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 Preface 

The strength of metallic materials determines the usability and reliability of all 
the machines, tools and equipment around us. Yet, the question about which 
mechanisms control the strength and damage resistance of materials and how they 
can be optimised remains largely unanswered. How do real, heterogeneous mate-
rials deform and fail? Why can a small modification of the microstructure increase 
the strength and damage resistance of materials manifold? How can the strength of 
heterogeneous materials be predicted?  

The purpose of this book is to present different experimental and computational 
analysis methods of micromechanics of damage and strength of materials and to 
demonstrate their applications to various micromechanical problems. This book 
summarizes at a glance some of the publications of the Computational Mechanics 
Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and mesome-
chanical modelling and experimental analysis of strength and damage of metallic 
materials.  

In chapter 1, the micromechanisms of damage and fracture in different groups 
of materials are investigated experimentally, using direct observations and inverse 
analysis. The interaction of microstructural elements with the evolving damage is 
studied in these experiments. Chapter 2 presents different approaches to the mi-
cromechanical simulation of composite materials: embedded unit cells, multiphase 
finite elements and multiparticle unit cells. Examples of the application of these 
models to the analysis of deformation and damage in different materials are given. 
Chapter 3 deals with the methods of numerical modelling of damage evolution and 
crack growth in heterogeneous materials. Different methods of damage evolution 
modelling, in particular in materials with ductile (aluminium, cobalt) and brittle 
matrices, are applied to investigate the interrelations between microstructures and 
strength of these materials. Chapter 4 provides an insight into several methods of 
micromechanical computational modelling of materials with interpenetrating 
phases using graded materials. It defines the matricity model and demonstrates its 
application to the analysis of different materials. Multilayer models of graded ma-
terials, functionally graded finite elements, multiparticle unit cells with graded 
particle distribution and voxel based method of the 3D FE mesh generation are de-

Chapter 5 deals with methods of atomistics and dislocation modelling of the 
material behaviour and damage. 
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scribed in this chapter as well as models of graded materials used for milling ap-
plications. 
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Chapter 1: Micromechanical Experiments 

The purpose of this chapter is to analyse the micromechanisms of damage and 
fracture in heterogeneous materials, metals and composites, using direct observa-
tions of the damage evolution at the microlevel, combined with the macroscopic 
and/or computational analysis of the damage evolution. 

In section 1.1, a SEM study of the micromechanism of fracture in SiC particle-
reinforced 6061 aluminium composites is presented. The results lead to a better 
understanding of the micromechanism of particle breakage and interface debond-
ing, and the special role of the particle effects in these composites. 
In section 1.2, the mechanisms of damage initiation, evolution and crack growth in 
AlSi cast alloys are studied by in-situ tensile testing in a scanning electron micro-
scope. It is shown that microcracks in these alloys are predominantly formed in 
the Si particles. Shear bands are seen to precede the breaking of the Si particles 
and the dislocation pile-up mechanism can thus be confirmed as the dominant 
damage initiating process in the matrix. Both micro- and macrocrack coalescence 
have been observed in the course of the experiments. The effect of the microstruc-
ture of the AlSi7Mg cast alloys on damage nucleation, crack formation and com-
pliance reduction is analysed. 

In section 1.3, micromechanisms of damage initiation and crack growth in high 
speed and cold work steels are investigated using scanning electron microscopy in 
situ experiments. The role of primary carbides in initiation and growth of cracks in 
tool steels is clarified. It is shown that initial microcracks in the steels are formed 
in primary carbides and then join together. A hierarchical finite element model of 
damage initiation, which included a macroscopic model of the deformation of the 
specimen under real experimental conditions and a mesomechanical model of 
damage in real microstructures of steels, was developed. Using the hierarchical 
model, the conditions of local failure in the steels have been obtained. 

 
 



2      Chapter 1:  Micromechanical Experiments 

1.1 Micromechanisms of fracture in Al/SiC composites1 

Engineering materials with a discontinuous second phase as a toughener [1] or re-
inforcement [2] have been widely studied in materials science and engineering. 
Investigations of the fracture characteristics of SiC particle-reinforced aluminium 
have shown that particle addition usually lowers the fracture toughness [3-5]. Re-
ported fracture toughness’ values for unreinforced aluminium alloys are in the 
range of 25-75 MPa m1/2, while the composites have plane strain toughness values 
of 7-25 MPa m1/2 [6, 7]. Many researchers have shown that the effect of micro-
structure on the fracture toughness is significantly affected by the details of the 
matrix microstructure, interface characteristics, and degree of clustering in the ma-
terials [8-9]. However, SEM fractography has revealed that the fracture surface 
consists of microvoids, corresponding to ductile fracture with dimples [10]. The 
sources of these dimples have been attributed to fracture of SiC particles [11], in-
clusions and precipitates or decohesion from the matrix as well as matrix failure 
[12, 13]. An attempt to explain these special failure characteristics of Al/SiC com-
posite materials, which behave macroscopically brittle, but microscopically duc-
tile, were the main purpose of this work. The fracture toughness tests on the com-
posites were carefully designed with single-edge notched sheet (SENS) [14] 
specimens in the SEM. Both qualitative observations of void nucleation and quan-
titative measurements of crack profiles were made to assess the specific role of the 
particle-reinforcement mechanism in the composites. The microstructure analysis 
is proposed to understand and explain the particle effects during the crack initia-
tion and propagation in these composites. 

1.1.1 Experimental procedure 

The composites used consisted of particle-reinforced aluminium alloy 6061 manu-
factured by extruding mixtures of aluminium powder and SiC particles. The vol-
ume fractions of particles in the composites were 0%, 10% and 20%. The me-
chanical properties of these composites are shown in Table 1.1. Distributions of 
measured SiC particle diameters are shown in Fig. 1.1a and b. 

The SENS sample was designed according to the requirements of the SEM ma-
chine. The dimensions of the sample are shown in Fig. 1.2. The test was carried 
out in a Jeol JSM-35 scanning microscope. The machine automatically records the 
applied load versus displacement curves, and the monitor is used to examine the 
tip of the notch to understand the notch deformation, as well as nucleation, growth 
and coalescence of voids during loading. A record of the process is made by a 
video recorder. 

                                                           
1 Reprinted from X. Ge, S. Schmauder, “Micromechanism of Fracture in Al/SiC Compos-

ites”, J. Mat. Sci. 30, pp. 173-178 (1995) with kind permission from Springer 
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1.1.2 Results of Experiments and Analysis 

Qualitative observations of void nucleation 

General observations were made on the tip and root of the notch during the load-
ing process. Voids nucleated in the middle of the notch root, as observed in the 
SEM, at K0  /K1 equal to 0.68, 0.784, and 0.85 for 0%, 10% and 20% SiC volume 
fraction composites, respectively, where K1, is the stress intensity factor of the 
sample calculated according to Brown and Srawley [15] and K0 is the fracture 
toughness. Measured data of K0 and K1 are shown in Table 1.2. 
 

 
 
 

 
 

Fig. 1.1  Distributions of particle diameters. (a) 10% Al/SiC, (b) 20% Al/SiC (courtesy J. 
Wulf). 
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Table 1.1  
Mechanical properties of Al/SiC composites used in the testa 

Matrix SiC 

(vol%) 

Heat 
b 

Yield 
Strength  
σy (Mpa) 

Ultimate 
Strength  
σu (MPa) 

Elastic 
Modulus  
Ec (Gpa) 

6061 0 T6 368,5 394 71,7 
6061 10 T6 381,2 420 90,5 
6061 20 T6 397 458 107,8 

a Data in Table 1.1 are from Kobe-Steel Corporation. 
b T6 heat treatment: solution treated at 803 K for 2h , water quenched, aged at 448 K for 8 h 
and air cooled. 

 
 
During loading, the first void was observed in the centre of the notch root, Figs 

1.3 and 1.4. Fig. 1.3 shows a stage of void growth at the notch root (arrows 1, 2, 3) 
as well as plastic deformation in the tip region of the notch in 0% SiC composites 
(arrow a). Fig. 1.4a shows void nucleation and growth in a 10% SiC composite 
sample. When the voids grow at the root of the notch, two possibilities exist for 
void growth to cause microcrack initiation in the adjacent free surface: one arises 
at the nearest point to the void in the free surface, characterizing the high stress 
concentration in the notch tip (point a); another, about 120 µm away, will form a 
microcrack (point b). As the loading increases, the voids at the notch root grow 
and coalesce towards the microcrack and combine directly with the microcrack. 
(Fig. 1.4b). Fig. 1.4c is the picture of a local amplification of point c in Fig. 1.4b, 
showing the crack propagation. Fig. 1.4d shows the propagation of the main crack. 
The crack in the Al/20% SiC sample propagates so rapidly that it is difficult to 
record more detail during loading.  

 
 
Fig. 1.2  Dimensions of SENS specimen. 

 

Thickness d = 1,25 mm 
Crack a = 1,75 mm 

treatmentparticle 
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Fig. 1.3  Scanning electron micrograph of void nucleation, growth and coalescence in the 
notch root surface of a pure aluminium sample. 

 

 
 

Fig 1.4  Scanning electron micrographs of void nucleation, growth and coalescence in 
Al/10% SiC. (a) Void nucleation, growth and coalescence, (b) void coalescence and crack 
initiation, (c) local magnification of point c in (b), (d) the main crack propagation. 
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Table 1.2  
Fracture toughness of Al/SiC 

 0% SiC 10% SiC 20% SiC 
K1 (MPa m1/2) 38.7 25.76 22 
K0  (MPa m1/2) 26.4 20.2 18.9 
K0 / K1 0.68 0.784 0.85 

K1 and K0 are calculated from [15] 
 

Quantitative measurements of COD curves 

CODs of the notch and 2u(x) were measured for the specimens, where x is the 
distance behind the notch tip as indicated in Fig. 1.5. The results are directly 
measured from the scanning electron micrographs and are shown in Fig. 1.6.  

 

2/1

2/1
1

)2(
8)(

x

E
Kxu ⎥

⎦

⎤
⎢
⎣

⎡
=

π
 (1.1) 

 
The crack propagation profile is that associated with a plane stress crack with the 
correlated applied stress intensity factor, K1 [16] where K1  is shown in Table 1.2 
and E is Young’s modulus of the composites from Table 1.1. Equation 1.1 is 
plotted together with experimental data in Fig. 1.7. The experimental data are 
lower than that predicted by Equation 1.1. Fig. 1.8 is the stress intensity factor for 
three composites measured behind the crack tip during the R-curve determination. 

 

 
 

Fig. 1.5  Schematic drawing of the SENS specimen. Notch length Co, crack extension  ΔC, 
crack profile by COD, 2u (x) at a distance behind the crack tip. 
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Fig 1.6  Crack opening displacement versus applied load curves. (○) 0% SiC, (□) 10% SiC, 
(◊) 20% SiC. 
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Fig. 1.7  Comparison between (—, - - - -) prediction from Equation 1.1 and (○,□) 
experimental data of the crack profile for (—,○) 10% SiC and (- - -, □ ) 20% SiC. 
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Fig. 1.8  Crack resistance curves for Al/SiC composites: (——) 0%  SiC, (—  —  —) 10% 
SiC, (- - -) 20% SiC. 

 
 

 
 

Fig. 1.9  Scanning electron micrograph showing the properties of the primary and 
secondary voids. 

 
 



1.1 Micromechanisms of fracture in Al/SiC composites      9 

Primary and secondary voids 

Void nucleation is significantly altered when the particles are present. From Fig, 
1.9, there are at least two kinds of void observable in the fracture surface of 
Al/SiC composites. The first kind of void nucleates either at broken particles or at 
decohering interfaces (point a). 

 

 
 

Fig. 1.10  Scanning electron micrograph of primary and secondary voids. 
 
 

Both the size and shape of voids are found to be associated with the SiC 
particles [11], and this is called a primary void. Therefore, the surface of these 
voids characterizes cleavage (Fig. 1.10, point a). The other kind of void is 
nucleated in the matrix ligaments between the particles. The dimensions of these 
voids are about 0.3-1.2 μm for Al/20% SiC composites, as shown in 1.10. From 
Fig. 1.10, point b, it can be seen that these voids are constrained by interface bond 
forms around them and their sizes are very small compared with the primary void. 
These voids are termed secondary voids. They are dimples and characterize 
microscopic ductility. However, these void dimensions are affected significantly 
by particle size, volume fractions, and interface properties.  

Discussion 

In Table 1.2, K0 is the toughness when a void nucleates as observed in SEM, and 
K1 is the stress intensity factor of the material. K0 / K1 can be used to express the 
fracture behaviour of the composites. When a void nucleates and grows, the 
material can still sustain additional applied loading if K0 < K1. When K0 / K1 is 
smaller, i.e. the stages of void nucleation, growth and coalescence are longer, the 
composites show ductile behaviour. If K0 / K1 increases, and tends to 1 as the SiC 
particle volume fraction increases, the effect of void nucleation, growth and 
coalescence decreases, and the material becomes brittle. In Fig. 1.6 the notch 
opening displacement decreases rapidly as particle volume fractions increase. 
When the voids nucleate and grow at the notch root, the curve of load versus 



10      Chapter 1:  Micromechanical Experiments 

notch opening displacement does not change its shape markedly until the voids coa-
lesce to microcrack, particularly in the curve of pure aluminium in Fig. 1.6. Equation 
1.1 is used to describe the crack profile. Compared with curves in Fig. 1.7 and the 
data measured in the test, all data points are obviously lower than predicted by Equa-
tion 1.1, which states the real length of the crack in Al/SiC composites is longer than 
that given by Equation 1.1, and shows the brittle nature of the materials. Fig. 1.8 
shows the R-curve of these composites in the plane stress state. The resistance to the 
crack propagation in pure aluminium is about twice that of Al/20% SiC. During 
practical tensile tests, the curve of applied load versus displacement characterizes 
ductile features for pure aluminium samples and brittle features for Al/20% SiC 
samples. When an applied load reaches a certain criterion value, the crack initiates at 
the tip of the notch and rapidly propagates in Al/20% SiC samples. This situation is 
very similar to crack growth in ceramic matrix composites [17]. 

During the tensile test, more detailed examinations of Al/10% SiC in the SEM 
were made of void nucleation, growth and coalescence, as well as the crack 
initiation. The void was first observed at the symmetry plane of the notch root 
surface (Fig. 1.4a) because there is a high stress constraint region. As the loading 
increases, the first void nucleates and grows and then the second and third voids 
are observed (Fig. 1.4b). Similar situations are found in Fig. 1.3 in the notch root 
of pure aluminium. Comparing Fig. 1.3 with Fig. 1.4a, although there is the same 
number of the voids observed between the centre of the notch root and the free 
surface in these two materials, the size of the voids is very different. The 
maximum size is about 20 µm for pure aluminium, 5 µm for Al/10% SiC. The 
ratio of both void sizes is 4. The deformation of the materials has been altered by 
the particles in the matrix, so the void size becomes small and the composite is 
brittle. But voids are not observed in the free surface of the notch tip region in 
Figs 1.3 and 1.4. When loading increases, the voids coalesce at the notch root, and 
at the same time microcracks initiate in the free surface of the notch tip. The shear 
failure near the notch root and free surface can be observed in Fig. 1.4b. 

After voids coalesce and microcracking initiates, the main crack will be 
formed. The crack meanders microscopically whereas the failed surface is flat 
macroscopically, more so when the SiC volume fraction increases. Although 
apparently easy paths for crack propagation can develop early in the high straining 
process, the main crack does not necessarily follow these routes. The crack 
propagation is mainly affected by the microstructure of the composites. Fig. 1.4c 
indicates three possibilities for crack propagation: point a is a stress concentration 
region caused by a small group of cluster particles; point b shows interface 
debonding in the tip region of the crack; point c is a possible way to form the 
secondary crack connected with the main crack. The crack will follow the 
direction of the easiest propagation. Finally, the crack goes along the point c 
direction in Fig. 1.4d. There are two reasons to explain why the crack follows this 
route. On the top right in Fig. 1.4c, the direction of the crack has been influenced 
to turn left by interface debonding at the left tip region of the crack, which has 
inclined to the maximum principal strain direction, so it is reasonable for the crack 
to turn back to the original line; on the bottom right in Fig. 1.4c, a larger 
debonding is formed. The influence of this debonding on the crack path is greater 
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than that of points a and b. The crack propagation in Al/SiC composites can be de-
scribed as follows: first, the voids nucleate, grow and coalesce at the notch root, 
and a microcrack initiates at the tip of the notch in the free surface; then the voids 
coalesce and connect with the microcrack to form the main crack; third, the 
debonding or particle breakage in the tip region of the crack occur before the crack 
advances; these debonding or broken particles coalesce with the crack, and the 
crack propagates. Observed primary and secondary voids have been shown to 
explain exactly why the Al/SiC composites depict microscopically ductile 
features. The primary voids associate with particles, and the particle can be found 
to be located inside the primary void in Figs 1.9 and 1.10. 

 

 
 

 
 

Fig. 1.11  Debonding and broken particles in Al/20% SiC: (a) in the notch tip region, (b) 
near the failed crack surface. 

The sources of primary voids are the interface debonding or the cracked parti-
cles. Points 1 and 2 in Fig. 1.9 show that both the size and shape of the voids are 
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associated with the SiC particles in it. Points 3 and 4 in Fig. 1.9 show the primary 
voids for particles that may be in the opposite fracture surface. From point a in 
Fig. 1.10, there are cracked particles, showing typical cleavage fracture. It is re-
ported that the particles will crack at a relatively low strain level [18, 19]. The 
stress triaxial constraint around the particle makes the matrix harder than in the 
absence of particles. The linear elastic part of this constraint has been analysed 
theoretically and quantitatively [20]. The reason for debonding and breakage of 
particles at the tip depend on the spacing of particles and interface stress 
constraint. These regions are under a strong deformation constraint and plastic 
strain associated with void formation is smaller. For these reasons, the processes 
of nucleation, growth and coalescence of the secondary voids are then too small to 
exhibit tensile plastic features of the material. The low fracture toughness of these 
composites is mainly determined by primary voids and characterized as brittle 
events, while secondary voids have little influence on the ductile behaviour of the 
materials. 

Because of the high stress concentration at the tip of the crack, interface 
debonding and particle cracking develop prior to the main crack arrival. Fig. 1.11 
shows the region of the crack tip containing many broken particles and interface 
debonding, which will have a great effect on the crack paths. Fig. 1.11a shows the 
debonding or broken particles in this region of Al/20% SiC. Fig. 1.11b depicts the 
debonding and broken particles near the failed fracture surface. The arrows in Fig. 
1.11 give the direction of crack propagation. This microstructural region ahead of 
the main crack experiences the rapid propagation conditions for macrocracks, and 
affects the crack path, although macroscopically the main crack follows the 
directions that the maximum principal stress would predict as shown in Fig. 1.4d. 
This is why the crack propagates so of the notch can be explained by the high 
constraint effect of triaxial stress [21]. HREM analysis of the interface in Al/SiC 
with T6 heat treatment shows the brittle Al4C3 precipitates [22]. So the primary 
void characterizes the brittle property of composites. Secondary voids occur in the 
spacing between particles during loading. These voids follow three stages of 
nucleation, growth and coalescence. However, the dimensions of these voids are 
very small (Fig. 1.9), and they can only be examined clearly by magnifying more 
than 1000 times in the SEM. Secondary voids, which show many small dimples in 
the fracture surface and behave in a ductile manner, rapidly in Al/20% SiC 
samples in the test. The many debonding and broken particles in this region of the 
crack tip is the main reason far the brittle fracture and, hence is responsible for the 
low ductility of the composite materials. However, it is not yet clear quantitatively 
at what applied strain level, particle cracking occurred and which of the two types 
of behaviour, interface debonding or particle cracking, is predominant. 

Conclusions 

1. K0 / K1 can be used to express material toughness K0 / K1 is equal to 0.68, 
0.784 and 0.85 for 0%, 10% and 20% Al/SiC materials. If K0 tends toward K1 
the material toughness becomes lower.  



2. Two kinds of void have been defined according to the properties of the voids 
in the fracture surface. The primary voids govern the brittle property of 
composites, while the secondary voids, governing the ductile property, have 
little influence on the fracture toughness. 

3.  The voids initially nucleate, grow and coalesce at the notch root surface. The 
crack propagation observed in the free surface of the samples is associated 
with debonding and particle cracking in the tip region of the crack. 

4.  The direction of crack propagation depends on the microstructure in the tip of 
the crack, and macroscopically on the maximum principal strain direction. 
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1.2 In-situ observation of damage evolution and fracture 
in AlSi cast alloys2 

AlSi7Mg cast alloys are now widely used as structural materials in industry and 
their production increased remarkably during the last years [1]. The practical ap-
plication of these materials is based on their strength and fracture resistance. To 
further improve the strength of the material, it is necessary to have a good under-
standing of the damage evolution and fracture of these alloys. The purpose of the 
paper is to clarify the mechanisms of damage initiation, damage evolution, com-
pliance reduction and fracture of two AlSi7Mg cast 0.3 alloys with almost identi-
cal composition but very different microstructure. 

Several investigations of the failure of AlSi cast alloys have been reported in 
the literature. Gurland and Plateau [2] studied the ductile rupture of an AlSi13 al-
loy and obtained an expression for the particle cracking stress and a relation be-
tween fracture strain and the fraction of broken particles. Yeh and Liu [3] have 
studied the cracking of silicon particles in aged AlSi7Mg (A357) alloys. They ana-
lysed the mechanism responsible for the cracking of the Si particles and the effects 
of strain and stress on the fraction of broken Si particles. Yeh and Liu have shown 
that the dislocation pile-up mechanism is the most probable one among other theo-
ries of the failure of Si-particles. Höner and Groß [1] studied the fracture behav-
iour and tensile strength of AlSi alloys and its dependence on the microstructure, 
which is determined in turn by the conditions of melt processing and casting. 

The outline of this paper is as follows: in section 2 we briefly discuss the 
mechanisms and models of crack initiation and crack growth in ductile materials. 
Section 3 gives a description of the experimental details. An analysis and discus-
sion of our results is given thereafter.  

1.2.1 Failure mechanisms of ductile materials 

The course of failure in ductile materials is generally divided into three stages [1, 
4-6]: 
 

1. Nucleation of microcracks/microvoids at random positions in the loaded 
body independent of their location relative to the other microcracks. The 
growth rate of the microcrack density usually increases with increasing den-
sity of microcracks [7]. This nucleation stage is followed by: 

2. The link-up and coalescence of microcracks and the formation of the 
`macro-cracks’, which leads to: 

3. The growth of the macrocracks until one of the cracks reaches a critical size 
and begins to grow auto catalytically. This finally results in the complete 
failure of the body. All these processes proceed not only successively, but 

                                                           
2 Reprinted from L.L. Mishnaevsky Jr., N. Lippmann, S. Schmauder, P. Gumbsch, “In-situ 

Observation of Damage Evolution and Fracture in AlSi7Mg0.3 Cast Alloys”, Eng. Fract. 
Mech. 63, pp. 395-411 (1999) with kind permission from Elsevier  
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also simultaneously. For instance, growth of a crack can proceed simultane-
ously with the increase in the microcrack density. 

Microcrack nucleation 

The mechanisms of microcrack initiation are discussed in detail by Knott [8] and 
Tetelman and McEvily [4]. Tetelman and McEvily have shown that large tensile 
stresses as well as shear stresses develop at the tip of a glide band if the band is 
blocked by a strong obstacle. They determined the conditions of crack nucleation, 
and showed that the tensile stresses are less important during the nucleation proc-
ess than the shear stresses. Knott [8] described and analysed several micro-
mechanisms of fracture. Among them are microcrack nucleations by squeezing 
together of dislocations at the head of the slip band (Stroh model) or by the inter-
action of a pile-up with a carbide particle (Smith model). The model developed by 
Yeh and Liu to describe the failure of Si-particles in their AlSi7Mg alloys is simi-
lar to the Smith model and explains the microcrack initiation as a result of particle 
failure caused by stress concentrations originating from dislocation pile-ups at 
these particles. 

Void and microcrack coalescence 

Thomason [9] describes void coalescence with a mathematical model for the coa-
lescence of square holes arranged into a square array in a rigid-plastic matrix un-
der tension. The voids are elongating in the direction of the tensile load and ap-
proach each other in the direction normal to the tensile load. When the voids get 
close, necking occurs between them and they coalesce rapidly. The deformation of 
the material between the voids therefore controls void coalescence and necking. 
Finkel [5] has studied experimentally the necking between microcracks. He 
showed that the failure of the necks between microcracks is caused by shear 
stresses. Seidenfuss [10] recognised three possible mechanisms of void coales-
cence: local plastic constriction of material between voids, failure of the layer be-
tween voids caused by shear bands and failure by formation of secondary smaller 
voids on very small inclusions in the material between available voids. He noted 
that the joining of voids proceeds in a stepwise manner. The first mechanism 
dominates when the density of voids is high; the third prevails at relatively low 
void densities. Seidenfuss concluded that the main mechanism of void coalescence 
is the formation of shear bands in which small secondary voids can sometimes be 
observed. Shear bands causing the failure of the layers between coalescing voids 
have also been observed by Roberts et al. [11]. With regard to the interaction of 
macrocracks, it is known that: “originally collinear mode I cracks seem to avoid 
each other” [12]. On the basis of the analysis of the stability of straight crack 
paths, Melin has shown that the tip to tip coalescence of cracks does not occur for 
two collinear cracks [12]. 
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Formation and growth of macrocracks 

Crack growth as a result of the superposition of stress fields from a large crack 
and from a pile- up of dislocations in the vicinity of the crack tip has been mod-
eled by Yokobori [13]. In this model the dislocation pile-up acts as a stress con-
centrator similar to a microcrack. The stress required for macrocrack growth is 
much higher than the stress required for microcrack formation from a pile-up of 
dislocations. As a consequence, ductile fracture is usually determined by the for-
mation of a microcrack in the vicinity of a large crack, and not by crack growth it-
self. Ebrahimi and Seo [14] have shown that crack propagation in ductile materials 
may also involve the cleavage of favourably oriented grains ahead of the main 
crack tip followed by ductile tearing of remaining ligaments. The formation of 
river patterns on the fracture surface has been attributed [4] to the joining of the 
main crack with secondary new cracks nucleated ahead of the main crack. Joining 
can occur by tearing (tongue formation) or secondary cleavage. 

From the above considerations, it follows that although the main models of 
fracture are based on the assumption that the crack grows in a continuous material 
(or, as a version, in continuous material with a plastic zone in the vicinity of the 
crack tip) [8], the real physical mechanisms of fracture can differ significantly 
from this assumption. 

1.2.2 Experimental procedure 

The course of damage evolution in AlSi7Mg cast alloys was observed by in-situ 
tensile testing in a scanning electron microscope (SEM). Fig. 1.12 gives the ge-
ometry and the dimensions of the notched CT-specimens used in our experiments. 
The notches in the specimens were sawn with a saw blade with a defined radius of 
the saw teeth equal to the required radius of the notch. Such notching ensures high 
quality of the notch surface. The side surface of the CT- specimens was ground 
and subsequently polished with diamond paste down to the 3 mm grade. The 
specimens were taken from cast components.  

The heat treatment of the components included a solution annealing in an air 
circulation kiln for 12 h at 540oC and the artificial ageing in an air circulation kiln 
for 12 h at 170oC. The specimens were loaded in an in-situ tensile stage (Fa. Raith, 
Dortmund, Germany) in the SEM. A constant crosshead speed of 0.3 mm/s was 
used. The specimens were loaded until a large crack was visible on the surface of 
the specimens. During loading, the highly deformed region in the notch root 
(about 100 x 100 µm) of the CT-specimens was monitored. The experiments were 
conducted on AlSi cast alloys of the type AlSi7Mg0.3 with both lamellar and 
globular microstructure of the Si-particles. 



  
(a) (b) 

 
Fig. 1.12.  Shape and size of the CT-specimen (a) and the small area in the notch root (b) 
which was observed during the tests. Dimensions are given in mm. 
 

 
In the lamellar structure, the Si inclusions had an aspect ratio (length to width) 

of about 4…20 and the small dimension of the particles were between 2.5 and 5 
µm. The Si particles can be transformed into a more rounded shape by the addition 
of Sb. The particles in the globular microstructure were approximately circular 
with a diameter of about 3-6 µm. The diameter of the Al grains was between 50 
and 130 µm. The Si-particles in the alloys were located preferentially (but not ex-
clusively) on the Al grain boundaries corresponding to the fact that the growth of 
Al grains during the formation of the alloy is inhibited by the available Si-
particles. Fig. 1.13 shows micrographs of the two different (globular and lamellar) 
microstructures. Even in the alloy with globular microstructure the Si-particles 
form a network and each cell of the network corresponds to a grain of the Al-
matrix. 

Simultaneously with the loading of the specimens, the externally applied dis-
placement of the crosshead and corresponding load were recorded. The displace-
ments reached 0.5 mm for the specimens with the lamellar microstructure and 0.9 
mm for those with the globular microstructure. In Fig. 1.14 typical load-
displacement curves are shown for both microstructures. Both have the character-
istic signatures of load-displacement curves for softening materials [15]. At first, 
the applied force increases almost linearly with increasing displacement and then 
reaches a peak. The following decease was most pronounced in the alloy with la-
mellar microstructure. The macrocracks formed later and grew when the curve 
was already descending considerably. These processes will be detailed in the fol-
lowing section. 
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(a) 

(b) 
 

Fig. 1.13  Micrographs of the two microstructures: (a) globular and (b) lamellar (a scale is 
the same). 

1.2.3  Experimental Observations 

Microcrack initiation and evolution 

At the initial stages of loading, the formation of shear bands was observed in 
the ground notch region near the surface. Then, several microcracks appeared at 
some distance from the notch surface. This stage is indicated with label A in Fig. 
1.14 and corresponds to the displacement of 0.13 and 0.16 mm for the alloys with 
lamellar and globular structures, respectively. The applied force was approximately 

20µm 



500 N for both microstructures. The microcracks initiated exclusively in the Si-
particles. The amount of broken Si-particles in relation to the total number of par-
ticles in the observed area of the alloy with lamellar structure was about 4%.  
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Fig 1.14  Load-diplacement curve fot the specimen with globular (1) and lamellar (2) mi-
crostructure. The following SEM micrographs correspond to the points marked with the let-
ters A±D. Figs 1.15 und 1.16 (point A on both curves), Figs 1.17 and 1.18 (point B) Figs 
1.19 and 1.20 (points C and D) 
 
 

A similar calculation for the globular structure was not possible since the clus-
ter arrangement of the Si-particles on the boundaries of the Al-grains did not allow 
distinguishing individual broken particles. Thereafter, additional matrix shear 
bands formed and the density of microcracks increased. Figs. 1.15 and 1.16 show 
the microcracks formed at the initial stage of damage evolution.  
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Fig. 1.15  Area in the vicinity of the notch root (globular microstructure; magnification 
x350; displacement 0.185 mm). 

 
 

Fig. 1.16  Area in the vicinity of the notch root (lamellar microstructure; magnification 
x500; displacement 0.16 mm). 
 

The micrographs represent small areas rather close to the notch surface, and 
correspond to the alloys with the globular and lamellar microstructure, respec-
tively. The microcracks are more or less randomly distributed up to a distance of 
about 300 mm from the notch surface (0.6 notch radii). The microcracks thus are 
oriented mostly along the lines of maximum shear stress. Upon further increasing 
the applied load, the nucleation and accumulation of microcracks at some distance 
from the notch is accompanied by nucleation and growth of cracks from the notch 
surface. 

 



 
 

Fig. 1.17  Crack formation in the vicinity of notch root and crack initiation at some distance 
from the notch root (globular microstructure; magnification x100; displacement 0.55 mm). 

 
In summary, during the initial stages of damage evolution in the AlSi7Mg cast 

alloys the destruction of the Si-particles was the prevailing mechanism of micro-
crack nucleation. Microcracks formed predominantly at ‘random’ sites throughout 
the stressed area and not at the root of the notch.  

Crack growth and coalescence 

At the next stage of damage evolution, relatively large cracks formed from ini-
tially small surface cracks. Simultaneously, the density of microcracks at some 
distance from the notch surface increased and several small cracks formed there. 
Figs. 1.17 and 1.18 show the large crack which starts at the notch surface and the 
smaller cracks and microcracks formed at some distance from the notch surface. 
The micrographs shown on Figs. 1.17 and 1.18 correspond to the points marked 
with the letter B on the force-displacement curve (Fig. 1.14). Comparing Figs. 
1.17 and 1.18, it is seen that the direction of the cracks is the same for both micro-
structures. The angle between the crack direction and the axis of symmetry of the 
CT- specimen was about 308. Shear bands are apparent between the large cracks 
and the small cracks (cf. Fig. 1.18). The large crack then grew and joined with the 
small cracks in front. The path of the large crack corresponds to the direction from 
the crack tip to the available microcracks and shear bands. The small cracks and 
microcracks then joined and formed a second large crack located about 0.4-0.5 
mm away from the notch surface (about 0.9 notch radii). The formation of the 
second large crack was observed at a load point displacement of about 0.24 mm 
and at an applied force of 100 N for the lamellar microstructure and at about 0.7 
mm and 180 N for the globular microstructure. 
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Fig. 1.18  Crack formation in the vicinity of notch ground (lamellar microstructure). The 
microcracks set the crack path (magnification x115; displacement 0.20 mm). 

 
 
Upon further loading, the large crack from the notch surface and the second 

crack join. Figs. 1.19 and 1.20 show this coalescence for the globular and the la-
mellar microstructure, respectively. Figs. 1.19a and 1.20a depict the earlier stages 
when there are still two separate large cracks in the materials.  

This stage corresponds to the points marked with the letter C in Fig. 1.14. Figs. 
1.19b and 1.20b present the later stage when the cracks coalesced and formed one 
single large crack, labelled with the letter D in Fig. 1.14. 

 

 
 

Fig. 1.19  Crack coalescence in the alloy with globular microstructure. Two cracks 
(a) before and (b) after coalescence (magnification x100; displacement (a) 0.76 and 
(b) 0.89 mm). 

 
 



 
 

Fig. 1.20  Crack coalescence in the alloy with lamellar microstructure. Two cracks (a) be-
fore and (b) after coalescence (magnification x200; displacement (a) 0.35 and (b) 0.43 
mm). 

 
It is of interest to note that almost the same crack patterns formed in both mate-

rials, although the structures of the materials differ significantly. The crack paths 
followed the location of the microcracks in front of the tip only until a second 
large crack was available at close distance. Then the interaction between the stress 
fields of the cracks determined their paths.  

1.2.4 Analysis of results 

Microcrack nucleation 

The prevailing mechanisms of microcrack initiation in the AlSi7Mg cast alloys 
investigated in this study can be clarified by comparison and correlation with the 
results of other authors. The first step is to identify the mechanisms and the crite-
ria controlling the breaking of the Si- particles. 

One may assume that the Si-particle failure is caused by a critical level of the 
maximal tensile stress. In this case, one would expect that the first microcracks 
initiate directly at the centre of the notch. This is clearly inconsistent with our ob-
servations that the microcracks are formed mostly in random sites at some dis-
tance from the notch surface. Therefore, it follows that local fluctuations of the 
stress field caused by dislocation pile-ups and Si-particles influence the micro-
crack nucleation much more than the overall stress distribution.  

Following Yeh and Liu [3], the critical length of a dislocation pile-up which 
causes the breaking of the particles can be calculated. They derived the following 
formula for the externally applied stress se required for particle failure due to a 
one-plane pile-up of dislocations where E is the Young’s modulus, G is the shear 
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modulus, b is the Burgers vector, n is the Poisson ratio, M is the Schmid factor 
and L is the length of the pile-up. 

 

( ) LM
EGb

e 2212 πν
σ

−
=  (1.2) 

In our experiments, the first broken Si-particles were observed in the notch region 
at an externally applied load of about 500 N (see Figs. 1.15 and 1.16). At this load 
the Al matrix in the notch ground starts yielding, which for this specific matrix al-
loy has been shown to begin at 218 MPa [16]. Taking the angle at which particle 
cracking first occurs from the micrographs (Figs. 1.15, 1.16; y2308), one calcu-
lates a Schmid factor of  

 

43.0cossin ≅ΘΘ=M  (1.3) 

Substituting the values E = 100 GPa, n = 0.33, G = 40 GPa [3], b = 0.286 nm [17] 
and the local stress se = 218 MPa into Eq. (1.2), one obtains: L = 9.9 mm. This 
value is rather close to the pile- up length calculated by Yeh and Liu for the as-
quenched conditions (L = 14.4 mm [3]). This length corresponds to dislocations in 
the pile-up, where τ-shear stress  

 

( )
Gb

Ln πτν−= 1  (1.4) 

If τ is again taken to be of the order of the yield stress (218 MPa), Eq. (1.4) gives 
n ≈ 250 dislocations in the pile-up. Our results differ here from the results of Yeh 
and Liu, who have used the value of the external stress (17.2 MPa). Since our in-
situ observations show that the aluminium matrix already deformed plastically we 
claim that the local stress level must be larger than the externally applied stress 
and of the order of the yield stress of the matrix. This value for the length of the 
pile-up is very reasonable since it is about 5-10 times lower than the linear size of 
Al-grains.  

Together with the direct observation that the microcracks are located mostly 
along the lines of maximum shear stress and always appear together with the first 
shear bands, our data strongly support the dislocation pile-up mechanism as the 
origin of particle failure. Our in-situ observations (Figs. 1.15 and 1.16) linked with 
the load-displacement diagram (Fig. 1.14) confirms that the microcracks are re-
sponsible for the compliance reduction of the material. It is apparent that the mi-
crocracks are formed just before the peak load is reached and macroscopic com-
pliance reduction starts after the density of microcracks reached a reasonable 
value. The rate at which the compliance reduction proceeds, however, is deter-
mined by the microcrack coalescence. 



Crack growth and coalescence 

The formation of (small) cracks through the coalescence of microcracks as de-
scribed above complies rather with the descriptions of microcrack coalescence 
given by Finkel [5], Seidenfuss [10] and Roberts et al. [11] than that by Thomason 
[9]. Microcrack coalescence was observed only after shear bands were formed be-
tween them, and not due to their expansion or growth.  

It was also observed that the macrocracks are initiated on and propagate from 
the notch surface, although the microcracks are nucleated at some distance from 
the surface. Again, shear bands are responsible for the crack initiation there.  

The final destruction of the material via the initiation and growth of the surface 
crack, the formation of the second crack from randomly distributed microcracks at 
some distance from the surface and the coalescence of the macrocracks bears 
many similarities with the mechanisms described in the literature [5, 14]. A few 
aspects, however, are very different: the microcracks in the material were not only 
formed in the vicinity of the crack tip as a result of the stress field from the crack, 
but also in “random” sites throughout the stressed volume consistent with the dis-
location pile-up model for their nucleation. Both microstructures showed the same 
behaviour in this respect, which means that the following steps of damage evolu-
tion, the growth of the macrocracks and their coalescence, is determined by the 
global stress distribution in the loaded specimen (which is the same in both cases) 
rather than by the microstructure of the material. 

In modelling the fracture processes in this alloy, one should therefore take into 
account not only microcracks which are formed in front of the growing crack and 
are absorbed by the crack, but also the distributed microcracks, which are formed 
simultaneously with the formation of the large crack and influence its path. The 
evolution of these distributed microcracks may lead to the formation of other large 
cracks, which interact with the existing ones. 

Alloy microstructure, compliance reduction and fracture 

Table 1.3 gives the consumed energies corresponding to the points marked on Fig. 
1.14. The energy was calculated as the area under the curves of Fig. 1.14. Evi-
dently, for the globular microstructure the energy needed to reach the descending 
branch of the force-displacement curve is almost four times larger than for the la-
mellar structure.  

Comparing Figs. 1.17 and 1.18 with the data from Table 1.3, the relation be-
tween the fracture energies of both alloys can be estimated, since the cracks in 
Figs. 1.17 and 1.18 are approximately of equal size. The energies differ by almost 
a factor of 4: 0.23 and 0.058 J, for globular and lamellar alloys, respectively. 
Therefore the energy needed to form the crack and to create a unit crack area of 
the alloy with the globular structure is about 4 times larger than that of the alloy 
with the lamellar structure.  

The question now arises, what determines the differences in fracture character-
istics (cf. Fig. 1.14) between the two different alloys investigated here and 
whether there is potential for improvement. 
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Table 1.3  
Consumed energy J corresponding to the points marked on the force-displacement curves 
(Fig. 1.14) 

Points on curves of Fig. 1.14 Lamellar 
microstructure 

Globular 
microstructure 

Appearance of first, randomly distributed 
microcracks (points A) 

0.03 0.046 

Peak load 0.042 0.119 
Formation of a large crack (points B) 0.058 0.236 
Formation of two large cracks (points C) 0.083 .0292 
Coalescence of large cracks (points D) 0.086 0.312 

 
Up to this point many similarities between the two alloys have been discussed 

and no difference in failure mechanisms has been identified. Nevertheless, the de-
scending branch in the load-displacement curves in Fig. 1.14 starts much earlier 
and compliance reduction is more pronounced in the alloy with the lamellar mi-
crostructure. The difference in reduction of stiffness of the material as a function 
of displacement is most pronounced at the initial stages of compliance reduction. 
In the lamellar structure, the load drops by a factor of ten when the displacement is 
increased from 0.15 to 0.3 mm. In contrast, the load only drops by a factor of 6 
when the displacement is increased from 0.28 to 0.8 mm in the globular structure.  

Having identified the necking along the shear bands formed between the micro-
cracks as the main mechanism for their coalescence and the microcrack coales-
cence as the origin of the reduction of compliance, the different degree of the 
compliance reduction of the two alloys can be rationalised to some extent. The al-
loys differ mostly in the size of the Si-particles. The larger particles in the lamellar 
structure prohibit homogeneous slip transmittal and plastic deformation is concen-
trated on the few places at these particles where they are broken. This leads to less 
homogeneously distributed plastic deformation and microcrack distribution. A 
signature of this less even distribution is that the microcracks in the lamellar struc-
ture (Fig. 1.16) are opened much more clearly than those in the globular structure 
(Fig. 1.17) at similar strains. Consequently, the plastic strain in one individual slip 
band of the lamellar structure is significantly larger than in the globular structure 
and necking along these shear bands happens more readily. 

The peak loads reached in the two alloys can be interpreted in a similar way. 
The peak load of the globular material is reached at a displacement which is ap-
proximately twice that of the lamellar material (0.281 and 0.144 mm, respec-
tively). The peak load of the alloy with globular microstructure itself, however, is 
only 20% larger than that of the alloy with the lamellar structure (627 and 522 N, 
respectively). Again, if the coalescence of the microcracks is the decisive step for 
the compliance reduction and if coalescence is controlled by a critical plastic 
strain in the shear bands between the microcracks, the globular structure permits 



larger plastic strain since there are more paths for plastic deformation than in the 
lamellar structure and each of them has to carry comparatively less plastic strain. 
However, the corresponding stresses are only marginally higher since their level is 
mostly determined by the level at which yielding and microcrack initiation begin 
and this is similar for both alloys, irrespective of their microstructure. 

Potential benefits for alloy development in this class of AlSi alloys are seen in 
two aspects, both are related to the microstructure refinement. Firstly, the reduc-
tion of the size of the Al- matrix grains should reduce the mean free path for dislo-
cation pile-ups and might therefore prolong the initiation of the first microcracks 
to somewhat higher loads. Secondly, the size of the Si-particles and their shape 
should be pushed towards more rounded and more evenly distributed particles to 
avoid strain localisation in shear bands and to prolong the compliance reduction of 
the material to higher total strains.  

Conclusions  

The course of crack initiation and growth in two AlSi7Mg cast alloys which are 
distinguished by their globular and lamellar microstructure was investigated in-
situ in a scanning electron microscope and can be described as follows: 

• Nucleation of microcracks: microcracks are initiated predominantly by 
failure of Si-particles caused by dislocation pile-ups. This occurs at `ran-
dom’ positions throughout the strained volume. The microcracks are ori-
ented mainly along the lines of maximum shear stress. 

• Formation of an initial crack: the initial crack starts to grow from the 
notch root; simultaneously, the microcrack density at some distance from 
the notch surface increases. This stage of damage evolution corresponds 
to the beginning of the descending branch on the force-displacement 
curve. The necking along the shear bands between the microcracks is 
identified as the mechanism controlling the coalescence of the micro-
cracks. 

• Crack growth: the direction of crack growth coincides initially with the 
shear band formed at the initial stage of deformation. Simultaneously 
with the growth of the first crack, the density of microcracks inside the 
specimen increases further. This is followed by the formation of the sec-
ond large crack at some distance from the notch ground surface. 

• Macrocrack coalescence: the large crack which starts from the notch sur-
face joins with the second crack formed in the material due to the coales-
cence of microcracks far apart from the notch ground surface. The coa-
lescence of these cracks leads to the formation of a large crack and 
finally to failure of the specimen.  

The two macrocracks coalesce, although the microcrack distributions in front of 
each of them would direct them in different directions. The effect of the interac-
tion of the cracks on their trajectories appears to be more powerful than the effect 
of the distributed microcracks and shear bands in front of the crack tips for both 
lamellar and globular alloys. Although the mechanisms of failure are the same in 
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both alloys, they differ significantly in their overall mechanical response. Due to 
the more homogeneous distribution of plastic strain in the alloy with the globular 
microstructure, the coalescence of the microcracks is prolonged to larger total 
plastic strains and the overall response is significantly more ductile. Further alloy 
development should therefore aim at the reduction of matrix grain size as well as 
Si- particle size to achieve a more even distribution of the particles and of the 
plastic strain.  
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1.3 Micromechanisms of damage initiation and growth in 
tool steels3 

The improvement of service properties of tool steels presents an important source 
of increasing the efficiency of metalworking industry. In order to develop a nu-
merical model of damage or fracture in the steel, which should serve to predict the 
lifetime, or to improve the properties, one needs to know the mechanisms of dam-
age and fracture in the steels [1-4]. The direct in situ observation of the fracture 
mechanisms of the steels under a microscope is quite difficult as compared with 
the case of more ductile materials, since the material fails abruptly. Then, not only 
qualitative parameters of fracture (like its mechanisms) but also quantitative ones 
(like critical damage parameters) are of interest.  

The purpose of this work was to study the mechanisms and conditions of dam-
age initiation and growth in the tool steels both qualitatively and quantitatively. 
The work includes the following steps: 

• Scanning electron microscopy (SEM) in situ experiments on 3-point 
bending of specimens with inclined notches. 

• Finite element (FE) simulation of the deformation of the specimens on 
macro- and mesolevel, taking into account the real microstructure of the 
steels observed in the SEM -experiments. 

• Numerical analysis of the effect of the arrangement of primary carbides 
in the tool steels on the fracture behavior. 

1.3.1 Micromechanisms of damage initiation in tool steels 

The mechanisms of local failure and critical values for failure of the constituents 
of the steel have been determined. The constitutive law and elastic constants of the 
steel constituents are already known from literature and from our previous investi-
gations [3, 4, 6]. The analysis of the mechanisms of damage initiation in the tool 
steels includes SEM in situ experiments and FE simulation of the deformation of 
the specimens on macro- and mesolevel. The SEM in situ observation of the dam-
age initiation seeks to c1arify the micromechanisms of damage initiation, whereas 
the hierarchical finite element model (macro- and mesomodel) is applied to de-
termine the failure conditions for steel constituents using the real loading condi-
tions and real microstructures of the steel. 
 
 
 
 
 

                                                           
3 Reprinted from L. Mishnaevsky Jr., N. Lippmann, S. Schmauder, “Micromechanisms and 

Modelling of Crack Initiation and Growth in Tool Steels: Role of Primary Carbides”, Z. 
Metallkunde 94, pp. 676-681 (2003) with kind permission of Carl Hanser Verlag 
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Fig. 1.21  3-point bending specimen: (a) scheme and (b) side view of loading device. 
 

 
In order to clarify the mechanisms of damage initiation and growth in the 

steels, a series of SEM in situ experiments was carried out. 3-point bending 
specimens with an inclined notch, as described in [5], were used in these tests. 
These specimens allow observing the micro- and mesoprocesses of local deforma-
tion and failure of carbides and the matrix of steels during loading of macroscopic 
specimens in the SEM. The shape of the specimens is shown schematically in Fig. 
1.21a. A photograph of the specimen under loading is given in Fig. 1.21b. The ad-
vantage of the specimen with the inclined notch is that the most probable location 
of first microcrack initiation in the specimen notch can be simply predicted (which 
is not the case in the conventional 3-point bending specimens). Therefore, one can 
observe this location with high magnification during loading and identify very ex-
actly the load and the point in time at which the first microcracks form. Specimens 
made from the cold work steel. 

X155CrVMo12-1 (in further text denoted as KA) and the high speed steel HS6-
5-2 (denoted as HS) have been used. In the experiments, the specimens with dif-
ferent orientations of primary carbide layers were studied. Since the tool steels are 
produced in the form of round samples and because they were subject to hot re-
duction after austenitization and quenching, they are anisotropic: the carbide lay-
ers are oriented typically along the axis of the cylinder (this is the direction of hot 
reduction). Therefore, the following designation of the specimen orientation was 

observed 

applied 
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used: L - the direction along the carbide layers, R - radial direction in the work-
piece, C - the direction along the workpiece axis. In the experiments, specimens 
with orientations CL (the specimen is oriented along the carbide layers; the ob-
served area is oriented along to the ingot axis), LC (the specimen is oriented along 
the round ingot axis) and CR (the specimen is oriented along the carbide layers; 
the observed area is oriented normally to the ingot axis) have been used. The 
specimens have been subjected to the heat treatment (hardening at 1070°C in vac-
uum and tempering 2 h at 510 0c), and then polished with the use of the diamond 
pastes till the roughness Rz of the surface of the specimens does not exceed 3µm. 
The notch region of the specimens was etched with 3 and 10% HN03 until the 
carbides were clearly seen on the surface. 

 
 

Table 1.4 
Critical forces in the tests. 

Type of the 
specimen 

Force at which a first mi-
crocrack was observed in 
the specimen (N) 

Force at which the  
specimen failed, (N) 

KALC 95, 52, 37.5 155, 85,160 

KACR 50, 55, 37.5 95, 95, 70 

HSCR 45, 50, 50 95, 80, 95 

HSLC 50, 72.52, 127 200, 190, 195 

 
 
The force-displacement curves were recorded during the tests. The loading was 

carried out in small steps, with a rate of loading of about 1 mm/s. The places in 
the specimen notch where microcrack initiation was expected have been observed 
through SEM during the tests. It was observed that the first microcracks formed 
only in the primary carbides, and not in the “matrix” of the steel. Also, no micro-
crack along the carbide/matrix interface was observed in the tests. The forces at 
which the failure of primary carbides was observed in each specimen are given in 
Table 1.4. Fig. 1.22 shows SEM micrographs of typical primary carbide in the 
notch region of steels before and after failure. Since the picture were taken frontal 
and the specimens used were with the inclined notch, the magnifications of micro-
graphs in x- and y-directions in Fig. 1.22 are different. In some carbides, multiple 
cracking was observed as well (see Fig. 1.23). 
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(a) (b)  

 

 

(c) (d)  
 

Fig 1.22  Carbide grains before (a, c) and after failure (b, d). (Area size 40 μm x100 μm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.23  Multiple cracks in a primary carbide. (Area size 40 μm x100 μm) 
 
 
Generally, the course of failure of the specimens was as follows: 

1. Formation of a microcrack at some carbide. 
2. Formation of several microcracks at many carbides at different locations 

of the observed area (in so doing, the microcracks are formed rather at 
larger carbides at some distance from the boundary of the specimen, than 
in more strained macroscopically areas in the vicinity of the lower 
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boundary of the specimen; the local fluctuations of stresses caused by the 
carbides have evidently much more influence on microcracking than the 
macroscopic stress field). 

3. After the failure of many carbides, the microcracks (or plastic zones in 
front of the microcracks) begin to grow into the matrix; just after this oc-
curs, the specimens fail. 

The failure of many carbides was observed just before the specimens failed. Fig. 
1.24 shows a segment of the loaded area with many failed carbides. 

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1.24  Microcracks (shown by arrows) in primary carbides. 
 

1.3.2 Condition of failure of primary carbides in tool steels 

To simulate the deformation of 3-point bending specimens with inclined notch, a 
three-dimensional (3D) FE model of the specimen was developed. The forces 
measured in the tests described above were applied in the simulations. The dis-
placements from the boundary nodes of elements which are located in the vicinity 
of the symmetry plane and at the lower notch boundary (Fig. 1.21) are used as 
boundary conditions in the micromechanical simulation of carbide failure. 

Then, the two-dimensional (2D) micromechanical simulations of carbide failure 
have been carried out for each microstructure and each load, measured in the ex-
periments: a 2D model was created, which represents the cut-out at the notch re-
gion of the specimen. The real structure region of the micromodel contains 5000 
elements of the plane strain type TRIP 6 and size 100 µm x 100 µm and is placed 
in the lower left corner of the macroscopic 3-point bending model, where the car-
bide was observed experimentally. As boundary conditions the displacements 
from the model of deformation of 3-point bending specimen were taken. Since the 
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mesh density in the 2D case is higher, the calculated displacements have been 
linearly interpolated between the points which were available in the 3D simula-
tion. The micromechanical simulation was performed with the use of the multi-
phase element method [8-11]. The micrograph of the carbide, obtained in SEM in 
situ experiments was digitized and then automatically imposed on the region of 
the real structure. The micrographs to be digitized were chosen in such a way that 
they were representative enough for the given materials. Due to the inclined notch 
surface, the micrographs in Fig. 1.22 have different scales in x- and y-directions. 
To take that into account, the micrographs were scaled with the use of the image 
analysis software XView accordingly to their scales in both directions. The prop-
erties of carbide and matrix are as follows [3 - 6] : (cold work steel) Young’s 
modulus Ec = 276 GPa, EM = 232 GPa, constitutive law of the matrix: sy = 1195 + 
1390 [l-exp (-εpl/0.0099)]; (high speed steels) Ec = 286 GPa, EM = 231 GPa, con-
stitutive law of the matrix: sy = 1500 + 471 [l-exp(-εpl /0.0073)], Poisson’s ratio - 
0.19 (carbides) and 0.3 (matrix).  

 

 
Fig. 1.25  Von Mises stress distribution in the real microstructure of the steel in the notch 
of the specimen (the boundary conditions in the 2D micromodel were taken from the 3D 
macromodel of the 3-point bending specimen). 
 
 

Fig. 1.25 gives the distribution of von Mises stress in the real microstructure of 
the cold work steel at the loads at which the carbide failed. Supposing that failure 



1.3 Micromechanisms of damage initiation and growth in tool steels      35 

of the carbides is determined by the action of maximal normal stresses, one ob-
tains the failure stresses of carbides for different steels and orientations (see table 
1.5). 

 
 
Table 1.5  
Calculated failure stresses of primary carbides in tool steels 
Type of the 
steel KALC KACR HSCR HSLC 

Failure stress 
of carbides 
(MPa) 

1826 1840 1604 2520 

 
 
The initial microcracks in the steels are formed within primary carbides (i. e., 

not along the carbide/matrix interface and not in the matrix). For our further simu-
lation, this means that we can use the multi phase element method. The main input 
data for the simulation (i. e., the carbide failure condition) was determined with 
the use of the combined SEM in situ and FE model approach. 

Conclusions 

The mechanisms of damage initiation and growth in tool steels were investigated 
and the role of primary carbides in damage and fracture of the steels was clarified. 

The experimentally observed course of damage evolution in the steels was as 
follows: One microcrack appears in carbide, and then several microcracks appear 
in other carbides at different locations of the observed area. In so doing, the mi-
crocracks are formed rather at larger carbides at some distance from the boundary 
of the specimen, than in the macroscopically more strained areas in the vicinity of 
lower boundary of the specimen. The local fluctuations of stresses caused by the 
carbides have evidently much more influence on the microcracking than the mac-
roscopic stress field). Finally, after the failure of many carbides, the microcracks 
(as well as plastic zones in front of the microcracks) begin to grow into the matrix; 
just after this occurs, the specimens fail. The initial microcracks in the steels are 
formed in primary carbides (i. e., not along the carbide/matrix interface and not in 
the matrix).  
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Chapter 2: Micromechanical Simulation of 
Composites  

 
The microstructure (fixed by features such as the grain size, the presence of parti-
cles, layers/coatings, impurities, and internal interfaces) frequently determines the 
properties (such as strength, toughness, and fracture energy) of advanced materi-
als. Because the microstructure is determined during production (by parameters 
such as temperature, time, and pressure) and the properties are determined in ap-
plication (e.g., implementation and life-time), the microstructure/property-
relationship (Figure 2.1) has been the focus of many investigations in the recent 
past. This relationship especially requires knowledge of how to link the different 
length scales in modeling and characterizing these materials. 

The linkage of modeling on the nanoscale (nm-length scale) with that on the 
macroscale (length scale of real specimens) is a current challenge in materials sci-
ence. Despite cheaper and faster computer resources, it is still difficult to inflate 
atomistic models of crystals to the size of specimens and components. Special 
problems of crack propagation have been successfully treated by dedicated cou-
pled atomistic continuum methods [1, 2]. Nevertheless, a general method to con-
nect theoretical calculations on the nanoscale with the macroscale is not available. 
Instead, at present it seems more promising to restrict oneself to selected materials 
problems and to connect different length scales by qualified physical laws that de-
scribe corresponding materials behavior [3, 4]. The terminology of relevant length 
scales, together with referring physical phenomena and methods, is illustrated in 
Figure 2.2 [5]. These methods require knowledge on the atomistic level. 
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Fig 2.1  Microstructure/property-relationship. 
 
 

 
 

Fig 2.2  Numerical methods referring to different length scales. 
 
 
Particulate-reinforced composites have become increasingly attractive in recent 

years for their high-strength and creep-resistant properties. These materials can be 
divided into three basic groups: (a) metal matrix composites (MMCs) such as Al 
reinforced with SiC-particles or with B-fibers, (b) brittle matrix composites 
(BMCs) such as Al2O3 toughened with Al, and (c) interpenetrating microstructural 
composites (IMCs) such as WC toughened with Co and others. Figure 2.3 depicts 
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examples of fiber and particulate-reinforced composites. It should be noted that 
when continuum mechanical methods are applied, the relevant microstructural fea-
tures such as particle sizes or phase areas have to be large enough (in the mi-
crometer regime or above) in order to be modeled appropriately. 

In section 2.1, the limit flow stresses for transverse loading of metal matrix 
composites reinforced with continuous fibers and for uniaxial loading of spherical 
particle reinforced metal matrix composites are investigated with the use of em-
bedded cell models. A fiber of circular cross section or a spherical particle is sur-
rounded by a metal matrix, which is again embedded in the composite material 
with the mechanical behavior to be determined iteratively in a self-consistent 
manner. Stress-strain curves have been calculated for a number of metal matrix 
composites with the embedded cell method and compared with literature data of a 
particle reinforced Ag-58vol.%Ni composite and for a transversely loaded uniaxi-
ally fiber reinforced Al-46vol.%B composite. Good agreement has been obtained 
between experiment and calculation and the embedded cell model is thus found to 
represent well metal matrix composites with randomly arranged inclusions. 

Systematic studies of the mechanical behavior of fiber and particle reinforced 
composites with plane strain and axisymmetric embedded cell models are carried 
out to determine the influence of fiber or particle volume fraction and matrix 
strain-hardening ability on composite strengthening levels. Results for random in-
clusion arrangements obtained with self-consistent embedded cell models are 
compared with strengthening levels for regular inclusion arrangements from con-
ventional unit cell models. It is found that with increasing inclusion volume frac-
tions there exist pronounced differences in composite strengthening between all 
models.  
 

 
 
Fig 2.3  Typical microstructures to be modelled in computational mechanics. (a) Al/Bf fi-
ber-reinforced MMC, (b) Ag/58.4vol.%Ni particle-reinforced MMC. 
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Finally, closed-form expressions are derived to predict composite strengthen-
ing levels for regular and random fiber or particle arrangements as a function of 
matrix hardening and particle volume fraction. The impact of the results on effec-
tively designing technically relevant metal matrix composites reinforced by ran-
domly arranged strong inclusions is emphasized. 

In section 2.2, the 3D-multiphase finite element approach is presented. This 
approach permits finite-element-modelling of the plastic deformation of realistic 
3D-microstructures. In contrast to conventional ‘single phase elements’ where the 
phase boundaries are simulated by element edges, the ‘multiphase element’ can be 
assigned to different materials when a phase boundary runs across it. The 3D-
multiphase element is firstly applied to a simple test geometry. The efficiency of 
the 3D-multiphase element method is demonstrated by the analysis of a more 
complex 3D-microstructure. Finally, for a comparison of 2D- and 3D-simulations 
the stress distribution obtained in the 3D-calculation is compared with the results 
of a 2D-simulation of a representative intersection of the microstructure. 

In section 3.3, different methods of automatic generation of 3D microstructural 
models of materials are discussed. A program for the automatic generation and the 
design of FE meshes for idealized 3D multiparticle unit cells (with spherical inclu-
sions) is presented. Numerical testing of Al/SiC composites with random, regular, 
clustered and gradient arrangements of spherical particles is carried out. The frac-
tion of failed particles and the tensile stress–strain curves were determined nu-
merically for each of the microstructures. It is found that the strain hardening coef-
ficient increases with varying the particle arrangement in the following order: 
gradient < random < clustered < regular microstructure. The variations of the par-
ticle sizes causes strong decrease in the strain hardening rate of the composite, and 
leads to a quicker and earlier damage growth in the composites. 

Further, another approach to generate 3D FE models of composites based on 
the procedure of a step-by-step packing (SSP) of a finite volume with structural 
elements is discussed. This has been used to design the composite structure con-
sisting of an Al(6061)-matrix with Al2O3-inclusions. A three-dimensional me-
chanical problem of the structure behaviour under tension has been solved nu-
merically, using both an implicit finite-element method and an explicit finite-
difference code. Special attention is given to the comparison of quasi-static and 
dynamic calculations. Evolution of plastic deformation in the matrix during tensile 
loading has been investigated. Qualitative and quantitative analysis of different 
components of stress and strain tensors is provided on the basis of mesomechani-
cal concepts. Based on 3D-analyses, the conclusions regarding the approximations 
when considering deformation behaviour on meso and macro scale levels have 
been performed. 
Finally in this chapter, yet another method for the reconstruction and generation of 
3D microstructures of composites based on the voxel array data is presented. The 
geometry-based and voxel array based methods of reconstruction and generation 
of finite element models of 3D microstructures of composite materials are dis-
cussed and compared. With the use of the developed program, the deformation 
and damage evolution in composites with random and graded microstructures 
were numerically simulated. The tensile stress-strain curves, fraction of failed 
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elements, and stress, strain and damage distributions at different stages of loading 
were determined for different random microstructures of the composites. It is 
shown that the stiffness, peak and yield stresses of a graded composite decrease 
with increasing the sharpness of the transition zone between the region of high 
volume content of the hard phase and the reinforcement free region. The critical 
applied strain, at which the intensive damage growth begins, is decreasing with in-
creasing the volume content of the hard phase of the composite. 
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2.1 Embedded unit cells1 

Metal matrix composites (MMCs) are defined as ductile matrix materials rein-
forced by brittle fibers or particles. Under external loading conditions the overall 
response of MMCs is elastic-plastic. MMCs are frequently reinforced by continu-
ous fibers which are aligned in order to make use of the high axial fiber strength. 
However, the mechanical behavior of these composites under transverse loading is 
well behind their axial performance [1-7]. On the other hand, it is well known, 
both from experiment and calculations [8] that details of transverse strengthening 
in uniaxially fiber reinforced MMCs are a strong function of fiber arrangement. 
To derive the mechanical behavior of MMCs, a micromechanical approach is usu-
ally employed using cell models, representing regular inclusion arrangements. As 
regular fiber spacings are difficult to achieve in practice, most of the present fiber 
reinforced MMCs contain aligned but randomly arranged continuous fibers. Thus, 
the accurate modeling of the mechanical behavior of actual MMCs is very compli-
cated in practice even if the fibers are aligned.  

Initially, the transverse mechanical behavior of a unidirectionally continuous 
fiber-reinforced composite (A1-B) with fibers of circular cross section was studied 
by Adams [9] adopting finite element cell models under plane strain conditions: a 
simple geometrical cell composed of matrix and inclusion material is repeated by 
appropriate boundary conditions to represent a composite with a periodic micro-
structure. Good agreement was achieved between calculated and experimental 
stress-strain curves for a rectangular fiber arrangement. The influence of different 
regular fiber arrangements on the strength of transversely loaded boron fiber rein-
forced Al was analyzed in Refs [2, 5, 7]. It was found that the same square ar-
rangement of fibers represents two extremes of strengthening: high strength levels 
are achieved if the composite is loaded in a 0° direction to nearest neighbors while 
the 45° loading direction is found to be very weak for the same fiber arrangement. 
.4 regular hexagonal fiber arrangement lies somewhere between these limits [2, 5, 
7, 10, 11]. The transverse mechanical behavior of a realistic fiber reinforced com-
posite containing about 30 randomly arranged fibers was found to be best de-
scribed but significantly underestimated by the hexagonal fiber model [5]. One 
reason for the superiority of the hexagonal over the square arrangement in describ-
ing random fiber arrangements is due to the fact that the elastic stress invariants of 
the square arrangement agree only to first order with the invariants of the trans-
versely isotropic material while the hexagonal arrangement agrees up to the sec-
ond order [l0]. Dietrich [6] found a transversely isotropic square fiber reinforced 
Ag-Ni composite material using fibers of different diameters. A systematic study 
in which the fiber volume fraction and the fiber arrangement effects have been in-
vestigated was founded into a simple model in Ref. [11]. 

                                                           
1 Reprinted from M. Dong, S. Schmauder, “Modeling of Metal Matrix Composites by a 
Self-Consistent Embedded Cell Model”, Acta Metall. Mater. 44, pp. 2465-2478 (1996) with 
kind permission from Elsevier.  
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The influence of fiber shape and clustering was numerically examined in some 
detail by Llorca et al. [12], Dietrich [6] and Sautter [13]. It was observed that fac-
etted fiber cross sections lead to higher strengths compared to circular cross sec-
tions except for such fibers which possess predominantly facets oriented at 45° 
with respect to the loading axis in close agreement with findings in particle rein-
forced MMCs [14]. Thus, hindering of shear band formation within the matrix was 
found to be responsible for strengthening with respect to fiber arrangement and fi-
ber shape [12]. In Refs [8, 11, 15, 16] local distributions of stresses and strains 
within the microstructure have also been identified to be strongly influenced by 
the arrangement of fibers. However, no agreement was found between the me-
chanical behavior of composites based on cell models with differently arranged fi-
bers and experiments with randomly arranged fibers loaded in the transverse di-
rection. 

The overall mechanical behavior of a particle reinforced composite was stud-
ied with axisymmetric finite element cell models by Bao et al. [17] to represent a 
uniform particle distribution within an elastic-plastic matrix. Tvergaard [18] intro-
duced a modified cylindrical unit cell containing one half of a single fiber to 
model the axial performance of a periodic square arrangement of staggered short 
fibers. Horn [19] and Weissenbek [20] used three dimensional finite elements to 
model different regular arrangements of short fibers and spherical as well as cy-
lindrical particles with relatively small volume fractions (f < 0.2). It was generally 
found that the arrangement of fibers strongly influences the different overall be-
havior of the composites. When short fibers are arranged in a side-by-side manner, 
they constrain the plastic flow in the matrix and the computed stress-strain re-
sponse of the composite in the fiber direction is stiffer than observed in experi-
ments. If the fibers in the model are overlapping, strong plastic shearing can de-
velop in the ligament between neighboring fibers and the predicted load carrying 
capacity of the composite is closer to the experimental measurements. In Ref. [21] 
the stress-strain curves based on FE-numerical solutions of axisymmetric unit cell 
models of MMCs are given in a closed form as a function of the most important 
control parameters, namely, volume fraction, aspect ratio and shape (cylindrical or 
spherical) of the reinforcement as well as the matrix hardening parameter. 

One reason for the discrepancy between experiments and calculations based on 
simple cell models in the case of particle, whisker and fiber reinforced metals is 
believed to be the un-natural constraint governing the matrix material between in-
clusion and simulation cell border [5. 15, 17-19, 22-24] resulting in an unrealistic 
strength increase. The influence of thermal residual stresses in fiber reinforced 
MMCs under transverse tension was studied in Ref. [7] and found to lead to sig-
nificant strengthening elevations in contrast to findings in particulate reinforced 
MMCs where strength reductions were calculated [25]. 

A limited study on the overall limit flow stress for composites with randomly 
oriented disk- or needleshaped particles arranged in a packet-like morphology is 
reported by Bao et al. [17]. In Refs [26, 27] a modified Oldroyd model has been 
proposed to investigate analytically-numerically the overall behavior of MMCs 
with randomly arranged brittle particles. Duva [28] introduced an analytical model 
to represent a random distribution of non-interacting rigid spherical particles 
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In this work, cell models are applied to simulate, for a number of relevant pa-
rameters, the transverse behavior of MMCs containing fibers in a regular square or 
hexagonal arrangement as well as the mechanical behavior of MMCs containing 
particles in a regular arrangement. MMCs with randomly arranged inclusions are 
modeled by a recently introduced self-consistent procedure with embedded cell 
models. This method of surrounding a simulation cell by additional “equivalent 
composite material” was introduced in Ref. [6] for structures which are periodical 
in the loading direction and was recently extended to non-periodic two-
dimensional [29-31] and three-dimensional composites [13, 27]. The method is 
known to remove the above described unrealistic constraints of cell models. An 
initial comparison of two- and three-dimensional embedded cell models in the 
case of perfectly-plastic matrix material depicts elevated strength levels for the 
three-dimensional case [27], similar to composites with regularly arranged fibers 
[11]. 

The purpose of the present paper is to investigate the mechanical behavior of 
MMCs reinforced with regular or random arranged continuous fibers under trans-
verse loading, as well as the mechanical behavior of MMCs reinforced with regu-
lar or random arranged particles under uniaxial loading, and to systematically 
study composite strengthening as a function of inclusion volume fraction and ma-
trix hardening ability. The finite element method (FEM) is employed within the 
framework of continuum mechanics to carry out the calculations.  

2.1.1  Model Formulation 

A continuum mechanics approach is used to model the composite behavior. The 
inclusion behaves elastically in all cases considered here and its stiffness is much 
higher than that of the matrix, so that the inclusion can be regarded as being rigid. 
In addition, the continuous fibers of circular cross section and spherical particles 
are assumed to be well bonded to the matrix so that debonding or sliding at the in-
clusion-matrix interface is not permitted. The uniaxial matrix stress-strain behav-
ior is described by a Ramberg-Osgood type of power law  
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where σ and ε are the uniaxial stress and strain of the matrix, respectively, σ0. is 
the tensile flow stress, the matrix yield strain is given as , ε0 = σ0 /E,  E is Young’s 
modulus, and N = 1/n is the strain hardening exponent. Thus, N = 0 corresponds 
to a non-hardening matrix. 

perfectly bonded in a power law matrix. The Duva model is a self-consistent model 
and should be valid particularly in the dilute regime of volume fractions, f < 0.2. 



J2 flow theory of plasticity with isotropic hardening is employed with a von 
Mises yield criterion to characterize the rate-independent matrix material. The von 
Mises equivalent stress and strain are given as:  
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where sij= σij – σkk /3, eij = εij – εkk /3 and ν is Poisson’s ratio. In the analytical ap-
proach, the metal matrix is considered incompressible, so Poisson’s ratio of the 
matrix will become 0.5 after reaching the yield stress. However, in reality Pois-
son’s ratio of the composite remains below 0.5 as the matrix starts yielding. It 
changes from the elastic value v to the limit value 0.5 with increasing yielding 
zone in the matrix.  

The Ramberg-Osgood type of matrix power law hardening is assumed to be 
valid for the matrix described in terms of von Mises equivalent stress and strain  
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with the following relations between stress and strain under uniaxial loading and 
von Mises equivalent stress and strain.  

(a) In the case of a two-dimensional (2D) plane strain condition for continuous 
fiber reinforced composites )1547.13/2,866.02/3( ≈≈  
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(b) In the case of three-dimensional (3D) axisymmetrical condition for particle 
reinforced composites  
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The global mechanical response of the composite under external loading is charac-
terized by the overall stress σ  as a function of the overall strain ε . Moreover, to 
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describe the results in a consistent way, the reference axial yield stress o. and yield 
strain a, of the matrix, as defined in equation (2.4) for the 2D case and in equation 
(2.5) for the 3D case, will be taken to normalize the overall stress and strain of the 
composite, respectively.  

Following Bao et al. [17] the composite containing hard inclusions will neces-
sarily harden with the same strain hardening exponent, N, as the matrix for the 
case of hard inclusions, when strains are in the regime of fully developed plastic 
flow. At sufficiently large strains the composite behavior is then described by  

N
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where Nσ  is called the asymptotic reference stress of the composite which can be 
determined by normalizing the composite stress by the stress in the matrix at the 
same overall strain ε  [equation (2.2)], as indicated in Fig. 2.4:  
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Fig 2.4  Composite strengthening. 
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For a matrix of strain hardening capability N, the limit value 0/σσ N  is defined as 
the composite strengthening level, which is an important value to describe the me-
chanical behavior of composites and which depends only on fiber and particle ar-
rangement, inclusion volume fraction and matrix strain-hardening exponent. 

Unit cell models 

Before introducing the self-consistent embedded cell model, two regular aligned 
continuous fiber arrangements, namely square and hexagonal arrangements, and 
two regular particle arrangements, namely primitive cubic and hexagonal ar-
rangements, are at first considered, as shown in Figs 2.20(a)-(d). 

It is well known that the repeating unit cells 1 (or 3) and 2 in Fig. 2.20(a) can 
be extracted from the regular array of uniform continuous fibers to model exactly 
the composite with square fiber arrangement under 0° and 45° transverse loading, 
respectively, whereas the repeating unit cells 6 and 7 (or 8) can be taken from Fig. 
2.20(b) to model exactly a hexagonal fiber arrangement under 0° and 30° trans-
verse loading, respectively, if the appropriate boundary conditions are introduced 
making use of the symmetry conditions. Moreover, the unit cells 4, 9 and 10 can 
also represent geometrically regular arrangements. 

For further simplification the modified unit cells 5. 11 and 12 (circular and el-
liptically shaped cell models) may be derived from the cells 3. 4. 8, 9 and 10. An 
ellipsoidal unit cell has been used previously in Ref. [32] and shown to possess 
very complicated boundary conditions. As can be seen later these unit cells can be 
employed, however, in the embedding method to model the mechanical behavior 
of composites with random fiber arrangement. 
The results of the unit cell models (as illustrated in Fig. 2.10(b) as an example for 
three different regular fiber arrangements with non-hardening matrix) show that 
the composite strengthening levels are quite different, especially at high volume 
fractions of fibers, with the composite strengthening for square arrangements un-
der 0° loading being highest and for square arrangements under 45° loading being 
lowest. Further results regarding these three different regular fiber arrangements 
using unit cell models are given in Ref. [11]. A comparison of the stress-strain 
curves for the composite Al 46 vol.% B [in Fig. 2.8(a)] shows that the stress-strain 
curve from random fiber packing given in Ref. [5] lies between the curves from 
square unit cell modeling under 0°. loading and hexagonal unit cell modeling. The 
curves from square unit cell modeling under 45°. loading are even lower. As men-
tioned above, the strength of composites with randomly arranged inclusions can-
not be described by modeling regular inclusion arrangements. 
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Fig 2.5  Modeling of unidirectional continuously fiber reinforced composites with: (a) 
square and (b) hexagonal fiber arrangements under transverse loading conditions and parti-
cle reinforced composites with: (c) primitive cubic and (d) hexagonal particle arrange-
ments. 
 

 
Rather, a new model must be employed, which describes approximately the 

geometry and the mechanical behavior of real composites with randomly arranged 
inclusions, if models with many inclusions have to be avoided for modeling and 
computational reasons. For particle reinforced composites, the primitive cubic par-
ticle arrangements can be modeled exactly by a conventional cell model with ap-
propriate symmetry and boundary conditions [Fig. 2.20(c)], however. the hexago-
nal arrangement has to be simulated by approximate cell models [Fig. 2.20(d)] 



[17]. The primitive cubic and axisymmetric unit cells have been used in this paper 
to model two representatives of regular particle arrangements. Further simplifica-
tions for 3D modeling are spherical unit cells shown in Figs 2.20(c) and (d) which 
will be employed, however, for embedded cell modeling. 

Embedded cell models 

In the present work, 2D and 3D self-consistent embedded cell models will be ap-
plied to model the mechanical behavior of composites with random continuous fi-
ber and particle arrangements. Figure 3(a) describes schematically a typical plane 
strain (2D) embedded cell model with a volume fraction of f = (d/D)² or axisym-
metric (3D) embedded cell model with a volume fraction of f = (d/D)³, where in-
stead of using fixed or symmetry boundary conditions around the fiber-matrix or 
particle-matrix cell, the inclusion-matrix cell is rather embedded in an equivalent 
composite material with the mechanical behavior to be determined iteratively in a 
self-consistent manner. 
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Fig 2.6  (a) Embedded cell model and (b) finite element mesh for an embedded cell model. 

