample in the lower portion (b). The
symbols represent: • nickel; ◦ chromium; � silicon. [From A. Zalar, Thin Solid Films 124, 223
(1985), with permission from Elsevier.]

Problems

12.1. You irradiate an AlP sample with 5 keV electrons and measure the KLL Auger
electrons. Calculate the ratio of Al to P ionization cross sections, fluorescence
yields ωX, escape depths λ, and Auger yields.

12.2. Compare the Auger yields in Problem 12.1 with the electron microprobe K X-ray
yields, ignoring X-ray absorption or electron backscattering corrections.

12.3. A Mg Kα X-ray creates a vacancy in the Cu L1(2s) subshell. Estimate the energies
of photoelectrons, L M1 M1 Auger electrons, L1L2 M1 Auger electrons (Coster–
Kronig transitions), and L X-rays. Would this L-shell vacancy preferentially be
filled by radiative or nonradiative transitions? Make an estimate of the upper value
of the fluorescence yield. Which Cu L level would not deexcite by Coster–Kronig
transitions?

12.4. A beam of 10 keV electrons irradiates a 100 nm thick film of Ni on a Si substrate.
Calculate the ratio of K X-ray and KLL Auger yields.

12.5. You are given a 20 nm thick layer of Gax Al1−x as on an InP substrate about 1 mm
thick and are asked to determine the Ga-to-Al ratio. You can carry out XPS, AES,
or EMA analysis using 20 keV electrons and an A1 Kα X-ray source. In order
to compare the different techniques, you carry out the following calculations or
comparisons.
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(a) What is the cross section ratio σGa/σAl for the K-shell electron impact ion-
ization and L-shell photoeffect?

(b) What is the fluorescence yield ratio ωX(Ga)/ωX(Al) for the K-shell hole?
(c) You measure the intensity of the Kα X-ray emission from Ga and Al with a

detector system with 200 eV resolution. Would you expect interference from
K, Lα , or M X-rays from As atoms or from the InP substrate? Would you
expect electron backscattering from the InP substrate to influence the total
or the ratio of X-ray yields from Ga and Al?

(d) In XPS measurements (neglecting work functions), what are the Ga and Al
photoelectron energies and associated escape depths (λ)? What is the inten-
sity ratio, assuming the same detector efficiency for both electron energies?

(e) In measurements of K L1L1 Ga and Al Auger electrons, what are the energies
and associated escape depths? What is the ratio of Ga to Al transition rates?

(f) Compare the three techniques in terms of analysis depth, corrections or
interferences, and yield ratios for values of x near 0.9.

12.6. Compare transitions for K -shell holes in Z = 20 and Z = 36 elements.

(a) What are the WX/WA ratios [Eq. 12.13]? Compare these values with the
curve in Fig. 12.5.

(b) What are the atomic level widths and lifetimes? Compare the lifetime values
for the two elements with the time for an electron to make a circular orbit in
the Bohr model of the atom.

12.7. In an XPS analysis system with an Al Kα X-ray source, Auger electrons as well
as photoelectrons are detected (see, for example, Fig. 10.7). For a vanadium
target, what would be the energies and escape depths of the 2s photoelectrons
and L1MM Auger electrons? In comparison with 1.5 keV electrons, what is the
ratio of electron to photon cross sections, σe/σph, to form a 2s hole? The L shell
fluorescence yield is small (Appendix 11 or Fig. 12.6), so estimate the ratio of
photoelectron to Auger electrons, assuming Coster–Kronig transitions can be
neglected. Is this a good assumption?
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13
Nuclear Techniques: Activation Analysis
and Prompt Radiation Analysis

13.1 Introduction

Analytical methods based on electronic interactions have long been used in the materials
analysis laboratory, but determinations based on nuclear spectroscopy are much more
recent. If radioactivity is produced by the irradiation and detected afterward, the method
is called activation analysis; if radiations emitted instantaneously are detected, it is
termed prompt radiation analysis. These two categories will be used for labeling major
sections of the discussion that follows. For example, when a material containing carbon
is irradiated with a beam of deuterons, one of the nuclear reactions with the carbon,
12C, in the sample is the transformation to radioactive nitrogen, 13N, by the prompt
emission of a neutron, n. The carbon content of the sample can be determined either
by measurement of the radiation emitted from the radioactive product nuclide, 13N; by
activation analysis; or by measuring the yield of neutrons, prompt radiation analysis.
Radioactive nuclides that are used in analysis decay with half-lives ranging between
milliseconds and thousands of years (the half-life of 13N is 9.96 min); whereas, the
prompt radiation from a nuclear reaction is emitted within times less than 10−12 sec
after the nuclear reaction is initiated.

Several different kinds of nuclear interactions can be used for analysis:

1. A charged particle can elastically scatter from the charged target nucleus as in
Rutherford scattering (Chapter 2) or nuclear elastic scattering.

2. Particles can excite the nucleus to a higher energy state (analogous to promoting an
electron to a higher energy state in atomic spectroscopy); the nucleus can then be
deexcited by γ-ray emission.

3. A different nucleus may be formed as a result of the nuclear reaction.

In most nuclear reactions, we have two particles or nuclei interacting to form two
different nuclei. Thus,

a + b → c + d
Reactants Products

.

Any reaction must meet the requirement that the sum of the atomic numbers and mass
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numbers of reactants and products must balance. In other words

Za + Zb = Zc + Zd

Aa + Ab = Ac + Ad.

Mass, however, is changed.
Although there is no theoretical limitation on what the nuclides a, b, c, and d can

be, as a practical matter each side of the equation usually includes a very light nuclide.
These are frequently termed particles. If we designate the particle (keep in mind that
the distinction between particle and nucleus is a bit ambiguous) by the lower case, we
can write a nuclear reaction,

a + X → b + Y.

In a common shorthand notation, one would write

X(a,b)Y.

A nucleus with four neutrons and three protons is designated
7
3X,

where the subscript is Z, the number of protons, and the superscript is the total nucleons,
which we term the mass number, A. More generally, therefore, a nucleus is designated

A
Z X.

A nuclear reaction of interest in determining boron depth profiles is
1
0n + 10

5 B → 4
2He+ + 7

3Li

In shorthand,
10B(n, α)7Li

The reactant and product light particles are placed in parentheses and separated by a
comma.

As in any specialized field, a certain nomenclature has developed based on conve-
nience and tradition. The terms most frequently used are given below.

Nucleon Either a proton or a neutron.
Nuclide A specific nuclear species with a given proton number Z and

neutron number N.
Isotopes Nuclides of same Z and different N.
Isobars Nuclides of same mass number A, where A = Z + N .
Isotones Nuclides with same N but different Z .
Isomer Nuclide in an excited state with a measurable half-life.
Proton 1

1H
Deuteron (d) 2

1H, one proton and one neutron.
Tritron (t) 3

1H, one proton and two neutrons.
Alpha (α) 4

2He, two protons and two neutrons.

Let us consider the irradiation of nuclei in a flux of protons, specifically proton
irradiation of 12C (Fig. 13.1). Some of the incident protons can be scattered due to long-
range Coulomb interaction with the nuclei, known as elastic scattering (as described in
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Figure 13.1. Schematic representation of the formation and decay of the compound nucleus
13N during a nuclear reaction between protons and 13C.

Chapter 2). Charged particles cannot effectively react through the nuclear force unless
they have an energy comparable to the Coulomb barrier Z1 Z2e2/R ∼= Z1 Z2/A1/3 (in
MeV) of the target atoms, which sets the lower limit of usable energy. If the protons
have sufficient energy to overcome the Coulomb barrier, they may actually be captured
by the nucleus to form a compound nucleus. The compound nucleus is now in a highly
excited state, and the kinetic energy of the incident particle also adds to the excitation
energy. In the compound nucleus model, it is assumed that the excitation energy is
randomly distributed among all the nucleons in the resultant nucleus so that none of
them has enough energy to escape immediately, and thus the compound nucleus has a
lifetime which is long (10−14–10−18 sec) compared with the time it takes for a nucleon
to traverse a nucleus (10−21–10−22 sec). The highly excited compound nucleus can now
deexcite in many different ways by emitting γ-rays, protons, neutrons, alpha particles,
etc. The incident protons can however also transfer sufficient energy to single nucleons
or groupings of nucleons (such as deuterons and alphas) so that they may be directly
ejected from the nucleus. Examples of such direct interactions are (p,n), (p,α), (α,p),
and (α,n) reactions. Compound nucleus reactions are more likely at relatively low
energies; whereas, the probability for a direct interaction increases with energy. Some
of the nuclear reactions that can occur during proton irradiation are

(p,p) Elastic scattering (Rutherford)
(p,p) Compound nucleus elastic scattering
(p,p′) Inelastic scattering
(p,γ) Prompt γ-ray emission
(p,n) Prompt neutron emission
(p,α) Prompt alpha emission

The probability of reaction between an incident particle and a target nucleus can
be approximated by the geometrical cross section presented by the target nucleus to a
point-size projectile. The radius of a nucleus is given rather accurately by the empirical
formula

R = Ro A1/3,

where A is the mass number and Ro is a constant equal to 1.4 × 10−13 cm. For a medium
weight nucleus such as 66Zn, we can therefore calculate the geometrical cross section
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Figure 13.2. Cross section σ in millibarns per steradian versus incident proton energy Ep at a
detection angle θ = 165◦ for 18O(p,α)18N reaction. [From Amsel and Samuel, Anal. Chem. 39,
1689 (1967). Copyright 1967 American Chemical Society.]

as follows:

σgeo = π (1.4 × 10−13 × 661/3)2 = 1.006 × 10−24 cm2.

Since most cross sections are of the order of 10−24 cm2, it has become convenient to
express cross sections in units of the barn, where

1 barn = 10−24 cm2.

The reaction cross sections in general cannot be given by simple analytical functions.
For example, Fig. 13.2 shows that the 18O(p,α)15N reaction has a cross section that
varies smoothly with energy below and above the resonance at 0.629 MeV.

The Breit–Wigner treatment deals with resonant cross sections in a quantitative way.
The probability of the reaction

X(a,b)Y

may be denoted by the cross section σ (a, b). According to the two-step compound
nucleus view of nuclear reactions,

σ(a,b) = σc(a) × (relative probability of emission b),

where σc(a) is the cross section for the formation of the compound nucleus. The relative
probability for the emission of b is just �b/� where �b is the transition rate for emission
of b, also called the partial level width for b, and � is the total level width � = h̄τ ,
where τ is the mean life for a state so that

σ (a,b) = σc(a) · �b/�.

In general, the values of the cross sections and level widths depend on the energy of
the incident particle, and on the charge and mass of the target nucleus. In its simplest
form, the Breit–Wigner formula gives the value of the cross section in the neighborhood
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of a single resonance level in the compound nucleus, formed by an incident particle
with zero angular momentum. Under these conditions, the formula is

σ (a,b) = λ2

4π

�a�b

(E − E0)2 + (�/2)2
, (13.1)

where λ is the de Broglie wavelength of the incident particle (λ = h/mv), Eo the energy
at the peak of the resonance, E the energy of the incident particle, and �a the partial
level width for the emission of a in the inverse reaction. It is clear from this equation
that the cross section will be at a maximum for E = Eo.

13.2 Q Values and Kinetic Energies

Nuclear reactions obey the following conservation laws:

1. Conservation of nucleons (A)
2. Conservation of charge (Z)
3. Conservation of mass-energy (E)
4. Conservation of momentum (p)

If the exact rest masses of the reactants and of the products of a nuclear reaction are
totaled, there is likely to be a difference between the two because mass and energy may
be exchanged according to the equation

E = mc2,

where E is the energy, m is the mass, and c is the speed of light with 1 mass unit equal
to 931.4 MeV.

The mass difference will correspond to either an emission or an absorption of energy.
Thus a complete nuclear reaction should be written in the form

X + a → Y + b ± Q,

where Q is the energy balance, usually given in MeV. If energy is released by the
reaction, the Q value will be positive. If the Q value is negative, energy must be
supplied, and there will be a definite threshold below which these endoergic reactions
will not occur.

Once a nuclear reaction has occurred, the radiations emitted are characteristic of
the excited nuclei, in much the same way that optical radiation is characteristic of an
excited emitting atom. It is the existence of a unique set of well-defined energy levels in
the atom or the nucleus that permits the use of the emitted radiation as an identification
of the source.

Symbolically, a nuclear reaction may be written

M1 + M2 → M3 + M4 + Q,

where M1 is the incident nucleus, M2 is the target, M3 is the emitted radiation, which
may be either a nuclear particle or a gamma ray, M4 is the residual nucleus, and Q is
the energy released (absorbed) in the reaction. Q is simply the difference between the
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total energy, at rest, of the interacting system before the reaction takes place and after
the reaction has occurred. If the M’s are taken to be masses,

Q = (M1 + M2)c2 − (M3 + M4)c2. (13.2)

Let us consider the reaction

35
17Cl + 1

0n → 32
15P + 4

2He+ + Q,

which can be written in an abbreviated form as

35Cl(n, α)32P.

The reaction is balanced with respect to nucleons and charge in that the reactants
and products have the same total number of nucleons (36) and protons (17). The
reaction energy Q is equivalent to the difference in mass between the reactants and the
products:

�M = M(35Cl) + M(n) − M(32P) − M(4He+)

= 34.96885 + 1.00867 − 31.97391 − 4.00260

= +0.00101 amu,

Q = 0.00101 × 931.4 = +0.94 MeV.

Similarly, the Q value can be calculated for the following reaction:

14N(p, n)14O, Q = −5.931 MeV.

Q values can thus be positive or negative. Positive Q values denote exoergic nuclear
reactions. Negative Q values denote endoergic nuclear reactions.

If the residual nucleus M4 is left in an excited energy state, the Q for the reaction will
be reduced, relative to the value that would be obtained if the residual nucleus were
left in its ground state. The reduction is just the amount of the excitation energy. For
a well-defined beam energy, the energy spectrum of M3 will be characteristic of the
Q values possible in the reaction or, equivalently, to the excited states of the residual
nucleus. Even if the emitted particles M3 are not observed, the prompt gamma rays
emitted in the decay of the excited M4 nucleus will be characteristic of that nucleus.

In the case of activation analysis, the identifying characteristics for the radioactive
M4 nucleus can be the half-life for decay, the types of radiation emitted, and the
characteristic gamma rays emitted from the daughter nuclei of M4.

For the prompt radiation analysis (PRA) case, if M3 is a gamma ray, the nuclear
reaction is called a direct capture reaction. The case M1 = M3 and Q = 0 is just the
elastic scattering reaction. When M1 = M3 but Q �= 0, the reaction is called inelas-
tic scattering, and, finally, when M1 �= M3, it is commonly termed a rearrangement
collision.

In contrast to the case of atoms, nuclear characteristics usually differ markedly be-
tween two isotopes of the same chemical element. The emitted radiations or reaction
products are specific not only to the chemical element but also to a particular iso-
tope of that element. It is this property that provides the basis for the many important
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Figure 13.3. Notation used in nuclear
reactions where the incident particle is
dentoted by mass M1 and energy E1

and the emitted particle M3 is detected
at an angle θ relative to direction of the
incident particle.

applications of stable and radioisotope tracers. Nuclear reactions, with only a few ex-
ceptions, are not affected by the state of atomic electrons and so do not give information
directly about the chemical bonds or the chemical compound form of the elements in a
sample.

For a reaction induced by an incident particle M1 of energy E1 (Fig. 13.3), the energy
E3 of the emitted particle M3 in the direction θ (relative to the incident direction in the
laboratory) is determined by the conservation of total energy and momentum, and in
the nonrelativistic case is given by

E1/2
3 = A ± (A2 + B)1/2, (13.3)

where

A = (M1M2 E1)1/2

M3 + M4
cos θ and B = M4 Q + E1(M4 − M1)

M3 + M4
, (13.4)

using M1 + M2 = M3 + M4.
Equations 13.3 and 13.4 show that E3 is characteristic of the reaction for a given E1

and θ . In fact, the residual nucleus can be left in the ground state or in excited states,
each state corresponding to a different Q value for the same reaction, and hence to a
different value of E3. The energy spectrum of the emitted particles will exhibit a series
of peaks that are specific to the reaction and lead to the detection of a given nucleus
M2. The energy of a peak allows the identification of the reaction (and hence of the
nucleus M2), and from the intensity of the peak, the amount of the M2 species can be
determined.

Equation 13.3 can be approximated within a wide energy range by

E3 = αE1 + β, (13.5)

where α and β (as A and B in Eq. 13.3) are specific to the reaction under study and
depend on the detection angle θ .

The kinematics of deuteron-induced reactions are shown in Fig. 13.4 for some spe-
cific reactions. The relation between the emitted particle energy E3 and incident energy
E1 roughly follows Eq. 13.5, with different values of α and β for each reaction. The
dashed line E3 = E1 denotes the maximum energy of elastically scattered particles and
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Figure 13.4. The energy of the emitted particle at θ = 135◦ versus incident particle energy
E1 for (a) proton-induced reactions and (b) deuteron-induced reactions. The Q values for the
reaction are given in parentheses, and the dashed lines E3 = E1 show the maximum energy of a
particle scattered from a heavy mass element in the target. [Adapted from Feldman and Picraux,
1977.]

may be considered the high-energy limit for the more abundant elastic scattering. The
detection of light species in a heavy mass substrate can be carried out in many cases
without interference from incident particles elastically scattered from the substrate.

13.3 Radioactive Decay

A nuclear reaction can take place through the formation of a compound nucleus in
two distinct stages: (a) the incident particle is absorbed by the target nucleus to form a
compound nucleus, and (b) the compound nucleus disintegrates by ejecting a particle or
emitting a γ-ray. We designate the compound nucleus A

Z X and assume that the nuclear
reaction produces the compound nucleus in the excited state E∗, as shown in the left
side of Fig. 13.5.

The level E∗ can decay either by the emission of the radiative capture γ-rays
γ1, γ2, γ3, and γ4, to reach the ground state of A

Z X, or (as in this case) by ejection
of the protons p0, p1, and p2 of three distinct energies. The proton groups feed excited
states of the residual nucleus A−1

Z−1 Y, which can deexcite by γ-ray emission (γ5, γ6, and
γ7) to yield the ground state of A−1

Z−1 Y. This nucleus is itself unstable and decays by
ejection of a β-particle to the excited or ground state of A−1

Z X. The transitions γ1–γ7
and proton emission are most likely to occur very rapidly after the formation of the
compound nucleus, i.e., within <10−12 sec, but the half-life for the β-decay and hence
for the emission of γ8 will be very much longer. Thus two types of activation techniques
can be distinguished: prompt techniques, where the samples are measured while the
irradiation is in progress; and delayed methods, which depend on the measurement of
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Figure 13.5. Energy-level representation of an excited compound nucleus A
E X is an excited state

E+ that promptly decays by γ-ray emission to its ground state or by proton emission to the states
of the residual nucleus.

a radionuclide with a half-life sufficiently long for the sample to be removed from the
place of irradiation before the radioactivity is counted.

13.3.1 Beta Decay

As the atomic number increases, there is an excess of neutrons needed for nuclear
stability, and nuclides with neutron-to-proton ratios, N/Z ratios, that differ from the
stability line undergo radioactive decay. This decay occurs by emission of beta particles:
either electrons, β−, or positrons, β+. When the N/Z ratio of a radioactive nucleus is
greater than that of a stable nucleus with the same mass number, a neutron is converted
into a proton, with the emission of an electron and an antineutrino (ν̄):

N/Z ratio too large: n → p+ + β− + ν̄.

If, however, the N/Z ratio is too small, the nucleus can become stable by converting
protons into neutrons within the nucleus by the following processes: the emission of a
positron, or the capture of an atomic orbital electron [electron capture (EC)];

N/Z ratio too small:

{
p+ → n + β+ + ν

p+ + e− → n + ν
.

