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1. INTRODUCTION

In recent years, the study of acoustic and elastic waves propagation in periodic
materials, known as "phononic crystals", has received increasing amount of
attention. Analogous to photonic crystals, a large and robust band gap is essential
to all applications of phononic crystals. In this work, a perturbative approach is
applied to phononic crystals and two main results are obtained. Firstly, we show
that a perturbation analysis can provide us an efficient method to enlarge an
existing acoustic band gap. Secondly, by extending the perturbative analysis to
disordered phononic crystals, we can quantitatively estimate the effect of the
disorder on the size of an acoustic band gap. Due to the difference in the
mathematical structures between Maxwell equations in a photonic crystal and
acoustic wave equation in a phononic crystal, we find that it is much more efficient to
enlarge an acoustic band gap than a photonic band gap. Numerical simulations
using the Multiple Scattering Method verify all the conclusions above.

2. ENGINEERING ACOUSTIC BAND GAPS

An acoustic Bloch state with an eigenfrequency w n,and an eigenfield p, (r) in a
phononic crystal satisfy the following acoustic pressure wave equation,
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Here p fir) and c l fir) are the periodic mass density function and longitudinal wave
speed function of the phononic crystal, respectively. If we alter the microstructure by
two small periodic functions, s p and s c, , the new eigenfrequency, = nk , can be
estimated from a perturbative analysis on Eq. (1), which yields
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Here the integrations are taken over a unit cell. By applying Eq. (2) to the band
edge states, we find an efficient way to enlarge or reduce an existing band gap. A
similar engineering method (X. Zhang et al., 2000) for photonic crystals has been
developed before, but here exists an important difference. In acoustic case, there
are two terms of opposite signs on the RHS of Eq. (2), thus the eigenfrequencies
at upper and lower band edges can be shifted upward and downward,
respectively, for a simple alteration in the microstructure. This is impossible in
the photonic case, since there is only one term on the RHS of the corresponding
equation for Eq. (2).

In order to illustrate the engineering method explicitly, we consider a case of a
two-dimensional phononic crystal consisting of a square lattice of water cylinders
in mercury background ( p,,,/p,, =0.076, c,,,/c m = 1.056) (M. S. Kushwaha and
P. Halevi, 1996). At cylinder radius R = 0.29a (a is the lattice constant), the
band structure is shown in Fig. 1(a).
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Fig. 1 (a) Band structure for a square lattice of water cylinder in mercury background. (b) Field
distributions for 2M and 3M states in a unit cell. Left column is I pl and right column is Opl.

The second band gap is from the 2M state (f
zM

= 0.8047, here we use
dimensionless frequency f =Wa/2Tc,,, ) to the 3M state ( f3M =0.9278). We will
enlarge this band gap by using our engineering method. The eigenfield distributions of
the gap edge states as well as their derivatives are plotted in Fig. 1(b). If we insert
small water cylinders, from the eigenfield distributions in Fig. 1(b), we find that the
right positions of insertions are the corners of the unit cell. In this way, the
eigenfrequency f2M is reduced due to the large

I P2M
and small jvp 2M l at

insertion points, while f3M is increased due to the small IP3MI and large I
Op3Ml

at
insertion points. Thus the second band gap will be enlarged. For verification, we
have calculated the band gap shift by using the Multiple Scattering Method. The
estimated gap shift by Eq. (2) and the calculated gap shift are plotted,
respectively, as dashed lines and solid lines in Fig. 2.
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Fig. 2 Estimated (dashed lines) and calculated (solid lines) gap edge shifts.

Significant enhancement of gap size is obtained. When the inserted water
cylinder radius R i = 0. la , the gap is enlarged 3.7 times. Although Eq. (2) fits
calculation accurately only when R 1 < 0.03a , it provides us an effective guide on
how to engineer an existing band gap at our will.

3. DISORDER EFFECTS
Since the presence of various kinds of disorder is inevitable during the fabrication
process of phononic crystals, it is thus important to study the effects due to
disorder on the quality of a band gap. The structure of full band gaps of a finite-
sized disordered phononic crystal can be obtained from the radiation power
spectrum. Consider a circular sample of radius R 5, which is excited by a line source at
a fixed frequency located near the centre. The radiation power can be calculated
by using the Multiple Scattering Method. For frequencies inside a full gap, the
density of states is zero, which in turn gives a divergent impedance and vanishing
radiation power. The validity of this method has been established elsewhere
(X. Zhang et al., 2001).

The effects due to disorder on acoustic band gaps can also be estimated by
applying the perturbation analysis to a disordered sample with two disordered
funetionsl/p +S (l/p) and 1/pct +S (l/pci). The shifts at two gap edge states
can be estimated from the perturbative analysis, which gives
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Here the summation sums all unit cells inside the sample.
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As an example, we consider the case of a 2-dimensional disordered phononic
crystal consisting of a square lattice of water cylinders (R = 0.29a) in mercury
background. Here two kinds of disorder are considered, i.e. site randomness and
size randomness with dr and dxy denoting the strengths of disorder, respectively.
For site randomness, the cylinders are randomly displaced away from their respective
lattice points with displacements uniformly distributed within a circle of
radius dxy. While for size randomness, the cylinders' radii are uniformly distributed
over [R-dr, R+dr]. The sample is in a circular shape enclosing 184 unit cells.

In Fig. 3 we plotted the change of gap size as a function of disorder strength.
The solid lines are obtained from radiation power and the dashed lines are the
results of Eq. (3). Excellent quantitative agreement between the two results clearly
demonstrates the validity of the perturbative approach. The size randomness is
more effective in reducing the size of a gap. The similar result has been found in
the case of photonic crystal (Z. Y. Li et al., 2000). Moreover, by comparing these
results with the case of photonic crystals, we find that acoustic band gaps are
more robust against size randomness than photonic band gaps are. This may be
due to the cancellation of the two terms on the RHS of Eq. (3) in each unit cell.
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Fig. 3 (a) site randomness (b) size randomness.

4. SUMMARY
Based on a perturbative approach, a simple, systematic, and efficient method to
engineer acoustic gaps is proposed. The effects due to disorder on the size of a
band gap are estimated by the same perturbative analysis. Both results are verified
by the "exact" numerical calculations using the Multiple Scattering Method.

REFERENCES
M. S. Kushwaha and P. Halevi, 1996, Applied Physics Letters, 69, pp. 31-33
X. Zhang, Z.Q. Zhang and C.T. Chan, 2001, Physical Review B, 63, pp. 081105
X. Zhang, Z.Q. Zhang and L. M. Li, 2000, Physical Review B, 61, pp. 1892-1897
Y. Lai, X. Zhang and Z. Q. Zhang, 2001, Applied Physics Letters, 79, pp. 3224-3226
Z. Y. Li, X. Zhang and Z. Q. Zhang, 2000, Physical Review B, 61, pp. 15738-15748

1.0- 1.0-

0.s ti
-* -

0.6 - 	---•--•-"'.U
0.7 0 77aN 0.6- 0.6-

L-

O.5 - 0.5-CII
N 0.4- 0.4-K

0.3 0.5


	Nano Science and Technology: Novel Structures and Phenomena
	Table of Contents
	Chapter 29: Engineering Acoustic Band Gaps in Phononic Crystals
	1. INTRODUCTION
	2.ENGINEERING ACOUSTIC BAND GAPS
	3. DISORDER EFFECTS
	4. SUMMARY
	REFERENCES