If the dimension of the embedding composite is sufficiently large compared 
with that of the embedded cell, e.g. L/D = 5 as used in this paper, the external 
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To investigate the influence of the geometrical shape of the matrix phase on 
the overall behavior of the composite, different shapes of cross section of the em-
bedded cell were chosen with a circular shaped continuous fiber surrounded by a 
circular, square, elliptical or rectangular shaped metal matrix (Fig. 2.9). A typical 
FE mesh and corresponding symmetry and boundary conditions are given in Fig. 
2.6(b), where a circular fiber or a spherical particle is surrounded by a circular (for 
2D) or spherical (for 3D) shaped metal matrix, which is again embedded in the 
composite material with the mechanical behavior to be determined.  

Iterative modelling procedure 

Under axial displacement loading at the external boundary of the embedding com-
posite (Fig. 2.6) the overall response of the inner embedded cell can be obtained 
by averaging the stresses and strains in the embedded cell or alternatively the reac-
tion forces and displacements at the boundary between the embedded cell and the 
surrounding volume. 

The embedding method is a self-consistent procedure, which requires several 
iterations as shown in Fig. 2.22. 
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Fig 2.7  Iterative modeling procedure: stress-strain curves for different iteration steps. 

 
An initially assumed stress-strain curve (iteration 0 in Fig. 2.22) is first as-

signed to the embedding composite, in order to perform the first iteration step. An 

geometry boundary conditions introduced around the embedding composite are 
almost without influence on the composite behavior of the inner embedded cell. 
Indeed, there exists no difference in the calculated results whether the vertical sur-
faces are kept unconstrained or remain straight during uniaxial loading. 

improved stress-strain curve of the composite (iteration 1) will be obtained by 



. 
It has been found from systematic studies that convergence of the iteration to 

the final stress-strain curve of the composite is independent of the initial mechani-
cal behavior of the embedding composite (iteration 0). From an arbitrary initial 
stress-strain curve of the embedding composite the required composite response 
can be reached after 4-5 iterations for all cases.  
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Fig. 2.8  Comparison of the mechanical behavior (a) of an Al-46vol.%B fiber reinforced 
composite (N = l/3, f  0.46) under transverse loading from different models; and (b) of a 
Ag-58 vol.%Ni particulate composite from embedded ceil model and experiment.  

 

analyzing the average mechanical response of the embedded cell. This procedure 
is repeated until the calculated stress-strain curve from the embedded cell is al-
most identical to that from the previous iteration. The convergence of the iteration 
occurs typically at the fifth iteration step, as illustrated in Fig. 2.22

The LARSTRAN finite element program [33] was employed using 8-noded 
plane strain elements (for 2D) as well as axisymmetric biquadrilateral elements 
(for 3D) generated with the help of the pre- and postprocessing program PATRAN 
[34]. A DEC-Alpha work station 3000/300L was used to carry out the calculations, 
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Comparison with experiments 

An example of the composite Al 46vol.%B with random fiber packing taken from 
Ref. [5] has been selected to verify the embedded cell model. This MMC is a 
6061-O aluminum alloy reinforced with unidirectional cylindrical boron fibers of 
46% volume fraction. The room temperature elastic properties of the fibers are 
Young’s modulus, )(BE = 410 GPa, and Poisson’s ratio, )(Bv = 0.2. The experimen-
tally determined mechanical properties of the 6061-O aluminum matrix are: 
Young’s modulus, )1( AE = 69 GPa, Poisson’s ratio, )1( Av = 0.33, 0.2% offset tensile 
yield strength, σ0 = 43 MPa, and strain-hardening exponent, N = l/n = l/3. 

Figure 5(a) shows a comparison of the stress-strain curves of the composite 
Al-46 vol.% B under transverse loading from simulations of a real microstructure 
together with results from different cell models. The stress-strain curve from the 
embedded cell model employed in this paper shows good agreement with that 
from the calculated random fiber packing in the elastic and plastic regime, which 
lies between the curves from square unit cell modeling under 0° loading and hex-
agonal unit cell modeling.  

Furthermore, the stress-strain curve from another experiment [27] on the com-
posite Ag-58vol.% Ni with random particle arrangement (Young’s modulus, E(Ni) 
= 199.5 GPa, E(Ag) = 82.7 GPa, Poisson’s ratio, υ(Ni) = 0.312, υ(Ag) = 0.367, and 
yield strength, σ(Ni) = 193 MPa, σ(Ag) = 64 MPa) has been compared in Fig. 2.8(b) 
with that from the self-consistent embedded cell model. Good agreement in the 
regime of plastic response is obtained, although the Ni-particles in the experiment 
were not perfectly spherical. 

These results indicate that the embedded cell model can be used to success-
fully simulate composites with random inclusion arrangements and to predict the 
elastic-plastic composite behavior.  

Geometrical shape of embedded cell 

As mentioned above, different shapes of cross section of the embedded cell model 
with a circular shaped fiber, as shown in Fig. 2.9(a), are also taken into account to 
investigate the influence of the geometrical shape of the embedded cells on the 
overall behavior of the composite. The stress-strain curves of all embedded cell 
models with different geometrical shapes are plotted in Fig. 2.9(b). With an excep-
tion of the square 45° embedded cell model the stress-strain curves are very close 
for all embedded cell shapes, namely, square-0°, circular, rectangular-0°, rectan-
gular-90°, elliptic-0° and elliptic-90°. 

From the calculated results of the embedded cell models localized flows have 
been found around the hard fiber with preferred yielding at 45°. Because of the 
special geometry of the square 45° embedded cell model with the cell boundary 

which typically took 30-50 min to obtain a stress-strain curve with 100-150 load-
ing steps in one iteration loop. 



parallel to the preferred yielding at 45°, the overall stresses of the composite with 
such a geometrical cell shape are therefore reduced, such that a relative lower 
stress-strain curve has been obtained from the modeling. 

 

(b)

0.0 1.0 2.0 3.0 4.0 5.0
Strain  (%)

0.0

100.0

200.0

300.0

S
tr

es
s 

 (
M

P
a)

Ellipse - 0
o

Ellipse - 90
o

Rectangular - 0
o

Rectangular - 90
o

Square - 45
o

Circular

Square - 0
oAl/46vol.%B

(a)

Square - 0 Circular

Elliptic - 0

o Square - 45o

oo
Rectangular - 90Rectangular - 0 Elliptic - 90oo

 
 
Fig 2.9  Embedded cell models: influence of (a) different matrix shapes on (b) stress-strain 
curves for an Al-46vol.%B (N = l/3, f = 0.46) composite.  

 
The almost identical responses of all other embedded cell models indicate that, 

besides the special shape of matrix with 45° cell boundaries, the predicted me-
chanical behavior of fiber reinforced composites under transverse loading is inde-
pendent of the modeling shape of the embedded composite cell. That allows us 
to employ any embedded cell shape to model the mechanical behavior of the 
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2.1.2  Systematic studies with self-consistent embedded cell 
models 

Composite strengthening is dependent on fiber and particle arrangement, inclusion 
volume fraction and the matrix strain-hardening exponent. The effect of fiber and 
particle arrangement is best demonstrated by considering different cell models. 
The effect of the inclusion volume fraction has been taken into account by apply-
ing different ratios of the circular (2D) and spherical (3D) matrix and the inclusion 
in the embedded cell model. 

The effect of the matrix strain hardening exponent has been investigated by 
changing the parameter, N, of the material hardening law for the matrix in equa-
tion (2.1). Some results from the systematic studies with embedded cell models 
are given in Figs 2.10-2.13. 
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composite with random fiber arrangement. In the following systematic studies the 
circular shaped embedded cell model with circular cross section of rigid fiber will 
thus be taken to predict the general transverse mechanical behavior of the compos-
ite with random fiber arrangement. In the same way, a spherical shaped embedded 
cell model containing a spherical particle will be used to predict the axial me-
chanical behavior of composites with random particle arrangement. 
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Fig 2.10  (a) Normalized stress-strain curves from embedded cell models (2D) for different 
N-values (f = 0.5) and (b) composite strengthening from different cell models (2D, N = 0).  

 
 
The influence of matrix strain-hardening is shown in Figs 2.10(a) and 2.11(a). 

The predicted transverse (2D) and axial (3D) overall stress-strain curves (normal-
ized by yield stress and yield strain of the matrix, respectively) for the case of 
strain-hardening exponents between N = 0.0 and 0.5 are depicted in Fig. 2.10(a) 
(2D) for a fiber volume fraction off = 0.5 and in Fig. 2.11(a) (3D) for a particle 
volume fraction of f = 0.4. At sufficiently large strains (e.g. at E = lot,) the normal-
ized overall stresses approach constant values, i.e. composite strengthening levels, 
as illustrated on the right-hand side of Figs 2.10(b) and 2.11(b) for 010εε = .The 
strength of the composite is seen to increase with N and similar trends of nearly 
linear increase with N are found for all particle volume fractions, f’ [Figs 2.11(a) 
and 2.13]. 

The dependence of composite strengthening on inclusion volume fraction ob-
tained by the self-consistent embedded cell modelling is shown in Fig. 2.10(b) for 
a non-hardening matrix with continuous fiber reinforcement and in Fig. 2.11(b) 
for a strain-hardening matrix (N = 0.2) with particle reinforcement. For compari-
son, the corresponding values of composite strengthening for regular fiber and 
particle arrangements taken from unit cell modelling and from two approximate 
models, namely Duva’s model [28] and the modified Oldroyd model [26,27] are 
also drawn as a function of fiber and particle volume fraction in these figures, re-
spectively. A detailed discussion of this comparison is given in Ref. [27]. 
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Duva’s model is a self-consistent model and valid particularly in the dilute re-
gime, f < 0.2. Composite strengthening by the Duva model is given as Composite 
strengthening levels of the modified Oldroyd model are taken from Ref. [27]. 
 

)39.011.2(

0
)1( +−−= NN f

σ
σ  (2.8) 

A summary of the dependence of composite strengthening on inclusion volume 
fraction and matrix strain-hardening for randomly arranged continuous fibers and 
particles is depicted in Figs 2.12 and 2.13(a) for matrix strain-hardening exponents 
N = 0.0-0.5, and compared with predictions from 2D and 3D unit cell models. In 
addition, a comparison with predictions from Duva’s model and the modified 
Oldroyd model for the case of particle reinforced composites is shown in Fig. 
2.13(b).  

For continuous fiber reinforced composites with a non-hardening matrix the 
hexagonal arrangement provides slightly higher transverse composite strengthen-
ing over the square arrangement at volume fractions f < 0.5, whereas the random 
arrangement from the embedded cell model supplies an intermediate value be-
tween the two regular arrangements except at volume fraction 0.38 < f < 0.5 (Fig. 
2.12). At volume fractions 0.38 < f < 0.5, the random arrangement from the em-
bedded cell model possesses the lowest composite strengthening level. On the 
contrary, the composite strengthening of the square arrangement is higher than 
that of the hexagonal arrangement for volume fractions f > 0.4. For the composite 
with a small exponent of strain-hardening matrix, N < 0.2, similar relations among 
the three arrangements were found, with the cross points of any two curves being 
closer to f‘= 0 with increasing N. For composites with a higher strain-hardening 
exponent of the matrix, N > 0.2, the strengthening values are almost the same for 
the three arrangements considered at volume fractions off < 0.2. At volume frac-
tions off > 0.2, the square arrangement provides again the highest strengthening 
and the hexagonal arrangement the lowest strengthening. A comparison of com-
posite strengthening in Fig. 2.12 for three continuous uniaxial fiber arrangements 
can be summarized as follows: in the case of low strain-hardening of the matrix, 
composites with hexagonal fiber arrangement behave stronger than those with 
random fiber arrangement, which behave, however, at low volume fractions 
stronger than those with random arrangement. With increasing strain-hardening 
ability of the matrix, the composites of all three arrangements behave similarly at 
low fiber volume fractions. At higher inclusion volume fractions the difference in 
composite strengthening is becoming larger, with the square arrangement possess-
ing the highest, the random arrangement the intermediate and the hexagonal ar-
rangement the lowest level. 

The stress and strain distributions in a typical embedded cell model (2D) are 
shown in Fig. 2.14, In the embedded cell the localized flow stresses with preferred 
yielding in the 45° direction are seen apparently around the hard fiber and extend-
ing into the embedding composite in the vicinity of the embedded cell. 
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Fig. 2.11  (a) Normalized overall composite stress-strain curves from axisymmetric embed-
ded cell models (3D) for different N-values (f = 0.4) and (b) composite strengthening for 
matrix strain-hardening N = 0.2 from different cell models (3D). 
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Fig 2.12  Comparison of composite strengthening by continuously aligned fibers from dif-
ferent 2D cell models: embedded cell model, square and hexagonal unit cell model. 

 
 

It characterizes the local response of the composite under transverse loading. 
However, the stresses and strains are homogeneously distributed in the embedding 
composite far from the embedded cell. This represents the overall behavior of the 
corresponding composite. In the case of random fiber arrangement, the situation 
around every single fiber is, of course, more complicated. However, the real situa-
tion can be considered in average as a fiber-matrix cell surrounded by correspond-
ing equivalent composite material, which represents the average overall composite 
behavior. 

From comparisons for particle reinforced composites in Figs 2.28(a) and (b) it 
can be seen that the composite strengthening levels from the primitive cubic, the 
axisymmetric unit cell models and the self-consistent axisymmetric embedded cell 
models are very close at low particle volume fractions, f, and low matrix strain-
hardening exponents, N. With increasing particle volume fraction, f and matrix 
strain-hardening exponent, N, the strengthening level of the composites increases 
for all the models considered. However, the primitive cubic unit cell provides the 
highest composite strength, while the self-consistent axisymmetric embedded cell 
predicts the softest composite response among these three models. This effect can 
be explained by considering the constraint of neighbouring particles through the 
necessary strict boundary conditions of the models with regularly arranged parti-
cles. As the particle volume fraction increases, the distance between the particles 
decreases until they touch at a volume fraction of f = 0.5236 for the primitive cu-
bic cell model (primitive cubic particle arrangement), and a volume fraction of f = 



2/3 for the axisymmetric cell model (hexagonal particle arrangement). In the self-
consistent axisymmetric embedded cell model the particles remain surrounded by 
the matrix up to an extreme volume fraction of f = 1, as seen in Fig. 2.6. The 
equivalent composite surrounding the embedded inclusion-matrix cell provides 
thus less constraint on the inclusion-matrix cell compared to conventional unit cell 
models of the same volume fraction. In most practical relevant composites, the in-
clusions are randomly arranged and on average, no such restricting constraints ex-
ist as in the regular primitive cubic and hexagonal arrangements. For this reason, 
the self-consistent axisymmetric embedded cell model is believed to be the most 
realistic approximation to the geometry of real composites containing randomly 
arranged spherical particles. 

At low particle volume fractions (f < 0.2) and low matrix strain-hardening abil-
ity (N < 0.2) the composite strengthening levels from the present selfconsistent ax-
isymmetric embedded cell model and the Duva model are very similar. With in-
creasing particle volume fraction, f, the differences in composite strengthening 
between these two models are significant for low matrix strain-hardening ability, 
however, for N ~ 0.5 the two strength predictions are comparable. The modified 
Oldroyd model provides a very narrow distribution of composite strengthening 
with respect to N of matrix strain-hardening and an almost linear strength depend-
ence on particle volume fraction, f. Good agreement between the self-consistent 
axisymmetric embedded cell model and the modified Oldroyd model exists only at 
low volume fractions and high strain-hardening rates (N ~ 0.5) of the matrix.  
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Fig 2.13  Comparison of composite strengthening by spherical particles from different 3D 
cell models: (a) embedded cell model, primitive cubic and axisymmetric unit cell model 
and (b) embedded ceil model, Duva model and Oldroyd model. 

 
 
From above comparisons between the models it is clear that at low particle vol-

ume fractions (f < 20%) the strengthening of metal matrix composites reinforced 
with randomly or regularly arranged particles can be predicted with either the axi-
symmetric unit cell model, the embedded cell model or the simple Duva model. 
However, for higher particle volume fractions the self-consistent embedded cell 
model should be applied to obtain the overall mechanical response of technically 
relevant composites reinforced by randomly arranged spherical particles 

Strengthening Model 

The strength of MMCs reinforced by hard inclusions under external mechanical 
loading has been shown to increase with inclusion volume fraction and strain-
hardening ability of the matrix for all inclusion arrangements investigated. From 
the presented numerical predictions a strengthening model for aligned continuous 
fiber reinforced MMCs with random, square (0°) and hexagonal arrangements, as 
well as for spherical particle reinforced MMCs with random, primitive cubic and 
hexagonal arrangements, can be derived as a function of the inclusion volume 
fraction f, and the strain-hardening exponent, N, of the matrix [31]: 
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where σ0 is the matrix yield stress, and c1, c2, c3 and c4 are constants summarized 
in Table 2.1 
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Fig 2.14  (a) Equivalent stress and (b) effective plastic strain in an embedded cell model 
with circular rigid fiber (f = 0.5) and metal matrix (E = 100 GPa, ε0 = 0.1 %. σ0= 100 MPa, 
N = 0.2) at 3.8% total strain. 
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Equation (2.10) represents best fits to the calculated composite strengthening 
values C,y for matrix strain-hardening exponents N in the limit of 0.0 < N < 0.5 
for square 0°, hexagonal and random fiber arrangements, respectively, and fiber 
volume fractions,  in the range of 0.0 < f < 0.7. A comparison of this strengthen-
ing model [equation (2.10)] for random fiber arrangements with the values calcu-
lated by using self-consistent embedded cell models shows close agreement with 
an average error of 1.25% and a maximum error of 6.95% [31].   

 
Table 2.1:  
Constants for strengthening models 

 c1 c2 c3 c4 
2D 
Self-consistent embedded cell 

    model 
(Random fiber arrangement) 
Square unit cell model (0°) 
Hexagonal unit cell model 

 
0.361 
 

    0.405 
0.305 

 
1.59 
 
2.35 
1.3 

 
0.29 
 
0.65 
0.05 

 
0.1 
 
0.22 
0.0 

     
3D 
Self-consistent axisymmetric     

    embedded cell model 
(Random particle arrangement) 
Primitive cubic unit cell model 
Axisymmetric unit cell model 
 

 
0.45 
 
0.34 
0.38 

 
2.19 
 
2.3 
2.5 

 
0.84 
 
0.65 
0.7 

 
0.53 
 
0.5 
0.66 

 
Equation (2.10) is also available for matrix strain-hardening exponents N in the 

limits of 0.0 < N < 0.5 for self-consistent axisymmetric embedded cell models 
(particle volume fractions f in the range of 0.05 < f < 0.65 with an average error of 
1.59% and a maximum error of 6.68% for the extreme case f = 0.05, N = 0.5), axi-
symmetric unit cell models (particle volume fractions f in the range of 0.05 < f < 
0.55 with an average error of 1.22% and a maximum error of 6.18% for the ex-
treme case f = 0.55, N = 0.5) and for primitive cubic unit cell models (particle vol-
ume fractions f in the range of 0.05 < f < 0.45 with an average error of 1.43% and 
a maximum error of 6.38% for the extreme case f = 0.05, N = 0.5). 

Conclusions 

The transverse elastic-plastic response of metal matrix composites reinforced with 
unidirectional continuous fibers and the overall elastic-plastic response of metal 
matrix composites reinforced with spherical particles have been shown to depend 
on the arrangement of reinforcing inclusions as well as on inclusion volume frac-
tion f, and matrix strain-hardening exponent, N. Self-consistent plane strain and 
axisymmetric embedded cell models have been employed to predict the overall 
mechanical behavior of metal matrix composites reinforced with randomly arranged 

 f



Systematic studies were carried out for predicting composite limit flow 
stresses for a wide range of parameters, f and N. The results for random 3D parti-
cle arrangements were then compared with regular 3D particle arrangements by 
using axisymmetric unit cell models as well as primitive cubic unit cell models. 
The numerical results were also compared with those from the Duva model and 
from the modified Oldroyd model. The strength of composites at low particle vol-
ume fractions has been shown to be in very close agreement except for the modi-
fied Oldroyd model. With increasing particle volume fractions, f, and strain hard-
ening of the matrix, N, the strength of composites with randomly arranged 
particles cannot be properly described by conventional particle-matrix unit cell 
models, as those are only able to predict the strength of composites with regular 
particle arrangements. 

Finally, a strengthening model for randomly or regularly arranged continuous 
fiber reinforced composites under transverse loading and particle reinforced com-
posites under axial loading is derived, providing a simple guidance for designing 
the mechanical properties of technically relevant metal matrix composites: for any 
required strength level, equation (2.10) will provide the possible combinations of 
particle volume fraction, f, and matrix hardening ability, N. Thus, for the near fu-
ture, strong impact of the present work on the development of new particle rein-
forced metal matrix composites is expected. 
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2.2 Multiphase finite elements 

2.2.1  3D multiphase finite element method2
 

Introduction 

Inhomogeneous stress distributions which occur as a result of the interaction of the 
individual microstructural constituents in multiphase materials are frequently 
simulated with the finite-element (FE-) method [1]. Such microstructural analyses 
contribute to the understanding of the stress and strain distributions in each con-
stituent and can be used to depict critical loads or critical configurations. So far, 
FE modelling of realistic microstructures is essentially limited to 2D-models [2-5]. 
However, 2D-simulations are not able to represent the morphological complexity 
of a realistic 3D-microstructure. Inhomogeneities located underneath the surface 
of a modelled microstructure as well as the inherent 3D-nature of the microstruc-
ture may introduce significant changes in comparison to 2D-simulations. There-
fore, fully 3D-analyses are currently requested in order to evaluate the predictions 
based on 2D-simulations. FE-modelling of two-phase materials based on single-
phase elements is limited to the simplest 3Dstructures such as single inclusions or 
regular microstructures [6-10]. Conventional 3D-modelling of realistic microstruc-
tures is practically impossible since it would require fantastically complex FE 
meshes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.15  8-node hexahedral multiphase element with bilinear interpolation and full inte-
gration. 

The first 3D-simulations of more realistic microstructures have been reported 
by Hollister and Kikuchi [11]. They applied digital image based modelling for the 
                                                           

Gaussian point Phase 

2 Reprinted from N. Lippmann, Th. Steinkopff, S. Schmauder, P. Gumbsch, “3D-Finite-
Element-Modelling of Microstructures with the Method of Multiphase Elements”, Com-
putational Materials Science 9, pp. 28-35 (1997), with kind permission from Elsevier 
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micromechanical study of bone tissues. A 3D-model is developed by combining 
2D-images. Each pixel in a 2D-image is recognized as a voxel which is identified 
as a finite element in the analysis. 

Recently, the method of multiphase elements (MME) where the Gaussian 
points of one finite element can be assigned to different material properties has 
been successfully applied for the 2D-simulation of realistic microstructures [2-5]. 
Multiphase elements were introduced since the reconstruction of phase boundaries 
with irregular shape in singlephase FE-models is very complicated. The main ad-
vantage of the multiphase elements over conventional singlephase elements are 
the flexibility in the construction of the FE-model as well as the numerical effi-
ciency. Based on our experiences with this method, the new 3D-multiphase ele-
ment has been developed in the framework of the non-linear FE-code 
LARSTRAN [12]. The 3D-multiphase element is defined for the following ele-
ment types: 

• 8-node hexahedral elements with trilinear interpolation and full integra-
tion (eight Gaussian points, Fig. 2.15. 

• 27-node and 20-node hexahedral elements with triquadratic interpolation 
Gaussian points). 

Method 

Consider the main ideas of the MPFE (multiphase finite element) method. Com-
monly, each element of the FE mesh is attributed to one phase; the same material 
properties are assigned to all integration points of an element and the phase 
boundaries are supposed to coincide with the edges of finite elements. The idea of 
the method of multiphase elements is that the different phase properties are as-
signed to individual integration points in the element. Therefore, the FE mesh in 
this case is independent of the phase arrangement of the material, and one can use 
relatively simple FE meshes in order to simulate the deformation in a complex mi-
crostructure.  

The possibility of using initial meshes of arbitrary simple structures for simu-
lation of the mechanical behaviour of materials with complex microstructure is the 
main advantage of the method of multi phase elements.  

In the case of 3D simulations of the mechanical behaviour of heterogeneous 
materials with arbitrarily arranged phase boundaries, it is almost impossible to 
construct the FE mesh in such a way that the edges of finite elements correspond 
to the phase boundaries. Therefore, the possibilities, which the multiphase element 
method offers are especially important in the 3D case.  

In the 3D MPFE code, finite elements of low order (with linear or square in-
terpolation functions) are used. The form and distribution of the phases are intro-
duced automatically in the FE model from digitised micrographs of the micro-
structure.  
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Fig 2.16  FE-models for the verification of the multiphase elements. 
 
 
Several material layers are metallographically removed equidistantly from the 

surface of the specimen by careful polishing. Micrographs from each polished sur-
face are made. The thickness of the removed layers must be known for each layer 
as exactly as possible. Then, the micrographs are digitised with the use of image 
analysis software, and the 3D real structure of the material is reconstructed from 
the digitised micrographs of the sections.  

Each pixel in 2D digitised micrograph is assigned to some volume of material, 
and therefore determines the correspondence of Gaussian points to the phases in 
the material. The mechanical properties of the phases are automatically assigned 
to the integration points.  

One multiphase element can be virtually divided into n subdomains, where n is 
the number of Gaussian points in this element. The subdomain k of a Gaussian 
point is fully assigned to the phase in which the integration point rk is located. A 
closed integration (e.g. to provide the stiffness) in the multiphase element is not 
possible. Therefore, the Gaussian quadrature, which is the weighted summation of 
the function values at selected integration point’s xk, is used as integration 
scheme: 
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( ) ( )k vk k
k

f x dx w f x= ⋅∑∫  (2.10) 

The weights wk correspond to the volume of the subdomains and fvk indicates that 
the function for the phase v of the subdomain k is used. 

In the following, the reliability of the 3D-muhiphase elements is studied by 3D-
FE-modelling of a simple model and subsequent comparison with the results of 
singlephase FE-modelling. In this case we investigate the influence of a strong 
stress jump on the simulations. Furthermore, the development of a 3D-model of a 
realistic two-phase microstructure is presented. Finally, the results of this simula-
tion are compared with the results of a 2D-simulation of a representative intersec-
tion of the microstructure.  

Examples 

Stress distribution due to a cubic inclusion in a matrix 

The method of multiphase elements would usually be not applied to the modelling 
of such simple geometries as the cubic inclusion in a matrix which is presented in 
this first example. However, since this geometry can also be modelled by single-
phase FE’s it is suitable to demonstrate both the reliability as well as limitations of 
the multiphase elements by a direct comparison of both methods. A small number 
of elements in the models permit an intensive evaluation of results. 

A cubic inclusion (phase 1) with an edge length 1 is embedded into an Al-
matrix (phase 2) cell of the size 21 x 21 x 21 (Fig. 2.16). In this linear-elastic cal-
culation the Young’s modulus of Silicon (168.2 GPa) [13] is assumed for the in-
clusion and 70 GPa for the matrix (Al). The Poisson ratios of the matrix and inclu-
sion are chosen to be 0.3 and 0.25, respectively. Boundary conditions are imposed 
which simulate the stress distribution in the model under uniaxial tension and 
plane strain conditions (symmetric boundary conditions). The 3D-models (see Fig. 
2.16) are created with 20-node hexahedral elements as follows: 

(1) A singlephase model with connected nodes at the phase boundary which has 
64 conventional elements. 

(2) The multiphase I model consisting of 27 multiphase elements. The central 
nodes of the multiphase elements containing the phase boundary are located on the 
phase boundary. 

(3) The multiphase II model corresponds to the singlephase model in the num-
ber of elements and discretisation. The phase boundary is located at the element 
edge. 

(4) Model multiphase III comprises 36 multiphase elements of various sizes. 
The phase boundary is located between the nodes and Gaussian points of the ele-
ments containing the phase boundary. 

The row of elements along the z-axis in Fig. 2.16 is chosen to evaluate the 
maximum stress-component σx, for which a pronounced stress jump is expected at 
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the phase boundary. The edge length of the elements is equivalent in x- and y-
direction in all models to eliminate additional effects of stress gradients. Both, the 
results at the Gaussian points as well as the element averaged results are evalu-
ated. 

Results at the Gaussian points 

Fig. 2.17 shows the calculated maximum normal stress σx along the z-direction 
(cf. Fig. 2.16, path A-A) for the Gaussian points with the lowest x- and y-distance 
to the z-axis. Generally, the same behaviour in the inclusion and matrix is ob-
served in all simulations. 

The stresses in the inclusion (phase 1) increase with decreasing distance to the 
phase boundary. The largest difference (less than 10%) occurs between single-
phase and multiphase III model. The stress jump at the phase boundary is almost 
identical in the singlephase and the multiphase II simulation. Depending on the 
nearest distance of a Gaussian point to the phase boundary a more or less steep 
stress gradient is obtained in multiphase III and multiphase I simulations. The 
stresses in the matrix increase with the distance from the phase boundary.  

 

 
 

Fig 2.17  Results at the Gaussian points. 
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Element averaged results 

Element averaged results (Fig. 2.18) which are used in post-processors such as 
PATRAN3 to produce fringe plots are calculated on the basis of the averaged re-
sults at the nodes. 

Almost equivalent values of stresses are obtained for the singlephase and mul-
tiphase II simulations whereas in the multiphase I and III simulations the stress 
jump is not sufficiently reproduced. Since different material properties occur in 
these multiphase elements the stress maxima or minima are ‘smeared’ in the phase 
boundary region. This behaviour can not be avoided but reduced by using smaller 
elements where either the matrix or the inclusion dominates in the calculation of 
the averaged results. 

 

 
 

Fig 2.18  Element averaged results. 

Comparison of a 2D- and 3D-simulation of a realistic microstructure 
As an example of a more realistic application of multiphase elements, the micro-
structural behaviour of an AlSi-cast alloy is simulated in a 3D-FE-model and 
                                                           

3 PDA Engineering, 2975 Redhill Avenue, Costa Mesa, California 92626, USA 
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compared with a 2D-simulation. In order to describe appropriate macroscopic 
boundary conditions, embedded cell simulations [4] are performed. A 3D-model 
of size 240 x 240 x 30 µm is generated as follows (Fig. 2.19): 

• The central region of the model of size 120 x 120 x 30 µm with 9600 g-
node hexahedral elements (c.f. Fig. 2.19(l)) is used for the simulation of 
the two-phase microstructure. 

• The microstructure in the model is developed on the basis of 4 intersec-
tions of the microstructure at each 10 µm starting from the surface of the 
specimen.  

 

 
 
Fig 2.19  Generation of the 3D-multiphase model (schematically) 

 
Fig 2.20  Designation of the phases to the elements: (A) 2D-FE model, (B) 3D-FE model 
 

• The cell representing the microstructure is surrounded by 7296 single 
phase g-node hexahedral elements (c.f. Fig. 2.19(2)). 
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• All nodes at the free surfaces are fixed in z-direction (perpendicular to 
the model surface) to obtain appropriate plane strain boundary condi-
tions. 

The actual FEZ-mesh used in the calculations is given in Ref. [14]. For com-
parison to the 3D-simulation, a 2D-multiphase model of size 240 X 240 µm is cre-
ated: 

• With 1600 4-node quadrilateral plane strain elements in the central re-
gion. The edge length of these elements is equal to the edge length in the 
3D-model. 

• The two-phase microstructure in this model is chosen according to one of 
the intersections which are considered in the 3D-model (z = 10 µm). 
The cell which represents the microstructure is surrounded by 1216 4-
node quadrilateral elements.  

 
Table 2.2 
Elastic-plastic material properties of the constituents 

Property Al-Matrix Al/Si7Mg 
Yield stress σ0 218 MPa 250 Mpa 
Yield strain ε0 0.325 % 0.357% 
Constitutive  

     relation 
0,14

0 0( / )σ σ ε ε=  0,08
0 0( / )σ σ ε ε=  

The linear-elastic material properties in both models are imposed according to 
Section 3.1. Additionally, the constitutive relation for the simulation of the elastic-
plastic properties of the Al-matrix and the AlSi7Mg-alloy (surrounding) are given 
in table 2.2. The constitutive relation for the AlSi7Mg-cast alloy was determined 
from experimental stress-strain diagrams. The mechanical properties of the matrix 
were determined separately from a macroscopic specimen with the chemical com-
position of the matrix. 

The preprocessing for the 3D-model is almost the same as for the simple model 
with the inclusion, which demonstrates the efficiency of the method of multiphase 
elements in the preprocessing stage. This efficiency of model construction is 
needed for the 3D-analyses of realistic microstructures. 

The designation of phase properties to the elements is depicted in Fig. 2.20 for 
both models. The color-coding is proportional to the number of Gaussian points in 
the phase: the darker the color the more Gaussian points of the element are as-
signed to silicon. The phase distribution in the 2D- and 3D-model is equivalent, 
since the same discretisation is used in both models.  
The resulting stress distributions (σx Fig. 2.21) for both models show stress con-
centrations in the Si-eutectic as a result of the higher stiffness of Silicon. The 
maximum stresses σx and the extension of the stress maxima are somewhat higher 
in the 3D-model. However, generally the stress distributions are almost identical 
for both models. This may be understood as a result of the simulated microstruc-
ture, where large matrix cells exceeding the model dimension in z-direction are 
surrounded by Si-eutectic. 
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Fig 2.21  Stress distribution σx, loading axis corresponds to x-axis: (A) 2D-FE model, (B) 
3D-FE model. 
 
 
Since the model is limited to an intersection of such a cell, the material properties 
do not change significantly in the third dimension. 

The results presented here are the first applications of the 3D-multiphase ele-
ments. In the future, we plan a direct comparison of 3Dsimulations with experi-
ments on the basis of displacement fields. The displacements determined experi-
mentally in the scanning electron microscope during the in-situ deformation of an 
AlSi-specimen are directly compared to the displacements calculated in a 3D-
microstructural simulation of these experiments. 

Conclusions 

A 3D-multiphase element was introduced which enables the 3D-analysis of realis-
tic microscopic as well as macroscopic structures. A simple inclusion model was 
used to demonstrate the reliability of 3D-multiphase elements by direct compari-
son with a 3D-singlephase model. The results obtained for the Gaussian points 
show very good agreement between singlephase and multiphase simulations. 

Compared to the digital image based modelling (singlephase method, voxels) 
[11] the multiphase method distinguishes the different phases with better resolu-
tion, since the smallest unit to represent the second phase is the Gaussian point. 
Thus, even the effect of particles which are smaller than the element size can be 
taken into account in calculating stress distributions. In the case of equivalent 
mesh density the volume fraction of phases is more accurately reproduced in the 
multiphase method. Advantages of the multiphase elements in comparison to the 
conventional FE-modelling are: 

• Higher flexibility of the models because one regular mesh can be used for 
the simulation of any microstructure. 
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• Increased resolution of material gradients since different constitutive re-
lations can be used in one element. 

• Easier assignment of failure criteria when crack initiation and crack 
propagation is modelled because those can be based on individual Gaus-
sian points. 

• Increased numerical efficiency: if one would decompose one 8-node mul-
tiphase hexahedral element with eight Gaussian points into eight 8-node 
singlephase elements, the CPU-time for the calculation would be about 
16-times higher in the singlephase simulation. 

The element averaged results obtained in the multiphase simulation differ from 
the singlephase results: as a consequence of the different material properties in the 
elements stress concentrations are reduced and stress jumps are ‘smeared’. For 
certain applications this is actually intended; among them are gradient materials. 
The 3D-multiphase elements seem to be a tool for the stress-strain analysis of 
complex and irregular 3D-microstructures. However, occurrences at phase 
boundaries such as debonding can not be simulated with this method. 

Finally, the creation of a 3D-model of a realistic microstructure was presented. 
This model shows the efficiency of the method of multiphase elements with re-
spect to preprocessing and a realistic stress analysis of complex heterogeneous 
materials. In comparison to the 2D-simulation the maximum normal stresses in the 
3D-simulation are somewhat higher for the simulated microstructure. We assume 
that in the case of microstructures with isolated particles the results of 2D- and 
3D-simulations will differ more significantly. 
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2.2.2  Multiphase finite element method and damage 
analysis4 

 
In this work, the possibilities of the methods of multiphase finite elements [1-5] 
and element elimination technique (EET) for studying the damage initiation and 
evolution, and fracture in two-phase materials for both 2D and 3D cases are dis-
cussed.  

Element elimination technique and generalised damage parameter   

Conditions of the element elimination: Generalised damage parameter 

The element elimination technique (EET), described in Chapter 3 in more details, 
is based on the quasi-removal of finite elements, which satisfy some failure condi-
tion (which is to be defined for each material to be considered). In such a way the 
formation, growth and coalescence of voids or microcracks, and the crack growth 
are simulated. As criteria of local failure, both global (external loads or displace-
ment) and local (i.e., defined for a given element; for instance, plastic strain, von 
Mises stress, hydrostatic stress, etc.) values as well as any combination of these 
values can be used. 

A criterion of element elimination which is appropriate for each material should 
be chosen by comparison of numerical and experimental results as well as by ex-
perimentally studying micromechanisms of damage initiation. For instance, Wulf 
used the condition of critical plastic strain as criterion for element elimination [3]. 
Lippmann et al. [9] and Hönle et al. [10] have used a two-criteria model of ele-
ment elimination for the simulation of Al/Si cast alloys: elements which were as-
signed to hard (Si) particles were eliminated on the basis of a normal stress crite-
rion, and the critical value for failure of the ductile matrix phase was simulated 
using a damage-parameter, which is based on the work of Rice and Tracey [11] 
and Hancock and Mackenzie ([12], see also [13]). The damage parameter can be 
written as ([14], see also [3]) with failure initiation at a critical damage parameter 
value of Dc. Here εppp lll  is the effective plastic strain, εpl.c the critical plastic strain, η 
the stress triaxiality, η = σH / σv , σH the hydrostatic stress, and σv is the von Mises 
equivalent stress. The damage parameter fulfils all demands on locality, triaxiality 
of the stress-strain field, as well as taking into account the complete failure his-
tory.  

∫=
cpl

pldeD
,

0

2
3 ~

ε η

ε  (2.11) 

                                                           
4 Reprinted from L. Mishnaevsky Jr., M. Dong, S. Hönle, S. Schmauder, “Computational 

mesomechanics of particle-reinforced com-posites”, Computational Materials Science 16, 
pp. 133-143 (1999), with kind permission from Elsevier 
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The damage parameter (1) can be generalised in order to take into account the so-

2.22) present a relation between equivalent plastic strain and stress triaxiality at 
the crack initiation point inside the specimen, obtained on the basis of combined 
experimental and numerical investigations on tensile specimen ([15], see also 
[10]). The failure curve separates the equivalent plastic strain-stress triaxiality 
space into two parts. Below the curve the material is saved, no failure will occur. 
Points on the curve indicate failure initiation for a given stress-strain field. If one 
expresses the failure curves as shown in Fig. 2.22 as  
 

cB
cpl eA ηε −⋅=.  (2.12) 

where A and Bare two material-dependent parameters, and assuming that usually 
εpl ≤ εpl.c and η ≤ ηc  holds during loading, one can derive the modified damage pa-
rameter [10]: 

 

pl

cpl
B de

A
D ε

ε
η ~1 .

0
∫=  (2.13) 

with the point of failure initiation at a critical damage parameter value of Dc = 1. 
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Fig 2.22  Scheme of a failure curve  

 

Determination of the condition of element elimination: an example 

called “failure curves” of materials in the following way. Failure curves (see Fig. 

To demonstrate how the condition of element elimination can be determined from 
experimental data, let us consider a simple macroscopical simulation of crack 
growth in Al/SiC (20 vol%) composites under 3-point-bending. An FE mesh similar 
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The difference between the critical plastic strain and Rice and Tracey’s damage 
criterion for element elimination is determined by the fact that the Rice and 
Tracey’s damage criterion is very sensitive to the degree of triaxiality in the de-
forming material, while this is not the case for the critical plastic strain criterion. 
The finite elements which are located on the loading surface were assumed to be 
elastic and were not subject to damage in order to simplify the simulation of the 
specimen/holder contact conditions. Based on the available data about the critical 
values of damage [3,7,9] we used three different values of critical damage parame-
ters: Dc = 0.5, 0.15 and 0.2. As a result, the force-displacement curves for the 
specimen were obtained. The curves for the different values of the critical damage 
parameter are shown in Fig. 2.23. Although the peak points of the force-
displacement curve were determined correctly and correspond to the experimental 
data, the appearance of the descending branch of the curve differs significantly 
from the experimentally observed results [3]. 
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Fig 2.23  Force-displacement curves for 3-point bending. Sim.1 (Dc = 0.2), Sim. 2 
(Dc = 0.15), Sim.3 (Dc = 0.10). 

The values of the calculated peak load for the different critical damage parame-
ters as well as the experimentally obtained peak load are given in table 2.3. It is 
found that the critical damage parameter Dc = 0.2 results in simulating the correct 
peak load. Therefore, our results confirm the data from [3,10], that the critical 
value of Rice and Tracey’s damage parameter for Al/20 vol% SiC should be taken 

to the mesh given in [3] was taken in the simulation. However, a criterion of ele-
ment elimination different from that used in [3] was applied: instead of the critical 
plastic strain, the Rice and Tracey’s damage parameter was chosen as criterion for 
element elimination. The calculations were carried out for a material with aver-
aged elastic properties of the specimen (E =99.4 GPa and ν = 0.323).  
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as Dc = 0.2. The described procedure shows how the criterion of element elimina-
tion can be determined by comparing the experimental and numerical force-
displacement curve. 

Mesomechanical modelling of damage and failure in real structures  

In this section, the model of damage initiation and growth, and fracture in a mate-
rial with real structure is presented. In this model, both the multiphase element 
method and the EET are used. The simulation is carried out for WC/Co hard met-
als, which present particle-reinforced composites with coarse microstructure; these 
materials are characterised by a typically high content of hard inclusions and their 
relatively large size as compared with the thickness of areas of Co binder. A 
model microstructure of WC/Co material was taken and used in the simulations. 
The WC/Co specimen possesses a cobalt volume fraction of 16% and an average 
carbide size of 1.5 μm.  

The microstructure is meshed using multiphase elements (MPFEs) and is em-
bedded in an environment with the elastic material behaviour of the composite and 
a pre-crack just in front of the real structure (Fig. 2.24).  
The material properties of the carbide are elastic and the elastic-plastic behaviour 
of the cobalt is represented by a modified Voce-type flow law with an additional 
Hall-Petch term [10], according to where σy = 270 MPa - the yielding stress of co-
balt, (σs = 970 MPa, ε* = 0.06, ky = 7 N mm-3/2 (material constants) and an average 
binder layer thickness of L = 0.5 μm were taken from [16].  
 

composite

real
structure

 
 
Fig 2.24  Micromechanical model for failure simulation in realistic structures. 

Critical plastic strains and stress triaxialities, which were derived using crystal 
plasticity theory [17] at a critical void volume fraction of 15% [18] are shown in 
Fig. 2.22. 

2/1
* )exp(1)( −+⎥⎦
⎤

⎢⎣
⎡ −−⋅−+= Lk yysy ε

εσσσσ  (2.14) 
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These results lead to the modified damage parameter,  

pldeD
cpl

ε
ε

η ~
04.1
1 .

0

12.1∫=  (2.15) 

In the following, results of a crack propagation simulation based on Eq. (2.15) 
are described. As a first attempt, a hard meta I with a high cobalt content and no 
contact between carbide particles was modelled and investigated under external 
tensile loading (see Fig. 2.25(a)). This study focused on the failure behaviour of 
the ductile cobalt phase. Brittle fracture in the carbide phase was thus suppressed. 
At the considered level, (mesolevel) the structure of material was practically ran-
dom, and therefore, no special consideration of the texture dependence was re-
quired in this case. The results achieved on the level of crystal plasticity were cal-
culated for a wide range of microscopic arrangements and crystallographic slip 
system arrangements, and thus describe an averaged behaviour of the material 
based on crystal plasticity theory. 

Figs. 2.25(b)-(e) show crack initiation and crack propagation in this structure. 
The crack enters the real structure by initiating a void (Fig. 2.25(b)), which starts 
to grow under increasing load. Further increase of the applied load leads to void 
initiation in front of the crack tip (Figs. 2.25(c) and (d))and coalescence with the 
main crack. Crack propagation is found to be a consequence of nucleation, growth 
and coalescence of the voids. This numerical study is in agreement with experi-
mental findings on WC/ Co hard metals [19]. The force-displacement curve for 
this crack propagation depicts the experimental macroscopic failure behaviour of 
WC/Co hard metals as a quasi-brittle failure. The applied load increases nearly 
linearly, while it drops immediately when the critical load is reached. 

Thus, local damage behaviour of the ductile cobalt phase is introduced in mi-
croscopic crack propagation simulations by making use of failure curves. 

 
 

Table 2.3 
Peak loads on the force-displacement curves at different critical values of Rice and Tracey’s 
damage parameter  
Critical damage  
parameter, Dc 

0.1 0.15 0.2 Experiment [3] 

Peak loads (kN) 2.76 2.95 3.1 3.1 
Displacement (mm) 0.22 0.24 0.26 0.2 
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Meso-macromechanical modelling of damage and failure of two-
phase composites 

Microdamage in Al/Si cast alloys: unit cell simulation 
In Al/Si cast alloy specimens, the damage process is determined by the strength of 
Si-particles and the Al matrix as well as the shape, size, arrangement and volume 
fraction of the Si-particles. 
 

  
a) b) c) d) e) 

 
Fig 2.25  (a) Idealised real structure (WC black, Co white), (b)-(e) void nucleation, growth 
and coalescence. 
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Fig 2.26  Local stress-strain relations of the Al/12%Si cast alloy concerning both particle 
cracking and matrix failure for different volume fractions of locally damaged material.  
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The Si-particles behave elastically and the Al-matrix elasto-plastically. It is 
known that only large Si-particles fracture during external loading [8,9]. Large 
particles are present at a low volume fraction of about 1-5% in the alloy, while the 
overall volume fraction of Si amounts to 12%. 

In the mesomechanical model, a unit cell containing a silicon particle and the 
aluminum matrix is embedded in an equivalent homogeneous material with the 
same mechanical behaviour as that of the embedded cell (Fig. 2.26). Under the 
tensile displacement loading of the upper extern al boundary of the embedding 
composite in the cell shown in Fig. 2.26, the overall response of the inner embed-
ded cell is obtained by averaging the stresses and strains in the embedded cell 
[20]. 

Microdamage of the two-phase material in the embedded cell [20] is simulated 
by a hybrid local approach for brittle cracking of silicon particles and for ductile 
failure of the aluminum matrix (Figs. 2.26 and 2.27). The normal stress criterion 
(σn

max = 320 Mpa) obtained from comparison of simulation and experiment in 
[21]) and node release technique are applied to simulate Si-particle cracking 
whereas the damage parameter D and the EET are applied for simulating ductile 
void growth in the Al-matrix. The damage parameter involves the loading state as 
well as the loading history and its critical value can be derived from the corre-
sponding experiment and simulation (in this case, Dc = 0.7 [22]). 

At a total strain of εtot = 0.43% the Si-particle is cracking orthogonally with re-
spect to the tensile loading direction according to the normal stress criterion and 
then matrix damage occurs subsequently under increasing loading. The matrix 
damage propagates in the same direction as the Si particle crack. Local stress-
strain relations of the Al/12% Si cast alloy concerning both particle failure and 
matrix damage are thus obtained for different volume fractions of locally damaged 
material (Fig. 2.26), which are further taken into account in the macromechanical 
model.  

  

Loading step (3) Loading step (2)
 Si-Crack     Al-Failure  Si-Crack  Al-Failure without failure 

 Loading step (1) 

SiSi Si 

Aluminum Aluminum

M124 (Al/12%Si) M124 (Al/12%Si) M124 (Al/12%Si) 

 Aluminum 

 
 
Fig 2.27  Local damage parameter distribution in the embedded cell for three different 
loading steps according to Fig. 2.26. White areas: D = 0, very bright areas: D = 0.6 ... 0.7, 
dark areas: D = 0.4 ... 0.5, medium dark till areas: D = 0.1 ... 0.3. 
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Fig 2.28  Energy release rate of matrix damage after silicon particle cracking 
 
 
The local damage-parameter distribution in the embedded cell for the three dif-

ferent loading steps (Fig. 2.27) shows the development of damage-parameter con-
centration, which results in void growth and crack propagation in the matrix. The 
released energy is an important magnitude for comparison with the non-
destructive evaluation of damage by acoustic emission. 

From local energy considerations, the energy release rate by further damage 
propagation can be calculated as a function of microcrack length (Fig. 2.28). After 
fracture of the silicon particle, the energy release rate of the matrix damage in-
creases with sub-critical microcrack growth until rupture of the material. 

Macromechanical model of failure in Al/Si cast alloys 

On the basis of the above-described mesomechanical model, macromechanical 
models of tensile or compressive specimens are set up to investigate crack growth. 
The mechanical behaviour of the Al/12%Si cast alloy with damage evolution was 
assigned to each finite element taking into account damage initiation and propaga-
tion calculated from the mesomechanical models presented above. In this way, the 
macroscopical development of microdamages until rupture of the specimen can be 
simulated. As an example, an initial Si-failure is introduced at a corner of a homo-
geneous specimen. The propagation of Si failure is calculated according to the 
critical normal stress obtained from micromodelling. 

The simulations demonstrate two stages of damage evolution: At first the Si-
particles fail along shear bands which nucleate from the initial failure side in the 
specimen at the macroscopic plastic flow stage, as shown in the stress distribution 
in Fig. 2.29. After Si-failure, the specimen can still carry increased loading and 
stretching.  
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Fig 2.29  Macroscopical development of microdamages at different loading stages (areas of 
cracked Si-particles are represented by black dots). 
 

 
 

Fig 2.30  Scheme of loading of CT specimen and location of the area with real microstruc-
ture. 
 

 
Under further loading, the damage parameter concentration increases in the 

cross section orthogonally to the loading direction and the crack starts to propa-
gate perpendicular to the loading direction until failure of the specimen in agree-
ment with the observations of fracture in such materials [20] (Fig. 2.29) 

3D FE-simulation of deformation in real structures 

In this section, the results obtained by Mishnaevsky Jr. et al. [6] in the frame-
work of the COST -Project “Microstructural investigation of failure mechanisms 
in Al/Si cast alloys by 3D FE modelling” are reported and compared with 
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The small volume in which the real structure was reconstructed is located in 
the notch region of loaded compact tension (CT) specimen. The scheme of loading 
CT specimen is shown in Fig. 2.30. For a small volume (100 µm x 100 µm) in the 
notch ground region the microstructure of material was reconstructed with the use 
of digitised micrographs of polished sections as described above. The properties of 
components (Al-matrix and Si-particles) have been assigned to finite elements in 

 

 
 

Fig 2.31  Stress distribution (σv) in the regions with real microstructure: (a) lamellar; (b) 
globular microstructure. Only particles at the surface are shown (for details see text). 

correspondence with distribution of “black” and “white” areas on digitised 
micrographs. 

above-described 2D models of mechanical behaviour of composites. To simulate 
the deformation of specimens from Al/Si cast alloys with different microstruc-
tures, 3D MPFE has been applied. 
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The rest of the specimen was assigned the averaged properties of Al/Si cast al-
loy. In the area of real microstructure, there were 4000 finite elements, in the full 
specimen 16000 FE. The simulation was carried out for two alloys: one with la-
mellar and one with globular microstructures. The load was increased in five load-
ing steps, each was 100 N. The mechanical properties and stress strain curve of 
Al-matrix and Si-particles have been determined experimentally as described in 
[6]. 

Some results of the simulation are shown in Fig. 2.31: the von Mises stress dis-
tribution in the region with real structure for both types of the alloy microstruc-
ture. The von Mises stress distribution is presented in order to study the effect of 
Si-particles on the stress field in the material. From Fig. 2.31 one can see that the 
Si-particles cause high local stress concentrations, especially on the notch surface. 
One may suppose that the high local stress concentrations lead to damage initia-
tion in the vicinity of Si-particles. The experimental investigations of damage evo-
lution in Al/Si cast alloys [6, 21, 23] confirm this assumption: microcracks have 
been formed in the vicinity of Si-particles, often near the notch surface, and then 
grow and form large cracks. 
The developed approach permits 3D FE-simulations of deformation and local ef-
fects in heterogeneous materials, using the reconstructed real structures and the 
method of multiphase elements. However, the accuracy of 3D simulation depends 
strongly on the degree of fineness of the FE mesh and on the amount and quality 
of layers (sections) from which the 3D real structure is reconstructed. For both 
factors, there are unavoidable limitations (computational and experimental, re-
spectively), which limit the possibility of this model.  

Conclusions 

In this paper, the results of application of advanced numerical methods (MPFE 
and EET) for the simulation of the mechanical behaviour and failure of particle-
reinforced composites were presented. 

Several aspects of FE simulation of particle-reinforced composites were con-
sidered: 

• method of determination of conditions of local failure; 
• modelling of deformation and fracture in coarse particle-reinforced com-

posites (WC/Co hard metals, in this case); 
• multilevel modelling of deformation and fracture of composites with fine 

particles; transition from a mesomechanical model of behaviour of com-
posites with relatively fine particles (Al/Si) to the macroscopical model 
of material; 

• possibility of generalisation of 2D methods of FE simulation of materials 
with real structures to the 3D case. 

The methods are applied to model the mechanical behaviour of different types 
of materials: quasi-homogeneous (macromodels of Al/Si and Al/SiC), coarse par-
ticle-reinforced composites (WC/Co hard metals) and fine particle-reinforced 
composites with different types of microstructures (lamellar, globular) (Al/Si). 
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A mesomechanical model of damage and fracture of hard metals made it pos-
sible to determine the mechanisms of fracture. It is shown numerically that crack 
propagation can be simulated as a result of nucleation, growth and coalescence of 
voids. The force-displacement curve for this crack propagation depicts the ex-
perimental macroscopic failure behaviour of WC/Co hard metals as a quasi-brittle 
failure: the applied load increases nearly linearly, while it drops immediately when 
a critical load is reached. The local damage behaviour of ductile cobalt phase in 
hard metals was taken into account in the simulations by using the failure curves. 

The possibility of generalisation of the FE model of the mechanical behaviour 
of material for the 3D case has been explored. Although there are some essential 
limitations in the used experimental and numerical techniques, related with the 
difficulties of obtaining many micrographs of sections of a material volume with 
strictly equal distances between them, and the limited amount of elements in the 
mesh, which must be however very fine, this first trial of 3D simulation of defor-
mation of real structures has demonstrated possibilities of this approach. 

Although the purely one-scale level models are appropriate for solving some 
partial problems (like the quasi-homogeneous model for the determination of the 
condition of element elimination in the material with low-filler content, and the 
mesomodel for the simulation of coarse composites like hard metals), the multi-
level approach seems to be more promising, and can allow to describe the behav-
iour of material taking into account real physical mechanisms of material behav-
iour. 

Thus, the meso-macromechanical model allows simulating the damage evolu-
tion and failure in an Al/Si alloy. The mechanism of failure of the alloy has been 
clarified. It has been shown numerically, that the failure of a large Si-particle 
causes subsequent damage of the Al-matrix on the microlevel. It is found that Si-
particle cracking takes place at much higher loading levels in compression than in 
tension and no further Al-matrix damage occurs. After cracking of the Si-particle, 
the material can be further loaded. Sub-critical crack growth induces plastic de-
formation in the matrix. Si-particles fail in macroscopic shear bands which are ini-
tiated at crack tips before ductile rupture of the specimen in the main crack plane 
perpendicular to the loading direction. 
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2.3 Automatic generation of 3D microstructure-based 
finite element models 

2.3.1  Idealized microstructures of particle reinforced 
composites: multiparticle unit cells with spherical inclusions5 

Numerical simulations of deformation, damage and fracture of composites present 
an important tool for the prediction of materials behavior, and the optimization of 
mechanical properties of materials. In most cases, such numerical simulations are 
carried out two-dimensionally [1]. However, it has been shown in several works 
that results of 2D approximations are generally not correct for 3D case [1–5,9]. 
So, Jung et al. [5] compared results (stress and strain distributions) of the 2D and 
3D FE simulations, and found that a 2D approximation gives results which are 
sufficiently different from the 3D solution. Therefore, the necessity of using three-
dimensional simulation methods to analyze three-dimensional problems becomes 
apparent. 

Several methods and concepts of FE simulation of deformation and damage of 
multiphase materials taking into account their microstructure have been developed 
in last years. table 2.4 gives a short overview of these methods. One can see from 
the table, that the mesh design for complex 3D microstructures and incorporating 
the microstructure data into FE models are one of main challenges of the 3D nu-
merical testing and design of materials, which is met by using different techniques 
(multiphase finite elements, hierarchical models, Voronoi cell finite elements, 
etc.). 

The purpose of this work was to develop a simple and efficient method of 
automated microstructure generation and mesh design, and to carry out systematic 
numerical testing of microstructures of composites. To simplify and automate the 
design of meshes for the 3D virtual testing of microstructures, a program 
“Meso3D” was developed. The program works with the commercial software 
MSC/PATRAN and produces artificial microstructures (i.e., different arrange-
ments of round and ellipsoidal inclusions in a matrix) on the basis of given pa-
rameters and probability distributions of particle coordinates and sizes, and gener-
ates databases for the computational (finite element) testing of the materials with 
the required artificial microstructures. The designed microstructures are meshed 
with tetrahedral elements using the free meshing technique [27]. 

                                                           
5 Reprinted from L. Mishnaevsky Jr., Three-dimensional Numerical Testing of Microstruc-

tures of Particle Reinforced Composites, Acta Materialia 52/14, pp. 4177-4188 (2004)
with kind permission from Elsevier 

The microstructures with the random particles arrangement were generated us-
ing the uniform random number generator. Each coordinate was produced inde-
pendently, with another random number seed. After the coordinates of a first par-
ticle were defined, the coordinates of each new particle were determined both by 
using the random number generator, and from the condition that the distance 
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Table 2.4 
Some 3D approaches to the micromechanical modelling of materials 
Approach Examples and peculiarities of the approaches 
Unit cell with a single in-
clusion  

Classical approach, based on the assumption that 
the local behavior of the material follows a periodic 
pattern  
 

Unit cells with many in-
clusions  

The multiparticle unit cell model (see [2–4, 6 ,7]) 
allows a simple generalization of conclusions ob-
tained with the unit cells on the whole specimen. 
The simulations can require rather high computa-
tional resources 
 

Hierarchical models  Example: a ‘‘super-element’’ approach developed 
by Geni and Kikuchi [8]. In the framework of this 
approach, a composite is modeled with a box-
shaped super element, consisting of many different 
cylindrical unit cells with different particle volume 
fraction and shapes of particles  
 

Voronoi cell finite element 
models 
(VCFEM)  

FE mesh is created by Dirichlet tessellation. Each 
polygon, formed by such tessellation (‘‘Voronoi 
cell’’) contains one inclusion at most and is used as 
a finite element. In the 3D version, the microstruc-
tures of composites are ‘‘reconstructed by assem-
bling digitally acquired micrographs obtained by 
serial sectioning’’. 3D equivalent microstructures 
(with real particles replaced by ellipsoids) are tesse-
lated into a mesh of Voronoi cells, and the defor-
mation and damage in these equivalent structures 
are simulated [9–11] 
 

3D multiphase finite ele-
ment method (MPFE) for 
real structure simulations  

A 3D real microstructure of a material is included 
into a FE model by assigning the phase properties 
to the integration points according to the digitized 
images of microstructures [13,14]. The microstruc-
ture of the material is reconstructed using the image 

between the new particle and all available particles is no less than 0.1 of the given 
particle radius. If the condition was not met, the seed of the random number gen-
erator was changed, and the coordinates of the new particle were determined 
anew. In order to avoid the boundary effects, the distance between a particle and 
borders of the box was required to be no less than 0.05 particle radius. The coor-
dinates of the centers of particles for the regular (and any other pre-defined) parti-
cles arrangements are read from a text input file.  
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analysis of micrographs of many sections (cuts) of 
materials  
 

Design of materials on the 
basis of virtual testing and 
the statistical genetic algo-
rithm  

In the framework of the approach, developed by 
Zohdi et al. [15–17], large-scale micromechanical 
simulations are carried out by decomposing the 
global domain into a set of computationally 
smaller, decoupled problems, which deal with sub-
domains of the global domain. Microstructures of 
the materials are included into the numerical mod-
els of the subdomains on the basis of the Gauss 
point method. The optimal shape of inclusions was 
determined numerically using the statistical genetic 
algorithm  

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2.32  Schema of the design of clustered (a) and gradient (b) microstructures. 

 
 
In order to generate the localized particle arrangements, like clustered, layered 

and gradient particle arrangements, the coordinates of the particle centers were 
calculated as random values distributed by the Gauss law. The mean values of the 
corresponding normal distribution of the coordinates of particle centers were as-
sumed to be the coordinates of a center of a cluster (for the clustered structure), or 
the Y- or Z-coordinate of the border of the box (for the gradient microstructure). 
Fig. 2.32 shows schematically examples of such a design of the microstructures. 
The standard deviations of the distribution can be varied, from highly clustered or 
highly gradient arrangements (very small deviation) to the fast uniformly random 
particle arrangements (a deviation comparable with the box size).  
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Finite element simulations and results 

FE model, damage mechanisms and properties of phases 

The problem was solved in the framework of the embedded cell approach [1, 26]. 
The main idea of the embedded cell approach is that microfields in inhomogene-
ous materials are determined, using a model consisting of a core (“local heteroge-
neous region”), embedded in an outer region that serves mainly for introducing 
loads into the core and has the averaged properties of the composite [13, 26]. Ac-
cording to Böhm [26], this strategy “avoids some of the drawbacks of the periodic 
field approach, especially the requirement that the geometry and all microfields 
must be strictly periodic”. Then, the embedding allows avoiding the boundary ef-
fects on the particle failure. In our case, the FE meshes of the composites with dif-
ferent microstructures (a given amount of SiC particles in a box 10x10x10 mm, 
filled with elastoplastic Al matrix), generated with the use of the program 
‘‘Meso3D’’ and commercial code MSC/PATRAN, were placed in a bigger box 
14x14x14 mm. The embedding zone behaved as a composite with averaged prop-
erties, i.e., as an elastic–plastic material (Al/10%SiC). 

The SiC particles behaved as elastic isotropic damageable solids, characterized 
by Young modulus EP = 485 GPa, Poisson’s ratio 0.165 and the local damage cri-
terion, discussed below. The Al matrix was modeled as isotropic elasto-plastic 
solid, with Young modulus EM = 73 GPa, and Poisson’s ratio 0.345. The experi-
mental stress–strain curve for the Al matrix was taken from [28]. The elements in 
the embedding were assigned the averaged mechanical properties of the Al/ SiC 
composite, with Young modulus EAv = 75.7 GPa (for the volume content 10%) 
and EAv = 88.4 GPa (for 15%), and Poisson’s ratio 0.323 taken from [12, 13, 24]. 
The elasto-plastic stress–strain curve for the composite (embedding) was taken 
from [12] as well. The experimental stress–strain curve for the matrix as well as 
the constitutive law for the composite (embedding), taken from [12] were ap-
proximated by the deformation theory flow relation (Ludwik hardening law):, σy = 
σ + hεpl where σy – the actual flow stress, σyn – the initial yield stress, and εpl the 
accumulated equivalent plastic strain, h and n – hardening coefficient and the 
hardening exponent. The parameters of the curve for the matrix were as follows: 
σyn = 205 MPa, h = 457 MPa, n = 0.20. For the composite (embedding), the pa-
rameters were: σyn = 216 MPa, h = 525.4 MPa, n = 0.25. 

The nodes at the upper surface of the box were connected, and the displacement 
was applied to only one node. The model was subject to the uniaxial tensile dis-
placement loading, 2.0 mm. 

We considered cells with 5, 10 and 15 particles, the volume content of the in-
clusion phase was 2.5%, 5%, 10% and 15%. Totally, the models contained about 
30,000 elements. Each particle contained about 400 finite elements. The radii of 
particles were calculated from the prescribed volume content and particle amount 
in the box, and were as follows: 1.1676 mm (volume content/ VC = 10%, N =  
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15), 0.9267 mm (VC = 5%, N = 15), 1.3365 mm (VC = 10%, N = 10) and 1.0608 
(VC = 5%, N = 10). 

The uniaxial tensile response of each microstructure was computed by the finite 
element method. The simulations were done with ABAQUS/Standard. 

The damage was modelled as a local weakening of a finite element in which the 
damage criterion (maximum principal stress) exceeded a critical value. An 
ABAQUS Subroutine USRFLD, which allows simulating the local damage 
growth as a weakening of finite elements was developed. After an element failed, 
the Young modulus of this element was set to a very low value (50 Pa, i.e., about 
0.00001% of the initial value). Only the elements in which the maximum principal 
stress exceeded a critical value (and not all the elements in the particle) were 
weakened in the framework of this algorithm [18–20].  

Baptiste [21], Hu et al. [22] and Derrien et al. [23] have demonstrated that the 
main mechanism of damage initiation for the AlSiCp systems is the particle fail-
ure. According to Derrien and co-workers [23, 24], the failure of specimen occurs 
by linking of the microcracks initiated in the matrix from the broken particles. In 
the matrix near the broken particle, the cavities and microvoids nucleate, grow and 
coalesce, and that leads to the failure of the matrix ligaments between particles. A 
similar result was obtained by Kobayashi et al. [25]: „since the interfacial bonding 
strength is sufficiently high in the case of an Al/SiC system, the predominant fac-
tor for toughening is the fracture strength of reinforcements’’. Therefore, only 
damage in SiC particles was considered at this stage of the work. According to 
[21–23], the SiC particles in AlSiC composites become damaged and ultimately 
fail, when the critical maximum principal stress in the particle material exceeds 
1500 MPa. This value was used in our simulations as a criterion of damage of SiC 
particles as well. As output parameters of the numerical testing of the microstruc-
tures, the effective response of the materials and the amount of failed particles NF 
versus the far-field strain curves were considered. The displacement loads, at 
which the first particle fails and at which most particles fail, as well as the rate of 
failure of particles (determined as a slope of the NF–u curve in its linear part) 
were considered as parameters of the damage growth rate in the materials, which 
depend on their microstructures. To characterize the “rate of particles failure” vF 
quantitatively, we calculated it as the total amount of failed particles in the cell di-
vided by the displacement difference between the point where the first particle 
failed (u1st_particle_fail) and the last particle failed (uall_particles_fail). 

The generation of a microstructure and pre-processing for each cell took about 
15 min (2–3 min of this time were interactive) on the Compaq personal computer 
and 2 GB of RAM. The analysis of a model took about 10 h on the SERVus clus-
ter of the University of Stuttgart.  
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Deformation and damage behavior of composites with the random 
arrangement of particles 

The deformation and damage evolution of the Al/SiC composites with random 
SiC particle arrangements were simulated with the use of the above described 
model. The purpose of this part of the investigation was to verify whether the 
“random’’ particle arrangements have peculiarities as compared with regular or 
localized particle arrangements, and whether these peculiarities are stable, repro-
ducible and typical for the random arrangements. 

Since the random particle arrangements were generated from a pre-defined ran-
dom number seed parameter (idum), (which should ensures reproducibility of the 
simulations), variations of this parameter lead to the generation of new microstruc-
tures. Five realizations of the random microstructures with 15 spherical particles 
and volume content of ceramic phase 10% (produced with different random num-
bers seeds) were generated and tested. 

Fig. 2.34(a) shows the tensile stress–strain curves for the five random arrange-
ments (15 particles, volume content 10%). For comparison, we included also the 
curves for the regular and gradient particle arrangements. Fig. 2.34(b) gives the 
amount of failed particles plotted versus the far-field applied strain. Fig. 2.33 
shows the equivalent plastic strain in a cell with randomly arranged 10 particles 
(VC = 5% and 10%) both on the boundaries of the box and on the matrix/particle 
interfaces.  

One can see from Fig. 2.34, that the effective responses of the materials with 
random microstructures (even in different realizations) lay very close one to an-
other and differ from that for the regular or localized microstructures. However, 
some variations of both flow stress and damage behavior of different random mi-
crostructures are observed as well, especially, after the far-field strain exceeds 0.1. 
The difference between the stresses for different realizations of the same random 
structure falls in the range of 2% even at the rather high far-field strain (ε = 0.2). 
For comparison, the difference between the regular and gradient particle arrange-
ment is about 16% at the far-field strain 0.2, and 9% at the far-field strain 0.1 (see 
Fig. 2.39). Therefore, although the stress–strain curves diverge a little bit when the 
strain is higher than 0.1, the differences between realizations of the random micro-
structure are still much smaller, than the difference of the mechanical response be-
tween the different types of the microstructures.  

In the following parts, at least three to five realizations of random microstruc-
tures will be simulated and averaged, when a random microstructure is compared 
with other microstructures. The rate of particle failure is lower for all the consid-
ered random particle arrangements than for the regular and clustered microstruc-
tures: the fraction of failed particles increases from 40% to 80%, when the far-
field strain increases 2.8 times in the case of the random particle arrangement, and 
increases from 20% to 86% when the far-field strain increases 1.5 times for the 
regular particle arrangement. 
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Fig. 2.33  Equivalent plastic strain in a cell with randomly arranged 10 particles: whole unit 
cell (a) and on the matrix/particle interfaces (b). VC = 10%. Total strain = 0.25. 
 

 

 
 
Fig. 2.34  Stress–strain curves (a) and the amount of failed particles plotted versus the far 
field strain (b) for the five random arrangements (15 particles, VC = 10%) and for the regu-
lar particle arrangement. 
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One can see that the flow stress for the regular microstructure of the composite 
is higher than that for the random microstructures (in the following paragraphs, we 
could see that the regular microstructure ensures highest flow stress among all 
considered microstructures). It is of interest that in the simulations by Segurado et 
al. [7] the flow stress for the regular BCC particle arrangement was significantly 
lower than for the random particle arrangement. The difference between our result 
and the results by Segurado et al. [7] can be caused by the fact that the model from 
[7] does not take into account the stress redistribution in the composite due to the 
reinforcement fracture. The varied distance between particles together with the ef-
fect of the interaction of cracks in neighboring particles in the case of the random 
particle arrangement can lead to the formation of weakened regions with high den-
sity of failed particles. The deformation of the weakened regions determines the 
low stiffness of the whole cell. This is not the case if the particles are placed equi-
distantly, as in the regular microstructures, and the local weakening in a particle is 
averaged over the entire specimen. Therefore, the constant large distance between 
particles, typical for the regular microstructures, can prevent the formation of 
weakened areas in our case, but not in the model by Segurado et al. [7]. 

Effect of the amount of particles and the volume content on the 
deformation and damage in the composite 

At this stage of the work, the effects of volume content of hard phase and the 
amount of particles on the effective response and damage behavior of the compos-
ite were considered. 

Fig. 2.35 shows the tensile stress–strain curves for the random particle ar-
rangements with varied amount of particle (volume content of particles 5%, 
amount of particles 5, 10 and 15, Fig. 2.35(a) and the same for the volume content 
10%, Fig. 2.35(b)). Fig. 2.36 gives the tensile stress–strain curves for the regular 
particle arrangement with varied volume content of particles (10 particles, volume 
content varied from 2.5% to 15%, Fig. 2.36(a), and 15 particles, volume content 
was varied from 5% to 15%, Fig. 2.36(b)). Fig. 2.37 shows the amount of failed 
particles in the box plotted versus the far-field applied strain (10 particles, varied 
volume content, Fig. 2.37(a) and 15 particles, varied volume content, Fig. 
2.37(b)). 

One can see from Fig. 2.36 that the flow stress of composite increases with in-
creasing the volume content of particles. An increase in the volume content by 5% 
leads to the increase of the flow stress by 4%, both for the cells with 10 and 15 
particles.  

The amount of particles (at the same volume content) influences the effective 
response of the material only at rather high stage of particle failure, when many 
particles failed already. In this case, the difference between the response of the 
composite with 5, 10 and 15 particles increases with increasing load, and the flow 
stress is higher for a composite with a higher amount of particles. 

The curves of the amount of failed particles plotted versus the applied strain 
have an (almost) linear part (up to 10–12 particles of 15 fail) and an“asymptoti” 
part (when the amount of failed particles slowly approaches the total amount of 
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particles). Since the last part of the curve (“asymptotic ) hardly reflects the real 
damage growth process, one may define a “critical applied strain“ as a far-field 
applied strain at which the linear part of the curve goes into the  „asymptotic“ part 
of the curve. In most cases, this takes place when 80% of particles (12 particles of 
15, or 8 particles of 10) fails. 

The critical applied strain depends on the volume content of particles as well. 
One can see from Figs. 2.37(a) and (b) that the higher the volume content of parti-
cles, the lower is the critical applied strain. An increase of the volume content of 
particles by 5% leads to the decrease of the critical applied strain by 4; . . . ; 5%, 
both for the cells with 10 and 15 particles. 

 

 

 
 

Fig 2.35  Stress–strain curves for the random particle arrangement, VC = 5% (a) and 10%, 
(b), amount of particles 5, 10 and 1 

“
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Fig. 2.36  Stress–strain curves for the regular particle arrangement: (a) 10 particles, and (b) 
15 particles, volume content was varied. 
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Fig. 2.37  Amount of failed particles in the box plotted versus the far-field applied strain: 
(a) cells with 10 particles; (b) 15 particles (varied volume content). 

 

Effect of the clustering and gradient distribution of particles 

At this stage of the work, the effects of particles arrangement and localization on 
the deformation and damage evolution in the composite were considered. 

Fig. 2.38 shows the random (a), regular (b), clustered (c), and highly gradient 
(d) arrangements of the particles. Two types of the gradient particle arrangements 
were considered: an arrangement of particle with the vector of gradient (from low 
particle concentration region to a high particle concentration region) coinciding 
with the loading direction (called in the following a “gradient Y” microstructure), 
and a microstructure with the gradient vector perpendicular to the loading vector 
(called in the following “gradient Z” microstructure). The standard deviations of 
the normal distribution of the Y or Z coordinates of the particle centers (for the Y 
and Z gradient microstructures, respectively) were taken 2 mm, what ensured 
rather high degree of gradient. The same standard deviations were taken for the 
clustered particle arrangements. Fig. 2.39 shows the tensile stress–strain curves for 
the random, regular and gradient microstructures (for 10 particles, volume content 
of SiC 5%, Fig. 2.39(a)) and for the random, regular, clustered and gradient mi-
crostructures (for 15 particles, volume content of SiC 5% and 10%, Fig. 2.39(b)–
(d)). Fig. 2.40 shows the amount of failed particles in the box plotted versus the 
far-field applied strain, for the same microstructures (15 particles, volume content 
of SiC 5% and 10%). The error bars show the deviations of the stress and the 
amount of failed particles from averaged values in 3–5 simulations. The deviations 
fall in the range of 2% for the random microstructures, and are even less for the 
gradient and clustered microstructures (0.5–0.9%). 

It can be seen from Fig. 2.39, that the particle arrangement hardly influences 
the effective response of the material in elastic area or at small plastic deforma-
tion. The influence of the type of particle arrangement on the effective response of 
the material becomes significant only at the load at which the particles begin to 
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fail (compare the Figs. 2.39 and 2.40). However, after the particle failure begins, 
the effect of particle arrangement increases with increasing the applied load. (One 
should note here the difference with the case when only amount of particles and 
neither their content nor arrangement vary: in this case, the difference becomes 
sufficiently large only when most particles fail, see Fig. 2.35; in the case of the 
different particle arrangements, the influence of the arrangement becomes strong 
when a first particle fail already.) 

After the first particle fail, the flow stress of the composite and the strain hard-
ening coefficient increase with varying the particle arrangement in the following 
order: gradient<random<clustered<regular microstructure (see Fig. 2.39). 

In order to analyze the effect of particle arrangement on the strain hardening 
quantitatively, we determined the stress hardening coefficients for the stress–strain 
curves shown in Fig. 2.39(c) and (d). The strain hardening coefficients were calcu-
lated as the power in the power like equation for the true stress–true strain curves, 
using regression analysis. table 2.5 shows the strain hardening coefficients ðnÞ for 
all the considered curves. For all levels of the volume content, the particle failure 
rate for 2.3 times higher for the cells with 15 particles, than for the cells with 10 
particles: 18; . . . ; 29 particle/mm (for the cell with 15 particles and regular parti-
cle arrangement) and 45; . . . ; 90 particle/mm (for the cell with 10 particles). 

One can see from figure that the critical applied strain decreases in the follow-
ing order: gradient (10%)>gradient (5%)>random (5%)>regular (5%), random 
(10%)>cluster (5%) and regular (10%)>clustered (10%) (the volume contents of 
the SiC phase are given in brackets).  

The strength and damage resistance of a composite with a gradient microstruc-
ture strongly depends on the orientation of the gradient in relation to the direction 
of loading. In the case of the “gradient Y” microstructure, the rate of particle fail-
ure is very low (about 6.35 particle/ mm) and the particle failure begins at rela-
tively high displacement loading, 0.2 mm. In the case of the “gradient Z” micro-
structure, the rate of particle failure is the same as for random microstructures. 
One should note that the highly gradient distributions of particles, considered here, 
constitute just one snapshot of many possible arrangements. Apparently, if the ar-
rangement of particles changes from the highly gradient arrangement, considered 
here, to the arrangements with more slow gradients, the properties of the material 
will be changed. This will be the subject of further investigations. 