The neutrino ν in β-decay shares the decay energy with the β-particle. β-particles thus
have a continuous energy spectrum, with an average energy of about one-third of the
maximum β-decay energy. Energy spectra for 64Cu (half-life = 12.9 hr) emission are
shown in Fig. 13.6.

If a nucleus decays by electron capture (EC), the resultant hole in the electron orbital
(usually in the K shell) can be filled by an electron from an outer shell. Decay by
electron capture is thus associated with X-ray emission, which may also be measured
for analytical purposes.
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Figure 13.6. Energy spectra of the positive (β+) and negative (β−) electrons emitted by 64Cu.
The pronounced difference between the two spectral shapes results largely from the Coulomb
effect.

Coulomb instability of the nucleus becomes very large for the heavier nuclides. Since
the helium nucleus is very stable, α-decay takes place for Z > 83. Delayed neutron
and proton emission also occurs for nuclides far from the stability line. These modes
of decay are, however, not very common and as such are not very important for nuclear
analysis.

13.3.2 Gamma Decay

During β-decay, the product nucleus may be left in an excited state. Deexcitation
usually occurs by the emission of a gamma ray. The decay schemes for 27Mg and 64Cu
are shown in Fig. 13.7. Because deexcitation by γ-ray emission is much more probable
than β-decay, the γ-decay rate will be the same as the rate of the β-decay with which
it is associated.

From the decay scheme, we can see that 64Cu decays by both β+ (19%) and β−

(39%) emission, while the other 42% of its decay is by electron capture, which will
lead to 64Ni X-ray emission.

64 Zn

64Cu

64Ni

EC(~42 %)

β−, 0.57 MeV
(39 %)

β−, 1.78 MeV
(70 %)

β−, 1.59 MeV
(30 %)

β+, 0.66 MeV
(19 %);

O

OO

27Mg

27Al

1.015
0.834

γ γ

Figure 13.7. The principal decay schemes for 27Mg (half-life = 9.5 min) and 64Cu (half-
life = 12.9 hr). The decay of 27Mg shows the gamma rays associated with β-decay and 64Cu the
β+ − β− branching.
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When positrons pass through matter, they can annihilate with electrons (their an-
tiparticle). If such a positron comes to rest and then annihilates with a free electron,
conservation of linear momentum requires that two gamma rays be emitted, in opposite
directions (180◦), each having an energy equal to m0c2 (0.51 MeV). Positron decay is
thus associated with 0.51 MeV γ -rays, which is referred to as annihilation radiation.
If the electron is bound in an atom, annihilation with the production of a single photon
can occur, because the atom can garner some momentum. The probability for such a
process is, however, extremely small.

13.4 Radioactive Decay Law

The rate of radioactive decay, A, is proportional to the number of radioactive nuclei,
N , present:

A = dN

dt
= −λN , (13.6)

where λ is the decay constant. If at some particular time there are No radioactive nuclei
in a sample, then we can find the number of radioactive nuclei Nt , remaining at a later
time t , by integration of the above equation:

Nt∫
N0

dN
N = −

t∫
0

λ dt,

Nt = Noe−λt . (13.7)

It is convenient to express the decay constant λ as a half-life, which is defined as
the time T1/2 required for any number of radioactive nuclei to decay to half their initial
value:

Nt

No
= 1

2
= e−λT1/2 (13.8)

and

λ = ln 2

T1/2
= 0.693/T1/2.

From Eq. 13.6, we now have

At = −λN oe−0.693t/T1/2

= Aoe−0.693t/T1/2 . (13.9)

Equation 13.9 is known as the radioactive decay law. If the decay rate (At ) is plotted
as a function of decay time (t) on a semilog plot, the decay rate will follow a straight
line with intercept A0. The half-life of the radionuclide may be obtained from the
slope.

Information regarding the half-lives, types of decay, and decay energies can be ob-
tained from the nuclide chart. More details about decay-level schemes can be obtained
from compilations such as the Table of Isotopes (Lederer et al., 1967).
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13.5 Radionuclide Production

In activation analysis, we are interested in the amount of radioactivity formed as a
function of irradiation time. Let us consider the nuclear reaction

X(a,b)Y,

with Y the radioactive product nucleus, which we determine as a measure of X in the
sample. The rate at which nuclide Y is formed may be expressed as(

dNY

dt

)
growth

= NXσφ,

where NX is the number of target nuclides and NY the number of product nuclides
formed, σ the reaction cross section (cm2), and φ the flux of incident particles (particles
cm−2- sec−1). If the product nucleus is stable, the total number of nuclides Y formed
during an irradiation time of t seconds is

NY = NXσφt. (13.10)

If Y is radioactive, however, and decays with a decay constant λY, we have(
dNY

dt

)
decay

= −NYλY.

The total rate for forming the radioactive product nuclide Y is then given by

dNY

dt
= NXσφ − NYλY. (13.11)

If the target number NX is a constant, as it usually is, one obtains by integration

NY = NXσφ

λY
(1 − e−λYt ).

The activity At (in disintegrations per second) of the radioactive nuclide Y at time t is
given by At = NY/λY so that

At = NXσφ(1 − e−λYt ). (13.12)

For t → ∞, the term in brackets (growth factor) equals unity and A∞ = NXσφ. The
activity A∞ is referred to as the saturation Asat, and Eq. 13.12 may be written as

At = Asat(1 − e−λt ) (13.13)

The saturation factor At/Asat is plotted in Fig. 13.8 as a function of irradiation time t
expressed in number of half-lives, where λ = 0.693/T1/2.

13.6 Activation Analysis

Activation analysis is a highly sensitive, nondestructive (if chemical separations are
not used) technique for qualitative and quantitative determination of trace amounts of
elements in a sample. It has been particularly useful for the simultaneous determination
of many elements in complex samples because it provides a simple alternative to much
more difficult, tedious, and destructive analytical techniques.
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Figure 13.8. Growth of radioactive nu-
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In activation analysis, the element to be determined is uniquely identified by the
half-life and energy of the radiation emitted by its radioactive product nuclide. For
optimum analytical sensitivity, it is desirable to form the maximum amount of activity
in the sample from the elements to be determined and to measure such activities with
maximum efficiency in the presence of other interfering activities. Fortunately, the
irradiation and measurement parameters can be changed over wide ranges in order to
select the optimum conditions for analysis.

Figure 13.8 shows that 50% of the maximum activity is obtained after an irradiation
time equal to one half-life and more than 90% after four half-lives. Irradiations longer
than a few half-lives will thus only increase the amount of unwanted background activity
from other longer-lived activities also found in the sample.

The measurement of activities with short half-lives should be carried out as soon
as possible after the irradiation. For longer-lived activities, better sensitivity is usually
obtained if measurement takes place after time is allowed for the shorter-lived activities
in the sample to decay. Figure 13.9 shows the decay curve for two activities. It is clear
that the best time to measure the 24-hour activity would be after allowing 20 hours
of decay time. The different components contributing to a decay curve are usually
determined by decay curve stripping using a graphic approach or a computer.

Activation analysis is primarily a technique used for detection of impurities in bulk
materials. The activation processes, involving neutrons, are deeply penetrating and
thus sample many atoms throughout the material. The detection limits for thermal
neutron activation analysis are generally in the range of 10−8–10−10 grams. In terms of
monolayers, 5 × 10−8 g of Ni would correspond to one monolayer on a 1 cm2 sample.
There is no intrinsic depth sensitivity in neutron activation analysis, so depth profiles
must be generated by the use of sample thinning techniques such as sputtering or
chemical etching.

13.7 Prompt Radiation Analysis

In prompt radiation analysis, the presence of an element in a sample is detected
through the nuclear radiations emitted instantaneously from nuclear reactions produced
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in the target by the irradiating beam. Detection limits can be quite good, but typi-
cally not as good as those that can be achieved under ideal conditions with activation
analysis.

One of the important advantages of prompt analysis and the backscattering tech-
niques discussed in Chapter 3 is that they can be used to measure the depth distribution
of elements in the surface or near-surface regions of the sample. The dependence of the
characteristics of the emitted radiations on depth is due to the energy loss suffered by
the incident ions as they penetrate into the sample and also to the energy losses suffered
by charged particles emitted from the reaction as they emerge from within the sample.

Since nuclear-reaction analysis can provide essentially background-free detection of
light elements (Z ≤ 15), depth distributions of trace amounts within the near-surface
region can be measured. The primary emphasis in our discussion of prompt radiation
analysis is the determination of concentration depth profiles of trace element impurities.
In the use of prompt analysis for depth profiles, two different methods are applied,
namely, the energy-analysis method and the resonance method. The former is used
when the nuclear-reaction cross section is a smoothly varying function of energy.
The latter method is used when a sharp peak (resonance) (see Fig. 13.2) in the cross
section as a function of energy is present, and the depth profile is derived from a
measurement of the nuclear-reaction yield as a function of the energy of the analyzing
beam.

13.7.1 Energy-Analysis Method

13.7.1.1 Thermal Neutron-Induced Reactions

Elemental depth distributions of certain trace elements can be determined by a thermal
neutron beam to produce reactions with certain elements that yield monoenergetic
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Table 13.1. Energies and cross sections for thermal neutron reactions.

Energy of emitted Cross section
Element Reaction particles in keV (barns)

Li 8Li(n,α)T 2056 940
B 10B(n,α)7Li 1472 3836
Be 7Be(n,p)7Li 1439 48,000
Na 22Na(n,p)22Ne 2248 29,000

charged particles. These isotropically emitted particles lose energy in passing through
matter, and their residual energy on leaving the sample surface is primarily dependent
on the amount of matter through which the particle has passed. For a given sample with
a known atomic density, the energy of a detectable particle is determined by the depth at
which the initial reaction took place. A quantitative image of the elemental distribution
with depth—a depth profile—is generated directly from the charged particle spectrum.
For impurity distributions close to the surface so that the energy loss rate is nearly
constant, the energy difference �E between detected energies of particles emitted
from atoms at the surface or at depth t is determined by the rate of energy loss d E/dx
along the outgoing path

�E = t(dE/dx); (13.14)

whereas, in Rutherford backscattering (Chapter 3), the energy-to-depth conversion is
determined by the energy loss along both the inward and outward paths.

Thermal neutron reaction cross sections can be substantially greater than geometric
cross sections (∼=1 barn), as indicated in Table 13.1. For a total thermal neutron flux of
108 n/cm2, the sensitivity for impurity detection is about 1014 atoms/cm2 for boron.

Figure 13.10 shows the charged particle spectrum of a thin film of boron (10 nm) on
Ni. The four peaks in the spectrum correspond to the secondary and primary α-particles
and lithium ions from the 10B(n,α)7Li reaction. The measured energies of the four
charged particles are highest when the reaction occurs at the surface of the sample. When
the reaction occurs within the sample, the particles must pass through overlying matter,
and the entire charged particle spectrum is shifted to lower energies. The maximum
distance the particles can travel and still exit the surface—the range—varies with sample
composition, but is typically 1–10 µm for solids. Figure 13.10b shows the spectrum
shift of the primary alpha peak that occurs when the thin boron film is covered with
50 nm of Cu. Besides the spectral shift, the covered B film also shows indications of
diffusion into the nickel substrate. The left side of the peak has broadened, and the
height has decreased, indicating movement of the boron.

13.7.1.2 Charged-Particle-Induced Reactions

In charged-particle irradiation of targets at energies sufficiently high so that the incident
particle can penetrate the Coulomb barrier, a variety of nuclear reactions can occur, as
shown in Fig. 13.11 for deuteron irradiation of a thin aluminum nitride target.

The yield depends, as for Rutherford backscattering, on the differential cross section
of the reaction; however, unlike backscattering, there is no simple analytical formula
for the cross section. The cross-section curves can be obtained from the nuclear physics
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literature (see Feldman and Picraux, 1977). As a general feature, medium and high Z
nuclei do not undergo nuclear reactions (in the MeV range) owing to Coulomb barrier
repulsion. This feature, combined with the fact that the emitted particles have energies
well above that of the incident particle energy (due to the high Q values of most of the
reactions), allows background-free detection of light elements on heavier substrates.
The abundant elastically scattered particles are stopped in a thin absorber to prevent
count-rate saturation of the detector and electronic systems.

The number of detected particles, QD, is proportional to the total number NS of
atoms/cm2,

QD = NS σ (θ )Q	, (13.15)

where σ (θ ) is the differential cross section, 	 the detection solid angle, and Q the
number of incident particles (Eq. 2.9).

For incident energy E0, the energy E3 of the detected species for a surface reac-
tion is E3

∼= αE0 + β as given in Eq. 13.5. Then the energy difference �E between
the detected particles originating from the surface and from depth t depends both on the
energy loss dE/dx of the incident particle on its inward path and the energy loss of the
reaction particle on its outward path,

�E = t

[
α

dE

dx

∣∣∣∣
in

+ dE

dx

∣∣∣∣
out

]
. (13.16)

Again we use the approximation that the energy losses are constant in the near-
surface region. The reaction factor α weights the energy loss in the inward path in
the same fashion as the backscattering kinematic factor weights dE/dx |in (Eq. 3.20a).
Eq. 13.16 defines the correspondence between the depth scale and the energy scale. If
the cross section is known, the concentration profile can be deduced from the shape of
the experimental spectrum.

The 16O(d,α)14N reaction can be used for oxygen depth-profile measurements. This
reaction, at low deuteron energy, emits only a ground state α-group, α0. For α-particles
corresponding to the first excited state of the 14N nucleus, the reaction has a negative
Q value of 0.829 MeV (and therefore a threshold energy) and will not occur for a
deuteron energy below 933 keV. At low deuteron bombarding energies the α0 energy
at large angles is low, and the stopping power or energy loss per unit length therefore is
relatively high and provides improved depth resolution. Figure 13.12 shows the energy
spectrum that was observed for a 600 nm thick SiO2 layer with the beam at normal
incidence to the target (φ = 0◦) and the detector at 145◦. In order to avoid interference
from the 16O(d,p0)17O reaction, the detector depletion depth was not allowed to exceed
26 µm. While the α-particles were stopped in this thickness and deposited their full
energy in the detector, the protons deposited only a portion of their energy and were
displaced thereby to lower energies in the particle energy spectrum.

Figure 13.12 shows clearly the advantage of making measurements with particles
having a high stopping power. Thus, while the proton groups from the 18O(d,p)17O are
quite narrow and cannot be used for depth profile measurements, the α0 group is quite
wide and can be so used.
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13.7.2 The Resonance Method

Many nuclear reactions have the property that the reaction yield exhibits one or more
sharp peaks or resonances as a function of bombarding energy. Such a resonance is
measured experimentally by varying the incident beam energy in small increments and
measuring the quantity of radiation emitted per unit beam influence at each energy.
The use of the resonance method in depth profiling of trace elements takes advantage
of the sharp peak (see, for example, Fig. 13.2) in the nuclear reaction cross section
as a function of energy. Consider the ideal case shown in Fig. 13.13, where only
one resonance exists in the cross-section curve and where off-resonance cross-section
values can be neglected. The method consists of measuring the reaction yield (most
often γ-rays) due to the interaction between the incident beam and the impurity atoms
as a function of incident beam energy. Incident ions having an energy Eo (i.e., larger
than ER, the resonance energy) are slowed down until ER is reached at depth x, where
the nuclear reaction will then occur at a rate proportional to the impurity concentration.
The depth x and the incident beam energy Eo are related through the equation

Eo = ER +
(

dE

dx

)
in

x

cos θ1
, (13.17)

where θ1 is the angle between the incident beam and the surface normal. The stopping
power (dE/dx)in for the incident beam is assumed to be a constant. A more elaborate
analysis can be done by taking into account the detailed cross section function, energy
straggling, and other factors (Russell et al., 1996).

Neglecting the finite experimental depth resolution, it is seen that the yield curve
in Fig. 13.13 can be converted into the desired concentration profile by simply chang-
ing scales of yield and energy to corresponding scales of concentration and depth,
respectively. An example of the use of nuclear resonance is shown in Fig. 13.14, which
gives the gamma yield as a function of beam energy for a hydrogen-implanted tar-
get. The reaction between fluorine and hydrogen has a strong resonance at about 16.4
MeV, so the hydrogen concentration profile can be obtained directly. The extracted
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Figure 13.13. Principle of concentra-
tion profile measurements using reso-
nant reactions.

hydrogen concentration profile indicates only the hydrogen within the sample and does
not include the surface hydrogen present due to contamination.

Nuclear reaction analysis (NRA) is a method of determining the absolute concen-
tration (atoms/cm2) of light impurities in and on a solid. It thus provides an absolute
calibration for other surface-sensitive techniques, particularly Auger analysis and sec-
ondary ion mass spectroscopy (SIMS). In a typical application, a light particle of interest
is implanted into a heavier substrate. SIMS provides a sensitive depth profile, while
NRA determines an absolute concentration. Reaction analysis is particularly useful for
hydrogen detection and absolute hydrogen surface coverages. Table 13.2 lists the most
used charged particle reactions for light atom detection.
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depth. [Adapted from Feldman &
Mayer, 1986.]
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Table 13.2. Most used charged particle reactions for light atom detection. [From Feldman &
Mayer, 1986.]

Incident Emitted
energy (Eα) energy Approximately Yield∗

Nucleus Reaction (MeV) (MeV) σLAB(E0) (mb/sr) (counts/µC)
2H 2H(d,p)2H 1.0 2.3 5.2 30
2H 2H(3He, p)4He 0.7 13.0 61 380

3He 3He(d,p)4He 0.45 13.6 64 400
6Li 6Li(d,α)4He+ 0.7 9.7 6 35
7Li 7Li(p,α)4He+ 1.5 7.7 1.5 9
9Be 9Be(d,α)7Li 0.6 4.1 ∼1 6
11B 11B(p,α)8Be 0.65 5.57(α0) 0.12(α0) 0.7

0.65 3.70(α1) 90(α1) 550
12C 12C(d,p)13C 1.20 3.1 35 210
13C 13C(d,p)14C 0.64 5.8 0.4 2
14N 14C(d,α)12C 1.5 9.9(α0) 0.6(α0) 3.6

1.2 6.7(α1) 1.3(α1) 7.0
15N 15N16(N,α)12C 0.8 3.9 ∼15 90
16O 16O(p,α)17O 0.90 2.4(p0) 0.74(p0) 5

0.90 1.6(p1) 4.5(p1) 28
18O 18O(p,α)15N 0.730 3.4 15 90
19F 19F(p,α)16O 1.25 6.9 0.5 3

23Na 23Na(p,α)20Ne 0.592 2.238 4 25
31P 31P(p,α)28Si 1.514 2.734 16 100

∗ For a 1 × 1016cm−2 surface layer and a solid angle of 0.1sr at 150◦ C

Problems

13.1. A magnesium foil 0.1 mm thick is irradiated with a beam of 22 MeV deuterons
(beam current = 100 µA) that has a cross-sectional area less than that of the
foil. Sodium-24 (half-life = 15.0 hr) is formed by the 26Mg(d,α)24 Na reaction,
which has an average cross section σ = 25 mbarns, throughout the thickness of
the foil. What is the activity of 24Na (disintegrations/sec) in the foil during a 2-hr
irradiation?

13.2. A steel sample weighing 2.5 g is irradiated for 30 min in a reactor with a thermal
neutron flux φ = 4.2 × 1013 neutrons/cm2-sec. The 27Mg activity (half-life =
9.5 min) formed by the 26Mg(n, γ)27Mg reaction is measured 10 min after the
irradiation, and the 0.834 MeV γ-ray gives a count rate of 625 cpm. For a counting
efficiency of 3% and σ (n, γ) = 30 mbarns, calculate the wt% Mg concentration
in the sample.

13.3. How would you dope silicon with phosphorous using a nuclear reactor? Calculate
the dopant concentration of a silicon sample irradiated in a thermal neutron flux
of 2 × 1014 neutrons s−1 cm−2 for 6 hr. [30Si(n, γ)31Si; σ = 0.12 barns.]