 

 
 
Fig. 2.38  Random (a), regular (b), clustered (c) and highly gradient (d) arrangements of the 
particles. 
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(a) 
 

 
 
(b) 
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(c) 
 
Fig. 2.39  Stress-strain curves for the unit cells with different particle arrangements: (a) 10 
particles, VC=5%,  (b, c) 15 particles, VC=10% microstructures 

 
To characterize quantitatively the arrangements of particles and the degree of 

localization in different microstructures, we determined the nearest neighbor dis-
tances between the particle centers (NND), the nearest-neighbor index (NNI, ratio 
of observed to expected nearest-neighbor distance) and the statistical entropy of 
the nearest neighbor distance (SENND). The accurate determination of these pa-
rameters requires a much larger of particles than those generated to compute the 
mechanical behavior [7] and those considered in the unit cells above. To over-
come this limitation, we followed the idea by Segurado et al. [7] who generated 
much larger unit cells, than those used in their numerical experiments, using the 
same algorithms, and determined the statistical parameters of microstructures with 
the use of the larger cells. They suggested that – the cubic unit cells used for the 
simulation of the mechanical behavior can be understood as small representative 
volume elements taken at random from the larger cell.  

 
Table 2.5  
Calculated strain hardening coefficient for different particle arrangements 
Particle  
arrangement 

Random Regular Clustered  Gradient (Y) Gradient (Z) 

N 0.1284 0.193 0.1676 0.1227 0.1543 
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Fig 2.40  Amount of failed particles plotted versus the far field strain: (a) 15 particles, 
VC=5% , (b, c) 15 particles, VC=10% 
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Fig 2.41  Examples of microstructures with particles of randomly distributed sizes (a), and 
stress-strain curves (b) and the amount of failed particles plotted versus the far-field strain 
(c ) for these microstructures. rd = Δr/r 
 
Table 2.6 
Nearest-neighbor distance between particle centers the considered microstructures. 
Microstructure Average NND, mm SEPD of NND  NNI 
Random 12.69 2.55 1,17 
Clustered 2.70 1.26 0.25 
Gradient  5.85 2.31 0.54 

Abbreviations: SEPD – statistical entropy of the probability distribution, NND- nearest-
neighbor distance between particle centers, NNI- nearest neighbor index (ratio of observed 
nearest neighbor distance to the mean random distance) 

Following this idea, we generated unit cells of the size 100x100x100 mm with 
random, clustered and uniform particle arrangements using the same algorithms as 
for the simulated cells. The values of NND, NNI and the entropy of NND, deter-
mined from the cells, are given in table 2.6. The scattering of the distribution of 
NND, characterized by the statistical entropy of the distribution, decreases with 
decreasing the average value of NND. 
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One can see that the generated random microstructures is really close to the 
ideal random (NNI = 1.17 versus 1.0 in the ideal case) and that the degree of clus-
tering in the generated gradient and clustered microstructures is rather high. 

From the simulations presented in this paragraph, one may draw the following 
conclusions. The arrangement of particles influences first of all the strain harden-
ing rate, and the damage behavior of composites. This is a remarkable difference 
from the effect of the volume content of inclusions, which influences the flow 
stress, not just its slope, i.e., strain hardening rate.  

The regular particle arrangement ensures highest flow stress of a composite, 
especially, after the particle failure begins. The discrepancy between our results 
and results by Segurado et al. [7] in this point is discussed above. The clustered 
particle arrangement leads to a very high damage growth rate, and to a low critical 
applied strain. However, no negative effect of particle clustering on the effective 
response of the composite was noted. This conclusion is in agreement with the 
numerical conclusions by Segurado et al. [7] (“the increase in strength due to clus-
tering is almost negligible for the matrix and reinforcement properties typically 
found in metal matrix composites”). 

Effect of the variations of particle sizes on the damage evolution  

At this stage of the work, the effects of scattering of particle sizes and local 
strength on the effective response and damage behavior of the composite were in-
vestigated.  

In order to vary the particle sizes, microstructures with randomly arranged par-
ticles of random sizes were generated. The radii of particles were assumed to fol-
low the normal probability distribution law. The degree of scattering of particle 
sizes, which was characterized by a standard deviation of the normal distribution 
law, was varied at the level of 0.1, 0.25 and 0.5 of the average particle radius 
(which was 1.1676 mm, for the cell with 15 particles and 10% of volume content). 
In order to keep the volume content of particles constant, the randomly distributed 
radii of particles were normalized. Table 2.7 gives the maximum and minimum 
sizes of particles for the considered values of the standard deviations. Fig. 2.53(a) 
shows the arrangements of the particles for different deviations of the probability 
distribution of the particle sizes. Fig. 2.53(b) and (c) shows the tensile stress–
strain curves (b) and the amount of failed particles (c) plotted versus the far-field 
strain, for these microstructures. 

One can see from Fig. 2.53(a) that the variations of the particle sizes cause a 
strong decrease in the strain hardening rate of the composite during the elasto-
plastic deformation with damage. The differences in the effective responses of the 
composites with different scattering of particle sizes are negligible in the elastic 
region, but become rather large when the particles begin to fail, and increase with 
increasing the density of failed particles. From Fig. 2.53(b) it can be seen that the 
damage evolution in the particles begins at some lower applied strain when the 
particle sizes vary (0.069 versus 0.175 mm, when the particle radii are constant). 
Also, the critical applied strain is about 22% lower for the random particle sizes 
with the standard deviation 0.5 r, and about 60% lower for the random particle 
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sizes with the standard deviation 0.25r, than for the homogeneous particle radii. 
The difference between the cases of the constant particle radii and the randomly 
distributed with the deviation 0.1r is negligible, but becomes rather large for the 
deviations of 0.25 and 0.5r. Therefore, the scattering of particle sizes leads gener-
ally to the quicker and earlier damage growth in the composites.  

 
Table 2.7 
Maximum and minimum sizes for considered probability distributions of the particle radii 
Standard deviation 
of radii/mean 

Value of the stan-
dard deviation of r 

Maximum particle 
radius 

Minimum particle 
radius 

Δr/r Δr r max  r min  
0.10 0.1168 1.6595 0.7021 
0.25 0.2919 1.8506 0.6282 
0.50 0.5838 1.9951 0.1582 

Discussion 

Fig. 2.41(a) shows the values of the flow stresses, corresponding to the applied 
displacement u = 0.15 mm, for all the unit cells with 15 particles and volume con-
tent 10% as a column charts. For comparison purposes, the values of flow stresses 
for the regular particle arrangements with volume contents 5% and 15% are 
shown.  

The column charts of the critical applied strain, shown in Fig. 2.41(b), illus-
trates the effect of the particle arrangement on the damage growth in the compos-
ites. Comparing Fig. 2.41(a) and (b), one may see the general tendency: the higher 
is the stiffness and the flow stress of a composite, the lower critical failure strain 
should be expected. (There are however some deviations from this relation.). Fig. 
2.43 shows the critical applied strain (at which the linear ‘‘quick growth’’ part of 
the curve of the fraction of failed particles versus far-field strain goes into ‘‘as-
ymptotic’’ part of these curves) plotted versus the flow stress of the composite at 
the displacement 0.15 mm for all the cells with 15 particles. From table 2.6 and 
Fig. 2.41, one can see that there is no monotonic relation between parameters of 
particle clustering and the effective response or rate of particle failure in the com-
posites.  

Considering the ranking of the microstructures in Fig. 2.41 one can see that the 
gradient microstructures demonstrate a very high damage resistance as compared 
with the isotropic (random, uniform and clustered) microstructures. The isotropic 
(random, uniform or clustered) microstructures are grouped in the left part (low 
critical strain) of the figure. From all the isotropic microstructures, the clustered 
microstructure ensures the lowest damage resistance. 
 

radius 
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(a) (b) 

Fig 2.42  Flow stress (at the displacement load u = 0.15) (a) and critical far-field applied 
strain (b) for different particle arrangements. VC = 10% (if not marked)  
 

 
Fig. 2.43  Critical applied strain plotted versus the flow stress of the composite (at the far-
field strain 0.15 mm) for all the cells with 15 particles and VC = 10%. 

 
In this relation, the big different between the mechanical behavior of the gradi-

ent Y (gradient particle arrangement with a gradient vector coinciding with the 
loading vector) and gradient Z (gradient particle arrangement with a gradient vec-
tor normal to the loading vector) composites is of interest. Both microstructures 
(gradient Z and gradient Y) show high damage resistances, but the flow stress of 
these structures differs. The effect of the orientation of the gradient vector on the 
flow stress and damage resistance of the composite can be explained by using an 
(over-simplified) illustrative representation of the gradient material as a bilayer 
material, consisting of a plastic layer (i.e., the part of the composite with a low 
content of particles) and a stiff layer (i.e., the part of composite with a very high 
content of particles). If the material is loaded along to the gradient direction, the 
stiffness of the material is controlled by the stiffness of the high particle density 
region (which is rather firm, and, on the other hand, allows quick failure of many 
particles due to the high local deformation, according to the results of paragraph 
3.3). Therefore, the stiffness of the gradient Z composite is quite high, and the par-
ticle failure goes rather quickly. In the case of gradient Y, the plastic flow of the 
material is controlled by the lower sections of the specimen with the small density 
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of particles.  Therefore, the flow stress of such a material is quite low (close to the 
flow stress of the pure matrix).The region of high particle density does not form a 
load bearing construction, and is therefore not subject to a quick failure of parti-
cles. One can draw a conclusion that if the regions of high particle density are ar-
ranged in such a way that they form a bearing construction (gradient Z structure) 
or play a role of a “super-reinforcement” (clustered structure), that leads to a quick 
failure of many particles in the regions. Otherwise, if the high particle density re-
gions does not form a load-bearing construction (gradient Y microstructure), the 
flow stress of the material is relatively low (since the plastic flow is controlled by 
the regions of low particle density), yet, the intensity of damage failure is rela-
tively low as well. 

Conclusions 

Numerical analysis of the effect of microstructure, arrangement and volume 
content of hard damageable inclusions in plastic matrix on the deformation and 
damage growth has been carried out. On the basis of the numerical testing of 
different microstructures, the following conclusions have been drawn.  
The stiffness and flow stress of the composites can be controlled both by the 
volume content of the hard particles, by the degree of localization (clustering) of 
their arrangement, and by shape and orientation of the regions of high particle 
density. 
Flow stress of composite increases with increasing the volume content of particles. 
An increase in the volume content by 5% leads to the increase of the flow stress 
by approximately 4%. The amount of particles (at the same volume content) 
influences the effective response of the material only at rather high stage of 
particle failure, when many particles failed already. In this case, the flow stress is 
higher for a composite with a higher amount of particles. The higher the volume 
content of particles, the lower is the far-field applied strain, at which the most of 
the particles fail. An increase of the volume content of particles by 5% leads to the 
decrease of the load at which the total failure of particles is observed by 4...5%.  

The particle arrangement does not influence the effective response of the mate-
rial in elastic area or at small plastic deformation. The effect of the particle ar-
rangement on the effective response of the material becomes significant only at 
the load at which the particles begin to fail. After the first particle fail, the flow 
stress of the composite and the strain hardening coefficient increase with varying 
the particle arrangement in the following order: gradient < random < clustered < 
regular microstructure. The applied strain, at which the most particles fail, de-
creases in the following order: gradient > random > regular > clustered. 

The variations of the particle sizes causes very strong decrease in the strain 
hardening rate and leads to the quicker and earlier damage growth in the compos-
ites. The differences in the effective responses of the composites with different 
degree of scattering of particle sizes are negligible in the elastic region, but be-
come rather large when the particles begin to fail, and the differences increases 
with increasing the density of failed particles.  
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2.3.2  Step-by-step packing approach to the 3D microstructural model 
generation and quasi-static analysis of elasto-plastic behavior of 
composites6 

In the last few decades great progress has been made in mechanics and physics 
of solids, which provides new knowledge of material behavior under loading and 
substantially promotes our understanding of physical mechanisms of deformation 
and fracture. Over the recent years a new scientific trend – physical mesomechan-
ics has been developed on the basis of a concept of multiscale nature of deforma-
tion and fracture processes. In the frame of mesomechanical methodology [14, 15, 
17, 19, 28 ], a solid under loading is considered as a complex system of structural 
levels – micro, meso and macro, with deformation going on different scale levels 
in a self-consistent way. For instance, individual dislocations observed at the ini-
tial stage of loading tend to organize into cellular and band structures which, in 
turn, go on to form mesoscale shear bands. Plastic strain localization at the 
mesoscale level precedes macroscopic neck formation and fracture of the speci-
men. 

A great body of experimental and theoretical data, e.g. [4, 11, 13-15, 17-19, 28, 
29, 33], indicates that stress and strain distributions on the mesolevel are charac-
terized by essential non-homogeneity attributed to the structural effects. Although 
an average response of a representative mesovolume assumes to agree with the 
experimental stress-strain curve which represents the macroscopic behavior of the 
material, local values of stresses and strains on the mesoscale can deviate widely 
from the average values [4, 11, 13-15, 19, 28, 29]. It is, therefore, a challenge to 
estimate stress-strain fields on the mesoscale level. In the context of this task a 
numerical simulation shows good promise as a research tool in addition to ex-
perimental methods. 

A series of computational works [22, 24-27] has been devoted to the numerical 
simulation of deformation and fracture processes in heterogeneous materials with 
explicit consideration of their three-dimensional microstructure. In order to intro-
duce in calculations a 3D-structure a method of a step-by-step packing (SSP) to 
design artificial three-dimensional structures similar to real ones by geometrical 
and statistical characteristics of their constituents has been developed in [22, 26]. 

The method proposed has been applied in [22, 24-27] to calculations of several 
test examples of polycrystalline and composite structures without providing a 
comprehensive analysis of their stress-strain behavior. First test calculations have 
been performed in [22, 25-27] for polycrystalline aluminum structures subjected 
to tension [22, 25] and shock wave loading [26, 27], using the finite-difference 
(FD) method [35]. 

In [25] the SSP-method has been applied to design a 3D MMC-structure con-
sisting of Al(6061)-matrix and 10% of Al2O3-inclusions in a 50×50×50 cubic grid, 

                                                           
6 Reprinted from V.A. Romanova, E. Soppa, S. Schmauder, R.R. Balokhonov, “Mesome-
chanical analysis of the Elasto-Plastic behavior of a 3D composite-structure under tension”, 
Comput. Mech. 36, pp. 475-483 (2005)  with kind permission from Springer 
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with using a procedure of excluding extra phases to obtain inclusions of uneven 
shape. FDM-calculations have been performed for the MMC-structure subjected 
to a complex quasistatic loading so that tensile displacements were given along X-
direction, with two of the cube lateral faces being free of external forces and the 
rest three faces treated as symmetry planes. Influence of the composite structure 
and loading conditions on distributions of equivalent stresses and equivalent plas-
tic strains on the surface and in the volume has been studied at specimen elonga-
tion of 0.24%. A comparative analysis of equivalent plastic strain distributions in 
the 3D MMC-structure and corresponding 2D-structures calculated in terms of 
plane strain conditions has been done in [24, 25] 

The present work has its goal to examine in detail the stress-strain behavior of a 
MMC-structure subjected to quasistatic tension. In the frame of this contribution, 
the following tasks not addressed before in [22, 24-27] have been solved: 

1. The SSP-procedure applied in [25] to design a two-phase structure con-
sisting of Al(6061)-matrix and Al2O3-inclusions is further modified to 
obtain inclusions more similar to real those in their geometrical and sta-
tistical characteristics. The computer-aided design of the MMC-structure 
is briefly considered in Section 2. Material constants and model parame-
ters used in calculations as well as schematics of load application are 
given in Section 3. 

2. The mechanical problem how far the dynamic formulation can be used 
for the description of quasistatic problems has been solved, using both 
the finite element (FE) [7] and finite-difference (FD) [35, 36] methods. 
Special attention has been given to the comparison of FE- and FD-
calculations in order to test the explicit code applicability in solving the 
quasistatic problem. 

3. Evolution of equivalent plastic strain during tensile loading has been in-
vestigated with a comparison of meso- and macro-scale processes.    

4. The analysis of stress and strain distribution in the bulk of the specimen 
has been provided on the base of the mesomechanical concept, with spe-
cial attention paid to the quantitative estimation of local characteristics on 
the mesoscale level. Particular emphasis has been paid on the investiga-
tion of individual contributions from different components of the stress 
and strain tensors to local and global response of the material. 

Discussion of the computational results is presented below.  

Microstructure set-up 

The incorporation of a material structure, i.e. the distribution of different mate-
rial properties throughout the volume, is a non-trivial problem in the case of three 
dimensional simulations. An even more complicated task is to introduce explicitly 
a real 3D-structure since it requires the information about structural patterns not 
only on the surface but also in the bulk of the specimen. Experimental techniques 
[3, 9] which could provide layer-by-layer structural images are, as a rule, rather 
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expensive and laborious. In the context of aforesaid, computer-aided modeling is 
considered to be a reasonable tool to design artificial 3D-structures similar to real 
ones by characteristics of their structural components, i.e. shape, size, volume con-
tent, spatial distribution etc. 

In the general case, the design of a 3D-structure is reduced to the problem of 
packing a finite volume with structure elements without gaps and overlapping. 
Over the recent years, several methods of computer-aided simulation of micro-
scopic heterogeneities have been developed, including Potts Monte Carlo Method 
[1], Voronoi tessellation [6], cellular automata [20], pseudo-front tracking method 
[8] and the phase-field approach [10] etc.. Some of them use a geometrical proce-
dure to generate regular or irregular structures and others are based on certain 
physical principles and thermo-dynamic formulations. All of these were originally 
applied in two dimensional simulations and their main goal was to obtain reason-
able conclusions regarding the kinetic and statistical aspects of a 2D grain growth. 
Although in recent works [21] some of these methods were successfully applied in 
a 3D case, realization of these techniques in three dimensions is for the most part a 
complicated task calling for optimization of computational algorithms since the 
memory and processing time requirements needed to make calculations increase 
dramatically with the increase of spatial dimensions. 

In this paper, in order to design the composite structure whose mechanical be-
haviour will be further numerically investigated, use was made of a step-by-step 
packing (SSP) algorithm we proposed in [22, 26]. In contrast to the methods listed 
above [1, 6, 8, 10, 20, 21], this technique disregards physical and thermodynami-
cal aspects of the microstructure evolution such as grain growth, phase coales-
cence, recrystallization and so on. Its goal is only to design a material structure 
similar to a real one, whose mechanical behaviour will be further numerically in-
vestigated.  

 
 

Fig. 2.44  (a) Binary image of the experimentally determined MMC-microstructure ob-
tained by Dr. G. Fischer/ Universität Dortmund, Germany. (b) Schematics of load applica-
tion to the MMC test-volume cut out from the SSP-designed composite structure (c). 

The SSP-algorithm includes the following steps: 
1. The volume to be packed with the structure is discretized with the com-

putational grid and three-dimensional coordinates are defined for each 
discrete point. Since the design of a 3D-structure precedes the task of 
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simulating its mechanical behaviour, the test-volume geometry is defined 
from the conditions of an appropriate mechanical problem and the discre-
tization parameters are dictated by the numerical method to be further 
applied. 

2. Each discrete point of the volume is assigned a so-called structural index 
(SI) corresponding to a certain phase. Initial conditions imply that all 
points possess the same SI with the exception of those treated as nuclei of 
new phases. 

3. The discrete volume is filled with structural elements in a step-by-step 
fashion. At each step in the processing time, the volumes surrounding the 
nuclei are incremented by preset values in accordance with given law of 
their growth. Such a procedure repeats until the volume fraction of the 
growing structural elements has reached the preset magnitude. The initial 
distribution of nuclei, the law of volume increments and the growth rate 
can be defined from the analysis of experimental data. 

In this work the SSP-technique has been applied to design a MMC-structure 
composed of Al(6061)-matrix and vol.10% Al2O3-inclusions, with the microstruc-
ture parameters of a real composite material [30-32]. The experimental data [30-
32] indicate that Al2O3-particles whose size is varied from 5 to 50 μm are charac-
terized by rather irregular shape, fig. 2.44(a). It has been found that an appropriate 
microstructure model can be provided via the design of a two-phase composition 
with the predominant growth of one of its constituents. Initially the nuclei of two 
sorts were randomly distributed throughout the volume discretized preliminary by 
a cubic grid of 100×100×100 elements, with the nuclei of both sorts in the ratio of 
1:3. Although both phases developed simultaneously in accordance with the 
spherical law of homogeneous growth in all three spatial directions [26], the first 
one grew three times faster than the second one. The second phase which will be 
further treated as Al2O3 - particles stops to grow as soon as its volume content 
reaches the preset value of 10%, after that all unfilled places of the volume are as-
sumed to be matrix in addition to those already possessing the matrix SI. The re-
sulting structure contains 10% of inclusions of different sizes and shapes, 
fig.2.44(c). 

Material properties and loading conditions 

Apparently, the finer the computational grid, the better the agreement between 
statistical characteristics of the experimental and designed structures, provided 
that the SSP-laws applied in the simulation are correctly defined. This is the rea-
son to design at first a reference structure in a sufficiently detailed computational 
grid of 100×100×100, fig. 2.44(c). Note, however, the numerical solution of the 
three-dimensional mechanical problem places more stringent requirements upon 
the computer memory and processing time in comparison to those needed for the 
structure design. In addition, the memory requirements are several times higher 
when using the implicit solver [7]. Since this paper has its goal to compare nu-
merical solutions obtained by implicit [7] and explicit [35] methods, size of the 
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test-structure has been chosen so as to satisfy the memory requirements imposed 
by the implicit code [7]. In this connection, further calculations have been per-
formed for a smaller test-volume of 55×41×22 elements, as a cut out from the ref-
erence structure as presented schematically in fig. 2.44(b-c). From the macro-
scopic point of view this test-volume is not representative since it contains only 
several inclusions whose total volume is about vol. 23%, with particle content in 
different planes varying from vol. 10 to 30 %. The reason for which this structure 
was chosen to be investigated is a sufficient amount of computational elements 
contained in the inclusions, which is important in view of the outlined goals to 
study non-uniform stress-strain patterns resulting from the structural heterogenei-
ties. 

Three-dimensional calculations of the MMC-structure behavior under qua-
sistatic tension have been carried out, using both the finite-element (FE) [7] and 
the finite-difference (FD) [35, 36] methods. Referring to the schematics of load-
ing, fig. 2.44(b), tension is applied to the surface x2 = h2 in the positive direction 
of the X2-axis, while the planes x1 = 0, x1 = h2, x3 = 0 and x3 = h3  are treated as 
free surfaces, and the movement of the plane x2 = 0  is fixed parallel to theX2-axis. 
The lengths of the test-volume along the X1-, X2- and X3-axes are 22, 55 and 41 
microns, respectively. 

 

Table 2.8  
Material constants and model parameters used in the calculations. 

Property Al(6061)-matrix Al2O3-particles 
Density, g/cm3 2.7 3.99 
Shear modulus, GPa 27.7 156.0 
Bulk modulus, GPa 72.8 226.0 
Young modulus, GPa 68.3 380.0 

0σ , MPa 105.0 - 

maxσ , MPa 170.0 - 

0ε  0.048 - 
 
According to the experimental data [30-32], Al2O3-particles under loading pos-

sess elastic behaviour, whereas the matrix undergoes elasto-plastic deformation. 
Since at the elongation of 0.5% crack nucleation and development have not been 
registered in the experiments except of already existing cracks and voids after ex-
trusion [30], fracture processes were disregarded from consideration. In order to 
describe the strain hardening in the matrix we used the fitting function of Voce 
type as proposed in [32]: 
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Here σeq and εeq are the equivalent stress and the equivalent plastic strain, σmax 
is the saturation stress, σ0 and ε0 are the equivalent stress and strain corresponding 
to the beginning of plastic yielding. Mechanical properties of matrix and inclu-
sions as well as fitting constants are given in table 2.8. 

Mesomechanical analysis and discussion of computational results 

On application of explicit code in solving quasi-static problems 

Although recent advances in computer technologies extend considerably the 
range of mechanical and physical problems feasible to be solved, the memory and 
processing time requirements remain to be a significant limiting factor in the case 
of three-dimensional calculations. Thus, the optimization of computational meth-
ods and numerical codes as well as simplification of mathematical models con-
tinue to be topical tasks in modern computational mechanics and materials sci-
ence. These problems become even more acute for models explicitly incorporating 
the internal structure since it requires high resolution of computational grid for the 
structure elements to be described with an appropriate number of details. 

From the viewpoint of memory requirements, explicit numerical codes are 
more efficient in comparison with implicit ones. Their use, however, is strongly 
limited by a stability condition which imposes a restriction on the time step to be 
less than that needed for the elastic wave to traverse one spatial interval of the 
computational grid. This almost unfailingly leads to a considerable increase in 
computational time when calculating quasi-static problems. 

In spite of this disadvantage, explicit codes have been successfully used to 
solve quasistatic problems for both homogeneous and heterogeneous materials [4, 
11-14, 23, 36, 37]. In [37] an explicit finite-difference method earlier developed in 
[34] for calculations of wave propagation in elasto-plastic media was applied in 
2D- and 3D-simulations of a homogeneous aluminium plate under tension. Later 
in a series of computational works [4, 11-14, 23] this method was adapted to prob-
lems of heterogeneous materials with explicit consideration of their microstructure 
and applied in 2D-calculations of elasto-plastic deformation and fracture under 
quasi-static loading. It has been shown for materials non-sensitive to strain rate ef-
fects [4, 11, 23] that results of dynamic and static models well agree, provided that 
the loading rate is slowly incremented to minimize wave phenomena. 
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Fig. 2.45  Comparison of quasistatic(FEM) and dynamic (FD) calculations (true effective 
strain is 0.5%): a) cumulative frequency curves of equivalent stresses and plastic strains; b) 
normalized frequency count of deviation of quasistatic ( s

eqσ ) and dynamic ( d
eqσ ) equivalent 

stress fields. Note, the FD and FE methods give almost exact the same results. 
 
 
The test-volume, fig. 2.44(b), was loaded by applying tension velocity to one of 

its ends with the other being fixed along the tensile axis. In order to reduce wave 
effects attributed to the dynamic model itself, the tension rate was smoothly in-
cremented up to its constant value for the waves initiated at the loaded surface to 
traverse the test-volume length several times at each step of loading. 

Presented in fig. 2.45 are the cumulative frequencies of equivalent stresses and 
plastic strains obtained in FEM- and FDM-calculations and the frequency count of 
difference between static and dynamic stress fields. The results demonstrate rea-
sonable agreement at a tension rate of 1 m/s – the difference in dynamic and static 
stress-strain distributions is less than 10 % for most parts of the test-volume. Re-
garding the discrepancy of 20÷50% observed in several local regions (≈ vol. 
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0.7%), the comparison of dynamic response at higher and lower tension rates leads 
us to the assumption that it is not associated with the strain rate effects but rather 
attributed to numerical codes themselves since both dynamic fields exhibit the 
same deviation from the static one. Presumably, the reason of this disagreement is 
a reduction of the dynamic solution accuracy in the areas of high stress-strain gra-
dients. In order to avoid hour-glass distortions of the computational grid in the im-
plicit calculations use was made of an artificial viscosity [36] which can become 
considerable in the areas of high stress-strain gradients, reducing the accuracy. 
This conclusion has been additionally confirmed by a layer-by-layer analysis of 
dynamic and static stress-strain patterns, which has shown that the higher the 
stress-strain gradients in local areas, the more the disagreement between static and 
dynamic results. Conceivably, this disagreement can be minimised by smoothing 
of structure interfaces or mesh refinement. 

At a loading rate of 5 m/s in the FD-simulation the deviation of dynamic and 
static stress-strain fields increases due to the strain hardening in matrix – the 
higher the loading rate, the weaker the plastic strain localisation effects. Such a 
disagreement should be taken into account when estimating material quasistatic 
response, based on the results of dynamic calculations. 

In the light of aforesaid, we come to the conclusion that the dynamic code is 
applicable to simulations of a quasistatic response of the MMC-structure within 
the range of loading rates below 1 m/s, provided that the rate of loading smoothly 
increases up to its constant value. The use of the explicit code is expected to allow 
one to make 3D-calculations for a representative MMC-structure with a high reso-
lution of the computational grid, with essentially reduced computer memory re-
quirements. 

It should be noted, however, that this conclusion cannot be extended to the case 
of other materials and loading conditions without additional calculations. Each 
kind of structure and method of loading calls for special tests in order to determine 
the range of strain rates in which dynamic effects become insignificant in regard 
to the stress-strain behaviour at the meso- and macro-scale levels. 

Analysis of plastic strain evolution 

In the 3D case, along with the complexity of the numerical solution, visualisa-
tion and analysis of the results also become more difficult. Due to its heterogene-
ity, every layer of the test-volume exhibits an individual stress-strain pattern that, 
in addition, evolves in time. In this paper we, therefore, give only some represen-
tative illustrations of plastic strain patterns in planes selected, with the conclusions 
drawn for the general case. 

A step-by-step and layer-by-layer analysis of the plastic strain distribution has 
shown that first plastic shears take place on the test-volume surface. It is well-
known [14-17, 19, 28] that geometrical special features of the specimen itself, 
such as corner points, notches, free surfaces and so on, result in strong stress con-
centration on the macroscopic level. In [22] we have shown for the case of a 3D 
polycrystalline material that the equivalent stress on the surface is higher than that 
in the bulk of the specimen.  
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Fig. 2.46  Average equivalent stress (curve 1) and derivative of matrix volume pV  in-
volved into plastic deformation (curve 2) vs. true effective strain. 

 
 
 

Fig. 2.47  Plastic strain patterns on the surface at different elongations of the test-
volume (refer to fig. 2.46). 

 

The reason is that normal components of the stress tensor on the surface are 
known to be zero, whereas in the volume all stresses make their contribution to the 
equivalent stress, reducing its value. 

This conclusion, however, cannot be extended to the general case of composite 
materials. Due to considerable differences in elastic properties of matrix and in-
clusions, incompatible deformation and, as a result, stress concentrations in the vi-
cinity of interfaces can result in higher stress concentrations in some internal re-
gions than that caused by the surface effects, which can lead to crack origination 
not on the surface but in the bulk of the material [2]. This situation becomes even 
more unpredictable in the case of inclusions of an irregular shape. This was the 
reason, therefore, to check whether this conclusion holds for the MMC-structure 
under study. 

Plotted in fig. 2.46 are the average equivalent stress and the increment of the 
matrix volume plastically deformed vs. true effective strain of the specimen. Here 
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and below the equivalent stress σeq and its average value ‹σeq› are calculated as 
follows: 

 

ijijeq σσ=σ
2
3  (2.17) 

 

∫σ=σ
V

eqeq dV
V
1  (2.18) 

where σij are the stress tensor components, σeq is the equivalent stress, and V  is 
the computational volume, with the i- and j-indices varied within the range of 1 to 
3. Note, in the general case of a 3D heterogeneous material the average equivalent 
stress calculated by eq. (2.18) can deviate from both true and nominal stresses as 
obtained in experiments and cannot be directly associated with the experimental 
stress-strain curve without additional verification. 

Refer to fig. 2.46, due to couple effects of tensile loading and strain hardening, 
plastic strain accumulation in the places already involved into yielding and origi-
nation of new plastic shears in elastically-deformed areas go alternately. Stress 
concentration in the vicinity of interfaces takes place from the very beginning of 
loading, which gives rise to plastic shear nucleation in local areas of matrix mate-
rial at true effective strain of 0.004% which is ≈2.7 times less than the preset value 
of the yield strain 0ε  (see table 2.8). This phenomenon qualitatively agrees with 
the experimental findings in the field of microplasticity e.g.[5]. 

From the appearance of the first plastic shears and up to the true effective strain 
of 0.12% the matrix volume undergoing plastic deformation rapidly increases, 
which indicates a primary role of the nucleation of new plastic shears in this re-
gion. After the plastically deformed volume reaches ≈33% of the matrix, the rate 
of shear nucleation in new regions drastically decreases, that corresponds to the 
beginning of the strain hardening part in the average stress – true effective strain 
curve. The evolution of plastic strain patterns on the surface at this stage of load-
ing is illustrated in fig. 2.47. 

After plastic deformation covers ≈ 63% of the matrix, the curve 2 flattens out, 
which indicates that new regions are no longer involved into plastic yielding but 
plastic deformation continues to develop in the shear bands already formed. Sum-
marizing, the formation of plastic strain localization areas is mostly completed at 
the stage associated with the linear part of the average stress – true effective strain 
curve, whereas intensive development of plastic deformation in the already 
formed shear bands corresponds to the stage of macroscopic strain hardening. 
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Stress and strain distributions on the mesoscale level 

Plastic strain patterns in different planes of the 3D test-volume are mainly con-
trolled by both microstructure distribution and orientation of the plane relative to 
the axis of tension. Let us consider plastic strain localization in specimen cross-
sections located parallel (fig. 2.48) and perpendicular (fig. 2.49) to the axis of 
elongation.  

From the macroscopic point of view, the parallel- and perpendicular-oriented 
planes are in different conditions of loading. In the first case, fig. 2.48, planes x1 = 
const undergo tension along theX2-axis and compression along X3, which results 
in the formation of a system of shear bands in the matrix material. 

First, plastic shears nucleate near interfaces in the regions of high stress con-
centration which is attributed to both incompatible deformation in the places of 
matrix and inclusion contact and uneven contours of the interfaces. Orientation of 
the shear bands at an angle of °≈ 45  to the axis of elongation is primarily dictated 
by the loading conditions. 

 

 
 

Fig. 2.48  Shaded relief maps of equivalent plastic strains in the selected planes parallel to 
the axis of tension. True effective strain is 0.5%. 
 

 
 
Fig. 2.49  Shaded relief maps of equivalent plastic strains in planes selected perpendicular 
to the axis of tension. True effective strain is 0.5%. 
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In planes x2 = const placed perpendicular to the axis of tension, fig. 2.49, the 
material undergoes two-axial compression, which prevents shear band formation 
but gives rise to the plastic strain localisation around inclusions, becoming espe-
cially pronounced in the vicinity of their boundaries. 

Let us analyse in more details a contribution from different components of 
stress and plastic strain tensors to the stress and strain patterns. Presented in fig. 
2.50 are the frequency count curves of stress and strain tensor components at a 
true effective strain of 0.5%. The frequency distribution of stress tensor compo-
nents, fig. 2.50(a), calculated with steps of 5 MPa, was normalized as (qiNc) 
100%, where qi is the number of computational elements within the i -th interval, 
and Nc is the total number of grid cells. Excepting σ22 which represents the mate-
rial response in the direction of tension, all components of the stress tensor dem-
onstrate a symmetric distribution, with the axis of symmetry along σij = 0 and the 
frequency peaks on this line. Since the matrix takes up 67% of the total volume, it 
is reasonable to suggest that the stress value corresponding to the highest fre-
quency correlates to a greater extent with the average stress in matrix.  

In order to describe the plastic behaviour we used the von Mises yield criterion 
[7, 34, 37], according to which the material response to loading becomes plastic, 
provided that the second invariant σeq of the stress tensor reaches its critical value. 
It is interesting, therefore, to analyse the contribution of different stress compo-
nents to the value of equivalent stresses calculated by Eqn. (2.17). From the analy-
sis of the curves plotted in fig. 2.50(a), σ22 gives the most significant contribution 
to the magnitude of σeq, with the frequency peak corresponding to ≈107 MPa. 
Note, the stress value is ≈23% lower than that representing the average material 
response (point a in fig. 2.46). 

The difference in these values well correlates with the volume content of 
Al2O3-particles, which suggests that the maximum frequency corresponds to the 
stress field in the matrix, whereas the average equivalent stresses are mostly de-
termined by the stress fields in particles. In addition, a contribution from the other 
stress components to the material average response also appears to be consider-
able. Even though their values in matrix are close to zero, they demonstrate high 
stress concentration inside the inclusions and especially in the vicinity of inter-
faces. 

Frequency curves for components of the plastic strain tensor in the matrix, cal-
culated with steps of 0.01%, are plotted in fig. 2.50(b). These curves demonstrate 
the presence of places undergoing tension, compression, shear and their combina-
tion as well. Refer to the extreme and average stress and strain magnitudes given 
in table 2.9, all components of stress and plastic strain tensors vary in a wide range 
including positive and negative values. Taking into account that the negative di-
agonal components correspond to tension and positive ones describe compression 
along appropriate directions, it is interesting to mark that even σ22 and p

22ε  take 
negative values in several local points, which means that these areas are under 
compression in spite of the external tension applied in the same direction.  
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Fig. 2.50  Frequency count of stress tensor components (a) and plastic strain tensor compo-
nents (b), obtained in FD-calculations (true effective strain is 0.5%). 

 
 

This is a prominent illustration of specific effects attributed to a three-
dimensional heterogeneity. One of the discussed topics of computational mechan-
ics is whether two-dimensional continuum models are capable to provide a rea-
sonable description when modelling deformation and fracture in heterogeneous 
materials with an explicit consideration of their microstructure and, if so, what are 
the frames of their applicability. Summarizing our previous experience in the field 
of 2D- and 3D calculations of heterogeneous media [22, 24-27], we come to the 
conclusion that each kind of structure and condition of loading requires special 
consideration to answer the question. 

Although 2D-calculations are not presented in this paper, we can make some 
conclusions regarding this topic, based on the 3D-analysis of the stress and strain 
tensors. In both cases of plane strain and plane stress conditions the models are 
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nents of the stress and strain tensors are equal to zero all over the volume. In the 
case of the 3D MMC-structure subjected to tension as preset above, all compo-
nents of stress and plastic strain tensors in the vicinity of interfaces and in the 
bands of localised deformation, respectively, deviate widely from zero and, thus, 
make their contribution to the local values of the stress and strain tensors (see ta-
ble 2.9). Due to their small relative volume, the regions demonstrating the highest 
values of stresses and strains do not make a considerable contribution into the av-
erage material response. So in the case of macroscopic simulation, one- and two-
dimensional models provide quite satisfactory results and the heterogeneous fields 
on the mesolevel can be ignored without serious consequences. It should be noted, 
however, that the correct estimation of local characteristics takes on great signifi-
cance for materials whose deformation and fracture behaviour is strongly deter-
mined by mesoscale processes and then structural effects have to be taken into ac-
count. 

 
Table 2.9  
Average and extreme values of stress and plastic strain tensor components at true effective 
strain 0,5%. 

p
ijε  p

ijε , 

% 
min

p
ijε , 

% 
max

p
ijε , 

% 
ijσ  

ijσ , 

MPa 
minijσ , 

MPa 
maxijσ , 

MPa 
p
11ε  -0.234 -2.361 0.303 

11σ  -0.004 -695.1 387.0 

p
22ε   0.493 -0.058 4.131 

22σ   127.5 -324.1 1017.6 
p
33ε  -0.246 -2.476 0.396 

33σ  -0.01 -844.7   396.5 

p
12ε  -0.0007 -1.365 1.056 

12σ  -0.05 -193.5   265.9 

p
31ε  -0.0086 -1.161 0.873 

31σ   0.01 -147.1   283.1 

p
23ε   0.003 -1.763 1.238 

23σ  -0.06 -197.3   272.7 

p
eqε   0.53  0.0 4.237 

eqσ  138.4      8.4 1017.3 

Conclusions 

Numerical investigation of the elasto-plastic behavior of a composite material 
under loading has been carried out, with taking into account its 3D structure. The 
analysis of stress and strain distribution in the bulk of the specimen has been pro-
vided in the frame of the mesomechanical concept, with special attention paid to 
the estimation of local characteristics on the mesoscale level. Deformation pat-
terns in planes oriented parallel and perpendicular to the axis of tension have been 
studied. Particular emphasis has been paid on the estimation of individual contri-
butions from different components of the stress and strain tensors to local and 

reduced to a two-dimensional problem under the assumption that certain compo-

global response of the material. It has been shown that, due to its structural 
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To introduce in calculations the three-dimensional MMC-structure, use was 
made of a SSP-algorithm proposed in [22, 26]. The benefit of this method is, un-
doubtedly, its simple computer-aided realization with the minimal requirements of 
the memory and computational time. The disadvantage is that the application of an 
artificial structure makes impossible a direct comparison of computational and ex-
perimental results on the mesoscale level. However, this does not exclude the pos-
sibility of an indirect verification of this type of modelling. In the assumption that 
macroscopic responses of a real material and its artificial model should coincide 
when considering a representative volume, their comparison might be a proper test 
to verify computational results. 
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Chapter 3: Simulation of Damage and Fracture 

The purpose of this chapter is to describe methods of computational modelling of 
damage and fracture in heterogeneous materials, and to demonstrate their applica-
tions for the analysis of the microstructure-strength and microstructure-fracture re-
sistance relationships of different materials. 

Micromechanical aspects of crack extension in multiphase materials are essen-
tial in understanding fracture characteristics on a macroscopic scale. Typically, 
hard second-phase particles fracture or decohere in the course of externally ap-
plied loading before the matrix between these particles fails and macroscopic 
crack advance is observed. The section 3.1 discusses some of these phenomena 
and methods of their modelling for the ductile/brittle systems WC/Co, Al/SiC and 
Al/Si. 

In section 3.2, several methods of modelling of ductile fracture of composites 
are presented. An approach to the damage and fracture modelling, based on the 
automatic elimination of elements based on criteria such as critical plastic strain or 
stress triaxiality, is introduced. The method is applied to shear band failure and 
cavity nucleation. Further, an elastic-plastic finite element analysis of the crack-tip 
field in a WC-Co alloy is presented. A model in which a Co-phase was embedded 
at the crack-tip in an elastic solid was employed, and Gurson's constitutive equa-
tions for a porous plastic material were used for the Co-phase in order to take into 
account the nucleation and growth of microvoids. Effects of the shape of Co-phase 
and the stress state (plane stress or plane strain) on the distributions of hoop stress, 
hydrostatic stress and microvoid volume fraction are discussed based on the com-
putational results. The process of ductile fracture under constraint of deformation 
is also discussed in this section. 

In order to model the crack growth in a WC/Co hard metals, a micromechanical 
model, consisting of a unit cell with a cobalt island in a carbide environment, em-
bedded in a composite surrounding, is developed. The energy release rate is calcu-
lated for a crack propagating along the symmetry plane of the model on a micro-
scopic scale. The cobalt phase influences the crack driving force in an important 
way. The energy release rate of a crack approaching the cobalt phase increases, 
while it decreases rapidly for the crack propagating towards the center of the co-
balt island. Parametric studies are carried out to determine the influence of differ-
ent cobalt inclusion shapes and cobalt volume fractions on the energy release rate. 
Moreover, the energy release rate is calculated for a unit cell with two square co-
balt inclusions and compared to crack propagation in a computational cell with a 
single inclusion 



128      Chapter 3: Simulation of Damage and Fracture 

In section 3.3, numerical simulations of crack initiation and growth in real mi-
crostructures of materials with the use of multiphase finite elements (MPFE) and 
the element elimination technique (EET), are employed for the simulation of crack 
growth in idealized quasi-real microstructures (net-like, band-like and random dis-
tributions of primary carbides in the steels). On the basis of a comparison of frac-
ture resistances of different microstructures, recommendations to the improvement 
of the fracture toughness of steels are developed. The fracture toughness and the 
fractal dimension of a fracture surface are determined numerically for each micro-
structure. It is shown that the fracture resistance of the steels with finer micro-
structures is sufficiently higher than that for coarse microstructures. Three main 
mechanisms of increasing fracture toughness of steels by varying the carbide dis-
tribution are identified: crack deflection by carbide layers perpendicular to the ini-
tial crack direction, crack growth along the network of carbides and crack branch-
ing caused by damage initiation at random sites. 

Further, a systematic computational study of the effect of microstructures of 
materials reinforced with brittle hard particles on their fracture behavior and 
toughness is presented. Crack growth in particle-reinforced materials (here, in 
high speed steels) with various artificially designed arrangements of brittle inclu-
sions is simulated using microstructure-based finite element meshes and an ele-
ment elimination method. Along with simple microstructures, layered and clus-
tered arrangements, with different inclusion sizes and orientations, have been 
considered. Crack paths, force-displacement curves, fracture toughness and fractal 
dimension of fracture surfaces are determined numerically for each microstructure 
of the materials. It is demonstrated that extensive crack deviations from the initial 
cracking directions and an increase in fracture toughness can most efficiently be 
achieved by using complex microstructures, such as alternated layers of fine and 
coarse inclusions. 

In the last section of this Chapter, the interface fracture for metal/ceramic com-
pounds is considered. The influence of the plastic properties of the metal part on 
the interface strength and on the energy release rate is examined.  
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3.1 Crack Growth in Multiphase Materials1 

3.1.1  Failure Phenomena and Criteria for Crack Extension 

In this subsection, attention is focused on two-phase materials consisting of a brit-
tle and a ductile phase, as exemplarily shown in Fig. 3.1 for the case of an Al/SiC 
(20vol. %) metal matrix composite (Schmauder et al. 1996). Principally, three 
failure modes have to be taken into account when cracking on the microstructural 
level is considered: particle cracking, interface debonding, and matrix failure. In 
Fig. 3.1, matrix failure is the relevant cracking mode while only few particles are 
cracking or decohere. 

In most cases, cracking of hard brittle (e.g., ceramic) particles follows a normal 
stress criterion (e.g., Lippmann et al. 1996), similarly as interface debonding. 
Such critical parameters depend on microstructural details as particle size and 
shape. It is well accepted to obtain these parameters by inverse modeling where 
these stresses are calculated for the respective microstructural event at failure load 
(Lippmann et al. 1996).  

In order to simulate ductile failure of metallic phases, damage models have to 
be applied. Among them, Gurson-type damage models are the most prominent 
ones in which ductile failure is approximated by following the micromechanical 
phenomena of nucleation, growth, and coalescence of voids. These types of mod-
els have been proven to succeed in the case of macroscopic failure description of 
ductile metals. However, they were found to be of limited value in ca se of micro-
structural crack advance in the metallic phase of brittle/ductile composites. 

Another, more promising approach is to apply local failure criteria for crack 
propagation in the metallic matrix phase of a microstructure as in Fig. 3.1. 

Amongst these failure criteria, critical normal (σn,c) or equivalent stresses (σv,c) 
as well as critical plastic strains (εpl,c) or triaxialities (ηc = (σH/σv)c where σH = hy-
drostatic stresses) and mixed criteria (e.g., εpl ≥ εpl,c and σH ≥ σH,c) have been pro-
posed and tested. It was found that all of these criteria failed to reproduce the 
crack path in the matrix, especially in the vicinity of the second-phase particles. 
However, all of the above mentioned criteria for failure prediction in the matrix 
are suitable to predict void formation during sintering or crack propagation. 

A successful way to model ductile failure in a microstructure is based on the 
work of Rice and Tracey (1969) and Hancock and Mackenzie (1976). The damage 
parameter was originally written as: 

 

                                                           
1 Partially reprinted from S. Schmauder, Crack Growth in Multiphase Materials”, 

Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., pp. 1735-1741 
(2001), with kind permission from Elsevier 

“
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where α is a constant and failure initiation takes place at a critical damage pa-
rameter value of Dc This damage parameter takes into account the complete failure 
history and evaluates the triaxiality as well as the plastic straining in a multiplica-
tive manner. It may thus be seen as an energetic criterion. Recently, failure curves 
have been derived for a number of materials and expressed as (Arndt et al. 1996). 
These curves separate the areas of failure (εpl ≥ εpl,c), from those where no failure 
(εpl < εpl,c) occurs and were recently extended to a three-parameter approach. In 
Eqn. (3.2) A and B are material dependent parameters. The following damage pa-
rameter (Hönle et al. 1998). is an extension of Eqn. (3.1) and consistent with Eqn. 
(3.2). By this definition, failure will occur when 1=≥ cDD . 
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Fig. 3.1 Crack path of an Al/SiC (20vol.%) metal matrix composite which is used for the 
simulation (the crack approaches from the right-hand side where the main crack tip is visi-
ble; the most advanced crack tip is seen on the left-hand side of this cross-section). 
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3.1.2  Micromechanics of Deformation in Multiphase Materials 

Deformation analyses of multiphase materials have been performed numerously in 
the late twentieth century for inclusion type of microstructures as well as for inter-
penetrating microstructures. From these analyses it was found that strengthening 
as well as failure initiation in the matrix are strongly dependent on volume frac-
tion and arrangement of the particles and only to a minor degree on the shape of 
the particles. While shear bands in regularly arranged inclusion-type microstruc-
tures propagate throughout the material they are of finite length in real inclusion-
type microstructures and in interpenetrating microstructures. However, strong lo-
calized shear is present in the vicinity of particulates, independent of whether 
particle/matrix interfaces are debonded or not. Plastic straining in combination 
with stress triaxialities is, therefore, elementary for the failure process in the ma-
trix. 

Ductile/Brittle Composites 

In this section, three examples of crack extension in multiphase materials are pre-
sented for inclusion-type microstructures with a ductile metal matrix and hard Si 
or SiC particles as well as for interpenetrating WC/Co microstructures. 

Al/SiC 

In order to model multi phase materials, multiphase elements have been intro-
duced. This method is based on the approach that Gaussian points of one element 
may belong to different phases. Thus, the FE-mesh is independent of the phase 
structure and the preprocessing is simplified. The crack path is modeled by the 
elimination of elements exceeding a predefined failure criterion. 

Fig 3.1 shows a crack path in an Al/SiC (20vol. %) metal matrix composite 
(MMC) which is characterized by the failure of the Al-matrix (Schmauder et al. 
1996). Fracture of SiC-particles occurs rarely, depending on the length/height rela-
tion and on the size of particles. Nucleation of pores and decohesion of SiC-
particles from the matrix is observed in front of the main crack tip. The fracture 
surface is characterized by dimples as a result of the failure in the Al-matrix. Thus, 
modelling the fracture behavior of Al/SiC MMCs can be reduced to the simulation 
of ductile crack propagation in the Al-matrix. Particle fracture is not considered. 

In the present study, Rice and Tracey's damage parameter (Eqn. (3.1)) is ap-
plied to areal microstructure for the first time. Figure 3.2 gives an overview of the 
thus calculated crack path. Using the damage parameter, the crack path is fairly 
well simulated in comparison to the experimental results. In agreement with the 
experimental observations the nucleation, growth, and coalescence of pores was 
modeled. The stages of ductile failure as well as the whole crack path are modeled 
accurately. 
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Al/Si 

The mechanical properties of subeutectic AlSi-cast alloys are critically determined 
by the microstructure of the Si-eutectic (Lippmann et al. 1996). With respect to 
the optimization of the mechanical properties, it is necessary to obtain an under-
standing of the failure mechanisms on a microscopic scale. Modeling of real mi-
crostructures with the finite element method permits the simulation of several 
phases as well as external notches. 

In-situ tensile testing in a scanning electron microscope (SEM) is a simple 
method to investigate accurately the course of events during the failure of such 
materials. The concentration of stress in a confined region is necessary to study all 
details of crack initiation at the materials surface. Consequently, notched speci-
mens with an elastic stress concentration factor and a slender ligament are used. 

Material properties of the compound as well as of the individual microstructural 
constituents are needed as input parameters for the simulation. The stress strain 
diagram for the AlSi-cast alloy was experimentally determined. A linear-elastic 
behavior with a Young's modulus of 116GPa is assumed for the Si particles in the 
FE-model. The constitutive relation of the matrix is introduced in the calculations 
with the following functional dependence where σ0 is the yield stress (200MPa), E 
is Young's modulus (70 GPa), and n is the hardening exponent (0.25). Initial de-
viations from the linear-elastic behaviour in the stress-strain diagram are related to 
the brittle fracture of Si-particles. Especially, in the notch region, a strong plastifi-
cation of the matrix in conjunction with particle failure is observed and the Si-
particles appear to be the “weak link” in the microstructure. 

Assuming a normal stress criterion for brittle fracture, a failure stress of about 
310 MPa is determined by inverse modeling and used as the failure criterion for 
the Si-particles in the FE-simulation of the crack initiation. Using multiphase fi-
nite elements, a cell representative of the two-phase microstructure is embedded in 
the central region of a two-dimensional model of the in-situ tensile specimen with 
15256 triangular elements. 

The different stages of crack initiation are simulated with a two-criterion 
model. Elements, which are assigned to the Si-particles, are eliminated on the ba-
sis of a normal stress criterion at fracture stress.  

n
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⎝

⎛
=

0
0 σ

εσσ  (3.4) 

Rice and Tracey's void growth model is used as failure criterion for the sub-
critical crack growth in the matrix (Lippmann et al. 1996). 

In the course of the calculation, first cracks are formed in Si-particles in the 
notch ground region at a total strain of about 0.2%. In agreement with the experi-
mental observations a large amount of Si particles break before matrix failure oc-
curs. At the tip of the cracks, which are formed by consecutive particle cracking, 
the damage parameter locally exceeds the critical value at higher total strains 
(0.27%). In the model, this is the onset of crack propagation into the matrix by fur-
ther element elimination. 
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.  
 

Fig 3.2  Calculated crack path in Al/SiC (20vol.%) (inside the frame in Fig. 3.1). 
 
 
A comparison between experiments and calculations shows good agreement 

with respect to the crack pattern (Fig. 3.3) as well as the crack initiation strain of 
approximately 0.18 %. 

WC/Co Hardmetals 

When investigating deformations and failure of composites it is worth noting that  
may exist between the surface and the bulk of the material. The numerical analysis 
of a microstructural area in WC/Co under external tensile loading, which is em-
bedded in a composite surrounding to account for correct boundary conditions, 
provides detailed information about different local plastifications. While plane 
stress conditions prevail at the surface, the interior is represented by plane strain 
assumptions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



134      Chapter 3: Simulation of Damage and Fracture 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.3  Crack path in AlSi with globular microstructure-comparison of (a) calculation and 
(b) experiment. 

 
The plastic zone at the crack tip is different with respect to its shape and size. 

Voids can form underneath the materials surface under high hydrostatic constraint. 
Triaxial stresses are a valid indicator for this constraint, especially in the plasti-
cally deformed area where voids will actually form. First void indications are thus 
found ahead of the crack tip in agreement with the experimental observation. 
WC/Co hardmetals are produced in a sintering process. Due to the different ther-
mal expansion coefficients of WC and Co high residual stresses appear in either 
phase; compressive in WC and mainly tensile in Co which results in tiny sintering 
voids with a diameter well below one micrometer (Fig. 3.4).  

The locations of these sintering voids as well as of voids which arise when ex-
tern al load is applied (Fig. 3.5 (a)) can be successfully predicted by applying the 
S-criterion which takes hydrostatic stresses and triaxiality into consideration. A 
comparison of experiment and calculation is shown in Fig. 3.5(b) with respect to 
loading voids 

 

max/2 == vHS σσ  (3.5) 
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Fig 3.4  Experimentally observed crack path in WC/Co alloy: SEM fractograph ("B", large 
dimples, corresponding to large pores); in the binder but close to carbide crystals ("BIC", 
small dimples). Reprinted from H.F. Fischmeister, et al., Modelling Fracture Processes in 
Metals and Composite Materials, Z. Metallkde. 80, pp. 839-846 (1989)  

 
Unit cells containing an initial void (referring to the sintering porosity) have 

been recently investigated by crystal plasticity means in the framework of contin-
uum mechanics. When stretched, the void is enlarged and the unit volume is as-
sumed to fail when a critical void volume fraction of fc = 0.15 ÷ 0.25 is reached. 
This procedure has been repeated for different Co-crystal orientations and under 
multiaxial loading conditions. As a result, a damage curve and the parameters A 
and B of the damage parameter (Eqn. (3.3)) have been derived (Hönle et al. l998): 
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This criterion was applied to a hardmetal with a high cobalt content where no 
contact between carbide particles was modeled and crack evolution under external 
tensile loading was investigated. This study focused on the failure behavior of the 
ductile Cophase. Brittle fracture in the carbide phase was thus suppressed. 

In the simulation, the crack enters the real structure by initiating a void, which 
starts to grow under increasing load. Further increase of the applied load leads to 
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void initiation in the matrix in front of the crack tip and coalescence with the main 
crack. Crack propagation is thus found to be a consequence of nucleation, growth, 
and coalescence of the voids. This numerical study is in agreement with experi-
mental findings on WC/Co hardmetals. 

The experimental force-displacement curve for crack propagation in WC/Co 
depicts the failure behavior of WC/Co hardmetals as quasi-brittle fracture in 
agreement with the present calculations where highly constraint Co-areas fail 
preferably in a rather brittle manner: the applied load increases nearly linearly, 
while it drops immediately when the critical load is reached. 

  
 

 
 
Fig 3.5  (a) Experimentally observed void formation locations in a Co-ligament: loading 
voids (filled) and sintering voids (open circles), (b) calculated loading void formation. 
Actual tendencies in modeling crack extension in multi phase materials include 
the consideration of crystal plasticity effects, three-dimensional modelling and 
high temperature effects, and further intensifications of comparisons with experi-
ments. Moreover, multiscale level modeling, size effects as well as the interaction 
of microcracks are under present investigations. 

Conclusions 

An overview has been given on the present state of the art in the simulation of 
crack extension in multiphase materials. Phenomena and criteria for crack exten-
sion have been discussed and examples been given for Al/SiC, Al/Si, and WC/Co. 
The results compare very well with experimental observations. 
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3.2 Ductile damage and fracture 

3.2.1  Numerical modelling of damage and fracture in Al/SiC 
composites: element removal method2 

A failure criterion, based on the development of a void in a highly constrained en-
vironment (so-called S-criterion) has been successfully employed to the modelling 
of  the formation of discrete voids in WC-Co hard metals [1,2]. However, these 
FE calculations suffer from the disadvantage that the mesh has to be manipulated 
manually at each loading step. The present investigation provides an automatic 
crack propagation algorithm which will simulate the appearance of voids by 
automatically removing those elements of the FE-net which reach a given failure 
criterion during loading. The choice of the failure criterion can be adapted to the 
physical situation and the preference of the user.  

Method 

The main feature of the present method is to automatically eliminate elements 
which reach critical loads of global quantities (e.g. critical stress intensities) or lo-
cal quantities (e.g., critical plastic strain, εpl, hydrostatic stress, σH, or von Mises 
equivalent stress, σv, single components of the stress tensor as well as arbitrary 
combinations of these quantities). These elements will no longer be considered in 
subsequent loading steps. In this way the nucleation, growth and coalescence of 
voids and the growth of ductile cracks can be simulated. At the present stage, tri-
angular elements with a quadratic displacement field are used for three reasons: (i) 
triangular elements possess the special topological property of filling an arbitrary 
n-edged polygon without leaving gaps, which is not possible with, e.g. quadrilat-
erals; this is important in modelling irregularly shaped inclusions; (ii) quadratic 
displacement fields facilitate the modelling of typical void shapes, in particular 
circles can be approximated very well; (iii) higher order displacement fields re-
quire much greater computation times for a small gain in accuracy. An element 
fulfilling the failure criterion is not erased from the FE-data base but the stresses 
in that element are set equal to zero. Elements of zero stress no longer possess 
physical relevance. 

                                                           
2 Reprinted from J. Wulf, S. Schmauder, H. Fischmeister, "Finite Element Modelling of 
Crack Propagation in Ductile Fracture", Computational Materials Science 1, pp. 297-301 
(1993) with kind permission from Elsevier 
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Fig. 3.6  Coarse mesh of a simple crack-tip geometry with triangular void in an elastic-
plastic model. Upper part of the symmetric model is shown at 5% overall strain. 

 
 
The elastic-plastic large-strain FE-program “LARSTRAN” [3] is used for the 

present purpose. It is applied in a displacement controlled manner. From the dis-
placement field, the strain tensor is calculated. Then the stress tensor and finally 
the force field are determined. An element whose stresses have been set to zero 
will carry no forces and will not contribute to further build-up of stresses and will 
not hamper deformation in the surroundings. To search a solution in the “right di-
rection” the stiffness matrix K(un) is corrected by setting Young's modulus of the 
eliminated elements to zero. 

To avoid a singular stiffness matrix, nodes which are no longer associated with 
any element are removed from the matrix. 

The main feature of the Newton-Raphson algorithm used here is to solve an 
equation of the following form, 

 

K(u)u + f = 0 (3.7) 

where the forces, f, are calculated from the external forces. Equation (3.1) is 
solved as a problem of fixed points3. Setting now 

                                                           
3 A problem of the form g(x).= 0 can be reformulated as a problem of fixed points by 

writing g(x)+ x = x and defining a new function h(x) = g(x)+ x. This leads to h(x) = x. In the 
above case identify g(x).= K(u)u + f. 
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ψ (u) =K(u)u +f (3.8)

leads to an iterative equation for improving the solution u, from the nth iteration 

un+1 = un + Δun            with   u0 = 0  and (3.9)

Δun = - KT (un)-1 ψ(un) (3.10)

where KT is the tangential stiffness matrix. 

Application 

To check the limits of stability in this method, we consider a model of a crack 
with a void (fig. 3.6). The influence of discretization is investigated initially for a 
very coarse mesh and subsequently for a more realistic, finer mesh. With this ex-
ample, both the stability of the method and physical effects can be studied, but at 
the moment attention is focussed on the method as such. Elements are eliminated 
not at a predetermined loading, but at a critical level of a local criterion. All physi-
cal quantities such as strains and stresses are averaged over the Gaussian points in 
each element. Figure 3.6 shows the elastic-plastic model situation for a crack with 
a predefined triangular “void”. For illustration we chose the criterion  εpl ≥ εc

pl = 
10% for the elimination of the element which starts the void. Such a criterion has 
been supposed for ductile fracture [4]. Numerous other criteria exist for ductile 
fracture, some of which are based on consideration of stress and strain fields near 
the crack tip in terms of Gurson's constitutive model of porous solids [5, 6]. 

Chu and Needleman studied void nucleation effects considering a void nuclea-
tion criterion with two parameters σH and σv [7]. Other analyses of ductile fracture 
were based on considerations of stress triaxiality, η, [8,9] or of the strain energy 
density function [10]. Element elimination was used to study particle/matrix 
debonding in a Gurson type approach [11]. It must be emphasized that the physi-
cal relevance of all of these criteria needs further clarification before any one of 
them can be generalized. Element elimination was used to study particle/ matrix 
debonding in a Gurson type of approach [11]. 

Figure 3.7 illustrates the elimination of elements at successive loading steps. At 
first, elimination occurs only at the crack tip and at some distance from it. Later 
this second region joins up with the void at the tip. At a total strain of 7% all ele-
ments in the shear band are eliminated, separating specimen into two parts. At this 
stage, the stability of the model is only upheld by the boundary conditions (fixed 
degrees of freedom of nodes in the x- or y-direction on boundaries), and the simu-
lation ceases to be physically meaningful. In reality, the sample would shear in the 
direction of the shear band, but this cannot be modelled with the present boundary 
conditions. However, this simple model demonstrates the stable functioning of the 
procedure adopted for element elimination. 
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Fig. 3.7  Successive element elimination at different states of prescribed overall strain. 
Eliminated elements are shaded. 

 
 

 
 

Fig. 3.8  Crack-tip region of fine meshed elastic-plastic model with crack. Element elimina-
tion for εpl ≥ 15% at given 0.55% global strain. Distribution of plastic strain is shown. 
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Fig. 3.9  Elastic-plastic structure with crack at total strain of 0.7%. Element elimination for 
σ2

H / σv = 700MPa. The distribution of vH σσ /2  is shown. 
 
 

Next, a finer meshed elastic-plastic model is considered which contains a crack 
tip. As in the previous example, the properties of the material are described by a 
Voce-law with constants appropriate for aluminium. In this case, a local elimina-
tion criterion, εpl ≥ εc

pl = 15% was adopted. Because of symmetry reasons only one 
half of the model was analyzed.  

In this case we get no shear band failure as with the coarse model, but rather 
crack growth perpendicular to the loading direction (fig. 3.8).This is because the 
model geometry does not change significantly with the elimination of an element 
in this finely meshed model. There is no interaction between the crack tip and the 
boundary as in the coarse model. Alternatively, we use the failure criterion derived 
in [2] for the nucleation and growth of isolated voids in homogeneous stress fields. 
It prescribes element elimination for S = σ2

H / σ v ≥ Sc. Arbitrarily choosing Sc= 
700 MPa and loading the model (fig. 3.9), we obtain a cavity ahead of the crack 
tip. The shape of the cavity is clearly not realistic because the mesh is still too 
coarse at the crack tip. This approach, with a finer net but with a manual elimina-
tion of elements, has been successfully used to predict crack paths in the two-
phase material WC-Co [1]. 

Concluding remarks 

The new technique proposed to simulate crack propagation by automatic element 
elimination within a commercial finite element program shows promise for appli-
cation to shear band failure and void nucleation at crack tips in homogeneous ma-
terials. In future work, the method will be applied to real microstructures and the 
results will be compared with experiments on two-phase composites.  
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3.2.2 FE Analysis of fracture  of WC-Co Alloys: Microvoid growth4 

 
The WC-Co hard alloys (hereafter these will be abbreviated as WC-Co) have high 
hardness as well as high wear resistance, and hence are widely used or will be 
widely used for machining tools and structural parts of various machines. To im-
prove the strength of the WC-Co, it is necessary to understand the fracture behav-
iors of these alloys, which consist of WC crystals and Co binder (hereafter these 
will be referred to as WC and Co, respectively), as shown in Fig. 3.10 [1]. 

Togo et al. [2, 3] performed a finite element analysis of the stress field near a 
crack tip. The results show that micro cracks are at first nucleated by fracture of 
WC or debonding between WC and Co, and then ductile fracture of Co occurs fol-
lowed by crack extension. It is suggested from these results that Co plays an im-
portant role for improving the fracture toughness of WC-Co. Sato and Honda [4] 
have shown by conducting an experiment that the fracture toughness of WC-Co 
increases with an increase in the volume fraction of Co. Sigl and co-workers [5, 6] 
measured the actual shape of WC and Co, and performed a finite element calcula-
tion for the measured shape of WC and Co to discuss the fracture of Co.  

In this study, a finite element analysis is performed to examine the effect of the 
shape of Co near a crack tip on its fracture behaviors. The Co, which is much 
softer than the WC, is subjected to the deformation constraint from the surround-
ing WC crystals. The study of the ductile fracture under these constraints may be 
important not only in WC-Co, but also for various composite materials. 

Numerical Procedures 

Let us consider a WC-Co plate with a crack and model (Figs 3.11 and 3.12), 
where a rectangular or rhombic Co-region is located at the tip of a sharp notch. 
We assume that the small scale yielding condition is satisfied and the solid sur-
rounding the Co in Figs 3.11 and 3.12 is an elastic body with the average material 
constants of the WC-Co composite (WC:90wt% + Co:10wt%) as shown in Table 
3.1. We consider three different shapes of Co as shown in Fig. 3.11. 

We also assume that Co is an elastic-plastic body and employ Gurson's consti-
tutive equation [7] to take account of the effect of nucleation and growth of mi-
crovoids. 

                                                           
4 Reprinted from S. Aoki, Y. Moriya, K. Kishimoto, S. Schmauder, "Finite Element Frac-
ture Analysis of WC-Co Alloys", Eng. Fract. Mech. 55, pp. 275-287 (1996) with kind per-
mission from Elsevier 
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Fig 3.10  Cracked WC-Co hard alloy 

 

 
 
Fig. 3.11  Model of cracked WC-Co alloy for computation. 

 
 
The yield function is given by 
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where σij is the macroscopic true stress σìj̀ = σij – δijσkk is the stress deviator, δij is 
Kronecker's delta, mσ  is an equivalent tensile flow stress representing the actual 
microscopic stress state in the matrix material, and f is the volume fraction of mi-
crovoids. The microvoid volume fraction f increases during plastic deformation 
partly due to the growth of existing microvoids, and partly due to the nucleation of 
new microvoids: 

 

nucleationgrowth fff
•••

+=  (3.13) 

The increment due to growth is given by 
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where p
kkD is the plastic part of the macroscopic deformation rate. We employ the 

following equation proposed by Needleman and Rice [8]: 
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where σ0 is the tensile yield stress. We assume F1 = 0.01, F2 = 0 and the initial mi-
crovoid volume fraction, f0 = 0. 
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Fig 3.12  Assumed shapes of Co binder 
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Table 3.1 
Material constants 

 Youngs 
modulus E Poisson`s ratio ν Yield stress σ0 

Work-hardening 
coef. n 

WC-Co 
Co 

600 GPa 
200 GPa 

0.22 
0.31 

 
500 MPa 

 
4 

 
 
The stress vs strain curve of matrix material is assumed to be given by: 
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where τ denotes the effective shear stress )3/( mσ= , τ0, the uniaxial yield 
strength  in shear )3/( 0mσ= , γ the total equivalent shear strain, n the strain 
hardening exponent. G = E/2 (1 + ν) the shear modulus, E the Young's modulus, 
and ν the Poisson's ratio. The material constants. E, v, σ0 and n of Co are shown in 
Table 3.1. 

The finite element mesh is shown in Fig. 3.13. The displacement given by the 
Mode-I elastic singular solution, which is characterized by the stress intensity fac-
tor K. is applied to the circular boundary far from the crack tip (R = 12,000d, d= 
depth of notch, Fig.3.11). Finite element calculations based on the finite displace-
ment theory are carried out under the assumption of the plane strain or plane stress 
condition. 

Numerical Results and Discussions 

Circumferential and hydrostatic stress 

The circumferential stress σθ on the positive X-axis is shown in Fig. 3.14, where 
mMPaK 15≅ (= K1c: fracture toughness of WC-Co). The σ0 in Co increases as 

the shape of Co becomes flat for the plane stress condition [Fig. 3.14(a)], while 
the σθ in the flat Co-region decreases considerably for the plane strain condition 
[Fig. 3.14(b)].  

γ 
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Fig. 3.13  Finite element mesh. (a) Whole mesh. (b) Detailed mesh near the crack tip. 
 
 

The decrease in σθ in the flat Co under the plane strain condition may be attrib-
utable to the surrounding elastic solid. However, the detailed description of the 
reason needs a careful consideration, because if we assume that a strong displace-
ment constraint increases the hydrostatic stress σkk, and hence the microvoid vol-
ume fractionfcausing material softening, then it follows that the σθ must decrease 
due to the softening and this is contradictory to the assumption. In fact, the σkk in 
the flat Co decreases under the plane strain condition, as shown in Fig. 3.15(b). 

This problem is important for understanding the ductile fracture under a dis-
placement constraint and, hence, will be discussed in the following two sections. 
Hereafter, let us concentrate on the distribution on the X-positive axis under the 
plane strain condition, and refer to it as the distribution. 

Microvoid volume fraction 

The distribution of the microvoid volume fraction f is shown in Fig. 3.16, where 
K/K1c = 1. It is found that f in the flat Co is particularly increased, and this sug-
gests that the large value off is connected with the decrease of σθ and σkk [Figs 
3.14(b) and 3.15(b)]. 

To examine when f in the flat Co becomes high, the distributions off at various 
stress levels are shown in Fig. 3.17(a) for the flat Co and in Fig. 3.17(b) for the 
rectangular Co. It is found that f in the flat Co is slightly higher than that in the 
rectangular Co at K/K1c = 0.4, while great difference appears for K/K1c > 0.6. 

The rate of the microvoid volume fraction f was assumed to be equal to the sum 
of the rates due to nucleation and growth of microvoids, as stated in eq. (3.13) 
[Section 2]. To examine whether nucleation or growth is more dominant, the in-
crements of f due to nucleation and that due to growth are shown at various stress 
levels in Fig. 9 and Fig. 3.19, respectively. It is found from these figures that the 
microvoid growth has a crucial effect on the increase in f in the flat Co, but the 
microvoid nucleation has almost no effect. 
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Fig. 3.14  Distribution of a, on X1 axis at K = K1c. (a) Plane stress. (b) Plane strain. 
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Fig. 3.15  Distribution of σkk,/3 on X1 axis at K = K1c. (a) Plane stress. (b) Plane strain. 
 

Ductile fracture under deformation constraint 

In the last section the growth of microvoids is found to have a great effect on 
the ductile fracture under a strong deformation constraint. The rate of microvoid 
volume fraction due to growth •

f growth is proportional to the plastic part of macro-
scopic deformation rate Dp

ij as shown by eq. (3.14), and the Dp
ij is related to the 

hydrostatic stress σkk through the constitutive equation [8]. 
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Fig. 3.16  Effect of Co shape on microvoid volume fraction f under plane strain condition. 
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Fig. 3.17  Comparison of microvoid volume fraction f in flat and rectangular Co. (a) Flat 
Co. (b) Rectangular Co. 
 
 

The σkk, in the flat and rectangular Co at several stress levels are shown in Fig. 
3.20(a) and Fig. 3.20(b), respectively. There is no such great difference in σkk ~ 
between the flat and rectangular Co as in f [Fig. 3.17(a) and Fig. 3.17(b)] or in 

•

f growth [Fig. 3.19(a) and Fig. 3.19(b)]. Especially for K/K1c ≤ 0.4, the σkk in the 
rectangular Co is slightly higher than that in the flat Co, although the difference is 
small. From these numerical results it is suggested that ductile fracture under 
strong deformation constraint proceeds in the following way. 
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Fig. 3.18  Comparison of the increment of microvoid volume fraction due to nucleation 

nucleationf
•

Δ , in flat and rectangular Co. (a) Flat Co. (b) Rectangular Co. 
 
 

Let us focus on damage evolution in a single Co-region. At an early stage of 
deformation, σkk and hence f are slightly higher under a stronger deformation con-
straint than under a weaker constraint, because the value of f is small and the ma-
terial softening is not significant (cf. Fig. 3.17 and Fig. 3.20). Figure 3.21(a) 
shows schematically this state as two points on the yield surface. It is noted that 
the normality rule (Dp

kk, ε& p
e) is normal to the yield surface in Fig. 3.20) holds be-

cause F2 in eq. (3.12) is assumed to be zero [8]. Here 2/1)3´/´2( p
ij

p
ij

p
e DD=ε&  and ´p

ijD = 
deviatoric component of the plastic part of macroscopic displacement rate. 

Although the two points in Fig. 3.21(a) are close to each other, there is a small 
difference in direction of the normal to the yield surface between the two points. 
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This means that p
kkD  and hence 

•

f growth, eq. (3.14)] in the flat Co is slightly higher 
than in the rectangular Co. The difference in 

•

f growth is nearly equal to that in f, 
because the difference of nucleationf

•

, is negligible as stated above. 
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Δf
 gr
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) 

 
Fig. 3.19  Comparison of the increment of microvoid volume fraction due to growth 

•

Δ f growth  in flat and rectangular Co. (a) Flat Co. (b) Rectangular Co. 
 
 

Since the yield surface shrinks more rapidly for greater
•

f , the difference in the 
yield surface between the fiat and rectangular Co becomes larger in the next in-
crement of load. During further loading, the state shown in Fig. 3.21(b) is attained, 
i.e. the result that even though there is almost no difference in hydrostatic stress 
[Fig. 3.19(a) and Fig. 3.19(b)], there exists a large difference in microvoid volume 
fraction f [Fig. 3.17(a) and Fig. 3.17(b)] and its increment [Fig. 3.19(a) and Fig. 
3.19(b)] for K/K1c > 0.4. Figure 3.22 is the calculated result for a point at X2 = 0, 
X1 = 1.0 do at K/K1c = 0/4, showing that the state in Fig. 3.21(b) is really attained. 

As loading is further increased, the shrinkage of the yield surface of fiat Co be-
comes prominent. It follows from this that the hydrostatic stress σkk, begins to de-
crease after reaching the maximum, while the microvoid volume fraction f contin-
ues to increase.  
The behaviours shown in Figs 3.17(a) and 3.20(a) for K/K1c ≤  0.6 and also the 
phenomena shown in Fig. 3.16 and Fig. 3.15(b) [and hence Fig. 3.14(b)] may be 
explained by the above consideration. Furthermore when the microvoid volume 
fraction f reaches a critical value, macroscopic ductile fracture may evolve. 
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Fig. 3.20  Comparison of σkk, in flat and rectangular Co. (a) Flat Co. (b) Rectangular Co. 
 

Concluding Remarks 

A finite element analysis on the ductile fracture in the Co binder near the crack-tip 
in a WC-Co hard alloy was performed taking account of the nucleation and 
growth of microvoids. The ductile fracture behaviors in the Co binder or more 
generally under strong displacement constraint were discussed based on the nu-
merical results. Microvoids are predicted to glow predominantly in flat Co-regions 
and increasing hydrostatic stresses accompany nucleation controlled state, while 
the subsequent growth controlled stage is related to decreasing hydrostatic 
stresses. In non-fiat Co-regions, microvoid evolution is nucleation and growth 
controlled. However, it is noted that the discussion in this paper is based on F2 = 0 
[eq. (3.15)]. If F2 is not equal to zero, not only does the normality rule not hold, 
but also the nucleation may be influenced by the displacement constraint. Further 
study is necessary for F2 ≠ 0. 
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Fig 3.21  States of stress in Co and change of yield surface (schematic) 
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Fig. 3.22  States of stress in Co and yield surface (numerical result). 
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3.2.3 Micromechanical simulation of crack growth in WC/Co using 
embedded unit cells5 

 
Coated hard metal inserts contain cracks as a result of the coating process [1-6]. 
Cobalt enriched gradient zones (Fig. 3.23) [7] underneath the coating prevent 
crack growth into the tool to a certain extent. Subject of the present paper is the 
numerical simulation of crack advance and the local material response of the 
WC/Co hard metal in a fracture process. 

Model description 

A micromechanical elastic two-dimensional FE-model with elastic material prop-
erties has been developed in order to simulate crack growth in WC/Co (Fig. 3.24). 
The model includes a non-self consistent unit cell with a cobalt island in a carbide 
environment. The unit cell is embedded in an elastic body with the average mate-
rial properties of the WC/Co composite, depending on the volume fraction of the 
material under consideration, according to Fig. 3.24. 

 

  
 

Fig. 3.23  Cobalt enriched zone (example marked) in a graded WC/Co hard metal. 

                                                           
5 Reprinted from S. Hönle, S. Schmauder, "Micromechanical Simulation of Crack Growth 

in WC/Co Using Embedded Unit Cells", Computational Materials Science 13, pp. 56-60 
(1998) with kind permission from Elsevier 



158      Chapter 3: Simulation of Damage and Fracture 

 
 
Fig. 3.24  Scheme of an embedded two-dimensional unit cell model (with prescribed dis-
placement u ). 
 
 

The elastic material properties of the composite material and the constituents 
are listed in Table 3.2. The energy release rate (ERR) G of a crack propagating 
along the symmetry plane of the cell is calculated according to the procedure 
given in [8] for different crack lengths on a microscopic scale. The dimensionless 
normalized energy release rate G* is calculated as follows [9] 
 
 
Table 3.2 

Material properties for WC/Co composite and constituents 
Ecomp = 595 Gpa 
EWC = 714 GPa 
ECo = 211 GPa 

Vcomp = 0.22 
VWC  = 0.19 
VCo =  0.31 

 

with E, Young's modulus of the composite, σ, average stress in the model, h, 
height of the model. Moreover, the geometry of the cobalt inclusion is varied as 
well as the cobalt volume fraction and the arrangement of the inclusion.  

 

h
GEG

2
*

σ
=  (3.17) 

Results and discussion 

In order to simulate the failure behavior of a WC/Co hard metal, a micromechani-
cal computational cell model was set up to calculate the ERR for a crack propagat-
ing through a carbide-cobalt cell (Fig. 3.24). Therefore, the model containing an 
initial crack was loaded uniaxially with a strain value related to the global fracture 
toughness K1c = 16.7 MPa m-1/2 for WC/Co with a cobalt volume fraction of 16% 
[10]. The energy release rate was calculated for different crack lengths a in the 
WC/Co-cell, varying from 0 to l, where l represents the width of the cell. 
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Inclusion shape 

At first, the ERR for a propagating crack was calculated for different cobalt inclu-
sion shapes in a volume element of hard metal with a given cobalt volume fraction 
of 16% (Fig. 3.25). The cobalt phase influences the crack driving force in an im-
portant way. The energy release rate of a crack approaching the cobalt phase in-
creases strongly, while it decreases rapidly for the crack propagating towards the 
center of the cobalt island (Fig. 3.26). The cobalt phase absorbs a large amount of 
cracking energy. Thus, such a crack may probably be arrested in the cobalt phase. 

All the curves exhibit a similar shape and the maximum values of the elastic 
energy release rates vary in a range of about 20% (Fig. 3.26). A crack is found to 
be more attracted by a sharp-edged cobalt inclusion in front of the crack tip.  

 
 
Square

Circle

Hex 0°

Rect 90° 

Rect 0° 

Hex 90° 

 
Fig. 3.25  Variation of cobalt inclusion shapes. 
 
 

 
Fig. 3.26  Normalized elastic energy release rate (ERR) for varying cobalt inclusion shapes. 
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Fig. 3.27  Total energy consumption (TEC) for varying cobalt inclusion shapes. 
 

 

a/l 
 

Fig. 3.28  Normalized elastic energy release rate (ERR) for varying volume fractions of a 
square cobalt inclusion. 
 
 

This cobalt inclusion arrangement can be related to cobalt inclusions between 
carbide grains in realistic structures with small “opening angles”.The total energy 
consumptions (TEC) of the cracks, which are determined by integrating the ERR 
curves; vary in a range of only a few percent for the different inclusion shapes 
(Fig. 3.27). Thus, the cobalt inclusion shape influences the attraction of the crack 
tip in the elastic regime, but has a negligible effect on the total elastic energy con-
sumption of the crack propagating through the computational cell. 

Inclusion volume fraction 

To show the influence of the cobalt volume fraction, a parametric study was car-
ried out using a computational cell with a centered square cobalt inclusion. The 
volume fraction of the cobalt inclusion was varied from 8% to 32% which is a 
typical regime for WC/Co hard metals [6]. 
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The calculated energy release rates for varying cobalt volume fractions are il-
lustrated in Fig. 3.28. The maximum value of the normalized energy release rate 
(G*max), which gives rise to the attraction of the crack by the cobalt inclusion, is 
found to be an increasing function with increasing cobalt volume fraction (Fig. 
3.29). The total energy consumption (TEC) decreases linearly with increasing co-
balt content (Fig. 3.30). Thus, when propagating through a linear-elastic hard 
metal volume element, the crack is more attracted by higher cobalt content while 
consuming less energy. 

 
 

fco [%] 
 

 
Fig. 3.29  Maximum ERR for varying volume fractions of a square cobalt inclusion. 
 
 
 

fco [%]
 

 
Fig. 3.30  TEC for varying volume fractions of a square cobalt inclusion. 
 
 



162      Chapter 3: Simulation of Damage and Fracture 

 

inclusion tip angle  α/2 
 

 
Fig. 3.31  Maximum normalized ERR for varying cobalt inclusion tip angles. 
 

 

 
 

Fig. 3.32  Normalized ERR for two square cobalt inclusions. 

Multiple inclusions 

The energy release rate was calculated for a unit cell with two square cobalt inclu-
sions in the crack plane, where the overall cobalt volume fraction was again set to 
16%. According to the results presented in Fig. 3.32 the energy release rate in-

Inclusion tip angle 

Due to the fact of high maximum values of the ERR related to sharp-edged cobalt 
inclusions (Fig. 3.26) a parametric study was carried out, using a hexagonal cobalt 
inclusion with a fixed cobalt volume fraction of 16%. The entrance angle α/2 of 
the cobalt inclusion was varied from 30° to 80°. As a consequence of the stress-
strain distribution at the crack tip the maximum value of the ERR is found at an 
angle of about 60° which represents a hexagon angle of 120° (Fig. 3.31). Thus, 
among the inclusions investigated, the crack is most attracted by cobalt inclusions 
with an inclusion tip angle of 120°. 
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creases while the crack is approaching the first cobalt inclusion and decreases rap-
idly when propagating through the first inclusion in the same way as in the calcu-
lation for a single inclusion. The energy released by the crack in the first inclusion 
is not influenced by the second cobalt inclusion. The total energy consumption for 
this crack has the same value as in the case of a single cobalt inclusion with the 
same cobalt volume fraction. 

Conclusions 

The following conclusions can be drawn according to the presented results: 
• A crack is most attracted by sharp-edged cobalt inclusions in front of the 

crack tip. 
• An inclusion tip angle of the cobalt island of 120° was found to be most 

beneficial for attracting a crack. 
• Unit cells with a higher content of cobalt are more attractive to cracks, al-

though less energy is consumed when the crack propagates through the 
cell. 

• The arrangement of the cobalt inclusions in crack direction has no impor-
tant influence on the energy consumption of a propagating crack.  

References 

[1] Kolaska, H. (1992), Pulvermetallurgie der Hartmetalle, Fachverband 
Pulvermetallurgie. 

[2] Schedler, W. (1988), Hartmetall für den Praktiker, VDI Verlag, Düsseldorf. 
[3] Schumacher, G (1969), Wendeschneidplatten aus Hartmetall mit TiC Schicht, Techn. 

Zentalbl. für prakt. Metallbearb. 63, pp. 275-278. 
[4] Hintermann, H.E. (1979), Verschleiß- und Korrosionsschutz durch CVD- und PVD- 

Überzüge, VDI Fortschritt-Berichte 333, pp. 53-67. 
[5] Nordgren, A., Jonsson, S. (1992), Combined cracking of TiN, TiC and Al2O3-coated 

cemented carbide during milling of steel. Report No. IM-2901. Swedish Institute for 
Metals Research, Stockholm. 

[6] Nordgren A., Jonsson. S (1994), Residual stress in CVD TiN coatings on unworn and 
worn cemented carbide and the influence upon crack formation, Report No. IM-3180, 
Swedish Institute for Metals Research, Stockholm, 

[7] Hönle, S., Rohde, J. , Schmauder, S (1996), Meso- and Microscopic modeling of fail-
ure behaviour of graded zones in hard metals, Abstracts Junior Euromat'96, DGM, 
Oberursel, p. 275. 

[8] Theilig, H., Wiebe, P., Buchholz, F.G. (1992), Computational simulation of non-
coplanar crack growth and experimental verification for a specimen under combined 
bending and shear loading. Reliability and Structural Integrity of Advanced Materials, 
vol. 2, Proceedings of Ninth European Conference on Fracture (ECF9), Varna, pp. 
789-794. 

[9] Rohde, J., Schmauder, S., Bao, G. (1996), Mesoscopic modelling of gradient zones in 
hard metals, Comp. Mat. Sci. 7, pp. 63-67. 

[10] Sigl, L., Exner, H.E. (1987), Experimental study of the mechanics of fracture in WC-
Co alloys, Metallurgical Transactions A 18, pp. 1299-1308. 

 



Chapter 3: Simulation of Damage and Fracture 

3.3 Damage and fracture of tool steels 

3.3.1 Modeling of crack propagation in real and artificial micro-
structures of tool steels: simple microstructures6 

In this part of the work, the crack growth in a real microstructure of high speed 
steel HS6-5-3 is simulated. The simulations were made for 2D plane strain condi-
tions. In the simulations, multiphase finite elements have been used to simulate the 
real microstructure of the steel, and the element elimination technique to deter-
mine the crack path. The following input data were needed for the simulation: the 
geometry of the specimen, the real structure of the steel, and the elastic and 
strength properties of carbides and the matrix. 

Short rod specimens are proven to be applicable to study the fatigue behaviour 
of rather brittle materials. To ensure the possibility of comparison of numerical 
and experimental investigations, and further extrapolation the results of this work 
for the cyclic loading of steels, the short rod specimens have been taken for ma-
crosimulations.  

Simulation of Crack Initiation and Propagation in Heterogeneous 
Materials 

Methods of modelling crack propagation 

Generally, there are two main approaches to the numerical simulation of fracture: 
a crack can be modeled as a discontinuity between adjacent elements, and a crack 
may be “smeared” over entire elements [1-5]. These approaches determine also 
two main methods of FE implementation of fracture models: methods, based 
mainly on special types of finite elements [6] and methods which assume the spe-
cific material properties in the region of possible crack propagation. Table 3.3 
presents some often used methods of numerical simulation of crack propagation. 
A more detailed review of the available methods is given in [4].  

 
 
 

                                                           
6 Reprinted from L. Mishnaevsky Jr., N. Lippmann, S. Schmauder, "Computational modeling of 

crack propagation in real microstructures of steels and virtual testing of artificially designed materials", 
Int. Jour. Fract. 120, pp. 581-600 (2003). with kind permission of Springer 
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Table 3.3  
Some methods of FE-simulation of microstructural crack growth 

Model Main ideas Ref. 
Cohesive zone 
models (CZM) 

Crack path is presented as a thin material layer with its own 
constitutive relation (traction-separation law). The relation is 
such that with increasing crack opening, the traction reaches a 
maximum, then decreases and eventually vanishes so that 
complete decohesion occurs. 

[7] 

Computational 
cell methodolo-
gy (CCM) 

Crack propagation is a result of void growth in front of the 
crack tip. Void growth is confined to a layer, which consists of 
cubic cells with a void and the thickness of which is equal to 
the mean distance between inclusions which causes void initi-
ation. When the void volume fraction in a cell reaches some 
critical level, the cell is removed and therefore the crack 
grows. 

[8,9] 

Cell model of 
material 

A generalized formulation of the cell models of crack growth. 
The material is accepted to consist on cells (which is defined 
as a „smallest material unit that contains reasonably sufficient 
information about crack growth in the material“), which is 
characterized by its size and cohesion-decohesion relation. 

[10] 

Smeared crack 
models 

A crack is considered as a continuous degradation (reduction 
of strength/stiffness) along the process zone. The displacement 
jump is smeared out over some characteristic distance across 
the crack, which is correlated with the element size. The de-
gradation of individual failure planes is described by the con-
stitutive law. In the fixed crack model (the classical version of 
the smeared crack model), the degradation is controlled by the 
maximum tensile stresses only; other versions of the smeared 
crack model (rotating crack model, multiple fixed model) al-
low to take into account the variations of crack growth direc-
tion during crack propagation, and the formation of secondary 
cracks. 

see 
re-
view 
[11], 
[12] 

Embedded crack 
model (ECM) 

Finite elements with an embedded discontinuity line or locali-
zation band are used. The discontinuity crosses the element 
and divides it into two parts. The constitutive model of the 
element with a discontinuity is given by both the traction-
separation law and the stress-strain law.  

[5] 

Hybrid fracture/ 
damage ap-
proach (HFDA) 

The method seeks to combine approaches based on fracture 
mechanics and continuum damage mechanics. A "super-
element" consisting of a singular element (crack tip element) 
and several variable-node elements (transitional from the sin-
gular element to the linear four-node ones), and located just on 
the tip of the growing crack is used. At the crack tip, the ma-
terial stiffness is reduced 1000 times in each timestep (the 
crack propagation is simulated dynamically). As a criterion of 
crack propagation, the J-integral (over the contour inside the 
super-element) was used. 

[13] 

Cohesive sur-
face model 
(CSM) 

The crack path is prescribed as a cohesive (contact) surface. 
The decohesion criterion is accepted to be controlled by the 
normal traction transmitted through the cohesive surface. 

[3] 
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Comparing the approaches described in Table 3.3, one can see that the follow-
ing main problems are confronted by most researchers in the simulation of crack 
growth: combining advantages of both continuum damage mechanics and fracture 
mechanics (less mesh and damage localization sensitivity); generalized approach 
to model void and crack growth [compare the paper by Siegmund et al. [14] who 
considered interrelations between the model of crack growth based on void evolu-
tion and coalescence (modeled with the Gurson-Tvergaard-Needleman approach) 
and the cohesive zone model (CZM)]; possibility of taking into account the micro-
structure of material in crack growth modeling (it can be done by combining the 
unit cell approach with any model of crack growth).  

Element Elimination Technique (EET) and Multiphase Element Method 
(MPFE) 

The problem considered in this paper requires an approach which allows to model 
both fracture and damage evolution using the same criteria, and to take into ac-
count the microstructure of the material without prescribing a crack path. In order 
to solve this problem, the authors applied the element elimination technique (EET) 
[2], which, by the author's opinion, has all advantages of the numerical methods 
described in Table 3.3. This technique is described in the section 3.2. The advan-
tages of EET are especially evident in combination with the multiphase element 
method (MPFE). The main idea of the MPFE is that the different phase properties 
are assigned to individual integration points in the element (as differentiated from 
the common approach, when each element of the FE mesh is attributed to one 
phase and the phase boundaries are supposed to coincide with the edges of finite 
elements). Therefore, the FE-mesh in this case is independent of the phase ar-
rangement of the material, and one can use relatively simple FE-meshes in order 
to simulate the deformation in a complex microstructure. Using EET together with 
MPFE, one can simulate the formation, growth and coalescence of voids or micro-
cracks, and the crack growth in multiphase materials, what enables the study of ef-
fects of the microstructure of materials on its fracture. EET is incorporated in the 
FE code LARSTRAN [15]. 

FE Simulation of Crack Propagation in Real Structures of a Tool Steel 

Mechanical properties of the constituents of investigated tool steels 

For the mesomechanical simulation of deformation, damage and fracture in tool 
steels, the mechanical properties of the steel constituents are required. Generally 
speaking, it is rather difficult to determine the mechanical properties of all the 
constituents of materials to be optimized. Table 3.4 gives the mechanical properties 



of ledeburitic tool steels which have been determined by different authors with the 
use of different methods [17-23].  

 
Table 3.4 
Mechanical properties of the constituents of tool steels 
Property Value Method of determination and refer-

ence 
Cold work steel  X155CrVMo12 
Young’s mod-
ulus of primary 
carbides, GPa 

276 (large primary car-
bides) 

hardness tests (Vickers indenter) in metallo-
graphically prepared surfaces (after grinding, 
polishing and etching), with simultaneous 
observation in build-in microscope, and re-
cording the force-displacement (uploading) 
curve [19] 

Young’s mod-
ulus of matrix, 
GPa 

232 
 

Failure stress of 
carbides, MPa 

1826-1840 (carbides 
about 17-20 μm), or 
1520 (carbides ~ 30 μm) 

SEM-in-situ experiments on 3-point bending 
of specimens with inclined notch plus ma-
cromechanical simulation of the specimen 
deformation and mesomechanical simulation 
of carbide failure [17, 18] 

Constitutive law 
of the matrix 

σy = 1195 +1390 [1-exp 
(-εpl/0.0099)]  

approximation of results of the testing of a 
“matrix material” which possess the compo-
sition identical with this of the matrix and  
produced by PM means [20] 
 

High speed steel HS6-5-2 
Young’s mod-
ulus of primary 
carbides, GPa 

286 (carbides M6C),  
351 (MC) 

hardness tests, with recording force-
displacement (uploading) curve [22] 

Young’s mod-
ulus of matrix, 
GPa 

231 

Failure stress of 
carbides, MPa 

1604 or 1840 (carbide 
bands are oriented along or 
perpendicular  to the load, 
respectively) 
(carbides ~10...17 μm) 

like in the case of cold work steel, see 
above  

Constitutive law 
of the matrix 

1. σy = 1500 +1101 [1-
exp(-εpl/0.00369)] 
2. σy = 1500 + 471 [1-exp(-
εpl/0.0073)] 
 

1. like in the case of cold work steel, see 
above  
2. Assumed that the matrix of the high 
speed steel behaves like a cold work steel 
[21] 

Poisson’s ratio 
of carbides and 
matrix 

0.19 (carbides),  
0.3 (matrix) 
 

[21, 22] 

 
The material properties of the high speed steel as a quasi-homogeneous materi-

al (such properties are needed for the macroscopic modelling) were taken as fol-
lows: Young’s modulus E = 236 MPa and Poisson’s ratio ν = 0.3 [21]. The consti-
tutive law of the steels was taken as [21]: 
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 σy = 2200 + 820 [1-exp(-εpl/0.002)], (3.18) 

where σy – von Mises stress, MPa, εpl – plastic strain. 

Hierarchical modelling: macro-meso transition 

Taking advantage of symmetry conditions, the FE model of the short rod speci-
men with homogeneous material properties was developed. According to the de-
scription of the specimens, the diameter was taken to be 12 mm, height 18 mm, 
notch depth 5.32 mm [16, 17]. Figure 3.33 gives the scheme and boundary condi-
tions of the macroscopic FE model of the short rod specimen. 

The scheme of the micromodel and the position of the real microstructure of the 
steel in the model are shown in Figure 3.34. The displacement of the points in the 
vertical direction on the plane of symmetry was set to be zero. The point on the 
symmetry plane of the specimen, which lies on the other end from the notch was 
fixed in the X-direction as well. The loading was displacement-controlled, and ap-
plied in a point at a distance 1.88 mm from the end of the specimen. The loading 
displacement varied from 0 to 1 mm. 

The macromodel was constructed in such a way that one could determine the 
displacement distribution on the boundaries of an area 300 μm x 500 μm in the vi-
cinity of the notch. This area presented then the mesomodel, which included also a 
region with a real microstructure of the steel.  

The boundary conditions in the mesomodel (the small area 300 x 500 μm near 
the notch of the short-rod-specimen) were given as vertical displacements. The 
displacement distribution on the boundaries of the mesoscopic model was deter-
mined from the macromodel, and then approximated by a linear function of a 
loading step in the macromodel and by a linear function of the coordinates of a 
point as  

 

Uy
micro = f (Ni, X) (3.19)

where Ni – the number of the loading step, and X – X-coordinate of the point of 
the boundary of the mesoscopic model. In other words, each loading step in the 
macromodel, and each point on the boundary of the macroscopic model have had 
different values of applied displacement. Figure 3.36 shows the correspondence 
between the displacements in the macromodel and those in different points (notch, 
middle point and other end) of the micromodel. After approximation of the numer-
ically obtained relationship between Uy

micro, Ni and X, given in Figure 3.36, the 
formula (1) took the form: 

 

Uy
micro = 0.0002  Ni  (-1.96 X +1), (3.20)

 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.33  Geometry (in mm) and boundary conditions of the macromodel of the short rod 
specimen 

 
 

Thus, whereas the applied displacement Uy in the macromodel presents a concen-
trated load, the displacement applied to the boundary of the mesomodel is distri-
buted along its upper and lower boundaries. 

Mesomechanical model of crack growth in a real microstructure 

The 2D model with a real microstructure of high speed steel was placed in an area 
100 μm x 100 μm near the notch in the mesomodel. The elastic and elasto-plastic 
properties of the carbides and matrix have been taken from Table 3.4. With the 
given properties of the components and the steel, and the real microstructure of the 
steel, the crack initiation and growth in the steel is simulated. Figure 3.35 gives 
the metallographic micrograph of the high speed steel HS6-5-2 which was used in 
the simulations.  

As criteria for the element elimination, both the value KTYP and the critical 
values of failure stress (for carbides) and plastic strain (for matrix) were used. The 
value KTYP means the number of Gaussian points in an element when it is de-
cided whether this element is to be assigned to the matrix or to a carbide. This 
value was 3; i.e., if 4 (or more) Gaussian points of an element (which contains 6 
points) are lying in the matrix, the element was supposed to be eliminated as a ma-
trix element. Otherwise, it was considered as an element in a carbide. 
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Fig. 3.34  Scheme of the micromodel for the real structure. Coordinates in mm. 
 

 

 
 

Fig. 3.35  Discretized micrograph of high speed steel HS6-5-3. The black areas present 
primary carbides, the white area is the “matrix”. Region 100x100 mcm. 
 

 
The criterion of element elimination in the matrix was determined on the basis 

of available knowledge about the micromechanisms of fracture of steel matrix. 
Any damage criteria based on the void growth seemed inapplicable in this case 
due to the mainly brittle macro-behaviour of the matrix. Yet, during SEM-in-situ-
experiments, some plastic deformation has been observed at the microlevel (which 
however is quickly followed by the failure of specimens). Thus, we chose the crit-
ical plastic strain as a criterion of the element elimination in the matrix. As fol-
lows from SEM-in-situ-experiments described in [17, 18, 23, 24], the critical plas-
tic strain for the matrix of the steels should be very low.  

The critical plastic strain value was determined with the use of the numerical 
experiment technique (this type of modeling is also referred to as the inverse mod-
eling) on the basis of the qualitative information about the crack behaviour in high 
speed steels and the experimentally (in SEM–in-situ-tests, see [12, 22, 24]) deter-
mined carbide failure stress. 
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Fig. 3.36  Comparison of the displacements at the boundaries of the macro- and micromo-
del 

 
 
It is known [25, 26] that a crack in high speed steels is initiated in carbides, if 

they are available in the vicinity of the notch tip, grows straightforward in the ma-
trix, and kinks into the carbide rich regions and then follows them to a small part, 
then jumps to the next carbide band, grows in the carbide band furtherly, and so 
on. As was noted by Berns et al. [27], “...running crack must follow carbide 
bands...The width of the crack is restricted to jumps between adjacent carbide 
bands, but most of the crack surface is produced by cleavage of carbides in one 
band”.  

 
Fig 3.37  Simulated crack growth in the real microstructure of the high speed steel HS6-5-
2. a) crack initiation, u = 0.0006 mm, b) crack branching at a carbide, u = 0.0008 mm 

 
a) b) 
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We have carried out the simulation of crack initiation with the carbide failure 
criterion known from [17, 24] (see Table 3.3) and different criteria of crack initia-
tion in the matrix (Rice-Tracey damage criterion, critical stress, different values of 
the critical plastic strain, etc.), until the above described crack behaviour was ob-
tained in the simulations. As expected, the most appropriate criteria of the crack 
initiation in the matrix was the critical plastic strain, and the critical level of this 
value was εpl, c = 0.1 %. At this level of critical plastic strain, the small crack in-
crement in the matrix is followed by failure of a carbide in the vicinity of the crack 
tip, as observed in [27], while e.g. for εpl, c = 0.5 % delayed crack growth occurs. 

Figure 3.37 shows the crack growth in the real (band-like) structure of the high 
speed steel. The real microstructure area contained 5000 finite elements. General-
ly, the mesomechanical model contained 9888 elements. We used 6-node triangu-
lar elements, with full integration.  

In Figure 3.37 it can be seen that the crack grows initially in the matrix almost 
straightforward. The crack began to grow after the displacement reached 0.0006 
mm. (In the experiments presented in [17], the crack in the short rod specimens 
from high speed steels began to grow when the external displacement reached the 
value 0.0006 mm, too). The calculation of the maximal stress distribution in the 
first load step (the displacement 0.0002 mm from the notch) shows a higher stress 
concentration in the vicinity of the crack tip. 

 
 

 
 
a) 

 
 
b) 

 
 
c) 

 
 
d) 

 
 
e) 

 
 
f) 

 
Fig. 3.38  Idealized artificial microstructures of the steel: a) band-like coarse, b) band-like 
fine, c) net-like coarse, d) net-like fine, e) random coarse and f) random fine microstruc-
tures. 
 



The straightforward crack path is stopped due to the carbide bands and the 
crack begins to grow along the carbide band. Then, the straightforward crack 
growth in the matrix continued. At a displacement of 0.0008 mm, crack branching 
caused by the availability of a carbide row in the crack path occurs. Without fur-
ther increment of load, the full area of the microstructure breaks. So, the direction 
of crack growth and the structure of the crack are strongly influenced by the car-
bide rich regions. 

Crack Propagation in Idealized Typical Microstructures of Steels 

Design of artificial “real” microstructures as a next step in the 
computational optimization of materials  

Using the above model to simulate crack growth in real structures of steels, one 
can carry out computational experiments to study the effects of the material struc-
ture on the fracture behaviour. The next step in the numerical optimization of a 
material is the simulation of deformation and fracture in artificial quasi-real mi-
crostructures.  

By testing some typical idealized microstructures of a considered material in 
such numerical experiments, one can determine the directions of the material op-
timization and preferable microstructures of materials under given service condi-
tions. Such simulations should be carried out for the same loading conditions and 
material, as the real structure simulations which proved to reflect adequately the 
material behaviour.  

Among the types of idealized microstructures, one takes usually as a first ap-
proximation the random and periodic microstructures. In studying cast and de-
formed metals, it is advisable to consider also the net-like (typical for the as-cast 
state) and band-like microstructures (hot formed steels). To investigate the struc-
tures of hard alloys and other ceramic materials, one should take into account the 
degree of clustering of hard (or in some cases, ductile) particles and vary such pa-
rameters as the connectivity, degree of clustering [4], etc. as well as the distribu-
tions of particle shapes and sizes.  

Mesomechanical  simulation of  crack growth in idealized microstructures 

To determine the optimal microstructure of the steel, we considered band-like, 
net-like and random microstructures. Two types of each microstructure were tak-
en: a fine one with carbide size of 2.5 µm and a coarse one with carbide size of 3.6 
µm [23]. 

The artificial net-like, band-like and fine random microstructures with 200 
round particles of a given radius [so that the surface content (in this case, volume 
content) of the particles is about 10 %] were created with the use of the graphics 
software XFIG. In the case of the random microstructures, the particles were 
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randomly distributed thereafter. The particles in the band- and net-like structure 
were distributed in such a manner that the distance between bands or the cell size 
(respectively) was about 20 times the particle diameter for the coarse structures, 
and 10 times the particle diameter for the fine microstructures. The coarse random 
structure possesses only 100 particles, the size of which was so selected that the 
volume content of carbides is 10%. One should note here that these “limiting 
case” microstructures are rather typical for the tool steels, but do not exhaust all 
typical microstructures in other materials, like hard alloys or cermets.  

Figure 3.38 gives the considered artificial microstructures. The simulations for 
these artificial microstructures were carried out in each case with same boundary 
conditions as for the real structure. The structures in Figure 3.38a und b, 3.38e und 
f (random and net-like microstructures) are oriented in such a way that crack 
growth starts from left; on the band-like structures in Figure 3.38c the crack starts 
up from the lower boundary. 

 
Fig. 3.39  Simulated crack growth in the random fine microstructure, u = 0.0006 mm. 
Fig. 3.40  Simulated crack growth in the random coarse microstructure, u = 0.0006 mm. 
Fig. 3.41  Simulated crack growth in the band-like coarse microstructure, u = 0.0006 mm. 
Fig. 3.42  Simulated crack growth in the net-like fine microstructure, u = 0.0008 mm. 
Fig. 3.43  Simulated crack growth in the net-like coarse microstructure, u = 0.0006 mm. 

 

 

  
Figure 3.39  Figure 3.40 Figure 3.41. 

 
Figure 3.42 Figure 3.43 



Effect of the Microstructure on the Fracture Behavior of the Tool 
Steels 

Crack path in different microstructures: qualitative consideration 

Figures 3.39-3.43 show the crack path in the artificial microstructures of the 
steels. The cracks in these Figures correspond to different applied displacements. 
The plots represent the distributions of the value KTYP (i.e. the phase distribu-
tion). The displacements were chosen in such a way that the cracks in each case 
almost pass the microstructural area and approach to the embedding.  

Let us focus at the crack path in different artificial microstructures. In the fine 
random structure (Figure 3.39), intensive crack growth was observed at the dis-
placement of ~ 0.0006 mm. Slight deflections of the crack path into the carbides 
were observed  during the crack growth. The carbide arrangement in the coarse 
random structure (Figure 3.40) causes slight deflection of the crack path from its 
initial direction as well. After a displacement of ~ 0.0008 mm the crack path is 
relatively rectilinear.  

The crack path in the band-like structure (Figure 3.41) shows markable crack 
deflection at the carbide bands. In the matrix, the crack grows rectilinearly. The 
increased carbide density in the bands leads to a very intensive element elimina-
tion (i.e., failure of carbides). The force-displacement curve shows a low Fmax val-
ue, which reaches the maximum, however, only at the displacement of ~ 0.0008 
mm (Figure 3.44). The carbide deflection can be clearly seen on the second car-
bide layer.  Up to an external displacement of 0.001 mm the crack does not reach 
the end of the microstructure area. 

 
Fig. 3.44  Force-displacement curves for the simulations of crack growth in artificial coarse 
microstructures 
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Regarding the force displacement behavior, only a small Fmax value is achieved, 
which, however, remains rather long at this level. 

In the fine net-like microstructure (Figure 3.42), the crack is instantly directed 
to the carbide network, and then follows exclusively the carbide network (this me-
chanism of crack growth was considered theoretically in [28]). It is of interest that 
the force-displacement curve for this microstructure gives the highest value of the 
peak force. 

As differentiated from the fine net-like microstructure, the crack in the coarse 
net-like microstructure was initiated in the matrix (Figure 3.43). This influenced 
the further crack growth sufficiently: the carbide layers are passed by the crack, 
and lead only to relatively slight crack deflections. The maximal force is only 
slightly higher than that for the band-like structure (Figure 3.44). 

This behavior of the crack in the coarse net-like microstructure is similar to that 
in the band-like structure (Figures 3.41, 3.42 and 3.43).  

Force-displacement curves for different microstructures of steels 

Figure 3.44 gives the force-displacement curves for each simulation of the crack 
growth. Table 3.5 gives some main quantitative characteristics of the crack growth 
in the different structures. The value Fmax characterizes the critical load at which 
the crack begins to propagate. The value G (nominal specific energy of the forma-
tion of unit new surface) for each microstructure characterizes the fracture resis-
tance of each of the structures. The physical meaning of the averaged force Fav is 
close to that of G: this value characterizes the fracture resistance of each of the 
microstructures, yet, not in relation to the unit of nominal new surface, but in the 
relation to the applied displacement. The difference between these two values (Fav 
and G) is caused by the fact that cracks in each case passed the microstructure area 
at different applied displacements 

The nominal specific energy of the formation of unit new surface for each mi-
crostructure was calculated as follows: 

 

G = ∑i (Pi Δui)/ LRS (3.21)

where Pi – force for each loading step, Δui – displacement increment for each 
loading step, LRS - linear size of the real microstructure, the summation is carried 
out for all loading steps until the crack passes the real microstructure. 
Almost all force displacement curves achieve the Fmax values at the displacement 
of 0.0006 mm (except for the fine band-like structure). The Fmax is minimal for the 
band-like structures, and is again sufficiently higher for the fine than for coarse 
microstructures (especially in the cases of the random and band-like fine micro-
structures). 
For both net-like and band-like microstructures the fracture resistance of the steels 
is much higher for the fine than for the coarse versions of the structures. Although 
this effect was not observed for the random microstructure, we assume that it is 



caused only by the different number of particles in the fine and coarse random mi-
crostructures, and that the general tendency remains the same for the random mi-
crostructures as well. The fracture energy G is higher for the net-like than for the 
band-like microstructures. 

 
Table 3.5  
Quantitative parameters of fracture behaviour of the artificial structures of steels 
Type of the structure Net-like Band-like Random 

coarse fine coarse fine coarse fine 
Peak load at the force-
displacement curve, N 

44.9 52.3 43.8 43.6 47.0 50.2 

Nominal specific energy 
of new surface, J/m2 

436.15 827.0 341.28 676.75 699.18 557.02 

Maximal height of the 
roughness peak, Rmax, 
μm 

13 36 24 14 18 12 

Parameters of the 
crack structure, 
branching and mi-
crocrack density 

NM 1 1 4 4 5 6 

NLB - - 3 3 1 1 

NMB 3 3 - - - 1 

NSB - 5 3 2 2 4 

Fractal dimension of 
fracture surface, D 

1.285 1.593 1.442 1.40 1.372 1.446 

 
It is of interest that the averaged force Fav hardly increases with increasing the 

peak load. If one considers only the coarse microstructures, one can see that the 
Fav even decreases with increasing the peak load Fmax. So, increasing the resistance 
of the materials to the crack initiation does not mean necessarily the increase of 
the energy consumption in crack growth (i.e. fracture toughness).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Damage and fracture of tool steels      177 



178      Chapter 3: Simulation of Damage and Fracture 

 
 
Fig. 3.45  Specific energy of fracture plotted versus the fractal dimension of fracture sur-
face D. 

 
This suggests that an approach which includes both the optimal design of parts 

(tools) and the optimal design of the tool material should be used for the design of 
tools from these steels. Namely, in the parts of the cutting tool, in which the ten-
sile stresses are maximal and the crack initiation is therefore most probable, mi-
crostructures which ensure maximum Fmax should be used (first of all, the cutter 
face, especially in the vicinity of the cutter edge is meant). In the rest of the tool 
material, a microstructure which ensures the maximum energy consumption in 
crack propagation should be taken. Therefore, it can be useful to consider the pos-
sibility of using gradient microstructures to optimize the tool steels. 

Damage Growth and the Structure of Crack Path 

Let us look at the form and structure of the crack path in different microstructures. 
As parameters of the crack appearance, we considered the maximal height of the 
roughness peak Rmax, the amount of eliminated elements not connected to the main 
crack as well as branches of the crack, and the fractal dimension of the crack. 

The maximal height of the roughness peak Rmax was calculated from the crack 
profile as the distance between highest and lowest points of the crack path meas-
ured along the perpendicular to the initial crack direction (horizontal). To charac-
terize the structure of crack path (i.e. the likelihood of branching and microcrack-
ing outside the main crack path), we used the following parameters: NM – the 
amount of eliminated elements not connected to the main crack, NLB, NMB and NSB 
– the amount of large (more than 8 µm), medium (between 4 and 8 µm) and small 
crack branches of the cracks, respectively. 
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Fig. 3.46  The height of the fracture surface peaks Rmax plotted versus the fractal dimen-
sion of the fracture surface D. 

 
The difference in the structure of crack path for different microstructures of 

steels is rather obvious: whereas a crack grows almost straightforward in the ma-
trix or between carbide layers, it kinks at the carbide layers or even follows the 
carbide-rich region if this does not require strong deflection of the crack path from 
its initial direction.  

A general tendency is that the maximal height of the fracture surface peak is 
much higher for the coarse than for the fine microstructure (this was not observed 
for the net-like microstructure only since the full change of the mechanism of 
crack growth occured in our simulation – the crack in the coarse net-like micro-
structure grew like in the band-like microstructures, i.e. it did not follow the car-
bide network, but just deflected at the carbide layers). 

Microcracking at random sites in the microstructure (not in front of the growing 
crack) was observed in the band-like and random microstructures, but not in the 
net-like microstructures. Intensive crack branching took place also in the band-like 
and random microstructures. This can be explained by the comparison with the re-
sults by Berns et al. [27], which have shown that when carbides at some distance 
from the crack tip fail, that leads to the change of the direction of crack growth. 
Therefore, high intensity of microcracking in random sites of the material causes a 
high intensity of crack branching. 

Fractality of the Fracture Surface 

Consider now the fractality of a growing crack in the real materials. The very of-
ten observed mechanism of crack growth, when a crack grows by joining micro-
cracks which are formed in front of the crack tip (but not necessarily in the plane 
of crack propagation) and which are much smaller than the crack [29] causes 
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random variations of the direction of crack growth. These variations determine the 
fractal dimension D of a fracture surface [30]. The growth of a crack by joining of 
microcracks is similar to the formation of a fractal cluster from randomly moving 
particles which may join the cluster [30]. For a fractal cluster which grows by 
such a mechanism, the fractal dimension of a cluster is given by the formula: 

 

i ~ L D (3.22) 

where i – the amount of particles (in our case, the number of unit steps of the 
crack growth, or eliminated finite elements, L – projected crack length. 

This is also the mechanism of the crack growth in our simulations: cracks grow 
both by joining microcracks (in our model by joining softened or removed finite 
elements). The removed elements lie in front of the crack tip but not necessarily in 
the plane of straight mode I crack propagation. The joining of elements, which do 
not lie in the plane of crack propagation causes random variations of the direction 
of crack growth, and these variations determine the fractal dimension D of a frac-
ture surface, similarly to the formation of a fractal cluster from randomly moving 
particles.  

To determine the fractal dimension D of the crack path from the above simula-
tions, the number of eliminated elements and the projected length of the crack af-
ter each loading step are determined, and the power in the i-L-relationship for each 
of the structures is calculated. One should note here that the fractal dimensions 
calculated with the use of this method present just rough estimations. In order to 
determine the fractal dimension of a crack more exactly, simulations of longer 
crack growth in much bigger microstructure samples should be carried out.  

The fractal dimensions for each microstructure are given in Table 3.5. One can 
see that the maximal fractal dimension is found in the band-like fine microstruc-
ture. 

The relationships between the specific energy of fracture, fractal dimension of 
the fracture surface and the height of peaks on the fracture surface are shown in 
Figures 3.43 and 3.44. It can be seen that although the results of our numerical ex-
periments (similarly to “normal” experiments) show a great dispersion of results, 
the tendencies are still rather clear: the specific energy of fracture increases with 
increasing the fractal dimension of fracture surface. It is worth to note that the ap-
pearance of the curve corresponds to the relationship between the surface energy 
of fracture and the fractal dimension derived in [31]: G ~ (a/L)1-D, where a – 
yardstick length (in [28], it was taken to be equal to an average carbide size), L – 
unit length (a value of the order of crack length). 

The height of the peaks of the fracture surface increases with increasing the 
fractal dimension as well. It is of interest to compare the last conclusion with the 
analytical results from [28]. The authors [28] have shown on the basis of the prob-
abilistic analysis of the distribution of peak heights on the fracture surface that the 
height of the peaks increases with increasing D; yet, the result was obtained only 
for the net-like microstructures of steels, while our present calculations show this 
trend for the other microstructures as well. 



One should note here that the numerical determination of the fractal dimension 
of crack is possible only with the use of the above techniques: the element elimi-
nation technique (it is evident that prescribing crack path in simulations of the 
crack growth excludes any possibility to consider the fractality of fracture sur-
face), and the real microstructure simulation (it is also evident that a crack which 
grows only according to the fracture and continuum mechanics laws, without tak-
ing into account “real world” will be not fractal). 

Conclusions 

Comparing the fracture behaviour of different microstructures of steels, one can 
draw the following conclusions. The fracture resistance of the steels is much high-
er for the fine than for coarse version of the same type of microstructures. The re-
sistance of the steels to crack initiation, characterized by the peak load on the 
force-displacement curve, is lowest for the band-like structures, and is again suffi-
ciently higher for the fine than for coarse microstructures (especially in the cases 
of the random and band-like fine microstructures). 

The roughness of the fracture surface is higher for the coarse than for the fine 
microstructures.  Microcracking at random sites in the microstructure (not in front 
of the growing crack) as well as the intensive crack branching, were observed in 
the band-like and random microstructures but hardly in the net-like microstruc-
tures.  

Generally, the fracture resistance of steels increases in the following order: 
band-like → random → net-like microstructure. 

Furthermore, one may note some interrelations between the geometrical and 
energy parameters of fracture: the fracture toughness increases with increasing the 
fractal dimension and height of the roughness profile of the fracture surface. The 
interrelations between the specific fracture energy, fractal dimension and the 
roughness height, obtained in our numerical experiments, correspond to the ana-
lytical results from [28, 31]. 

On the basis of the above study, one may speculate about possible directions of 
the optimization of steels. The following effects which increase the toughness of 
the steels were observed in the considered structures:  

• crack deflection by the carbide layers oriented perpendicularly to the in-
itial crack path (net-like coarse microstructure, band-like microstruc-
tures), 

• the crack follows the carbide network (net-like fine microstructure),  
• and damage formation at random sites of the steels and following crack 

branching (random microstructures).  
One may note that all above effects increase the ratio of the summary area of 

as-formed surface to the size of failed specimen (projected crack length). Whereas 
all the modes of steel toughening ensure (or tend to ensure) comparable levels of 
fracture toughness, the type of microstructure (and therefore the mode of tough-
ening) for given conditions should be chosen on the basis of the economical 
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considerations of the steel production and other requirements like the wear resis-
tance of the tool, etc.  
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3.3.2 FE models of crack propagation tool steels: comparison of 
techniques and complex microstructures7 

This paper presents a systematic computational study of the effect of microstruc-
tures of metallic materials reinforced with brittle hard particles on their fracture 
behavior and toughness. Various material microstructures are tested numerically 
under the same loading conditions. The value of numerical experiments in predict-
ing and improving material performance is demonstrated using the example of 
high speed steels.  

The optimal design of particle-reinforced materials on the basis of computa-
tional simulations of their behavior has attracted growing interest of researchers 
over the last two decades [1-3]. The computational design of materials for indus-
trial needs is possible, if the computational difficulties concerning simulation of 
complex materials at many scale levels are resolved and corresponding technolo-
gies for the creation of the materials are available. Steels are among the group of 
most investigated materials in the world, and have widely been used industrially in 
many centuries. Among them, tool steels hold a special position, both due to their 
wide use in the  metal-working industry, and due to the complex requirements on 
their properties: the microstructure of a tool steel must ensure high hardness and 
wear-resistance (these properties of tool steels are secured by the availability of 
hard and brittle primary carbides in the materials), as well as high fracture tough-
ness and  lifetime (which are influenced by the properties of the “matrix” of the 
steels, and the secondary carbides) [4, 5, 6, 7]. On the other hand, microstructures 
of tool steels can be altered by using different technologies (casting, powder me-
tallurgy, different heat treatment and working), and, therefore, the recommenda-
tions to be developed here can be practically realized [5]. That is why we chose 
tool (high speed) steels as an object for the computational testing of artificially de-
signed microstructures, and analysis of microstructure-fracture resistance relation-
ships. A further reason for the choice of steels as a test object for the computation-
al testing of microstructures is that microcracks initiate in primary carbides in the 
steels [8-10]; therefore, the initial distribution of primary carbides corresponds to 
the distribution of potential sites of the crack initiation. Table 3.6 gives a short re-
view of the micromechanical studies of the interrelations between the structure 
and fracture resistances of tool steels. 

 
 
 
 
 
 

                                                           
7 Reprinted from L. Mishnaevsky Jr., U. Weber, S. Schmauder, "Numerical analysis of the 
effect of microstructures of particle-reinforced metallic materials on the crack growth and 
fracture resistance", International Journal of Fracture 125, pp. 33-50 (2004) with kind 
permission from Springer 

 



Table 3.6 
Some research works in the area of the strength and fracture of tool steels 

Authors, 
steel type 

Numerical approach, 
codes 

Problems and 
Main results 

Plankensteiner 
et al. [14, 15]. 
Steel: Electros-
lag remelted 
HSS, with net-
like carbide ar-
rangement 

PATRAN, ABAQUS. 
Mesophase Cell  Hierar-
chical Modeling (this ap-
proach includes unit cell 
technique, and transfor-
mation field approach or 
incremental Mori-Tanaka 
approach). 

Overall response of steels  as well 
as mechanisms of local failure  in 
steels with real structures are stu-
died. The effect of progressive 
carbide cleavage on the stress-
strain curve is considered. Stress-
strain curves, and distributions of 
maximum principal inclusion 
stresses are obtained. It is shown 
that the carbide grain cleavage is a 
main  fracture mode at microscale. 

HEXGRAIN, ABAQUS. 
Hexagonal Cell Tiling 
Concept (unit hexagonal 
cells containing a number 
of inclusions). 

Stress distribution, and also an ef-
fect of initial  thermal residual 
stresses on the parameters of stress 
distribution are considered. Stress 
level within carbide particles and 
in matrix, and the effect of thermal 
stresses on them are studied. 

Broeckmann 
[16]. Steels: 
Ledeburitic 
chromium steel 
SAE-D3 in as 
cast condition 
and hot worked 
state 

CRACKAN. Modeling of 
real structures. Plasticity 
of matrix is modeled with 
J2 flow theory. Carbide 
particles fail due to clea-
vage along crystallo-
graphic planes. 

Influence of carbide particle distri-
bution on the fracture processes in 
steel is investigated. Stress distri-
bution in real microstructure ahead 
of main crack, local damage and 
effect of local triaxiality on clea-
vage strength of carbides are stu-
died. 

Gross-Weege 
et al. [17]. 
Steel: as above; 
HSS manufac-
tured by powd-
er metallurgy 
and HIP 

CRACKAN (like above). 
Decohesion between car-
bides and matrix occurs if 
the stresses normal to the 
interface reach a critical 
value. Unit cell model is 
used to study the interac-
tion between inclusions. 

Simulation of crack initiation (also 
in front of main crack)  due to par-
ticle cracking and interfacial fail-
ure. Particle cracking, damage evo-
lution in front of main crack are 
studied. 

Lippmann et al. 
[13]. 
Steel:  Electros-
lag remelted 
HSS, with 50 
% hot reduction 

ANSYS.  Crack faces are 
predefined with the use of 
non-linear spring ele-
ments 

Crack initiation by carbide failure 
is simulated. 
Crack distribution in real structure 
of steel. It is shown that long and 
thin carbides  fail first and form in-
itial cracks. 

3.3 Damage and fracture of tool steels      185 



186      Chapter 3: Simulation of Damage and Fracture 

LARSTRAN. Method of 
multiphase elements 
(MPE) makes possible to 
simplify preprocessing. 
Automatic element elimi-
nation technique is used 
to model crack initiation 
and growth. 

Crack initiation, growth and distri-
bution in real structure of HSS. 
Stress and crack distribution in real 
structures is obtained; effect of 
carbide stringer width of the crack 
formation is studied. 

Numerical methods of the analysis of microstructures in the 
mechanics of materials 

Microstructure modeling at the level of Gaussian points and at finite 
element level 

Information about the microstructure of a material is usually given as a 2D (dis-
cretized) micrograph (or, in 3D case, as a series of micrographs) [2, 19]. Figure 
3.47 shows schematically the discretization of a real microstructure of high speed 
steel HS6-5-2 presented in Fig. 3.35 [18]. 

In order to include the microstructure information in the FE model, there exist 
in general two methods: first, to impose the complex microstructure on a simple 
FE mesh without adapting the mesh to the microstructural phase boundaries and 
second, producing a FE mesh according to the microstructure of the micrograph. 
The automatic assignment of the digitised microstructure to a simple FE mesh can 
be done in the framework of multiphase finite elements (MPE) (Figures 3.49-3.49) 
[1, 2]. The main feature of this method is that the different phase properties are as-
signed to individual integration (Gaussian) points in the element. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3.47  Discretized micrograph of high speed steel HS6-5-3. The black areas present pri-
mary carbides, the white area is the “matrix”. Region 100x100 mcm. 

 



 
 

 
 
 
 
 
 
 
 
 
 

 
  (a)      (b) 
 

Fig 3.48  Scheme: Multiphase finite ele-
ments  

Fig 3.49  Scheme: automatic FE mesh gen-
eration form microstructures  

 
Contrary to traditional (single-phase) finite elements, a FE-mesh is independent 

of the phase structure of material in this case, and relatively simple FE-meshes can 
be used for the simulations of the deformation in a complex microstructure. The 
possibility of using FE meshes of arbitrary simple structures for the simulation of 
the behavior of complex materials is the main advantage of the method of multi-
phase elements. 

Therefore, a relatively simple simulation of material behavior in the 3D case 
becomes possible. One should note however that MPE do not allow one to take 
into account local effects of interfaces. In some cases this limitation can be useful 
in order to help to reflect better the gradual transition of the local material proper-
ties. In the cases of materials in which neither phase is soluble in any other phases, 
the interface presents a real boundary and the impossibility taking into account in-
terface effects using MPE can present a serious limitation for the MPE applicabil-
ity. Another approach is to produce a FE mesh which corresponds to a given mi-
crostructure. The main idea of this approach is that a FE mesh is automatically 
generated in such a way that the boundaries of “surfaces” correspond to the phase 
boundaries in digitized microstructure micrographs. At the MPA Stuttgart a series 
of programs was developed, which allow one to generate automatically a FE mesh 
in PATRAN Pre-Processor which fully corresponds to a given microstructure [4]. 
Other researchers have developed similar programs.  For instance, Iung et al. [20] 
developed a program which generates FE meshes (to be used by the ABAQUS 
code) representing the image of a real microstructure. The advantages of this pro-
gram are that the mesh is generated “in an iterative way by superimposing on the 
boundaries square grid of growing size“, and is refined automatically at the inter-
faces between the phases.  

phase boundary 

integration 
points FE edges 
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In our simulations, we focus on the second approach (automatic generation of 
FE meshes from microstructure micrographs and element elimination). Compari-
son with the first approach (MPE) is carried out as well. 

Finite Element „Softening“ and Finite Element Elimination Approaches 

Among the main numerical approaches to simulating crack growth, the cohesive 
zone model [21, 22], smeared crack model [23], representation of cracking by se-
paration of element boundaries [24] and the computational cell methodology [25, 
26] should be mentioned. The separation of element boundaries can be done, for 
instance, if all the elements in the model or the elements along the expected crack 
path present contact elements. According to Broberg’s  cell model [27], a material 
consists of cells (which are defined as the „smallest material unit that contains rea-
sonably sufficient information about crack growth in the material“, and which are 
characterized by their size and cohesion-decohesion relation). If the cell is consi-
dered as an element in a FE mesh, such an approach presents a generalization of 
cohesive models and the computational cell methodology, developed by Xia et al. 
[25, 26].  

In our simulations, crack growth is modeled as an elimination of elements in 
the FE mesh which represents the body. The evident advantages of this approach 
are that a body may be discretized into simple finite elements (not special contact 
or interface elements), and that both damage and crack propagation can be mod-
eled in the framework of one and the same local failure condition. Numerically, 
such element elimination can be realized in two ways: by element „softening“ and 
by element removal (the last two approaches are often confused) [1, 4, 2]. Element 
“softening” is done if each element is assumed to be weakened as the local stress 
or damage parameter exceeds a critical level. The Young’s modulus of the ele-
ments to be softened is set 1...2 orders of magnitude lower than that of the initial 
material. 

 
 

 
 
 
 
 
 
 
 
 

 
 
Fig 3.50  Scheme: Elimination or softening of a finite element 

stiffness of an element is reduced, or 
the element is removed 



In some cases, this approach is erroneously called “element elimination” [1].  
The possibility to model crack growth in such a way is provided by the subrou-
tines UMAT or USDFLD in the ABAQUS FE code. Another way is to remove the 
elements from the model, and then to restart the simulation without the eliminated 
elements, using the RESTART option in ABAQUS. Fig. 3.50 shows schematical-
ly the finite element „softening“ and finite element elimination approaches. 

Problem Statement and FE Model  

In order to study the effect of the arrangement of inclusions on the fracture resis-
tance of two-phase materials in a systematic way, different idealized microstruc-
tures were designed and crack propagation in these microstructures was simulated 
numerically. The properties of the constituents of the material (particles, matrix) 
and the expected mechanism of crack growth were determined from in-situ expe-
riments carried out with simultaneous observation of microprocesses in materials 
in a scanning electron microscope [8]. 

FE-Model  

A FE model of short rod specimens was developed [28]. The simulations were 
carried out for 2D plane strain conditions. According to the description of the spe-
cimens, the diameter was taken to be 12 mm, height 18 mm, and notch depth 5.32 
mm [28].  

The model consists of a macromodel and a mesomodel. The macromodel was 
set up in order to determine the displacement distribution on the boundaries of an 
area 300 μm x 500 μm in the vicinity of the notch. This area presented then the 
mesomodel, which included a region with a real steel microstructure. The micro-
structure of high speed steel was placed in an area 100 μm x 100 μm near the 
notch in the model. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3.51  Loading scheme of the mesomodel 
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The displacement distribution on the boundaries of the mesoscopic model was 
determined from the macromodel. The scheme of the mesomodel and the position 
of the real microstructure of the steel in the model are shown in Figure 3.51. The 
displacement of the points in the vertical direction on the plane of symmetry was 
set to be zero. The point on the symmetry plane of the specimen, which lies oppo-
site the notch was fixed in the X-direction. Displacement-controlled loading was 
applied at a point at a distance 1.88 mm from the end of the specimen, according 
to the real conditions of the loading of short rod specimens. The boundary condi-
tions in the mesomodel (the small area 300 x 500 μm near the notch of the short-
rod-specimen) were given as vertical displacements. The total loading displace-
ment was chosen to be 1 mm. Given properties of the components and the steel, 
and the real microstructure of the steel, crack initiation and growth in the steel are 
simulated.  

Material properties 

The elastic and elasto-plastic properties of the carbides and matrix of the steel 
were determined using different experimental and experimental-numerical meth-
ods, including  SEM in-situ experiments [8], powder metallurgy production of 
“matrix alloy” [5], microindentation, etc. The results of the experiments allow us 
to obtain rather comprehensive information about the properties of the constituents 
of the steel as presented in Table 3.7.  

 
Table 3.7 
Mechanical properties of the primary carbides and matrix in high speed steel  

Properties Carbide Matrix Steel  Refs

Young’s modulus, 
GPa 

286 (carbides M6C), 
351 (MC) 

231 240 [11-
13] 

Poisson’s ratio 0.19 0.3 0.3 
Local failure crite-
rion 

Maximum normal 
stress 

Plastic strain - [9] 

Critical level of the 
local failure crite-
rion 

1500 MPa 0.1 % - [9] 

Fracture tough-
ness, KIv, MPa m1/2 

- 49 18.9 [5] 

Constitutive law  Elastic, brittle σy = 1500 
+1101 [1-exp  
(-εpl/0.00369)] 

σy = 2200 + 
820 [1-exp 
(-εpl/0.002)] 

[5] 

Here: σy – von Mises stress, MPa, εpl – plastic strain. 
 
 



Types of ideal microstructures 

The purpose of this work is to analyze the effect of the microstructure of steels on 
the fracture resistance by simulating crack propagation in different microstruc-
tures. By testing some typical idealized microstructures in these numerical ex-
periments, factors leading to the optimization and preferable microstructures of 
materials under given service conditions can be determined.  

The ideal microstructures were created with the use of the graphics software 
XFIG. The particles (primary carbides) are supposed to be round, but their distri-
butions in the microstructure region of the mesomodel were heterogeneous and are 
varied subsequently. The following types of the particles arrangements were con-
sidered: 

• band-like microstructures (typical for hot formed steels) and continuous 
net-like (typical for the cast metals) [6, 30], 

• random microstructures, 
• clustered microstructures: the material consists of regions with high and 

low density of inclusions; these microstructures were studied in [7]; it 
was shown in [7] that such microstructures ensure a higher fracture re-
sistance, than random or net-like microstructures (see Fig. 3.52e), 

• layered microstructures: a material consists of layers with particles of 
different sizes (see Fig. 3.52f, g, h).  

 
Simple microstructures (random, net-like and band-like) were considered in [3, 9], 
and used here only for comparison purposes. In this work, the complex (clustered 
and layered) microstructures are considered.  

 

 
a) b) 

 
c) d) 
 
Fig. 3.52  Artificial arrangements of primary carbides considered in this work (along with 
simple microstructures given in Fig. 3.38): a) clustered, b)-d)- layered (3 different orienta-
tions) 
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Two types of clustered microstructures (fine and coarse) were employed [3]: a 
fine one with carbide sizes of 2.5 µm and a coarse one with carbide sizes of 3.6 
µm.The clustered microstructures contain 200 carbides of diameter 2.5 µm (fine 
microstructure) and 100 carbides of diameter 3.6 µm (coarse microstructure), 
grouped in 8 clusters. The surface content (in this case, volume content) of the 
particles was about 10 % (as for the simple microstructures in [3]). The layered 
microstructures were supposed to consist of two layers, one with 100 fine particles 
(2.5 µm) and another one with 50 coarse particles (3.6 µm). The orientation of the 
layers as related to the initial notch of the specimen was varied such that the ex-
pected mode I crack could go first through a coarse layer and then through a fine 
layer (“coarse -> fine structure”, Fig. 3.52g), or conversely (“fine -> coarse struc-
ture”, Fig. 3.52f), or along the interface between the layers (“coarse/fine struc-
ture”, Fig. 3.52h).  

Simulation of Crack Growth in Different Microstructures 

Comparison of different numerical techniques 

In our simulation, we use program codes for the automatic generation of FE 
meshes from the micrographs of microstructures. To model damage and crack 
propagation, we used the element elimination method with RESTART option.   
In order to ensure the compatibility of the results from our previous study (crack 
growth in simple microstructures) and this work, a comparison of the method of a 
microstructure-based mesh generation with the multiphase element method/
element softening was carried out. 

The coarse random microstructure from [3] was meshed according to both 
methods: multiphase finite elements [2] and automatic microstructure-dependent 
mesh generation [4]. Then, two different methods of the simulation of local dam-
age were employed: element softening with relaxation steps and element removal 
with restarts. Element softening was used in the case of the multiphase elements 
(since the MPE are used with simple meshes, so the mesh remained intact during 
the simulation of the crack growth). Element elimination and restarts with new 
mesh design were employed for the case of the microstructure-based mesh genera-
tion. 
The crack paths obtained in both cases are shown in Fig. 3.53. Table 3 presents the 
calculated quantitative parameters of fracture, determined from both simulations. 
The methods of calculations of the parameters are given below in section 5.1. 

Comparing the results, it can be seen that both quantitative parameters of frac-
ture behavior and qualitative crack path simulated by both methods are almost 
identical. Thus, it may be expected that the results obtained with the use of these 
methods are compatible. 

 
 
 



 
Fig. 3.53  Comparison of the crack path simulated in the artificially designed random 
coarse microstructure with the use of different numerical approaches: a) MPE, element sof-
tening [3],  b) automatically generated FE mesh, element elimination 
 

 
Table 3.8  
Quantitative parameters of fracture, determined by two numerical approaches. 

 1st Method:  
MPE 

2nd Method:  
microstructure-

dependent mesh design 
Fracture energy G, J/m 699.18 626.77 
Fractal dimension of frac-
ture surface 

1.372 1.38 

Height of roughness peaks, 
μm 

18 18.6 

Crack paths in different complex microstructures 

Figures 3.54-3.57 show the crack paths in the artificial microstructures of the 
simulated steels. Generally, fracture occurs as follows: first, several carbides fail 
and form a “zone of failed carbides” in front of the notch. The “zone” extends and 
cracks are formed by coalescence of microcracks in the carbides. Intensive micro-
cracking in carbides before a macrocrack is formed has been observed experimen-
tally as well [8]. 
In the cluster microstructures, the crack grows first in clusters (i.e., it initiates in 
carbides, and grows from one carbide to another) and then from one cluster to an-
other. Such a mechanism leads to strong deviations of the crack path from its ini-
tial direction. In the fine cluster microstructure, two cracks initiated in two differ-
ent clusters and then propagated by the described mechanism.  

In the layered microstructures, crack growth depends strongly on the orienta-
tion of the layers: in the “coarse-fine” microstructure, a large crack forms at the 
initial stage of loading, and propagates first straightforward and then at an angle of 
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about 45 degree with respect to the initial direction. Crack deflection and branch-
ing is especially strong in the fine layer. 

In the “fine-coarse” microstructure, the “zone of failed carbides” propagates ra-
ther far away from the crack tip, but only a small macrocrack forms in that zone 
(no coalescence of microcracks formed in the carbides). After the microcracks in 
the large “zone of failed carbides” coalesce, crack with many branches forms. In 
the “coarse/fine” microstructure (which is in fact symmetric relatively to the 
notch),  the crack grows in the layer of fine carbides, rather than in the layer of 
coarse carbides: the carbides fail in the layer of fine carbides, and the “zone of 
failed carbides” extends in the fine layer. When the “zone” becomes large enough, 
the microcracks coalesce and macrocracks form. However, no such zone and no 
cracks form in the area of coarse carbides: after the failure of few carbides near 
the notch, damage growth in the layer of coarse carbides stops. Apparently, the 
longer distances between primary carbides (potential microcrack initiation sites) in 
the coarse part prevent the microcracks from joining together in the coarse struc-
tures, but not in the layer of fine carbides. 

 

  
a) b) 

Fig 3.54  Layered microstructure 1 (fine → coarse): a) Step 2, u = 6.00E-03 mm and b) 
Step 6, u = 7.54E-03 mm. 

 
 
 
 
 
 
 
 
 
 

Fig. 3.55  Layered microstructure 2 (coarse/fine): Step 6, u = 7.00E-03 mm 



  
a) b) c) 

 
Fig. 3.56  Layered microstructure 1 (coarse → fine): a) Step 8, u = 6.38E-03 mm, b) step 
14, u = 6.75E-03 mm, c) step 26, u = 7.13E-03 mm. 

 

 
a) b) 

Fig. 3.57  Cluster microstructures: a) Fine, step 6, u = 5.99E-03 mm, b) Coarse, step 6. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 3.58  Force-displacement curves for the simulated microstructures. 
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Crack paths in complex structures were compared with those in simple micro-
structures obtained in [3]: In the fine net-like microstructure (Figure 3.42), the 
crack is instantly directed to the carbide network, and then follows exclusively the 
carbide network. Such a mechanism ensures maximum fracture resistance of the 
steel (see below). In the band-like (Figure 3.41) and coarse net-like structure, the 
crack grows rectilinearly in the matrix, and undergoes notable deflections at the 
carbide bands. 

Comparison of different types of microstructures 

Fracture resistance of the materials with artificial microstructures 

For all simulations performed, the force-displacement curves, energy and geome-
trical parameters were determined numerically. Fig. 3.58 shows the force-
displacement curves for the simulated microstructures. 

Table 3.9 provides some main quantitative characteristics of crack growth in 
the different structures. The value of G (nominal specific energy of the formation 
of a unit of new surface) for each microstructure characterizes the fracture resis-
tance of each of the structures. This value was calculated as follows[3]: G = 
∑(Piui) / BLRS, where Pi – force for loading step, ui – displacement for loading step 
i, LRS - linear size of the real microstructure in the horizontal direction, the sum-
mation is carried out for all i loading steps until the crack passes the real micro-
structure, B - the thickness of the model. 

To characterize crack, we consider the maximal height of the roughness peak 
Rmax, the number of eliminated elements not connected to the main crack as well 
as branches of the crack, and the fractal dimension of the crack. The maximal 
height of the roughness peak Rmax was calculated from the crack profile as the dis-
tance between highest and lowest points of the crack path measured perpendicular 
to the initial horizontal crack direction. 

The fractal dimension of the fracture surface was calculated using the approach 
given in the subsection 3.3.1. This will be the subject of future investigations. For 
comparison purpose, the results for the simple microstructures from [3] are given 
in the Table 3.9 as well. Fig. 3.59 shows the fractal dimension versus the fracture 
energy. One can see that the fracture energy increases with increasing fractal di-
mension of fracture surface. Figure 3.60 shows a comparison of the fracture resis-
tances of the different microstructures. From the figure it can be seen that the hete-
rogeneous microstructures with localized brittle particle distributions (i.e., 
clustered and layered ones) ensure rather high fracture resistances [34]. This can 
be explained by the fact that these microstructures lead to strong crack deviations: 
from one region of high particle density to another one (in a clustered microstruc-
ture) or in the layer of fine particles. 

 



Table 3.9  
Quantitative parameters of fracture behavior of the artificial structures of steels 

 Complex structures Simple structures (from 
[3]) 

Layered Clus-
ter 
fine 

Net-
like* 

Band-
like* 

Ran-
dom* 

“C->F” “C/F” “F->C” 

Nominal specific 
energy of new 
surface, J/m2 

668.9 786.1 733.9 635.7 436.15 / 
827.0 

341.28 / 
676.75 

699.1
8 / 

557.02 

Maximal height 
of the roughness 

peak, maxR , 

μm 

44  46 44 35 13 / 36 24 / 14 18 / 12 

Fractal dimen-
sion of fracture 
surface, D 

1.522 1.556 1.382 1.515 1.285 / 
1.593 

1.442 / 
1.40 

1.372 
/ 1.446 

* The values are given for coarse/fine versions of the microstructure, respectively. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.59  Fractal dimension D plotted versus the calculated fracture energy. 
 

The fracture resistances of the microstructures with spatially localized particle 
arrangements are always higher than those of simple microstructures, except for 
the case of the net-like fine microstructure. In the net-like structure, the crack is 
forced to follow the carbide network, and the crack path becomes much longer 
than the mode I crack path. This ensures a rather high fracture resistance. However,
this toughening mechanism is unstable, since the crack propagates through the 

3.3 Damage and fracture of tool steels      197 



198      Chapter 3: Simulation of Damage and Fracture 

carbide network when the network cells are big enough resulting in a very low 
fracture toughness. 

Table 3.10 summarizes the assessments for fracture toughness and mechanisms 
of toughening for different structures. 
 
Table 3.10 
Assessment of Artificial Microstructures  

 
 
 
 
 
 
 
 
 

Type Peculiarities of the mechanism Mechanism of toughening 
Net-
like: 

  

 

 

Crack follows the carbide network.  
However, this toughening mechan-
ism is unstable: if the cells are too 
large, the crack propagates through 
the cells. 

Crack path (determined by 
the carbide network) is much 
longer than without the net-
work 

Band-
like 

 

 

 

Crack jumps from one band to 
another and deflects at the bands. 

Crack path deviations at the 
bands; high toughness of the 
matrix between bands. 

Random 
 

 

 

Crack jumps from one carbide to 
another. 

Intensive crack branching 
and damage formation also 
apart from the crack path 

Layered 
 

 

 

A. “coarse → fine”: carbides fail in 
coarse layer, but a crack forms only 
at high KI. The fine layers lead to 
strong deviations of crack direction 
from the initial path. 

B. “
fine

coarse
”: the crack preferably 

grows in the fine layer, rather than 
in the coarse layers 

Crack path deviations in the 
layer of fine particles; high 
toughness of the matrix be-
tween the particles. 

Clus-
tered 

 

 

Crack grows first in clusters (jumps 
from one carbide to another) and 
then from one cluster to another.  

Crack path deviations from 
the initial direction due to the 
jumps to nearest clusters 



Fig. 3.60  Comparison of fracture resistance of different artificial microstructures 
 
 

 
 
 
 
 
 
 
 

 
Fig. 3.61  Schematization of the crack deviation according to Suresh 

Crack deflection and the fatigue behavior of the crack 

Now we estimate the change in the fatigue crack behavior caused by microstruc-
ture-induced crack deflections following the model of Suresh [35], assuming that 
the crack paths in the case of monotonic loading and cyclic loading are similar. 
According to Suresh [35], the apparent crack propagation rate (i.e., measured 
along the mode I crack direction) changes due to the crack deviations as: 

 

v/vL ~ m cos θ + (1-m), (3.23)

where vL is the growth rate of a straight crack under the same loading conditions 
as the kinked crack, θ is the kink angle, m = 1/(1+s/d), d – distance over which the 
tilted crack advances along the kink, and s is the distance over which the plane of 
the growing crack is normal to the far-field tensile axis (see Fig. 3.61). 

Table 3.11 gives the value of θ, d, s and m for the cracks simulated above. 
 
 

d 

s

θ
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Table 3.11  
Coefficients of the formula for the reducing fatigue crack growth rate  
Type of micro-
structures 

Kink 
angle θ 

Distance d 
(tilted) 

Distance s 
(straight) 

Coefficient 
m 

Coefficient  
v/vL 

Layered fine-> 
coarse 

~32 46 47 0.515 0.014 

Layered 
coarse/fine 

~30 14 5.7 0.710 0.88 

Layered coarse-
>fine 

~45 20 14.8 0.574 0.07 

Cluster coarse ~ 80* 10.6 27 0.281 0.63 
Cluster fine ~ 20* 27 28 0,49 0,036 

*Crack kinks from the end of a cluster to the next cluster. 

From Table 3.11, it can be seen that the maximum estimated reduction of the 
crack rate due to the crack deflection is observed in the layered “fine->coarse” and 
“coarse->fine” microstructures, i.e. on the structures where one of the layers 
forces the intensive crack kinking and branching. Comparing the values of fractal 
dimension of the fracture surface (given in Table 3.9) and the values of the rela-
tive reduction of crack rate v/vL, it may be seen that the higher values of fractal 
dimension and roughness of the crack surface correspond to a stronger reduction 
of the crack growth rate due to deviations of crack path from the mode I direction 
of crack growth. 

Conclusions 

On the basis of our numerical investigations, the fracture mechanisms in the mate-
rials with different arrangements of brittle round inclusions were clarified.  

Clustered and layered heterogeneous microstructures ensure rather high frac-
ture resistances, which are always higher than those of simple microstructures, i.e. 
band-like, net-like or random ones. This is determined by the fact that these hete-
rogeneous microstructures lead to strong crack deviations: from a region of high 
particle density to another one (in the clustered microstructure) or into the layer of 
fine particles. Net-like fine microstructure shows an exception to this rule and 
forces the crack to follow the carbide network, ensuring the highest fracture resis-
tance, even higher than all the complex microstructures. However, such a mechan-
ism of toughening is unstable: the net-like coarse microstructure (with larger cells) 
provides very low fracture toughness, since the crack propagates in a straight 
manner rather than following the carbide network.  

The investigations lead to the conclusion that complex (clustered and layered) 
microstructures possess the potential for improving the fracture toughness of 
steels. The main mechanisms of the positive toughening effect by complex micro-
structures are identified: crack path deviations from its initial direction (which in-
crease the crack length without increasing the stress intensity factor K1), and large 
areas of the tough matrix between the areas of high inclusion density.  
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3.4 Interface fracture: elastic and plastic fracture 
energies of metal/ceramic joints8 

In many technological branches, combinations of materials with different proper-
ties are required. One interesting combination consists of metal and ceramic in or-
der to combine ductility, high electrical and thermal conductivity with high 
strength and chemical inertness [1, 2]. The interface between two materials is of-
ten the weakest point of these devices. In the past, the influence of the interface 
strength on the energy release rate was investigated experimentally [3] as well as 
numerically [4]. In this subsection, the computational analysis of the effect of the 
interfacial strength on material properties is carried out using the finite element 
method. In the model, the interface is treated as ideal, without a transition region. 
Such ideal interfaces were observed, e.g. in the case of sapphire/niobium [2]. 

3.4.1 Concept of Modelling 

According to earlier experiments [5] four-point bending tests were simulated with 
a total size of the specimens of (1.6 x 4.0 x 32mm3) (Fig.3.61). The simulations 
were performed as two-dimensional under plane stress conditions. This seems to 
be a good approximation, because the force-deflection curve of plane stress simu-
lations matches nearly exactly with three-dimensional calculations [6]. The four-
point bending tests were simulated by a displacement of the upper hard- metal cy-
linders of the bending device to a maximum of 70 µm. 

displacement

hardmetal cylinders

ceramic ceramic

metal layer
notch

 
Fig 3.61  Model geometry: Specimen and one half of the hardmetal cylinders of the bend-
ing machine 
 

                                                           
8 Reprinted from C. Kohnle, O. Mintchev, S. Schmauder, "Elastic and Plastic Fracture Energies of 

Metal/Ceramic Joints", Computational Materials Science 25, pp. 272-277 (2002) with kind permission 
from Elsevier 



204      Chapter 3: Simulation of Damage and Fracture 

All simulations were done with the commercial code ABAQUS [7] using quad4 
elements. The Cohesive Surface Model (CSM) [8,9] is used to model the process 
of interface fracture. In this model the crack path is prescribed and crack initiation 
and propagation occurs if a critical normal tension Tn

crit is exceeded. This means, 
that we only model mode I fracture. This is a valid approximation for our model 
geometry [10]. In the CSM the interface is not modelled by describing an interface 
zone (e.g. [11]), but the interface is rather modelled as being ideally sharp, which 
is at least justified for some metal/ceramic combinations as mentioned above. The 
elastic (el) and plastic (pl) energy release rate occurring during interface fracture is 
calculated from two specimens with a difference in crack length of da = ak  -al : 
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Here σe denotes  the Cauchy stress tensor, elε&  and plε& the elastic and plastic stain 
rates, respectively. Both outer (ceramic) parts of the specimen were treated as 
purely elastic with a Young`s modulus of 390 MPa and a Poisson's ratio of 0.22.  
The middle (metal) part was modelled with an elastic-plastic constitutive law. The 
Young's modulus and the Poisson's ratio were the same for all simulations (E = 
104.9 MPa, ν = 0.397). These elastic data are adjusted to alumina and niobium, re-
spectively [5,6,12]. The plastic behaviour of the stress-strain curve of the metal 
layer is approximated by a Ramberg-Osgood function [13], which is described in 
the one-dimensional case by the following: 
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Here, n denotes the hardening exponent, σ the yield offset and σ0 the yield stress. 
This material law is nonlinear from the beginning, but for commonly used harden-
ing exponents n ≥ 5 the divergence from linearity is only slight for stresses below 
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σ0. The chosen plasticity theory was the deformation plasticity theory (for details 
see [9] and references therein), which describes strictly spoken not a plastic ma-
terial behaviour, but a nonlinear elastic material. This means, that no unloading 
criterion exists. In order to verify, that the deformation theory is useful in model-
ling four-point bending specimens, a comparison with the von Mises theory was 
performed. The obtained results are depicted in Fig. 3.62. The flow curve was im-
plemented as described by eqn. (3.26) with n = 6, σ0 = 180 MPa and α = 0.3. It is 
obvious, that the results are exactly the same and it is therefore justifiable using 
the deformation plasticity theory instead of the incremental von Mises theory. 

3.4.2 Results 

The concept of calculating the energy release rate according to eqns. (3.24) was 
verified by the following two simulations: 

• A correct calculation of the energy release rate according to eqns. (3.24) 
should use an infinitesimally small value of da, while in the simulation a fi-
nite value of da is applied. Therefore it was tested, if the used value of da is 
small enough to provide results of sufficient accuracy. This was done by per-
forming a second calculation with a difference in crack length of 2 * da. The 
results are depicted in Fig. 3.63. There is no change in the energy release 
rates, if we use 2 * da. This means that the value of da = 0.02 mm used for 
all following calculations is applicable. 

• The total energy release rate pl
C

el
C

tot
C GGG += calculated using eqns. (3.24, 

3.25) was compared with a J-integral calculation of the same specimen (Fig. 
3.64). The values are found to be identical and the J-integral method does al-
so allow a separation into elastic and plastic contributions. 
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Fig 3.62  Comparison between elastic and plastic parts of the energy release rate versus the 
external displacement of the hardmetal cylinders for the deformation plasticity theory and 
the von Mises theory used to model the metal part of the specimen. 