13.4. Find the threshold kinetic energy (MeV) for the following incident particles to
disintegrate the deuteron into a proton and a neutron.
(a) Electrons
(b) Protons
(c) Alpha particles
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13.5. A thin 8.0 mg foil of 113Cd is exposed to a flux of thermal neutrons. How many
114Cd nuclei are formed? φn = 1.6 × 1013 n/cm2-s, the irradiation time is 2 hr,
and σ (n, γ) = 2 × 104 barns.

13.6. Compare proton backscattering and 15N(p,α)12C reactions from one monolayer
of nitrogen atoms (1015 N/cm2) on a carbon substrate.
(a) For backscattering with 0.8 MeV protons through 180◦ with a detector solid

angle of 0.01 str, calculate the yield (assuming pure Rutherford scattering,
Eq. 2.17).

(b) Compare the RBS yield with the nuclear reaction yield (Table 13.2) for the
same detector.

(c) What are the relative advantages of the two techniques?
13.7. The geometrical cross section for a reaction is given by σgeom = π R2, where R is

the nuclear radius and the distance of closest approach d equals Z1 Z2e2/E .
(a) Calculate these values for 1 MeV p,d and α-particles incident on 14N.
(b) Compare the values of the geometrical cross section with the Rutherford scat-

tering cross sections for 1 MeV particles (θ = 180◦) and with the 15N(p, α)
and 14N(d, α) cross sections deduced from Table 13.2.

(c) Do these values give support to the rule of thumb that the onset of nuclear
reactions occurs when the particles penetrate the Coulomb barrier?

13.8. Compare the depth scales in eV/nm for detection of F in an Al thin film with
RBS for 3 MeV 4He ions incident (θ = 180◦) and for the 19F(p,α) reaction with
1.25 MeV protons.

13.9. For X(a,b)Y resonant nuclear reactions, there is an inverse reaction a(X,Y)b. If
the energy of the resonance at Ea is known, what is EX in terms of Ea and the
masses of the reactants? Evaluate your answer using energy values for 19F(p,α)
in Table 13.2 compared with those for 1H(F,α) in Fig. 13.14.
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14
Scanning Probe Microscopy

14.1 Introduction

Since the conception of scanning probe microscopy (SPM) in the 1990s, the technique
has evolved from a novelty to a standard analytical tool in both academic and industrial
settings. The number of variations and applications has dramatically escalated over
the last ten years. SPM is a fundamentally simple and inexpensive technology that is
capable of imaging and measuring surfaces on a fine scale and of altering surfaces at
the atomic level. There are three elements common to all probe microscopes. Firstly, a
small, sharp probe comes within a few tenths of nanometers of the sample’s surface, and
the interactions between the surface and the probe are used to interrogate the surface.
Secondly, a detection system monitors the product of the probe–surface interaction
(e.g., a force, tunneling current, change in capacitance, etc.). Thirdly, either the probe
or sample is raster-scanned with nanoscale precision. By monitoring of the interaction
intensity, any surface variation translates to topographical information from the surface
and generates a three-dimensional image of the surface.

Over twenty different variations of the SPM currently exist; however, the most com-
monly used are Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy
(STM). In AFM, the probe tip is affixed to a cantilevered beam (Fig. 14.1). The probe
interacts with the surface and the resulting force deflects the beam in a repulsive man-
ner, as described by Hooke’s Law. In the same manner that a spring changes dimensions
under the influence of forces, the attractive and repulsive forces between atoms of the
probe and the surface can also be monitored when brought extremely close to each
other. Hence, the net forces acting on the probe tip deflect the cantilever, and the tip
displacement is proportional to the force between the surface and the tip. As the probe
tip is scanned across the surface, a laser beam reflects off the cantilever. By monitor-
ing the net (x , y, and z) deflection of the cantilever, a three-dimensional image of the
surface is constructed. In STM, a sharp metallic probe and a conducting sample are
brought together until their electronic wave functions overlap (Fig. 14.2). By applying
a potential bias between them, a tunneling current is produced. The probe is mounted
on a piezoelectric drive that scans the surface. Combination of the piezoelectric drive
with a feedback loop allows imaging of the surface in either a constant-current or a
constant-height mode.
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Figure 14.1. Schematic of AFM.

Other methods are also utilized to detect the deflection of the cantilever. A plate
is placed above the AFM cantilever, which acts as the other plate of a capacitor. The
capacitance between the two plates reflects the deflection of the cantilever. Another
mode uses laser interferometry, where a beam is split with one part reaching the detector
directly while the other part is focused on the back of the cantilever and is reflected back

Feedback
Loop

x-y
scan

Z

Y

X

Tip
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Specimen lpt

Figure 14.2. Schematic of STM.
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to the detector. The coherent beams travel different paths and produce an interference
pattern, which changes as the cantilever moves up and down. This pattern allows direct
imaging of surfaces and defects in real space, with subnanoscale resolution in contrast
to diffraction-based analyses. Diffraction analysis samples a macroscopic volume of
materials; whereas, SPM can sample small areas (<1 µm2). Operating in the near
field, probe–sample spacing is on the order of typical wavelengths used in electron
microscopy. Hence, imaging is not diffraction limited and the spatial resolution is not
a function of the wavelengths. Ideally, analysis of nanoscale features can be done in
vacuum or ambient. In comparison to electron microscopy, the SPM has much lower
capital and maintenance costs and essentially no sample preparation.

14.2 Scanning Tunneling Microscopy

14.2.1 Theory

Scanning tunneling microscopy (STM) has the potential to image the surface of materi-
als. Under carefully controlled conditions, STM has subatomic resolution and is capable
of imaging individual atoms and electronic structure. However, analyses using STM
are typically limited to electrically conducting materials, since the technique measures
a current between the probe tip and the sample surface. The tip of the probe consists
ideally of a single atom that comes in close proximity to the surface (Fig. 14.3). In the
same manner as a profilometer, the tip is scanned over the surface. However, it does
not touch the surface. The separation distance is normally a few tenths of nanometers.
This distance allows the wave functions to overlap and results in a finite probability
that the electron can surmount the barrier between the probe tip and the sample surface.

Z

Y

X

Probe

Object

Figure 14.3. Schematic showing the interaction between the atoms of the probe tip and the
atoms of the sample under interrogation.
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Figure 14.4. Schematic of an electron with energy E impinging upon a one-dimensional rect-
angular potential barrier of height VO and width s.

Typically, the probe tip is grounded and the sample is biased in the range of tens of
millivolts, resulting in a tunneling current. In normal electrical conduction, the two
metallic surfaces conduct electricity when they are touching in a contiguous matter.
There is, however, a case when the two metallic surfaces (the tip and the sample) are
not actually touching and yet a current flows. The current that flows is referred to as a
tunneling current.

According to quantum mechanics, there is a finite probability that the electron can
tunnel through the barrier, without ever acquiring the full energy (kinetic plus potential
energy) necessary to surmount the barrier. Assuming elastic tunneling (the electron does
not lose nor gain energy), we consider an electron with energy E and mass m impinging
upon a one-dimensional barrier with an energy height of VO (Fig. 14.4). The electron
can be reflected by the barrier (region 1), or tunnel (region 2), or complete the tunneling
process (region 3). Starting with Schrödinger’s time-independent equation for region 1,

− h̄2

2m

d2ψ1

d2x
= Eψ1,

ψ1 = eikx + Ae−ikx , (14.1)

where the wave vector k is equal to [2m E/h̄2]1/2 and h̄ is Plank’s constant divided by
2π . In region 2, the wave function relationship is described as

− h̄2

2m

d2ψ2

d2x
+ VO = Eψ2,

ψ2 = B ′eikx + C ′e−ikx = Be−ξ x + Ce−iξ x , (14.2)

where, in this case, ξ is equal to [−k ′2]1/2 = [2m(VO − E)/h̄2]1/2. Finally in region 3,

− h̄2

2m

d2ψ3

d2x
= Eψ3,

ψ3 = Deikx . (14.3)
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The incident current density ji and transmitted current density jt are given
(Wiesendagner, 1994) as

ji = −ih̄

m

(
ψ∗

3 (x)
dψ3

dx
− ψ3(x)

dψ∗
3

dx

)
,

ji = −ih̄

m
|D|2,

jt = h̄k

m
. (14.4)

By matching the wave functions ψ j and the corresponding first derivatives at the edges
of the barriers, x = 0 and x = s (discontinuities in the potential), the transmission
coefficient T, the ratio of current density jt and incident current ji are determined:

T = jt

/
ji

= |D|2

= 1

1 + (k2 + ξ 2)2/(4k2ξ 2) sinh2(ξs)

≈ 16k2ξ 2

(K 2 + ξ 2)2
exp(−2ξs), (14.5)

where the term ξ equals [2m(VO − E)]1/2/h̄ and is referred to as the decay rate.
Hence, the effective barrier height φ(= VO − E) and the barrier width s dictate the
tunneling current. For the case of the tunneling microscope, where the gap between
the sample and probe is 0.1 nm, any small bias applied between the probe tip and
sample will generate a large electrostatic field. An approximation of the magnitude of
the tunneling current (I) is an exponential function of the separation distance between
the probe tip and the sample:

I = Cρsρt exp
(

sφ
1/2

)
(14.6)

where ρS and ρt are the electron densities of the sample surface and probe tip,
respectively. C is proportionatly constant, the probe tip scans across the surface using a
piezoelectric crystal that changes its volume when a voltage is applied to it. As the tip
moves in the x- or y-direction along the sample’s surface, the current varies according
to Eq. 14.6. The output current differs when the probe tip is right on top of an atom
(smaller distance) as compared to when the probe tip is above a space between atoms
(larger distance). Hence, the relative electrostatic potential of an individual atom is
detected as an increase in the tunneling current as a function of spatial position in the
x–y scan across the sample’s surface. For case where the φ equals 5 eV, a variation in
s from 0.1 to 1.0 nm results in a variation in tunneling current by a factor of 7.5.

In Fig. 14.5a, the actual probe-tip-surface displacement, s, is held constant, and is
the constant-height mode of operation. Consequently, the output current varies with the
electron density. Monitoring of the probe current as a function of the x–y displacement
yields a topographical representation of the surface morphology. On the basis of Eq.
14.6, this mode of operation is sensitive to small fluctuations in s and results in an
exponential increase or decrease in output current.
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Figure 14.5. Schematic of STM probe tip scanning in the x-direction when operating in (a)
constant-height mode and (b) constant-current mode.

Often it is desired that the output signal vary linearly with the probe-tip surface
displacement, s. In this case, a feedback loop is employed in constant-current mode,
which controls the height of the probe-tip–specimen separation, s (Fig. 14.5b). The
height of the probe tip is controlled by a piezoelectric crystal, a material which expands
linearly when a voltage is placed across it. The expanding crystal pushes the tip closer
to the sample. Hence, the voltage needed to expand the piezoelectric crystal to keep
the current constant varies linearly with the actual height of the atoms on the sample.
By montoring the feedback voltage, we can directly measure the displacement of the
tip.

Typical STM analyses are conducted in ultrahigh vacuum to minimize contamination.
Fig. 14.6a displays a negative-bias (−1.06 V) STM image of a Si(111) 7 × 7 surface.
The area of the image is approximately 24 nm × 24 nm. Note that the terrace at the
kinked edge is clearly visible with atomic resolution. In the accompanying Fig. 14.6b,
the high-resolution STM image is taken with a negative bias of (−0.12 V). The line
denotes the asymmetry of the faulted and unfaulted halves of the 7 × 7 unit cell.
With low-bias voltage (−0.12 V), the adatoms in the faulted region gives rise to more
tunneling current than the matrix atoms in the unfaulted region. Figure 14.7 shows
UHV-STM of Quasi-1D gold wires grown on a Si(557) surface taken using a 1.66 V
bias. The Si(557) surface can be regarded as a combination of Si(111) terraces and
single height steps; hence, the Au atoms absorb to the (111) terraces, forming quasi–
one-dimensional gold wires.

Another application of STM is the manipulation of atoms. Figure 14.8 shows the
formation of a quantum dot corral. In this case, Fe atoms are adsorbed onto a Cu(111)
surface at a temperature of approximately 4K. The STM probe tip descends directly on
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Figure 14.6. (a) Constant-height STM image of a Si(111) 7 × 7 surface from an area of 24 ×
24 nm. (b) The high-resolution STM image is taken with a negative bias (−0.12 V). The line
scan denotes the asymmetry between the faulted and unfaulted regions. [From J.M. Macleod
et al., Review of Scientific Instruments, Vol. 74, pp. 2429–2437]

Figure 14.7. UHV-STM of Quasi-1D gold wires grown on a Si(557) surface taken using a 1.66
V bias. Au atoms absorb to the (111) terrace. (With permission from A. McLean, J. Macleod,
and J. Lipton-Duffin.)
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Figure 14.8. Series of images display-
ing the formation of a quantum dot
corral using the STM. Fe atoms are
adsorbed onto a Cu(111) surface and po-
sitioned using the STM. [Image repro-
duced by permission of IBM Research,
Almaden Research Center. Unauthorized
use not permitted.]

top of a Fe atom and increases the attractive force by increasing the tunneling current.
The probe tip translates across the surface to the appropriate locale with the tethered
Fe atom. Once the appropriate position is determined, the Fe atom is untethered by
reducing the tunneling current.

14.3 Atomic Force Microscopy

14.3.1 Theory

When the probe–surface spacing is relatively large (∼1 nm or greater), the interactions
are dominated by long-range van der Waals forces (Fig. 14.9). These attractive forces
depend exponentially on distance and are extremely sensitive to probe-tip shape. Other
attractive forces include metallic adhesion forces and charge accumulation between the
probe tip and the nearest surface atom. At small spatial separations (∼0.1 nm or less),
the wave function of the probe–surface overlap and short-range quantum-mechanical
exchange-correlation forces dominate due to the Pauli exclusion principle. These forces
decay exponentially with increasing distance:

F = −γ (�εC)χ

(
σ

H

e2

)1/2

, (14.7)

where �εC is the width of the conduction band, γ is a dimensionless factor approxi-
mately equal to one, χ is the decay rate of the force, and σ is the conductance.

The slope of the van der Waals curve is very steep in the repulsive or contact region
(Fig. 14.9). As a result, the repulsive van der Waals force balances almost any force that
attempts to push the atoms closer together. For example, in AFM, when the cantilever
pushes the tip against the sample, the cantilever deforms as opposed to pressing the
probe tip closer to the surface. Only negligible reduction in the interatomic separation
between the probe-tip atom and the surface atoms is probable, even with the use of
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Figure 14.9. Schematic of van der Waals forces as a function of probe-tip–surface spacing.

a rigid cantilever. These cantilevers will apply substantial forces onto the sample’s
surface and will more than likely result in surface deformation. The point of balance
between attractive and repulsive forces is defined as the mechanical point contact. Van
der Waals forces also dominate the interaction between nonmagnetic and electrically
natural solids that are separated by a distance of several nanometers.

In addition to the repulsive van der Waals force described above, two other forces
are generally present during contact AFM operation: a capillary force exerted by the
thin water layer often present in an ambient environment, and the force exerted by the
cantilever itself. The capillary force arises when water wicks its way around the tip,
applying a strong attractive force (about 10−8N) that holds the tip in contact with the
surface. As long as the tip is in contact with the sample, the capillary force should be
constant because the distance between the tip and the sample is virtually incompressible.
It is also assumed that the water layer is reasonably homogeneous. The variable force
in contact AFM is the force exerted by the cantilever. The total force that the tip exerts
on the sample is the sum of the capillary plus cantilever forces, and must be balanced
by the repulsive van der Waals force for contact AFM. The magnitude of the total force
exerted on the sample varies from 10−8N (with the cantilever pulling away from the
sample almost as hard as the water is pulling down the tip) to the more typical operating
range of 10−7 to 10−6N.

The atomic force microscope (AFM) or scanning force microscope (SFM), like all
other scanning probe microscopes, utilizes a sharp probe moving over the surface of a
sample in a raster scan (see Fig. 14.1). In the case of the AFM, the probe is a tip on the
end of a cantilever that bends in response to the force between the tip and the sample.
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An optical detector monitors the extent of bending of the lever. The cantilever beam
obeys Hooke’s Law for small displacements, and the interaction force between the tip
and the sample can be found. The movement of the tip or sample is performed by an
extremely precise positioning device made from piezoelectric ceramics. The scanner
is capable of subnanometer resolution in the x-, y- and z-directions.

14.3.2 Modes of Operation

The AFM typically operates in either of two principal modes: constant-force mode
(with feedback control) and constant-height mode (without feedback control). If the
electronic feedback is engaged, then the probe-tip positioning is controlled by the
piezoelectric device, which moves the sample (or tip) up and down and responds to any
changes in force that are detected, altering the tip–sample separation to restore the force
to a predetermined value (similar to Fig. 14.5a). This mode of operation is known as
constant force and usually results in accurate topographical images. In constant-force
mode, the speed of scanning is limited by the response time of the feedback circuit, but
the total force exerted on the sample by the tip is well controlled (similar to Fig. 14.5b).
Constant-force mode is generally preferred for most applications.

Constant-height or deflection mode operates with the feedback electronics mini-
mized. This mode is particularly practical for imaging very flat samples at high res-
olution. The minimized feedback eliminates issues of thermal drift or the possibility
of a rough sample damaging the tip and/or cantilever. Constant-height mode is often
used for taking atomic-scale images of atomically flat surfaces, where the cantilever
deflections and thus variations in applied force are small. Constant-height mode is also
essential for recording real-time images of changing surfaces, where high scan speed
is essential.

Once the AFM has detected the cantilever deflection, it can generate the topographic
data set by operating in one of the two modes—constant-height or constant-force mode.
In constant-height mode, the spatial variation of the cantilever deflection can be used
directly to generate the topographic data set because the height of the scanner is fixed
as it scans. In constant-force mode, the deflection of the cantilever can be used as input
to a feedback circuit that moves the scanner up and down in the z-axis, responding to
the topography by keeping the cantilever deflection constant. In this case, the image is
generated from the scanner’s motion. With the cantilever deflection held constant, the
total force applied to the sample is constant.

14.3.3 Probe–Sample Interaction

The way in which image contrast is obtained can be achieved in many ways. The
three main classes of interaction are contact mode, tapping mode, and noncontact
mode. Contact mode is the most common method of operation of the AFM. In this
case, the tip and sample reside in the repulsive region of Fig. 14.5 during the scan.
A consequence of contact-mode operation is that large lateral forces on the sample
surface have a tendency to drag the probe tip.

In the noncontact mode, the probe tip resonates at a distance above the sample surface
of the sample such that it is no longer in the repulsive region of Fig. 14.5. If noncontact
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Figure 14.10. Image of a piece of mica using AFM (a) in noncontact mode and (b) in contact
mode. Note that in this case the contact mode provides more details. [From Le Grimellec et al.,
Biophys. J., 75, 695–703 (1998). With permission of The Biophysical Society.]

mode is used, it is advantageous to conduct the analysis in vacuum. Conducting the
analysis in ambient conditions usually results in a thin layer of water contamination
between the probe tip and the surface. Fig. 14.10 (a and b) shows a comparison of
noncontact- and contact-mode imaging for a piece of mica. In this case, the contact
mode provides more details; however, the noncontact mode minimizes risk of damage
to the probe tip. Recent advancements have led to the development of a high-resolution,

Figure 14.11. High resolution, noncontact AFM image taken of the Ge/Si(105) surface. The
size of image is 4.2 nm × 4.2 nm. The frequency shift was set at −60 Hz. The oscillation
amplitude and resonant frequency of the cantilever were 3.8 nm and 280 482 Hz, respectively
(with permission from Yukio Hasegawa).
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probe tip noncontact

water droplet on surface

probe tip contact

Cantilever

Tapping-mode image generated

Noncontact image generated

Figure 14.12. (a) Schematic displaying the consequence of adsorbed moisture from the am-
bient during AFM analysis. (b) Tapping-mode AFM is used to avoid the false image of the
surface.

atomically resolved electrostatic potential profile, with use of an AFM equipped with a
Kelvin probe. Figure 14.11 shows a noncontact AFM micrograph of Ge atoms residing
on a Si(105) substrate. The image reveals the electrostatic potential variations among the
dangling bond states and all dangling bonds of the surface, regardless of their electronic
configuration. These results clearly demonstrate that high-resolution noncontact AFM
with a Kelvin-probe method is a tool for imaging atomic structures and determining
electronic properties of surfaces. The resolution and results are on a par with or better
than STM, whose images strongly deviate from the atomic structure by the electronic
states involved.

Figure 14.12a shows the consequence of water contamination on the resulting image
during AFM. The presence of the moisture from the ambient adsorbs on the surface
and can give a false image. To avoid this problem, tapping mode is the commonly
employed mode when operating in air or other gases (Figure 14.12b). In this case, the
cantilever resonates at its resonant frequency on the order of 100–400 kilohertz. The
probe tip contacts the surface only during a fraction of the resonant period as a means to
reduce the influence of the lateral forces on the probe tip. The feedback controls adjust
such that the amplitude of the cantilever resonates at a constant value. An image can be
formed from this amplitude signal, as there will be small variations in this oscillation
amplitude due to the control electronics not responding instantaneously to changes
on the specimen surface. This mode eliminates lateral forces between the tip and the
sample and has become an important SPM technique, since it overcomes some of the
limitations of both contact and noncontact AFM. In the example below, tapping-mode
AFM was used to compare the surface morphology of as-deposited and plasma-treated
parylene surfaces (Fig. 14.13). AFM results, taken in ambient, reveal the increased
surface roughness associated with the oxygen plasma treatment and correlated with
mechanical adhesion analysis.
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Figure 14.13. AFM images of Pa-n on Si: (a) untreated, as-deposited Pa-n on Si, and (b) oxygen
plasma-treated Pa-n. Both images were taken in ambient using tapping mode.

14.3.4 Tip Effects

Image contrast using the AFM results from interaction forces between the probe tip
and sample. Understanding of the probe-tip feature then becomes important for inter-
pretation of the image. During analyses at high magnification and on surfaces with
substantial surface morphology, the probe condition influences the image resolution.
A given feature may be alleged to be topographical that is actually a direct result of
the probe-tip shape. For example, for the probe to interact with individual atoms, these
interactions must be limited to the fewest number of atoms on the probe tip. Hence,
the resolution of the AFM probe tip depends on the sharpness of the tip. Commercially
fabricated probe tips have a radius of curvature on the order of 10 nm. Sharper (i.e.,
better) tips are also available. Only a tip with sufficient sharpness can properly image a
given Z -gradient. Some gradients will be steeper or sharper than any tip can be expected
to image without artifact. Figure 14.14 shows AFM images using a 40 nm diameter
probe tip (a) and a 5 nm diameter probe tip (b). Another effect is tip broadening, which
arises when the tip’s radius of curvature is on the order of or larger that the feature
under investigation. When the probe tip scans over the specimen, the sides of the tip

Figure 14.14. AFM images using a 40 nm diameter probe tip (a) and a 5 nm diameter probe tip
(b). [Courtesy of Paul E. West, Ph.D, CTO, Pacific NanoTechnology.]
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Figure 14.15. Schematic of the apparent change in the image of a square hole to a slope-edged
hole because of the shape of the probe.

make contact before the base, and the microscope produces a self-image of the probe
tip (a false image), rather than of the object surface (see Fig. 14.15).
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Appendix 1
KM for 4He+ as Projectile and Integer
Target Mass

ATOMIC
MASS (amu) 180◦ 170◦ 160◦ 145◦ 90◦ 60◦ 45◦ 30◦

4 0.000 0.250 0.500 0.750
6 0.040 0.041 0.043 0.051 0.200 0.476 0.659 0.832
8 0.111 0.113 0.118 0.134 0.333 0.589 0.738 0.873

10 0.184 0.186 0.193 0.213 0.429 0.661 0.787 0.897
12 0.250 0.253 0.260 0.282 0.500 0.711 0.820 0.914
14 0.309 0.311 0.319 0.342 0.556 0.748 0.844 0.926
16 0.360 0.363 0.371 0.394 0.600 0.776 0.863 0.935
18 0.405 0.408 0.416 0.439 0.636 0.799 0.877 0.942
20 0.444 0.447 0.455 0.478 0.660 0.817 0.889 0.948
22 0.479 0.482 0.490 0.512 0.692 0.833 0.899 0.952
24 0.510 0.513 0.521 0.542 0.714 0.846 0.907 0.956
26 0.538 0.540 0.548 0.569 0.733 0.857 0.914 0.960
28 0.563 0.565 0.572 0.592 0.750 0.866 0.920 0.962
30 0.585 0.587 0.594 0.614 0.765 0.875 0.925 0.965
32 0.605 0.607 0.614 0.633 0.778 0.882 0.929 0.967
34 0.623 0.626 0.632 0.650 0.789 0.889 0.933 0.969
36 0.640 0.642 0.649 0.666 0.800 0.895 0.937 0.971
38 0.655 0.657 0.664 0.681 0.810 0.900 0.940 0.972
40 0.669 0.671 0.678 0.694 0.818 0.905 0.943 0.974
42 0.682 0.684 0.690 0.706 0.826 0.909 0.946 0.975
44 0.694 0.696 0.702 0.718 0.833 0.913 0.948 0.976
46 0.706 0.707 0.713 0.728 0.840 0.917 0.950 0.977
48 0.716 0.718 0.723 0.738 0.846 0.920 0.952 0.978
50 0.726 0.727 0.733 0.747 0.852 0.923 0.954 0.979
52 0.735 0.736 0.742 0.755 0.857 0.926 0.956 0.980
54 0.743 0.745 0.750 0.763 0.862 0.929 0.958 0.980
56 0.751 0.753 0.758 0.771 0.867 0.931 0.959 0.981
58 0.759 0.760 0.765 0.778 0.871 0.933 0.960 0.982
60 0.766 0.767 0.772 0.784 0.875 0.935 0.962 0.982
62 0.772 0.774 0.778 0.791 0.879 0.937 0.963 0.983
64 0.779 0.780 0.784 0.796 0.882 0.939 0.964 0.983
66 0.784 0.786 0.790 0.802 0.886 0.941 0.965 0.984
68 0.790 0.792 0.796 0.807 0.889 0.943 0.966 0.984
70 0.795 0.797 0.801 0.812 0.892 0.944 0.967 0.985

(continued)
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ATOMIC
MASS (amu) 180◦ 170◦ 160◦ 145◦ 90◦ 60◦ 45◦ 30◦

72 0.801 0.802 0.806 0.817 0.895 0.946 0.968 0.985
74 0.805 0.807 0.811 0.821 0.897 0.947 0.969 0.986
76 0.810 0.811 0.815 0.826 0.900 0.949 0.970 0.986
78 0.814 0.816 0.819 0.830 0.902 0.950 0.970 0.986
80 0.819 0.820 0.824 0.834 0.905 0.951 0.971 0.987
82 0.823 0.824 0.827 0.837 0.907 0.952 0.972 0.987
84 0.826 0.828 0.831 0.841 0.909 0.953 0.972 0.987
86 0.830 0.831 0.835 0.844 0.911 0.955 0.973 0.988
88 0.834 0.835 0.838 0.847 0.913 0.956 0.974 0.988
90 0.837 0.838 0.842 0.851 0.915 0.957 0.974 0.988
92 0.840 0.841 0.845 0.854 0.917 0.957 0.975 0.988
94 0.843 0.844 0.848 0.856 0.918 0.958 0.975 0.989
96 0.846 0.847 0.851 0.859 0.920 0.959 0.976 0.989
98 0.849 0.850 0.853 0.862 0.922 0.960 0.976 0.989

100 0.852 0.853 0.856 0.864 0.923 0.961 0.977 0.989
102 0.855 0.856 0.859 0.867 0.925 0.962 0.977 0.990
104 0.857 0.858 0.861 0.869 0.926 0.962 0.978 0.990
106 0.860 0.861 0.864 0.872 0.927 0.963 0.978 0.990
108 0.862 0.863 0.866 0.874 0.929 0.964 0.979 0.990
110 0.865 0.866 0.868 0.876 0.930 0.964 0.979 0.990
112 0.867 0.868 0.871 0.878 0.931 0.965 0.979 0.990
114 0.869 0.870 0.873 0.880 0.932 0.966 0.980 0.991
116 0.871 0.872 0.875 0.882 0.933 0.966 0.980 0.991
118 0.873 0.874 0.877 0.884 0.934 0.967 0.980 0.991
120 0.875 0.876 0.879 0.886 0.935 0.967 0.981 0.991
122 0.877 0.878 0.881 0.888 0.937 0.968 0.981 0.991
124 0.879 0.880 0.882 0.889 0.938 0.968 0.981 0.991
126 0.881 0.882 0.884 0.891 0.938 0.969 0.982 0.992
128 0.882 0.883 0.886 0.892 0.939 0.969 0.982 0.992
130 0.884 0.885 0.887 0.894 0.940 0.970 0.982 0.992
132 0.886 0.887 0.889 0.896 0.941 0.970 0.982 0.992
134 0.887 0.888 0.891 0.897 0.942 0.971 0.983 0.992
136 0.889 0.890 0.892 0.898 0.943 0.971 0.983 0.992
138 0.890 0.891 0.894 0.900 0.944 0.971 0.983 0.992
140 0.892 0.893 0.895 0.901 0.944 0.972 0.983 0.992
142 0.893 0.894 0.896 0.903 0.945 0.972 0.984 0.992
144 0.895 0.896 0.898 0.904 0.946 0.973 0.984 0.993
146 0.896 0.897 0.899 0.905 0.947 0.973 0.984 0.993
148 0.898 0.898 0.900 0.906 0.947 0.973 0.984 0.993
150 0.899 0.900 0.902 0.908 0.948 0.974 0.984 0.993
152 0.900 0.901 0.903 0.909 0.949 0.974 0.985 0.993
154 0.901 0.902 0.904 0.910 0.949 0.974 0.985 0.993
156 0.902 0.903 0.905 0.911 0.950 0.975 0.985 0.993
158 0.904 0.904 0.906 0.912 0.951 0.975 0.985 0.993
160 0.905 0.906 0.908 0.913 0.951 0.975 0.985 0.993
162 0.906 0.907 0.909 0.914 0.952 0.976 0.986 0.993
164 0.907 0.908 0.910 0.915 0.952 0.976 0.986 0.993
166 0.908 0.909 0.911 0.916 0.953 0.976 0.986 0.994
168 0.909 0.910 0.912 0.917 0.953 0.976 0.986 0.994
170 0.910 0.911 0.913 0.918 0.954 0.977 0.986 0.994
172 0.911 0.912 0.914 0.919 0.955 0.977 0.986 0.994

(continued)



KM for 4He+ as Projectile and Integer Target Mass 293

ATOMIC
MASS (amu) 180◦ 170◦ 160◦ 145◦ 90◦ 60◦ 45◦ 30◦

174 0.912 0.913 0.915 0.920 0.955 0.977 0.987 0.994
176 0.913 0.914 0.916 0.921 0.956 0.978 0.987 0.994
178 0.914 0.915 0.917 0.921 0.956 0.978 0.987 0.994
180 0.915 0.916 0.917 0.922 0.957 0.978 0.987 0.994
182 0.916 0.916 0.918 0.923 0.957 0.978 0.987 0.994
184 0.917 0.917 0.919 0.924 0.957 0.978 0.987 0.994
186 0.918 0.918 0.920 0.925 0.958 0.979 0.987 0.994
188 0.918 0.919 0.921 0.925 0.958 0.979 0.988 0.994
190 0.919 0.920 0.922 0.926 0.959 0.979 0.988 0.994
192 0.920 0.921 0.922 0.927 0.959 0.979 0.988 0.994
194 0.921 0.921 0.923 0.928 0.960 0.980 0.988 0.994
196 0.922 0.922 0.924 0.928 0.960 0.980 0.988 0.995
198 0.922 0.923 0.925 0.929 0.960 0.980 0.988 0.995
200 0.923 0.924 0.925 0.930 0.961 0.980 0.988 0.995

The Kinematic Factor, KM2 , defined by Eq. 2.5 for a 4He+ atom as projectile and integral atomic masses for
the target atom M2. The angle indicates the scattering angle as measured in the laboratory frame of reference.



Appendix 2
Rutherford Scattering Cross Section of
Elements for 1 MeV4 He

dσ/d	 in 10−24 cm2/SteradianAVG.
AT. # MASS

ELEMENT (Z2) (amu) 179.5◦ 170◦ 160◦ 145◦ 90◦ 60◦ 45◦ 30◦

Be 4 9.01 0.053 0.055 0.058 0.069 0.297 1.294 3.836 18.454
B 5 10.81 0.097 0.098 0.104 0.122 0.482 2.038 6.008 28.848
C 6 12.01 0.147 0.150 0.159 0.185 0.704 2.944 8.661 41.550
N 7 14.01 0.214 0.218 0.230 0.266 0.974 4.023 11.803 56.568
O 8 16.00 0.291 0.297 0.312 0.360 1.285 5.267 15.429 73.896
F 9 19.00 0.384 0.390 0.410 0.471 1.642 6.681 19.542 93.540
Ne 10 20.18 0.478 0.486 0.511 0.586 2.032 8.254 24.131 115.486
Na 11 22.99 0.590 0.599 0.629 0.720 2.471 9.998 29.210 139.749
Mg 12 24.31 0.707 0.718 0.754 0.862 2.945 11.903 34.767 166.318
Al 13 26.98 0.838 0.851 0.893 1.021 3.466 13.979 40.812 195.201
Si 14 28.09 0.974 0.991 1.039 1.187 4.023 16.216 47.335 226.391
P 15 30.97 1.129 1.146 1.201 1.371 4.626 18.623 54.348 259.896
S 16 32.06 1.285 1.306 1.370 1.563 5.267 21.192 61.838 295.707
Cl 17 35.45 1.460 1.483 1.555 1.773 5.954 23.933 69.818 333.833
Ar 18 39.95 1.647 1.672 1.752 1.997 6.685 26.840 78.283 374.272
K 19 39.10 1.835 1.861 1.951 2.223 7.446 29.904 87.221 417.011
Ca 20 40.08 2.033 2.064 2.163 2.465 8.253 33.136 96.646 462.065
Sc 21 44.96 2.249 2.285 2.394 2.727 9.108 36.542 106.561 509.435
Ti 22 47.90 2.476 2.513 2.633 2.998 10.001 40.110 116.956 559.113
V 23 50.94 2.706 2.751 2.882 3.281 10.935 43.844 127.835 611.101
Cr 24 52.00 2.947 2.997 3.139 3.574 11.909 47.740 139.194 665.397
Mn 25 54.94 3.208 3.255 3.410 3.882 12.926 51.806 151.039 722.006
Fe 26 55.85 3.469 3.522 3.690 4.200 13.982 56.034 163.365 780.923
Co 27 58.93 3.741 3.802 3.983 4.533 15.082 60.431 176.177 842.153
Ni 28 58.71 4.024 4.089 4.283 4.875 16.219 64.990 189.469 905.690
Cu 29 63.54 4.330 4.392 4.601 5.235 17.404 69.721 203.250 971.543
Zn 30 65.37 4.633 4.702 4.925 5.604 18.627 74.615 217.511 1039.703
Ga 31 69.72 4.947 5.026 5.264 5.989 19.894 79.677 232.258 1110.176
Ge 32 72.59 5.272 5.358 5.611 6.384 21.201 84.903 247.486 1182.958
As 33 74.92 5.606 5.700 5.970 6.791 22.549 90.294 263.198 1258.051
Se 34 78.96 5.970 6.054 6.340 7.213 23.940 95.853 279.394 1335.455
Br 35 79.91 6.326 6.416 6.720 7.644 25.370 101.575 296.072 1415.167
Kr 36 83.80 6.693 6.791 7.112 8.090 26.843 107.465 313.235 1497.192
Rb 37 85.47 7.070 7.175 7.514 8.547 28.357 113.520 330.880 1581.526
Sr 38 87.62 7.457 7.569 7.927 9.017 29.912 119.740 349.009 1668.171
Y 39 88.91 7.855 7.974 8.351 9.499 31.508 126.126 367.620 1757.125
Zr 40 91.22 8.263 8.390 8.786 9.994 33.146 132.679 386.716 1848.391
Nb 41 92.91 8.681 8.816 9.232 10.501 34.825 139.397 406.294 1941.967

(continued)
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dσ/d	 in 10−24 cm2/SteradianAVG.
AT. # MASS

ELEMENT (Z2) (amu) 179.5◦ 170◦ 160◦ 145◦ 90◦ 60◦ 45◦ 30◦

Mo 42 95.94 9.110 9.253 9.690 11.021 36.547 146.282 426.358 2037.855
Tc 43 99.000 9.549 9.701 10.159 11.554 38.310 153.333 446.904 2136.053
Ru 44 101.000 9.998 10.639 12.099 40.114 40.114 160.549 467.933 2236.560
Rh 45 102.900 10.458 11.129 12.657 41.959 41.959 167.930 489.446 2339.379
Pd 46 106.400 10.928 11.631 13.228 43.846 43.846 175.479 511.443 2444.508
Ag 47 107.900 11.408 12.143 13.810 45.774 45.774 183.192 533.922 2551.948
Cd 48 112.400 11.899 12.668 14.406 47.746 47.746 191.073 556.886 2661.699
In 49 114.800 12.400 13.203 15.014 49.757 49.757 199.119 580.333 2773.760
Sn 50 118.700 12.951 13.749 15.635 51.811 51.811 207.331 604.264 2888.132
Sb 51 121.800 13.475 14.306 16.269 53.905 53.905 215.709 628.678 3004.814
Te 52 127.600 14.008 14.875 16.916 56.043 56.043 224.254 653.576 3123.808
I 53 126.900 14.552 15.452 17.572 58.219 58.219 232.961 678.955 3245.109
Xe 54 131.300 15.107 16.043 18.243 60.438 60.438 241.837 704.820 3368.723
Cs 55 132.900 15.671 16.643 18.926 62.698 62.698 250.878 731.167 3494.647
Ba 56 137.300 16.246 17.256 19.622 65.001 65.001 260.085 757.998 3622.882
La 57 138.900 16.832 17.878 20.330 67.343 67.343 269.458 785.312 3753.426
Ce 58 140.100 17.427 18.512 21.050 69.728 69.728 278.996 813.108 3886.281
Pr 59 140.900 18.034 19.156 21.783 72.153 72.153 288.700 841.389 4021.446
Nd 60 144.200 18.650 19.812 22.529 74.621 74.621 298.570 870.154 4158.923
Pm 61 147.000 19.277 20.479 23.287 77.130 77.130 308.607 899.401 4298.709
Sm 62 150.400 19.914 21.157 24.058 79.681 79.681 318.809 929.133 4440.808
Eu 63 152.000 20.562 21.846 24.841 82.273 82.273 329.177 959.347 4585.216
Gd 64 157.300 21.220 22.547 25.638 84.907 84.907 339.712 990.047 4731.935
Tb 65 158.900 21.888 23.258 26.446 87.582 87.582 350.412 1021.228 4880.964
Dy 66 162.500 22.567 23.980 27.267 90.299 90.299 361.278 1052.893 5032.304
Ho 67 164.900 23.256 24.713 28.100 93.057 93.057 372.309 1085.042 5185.955
Er 68 167.300 23.955 25.457 28.946 95.856 95.856 383.507 1117.673 5341.915
Tm 69 168.900 24.665 26.212 29.805 98.697 98.697 394.870 1150.788 5500.186
Yb 70 173.000 25.385 26.979 30.676 101.579 101.579 406.400 1184.388 5660.769
Lu 71 175.000 26.115 27.755 31.559 104.503 104.503 418.095 1218.470 5823.660
Hf 72 178.500 26.865 28.544 32.456 107.469 107.469 429.956 1253.035 5988.864
Ta 73 181.000 27.607 29.343 33.364 110.475 110.475 441.983 1288.084 6156.376
W 74 183.900 28.369 30.153 34.285 113.524 113.524 454.176 1323.617 6326.200
Re 75 186.200 29.141 30.975 35.219 116.613 116.613 466.534 1359.633 6498.335
Os 76 190.200 29.923 31.807 36.166 119.745 119.745 479.059 1396.133 6672.781
Ir 77 192.200 30.716 32.650 37.124 122.917 122.917 491.750 1433.115 6849.534
Pt 78 195.100 31.519 33.505 38.096 126.132 126.132 504.605 1470.581 7028.602
Au 79 197.000 32.332 34.370 39.079 129.387 129.387 571.628 1508.531 7209.979
Hg 80 200.600 33.156 35.246 40.076 132.684 132.684 530.817 1546.964 7393.666
Tl 81 204.400 34.096 36.134 41.085 136.023 136.023 544.171 1585.881 7579.665
Pb 82 207.200 34.943 37.032 42.106 139.403 139.403 557.691 1625.281 7767.972
Bi 83 209.000 35.801 37.942 43.140 142.824 142.824 571.377 1665.164 7958.590
Po 84 210.000 36.669 38.862 44.186 146.287 146.287 585.228 1705.531 8151.519
At 85 210.000 37.547 39.792 45.244 149.791 149.791 599.245 1746.380 8346.758
Rn 86 222.000 38.435 40.737 46.318 153.339 153.339 613.431 1787.716 8544.311
Fr 87 223.000 39.335 41.690 47.402 156.926 156.926 627.780 1829.533 8744.169
Ra 88 226.000 40.244 42.655 48.498 160.555 160.555 642.295 1871.833 8946.343
Ac 89 227.000 41.164 43.630 49.607 164.225 164.225 656.976 1914.617 9150.824
Th 90 232.000 42.094 44.617 50.729 167.937 167.937 671.823 1957.885 9357.617
Pa 91 231.000 43.035 45.614 51.863 171.689 171.689 686.836 2001.635 9566.719
U 92 238.000 43.986 46.623 53.010 175.485 175.485 702.015 2045.870 9778.132
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Appendix 4
Electron Configurations and Ionization
Potentials of Atoms