206      Chapter 3: Simulation of Damage and Fracture 

 
en

er
gy

 re
le

as
e 

ra
te

 [J
/m

2 ]

external displacement [μm]

total (da)
elastic (da)
plastic (da)
total (2*da)
elastic (2*da)
plastic (2*da)

1000
1200
1400
1600
1800
2000

800
600
400
200

0
0 10 3020 40 50 60 70

 
 
Fig 3.63  Comparison between energy release rate versus the external displacement of the 
hardmetal cylinders for two values of the difference in crack length used in (1). 
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Fig 3.64  Comparison of calculated total energy release rates and J-integral calculations 
 
 

Taking these results into account, further simulations were performed with va-
rying yield stress σ0. The corresponding stress-strain functions are depicted in Fig. 
3.65. For all following results the Ramberg-Osgood parameters were set to n = 6 
and α = 0.3. The thickness of e metal layer was 2mm. For each of these constitu-
tive equations the energy release rate was calculated for different values of the in-
terface strength Tn

crit. Due to the stress concentration effects, the maximum normal 
tensile stress appears at the interface edge of the specimen and at the notch, re-
spectively (compare Fig. 3.61 and 3.69). Fig. 3.66 shows the total energy release 
rate versus the interface strength for the materials with different yield stresses as 
shown in Fig. 3.67.  
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Fig 3.65  Stress-strain curves for different yield stresses σ0 (E = 104.9MPa, ν = 0.397, n = 
6, α = 0.3). 
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Fig 3.66  Total energy release rate at fracture versus interface strength calculated with the 
material behaviour of the metal layer as depicted in Fig. 3.67. 
 
 

For the reason of comparison another simulation with elastically treated nio-
bium was performed. The total critical energy release rate is also shown in Fig. 
3.68. The influence of the yield stress on this correlation is obvious. It results from 
the reduction of the developing normal tension at the interface due to plastic yield-
ing. The specimen with lower yield strength, therefore stores more energy before 
the critical value Tn

crit  for interfacial debonding is reached.  
The energy release rates were separated in elastic and plastic parts. Fig. 3.69 

shows the results for three values of σ0 . As expected, the influence of the yield 
stress σ0 on the plastic part of the energy release rate is quite strong. But also in 
the elastically dominated regime, i.e. for smaller values of the interface strength, 
where the plastic energy release rate can be neglected, we can find differences 

3.4 Interface fracture: Elastic and plastic fracture energies of metal/ceramic joints 
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between the three el
CG ~ crit

nT -relations. This effect results from small-scale yield-
ing at the crack tip. 
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Fig 3.67  Elastic and plastic parts of the energy release rate versus interface strength for 
three different values of the yield stress σ0 of the metal layer.  
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Fig 3.68  a) total, b) elastic and c) plastic energy release rate versus interface strength for 
thicknesses of the metal layer of 0.5 mm, 1.0 mm, 1.5 mm and 2 mm (0 mm refers to the 
purely elastic case). The Ramberg-Osgood parameters were σ0 = 180 MPa, n = 6, α = 0.3 
 
 

Next, the influence of the thickness of the metal layer was studied. Specimens 
with a metal layer thickness of 0.5mm, 1.0mm, 1.5mm and 2mm were simulated. 
Fig. 3.68 a) shows the total energy release rate versus the interface strength. We 
can see that the influence of the thickness nearly vanishes for thicknesses > 
1.5mm.  

For the reason of comparison a homogenous (elastic) ceramic specimen was 
simulated as well (Thicknesses between 0 mm and 0.5 mm have not been consi-
dered in this study). 

 
 
 
 

3.4 Interface fracture: Elastic and plastic fracture energies of metal/ceramic joints 
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Fig 3.69  Distributions of the εxx-component of the plastic strain tensor in the metal layer 
(see Fig. 3.61) for two different external displacements: 29 μm (a, b) and 70 μm (c, d). The 
thickness of the metal layer is 2 mm (a, c) and 0.5 mm (b, d), respectively (compare with 
Fig. 3.61). 
 
 

The behaviour of the corresponding curve in Fig. 3.68 is completely different 
from the results of the metal/ ceramic joints. Further, if we compare the elastic and 
plastic parts of the corresponding energy release rates (Fig. 3.68 b) and c) ), it can 
be seen that the influence on the elastic energy release rates also exists for thick- 
nesses > 1.5mm, but the plastic energy release rate is exactly the same for the 
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thicknesses 1.5mm and 2.0mm. This means, that the total energy release rate is 
dominated by the plastic part. 

Now the question arises, why the influence of the thickness on the plastic ener-
gy release rate vanishes for thicker metal layers. To answer this question, the de-
veloping plastic zone in the metal layer should be analysed for different thick-
nesses. In Fig. 3.69 the metal layers of two deformation states are depicted 
(external displacement = 29 μm and 70 μm, respectively) for a layer thicknesses of 
2mm and 0.5mm. For the case of the thinner layer it can be seen, that the second 
interface constrains the development of the plastic zone strongly: even for small 
deflections of the specimen the plastic zone reaches the second interface, whereas 
in the metal layer of 2mm thickness the plastic zone is able to develop in an un-
constrained manner. 

Conclusions 

The possibility of separating the energy release rates of interface cracks into elas-
tic and plastic parts is demonstrated. A variation of the yield strength in the Ram-
berg-Osgood function influenced the results strongly. The study of specimens with 
varying thicknesses of the metal layer demonstrated, that a constraint of the 
second interface on the plastic zone exists for smaller thicknesses, but vanishes for 
thicknesses >1.5mm in the case of the examined metal/ceramic compounds. 

References 

[1] Doscha H. (1987), Technische Keramik in Produktion und Entwicklung, Metall 41, p. 
502. 

[2] Elssner. G (1989), Ceramography and metallography of transition zones between ce-
ramics and metals, Prakt. Met. 26, p. 202. 

[3] Elssner G., Korn D. Rühle M. (1994), The influence of interface impurities on fracture 
energy of UHV diffusion bonded metal–ceramic bicrystals, Scripta Metall. Mater. 30, 
p. 1037. 

[4] Hao S., Schwalbe K.H., Cormec A. (2000), Effect of yield strength mis-match on the 
fracture analysis of welded joints: slip-line solutions for pure bending, Int. J. Solids 
Struct. 32, p. 5385. 

[5] Kohnle C., Mintchev O., Brunner D., Schmauder S. (2000), Fracture of metal/ceramic 
interfaces, Comput. Mater. Sci. 19, p. 261. 

[6] Kohnle C., Mintchev O., Brunner D, Schmauder S (2000), Fracture of metal/ceramic 
interfaces, in: Proc. Material Week. 

[7] ABAQUS Version 5.8, Hibbitt, Karlsson, Sorensen. 
[8] Mintchev O., Rammerstorfer F.G. (1996), Microbuckling and delamination effects on 

the compression behaviour of materials with layered microstructure, in: Proc. 8th. Int. 
Symp. on Continuum Models on Discrete Systems (CMDS8), p. 250. 

[9] Mintchev O., Rohde J., Schmauder S (1998), Mesomechanical simulation of crack 
propagation through graded ductile zones in hardmetals, Comput. Mater. Sci. 13, p. 81. 

[10] O’Dowd N.P., Shih C.F., Stout M.G. (1992), Test geometries for measuring interfacial 
fracture toughness, Int. J. Solids Struct. 29, p. 571. 

3.4 Interface fracture: Elastic and plastic fracture energies of metal/ceramic joints 



212      Chapter 3: Simulation of Damage and Fracture 

[11] Needleman A. (1987), A continuum model for void nucleation by inclusion debonding, 
J. Appl. Mech. 54, p. 525.  

[12] Available from <www.goodfellow.com>. 
[13] Ramberg W., Osgood W.R. (1945), Description of stress–strain curves by three pa-

rameters, NASA Technical Note No 902. 
 
 
 

 
 



Chapter 4: Complex, Graded and Interpenetrating 
Microstructures 

In this chapter, different methods of computational modelling of materials with 
complex microstructures, in particular, interpenetrating and graded materials are 
considered.  

In section 4.1, self-consistent matricity model is presented. This model has 
been developed to simulate the mechanical behaviour of composites with two ran-
domly distributed phases of interpenetrating microstructures. The model is an ex-
tension of the self-consistent model for matrices with randomly distributed inclu-
sions. In addition to the volume fraction of the phases, the matricity model allows 
a further parameter of the microstructure, the matricity M of each phase, to be in-
cluded into the simulation of the mechanical behaviour of composites with inter-
penetrating microstructures. The model is applied to the calculation of stress-strain 
curves and strain distribution curves of an Fe/18vol. %Ag-composite as well as to 
stress-strain curves of an Ag/58vol. %Ni-composite and its validity and superior-
ity upon previous models is demonstrated. The matricities of the phases influence 
the stress-strain behaviour mainly within the bounds between M = 0.3 and M = 
0.7. Beyond these bounds, there exists only a minor influence of matricity on the 
stress-strain behaviour. Good agreement is obtained between experiment and cal-
culation with respect to the composites' mechanical behaviour and the matricity 
model is thus found to represent well metal matrix composites with interpenetrat-
ing microstructures. Further, the mechanical behaviour of different ZrO2/NiCr 80 
20 compositions are analysed and compared with experimental findings. The mi-
crowave sintered material is found to possess a slightly dominant ceramic matrix 
for intermediate volume fractions. Its thermal expansion coefficient deviates from 
the rule of mixture. The modulus and the stress strain behaviour are simulated 
with a numerical homogenization procedure and the influence of residual stresses 
is found to be negligible. The matricity parameter describes the mutual circumven-
tion of the phases and is found to strongly control the stress level of the composite 
globally as well as locally. Finally, a graded component and a metal/ceramic bi-
material are compared for thermal as well as mechanical loading. 

In section 4.2, the methods of explicit micromechanical modelling of graded 
and interpenetrating phase materials are discussed. Special functionally graded 
elements are presented, and their application to modeling the deformation and 
damage behavior of graded hardmetals. The crack-gradient interaction depends on 
the kind of the gradient and the distance between initial cracks. A considerable ef-
fect of Co islands on cracking is observed. 
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Further, the damage evolution of composites with ductile matrix and hard da-
mageable particles is analysed numerically. It was shown that flow stress and 
stiffness of composites decrease, and failure strain increases with increasing the 
degree of gradient of the particle arrangement. The orientations of elongated par-
ticles have a strong impact on failure strain and damage growth in the composites 
reinforced with elongated or plate-like particle: whereas the horizontally aligned 
particles ensure the highest failure strain, the vertically aligned particles lead to 
the lowest and the randomly oriented particles to the medium failure strain. The 
damage growth in the SiC particles in gradient composites begins in the particles, 
which are located in the transition zone between the zone of high particle density 
and the particle-free regions.  

Finally in this chapter, a method for the reconstruction and generation of 3D 
microstructures of composites based on the voxel array data is presented.  With 
the use of the program of voxel-based 3D model generation, the deformation and 
damage evolution in interpenetrating phase composites with isotropic and graded 
microstructures is numerically simulated. It is shown that the stiffness, peak and 
yield stresses of a graded interpenetrating phase composite decrease with increas-
ing the sharpness of the transition zone between the region of high volume content 
of the hard phase and the reinforcement free region. The critical applied strain, at 
which the intensive damage growth begins, is decreasing with increasing the vol-
ume content of the hard phase of the composite.  

In order to relate the microstructures of graded hardmetals and their efficiency 
in milling applications, these materials are investigated experimentally and nu-
merically on several length scales. On the macroscale, milling tests are performed 
and a numerical model for up-milling is developed. On the mesoscale, the interac-
tion of cracks with the graded surface zones, especially large soft binder islands 
are studied. On the microscale, the influence of shape and volume of such inclu-
sions are investigated, further on, crack propagation in realistic microstructures is 
simulated.  
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 4.1. Interpenetrating phase materials: matricity model and 
its applications 

4.1.1  Matricity model approach1 

Coarse isotropic interpenetrating microstructures are often found in powder metal-
lurgically fabricated composites in the regime of 25-75% volume fraction, or re-
sult from the infiltration of a porous material with a molten metal of a lower melt-
ing point. The arrangement of the phases in most of these technical composites is 
usually random, resulting in an isotropic overall mechanical behaviour of these 
composites. Besides the volume fraction, such a material requires at least one fur-
ther parameter to describe the microstructure more closely. In this work the se-
lected further parameter is the “Matricity”, which was first introduced by Poech 
[1] for two-phase steels and later used by Soppa [2] for the characterisation of 
Ag/Ni composites. This parameter can be measured from a representative micro-
graph of a microstructure via an image analysing system and also be included in a 
finite element model which was developed for this kind of microstructure [3-6]. In 
this work the model is applied to examine the influence of microscopical residual 
stresses on the macroscopical behaviour of composites and the impact of matricity 
on these residual stresses.   

Matricity 

In the following, composites of two phases α and β are considered. Matricity is de-
fined as the fraction of the length of the skeleton lines of one phase Sα, and the 
length of the skeleton lines of the participating phases. 
 

βα

α
α SS

SM
+

=  (4.1) 

By definition, the sum of the matricities of all phases equals to one 
 

                                                           
1 Reprinted from P. Leßle, M. Dong, S. Schmauder, "Self-Consistent Matricity Model to 
Simulate the Mechanical Behaviour of Interpenetrating Microstructures", Computational 
Materials Science 15, pp. 455-465 (1999) with kind permission from Elsevier. 
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1=+ βα MM  (4.2) 

To obtain the skeleton lines of a certain phase, we must select this phase within an 
image analysing system and reduce the detected structure to a typically non-
connecting line by maintaining the topology. In Fig. 4.1 the matricities have been 
determined for a ZrO2/NiCr 80 20 cermet which was powder metallurgically fab-
ricated at the University of Dortmund [7]. The structure parameters volume frac-
tion f and matricity M have been determined to be fNiCr = 0.3 and MNiCr = 0.2. 

Matricity model 

To take both the parameters into account for the calculation of the mechanical be-
haviour of the composite, an extension of the embedded cell model [8,9] has been 
developed.  

The embedded cell model has been introduced to simulate the mechanical be-
haviour of composites with randomly distributed inclusions, where the volume 
fraction of the inclusions is the main parameter in the model. To take the matricity 
as second microstructural parameter into account, the self-consistent embedded 
cell model has been extended by a second self-consistent embedded cell model 
(Fig. 4.2). In this “matricity model” we are able to define the matricity of the 
model in the same manner as the matricity is defined in a real microstructure. First 
the single phases are reduced to skeleton lines.  

The lengths of the skeleton lines of the inclusions (Fig. 4.2, left: β; right: α) are 
zero as the inclusions are spherical and are, therefore, reduced to a point in the 
process of obtaining the matricity of the phase. 

 
 

 
 
Fig 4.1  Micrograph of a ZrO2 /NiCr 80 20 composite with 30% volume fraction of ZrO2. 
(Left: greyscale picture, right: binary image with skeleton lines.) 

 
 
The lengths of the skeleton lines Sα and Sβ in the matrices are given as the 

circumference of a circle with a diameter which is calculated as the arithmetic 
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average of the diameter of the embedded cell and the diameter of the inclusion 
phase (Fig. 4.2, left: Sα; right: Sβ). 

The diameters of the embedded cells are denominated as W1 and W2. The di-
ameters of the inclusion part of the embedded cells depend on the volume fraction 
of the inclusions and the corresponding factors W1 or W2. 

( )3
1 ββ fWD =  (4.3) 

and, analogous for inclusion α (Fig. 4.2, right) as 

( )3
2 βα fWD =  (4.4) 

Therefore, we derive the skeleton line lengths as 

( )
2

13

1

+
= β

α π
f

WS  (4.5) 

and 

( )
2

1 3

2

α

β π
f

WS
+

=  (4.6) 

By taking into account that 

1=+ βα ff  (4.7) 

 

 
 

Fig. 4.2  Matricity-model (schematic) with skeleton lines to adjust the measured parameter 
“Matricity” in the model via the factors W1 and W2. 

For the 3D case, the diameter of the inclusion b (Fig. 4.2, left) is derived as a func-
tion of W1 and the volume fraction fβ of β in this cell as the matricity M can be 
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calculated as a function of the sizes of the embedded cells and the volume fraction 
of one of the two phases, as the volume fraction of the phases is held constant in 
both parts of the matricity model 
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Adjusting matricity in the model 

As can be seen in Fig. 4.2, the volume fractions of the phases as well as the diame-
ters W1 and W2 of the embedded cells are adjustable. To achieve a matricity M in 
the model, we first realise the measured volume fraction of the phases in the 
model and then calculate the diameters W1 and W2. The corresponding diameters 
W1 and W2 are obtained by rearranging Eq. (4.9)  

( ) ( ),
1

1
11

3

3
21 +

−
+−=

ββ

β
β fM

M
fWW           W2 = 1,0  for  Mβ ≥ 0,5 (4.10) 

or 

( ) ( ),1
111

3

3
12 +

−+−=
αα

α
α fM

MfWW             W1 = 1,0  for  Mα ≥ 0,5 (4.11) 

Realisation of the adjustability of matricity by weighting factors 

If the geometrical boundary conditions are modelled at a distance of about five 
times the radius of the embedded cell, they are of almost no influence on the mod-
els' mechanical behaviour. If we take care that the boundary conditions keep re-
mote we can model the embedded cell with the surrounding composite in different 
manners (Fig. 4.3).  
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Fig. 4.3  Independence of mechanical behaviour from size variations of embedded and em-
bedding medium (schematic). 

 

 
 
Fig. 4.4  Realisation (schematic) of the adjustability of matricity by weighting factors. 

 
 

As the remote boundary conditions have almost no influence on the mechanical 
behaviour of the embedded cell it is assumed that the continuum mechanical 
stress-strain state in the embedded cell is hardly influenced as well. Taking this 
into account, a unit cell for a specific volume fraction can be used for each part of 
the matricity model. Further we can see from the almost independency from re-
mote boundaries, that it is not necessary to model the matricity as a parameter of 
the FE-mesh but it is possible to introduce the matricity adjusting weighting fac-
tors W1 and W2 only in the evaluation of the results from the inclusion type ge-
ometries. As the results have to be determined by an iterative calculation in about 
3-5 iterations, the adjusting weighting factors W1 and W2 must be introduced in 
the evaluation of all iteration steps (Fig. 4.4). 
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Calculation of stress-strain curves 

In principle, stress-strain curves of the two-phase composite are determined from 
the matricity model in the same iterative manner as it is done for the simple self-
consistent embedded cell model. In each increment the components for stress and 
strain are determined. This is done by a weighted averaging of the stress and strain 
values over all integration points of both embedded cells. The three-dimensional 
weighting is done by the “integration point volume” Vk0 of each corresponding 
Gaussian integration point, which must be multiplied by 3

1W  and 3
2W , respec-

tively, to account for the matricity effects as described above. The factors Wi are 
in the power of three as the length of the skeleton lines depend linearly on Wi but 
the embedded cell volumes depend by the power of three (for the 3D case) on Wi. 
With these considerations the stress and strain components can be calculated as 
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or more detailed (only for the stress components) 
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where k is the index of summation and 1 or 2 are the part of matricity model 
whose embedded cell is weighted by W1 or W2. 

From the stress components, the von Mises equivalent stress at each strain in-
crement is calculated as (Eqs. (4.15) and (4.16) are only valid for Cartesian coor-
dinates) 

( ) ( )322222 3 zxyzxyxxzzzzyyyyxxzzyyxx σσσσσσσσσσσσσν +++++−++=  (4.15) 

and the equivalent strain is given as 
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μ
εν +++++−++

+
=  (4.16) 

where µ is the elastic-plastic Poisson's ratio of the composite. 
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Fig. 4.5  Calculation of tangent modulus T0 by extrapolation of secant modulus values at 
zero-strain. 

Mechanical constants 

Poisson's ratio µ and tangent modulus T0 at zero strain are calculated from the ob-
tained stress and strain components σij and εij. Poisson's ratio µ is calculated from 
the context of elastic constants [10] 

 

K
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where K is the bulk modulus and E is the Young's modulus. K is defined as [10] 
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If we consider a material where the elastic modulus E equals the gradient of the 

stress-strain curve at zero strain, then we can determine the constants K and E 
from the calculated stress-strain curve. As the moduli change with changing 
strains we have to extrapolate the bulk modulus K and the tangent modulus T from 
values near zero-strain to a value at zero-strain (Fig. 4.5). 
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Yield stress 

Here the yield stress is calculated as the stress belonging to the cross point of the 
stress-strain curve and a straight line through the 0.2% strain point with the gradi-
ent that equals to the above calculated tangent modulus. The model does not in-
clude any damage parameter or failure criterion. This might lead to unrealistic 
high yield stresses for composites with dominating linear elastic material behav-
iour. 

Results and discussion 

The quality of the matricity model to simulate stress-strain curves and strain dis-
tribution frequencies especially for two ductile phases has been demonstrated in 
[3-6]. Here we compare the matricity model with other models and examine the 
influence of the matricity parameter on stress-strain curves and on the influence of 
residual stresses. 

 

 
 
Fig. 4.6  Model microstructures of regular hexagons by Siegmund et al. [11] 
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Fig. 4.7  Determination of matricity M for the hexagonal model microstructure with fβ = 0.5 
[11]. (Left: original microstructure, right: binary image with skeleton lines.) 
 

 
 
Fig. 4.8  Yield stress of α/β composite. (* = in [11], ** = in [11] calculated from [12].) 
 

Comparison to cluster parameter r 

The cluster parameter rγ (γ = α + β) is defined in [11] as 

βα

γ
γ NN

N
r

+
=  (4.19) 

where γ = α + β and Nγ is the number of clusters of phase γ. 
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Fig. 4.6 shows some model microstructures which have been calculated with 
distinguishable assumptions. To compare with the numerical yield stress results 
based on Eq. (4.19) [11] we modelled the microstructures also with the matricity 
model. To do this the matricity of the microstructures were derived by phase re-
duction (cf. Matricity) which is shown in Fig. 4.7. The comparison of the matricity 
model results with the results in [11] shows good agreement with real structure 
calculations for both models (Fig. 4.8).  

The advantage of the matricity model might be that differently sized clusters 
provide a different contribution to the influence of this cluster to the overall me-
chanical behaviour, whereas the cluster parameter model assumes that all clusters, 
independent of the cluster sizes, are equally weighted. An obvious advantage of 
the matricity model is the good agreement of calculated strain distribution fre-
quencies to experimentally obtained results (cf. [3-6]).  

Matricity and stress-strain curves 

The influence of the matricity on the overall mechanical behaviour can be shown 
by comparing the calculated stress-strain curves while keeping the volume fraction 
f of the phases constant and by varying only the matricity M of the phases (this 
means to vary W1 correspondingly for evaluating the results). A parameter study 
was made for a ZrO2/NiCr 80 20 composite where the volume fraction f of the 
phases were kept constant and the matricity M was varied between 0 and 1. This 
means that the microstructure lies in a range between a pure inclusion microstruc-
ture and a pure matrix microstructure for one phase and vice versa for the other 
phase. In Fig. 4.9, stress-strain curves are shown for two different matricities 
MZrO2 (= 0.3 and 0.4) with and without residual stresses caused by cooling down 
the material from processing to environmental temperature. Fig. 4.10 shows the 
influence of the matricity on the yield stress. The influence of matricity is decisive 
in the range between M = 0.3 and M = 0.7. Taking residual stresses into account 
we can recognise that the influence of matricity on the yield stress diminishes. 
This can be explained with the modelled isotropic hardening of the ductile NiCr 
80 20 phase, which is plastically deformed by residual stresses when acting as a 
matrix. However, no plastification is obtained when this phase acts as a pure in-
clusion and, therefore, hardly any hardening of the composite will be expected. 

Conclusion 

The influence of the parameter matricity M besides the parameter volume fraction 
f on the overall behaviour of two phase composites with coarse interpenetrating 
microstructures is clearly shown. Especially in cases, when the composite consists 
of a ductile and a linear-elastic phase, a significant influence of the matricity on 
stress-strain curves has been found. 
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Fig. 4.9  Stress-strain curves of ZrO2/NiCr 80 20 composite with fZrO2 = 0:3 and two differ-
ent matricities. (EZrO2 = 206 GPa, ENiCr 80 20  = 214 GPa, αZrO2 = 10 x 10-6 K-1, αNiCr 80 20  = 14 
x 10-6  K-1.) 

 

 
 

Fig. 4.10  Yield stress of ZrO2/NiCr 80 20 composite with fZrO2 = 0:3 and different matric-
ities M. (EZrO2 = 206 GPa, ENiCr 80 20  = 214 GPa, aZrO2 . 10 x 10-6 K-1, αNiCr8020 = 14 x 10-6 
K-1 , ΔT = -750 K.) 

It is also found that the influence of residual stresses on yield stress depends 
strongly on the volume fraction and the matricity of the ductile phase. The com-
parison with model structure calculations shows the high quality of the matricity 
model. The matricity model must be built once for each volume fraction and the 
matricity is then considered in the evaluation of the result during the iterative cal-
culation process. The model is, therefore, very simple with respect to FE meshing, 
and can be quite coarse, as the stress-strain components were evaluated as arith-
metical averages over the elements of both embedded cells. 
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4.1.2  Some applications of the matricity model2 

 
Functionally graded materials are difficult to simulate because of the lack of mate-
rial data for different compositions at different locations. The main reason for this 
situation is the non-linear dependence of elastic-plastic properties on phase com-
positions of composites. Therefore, a great deal of work has been performed in the 
recent past to overcome this problem and to estimate the properties of composites.  

The following examples are chosen to demonstrate some recent achievements 
in this respect. In [1] a micromechanical model is applied to study random and 
discrete microstructures and their interrelations with residual stresses and crystal 
plasticity effects are taken into account in differently graded FGMs with a layer 
structure. This model is compared with continuous models and their equivalence is 
demonstrated with respect to macroscopic behaviour while strong local stress and 
strain concentrations were found. The analysis of the influence of thermal stresses 
and failed particles on macroscopic stress-strain curves, based on a constitutive 
Eshelby type solution is restricted to dilute particle reinforced materials [2]. Cal-
culations of the thermo-elastic response in C/SiC composite systems showed that 
effective moduli, expansion coefficients and heat conductivities do not require de-
tailed micromechanical analyses, but can be rather derived from homogenization 
models or in the case of interpenetrating microstructures from self-consistent es-
timates [3]. Nonlinear effects have not been taken into account in this study. The 
influence of thermal residual stresses on the coefficient of thermal expansion for 
metal-matrix, ceramic-matrix and interpenetrating Al/SiC composites taking tem-
perature dependent material properties–especially of Al–into account are given in 
[4] using unit cell type FE-models. They were compared with upper and lower 
analytical bounds of composites with homogeneous phase distributions. A FE-
analysis of the macroscopic and microscopic elasto-plastic deformation due to 
thermal and mechanical axial and bending loading of layered Ni/Al2O3 composites 
with graded interfaces based on a single unit cell type model with hexagonal or 
square packing and with mesomechanical cells of the random arrangement type 
taking hundreds of hexagonal grains into account has been performed in [5]. FE-
models have been also applied in [6] for the same Ni/Al2O3 composite with and 
without graded interfaces for different specimen geometries demonstrating the re-
duction in maximum residual stresses except for the shear stresses at interface 
edges by gradation. 

However, a major drawback of most literature examples is the lack of experi-
mental comparison for the calculated thermal-mechanical properties. Moreover, 
these numerical and analytical-numerical models are rather complicated and 

                                                           
2 Reprinted from S. Schmauder, U. Weber, "Modelling of Functionally Graded Materials 
by Numerical Homogenization", Arch. Appl. Mech. 71, pp. 182-192 (2001). with kind 
permission from Elsevier. 
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typically restricted to two dimensions. In the following, another more promising 
procedure is described. 

Recently, a systematic study has been successfully performed on the strength-
ening effects of inclusion type 2D and 3D microstructures [7-10]. In this work, 
thermo-elastic-plastic properties of ZrO2/NiCr 80 20 composites and FGMs are 
predicted based on a new numerical homogenization technique [11-17] and results 
will be compared to experiments. 

Composites consisting of phases with strongly different properties have the po-
tential to be applied in new application fields as they comprise otherwise incom-
patible properties. While the deformation behaviour of inclusion-type of micro-
structures has been successfully modelled in the past for brittle fiber or particulate 
reinforced metal matrix composites [7, 8] this was not achieved until recently in 
the case of interpenetrating microstructures where both phases are connected 
throughout the material. Such microstructures are typically observed in the com-
position range of 30÷70% while inclusion type of microstructures are typical for 
dilute systems with phase volume fractions between 0÷30%. Specifically, func-
tionally graded materials can depict the full composition range in material transi-
tions. As processing techniques are nowadays available to design material transi-
tions from inclusion to interpenetrating type of microstructures, experience in 
modelling of the full composition range is still lacking. This work is intended to 
bridge this gap in the case of ZrO2/NiCr 80 20 composites where the full composi-
tional range is available from a powder-metallurgical route [18], such that com-
parison in properties and predictions can be made. 

Models 

Three models are used for the simulation of the elastic properties of ZrO2/NiCr 80 
20 composites with phases α = ZrO2 (E = 46 GPa, μ = 0.29, α = 10.3E-06) and β 
= NiCr 80 20 (E = 121 GPa, μ = 0.29, α = 17.3E-06), while the thermo-elastic-
plastic behaviour will be analysed numerically. In the case of an inclusion type of 
microstructure the self-consistent embedded cell model is applied which is de-
scribed in [7-10, 19]. 

Interpenetrating microstructures where both phases can show percolation 
throughout the material are characterized by the above introduced matricity pa-
rameter M with values between 0 and 1 describing the mutual material circum-
scription of the phases in addition to their volume fractions. The matricity model 
is based on 2D or 3D (axisymmetric) inclusions of a given volume fraction and 
with circular cross-section in the present context [11-17, 21]. Thus this model 
shows the same effect as a single model with two included composites α-β and β-
α as in the experiment, cf [14,15]. Here all calculations were performed with the 
3D (axisymmetric) version of the model. 

The model in Fig. 4.41 allows for the additional consideration of thermal resid-
ual stresses and can be used to predict the elastic properties, the thermal expansion 
coefficient and the elastic-plastic stress-strain curves for different phase arrange-
ments as well as to predict phase properties of the phases in the composite. 
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For comparison reasons the Tuchinskii model is introduced as a second model 
which allows to predict upper and lower bounds of the elastic modulus E of a 
composite with interpenetrating microstructures by the following formulae [22], 
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where Ei = Young’s modulus of phase i, fi = volume fraction of phase i (i=α, β), 
while  fβ = (3 – 2c)c² relation between volume fraction f and geometry parameter c 
(real solution between 0 and 1) 

In a third model by Pompe the calculation of the thermo-elastic constants is 
also based on the solution of an inclusion problem [23]. Due to the ellipsoidal 
shape of the inclusions the fields inside the inclusions are homogeneous and can 
be determined analytically. We assume the special case of spherical inclusions in 
this model. Interaction between the media can be considered through assumptions 
about the surrounding material. This is often realized by the effective medium 
theory (EMA). For the mean stress and strain fields self-consistency is claimed 
leading to an implicit equation system which allows for the determination of the 
effective constants. The effective values for Young's modulus, thermal expansion 
coefficient [14] as well as residual stresses [24] are then determined numerically. 

Results and Discussion 

Microscopic Results 

The matricity character M of ZrO2 has been measured and found to deviate up to 
25 % from a linear 1:1-relationship especially at intermediate volume fractions. 
This result means that typically ZrO2 represents rather the matrix than an inclu-
sion. Except when the influence of M was investigated, f=M was, therefore, em-
ployed for all values of f (Fig. 4.11). 
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Fig. 4.11  Matricity of ZrO2 vs. volume fraction of ceramic (ZrO2) in ZrO2/NiCr 80 20 
composite. 

 
 
The thermal expansion coefficient obtained using the matricity model and the 

Pompe model was determined to behave nonlinearly in a similar manner and to 
decrease with increasing volume fraction of ZrO2 (Fig. 4.12). 

 

 
 
Fig. 4.12  Thermal expansion coefficient vs. volume fraction of ceramic (ZrO2). Compari-
son between experiment, matricity model, rule of mixture and Pompe model [23]. 
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Fig. 4.13  Thermal expansion coefficient as a function of matricity parameter M = MZrO2. 
Volume fraction of ceramic fZrO2 = 40 %. 

 
 
It is interesting to note that the thermal expansion coefficient is nearly inde-

pendent on the matricity parameter M (Fig. 4.13). 
Furthermore, the elastic modulus was obtained by the Tuchinski model, the 

Pompe model and the matricity model. Upper and lower bounds of the Tuchinski 
model as well as the Pompe model were in close agreement to the matricity 
model. However, the experimental values scattered in a wide range and, therefore, 
only partly good agreement between experiment and simulation was achieved 
(Fig. 4.14). Residual stresses are not considered in the models used to calculate the 
Young's modulus.  

 

 
 

Fig. 4.14  Elastic modulus vs. volume fraction of ceramic (ZrO2). Comparison between ma-
tricity model, Tuchinskii model [22] and Pompe model [23] (no residual stresses). 
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When residual stresses are taken into account, the stress-strain curve of the 
composite calculated by the matricity model does frequently not show an initial 
elastic behaviour. In Fig. 4.15 the influence of volume fraction of ZrO2 on the 
stress-strain curves of ZrO2/NiCr 80 20 composites is studied. Strong variations in 
the plastic behaviour are found especially for fZrO2 = 30%÷60%, the regime of 
phase interpenetration. Therefore, this regime of volume fractions is relevant when 
a variation of the mechanical behaviour of the composite is required without ma-
nipulating matricity. 

Matricity plays a major role specifically at low ceramic volume fractions (Fig. 
4.16) while residual stresses are of less importance at all volume fractions. From 
this result it is obvious, that the parameter matricity provides a strong potential for 
designing the mechanical behaviour of the composite. On the other hand residual 
stresses can be of major importance with respect to failure in the phases. 

The ZrO2-phase depicts typically compressive residual stresses with a sharp 
peak value while the NiCr phase depicts tensile residual stresses with a broad wide 
distribution. This is mainly due to the fact that at low volume fractions ZrO2 is ba-
sically present as a small inclusion, thus following Eshelby's constant stress rule 
for sperical inclusions [25] while NiCr as mainly matrix phase shows a wide 
variation of stress levels as expected from inhomogeneous strains in local shear 
bands around the ZrO2 inclusions [9]. The average stresses (circumferential com-
ponent) in the phases are shifted to higher values at a higher volume fraction of 
ZrO2 (Fig. 4.17a+b) as a result of the increasing influence of the stiffer ceramic. 

 

 
 
Fig. 4.15  Stress-strain curves for several volume fractions fZrO2 of ceramic. Matricity of 
cermic phase (ZrO2) according Fig. 4.11 (with residual stresses). 
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Fig. 4.16  Stress-strain curves for a volume fraction of ceramic fZrO2 = 40 %. Variation of 
Matricity MZrO2 (with and without residual stresses). 

 

 

 
 
Fig. 4.17  Calculated distribution of circumferential residual stresses obtained with the ma-
tricity model in the ceramic (ZrO2) and metal phase (NiCr) for a volume fraction of ceramic 
fZrO2 = 20 % (a) and fZrO2 = 40% (b). 
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Fig. 4.18  Experimentally measured [24] and numerically (matricity model) analysed resid-
ual stresses in a ZrO2/NiCr 80 20 composite at several phase compositions. (D. Dantz, Ch. 
Genzel, W. Reimers, HMI Berlin) 

 
 
It is obvious that the stress distributions depict broadness due to the fact that in 

one part α surrounds β and v.v in the other part of the model. This is the reason 
also for the effect that the stresses in the low volume phase ZrO2 shows two peaks 
for fZrO2 = 40 % in Fig. 4.17b. 

Agreements between calculations and experiments for the average stress values 
in either phase are found to be rather good for both phases (Fig. 4.18) [24]. This 
fact suggests the effectiveness of the matricity model as a new homogenization 
procedure. It's superiority in predicting local surface properties have been demon-
strated recently for metal/metal composites [15]. 
 

Macroscopic Results 

The knowledge of the mechanical properties of ZrO2/NiCr 80 20 composites 
can be used by applying it to simulate functionally graded materials (FGM). The 
dependence of the macroscopic behaviour of a graded metal/ceramic composite 
can be derived by taking the local material behaviour into account. In the present 
context, locally different microstructural compositions and thus different material 
properties are considered by a layered model with different material properties in 
each layer. As a model, a bending specimen is chosen where the transition from 
the ceramic to the metal phase was realised by four layers (FGM specimen) as 
well as by a sharp interface (non-graded specimen). FE-mesh, boundary conditions 
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as well as layer subdivision of ungraded and graded specimen are shown in 
Fig. 4.19. For the FGM specimen, the matricity (and according to section 3.1, 
therefore, the property) are varied from layer to layer besides the volume fractions. 
In addition to the measured matricity value M (M~f, Fig. 4.11) three different ma-
tricities M = 0, M = 0.5 and M = 1 were assumed in the layers containing 
20%÷80% ceramic phase. In the present context, M = MZrO2 , thus M = 1 defines 
an inclusion phase with ceramic matrix. In a first step, the specimen is cooled 
down from an assumed stress-free state by 750 K in order to simulate the manu-
facturing process of the specimen. In Fig. 4.20 the residual stresses parallel to the 
layers are shown as fringe plots. As expected, the graded specimen (Fig. 4.20a) 
shows significantly smaller residual stresses compared to the non-graded speci-
men (Fig. 4.20b). A further reduction of residual stresses parallel to the layers can 
be expected from even more gradual property transitions in the graded region. 
 

 
 

Fig. 4.19  Graded (a) and non-graded (b) bending specimen. 
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Fig. 4.20  Distribution of residual stresses in a graded (a) and in a non-graded (b) specimen 
after cooling down by -750 K. Stresses parallel to the layers. 

 
 
However, the distribution of stresses perpendicular to the layers inside the 

specimen are hardly influenced by the composition of the specimen while the non-
graded composite shows stronger disturbances of the stresses at the free edge (Fig. 
4.21a+b). In a second step, the specimen is heated up to 500 °C and then loaded by 
an area load of 600 N/mm2 corresponding to a single force of 24 kN. bending 
specimen. 
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Fig 4.21  Distribution of residual stresses in a graded (a) and in a non-graded (b) specimen 
after cooling down by -750 K. Stresses perpendicular to the layers. 
 

 
By this, the behaviour of the specimen is simulated under thermal-mechanical 

loading. Fig. 4.22 shows the macroscopic force-displacement behaviour of the 
graded and ungraded it is found that the macroscopic behaviour of the bending 
specimen can be significantly influenced by the matricity character of the single 
layers. The larger MZrO2–and, therefore, the more metallic phase is circumvented 
by ceramic phase–the higher the stiffness of the bending specimen. Interestingly, 
the ungraded metal/ceramic bending specimen shows a similar macroscopic stiff-
ness as compared to the graded specimen with measured matricities, although the 
stress jumps at the layer interfaces are much smaller in the FGM material. Gener-
ally, the macroscopic mechanical behaviour of the bending specimen is strongly 
influenced by the matricity parameter. 

 

 
 
Fig. 4.22  Deflection behaviour of a graded and a non-graded (ceramic/metal) specimen. In-
fluence of Matricity MZrO2 
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Conclusions 

While the numerical self-consistent embedding cell technique allows for taking 
into account for microstructures with randomly arranged inclusions, the matricity 
model is a sophisticated improved homogenization technique which allows for 
modelling interpenetrating microstructures. This allows for designing microstruc-
tures as well as graded composites, while the proof for manufacturing these mi-
crostructure is still to be brought. 
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4.2 Graded materials: mesoscale modelling 

4.2.1  Multilayer model and functionally graded finite elements: 
application to the graded hardmetals3 

 
Tungsten carbide-cobalt hardmetals (WC/Co) are the most important cutting tool 
materials in modern technology. High hardness and wear resistance on the one 
hand side as well as high strength and chipping resistance on the other hand make 
them superior to high speed steels and ceramics [1, 2]. 

Coating the inserts with thin hard layers (TiN or TiC) by chemical vapor depo-
sition yields a longer edge life in comparison to uncoated inserts. However, resid-
ual stresses appear in the tool as a result of cooling after the coating process which 
may cause initial cracks in the coating [3-7]. A tough surface zone underneath the 
coating with a high crack resistance prevents crack growth into the tool. Espe-
cially, Co enriched functionally graded surface zones provide an improved crack 
resistance, Fig. 4.23. Therefore, cracks nucleated in the coating are frequently ar-
rested in the ductile binder [8]. Additional Co striations in the gradient close to the 
surface ensure that cracks arrest before their length becomes critical. 

Real structure modelling is much too expensive and time consuming for 
WC/Co hardmetals. On the other hand, assuming the gradient zone as a homoge-
neous layer will not reflect the real material behavior. Therefore, a mesomechani-
cal model has been developed and is applied to simulate different graded surface 
zones in hardmetals. 

Mesoscopic model 

The linear elastic model presented in this section includes the variation of material 
properties in the coating, gradient zone and substrate. Isotropic material behavior 
can be assumed for the coating and the substrate. In the gradient zone the material 
data are considered as functions of the distance from surface. 

This feature can be approximated by a multilayer model where constant mate-
rial data are assumed for layers of finite thickness 

In the case of finite element modelling, the finite element mesh has to be gener-
ated with respect to such layers. Each layer represents a material with constant 
properties. All problems of discontinuity at layer interfaces are introduced artifi-
cially by such a model. 

                                                           
3 Reprinted from J. Rohde, S. Schmauder, G. Bao, "Mesoscopic Modelling of Gradient 
Zones in Hardmetals", Computational Materials Science 7, pp. 63-67 (1996). with kind 
permission from Elsevier 
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In this work, a new approach is adopted: functionally graded elements have 
been developed which allow assigning different material properties to each Gaus-
sian integration point. Thus, the gradient behaviour is approximated in each ele-
ment which prevents from restrictions with respect to mesh generation. A high ac-
curacy of results can be achieved even with coarse meshes. The mechanical 
behavior of the gradient is better represented by a functionally gradient model 
compared to the multilayer model (Fig. 4.24). 

Three hardmetal grades with various gradient zones have been investigated [6], 
such as: 

• The grade yFree contains a Co enriched zone, free of cubic carbides. The 
material properties are considered as cubic functions of the distance from 
the surface. 

• The grade CoStri contains a Co enriched zone with additional Co stria-
tions. Firstly, the thermo-elastic data of this grade are considered as con-
tinuous linear functions; in a second model the striations are taken into 
account. The striations are modelled as surface parallel layers of 1-2 µm 
thickness with the material data of Co.  

• The grade Conv is a conventional hardmetal without modified surface 
zone which is investigated for comparison reasons. 

The functions which have been used for the Young`s modulus are shown in 
Fig. 4.25. 
 
 

 
 

Fig. 4.23  Model of coated hardmetal tool with gradient zone. 
 

 
 
 

 
 
 
 

Fig. 4.24  (a) Multilayer model and (b) functional gradient model (using functionally 
graded elements). 

 

(a) 

(b)
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Fig. 4.25  Relative Young’s modulus as function of the depth in the gradient zone for the 
three grades. 

 

Crack / gradient interaction 

A mesomechanical model (Fig. 4.26) with equally spaced multiple cracks of 
length a and the distance 2L is considered. The thickness of the coating is t, the 
thickness of the gradient zone is designated as h and that of the substrate as H. The 
variable z describes the depth in the graded zone, the material data are functions of 
z; Young’s modulus E(z) and Poisson’s ratio υ(z). 
The model is loaded due to a remotely applied uniform strain ε0, perpendicular to 
the cracks. The energy release rate G.T is calculated for systematically varied 
crack lengths between t and t + h. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 4.26  Mesomechanical model 
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The average stress in the untracked model is given as 
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The energy release rate G , normalized by the square of the average stress σ 
and the Young’s modulus of the substrate Es as well as the thickness of the gradi-
ent zone h results in a dimensionless function of geometric and material data rela-
tions. E(a) denotes Young’s modulus at a distance z = a from the surface and EC 
that of the coating. Fig. 4.27 shows a comparison of ψ for various gradient zones. 
The differences in energy release rates are directly related to the elastic properties 
in each grade (cf. Fig. 4.25). 
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Therefore, the energy release rate in grade CoStri is much lower than in the 
conventional grade in the first half of the gradient zone beneath the coating while 
minor differences between all grades are found for longer cracks. Moreover, the 
driving force of short cracks (0<(a-t)/h<0.35) is dominated by their proportionality 
to crack length a. 

 

 
 

Fig. 4.27  Camparison of different grades 
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Fig. 4.28  Systematic variation of the Young’s modulus in the graded zone. 
 
 
A parametric study of the dependence of T on E(z) is shown in Figs. 4.28 and 

4.29. The Young’s moduli are considered as linear functions within the graded 
zone where the values directly at the coating/gradient interface are 20% higher, 
equal, 20% lower and 60% lower compared to the substrate, Fig. 4.28. It can be 
seen that the differences in the normalized energy release rates depend non-
linearly on the differences of the elastic data, Fig. 4.29. 

More importantly, the energy release rate was found to be an increasing func-
tion of crack spacing L/h (Fig. 4.30) 

 

 
 

Fig. 4.29  Comparison of different graded zones with linear variation of elastic data. 
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Fig. 4.30  Comparison of different crack spacings. 
 
 
For large crack spacings (L/h ≥ 10), the crack driving force converges to an as-

ymptotic maximum value, ψL/h=10. In the case of thin coatings only few pre-cracks 
are expected. Thus, the energy release rate of these surface cracks under mechani-
cal loading is simply described by ψL/h=10. For all grades, ψL/h=10 is a linear function 
of the crack length, where the abscissa values are identical and the slope depends 
non-linearly on the variation of the elastic data but nearly linearly on the differ-
ences of the Young’s moduli just beneath the coating (Fig. 4.31). 

 

 
 

Fig. 4.31  Threshold of the normalized energy release rate for different grades. 
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Fig 4.32  Influence of striations 
 
 
Additional Co striations in the gradient zone underneath the coating may 

strongly influence the fracture fracture behavior of the materials under considera-
tion. The normalized energy release rate increases dramatically as the crack ap-
proaches the striation and decreases rapidly inside the Co, Fig. 4.32. Since the 
value of T reaches a pronounced minimum inside the striations, cracks will proba-
bly arrest inside the Co striations. Moreover, plasticity effects may consume addi-
tional fracture energy and thus result in further beneficial effects with respect to 
cracking of graded hardmetals. The influence of thermal residual stresses from the 
coating process has been recently shown to effect more initial cracking than crack 
propagation [9]. 

Conclusions 

A mesomechanical model of a coated hardmetal insert with a tough gradient sur-
face zone was set up which considers material properties as functions of the dis-
tance from the surface. For numerical calculations with the finite element method 
functionally graded elements have been developed to adequately describe the con-
tinuously varying material properties in the gradient zone. 

Residual stresses resulting from cooling after coating deposition may cause ini-
tial cracks in the coating perpendicular to the surface of the material. The 
crack/gradient interaction has been investigated for different types of gradient 
zones and different crack spacing in the case of mechanical loading. A non-linear 
dependence was found between the elastic data and the energy release rate. Crack 
spacing has an important influence on the crack driving force for dense crack pat-
terns. For widely separated initial cracks the energy release rate reaches a thresh-
old at L/h ≥ 10. This threshold was shown to be a linear function of the crack 
length and possesses a predictable slope for a wide range of gradient properties. 
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The influence of additional Co striations in the gradient zone on the mechanical 
behavior has been found to be beneficial in our initial elastic calculations. 
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4.2.2  Graded multiparticle unit cells: damage analysis of metal 
matrix composites4 

 
The purpose of this part of our work is to investigate the effect of microstructures 
of functionally graded, SiC particle reinforced Al composites on the strength and 
damage resistance of the materials using the computational testing of composites 
with different artificially designed graded microstructures. The gradient compo-
sites with aluminum matrix are used, for instance, in electronic packaging indus-
try, for brake rotor assemblies in automobile industry, as armor materials, etc. 

In order to study the microstructure-strength relationships of graded Al/SiC 
composites, a series of numerical mesomechanical experiments was conducted. In 
the framework of the computational testing of the composites with different (arti-
ficially designed) graded microstructures, the tensile stress-strain curves, micro-
crack density in particles versus applied strain curves, and stress and damage dis-
tributions at different stages of loading were determined and compared. It was 
shown that the flow stress and stiffness of composites decrease and failure strain 
increases with increasing the gradient degree (i.e., when the particles become 
more localized in some regions of the material). The orientations of particles have 
an impact on failure strain and damage growth in the composites reinforced with 
elongated or plate-like particles: whereas the horizontally aligned particles ensure 
the highest failure strain, the vertically aligned particles lead to the lowest and the 
randomly oriented particles to the medium failure strain.  

Short literature review: Modeling of gradient composite materials 

The problems of the computational analysis of functionally gradient materials and 
the optimal numerical design of FGMs have attracted a growing interest of scien-
tific community in last decades. Many authors studied the deformation and 
strength of the gradient materials using the analytical and numerical microme-
chanical methods [1-3]. 

One of the classical approaches to the analysis of the strength and stiffness of 
FGMs is based on the rule-of-mixture. So, Hirano et al. [4] used the rule-of-
mixture and the fuzzy set model of the transition from the region of high content 
of the filler to the matrix to develop an inverse design procedure for the determi-
nation of the synthesis method for required properties of FGMs.  

Zuiker and Dvorak [5,6] generalized the Mori-Tanaka method of the estimation 
of overall properties of statistically homogeneous composites to linearly variable 
overall and local fields. They have shown that the linear and constant field ap-
proaches „provide different estimates of overall properties for small representative 
volumes, but nearly identical estimates for large volumes“. 

                                                           
4 Reprinted from L. Mishnaevsky Jr., Functionally gradient metal matrix composites: 

numerical analysis of the microstructure-strength relationships, Composites Sci. & 
Technology 66/11-12, pp. 1873-1887 (2006) with kind permission from Elsevier 
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Buryachenko and Rammerstorfer [7] simulated FGMs as a linear thermoelastic 
composite medium with elliptical inclusions, arranged in a way that the concentra-
tion of the inclusions is a function of the coordinates. They used a generalized 
“multiparticle effective method”, developed by Buryachenko [8], and assumed 
that the effective field near the inclusion is homogeneous. Considering the joint 
actions of nonlocal effects, caused by the inhomogeneous inclusion number densi-
ty and inhomogeneous average applied stress and temperature fields, and taking 
into account the binary interaction effects of the inclusions, Buryachenko and 
Rammerstorfer derived a general integral equation for the functional gradient 
composite, and analyzed the boundary layer and scale effects in this case.  

Reiter, Dvorak and Tvergaard [9] developed a micromechanical FE model of 
graded C/SiC composites consisting of up to thousands inclusions. In the simula-
tions, planar gradient arrangements of hexagonal inclusions with a linear volume 
gradient, and different transitions between the phases (i.e., microstructures with a 
distinct threshold between two matrix phases, with the sceletal transition zones, 
and mixed microstructures) were considered. Further, they presented the FGM as 
a number of piecewise homogeneous layers, and determined the properties of the 
layers using the Mori-Tanaka and self-consistent methods. It was shown that the 
averaging methods can be well used to characterize the graded materials in the 
framework of the model of piecewise homogeneous layers.  

Weissenbek et al. [10] studied the elasto-plastic deformation due to thermal and 
mechanical loading of layered metal-ceramic Ni-Al2O3 composites with composi-
tionally graded interfaces, using the finite element method, as well as analytical 
models (mean-field approach involving an incremental Mori-Tanaka analysis and 
the rule-of-mixture approximation). Planar geometries with perfectly periodic ar-
rangements of the constituent phases were considered using the square-packing 
and hexagonal-packing unit cell formulations for the graded material. Then, unit 
cells, containing large numbers of randomly placed microstructural units of the 
two phases were used. It was found that square-packing arrangements provide the 
best possible bounds for the thermal strains and coefficient of thermal expansion 
of the graded multilayer, among the different unit cell models examined. 

Becker Jr. et al. [13] used the nonlocal brittle fracture model (Ritchie–Knott–
Rice (RKR) fracture model), based on the Weibull statistics, to analyze the frac-
ture initiation (“first activated flaw”) near a crack in FGMs. The dependencies of 
the initiation fracture toughness (i.e., the stress-intensity factor that will result in a 
stated first failure probability) on the phase angle of crack tip as well as on the pa-
rameters of the Weibull law, were determined using FEM. Becker Jr. et al. dem-
onstrated numerically and analytically that  the gradient in Weibull scaling stress 
leads to a decrease of initiation fracture toughness, and that „gradients normal to 
the crack result in a crack growing toward the weaker material“. It was shown that 
the distribution of damage near a crack tip depends strongly on Weibull modulus: 
for a high Weibull modulus, “failure is dominated by the very near-tip parameters, 
and effects of gradients are minimized. With low m, distributed damage leading to 
toughening can be exaggerated in FGMs.“ 

Cannillo et al. [14] used the public domain, image-based FE software OOF and 
the probabilistic model of brittle fracture to study the crack growth in graded 
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alumina-glass. They analyzed the effect of stochastic placement of the second 
phase on the hardness and toughness of the material. The variations of the damage 
parameter versus applied strain curves for different random realizations of the mi-
crostructures are determined. 

An advanced 3D model of FGMs was developed by Gasik [15,16]. The model, 
which represents a FGM with “chemical” gradient as an array of subcells (local 
representative volume elements) and was implemented as own software, allows to 
calculate elastic and thermal properties of the composite.  

On the basis of the above review, one may classify the models of strength and 
reliability of graded materials as follows. One group of works generalizes and 
pushes the limit of analytical micromechanical models, developed initially for 
non-gradient materials (rule-of-mixture, Mori-Tanaka method, multiparticle effec-
tive method [8]). Another group is based on the methods of numerical experiments 
using multiparticle unit cells and FEM. The effects of different transition zones 
between the phases, the stochastic placement of the second phase, mechanical and 
fracture properties (as Weibull parameters), residual stresses and strains, as well as 
applicability limits of different methods and models were studied.  

In this work, we use the mesomechanical FE simulations of the deformation 
and damage evolution in different microstructures of graded composites in order 
to investigate the microstructure-strength relationships of graded Al/SiC compo-
sites, and to develop recommendations for the improvement of the composite 
properties.   

Microstructure design, mesh generation and material properties 

Microstructure design and mesh generation 

In order to study the effect of the microstructures of materials on the deformation 
and fracture behavior, the microstructure of the material under consideration 
should be varied in the required way, so that both the necessary range of structure 
variation is ensured and most of the interesting cases are considered. This can be 
done, if microstructures of the considered material are designed artificially, and 
must not be taken from a real material. The strategy of the numerical testing of the 
artificial designed microstructures was pursued in this work. 

Multiparticle unit cells with many round or elliptical particles, arranged with 
different gradients, were designed and meshed using two-dimensional version of 
the program “Meso3D”, developed by the author [17,18]. The graded distributions 
of the particles were generated as follows. The X-coordinates of the particle cen-
ters were calculated using the uniform random number generator, whereas the Y-
coordinates of the particle centers were calculated as random values distributed by 
the Gauss law. The mean values of the corresponding normal distribution of the 
coordinates of particle centers were assumed to be the Y- coordinate of the upper 
boundary of the box. Fig. 4.33 shows schematically the design of such microstructures. 
The standard deviations of the probability distribution of the distances between 
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the upper boundary of the cell and the particle center were varied, from very small 
standard deviation (0.5 mm in the cell of 10 mm height) (highly gradient arrange-
ments) to the deviations comparable with the box size (15mm) (which correspond 
to the fast uniformly random particle arrangements. The reciprocal of the value of 
the standard deviation of the distance of the particle centers from the upper boun-
dary of the cell will be called “degree of gradient” further. Therefore, the micro-
structures with a high “degree of gradient” will have a much localized type of par-
ticle arrangement; whereas the low “degree of gradient” means that the particles 
are arranged almost homogeneously. The type of microstructure will be designat-
ed here by its standard deviation: for instance, “grad3” means a graded micro-
structure with the standard deviation 3 mm. 

The ellipsoidal particles with different aspect ratios were oriented randomly, or 
aligned vertically and horizontally.  

The generated microstructures were meshed with the TRIA6 triangular ele-
ments. Each model contained approximately 12000 finite elements. The procedure 
of the microstructure and mesh design is given in more details elsewhere [17-19]. 
 
 
 
 

 
 

 
 

 
 

 
(a) 

    
(b) 

Fig 4.33  Schema of the design of artificial gradient microstructures (a) and some examples 
of the generated microstructures with different degrees of gradient (b) 

Finite element model and material properties  

Squared unit cell of the sizes 10 x 10 mm, which contained 100 round or elon-
gated SiC, was subject to the uniaxial tensile displacement loading, 2.0 mm. The 
nodes at the upper surface of the box were connected, and the displacement was 
applied to only one node. The uniaxial tensile response of each microstructure was 
computed by the finite element method, using the plain strain model. The FE 
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meshes of the generated microstructures of the composites were generated with 
the use of the program “Meso3D” [17], and commercial code MSC/PATRAN. 
The simulations were done with ABAQUS/Standard. 

The SiC particles behaved as elastic isotropic damageable solids, characterized 
by Young modulus EP = 485 GPa, Poisson’s ratio 0.165 and the local damage cri-
terion, discussed below. The Al matrix was modeled as isotropic elasto-plastic 
damageable solid, with Young modulus EM = 73 GPa, and Poisson’s ratio 0.345. 
The experimental stress-strain curve for the Al matrix was taken from [14,18], and 
approximated by the deformation theory flow relation (Ludwik hardening law): 
σy=σyn+hεpl

n, where σy -the actual flow stress, σyn - the initial yield stress, and εpl- 
the accumulated equivalent plastic strain, h and n - hardening coefficient and the 
hardening exponent. The parameters of the curve for the matrix were as follows: 
σyn = 205 MPa, h = 457 MPa, n = 0.20. The volume content of SiC particles was 
taken 10 %, 

As output parameters of the numerical testing of the microstructures, the effec-
tive response of the materials, the microcrack density in particles versus the far-
field strain curves and the damage distribution were determined. The far-field ap-
plied strain at which many particles fail and the falling branch of the stress-strain 
curve begins will be called “failure strain” hereafter.  

 

Damage Simulation and Critical Parameters 

The micromechanisms of damage evolution in Al/SiC composites under mechani-
cal loading can be described as follows: first, some particles become damaged and 
fail (in the case of relatively large particles) or debond from the matrix (for small-
er particles); after that, cavities and voids nucleate in the matrix (initially, near the 
broken particle), grow and coalesce, and that leads to the failure of the matrix li-
gaments between particles, and finally to the formation of a macrocrack in a vo-
lume [20-23].  

The criteria and conditions of damage and local failure of SiC and Al phases, 
which were used in our simulations of damage and fracture of the composite, were 
taken from literature data, mainly, from the research on the damage parameter 
identification for Al matrix in Al/SiC composites carried out by J. Wulf [22,23], 
and the investigations of particle failure carried out by Derrien et al. [21]. 

Wulf [22,23] studied experimentally and simulated numerically damage growth 
and fracture in real microstructures of Al/SiC composites. By comparing simu-
lated and real crack path, and simulated and experimentally observed force-
displacement curves, he determined the correct criterion and the critical values for 
the local void growth and failure in matrix. According to Wulf [23], finite-element 
simulations with this damage parameter (called in [25] and hereafter Rice/Tracey 
damage indicator) produced excellent results for Al/SiC composites: both crack 
path in a real microstructure of a material and the force-displacement curve were 
practically identical in the experiments and simulations. According to Fischer et 
al. [25], who reviewed different damage criteria and carried out the parameter stu-
dies, the results of their calculations were “in surprisingly good agreement with 



4.2 Graded materials: Mesoscale modelling      253 

experimental observations” as well. The critical value of the damage indicator, ve-
rified by Wulf, is Dcr = 0.2.  

A possible alternative to the Rice-Tracey damage indicator for the simulation of 
crack growth in Al matrix is the approach based on the constitutive equations for 
porous plasticity developed by Gurson [26] and adapted to practice by Tvergaard. 
According to Geni and Kikuchi [27], the simulations with the Gurson model give 
results which are very close to the experimental data as well. Good results can be 
obtained by using nonlocal version of the Gurson model [28]. 

In our simulations, the Rice-Tracey damage indicator was used as a parameter 
of the void growth in the Al matrix.  

To model the damage and local failure of SiC particle, the criterion of critical 
maximum principal stress in the particle material was used. According to [21], the 
SiC particles in Al/SiC composites become damaged and ultimately fail, when the 
critical maximum principal stress in a particle exceeds 1500 MPa. This value was 
used in our simulations as a criterion of damage of SiC particles as well. 

The ABAQUS Subroutine User Defined Field (USRFLD), which allows to si-
mulate the local damage growth in both phases of Al/SiC composites as a weaken-
ing of finite elements, was developed. In this subroutine, the phase to which a giv-
en finite element in the model is assigned, is defined through the field variables of 
the element. Depending on the field variable, the subroutine calculates either the 
Rice-Tracey damage indicator (in the matrix) or the maximum principal stress (in 
particles). If the value of the damage parameter or the principal stress in the ele-
ment exceeds the corresponding critical level, the field variables of the element is 
changed, and the stiffness of the elements is reduced. The Young modulus of this 
element is set to a very low value (50 Pa, i.e., about 0.00001% of the initial value). 
The critical level of the maximum principal stress can be either a constant value, 
or a random value with a pre-defined distribution. The numbers of failed elements 
are printed out in a file, which can be used to visualize the calculated damage dis-
tribution. 

Finite Element Simulations and Results 

Damage evolution in graded composites and the effect of the degree of 
gradient  

The purpose of this part of the investigation was to clarify how the degree of gra-
dient influences the strength and damage evolution in the composites. The defor-
mation and damage evolution of Al/SiC composites with gradient SiC particle ar-
rangements (with different degrees of gradient) were simulated numerically.  

As discussed above, the gradient degree of a particle arrangement is determined 
by the standard deviation of the normal probability distribution of the distances 
between the Y-coordinates of the particle centers and of the upper boundary of 
the cell. Since the X-coordinates of particles are generated from a pre-defined 
random number seed parameter (idum) (which should ensure reproducibility of the 
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simulations), variations of this parameter lead to the generation of new realiza-
tions of microstructures with the same gradient. Many graded microstructures with 
different standard deviations of the distributions of Y-coordinates (which ensured 
different gradient degrees) and with different random number seed parameter for 
random X coordinates were generated, meshed and tested. Figure 4.33b shows 
several examples of the generated microstructures. At this stage of work, only 
round particles were considered. Fig. 4.34 shows some typical tensile stress-strain 
curves and the fraction of failed elements in the particles plotted versus the far-
field applied strain for the graded particle arrangements with different degrees of 
gradient.  

Table 4.1 gives the critical strains, as well as statistical parameters of the mi-
crostructures (averaged distances between nearest-neighbor particles, NND, and 
the statistical entropy of the nearest neighbor distances). One can see that the gra-
dient degree correlates with the averaged nearest neighbor distances: the lower 
degrees of gradient lead to the higher average nearest neighbor distances. No cor-
relation between the degree of gradient and the statistical entropy of NND was 
found. 

Figure 4.35a shows the failure strain (critical applied strain) plotted versus the 
degree of gradient in the composites. Figure 4.35b shows the flow stress of the 
composite (at the far-field strain u = 0.15) as a function of the gradient degree.  

 

 
(a) 
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Fig 4.34  Tensile stress-strain curves (a) and the fraction of failed elements in the particles 
plotted versus the far-field applied strain (b) for the graded particle arrangements with dif-
ferent degrees of gradient.  
 
 

It is of interest that the flow stress and stiffness of composites decrease with in-
creasing the gradient degree. Apparently, the more homogeneous is the distribu-
tion of hard inclusions in the matrix, the stiffer is the composite. If the particles 
are localized in one layer in the composite, the regions with low particle density 
determine the deformation of the material, and that leads to the low stiffness. 

One can see from Figure 4.34b that all the microstructures have rather low 
damage growth rate at the initial stage of damage evolution. At some far-field 
strain (called here “failure strain”), the intensive (almost vertical) damage growth 
takes place and the falling branch of the stress-strain curve begins. For all the 
graded microstructures, the failure strain is higher than for the homogeneous mi-
crostructures. 

 
(b) 

 

 
(a) 
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Fig 4.35  Failure strain (a) and flow stress of the composite (at the far-field strain u=0.15) 
(b)  plotted versus the degree of gradient in the composites.  

 
 
Failure strain of composites increases with increasing the gradient degree.  
Figure 4.36 shows the von Mises stress distribution in a highly gradient (grad3) 

microstructure. One can see that the stresses are lower in the low part of the mi-
crostructure (particle-free region), than in the particle-rich regions. If two particles 
are placed very closely one to another, the stress level in the particles is much 
higher than in other particles, especially if these particles are arranged along the 
gradient (vertical) vector. Then, the stress level is rather high in particles which 
are located in the transition region between the high particle density and particle-
free regions. One could expect that these particles begin to fail at the later stages 
of loading, and that was observed in the damage simulations indeed. Figure 4.36b 
shows the damage distribution in the particles and in the matrix (grad3 microstruc-
ture, far-field strain 0.29). That the particles begin to fail not in the region of high 
particle density but rather in the transition region between the particle-rich and 
particle-free regions, is similar to our observations for the case of clustered par-
ticle arrangement: in the case of clustered particle arrangement, the damage begins 
in the particles which are placed at the outer boundaries of clusters [18]. One can 
see from Figure 4.36b that the damage in matrix begins near the damaged par-
ticles, or between particles which are arranged closely in the direction of gradient 
vector.  

Figure 4.37 shows the mechanism of the damage formation in the composite, 
observed in our simulations: the void growth begins near the failed particles, and 
the damaged area expands in the direction to the nearest damaged particle. This 
mechanism has been observed experimentally as well [20,21].  

To verify the numerical results related to the influence of the degree of gradient 
on the stiffness and failure behavior and obtained in this section, we use the fol-
lowing analytical model. The gradient material is represented as a two-layer ma-
terial (Figure 4.38). 

 
(b) 
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(a) 
 

 
 
(b) 
 

Fig 4.36  Von Mises stress distribution in a highly gradient (grad3) microstructure (a) and 
damage distribution in the particles and in the matrix (grad3 microstructure, far-field strain 
0.29). 
 

 
(a) 
 

Fig 4.37  Mechanism of void initiation near a failed particle (a) and of the expansion of the 
damaged area, observed in the simulations. 
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The Young modulus of the gradient material is calculated using the Reuss 
model. The upper layer, which in fact represents the region of the gradient compo-
site with the high particle density, is taken here as a homogeneous material. The 
thickness of this upper layer is equal to the thickness of the region with the high 
particle density. The lower layer represents the particle-free regions of the compo-
site. The degree of gradient of microstructures in this model is characterized by 
two parameters: the thickness and the Young modulus of the upper layer (i.e., of 
the highly reinforced region of the gradient composite). A highly graded material 
(like gradient 1, at Figure 4.33) is represented in the framework of this model as a 
bilayer with thin and hard upper layer, and the lower layer with the properties of 
the matrix, whereas a material with low gradient degree is considered as a bilayer 
with a thick upper layer, which properties are rather close to the properties of the 
matrix. Since the total amount of particles in the cell is assumed to be constant, the 
volume content of the SiC particles in the upper layer is inversely proportional to 
the layer thickness. The degree of gradient can be characterized in this model by 
the ratio of the cell size to the thickness of the upper layer. In [14], the effect of 
the volume content of SiC particles the on the flow stress and stiffness of Al/SiC 
composites was analyzed. Approximating the results from [14], one can obtain the 
following relationship between the Young modulus of the composite and the vo-
lume content of SiC particles: 

 

Eup =a+b* VC, (4.23)

 
where Eup – Young modulus of the Al/SiC composite (in this case, of the “up-

per layer” material) (in MPa), VC – volume content of the SiC particles, a and b – 
regression coefficients, a= 4.25*104 MPa, b=242.1 MPa. Assuming that the aver-
age volume content of SiC particles in the upper layer is 50%, if the thickness of 
the upper layer is 0.1 (i.e., 10% of the total height of the cell), one obtains the rela-
tionship between the thickness of the region of the cell with the high particle den-
sity (i.e., of the upper layer) and the volume content of SiC particles in this layer: 

 

wup=0.05/VC (4.24)

Substituting these formulas into the Reuss formula for the Young modulus of the 
bilayer,  
 

E=1/[(wup*l/Eup)+(l2-wup*l)/Ematr], (4.25)

where l –width of the cell, Eup and Ematr – Young modulus for the highly reinforced 
part (upper layer) and the matrix, one can determine the Young modulus of the 
composite as a function of the degree of gradient (i.e., the ratio l/wup).  
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Fig. 4.38  The model of a gradient material as a bilayer (highly graded and almost homoge-
neous composites composite) (a) and the normalized Young modulus of the composite plot-
ted 

 
Table 4.1  
Critical (failure) strains and statistical parameters of some graded microstructures 
 Failure strain Flow stress  

(at u = 0.15 mm)
NND SENND 

Grad1 0,038 515,49 0,44 0,83 
Grad2 0,025 515,59 0,48 0,90 
Grad3 0,028 517,07 0,49 0,36 
Grad5 0,033 518,01 0,54 0,54 
Grad6 0,030 519,01 0,55 0,54 
Grad8 0,030 520,26 0,58 0,75 
Grad12 0,025 521,66 0,58 0,43 
NND- average nearest-neighbor distances, SENND- statistical entropy of the nearest 
neighbor distances 

 

 

 

 

 

a 

 
(b) 
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Figure 4.38b shows the normalized Young modulus of the composite (E/Ematr) 
as a function of the degree of gradient l/wup. One can see that the stiffness of the 
composite decreases with increasing the degree of gradient of the composite. Fur-
thermore, it was shown in [14], that the failure strain of a SiC particle reinforced 
Al composite is inversely proportional to the stiffness of the composite. Taking in-
to account this result and Figure 4.38b, one can conclude that the degree of gra-
dient has the following effect of the failure strain of composites: the failure strain 
increases when the gradient degree of the composite increases and the particles are 
highly localized in a layer. This result, obtained with the use of the simple analyti-
cal model, confirms our results, obtained in the simulations (Figure 4.35).  

Effect of the shape and orientation of the elongated particles on the 
strength and damage evolution: non-graded composites  

In many biomaterials, as nacre, teeth and bones [29-32], one may identify the fol-
lowing type of microstructure at micro- and nanolevel: staggered gradient ar-
rangement of platelets or elongated mineral particles. The materials, which have 
such microstructures, show rather high damage resistance and strength, and it has 
been shown that the high performances of the biomaterials can be attributed to this 
kind of microstructure [30-32]. That is why the effect of the arrangement, shape 
and orientation of elongated or platelet-like particles is of especial interest for us.  
At this stage of the work, the effect of the arrangement of elongated particles, their 
shapes (aspect ratio) and orientations on the effective response and damage beha-
vior of graded and homogeneous composites was studied numerically.  

 

  
a) b) c) d) 

Fig. 4.39. Examples of the designed microstructures with elongated particles. 
 
 
The following microstructures of composites were generated and tested: com-

posites reinforced with elongated particles (aspect ratios 2. and 3.33), aligned ho-
rizontally and vertically, and oriented randomly, with graded and homogeneous 
arrangements. Figure 4.39 shows some examples of the designed microstructures. 

First, consider non-graded microstructures with elongated reinforcing particles, 
with different aspect ratios and orientations of particles. Figure 4.40 shows the 
stress-strain curve and the damage-strain curves for the non-graded microstruc-
tures with different orientations of particles (aligned vertically and horizontally, 
and randomly oriented). One can see from Figure 4.40, that the failure strain of the 
composites with elongated particles increases in the following order: vertical 



4.2 Graded materials: Mesoscale modelling      261 

aligned < randomly oriented < horizontal aligned particles. The failure strain of 
the microstructures with round particles is always higher than that for the elon-
gated particles.  

Then, let us consider the effect of the aspect ratio of the particles on the 
strength and failure strain of the composite. Figure 4.41 shows the stress-strain 
curve and the damage-strain curves for the non-graded microstructures with dif-
ferent aspect ratios of particles (where rr = smaller particle radius divided by big-
ger particle radius, rr = 0.3, 0.5, 0.7 and 1.). It can be seen that the higher is the 
aspect ratio of particles, the higher (slightly) are the flow stress and stiffness of the 
composites. An increase in the value of rr by 0.2 (0.3 -> 0.5, or 0.5 -> 0.7) (i.e., an 
increase of the aspect ratio by 40…60%) leads to an increase of the flow stress by 
1.4 %. The failure strain decreases with increasing the aspect ratio of the particles: 
when the value of rr increases by 0.2 (0.3 -> 0.5, or 0.5 -> 0.7, what corresponds, 
again, to the increase of the aspect ratio by 40…60%), the failure strain increases 
by 13%.  

 
Fig. 4.40  Stress-strain curves and the damage-strain curves for the non-graded microstruc-
tures with different orientations of particles (aligned vertically and horizontally, and ran-
domly oriented, aspect ratio 3.33). 

 

 
(a) 
 

 
(b) 
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In order to analyze the mechanisms of deformation and damage evolution in the 
composites reinforced by elongated or platelet-like particles, one may look at the 
von Mises stress and damage distributions in a composite with randomly oriented 
elongated particles (rr=0.3) (Figure 4.42). It can be seen that the damage in matrix 
begins most often in the places between two particles which are arranged closely 
along the vertical direction (i.e., along the loading and gradient direction). The 
void growth in the matrix begins near the sharp ends of the particles. Then, the 
damaged areas extend and link with other voids, formed near other particles (Fig. 
4.42b), rather similar to the mechanism of the damage growth in the composites 
with round particles (Figure 4.36). 

 
Fig. 4.41  Stress-strain curve and the damage-strain curves for the non-graded microstruc-
tures with different aspect ratios of particles (rr=0.3, 0.5, 0.7 and 1.,  rr=smallest particle 
radius/biggest radius) 

 

 

 
(a) 

 
(b)  
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Figure 4.43 shows the damage distribution in the microstructures with aligned 
(vertical and horizontal) elongated particles. One can see that the damage in ma-
trix begins often between closely placed particles, which are arranged one above 
another in the loading direction, similar to the mechanism in the case of the ran-
domly oriented particles. 

 

                                         (a) 

 
(b) (c) 
 
Fig. 4.42  Von Mises stress (u = 0.18 mm) (a) and damage distributions in a composite with 
randomly oriented elongated particles (rr = 0.3, u = 0.18mm and u = 0.29 mm) (b,c). 
 

  
(a) (b) 
 
Fig. 4.43  Damage distribution in a composite with aligned vertical (a) and horizontal elon-
gated particles (b ) (rr = 0.3, u = 0. 0.30 mm and 0.20 mm, respectively) 
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Effect of the shape and orientation of the elongated particles on the 
strength and damage evolution: the case of graded composite materials  

At this stage of the work, the effect of the graded arrangement of elongated par-
ticles on the strength and damage evolution in the composites was considered. 
Figure 4.44 shows the stress-strain curve and the damage-strain curves for the 
graded microstructures with different orientations of particles.  

The shapes of the stress-strain and damage-strain curves for graded and non-
graded composites are similar, but the damage growth rates, and the stiffness and 
flow stress of the composite are much lower, and the failure strains are sufficiently 
higher for the graded microstructures than for the homogeneous microstructures. 
Whereas the damage growth rate, calculated as an increase in the fraction of failed 
particles divided by the increase in the far-field applied strain, for a homogeneous 
microstructure (elongated particles, aspect ratio 3.33, randomly oriented) is 19.4, 
this value for the same, but graded microstructure is equal to 5.3.  

One can see that the failure strain for the graded composite increases in the 
same order, as in the case of homogeneous microstructures: vertical aligned < ran-
domly oriented < horizontal aligned elongated particles. The stiffness of the com-
posite is a little bit higher for aligned (vertical or horizontal) ellipsoids, than for 
the randomly oriented ellipsoids. 

It is of interest that the curves of the fraction of failed elements plotted versus 
the far-field applied strain for the random orientation of ellipsoidal particles (both 
graded and homogeneous arrangements) have a shape, which is different from the 
curves for the microstructures with aligned particles: whereas the fraction of failed 
particles increases monotonically with increasing applied strain for the case of 
aligned particle microstructures, the curves of the fraction of failed particles ver-
sus strain for the randomly oriented particles have plateaus. After the intensive 
damage evolution begins and continues for some time, it slows down, and goes on 
at much slower rate. At some strain level (approximately, two times the strain lev-
el of the first intensive damage growth), the intensive damage growth starts again.  

This effect can be explained by the following reasoning. Under tensile loading, 
not only the particles become damaged, but also the some rotation of the randomly 
oriented particles can take place [33]. As a result, the angles between the particles 
and the vertical axis can be reduced for many particles. Since the vertically 
aligned elongated particles show much lower damage growth rate than the hori-
zontally arranged particles, such rearrangement of particles during the plastic de-
formations can lead to the slowing down the damage rate. 

Then, it can be seen from Figure 4.44 that whereas the more localized and high-
ly gradient microstructures have lower stiffness and higher failure strain, than the 
homogeneous microstructures in all other cases, the first critical strain (i.e., the 
critical strain, at which the falling branch of the stress-strain curve begins) is the 
same for both gradient and non-gradient microstructures in the case of the micro-
structures with the randomly oriented elongated particles. After the damage 
growth slows down, the damage growth rate is much less for the graded micro-
structure, than for the homogeneous microstructure. The second critical strain for 
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these microstructures is much lower for the homogeneous, than for the graded ver-
sion of these microstructures. 