Ionization
Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p 6d 7s potential (eV)

1 H 1 13.595
2 He 2 24.580
3 Li 2 1 5.390
4 Be 2 2 9.320
5 B 2 2 1 8.296
6 C 2 2 2 11.260
7 N 2 2 3 14.532
8 O 2 2 4 13.614
9 F 2 2 5 17.422

10 Ne 2 2 6 21.564
11 Na 2 2 6 1 5.138
12 Mg 2 2 6 2 7.644
13 Al 2 2 6 2 1 5.984
14 Si 2 2 6 2 2 8.149
15 P 2 2 6 2 3 10.486
16 S 2 2 6 2 4 10.357
17 Cl 2 2 6 2 5 12.967
18 Ar 2 2 6 2 6 15.759
19 K 2 2 6 2 6 1 4.339
20 Ca 2 2 6 2 6 2 6.111
21 Sc 2 2 6 2 6 1 2 6.540
22 Ti 2 2 6 2 6 2 2 6.280
23 V 2 2 6 2 6 3 2 6.740
24 Cr 2 2 6 2 6 5 1 6.764
25 Mn 2 2 6 2 6 5 2 7.432
26 Fe 2 2 6 2 6 6 2 7.870
27 Co 2 2 6 2 6 7 2 7.864
28 Ni 2 2 6 2 6 8 2 7.633
29 Cu 2 2 6 2 6 10 1 7.724
30 Zn 2 2 6 2 6 10 2 9.391
31 Ga 2 2 6 2 6 10 2 1 6.00
32 Ge 2 2 6 2 6 10 2 2 7.88
33 As 2 2 6 2 6 10 2 3 9.81
34 Se 2 2 6 2 6 10 2 4 9.75
35 Br 2 2 6 2 6 10 2 5 11.84

(continued)
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Ionization
Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p 6d 7s potential (eV)

36 Kr 2 2 6 2 6 10 2 6 14.00
37 Rb 2 2 6 2 6 10 2 6 1 4.176
38 Sr 2 2 6 2 6 10 2 6 2 5.692
39 Y 2 2 6 2 6 10 2 6 1 2 6.377
40 Zr 2 2 6 2 6 10 2 6 2 2 6.835
41 Nb 2 2 6 2 6 10 2 6 4 1 6.881
42 Mo 2 2 6 2 6 10 2 6 5 1 7.131
43 Tc 2 2 6 2 6 10 2 6 (5) (2)? 7.23
44 Ru 2 2 6 2 6 10 2 6 7 1 7.365
45 Rh 2 2 6 2 6 10 2 6 g 1 7.461
46 Pd 2 2 6 2 6 10 2 6 10 8.33
47 Ag 2 2 6 2 6 10 2 6 10 1 7.574
48 Cd 2 2 6 2 6 10 2 6 10 2 8.991
49 In 2 2 6 2 6 10 2 6 10 2 1 5.785
50 Sn 2 2 6 2 6 10 2 6 10 2 2 7.33
51 Sb 2 2 6 2 6 10 2 6 10 2 3 8.639
52 Te 2 2 6 2 6 10 2 6 10 2 4 9.01
51 I 2 2 6 2 6 10 2 6 10 2 5 10.44
54 Xc 2 2 6 2 6 10 2 6 10 2 6 12.127
55 Cs 2 2 6 2 6 10 2 6 10 2 6 1 3.893
56 Ba 2 2 6 2 6 10 2 6 10 2 6 2 5.210
57 La 2 2 6 2 6 10 2 6 10 2 6 1 2 5.61
58 Ce 2 2 6 2 6 10 2 6 10 1 2 6 1 2 6.91
59 Pr 2 2 6 2 6 10 2 6 10 3 2 6 2 5.70
60 Nd 2 2 6 2 6 10 2 6 10 4 2 6 2 6.31
61 Pm 2 2 6 2 6 10 2 6 10 5 2 6 2
62 Sm 2 2 6 2 6 10 2 6 10 6 2 6 2 5.6
63 Eu 2 2 6 2 6 10 2 6 10 7 2 6 2 5.67
64 Gd 2 2 6 2 6 10 2 6 10 7 2 6 1 2 6.16
65 Tb 2 2 6 2 6 10 2 6 10 8 2 6 1 2 6.74
66 Dy 2 2 6 2 6 10 2 6 10 9 2 6 1 2 ? 6.32
67 Ho 2 2 6 2 6 10 2 6 10 10 2 6 1 2 ?
68 Er 2 2 6 2 6 10 2 6 10 11 2 6 1 2 ?
69 Tm 2 2 6 2 6 10 2 6 10 13 2 6 2
70 Yb 2 2 6 2 6 10 2 6 10 14 2 6 2 6.22
71 Lu 2 2 6 2 6 10 2 6 10 14 2 6 1 2 6.15
72 Hf 2 2 6 2 6 10 2 6 10 14 2 6 2 2 5.5
73 Ta 2 2 6 2 6 10 2 6 10 14 2 6 3 2 7.7
74 W 2 2 6 2 6 10 2 6 10 14 2 6 4 2 7.98
75 Re 2 2 6 2 6 10 2 6 10 14 2 6 5 2 7.87
76 Os 2 2 6 2 6 10 2 6 10 14 2 6 6 2 8.70
77 Ir 2 2 6 2 6 10 2 6 10 14 2 6 7 2 9.20
78 Pt 2 2 6 2 6 10 2 6 10 14 2 6 9 1 ? 9.0
79 Au 2 2 6 2 6 10 2 6 10 14 2 6 10 1 9.22
80 Hg 2 2 6 2 6 10 2 6 10 14 2 6 10 2 10.434
81 Tl 2 2 6 2 6 10 2 6 10 14 2 6 10 2 1 6.106
82 Pb 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 7.415
83 Bi 2 2 6 2 6 10 2 6 10 14 2 6 10 2 3 7.287
84 Po 2 2 6 2 6 10 2 6 10 14 2 6 10 2 4 8.43

85 At 2 2 6 2 6 10 2 6 10 14 2 6 10 2 5 9.2
86 Rn 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 10.745

(continued)
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Ionization
Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p 6d 7s potential (eV)

87 Fr 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 4.0
88 Ra 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 5.277
89 Ac 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2? 6.9
90 Th 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 2?
91 Pa 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2?
92 U 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2 4
93 Np 2 2 6 2 6 10 2 0 10 14 2 6 10 2 6 1 2?
94 Pu 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2?
95 Am 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2
96 Cm 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2?
97 Bk 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2?
98 Cf 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2?



Appendix 5
Atomic Scattering Factor

sin θ

λ
(nm−1) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

H 1.0 0.8 0.5 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
He 2.0 1.9 1.5 1.1 0.8 0.5 0.4 0.2 0.2 0.1 0.1 0.1
Li+ 2.0 2.0 1.8 1.5 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.3
Li 3.0 2.2 1.8 1.5 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.3
Be+2 2.0 2.0 1.9 1.7 1.6 1.4 1.2 1.0 0.9 0.7 0.6 0.5
Be 4.0 2.9 1.9 1.7 1.6 1.4 1.2 1.0 0.9 0.7 0.6 0.5
B+3 2.0 2.0 1.9 1.8 1.7 1.6 1.4 1.3 1.2 1.0 0.9 0.7
B 5.0 3.5 2.4 1.9 1.7 1.5 1.4 1.2 1.2 1.0 0.9 0.7
C 6.0 4.6 3.0 2.2 1.9 1.7 1.6 1.4 1.3 1.2 1.0 0.9
N+5 2.0 2.0 2.0 1.9 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2
N+3 4.0 3.7 3.0 2.4 2.0 1.8 1.7 1.6 1.5 1.4 1.3 1.2
N 7.0 5.8 4.2 3.0 2.3 1.9 1.7 1.5 1.5 1.4 1.3 1.2
O 8.0 7.1 5.3 3.9 2.9 2.2 1.8 1.6 1.5 1.4 1.4 1.3
O−2 10.0 8.0 5.5 3.8 2.7 2.1 1.8 1.5 1.5 1.4 1.4 1.3
F 9.0 7.8 6.2 4.5 3.4 2.7 2.2 1.9 1.7 1.6 1.5 1.4
F 10.0 8.7 6.7 4.8 3.5 2.8 2.2 1.9 1.7 1.6 1.5 1.4
Ne 10.0 9.3 7.5 5.8 4.4 3.4 2.7 2.2 1.9 1.7 1.6 1.5
Na+ 10.0 9.5 8.2 6.7 5.3 4.1 3.2 2.7 2.3 2.0 1.8 1.6
Na 11.0 9.7 8.2 6.7 5.3 4.1 3.2 2.7 2.3 2.0 1.8 1.6
Mg+2 10.0 9.8 8.6 7.3 6.0 4.8 3.9 3.2 2.6 2.2 2.0 1.8
Mg 12.0 10.5 8.6 7.3 6.0 4.8 3.9 3.2 2.6 2.2 2.0 1.8
AI+3 10.0 9.7 8.9 7.8 6.7 5.5 4.5 3.7 3.1 2.7 2.3 2.0
Al 13.0 11.0 9.0 7.8 6.6 5.5 4.5 3.7 3.1 2.7 2.3 2.0
Si+4 10.0 9.8 9.2 8.3 7.2 6.1 5.1 4.2 3.4 3.0 2.6 2.3
Si 14.0 11.4 9.4 8.2 7.2 6.1 5.1 4.2 3.4 3.0 2.6 2.3
P+5 10.0 9.8 9.3 8.5 7.5 6.6 5.7 4.8 4.1 3.4 3.0 2.6
P 15.0 12.4 10.0 8.5 7.5 6.5 5.7 4.8 4.1 3.4 3.0 2.6
P−3 18.0 12.7 9.8 8.4 7.5 6.5 5.7 4.9 4.1 3.4 3.0 2.6
S+6 10.0 9.9 9.4 8.7 7.9 6.9 6.1 5.3 4.5 3.9 3.4 2.9
S 16.0 13.6 10.7 9.0 7.9 6.9 6.0 5.3 4.5 3.9 3.4 2.9
S−2 18.0 14.3 10.7 8.9 7.9 6.9 6.0 5.3 4.5 3.9 3.4 2.9
CI 17.0 14.6 11.3 9.3 8.1 7.3 6.5 5.8 5.1 4.4 3.9 3.4
Cl− 18.0 15.2 11.5 9.3 8.1 7.3 6.5 5.8 5.1 4.4 3.9 3.4
Ar 18.0 15.9 12.6 10.4 8.7 7.8 7.0 6.2 5.4 4.7 4.1 3.6
K+ 18.0 16.5 13.3 10.8 8.9 7.8 7.1 6.4 5.9 5.3 4.8 4.2

(continued)
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sin θ

λ
(nm−1) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

K 19.0 16.5 13.3 10.8 9.2 7.9 6.7 5.9 5.2 4.6 4.2 3.7 3.3
Ca+2 18.0 16.8 14.0 11.5 9.3 8.1 7.4 6.7 6.2 5.7 5.1 4.6
Ca 20.0 17.5 14.1 11.4 9.7 8.4 7.3 6.3 5.6 4.9 4.5 4.0 3.6
Sc+3 18.0 16.7 14.0 11.4 9.4 8.3 7.6 6.9 6.4 5.8 5.4 4.9
Sc 21.0 18.4 14.9 12.1 10.3 8.9 7.7 6.7 5.9 5.3 4.7 4.3 3.9
Ti+4 18.0 17.0 14.4 11.9 9.9 8.5 7.9 7.3 6.7 6.2 5.7 5.1
Ti 22.0 19.3 15.7 12.8 10.9 9.5 8.2 7.2 6.3 5.6 5.0 4.6 4.2
V 23.0 20.2 16.6 13.5 11.5 10.1 8.7 7.6 6.7 5.9 5.3 4.9 4.4
Cr 24.0 21.1 17.4 14.2 12.1 10.6 9.2 8.0 7.1 6.3 5.7 5.1 4.6
Mn 25.0 22.1 18.2 14.9 12.7 11.1 9.7 8.4 7.5 6.6 6.0 5.4 4.9
Fe 26.0 23.1 18.9 15.6 13.3 11.6 10.2 8.9 7.9 7.0 6.3 5.7 5.2
Co 27.0 24.1 19.8 16.4 14.0 12.1 10.7 9.3 8.3 7.3 6.7 6.0 5.5
Ni 28.0 25.0 20.7 17.2 14.6 12.7 11.2 9.8 8.7 7.7 7.0 6.3 5.8
Cu 29.0 25.9 21.6 17.9 15.2 13.3 11.7 10.2 9.1 8.1 7.3 6.6 6.0
Zn 30.0 26.8 22.4 18.6 15.8 13.9 12.2 10.7 9.6 8.5 7.6 6.9 6.3
Ga 31.0 27.8 23.3 19.3 16.5 14.5 12.7 11.2 10.0 8.9 7.9 7.3 6.7
Ge 32.0 28.8 24.1 20.0 17.1 15.0 13.2 11.6 10.4 9.3 8.3 7.6 7.0
As 33.0 29.7 25.0 20.8 17.7 15.6 13.8 12.1 10.8 9.7 8.7 7.9 7.3
Se 34.0 30.6 25.8 21.5 18.3 16.1 14.3 12.6 11.2 10.0 9.0 8.2 7.5
Br 35.0 31.6 26.6 22.3 18.9 16.7 14.8 13.1 11.7 10.4 9.4 8.6 7.8
Kr 36.0 32.5 27.4 23.0 19.5 17.3 15.3 13.6 12.1 10.8 9.8 8.9 8.1
Rb+ 36.0 33.6 28.7 24.6 21.4 18.9 16.7 14.6 12.8 11.2 9.9 8.9
Rb 37.0 33.5 28.2 23.8 20.2 17.9 15.9 14.1 12.5 11.2 10.2 9.2 8.4
Sr 38.0 34.4 29.0 24.5 20.8 18.4 16.4 14.6 12.9 11.6 10.5 9.5 8.7
Y 39.0 35.4 29.9 25.3 21.5 19.0 17.0 15.1 13.4 12.0 10.9 9.9 9.0
Zr 40.0 36.3 30.8 26.0 22.1 19.7 17.5 15.6 13.8 12.4 11.2 10.2 9.3
Nb 41.0 37.3 31.7 26.8 22.8 20.2 18.1 16.0 14.3 12.8 11.6 10.6 9.7
Mo 42.0 38.2 32.6 27.6 23.5 20.8 18.6 16.5 14.8 13.2 12.0 10.9 10.0
Tc 43.0 39.1 33.4 28.3 24.1 21.3 19.1 17.0 15.2 13.6 12.3 11.3 10.3
Ru 44.0 40.0 34.3 29.1 24.7 21.9 19.6 17.5 15.6 14.1 12.7 11.6 10.6
Rb 45.0 41.0 35.1 29.9 25.4 22.5 20.2 18.0 16.1 14.5 13.1 12.0 11.0
Pd 46.0 41.9 36.0 30.7 26.2 23.1 20.8 18.5 16.6 14.9 13.6 12.3 11.3
Ag 47.0 42.8 36.9 31.5 26.9 23.8 21.3 19.0 17.1 15.3 14.0 12.7 11.7
Cd 48.0 43.7 37.7 32.2 27.5 24.4 21.8 19.6 17.6 15.7 14.3 13.0 12.0
In 49.0 44.7 38.6 33.0 28.1 25.0 22.4 20.1 18.0 16.2 14.7 13.4 12.3
Sn 50.0 45.7 39.5 33.8 28.7 25.6 22.9 20.6 18.5 16.6 15.1 13.7 12.7
Sb 51.0 46.7 40.4 34.6 29.5 26.3 23.5 21.1 19.0 17.0 15.5 14.1 13.0
Te 52.0 47.7 41.3 35.4 30.3 26.9 24.0 21.7 19.5 17.5 16.0 14.5 13.3
I 53.0 48.6 42.1 36.1 31.0 27.5 24.6 22.2 20.0 17.9 16.4 14.8 13.6
Xe 54.0 49.6 43.0 36.8 31.6 28.0 25.2 22.7 20.4 18.4 16.7 15.2 13.9
Cs 55.0 50.7 43.8 37.6 32.4 28.7 25.8 23.2 20.8 18.8 17.0 15.6 14.5
Ba 56.0 51.7 44.7 38.4 33.1 29.3 26.4 23.7 21.3 19.2 17.4 16.0 14.7
La 57.0 52.6 45.6 39.3 33.8 29.8 26.9 24.3 21.9 19.7 17.9 16.4 15.0
Pr 59.0 54.5 47.4 40.9 35.2 31.1 28.0 25.4 22.9 20.6 18.8 17.1 15.7
Nd 60.0 55.4 48.3 41.6 35.9 31.8 28.6 25.9 23.4 21.1 19.2 17.5 16.1
Pm 61.0 56.4 49.1 42.4 36.6 32.4 29.2 26.4 23.9 21.5 19.6 17.9 16.4
Sm 62.0 57.3 50.0 43.2 37.3 32.9 29.8 26.9 24.4 22.0 20.0 18.3 16.8
Eu 63.0 58.3 50.9 44.0 38.1 33.5 30.4 27.5 24.9 22.4 20.4 18.7 17.1
Gd 64.0 59.3 51.7 44.8 38.8 34.1 31.0 28.1 25.4 22.9 20.8 19.1 17.5
Tb 65.0 60.2 52.6 45.7 39.6 34.7 31.6 28.6 25.9 23.4 21.2 19.5 17.9
Dy 66.0 61.1 53.6 46.5 40.4 35.4 32.2 29.2 26.3 23.9 21.6 19.9 18.3
Ho 67.0 62.1 54.5 47.3 41.1 36.1 32.7 29.7 26.8 24.3 22.0 20.3 18.6

(continued)
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sin θ

λ
(nm−1) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Er 68.0 63.0 55.3 48.1 41.7 36.7 33.3 30.2 27.3 24.7 22.4 20.7 18.9
Tm 69.0 64.0 56.2 48.9 42.4 37.4 33.9 30.8 27.9 25.2 22.9 21.0 19.3
Yb 70.0 64.9 57.0 49.7 43.2 38.0 34.4 31.3 28.4 25.7 23.3 21.4 19.7
Lu 71.0 65.9 57.8 50.4 43.9 38.7 35.0 31.8 28.9 26.2 23.8 21.8 20.0
Hf 72.0 66.8 58.6 51.2 44.5 39.3 35.6 32.3 29.3 26.7 24.2 22.3 20.4
Ta 73.0 67.8 59.5 52.0 45.3 39.9 36.2 32.9 29.8 27.1 24.7 22.6 20.9
W 74.0 68.8 60.4 52.8 46.1 40.5 36.8 33.5 30.4 27.6 25.2 23.0 21.3
Re 75.0 69.8 61.3 53.6 46.8 41.1 37.4 34.0 30.9 28.1 25.6 23.4 21.6
as 76.0 70.8 62.2 54.4 47.5 41.7 38.0 34.6 31.4 28.6 26.0 23.9 22.0
Ir 77.0 71.7 63.1 55.3 48.2 42.4 38.6 35.1 32.0 29.0 26.5 24.3 22.3
Pt 78.0 72.6 64.0 56.2 48.9 43.1 39.2 35.6 32.5 29.5 27.0 24.7 22.7
Au 79.0 73.6 65.0 57.0 49.7 43.8 39.8 36.2 33.1 30.0 27.4 25.1 23.1
Hg 80.0 74.6 65.9 57.9 50.5 44.4 40.5 36.8 33.6 30.6 27.8 25.6 23.6
Tl 81.0 75.5 66.7 58.7 51.2 45.0 41.1 37.4 34.1 31.1 28.3 26.0 24.1
Pb 82.0 76.5 67.5 59.5 51.9 45.7 41.6 37.9 34.6 31.5 28.8 26.4 24.5
Bi 83.0 77.5 68.4 60.4 52.7 46.4 42.2 38.5 35.1 32.0 29.2 26.8 24.8
Po 84.0 78.4 69.4 61.3 53.5 47.1 42.8 39.1 35.6 32.6 29.7 27.2 25.2
At 85.0 79.4 70.3 62.1 54.2 47.7 43.4 39.6 36.2 33.1 30.1 27.6 25.6
Rn 86.0 80.3 71.3 63.0 55.1 48.4 44.0 40.2 36.8 33.5 30.5 28.0 26.0
Fr 87.0 81.3 72.2 63.8 55.8 49.1 44.5 40.7 37.3 34.0 31.0 28.4 26.4
Ra 88.0 82.2 73.2 64.6 56.5 49.8 45.1 41.3 37.8 34.6 31.5 28.8 26.7
Ac 89.0 83.2 74.1 65.5 57.3 50.4 45.8 41.8 38.3 35.1 32.0 29.2 27.1
Th 90.0 84.1 75.1 66.3 58.1 51.1 46.5 42.4 38.8 35.5 32.4 29.6 27.5
Pa 91.0 85.1 76.0 67.1 58.8 51.7 47.1 43.0 39.3 36.0 32.8 30.1 27.9
U 92.0 86.0 76.9 67.9 59.6 52.4 47.7 43.5 39.8 36.5 33.3 30.6 28.3
Np 93.0 87.0 78.0 69.0 60.0 53.0 48.0 44.0 40.0 37.0 34.0 31.0 29.0
Po 94.0 88.0 79.0 69.0 61.0 54.0 49.0 44.0 41.0 38.0 34.0 31.0 29.0
Am 95.0 89.0 79.0 70.0 62.0 55.0 50.0 45.0 42.0 38.0 35.0 32.0 30.0
Cm 96.0 90.0 80.0 71.0 62.0 55.0 50.0 46.0 42.0 39.0 35.0 32.0 30.0
Bk 97.0 91.0 81.0 72.0 63.0 56.0 51.0 46.0 43.0 39.0 36.0 33.0 30.0
Cf 98.0 92.0 82.0 73.0 64.0 57.0 52.0 47.0 43.0 40.0 36.0 33.0 31.0
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Appendix 7
X-Ray Wavelengths (nm)

E(Kα) Kα1 Kα2 Kβ K Lα1 L III

Element (keV) Edge Edge

1 H
2 He
3 Li 0.05 22.8000 22.6500
4 Be 0.11 11.4000 11.1000
5 B 0.18 6.7600 6.5957

6 C 0.28 4.4700 4.3680
7 N 0.39 3.1600 3.0990
8 O 0.52 2.3620 2.3320
9 F 0.68 1.8320 1.8076
10 Ne 0.85 1.4610 1.4452 1.4302

11 Na 1.04 1.1910 1.1575 1.1569 40.5000
12 Mg 1.25 9.8900 0.9521 0.9512 25.0700
13 Al 1.49 0.8339 0.8342 0.7960 0.7948 17.0400
14 Si 1.74 0.7125 0.7128 0.6753 0.6738 12.3000
15 P 2.01 0.6157 0.6160 0.5796 0.5784 9.4000

16 Si 2.31 0.5372 0.5375 0.5032 0.5019 7.5610
17 Cl 2.62 0.4728 0.4731 0.4403 0.4397 6.2000
18 Ar 2.96 0.4192 0.4195 0.3886 0.3871 5.0612
19 K 3.31 0.3741 0.3745 0.3454 0.3437 4.2100
20 Ca 3.69 0.3358 0.3362 0.3090 0.3070 3.6330 3.5490

21 Sc 4.09 0.3031 0.3034 0.2780 0.2762 3.1350 3.0846
22 Ti 4.51 0.2749 0.2752 0.2514 0.2497 2.7420 2.7290
23 V 4.95 0.2504 0.2507 0.2284 0.2269 2.4250 2.4172
24 Cr 5.41 0.2290 0.2294 0.2085 0.2070 2.1640 2.0700
25 Mn 5.90 0.2102 0.2106 0.1910 0.1896 1.9450 1.9345

26 Fe 6.40 0.1936 0.1940 0.1757 0.1743 1.7590 1.7525
27 Co 6.93 0.1790 0.1793 0.1621 0.1608 1.5972 1.5915
28 Ni 7.47 0.1658 0.1662 0.1500 0.1488 1.4561 1.4525
29 Cu 8.04 0.1541 0.1544 0.1392 0.1381 1.3336 1.3288
30 Zn 8.63 0.1435 0.1439 0.1295 0.1283 1.2254 1.2131

(continued)



310 Appendix 7

E(Kα) Kα1 Kα2 Kβ K Lα1 L III

Element (keV) Edge Edge

31 Ga 9.24 0.1340 0.1344 0.1208 0.1196 1.1292 1.1100
32 Ge 9.88 0.1254 0.1258 0.1129 0.1117 1.0436 1.0187
33 As 10.53 0.1176 0.1180 0.1057 0.1045 0.9671 0.9367
34 Se 11.21 0.1105 0.1109 0.0992 0.0980 0.8990 0.8646
35 Br 11.91 0.1040 0.1044 0.0933 0.0920 0.8375 0.7984

36 Kr 12.63 0.0980 0.0984 0.0879 0.0866 0.7817 0.7392
37 Rb 13.38 0.0926 0.0930 0.0829 0.0816 0.7318 0.6862
38 Sr 14.14 0.0875 0.0879 0.0783 0.0770 0.6863 0.6387
39 Y 14.93 0.0829 0.0833 0.0741 0.0728 0.6449 0.5962
40 Zr 15.75 0.0786 0.0790 0.0702 0.0689 0.6071 0.5579

41 Mb 16.58 0.0746 0.0750 0.0666 0.0653 0.5724 0.5230
42 Mo 17.44 0.0709 0.0714 0.0632 0.0620 0.5407 0.4913
43 Tc 18.33 0.0675 0.0679 0.0601 0.0589 0.5115 0.4630
44 Ru 19.24 0.0643 0.0647 0.0572 0.0561 0.4846 0.4369
45 Rh 20.17 0.0613 0.0618 0.0546 0.0534 0.4597 0.4130

46 Pd 21.12 0.0585 0.0590 0.0521 0.0509 0.4368 0.3907
47 Ag 22.11 0.0559 0.0564 0.0497 0.0486 0.4154 0.3700
48 Cd 23.11 0.0535 0.0539 0.0475 0.0464 0.3956 0.3505
49 In 24.14 0.0512 0.0517 0.0455 0.0444 0.3772 0.3324
50 Sn 25.20 0.0491 0.0495 0.0435 0.0425 0.3600 0.3156

51 Sb 26.28 0.0470 0.0475 0.0417 0.0407 0.3439 0.3000
52 Te 27.38 0.0451 0.0456 0.0400 0.0390 0.3289 0.2856
53 I 28.51 0.0433 0.0438 0.0384 0.0374 0.3149 0.2720
54 Xe 29.67 0.0416 0.0421 0.0369 0.0358 0.3017 0.2593
55 Cs 30.86 0.0400 0.0405 0.0354 0.0345 0.2892 0.2474

56 Ba 32.07 0.0385 0.0390 0.0341 0.0331 0.2776 0.2363
57 La 33.31 0.0371 0.0375 0.0328 0.0318 0.2666 0.2261
58 Ce 34.57 0.0357 0.0362 0.0316 0.0306 0.2562 0.2166
59 Pr 35.87 0.0344 0.0349 0.0304 0.0295 0.2463 0.2079
60 Nd 37.19 0.0332 0.0336 0.0293 0.0285 0.2370 0.1997

61 Pm 38.54 0.0320 0.0325 0.0283 0.0274 0.2282 0.1919
62 Sm 39.92 0.0309 0.0314 0.0273 0.0265 0.2200 0.1846
63 Eu 41.33 0.0298 0.0303 0.0264 0.0256 0.2121 0.1776
64 Gd 42.77 0.0288 0.0293 0.0255 0.0247 0.2047 0.1712
65 Tb 44.24 0.0279 0.0283 0.0246 0.0238 0.1977 0.1650

66 Dy 45.73 0.0270 0.0274 0.0238 0.0230 0.1909 0.1592
67 Ho 47.26 0.0261 0.0265 0.0230 0.0223 0.1845 0.1537
68 Er 48.83 0.0252 0.0257 0.0223 0.0216 0.1784 0.1484
69 Tm 50.42 0.0244 0.0249 0.0216 0.0209 0.1727 0.1433
70 Yb 52.04 0.0237 0.0241 0.0209 0.0202 0.1672 0.1386

71 Lu 53.70 0.0229 0.0234 0.0202 0.0196 0.1620 0.1341
72 Hf 55.40 0.0222 0.0227 0.0196 0.0190 0.1570 0.1297
73 Ta 57.11 0.0215 0.0220 0.0190 0.0184 0.1522 0.1255
74 W 58.87 0.0209 0.0214 0.0184 0.0178 0.1476 0.1216
75 Re 60.67 0.0203 0.0208 0.0179 0.0173 0.1432 0.1177

(continued)



X-Ray Wavelengths (nm) 311

E(Kα) Kα1 Kα2 Kβ K Lα1 L III

Element (keV) Edge Edge

76 Os 62.50 0.0197 0.0202 0.0174 0.0168 0.1391 0.1141
77 Ir 64.36 0.0191 0.0196 0.0169 0.0163 0.1351 0.1106
78 Pt 66.26 0.0186 0.0190 0.0164 0.0158 0.1313 0.1072
79 Au 68.20 0.0180 0.0185 0.0159 0.0154 0.1276 0.1040
80 Hg 70.18 0.0175 0.0180 0.0154 0.0149 0.1241 0.1009

81 Tl 72.19 0.0170 0.0175 0.0150 0.0145 0.1207 0.0979
82 Pb 74.25 0.0165 0.0170 0.0146 0.0141 0.1175 0.0951
83 Bi 76.34 0.0161 0.0166 0.0142 0.0137 0.1144 0.0923
84 Po 78.48 0.0156 0.0161 0.0138 0.0133 0.1114 0.0898
85 At 80.66 0.0152 0.0157 0.0134 0.0130 0.1085 0.0872

86 Rn 82.88 0.0148 0.0153 0.0131 0.0126 0.1057 0.0848
87 Fr 85.14 0.0144 0.0149 0.0127 0.0123 0.1030 0.0825
88 Ra 87.46 0.0140 0.0145 0.0124 0.0119 0.1005 0.0803
89 Ac 89.81 0.0136 0.0141 0.0121 0.1160 0.0980 0.0781
90 Th 92.22 0.0133 0.0138 0.0117 0.0113 0.0956 0.0761
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Appendix 9
KLL Auger Energies (eV)

2s12p5 2s22p4

2s02p6

1S0
1P1

3P0
3P2

1S0
1D2

3P0
3P0

3P2

KL1 L1 KL1 L2 KL1 L2 KL1 L2 KL1 L3 KL2 L2 KL2 L3 KL3 L3 KL3 L3

C 6 0.243 0.252 0.258 0.258 0.258 0.265 0.266 0.267 0.267
N 7 0.356 0.362 0.369 0.369 0.369 0.373 0.375 0.377 0.377
O 8 0.474 0.486 0.495 0.495 0.495 0.504 0.507 0.509 0.509
F 9 0.610 0.627 0.638 0.638 0.638 0.650 0.654 0.657 0.657
Ne 10 0.761 0.781 0.794 0.794 0.794 0.808 0.813 0.816 0.816
Na 11 0.928 0.952 0.967 0.967 0.967 0.984 0.989 0.993 0.993
Mg 12 0.105 1.135 1.151 1.151 1.151 1.172 1.179 1.183 1.183
Al 13 0.301 1.336 1.354 1.354 1.354 1.379 1.387 1.392 1.392
Si 14 0.516 1.554 1.574 1.574 1.575 1.602 1.611 1.616 1.617
P 15 0.742 1.784 1.805 1.806 1.806 1.835 1.845 1.851 1.852
S 16 0.982 2.034 2.057 2.058 2.059 2.096 2.107 2.114 2.115
Cl 17 2.249 2.305 2.329 2.330 2.331 2.370 2.382 2.389 2.391
Ar 18 2.527 2.586 2.612 2.613 2.614 2.656 2.669 2.677 2.679
K 19 2.815 2.881 2.909 2.910 2.912 2.959 2.973 2.981 2.984
Ca 20 3.122 3.195 3.224 3.225 3.227 3.279 3.294 3.303 3.306
Sc 21 3.456 3.533 3.563 3.564 3.567 3.622 3.638 3.647 3.651
Ti 22 3.799 3.886 3.916 3.919 3.922 3.985 4.002 4.011 4.016
V 23 4.168 4.259 4.290 4.293 4.298 4.362 4.381 4.391 4.397
Cr 24 4.557 4.651 4.683 4.687 4.692 4.757 4.778 4.788 4.795
Mn 25 4.956 5.056 5.089 5.094 5.100 5.169 5.191 5.202 5.211
Fe 26 5.374 5.480 5.514 5.519 5.527 5.598 5.622 5.634 5.644
Co 27 5.808 5.923 5.957 5.964 5.972 6.049 6.075 6.088 6.099
Ni 28 6.264 6.384 6.419 6.426 6.436 6.514 6.542 6.556 6.568
Cu 29 6.732 6.861 6.896 6.905 6.916 7.000 7.030 7.045 7.059
Zn 30 7.214 7.348 7.384 7.394 7.407 7.493 7.526 7.543 7.558
Ga 31 7.712 7.852 7.888 7.900 7.915 8.000 8.037 8.057 8.073
Ge 32 8.216 8.365 8.401 8.416 8.433 8.523 8.563 8.586 8.603
As 33 8.749 8.903 8.939 8.957 8.975 9.063 9.107 9.133 9.152
Se 34 9.283 9.447 9.483 9.504 9.524 9.616 9.665 9.695 9.715
Br 35 9.840 10.014 10.049 10.074 10.096 10.189 10.244 10.279 10.300
kr 36 10.412 10.594 10.630 10.658 10.682 10.777 10.837 10.877 10.899
Rb 37 10.995 11.186 11.221 11.255 11.280 11.376 11.442 11.487 11.511

(continued)
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2s12p5 2s22p4

2s02p6

1S0
1P1

3P0
3P2

1S0
1D2

3P0
3P0

3P2

KL1 L1 KL1 L2 KL1 L2 KL1 L2 KL1 L3 KL2 L2 KL2 L3 KL3 L3 KL3 L3

Sr 38 11.595 11.795 11.830 11.870 11.897 11.992 12.066 12.118 12.143
Y 39 12.213 12.422 12.457 12.503 12.532 12.626 12.708 12.767 12.793
Zr 40 12.851 13.069 13.104 13.157 13.188 13.279 13.370 13.437 13.464
Mb 41 13.505 13.731 13.766 13.827 13.860 13.948 14.049 14.125 14.153
Mo 42 14.179 14.414 14.449 14.519 14.554 14.639 14.750 14.836 14.865
Te 43 14.867 15.111 15.146 15.226 15.263 15.343 15.466 15.563 15.593
Ru 44 15.574 15.827 15.862 15.952 15.991 16.066 16.202 16.310 16.341
Rh 45 16.298 16.560 16.595 16.697 16.738 16.806 16.956 17.077 17.109
Pd 46 17.040 17.312 17.347 17.462 17.504 17.565 17.729 17.864 17.897
Ag 47 17.797 18.078 18.113 18.242 18.286 18.339 18.519 18.668 18.702
Cd 48 18.568 18.857 18.892 19.037 19.082 19.125 19.322 19.488 19.523
In 49 19.354 19.653 19.688 19.849 19.896 19.930 20.144 20.327 20.364
Sn 50 20.157 20.465 20.501 20.680 20.728 20.750 20.984 21.185 21.223
Sb 51 20.977 21.295 21.331 21.529 21.579 21.588 21.844 22.065 22.104
Te 52 21.814 22.142 22.179 22.398 22.449 22.444 22.722 22.965 23.005
I 53 22.668 23.006 23.043 23.284 23.338 23.316 23.618 23.884 23.925
Xe 54 23.527 23.879 23.916 24.182 24.237 24.201 24.530 24.822 24.863
Cs 55 24.426 24.783 24.820 25.111 25.167 25.109 25.463 25.781 25.823
Ba 56 25.330 25.697 25.735 26.053 26.111 26.033 26.416 26.762 26.805
La 57 26.251 26.631 26.669 27.018 27.077 26.978 27.393 27.769 27.813
Ce 58 27.201 27.590 27.628 28.009 28.069 27.945 28.393 28.802 28.847
Pr 59 28.171 28.572 28.610 29.024 29.086 28.936 29.420 29.863 29.909
Nd 60 29.163 29.574 29.612 30.063 30.126 29.947 30.468 30.948 30.995
Pm 61 30.170 30.592 30.631 31.120 31.184 30.976 31.537 32.056 32.104
Sm 62 31.199 31.631 31.671 32.200 32.266 32.024 32.627 33.186 33.235
Eu 63 32.247 32.690 32.730 33.303 33.370 33.092 33.740 34.345 34.395
Gd 64 33.315 33.769 33.809 34.429 34.497 34.182 34.877 35.528 35.579
Tb 65 34.402 34.868 34.909 35.576 35.646 35.291 36.036 36.736 36.788
Dy 66 35.512 35.988 36.029 36.749 36.820 36.421 37.220 37.972 38.025
Ho 67 36.640 37.127 37.169 37.944 38.016 37.570 38.425 39.234 39.287
Er 68 37.788 38.287 38.329 39.162 39.236 38.740 39.655 40.522 40.576
Tm 69 38.958 39.469 39.512 40.406 40.481 39.934 40.911 41.840 41.895
Yb 70 40.151 40.674 40.716 41.675 41.752 42.192 41.149 43.186 43.242
Lu 71 41.361 41.897 41.940 42.967 43.045 42.383 43.496 44.559 44.617
Hf 72 42.589 43.137 43.181 44.280 44.359 43.635 44.821 45.957 46.015
Ta 73 43.831 44.391 44.436 45.611 45.691 44.900 46.164 47.377 47.436
W 74 45.097 45.671 45.715 46.971 47.053 46.193 47.538 48.831 48.891
Re 75 46.385 46.972 47.018 48.357 48.440 47.507 48.938 50.315 50.376
Os 76 47.690 48.291 48.337 49.767 49.851 48.839 50.361 51.830 51.892
Fr 77 49.022 49.636 49.682 51.205 51.291 50.195 51.812 53.375 53.437
Pt 78 50.375 51.003 51.050 52.672 52.759 51.575 53.292 54.954 55.017
Au 79 51.752 52.393 52.440 54.167 54.255 52.978 54.801 56.568 56.633
Hg 80 53.149 53.802 53.849 55.685 55.774 54.397 56.330 58.206 58.272
Tl 81 54.554 55.227 55.275 57.225 57.316 55.840 57.890 59.882 59.948
Pb 82 55.992 56.677 56.726 58.799 58.891 57.302 59.476 61.591 61.658
Bi 83 57.451 58.155 58.205 60.402 60.495 58.799 61.098 63.338 63.406
Po 84 58.918 59.640 59.690 62.026 62.120 60.299 62.739 65.118 65.187
At 85 60.427 61.163 61.213 63.689 63.784 61.836 64.416 66.935 67.005
Rn 86 61.980 62.720 62.771 65.392 65.489 63.397 66.124 68.789 68.860
Fr 87 63.523 64.286 64.337 67.114 67.212 64.983 67.868 70.690 70.762