This effect (i.e., that the randomly oriented elongated particles may ensure 
much lower damage growth rate than the aligned particles, see Figure 4.44) cor-
responds also to the theoretical analysis of the effects of the randomization of ma-
terials on the failure strength, carried out by Mishnaevsky Jr. and Shioya [34]. On 
the basis of the phenomenological model of fracture, Mishnaevsky Jr. and Shioya 
[34] demonstrated that the randomization of microstructures of multiphase mate-
rials (including, among others, random orientation of weaker planes and brittle 
elements in a tough matrix) can lead to the higher fracture resistance of materials. 
This numerical result confirms their theoretical conclusions [34]. 

 
Fig. 4.44  Stress-strain curves (a) and the damage-strain curves (b)  for the graded micro-
structures with particles with aspect ratio 3.333, and different particle orientations 
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a) b) 
 
Fig. 4.45  Damage distribution in the matrix in the case of a graded composite reinforced 
by aligned horizontal (a) and randomly oriented ellipsoids (rr = 0.3) (b). 

 
 
Now let us consider the mechanism of deformation and damage in the graded 

composites. Figure 4.45 shows the damage distribution in the matrix in the case of 
a graded composite reinforced by aligned horizontal and randomly oriented ellip-
soids (aspect ratio 3.33). It can be seen that both in the case of the aligned and 
randomly oriented elongated (and similarly to the case of graded microstructure 
with the round particles), the density of damaged particles in the area where the 
high particle density region passes into the particle-free region is rather high, and 
much higher than in the region of high particle density. Apparently, the particles 
which are located in the “transition” area begin to fail first. The matrix is damaged 
not in the region of the high particle density but rather in the area, where the re-
gion of high particles density passes into the region of low particle density as well 
(similar to the mechanism of damage initiation in the graded composites rein-
forced by graded particles). In the case of the randomly oriented particles, the 
damage initiation in particles takes rather often if “noses” of two or three elliptical 
particles are placed close one to another. 

One should note that the microstructures with particles aligned along the direc-
tion normal to the loading direction, which demonstrated the highest failure strain 
results in our simulations, are rather similar to the microstructures of many bioma-
terials [31,32], where the platelets or fibers are arranged with a gradient, and 
aligned normally to the expected loading direction.  

On the basis of the simulations, one may draw the following conclusions. The 
failure strain of the composites with elongated particles increases in the following 
order: vertical aligned < randomly oriented < horizontal aligned particles. The 
higher is the aspect ratio of particles, the higher (slightly) are the flow stress and 
stiffness of the composites. The failure strain decreases with increasing the aspect 
ratio of the particles. The particles located in the area where the high particle den-
sity region passes into the particle-free region begin to fail first.  
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Fig. 4.46  Failure strain of composites plotted versus the standard deviation of the probabil-
ity distributions of the particle strengths (a) and the damage-strain curves for the graded 
microstructures with random variations of local strength of particles 
 

 
The effect of the gradient on the flow stress, stiffness and the failure strain for 

the microstructures with elongated particles are similar to the effect for the case of 
round particles: the more localized and highly gradient microstructures have lower 
stiffness and higher failure strain, than the homogeneous microstructures. 

Effect of statistical variations of local strengths of reinforcing particles and 
the distribution of the particle sizes 

Real reinforcing materials have always some statistical variations of the mechani-
cal properties (local strengths, etc.), which have a profound effect on the failure 
and strength of composites. At this stage of work, we study the effect of the statistical 

 
 
a) 
 

 
b) 
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variations of strengths of the particles in the Al/SiC graded composite on the fail-
ure behavior of the composite.  

The stress-strain and fraction of failed particles versus strain curves were calcu-
lated numerically for different microstructures of the composites (random non-
gradient, gradient 1, gradient 5) with different degrees of scattering of the strength 
of particles. The critical maximum stress of SiC particles, which was assumed to 
be a constant value (1500 MPa) in all above simulations, was a random value here. 
It was assumed that the critical maximum principal stress is distributed by the 
Gauss probability law [[1]], with the mean value 1500 MPa (as above) and with 
the standard deviations 0, 50, 200, 500 and 1000 MPa. In the simulations, the ran-
dom critical maximum stress was calculated in each element and compared with 
the current value of maximum principal stress in the element; if the current prin-
cipal stress exceeded this random critical value, the element was considered to 
fail, and its stiffness was reduced. 

Figure 4.46a shows the failure strain for the different graded microstructures 
plotted versus the degree of the scattering (standard deviation) of the local strength 
of particles. Figure 4.46b shows the damage-strain curves for the non-graded and 
graded microstructures with the different degrees of gradient and different stan-
dard deviations of the critical principal stress.  

One can see that the failure strain of a composite decreases rapidly when the 
degree of scattering of local strength of particles increases. However, the negative 
effect of the scattering of the particle strengths on the failure strain of the compo-
site, observed above, is weakened if the microstructure is graded. The degree of 
reduction of the failure strain of composite due to the randomness of local strength 
depends on the microstructure of the composite as well: whereas the increase of 
the standard deviation of the critical stress from 0 to 500 MPa leads to the 2.7 
times reduction of the failure strain in the non-graded microstructure, the same 
change leads to only 68% and 39% decrease in the failure strain of the graded 
composites (gradient5 and gradient1, respectively). 

Consider now the effect of the variation of the particle sizes on the strength and 
failure of composites. It has been shown in our previous work that materials with 
randomly distributed particle sizes have much less failure strain than materials 
reinforced by particles of the same constant radius [14]. An interesting case of a 
composite material with both varied sizes of reinforcing particles and the direc-
tional gradient is a composite reinforced by particles which radii depend on the 
position of the particle. Figure 4.47a shows examples of microstructures where the 
radius of a particle is proportional to the Y-coordinate of the particle. Such micro-
structures, where the size of particles is proportional to the vertical coordinate will 
be called further “particle size gradient microstructures”.  

Two types of microstructures with the graded distribution of sizes of reinforc-
ing particles were considered: “small/big” size gradient microstructure, with small 
round particles near the upper boundary of the cell and big particles at the lower 
boundary (called also “south” microstructures, according to the location of big 
particles in the lower/”southern” part of the cell), and “big/small” size gradient 
(“north” microstructure). The radius of particles was taken to be proportional to 
the Y-coordinate of particles, R~ L (“north” size gradient) or R ~(L-Y), where L – cell 



4.2 Graded materials: Mesoscale modelling      269 

size (“south” size gradient). After the radii of particles were calculated, they were 
normalized to keep the total volume content of the SiC particles constant.  

The numerical testing of these microstructures was carried out for the constant 
strength of particles, as well as for the case of the random (Gaussian) distribution 
of the critical stress in particles, with the standard deviations 200, 500 and 1000 
MPa. (The average critical principal maximum stress was the same as above, 1500 
MPa).  

Figure 4.47b shows some typical functions of the fraction of failed elements in 
the particles plotted versus the far-field applied strain for the “small/big” and 
“big/small” size gradient microstructures.  

One can see that the “small/big” and “big/small” size gradient microstructures 
have very similar damage growth curves and the same failure strain, when the crit-
ical stress of particles does not vary. However, when the statistical variations of 
the strength of SiC particles are taken into account, the failure strain of the com-
posite is drastically reduced: by 11% for the “small/big” microstructure and by 
30% for the “big/small” microstructure. This decline hardly depends on the degree 
of the variation of the local strength. Figure 4.47c shows the ratio of the failure 
strains for the “small/big” and “big/small” size gradient microstructures as a func-
tion of the standard deviation of the probability distribution of the particle 
strength. Apparently, since the statistical variations of the strength of particles 
were included in our continuum mechanical model, the size effects of particles 
began to play a role in the simulations. Therefore, the greater particles placed near 
the upper border of the cell in the “big/small” gradient microstructures begin to 
fail earlier, and that leads to the quicker failure of the composites, whereas this ef-
fect does not take place in the “small/big” microstructures.  

 

 
 

 
a) b) 
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c) 
 

Fig. 4.47  Examples of the “particle size gradient” “small/big”/”big/small” microstructures 
(a), fraction of failed particles plotted versus applied strain for the microstructures with 
random variations of the local strength of particles (b) and the ratio of failure strains for the 
“small/big”/”big/small” microstructures plotted versus the standard deviation of the proba-
bility distributions of the particle strengths (c). 
 

 
On the basis of the simulations, one may draw the following conclusions. The 

statistical variations of the strength of particles in composites lead to the decrease 
of the failure strain in the composites. However, this negative effect is weakened, 
if the microstructures of composites are graded. In the case of the size gradient 
microstructures (with particles, which strength are varied randomly), the 
“small/big” microstructures ensure higher failure strains than the “big/small” mi-
crostructures. 

Hierarchy of microstructural effects 

At this stage of work, we would like to identify the microstructural parameters 
which have strongest influence on the damage resistance of graded composites. To 
compare the effects of different parameters of microstructures, we determined the 
ratios of the critical failure strains of materials in extreme points of the variation 
range of the parameters considered above. Practically, we compared the critical 
failure strain for composites with the highest localization of particles arrangement 
(g = 1) and the almost homogeneous particle arrangement (g = 15), with the con-
stant and randomly varied strengths of particles, with the horizontal (normal to the 
loading vector) and vertical orientation of elongated particles, with round or high-
ly elongated shapes of particles. 

Table 4.2 gives the results of this analysis. It can be seen from the table that the 
random variations of the particle strengths has a biggest effect on the damage re-
sistance of the composites. Further, the orientation of elongated particles, their 
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shapes and the degree of particles localization in the composites play an important 
role for the damage resistance of the composites as well. 

The strong effect of the scattering of local properties (the first factor) on the 
macroscopic strength of the materials was expected. However, it is of interest that 
the damage resistance of materials can be increased by 30%…60% only by vary-
ing the geometrical microstructural parameters. 

 
 

Table 4.2.  
Hierarchy of parameters of microstructures influencing the damage resistance of the com-
posites 
Nr. Parameters 

of micro-
structure 

1st  Extreme 
case 

2nd Extreme 
case 

Critical fail-
ure  strain for 
the 1st  case 

Critical fail-
ure strain for 
the 2nd  case 

Ratio 

1. 

Strength 
Variations 

Constant par-
ticles strength

Randomly varied 
particle strength, 
deviation 1000 
Mpa 0.027 0.01 2.7 

2. Orientation 
of platelets Horizontal  Vertical 0.0203  0.01266 1.603 

3. Shape (As-
pect Ratio) 1 0.3 0.0251 0.0178 1.41 

4. Gradient de-
gree (g) 1 15 0.31 0.0225 1.33 

Combined effects: 
5. Factors 1+4 

(constant 
strength of 
particles and 
graded ar-
rangement) 

High gradient
(g=3), con-
stant strength
of particles 

No gradient, ran-
dom strengths of 
particles 0,03 0,01 3. 

6. Factors 2+4 
(horizontal 
orientation 
and graded 
arrangement 
of platelets) 

High gradient
(g=3), hori-
zontal 

No gradient, ver-
tical 0.025 0.01266 1.97 

7. Factors 3+4 
(Shapes and 
graded ar-
rangement of 
particles) 

High gradient
(g=3), round
particles 

No gradient, 
elongated par-
ticles 0.03 0.0176 1.7 

 
In order to analyze the possible effects of combining the microstructural fac-

tors, we calculated the ratio of the critical strains for the microstructures, which 
combine both high gradient, constant stress and other positive factors, to some ref-
erence cases. It was shown that the changes in the microstructure, which improve 
the damage resistance of the composites, combined with other positive changes, 
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lead to the multiplying effects. So, composites with both constant strength and the 
graded arrangement of particles show higher damage resistance, than composites 
with only constant strength or with only gradually arranged particles (by ~10% in 
both cases). This holds for other combined effects as well.  Thus, one may con-
clude that the recommendations to the improvement of microstructures of 
lightweight metal matrix composites, identified in this work, may be combined 
with other recommendations, and that leads to the multiplication of positive ef-
fects. 

Conclusions 

The effect of the microstructures of graded composite materials on the defor-
mation and damage behavior was studied using the numerical mesomechanical 
experiments. On the basis of the simulations, the following conclusions may be 
drawn. 

Flow stress and stiffness of composites decrease with increasing the gradient 
degree, whereas failure strain increases with increasing the gradient degree. The 
more localized and highly gradient microstructures have lower stiffness and higher 
failure strain, than the homogeneous microstructures. 

The damage evolution in SiC particles begins not in the region of high particle 
density but rather in the transition region between the particle-rich and particle-
free regions. 

Failure strain of the composites reinforced with elongated particles increases in 
the following order: vertical aligned < randomly oriented < horizontal aligned par-
ticles. The higher is the aspect ratio of particles, the higher (slightly) are the flow 
stress and stiffness of the composites. The failure strain decreases with increasing 
the aspect ratio of the particles.  

The statistical variations of the strength of particles in composites lead to the 
decrease of the failure strain in the composites. However, this negative effect is 
weakened, if the microstructures of composites are graded. 

It can be seen that the graded particle distribution has a very beneficial impact 
on the damage resistance of the composites: it increases the failure strain, weakens 
the negative effect of the heterogeneity of particles and slows down the damage 
growth rate in the particles. These positive effects are the stronger, the higher is 
the gradient degree. 

The availability of the particle-free regions in the composites has a mixed effect 
on their damage resistance: it reduces the stiffness of the composite, and the dam-
age growth in particles begins at the boundary of the particle-free and particle-rich 
regions. Yet, as shown in [18,35], the availability of the regions of low particle 
density have a beneficial effect on the toughness of the composites. One may as-
sume therefore that microstructures, which combine a layer of very high particle 
density (as in the case of “gradient 1” microstructure), with the rest material, ho-
mogeneously reinforced with some low density of particles (which should ensure 
the required stiffness of the composite), can be the optimal microstructure from 
the viewpoint of high stiffness, damage resistance and strength.  
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4.2.3   Voxel-based FE mesh generation and damage analysis of 
composites5 

 
In this part of the work, we develop and to test numerical tools for the automatic 

development of finite element models of complex 3D microstructures of compo-
sites, on the basis of voxel array data. The developed cides are applied to model 
both isotropic and graded interpenetrating phase composites.  

This group of materials includes, for instance, biomaterials, tool materials (e.g., 
WC/Co cemented carbides with high content of WC, in which the WC skeleton 
ensures high hardness) [1]-[3], sintered Al/SiC composites [4], Ag/Ni composite 
materials, polymer composites, containing conducting filler particles (e.g., gra-
phite) as well as other dielectric composites. Some graded composite materials 
have regions with interpercolating phases between the regions of high concentra-
tion of each phase 0. Furthermore, the group of materials, for which the analysis in 
this work can be relevant, includes porous materials and foams, as well as highly 
damaged ductile materials, where the pores coalesce and form clusters. Some of 
these materials are widely used industrially (cemented carbides, foams, sintered 
composites). An improvement of strength and damage resistance of these mate-
rials can be of great importance for industry. The voxel-based model generation, 
as a basis for the analysis of the mechanical behavior of these materials, opens 
new possibilities for the clarification of microstructure-strength interrelations, and 
optimization of the properties of the materials. 

Short literature review: Incorporation of microstructures  of materials 
into numerical models  

Numerical simulations of deformation, damage and fracture of composites present 
an important tool for the prediction of materials behavior, and the optimization of 
mechanical properties of materials.  

The necessity to incorporate the information about microstructures of materials 
into the numerical models is one of the challenges of computational mesomechan-
ics of materials 0-[10]. To overcome this problem, different methods and concepts 
have been used.  Let us look at the different methods of incorporating the micro-
structural information into models of materials.  

Automatic microstructure-based mesh generation  

One of the most efficient (and widely used) programs for the automatic microstruc-
ture-based meshing and microstructural analysis is the C++-based, object-oriented 
FEM software OOF (=“object-oriented finite element analysis”), developed by 

                                                           
5 Reprinted from L. Mishnaevsky Jr., Automatic voxel based generation of 3D microstructural FE 

models and its application to the damage analysis of composites, Materials Science & Engineer-
ing A407/1-2, pp.11-23 (2005) with kind permission of Elsevier 
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a group of scientists at NIST (USA) [11], [12]. In fact, the software includes several 
programs: PPM2OOF (which reads image files in the PPM format and creates au-
tomatically the FE mesh for OOF on the basis of a microstructure image), OOF 
solver (which calculates stress and strain distribution in the material, recently also 
the damage [13]) and OOF2ABAQUS (which converts the geometrical informa-
tion of the data files created by PPM2OOF or OOF into input files for ABAQUS). 
Recently, the new version of OOF (OOF2) was made available on the Website of 
the group [11].  

While the PPM2OOF software produces the microstructure-based FE models 
for the OOF solver, there exist several other programs which generate FE models 
from microstuctural images directly to the commercial FE programs (e.g., 
ABAQUS) . So, Tellaeche Reparaz et al [14] used their own Verborde and Digit 
codes to generate FE models of real structures of duplex steels for ABAQUS from 
image analysis of micrographs. FE meshes from square elements were automati-
cally associated with corresponding material.  Iung et al [14] studied the strain he-
terogeneity in two-phase materials (Ti-alloys, dual-phase steels) on the basis of a 
FORTRAN program which automatically generates FE meshes (to be used by the 
ABAQUS code) representing the image of a real microstructure. The mesh is gen-
erated “in an iterative way by superimposing on the boundaries square grid of 
growing size”, and is refined automatically at the interfaces between the phases. 

Mishnaevsky Jr. et al. [15] simulated the crack propagation in the artificial mi-
crostructures of tool steels, using the developed program of automatic mesh gen-
eration. The program reads the pgm image files of real or artificial microstruc-
tures, and produces a command file for the Pre-Processing FE software 
MSC/Patran, which generates the microstructural FE model.  

Multiparticle unit cells [8], [16]  

The unit cells with idealised shapes and/or arrangement of particles are used wide-
ly to analyse the microstructure-strength interrelations. This approach of the nu-
merical testing of materials has a longest history and is most widely used. More 
detailed reviews on this direction of the micromechanics of materials is given 
elsewhere [6]-[8]. 

Voronoi cell finite element method 

Ghosh and co-workers [21]-[25] developed a very sophisticated and efficient ap-
proach to the modeling of deformation and damage initiation in MMCs, called 
Voronoi cell finite element method (VCFEM). In this method, the FE mesh is 
created by Dirichlet tessellation of a real microstructure of material. Each poly-
gon, formed by such tessellation (they are called ”Voronoi cells”) contains one in-
clusion at most and is used as a finite element. Coupling the VCFEM for mesos-
copic analysis and a conventional displacement based FEM for macro-analysis, 
they developed the “hierarchical multiple scale” model. In the framework of this 
hierarchical model, the authors used the adaptive schemes and mesh refinement 
strategies to divide the considered volume into subdomains with periodic and 
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non-periodic microstructures. In the periodic microstructure areas they use the 
asymptotic homogenization. In non-periodic microstructure subdomains, VCFEM 
is used. This approach was used to simulate the damage initiation (by particle 
cracking or splitting) in discontinuously reinforced MMCs. 

Surface rendering approach  

Shan and Gokhale [38] developed a method to incorporate quantitative descrip-
tion of real complex three-dimensional microstructures into micromechanical 
models of materials. Using serial sectioning, they generate 3D microstructural im-
age (with the use of the surface rendering approach), which was then embedded 
into FE model. 

Multiphase finite element method [9], [15] 

The main idea of this method is that the different phase properties are assigned 
to individual integration points in the element. Contrary to the traditional (single-
phase) finite elements, a FE-mesh in this case is independent of the phase structure 
of material, and one can use relatively simple FE-meshes in order to simulate the 
deformation in a complex microstructure. The possibility of using simple meshes 
for the simulation of the behavior of complex materials (also in 3D case) is the 
main advantage of the method of multiphase elements. Mishnaevsky Jr. et al. [15] 
carried out simulations of crack growth in tool steels, using the multiphase and 
single phase finite elements, and demonstrated that the simulations with both me-
thods yield very close results. Zohdi et al. [17]- [19] carried out large-scale mi-
cromechanical simulations of deformation and damage in composites, and deter-
mined numerically the optimal shapes of inclusions, using the decomposition of 
the global domain into a set of computationally smaller, decoupled problems, and 
statistical genetic algorithms. In so doing, they incorporated the microstructures of 
materials into the numerical models of the subdomains on the basis of the Gauss 
point method. 

Digital Image-Based (DIB) modeling technique and pixel- and voxel-based 
mesh generation  

The Digital Image-Based (DIB) modeling technique was developed by Hollister 
and Kikuchi [26] to include the effects of microstructural morphology of bone in 
the FE simulations in bioengineering. FE models obtained with the use of DIB 
technique present direct interpretations of micrographs of composite materials. Te-
rada et al. [30] have used the DIB method together with FEM-based asymptotic 
homogenization method to simulate the overall mechanical behavior of composite 
as dependent on the geometry of microstructure and properties of components. 
They have shown that the actual stress-strain curve for the unit cell model ob-
tained with the use of DIB (and reflecting the real structure) is quite different from 
that obtained in idealized unit cell model (elastic response more compliant, differ-
ent trend of the strain hardening, etc.).  
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Garboczi and Day [31] developed an algorithm and a model to incorporate the 
microstructural information into FE models using the pixel-based approach, and to 
determine the effective linear elastic properties of random, multi-phase materials. 
Using the digital image as the finite element mesh should simplify the generation 
of FE meshes, the authors investigated the effective Poisson's ratio of two-phase 
random isotropic composites numerically and compared the results with the effec-
tive medium theory estimations.  

The voxel based automatic mesh generation techniques have been used widely 
to analyse the mechanical behavior of bones and its dependence on microstructur-
al effects [32]-[35]. The series of numerical investigations with this method, car-
ried out in the group of Keaveny [32], [33] lead to the conclusion that this method 
allows to analyze the strength of tissues with a great accuracy and reliability. 
Large scale simulations, which use the voxel-based model generation and special 
solvers, have been reported in [27], [32]-[35]. 

Using the pixel/voxel based meshing, Kim and Swan [36], [37] developed and 
verified a new automated meshing techniques that „start from a hierarchical quad-
tree (in 2D) or oc-tree (in 3D) mesh of pixel or voxel elements“, and then succes-
sive element splitting and nodal shifting are carried out in order to create mesh 
which accurately reflects the microgeometry of the cell. The method was applied 
to the generation of multielement unit cells, and verified. 

In the following, we use the voxel-based approach to generate 3D microstruc-
tural models of random and graded microstructures of composites. In order to au-
tomate the model generation, a program, which generate automatically the 3D mi-
crostructural models of materials, was developed. 

Automatic voxel based generation of 3D microstructural FE models 
of composites 

Program for the automatic model generation  

An approach and a program for the automatic generation of 3D FE microstructural 
models of materials with given ideal microstructures has been presented in [8], 
[6]. The developed program “Meso3D” allows to generate automatically 3D FE 
microstructural models of volumes of materials, using the exact geometric de-
scription of microstructures and the free meshing method [8]. However, this ap-
proach works well only for relatively simple geometrical forms of microstructural 
elements in composite (like spherical or ellipsoidal inclusions). This can be consi-
dered as a general drawback of many methods of 3D modeling of microstructures: 
both shapes of inclusions and their spatial distributions are often oversimplified. 

The purpose of this work was to develop and verify a method of automated 
generation of 3D microstructural models of materials, which is based on the voxel 
array description of material microstructures, and allows therefore the modeling of 
arbitrarily complex microstructure of the material. 
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To automate the generation and meshing of 3D FE models of microstructures, a 
new program “Voxel2FEM“ was developed. The information about the spatial 
distribution of phases in the representative volume is given as a voxel array. The 
representative volume of the material is presented as an array of points (voxels), 
each of them can be either black (0, hard phase) or white (1, soft phase, or matrix) 
(for a two–phase material). This approach can be simply generalized to the case of 
a multiphase material as well. As a result of an interactive session, the program 
“Voxel2FEM” produces a command (session) file for the commercial software 
MSC/PATRAN, which generates a 3D FE microstructural model of a representa-
tive volume of material. The designed microstructures are meshed with brick ele-
ments (20-node quadratic brick, C3D20), which are assigned to the phases auto-
matically according to the voxel array data.  

The developed program is applicable both to the design and testing of artificial 
microstructures of materials, and to the reconstruction and analysis of real 3D mi-
crostructures. Several built-in subroutines in the program allow reading the micro-
structure data from an external file (for the case of real microstructures), genera-
tion of different phase arrangements, as well as the percolation theory analysis of 
the microstructures. 

Subroutine for generating random microstructures and multiparticle unit 
cells  

The program can read the voxel array data from a text input file, using a built-in 
subroutine. Alternatively, the program can generate voxel arrays for multiparticle 
unit cells with different arrangements of spherical particles in a matrix, or random 
structures (3D random chessboard), as well as graded composite microstructures 
(s. [61]). The voxel array data for 3D random microstructure models (3D random 
chessboards) are generated in the program with the use of the random number ge-
nerator. The voxel arrays for multiparticle unit cells with many spherical particles 
are generated in a subroutine of the program as well, using the algorithms de-
scribed in [6], [8].  

Subroutine for generating graded composite microstructures with pre-
defined gradient 

In order to analyze the effect of graded microstructures on the strength and 
damage in composites, a subroutine for the automated generation of random 
graded microstructures was included in the program. This subroutine defines the 
distribution of black voxels as random distributions in X and Z directions, and a  
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Fig 4.48  Shapes of the curve, which describes the transition between the regions of high 
content of different phases, for different parameters g (g=5, 10, 100, vc=50%) 
 

 
graded distribution in Y direction. The graded distribution of black voxels (e.g., 
grains of hard phase) along the axis Y follows the formula: 

 
vc(y)=2*vc0/(1+exp(g-2*g*y/L))), (4.26) 

Here vc(y) is the probability that a voxel is black at a given point, vc0 is the vo-
lume content of the black phase, L – length of the cell, g – parameter of the gra-
dient, y – Y-coordinate.  

The equation (4.26) allows to vary the smoothness of the gradient interface of 
the structures (highly localized arrangements of inclusions and a sharp interface 
versus a smooth interface), keeping the volume content of inclusions constant. If g 
< 2..3, the transition between regions of high content of black or white phases is 
rather smooth, and if g > 10, the transition between the regions is rather sharp. 
Figure 4.48 gives the shapes of this curve for different g. 

Subroutines for the percolation theory analysis of 3D microstructures 

When generating the FE models of the representative unit cells, the presence of 
infinite percolation clusters in the generated microstructure is checked, using 
the burning  algorithm [41]. The subroutine (based on the program, developed 
by Garboczi et al. [41]) searches all three directions, in the two perpendicular 
directions for each burn. The subroutine allows either periodic or hard boundary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

g=5 

g=10 g=100 

vc
(y

)

y/L 



4.2 Graded materials: Mesoscale modelling      281 

conditions. The information about the presence of percolation clusters for both 
phases and all the directions, is printed out in the session file. Another subroutine, 
built-in in the program, carries out the percolation analysis of the generated or re-
constructed microstructures with the use of the alternative algorithm of the cluster 
labeling, suggested by Martin-Herrero and Peon-Fernandez in [42].  This subrou-
tine carries out the labeling of the cluster of voxels, calculates the average and 
maximum cluster dimensions in all three directions and detects the existence or 
non-existence of the percolation in all directions. These two subroutines allow to 
carry out complete percolation analysis of the microstructures, as well as to com-
pare the results obtained with the use of different techniques. 

Here, the program developed is used to analyze the effect of the volume content 
and arrangement of inclusions in composites on the strength and damage evolu-
tion.  

Routine for damage simulation  

In this section, a newly developed ABAQUS subroutine for the damage modeling 
in Al/SiC composites is presented.  

The micromechanisms of damage evolution in most Al/SiC composites (e.g., 
Alcoa X2080 aluminium alloys, made by powder blending and extruded route 
[[44]]) under mechanical loading can be described as follows: first, some particles 
become damaged and fail (in the case of relatively large particles) or debond from 
the matrix (for smaller particles); after that, cavities and voids nucleate in the ma-
trix (initially, near the broken particle), grow and coalesce, and that leads to the 
failure of the matrix ligaments between particles, and finally to the formation of a 
macrocrack in a volume [43]-[46]. These damage mechanisms have been ob-
served, for instance, in Alcoa X2080 aluminium reinforced with different volume 
fractions of silicon particles. According to Mummery and Derby [43], the inter-
face debonding becomes one of the main damage mechanisms in the case of  rela-
tively small particles (~< 10 μm), but does not play a leading role for the case of 
bigger particles.  

Wulf [46] studied experimentally and simulated numerically damage growth 
and fracture in real microstructures of Al/SiC composites. By comparing simu-
lated and real crack paths and force-displacement curves, he tested different crite-
ria of local failure and void growth (including the critical equivalent plastic strain, 
triaxiality factor and the damage indicator [46]).  According to Wulf [46], finite-
element simulations with the damage parameter, based on the  model of a spheri-
cal void growth in a plastic material in a general remote stress field with high 
stress triaxiality, developed by Rice and Tracey [47] produced excellent results for 
Al/SiC composites: both the crack paths in a real microstructure of a material and 
the force-displacement curves were practically identical in the experiments and 
simulations. 

A possible alternative to the Rice-Tracey damage indicator for the simulation of 
crack growth in Al matrix is the approach based on the constitutive equations for 
porous plasticity developed by Gurson [48] and adapted to practice by Tvergaard. 
According to Geni and Kikuchi [49], the simulations with the Gurson model give 
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results which are very close to the experimental data as well. Good results can be 
obtained by using nonlocal version of the Gurson model [50]. 

In our simulations, the Rice-Tracey damage indicator was used as a parameter 
of the void growth in the Al matrix. To model the damage and local failure of SiC 
particle, the criterion of critical maximum principal stress in the particle material 
was used. According to [44], the SiC particles in Al/SiC composites become dam-
aged and ultimately fail, when the critical maximum principal stress in a particle 
exceeds 1500 MPa. This value was used in our simulations as a criterion of dam-
age of SiC particles as well. 

An ABAQUS Subroutine USDFLD, which calculates the Rice-Tracey damage 
indicator in the matrix and the maximum principal stress in particles, and allows to 
visualize the damage (microcrack and void) distribution in the material was devel-
oped. The damage in particles was modeled as a local weakening of finite ele-
ments in which the damage criterion (maximum principal stress) exceeded a criti-
cal value 0. After an element failed, the Young modulus of this element was set to 
a very low value (50 Pa, i.e., about 0.00001% of the initial value). 

Comparison of voxel-based and geometry-based 3D model 
generation  

At this stage of work, the program “Voxel2FEM”, which uses the voxel array 
based method of the reconstruction of 3D microstructures, was tested by compar-
ing its results with the results of the exact geometry-based FE model. Two multi-
particle unit cells for identical ideal 3D microstructures were generated using the 
program “Meso3D” (i.e., exact geometrical shapes plus free meshing) [8] and the 
program “Voxel2FEM” (voxel-based model generation). The FE analysis of de-
formation and damage in a composite was carried out, and the results of simula-
tions were compared.  

Multiparticle unit cells with 5 spherical particles were considered in both cases. 
The cells were subject to uniaxial tensile loading. Totally, the geometry-based 
model contained 7800 elements, and the voxel based model 15625 20-node qua-
dratic brick elements. Each particle contained 370 finite elements in the geometry-
based model, and 156 elements in the voxel-based model. The considered material 
was Al matrix reinforced by SiC particles (volume content 5%). The SiC particles 
behaved as elastic isotropic damageable solids, characterized by Young’s modulus 
EP = 485 GPa, Poisson’s ratio 0.165 and the local damage criterion, discussed be-
low. The Al matrix was modeled as isotropic elasto-plastic damageable solid, with 
Young’s modulus EM = 73 GPa, and Poisson’s ratio 0.345. The experimental 
stress-strain curve for the Al matrix was taken from [40], and approximated by the 
deformation theory flow relation (Ludwik hardening law): σy = σyn+hεpl

n, where σy 
-the actual flow stress, σyn - the initial yield stress, and εpl- the accumulated equiv-
alent plastic strain, h and n - hardening coefficient and the hardening exponent.  
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Fig. 4.49  Considered unit cells (a), as well as the stress-strain curves (b) and the  fraction 
of failed elements in the particles plotted versus applied strain (c ) obtained numerically 
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The parameters of the curve for the matrix were as follows: σyn = 205 MPa, h = 
457 MPa, n = 0.20. The absolute size of this model (10 x 10 x 10 mm) was chosen 
in such a way so that it corresponds to the models considered in [8]. Apparently, 
since the considered material models do not have any size dependency, the same 
results could be obtained using a model with reduced sizes.  

Figure 4.49 shows the considered unit cells, as well as the stress-strain curves 
and the fraction of failed elements in the hard phase versus applied strain curves 
obtained numerically. 5 realizations of the microstructure were tested.  One should 
note that the damage growth in the ductile phase goes on much more slowly than 
in the particles: when many (up to 40%) elements in the particles fail, only a few 
element in ductile phase fail.  

In the framework of the element weakening concept, the newly formed surface 
is represented as removal of volume elements. This should be taken into account 
when interpreting numerical results: high density of “failed elements” means in 
the case high microcrack density, and not a formation of a big hole in or crum-
bling of  the material 0. 

One can see from Figure 4.49 that the results obtained are rather close: the 
stress-strain curves differ only by 5%, and the damage-strain curves only by 
3..4%. Therefore, the 3D models, generated from the voxel data arrays, give the 
results which are quite similar to the results of the models generated on the basis 
of the exact geometrical description of microstructures.  

Let us compare our conclusions with the results of the similar works carried out 
in other groups. Guldberg et al. [34] tested the accuracy of digital image-based fi-
nite element models in 3D and 2D cases, and concluded  that the “solution at digi-
tal model boundaries was characterized by local  

oscillations, which produced potentially high errors within individual boundary 
elements”. The solution, however, oscillated about the theoretical solution, and 
was improved by averaging the results over the region of several elements. The 
observed absolute errors in different simulations were of the order of 1..4 %. Nie-
bur et al. [32] investigated the convergence behavior of finite element models de-
pending on the size of elements used, the element polynomial order, and the com-
plexity of the applied loads. They concluded, that differences in apparent 
properties at different resolutions were always less than 10 percent when the ratio 
of mean trabecular thickness to element size was greater than four. Therefore, our 
conclusions are rather close to the results of other authors. 

Numerical simulations and Results 

Percolating and near-percolating microstructures of composite 

Materials with percolating microstructures have been widely used industrially 
since long time (an example: cemented carbides with WC skeleton), and attracted 
a great interest of researchers. 
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Publications which deal with the analysis of the materials with near percolating 
and percolating microstructures, can be conditionally divided into several groups: 
statistical/morphological analysis of microstructures of materials and their effect 
on the elastic response [51]-[54], percolation theory analysis of critical exponents 
for mechanical and electrical parameters of composite systems [54], microme-
chanical analysis of interpenetrating microstructures [55]-[58], analysis of the ef-
fect of skeleton, contiguity and connectivity in sintered composites (in particular, 
cermets, cemented carbides) on their strength [2], [59], etc. Among the main re-
sults, obtained in this area, one may list the development of morphological models 
of random materials and bounds for linear elastic properties of materials with ran-
dom microstructures [54], determination of interrelations between the critical 
components for elastic stiffness and electrical conductivity in dielectric compo-
sites [54], micromechanical “matricity” model, developed by Schmauder and col-
leagues [55]-[58] for the analysis of the interpenetrating and graded microstruc-
tures of composites, experimental and theoretical analysis of the effect of 
parameters of skeleton of sintered composites on the deformability and strength 
[1]-[3],[59], etc. The interest in the modeling of materials with percolating micro-
structures has increased in last years, as a result of the development of new mate-
rials: nanocomposites with nanoscale reinforcement, which forms percolating 
networks [60], foams and porous materials, etc. Most of the works, which deal 
with the microstructure-strength relationships of composites with random, perco-
lating and near-percolating microstructures, consider the effect of the material mi-
crostructures on the elastic properties. Only a few works deal with plastic behavior 
or damage of the composites. 

In this part of our work, we seek to analyze the effect of random, near-
percolating and percolating microstructures on the damage resistance of compo-
sites, using the developed program and carrying out numerical mesomechanical 
experiments. In particular, the effect of the density of hard phase grains, presence 
of clusters and infinite percolation clusters from the hard phase grains on the de-
formation, strength and damage in composites should be clarified. In order to 
solve this problem, a series of 3D FE models of composites with random arrange-
ment of hard phase grains and different volume content of the inclusions (3D 
“random chessboards”) were generated using the program developed, and the 
commercial code MSC/PATRAN. The Al/SiC composite was taken as a test ma-
terial, in order to ensure the compatibility and comparability of the results with the 
results of our previous simulations [8], [6], [61]. Cubic unit cells (of the sizes 10 x 
10 x 10 mm) were subject to the uniaxial tensile displacement loading, 2.0 mm.  
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Fig 4.50  Typical tensile stress-strain curves and the fraction of failed elements in the hard 
phase plotted versus the far-field applied strain for the different volume contents of the hard 
phase 

 
 
The nodes at the upper surface of the box were connected, and the displacement 

was applied to only one node. Tensile stress-strain curves, microcrack density in 
hard phase as a function of the load and stress, strain and damage distributions 
were computed by the finite element method. The simulations were done with 
ABAQUS/Standard. At very high deformation, when numerical problems ap-
peared, the simulations were stopped. Figure 4.50 shows some typical tensile 
stress-strain curves and the fraction of failed elements in the hard phase plotted 
versus the far-field applied strain for the different volume contents of the hard 
phase. 
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Fig 4.51  Critical applied strain, at which the  intensive damage growth in the hard phase 
begins and goes on, plotted as a function of the volume content of hard phase. 

 
 
It is seen that the falling branches of the stress-stress curves begin, when the in-

tensive failure of hard phase goes on. After many hard grains fail, the damage 
growth slows down, and the stiffness of the materials is not reduced further. The 
damage growth in the ductile phase proceeds much lower than the damage growth 
in the hard phase. Apparently, the constant stress branches of the curves corres-
pond to the stage of the material behavior, when many particles failed and don’t 
bear any load, while the ductile phase remains almost intact, and only slow dam-
age accumulation in the ductile phase. The next stage of the composite destruc-
tion, the void coalescence and crack formation in the ductile phase, could not be 
simulated due to numerical difficulties. 

Figure 4.51 shows the critical applied strain (at which the falling branch of the 
stress-strain curve and the intensive damage growth in the hard phase begin) plot-
ted as a function of the volume content of hard phase. One can see that the critical 
strain decreases with increasing the volume content of the hard phase.  

It is of interest to correlate the strength, deformation and damage resistance of 
the composites with the presence of percolation clusters of hard phase grains. 
When generating the FE models, the percolation analysis for all three directions 
(X, Y, Z) and for both phases was carried out, and the presence of infinite clusters 
of the white and black voxels in each direction in the considered representative 
volume was tested. As expected [62], infinite percolation clusters from grains of 
the hard phase were not detected at the volume content of the hard phase (vc) < 
31%, but were detected (in 1 direction) at vc=32%. Infinite clusters from grains of 
the hard phase are available in all three directions at vc=70%, but infinite clusters 
of ductile phase are available only in two directions at this volume content.  In the 
case of the volume content between 32% and 69%, the microstructure is interpe-
netrating, and both phases form infinite clusters. 
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Fig 4.52  Peak stress plotted versus the maximum size of a cluster of the grains of hard 
phase. 

 
 

Comparing these data with the results shown in Figure 4.50, one can draw the 
conclusion that a composite starts to behave as an elastic-brittle material (i.e., the 
linear stress-strain dependence up to the peak stress and then vertical falling 
branch of the stress-strain curve), when a percolation cluster of grains is formed 
(i.e., at VC>32%). When percolation clusters from grains in all three directions are 
formed, that lead to the strong (nonlinear) increase in the stiffness of the compo-
site: whereas the increase of the volume content of hard phase from 10% to 50% 
leads to the Young’s modulus increase of 50% (90 GPa -> 137 GPa) and the peak 
stress increase of 6% (447 MPa -> 474 MPa), the increase in the volume content 
of the hard phase from 50% to 70% leads to the Young’s modulus increase of 
122% (137Gpa -> 305 GPa) and the peak stress increase of 50% (474 MPa -> 701 
MPa). 

Figure 4.52 shows the peak stresses of the stress-strain curves plotted versus the 
maximum size of a cluster of the elements of the hard phase. The linear sizes of all 
the SiC grain clusters have been calculated for the generated 3D FE models, using 
the built-in percolation analysis subroutine in the developed program. One can see 
from Figure 4.52 that the stiffness and the peak stress of a composite increase al-
most linearly with increasing the linear size of the biggest hard phase cluster up to 
the percolation threshold. The formation of clusters from the hard grains therefore 
plays an important role for the stiffness and strength of composites.  

Summarizing, one formulate the following conclusions. The increase in the vo-
lume content of hard phase leads, as expected, to the proportional increase in the 
Young’s modulus of the composites, and to the strong increase of the peak stress 
at the stress-strain curves. On the other side, it leads to a decrease in the critical 
applied strain, at which the falling branch of the stress-strain curve begins. The 
stiffness and the yield stress of a composite increase almost linearly with in-
creasing the linear size of the biggest hard phase cluster up to the formation of 
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an infinite percolation cluster of hard grains. After an infinite percolation cluster 
of particles is formed, the material (consisting of the ductile and hard phases) 
starts to behave as a brittle material (i.e., the linear stress-strain dependence up to 
the peak stress and then vertical falling branch of the stress-strain curve). 

Composites with graded microstructures   

Graded composite materials have a great potential for applications in industry, and 
attract a growing interest of many research groups. Many approaches to the analy-
sis of the strength and damage in graded composites are based on the generaliza-
tion of homogenization techniques, which have been developed for the non-graded 
composites. So, the rule-of-mixture was applied to the analysis of gradient mate-
rials by Hirano et al. [63]. Zuiker and Dvorak [64] generalized the Mori-Tanaka 
method of estimation of overall properties of statistically homogeneous compo-
sites to the “linearly variable overall and local fields”. Buryachenko and Ram-
merstorfer [65] generalized their “multiparticle effective method“ to simulate 
FGMs, which are considered as linear thermoelastic composites with elliptical in-
clusions, arranged in a way that the concentration of the inclusions is a function of 
the coordinates. One should note however that the theoretical models of graded 
materials, based on the generalization of homogenization methods, can not be di-
rectly used to study the damage growth in the composites. 
Another direction of the micromechanical analysis of graded materials is the use
of multiparticle unit cells and real and quasi-real microstructures. So, Reiter et al.
0 developed a micromechanical FE model of graded C/SiC composites with a 
linear volume gradient consisting of up to several thousands hexagonal grains. In 
their simulations, different transitions between the phases (i.e., microstructures 
with a distinct threshold between two matrix phases, with the skeletal transition 
zones and mixed microstructures) were considered, using unit cells with large 
numbers of randomly placed microstructural units of the two phases. Canillo, 
Carter et al. [13] analyzed the effect of stochastic placement of the second phase 
on the hardness and toughness of graded alumina-glass using image-based FE 
software OOF and a probabilistic model of brittle fracture to study the crack 
growth. Whereas most of these models are 2 dimensional, and only few of them 
deal with the damage growth in graded composites, the models can serve as a ba-
sis of the generalization to the 3D case. An advanced 3D model of FGMs was de-
veloped by Gasik [66, 67]. The model, which represents a FGM with “chemical” 
gradient as an array of subcells (local representative volume elements) and was 
analyzed using their own software, allows to calculate elastic and thermal proper-
ties of the composite. A more detailed review on the micromechanical models of 
graded composites is given elsewhere [61].  

In order to analyze the effect of the graded microstructure of composites on the 
damage and strength behavior in 3D case, we applied the program described 
above. A series of 3D FE models of composites with graded random distribution 
of the hard phase (with different gradient parameter g and different volume con-
tents of the inclusions) were generated and tested.  
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a) b) c) 

 
Fig 4.53  Examples of the considered graded microstructures of the material: g = 3, g = 6, g 
= 100 

 
 
Figure 4.53 shows some examples of the designed microstructures. The cell 

sizes, material properties, and damage mechanisms were the same as in the above 
simulations. Figure 4.54 shows the stress-strain curves of the composites with the 
volume content of hard phase 10% and 20%, and with varied gradient parameter g 
(equation (4.26)). One can see from the curves that the critical strain, at which 
damage growth begins in the materials, does not depend on the parameter of the 
volume fraction gradient g. Whether the transition between the region of high con-
tent of the hard phase to the region of low content of hard phase is sharp or 
smooth, the critical applied strain remains constant. However, the stiffness of 
composite and the peak stress of the stress-strain curve increase with increasing 
the sharpness of the transition between the regions. A reduction of the value g 
from 20 to 1 can lead to the decrease of the peak stress by 6%. 
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Fig 4.54  Typical tensile stress-strain curves for the different sharpness of the transition 
zones of the graded composites: a) VC=10%, b) VC=20% 

 

 
Fig 4.55  Peak of stress of the stress-strain curve plotted versus the sharpness of the transi-
tion zone for the graded composites with different volume content of hard phase (10% and 
20%). 

 
 
Figure 4.55 shows the peak stress of the stress-strain curve plotted versus the 

parameter g of sharpness of the transition between the regions of high and low 
content of hard phase. 
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In order to analyze the observed relationship between the peak stress and stiff-
ness of the composite and the sharpness of the transition zone, let us apply the bi-
layer model of a gradient composite, developed in [61]. In the framework of this 
model, a gradient material is represented as a two-layer material (Figure 4.56). 
The upper “layer”, which in fact represents the region of the gradient composite 
with the high content of hard phase (i.e., black or black/white region), is taken 
here as a homogeneous material. The lower layer represents the SiC-free region of 
the composite. Thus, one can calculate the Young’s modulus of the upper layer 
(SiC-reinforced region) under uniaxial tensile loading by formula: 

 

) 
w
L vc-(1 E  ) 

w
Lvc(E E

 up
m

up
p up +=  (4.27) 

Here Eup, Ep, EM denote Young’s moduli (in normal direction) of the “upper (SiC-
reinforced) layer” of the graded composite, of hard and soft phases, L is the cell 
size, vc is the total volume content of hard phase, wup is the thickness of the region 
with the high content of hard phase. The ratio wup /L characterizes the function of 
the volume fraction gradient: if g>20 (sharp transition), wup /L=0.5, and if g<5 
(smooth transition), wup /L=0.6..0.9. Therefore, the sharpness of the transition 
zone in this model is characterized by two parameters: the thickness and the 
Young’s modulus of the upper layer. Using the Reuss formula for the Young’s 
modulus of a bilayer, one can calculate the total Young’s modulus of the gradient 
material under uniaxial tensile loading: 

 

,
)/LEw-(L)/LE(w

1E
mupupup +

=  (4.28) 

Here Eup and Em are the Young’s moduli (in normal direction) for the highly rein-
forced part (upper layer) and the ductile phase under uniaxial tensile loading. 
Now,  one can determine the Young’s modulus of the composite in normal direc-
tion as a function of the sharpness of the transition zone (i.e., the ratio L/wup). Fig-
ure 4.56b shows the Young’s modulus of the composite under uniaxial tensile 
loading, calculated with the use of the simplified model, as a function of the 
smoothness of the interface between the regions wup. One can see that the increase 
in the width of the region with the high content of hard phase in the composite 
(even at a sacrifice of the average volume content of hard phase and stiffness of 
the region) leads to the proportional increase in the stiffness of the composite. I.e., 
the stiffness of the composite under uniaxial tensile loading increases with in-
creasing the smoothness of the transition from the highly reinforced region of the 
composite to the SiC-free region. This result, obtained with the use of the simple 
analytical model, confirms our numerical results (Figure 4.54). 
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Fig 4.56  A model of a graded composite as a bilayer [[61]], and Young’s modulus of a 
graded composite in normal direction as a function of the width of the particle reinforced 
region (=smoothness of the transition from the region of high volume content of the hard 
phase to the reinforcement free region) (b) 
 
 

Thus, the stiffness of graded composites, considered here and subject to the un-
iaxial loading, can be improved by making smoother the transition region between 
the region with the high content of hard phase and the reinforcement-free region. 

It is of interest to compare this conclusion with the results from [8], [61]. In [8], 
it was shown that the graded phase distribution in composites ensures much higher 
damage resistance but lower tensile stiffness than composites with random and 
homogeneous phase distribution. Furthermore, the more localized is the phase 
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the composite [61]. Taking into account the result above, one may summarize that 
Al/SiC graded composites (considered above) with high gradient degree and 
smooth transition between the region with the high content of SiC phase and rein-
forcement-free region can ensure both highest damage resistance and relatively 
high stiffness.  

 

Porous plasticity: open form porosity  

3D numerical models of porous material with different porosity and random 
distributions of pores were generated using the developed program. The relative 
porosity (volume content of voids) was varied from 10% to 70%. The properties 
(constitutive law, Young’s modulus, Poisson’s ratio) of the matrix of the porous 
material corresponded to the properties of the aluminum in above simulations. The 
location of each pore was determined using the random number generator (random 
values in all three directions). Figure 4.57 shows examples of the considered rep-
resentative volumes of the material. The tensile stress-strain curves for the porous 
Al with different volumes of porosity are given in Figure 4.58. 

When generating the FE models, the percolation analysis for all three directions 
(X, Y, Z) and for both phases (pores, matrix) was carried out. The probability of 
the formation of infinite clusters from the pores in each direction in the considered 
representative volume was calculated, as described above. As expected [62], there 
were the following critical points in the material: vc=32% (formation of a first in-
finite percolation cluster of pores) and vc=69 % (infinite clusters of pores form in 
all three directions, however, infinite clusters of ductile phase are available only in 
two directions X and Z). In the case of the volume content of pores between 32% 
and 68%, both infinite percolation clusters of ductile phase and of pores form all 
three directions. The volume content of pores, at which the percolation of ductile 
phase is lost (i.e., 69%), corresponds to the formation of a crack along the Z axis 
(the material was loaded along the Y axis). At this volume content of voids, there 
is no percolation of ductile phase, and the material does not bear any load. 

 

  
a) b) c) 

 
Fig 4.57  Examples of the considered representative volumes of the porous material: po-
rosity 30% (a), 50% (b) and 70% (c ). 

tribution and the more the gradient degree, the higher is the damage resistance of dis
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The yield stress (at the far-field applied strain e=0.03) was plotted versus the 
porosity (Figure 4.59). As expected, the yield stress of the porous material de-
creases with increasing the porosity. However, looking at the points of formation 
of percolation clusters, one can conclude that even formation of a percolation clus-
ter of pores (in one or two directions) in a ductile material does not lead to the 
stepwise loss of stiffness of the material. Only the lack of percolation of the duc-
tile phase phase corresponds to a stepwise loss of stiffness. Apparently, whereas 
clusters of connected pores may serve as sites of crack initiation, the formation of 
a cluster of pores does not necessarily correspond to the formation of a crack in 
the material. 

 
 

S
tre

ss
, M

P
a 

vc = 30% 
vc = 35% 
vc = 69% 

Strain 

vc = 10% 
vc = 32% 
vc = 50% 

 
 

Fig 4.58  Tensile stress-strain curves for the porous Al with different volumes of porosity 
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Fig 4.59  Yield stress (at the far-field applied strain e = 0.03 mm) was plotted versus the 
porosity. 
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Conclusions 

A program for the automatic generation of 3D microstructural models of compo-
site materials on the basis of the microstructure description given in the form of a 
voxel array has been developed and tested. The program allows to generate 3D 
models of representative volumes of heterogeneous materials both on the basis of 
experimental microstructure data (as obtained using the computer tomography or 
the serial sectioning), or can generate random, percolating, porous microstructures 
or multiparticle unit cells. The program developed was used to generate a number 
of 3D FE models of different groups of materials (percolating microstructures, 
graded composites, porous materials), and to carry out the numerical analysis of 
the microstructure-strength interrelations for these groups of materials. 

It was shown that the stiffness and the yield stress of a composite increase al-
most linearly with increasing the linear size of the biggest cluster of hard phase 
grains up to the formation of an infinite percolation cluster of hard phase grains. 
After an infinite percolation cluster of hard phase elements is formed, the material 
(consisting of the ductile and hard damageable phases) starts to behave as a brittle 
material (i.e., the linear stress-strain dependence up to the peak stress and then 
vertical falling branch of the stress-strain curve). 

The effect of the graded microstructure of composites on the damage and 
strength behavior was studied numerically. It was shown that the stiffness of com-
posite and the peak stress of the stress-strain curve increase with increasing the 
smoothness of the transition between the region of high volume content of the 
hard phase to the region of low content of the hard phase. However, the critical 
strain, at which the damage growth begins in the materials, does not depend on the 
parameter of the interface smoothness g. Whether the transition between the re-
gions is sharp or smooth, the critical applied strain remains constant. 

The yield stress of the porous material decreases with increasing the porosity. 
However, even the formation of a percolation cluster of voids (in one or two direc-
tions) in a ductile material does not lead to the stepwise loss of stiffness of the ma-
terial. Apparently, whereas clusters of connected pores may serve as sites of crack 
initiation, the formation of a cluster of pores does not necessarily correspond to 
the formation of a crack in the material. 
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4.3 Material with structure gradient for milling 
applications: modelling and testing 6 

 
Milling operations involve severe loading conditions, including tool entry, vari-
able chip load during machining and a distinct tool exit, and consequently, tluctua-
tions in thermal and mechanical loads, resulting in thermally and mechanically in-
duced cracking of the tool [1, 2]. In the case of coated tools, inherent flaws in the 
CVD coating reduce the fracture strength of the tool [3, 4]. Conventional commer-
cial WC-y-Co hardmetals do not have sufficient combination of load carrying ca-
pacity and toughness to resist the load in milling and to stop crack propagation 
from the coating. A special hardmetal with a graded surface zone of sufficient 
toughness coated with a thin layer of hard coating could be the solution [5, 6]. In 
these new hardmetals the layer beneath the coating contains a higher Co binder 
content to provide a high toughness and sufficient resistance to crack growth. The 
intention is to stop cracks from the coating within this volume of the substrate. 
The microstructure changes gradually into the substrate with increasing carbide 
contents so that the load carrying capacity is increased [7-10].  

The aim of this work is to present a method for development of optimised ma-
terials for milling operations. This method is based on numerical simulations on 
the macro-, meso-, micro- and submicroscopic scale. The measured forces, tem-
perature and contact lengths in instrumented milling tests are used to calculate the 
temperature field as well as the thermal and mechanical stress fields in the tool 
during a milling cycle. The critical region of the tool, where failure typically oc-
curs, is modelled mesoscopically to simulate the crack-gradient interaction. The 
failure behaviour of hardmetal depends on the microstructural parameters, espe-
cially on the volume fraction and inclusion shape of the binder. This effect is in-
vestigated on the microscopic scale. In more detail, the damage behaviour of the 
binder phase is simulated on sub-microscopic scale to provide sufficient critical 
values such as damage parameter and fracture toughness for the microscopic and 
mesoscopic calculations. 

Tool Materials 

Sintered hardmetals consist of a binder phase, in general cobalt, and carbides, in 
general WC and as well TiC, TaC and NbC. The latter exist as cubic 
(Ti,Ta,Nb,W)C, the γ-phase. The microstructural parameters like volume fractions 
and grain sizes of the phases control the material data and fracture behaviour of 
hardmetals. 

                                                           
6 Reprinted from S. Schmauder, A. Melander, P.E. McHugh, J. Rohde, S. Hönle, Or. 

Mintchev, A. Thuvander, H. Thoors, D. Quinn, P. Connolly, "New Tool Materials with 
a Structural Gradient for Milling Applications", J. Phys. IV France 9, pp. Pr9-147 - Pr9-
156 (1999). with kind permission from Elsevier 
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Three hardmetal grades, CoStri, γFree and Conv, are investigated, the first two 
variants are graded materials with a tough surface zone on a hard substrate and the 
third variant is a conventional milling grade. Characteristic microstructures of the 
graded materials are shown in figure 4.60. The graded zones are 20-30 µm thick 
for both graded materials. The grade γFree possesses a surface zone free of cubic 
carbides and with increased Co content. The special merit of this graded zone is 
the low contiguity. 

The two coating variants incorporating TiN/TiC layers with different chemical 
compositions were performed on the three tool grades. Conventional Chemical 
Vapour Deposition (CVD) technique was used in one variant, while the other in-
volved plasma assisted CVD (PCVD). The coating thickness was around 5 µm for 
CoStri and γFree and slightly thinner for grade Conv. The CVD coating shows 
high residual tensile stresses which lead to cracks in the coating layer. The average 
distance between these cracks is about 150 - 200 µm. The formation of the brittle 
η-phase [11] close to the surface was found in grade Conv with conventional CVD 
coating. 

The elastic data of hardmetals mostly depend on the volume fractions of the 
different phases, [1, 6, 12-15]. For the Young's modulus a linear relation with vol-
ume fractions exists. The Young's modulus can be calculated by the formula [6] 

 

 



 

 
 
Fig. 4.60  Contents of Cobalt and y-phase, atomic number contrast images and light optic 
non-etched micrographs on plasma CVD coated yFree (top) and CVD coated CoStri (bot-
tom). 

 

)96(56.935.133 CoPhaseWC fffE −++= γ  (4.29)

where fi is the volume fraction of phase i. 
The fracture toughness is proportional to the square root of the mean free path 

in the binder [14, 16, 17]. This is important regarding grade CoStri, where locally 
Co-islands of several µm exists. 

Dependencies of yield strength and fracture strength on the temperature were 
investigated by Bouaouadja et. al. [18]. For hardmetals with low Co content, 
yielding is visible only for high temperatures, while the temperature dependence 
of ηy for binder rich hardmetals is remarkable even for small variations in tem-
perature. 

Instrumented milling tests 

Tool life testing was performed in a cutting data range where the tool life is lim-
ited by monotonic fracture or low cycle fracture. Different fracture modes are con-
sidered. Furthermore, information of cutting forces, tool/chip contact length and 
chip deformation are collected for subsequent use in numerical modelling of tool 
stresses and temperatures. An orthogonal up-milling geometry, implying an in-
creasing chip thickness and cutting force during the actual cut and a hard 90° tool 
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exit was used. Increased feed and work piece hardness reduced the tool life of the 
inserts substantially. During the tool life studies the milling was stopped every 20 
to 50 cycles for visual inspection of the edge. The tool edge was considered frac-
tured for damages greater than 0.4 mm on rake or flank. The edge damages are 
classified according to appearance and position on the edge, figure 4.61. Great 
tool life differences were recorded for the six tested variants. The PCVD coated 
conventional grade performs the best. The gradient structures seem to introduce 
weaknesses into the material causing them to fracture earlier. 

The type of coating used has a bigger effect than the gradient variant on the tool 
life and the type of chipping that will occur on the edge. CVD coating primarily 
causes chippings on the flank face while top slice dominates for the PCVD coated 
tools. There is no clear difference between which fracture types that occurs for 
grades γFree and CoStri, figure 4.62. The PCVD coated variants performed better 
than the CVD coated variants for high feed levels where 70% of the latter failed 
before the first inspection. At lower feed the CVD coated variants improved 
greatly. The γFree variants also improved, more than the CoStri variants, and at a 
feed level of 0.115 mm/rev and a 50% fracture probability level γFree with CVD 
coating is the best gradient variant. Both γFree variants give longer tool lives than 
the CoStri variants. 

The coating process also influences the contact length, chip thickness ratio, 
chip curl, edge radius and friction coefficient during machining, figure 4.63. It 
may also act as a crack initiation site due to cracks formed in the coating during 
the coating process. The differences in forces, contact lengths and chip deforma-
tion for the coatings hold together well. 

 

 
Top slice (TS) Main edge chipping (MEC) 

 

Nose chipping (NC)  
 

Fig. 4.61  Fracture types according to appearance and position on the edge. 
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Fig. 4.62  Tool life results at s = 0.115 mm/rev. 
 

0 20 40 60 80 100
-600

-400

-200

0

200

400

600

800

FX
FY

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90

Angle [degrees]

CVD

PCVDγFree

 

1
2
3
4
5
6
7
8
9

0 10 20 30 40 50 60 70 80 90

Angle [degrees]

CVD
PCVD

 

 

Fig. 4.63  Example of cutting forces, contact length and chip deformation of CVD and 
PCVD coated γFree. 

 
CVD coating gives a shorter contact length on the tool with chips that are 

thicker with a smaller radius and a clearer foot formation. The friction coefficient 
(F/N) during cutting is also ~10% higher. The CVD coating is thicker than the 
PCVD and the edge radius is a little bigger. It is probable that the residual stresses 
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are higher and a number of cracks are present in the coating prior to cutting while 
no such cracks have been detected in the PCVD coating. 

Simulations 

Macroscopic simulations 

The milling process is simulated numerically with a model based on the Finite 
Element Method. The model can be used for calculation of macroscopic too 
stresses due to mechanical and thermal load. The simulations are performed in two 
separate steps, an initial step to determine the temperature [19] and the subsequent 
step to calculate the stresses [20, 21]. Process data and tool loads are used as input 
data. The tool loads are applied as boundary conditions on the tool surfaces and as 
long as the load distribution can be determined by measurements and simple cal-
culations it is not necessary to simulate the mechanical flow of the work material. 
The heat transport due to work material flow on the other hand is taken into ac-
count. Ten load distributions corresponding to different parts of a milling cycle 
from tool entry (0°) to tool exit (90°) were entered. Experimental data obtained in 
the instrumented milling tests are used in all steps except the last one. The tool 
loads at 89.6° cutter rotation are obtained from a separate numerical simulation of 
plastic deformation of the chip during the final part of the milling cycle [22]. The 
loads are ramped down to zero at 90°. 

In the temperature calculation heat generation at the primary and secondary de-
formation zone as well as at the flank surface and heat transport due to work mate-
rial flow was taken into account. The chip thickness variation is modelled using a 
mesh corresponding to the maximum chip thickness but only activating those ele-
ments which correspond to the present chip thickness. 

Both the temperatures and the stresses are cyclic with the largest values close to 
tool exit. Figure 4.64 shows the calculated temperature distribution in the tool of 
grade γFree, PCVD coated, just before tool exit. Both the major principal stress 
and the major shear stress show their highest values at 89.6° cutter rotation angle 
but at different locations. The level of the largest tensile stresses is about 400 
MPa. The largest shear stress is above 3000 MPa and occurs at the position where 
the highest temperature appears. High shear stresses may cause plastic deforma-
tion and possibly shear fracture. 

Similar results as those shown above were obtained for γFree tool with the 
CVD coating. The maximum shear stress level was only slightly higher for the 
PCVD coated grade. In figure 4.65 the complete cycles of temperature and Tresca 
stress are shown for both variants at the location where the shear stress has its 
highest value. 
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Fig. 4.64  Calculated temperature distribution (OC) in the milling tool, grade γFree, PCVD 
coating, and the chip at the end of the first cycle (89.6°). 
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Fig. 4.65  Calculated temperature/Tresca stress cycle for tool grade γFree with CVD and 
PCVD coating. Evaluated for the point with the maximum temperature. 

Mesoscopic simulations 

The influence of graded zones on tool failure is investigated by mesoscopically 
modelling a cut-out of 0.2 x 0.2 mm2 applying realistic loading conditions from 
the macroscopic calculation, figure 4.66. The loading conditions are simplified as 
follows: the temperature distribution is assumed in a radial gradient, maximum 
temperature and gradient values vary during the milling cycle according to the 
macroscopic simulations. The mechanical loading is applied by prescribed and 
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suppressed displacements as well as by constraints at the boundaries.Fracture is 
limited to the defined crack path in the middle of the model. The fracture criterion 
is based on K1c-theory, whereby different Klc values are chosen for the different 
materials in the graded zones and temperature dependencies are taken into ac-
count.  

Different graded zones are studied by comparing the crack resistance [23] of 
the grades applying Mode I loading. Different coatings are considered and residual 
stresses appearing from the CVD coating process are taken into account. 

Figure 4.67 shows a comparison of grades where the coating was chosen to 
have a Young's modulus of 400 GPa and a thermal expansion coefficient of 9.3E-
6 K-1. After a temperature change of -400 K, initial cracks in the coating appear. 
Additional mode I loading leads to failure of the model at a global strain of 0.11%. 
The highest crack resistance was found in grade CoStri while grade Conv and 
grade γFree show no remarkable differences. In figure 4.68, the results are shown 
for the same material data, but lower residual stresses; the temperature change in 
these calculations was only -300 K. All grades show an increased crack resistance, 
still, grade CoStri is the best grade, but the variation between the grades are less 
significant. The results shown in figure 4.69 are obtained using a higher Young's 
modulus of 570 GPa and again a temperature change of -400 K. This combination 
results in high residual stresses, especially in the coating layer. As a consequence, 
the crack resistance and the strain of failure decrease and the grades distinguish 
more remarkable compared to the calculations with lower residual stresses. 

Thus, residual stresses are most important for the crack driving force: low re-
sidual tensile stresses in the coating result in high crack resistance. The influence 
of grades on failure is significant in the case of large thermal stresses: a soft 
graded zone, like grade CoStri may stop cracks from the coating layer. 

 

 
 

Fig. 4.66  Mesoscopic model (schematic). 
 



 
Fig. 4.67  ΔT = -400 K, Mode I, εglobal  = 0.11 % 

 
Fig. 4.68  ΔT = -300 K, Mode I. εglobal  = 0.13 %. 

 
Fig. 4.69  ΔT = -400 K, Mode I. εglobal  = 0.07 %. 
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Fig. 4.70  Mesoscpoic model for crack propagation through Co islands. 

 
Especially relative large Co islands can retard crack propagation. The propaga-

tion of a crack through a ductile Co-island surrounded by a graded layer, figure 
4.60, is therefore simulated as well. The Co-rich islands are elliptic in shape. In 
the surrounding graded layer, the mechanical properties vary smoothly from the 
matrix behaviour to the Co island.Deformation theory of plasticity is employed for 
the inclusion material and the graded interface. The crack propagation is simulated 
using a cohesive surface model [24]. It allows the evolution of crack initiation 
from the free surface or from an initial crack, crack growth and crack arrest to be 
described.  

The criterion for decohesion is controlled by the normal traction transmitted 
through the cohesive surface. Decohesion under mode I loading may occur if the 
normal traction reaches a critical value, Tn

crit the cohesive strength. The variation 
in properties in the graded zone implies a variation in the cohesive strength. The 
cohesive strength for the matrix material and parts of the graded zone were deter-
mined from the transverse rupture strength of hardmetals [24]. For Co volume 
fractions more than 40% estimated cohesive strengths for hardmetals vs. volume 
fraction of Co are shown in figure 4.71. For high binder volume fractions a para-
metric study was performed to determine the values for which the crack propa-
gates in a stable manner (lower dashed line) or stops due to blunting (upper dashed 
line) within the island. 

Simulations are performed with both criteria. For the lower values of the cohe-
sive strength, the crack propagates in a nearly brittle manner, just a small retarda-
tion is observed within the Co island. For values between the two dashed curves 
the crack propagation is stable. For values higher than the upper dashed line, crack 
arrest is observed within the Co island. Further on, the presence of a graded coating 
layer on the top of the free surface was assumed and residual stresses appearing 
from cooling after coating deposition were taken into account. In all cases, after 



initiation the crack propagates brittle until the crack tip reaches the graded zone. 
For this reason, a sharp peak in the force displacement curves is observed, figure 
4.72. The residual stresses facilitate crack initiation, resulting in a significant de-
crease of the peak loading value compared with the case without residual stresses.  

 

 
 
Fig. 4.71  Cohesive strength vs. volume 
fraction of Co. 

 
Fig. 4.72  Influence of the residual stresses 
on the crack propagation. 

 
With further loading increase, a retarded crack propagation through the graded 

zone in the Co island is observed. After some amount of crack propagation a pla-
teau in the force displacement curve is attained. Using the low cohesive strength 
values, crack propagation is accelerated by residual stresses; the plateau is shorter, 
showing a smaller amount of applied loading is needed for crack propagation. 

Conclusions 

Instrumented milling tests were performed and tool life was studied for three dif-
ferent milling grades, where two contain a gradient structure underneath the coat-
ing. One of these grades, γFree, has a y-phase depleted zone while in grade CoStri 
cobalt striations are included. Two coatings were considered, a CVD and a plasma 
assistant CVD coating. Initial cracks were detected in the CVD coating layer. 
Clear differences were detected in tool life of the gradient variants γFree and CoS-
tri. The type of coating has strong influence on chipping at the edge. It also effect 
contact length, chip thickness ration, chip curl, edge radius and friction coeffi-
cient. 

Numerical simulations of milling have been carried out for the tools to predict 
tool temperatures and stresses. The largest stresses in up-milling appear just after 
tool exit due to thermal stresses or just before tool exit due to reversed chip flow. 
Mesoscopic simulations were set up where the critical region of the tool has been 
mode lied. The results from the calculations are comparable to the experimental 
results. The crack resistance curves show the important influence of residual 
stresses due to the coating procedure. In presence of initial cracks a soft gradient 
zone may retard crack propagation, in large cobalt islands, crack blunting and ar-
rest may occur.  
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Chapter 5: Atomistic and Dislocation Modelling 

In this Chapter, atomistic and dislocation methods of modelling the material be-
haviour and damage initiation and growth are discussed. 

In section 5.1, an empirical interatomic potential of the embedded atom type is 
developed for the Fe-Cu system. The potential for the alloy system was con-
structed to reproduce known physical parameters of the alloy, such as the heat of 
solution of Cu in Fe and the binding energy of a vacancy and a Cu atom in the α-
Fe matrix. The potential also reproduces first-principle calculations of the proper-
ties of metastable phases in the system. This atomic interaction model was used in 
simulation studies of the interface of small coherent Cu precipitates in α-Fe and of 
dislocation core structures.  

In section 5.2, atomistic molecular statics simulations are employed in order to 
obtain the stress–strain curves of α-Fe single crystals under uniaxial tensile defor-
mation for the whole deformation process. Effects of model sizes, boundary con-
ditions, crystal orientations and displacement increment on the stress–strain curves 
arey investigated. Various deformation evidence such as dislocation movement, 
dislocation piling up and twinnings are clearly observed. The deformation and 
fracture characteristics of α-Fe and their dependence on the boundary conditions 
or the stress states are studied. 

In section 5.3, the void growth in face centre cubic (fcc) single crystals on the 
atomic level (10-9 m) is simulated. An atomistic model is used to capture the large 
amount of irregularities such as vacancies and void-like vacancy clusters which 
exist in even the purest real material. The embedded atom method (EAM) is used 
to describe the atomic interaction and so the material behaviour in a realistic man-
ner. The potential energy of the entire system is minimised to find the equilibrium 
configuration of any deformed state. Stress-strain curves are plotted for various 
initial void configurations and crystal orientations under uniaxial tension. The re-
sulting curves show good qualitative agreement with that expected from experi-
ment but predict stress levels close to the theoretical strength of the material. 
Crack propagation and dislocation glide are seen to occur along the theoretically 
predicted directions. Comparison is made with crystal plasticity calculations for 
similar geometries.  

Molecular dynamics (MD) calculations are employed to investigate the interac-
tion between a moving edge dislocation in an α-Fe crystal and a copper precipitate 
in section 5.4. In the absence of external stresses, two edge dislocations with the 
same slip plane and opposite Burgers vectors within a perfect α-Fe crystal lattice 
are investigated. In agreement with Frank’s rule, the movement of the dislocations 
under mutual attraction is found and attention is focused on the interaction between 
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one of the dislocations and the Cu precipitate. The critical resolved shear stress of 
the Fe was calculated and the influence of different sizes of Cu precipitates on the 
dislocation mobility was studied. The pinning of the dislocation line at the Cu in-
clusion as derived from the atomistic modelling agrees with previously published 
continuum theoretical behaviour of pinned dislocations. Therefore, nanosimula-
tion as a way to model precipitation hardening could be established as a useful 
scientific tool. 

Molecular dynamics and micromechanics are combined in section 5.5 to study 
the low temperature fracture of tungsten. In the simulations a pre-crack was intro-
duced on the (110) planes and cleavage was observed along the (121) planes. 
Cleavage along (121) planes has also been observed in experiments. Simulations 
were performed with three sizes of molecular dynamic regions at 77 K, and it is 
found that the results are independent of the size. Brittle fracture processes are 
simulated at temperatures between 77 K and 225 K with the combined model. The 
fracture toughness obtained in the simulations showed clear temperature depend-
ency, although the values showed poor agreement with experimental results. A 
brittle fracture process at 77 K is discussed considering driving dislocation emis-
sions and cleavage in an atomic scale region of the crack tip. The driving disloca-
tion emissions is saturated after the first dislocation emission, whilst the driving 
force for cleavage gradually increases with the loading K-field. The increased 
driving force causes cleavage when it reaches a critical value. The critical values 
of driving force, which are close to the theoretical strength of the materials, were 
not influenced by temperature. This indicates that the temperature dependency of 
fracture toughness is not caused by the temperature dependency of dislocation 
emissions, but by that of dislocation mobility. 

In section 5.6, atomistic computer simulations of the formation of precipitates 
are used to get a deeper understanding of the mechanical behaviour of Cu-alloyed 
steels. A model is presented which is able to simulate the ‘diffusion’ of atoms by 
vacancy jumps. The underlying Monte Carlo method is presented and a binary 
system with components A and B is considered. Starting with a random distribu-
tion of atoms, the formation and growth of precipitates is simulated at a constant 
temperature of 600 °C. In a second simulation, an initial temperature of 700 °C is 
lowered to 400 °C. At 700 °C precipitates of radii between 1.1 and 1.7 nm are 
formed within seconds. At 400 °C a part of the still dissolved atoms forms smaller 
precipitates while other atoms increase the size of the larger precipitates. At longer 
simulation times a significant decrease of the number of small precipitates and an 
increase of the averaged precipitate radius is found.  

In section 5.7, classical molecular dynamics simulations of the interaction of 
edge dislocations in Ni with chains of spherical Ni3Al precipitates are performed 
using EAM potentials. The order hardening is investigated at temperature T = 0K 
by determining the critical resolved shear stresses (CRSSs) for a superdislocation 
that is dissociated into four partial dislocations. The CRSS is computed as a func-
tion of the radius and the distance of the precipitates. It is found that for precipi-
tates with a diameter smaller than the dissociation width of a perfect edge disloca-
tion in Ni, the CRSS of the trailing dislocation of the superdislocation is a fraction 
of about 0.4 of the CRSS of the leading dislocation.  
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Atomistic studies of the structures of dislocation cores, grain boundaries, point de-
fects, and cracks in Cu-containing ferritic steels are of great relevance to the un-
derstanding of the irradiation embrittlement of pressure vessels and the alloying 
behaviour in these materials. A large increase in hardness results both from ther-
mal ageing and from irradiation of steels with very low Cu content, and experi-
mental evidence strongly relates this property change to the occurrence of initially 
small body-centred cubic (bcc) Cu precipitates (~1 to 2 nm in diameter). Upon 
further ageing, the precipitates grow with a spherical shape to a mean diameter of 
about 6 nm, when they become unstable and transform apparently in a martensitic 
mode to a complex presumably 9R [1] structure. Additional growth leads to the 
stable face-centred cubic (fcc) phase. Although the mechanisms of precipitation 
are not well understood, it is likely that vacancies - produced profusely by irradia-
tion - are substantially involved [2]. 

Atomistic simulations require the development of interatomic potentials for the 
alloy system. Osetsky and Serra developed a pair potential for the Fe-Cu interac-
tions [2] in terms of the generalized pseudopotential theory, but pair potentials are 
not suitable to correctly calculate surface energies or fracture properties. Ackland 
and co-workers recently developed a potential that includes many-body terms and 
they have calculated point defect properties for dilute solutions of Cu in Fe [3]. 
The recent work of Osetsky and Serra [2] using pair potentials and molecular dy-
namics underlines the great importance of the precipitate-matrix interface in the 
phase stability of small Cu precipitates in Fe.  

The objective of the present work is to develop a new interatomic potential that 
will allow one to perform atomistic simulations of coherent Cu-precipitates in α-
iron using the embedded atom method (EAM) technique, and to gain insight into 
the nature and the energies of the precipitate-matrix interface. 

A detailed description of the embedded-atom method can be found in [4]. The 
total energy Etot of a system of atoms is expressed as 
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where the superscripts i and j indicate atom types, and the subscripts indicate the 
atoms themselves. The Fi are the embedding functions, ρi is the total host electron 
density of atom i which consists of contributions ρj(rij) from atoms j that are at the 
interatomic distances rij from atom i, and Vij are the pair potentials between atoms 
i and j. 

                                                           
1 Reprinted from M. Ludwig, D. Farkas, D. Pedraza, S. Schmauder, “Embedded Atom 
Potential for Fe-Cu Interactions and Simulations of Precipitate-Matrix Interfaces”, 
Modelling and Simulation in Materials Science and Engineering 6, pp. 19-28 (1998) with 
kind permission from Elsevier.  
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Minimization of the total energy Etot using for example a conjugate gradient 
scheme for a given initial atomic configuration, which may be one or several Cu 
atoms or even a Cu precipitate in α-iron, leads to a relaxed stable configuration of 
the atom ensemble. In the derivation of the potentials we have used a scheme 
similar to that used in previous work on other alloy systems [5]. 