(continued)
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2s12p5 2s22p4

2s02p6

1S0
1P1

3P0
3P2

1S0
1D2

3P0
3P0

3P2

KL1 L1 KL1 L2 KL1 L2 KL1 L2 KL1 L3 KL2 L2 KL2 L3 KL3 L3 KL3 L3

Ra 88 65.103 65.887 65.939 68.879 68.978 66.604 69.654 72.640 72.712
Ac 89 66.720 67.509 67.562 70.673 70.774 68.232 71.453 74.611 74.684
Th 90 68.341 69.153 69.207 72.498 72.600 69.898 73.302 76.640 76.714
Pu 91 70.016 70.842 70.896 74.373 74.476 71.599 75.190 78.714 78.789
U 92 71.704 72.550 72.604 76.280 76.384 73.327 77.116 80.839 80.916
Np 93 73.437 74.297 74.351 78.236 78.342 75.085 79.086 83.019 83.096
Pa 94 75.204 76.080 76.135 80.237 80.344 76.884 81.103 85.254 85.332
Am 95 77.060 77.930 77.985 82.317 82.425 78.727 83.177 87.558 87.637
Cm 96 78.867 79.590 79.646 84.386 84.495 80.240 85.099 89.888 89.968
Bk 97 80.594 81.528 81.585 86.408 86.518 82.388 87.331 92.204 92.284
Cf 98 83.286 84.187 84.245 89.453 89.565 85.017 90.348 95.607 95.688
Es 99 85.219 86.146 86.204 91.701 91.814 86.997 92.617 98.165 98.248
Fm 100 87.205 88.144 88.203 93.998 94.113 89.006 94.926 100.774 100.857
Md 101 89.221 90.192 90.251 96.356 96.471 91.085 97.315 103.472 103.556
No 102 91.267 92.260 92.320 98.763 98.880 93.173 99.744 106.240 106.325
Lr 103 93.373 94.388 94.448 101.250 101.368 95.322 102.252 109.108 109.194
Ku 104 95.518 96.555 96.615 103.796 103.915 97.510 104.820 112.055 112.142



Appendix 10
Table of the Elements

ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

H 1 1.007825 0.9999 1.008
He 2 4.002603 1.0000 4.003
Li 3 6.015125 0.0756 6.94 4.70E + 22 0.542

7.016004 0.9244
Be 4 9.012186 1.0000 9.012 1.21E + 23 1.82
B 5 10.012939 0.1961 10.814 1.30E + 23 2.47

11.009305 0.8039
C 6 12.000000 0.9889 12.011 1.76E + 23 3.516

13.003354 0.0111
N 7 14.003074 0.9963 14.007

15.000108 0.0037
C 8 15.994915 0.9976 15.999

16.999133 0.0004
17.999160 0.0020

F 9 18.998405 1.0000 18.998
Ne 10 19.992441 0.9092 20.171 4.36E + 22 1.51

20.993849 0.0026
21.991385 0.0882

Na 11 22.989771 1.0000 22.99 2.65E + 22 1.013
Mg 12 23.985042 0.7870 24.31 4.30E + 22 1.74

24.985839 0.1013
25.982593 0.1117

Al 13 26.981539 1.0000 26.982 6.02E + 22 2.7
Si 14 27.976929 0.9221 28.086 5.00E + 22

28.976496 0.0470
29.973763 0.0309

P 15 30.973765 1.0000 30.974
S 16 31.972074 0.9500 32.061

32.971462 0.0076
33.967865 0.0422
35.967090 0.0001

Cl 17 34.968851 0.7577 35.453
36.965899 0.2423

(continued)
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ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

Ar 18 35.967545 0.0034 39.948 2.66E + 22 1.77
37.962728 0.0006
39.962384 0.9960

K 19 38.963710 0.9310 39.097 1.40E + 22 0.91
39.964000 0.0001
40.961832 0.0688

Ca 20 39.962589 0.9697 40.081 2.30E + 22 1.53
41.958625 0.0064
42.958780 0.0015
43.955491 0.0206
47.952531 0.0019

Sc 21 44.955919 1.0000 44.956 4.27E + 22 2.99
Ti 22 45.952632 0.0793 47.879 5.66E + 22 4.51

46.951769 0.0728
47.947950 0.7394
48.947870 0.0551
49.944786 0.0534

V 23 49.947164 0.0024 50.942 7.22E + 22 6.09
50.943961 0.9976

Cr 24 49.946055 0.0435 51.996 8.33E + 22 7.19
51.940513 0.8376
52.940653 0.0951
53.983882 0.0238

Mn 25 54.938050 1.0000 54.938 8.18E + 22 7.47
Fe 26 53.939617 0.0582 55.847 8.50E + 22 7.87

55.934936 0.9166
56.935398 0.0219
47.933282 0.0033

Co 27 58.933189 1.0000 58.933 8.97E + 22 8.9
Ni 28 57.935342 0.6788 58.728 9.14E + 22 8.91

59.930787 0.2623
60.931056 0.0119
61.928342 0.0366
63.927958 0.0108

Cu 29 62.929592 0.6917 63.546 8.45E + 22 8.93
64.927786 0.3083

Zn 30 63.929145 0.4889 65.387 6.55E + 22 7.13
65.926052 0.2781
66.927145 0.0411
67.924857 0.1857
69.925334 0.0062

Ga 31 68.925574 0.6040 69.717 5.10E + 22 5.91
70.924706 0.3960

Ge 32 69.924252 0.2052 72.638 4.42E + 22 5.32
71.922082 0.2743
72.923463 0.0776
73.921181 0.3654
75.921405 0.0776

As 33 74.921596 1.0000 74.922
(continued)
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ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

Se 34 73.922476 0.0087 78.99 3.67E + 22 4.81
75.919207 0.0902
76.919911 0.0758
77.917314 0.2352
79.916527 0.4982
81.916707 0.0919

Br 35 78.918329 0.5069 79.904 2.36E + 22 4.05
80.916292 0.4931

Kr 36 77.920403 0.0035 83.801 2.17E + 22 3.09
79.916380 0.0227
81.913482 0.1156
82.914131 0.1155
83.911503 0.5690
85.910616 0.1737

Rb 37 84.911800 0.7215 85.468 1.15E + 22 1.629
86.909187 0.2785

Sr 38 83.913430 0.0056 87.616 1.78E + 22 2.58
85.909285 0.0986
86.908892 0.0702
87.905641 0.8256

Y 39 88.905872 1.0000 88.906 3.02E + 22 4.48
Zr 40 89.904700 0.5146 91.224 4.29E + 22 6.51

90.905642 0.1123
91.905031 0.1711
93.906313 0.1740
95.908286 0.0280

Nb 41 92.906382 1.0000 9.2906 5.56E + 22 8.58
Mo 42 91.906810 0.1584 95.89 6.42E + 22 10.22

93.905090 0.0904
94.905839 0.1572
95.904674 0.1653
96.906022 0.0946
97.905409 0.2378
99.907475 0.0963

Tc 43 0.000000 0.0000 7.04E + 22 11.5
Ru 44 95.907598 0.0551 1.01E+02 7.36E + 24 12.36

97.905289 0.0187
98.905636 0.1272
99.904218 0.1262

100.905577 0.1707
101.904348 0.3161
103.905430 0.1858

Rh 45 102.905511 1.0000 102.906 7.26E + 22 12.42
Pd 46 101.905609 0.0096 106.441 6.80E + 22 12

103.904011 0.1097
104.905064 0.2223
105.903479 0.2733
107.903891 0.2671
109.905164 0.1181

Ag 47 106.905094 0.5183 107.868 5.85E + 22 10.5
108.904756 0.4817

(continued)
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ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

Cd 48 105.906463 0.0122 112.434 4.64E + 22 8.65
107.904187 0.0088
109.903012 0.1239
110.904188 0.1275
111.902763 0.2407
112.904409 0.1226
113.903360 0.2886
115.904762 0.0758

In 49 112.904089 0.0428 114.818 3.83E + 22 7.29
114.903871 0.9572

Sn 50 111.904835 0.0086 118.734 3.62E + 22 5.76
113.902773 0.0066
114.903346 0.0035
115.901745 0.1430
116.902958 0.0761
117.901606 0.2403
118.903313 0.0858
119.902198 0.3285
121.903441 0.0472
123.905272 0.0594

Sb 51 120.903816 0.5725 121.759 3.31E + 22 6.69
122.904213 0.4275

Te 52 119.904023 0.0009 127.628 2.94E + 22 6.25
121.903066 0.0246
122.904277 0.0087
123.902842 0.0461
124.904418 0.0699
125.903322 0.1871
127.904476 0.3179
129.906238 0.3448

I 53 126.904470 1.0000 126.904 2.36E + 22 4.95
Xe 54 123.906120 0.0010 131.305 1.64E + 22 3.78

125.904288 0.0009
127.903540 0.0192
128.904784 0.2644
129.903509 0.0408
130.905085 0.2118
131.904161 0.2689
133.905367 0.1044
135.907221 0.0887

Cs 55 132.905355 1.0000 132.905 9.05E + 21 1.997
Ba 56 129.906245 0.0010 137.327 1.60E + 22 3.59

131.905120 0.0010
133.904612 0.0242
134.905550 0.0659
135.904300 0.0781
136.905500 0.1132
137.905000 0.7166

La 57 137.906910 0.0009 138.905 2.70E + 22 6.17
138.906140 0.9991

(continued)
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ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

Ce 58 135.907100 0.0019 140.101 2.91E + 22 6.77
137.905830 0.0025
139.905392 0.8848
141.909140 0.1107

Pr 59 140.907596 1.0000 140.908 2.92E + 22 6.78
Nd 60 141.907663 0.2711 144.241 2.93E + 22 7

142.909779 0.1217
143.910039 0.2385
144.912538 0.0830
145.913086 0.1722
147.916869 0.0573
149.920915 0.0562

Pm 61 0.000000 0.0000
Sm 62 143.911989 0.0309 150.363 3.03E + 22 7.54

146.914867 0.1497
147.914791 0.1124
148.917180 0.1383
149.917276 0.0744
151.919756 0.2672
153.922282 0.2271

Eu 63 150.919838 0.4782 151.964 2.04E + 22 5.25
152.921242 0.5218

Gd 64 151.919794 0.0020 157.256 3.02E + 22 7.89
153.920929 0.0215
154.922664 0.1473
155.922175 0.2047
156.924025 0.1568
157.924178 0.2487
159.927115 0.2190

Tb 65 158.925351 1.0000 158.925 3.22E + 22 8.27
Dy 66 155.923930 0.0005 162.484 3.17E + 22 8.53

157.924449 0.0009
159.925202 0.0229
160.926945 0.1888
161.926803 0.2553
162.928755 0.2497
163.929200 0.2818

Ho 67 164.930421 1.0000 164.93 3.22E + 22 8.8
Er 68 161.928740 0.0014 167.261 3.26E + 22 9.04

163.929287 0.0156
165.930307 0.3341
166.932060 0.2294
167.932383 0.2707
169.935560 0.1488

Tm 69 168.934245 1.0000 168.934 3.32E + 22 9.32
Yb 70 167.934160 0.0014 173.036 3.02E + 22 6.97

169.935020 0.0303
170.936430 0.1431
171.936360 0.2182
172.938060 0.1613
173.938740 0.3184
175.942680 0.1273

(continued)
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ATOMIC ATOMIC
AT. # ISOTOPIC MASS RELATIVE WEIGHT DENSITY SPECIFIC

ELEMENT (Z) (amu) ABUNDANCE (amu) (atom/cm3) GRAVITY

Lu 71 174.940640 0.9741 174.967 3.39E + 22 9.84
175.942660 0.0255

Hf 82 173.940360 0.0018 178.509 4.52E + 22 13.2
175.941570 0.0520
176.943400 0.1850
177.943880 0.2714
178.946030 0.1375
179.946820 0.3524

Ta 73 179.947544 0.0001 180.948 5.55E + 22 16.66
180.948007 0.9999

W 74 179.947000 0.0014 183.842 6.30E + 22 19.25
181.948301 0.2641
182.950324 0.1440
183.951025 0.3064
185.954440 0.2841

Re 75 184.953059 0.3707 186.213 6.80E + 22 21.03
186.955833 0.6293

Cs 76 183.952750 0.0002 190.333 7.14E + 22 22.58
185.953870 0.0159
186.955832 0.0164
187.956081 0.1330
188.958300 0.1610
189.958630 0.2640
191.961450 0.4100

Ir 77 190.960640 0.3730 192.216 7.06E + 22 22.55
192.963012 0.6270

Pt 78 189.959950 0.0001 195.081 6.62E + 22 21.47
191.961150 0.0078
193.962725 0.3290
194.964813 0.3380
195.964967 0.2530
197.967895 0.0721

Au 79 196.966541 1.0000 196.967 5.90E + 22 19.28
Hg 80 195.965820 0.0015 200.617 4.26E + 22 14.26

197.966756 0.1002
198.968279 0.1684
199.968327 0.2313
200.970308 0.1322
201.970642 0.2980
203.973495 0.0685

Tl 81 202.972353 0.2950 204.384 3.50E + 22 11.87
204.974442 0.7050

Pb 82 203.973044 0.0148 207.177 3.30E + 22 11.34
205.974468 0.2360
206.975903 0.2260
207.976650 0.5230

Bi 83 208.980394 1.0000 208.98 2.82E + 22 9.8



Appendix 11
Table of Fluoresence Yields
for K, L, and M Shells

Z Element ωK ωL ωM Z Element ωK ωL ωM

4 Be 4.5 −4 45 Rh 8.07 −1
5 B 10.1 −4 46 Pd 8.19 −1
6 C 2.0 −3 47 Ag 8.30 −1 5.6 −2
7 N 3.5 −3 48 Cd 8.40 −1
8 0 5.8 −3 49 In 8.50 −1
9 F 9.0 −3 50 Sn 8.59 −1

10 Ne 1.34 −2 51 Sb 8.67 −1 1.2 −1
11 Na 1.92 −2 52 Te 8.75 −1 1.2 −1
12 Mg 2.65 −2 53 1 8.82 −1
13 Al 3.57 −2 54 Xe 8.89 −1 1.1 −1
14 Si 4.70 −2 55 Cs 8.95 −1 8.9 −2
15 P 6.04 −2 56 Ba 9.01 −1 9.3 −2
16 S 7.61 −2 57 La 9.06 −1 1.0 −1
17 Cl 9.42 −2 58 Ce 9.11 −1 1.6 −1
18 Ar 1.15 −1 59 Pr 9.15 −1 1.7 −1
19 K 1.38 −1 60 Nd 9.20 −1 1.7 −1
20 Ca 1.63 −1 61 Pm 9.24 −1
21 Sc 1.90 −1 62 Sm 9.28 −1 1.9 −1
22 Ti 2.19 −1 63 Eu 9.31 −1 1.7 −1
23 V 2.50 −1 2.4 .03 64 Gd 9.34 −1 2.0 −1
24 Cr 2.82 −1 3.0 .03 65 Tb 9.37 −1 2.0 −1
25 Mn 3.14 −1 66 Dy 9.40 −1 1.4 −1
26 Fe 3.47 −1 67 Ho 9.43 −1
27 Co 3.81 −1 68 Er 9.45 −1
28 Ni 4.14 −1 69 Tm 9.48 −1
29 Cu 4.45 −1 56 .03 70 Yb 9.50 −1
30 Zn 4.79 −1 71 Lu 9.52 −1 2.9 −1
31 Ga 5.10 −1 6.4 .03 72 Hf 9.54 −1 2.6 −1
32 Ge 5.40 −1 73 Ta 9.56 −1 2.3 −1
33 As 5.67 −1 74 W 9.57 −1 3.0 −1
34 Se 5.96 −1 75 Re 9.59 −1
35 Br 6.22 −1 76 Os 9.61 −1 3.5 −1
36 Kr 6.46 −1 1.0 .02 77 Ir 9.62 −1 3.0 −1
37 Rb 6.69 −1 1.0 .02 78 Pt 9.63 −1 3.3 −1
38 Sr 6.91 −1 79 Au 9.64 −1 3.9 −1

(continued)
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Z Element ωK ωL ωM Z Element ωK ωL ωM

39 Y 7.11 −1 3.2 −2 80 Hg 9.66 −1 3.9 −1
40 Zr 7.30 −1 81 Tl 4.6 −1
41 Nb 7.48 −1 82 Pb 9.68 −1 3.8 −1 2.9 −2
42 Mo 7.64 −1 6.7 −2 83 Bi 4.1 −1 3.6 −2
43 Tc 7.79 −1 92 U 9.76 −1 5.2 −1 6 −2
44 Ru 7.93 −1

Note that the multipliers in specific columns are powers of 10 (e.g., ωk and ωL for Ag are 8.3 × 10−1

and 3 × 10−3, respectively). The fluorescence yield values ωL and ωM indicate average values for the L
subshells and M subshells.