5.1.1 Interatomic potentials for the pure components 

For α-Fe we used the interatomic pair potential given by Simonelli et al. [6] and 
for Cu we used the interatomic potential given by Voter [7]. Both potentials fit 
Roses’ equation of state [8] and other element properties including lattice con-
stant, cohesive energy, elastic constants and vacancy formation energy. In the pre-
sent computation, the first derivative of the embedding function (F´Fe or F´Cu) was 
set equal to zero for the electron density of the perfect lattice ( 0ρ ). In such a case, 
the potentials are said to be in their effective scheme [9]. The interatomic poten-
tials for the pure metals were not originally in the effective pair scheme. Thus, we 
first transformed them into this scheme. The transformation used to convert to the 
effective pair scheme is as follows [5] 
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where F is the embedding function (FFe and FCu, respectively), V the pair potential 
function (V FeFe and V CuCu, respectively), ρ the electron density function, 0ρ  the 
electron density in the perfect lattice (bcc and fcc structure, respectively) of the 
pure crystal and r is the interatomic distance. The values for the electron density 
of the perfect lattice of bcc Fe and fcc Cu were normalized to the same value of 
0.34. 

Properties of bcc Cu 

The Voter Cu potential has been developed based on the fcc phase and in this sec-
tion we summarize the behaviour of the bcc phase that it predicts. The lattice pa-
rameter of the bcc Cu phase is calculated as 0.2880 nm. This parameter is the 
same as calculated by Osetsky and Serra [10] (0.2885 nm), and in excellent 
agreement with first-principle calculations [11] that give a parameter of 0.2873 
nm, but it is significantly lower than that value of 0.296 nm predicted by the po-
tential used by Ackland et al. [12]. These values can be compared with the lattice 
parameter of bcc Fe, 0.2867 nm. As a result, in our simulations the Cu precipitates 
are subject to much lower stresses than predicted by Ackland et al. [3]. The strain 
of the precipitates in the present work is 0.45%, whereas with the potentials of 
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Ackland et al. it is  3.2%. In our calculations, the energy of the strained lattice is 1 
meV/atom higher than that of equilibrium. The difference in energy between the 
fcc and bcc phases given by the present potential is 46 meV/atom. 

5.1.2  Results for the Fe-Cu interaction 

The data used in the development of the potentials are as follows. 
• The vacancy-Cu atom binding energy in the α-Fe matrix, Eb

V-Cu = 014eV. 
This energy was obtained using muon spin rotation experiments on dilute 
Fe alloys [12]. 

• The energy of solution of one Cu atom in the α-Fe matrix Ecu = 1.23 eV.  
This energy was obtained using the partial molar energy for liquid alloys as 1823 
K, atomeVECu /49.0=Δ , as given in [13]. The energy of one Cu atom in the α-Fe 
matrix ECu can be calculated with the partial molar energy ΔECu as 

 

CuCuFeCu EfccEbccEE Δ+−= )()(  (5.3) 

The cohesive energies EFe.(bcc) and ECu.(fcc) are 4.28 eV [6] and 3.54 eV [7], re-
spectively. (3) The kinetic binding energy between two Cu atoms in the α-Fe ma-
trix defined by Osetsky and Serra [2] as 
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should not exceed 0.05 eV to allow small Cu clusters in Fe to dissociate thermally. 
b
CuE2  is the binding energy of two Cu atoms and b

CuVE −  has been defined earlier. 
This condition is consistent with a mechanism of precipitate growth and dissolu-
tion mediated by vacancies.  

The mixed-pair interaction potential was obtained by empirically fitting these 
experimental data to the calculated values obtained by a combination of the effec-
tive-pair interactions of Fe and Cu. The general form for the combination used is 
as follows: 
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where x takes values from zero to unity. The parameters a, b, c, d, e, f and A were 
adjusted to give good overall fit to the properties considered. The potential VFeCu

eff 
must be calculated in an interatomic distance interval a, a + bx that must include 
the interval used in the numerical simulations, and this is the only limitation to the 
values of a and b. As used in equation (5.4), this procedure entails keeping only 
the functional form of VFe

eff and VCu
eff similar to the interaction potential that 
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applies between atoms of the same species. Thus, changing c and d (and e and f ) 
from the values that apply to the pair interaction only implies a homogeneous ex-
pansion (or contraction) in the interatomic distances. Here, the values of c, d, e 
and f were chosen to yield no change in the intervals c, c+d and e, e+d used for the 
pair potentials. The other three parameters of equation (5.5) were systematically 
varied and their effects on the properties of interest were studied to determine the 
most suitable set of values to fit the entire system properties mentioned above. 
Varying A affects mainly the cohesive energy of the lattice, while a and b have a 
stronger effect upon the lattice parameter of mixed ordered phases. 

 
Table 5.1  
Parameters obtained for the mixed interaction potential. Distances are in 10-1 nm 

a b c d e F A 
1.000 4.700 0.992 4.095 1.000 4.961 0.5 

 
Table 5.2  
Comparison of adjusted properties with experimental results. Energies are in eV. 

 b
CuVE −  Ecu  )2(b

kE  b
CuE2  

Experimental value 0.14 1.23 0.05a 0.20 
Calculated, present work 0.18 1.23 0.01 0.19 
Calculated, Ackland et al. 

[3] 
0.09  0.01 0.1 

a Assumed value (see [2]) 
 

Table 5.3  
Results for Ll2 structures 

 Lattice  
parameter (nm) 

Cohesive  
energy (eV) 

Formation  
energy (eV) 

FeeCu, LMTO 0.3546 3.9917 0.125 
Fe3Cu, EAM 0.3729 3.9125 0.183 
Cu3Fe. LMTO 0.3555 3.6168 0.102 
Cu3Fe, EAM 0.371 44 3.541 75 0.178 

 
Best fit values obtained for the parameters are given in table 5.1. With these pa-

rameters we obtained the fitting result given in table 5.2. The calculated values 
match well with the experimental data.  

As a check for the mixed pair potential, the cohesive energies and lattice pa-
rameters of two Ll2 structures in the system were calculated and compared with 
available LMTO calculations [3]. These results are given in table 5.3, showing ex-
cellent agreement. 
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Calculation of interface energies 

We used the potentials described above to calculate bcc Cu/α-Fe matrix interface 
energies. In all the cases, the energy used for the Cu atoms in the lattice referred to 
as perfect corresponded to the energy of the strained bcc Cu lattice. In this way, 
the interface energy obtained does not include the effects of the strain on the pre-
cipitate. First, we considered a spherical precipitate, 4 nm in diameter, in a simula-
tion involving the relaxation of 16 000 atoms (the block comprised an outer shell 
of 24 000 fixed atoms). The interface energy in this morphology was obtained by 
calculating the difference in energy of the block containing the precipitate and a 
block of the same number of atoms in a perfect lattice condition. The energy ob-
tained for the spherical case is 207 mJ m−2. Figure 5.1 shows a cut of this precipi-
tate through the maximum circle of the sphere in the (100) plane. 

We also calculated the surface energy corresponding to a cylindrical interface 
with its axis along the [001] direction. In this instance, the ‘infinite’ cylindrical 
precipitate had a diameter of 4 nm. This surface energy was higher, at 245 mJ m−2. 
As seen in figure 5.1, this interface is composed mostly of small patches of {100} 
and {110} interfaces. We, therefore, calculated the values for these two interfaces 
and found 318 mJ m−2 and 121 mJ m−2, respectively. For these calculations, pris-
matic precipitates having a square cross section with a 4 nm side were considered. 
All these values are listed in table 5.4. 

These results suggest that the preferred interface plane is the most compact 
plane in the bcc structure. They also show that the interface in the cube plane has a 
significantly higher energy. 

 
 

 
 

Fig 5.1  Cross section of a spherical bcc-Cu/α-Fe interface showing patches of {110} and 
{100} interface. Relaxed atomic positions display insignificant deviations from perfect bcc 
structure. 
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Table 5.4  
Results for interface energies 

Morphology Energy (mJ m-2) 
Spherical precipitate 207 
Cylindrical precipitate along [001] 245 
{100} type planes 318 
{110} type planes 121 

Dislocation cores in Fe-Cu alloys 

We studied the dislocation cores in Fe-Cu alloys in two cases. The first case was a 
½ <111> screw dislocation in an Fe matrix containing a random distribution of Cu 
atoms. In pure Fe, this dislocation is known to have a non-planar structure with a 
core spreading in three different {110} planes [14], according to a core structure 
simulation study that used the same Fe potential as we use in the present work. In 
order to study the possible effects of the Cu atoms on the core structure of the dis-
location, a relatively large concentration of Cu atoms was included (16%). Figure 
5.2 shows the dislocation core using the differential displacement map technique 
where the length of the arrows indicates the extent of the deviation of the intera-
tomic distances from the perfect lattice positions. Similar studies were conducted 
previously for the effect of substitutional Cr atoms on the same dislocation [15]. 
The results show that the effects of Cu and Cr are similar.  

 

 
 

Fig 5.2  Projection on plane {111} of a (111) screw dislocation core structure in an alloy 
containing a random distribution of Cu substitutional atoms. Differential displacement map 
with arrows showing extent of atomic displacements. Circles represent iron atoms and tri-
angles represent Cu atoms. 
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Fig 5.3  A mixed-type dislocation running across a bcc Cu precipitate and α-Fe matrix. Dis-
location line normal to view on the {001} plane. 

 
 
The dislocation core maintains the basic three-plane structure but there are de-

viations that can be observed at a few interatomic distances from the dislocation 
centre. The core appears to have a strong attractive interaction with the Cu atoms. 
This preference suggests that Cu atoms would tend to segregate to the dislocation 
core. 

The second simulation involved a dislocation running through a spherical pre-
cipitate 4 nm in diameter. The calculation block included 16 000 free atoms. In 
this case, the dislocation is of mixed type, with a Burgers vector ½ <111> and the 
dislocation line along a cube direction. The results of the simulation are shown in 
figure 5.3. Since this dislocation has a large edge component, it is shown in a di-
rect plot of atomic coordinates. The figure shows the projection of the atomic co-
ordinates of all atoms of the block on a plane perpendicular to the dislocation line. 
The simulation was performed using periodic boundary conditions along the dis-
location line, with a periodicity of about 30 lattice parameters so that the disloca-
tion was free to bow out of the precipitate if this resulted in a lower energy con-
figuration. However, as can be seen in figure 5.3, no bowing occurred and the 
dislocation inside the precipitate does not display a structure significantly different 
from the structure seen in the Fe matrix outside the precipitate. 

Instability of the bcc precipitates 

Initiation of the transformation to an fcc structure (or to another more complex 
phase) is expected to occur as the size of the precipitate increases. Although the 4 
nm diameter spherical precipitate simulated above developed compressive strains, 
the Cu atoms did not exhibit any deviations from perfect bcc lattice positions.  

5.1 Embedded atom potential for Fe-Cu interactions
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Fig 5.4  Projection on plane {001} of the relaxed positions of a 7.5 nm diameter spherical 
precipitate. 

 
 

We then changed the size of the precipitate in order to study its stability against 
a phase transformation. As seen in figure 5.1, in the projection of relaxed atomic 
coordinates on a cube plane for a spherical precipitate 4 nm in diameter, the 
atomic coordinates for the precipitate show that the relaxed atomic positions do 
not deviate significantly from the perfect bcc lattice positions. This result is an-
other proof that the bcc structure in the Cu precipitate is fully stabilized by the 
presence of the interface. A simulation performed with a similar precipitate con-
taining a vacancy concentration of 3% did not show any change either. For a pre-
cipitate that is 6 nm in diameter substantial distortions from the bcc structure start 
appearing in the centre of the precipitate. These deviations are particularly impor-
tant in one out of every six compact planes. This suggests that the incipient trans-
formation might be accompanied by a shear and produces a daughter phase bear-
ing a definite orientation relationship with the parent bcc phase. The precipitate 
size at which this instability is observed agrees very well with the precipitate size 
where transformation of the bcc Cu phase is observed experimentally [1]. In this 
simulation, no vacancies were incorporated, therefore implying that the transition 
is not vacancy-assisted but is a result of phase instability alone. Further changes 
occur for a 7.5 nm precipitate, as illustrated in figure 5.4, where a slab of the 
sphere can be viewed in the (001) plane. 
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Summary and discussion 

A many-body potential for the Fe-Cu system was developed in the framework of 
the embedded atom approach using a very simple model. The potential was based 
upon the same-atom interaction potentials developed by Voter [7] for pure Cu and 
by Simonelli et al. [6] for α-Fe. The procedure that was followed for the mixed-
pair interaction potential used three properties of Cu in Fe, viz, the vacancy-solute 
binding energy, the heat of solution into liquid Fe and the binding energy of a Cu 
dimer in the ferritic matrix. Although the latter does not come from experimental 
measurement, it is a very reasonable assumption based on a very likely vacancy 
mediated precipitate nucleation and growth mechanism, strongly suggested by the 
two known precipitation conditions, i.e. irradiation with energetic particles and 
thermal ageing.  

The small Cu precipitates have been well characterized as having a bcc struc-
ture. Our calculation of the lattice parameter and energy of this lattice using 
Voter’s potential yielded 0.288 nm for the former, the same value obtained by 
Osetsky and Serra [2] using a pair potential approach. Results of LMTO calcula-
tions conducted by Ackland et al. [3] allowed for a comparison with two hypo-
thetical intermetallic phases in the L12 structure, Fe3Cu and Cu3Fe, with excellent 
agreement, rendering additional reliability to the potential developed here. The 
cohesive energy of bcc Cu yielded 3.494 eV, very close to the value of 3.496 eV 
obtained by Ackland et al. The cohesive energy favours the fcc over the bcc phase 
by 46 meV, this difference being larger than Osetsky and Serra’s reported value of 
37 meV by 24% [2]. The results obtained here are thus seen to be in fair agree-
ment with those obtained by other authors. The small lattice misfit with α-Fe re-
quires a relatively low strain energy to immerse the spherical precipitate with a 
coherent interface into the α-Fe matrix.  

Simulations of some low-index coherent interfaces between the bcc Fe matrix 
and the bcc Cu phase performed here yielded the fact that the more compact 
planes are favoured. The magnitude of the interface energy for the spherical pre-
cipitate is of the same order as that of a coherent fcc/bcc interface in pure Fe as 
calculated for the )121( || )213(  coherent interface, 178 mJ m−2. Comparison with 
experimental observations, however, is not straight-forward since the spherical 
precipitates have been observed in ferritic steels where the presence of other alloy-
ing elements may stabilize a spherical interface rather than a faceted one [1]. 

Our calculation of the of an edge dislocation in a Cu-containing Fe matrix 
showed a tendency of the Cu atoms to segregate to the core, as could be expected 
from the strong repulsive interaction between Cu and Fe. A similar calculation for 
a mixed dislocation running through the precipitate yielded no difference in the 
dislocation core structure between the two regions, thus indicating that such a dis-
location has the same features as in pure α-Fe. 

Our studies of phase stability showed onset of a phase transformation in the 
precipitate at the size of 6 nm. It is worth underlining that no vacancy presence 
was required for such instability. Our results are at variance with those of Osetsky 
and Serra who performed molecular dynamics simulations of the phase instability 
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of spherical bcc Cu precipitate. In their studies a 6% vacancy concentration was 
required to induce structural changes, adding a diffusional contribution to the 
transformation mechanism [10]. In our calculations, such a contribution does not 
appear as necessary at the above-mentioned size. Adding vacancies at a 3% level 
in a smaller precipitate did not prompt any transformation in our static calcula-
tions. The relaxation of a 7.5 nm precipitate shows additional displacements as 
compared to the 6 nm precipitate, clearly revealing the size effect upon the insta-
bility of the bcc phase. 

In summary, the results obtained in this work indicate that the potential devel-
oped here is reliable to conduct further simulations on both point defect and ex-
tended defect behaviour in the Fe-Cu system. 
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5.2 Atomistic simulations of deformation and fracture of 
α-Fe2 

 
With molecular dynamic techniques, a number of atomistic simulations on frac-
ture processes of quasi-static cracks [1–6], dynamic cracks [7–9], and the effects 
of temperature and crack orientations on fracture properties [10–12] have been 
performed for α-Fe single crystals in the recent past. Among their most important 
results there was evidence for the nucleation and emission of dislocations at crack 
tips and mechanisms of crack propagation under cracktip stress field. However, 
such studies of damage mechanisms have been performed only for one crystal ori-
entation and only starting from an already existing macroscopic crack. Unfortu-
nately, in all these studies only one crystal orientation was studied and attention 
paid typically to only one particular atomic configurational phenomenon. In addi-
tion, almost all of these studies started with an existing crack but very few results 
of calculations starting from a crack-free sample have ever been published (e.g. 
[3]). In order to provide more general insights into such phenomena, the aim of the 
present work has been to simulate the whole process of (i) elastic and (ii) plastic 
deformations, (iii) defect formation and developing and (iv) cracking under (v) 
different stress states and under (vi) different crystal orientations for a single crys-
tal. 

A comprehensive understanding of single-crystal deformation responses is one 
of the prerequisites for developing accurate micromechanical models for the de-
scription of deformation and fracture of polycrystals. In the present work, the de-
formation characteristics of α-Fe single crystals are investigated using a modern 
interatomic potential approach and with special emphasis on different stress states 
and on five typical different crystal orientations. The stress–strain curves and 
atomic configurations during the deformation process are presented. 

The corresponding deformation mechanisms and their competition under dif-
ferent stress states can be detected thus providing a detailed overview on various 
damage mechanisms occuring for different crystal orientations. 

5.2.1  Model and method 

The specimen shown in figure 5.5 represents the main simulation cell in this work, 
where x, y, z are the global coordinates and (li; mi; ni) (i = 1;2;3) are the Miller 
indices of the crystal directions. The whole simulation cell consists of two parts. 
One part is referred to as the active zone in which the atoms move according to the 
interatomic potentials; another part is referred to as the boundary zone where the 
positions of the atoms are given by the prescribed boundary conditions. A periodic 
boundary condition is imposed along the z-direction to simulate plane strain 
                                                           
2 Reprinted from S.Y. Hu, M. Ludwig, P. Kizler, S. Schmauder “Atomistic Simulations of 

Deformation and Fracture of α-Fe”, Modelling and Simulation in Materials Science and 
Engineering 6, pp. 567-586 (1998). with kind permission from Elsevier 
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conditions. In the x-direction, two kinds of boundary conditions are considered, 
which either surface stress-free or periodic conditions are. The size of the active 
zone is indicated by H, D and B. The parameters relative to the specimens consid-
ered in this work are listed in table 5.5 in which a0 is the lattice parameter. Five 
different kinds of models with different crystal orientations have been set up. 

No is an abbreviation for an orientation in a crystal and was introduced in order 
to link the table to texts and figures later on. p and f denote periodic and free 
boundary conditions in the x-direction, respectively.  

Figure 5.6 shows the x–y-planes of these specimens, with indices of the axes 
labelling the number of the crystal orientation. Both standard experimental works 
as well as several of the previous mentioned theoretical works have pointed out 
that the main cleavage planes of body-centred-cubic (bcc)-Fe are (100) and (110) 
and the main slip systems are {110}<111> and {112}<111>. For an overview on 
the role of particular planes in different crystals with respect to deformation, see, 
for example, [13]. In order to check and show the deformation mechanisms 
clearly, orientations 1 and 2 were chosen to check the cleavage planes and orienta-
tions 3–5 were chosen to check the slip systems. Nevertheless, it should be kept in 
mind that the orientation of the slip plane is a function of the orientation of the 
tensile axil and its activation depends also on the temperature and strain rate. 

 
 

Fig 5.5  Model of an α-Fe single crystal under uniaxial tensile load. 

For different model sizes, the number of the atoms in the active zone varies 
from 400 to 2400 and the total number of atoms in the models are about 6600 to 
30 800. In order to simulate uniaxial tensile loading in the y-direction, the lower 
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end of the specimen is fixed, and a constant displacement increment Δuy is applied 
to all atoms in the upper end block. 

 
Table 5.5 

H/a0 D/a0 B/a0 (l1,m1, n1) (l2, m2, n2) (l3, m3, n3) N0 x-dir. Δ uy/H Figure 
30 10 1 1 0 0 0 1 0 0 0 1 1 p 0.008 - 
40 15 1 1 0 0 0 1 0 0 0 1 1 p 0.008 - 
45 20 1 1 0 0 0 1 0 0 0 1 1 p 0.008 3 
30 20 1 1 0 0 0 1 0 0 0 1 1 p 0.008 3,5,8 
20 20 1 1 0 0 0 1 0 0 0 1 1 p 0.008 3 
26 20 1 1 -1 0 1 1 0 0 0 1 2 p 0.008 5,10 
26 20 2  1 0 1 0 1 0 -1 0 1 3 p 0.008 5 

26 20 2  1 0 0 0 1 -1 0 1 1 4 p 0.008 5,13 
26 20 6  1 -1 0 1 1 0 -1 -1 2 5 p 0.008 5,15 
20 20 1 1 0 0 0 1 0 0 0 1 1 f 0.008 4 
40 20 1 1 0 0 0 1 0 0 0 1 1 f 0.008 4,6,9 
50 20 1 1 0 0 0 1 0 0 0 1 1 f 0.008 4 
60 20 1 1 0 0 0 1 0 0 0 1 1 f 0.008 4 
20 10 1 1 0 0 0 1 0 0 0 1 1 f 0.008 - 
30 10 1 1 0 0 0 1 0 0 0 1 1 f 0.008 - 
36 20 1 1 -1 0 1 1 0 0 0 1 2 f 0.008 6,10 
36 20 2  1 0 1 0 1 0 -1 0 1 3 f 0.008 6,11 
36 20 2  1 0 0 0 1 -1 0 1 1 4 f 0.008 6,12 
36 20 6  1 -1 0 1 1 1 -1 -1 2 5 f 0.008 6,14 
20 20 1 1 0 0 0 1 0 0 0 1 1 p 0.001 7 
36 20 2  1 0 1 0 1 0 -1 0 1 3 f 0.001 7 
36 20 2  1 0 0 0 1 -1 0 1 1 4 f 0.001 7 

 

 
 
Fig 5.6  The Xi–Yi (i = 1; 2, …, 5) plane of five crystal orientations in α-Fe. 

Then the atoms in the active zone are relaxed to an equilibrium configuration 
using a molecular statics method. In a next step, a displacement increment Δuy is 
applied again and the process is repeated. In the present work, program FEAt 
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developed by Kohlhoff et al. is employed. This program has already been applied 
successfully for the atomistic simulation of crack growth and nucleation of dislo-
cations at the crack tip in [4–5], therefore it was an interesting challenge to use the 
same program to perform calculations starting from undamaged structures. 

The interatomic potential of α-Fe used in the present work is the embedded-
atommethod interaction potential (Simonelli et al. [14]). Equilibrium configura-
tions are obtained by a static relaxation method, in other words, the temperature is 
chosen as T = 0 K. The descriptions about the relaxation process and the boundary 
conditions are omitted, because they are given in detail in [3–5]. For our typical 
model size, the computer time required to obtain a stress–strain curve as shown in 
figures 5.7 and 5.8 is about 5–10 h on a DEC Alphastation 600 5/266. 

5.2.2   Results: stress-strain curves and fracture patterns 

In the following, results for stress–strain curves are provided in section 3.1, and 
deformation and fracture patterns are presented in section 3.2.  

Stress–strain curves 

The strain εy can be calculated from the displacement increment applied in each 
step. When trying to obtain a stress–strain curve, the crucial point is how to calcu-
late the stress σy. In the present simulation, the atoms in the upper and lower end 
blocks are assumed to remain in their perfect lattice positions during deformation. 
Therefore, there will be a zero-stress region in the middle of the end blocks, if the 
block size in the y-direction is large enough. A zero-stress region means that the 
force applied to every atom is zero. The forces acting on the other atoms in the 
end blocks, however, do not vanish because of the effect of the end surface or the 
atom position change in the active zone. In an equilibrium configuration, the re-
sulting force Fy on all atoms between the zero-stress middle region of the end 
block and the active zone stems from the interaction between the end block and 
the active zone. 

Therefore, the stress σy can be calculated as Fy/S, where S is the initial cross 
section of the specimen in the y direction. For all simulations of the present work, 
the size of the end blocks in the y direction is not less than 5a0 to ensure the exis-
tence of a zero-stress region in the middle of the end block.  

In the following sections 3.1.1, 3.1.2 and 3.1.3, effects of model sizes, crystal 
orientations, boundary conditions and displacement increments on stress–strain 
curves are discussed, respectively. 
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Fig 5.7  Stress–strain curves for crystal orientation No 1, periodic boundary conditions and 
different model sizes. 

 
 

 
 

Fig 5.8  Stress–strain curves for crystal orientation No 1, free boundary conditions and dif-
ferent model sizes. 
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Stress–strain curves and effect of model sizes  

The stress–strain curves for the whole deformation process for crystal orientation 
No 1 including elastic deformation, plastic deformation and fracture were ob-
tained, see figures 5.7 and 5.8. The almost linear onset of the curves up to a strain 
of approximately 0.05 corresponds to the elastic crystal response whereas for 
higher strains plastic deformation due to irreversible damage takes place. When 
strain exceeds a certain level, damage in the structures grows until rupture occurs 
around a strain of 0.4. In the case of free boundary conditions which is less realis-
tic for bulk materials than for thin metal films, the model has more freedom to al-
low slipping of planes and other damage mechanisms than in the case of periodic 
boundary conditions. Therefore, for periodic boundary conditions, the shape of the 
curves is very similar to experimental stress–strain curves of real bulk materials 
whereas for the free boundary condition case the crystal becomes softer after ini-
tialization of damage. The small drops in the plastic part of the diagram stem from 
slippings between lattice planes (see section 3.2.1). More details will be discussed 
in later sections. 

In order to examine the effect of model sizes, the specimens with crystal orien-
tation No 1 but different sizes (cf table 5.5) were studied. It was found that the 
model size had not much effect on the stress–strain curves, especially not on the 
elastic deformation and early plastic deformation stage. Although some differ-
ences existed in the later plastic deformation and final fracture process, the curve 
profiles corresponding to the same boundary condition with different computa-
tional cell sizes were similar. Therefore, it can be concluded that the model size 
affects only the threshold stress values at which the associated deformation 
mechanism activates or inactivates, but not the deformation mechanism for a 
given model. In addition, it was also found that the stress–strain curves tend to an 
asymptotic one with the increase of model sizes. Their characteristics can be seen 
from the stress–strain curves in figures 5.7 and 5.8, which were obtained under pe-
riodic and free boundary conditions, respectively. In figures 5.7 and 5.8 the stress 
and strain appear to be a linear relation during the onset of the deformation stage. 
These linear relations can be approximately described as  

 

σy = 146 εy    under stress-free boundary conditions in the x-direction (5.6)

σy = 221 εy    under periodic boundary conditions in the x- direction (5.7)

Using the linear elastic constitutive relation of a single crystal with crystal orienta-
tion No 1 

 

σx = c11εx + c12 (εy + εz) 
σy = c11εy + c12 (εx + εz)  
σz = c11εz + c12 (εx + εy) 

(5.8) 

one can obtain 
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2
11 −=  under stress-free boundary conditions in the x-direction (5.9) 

 

yy c εσ 11=  under periodic boundary conditions in the x-direction (5.10) 

with the following assumptions: σx = εz = 0 in the case of stress-free boundary 
conditions in the x-direction and periodic boundary conditions in the z-direction; εx 
= εz = 0 in the case of periodic boundary conditions in both x- and z-directions, re-
spectively. Insertion of c11 = 242 GPa and c12 = 146 GPa [14] into equations (5.9) 
and (5.10) gives 
 

σy = 154εy   under stress-free boundary conditions in the x-direction (5.11)

σy = 242εy  under periodic boundary conditions in the x-direction (5.12)

Comparing (1), (2) and (6), (7), it can be seen that our simulation results for 
stress–strain curves are in agreement with theoretical analyses in the elastic de-
formation stage. The yield stress σs can be obtained from the stress–strain curves 
as well. For comparison, the resolved shear stresses τs on the (110) plane are 
given. They are about 1.76 GPa and 2.25 GPa for the α-Fe single crystal with ori-
entation No 1 under periodic and stress-free boundary conditions, respectively. 
These values are close to the theoretically estimated value τs = 2.6 GPa [15], but 
much larger than the experimental value τs = 0.01–0.1 GPa [16–18]. The reason is 
that our model assumes a perfect single crystal while the single crystal used in ex-
periments might contain many dislocations and defects which strongly affect the 
yield stress. For the same reason, the experimental fracture strain of 0.1 for Fe 
single crystals at T = 47 K [19] is smaller than most of the theoretical values, 
which again means that a real material withstands less stress than an idealized one. 
Nevertheless, the above comparison concerning the stress–strain relation of elastic 
deformation stage and yield stress demonstrates that our simulation results are re-
liable. 

Effect of crystal orientations and boundary conditions  

In the present work, we set up five specimens with different crystal orientations, 
see table 5.5. Figure 5.6 shows the x–y-planes of these specimens (No 1; 2; 3; 4; 
5). The stress–strain curves for different crystal orientations with periodic and free 
boundary conditions are shown in figures 5.9 and 5.10 respectively. It is easy to 
see that yield stresses and fracture strains depend strongly on crystal orientations. 
As shown in figure 5.10, for example, the yield stress of the crystal with crystal 
orientation No 5 is about 22 GPa against about 4 GPa for No 1; the fracture strain 
of No 3 is more than 50%, and about 16% for No 2 in figure 5.9.  
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Fig 5.9  Stress–strain curves for different crystal orientations and periodic boundary condi-
tions, D = 20, H = 26. 

 

 
Fig 5.10  Stress–strain curves for different crystal orientations and free boundary condi-
tions, D = 20, H = 26 
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Furthermore, differences on the profiles of curves imply that different crystal 
orientations correspond to different deformation mechanisms. As a matter of fact, 
different boundary conditions mean different stress states. 

Periodic boundary conditions in the x-direction, for instance, represent a state 
where εx = 0, while free boundary conditions in the x-direction represent σ2 = 0. 
Comparing figures 5.9 and 5.10, obvious differences in the stress–strain curves 
under two different boundary conditions can be observed for a given crystal orien-
tation. That means, different stress states may activate different deformation 
mechanisms, which will be discussed in section 3.2 by analysing the atomic con-
figurations and the stress components on slip planes. 

Effect of displacement increment Δuy 

During the simulation process, the tensile deformation is performed by a well de-
fined displacement of the atoms in the upper end block of the specimen.  

 

H
uyΔ

=Δε  = constant 
(5.13)

 
 

Fig 5.11  Stress–strain curves for different crystal orientations, different boundary condi-
tions, and displacement increments. 
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The displacement increment per step remains a constant for a given model, i.e. 
where H is the initial length of the active zone in the y direction. In order to exam-
ine the effect of the displacement increment Δuy , we designed two values for this 
constant. They are Δε = 0.008 and Δε = 0.001, respectively. The corresponding re-
sults are shown in figure 5.11.  

The stress–strain curve of the crystal with crystal orientation No 4 shows that 
Δuy affects the deformation after yielding. This is due to the randomness of sites of 
defect nucleation and following dislocation movement.  

Deformation and fracture mechanisms 

From the analysis of stress–strain curves, it is known that different deformation 
and fracture mechanisms exist for different boundary conditions and crystal orien-
tations. Now, we analyse the deformation mechanisms by detecting the atomic 
configurations at different deformation stages. 

Crystal orientation No 1 (x:4(1 0 0), y:(0 1 0), z:(0 0 1)) 

Observing the evolution of atomic configuration, slipping between (110) planes 
was detected taking place in the crystal with orientation No 1 under periodic 
boundary conditions. These slippings resulted in the discontinuous stress drops in 
stress–strain curves of figure 5.7. Owing to the constraint imposed by the periodic 
boundary condition, however, the dislocation could not slip out of the crystal. 
Thus, two stacking faults were formed accompanied by partial dislocations at their 
ends, which can be seen in figure 5.12(a). With further increases of the displace-
ment, microcracks initiated at the locations of the partial dislocations and cleavage 
fracture occurred on (110) planes (see figure 5.12(b)). 

Under free boundary conditions in the x-direction, one may expect to observe 
slips of the dislocations on the (110) plane, because of the weakening constraint. 
However, the atomic configuration of figure 5.13 shows that the main deformation 
under free boundary conditions actually resulted from the expansion in the h010i 
direction together with the cross-contraction in the <100>direction, but not from 
the dislocation movement. For strain = 0.14, the cross sectional area has decreased 
by 10%. Note that this area as used in stress calculation was the initial cross sec-
tion area. Considering the real cross section area, the real stress after the cross-
contraction at strain = 0.04 should be larger by about 10% than in figure 5,8. 
Therefore, the real stress actually increases with increase of strain. The contraction 
of the cross section explains why the crystal does not become softer. But in the 
case of free boundary in the x-direction, why can dislocations on (110) not be ac-
tivated? This seems to be unreasonable. An analysis of the stress components on 
the (110) planes explains this feature. 
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Fig 5.12  Atomic configurations for orientation No 1 with periodic boundary conditions: (a) 
strain = 0.368; (b) strain = 0.376. 
 
 

Considering relative boundary conditions and the linear elastic constitutive re-
lations, the resolved stress components on (110) can be expressed as 

 

τ(110) = 0.1973σy      σ(110) = 0.8026σy      
 

for x- and z- periodic boundary conditions 
(5.14) 

 

τ(110) = 0.5σy            σ(110) = 0.5σy      
 

for x-free and z- periodic boundary conditions 
(5.15) 

Substituting the yield stresses obtained from figures 5.7 and 5.8 into equations 
(5.13) and (5.14), respectively, the stress components on (110) are τ(100) = 1.76 
GPa and (110) are σ(100) = 7.04 GPa in the case of periodic boundary conditions, 
and (110) are τ(100) = 2.25 GPa and (110) are σ(100) = 2.25 GPa in the case of free 
boundary conditions.  

It can be seen that the shear stress under free boundary conditions is slightly 
larger than under periodic boundary conditions. However, the normal stress under 
free boundary conditions is much smaller than that under periodic boundary con-
ditions. Larger normal tensile stress on the (110) plane leads to larger distances 
between the (110) planes, which decreases the resistance of dislocation slip on 
(110) planes. This explains why slip on (110) took place under periodic but not 
under free boundary conditions. Nevertheless, at approximately 30% strain in fig-
ure 5.8a pronounced step appears along the stress–strain curve. 
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Fig 5.13  Atomic configurations for orientation No 1 with free boundary conditions at 
strain = 0.28. 
 
 

The corresponding atomic configuration indicates that this step was caused by 
the dislocation movement on the (110) planes at the location of the stress concen-
tration (see figure 5.13). Similar behaviour was also observed in the specimen 
with a square void, i.e. dislocations on (110) planes emitted simply from the cor-
ners of the square void.  

From these results, it may be concluded that dislocation slip not only depends 
on shear stress but also on normal stress of the slip plane, because the normal 
stress will increase or decrease the distance between slip planes, thus changing the 
resistance against dislocation slip. 

 

Crystal orientation No 2 (x:(1−1 0), y:(1 1 0), z:(0 0 1))  

The (110) plane is the closest packed plane in α-Fe. A comparison of the surface 
energies in table 5.6 calculated with three different potentials also shows that the 
surface energy s of plane (110) is lowest. Therefore, one can expect that the (110) 
plane is favourable for cleavage. 
 
 
Table 5.6  
Surface energies of different crystal planes. 
Plane γs .(J m−2) in this work γs.( J m−2) in [7] γs.( J m−2) in [11] 
(100) 1.554 1.973 1.306 
(110) 1.374 1.874 1.206 
(111) 1.700 2.296 — 
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The atomic configurations in figures 5.14(a) and (b) corresponding to the peri-
odic boundary conditions (BC) and stress-free BC respectively demonstrate the 
fact that cleavage fracture occurred exactly on plane (110). Several other atomic 
configurations at different deformation stages show that the distance between 
(110) planes increases with increasing load first in a limited region, then to a lar-
ger region. In figures 5.9 and 5.40, there are sharp drops on the stress–strain 
curves of the crystal with orientation No 2. These drops can be interpreted as the 
results of sudden decreases of the number of atoms inside the region rcut. The fol-
low-up stress–strain curves with smaller slopes also indicate this process. Fur-
thermore, it is very interesting to find that under both BC the fracture stresses on 
(110) planes are nearly the same. The values are about 13.4 GPa which is the same 
magnitude as in the theoretical analysis. 

By analysing the results of crystal orientation No 1 and No 2, it can be con-
cluded that cleavage fracture on plane (110) is one of the primary fracture mecha-
nisms in α-Fe. This agrees with results from [1, 4, 10, 11], too. 

Crystal orientation No 3 (x:(1 0 1), y:(0 1 0), z:(−1 0 1))  

A twinning deformation mechanism is obviously observed in the crystal with crys-
tal orientation No 3 under the stress-free BC from the atomic configurations in 
figure 5.15(a). With increasing load the twinning deformation on [111] (−1 2−1) 
extends from the middle part to the whole of the specimen. Analysing the atomic 
configuration shown in figure 5.15(b), it is found that the crystal has rotated by 
90°, i.e. from (101) to (010) and from (010) to (101) after twinning deformation. 
The large-stress drops and low-stress strains in the curves of figure 5.10 illustrate 
that twinning is followed by a large and fast strain. The low-stress strain from 6% 
to 42% in figure 5.10 shows that twinning deformation is of the same magnitude 
as the given displacement increments. 

During twinning deformation, the displacement of atoms has to increase pro-
portionally to their distances to the twinning surface. However, periodic BC do not 
allow such displacements of atoms. Therefore, under periodic BC no twinning de-
formation occurs during the whole deformation process. Additionally, no disloca-
tions nucleate in this case. The crystal cleaved on a (010) plane at a strain of 51%. 
From this it can be derived that a twinning deformation on <111>{-1,2,-1}  takes 
place more easily than the slip of a dislocation in the crystal with orientation No 3. 

Crystal orientation No 4 (x:(1 0 0), y:(0 1−1), z:(0 1 1)) 

For this crystal orientation, two slip bands formed under the stress-free BC. Sev-
eral dislocations nucleated and slipped along [1 1−1] directions on (−2 1−1) 
planes. A lot of steps were left on the free surface as shown in figure 5.16. The 
steps on the stress–strain curve of figure 5.10 are simply related to these disloca-
tion slips. In addition, it can also be seen that the yield stress of the crystal with 
dislocations becomes smaller than that of a perfect crystal. 
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Fig 5.14  Atomic configurations for orientation No 2: (a) with periodic boundary condi-
tions, strain = 0.168; (b) with free boundary conditions, strain = 0.168. 
 
 

Under the periodic BC two slip bands developed although the periodic BC con-
strained the slip of dislocations (see figure 5.17). Since the dislocation could not 
slip out of the crystal, however, the slip bands widened and the dislocations piled 
up at the intersection region of two slip bands. It is worthwhile to study the diago-
nal atomic rows in figure 5.17(a) which led to the two marked closely neighboured 
edge dislocations in figure 5.17(b). Microcracks initiated finally at this place. The 
step at 14% strain in figure 5.9 stemmed from these microcracks. From the atomic 
configuration one can see that the slip bands are also along the [1 1−1] direction 
on a (−2 1−1) plane. For this crystal orientation, the presented results indicate that 
slip of dislocations on <111>{-1,2-1}occurs more easily than twinning deforma-
tion. 

Analysing the stress components on {-1 2 -1} planes between the crystals with 
orientations No 3 and No 4 under stress-free BC, it turned out that at the yield 
point the normal stresses are nearly same in both crystal orientations. 

However, the shear stress in crystal orientation No 4 is three times as large as 
that in crystal orientation No 3. Therefore, we can conclude that when the normal 
stresses are the same, higher shear stress will activate dislocation slipping on 
<111>{-1,2-1}. Nevertheless, lower shear stress will activate twinning deforma-
tion on <111>{-1,2-1}. 
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Fig 5.15  Atomic configurations for orientation No 3 with free boundary conditions: (a) 
strain = 0.136, (b) strain = 0.48. 

 
 

 

 
 

Fig 5.16  Atomic configurations for orientation No 4 with free boundary conditions: (a) 
strain = 0.152; (b) strain = 0.384. 
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Crystal orientation No 5 (x:(1−1 0), y:(1 1 1), z:(−1−1 2)) 

For the case of crystal orientation No 5 the simulation cell consisted of six atomic 
layers within a period in the z-direction. Under stress-free BC several deformation 
mechanisms, such as void formation and coalescence, dislocation nucleation and 
movement etc took place during the deformation process. The curve with saw-
tooth shape in figure 5.10 resulted from the interaction of dislocation slips and 
small voids developing. In addition, it was also found that the dislocations con-
sisted of edge and screw components (see figure 5.18). Thus, it is difficult to sepa-
rate the main deformation mechanisms. In the case of periodic BC, it can be ob-
served from figure 5.19 that the main damage mechanism was void formation and 
coalescence. The atoms did not have any displacement in the z-direction, which is 
different from that in the case of stress-free BC. The reason is that the periodic 
boundary conditions in the x-direction constrained screw dislocation nucleation. 
The nanoscale tensile test for orientations 1 and 2 yield the most realistic simula-
tion results. In agreement with [1, 4, 10, 11], the cleavage fracture on plane (110) 
was confirmed to be one of the primary fracture mechanisms in α-Fe.  

The present study demonstrates the success of modelling in reproducing the 
various essential mechanisms of plasticity and damage on the atomic scale thereby 
offering the opportunity to observe and understand them in detail.  
 

 
 
Fig 5.17  Atomic configurations for orientation No 4 with periodic boundary conditions: (a) 
strain = 0.136; (b) strain = 0.146. 
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Fig 5.18  Atomic configurations for orientation No 5 with free boundary conditions at 
strain = 0.144. 
 
Table 5.7  
Summary of the stress–strain relationships and of the atomic configurational results belong-
ing to different crystalline orientations. 
Orientation/ 
boundary 
conditions 

Stress–strain curve, 
overall shape (not the 
absolute value)  

Fracture 
strain  

Main deformation 
mechanism 

1/free  Realistic onset, but 
remains plastic until 
much too high strains 

Too high Expansion and cross-
contraction 

)110(111 dislocation 
movement near stress 
concentration 

1/periodic Realistic   
2/free Drop after initializa-

tion of damage 
Realistic Cleavage fracture on 

(110) plane 
2/periodic Very similar results for 

free and periodic 
boundary conditions  

Realistic Same result for free 
and periodic boundary 
conditions 

3/free After damage initiali-
zation, resistance 
against stress very low 

Too small No clear fracture; 
{ }1,2,1111 −− twinning 

nucleation and growth 
3/periodic Realistic Too high Cleavage fracture on (0 

1 0) plane 
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4/free See below. In addition, 
saw-tooth shape due to 
dislocation nucleation 
and slips 

No clear frac-
ture 

Slip bands → 
{ }1,2,1111 −−  disloca-

tion nucleation and 
slipping 

4/periodic Sharp drop after ini-
tialization of damage, 
but crystal still 
gluestogether up to 
high strains 

No clear frac-
ture 

Slip bands 
→ { }1,2,1111 −−  dislo-
cation nucleation and 
pile up → microcracks 

5/free Saw-tooth shape due 
to interaction of dislo-
cation slip and voids  

Realistic Dislocation slip → 
void formation → dis-
location slip → void 
growth → fracture 

5/periodic Sharp drop after ini-
tialization of damage  

Realistic Void formation →  
coalescence → fracture 

 

Conclusions 

The following conclusions can be drawn from our molecular statics analyses of 
uniaxial straining at different boundary conditions. 
 

• for relatively larger models as used in this work, it can be concluded that 
the model size affects only the threshold value of stress at which the as-
sociated deformation mechanism activates or inactivates, but not the de-
formation mechanism for a given crystal orientation and boundary condi-
tion. In addition, it is also found that the stress–strain curves obtained 
from the molecular statics simulation are well reproducible. Furthermore, 
the stress–strain curves approach an identical distribution with increasing 
model sizes. The simulation results of stress–strain curves in the elastic 
deformation stage are in good agreement with theoretical analyses, 

• various deformation evidence such as dislocation movement, dislocation 
piling up, twinning, formation and coalescence of voids are clearly ob-
served under uniaxial tensileload. The simulation results indicate, that the 
stress state controls, which deformation mechanism is activated, although 
a given crystal material has intrinsic deformation mechanisms;  

• the results of different displacement increments, i.e Δε = 0.008 and Δε = 
0.001, show that displacement increment does not affect elastic deforma-
tion and yield mechanism, but does affect follow-up plastic deformation 
because of the randomness of defect nucleation and movement, 

• the essential results of stress–strain relations and of atomic configura-
tional changes are summarized in Table 5.7. 
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The nanoscale tensile test for orientations 1 and 2 yield the most realistic simu-
lation results. In agreement with [1, 4, 10, 11], the cleavage fracture on plane 
(110) was confirmed to be one of the primary fracture mechanisms in α-Fe. 

The present study demonstrates the success of modelling in reproducing the 
various essential mechanisms of plasticity and damage on the atomic scale thereby 
offering the opportunity to observe and understand them in detail.  
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5.3 Atomistic study of void growth in single crystalline 
copper3 

 
 
Even the purest real material contains a large amount of defects in its crystal struc-
ture. The variety and complexity of defects in a real material makes it unpractical 
to simulate its entire behaviour on the atomic level. However, it is only on this 
level that the actual mechanisms of such important macroscale processes as plastic 
deformation, void growth and crack propagation can be seen and understood from 
a fundamental point of view. 

Many researchers have employed static, quasistatic and dynamic techniques to 
the study of cracks on an atomistic scale in a crystalline material. They have ob-
tained information about the fracture processes and the influence of temperature 
and crack orientation on this process [1-9]. However, there are no similar studies 
available for voided crystals. Atomistic stress-strain curves have been plotted for 
both single crystal and nanocrystal materials [10]. Despite the fact that some of 
these curves show very good qualitative agreement with experimental results, 
none of them, to date, have been able to predict reasonable stress levels. Stresses 
in the range of the theoretical strength of the material are the norm for these type 
of calculations, as not enough microstructural irregularities can be taken into ac-
count in one model. 

Typically, materials are modelled on a larger size scale by neglecting local im-
perfections and the resulting anisotropic nature of the material, replacing it instead 
with a homogeneous continuous isotropic representation whose properties are de- 
fined as an average of the real structure. These properties are easily determined 
from experiment. The advantage of this type of analysis is that it allows second-
phase inclusions, grain boundaries and macrodefects to be considered. On this 
level, continuum mechanics is used extensively. 

Crystal plasticity theory which is also used in this work to compare with atom-
istic methods is a continuum theory which has the additional feature of taking the 
first steps to accommodate the actual local anisotropic behaviour resulting from 
the crystallographic arrangement of the material [11, 12]. This is done by defining 
certain preferred directions in which the material can deform more easily. These 
directions are determined from theoretical considerations and are the crystallo-
graphic directions along which dislocations can most easily move. 

An advantage of atomistic methods over continuum methods is that once a 
suitable interatomic potential has been chosen to describe the material behaviour 
and once a set of boundary conditions are applied, the method is completely 
self-consistent. For example, in an atomistic calculation cracks can grow natu-
rally, whereas in the continuum finite element framework crack growth must be 

                                                           
3 Reprinted from L. Farrissey, M. Ludwig, P.E. McHugh, S. Schmauder, “An Atomistic 
Study of Void Growth in Single Crystalline Copper”, Computational Materials Science 18, 
pp. 102-117 (2000) with kind permission from Elsevier 
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prescribed introducing extra criteria to release nodes or elements at certain stages. 
In addition, atomistic models have their own intrinsic failure criteria whereas in 
the continuum models failure is implied when the limit of certain calculated and 
predefined values are exceeded. 

Stress-strain curves and deformation contour plots are calculated for copper 
(Cu) single crystals using atomistic methods. The influences of crystal orientation 
and initial void orientation are considered. These results are compared with similar 
arrangements developed within the continuum crystal plasticity framework. An 
additional aim of the work is to verify and improve the veracity of the crystal plas-
ticity method. This can be done by using the failure strain as predicted by the at-
omistic models as a failure criterion for the continuum. 

5.3.1  Modelling approach 

In atomistic calculations, the material behaviour is almost completely determined 
by the interaction potential. The potential is an energy function which governs the 
interaction between the neighbouring atoms. To accommodate this, potentials are 
parameterised to include many body effects in the pair wise scheme. The potential 
used in this work is the embedded atom method (EAM) potential and was pro-
posed by Daw and Baskes [1] in the mid-1980s. 

The potential is developed within the basis of the quantum mechanical density 
functional theory. The theory states that the ground state energy and properties of 
a system are uniquely determined by the electron density. The total electronic en-
ergy for an arbitrary arrangement of atoms can be written as a unique function of 
the total electron density. In metals, the electron density at any point can be ap-
proximated with reasonable accuracy as a linear superposition of the individual 
atoms and so we can write the total energy as 
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where F .qi. is the embedding energy function of an atom i at the position where it 
has background electron density q. This electron density is calculated by superpo-
sition of the electron densities of nearby atoms by 

 

∑
≠

=
ij

ijji r )(φρ
 (5.17) 

Here Φj(rij) is the electron density contribution by atom j at the position of the 
atom i. This is assumed to depend only on the separation distance between the at-
oms. V(rij) is the repulsive central force between the atoms.  
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Fig. 5.20  Schematic representation of the model used. Periodic or free boundary conditions 
can be applied in the x and z directions. 
 

 
 

Fig. 5.21  Schematic stress distribution in the cut-out from Fig. 5.20 
 
 

The functions F and Φ are established empirically from the physical properties of 
the solid. This is done using the lattice constant, elastic constants, vacancy forma-
tion energies and sublimation energies for the pure metal. 

Figure 5.21 



5.3 Atomistic study of void growth in single crystalline copper      345 

The parameters for the potentials used in this work are fitted to the experimen-
tal data and made available for use in table form by Voter [13].  

The potential energy of the system under consideration is minimised iteratively 
with respect to the position of all the atoms within the system using the conjugate 
gradient algorithm. This procedure is implemented using a program initially writ-
ten by Kohlhoff and coworkers at MPI Stuttgart [3, 14, 15]. 

The stress-strain curves for a material are calculated by applying uniaxial dis-
placements iteratively and calculating the corresponding stress. The system used 
to apply displacement steps and calculate the crystal stress for each increment is 
shown in Fig. 5.20. A block of atoms has to be held in their original perfect crystal 
structure at both ends of the model in the direction of the applied displacement in-
crements. The purpose of this step is to provide a buffer zone to isolate the stress 
as a result of the applied displacements from the stress that results from surface ef-
fects. A schematic of the forces seen through the thickness of the cut-out in Fig. 
5.20 is shown in Fig. 5.21. Surface effects cause forces to penetrate a thickness 
equal to the cut-o. potential into the material. While the strained atoms at the inter-
face cause resultant stresses to similarly penetrate a distance of one cut-o. poten-
tial into the material, these two stress systems are separated by a stress-free buffer 
zone. The stress can be calculated by summing all the interatomic forces in the 
isolated section just above the free atoms and dividing this by the relevant area. 
The strain is calculated by dividing the total applied displacements by the original 
length of the free atom section. This procedure is carried out for each displace-
ment increment until the material fails giving an overall stress-strain curve. As the 
Poisson contraction is not accounted for in the fixed block of atoms, these bound-
ary conditions do not replicate pure uniaxial tension. 

Crystal plasticity void growth model 

The finite element crystal plasticity void growth model used in this study was 
originally set up by O'Regan et al. [16] and Quinn and McHugh [17]. The material 
considered is assumed to contain a periodic array of unit cells, each containing a 
void, as shown in Fig. 5.22. For simplicity and practicality in computation, a two-
dimensional (2D) representation was adopted. In certain symmetry conditions it is 
possible to restrict analysis to a quadrant of one unit cell, outlined in Fig. 5.22(b). 
The material was assumed to be a single crystal. The 2D assumption meant that a 
full 3D face centre cubic (fcc) crystal structure with 12 slip systems was not mod-
elled. 
Instead idealised 2D slip system geometry was used, shown in Fig. 5.22(d), 
where three slip systems with equivalent constitutive properties were oriented at 
angles of 60° to each other. The angle Ψ corresponds to the grain angle of the slip 
system, while the three angles of β correspond to the orientation of the three slip 
planes to each other. Simple velocity boundary conditions, shown in Fig. 5.22(b), 
were set up to allow variation in the overall biaxiality of the strain state developed 
during deformation. 
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(a) (b) 

 
 

(c) (d) 
 
Fig. 5.22  (a) Periodic arrangement of voids, (b) unit cell of material with constrained 
boundaries, (c) finite element model of the void and (d) slip system arrangement (for details 
see text). 

 
 
The biaxiality was quantified as U = V, where U is the velocity in the horizon-

tal direction and V is the velocity in the vertical direction. The external boundaries 
of the quadrant were assumed to remain straight during deformation. These are the 
correct boundary conditions for the case of a symmetric slip system configuration, 
i.e., Ψ = 0. However, these boundary conditions are approximate for Ψ ≠ 0. The 
idealised 2D slip system geometry reflects the redundancy that occurs in 3D when, 
for an fcc crystal, 12 slip systems are available but only five are required to repre-
sent a strain increment.  

Here in 2D there are three slip systems but only two are required to represent a 
strain increment. The crystal plasticity model requires the plastic behaviour of the 
material to be expressed on a slip system basis, as discussed in [16,17], in terms of 
the equation under the conditions of each slip system having the same properties 
and self- and latent hardening of slip systems being equal. 
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This equation provides a relationship between the slip system strain hardness g 
and the accumulated plastic shear strain (accumulated slip) after yielding. The pa-
rameter g0 is effectively τ0 the slip system yield stress under shear while γ0 is the 
shear strain value at this stress, n is the hardening exponent of the curve. Informa-
tion about the elastic behaviour of the material is also required in the form of λ 
and μ, the Lame constants, which can be expressed in terms of the more used elas-
tic modulus (E) and the Poisson´s ratio (ν) as 
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Again this is discussed in detail in [16, 17]. Since during large-scale ductile de-
formation plastic strains greatly exceed elastic strains, it was considered sufficient 
to use isotropic elasticity for the crystal. The information for the strain hardening 
is calculated from a shear stress-shear strain curve calculated at 293 K. 
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Fig. 5.23  Stress-strain curve for voided crystal no. 1 oriented in the [100] [010] [001] crystal 
direction. 
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Fig. 5.24  Atomistic deformation plots of void case 1: [100] [010] [001] crystal orient-
tation. 
 

 
Table 5.8 
Minimum periodic lengths of the crystal directions considered 

Crystal direction Minimum periodic length 

[ ]111  02/3 a  
Error! Objects cannot be created 

from editing field codes. 02/6 a  

Error! Objects cannot be created 
from editing field codes. 02/2 a  

Error! Objects cannot be created 
from editing field codes. 

02/1 a  

 
The lattice was assumed to deform in plane strain. The initial volume fraction 

of the void was assumed to be 0.8%. As mentioned above, the plastic strain hard-
ening properties were required on a slip system basis. Experimental data describ-
ing the behaviour of a single crystal of Cu were not used. Data for shear tests on 
polycrystals of Cu were used to calculate the n parameter. Clearer tensile stress-
strain curves for polycrystals were found where it was easier to determine the 
yield stress and yield strain. These data were converted to single crystal shear 
format by using a Taylor factor (TF) shown as follows: 

 
σtensile = TF x τresolved shear stress (5.21)
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The TF is the ratio between the overall tensile stress of a polycrystal and the aver-
age resolved shear stress on a slip system. This was converted into equivalent in-
dividual slip system data by assuming a TF of 3.03 corresponding to the lattice 
geometry of the fcc grains [18]. In fitting Eq. (5.18) to this data the material pa-
rameters obtained were: g0 = 69.3 MPa, γ0 = 1.981 and n = 0.3. Standard elastic 
material properties for pure copper were used [19]. 

5.3.2  Results: influence of the crystal orientation of void 
growth 

The first effect studied using the copper system was the influence of the crystal 
orientation on void growth. To do this, two copper single crystals of approxi-
mately the same volume fraction are created. The first crystal is oriented such that 
the Miller indices representing the crystal directions [100], [010] and [001] line up 
with the x, y and z axes. The second crystal is aligned such that the ]110[],111[  and 
the ]211[ directions are aligned to the positive x, y and z crystal directions.  

In orienting the second crystal away from the simple [100] system of directions, 
special care has to be taken. If periodic boundary conditions are to be used cor-
rectly the simulation cell must contain an integer number of times the periodicity 
of the crystal in that direction. These distances are shown in Table 5.8. 

The deformation plots produced are contour labelled. Darker coloured atoms 
represent those whose coordinate positions have changed most with the applica-
tion of that particular load step, while the lighter coloured atoms represent the op-
posite case of the atoms whose coordinate position has least changed. Atoms be-
tween these two positions are graded accordingly. 

 

Fig 5.25  Stress-strain curve for voided crystal oriented in the ]211[],110[],111[  crystal 
direction. 
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Fig. 5.26  Atomistic deformation plots of void case 2: ]211[],110[],111[  crystal orientation. 
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Orientation [100], [010], [001] (orientation 1) 

The stress-strain curve for void case 1 is shown in Fig. 5.23. It has an initial, al-
most linear region where the void grows only slightly as the material bears more 
and more stress. The reason this region is not completely linear is that we use a 
nonlinear interaction potential to describe the atomic behaviour over all separation 
distances. There is a sudden growth in both the shape and size of the void as it 
reaches the peak stress sustainable or the maximum load. At this load, cracks 
propagate from the four corners of the void as seen in frame 1 of Fig. 5.24. These 
cracks appeared along the <010> directions. As the crack further propagates the 
bottom series of cracks closes while the top two continue to propagate quickly to-
wards the edges. This growth in the length of the crack has a serious weakening 
effect on the material as can be seen from the steep drop o. in the stress-strain 
curve after the maximum stress is reached. The crack continues to propagate to-
wards the right-hand edge of the model until it experiences boundary forces due to 
the effective interaction of the voids from the neighbouring cells. This interaction 
between the voids results in a change in orientation of the undeformed crystal in 
the region of the voids, this in turn halts the crack temporarily until further strain 
increments result in the remaining atoms being pulled cleanly apart. 

Crystal orientation ]211[],110[],111[  (orientation2) 

The stress-strain curve in Fig. 5.25 shows a much more ductile failure of the crys-
tal. The load-carrying capacity is reduced gradually from the initial peak as op-
posed to the sharp drop of in the stress seen in the other crystal orientation. This 
increased ductility is due to some extent to the fact that the <111> directions come 
into play. These are the close packed directions in fcc crystals and so slip is most 
likely to occur in these directions. Theoretically, the 12 fcc slip systems are 
aligned to each other at 60° angles. This 60° angle is seen in the model where an 
originally circular shaped void transforms to more of a hexagonal shape (Fig. 
5.26). Frame 3 shows very clearly the development of the top hexagonal corner by 
the movement of a full dislocation along a slip system aligned at 60° to the load-
ing direction. A further comparison between the two crystal orientations reveals 
the presence of full partial and screw dislocations in this orientation (seen in the 
side view plots labelled b). The significance of the appearance of these screw dis-
locations is discussed in the next section. A comparison of the two orientations 
shown in Fig. 5.27 shows that variation of the orientation of the crystal effects 
both the strength and failure mechanism of the material. 

Orientation 2 exhibits a much more ductile behaviour than orientation 1. This 
increased ductility may be due to the additional planes in the thickness direction. 
The development of dislocations allows new material to be brought to the surface 
of the void.  
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Fig. 5.27  Stress-strain comparison of the two voided crystal orientations. 
 
 

This can occur in reality but is not allowed in continuum models where, for ex-
ample, finite element connectivity is predetermined and remains fixed throughout 
an analysis.The crystal oriented in the ]211[],110[],111[ direction is modelled with 
six atoms in the thickness direction. As before, the thickness is an integer number 
of times the periodicity in this direction. This is necessary to implement periodic 
boundary conditions.  

 

Fig. 5.28  Stress-strain curve for void case 1 modified to include three times the periodicity 
in the thickness direction. 
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Fig. 5.29  Atomistic deformation plots for modified void case 1: crystal orientation [100] 
[010] [001]. 

 
 
However, the presence of these many atoms in the thickness direction may have 

an effect on the deformation mechanism of the crystal. 
To investigate this, a second model with crystal orientation in the [100] [010] 

[001] direction is created with three times the periodicity in the thickness direc-
tion. The model dimensions in the x and y directions and the void volume fraction 
are the same as in the initial model. The only difference between both models is 
that the new version has six atoms in the thickness direction as opposed to two. 
The same loading conditions are applied and the resulting stress-strain curve is 
plotted in Fig. 5.28. The pictures in Fig. 5.29 labelled b are of the z-y plane which 
is a side view while the others are x-y planes or front views as previously used. 
The side view images for the most part just concentrate on the section in the vicin-
ity of the void where deformation is experienced. In the initial model with two at-
oms in the thickness direction there is no movement in the y-z plane while, as seen 
in Fig. 5.29, there is considerable movement in this plane for the thicker model. 
This suggests that increasing the thickness of the model results in allowing other 
deformation mechanisms and in particular screw dislocations to become active. 
Fig. 5.30 shows the stress-strain curves for the two different cases. The initial re-
gion between the undeformed state and the point where the maximum stress level 
is reached is similar in both cases. There is a slight difference in the slope of the 
curve to the maximum stress level but the actual magnitude of the peak stress is 
almost identical. At this stress level, the deformation plots are almost identical. 
The stress levels tend to drop o. as cracks propagate from the top and bottom cor-
ners in the [010] direction. During the initial stages of void growth after the peak 
stress is reached both the deformation plots and the stress levels remain very simi-
lar. The quick void growth and drop in the load-carrying capacity of the model is 
due to crack propagation. In the thicker model, this crack growth is impeded by 
the development of screw dislocations (Fig. 5.29). In effect, the crack tip is 
blunted and more ductile deformation is experienced (Fig. 5.30). The inclusion of 
the four additional planes of atoms in the model allows for a movement of the in-
ternal planes relative to each other.  
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Fig. 5.30  Comparison of different model thicknesses for void case 1: crystal orientation 
[100] [010] [001]. 
 

 
Fig. 5.31  Stress-strain curve of void case 2 elongated in the loading direction: crystal ori-

entation ]211[],110[],111[ . 
 
 

As the interplanar spacing is a factor in determining the stress level required for 
the activation of slip, the fact that planes can move relative to each other must af-
fect the deformation process. The extra option of out-of-plane deformation results 
in a more ductile behaviour as seen in Fig. 5.27.  

This is witnessed by the more rounded shape of the void as it grows in Fig. 
5.26. The modi fied thicker model is a closer approximation to a 3D model and as 
such should give a better representation of reality. 
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Fig. 5.32  Atomistic deformation plots for the model extended in the y direction: crystal 

orientation ]211[],110[],111[  
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In the modified model, it was noticed that the deformation had reached the con-
strained atoms that are used to apply the boundary conditions before the void had 
grown by any significant amount. That is to say that distorted atoms have reached 
the effective cell boundary before the void begins to take on a definite shape; as a 
result they are not free to move as they would in a bigger crystal. The fact that the 
deformation reaches the boundary is not unrealistic in that there are immovable 
barriers such as grain boundaries in real crystals. However, this potentially has an 
influence on the shape of the void as what can be called “back stresses” result 
from the deformation pattern meeting a solid boundary. The atoms at the surface 
cannot deform anymore because the surface is held fixed. However, they can sus-
tain higher stress, and therefore, allow higher resultant forces back into the crystal. 
To see what effect, if any, these back stresses have on the shape of the void a 
model with larger dimensions in the y direction is used. For the purposes of this 
investigation, the model oriented in the ]211[],110[],111[  crystal direction is used. 
The resulting stress-strain curve is shown in Fig. 5.31 and the corresponding de-
formation plots are included in Fig. 5.32. The model dimensions in the x and z di-
rections are similar to those used in the first model but the y dimension is in-
creased significantly. As the volume fraction of both models is different, it does 
not make sense to plot the two stress-strain curves against each other. However, it 
is worth looking at the shape of the void as it grows and the comparative trends in 
the stress-strain curves. 

The overall pattern of the stress-strain curves are similar, however, there is a 
difference in the void shape. In the larger model, where the void is isolated from 
the fixed surfaces and so the back stresses, the void grows in a more definite hex-
agonal shape. This happens as the void in this instance is growing only under the 
influence of the applied displacement and thus deformation along the theoretically 
more favoured directions are not hindered by back stresses. 

Comparison with crystal plasticity 

A comparison is made between the purely atomistic models already discussed in 
this chapter and crystal plasticity finite element models as developed by Quinn 
and coworkers [16, 17]. In as much as possible the geometry of the models are 
kept as close to each other as possible. The actual mesh of the model used is 
shown in Fig. 5.33. Normally for this type of analysis, only one quarter of the unit 
cell needs to be modelled with symmetry boundary conditions being applied to the 
two cut surfaces. However, in the case where the slip systems are oriented at an 
angle other than 0° or 90° to the loading axis the full unit cell cannot be obtained 
by reflecting a quarter through the x and y axes and the unit cell must be modelled 
in its entirety.  

 



358      Chapter 5: Atomistic and Dislocation Modelling 

 
 
Fig. 5.33  Finite element mesh of crystal plasticity model as pictured in PATRAN. 

 
 
Fig. 5.34  Stress-strain curves for various Ψ angles where the yield strength of the material 
is 69 MPa. 
 

 
The mesh is made finer around the void as it is here that the most deformation will 
occur. The magnitude of the stress in the continuum is expected to be much less 
than in the atomistic model as the atomistic curve is defined from theoretical con-
siderations for pure single crystals while the continuum code includes parameters 
fitted to experiments on polycrystals.  
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Fig. 5.35  Deformation plots showing accumulated slip at 4% overall strain for 0°, 15°, 30° 
and 45° orientations. 

 
 

The crystal orientation is changed by varying the angle w, between the three slip 
systems, which are oriented at 60° to each other, and the axis perpendicular to the 
direction of loading as shown in Fig. 5.22(d). The four Ψ angles considered are 0°, 
15°, 30° and 45°. 

There is a symmetric overlap if further angles are included. The stress-strain 
curves for the four orientations are shown in Fig. 5.34 where the average true 
stress, σ22, and true strain, τ22, in the X2 direction for the unit cell are plotted. As 
the unit cell is strained, the stress level in each material increases to a maximum 
value between 2% and 3% strain. On reaching this point, the stress drops very rap-
idly because matrix strain hardening no longer compensates for the geometric sof-
tening due to the growth of the void. The void growth rate increases considerably 
from this point and eventually reaches a fairly constant value at higher strain. Plots 
of displacement for the different crystal orientations are shown in Figs. 5.35 and 
17 for 4% and 20% overall true strain. 
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Fig. 5.36  Deformation plots showing accumulated slip at 20% overall strain for 0°, 15°, 
30° and 45° orientations.  

 
 
During deformation, the void grows more in the transverse direction than in the 

loading direction for each lattice arrangement. The void surface tends to develop 
facets that become aligned with the different slip systems. This results in a non-
uniform distribution of plastic strain along the void surface, with peaks occurring 
at the `corners' between facets. The plastic strain flows in the transverse direction 
with the result that interaction with neighbouring voids occurs in the transverse di-
rection. There is a significant drop in material strength after the peak stress is 
reached. This is due to the boundary conditions at the right edge of the unit cell 
which constrain the side to remain fixed during straining and cause the void to 
grow faster than would be the case for plane strain tension. The final void volume 
fraction of each case considered is similar because the boundary conditions are 
strain controlled. 

The material behaviour, as predicted by the crystal plasticity code, proves to be 
much less sensitive to variations in the crystal orientations than does the atomistic 
code. This is to be expected as material defined as a continuum cannot be ex-
pected to take into account the various irregularities which develop during the 
course of the analysis and are included from the start. The shape of the voids 
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developed in the crystal code compare very well with the second crystal orienta-
tion considered. An almost hexagonal shape is seen in both instances. This is ap-
propriate as the crystal plasticity code works with slip systems aligned at 60° to 
each other. On an atomic level, the preferred direction of slip on the (111) plane 
which is active in the second model is along the closed packed directions which 
are also at 60° to each other. Hexagonal void shapes have been found experimen-
tally [20] in hexagonal close packed (hcp) structures. While the material used in 
this analysis is fcc, there is a possibility for slip systems to activate at 60° in both 
cases which suggests these hexagonal shapes also exist in fcc structures.  

Conclusions 

The results of this work have shown how sensitive crystalline materials really are 
to the nanostructure. While the atomistic models fail to give an accurate prediction 
of the global stress-strain response of the material, it is probable that the quantita-
tive information about the shape and size of voids and the direction of crack 
propagation is very realistic. This type of information cannot be got from the more 
commonly used phenomenological based constitutive equations. The development 
of a void from a circular initial shape to an irregular shape is thought to be very 
realistic. It compares relatively well with the physically based crystal plasticity 
calculations which contain a certain amount of directional inhomogeneity. Most 
other constitutive theories are isotropic and so do not have the facility for irregular 
shapes. In this area atomistic models can be useful in helping to create the correct 
direction sensitivities for the easier to use phenomenological constitutive theories. 

This work can be further used to complement the crystal plasticity code by 
helping to provide a failure criterion. The crystal code allows voids to grow to 
volume fractions of over 80%. A real material would have experienced failure 
long before this volume fraction as the remaining material in the ligament regions 
between the voids would be unable to sustain the stresses required to carry the ap-
plied load. The atomistic code has a built-in failure criterion. Each interatomic 
bond is continuously updated and when certain stress levels are reached, the bonds 
are free to break and reform with other atoms if necessary. When a voided crystal 
is subjected to a critical applied load, the material will break using one or more of 
a variety of fracture mechanisms. Atomisitic calculations can be run to ascertain 
the strain levels or void volume fraction to which the crystal code should be 
used. Likewise, they can tell us what mechanisms of failure occur under what 
conditions.  

Various atomistic deformation mechanisms which are interesting in themselves 
are clearly seen throughout the work. Dislocation formation movement and piling 
up, void formation and coalescence and vacancy formation are all seen under uni-
axial tensile loading. The simulation results indicate that a number of factors de-
termine which deformation mechanism contributes in what way to the failure of 
the crystal. 
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5.4 Atomic scale modelling of edge dislocation movement 
in the α-Fe–Cu system 4 

 
A detailed understanding of the behaviour of dislocations is essential in determin-
ing the mechanical properties of metals and alloys. In recent years a number of 
molecular dynamic and static simulations [1] were performed on α-Fe single crys-
tals under tensile loading, to account for yield stress, work hardening as well as 
defect nucleation and growth in this material. Taking into account the presence of 
precipitates, as for example copper, and the already present dislocations, the flow-
stress depends upon the interaction between the dislocation and the obstacle [2, 3]. 
Ultimately, the strength of the material depends upon the crystallographic struc-
ture and dimensions of the precipitates in it [4–6]. 

While continuum theory can describe the long-range strain fields of cracks and 
dislocations, atomistic simulations are required to characterize dislocation core 
structure and dislocation-precipitate interactions. In continuum theory, the disloca-
tions are considered to be smooth flexible strings with a line tension [7]. When 
large dislocation curvatures are encountered, for instance in the presence of pre-
cipitates, the results provided by the line tension approximation can be inaccurate. 
Here an atomistic simulation model is presented that allows for a smooth move-
ment of two edge dislocations in the absence of applied stresses and thus permits 
to observe the elastic behaviour of a dislocation line during   the interaction with 
an obstacle. The use of atomistic modelling also may offer the chance to simulate 
dislocation phenomena relying on basic atom-scale data, without empirical data on 
the mesoscopic scale. The case of a spherical coherent Cu precipitate with a body-
centred cubic (bcc) lattice identical to that of the α-Fe matrix is considered. 

In the following section the computational model is described. In section 3, the 
critical resolved shear stress of Fe is calculated and a comparison with related val-
ues found in literature is provided. Some discussions upon the elastic behaviour of 
the dislocation line, pinned to the centre or trapped in the Cu precipitate as the size 
of the obstacle diameter changes follow in section 4. 

The computational model 

In bcc metals slip occurs in close-packed 110  directions [8]. The Burgers vector 
of the perfect slip dislocation is of the type ½ 111 . The motion in the glide plane 
is that which constitutes the macroscopic phenomenon of slip in crystals [9]. This 
kind of motion is very easy along the glide direction 111  in the α-Fe crystal and 
assures a smooth movement of the dislocations. Starting from this observation and 
                                                           
4 Reprinted from S. Nedelecu, P. Kizler, S. Schmauder, N. Moldovan, "Atomic 
Scale Modelling of Edge Dislocation Movement in the α-Fe-Cu System", Modelling 
and Simulation in Materials Science and Engineering 8, pp. 181-191 (2000) with 
kind permission from Elsevier 
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from Frank’s rule [8] for determining whether or not it is energetically feasible for 
two dislocations to react and combine to form another one, the present simulation 
model was constructed. The movement of edge dislocations in the absence of ex-
ternally applied shear stress will be investigated. Edge dislocations in bcc metals, 
unless they are locked by impurities, are much more mobile than screw disloca-
tions [10]. As a result, in high-purity specimens, yielding takes place first by mo-
tion of edge dislocations at a low stress [10]. Only at a later stage of deformation, 
which is beyond the scope of the present work, the specimens are exhaustion 
hardened because multiplication cannot occur without the motion of screw dislo-
cations.  

In the present model, the atoms were initially placed on perfect bcc crystal lat-
tice sites of α- Fe. The coordinate axes were chosen parallel to the sides of the 
simulation cell with the x-axis along 011  y-axis along 111  and z-axis along, 

211 . Two initial straight edge dislocations, ending at free surfaces, with the 
same slip plane ( )011  and opposite Burgers vectors b = 111  were introduced 
along the z-direction by removal of two half-planes of atoms. 

The initial points where the line of the first and the second dislocation inter-
sected the y-axis were chosen at the origin of the coordinate system and at 115 Å 
along the y-axis, respectively. In order to preserve the invariance to free transla-
tions and rotations, at the left and at the right ends of the sample, see figure 5.37, 
six atom layers perpendicular to the y-axis were kept fixed at their initial positions. 
A schematic representation of a section through the sample, showing the initial 
position of the edge dislocations and the Cu atoms is presented in figure 5.37. In 
the present molecular dynamics (MD) simulation a number of 82 600 atoms was 
considered, and the MD program FEAt developed by Kohlhoff and Schmauder 
[11] was employed. As input to FEAt, a data file with the undisturbed coordinates 
of the atoms together with the initial displacement field of the two unlike edge dis-
locations was created. To calculate the initial displacement field of one single dis-
location the theory of a moving edge dislocation described by Stroh [12] was used. 
For an edge dislocation parallel to the z-axis and with the glide plane z–y, the only 
displacement components are ui = (ux, uy, 0). 

 

 
 
Fig 5.37  Schematic representation of a section through the sample, showing the initial po-
sition of the edge dislocations and the Cu atoms (grey). 

 
A general expression for the displacements, according to anisotropic elasticity, 

may then be written as 
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where Aα and Dα are tensors of material properties expressed in the chosen coordi-
nate system, depending on the components of the Burgers vector and the elastic 
constants. The numerical values used [12] are given in table 5.9. 

 
 

Table 5.9  
Numerical values of the coefficients which define the displacement field (1) of an edge dis-
location along the 211  direction in the α-Fe crystal. 

Ax (p1) 0.101 D1 -0.685-0.183I 
Ax (p2) -1.414 D2 0 
Ax (p3) 0.101 D3 0.685-0.183 
Ay (p1) 0.778+0.184 I p1 -1.378-1.298 
Ay (p2) 0 P2 0 
Ay (p3) -0.778+0.187 I P3 1.378-1.298 
 

 
 

Fig 5.38  Detailed structure of one of the dislocation cores during dislocation migration in 
the vicinity of the obstacle. The Fe atoms are yellow, the Cu atoms are grey. The distance 
along the z-axis between the upper and the bottom plane is 6 x 1.76 Å = 10.56 Å. 

The displacement field of the second dislocation was simply considered as hav-
ing the form (1), with the proviso that the initial distance between the dislocations 
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is large enough such that the displacement field of it matches well with that of the 
first dislocation and interactions do not appear. The introduced Cu precipitate, 
with a bcc structure and with the same lattice parameter for Cu as for α-Fe, is 
placed close to one of the edge dislocations (figure 5.37). The MD simulation is 
carried out for two values of the diameter of the Cu precipitate: 13.2 and 30.4 Å. 
These precipitates consist of 121 and of 1254 Cu atoms, respectively.  

The interaction potential for the α-Fe-Cu system taken into consideration was 
recently constructed [13] using the embedded atom method (EAM). It had been 
shown previously that EAM potentials allow us to follow metallic systems where 
fracture, surfaces, impurities and alloying additions (additives) are included [14]. 
In addition to pair wise interactions, using the EAM method the total energy in-
cludes an embedding energy as function of the local atomic density. The actual pa-
rameters used by the EAM in the case of iron and copper are described elsewhere 
[15, 16]. 