Appendix 12
Physical Constants, Conversions,
and Useful Combinations

Physical constants
Avogadro constant NA = 6.022 × 1023 particles/mole
Boltzmann constant kB = 8.617 × 10−5 eV/K
Elementary charge e = 1.602 × 10−19 Coulombs
Planck constant h = 4.136 × 10−15 eV − s = 6.626 × 10−34 J-s

h̄ = h/2π = 6.582 × 10−16 eV-s
Speed of light c = 2.998 × 108 cm/s

Useful Combinations
Electron rest mass mc2 = 0.511 MeV
Bohr radius αo = h̄2/me2 = 0.0529 nm
Bohr velocity vo = e2/h̄ = 2.188 × 108 cm/s
Fine structure constant α = e2/h̄c = 7.297 × 10−3 ≈ 1/137
Hydrogen binding energy e2/2αo = 13.606 eV
Classical electron radius re = e2/mc2 = 2.818 × 10−13 cm
Electron charge e2 = 1.4395 eV-nm
Electron Compton wavelength λ̄ = h̄/mc = 3.861 × 10−11 cm
Photon energy-wavelength hc = 1239.85 eV-nm

Conversions
1 Å= 10−8 cm = 10−1 nm
1 eV = 1.602 × 10−19 J
1 eV/particle = 23.06 kcal/mol
mp (proton mass) = 1.6726 × 10−27 kg m
(electron mass) = 9.1095 × 10−31 kg mp/m

mp/m = 1836.1
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Acronyms

AEM Analytical Electron Microscopy
AES Auger Electron Spectroscopy
AFM Atomic Force Microscopy
ED Electron Diffraction
EDS Energy-Dispersive Spectroscopy
EELS Electron Energy-loss Spectroscopy
EMA Electron Microprobe Analysis
ESCA Electron Spectroscopy for Chemical Analysis
EXAFS Extended X-ray Absorption Fine Structure
FRS Forward Recoil Spectroscopy
GAXRD Glancing Angle X-Ray Diffraction
HEED High-Energy Electron Diffraction
HEIS High-Energy Ion Scattering
IIXS Ion-Induced X-ray Spectroscopy
IMMA Ion Microprobe Mass Analysis
LEED Low-Energy Electron Diffraction
LEIS Low-Energy Ion Scattering Neutron Activation Analysis
NRA Nuclear Reaction Analysis
PES Photoelectron Spectroscopy
PIXE Particle-Induced X-ray Emission
PRA Prompt Reaction Analysis
RBS Rutherford Backscattering Spectrometry
RHEED Reflection High Energy
SEM Scanning Electron Microscopy
SEXAF Surface Extended X-ray Absorption Fine Structure
SIMS Secondary Ion Mass Spectroscopy
SNMS Secondary Neutral Mass Spectroscopy
SNOM Scanning Near-Field Optical Microscopy
SPM Scanning Probe Microscopy
STM Scanning Tunneling Microscopy
TEM Transmission Electron Microscopy
TRXRF Total Reflection X-Ray Fluorescence
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UPS Ultraviolet Photoelectron Spectroscopy
WDS Wavelength Dispersive Spectroscopy
XPS X-ray Photoelectron Spectroscopy
XRD X-Ray Diffraction
XRF X-Ray Fluorescence



Index

A
Absorption, X-ray, 185–189, 223
Addition Rule, 155
Activation analysis, 256, 261, 267

sensitivity, 268
AES. See Auger electron spectroscopy
Allowed reflections, 143, 146
Alpha particle, 1–2, 7, 12, 15, 52, 258

range-energy, 53
Aluminum

electron mean free path in, 114
electron ranges in, 120
energy loss in, 36, 39
ion yield, 70
Kα emission, 202
plasmon, 112
structure, 9

Aluminum nitride, analysis of, 271
Arsenic implanted in Si, 72
Atomic level width, 244
Atomic force microscopy, 248
Atomic number, App., 294, 299
Atomic scattering factor, 144
Auger electron spectroscopy, 245–249

chemical shifts, 239
depth profiles, 250–252
detection limit, 246–247
KLL energies, App., 316–318
escape depth, 201
film growth, influence of, 115
nomenclature, 235–237
quantitative analysis, 249–250
transition probability, 240–242
transition rates, 242
yield, 242–244

Auger electrons
KLL energies, App., 316–318

escape depth, 201
influence of film morphology on, 114–118
rates, 243–244
transitions, 235–238
in XPS spectra, 239
yield, 242–244
See also Auger electron spectroscopy

Avogadro’s number, 6–7
Axial channeling, 84, 87–88, 90

B
Backscattering

electron, 250
See also Rutherford backscattering spectrometry

Barn, 21, 211, 259
Beta decay, 264–265
Beta particles, 264
Bethe, energy loss, 39
Binding energy

in Auger electron spectroscopy, 238
chemical shifts, 209–210
of elements, 120
hydrogen atom, 200
in photoelectron spectroscopy, 207–208
shifts, 209–210
tables of, App., 305
in X-ray emission, 215

Bohr
energy loss, 49–50
model, 9–10
radius, 10
straggling, 49–50
velocity, 10

Boron
depth profile, 257
(n, α) reaction, 257
(p, α) reaction, 258

330
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Bragg
in diffraction, 158–159
in energy loss, 40

Breit–Wigner cross section, 259
Bremsstrahlung, 124–126

C
Camera constant in TEM, 167–168, 170
Carbon

photoelectric spectrum, 209
proton irradiation, 257

Center of mass
laboratory transformation, 28–31

Center of mass transformation, 28–31
Central force scattering, 18–21
Channeling, 84

critical angle, 86
flux distribution, 88
lattice location, 89
minimum yield, 87
potential, 85
surface peak, 95–97
thin film analysis, 152, 174

Charged particle reactions, 275
Chemical shifts, 209–210
Chlorine

(n, α) reaction, 261
Cobalt

Auger transitions, 247–248
Coefficient of thermal expansion, 133
Compound nucleus, 258–259, 263
Compounds, energy loss in, 40
Compton scattering, 185
Copper

Auger yield, 116
decay scheme, 265
energy loss in, 67
sputtering of, 68

Correction factor, Rutherford scattering, 23
Coster–Kronig transitions, 223, 236
Coulomb barrier, 258, 270, 272
Coulomb constant, 6
Coulomb force, 19
Coulomb shadow cone, 93
Critical angle in channeling, 86
Cross section

central force scattering, 18–21
electron impact ionization, 110–111
geometrical, 258
inelastic electron, 109–111
nuclear stopping, 63
photoelectric effect, 181–184
proton-induced ionization, 110–111
radiation, 125
resonant, 23, 25, 259

Rutherford, 23–24
screened, 23
square-well, 184
stopping, 35–36
thermal neutron, 269–270
transformation, 28–29
two-body scattering, 21–22
scattering, 17–18

Cross-sectional TEM, 161
Crystals

channeling in, 84–88
lattice parameters, 88–89
thermal vibrations, 87

Cylindrical mirror analyzer, 105, 203, 245

D
de Broglie relation, 8
Density of states, 80, 182
Deposited energy, surface, 63, 68
Depth profiles

Auger, 250–252
backscattering, 43–45
prompt radiation analysis, 269
SIMS, 73, 79
sputtering, 59

Depth resolution
in backscattering, 47
in sputtering, 79

Detection limit
activation analysis, 268
Auger electron spectroscopy, 246–247
electron microprobe, 223
Rutherford backscattering, 54
X-ray photoelectron spectroscopy, 221

Detector, nuclear particle
acceptance angle, 48
Si(Li), 218
solid angle, 17

Deuterium
detection, 50–52

Deuteron
-induced reactions, 262

Diffraction
electron, 152
X-ray, 129
selected area, 164
single crystalline patterns, 166
polycrystalline pattern, 167

Dipole selection rules, 216
Distance of closest approach, 18, 23–24, 66

in channeling, 87

E
Einstein coefficients, 196, 221
Elastic recoil. See Forward recoil spectrometry
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Elastic scattering. See Rutherford scattering
Electron

backscattered fraction, 225
collisions, 109–110
diffraction, 152
energy loss spectroscopy, 120–124
escape depth, 106–109
impact ionization, 110
inelastic collisions, 109–110
mass, 8
mean free path, 113
microprobe, 223
ranges, 118–120
spectroscopies, 105–106

Electron capture, 264–265
Electron configurations, App., 299
Electron energy loss spectroscopy

of NiAl, 122
of Ni silicide, 121–122
yield, 122

Electron microprobe
bremsstrahlung, 223
chemical binding shifts, 209
correction factors, 225–227
detection limit, 224–225
energies, 218
energy dispersive spectroscopy, 218
quantitative analysis, 223
transition rates, 221
wavelength dispersive spectroscopy, 219

Electron microscopy, 160
Electron shakeup, 208, 212
Electron spectrometer, 203–204
Electron spectroscopy for chemical analysis. See

X-ray photoelectron spectroscopy
Electronic energy loss. See Energy loss
Electrostatic analyzer, 24–26, 121, 203
Endoergic nuclear reaction, 261
Energy dispersive spectroscopy, 218
Energy loss

in compounds, 40
electron–electron, 120–124
electron–plasmon, 111
electronic, 40
to electrons, 39–40
factor, 42
in mylar, 51
nuclear, 63–66
in silicon, 40–41
stopping cross section, 35–36
straggling, 47–50

Energy resolution
backscattering, 16–17, 25
cylindrical mirror analyzer, 105–106
X-ray spectra, 219–220

Energy transfer, recoil, 13
Energy width in backscattering, 40–43
Energy width of atomic states, 220
Epitaxy

Au on Ag, 97–99
Au on Pd, 100–101
in channeling, 102–103
pseudomorphic growth, 99
strain measurement, 137

ESCA. See X-ray photoelectron spectroscopy
Escape depth

Auger electrons, 201
photoelectrons, 211
universal curve, 107–109

Ewald sphere, 159
Excitation energy, 38–39, 113, 120
Exoergic nuclear reaction, 261
Extended X-ray absorption fine structure,

189–192

F
Fermi

golden rule, 181, 192–194
level, 122, 187

Film growth
epitaxial, 99
influence on Auger electrons, 114–118
islands, 116
layer-by-layer, 114
statistical distribution, 114
types of, 114

Final state effects, 207–209
Fine structure constant, 10
Fluorescence yield, App., 325
Flux distribution in channeling, 89–92
Forward recoil spectrometry, 28

depth profiles, 50
Frank–van der Merwe film growth, 114

G
Gallium arsenide, ion yield, 71
Gamma decay, 265–266
Gaussian, 49
Germanium

Auger transitions, 242
plasmon, 112

Gold
epitaxy on Ag, 101

Grazing angle techniques, 48
in channeling, 102
in Rutherford backscattering, 48

H
Hamiltonian, 176, 181, 192–193
Heisenberg uncertainty principle, 222
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Helium
energy loss, App., 296
-induced X-ray emission, 227
kinematic factor, App., 296
ranges, 52–54
scattering cross section, App., 302
sputtering yield, 53
stopping cross section, App., 296

Hydrogen detection
depth profiles, 50–52
forward recoil, 28
in nuclear reaction analysis, 52, 274
in SIMS, 73

Hydrogenic atom
Auger transitions, 235–238
binding energy, 200
Bohr model, 9–10
dipole selection rules, 216
photoelectric cross section, 184–185
wave function, 177–178

Hydrogenic wave function, 177–178
photoelectric cross section, 184–185

I
Impact ionization cross section

electrons, 110–111
protons, 227

Impact parameter, 17–18
Impulse approximation, 64
Impurities, lattice location, 88
Interface broadening, sputtering,

79–80
Ion bombardment

ion mixing, 75–77
phase transformations, 134
preferential sputtering, 75–77
sputtering, 60–63

Ion-induced X-ray emission, 227
Ion mixing, 75–77
Ionization potential, App., 299
Islands, thin film, 116
Isobar, 257
Isomer, 257
Isotone, 257
Isotope, 257

K
K absorption edge, 186, 188, 190
K X-ray emission, 244
Kinematic factor, App., 296
Kinematics

center of mass to laboratory, 28–31
elastic collisions, 13–16
factor, App., 296
nuclear reactions, 260–262

L
L-S coupling, 238
Laue Equations, 157
Lattice constants

interplanar spacing, 153–154
Lattice location in channeling, 88
LEED. See Low-energy electron diffraction
Lifetime of atomic states, 222
Lindhard

channeling potential, 66
reduced energy length, 66

Linewidth, 204
Lorentzian line shape, 245
Low-energy electron diffraction

notation, 9
patterns, 9

Low-energy ion scattering, 24–28

M
Magnesium

decay scheme, 265
K, X-ray emission, 244
KLL Auger transitions, 242
plasmon, 112

Mass absorption coefficient
tabulated values, App., 312

Mass density, App., 312
Mass energies, 8
Mass range, electron, 120
Mass spectrometry

secondary ion, 69–73
secondary neutral, 73–74

Mean free path
Auger electrons, 250
electron, 113–114, 192
electron–plasmon, 114
influence of film morphology on, 115
photoelectrons, 211
universal curve, 107

Microprobe. See Electron microprobe
Miller indices, 146–148, 155
Minimum yield in channeling, 87
Molière potential

shadow cone radius, 96
Monolayer, 9
Mylar

as absorber, 51
ranges in, 52–54

N
Neutrino, 264
Neutron-induced reactions, 269–270
Nickel

aluminide, 121
Auger transitions, 221–222
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Nickel (cont.)
on InP, 250
K, transition rates, 242
mass absorption coefficient, 186
silicide, 46, 121, 224
XPS energy spectrum, 205–207
X-ray filter, 188–189

Nitrogen
(d, α) reaction, 275
(p, α) reaction, 275
(p, n) reaction, 275
nonradiative transitions, 235
Auger, 223
Coster–Kronig, 223

Nuclear energy loss, 63–67
Nuclear radius, 23–24
Nuclear reaction analysis. See Activation analysis;

Prompt radiation analysis
Nuclear reactions

conservation laws, 260
cross sections, 259, 275
energies, 260–262
neutron-induced, 269
nomenclature, 256–257
notation, 261–262
Q-values, 260–266

Nuclear stopping. See Energy loss
Nucleon, 7, 257
Nuclide, 7, 256

O
Oxygen

(α,α) resonance, 24, 25
(d, α) reaction, 272, 273

P
Pair production, 185
Pauli exclusion principle, 179, 212
Periodic table, 7, 179, 197, 207, 221
Phase transformations

ion-induced, 134
thermal, 134

Photoelectric cross section, 185–186, 188–189,
198, 211

Photoelectric effect, 211
hydrogenic atom, 184–185
square-well approximation, 184

Photoelectron spectroscopy See X-ray
photoelectron spectroscopy

Photon flux, 181, 183
Physical constants, App., 327
PIXE. See Proton-induced X-ray

emission
Planar channeling, 84, 87–88
Planar spacing, 104, 153–154, 169–170

Planck
law for thermal radiation, 197

Plane waves, 176
Plasmons

surface, 112
Poisson’s equation, 81
Polycrystalline thin films, 135

diffraction pattern, 135, 170
texture analysis, 135, 138

Positron emission, 264
annihilation, 266

Potential
continuum, 85–87
Coulomb, 25
Molière, 96
Screened, 25
standard, 85, 87
Thomas–Fermi, 27, 66–67

Prompt radiation analysis, 268
charged-particle reactions, 270–272
depth scale, 272
neutron-induced reactions, 258
resonance method, 273–274

Proton-induced X-ray emission, 227–228
Protons

energy loss, 40
induced X-ray emission, 227–228
ionization cross section, 227
mass energy, 8
nuclear reactions, 258–259, 261
ranges, 36

Q
Q-values, 260
Quantum numbers, 177–179, 212, 216, 237

R
Radial distribution function, 177
Radiation sources, 192, 201–203
Radiative capture, 263
Radiative transitions

dipole selection rules, 216
Kα, emissions, 221–223
Kβ/Kα, ratio, 231–232
Probability, 221–222
rate, 221

Radioactive decay, 262
decay law, 265

Radionuclide production, 267
Radius

Bohr, 21, 23
nuclear, 23–24

Ranges
of electrons, 119
of He, 53
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ion, 78–79
in mylar, 53
of protons, 53

RBS. See Rutherford backscattering
spectrometry

Reciprocal space, 153
Reduced energy, length, 66
Reduced mass, 22
Relaxation, surface, 98
Resonance in cross section, 24
Rutherford backscattering spectrometry, 16–17

composition, 46–47
cross section, App., 21–22, 294
depth profiles, 45
deviations in cross section, 45
energy loss factor, 40
energy transferred in, 13
energy width, 40–43
kinematic factor, App., 291
low energy, 24–26
mean energy approximation, 43
scattering cross section, 21–22
scattering relations, 55, 56
screening corrections, 23–24
sensitivity limits, 54–55
spectrum shape, 43
surface energy approximation, 42–43

Rutherford cross section, 28, 43

S
Scanning Probe Microscopy, 277

scanning tunneling microscopy, 279
atomic force microscopy, 284

Scanning tunneling microscopy, 279
Scattering angle, 13–14, 17–20, 22, 29–30, 32, 41,

48, 50, 57, 124, 144, 146, 293
Scattering cross section. See Cross section
Scattering relations, table of, 14, 55, 56

atomic scattering factor, App., 5, 144, 302
structure scattering factor, 144

Schrödinger equation
time dependent, 177
time independent, 177

Screened Coulomb potential, 25, 63, 80, 85
Screening radius, Thomas–Fermi, 64
Secondary fluorescence, 225
Secondary ion mass spectrometry, 69–83

hydrogen detection, 72–73
ionization yield, 73
preferential sputtering, 75

Secondary neutral mass spectrometry, 73–75, 328
Selected area diffraction, 154
Shadow cone in channeling, 85, 93–98
SiO2, on Si

binding energies, 209

channeling analysis, 101–102
energy loss in, 42
nuclear reaction analysis, 273

Silicon
Auger transitions, 107–108, 237
channeling in, 91–92
LEED patterns, 9
plasmon, 209
sputtering yield, 61
stopping cross section, 41

Solid angle, 17, 44, 54–55, 71, 106, 225
Spherical harmonics, 229
Spin orbit splitting, 179
Sputtering

in Auger electron spectroscopy, 245–252
in backscattering, 250
depth profiles, 73, 79
interface broadening, 77–80
preferential, 75–77
yield, 60, 67–69

Statistical model of atom, 80–81
Structure scattering factor, 144
Stopping cross section, 35, 36, 40, 46, 63, 296–298

electronic, 35
nuclear, 66–67
tabulated values, App., 296

Stopping power. See Energy loss
Straggling, energy loss, 47–50
Stranski–Krastanov film growth, 114
Surface interaction, 84, 92–93, 277
Surface peak in channeling, 95–97
Surface plasmon, 112
Synchrotron radiation, 190–192, 203

T
Texture measurement, 135
Thermal expansion, 133
Thermal vibration

amplitude, 86, 94–96, 100, 103
Thomas–Fermi

potential, 66–67
screening radius, 64
statistical model, 80–81

Time-dependent perturbations, 192–197
Transition probability

Auger transitions, 240–242
dipole selection rules, 216
fluorescence yield, 222
Kβ/Kα, ratio, 231–232
in oscillating electric field, 194–196
radiative transitions, 228–232
spontaneous, 196
time-dependent perturbation, 181, 192–194

Transition rate
Auger transitions, 240–242
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Transition rate (cont.)
Fermi’s golden rule 181, 192
nuclear, 258
photoelectric effect, 181–184
radiative transitions, 215, 242
spontaneous emission, 221
time-dependent perturbation, 181, 192–194
X-ray emission, 215, 222

Transmission electron microscopy
camera constant, 167
diffraction patterns, 166–171
sample preparation, 160–163

Tritron, 257
Tungsten, channeling in, 99
Two-atom model, 92–93

U
Ultraviolet photoemission spectroscopy, 202
Uncertainty principle, 220, 222, 244
Unified mass unit, 6–7
Units, App., 327
Universal curve, 107

channeling surface peak, 96
electron mean free path, 107, 109, 211
nuclear energy loss, 66–67

V
Volmer–Weber film growth, 114

W
Wave functions

Auger transitions, 240–242
hydrogenic, 177–178
plane waves, 176
spherical, 177
X-ray transitions, 221

Wavelength
Compton, 185
de Broglie, 8, 152, 260
electron, 152
photon, 152

Wavelength dispersive spectroscopy, 219, 329
Work function, 204

X
X-ray

absorption, 185–189
chemical shifts, 209
diffraction, 129
filter, 188–189
monochromator, 202
photoelectron spectroscopy, 200
powder analysis, 130
proton-induced, 215
spectroscopy, 216, 220
symbols, 180
transition rates, 221
yields, 243

X-ray photoelectron spectroscopy
chemical shifts, 209
cross section, 211
detection limit, 223, 247
electron spectrometers, 203–204
energy spectrum, 205–207
kinetic energy, 204–205
quantitative analysis, 211–212
radiation sources, 201–203

X-ray spectroscopy
dipole selection rules, 216
energies, App., 305
nomenclature, 216
sources, 244
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