The model set-up containing the two initial straight edge dislocations and the 
Cu precipitate was then equilibrated for 20 000 time steps equivalent to 40 ps at a 
temperature of T0 = 10 K. 

5.4.1  The movement of an edge dislocation hitting a Cu 
precipitate 

A detailed view of the core of one dislocation, which has already penetrated the 
obstacle, is presented in figure 5.38 for the regions inside and outside the precipi-
tate. For each slice, the intersection between the dislocation line and the lattice 
plane can be recognized visually. During the interaction between the edge disloca-
tion and the obstacle, the dislocation line does not remain straight. The disloca-
tions do not move as rigid entities, but via the kink pair mechanism. In order to 
identify the position of the dislocation lines also by means of an automatized 
computing algorithm, the maximum of the Burgers vector density distribution [17] 
was calculated for a cut along a )011(  plane for all 65 x-y layers of the simulation 
cell and for both precipitate examples. The calculations were performed for a large 
number of simulational results with equidistant time steps. The most interesting 
snapshots are presented in figures 5.39 and 5.40. Comparing the results obtained 
by running the MD simulation of α-Fe for different situations - with and without 
precipitates - it could be seen that the presence of the obstacles on the glide plane 
of a moving dislocation reduces the internal shear stress and impedes the move-
ment. 

The simplest case of a simulation model containing two unlike edge disloca-
tions and without the Cu precipitate was considered first. In this case, the initial 
straight lines of the dislocations pre-served their shapes until the end of the relaxa-
tion process, when the two dislocations were no longer distinguishable. The 
movement of the dislocations was taking place under no external shear stress. This 
result is in good agreement with Frank’s rule describing several dislocations that 
might ‘associate’ to form a single dislocation. 
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The difference in elastic moduli between copper and iron can account for the 
observed influence of the copper precipitate on the movement of the edge disloca-
tion. From this point of view the copper precipitate has an attractive influence on 
the edge dislocation. 

Case 1. Smaller precipitate, diameter 13.2 Å, figures 5.39(a)-3.39(i): 

Starting from the initial position, the movement of the dislocation line takes 
place such that it is curved toward the precipitate, see figure 5.39(b) in comparison 
to figure 5.39(a). Further on, the edge dislocation passes through the precipitate 
and after passing, a backward bowing can be recognized, see figure 5.39(h), indi-
cating the persisting attractive force between the precipitate and the dislocation 
line. Altogether, the movement of the dislocation takes place almost without any 
impedement, see also the discussion of the Peierls stress in the previous section 
and the appendix. 

  

 
Fig 5.39  Projections on the glide plane (1−10) of the nearest atoms above and below the 
glide plane that constitute the edge dislocation lines. The Cu precipitates (diameter 13.2 Å) 
are represented by the circle. 
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Fig 5.40  Projections on the glide plane (1−10) of the nearest atoms above and below the 
glide plane, that constitute the edge dislocation lines. The Cu precipitates (diameter 30.4 Å) 
are represented by the circle. 
 

Case 2. Larger precipitate, diameter 30.4 Å, figures 5.40(a)-5.40(f): 

In the case of the 30.4 Å diameter Cu precipitate a very elastical behaviour of the 
dislocation line hitting the obstacle could be observed. Passing does not happen 
and the dislocation line is pinned by the precipitate, with the free ends oscillating. 
The dislocation is not able to cut the obstacle. It can only pass through the precipi-
tate completely as soon as an external shear stress is applied to increase the strain 
beyond the Peierls stress. During such calculations (figures not included), the an-
gle between the dislocation arms did not become sharper than that in figure 
5.40(f). 

The Peierls stress of edge dislocations in the presence of the Cu 
precipitate 

The difference in the shear moduli µFe = 86 GPa and µCu = 54.6 GPa [7] of the α-
Fe matrix and of the Cu particle, respectively, gives rise to an elastic interaction 
force between particle and dislocations. In the following this force will be calcu-
lated for the two cases of Cu precipitate diameters and the resulting Peierls 
stress—the minimum stress required to move a dislocation by one lattice plane 
distance. The interaction energy Eµ between the Cu precipitate and the edge dislo-
cations can be obtained using the following formula [18]: 
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where N is the total number of the Cu atoms for a given diameter of the precipi-
tate, i

CuE  is the energy of the ith Cu atom and i
FeE  is the energy of the ith Fe 

atom, when only Fe atoms are present.  
The values 

i
CuE  and i

FeE of the ith atom energy were calculated using the EAM
potential and running two MD simulations for the same geometry of the model,
firstly containing a Cu precipitate and secondly for a simulation cell consisting
only of Fe atoms, without Cu atoms. The numbering rule of the atoms was 
kept the same in both cases. Considering the position y of the edge dislocation as 
the point where the line crosses the plane z = 0, one can represent the interaction 
energy Eµ as function of the distance y along the 111  axis, see figures 5.41(a) 
and 5.41(c). 
The dotted lines denote the boundaries of the Cu precipitate and the symbols 
and the connecting lines denote the position of the dislocation core along the y-
axis. Several of the points correspond to the images of figures 5.39 and 5.40, re-
spectively. For the precipitate with a diameter of 13.2 Å, an abrupt change of the 
energy per Cu atom can be observed after the dislocation has reached the precipi-
tate. The same kind of change takes place later when the dislocation exits the pre-
cipitate again.  
 

 
 
Fig 5.41  Interaction energy per Cu atom Eµ=N as function of the distance y along the 
<111> axis of the simulation cell (a and c), and the corresponding atom-dislocation interac-
tion force Fµ (b and d). The pair plots a and b, c and d correspond to a 13.2 Å and 30.4 Å 
diameter Cu precipitate, respectively. The shaded area marks the location of the precipitate. 
Movement of the dislocation is from right to left. The energy plots contain also the figure 
numbers of the corresponding figure numbers in figures 5.39 or 5.40. 
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Deriving Eµ with respect to y yields the particle—dislocation interaction force 
Fµ [18], see figures 5.41(b) and 5.41(d): 

 

y
E

F
∂

∂
−= μ

μ  
(5.24)

The maximum interaction force that the whole 13.2 Å diameter Cu precipitate ex-
erts on the dislocation is attained when the edge dislocation is exiting the precipi-
tate. The maximum value equals the forces as displayed in figure 5.41(b), multi-
plied with the total number of 121 Cu atoms of the precipitate and amounts to 
about 0.80 eV Å-1. However, the maximum negative value of the interaction force 
when the edge dislocation is first in contact with the precipitate is not attained at 
the particle-matrix interface. This value is reached at the time when the edge dis-
location is stopped for a short moment inside the precipitate, before completely 
shearing the particle and moving further. 

For the 30.4 Å diameter Cu precipitate, the maximum positive value of the in-
teraction force was calculated as the force per atom (see figure 5.41(d)) times the 
total number of 1254 Cu atoms in the precipitate and amounts to 5.75 eV Å-1. At 
this size of the obstacle, the edge dislocation cannot pass through and its motion 
will be blocked. Additional external force has to be applied to continue the dislo-
cation movement. The energy calculation was currently not possible within the 
frame of the calculational arrangment presently used. The upper bound of the 
Peierls stress τP was calculated using the basic equation [18] of strengthening by 
shearable particles: 

 

C
p L

Fb 0=τ  (5.25) 

where b is the Burgers vector, τP is the calculated Peierls stress, F0 is the maxi-
mum value of the particle-dislocation interaction force, derived as explained 
above, see (3), and Lc is the minimum length of the dislocation line, 75.2 Å for the 
considered simulation cell. 

The calculated Peierls stress τP required to move the dislocation through the Cu 
precipitate in the case of the 13.2 Å diameter Cu precipitate is 0.0084 times the 
iron shear modulus, i.e. τP = 0.72 GPa. A value of 0.059 times the iron shear 
modulus (τP = 5.07 GPa) results in the case of the 30.4 Å diameter Cu precipitate. 
The core structure and Peierls barrier for an edge dislocation lying in the { }110  
plane with the Burgers vector along 111  in bcc iron without Cu was also inves-
tigated by Chang and Graham [19] using an anharmonic potential. The calculated 
Peierls barrier was about 0.03 eV and the Peierls stress for dislocation motion at 
absolute zero temperature was 5.36 x 109 dyn cm-2 or 0.0066 times the shear 
modulus of Fe (0.567 GPa). In the present results of τP for the smaller precipitate 
compare closely with those of Chang and Graham, taking into account the presence 
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of the Cu atoms in our model, and also with experimental values for pure Fe at 
very low temperatures [20], which range between 0.34 and 0.42 GPa. In other 
words, for the case of the small precipitate, the Peierls Stress is quite close to the 
case of pure Fe. The present calculations rely on no other physical assumptions 
than on the interatomic potentials, which base themselves on basic elastic con-
stants. This suggests that the strengthening of the iron-rich iron-copper system de-
rives from the modulus mismatch between particle and matrix and from no other 
strengthening mechanism such as, for example, lattice constant mismatch 
strengthening. 

5.4.2  Derivation of dispersion strengthening from modelling 

The bent dislocation with the backlash inside the precipitate is to be regarded as a 
part of a whole dislocation line, typically bowing between two obstacles, such as it 
is known from TEM images [21]. Considering a dislocation bowing between a 
pair of such obstacles, together with the assumption of a conventional constant 
line tension approximation, the angle between the two dislocation line branches on 
either side of the precipitate, together with the distance between the obstacles, is 
the key parameter to calculate the increase in matrix strength due to precipitation 
strengthening [2, 22]: 
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where τ is the matrix strengthening by precipitates, G is the shear modulus of the 
matrix, b is the burgers vector in the matrix, L is the obstacle spacing in the slip 
plane and Φ is the critical angle between the arms of the dislocation at which the 
obstacle is cut. 

A detailed study of the dislocation line (see, e.g. figure 5.40(f)) permits one to 
determine the angle between the arms of the dislocation line on the glide plane. 
This smallest achievable angle between the two dislocation branches correspond-
ing to the maximum of strengthening amounts to 140° in the case of the precipi-
tate with a diameter of 30.4 Å. This value agrees very well with the critical angle 
as calculated from the mesoscopic continuum theory formalism by Russell and 
Brown, using as input the precipitate radius together with several empirically de-
termined parameters (formula (2) and figure 5.38 in [2]), see appendix. For the 
smaller precipitate, the calculation along the Russell-Brown formalism yields a 
critical angle of Φ = 171°, which means negligible strengthening, in agreement 
with the simulation results of figure 5.39. 

In a recent study on the relationship between structural information about Cu 
precipitates in a steel as derived from TEM images and macroscopical mechanical 
data of the same steel, the approach of Russell-Brown has been proven to be reli-
able [5, 6].  
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Fig 5.42  Scheme of a dislocation cutting a precipitate to explain the definition of the criti-
cal angle. 

 
 
The present investigations have shown that these calculations can also base on 

results from nanosimulation instead of such from the mesoscopic calculations 
(Russell-Brown). In contrast to the Russell-Brown formula (formula (2) in [2]), 
which uses empirically determined mesoscopic material parameters [2], in the 
case of nanosimulation the atomistic calculations are based solely on physical in-
teratomic potentials. 
 

Conclusions 

A MD simulation was performed to understand the detailed mechanism of the 
complex interaction between a moving edge dislocation and differently sized Cu 
precipitates in the α-Fe crystal. The model set-up contained two edge dislocations, 
sufficient by itself to permit an attractive movement under no external stress, and 
main attention was paid to the interaction of one of them with the Cu precipitate. 
Based on Frank’s rule, the constructed model revealed the elastic behaviour of the 
edge dislocations and its strong dependence on the size of the obstacle. For a 32 Å 
diameter of the precipitate, the pinning process of the dislocation centre and also 
the trapping of the dislocation line in contrast to an obstacle diameter of 13 Å 
could be made evident. The calculated Peierls stress from the present MD simula-
tion compares closely with other published values. 

The precipitates acting as obstacles to dislocation movement induce bowing of 
the dislocation lines. The present calculations enabled us to derive the critical an-
gles of the dislocation lines at the Fe-Cu interface, which are in perfect agreement 
to that obtained from mesoscopic dislocation theoretical calculations. These angles 
provide a direct connection to the numerical values of the increase in strength 
of such a model crystal. This means, that the present modelling of dislocation 
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movement through a precipitate provides, for the first time in materials science, a 
way to simulate the precipitation hardening from basic principles (atomic proper-
ties) to a macroscopically relevant material’s property. 

Appendix 

The critical angle between two edge dislocation branches can be calculated fol-
lowing the mesoscopic continuum theory formalism by Russell and Brown [22]. 
The strength of an alloy in the overaged condition can be calculated following the 
methods of Brown and Ham [2, 22]. The stress, at which a dislocation can move 
through an array of obstacles is identified with the yield stress τ and is a function 
of the obstacle spacing L in the slip plane and the critical angle Φ at which a dislo-
cation can cut an obstacle. The shear stress is given by 
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where G is the shear modulus and b is the Burgers vector of the dislocation. Rus-
sell and Brown derived the shear stress from the relationship between the energies 
of the dislocation per unit length inside (E1) and outside (E2) the precipitate as 
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where the energies of the dislocation length inside (E1) and outside (E2) the pre-
cipitate depend on the precipitate radius as 
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where ∞
1E  and ∞

2E  refer to the energies per unit length of a dislocation in infinite 
media (Fe or Cu, respectively), r is the precipitate radius and R and r0 are the 
outer and inner cut-off radii used to calculate the energy of the dislocation. Russell 
and Brown verified the validity of the following values for the Fe-Cu system: 
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∞
1E / ∞

2E  = 0.6, r0 = 2.5b with b = Burgers vector of the dislocation = 2.48 Å, and, 
finally R = 103r0. For precipitate radii of 16 Å and 6.5 Å, the formalism results in 
critical angles of Φ = 140° and 171°, respectively. 
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5.5 Molecular dynamics study on low temperature 
brittleness in tungsten5 

 
 
 
The brittleness and ductility of materials have been major subjects of materials 
science. Research into brittle and ductile characteristics has advanced greatly in 
recent years. One source of this progress is the Rice- Thomson formulation (Rice 
and Thomson, 1974) of a dislocation emission, with its later improvement (Rice, 
1992). The formulation, based on the competition between dislocation emission 
from a crack tip and c1eavage, has successfully explained the intrinsic ductility of 
most fcc metals and c1eavability in most bcc metals. However, a thermal activa-
tion process had not been considered, and the formulation was not sufficient to 
explain the brittle to ductile transition (BDT). 

Fracture toughness in most bcc metals is influenced by temperature (Ha et al., 
1994; Gumbsch et al.,1998). The toughness of metals increases with temperature, 
and the materials never c1eave above a critical temperature. Even semiconductors 
(lohn, 1975) and ionic crystals (Narita et al., 1989), which are conc1uded to be in-
trinsically brittle materials in the Rice-Thomson formulation, show BDT charac-
teristics. What mechanisms cause the temperature dependency of toughness and 
the brittle to ductile transition, is still a question that has not been answered satis-
factorily until now. Some groups (Zhou and Thomson, 1991; Rice and Beltz,1994; 
Xu and Argon,1995) insist that dislocation emission is the controlling factar, 
whereas others (Hirsch and Roberts, 1991; Maeda, 1992) insist on dislocation mo-
bility. Several remarkable models have been proposed in the discussion of disloca-
tion emissions and dislocation mobility. Zhou and Thomson (1991) proposed a 
dislocation emission model from the ledge of a crack front, which enables disloca-
tions to be emitted at much lower extern al loading than in the Rice- Thomson 
formulation. The dislocation emission from the ledge of a crack front provides a 
good explanation for the river patterns on the fracture surfaces (George and Mi-
chot, 1993), as well as the observation of ten or fewer dislocations per slip plane 
(Michot et al., 1994). Hirsch (1991) proposed a computer simulation method far 
the generation and motion of the dislocations from crack tips, where the dynamics 
of emitted dislocations were taken into account. 

In this study molecular dynamics (MD) has been applied to investigate the 
process of brittle fracture and the temperature dependency of fracture toughness. 
Molecular dynamics is an effective tool for the analysis of a crack. The technique 
enables us to analyse directly the events occurring on an atomic scale, such as dis-
location emissions and cleavage in the crack tip region. However, modem com-
puters are only capable of treating nano-scale material specimens - in the order of 

                                                           
5 Reprinted from Y. Furuya, H. Noguchi and S. Schmauder, "Molecular Dynamics Study on 

Low Temperature Brittleness in Tungsten Single Crystals", International Journal of 
Fracture 107, pp. 139-158 (2001) with kind permission from Kluwer/Springer 
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106 atoms. This problem is fatal in the simulation of a crack because periodic 
boundary conditions can not be assumed in all directions. In such case it is neces-
sary to combine molecular dynamics with continuum mechanics. Molecular dy-
namics should be applied only to the crack tip region and continuum mechanics 
should then be applied to the surrounding region. 

In early research into finding a method of combining molecular dynamics with 
a continuum, a major area of investigation had been how to synchronise the de-
formation of a continuum region with that of a molecular dynamics region. Sev-
eral groups (Mullins and Dokanish, 1982; Mullins, 1982; Kohlhoff and 
Schmauder, 1988; Kohlhoff et al.,1991) proposed a method to combine molecular 
dynamics with a finite element method (FEM), where nodes of finite elements 
were synchronised with atoms of MD in a boundary region. Others (Sinclair et al., 
1978; Hirth et al., 1974) proposed a method of correcting the boundary conditions 
using Green's function. However, the problem with these methods is that the emit-
ted dislocations from a crack tip can not pass smoothly through the boundary be-
tween the molecular dynamics and the continuum regions. Yang et al. (1994) 
firstly proposed a method where emitted dislocations could pass through the 
boundary. In their method the continuum region was divided into two regions. The 
outer region was calculated with a finite element method, and the inner region was 
calculated with an elastic continuum where the movement of dislocations was ana-
lysed dynamically. Yang's method, however, has a limitation in the number of 
emitted dislocations, and in the validity of the method, which was not examined 
satisfactorily. 

The authors developed a new method (Noguchi and Furuya, 1997; Furuya and 
Noguchi, 1998) in which molecular dynamics was combined directly with linear 
elastic theory, that is micromechanics (Eshelby et al., 1951; Chou, 1967; Mura, 
1968; Lekhnitski, 1968). A thorough examination of the validity of the method 
was undertaken. In the new method the dislocations emitted in the molecular dy-
namics region can pass through the boundary of the two regions smoothly, and are 
distributed at the equilibrium positions in the micromechanics region according to 
the elastic solution. That is to say that the dynamics of dislocations was not under 
consideration. The simulation was then presumed to be quasi-static. The limitation 
of dislocation emissions was removed by moving the molecular dynamics region 
with the crack propagation. 

Crack tip opening displacements calculated in the simulation with the method 
showed good agreement with an analytical solution derived by Rice (1974). The 
combined model is limited to two-dimensional and quasi-static simulations. It 
means that the ledge of a crack front and the effect of strain rate can not be taken 
into account. However, the limitation does not mean that the temperature depend-
ency of dislocation mobility is neglected, because friction forces acting on each 
dislocation, which reflect dislocation mobility, depend on temperature. The differ-
ence between a dynamic simulation and a quasi-static simulation is merely 
whether the distribution of dislocations is dynamic or in equilibrium. 
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Fig 5.43  Combined molecular dynamics and micromechanics model. 
 
 

In this section, brittle fracture processes at low temperature are simulated with 
the combined model of molecular dynamics and micromechanics in tungsten sin-
gle crystals. The mechanisms of brittle fracture toughness are investigated. 

5.5.1  A combined model of molecular dynamics with 
micromechanics 

The principle of the combined model 

The combined model of molecular dynamics with micromechanics is shown in 
Figure 5.43. An infinite plate exhibiting a crack and dislocations is subjected to 
uniform tension applied at infinity. The deformation of the hatched region in Fig-
ure 5.43 is analysed with molecular dynamics, and that of the surrounding region 
is analysed with micromechanics. A periodic boundary condition is applied to the 
molecular dynamics region in the direction of plate thickness, and the microme-
chanics region is analysed as a plane strain problem in two dimensions.  

A model in the molecular dynamics region is shown in Figure 5.44. A free 
atom is defined as an atom that moves according to the mo1ecular dynamics algo-
rithm with thermal oscillations. A boundary atom is defined as an atom that moves 
without thermal oscillation according to the displacement calculated with micro-
mechanics, that is the boundary atom layer is apart of the micromechanics region. 
As shown in Figure 5.44, the crack in the molecular dynamics region is expressed 
by removing two layers of atoms. A quasistatic simulation, the detail of which is 
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explained elsewhere (Furuya and Noguchi, 1998), is presumed in this model. 
Temperature of the molecular dynamics region is kept constant using a velocity 
scaling technique. 

Remarkable points in this model are: 
• The boundary condition to combine two regions is flexible and both dis-

placement and stress fields are continuous at the boundary. 
• Emitted dislocations in the molecular dynamics region pass through the 

boundary smoothly. 
The molecular dynamics region moves with the crack propagation. The details 

of these three points are explained in the following sections. 

 

 

 
 
 Fig 5.44  Molecular dynamics model. 

 

  
Fig 5.45  Stress-Strain curves. 
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Fig 5.46  Transformation from an atomistic dislocation to an elastic dislocation. 
 

Flexible Boundary Conditions using Body Forces 

Figure 5.45 shows stress-strain curves of smooth specimens in the process of elas-
tic deformation. A stress-strain curve calculated with molecular dynamics is 
shown together with a linear line used in micromechanics. As shown in Figure 
5.45, the deformation of the molecular dynamics region is intrinsically non-linear. 
In turn a rigid boundary condition, where only a displacement field is continuous 
at the boundary is not satisfactory, because a stress field is discontinuous in this 
case. 

In our combined model the boundary condition, which is basically rigid, is cor-
rected with body forces (Eshelby, 1957). Body farces distributed at the boundary 
influence both the stress field and the displacement field. This procedure is similar 
to Flex-II (Sinclair et al., 1978). In Flex-II the balance of farces acting on each 
atom is considered at the boundary and Green's functions are used far correction. 
In our model the balance of stress at the boundary is considered and the body 
forces are used for correction. 

5.5.2  Transformation from an atomistic dislocation to an 
elastic dislocation 

Dislocations are distributed at equilibrium positions in quasi-static simulations, 
that is the dynamics of dislocation movements are not considered in the combined 
model. In the case when the equilibrium position of an emitted dislocation is in the 
micromechanics region, the dislocation must move across the boundary of the two 
regions. A method far moving an emitted dislocation from the molecular dynamics 
region to the micromechanics region is illustrated in Figure 5.46. A displacement 
field caused by slip is applied to the boundary atom's layer. After that, the molecu-
lar dynamics region is smoothed. The re-smoothing procedure contributes to 
avoidance of difficulties arising from hard distortion of the molecular dynamics 
region after several slips have occurred. The dislocation from the molecular 
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dynamics region is transformed into an elastic dislocation and distributed at the 
equilibrium position.  

 
 
Fig 5.47  Simulation result of crack propagation. 
 

 
 

Fig 5.48  Movement  of the molecular dynamics region with crack propagation. 
 
 
The dislocations become edge type. In the case when the equilibrium position 

of the emitted dislocation is in the molecular dynamics region, the above proce-
dure should not be applied.Equilibrium positions of the dislocations are derived 
from a balance between driving forces and friction farces acting on each disloca-
tion. The driving forces include loading stress, interaction with other dislocations 
and an attractive force from the free surface of a crack. The friction force should 
be Peierls stress in the case of a perfect crystal. However, critical reso1ved shear 
stresses (CRSS), obtained in experiments, and may be better for simulations in 
comparison with experimental results. This is because practical crystals used in 
experiments include defects such as pre-exiting dislocations and inclusions. 

Movement of a Molecular Dynamic Region with Crack Propagation 

Figure 5.47 shows the simulated result of the crack propagation process 
with emission of dislocations. The crack tip moves with crack propagation so 
quickly reaches the boundary between the molecular dynamics region and the 
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micromechanics region. The crack propagation simulation must be stopped when 
the crack tip reaches the boundary.  

 

 
 

 
 
Fig 5.49  Molecular dynamics model for tungsten single crystals. 
 
 

This means that the length of crack propagation that can be simulated and the 
number of dislocations that can be emitted, depends on the size of the molecular 
dynamics region. This limitation is fatal because of the limited capacity of com-
puters. 

In order to remove the limitation, the mo1ecular dynamics region moves with 
crack propagation. The basic idea is illustrated in Figure 5.46. The crack tip could 
be kept in the molecular dynamics region with this procedure. Therefore, the 
simulation is no longer limited by the size of a molecular dynamics region 
 
Table 5.10  
Calculation conditions and material properties 

Temperature 
Pre-crack length 
Young`s modulus (plane strain) 
Poisson`s ratio (plane strain) 
Shear modulus 
CRSS (Bucki et al., 1979) 

77 K 
2 mm 
445.7 GPa 
0.390 
160.6 GPa 
450 MPa 
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5.5.3  Simulation of a brittle fracture process in tungsten single 
crystals 

Calculation conditions and additional procedures for the Simulation of 
tungsten single crystals 

Tungsten single crystals are appropriate specimens for brittle fracture simulations 
because of the brittleness in spite of being single crystals. An N-body potential de-
rived by Finnis and Sinclair (1984) was used in the simulations. Figure 5.49 shows 
a molecular dynamics model for tungsten single crystals. Two layers of atoms 
were accumulated in the direction of plate thickness and a periodic boundary con-
dition was applied. In this model the crack face was in the (110) plane and the 
crack front direction was (110). Temperature, pre-crack length, bulk moduli and 
CRSS for the simulations are shown in Table 5.10. The CRSS value, obtained in 
simulations in which the crystallographic orientations corresponded to those of 
Riedle's experiments, (121) cleavage was expected to occur. 
 
 

 
(a) Geometry and orientation of the 
round compact tension specimen. 

(b) Broken specimen 

 
Fig 5.50  Broken specimen of a fracture toughness test at 77 Kin a tungsten single crystal 
(Riedle et al., 1994). 

 

 
 

Fig 5.51  Origin of cleavage in ca se of (121) cleavage. 
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(a)  K1 = 0.0(MPa m ) (b)  K1 = 4.0(MPa m ) (c)  K1 = 6.8(MPa m ) 

 
Fig 5.52  Resu1t (Furuya and Noguchi, 1999) of a simulation for cleavage in case the crack 
tip is blunted. In this case friction forces acting on each dislocation were 1000 MPa. 

 
To achieve (121) cleavage the combined model required an additional proce-

dure. Figure 5.51 shows crack tip shape and the position of the molecular dynam-
ics region in the crack tip after the crack has been opened. In the case of (121) 
cleavage, the origins of the cleavage are not expected to be the center of the crack 
tip but the edges of the crack tip as indicated in Figure 5.51. The problem then is 
that origins exist outside of the molecular dynamics region. In the combined 
model, cleavage occurrence is dependent on the molecular dynamics calculation. 
In turn simulations would contain errors if the origins were not in the molecular 
dynamics region. Figure 5.52 shows the result of one such simulation run without 
any additional correcting procedure (Furuya and Noguchi, 1999). In this case 
cleavage occurred from a boundary between the molecular dynamics region and 
the micromechanics region. The result is obviously wrong because the boundary 
between the two regions does not exist in real materials. The additional procedure 
for correcting this problem is illustrated in Figure 5.53. Dislocation emissions 
cause crack opening and crack tip blunting. The more the dislocations are emitted, 
the more the crack tip is blunted. This crack tip blunting leads to the crack tip 
edges escaping from the molecular dynamics region.  
 

 
 
Fig 5.53  Method to prevent a crack from opening by filling the open space with new atoms. 
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Fig 5.54  Three sizes of molecular dynamics regions (N: number of free atoms). 
 
 
The point of the additional procedure is to keep the crack closed. In the proce-

dure shown in Figure 5.53, the open space created by a dislocation emission is 
filled with new atoms and relaxation ca1culations are performed.This procedure 
prevents the crack from opening and keeps the crack tip edges in the molecular 
dynamics region. This is an approximation and is accompanied by the problem 
that now the influence of crack tip blunting is removed. However, the procedure is 
hard1y expected to influence the intrinsic crack behavior, and the radius of a crack 
tip with blunting would remain so small compared to the crack length that its ef-
fects are negligible in comparison to the brittleness of tungsten single crystals.  

Simulation results and size dependency of the molecular dynamics region 
on the results 

Three sizes of molecular dynamics regions (see Figure 5.54) were used in simu-
lations to investigate size dependency. The numbers of free atoms in each were 
2304, 3600 and 10000. Figure 5.55 shows the result of a simulation containing 
3600 free atoms. In the simulation, c1eavage occurred not from the boundary be-
tween the molecular dynamics region and the micromechanics region but from the 
edge of the crack tip along a (121) plane.  

 
(a)  K1 = 0.0(MPa m ) (b)  K1 = 5.0(MPa m ) (c)  K1 = 6.2(MPa m ) 

 
Fig 5.55  Result of a simulation with a N = 3600 model (N: number of free atoms). 
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Fig 5.56  Distribution of dislocations at the loading when the material was fractured at 77 
K. Only upper side is shown and the origin means a crack tip. 

 
 
The (121) c1eavage corresponds to experimental results (see Figure 5.50). An 

interesting feature in this result was the presence of backward twins from the 
edges of the crack tip at K1 = 5.0 MPa m . Backward twins have also been ob-
served in other simulations (Kohlhoff and Schmauder 1988) for α-iron.In this 
simulation, 155 dislocations were emitted before c1eavage occurred although the 
crack tip in Figure 5.55 was not blunted due to the additional procedure applied as 
explained in the previous section. The distribution of dislocations is shown in Fig-
ure 5.56 where only the upper half of the model (y ≥ 0) is plotted, both halves of 
the model being considered in the simulation.  

Values of fracture toughness evaluated for each size of the molecular dynamics 
regions are displayed in Table 5.11. The differences in fracture toughness were 
quite small. It was concluded that the simulation result was independent of the size 
of the molecular dynamics region. 

 
 

Table 5.11  
Fracture toughnesses obtained in simulations  (N: number of free atoms) 

Type of model Fracture toughness – K1c 
N = 2304 model 6.3 (MPa m ) 
N = 3600 model 6.2 (MPa m ) 
N = 10 000 model 6.2 (MPa m ) 
 

 



386      Chapter 5: Atomistic and Dislocation Modelling 

 
 

Fig 5.57  Experimental results (Gumbsch et al., 1998) of fracture toughnesses in tungsten 
sigle crystals. Solid marks show fracture toughnesses and open marks show stress intensi-
ties at failure in ductile manner. 

Investigation of brittle fracture processes and temperature 
dependency of fracture toughness at low temperature 

Simulation results at low temperature 

Figure 5.57 shows experimental results (Gumbsch et al., 1998) for fracture tough-
ness in tungsten single crysta1s. The brittle to ductile transition temperature and 
the fracture toughness at high temperature are both influenced by strain rate. 
However, fracture toughness at low temperature (77-225 K) is not influenced by 
strain rate. In the present study strain rates can not be taken into account because 
of the quasi-static simulations. At high temperatures, near the transition tempera-
ture, there are expected to be too many dislocations emitted to simulate, i.e. the 
more dislocations that are emitted, the greater the number of calculations to be 
performed with the combined model.  
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Fig 5.58  Temperature dependency of CRSS obtained in experiments (Bucki et al., 1979). 
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Fig 5.59  Comparison of fracture toughnesses between simulations and experiments 
(Gumbsch et al., 1998). Loading rates in experiments: K1 =  0.1 MPa m .s-l. 

 
 
This is because the transformation from an atomic dislocation to an elastic dis-

location requires relaxation calculations of molecular dynamics with 10000 steps 
or more. The experimental results and the limitations of the simulations mean that 
low temperatures (77-225 K) are appropriate conditions for the simulations. 

The model with 2304 free atoms was used under these conditions. The tempera-
ture dependency of critical resolved shear stress (CRSS) (Bucki et al., 1979) is 
shown in Figure 5.58. Britlle fracture processes were simulated in the low tem-
perature regime (77-225 K). Figure 5.59 shows fracture toughness values obtained 
from the simulations together with previous experimental results (Gumbsch et al., 
1998). The number of dislocations emitted and the plastic zone lengths at failure 
are displayed in Table 5.12. In the simulations, fracture toughness showed clear 
dependency on temperature and the tendency of the fracture toughness to increase 
showed good correlation to experimental data. The va1ues of fracture toughness, 
however, varied from experimental results. Also, it was still unknown whether the 
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steep increase in fracture toughness at high temperature, near the transition tem-
perature, could be obtained in the simulations.  
 
Table 5.12  
Number of emitted dislocations and lengths of plasic zones at the loading when the materi-
als were fractured in simulations 
Temperature (K) Dislocation Plastic zones (µm) 
77 
120 
150 
200 
225 

155 
298 
452 
907 
1266 

 10.0 
 25.4 
 46.3 
120.9 
208.5 

 
It was good that the temperature dependency of fracture toughness was ob-

tained at low temperature. However, the accuracy of the simulations and perform-
ance of the simulations at high temperature still remain subjects to be addressed. 

A brittle fracture process 

In this section the mechanism of brittle fracture will be discussed, based on the 
simulation results using the combined model. The main phenomena of the brittle 
fracture process are dis10cation emissions and cleavage. The point of the process 
is to determine whether the material cleaves or emits dislocations at a crack tip 
during external loading. Two simple models, based on local stress ana1yses in the 
crack tip region at an atomic scale, were introduced, one model for dislocation 
emissions and the other for cleavage (see Figure 5.60). The driving force τlocal is a 
resolved shear stress causing slip with dis10cation emission. When the driving 
force τlocal reaches a critical value τc, a dis10cation is emitted. The driving force 
σlocal is a normal stress that causes cleavage, i.e. when the driving force σlocal 
reaches a critica1 value σe then cleavage occurs. 

The driving forces τlocal and σlocal, which were calculated elastically through 
continuum mechanics, consist of a loading K-field and the shielding forces of dis-
locations. The information about the K-field and the dislocations had already been 
obtained from simulations with the combined model. The problem with these 
models was where to calculate τlocal and σlocal, because the crack tip was a singular 
point, i.e. τlocal and σlocal depended not only on the loading but also on the calcula-
tion points. In the present study, the calculation points were one or two atoms 
from the crack tip. The details of calculation points are shown in Figure 5.61. σlocal 
was calculated on a (121) plane because cleavage occurred along (121) planes in 
this case. The radius of the crack tip was assumed to be two atoms space 

)2( a=ρ . Although the models have the problem of where driving forces should 
be calculated from, they are useful for understanding the brittle fracture process. 

Figure 5.62 shows the driving forces τlocal and σlocal at 77 K obtained from the 
calculations. Young's modulus E´, displayed in Table 5.10, is for a plane strain 
problem.  
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(a) For dislocation emission (b) For cleavage 

 
Fig 5.60  Simple models for dislocation emissions and cleavage considering driving forces 
in an atomistic scale. τc and σe are critical values for dislocation emissions and cleavage, re-
spectively . 
 

 
 

Figure 5.61  Continuum model for σlocal and σlocal calculations, compared with atom posi-
tions. A radius of the crack tip was a2=ρ . Calculation points of τlocal and σlocal were 

( aa
2
2,

2
1 ) and ( a2,0 ), respectively (a: lattice constant).  

 
 
The relationship between E´ and E. is )1/(´ 2ν−= EE . The driving force τlocal for 

dislocation emissions, which increased linearly with K-field in elastic deforma-
tion, was saturated after the first dislocation emission. 

The saturation is a result of the shielding force of the emitted dislocation. Dis-
locations begin to be emitted when τlocal exceeds a critical value τc (τlocal ≥ τc). The 
driving force τlocal is, however, immediately relaxed because of the shielding 
forces of emitted dislocations.  
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Stress Intensity: K1  
(a) τlocal K1 diagram (b) σlocal K1 diagram 

 
Fig 5.62  Calculation results of τlocal  and σlocal 
 

 
Table 5.13  
Temperature dependencies of τc and σc 
Temperature (K) τc/G σc/E 
77 
120 
150 
200 
225 

0.098 
0.096 
0.096 
0.097 
0.096 

0.100 
0.099 
0.098 
0.100 
0.099 

 
In turn dislocations continue to be emitted while τloeal exceeds τc (τlocal ≥ τc), 

and the emissions are stopped when τlocal is relaxed below τc (τlocal < τc). The driv-
ing force σlocal for cleavage, which is also relaxed by the shielding forces of dislo-
cations, gradually increased with K-field even after the first dislocation emission. 
In the simulation at K1 = 6.3 MPa ~, the driving force σlocal reached a critical value 
σe and cleavage occurred. In summary, the brittle fracture process of the simula-
tion would be as follows. Whilst loading K1 from zero to K1C, the driving 
force τlocal for dislocation emissions reaches τc. After that τlocal is saturated by the 
shielding forces of emitted dislocations, while the driving force σlocal for cleavage 
continually increases with K1. In turn cleavage, which leads to fatal fracture, 
occurs when σlocal reaches σc. 

It is interesting to note that from the results in this section that the critical val-
ues τc and σc were quite close to the theoretical shear strength (G/2n) and the theo-
retical tensile strength (E/10) of the materials. This implies that the strength in the 
atomic scale region around the origin of fracture might be close to the theoretical 
strength of the material even if the macroscopic strength is much lower than the 
theoretical strength. 4.3. Temperature dependency of fracture toughness 

Some groups insist that dislocation emission is the controlling factor in brittle 
to ductile transition and others insist on dislocation mobility (see Introduction). In 
the present study, dislocation emission was determined from the critical value τc, 
and the dislocation mobility from friction forces acting on each dislocation 
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(CRSS). The critical values τc and (σe calculated from simulation results at each 
temperature are displayed in Table 5.13. Both values show no dependency on 
temperature. In comparison, the friction forces (CRSS) do vary with temperature 
(see Figure 5.58). These calculation results mean that the temperature dependency 
of fracture toughness in the simulations is due to the temperature dependency of 
dislocation mobility. Temperature dependency of fracture toughness is a charac-
teristic in the low temperature region of brittle to ductile transition. The results of 
the present study, therefore, support the latter insistence of dislocation mobility. 
The mechanism is as follows. Increasing temperature causes an increase of dislo-
cation mobility, which causes differences in dislocation distribution, and hence 
leads to differences in the shielding forces of dislocations. The difference in 
shielding forces causes the slope of the (σlocal to decrease. In turn the fracture limit 
(K1c), which is the load at which σlocal reaches (σe, increases with temperature.  

Discussion 

As mentioned above, the accuracy of simulations and performing simulations at 
high temperatures remain problems still unsolved by this study. The key points to 
solving these problems are an extension to three-dimensional simulations and an 
increase in calculation speed. Two dimensional simulations lead not only to a de-
cline of accuracy but also to principal limitations in the simulations. With a pre-
crack on a (100) plane, which is a primary cleavage plane, the material fractured 
in a perfect brittle manner with the combined model, i.e. the material cleaved be-
fore it emitted dislocations. In turn it was observed that fracture toughness was in-
dependent of temperature. The perfect brittle fracture might be caused by an ab-
sence of ledge sites (Zhou and Thomson, 1991) on the crack front because of the 
two-dimensional nature of the model. The extension to three-dimensional simula-
tions, involving ledges of a crack front, might be absolutely necessary both to im-
prove the accuracy and to extend the applicability of the simulations. Increasing 
the speed of the calculations is necessary both to extend to three-dimensional 
simulations and to simulate at high temperatures. The speed increase may require 
the improvement not only of computers but also of software.  

In this study the molecular dynamics simulations brought much benefit to solv-
ing the problem of britt1e fracture and the temperature dependency of fracture 
toughness. This might be a good demonstration of the usefulness and applicability 
of simulations in research into material strength. The present study is successful in 
showing the range of possibilities of molecular dynamics simulations, while the 
simulations still have several deficiencies. 

Conclusion 

The combined model of molecular dynamics with micromechanics was applied to 
simulations of brittle fracture processes in tungsten single crystals at low tempera-
tures. The pre-cracks were introduced on (110) planes and cleavage was observed 
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along (121) planes in the simulations. The cleavage along (121) planes had previ-
ously been observed in experiments (Riedle et al., 1994). In the simulations the 
material was twinned backwards from edges of the crack tip. The backward twins 
have also been observed in other simulations (Kohlhoff and Schmauder, 1988). 
Three sizes of molecular dynamics regions were tested at 77 K, and the results of 
the simulations were found to be independent of the sizes used. Britt1e fracture 
processes were simulated at the temperatures between 77 K and 225 K. The frac-
ture toughness values obtained in these simulations showed clear temperature de-
pendency, but did not show good agreement with those from experiments. The 
main problem with the simulation was the limitation in the number of calculations 
that could realistically be performed which affected both accuracy and limited the 
simulations to low temperatures only. A britt1e fracture process at 77 K was dis-
cussed by considering the driving forces for dislocation emissions and cleavage in 
an atomic scale region of a crack tip. It was found that the driving force for dislo-
cation emissions was saturated after the first dislocation emission, whereas the 
driving force for cleavage gradually increased with loading K-field. When the 
driving force for cleavage reached a critical value, the material c1eaved. The criti-
cal values of driving forces for both dislocation emissions and for c1eavage, 
which were quite close to the theoretical strengths of the material, were not influ-
enced by temperature. This means that the temperature dependency of fracture 
toughness is not caused by a temperature dependency of dislocation emissions but 
by that of dislocation mobility. 
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5.6 Simulation of the formation of Cu-precipitates in 
steels6 

 
 
 
Cu-alloyed steels are applied to large extent as pipe materials. These steels are 
typically alloyed with 0.6–1.5 wt.% Cu in order to improve the yield stress at 
higher temperatures. In German power plants, the service temperature typically 
lies below 300 °C, in pressure vessels below 340 °C and in conventional power 
plants it ranges up to 450 °C. After long time in service, strengthening with 
toughness decrease (embrittlement) was found. This undesired change in material 
properties is due to Cu-precipitation at service temperatures above 300 °C [1]. At 
MPA Stuttgart, simulations have been performed in order to correlate the amount 
and size of Cu-precipitates which have formed under service conditions and the 
hardening [3]. The aim of the present work is a deeper understanding of the me-
chanical properties of Cu-alloyed steels by an atomistic simulation of the forma-
tion and growth of precipitates.  

Cu-precipitates 

At temperatures below 910 °C, pure iron posesses a body centered cubic (bcc) 
crystal structure while pure copper posesses a face centered cubic (fcc) crystal 
structure. The crystal structure of Cu precipitates is known to be dependent on 
their size: 

• Small precipitates with radii smaller than about 2 nm are coherent and 
possess the bcc structure of iron [6,8]. 

• Precipitates with radii between 2 and 9 nm possess a twinned 9R struc-
ture [6]. 

• Precipitates with radii larger than about 9 nm are present in a 3R struc-
ture, a distorted fcc structure which continually changes to the fcc crystal 
structure of pure copper for increasing precipitate radii [6]. 

Small angle neutron scattering (SANS) was applied on several specimen of mate-
rial 15 NiCu- MoNb 5 in order to analyse these precipitates in a defined initial 
state as well as in a thermally aged state [14]. In the initial state the SANS meas-
urements show Cu-precipitates with a maximum in the radii distribution at R = 
2.2–2.5 nm, while some copper is still dissolved in the matrix. In the thermally 
aged state (e.g. 57 000 h, 350 °C) the radii distribution of the initial state remains 
nearly constant, but additionally particles with a maximum in the radii distribution 
at R = 1.3–1.7 nm have precipitated, while nearly no copper is dissolved in the 
                                                           
6 Reprinted from S. Schmauder, P. Binkele, "Atomistic Computer Simulation of the 
Formation of Cu-Precipitates in Steels", Computational Materials Science 24, pp. 
42-53 (2002) with kind permission from Elsevier 
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matrix. Due to the large number of newly formed small precipitates in the ther-
mally aged case, the mean distance between the precipitates is drastically reduced. 
In summary, thermal ageing due to a secondary Cu precipitation can be under-
stood: precipitates represent obstacles for moving dislocations, and therefore, dis-
location movement is strongly impeded by the precipitates. The material is hard-
ened as there are more Cu precipitates present and the mean distance between two 
neighbouring precipitates is reduced in the aged state. 

5.6.1  Monte Carlo simulations 

Model 

In the present simulations, a fixed bcc crystal lattice is used with periodic bound-
ary conditions and a fixed size of L = 64 and 128 lattice constants, respectively. 
Thus, N = 2L3 lattice sites are available. The lattice is occupied with NA atoms of 
type A, NB atoms of type B and one vacancy (NV = 1). For the total number of lat-
tice sites the following equation holds: N = NA + NB + NV. The chemical binding 
between atoms has been described by first and second neighbour pair interactions, 
ε(i)

AA, ε(1)
BB, ε(1)

(AB) with }2,1{∈i  denoting the ith neighbours. The binding be-
tween atoms and the vacancy has been described by first neighbour interactions 
ε(1)

AV, and ε(1)
RV. The movement of the atoms occurs by change of the vacancy 

with a nearest neighbour atom. Such a change is thermally activated and the tran-
sition rates ΓA,V for an A-atom and ΓB,V for a B-atom are given by 
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kT
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BVB
,

, expν  (5.32) 

Here νA and νB represent attempt frequencies for an A-atom and B-atom respec-
tively. The activation energy ΔEXV, },{ BAX ∈  is the energy difference between the 
stable position and the saddle point position of a diffusing atom A or B, which is 
situated next to the vacancy (Fig. 5.63). The activation energies depend on the lo-
cal atom configuration, and a simple model is applied to calculate them, which is 
presented in the following for atom type A. The activation energies depend on the 
saddle point energy Esp,A and the interatomic binding energies of the first and sec-
ond neighbours of the A-atom, and on the interaction energies of the first 
neighbours of the vacancy.  
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Fig. 5.63  Schematic representation of activation energies and saddle point energies. 

 
 

)1()1()1()1()2()2()2()2()1()1()1()1(
,, BVBVAVAVABABAAAAABABAAAAASpVA nnnnnnEE εεεεεε −−−−−−=Δ  (5.33) 

Here n(i)
AA(n(i)

AB) is the number of AA-bonds (AB-bonds) at the ith neighbours 
of the A-atom ( }2,1{∈i ), and n(i)

Av(n(i)
Av) is the number of AV- ‘bonds’ (BV-

‘bonds’) at the first neighbours of the vacancy. 
As there are z1 = 8 first neighbour lattice sites, and z2 = 6 second neighbour lat-

tice sites on a bcc lattice, the following equations hold: 
 

11
)1()1( −=+ znn ABAA  (5.34) 

2
)2()2( znn ABBB =+  (5.35) 

1
)1()1( znn BVAV =+  (5.36) 

For the B-atoms an analogues consideration provides the following equations: 

 
)1()1()1()1()2()2()2()2()1()1()1()1(

,, BVBVAVAVBBBBABABBBBBABABBSpVB nnnnnnEE εεεεεε −−−−−−=Δ  (5.37) 

And  

11
)1()1( −=+ znn ABBB  (5.38) 

2
)2()2( znn ABAA =+  (5.39) 
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1
)1()1( znn BVAV =+  (5.40) 

The energies )1(
AAε  and )1(

BBε , }2,1{∈i  were estimated from the cohesive energies 
of the pure metals, using the assumptions )2(

AAε = )1(
AAε /2 and )2(

BBε = )1(
BBε /2. 

 

)2(2)1(1
, 22 AAAAAcoh

zzE εε +=  (5.41) 

)2(2)1(1
, 22 BBBBBcoh

zzE εε +=  (5.42) 

The energies }2,1{,)( ∈ii
ABε  are related to the mixing energy ωAB which is defined 

as 

( ) ( ))2()2()2(2)1()1()1(1 2
2

2
2 ABBBAAABBBAAAB

zz εεεεεεω −++−+=  (5.43) 

For mixing energies ωAB < 0 the system has a tendency to form precipitates, for 
ωAB = 0 A- and B-atoms are ideally solvable, and for ωAB > 0 a tendency to form 
superstructures exists [12]. The energies )1(

AVε and )1(
BVε  are related to the vacancy 

formation energies as  

 

AcohAVAforV EzE ,
)1(

1,, += ε  (5.44) 

BcohBVBforV EzE ,
)1(

1,, += ε  (5.45) 

With the knowledge of Ecoh,A, Ecoh,B, ωAB, EV,for,A, EV,for,B the energies )1(
AAε , )1(

BBε , 
)1(

ABε , }2,1{∈i  and )1(
AVε , )1(

BVε  can be calculated. 

An approach to the Fe–Cu system  

In order to simulate the system Fe–Cu, material data are required. The kinetic pa-
rameters were adjusted to diffusion data, assuming an Arrhenius law. 

 

⎟
⎠
⎞

⎜
⎝
⎛ −=

kT
QDD exp0                   with Q = EV,for + E V,mig (5.46) 

The attempt frequencies were estimated using the Debye frequencies νD in the pure 
metals: νA = νB = νD. The saddle point energies determine the vacancy migration 
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energies in the pure metals and the following estimations were used where EV,mig,A 
and EV,mig,B are the vacancy migration energies of atom types A and B, and cA and 
cB are the concentrations of A and B. 

 
Table 5.14 
Material data 
Cohesive energy Fe Ecoh, Fe = -4.28 eV [2] 
Cohesive energy Cu (in Fe) Ecoh,Cu = -4.28 eV Sym. Model 
Lattice constant a = 0.287 nm [2] 
Mixing energy ω = - 0.515 eV Adjust to Cu sol. limit 
Vacancy formation energy Fe EV, for, Fe = 1.60 eV [4,5] 
Vacancy formation energy Cu EV, for,Cu = EV, for, Fe = 1.60 eV Assumption 
Vacancy migration energy Fe EV, mig, Fe = 0.90 eV (770-884°C) Calc. with [5] 
Vacancy migration energy Cu 
(in Fe) EV, mig, Cu = 0.90 eV (300-450°C) Calc. with [10] 

Diffusion constant Fe FeD0 = 2.01 x 10-4 m²s-1 [5,11] 

Diffusion constant Cu CuD0 = (2.16 ±0.9) x 10-4 m²s-1 Calc. with [10] 

Debye frequency Fe νD = 8.70 x 1012 s-1 Calc. with [2] 
 
Table 5.15 
Simulation parameters 

)1(
AAε  = -0.778 eV )2(

AAε  = -0.389 eV 
)1(

BBε  = -0.778 eV )2(
BBε  = -0.389 eV 

)1(
ABε  = -0.731 eV )2(

ABε  = -0.366 eV 
)1(

AVε  = -0.335 eV )1(
BVε  = -0.335 eV 

ASpE ,  = -9.557 eV BSpE ,  -9.098 eV 
νD  = 8.70 x 1012s-1 νB = 8.70 x 1012s-1

 
In the present simulations, a symmetrical model was used, i.e. )1(

AAε = )1(
BBε  (i = 1; 

2). The applied material data are listed in Table 5.14, and the simulation parame-
ters in Table 5.15.  
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Residence-time-algorithm 

In the simulations a rejection free residencetime - algorithm is applied, which 
shows significant calculation time advantages in comparison to a Metropolis algo-
rithm [12]. Eight nearest neighbours are surrounding the vacancy. A jump rate is 
now calculated for each of these eight jump candidates depending on their first 
and second neighbours. This provides eight independent high jump frequencies Γ1, 
Γ2, … Γ8. One of these eight possibilities is now selected on the basis of its prob-
ability by a random number and the site change is then performed, see Fig. 5.64. 
The number of performed jumps during the simulations is in the order 1012. 

In order to define a time scale, the averaged residence time was used which is 
given by 
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However, the different vacancy concentrations in the simulation (cV,sim = 1/(2.L3)) 
and in reality (we used cV,real = 280.exp(EV,for /(kT ))) have still to be correlated. In 
order to obtain the time t, the Monte Carlo time tMC is multiplied by a time adjust-
ing factor as follows: 
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The thus calculated time scale is sensitively dependent on the used energies and 
attempt frequencies. Therefore, the calculated time periods for the simulation re-
sults have to be considered with some care. In any case, the thus calculated pseudo 
time is directly proportional to the real time. 

 

 
 

Fig. 5.64  A random number directs to one of the eight possible vacancy jumps as signified 
by its jump rate. 
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The random numbers have to fulfill the following requirements:  
• They shall be random numbers. 
• They shall be reproducable in order to reproduce simulation results. 
• They shall be long periodic in order to avoid interdependencies in the 

simulation. 
Some pre-installed random number generators on computers do not fulfill these 

requirements. Some good random number generators are described in [7]. There-
fore, an appropriate one is installed which also guarantees a nearly independence 
of the used computer type. 

5.6.2  Simulation results: formation and growth of precipitates 
at different temperatures 

Simulation at T = 600 °C 

First a study is presented which demonstrates how the precipitates form and grow. 
The used base centered cubic lattice with periodic boundary conditions posseses a 
side length of L=64 lattice constants which means in reality a side length of 
64.0.287 = 18.4 nm. It consists of N = 2.L3 = 524.288 lattice sites which are occu-
pied by 99% A-atoms (NA = 519.044), 1% B-atoms (NB = 519.044) and one va-
cancy (NV = 1). At the beginning, the B-atoms are randomly distributed on the 
crystal lattice. At the beginning of the simulation, all B-atoms (1%) are dissolved 
in the matrix, (point A in Fig. 5.66). At the end of the simulation (Fig. 5.65) only 
0.2 at.% of B remains dissolved while 0.8 at.% have formed precipitates according 
to the Fe–Cu phase diagram (point B in Fig. 5.66, equilibrium state). 

 
 

 
0 MCS, (t = 0) 2 . 109 MCS (t = 26 s) 
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Fig. 5.65  Simulation of nucleation and growth of precipitates; B-atoms are shown only for 
visibility reasons (T = 600 °C). 

 
 

Now a function is defined which gives a measure for the deviation from the equi-
librium state: 

)()0(
)()0()(

∞−=
−== m

B
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m
B

ctc
tctctf  (5.51) 

Here, )(tcm
B  is the B-concentration in the matrix at time t. For f(t) = 1 there are as 

many B-atoms dissolved in the matrix as can be expected from the Fe–Cu phase 
diagram.  

 
 

Fig. 5.66  The Fe–Cu phase diagram (calculated with Thermo- Calc). At a temperature of 
600 °C the solubility limit of Cu in Fe is 0.21 at.%. 

 
4 . 109 MCS, (t = 77 s) 25 . 109 MCS, (t = 600 s) 
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Fig. 5.67  The function f (t) converges against 1 (for details see text). 

 
 

Values of f(t) < 1 mean, that too many B-atoms are dissolved in the simulation, 
values of f(t) > 1 mean, that not enough B-atoms are dissolved in the matrix. The 
values of f(t) have been calculated for different times during the simulation and 
are shown in Fig. 5.67. It can be seen that f(t) converges against 1 for t → ∞. This 
means that this simulation is in good agreement with the Fe–Cu phase diagram, 
calculated with Thermo-Calc [13], [15]. 

 

 
 
Fig. 5.68  The Fe–Cu phase diagram (calculated with Thermo- Calc). At a temperature of 
700 °C the solubility limit of Cu in Fe is 0.536 at.%, and at a temperature of 400 °C the 
solubility limit of Cu in Fe is 0.023 at.%. 
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Simulation for two different temperatures 

In this simulation a crystal lattice with periodic boundary conditions and a side 
length of L = 128 lattice constants has been used which corresponds to an absolute 
value of 36.2 nm. The model volume posesses N = 2.L3 = 4.194.304 lattice sites 
and is occupied with 99% A-atoms (NA = 4.152.360), 1% B-atoms (NB = 41.943) 
and one vacancy (NV = 1). In comparison to the previous calculation, the model 
volume is increased by a factor of 8 and an initial distribution with a few very 
small precipitates was used. In the first part of the simulation the temperature 
amounted to 700 °C and in the second part the simulation was continued with a 
temperature of 400 °C, according to the Fe–Cu phase diagram (Fig. 5.68). 

Part 1, simulation at T = 700 °C  

At 700 °C precipitates of radii between 1.1 and  1.7 nm formed within seconds 
and 0.5% B-atoms remain dissolved at that time (Fig. 5.69). In the present context 
a ‘dissolved’ B-atom means that no other B-atom is present among the eight first 
with the dissolved atoms when the temperature is decreased at once to 400 °C. In 
order to follow the precipitation behaviour of these atoms they have been given a 
brighter colour. 

Part 2, simulation at T = 400 °C 

At 400 °C a part of the dissolved atoms produces many small precipitates, another 
part increases the precipitates which have formed at 700 °C (Fig. 5.70). After 15 x 
1010 Monte Carlo steps (MCS) only a few B-atoms are still in solution and nearly 
all B-atoms have precipitated in accordance to the Fe–Cu phase diagram. In a fur-
ther step, the size distributions of the precipitates which have formed after 1 x 
1010, 15 x 1010, 35 x 1010, 75 x 1010 MCS have been calculated. 

Considered geometrically, the simulated precipitates are polyhedrons. Now, a 
method has to be developed to define the radii of the simulated precipitates. We 
calculated the radius of the sphere having the same volume as the precipitate. An 
elementary cell of a base centered cubic lattice includes two atoms and posesses 
the volume Vec = a3. As the number of atoms N in each precipitate is known, the 
following equation holds for large values of N (N > 20). 

 

33

23
4 aNRVSphere == π  (5.52) 

This equation provides the precipitate radius R which was used to calculate the 
size distributions: 

 



5.6 Simulation of the formation of Cu-precipitates in steels      405 

3/13

8
3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= NaR

π
 (5.53) 

 

Fig. 5.69  After 10 s precipitates with radii between 1.1 and 1.7 nm have been formed; ap-
proximately 0.5% B-atoms are still dissolved in the matrix (brighter colour). 

 

 

 
2 . 1010 MCS, (t = 1 s), T = 700°C 7 . 1010 MCS, (t = 10 s), T = 400° C 

 
 
1 . 1010 MCS, (t1 = 140 h), T = 400°C 

 
15 . 1010 MCS, (t2 = 1933h), T = 400°C 
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35 . 1010 MCS, (t3 = 4504h), T = 400°C 

 
75 . 1010 MCS, (t4 = 9680h), T = 400°C 

 
Fig. 5.70  The simulation is continued at T = 400 °C. A part of the still dissolved atoms 
produce small precipitates, another part increases the precipitate which have been formed 
before at T = 400 °C. In the long run the number of small precipitates decreases, and the 
average particle size increases. 

 
 
After 7 x 1010 MCS at a temperature of 700 °C nineteen precipitates with radii 

between 4.5 and 6.5 lattice constants (1.1 < R < 1.7 nm) were formed. The mean 
radius of the precipitates in this configuration was calculated to be 1.43 nm. After 
1 x 1010 MCS at a temperature of 400 °C, 74 new small precipitates with radii be-
tween 1 and 3 lattice constants (0.3 < R < 0.9 nm) have formed.  

Due to the large number of small precipitatxes the mean radius of the precipi-
tates decreased to 0.79 nm. In the course of the simulation the radii of small and 
large precipitates grow while the number of small precipitates is reduced drasti-
cally and the mean radius of the precipitates increases (Fig. 5.71). 

 

 
1 . 1010 MCS, (t1 = 140h), T = 400°C 15 . 1010 MCS, (t2 = 1933h), T = 400°C 
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35 . 1010 MCS, (t3 = 4504h), T = 400°C 75 . 1010 MCS, (t4 = 9680h), T = 400°C 

 
Fig. 5.71  Size distribution of the precipitates after 1  1010 MCS, 15  1010 MCS, 35  1010 
MCS and 75  1010 MCS. 

 
 
At the end of the simulation after 75 x 1010 MCS only two small precipitates are 

still existent, 72 small precipitates vanished and increased the 19 large precipi-
tates, which now have radii between 5 and 7.5 lattice constants (1.4 < R < 2.2 nm). 
The mean radius of the precipitates increased to 1.72 nm. Fig. 5.72 shows the de-
crease of the number of precipitates and Fig. 5.73 the increase of the average pre-
cipitate radius during the simulation. 

In order to calculate the precipitation strengthening of Fe by Cu particles a the-
ory of Russel and Brown [9] is applied to describe the increase in yield stress Δσ = 
2.5.Δτ (as assumed for Fe; Russel and Brown [9]) due to cutting of precipitates, 
which are softer than the embedding matrix 
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where G is the shear modulus of the matrix; b, the Burgers vector of the dislo-
cation; D, the distance between the precipitates ∞

1E  and ∞
2E  , the energies per unit 

length of a dislocation in infinite media (Fe or Cu respectively); rppt, the precipitate 
radius; rc and r0 the outer and inner cut-off radii, respectively, used to calculate the 
energy of the dislocation. Russel and Brown verified the validity of the following 
values for the Fe–Cu system. ∞

1E / ∞
2E  ≈ 0.6, b = 0.248 nm, r0 = 2.5b, G = 83 GPa, 

and finally rc = 1000r0. 
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Fig. 5.72  Decrease of the number of precipitates during the simulation at T = 400 °C. 
 

 
 

Fig. 5.73  Increase of the average precipitate radius during the simulation at T = 400 °C 
 

 
The formula points out the impact of the distance D. The dislocations are 

poorly impeded in the case of largely distant obstacles, and strongly impeded in 
the case of obstacles with a short distance. In the idealised case with homogene-
ously distributed particles, D depends on rppt as 2/1−= frD pptπ , where f is the 
atomic concentration of Cu. Using this D(rppt) law, Dr can be directly calculated as 
a function of the mean particle radii. For the present Cu-concentrations (0.5% and 
1.0%) these functions peak for rppt around 1.3 nm, see Fig. 5.74. In real steels as 
well as in the simulation, neither the radii nor the distances between the precipitates 
are identical, and the above linking D with rppt does not hold. Nevertheless, in a sim-
ple approach, averaged particle radii and the corresponding distances according to 
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the above D(rppt) law were used. A detailed treatment with respect to particle radii 
distributions and varying distances will be future work. 

In part 1 of the simulation, after 7 x 1010 MCS at a temperature of 700 °C nine-
teen precipitates with a mean radius of 1.43 nm were formed. The concentration of 
the atoms which have precipitated is 0.5%, while the remaining (other) 0.5% are 
still solved in the matrix. This configuration corresponds to the time t0 in Fig. 
5.74. 

 

 
 

Fig. 5.74  Increase of yield stress according to Russel–Brown for f = 0.5% Cu and 1.0% 
Cu. 

 
In part 2 of the simulation, after 1 x 1010 MCS at a temperature of 400 °C a to-

tal number of 93 precipitates (19 large ones and 74 small ones) is formed with a 
mean radius of 0.79 nm, and the concentration of precipitated atoms is close to 
1.0%. This corresponds to the time t1 in Fig. 5.74. After 15 x 1010 MCS a total 
number of 65 precipitates (19 large ones and 46 small ones) exist and the mean 
radius in this configuration is 1.01 nm, corresponding to the time t2 in Fig. 5.74. 
After 35 x 1010 MCS a total number of 37 precipitates (19 large ones and 18 small 
ones) is formed with a mean radius of 1.32 nm, corresponding to the time t3 in Fig. 
5.74. At the end of the simulation after 75 x 1010 MCS a total number of 21 pre-
cipitates (19 large ones and 2 small ones) and a mean radius of 1.72 nm is found, 
corresponding to the time t4 in Fig. 5.74. 

Using the results of the simulation and the theory of Russel and Brown, 
strengthening can be calculated as a function of time and is plotted in Fig. 5.75. At 
the beginning of the simulation at a temperature of 400 °C the strengthening is 
weak, despite the existence of 74 small precipitates, but the mean radius of 0.79 
nm is too small to contribute to strengthening (at time t1 in Figs. 5.74 and 5.75). 
After 15 x 1010 MCS a strong strengthening contribution of Δσ = 94.4 MPa due to 
an average particle radius of 1.01 nm is found (at time t2 in Fig. 5.67.). 

The strengthening reaches a maximum of Δσ = 112.7 MPa after 35 x 1010 MCS 
(at time t3 in Fig. 5.75) and then decreases to  
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Fig. 5.75  Change in yield stress during simulation at T = 400 °C using the theory of Rus-
sel–Brown. 

 
 
Δσ = 97.1 MPa after 75 x 1010 MCS (at time t4 in Fig. 5.751). Such simulation 

results are in close agreement to recent experimental observations [14].  
The thus calculated values for Δσ have to be reduced by the change in the con-

tribution from solution hardening. The contribution from solution hardening van-
ishes during ageing when the remaining dissolved copper atoms precipitate to 
form particles. In the initial state of the material when 0.5 at.% Cu are still dis-
solved in the matrix, solution hardening amounts to approximately 10 MPa [3], 
leaving a total increase in the maximum yield stress of 102 MPa for the aged state. 

Summary 

Atomistic computer simulations of the formation of precipitates can contribute to 
a deeper understanding of the mechanical behaviour of Cu-alloyed steels. The un-
derlying Monte Carlo method was presented and a binary system with components 
A and B was considered. Starting with a random distribution of atoms, the forma-
tion and growth of precipitates was simulated at a constant temperature of 600 °C. 
In a second simulation, an initial temperature of 700 °C was lowered to 400 °C. At 
700 °C precipitates with radii between 1.1 and 1.7 nm were formed within sec-
onds. At 400 °C a part of the still dissolved atoms formed smaller precipitates 
while other atoms increased the size of the larger precipitates. At longer simula-
tion times a significant decrease of the number of small precipitates and an in-
crease of the averaged precipitate radius was found. The Russel– Brown theory 
was applied on the simulation results in order to calculate the increase of the yield 
stress in the thermally aged state. The change in yield stress as a function of an-
nealing time was calculated. 
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5.7 Atomistic simulation of the pinning of edge 
dislocations 7 

 
 
 
Ni-base superalloys are important materials for technological applications because 
of their high strength even at elevated temperatures and their high resistance to 
creep deformation [1]. The strength of these materials is mainly due to precipita-
tion hardening. For small volume fractions of the precipitate phase (γ´) in the ma-
trix phase (γ), the precipitates possess a spherical shape. For higher volume frac-
tions, the precipitates have the shape of cubes or plates. 

In order to model precipitation hardening at the atomic level, molecular dynam-
ics (MD) simulations of the dislocation–precipitate interaction are a suitable 
method [2–4]. For the case of cubic Ni3Al precipitates in Ni, the behaviour of dis-
locations has been studied by MD simulations in [5]. In this article, we study the 
precipitation hardening in a binary Ni-base Ni3Al alloy due to coherent spherical 
Ni3Al precipitates. Precipitation hardening has been extensively studied using con-
tinuum mechanics methods (see [6] and references therein). 

While Ni has an fcc structure, Ni3Al possesses an Ll2 structure. Accordingly, 
order hardening due to the formation of an antiphase boundary (APB) in a precipi-
tate during its cutting by a dislocation plays an important role. A second disloca-
tion moving in the same glide plane restores the Ll2 structure. Therefore, the two 
dislocations are not equivalent. In order to study these processes, we consider the 
cutting of γ´ precipitates by superdislocations. More specifically, a perfect disloca-
tion in the γ´-phase with Burgers vector [ ]1010a  dissociates into two partial dislo-
cations with Burgers vector a0/2 [ ]101  that are connected by an APB ribbon. We 
denote these dislocations by D1 and D2. The dislocations D1 and D2 constitute 
perfect dislocations in the γ-phase. They further dissociate into Shockley partial 
dislocations with Burgers vectors a0/6 [ ]112  and a0/6 [ ]121  and a stacking fault 
(SF) ribbon. Accordingly, we have to consider the interaction of four Shockley 
partial dislocations (denoted by P1–P4) with a precipitate and to determine the 
corresponding critical resolved shear stresses (CRSSs). Since the system sizes we 
employ in our simulations are too small to consider the interaction of the disloca-
tions D1 and D2, we study the interaction between each dislocation and the pre-
cipitates separately. For the CRSSs we adopt the following definitions: τc1 and τc3 
shall be the CRSSs for the penetration of P1 and P3 into a precipitate while τc2 and 
τc4 shall be the CRSSs for the detachment of P2 and P4, or, equivalently, for the 
detachment of D1 and D2 from the precipitate.  

                                                           
7 Reprinted from C. Kohler, P. Kizler, S. Schmauder, "Atomistic simulation of the pinning 
of edge dislocations in Ni by Ni3Al precipitates", Mat. Sci. and Engng. A400-401, pp. 481-
484 (2005) with kind permission from Elsevier 
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5.7.1  Molecular dynamics simulations for the analysis of the 

We use classical molecular dynamics simulations with EAM potentials [7] in or-
der to model the interaction of dislocations and Ni3Al precipitates in Ni crystals. 
The EAM potential functions are taken from reference [8]. The lattice constants, 
cohesive energies and shear moduli for Ni and Ni3Al following from these poten-
tials are given in table 5.16. The lattice mismatch is Δa0 = 1.5%. Note that the 
shear moduli of Ni and Ni3Al are nearly equal. Consequently, modulus mismatch 
hardening will not be relevant. 

The starting configuration used in the simulations with the leading dislocations 
D1 is shown schematically in Fig. 5.76. Within a rectangular block of Ni, an edge 
dislocation with Burgers vector b = a0/2 [ ]101  is created by removing two ( )101  
half planes and deforming the rest of the crystal in such a way that the fcc struc-
ture is restored outside the dislocation core. A precipitate is created by substituting 
Ni atoms of the fcc structure by Al atoms within a spherical region of radius r to 
generate the L12 structure of Ni3Al. We have considered precipitates with radii r = 
1.25, 2.5 and 3.75 nm. Within the (111) glide plane, periodic boundary conditions 
are applied meaning that infinitely long dislocation lines interact with chains of 
precipitates with distances L equal to the box length Lz in z direction. Perpendicu-
lar to the glide plane, the atoms within two boundary regions (shown shaded in 
Fig. 5.76) are constrained to move in the x–z plane.  

For the simulations with the trailing dislocations D2, precipitates sheared by an 
amount equal to the magnitude of the Burgers vector b (and thus possessing an 
APB) are used in the starting configuration. The box lengths Lx and Ly are fixed to 
Lx = 19.78 nm and Ly = 9.75 nm. For Lz we have chosen the values Lz = 14.65, 
19.82, 24.99 and 29.73 nm. The number of atoms in the simulation box ranges ac-
cordingly from 260.000 to 527.000. The simulations are performed at temperature 
T = 0K using a relaxation algorithm in which the velocities of the atoms are set 
equal to zero, whenever the system evolves uphill on the potential energy surface. 
 
 
Table 5.16 
Lattice constant a0, cohesive energy Ec and shear modulus G for Ni and Ni3Al 
 Ni  Ni3Al 
a0 (Å)  3.518  3.571 
Ec (eV)  4.427  4.559 
G (GPa) 73.47 77.32 
All values are obtained from the EAM potentials at T = 0 K 
 

 

interaction of dislocations and precipitates 
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Fig. 5.76  Schematical illustration of the simulation box projection along the z axis is 
shown. 

 
 
The CRSSs are determined in the following way. Initially, small external shear 

stresses are applied such that the dislocations attain stable positions near or inside 
the precipitate. The shear stresses are then increased in steps until the partial dislo-
cations P1 or P3 enter the precipitate (in the case of the determination of τc1 and 
τc3) or the partial dislocations P2 or P4 detach from the precipitate (in the case of 
τc2 and τc4). For the stable positions of the dislocations, the systems have been re-
laxed until the mean force on the atoms is smaller than 5 x 10-7 eV/Å (quasi-static 
simulation). The final stress increment leading to the penetration or the detach-
ment of the partials is at most 5MPa, which determines the accuracy of the CRSS. 
The locations of the partial dislocations and the SF ribbon are detected using a 
common-neighbour analysis [9]. 

5.7.2  Determination of critical resolved shear stresses 

Dislocation D1 

For the dislocation D1, the corresponding CRSSs τc1 and τc2 are plotted in Fig. 
5.77 as a function of the precipitate distance L. In all cases, we obtain non-zero 
values for the CRSS τc1, which means that an external shear stress is necessary to 
move P1 into the precipitate. Simulations with external shear stresses smaller than 
τc1 have shown that there is a repulsion of the dislocations D1 by the precipitates. 
Accordingly, there are stable positions of D1 outside the precipitate. Fig. 5.78(a) 
shows atoms near the glide plane of the system with r = 2.5 nm and L = 30 nm at 
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an external shear stress τ = 25MPa slightly below the CRSS τc1. That the partial 
dislocations P1 do not enter the precipitate for shear stresses smaller than τc1 can 
be explained by a higher SF energy in the γ´ phase compared to the one in the γ 
phase. When the external shear stress is increased, P1 moves into the precipitate. A 
new stable position is attained when the partial dislocation P2 touches the precipi-
tate (see Fig. 5.79(b and c) for precipitates of radius r = 2.5 and 1.25 nm, respec-
tively).  

This can be explained by the large APB energy that has to be supplied by mov-
ing P2 through the precipitate. As can be seen in Fig. 5.77, the value of τc2 is for 
all precipitate radii and distances higher than the corresponding value of τc1, which 
means that the partial dislocation P2 determines the CRSS of dislocation D1. τc1 
and τc2 decrease with increasing precipitate distance L and increase with increas-
ing precipitate radius r. The dependence of τc2 on L can be described to a good ap-
proximation by τc2 ~ 1/L. 
 

 
 

Fig. 5.77  Critical resolved shear stresses of the leading dislocations D1 for precipitates of 
different radii as a function of the precipitate distance L. The open symbols correspond to 
τc1 and the full ones to τc2.  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
Fig. 5.78  Atoms near the glide plane for systems with precipitate distance L = 30 nm. The 
color scheme is as follows: Al atoms (white), stacking fault (light gray), Ni atoms (dark 
gray) and partial dislocation (black).  
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Dislocation D2 

The CRSSs for the dislocation D2 are plotted in Fig. 5.79. For all considered radii 
and distances of precipitates, we obtain non-zero values for the CRSS τc3. There 
is, however, no clear dependence of τc3 on the precipitate radius r and distance L, 
τc3 ranges from 5 to 20 MPa. In contrast to the case of the dislocations D1, the dis-
locations D2 are attracted by the sheared precipitates. The location of D2 for the 
system with r = 2.5 nm and L = 30 nm and external shear stress τ = 12.5 MPa is 
visualized in Fig. 5.78(d). For external shear stresses τ > τc3, there is a difference 
in the behaviour of the precipitates of radius r = 1.25 nm and the precipitates with 
radii r > 1.25 nm. For r = 1.25 nm, there exist stable positions of the trailing partial 
dislocation P4 at the left phase boundary of the precipitate (see Fig. 5.78(e)). Cor-
respondingly, there exists a CRSS τc4 > τc3 for the detachment of D2 from the pre-
cipitate. The CRSS τc4 decreases with increasing precipitate distance. For the lar-
ger precipitates of radius r = 2.5 and 3.75 nm, the situation is different: no 
additional shear stress is needed to move P4 into the precipitate and to detach the 
dislocation D2. Fig. 5.78(f) shows the case of the precipitate with radius r = 3.75 
nm and distance L = 30 nm for an external shear stress τ = 10 MPa slightly larger 
than τc3 = 7.5MPa. This figure does not show a stable configuration of the disloca-
tion D2 but a snapshot of the moving dislocation. The bowing out of P4 within the 
precipitate indicates that there is a force that drives D2 out of the precipitate. The 
difference in the behaviour of the precipitates with radius r = 1.25 nm and the ones 
with larger radius can be explained in the following way. When P3 enters the pre-
cipitate, it destroys the APB with an ensuing energy gain and additional force on 
the dislocation D2. For the small precipitates, the dissociation width of the dislo-
cation (which is about 4 nm) is larger than the diameter of the precipitate. In this 
case, P3 has already moved out of the precipitate when P4 touches the left phase 
boundary. Then no extra force is acting on P3 and P4 can be pinned.  

 
 

τ c
 (M

Pa
) 

Distance L of Precipitates (nm) 
 

 
Fig. 5.79  Critical resolved shear stresses of the trailing dislocations D2 for precipitates of 
different radii as a function of the precipitate distance L. The open symbols correspond to 
τc3 and the full ones to τc4.  



418      Chapter 5: Atomistic and Dislocation Modelling 

For the precipitates that are larger than the dissociation width of D2, the extra 
force on P3 pulls also P4 through the precipitate. In summary, for precipitates 
smaller than the dissociation width, the CRSS of the dislocation D2 is determined 
by P4 while for larger precipitates, the CRSS is determined by P3 

Conclusions 

In this article, we have presented results of simulations of the dislocation–
precipitate interaction in Ni with small spherical Ni3Al precipitates. The CRSSs 
for all partial dislocations of a superdislocation have been determined for different 
radii and distances of the precipitates. It has been found that for precipitates that 
are smaller than the dissociation width of the dislocations, there exists a CRSS of 
the trailing dislocation which is a fraction of about 0.4 of the CRSS of the leading 
dislocation while for larger precipitates, the CRSS of the trailing dislocation is 
negligible. 

The simulations have been performed at temperature T = 0K. This has the ad-
vantage that the mechanisms of the dislocation–precipitate interaction can be in-
vestigated in detail. In particular, the CRSS can be determined for each partial dis-
location. At elevated temperatures, it can be expected that due to the activation 
energy from the temperature motion of the atoms only the CRSS τc2 will be rele-
vant. 
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